

Lecture Notes in Computer Science 7059
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Andreas Harth Nora Koch (Eds.)

Current Trends
in Web Engineering

Workshops, Doctoral Symposium, and Tutorials
Held at ICWE 2011
Paphos, Cyprus, June 20-21, 2011
Revised Selected Papers

13

Volume Editors

Andreas Harth
Karlsruher Institut für Technologie (KIT)
Institut AIFB
Englerstraße 11
76128 Karlsruhe, Germany
E-mail: harth@kit.edu

Nora Koch
Ludwig-Maximilians-Universität
Oettingenstraße 67
80538 München, Germany
E-mail: kochn@pst.ifi.lmu.de

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-27996-6 e-ISBN 978-3-642-27997-3
DOI 10.1007/978-3-642-27997-3
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011945290

CR Subject Classification (1998): H.5, H.4, H.3, K.6, D.2, C.2, H.3.5, H.5.3

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

© Springer-Verlag Berlin Heidelberg 2012

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

The series of the International Conference on Web Engineering (ICWE)
promotes scientific and practical excellence on Web Engineering, and brings to-
gether researchers and practitioners working with technologies, methodologies,
tools, and techniques used to develop and maintain Web-based applications.

The 11th edition of ICWE extended its conference program with workshops,
a doctoral symposium and tutorials providing a complementary overview on
current research issues. The main topics covered all aspects of enabling and im-
proving the dissemination and use of content and services through the Web: Web
application engineering, Web service engineering, and Web data engineering. In
particular, the workshops offered Web engineering researchers and practition-
ers highly interactive sessions including in-depth presentations on focused topics
and a discussion forum on emerging challenges. Within the scope of the doc-
toral symposium, PhD students presented their approaches and preliminary re-
sults to obtain constructive feedback from experts. Tutorials held by senior Web
engineering researchers provided a wide overview on their particular research
activities.

The ICWE 2011 conference and its satellite events took place in Paphos
(Cyprus) during June 20–24, 2011. It followed editions of the conference in Vi-
enna (Austria), San Sebastián (Spain), Yorktown Heights NY (USA), Como
(Italy), Palo Alto CA (USA), Sydney (Australia), Munich (Germany), Oviedo
(Spain), Santa Fé (Argentina) and Cáceres (Spain).

This volume contains the papers presented at the workshops and the doctoral
symposium, as well as the tutorial summaries. The workshop Program Commit-
tee selected seven proposals from ten submissions; due to few submissions one
was canceled and the following six workshops were held during June 20–21, 2011.

– Third International Workshop on Lightweight Composition on the Web
(ComposableWeb)

– First International Workshop on Search, Exploration and Navigation of
Web Data Sources (ExploreWeb)

– Second International Workshop on Enterprise Crowdsourcing (EC)
– 7th Model-Driven Web Engineering Workshop (MDWE)
– Second International Workshop on Quality in Web Engineering (QWE)
– Second Workshop on the Web and Requirements Engineering (WeRE)

The doctoral symposium and four tutorials complemented the conference
and workshop program. The doctoral symposium in particular provided helpful
feedback to the PhD students and special motivation for their work in the Web
engineering field. The tutorials accepted were two full-day presentations: “Multi-
Dimensional Context-Aware Adaptation for Web Applications” and “Automat-
ing the Use of Web APIs Through Lightweight Semantics,” and two half-day

VI Foreword

presentations: “Context-Aware Adaptation for Web Applications” and “Improv-
ing Quality in Use of Web Applications in a Systematic Way.”

We thank the ICWE 2011 conference General Chair, George Papadopoulos,
and the Program Chairs, Oscar Diaz and Sören Auer, for their constant support
in our work. We would like to thank the members of the Program Committee for
selecting high-quality workshops, and the organizers of the workshops for provid-
ing a world-class program and leading fruitful discussions during the workshop
days. Our gratitude goes to the Doctoral Symposium and Tutorial Chairs. Fi-
nally, a special thanks to all researchers and students who contributed with their
work, presentation and participation to the success of the ICWE 2011 satellite
events: workshops, doctoral consortium and tutorials.

September 2011 Andreas Harth
Nora Koch

Organization

Workshop Program Committee

Andreas Abecker FZI Forschungszentrum Informatik, Germany
Fabio Casati University of Trento, Italy
Federico Facca Create Net, Italy
Athula Ginige University of Western Sydney, Australia
Alexander Knapp Universität Augsburg, Germany
Maristella Matera Politecnico Milano, Italy
Martin Nussbaumer Karlsruhe Institute of Technology, Germany
Luis Olsina Universidad Nacional de La Pampa, Argentina
Oscar Pastor Universidad de Valencia, Spain
Gustavo Rossi Universidad Nacional de La Plata, Argentina
Marco Winkler University Paul Sabatier, Toulouse, France

Preface

The preface of this volume presents the prefaces of the workshop proceedings of
the individual workshops, the PhD symposium and the tutorials. The papers of
the workshops and the PhD symposium as well as the summaries on the tutorials
are grouped by event and can be found in the body of the volume.

Third International Workshop on Lightweight Composition
on the Web (ComposableWeb 2011)

Organizers: Florian Daniel, Sven Casteleyn, and Geert-Jan Houben

The third edition of ComposableWeb was again held in conjunction with the In-
ternational Conference on Web Engineering (ICWE), which took place this year
in Paphos, Cyprus. As such, ComposableWeb has become part of this conference
and of its workshop program, a result we are particularly glad of.

The workshop focuses on research, practical experiences, and novel ideas in
the context of component-based development of Web applications, lightweight
composition on the Web, Web 2.0, and mashups. The goal of the workshop is to
provide a discussion forum bringing together researchers and practitioners work-
ing in these areas, in order to jointly advance current state-of-the-art solutions.
The topics of the workshop typically attract enthusiastic people that like to play
with novel technologies and that try to make application development accessible
also to less skilled developers or – as envisioned by many – even to end-users.
Submissions typically range from mature works to position or vision papers.

The scientific program of the 2011 edition of the workshop consisted of nine
papers, spanning a variety of topics. All submissions went through a rigorous
blind review process by our Program Committee, and only submissions with pos-
itive feedback were selected for publication. Among accepted papers, the reader
will find a survey on mashup tools, a semantics-based approach to mashup de-
velopment, a recommendation approach of mashup components, telco mashups,
a W3C widget extension for inter-widget communication, cross-domain commu-
nications, linking-based protocols for RESTful interactions, transaction support
for RESTful services, and security support for mashups.

We intended to re-use last year’s successful workshop format, with a whole
day of paper presentations and a final demonstration and discussion session, in
which also participants without an accepted paper could showcase their ideas
and results. For organizational reasons, however, this year we hosted three papers
of the Second International Workshop on Enterprise Crowdsourcing in the last
session of the day, which focused on crowd-adapted Web applications, human
computation, and crowd-assisted IT management (all contributions can be found

VIII Preface

in this proceedings volume). This unexpected merge yielded a dense and inter-
esting program with unexpected interaction points among the two workshops
and good opportunities for cross-fertilization.

We would like to thank all the authors who contributed to the workshop
with their papers and presentations, our Program Committee for the construc-
tive and competent feedback, and the audience for actively participating in the
discussions. We thank Maja Vuković and Claudio Bartolini, the organizers of the
Enterprise Crowdsourcing Workshop, for contributing to ComposableWeb 2011.
Finally, we thank the ICWE Organizers and Workshop Chairs for hosting the
workshop and providing a nice, relaxed, and constructive environment.

July 2011 Florian Daniel
Sven Casteleyn

Geert-Jan Houben

Organization

Program Committee

Luciano Baresi Politecnico di Milano, Italy
Boualem Benatallah University of New South Wales, Australia
Fabio Casati University of Trento, Italy
Francisco Curbera IBM Research, USA
Olga De Troyer Vrije Universiteit Brussel, Belgium
Schahram Dustdar Technical University of Vienna, Austria
Peep Kúngas University of Tartu, Estonia
Maristella Matera Politecnico di Milano, Italy
John Musser ProgrammableWeb.com, USA
Tobias Nestler SAP, Germany
Moira Norrie ETH Zurich, Switzerland
Cesare Pautasso University of Lugano, Switzerland
Florian Rosenberg IBM Research, USA
Gustavo Rossi Universidad Nacional de La Plata, Argentina
Takehiro Tokuda Tokyo Institute of Technology, Japan

External Reviewers

Benjamin Satzger Technical University of Vienna, Austria
Stefano Soi University of Trento, Italy
Carlos Rodriguez University of Trento, Italy

Search, Exploration and Navigation of Web Data

Sources (exploreWeb 2011)

Organizers: Marco Brambilla, Piero Fraternali, and Daniel Schwabe

The First International Workshop on Search, Exploration and Navigation of Web
Data Sources (exploreWeb 2011) was held on June 20, 2011 in Paphos, Cyprus.

The motivation for this initiative stands in the exponential growth of data
sources available on the Web and in the need of devising efficient information
exploration options to the users. Web data providers offer a plethora of different
ways of accessing their data sources, spanning from APIs (e.g., Google APIs,
location-based APIs, and so on) to proprietary query languages (such as Ya-
hoo! Query Language, YQL) to endpoints accessible through standard query
languages (e.g., SPARQL). This trend is associated with the increased tendency
toward labeling, tagging, and linking data semantically, as pushed also by social
networking applications (e.g., social bookmarking, user networks, and so on).

These data sources expose their content as semi-structured information (e.g.,
JSON, XML, ...) and more and more enrich it in the form of the so-called linked
data cloud, with uri-based references between the resources. This is a major
change of paradigm with respect to traditional Web publishing. On the one
hand, it enormously facilitates access and querying of information with respect
to the old-fashioned page-based Web paradigm. On the other hand, however, this
challenges the current approaches to Web navigation and information collection
by end users. With the growth of the available open and linked data, the need
arises for effective mechanisms targeted to human users for searching, exploring,
and consuming such data.

Cross-fertilization between different disciplines is mandatory for this purpose:
exploratory search approaches should be merged with usability and cognitive sci-
ence to identify the best interaction paradigms over such new data sources; Web
engineering approaches should be extended with data integration and Semantic
Web /linked data-based practices (such as knowledge exploration tools) to con-
nect linked and non-linked data, and to provide proper navigational applications
to the end users.

The initiative was very successful: the workshop got 12 submissions, of which
7 were accepted for presentation. The program also included an extremely in-
teresting invited talk by Sóren Auer on “Exploration and Other Stages of the
Linked Data Life Cycle.” Such a life cycle comprises the following phases: ex-
traction, storage and querying, authoring, linking, evolution, exploration, and
visualization. The keynote raised a lively discussion that continued throughout
the day after each paper had been presented.

The workshop was organized into four sessions: the first one was dedicated to
the keynote talk; the second one was on linked data exploration; the third one

X exploreWeb 2011

was on tag clouds and NLP; and the fourth one dealt with Web data navigation
and exploration.

The first paper of the linked data exploration session was written by Alessan-
dro Bozzon, Marco Brambilla, Emanuele Della Valle and Chiara Pasini (from
Politecnico di Milano) and presented a “Conceptual Framework for Linked Data
Exploration Based on the Search Computing Infrastructure.” Then Marcelo Co-
hen and Daniel Schwabe (from PUC-Rio) presented their paper dealing with
“Support for Reusable Explorations of Linked Data in the Semantic Web.”

In the tag clouds and NLP session the presented paper included: “Genera-
tion of Semantic Clouds Based on Linked Data for Efficient Multimedia Semantic
Annotations,” by Han-Gyu Ko and In-Young Ko from Korea Advanced Insti-
tute of Science and Technology; “Segmentation of Geo-Referenced Queries,” pre-
sented by Mamoun Abu Helou, from Politecnico di Milano; and “SimSpectrum:
A Similarity-Based Spectral Clustering Approach to Generate a Tag Cloud,”
written by Frederico Durao, Peter Dolog, Martin Leginus and Ricardo Lage
from Aalborg University.

Finally, the Web data navigation and exploration session included the pre-
sentations of the following works: “Graph Access Pattern Diagrams (GAP-D):
Towards a Unified Approach for Modeling Navigation over Hierarchical, Lin-
ear and Networked Structures,” written by Matthias Keller and Martin Nuss-
baumer (from Karlsruhe Institute of Technology, KIT); and “Data-Driven and
User-Driven Multidimensional Data Visualization” written by Rober Morales-
Chaparro, Juan Carlos Preciado and Fernando Sanchez-Figueroa (from Univer-
sity of Extremadura).

The resources related to the workshop (including the presentation used by
the speakers) are available online on the exploreWeb website at:
http://exploreweb.search-computing.org .

We wish to thank the ICWE 2011 Organizing Committee, the ExploreWeb
Program Committee that did a great job in reviewing the submitted papers, and
the Search Computing project (http://www.search-computing.org) that spon-
sored the event.

June 2011 Marco Brambilla
Piero Fraternali
Daniel Schwabe

Organization

Program Committee

Alessandro Bozzon Politecnico di Milano, Italy
Marco Brambilla Politecnico di Milano, Italy
Sven Casteleyn Universidad Politécnica de Valencia, Spain
Mathieu D’Aquin The Open University, UK
Florian Daniel University of Trento, Italy
Tommaso Di Noia Politecnico di Bari, Italy
Oscar Diaz University of the Basque Country, Spain
Alan Dix Talis, UK
Peter Dolog Aalborg University, Denmark
Federico Facca Create-Net, Italy
Piero Fraternali Politecnico di Milano, Italy
Michael Grossniklaus Portland State University, USA
Nora Koch Ludwig-Maximilians-Universität München,

Germany
Maristella Matera Politecnico di Milano, Italy
Santiago Meliá University of Alicante, Spain
Gabriella Pasi Università degli Studi di Milano Bicocca, Italy
Oscar Pastor University of Valencia, Spain
Cesare Pautasso University of Lugano, Switzerland
Fernando Sanchez Figueroa Universidad de Extremadura, Spain
Daniel Schwabe PUC-Rio, Brazil
Giovanni Tummarello DERI, National University of Ireland Galway,

Ireland

Second International Workshop on Enterprise

Crowdsourcing (EC 2011)

Organizers: Maja Vuković and Claudio Bartolini

Web 2.0 provides the technological foundations upon which the crowdsourcing
paradigm evolves and operates, enabling networked experts to work collabora-
tively or competitively to complete a specific task. Crowdsourcing has the poten-
tial to significantly transform Web-enabled business processes by incorporating
the knowledge and skills of globally distributed experts to drive business objec-
tives at shorter cycles and lower cost. Many interesting and successful examples
exist, such as TopCoder and Amazon Mechanical Turk. Global enterprises are
increasingly adopting crowdsourcing given the ease of access to a scalable work-
force online. In this context, crowdsourcing takes many different shapes and
forms, from mass data collection to enabling end-user driven customer support
services. However, to fully adopt this mechanism in enterprises and benefit from
appealing value propositions in terms of reducing the time-to-value, a set of
challenges remain to be solved.

Based on the increasing number of applications, and platforms that pro-
vide crowdsourcing capabilities, this workshop seeks to identify novel enterprise
crowdsourcing applications and use them to derive requirements for common
protocols and reusable Web service components, leading to a set of standardized
interfaces for supporting them.

The first paper paper written by Nebeling and Norrie highlighted an inter-
esting application of crowdsourcing to enable context-aware and adaptive Web
interfaces. With the ever-increasing range and diversity of Web browser prop-
erties, crowdsourcing provides a low-cost alternative to enabling a wider range
of use contexts to which Web applications can adapt. Nebeling positioned this
application of crowdsourcing within the most recent crowdsourcing taxonomy by
Quinn and Benderson. The key challenge in this work is how to design a suitable
ranking model when crowd workers supply multiple adaptations.

In his presentation Lukas Biewald of CrowdFlower discussed opportunities
for new business models on top of existing crowdsourcing marketplaces, pro-
viding quality assurance capabilities. For example, quality-controlled human in-
telligence is being employed to weed through business listings and company
information to ensure the correctness of data for CrowdFlower clients. Beyond
business-driven tasks, CrowdFlower also enables volunteering-type tasks through
their GiveWork iPhone application, developed jointly with Samasource, allowing
people in developing countries to complete short tasks that are used for training
purposes.

Tata Consultancy Services introduced the use of crowdsourcing internally
within the enterprise, with a resulting improvement of the efficiency of their

XIV EC 2011

software engineering processes. Untapped talent, such as new trainees, and ex-
perts not practicing fully their technical skills are being exposed to challeng-
ing tasks, introducing the disruptive resource allocation model. The proposed
system enables a reputation model, as means of motivating the participation
of in-house experts. Vuković presented how crowdsourcing mechanisms can be
applied within large IT organizations to drive end-to-end on-cloud migration
processes. Different crowds of experts, such as application owners, system ad-
ministrators, business analysts, are harnessed to gather the knowledge that is
critical to identifying migration candidates, evaluating the feasibility and impact
of this transformation to existing business processes. The key challenge is how
to design sustainable incentives, as the crowd may be engaged multiple times
during the process.

As crowdsourcing examples abound in enterprise, in scientific and public
domains, open questions remain. How can we carry over human relationships
arising from the social context to the online work marketplaces? The question
of setting effective incentives remains, both for attracting high performers, but
also for rewarding and retaining top contributors.

July 2011 Maja Vuković
Claudio Bartolini

Organization

Program Committee

Daren Brabham University of Utah, USA
Fabio Casati University of Trento, Italy
Schahram Dustdar Technical University of Vienna, Austria
Yaniv Corem IBM Research, Israel
Vassilis Kostakos University of Madeira, Portugal
Osamuyimen Stewart IBM Research, USA

7th Model-Driven Web Engineering Workshop

(MDWE 2011)

Organizers: Gustavo Rossi, Geert-Jan Houben, Marco Brambilla, and
Santiago Meliá

The International Workshop on Model-Driven Web Engineering (MDWE 2011)
was held in conjunction with the 11th International Conference on Web Engi-
neering (ICWE 2011) in Paphos (Cyprus) on July 21, 2011. MDWE promotes a
trend with growing importance in Web application development, which is cur-
rently moving from ad-hoc implementations mainly focused on the application of
innovative technologies and methods to a more systematic development princi-
pally oriented to model-driven, automatic generation, maintenance and modern-
ization of Web systems. In the Web Engineering field, elements such as models,
meta-models, model transformations and tools, which are all essential in model-
driven approaches, are gaining more and more relevance possibly due to the
increasing number of scenarios in which they have successfully proven to be
useful.

In this year’s edition of the workshop, the five accepted papers addressed
a wide set of topics and proposed several approaches for automating the de-
velopment process of Web applications. The topics covered the whole spectrum
of current Web applications from the client or user interface (using traditional
Web applications or rich Internet applications) to the server (generating service-
oriented architectures, SOAs). Moreover, the proposals introduced the most re-
cent techniques in the field of model-driven engineering (e.g., architecture-centric
MDA, aspect-oriented development or modernization) to improve the current
Web development processes.

In particular, the first paper, “Aspect-Oriented Modeling of Web Applications
with HiLA,” by Gefei Zhang and Matthias Hölzl, presented an aspect-oriented,
model-driven approach aiming to avoid potential interferences between Web
engineering concerns and also to specify feature combinations. Regarding the
service-oriented architecture topic, Achilleas Achilleos, Georgia Kapitsaki and
George Papadopoulos presented their work, “A Model-Driven Framework for
Developing Web-Oriented Applications,” which specifies multi-platform mobile
applications with a client-side DSL model using a PML and an SOA server with
WSDL. The third paper titled “Developing Enterprise Web Applications Us-
ing the Story-Driven Modeling Approach” (by Christoph Eickhoff, Nina Geiger,
Marcel Hahn and Albert Zündorf) introduces an adaptation of the Fujaba Pro-
cess to support the generation of enterprise Web applications (also called RIAs),
implemented using the Google Web Toolkit framework.

Eban Escott, Paul Strooper, Paul King and Ian J. Hayes, in their paper
“Model-Driven Web Form Validation with UML and OCL,” employed architecture-

XVI MDWE 2011

centric MDA (AC-MDA) techniques that, starting from an analysis of imple-
mentation of a set of target Web forms, derive a collection of models and trans-
formations capable of representing and generating them, respectively. Finally,
“Modernization of Legacy Web Applications into Rich Internet Applications”
(by Roberto Rodriguez-Echeverria, Jose Maria Conejero, Pedro J. Clemente,
Juan Carlos Preciado and Fernando Sanchez-Figueroa) was the last paper of the
workshop. In this paper, the authors implemented a process of Web reengineer-
ing, based on techniques of architecture-driven modernization, whose final goal
was to implement a reengineering process from a traditional Web 1.0 application
to a rich Internet application.

The most significant contribution of MDWE is to provide an open discussion
forum with renowned experts in this field and to combine works with a solid the-
oretical basis with experiences in the use of model-driven approaches in real-life
scenarios. This year’s discussion was centered on the manner in which the differ-
ent MDWE approaches respond to the new challenges of Web 2.0. In this regard,
the majority of the accepted papers were aligned with relevant Web 2.0 topics,
such as service-oriented architectures or rich Internet applications. Another in-
teresting discussion topic was the diffusion of MDWE approaches in real business
scenarios: how to improve the adoption of MDWE approaches in the software
development market and which would be the optimal mechanisms to maximize
the dissemination of the research in different universities and companies.

Last but not least, we would like to express our sincere gratitude to all
the authors and workshop attendees for their active participation and contri-
bution to the discussions. We would also like to thank all the members of the
Program Committee and the external reviewers for the high quality of their
reviews, which provided excellent feedback to the authors. We extend these
thanks to the ICWE 2011 Organizing Committee and Workshop Chairs for
their support. For more information, please visit the website of MDWE 2011:
http://mdwe2011.pst.ifi.lmu.de/

July 2011 Gustavo Rossi
Geert-Jan Houben

Marco Brambilla
Santiago Meliá

Organization

Program Committee

Luciano Baresi DEI - Politecnico di Milano, Italy
Jordi Cabot INRIA - École des Mines de Nantes, France
Maŕıa Valeria De Castro Universidad Rey Juan Carlos, Spain
Olga De Troyer Vrije Universiteit Brussel, Belgium
Piero Fraternali Politecnico di Milano, Italy
Heinrich Hussmann LMU Munich, Germany
Alexander Knapp Universität Augsburg, Germany
Maristella Matera Politecnico di Milano, Italy
Vicente Pelechano Universidad Politcnica de Valencia, Spain
Alfonso Pierantonio University of L’Aquila, Italy
Juan Carlos Preciado University of Extremadura, Spain
Fernando Sanchez-Figueroa University of Extremadura, Spain
Antonio Vallecillo University of Malaga, Spain
Marco Winckler LIIHS-IRIT, University Paul Sabatier, France

Additional Reviewers

Manuel Wimmer TU Wien, Austria

Second International Workshop on Quality in

Web Engineering (QWE 2011)

Organizers: Cinzia Cappiello, Cristina Cachero, Maristella Matera, and
Silvia Abrahão

The production of Web applications has been among the fastest growing seg-
ments of the software industry for several years. In fact, they are an interesting
opportunity for companies to deliver services and products at distance. The ef-
fectiveness of such applications is dependent on their capability to satisfy the
customer needs; thus the quality of Web applications, responsible for the related
transactions, has become a crucial factor. However, some recent studies suggest
that more than 50% of the delivered Web applications are of poor quality.

The quality of any class of Web products (e.g., a data-intensive application,
a Web service, a community portal), should be addressed at different levels: in
Web processes, Web artifacts, Web products (applications, services) and in Web
content. Also, any quality-oriented approach needs the specification of quality
models defining the set of relevant quality attributes to be assessed. Otherwise,
quality assessment is left to the intuition or the responsibility of people who
are in charge of the process. This need to reflect and advance on methods and
techniques that help improve the quality of delivered Web applications led us to
organize the second edition of the International Workshop on Quality in Web En-
gineering (QWE 2011) that was held in conjunction with the 11th International
Conference on Web Engineering (ICWE 2011).

The main purpose of the workshop was to discuss and get to know the most
innovative and advanced experiences for guaranteeing the quality of Web appli-
cations, and the role that Web Engineering methods can play in this respect.
In particular this year’s edition of the workshop encouraged a discussion on the
emergent issues related to the quality of Web 2.0 applications. These applications
foster a great user involvement in the production of content, annotations and
evaluations, never experienced before in the Web. Traditional quality criteria
no longer suffice: a central role is played by the huge amount of user-generated
content that is now populating the Web and that is considered as an invalu-
able source of opinions in several contexts, especially in the enterprise context.
The discussions during the workshop thus highlighted the need for new quality
models, privileging aspects such as the quality of user-created content (e.g., its
trustworthiness and credibility), the user participation in the content creation
process and the content authors’ reputation.

The discussion of the previous issues was facilitated by the presented papers,
which focused on Web 2.0 applications and highlighted the need for new quality
models and, in some cases, the inapplicability of traditional dimensions.

XX QWE 2011

We would like to thank the authors for submitting their papers to the work-
shop and contributing to the interesting discussion during the workshop. We
are also grateful to the members of the Program Committee for their efforts in
the reviewing process, and to the ICWE organizers for their support and assis-
tance in the production of these proceedings. More details on the workshop are
available at http://gplsi.dlsi.ua.es/congresos/qwe11/.

July 2011 Cinzia Cappiello
Cristina Cachero

Maristella Matera
Silvia Abrahão

Organization

Program Committee

Shadi Abou-Zahra World Wide Web Consortium (W3C)
Carlo Batini Universitá degli Studi di Milano-Bicocca, Italy
Giorgio Brajnik University of Udine, Italy
Ismael Caballero University of Castilla-la-Mancha, Spain
Coral Calero University of Castilla-la-Mancha, Spain
Tiziana Catarci University of Rome, Italy
Sven Casteleyn Universidad Politécnica de Valencia, Spain
Maria Francesca Constabile Universitá degli Studi di Bari, Italy
Florian Daniel Politecnico di Milano, Italy
Adrian Fernandez Martinez University of Valencia, Spain
Bernd Heinrich Innsbruck University School of Management,

Austria
Emilio Insfran Universidad Politécnica de Valencia, Spain
Nora Koch Ludwig-Maximilians-Universität München,

Germany
Sergio Lujan University of Alicante, Spain
Vicente Luque Centeno University Carlos III, Spain
Luis Olsina Universidad Nacional de La Pampa, Argentina
Barbara Pernici Politecnico di Milano, Italy
Geert Poels University of Ghent, Belgium
Gustavo Rossi LIFIA, UNLP, Argentina
Carmen Santoro ISTI-CNR, Italy
Monica Scannapieco University of Rome, Italy
Wieland Schwinger Johannes Kepler University, Austria
Marco Winckler University Paul Sabatier, France

Second Workshop on the Web and Requirements

Engineering (WeRE 2011)

Organizers: Irene Garrigós, Jose-Norberto Mazón, Nora Koch, and
Maria Jose Escalona

The Second International Workshop on the Web and Requirements Engineering
(WeRE) was held in conjunction with the 11th International Conference on Web
Engineering (ICWE 2011) in Paphos (Cyprus) on July 21, 2011. WeRE provides
an international forum for exchanging ideas on both using Web technologies as
a platform in the requirements engineering field, and applying requirements en-
gineering in the development and use of websites. Papers presented at WeRE
focused on new domains and new experiences with the connection between re-
quirements engineering and the Web. For more information, please visit the
website of WeRE 2011: http://gplsi.dlsi.ua.es/congresos/were11.

In the last decade, the number and complexity of Web-based software systems
and the amount of information they offer has been continuously growing. In the
context of software engineering, design methods and methodologies were intro-
duced to provide mechanisms to develop these complex Web applications and
rich Internet applications (RIAs) in a systematic way. Most of these method-
ologies focus on implementation and neglect other tasks such as requirement
analysis and quality management. However, in the development of traditional
(non-Web) applications, both practitioners and process experts regard require-
ments engineering as a phase of crucial relevance in the development process.

It is well-known that the most common and time-consuming errors, as well as
the most expensive ones to repair, are those that arise from inadequate engineer-
ing of requirements. Therefore, although the relevance of requirements engineer-
ing is well known these techniques should be studied more widely in the Web
Engineering community due to the complexity of Web Engineering problems.
This complexity is caused by the size and changing nature of the community of
stakeholders involved, as well as the diversity of requirements, including naviga-
tion requirements, self-adaptivity requirements, as well as usability and the user
experience.

On the other hand, requirements engineering is a complex activity whose
success depends on stakeholder participation. Therefore, the techniques proposed
in the requirements engineering field need a more participative environment to
support effective collaboration among stakeholders. In this context, the Web
(especially Web 2.0 applications) provides a convenient platform that supports
active participation by stakeholders in the requirements engineering process.

For this edition two papers were selected for presentation. The first one fo-
cuses on “Detecting Conflicts and Inconsistencies in Web Application Require-
ments.” The second one discusses “Streamlining Complexity: Conceptual Page

XXII WeRE 2011

Re-modeling for Rich Internet Applications.” The workshop included a discus-
sion slot were participants were very active. The discussion finally focused on the
Web 2.0 and requirements engineering that is a hot and challenge topic, which
brought some controversy.

Finally, we would like to thank the authors and presenters for their contribu-
tion, and the workshop participants for the lively discussion. We also would like
to thank the Program Committee for the review of the papers and the ICWE
2011 Organizing Committee for their support. In addition, we would like to grate-
fully acknowledge the support of our sponsors Sadiel (http://www.sadiel.es),
Everis (http://www.everis.com) and Novasoft (http://www.novasoft.es), as well
as the financial support of the University Institute for Computing Research
(IUII) at the University of Alicante and the MANTRA research project (GRE09-
17) from the University of Alicante (Spain) and from the Valencia Government
(GV/2011/035).

June 2011 Irene Garrigós
Jose-Norberto Mazón

Nora Koch
Maŕıa José Escalona

Organization

Program Committee

Silvia Abrahao Universidad Politécnica de Valencia, Spain
Jose Alfonso Aguilar Universidad Autónoma de Sinaloa, Mexico
Joao Araujo Universidade Nova de Lisboa, Portugal
Davide Bolchini Indiana University, USA
Marco Brambilla Politecnico di Milano, Italy
Travis Breaux North Carolina State University, USA
Jordi Cabot École des Mines de Nantes, France
Fabio Casati University of Trento, Italy
Sven Casteleyn Universidad Politécnica de Valencia, Spain
Jean Louis Cavarero University of Nice, France
Florian Daniel University of Trento, Italy
Xavi Franch Universitat Politécnica de Catalunya, Spain
Piero Fraternalli Politecnico di Milano, Italy
Martin Gaedke Chemnitz University of Technology, Germany
Athula Ginige University of Western Sydney, Australia
Paolo Giorgini University of Trento, Italy
Geert-Jan Houben Delft University of Technology, The Netherlands
Emilio Insfran Universidad Politécnica de Valencia, Spain
Ivan Jureta University of Namur, Belgium
David Lowe University of Technology, Sydney, Australia
Manuel Mej́ıas University of Seville, Spain
Maria Ángeles Moraga University of Castilla La Mancha, Spain
Ana Moreira Universidade Nova de Lisboa, Portugal
Óscar Pastor Universitat Politécnica de Valencia, Spain
Vicente Pelechano Universitat Politécnica de Valencia, Spain
Gustavo Rossi University of La Plata, Argentina
Norbert Seyff City University London, UK
Ambrosio Toval University of Murcia, Spain
Roel Wieringa University of Twente, The Netherlands
Marco Winckler Université Toulouse, France
Eric Yu University of Toronto, Canada

Doctoral Symposium 2011

Doctoral Symposium Chairs: Peter Dolog, and Bernhard Haslhofer

The ICWE 2011 Doctoral Symposium aimed at providing PhD students with an
opportunity to discuss their Web engineering research in an international forum
with well-known experts in the field. It helped students to develop and sharpen
their research questions, to find methodologies to answer the questions and to
exchange ideas with other students and experienced researchers.

Besides the traditional ICWE themes such as Web Application Development
and Web Service Engineering, this year’s Doctoral Symposium featured the spe-
cial theme Web Data Engineering. With this theme, the main aim was to address
the developments in the Semantic Web and linked data community: creating a
Web of data on top of the existing Web architecture. This is interesting for Web
Engineering because these developments lift data management to the Web level
and pose novel challenges for Web application design and Web service engineer-
ing in general. Vice versa, the experiences gained in Web engineering research can
be valuable input for the further development of the Web of data. The research
ideas presented and further developed in the ICWE 2011 Doctoral Symposium
can benefit from these synergies and lead to novel and exciting research direc-
tions.

These proceedings collect the papers presented at the ICWE 2011 Doctoral
Consortium. All the submissions were peer-reviewed by at least two independent
reviewers from the Web Engineering and/or Semantic Web community. In total,
we received 17 submissions and selected 10 based on the reviewers’ comments.
This gives an acceptance rate of 59%. The topics range from a traditional focus
on development methods, such as product lines, domain-specific languages, in-
terface specification, application architecture design, end-user programming and
Web mashups through information and relation extraction, data modeling, XML
document management, and linked data.

We would like to thank the authors for submitting their manuscripts to the
Doctoral Symposium and contributing to an interesting program. Also, we would
like to thank the members of the Program Committee for reviewing the papers
and giving their feedback. Finally, we thank the General Chairs for supporting
us in organizing and setting up this Doctoral Symposium.

May 2011 Peter Dolog
Bernhard Haslhofer

Organization

Program Committee

Sören Auer Universität Leipzig, Germany
Peter Dolog Aalborg University, Denmark
Piero Fraternali Politecnico di Milano, Italy
Martin Gaedke Chemnitz University of Technology, Germany
Bernhard Haslhofer Cornell University, USA
Michael Hausenblas DERI Galway, Irleand
Geert-Jan Houben Delft University of Technology, The Netherlands
Antoine Isaac VU Amsterdam, The Netherlands
Gerti Kappel Technical University of Vienna, Austria
Christoph Lange Jacobs University Bremen, Germany
Óscar Pastor Lopez University of Valencia, Spain
Thomas Risse L3S Research Center, Germany
Gustavo Rossi Universidad Nacional de La Plata, Argentina
Harald Sack Hasso Plattner Institute, Germany
Fernando Sanchez-Figueroa University of Extremadura, Spain
Raphael Troncy Eurecom, France
Vassilis Tzouvaras National Technical University of Athens, Greece
Wolfram Wöß Johannes Kepler University Linz, Austria

ICWE 2011 Tutorials

Tutorial Chairs: Steffen Lohmann, and Cesare Pautasso

Following its tradition, the 2011 edition of the International Conference on Web
Engineering (ICWE 2011) complemented its main program with a rich tutorial
program. It took place jointly with the workshops and PhD symposium on the
first two days of the conference. The tutorials provided conference attendees with
an opportunity to gain new knowledge, insights, skills and abilities on key Web
engineering topics, tools and techniques.

We had space for four tutorials this year that were selected from a num-
ber of high-quality submissions following an open call. They all covered areas
that are of high relevance to the Web Engineering community. On the first day
(June 20), Vivian Genaro Motti and Jean Vanderdonckt talked about “Multi-
Dimensional Context-Aware Adaptation for Web Applications” and Fabian Abel
and Geert-Jan Houben about “Engineering the Personal Social Semantic Web.”
The program of the second day (June 21) also consisted of two tutorials: Maria
Maleshkova, Dong Liu, and Carlos Pedrinaci lectured on “Automating the Use
of Web APIs Through Lightweight Semantics” and Philip Lew and Luis Olsina
on “Improving Quality in Use of Web Applications in a Systematic Way.” Sum-
maries of the tutorials are included in this volume—for the first time in the
history of the ICWE conference series.

We would like to thank the Conference Chair George Angelos Papadopoulos,
the Program Chairs Sören Auer and Oscar Diaz, and the Workshop Chairs
and editors of this volume Andreas Harth and Nora Koch for giving us the
opportunity to publish the summaries of the tutorials. We believe this is a good
way to document, give additional visibility and archive the tutorials. It also offers
tutorial attendees and other conference participants as well as the wider public a
possibility to look up the tutorial contents and discover interesting aspects and
pointers of relevance to their own work. In addition, most summaries include
links to Web resources that contain further material.

Last but not least, we would like to thank the tutorial speakers for sharing
their knowledge and expertise and the numerous tutorial attendees for their
active participation. They helped to make ICWE 2011 a successful event.

July 2011 Steffen Lohmann
Cesare Pautasso

Table of Contents

Third International Workshop on Lightweight
Composition on the Web (ComposableWeb 2011)

An Evaluation of Mashup Tools Based on Support for Heterogeneous
Mashup Components . 1

Saeed Aghaee and Cesare Pautasso

An Approach to Construct Dynamic Service Mashups Using
Lightweight Semantics . 13

Dong Liu, Ning Li, Carlos Pedrinaci, Jacek Kopecký,
Maria Maleshkova, and John Domingue

Task-Based Recommendation of Mashup Components 25
Vincent Tietz, Gregor Blichmann, Stefan Pietschmann, and
Klaus Meißner

Integration of Telco Services into Enterprise Mashup Applications 37
Olexiy Chudnovskyy, Frank Weinhold, Hendrik Gebhardt, and
Martin Gaedke

Orchestrated User Interface Mashups Using W3C Widgets 49
Scott Wilson, Florian Daniel, Uwe Jugel, and Stefano Soi

Cross-Domain Embedding for Vaadin Applications 62
Janne Lautamäki and Tommi Mikkonen

Web Linking-Based Protocols for Guiding RESTful M2M Interaction . . . 74
Jesus Bellido, Rosa Alarcon, and Cristian Sepulveda

Batched Transactions for RESTful Web Services . 86
Sebastian Kochman, Pawe�l T. Wojciechowski, and Mi�losz Kmieciak

Secure Mashup-Providing Platforms - Implementing Encrypted
Wiring . 99

Matthias Herbert, Tobias Thieme, Jan Zibuschka, and
Heiko Roßnagel

First International Workshop on Search, Exploration
and Navigation of Web Data Sources
(ExploreWeb 2011)

A Conceptual Framework for Linked Data Exploration 109
Alessandro Bozzon, Marco Brambilla, Emanuele Della Valle,
Piero Fraternali, and Chiara Pasini

XXX Table of Contents

Support for Reusable Explorations of Linked Data in the Semantic
Web . 119

Marcelo Cohen and Daniel Schwabe

Generation of Semantic Clouds Based on Linked Data for Efficient
Multimedia Semantic Annotation . 127

Han-Gyu Ko and In-Young Ko

Ontology Based Segmentation of Geo-Referenced Queries 135
Mamoun Abu Helou

SimSpectrum: A Similarity Based Spectral Clustering Approach to
Generate a Tag Cloud . 145

Frederico Durao, Peter Dolog, Martin Leginus, and Ricardo Lage

Graph Access Pattern Diagrams (GAP-D): Towards a Unified Approach
for Modeling Navigation over Hierarchical, Linear and Networked
Structures . 155

Matthias Keller and Martin Nussbaumer

Data-Driven and User-Driven Multidimensional Data Visualization 159
Rober Morales-Chaparro, Juan C. Preciado, and
Fernando Sánchez-Figueroa

Second International Workshop on Enterprise
Crowdsourcing (EC 2011)

Context-Aware and Adaptive Web Interfaces: A Crowdsourcing
Approach . 167

Michael Nebeling and Moira C. Norrie

Massive Multiplayer Human Computation for Fun, Money, and
Survival . 171

Lukas Biewald

Enterprise Crowdsourcing Solution for Software Development in an
Outsourcing Organization . 177

Ranganathan Jayakanthan and Deepak Sundararajan

Seventh Model-Driven Web Engineering Workshop
(MDWE 2011)

A Model-Driven Framework for Developing Web Service Oriented
Applications . 181

Achilleas Achilleos, Georgia M. Kapitsaki, and
George A. Papadopoulos

Table of Contents XXXI

Developing Enterprise Web Applications Using the Story Driven
Modeling Approach . 196

Christoph Eickhoff, Nina Geiger, Marcel Hahn, and Albert Zündorf

Aspect-Oriented Modeling of Web Applications with HiLA 211
Gefei Zhang and Matthias Hölzl

Model-Driven Web Form Validation with UML and OCL 223
Eban Escott, Paul Strooper, Paul King, and Ian J. Hayes

Modernization of Legacy Web Applications into Rich Internet
Applications . 236

Roberto Rodŕıguez-Echeverŕıa, José Maŕıa Conejero,
Pedro J. Clemente, Juan C. Preciado, and
Fernando Sánchez-Figueroa

Second International Workshop on Quality in Web
Engineering (QWE 2011)

Quality Models for Web [2.0] Sites: A Methodological Approach and a
Proposal . 251

Roberto Polillo

Exploring the Quality in Use of Web 2.0 Applications: The Case of
Mind Mapping Services . 266

Tihomir Orehovački, Andrina Granić, and Dragutin Kermek

Second Workshop on the Web and Requirements
Engineering (WeRE 2011)

Detecting Conflicts and Inconsistencies in Web Application
Requirements . 278

Matias Urbieta, Maria Jose Escalona, Esteban Robles Luna, and
Gustavo Rossi

Streamlining Complexity: Conceptual Page Re-modeling for Rich
Internet Applications . 289

Andrea Pandurino, Davide Bolchini, Luca Mainetti, and
Roberto Paiano

Doctoral Symposium2011

A Flexible Graph-Based Data Model Supporting Incremental Schema
Design and Evolution . 302

Katrin Braunschweig, Maik Thiele, and Wolfgang Lehner

ProLD: Propagate Linked Data . 307
Peter Kalchgruber

XXXII Table of Contents

Causal Relation Detection for Activities from Heterogeneous Sources . . . 312
Philipp Katz and Alexander Schill

XML Document Versioning, Revalidation and Constraints 317
Jakub Malý and Martin Nečaský

A Reuse-Oriented Product-Line Method for Enterprise Web
Applications . 322

Neil Mather and Samia Oussena

A Flexible Architecture for Client-Side Adaptation 327
Sergio Firmenich, Gustavo Rossi, Silvia Gordillo, and
Marco Winckler

Applications of Mobile Application Interface Description Language
MAIDL . 332

Prach Chaisatien, Korawit Prutsachainimmit, and Takehiro Tokuda

A Domain-Specific Language for Do-It-Yourself Analytical Mashups 337
Julian Eberius, Maik Thiele, and Wolfgang Lehner

Information Extraction from Web Pages Based on Their Visual
Representation . 342

Ruslan R. Fayzrakhmanov

End-User Programming for Web Mashups: Open Research
Challenges . 347

Saeed Aghaee and Cesare Pautasso

ICWE 2011 Tutorials

Multi-dimensional Context-Aware Adaptation for Web Applications 352
Vivian Genaro Motti and Jean Vanderdonckt

Engineering the Personal Social Semantic Web . 355
Fabian Abel and Geert-Jan Houben

Automating the Use of Web APIs through Lightweight Semantics 357
Maria Maleshkova, Carlos Pedrinaci, Dong Liu, and
Guillermo Alvaro

Improving Quality in Use of Web Applications in a Systematic Way 359
Philip Lew and Luis Olsina

Author Index . 361

An Evaluation of Mashup Tools Based on

Support for Heterogeneous Mashup Components

Saeed Aghaee and Cesare Pautasso

Faculty of Informatics, University of Lugano, Switzerland
first.last@usi.ch

http://www.pautasso.info/

Abstract. Mashups are built by combining building blocks, which are
commonly referred to as mashup components. These components are
characterized by a high level of heterogeneity in terms of technologies,
access methods, and the behavior they may exhibit within a mashup. Ab-
stracting away this heterogeneity is the mission of the so-called mashup
tools aiming at automating or semi-automating mashup development
to serve non-programmers. The challenge is to ensure this abstraction
mechanism does not limit the support for heterogeneous mashup compo-
nents. In this paper, we propose a novel evaluation framework that can
be applied to assess the degree to which a given mashup tool addresses
this challenge. The evaluation framework can serve as a benchmark for
future improved design of mashup tools with respect to heterogeneous
mashup components support. In order to demonstrate the applicability
of the framework, we also apply it to evaluate some existing tools.

Keywords: Mashup Components, Evaluation Framework, Component
Model, Expressive Power.

1 Introduction

Mashups are Web applications built by reusing and combining mashup compo-
nents. These components are not only programming and data abstraction but
also can deliver Web contents that are not syndicated or made accessible via a
public interface [1]. In other words, mashup components can be defined as any
kind of reusable elements on the Web that can contribute to developing com-
posite Web application. Thereby, mashup components often possess very hetero-
geneous characteristics in terms of the access methods through which they are
published (e.g., protocols) as well the way they behave inside a mashup (e.g.,
synchronous and asynchronous interactions).

The heterogeneity of mashup components poses serious challenges on design-
ing mashup tools aiming at lowering the barriers of mashup development through
increasing the level of automation. It is due to the fact that one of the most
important steps in automating mashup development is to abstract away this
heterogeneity to enable seamless composition. Such an abstraction is defined as
a component model that describes the characteristics of mashup components as
well as the way they can be composed together [2].

A. Harth and N. Koch (Eds.): ICWE 2011 Workshops, LNCS 7059, pp. 1–12, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 S. Aghaee and C. Pautasso

A componentmodel for mashups should be able to equally take two aspects into
consideration. The first is indeed the level of abstraction that indicates the amount
of technical skill required form a user to interact with the underlying mashup com-
ponents. The higher the abstraction level is, the lower barriers are imposed on the
end-users side. The second aspect is the expressive power in terms of howmany and
how heterogeneous types of mashup components come under its umbrella. The in-
creased level of expressive power results in amore powerful tool. On the other hand,
there is a trade-off between obtaining a higher level of abstraction and havingmore
expressive power that should be considered while designing a mashup tool. This,
however, requires a formal definition of the expressive power for mashup compo-
nent models which is currently missing in literature.

The goal of this paper is thus to propose such a definition in the form of
a framework. The framework can serve as a benchmark for evaluating mashup
tools in this regard. Such an evaluation can then contribute to advancing the
state-of-the-art mashup tools by identifying their weaknesses and strengths. The
framework enables a white-box evaluation process and comprises six dimensions
underlying the level of support for discovery, input/output data types, access
methods, recursion, output types, and runtime behavior. To show how the frame-
work can be utilized, we also apply it to evaluate some existing mashup tools.

The rest of this paper is structured as follows. In the next section we present
our proposed framework. Section 3 is dedicated to evaluate some selected mashup
tools based on the framework. The discussion, including the evaluation summary,
will be given in section 4. An overview of the related work will be provided in
Section 5. We conclude this paper in Section 6.

2 Evaluation Framework

To define the expressive power of a mashup component model, we need to under-
stand what are required to be expressed by a user that concern the component
model. In our proposed framework, these are referred to as dimensions which,
in turn, are refined into a set of characteristics. To extract these dimensions,
we consider a scenario in which a mashup is developed by a user using a tool.
Initially, the user searches for relevant components depending on the goal of the
mashup she intends to develop (discovery dimension). If the required compo-
nents are not found in the library, they need to be newly wrapped by the user
(recursion, access method, and output dimensions). Once the required compo-
nents are ready, the user proceeds with the design process by composing the
components to form a new mashup. During the design-time the user determines
how the components are supposed to exchange data and control with each other
(input/output data type and behavior dimension).

2.1 Discovery

Mashup component discovery is the whole process of retrieving appropriate com-
ponents with regards to the needs of a developer [3]. Hence, a component model

An Evaluation of Mashup Tools 3

should provide adequate support to facilitate this step. Mashup tools supporting
component discovery usually offer a local library storing reusable components.
In order to support component discovery, a mashup tool can choose among three
approaches outlined below:

– Semantical Discovery. Applying this approach requires a model that al-
lows to add semantic descriptions of components (e.g., input/output parameters
and functionality). In this approach, a component is discovered based on the
information contained in its semantic description.

– Syntactic Discovery. In this approach component discovery is guided
based on the component syntax exposed in its model (e.g., input/output data
types).

– Keyword Discovery This approach is based on matching query keywords
with tags and textual descriptions contained within the component model.

2.2 Input/Output Data Type

A mashup component interacts with others through its input and output pa-
rameters. In order to make use of a component inside a tool, the data types of
its parameters should be defined in the tool component model. In general, these
data types can be categorized into two main groups as follows.

– Primitive. This groups is equivalent to standard variable types of a pro-
gramming language (e.g., string, int, boolean, etc.).

– Multipurpose Internet Mail Extensions (MIME). MIME types can
be any standard data formats or media types found on the Web including (but
not limited to) XML, JSON, RSS, and JPG.

2.3 Access Method

This dimension is concerned with the way in which a mashup component is
made accessible for composition inside a mashup. The access method utilized by
various mashup components are highly heterogeneous and can be categorized as
follows.

– Language-dependent. This method forces the use of a specific program-
ming, scripting or markup language. For instance, JavaScript APIs, HTML
IFrame widgets, Plain Old Object Java Objects (POJOs), Enterprise Java Beans
(EJB) can be all considered within this category. Though some of these meth-
ods are considered outdated (POJO and EJB), they are still being used within
enterprise. Moreover, Google Maps [4] which is the most popular mashup com-
ponents [5] is accessible via JavaScript APIs.

– Protocol-based. Using standard protocols for accessing a mashup compo-
nent eliminates the requirements for a specific language. Popular protocols for
mashup components are Web services (e.g., RESTful, HTTP, and SOAP) and
Web feeds (e.g., RSS and Atom). According to the ProgrammableWeb [5], the
dominant portion of Web APIs currently constitutes REST Web services.

– Database. Within a mashup, a database can be considered a component
that act as either a read-only or a read/write data source. A database not only

4 S. Aghaee and C. Pautasso

can deliver data and functionality (i.e., query and update features) but also can
become a permanent storage for writing user-related data (e.g., username and
password).

– Non-Standard. There are many Websites that do not officially allow any
reuse of their content or backend functionality. These mostly follow the Web 1.0
paradigm, in which the content is merely assumed to be readable by humans.
Extracting the content and functionality of such websites as mashup components
might still be considered valuable, depending on the goal of the target mashup.
These kind of mashup components are made accessible through two major non-
standard techniques: Web scraping [6], which is the act of converting human-
readable data to machine-readable formats, and Web clipping [7], by which only
a portion of a Webpage is extracted.

2.4 Recursion

A mashup can be incorporated into another mashup as a component. This pro-
cess can be called recursion whose concept is analogous to service composi-
tion [8]. In this sense, mashup components provided by third-party vendors are
similar to atomic services. Likewise, a mashup is a user-defined component cre-
ated through the composition of other mashups and different atomic components
(like a composite service). What concerns a component model in this regard is
the ability of reengineering a mashup that can reduce the required effort for
mashup development through reuse and reconfiguration.

2.5 Output

There are three types of output a mashup component can generate in the final
mashup composition: functional, data, and visual. The development of a mashup
can span one or all of the integration levels including process integration level,
data integration level, and UI integration level, depending on the output types
of its building components [9]. It is also of note that, a single component may
have multiple output types (e.g., a Web Widget).

– Functional. Mashup Components with functional output are delivered as
services that contribute to the business logic layer of a mashup. Such components
are usually orchestrated together in a workflow to deliver a capability [10].

– Data. Components generating data act as external data sources, which
deliver data to a mashup either as continuous data streams with real-time prop-
erties or as snapshots of a remote or local dataset. Most Web data sources are
read-only, but in some cases they may also support updates. Within the mashup,
they are likely to be converted, transformed, filtered, or combined with other
data sources [11].

– Visual. Visual output is generated by UI components [12] or widgets [13].
These components provide some kind of graphical user interaction mechanism
which can be reused at the mashup UI level. The visual part of a component
is incorporated in the mashup UI independently from other UI elements and
component.

An Evaluation of Mashup Tools 5

2.6 Behavior

At the runtime, the control flow of a mashup determines the sequence of com-
ponent invocation. Nevertheless, the internal execution mechanism of a mashup
component may also affect its parent mashup control flow. This is referred to as
the runtime behavior of a mashup component that can be either task-based or
event-based.

– Task-based. A component with a task-based behavior represents a single
invocation of a local or remote operation, which may provide an output given an
input. It resembles traditional functions or methods, which execute and transmit
responses only when called. In the context of the overall mashup, such compo-
nents are passive (they are executed only when control reaches them).

– Event-based. When a component has an event-based behavior, it is trig-
gered and produces an output only when a specific action (independent from the
composition) has been taken (e.g., user interactions or an asynchronous message
is received from a remote service). An event-based component is, therefore, an
active part of a mashup, which may trigger the execution of a sequence of tasks.

3 Evaluation

In this section, we give an overview of the selected existing mashup tools and
evaluate their corresponding component models based on the framework men-
tioned in Section 2 (Table 1). Considering the fact that our goal is not to evaluate
all existing mashup tools but rather to demonstrate how the framework can be
applied, we selected a sample group of mashup tools (Yahoo Pipes [14], Presto
Cloud [15], Serena Mashup Composer [16], JOpera [17], and Husky [18]) based on
two criteria. The first criterion was to ensure the diversity of End-User Program-
ming techniques [19] utilized by the selected tools. These techniques for the se-
lected tools include visual language (Yahoo Pipes, JOpera, Presto Cloud, Serena
Mashup Composer), domain specific language (Presto Cloud), and spreadsheet-
based programming (Husky). The second one takes into account the availability
of the tools which otherwise can hinder the evaluation process.

In order to make the process of evaluation more concrete as well as to mo-
tivate and exemplify the need for a more powerful component model, we also
benchmark the ability of the selected tools to develop an existing manually de-
veloped mashup called TwBe [20]. TwBe is a mashup developed using PHP and
JavaScript without utilizing any mashup tools. The goal of TwBe is to provide a
stream of YouTube videos as they are retrieved from a user’s Twitter stream. Its
main components include YouTube player1, YouTube data API, Twitter API2,
Twitter OAuth library3, and a local MySQL database (Figure 1). In order to
authenticate with the twitter, TwBe uses the Twitter PHP library for OAuth
(there are also libraries for other languages such as JavaScript). The Twitter

1 http://code.google.com/apis/youtube/overview.html
2 http://apiwiki.twitter.com/w/page/22554648/FrontPage
3 https://github.com/abraham/twitteroauth

6 S. Aghaee and C. Pautasso

Table 1. Evaluation of Mashup Tools

Y
a
h
o
o
P
ip
es
e

P
re
st
o
C
lo
u
d

S
er
en

a
M
a
sh
u
p
C
o
m
p
o
se
r

J
O
p
er
a

H
u
sk
y

Discovery
Semantic - - - - -

Syntactic - - - - -
Keyword X X - X -

Data Formats
Primitive X X X X X

MIME

XML,
RSS,

ATOM,
JSON

XML,
RSS,
ATOM

XML,
JSON

XML,
HTML

-

Access Method

Language-
dependent

-
JS,

HTML
JS,

HTML

JS,
HTML,
POJO

-

Protocol-based
REST,
RSS

HTTP,
SOAP,
REST

SOAP,
REST

HTTP,
SOAP,
REST

SOAP

Database - SQL -
SQL,
JDBC

-

Non-standard Scraping - - Scraping -

Recursion X X - X -

Output
Data X X X X X
Functionality X X X X X
Visual - X X X -

Behavior
Task-based X X X X X
Event-based - X - X -

API is then invoked to retrieve tweets of a current user and periodically check
for new ones. After the new tweets are available, those that do not contain link
to a YouTube videos are filtered out. The videos that are going to be played by
YouTube player are fetched from YouTube data API. Finally, the database is
used to cache video tweets belonging to the current user in order to accelerate
further access.

3.1 Yahoo Pipes

Yahoo Pipes is a popular tool for creating mashups by integrating data coming
from various sources on the Web. It utilizes visual programming technique to
hide the complexity of mashup development. The visual language is based on

An Evaluation of Mashup Tools 7

MySQL

Customized
YouTube Player

List of tweeted
videos (updated

in real-time)

Database

YouTube
Data API

YouTube
Player API

Twitter API

Twitter
OAuth
Library

Fig. 1. TwBe Main Components

the wiring paradigm in which data sources, blocks, operators, and other tools
are represented as parametrizable boxes which connect to each other. The result
of connecting these boxes forms a pipe through which data flows and will be
eventually visualized or syndicated to the user.

– Discovery. Yahoo Pipes supports component discovery, however, it only
allows the discovery of mashups published in its local library. The discovery
is based on matching keywords in user queries with the tags provided by the
publishers.

– Input/Output Data Format. Primitive data types such as string and
numerical values as well as frequently used MIME types like XML, RSS, Atom,
and JSON are all defined in Yahoo Pipes. These are also the data types negoti-
ated by the TwBe components.

– Access Method. The supported access methods include RSS/Atom feeds
and HTTP. Thereby, YouTube videos and tweets can be easily retrieved as they
are accessible via HTTP protocol. However, Twitter OAuth library and Youtube
Player, which both use language dependent access method, as well as MySQL
database cannot be utilized inside Yahoo Pipes.

– Recursion. Recursion is fully supported by Yahoo pipes. Mashups that are
published in the tool library can be discovered and reused within a new mashup.

– Output. Components generating data and functionality are only supported
by this tool. As a result it does not allow insertion of UI components such as
YouTube Player.

– Behavior. This tool only supports task-based behavior of components and
therefore, an event-based component cannot trigger a flow of control.

Overall, Yahoo Pipes can not be solely employed to develop TwBe as it does
not support Twitter OAuth library, YouTube Player, and MySQL database.

8 S. Aghaee and C. Pautasso

3.2 Presto Cloud

Presto Cloud includes both a visual language and a powerful XML-based domain
specific language called the Enterprise mashup Markup Language (EMML). It
enables users to switch between the textual (EMML) [21] and visual mode de-
pending upon their interests and background knowledge. Presto Cloud offers
similar features as Yahoo Pipes for creating mashups integrating various data
sources. It also adds support for integrating and designing mashup UI.

– Discovery. Component discovery is enabled and supported via keyword-
oriented search.

– Input/Output Data Format. Components can declare both primitive
and MIME (XML, RSS, Atom) types.

– Access Method. The two supported language-dependent techniques
(HTML and JavaScript) can be used to create APPs. APPs are similar to wid-
gets that visualize data and can be recursively created through integration of
other existing APPs. For instance, both the Twitter OAuth JavaScript library
and the YouTube player that build the TwBe mashup can be wrapped as APPs.
Moreover, all the frequently used protocol-based access methods (HTTP, SOAP,
REST) are support by Presto Cloud.

– Recursion. Recursion can happen both in the back-end (data and func-
tionality integration) and the UI (APPs)

– Output. Components with visual output are called APPs. Blocks abstract
components with data and functional output.

– Behavior. Both task-based and event-based behavior of mashup compo-
nents are handled by Presto Cloud. APPs can publish topics (events) to which
other APPs can subscribe.
Presto Cloud can be used to create TwBe.

3.3 Serena Mashup Composer

Serena Mashup Composer is part of the Serena Mashup Suite. It decomposes
mashups into orchestration, which defines the execution order of Web services,
and application, which specifies the front-end of the mashup.

– Discovery. Mashup Central is a library containing templates and mashups
shared by other users. However, it does not appear to support discovery of
mashup components.

– Input/Output Data Format. Other than primitive data types, compo-
nents can negotiate JSON and XML.

– Access Method. It supports protocol-based (REST, SOAP) and language-
dependent (JavaScript, HTML) access methods. In the latter case, JavaScript
and HTML is used to embed widgets. This can also be used to incorporate the
Twitter JavaScript library for OAuth.

This tool does not support the use of databases, and therefore can not be
used to create TwBe.

An Evaluation of Mashup Tools 9

3.4 JOpera

JOpera is a rapid visual service composition tool. Service composition using
JOpera is based on drawing a control flow graph that determines the sequence
of service execution and one or more data flow graphs that indicate the flow
of data between the services. JOpera allows abstraction of services of different
types by concealing their internal mechanism (i.e., access method, input/output
data types, etc.) behind a unified interface [22].

– Discovery. JOpera library stores both atomic and composite services and
allows their discovery based on keyword-oriented search.

– Input/Output Data Format. JOpera data flow parameters can contain
any data type.

– Access Method. It supports language-dependent (JavaScript, POJO, and
HTML), protocol-based (HTTP, SOAP, REST), database (SQL, JDBC), and
non-standard access methods (Web scraping) which cover all the access methods
utilized by the TwBe components.

– Recursion. Recursion is supported by JOpera through the subprocess con-
struct.

– Output. It handles all the three possible output of a mashup component
(functional, data, visual).

– Behavior. JOpera not only supports task-based behavior of components
but also allows handling exception events. Other types of event-based behavior
such as data stream updates and UI events are not supported.

A very similar version of TwBe (in terms of UI), thanks to the high expressive
power of JOpera in UI design (i.e., using Echo adapter that outputs DHTML
code to browser), can be developed using JOpera.

3.5 Husky

Husky is a spreadsheet-based tool for service composition. Each cell of a Husky
spreadsheet encapsulates a service. The sequence of service invocation is defined
by placing service invocation events into adjacent cells.

– Input/Output Data Format. It only supports primitive data types.
– Access Method. The only supported access method is WSDL/SOAPWeb

services, which is not relevant in the case of TwBe example.
– Output. Since it only supports Web services, the only output types are

functional and data.
This tool can not make any contribution to developing TwBe (none of TwBe

components use SOAP Web service as their method of access).

4 Discussion

As the evaluation suggests, many of the selected tools do not provide adequate
support for language-dependent mashup components. These are mostly exem-
plified by widgets accessible through JavaScript APIs (e.g., Google Maps). Tools

10 S. Aghaee and C. Pautasso

like JOpera, Presto Cloud, and Serena Mashup Composer offer a JavaScript and
HTML container to wrap such widgets. However, language-dependent compo-
nents are not limited to JavaScript APIs and HTML, they may also be PHP
libraries (for instance Twitter PHP library for OAuth).

A common limitation among the tools was the lack of support for event-based
behavior of mashup components, which is usually the case in widgets. Even
though JOpera and Serena Mashup Composer provide support for embedding
widgets, they are unable to handle events fired by them through user interactions.
The only tool of our selection that can manage UI events is indeed Presto Cloud.
Furthermore, event-based behavior does not merely involve widgets, but also
mashup components which generate data output can be used to subscribe to
a source of streaming data. This also results in firing an event that should be
handled by the mashup, e.g., when a new tweet containing a link to a YouTube
video appears.

Interestingly, none of the tools thoroughly support component discovery. As
a matter of fact, component discovery is one of the most important steps in the
mashup development process. The majority of the selected tools (Yahoo Pipes,
Presto Cloud, Serena Mashup Composer), except for JOpera, do not include
atomic components in their library but only mashups that have been published
by users. Moreover, the only discovery technique utilized by all of these tools
was based on keyword-oriented search. Even though semantic discovery is not
yet matured, its state-of-the-art [23] not only can contribute to streamlining
mashup discovery but also can enable a higher degree of automation in mashup
development.

Regarding the output types, the majority of the tools do not handle com-
ponents maintaining their own UIs (i.e., visual output). Moreover, a tool that
supports components with visual output may not necessarily support UI integra-
tion. JOpera is an example of this case, where the majority of UI components and
widgets are supported, though the required means of carrying on UI integration
such as handling the communication of UI events [12] are not supported.

The level of support for recursion and input/output data types were satisfac-
tory. In the latter case, however, the only supported MIME types were XML,
HTML, RSS, and JSON. Though these are the most common media types for
mashup components, they still need to broaden their support range to also cover
less frequently used types such as YAML [24].

In general, supporting all types of mashup components is a challenging task.
It gets even more challenging to keep the usability of a tool in a satisfactory
level while increasing the expressive power of its component model. This can
also be generalized to other aspects of mashup development such as composition
and evolution. This is an important tradeoff that confronts the design of mashup
tools, and thus needs to be addressed in future research.

5 Related Work

Previous efforts on proposing evaluation frameworks for mashup tools have been
conducted along two directions. The first concerns the usability of mashup tools.

An Evaluation of Mashup Tools 11

For instance, the evaluation frameworks presented in [25,26] can both be con-
sidered towards this direction.

The second direction, within which this paper is to be considered, focuses on
evaluating the expressive power of mashup tools. Previous evaluation frameworks
target various aspects of mashup development that need to be expressed to end-
users. For instance, [27] presents a benchmark for assessing mashup tools with
respect to their data integration capabilities. The framework presented in [28] is
also another example that classifies mashup tools and evaluates their expressive
power concerning their support for process integration. We consider this paper
as a complement to all the previous work done in this direction, the expressive
power of component modeling for mashups.

6 Conclusion

The purpose of mashup tools is to lower the barriers of mashup development to
the degree that even non-programmers can develop mashups. Even though the
usability and ease-of-use are important factors for mashup tools, these should
not compromise the expressive power offered by such tools and vise versa. One
aspect of mashup development that determines this expressive power is the level
of support for composing heterogeneous mashups components. In this paper,
we have presented an evaluation framework that measures mashup tools based
on to which extent they deal with the heterogeneity and diversity of mashup
components. We defined the framework in terms of multiple dimensions and
used it as the basis for undertaking an evaluation of a small group of mashup
tools.

We believe the proposed evaluation framework can provide a roadmap towards
an improved design for the next generation of mashup tools. To do so, hetero-
geneity can be addressed within a component model by means of adaptation and
standardization. Adaptation is feasible in the short term and entails transforming
heterogeneous mashup components into a common existing technology so that
they conform with each other [2]. This method is harnessed by Mashape [29]
by providing a programmable platform for converting various services and APIs
into REST Web services. Standardization will require a more concerted effort
and can provide a better solution in the long term, assuming that the resulting
standard for mashup components become widely adopted. The Open Mashup
Alliance (OMP) is now actively working on standardizing mashups, for example
with EMML.

References

1. Ogrinz, M.: Mashup Patterns: Designs and Examples for the Modern Enterprise.
Addison-Wesley (2009)

2. Assmann, U.: Invasive Software Composition. Springer, Heidelberg (2003)
3. Zhao, Q., Huang, G., Huang, J., Liu, X., Mei, H.: A web-based mashup environment

for on-the-fly service composition. In: Proc. of SOSE (2008)

12 S. Aghaee and C. Pautasso

4. Google Maps API,
http://code.google.com/apis/maps/documentation/javascript/)

5. ProgrammableWeb, http://www.programmableweb.com/
6. Schrenk, M.: Webbots, Spiders, and Screen Scrapers. No Starch Press (2007)
7. Smith, I.: Doing web clippings in under ten minutes. Technical report, Intranet

Journal (2001)
8. Milanovic, N., Malek, M.: Current solutions for web service composition. IEEE

Internet Computing 8, 51–59 (2004)
9. Maximilien, E.M., Wilkinson, H., Desai, N., Tai, S.: A Domain-Specific Language

for Web APIs and Services Mashups. In: Krämer, B.J., Lin, K.-J., Narasimhan, P.
(eds.) ICSOC 2007. LNCS, vol. 4749, pp. 13–26. Springer, Heidelberg (2007)

10. de Vrieze, P., Xu, L., Bouguettaya, A., Yang, J., Chen, J.: Process-oriented enter-
prise mashups. In: Proc. of GPC 2009 (2009)

11. Maximilien, E.M., Ranabahu, A., Gomadam, K.: An online platform for web apis
and service mashups. IEEE Internet Computing 12, 32–43 (2008)

12. Daniel, F., Yu, J., Benatallah, B., Casati, F., Matera, M., Saint-Paul, R.: Un-
derstanding ui integration: A survey of problems, technologies, and opportunities.
IEEE Internet Computing 11, 59–66 (2007)

13. Hoyer, V., Fischer, M.: Market Overview of Enterprise Mashup Tools. In: Bouguet-
taya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 708–
721. Springer, Heidelberg (2008)

14. Yahoo Pipes, http://pipes.yahoo.com/pipes/
15. Presto Cloud, http://www.jackbe.com/enterprise-mashup/
16. Serena Mashup Composer,

http://www2.serena.com/pages/mashups/campaigns/

composer-download/index.html

17. JOpera, http://www.jopera.org/
18. Husky, http://www.husky.fer.hr/
19. Myers, B.A., Ko, A.J., Burnett, M.M.: Invited Research Overview: End-User Pro-

gramming. In: Proc. of CHI 2006 (2006)
20. TwBe, http://arc.inf.unisi.ch/twbe/twitter/
21. EMML, http://www.openmashup.org/
22. Pautasso, C., Alonso, G.: From Web Service Composition to Megaprogramming.

In: Shan, M.-C., Dayal, U., Hsu, M. (eds.) TES 2004. LNCS, vol. 3324, pp. 39–53.
Springer, Heidelberg (2005)

23. Mohebbi, K., Ibrahim, S., Khezrian, M., Munusamy, K., Tabatabaei, S.G.H.: A
comparative evaluation of semantic web service discovery approaches. In: Proc. of
iiWAS 2010 (2010)

24. Yaml, http://www.yaml.org/
25. Grammel, L., Storey, M.A.: An end user perspective on mashup makers. Technical

Report DCS-324-IR, University of Victoria (2008)
26. Grammel, L., Storey, M.-A.: A Survey of Mashup Development Environments.

In: Chignell, M., Cordy, J., Ng, J., Yesha, Y. (eds.) The Smart Internet. LNCS,
vol. 6400, pp. 137–151. Springer, Heidelberg (2010)

27. Di Lorenzo, G., Hacid, H., Paik, H.-y., Benatallah, B.: Data integration in mashups.
SIGMOD Rec. 38, 59–66 (2009)

28. Daniel, F., Koschmider, A., Nestler, T., Roy, M., Namoun, A.: Toward process
mashups: key ingredients and open research challenges. In: Proc. of Mashups 2010
(2010)

29. Mashape, http://www.mashape.com/

http://code.google.com/apis/maps/documentation/javascript/
http://www.programmableweb.com/
http://pipes.yahoo.com/pipes/
http://www.jackbe.com/enterprise-mashup/
http://www2.serena.com/pages/mashups/campaigns/composer-download/index.html
http://www2.serena.com/pages/mashups/campaigns/composer-download/index.html
http://www.jopera.org/
http://www.husky.fer.hr/
http://arc.inf.unisi.ch/twbe/twitter/
http://www.openmashup.org/
http://www.yaml.org/
http://www.mashape.com/

An Approach to Construct Dynamic Service

Mashups Using Lightweight Semantics

Dong Liu, Ning Li, Carlos Pedrinaci, Jacek Kopecký, Maria Maleshkova,
and John Domingue

Knowledge Media Institute, The Open University
Walton Hall, Milton Keynes, MK7 6AA, UK
{d.liu,n.li,c.pedrinaci,j.kopecky,

m.maleshkova,j.b.domingue}@open.ac.uk

Abstract. Thousands of Web services have been available online, and
mashups built upon them have been creating added value. However,
mashups are mostly developed with a predefined set of services and com-
ponents. The extensions to them always involve programming work. Fur-
thermore, when a service is unavailable, it is challenging for mashups to
smoothly switch to an alternative that offers similar functionalities. To
address these problems, this paper presents a novel approach to enable
mashups to select and invoke semantic Web services on the fly. To ex-
tend a mashup with new semantic services, developers are only required
to register and publish them as Linked Data. By refining the strategies of
service selection, mashups can behave more adaptively and offer higher
fault-tolerance.

Keywords: Mashup, Semantic Web Services, Service Selection, Service
Invocation.

1 Introduction

More and more companies and organisations expose their core functionalities as
SOAP or RESTful services on the Web, so that third-party developers can create
new Web applications atop of these services in a more agile way. Repositories
and marketplaces such as ProgrammableWeb1, Seekda2 and Mashape3, have
been established to collect and publish descriptions of Web services. On the
other hand, mashups integrate data, services and contents available online into
a coherent application that creates new value [20]. Tools such as Yahoo Pipes4

and IBM Mashup Center5, have been available for assisting the development of
mashups.

1 http://www.programmableweb.com
2 http://webservices.seekda.com
3 http://www.mashape.com
4 http://pipes.yahoo.com/
5 http://www.ibm.com/software/info/mashup-center/

A. Harth and N. Koch (Eds.): ICWE 2011 Workshops, LNCS 7059, pp. 13–24, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.programmableweb.com
http://webservices.seekda.com
http://www.mashape.com
http://pipes.yahoo.com/
http://www.ibm.com/software/info/mashup-center/

14 D. Liu et al.

However, the mashups built with these tools are essentially static, i.e. de-
pending upon a predefined set of APIs and components. This has an impact
on the extendibility and fault-tolerance. Developers of a mashup have to work
on the programming code, even if they just want to extend it with services or
APIs offering similar functionalities. For instance, there are a few companies now
offering local business searching services, e.g. Scoot API6, Yahoo Local Search
API7, Yelp8 and CityGrid9. New local business searching services might also
come to the market at some point. Combining new business searching services
to an existing mashup requires both hard coding and re-deployment.

Online services might be unaccessible for reasons such as expiration of API
keys, connection failures, request timeout, etc. End-users will suffer from the
long response time of the mashups built with these unaccessible services. One
possible way to overcome this issue is to switch the mashups to other alternative
services. For example, although most of the local business services cover different
regions of the world, they (e.g. Yelp and Yahoo Local Search) may have some
overlaps with each other. When one of them is off-line, the mashups can use the
other one instead.

To address these issues, we propose a novel approach to build dynamic
mashups using Web services with lightweight semantics. The UI components
interact with unified interfaces of each kind of services, rather than invoking
those services directly. iServe, together with its extensions, performs service se-
lection and invocation behind those interfaces. The services to be invoked by the
mashups through iServe are controllable and determined at runtime. Therefore,
mashups built following our approach are more flexible and robust.

The rest of the paper is organised as follows: Section 2 discuss principles re-
lated to semantic services and mashups. Section 3 details the proposed approach
to build dynamic service mashups. Section 4 summaries related work. Finally,
Section 5 concludes this paper and highlights our future work.

2 Services, Mashups and Semantics

A Web service is a set of operations on resources, which are accessible online.
Accordingly, there have emerged two types of Web services: operation-oriented
services (e.g. SOAP services) and resource-oriented services (e.g. RESTful ser-
vices). Both SOAP and RESTful services can be exploited as reusable building
blocks for new applications. Efforts made to integrate Web services are regarded
as service composition [15]. Service composition is usually performed on the
business logic layer, and results in executable workflows or plans that fulfil cer-
tain requirements of the new Web application. Mashup is an innovative way to
develop Web applications by syndicating contents, data and functionalities from
distributed sources on the Web. Different from service composition, mashup can

6 http://www.scoot.co.uk/about-us/add-scoot/reference.html
7 http://developer.yahoo.com/search/local/V3/localSearch.html
8 http://www.yelp.com/developers/documentation/v2/search_api
9 http://docs.citygridmedia.com/display/citygridv2/Places+API

http://www.scoot.co.uk/about-us/add-scoot/reference.html
http://developer.yahoo.com/search/local/V3/localSearch.html
http://www.yelp.com/developers/documentation/v2/search_api
http://docs.citygridmedia.com/display/citygridv2/Places+API

An Approach to Construct Dynamic Service Mashups 15

Dynamic Mashup

Web Service A Web Service B

iServe

SPARQL Endpoint RESTful API

Fig. 1. Mashup model

be carried out on layers ranging from data to presentation. Rather than enact-
ing a predefined workflow, components of a mashup are more loose-coupled, and
can interact with end-users. In this paper, we focus on service mashups that are
aim to bring them together mashups with easy-to-accomplish end-user service
compositions [3].

Semantic technologies have been adopted to automate service annotation, dis-
covery, composition and invocation [1]. Ontological models such as OWL-S [10]
and WSMO [16] provide formal languages for semantically describing Web ser-
vices, whereas annotation-based approaches (e.g. SAWSDL [19], hRESTS [7])
enable the creation of lightweight semantic Web services. We employ Mini-
mal Service Model (MSM)10 to capture the semantics of SOAP and RESTful
services, which are essential for selection and invocation of hybrid services. In
MSM, a Service is defined as a set of operations plus links to functional clas-
sifications and non-functional properties. An Operation is an atomic unit to
be invoked, having properties like input messages, output messages, addresses,
faults, etc. Instances of MessageContent are containers of the input and out-
put messages exchanged during the invocation of services. A MessageContent

may comprise a hierarchy of MessagePart. Additionally, modelReference bor-
rowed from SAWSDL enables the linking of service elements to semantic models
via URIs, while liftingSchemaMapping and loweringSchemaMapping are used
to specify data transformations from a syntactic representation to its semantic
counterpart and vice versa.

From all above, dynamic mashup is defined as a Web application implemented
by selecting and invoking Web services described using MSM. Figure 1 shows
the conceptual model of dynamic mashup. By querying against iServe’s SPARQL
endpoint, a dynamic mashup selects some relevant APIs, and then quests iServe
to invoke them. Service invocation through iServe is always in a RESTful way,
and some of the inputs might be from the Web of Data. Some of the key features
of dynamic mashups are outlined as follows:

– Dynamics Mashups can determine which services to invoke on the fly.

10 http://cms-wg.sti2.org/ns/minimal-service-model

http://cms-wg.sti2.org/ns/minimal-service-model

16 D. Liu et al.

– Transparency The technical details of service selection and invocation are
transparent for the UI components of a mashup.

– Configurability Maintainers can easily control the behaviours of a mashup
just by revising the strategy of service selection, yet without programming
work.

– Extendibility To integrate more services offering similar functionalities,
developers only need to formally describe those services, and publish them
on the Web.

– Robustness When a service is temporarily unavailable, a dynamic mashup
can smoothly switch to the alternatives.

3 Building Dynamic Mashups

In our previous work [13], we have presented iServe, a public registry for semantic
services. It can import service descriptions conforming to heterogeneous schemas,
and publish them as Linked Data on the Web. iServe exposes a set of Web
APIs for manipulating the published service descriptions11, as well as for service
discovery on higher level of abstraction 12.

The proposed approach to build dynamic mashups centres upon iServe and
its extensions for service invocation [8]. This section elaborates how to construct
dynamic mashups by taking advantage of iServe’s capabilities of service discovery
and invocation, and also by following the steps listed below.

– Semantic Services Authoring This step includes 1) annotating service
descriptions with concepts of the MSM and domain ontologies; 2) publishing
them as Linked Data via iServe.

– Specifying Strategies of Service Selection This step can be done by
either exploiting iServe’s built-in service discovery mechanisms, or writing
SPARQL queries to be executed against the RDF dataset of iServe.

– Defining Lowering and Lifting Schema Mappings This step outcomes
XSPARQL [2] queries for translating RDF triples into parameters used to
invoke services, and also for rewriting the invocation results as RDF state-
ments.

– Merging Service Invocation Results This step deals with issues regard-
ing to put together invocation results from different sources, e.g. eradicating
any duplicated items, sorting by specific properties, etc.

In order to demonstrate the workflow of building a dynamic mashup, an example
is given in this section, which visualises the local business search results on a
map (see Figure 2). Besides the Web APIs for local business searching mentioned
previously, the mashup also makes use of Google map API13 and Google Web
Toolkit14.
11 http://iserve.kmi.open.ac.uk/wiki/index.php/IServe_RESTful_API
12 http://iserve.kmi.open.ac.uk/wiki/index.php/

IServe Higher Level Discovery API
13 http://code.google.com/apis/maps/
14 http://code.google.com/webtoolkit/

http://iserve.kmi.open.ac.uk/wiki/index.php/IServe_RESTful_API
http://iserve.kmi.open.ac.uk/wiki/index.php/IServe_Higher_Level_Discovery_API
http://iserve.kmi.open.ac.uk/wiki/index.php/IServe_Higher_Level_Discovery_API
http://code.google.com/apis/maps/
http://code.google.com/webtoolkit/

An Approach to Construct Dynamic Service Mashups 17

Fig. 2. Screenshot of the example of dynamic mashup

3.1 Semantic Services Authoring

Essentially, semantic services authoring is to add annotations to the original
documents of service descriptions, so as to make them more understandable
for machines. Tools such as SWEET and SOWER [9], have been developed
to facilitate annotating both HTML and WSDL files. Although authors can
arbitrarily annotate services descriptions, we argue that semantic services will
be easier to be discovered and invoked, if being annotated following principles
and patterns shown below.

– Service categories should be attached to services rather than operations or
messages. This can simplify service discovery based on functional classifica-
tions.

– The addresses and types of HTTP methods, e.g. GET, POST, PUT, etc.,
should be declared, otherwise operations will not be able to be invoked.

– Information related to groundings of input messages should be provided.

– Lowering schema mappings must be associated with input messages. When
an input message has a hierarchical structure, lowering schemas are usually
utilised to annotated message parts on the lowest level. Section 3.3 shows
how this can help in the preparation for service invocation.

– In principal, lifting schema mappings are for output messages only.

– In many cases, messages are annotated with concepts of domain ontologies,
while their sub-parts are annotated with properties of such concepts. This
can ensure the alignment of formal semantics of input/output messages and
the ontological knowledge. In addition, it also gives hints on writing and
understanding the lifting and lowering schema mappings.

18 D. Liu et al.

For instance, Listing 1 shows the aforementioned Scoot API described in RDF,
using the vocabulary of MSM and several domain ontologies such as DBpedia
ontology15, Service Categories ontology16 and W3C WGS84 vocabulary17.

service :Scoot a msm:Service ;
msm:hasOperation operations:search;
sawsdl:modelReference finder:InternetSearch .

operations:search a msm:Operation;
msm:hasInput inputs:query , inputs:place ;
msm:hasOutput outputs :result ;
hrests:hasMethod "GET" ;
hrests:hasAddress "http://www.scoot.co.uk/api/find.php?format=xml&what={p1

}&lat={p2}&long={p3}" .
inputs:query a msm:MessageContent;

sawsdl:modelReference rdf:Literal ;
hrests:isGroundedIn "p1" .

inputs:place a msm:MessageContent;
sawsdl:modelReference dbp-ont:Place ;
msm:hasPart types:lat , types:lng .

outputs :result a msm:MessageContent;
msm:hasPart types:result-item .

types:lat a msm:MessagePart;
sawsdl:modelReference geo-pos:lat ;
sawsdl:loweringSchemaMapping lowerings:lat ;
hrests:isGroundedIn "p2" .

types:lng a msm:MessagePart;
sawsdl:modelReference geo-pos:long ;
sawsdl:loweringSchemaMapping lowerings:lng ;
hrests:isGroundedIn "p3" .

types:result -item a msm:MessagePart;
sawsdl:modelReference dbp-ont:Place ;
sawsdl:liftingSchemaMapping liftings :result -item .

Listing 1. Description of Scoot API in RDF

As depicted by Listing 1, Scoot API is assigned to the category of Internet
Search. It has one operation called “search”, which takes keywords and an in-
stance of dbp-ont:Place as inputs, and returns a list of relevant local businesses
also as instances of dbp-ont:Place. Note that the input message inputs:place
has one model reference dbp-ont:Place and two sub-parts types:lat and
types:lng. And, the model references of types:lat and types:lng are respec-
tively geo-pos:lat and geo-pos:long, which are two properties of the concept
dbp-ont:Place.

3.2 Service Selection

This sub-section focuses on SPARQL-based service selection, which enables the
on-the-fly refinement of the selection strategies. Listing 2 gives an example seek-
ing for the services used to implement the mashup mentioned before, i.e. those
under the category of “Internet Search”, taking a rdf:Literal value and an in-
stance of dbp-ont:Place as inputs, and returning instances of dbp-ont:Place
as outputs.

15 http://wiki.dbpedia.org/Ontology
16 http://www.service-finder.eu/ontologies/ServiceCategories
17 http://www.w3.org/2003/01/geo/wgs84_pos

http://wiki.dbpedia.org/Ontology
http://www.service-finder.eu/ontologies/ServiceCategories
http://www.w3.org/2003/01/geo/wgs84_pos

An Approach to Construct Dynamic Service Mashups 19

SELECT DISTINCT ?s WHERE {
?s rdf:type msm:Service . ?s sawsdl:modelReference ?c .
?c rdfs:subClassOf finder:InternetSearch .
?s msm:hasOperation ?o . ?o msm:hasInput ?in1 .
?in1 sawsdl:modelReference rdf:Literal .
?o msm:hasInput ?in2 . ?in2 sawsdl:modelReference ?in2mr .
dbp-ont:Place rdfs:subClassOf ?in2mr .
?o msm:hasOutput ?out . ?out msm:hasPart ?outpart .
?outpart sawsdl:modelReference ?outmr .
?outmr rdfs:subClassOf dbp-ont:Place .

}

Listing 2. SPARQL query for service selection

By means of rewriting the SPARQL query above, the mashup can behave more
adaptively, namely, dynamically choose the services to invoke. Three examples
for the typical usage are listed as follows. Mashup developers can create more
complex queries to satisfy their own requirements.

FILTER (?s != service:Scoot)

When the Scoot service is now unavailable, this filter can avoid the attempts
to invoke it. In this way, it also can meet the requirement for smoothly
switching between services at runtime.

?o hrests:hasAddress ?addr FILTER regex(str(?addr), ".uk") .

This clause with the regular expression can select services having addresses
that contains “.uk”, i.e. services provided by companies registered in the
UK.

LIMIT 3

The solution sequence modifier LIMIT can restrict the number of services to
invoke, so as to reduce the response time of the mashup.

3.3 Service Invocation

The overall process of service invocation includes dereferencing, lowering, ground-
ing, invoking and lifting. When identifiers of resources on the Web of Data are
used as parameters for invoking services, iServe will first attempt to retrieve RDF
triples describing those resources, i.e. dereferencing the resources. After that,
RDF statements are lowered to literal values by executing XSPARQL queries.
Those values are then used to instantiate requests to be sent to the service end-
points. Grounding refers the instantiation of service requests, which is the last
step of the preparation for the actual invocation of services. After receiving the
results in the format of XML, another set of XSPARQL queries will be executed
to transform them into RDF.

As stated in the beginning of Sectionn 3, iServe provides RESTful APIs for
publishing and removing the descriptions of semantic services. And, all the ser-
vices stored in iServe are to be invoked as RESTful APIs. Therefore, an action
resource [6], named “invoke”, has been added to each operation of the services.
In other words, the template of the addresses to invoke services stored in iServe
is:

http://.../services/service-id/operations/operation-id/invoke?

parameter1=V1¶meter=V2&...

20 D. Liu et al.

http://.../services/Scoot/operations/search/invoke?
query=pizza&place=http://dbpedia.org/resource/London

http://www.scoot.co.uk/api/find.php?format=xml&what=
{p1}&lat={p2}&long={p3}

http://www.scoot.co.uk/api/find.php?
format=xml&what=pizza&lat= 51.507221&long=-0.127500

dbp-res:London a dbp-ont:Place ;
 geo:lat "51.507221" ;
 geo:long "-0.127500" .

{ for $place $lat
from <London.rdf>
where { $place geo:lat $lat.}
return {$lat}}

{ for $place $lng
from <London.rdf>
where { $place geo:long $lng.}
return {$lng}}

XSPARQL Execution Engine

51.507221 -0.127500

Fig. 3. An example for preparing the service request

Figure 3 illustrates the preparation for calling of the search oper-
ation of the Scoot service. iServe first found a dereferenceable URI,
http://dbpedia.org/resource/London in the original request, and got a
piece of RDF by sending there an HTTP GET with header Accept:

application/rdf+xml. Then, the XSPARQL query engine loaded that piece
of RDF as well as the lowering schema mappings shown on the right hand side
of Figure 3, and extracted the latitude and longitude of London. Finally, vari-
ables in the URI template were replaced with the query keywords and the values
of latitude and longitude. Part of the raw XML file returned by Scoot API is
shown in the upper left of Figure 4, while the XSPARQL query guided the lifting
of service invocation results is in the upper right. And, some of the generated
RDF triples are shown in the lower part of Figure 4.

3.4 Extensions to Existing Mashups

As stated in Section 1, one of the key features of dynamic mashups is the ex-
tendibility. Developers can integrate new semantic services to built-up mashups
without efforts on the modification of the source codes. Taking as an example
CityGrid18, another local business searching service, the following things have to
be done to ensure being found by executing the SPARQL query in Section 3.2:
firstly, put it into the category of Internet Search by adding a model reference to
the service; secondly, use the DBpedia ontology and W3C WGS84 vocabulary to
annotate the service description. Moreover, to make it invocable, developers have

18 http://docs.citygridmedia.com/display/citygridv2/Places+API

http://dbpedia.org/resource/London
http://docs.citygridmedia.com/display/citygridv2/Places+API

An Approach to Construct Dynamic Service Mashups 21

<rdf:RDF>
 <dbp-ont:Place>

<foaf:name>Prezzo plc</foaf:name>
<dbp-ont:address>31-32 Northumberland Avenue, London, Greater London</dbp-ont:address>
<geo:lat >51.5071000</geo:lat>
<geo:long>-0.1276490</geo:long>

 </dbp-ont:Place>
...
</rdf:RDF>

return <rdf:RDF> {
 for $entry in $doc//results/entry
 let $companyname := $entry/companyname
 let $longitude := $entry/longitude
 let $latitude := $entry/latitude
 let $l1address := $entry/l1address
 ...
 let $l6address := $entry/l6address
 return
 <dbp-ont:Place>
 <foaf:name>{data($companyname)}</foaf:name>
 <dbp-ont:address>{data($l1address)} ..., {data
($l6address)}</dbp-ont:address>
 <geo:lat>{data($latitude)}</geo:lat>
 <geo:long>{data($longitude)}</geo:long>
 </dbp-ont:Place>} </rdf:RDF>

<?xml version="1.0"?>
...
<entry>
 <result>1</result>
 <companyname>Prezzo plc</
companyname>
 <l1address>31-32 Northumberland
Avenue</l1address>
 ...
 <l5address>London</l5address>
 <l6address>Greater London</l6address>
 <postcode>WC2N 5BW</postcode>
 <description></description>
 <longitude>-0.1276490</longitude>
 <latitude>51.5071000</latitude>
</entry>
...

XSPARQL Execution Engine

Fig. 4. An Example for Lifting

to specify the lowering and lifting schema mappings for the CityGrid service. The
lowering schema for Scoot API is particularly reusable in this case. Therefore,
the developers only need to write the XSPARQL query (see Listing 3) for data
lifting on the basis of analysis on the sample results of invoking the CityGrid
service.

return <rdf:RDF > {
for $entry in $doc//locations/location
let $name := $entry/name
let $address := $entry/address
let $street := $address /street
let $city := $address /city
let $state := $address /state
let $postal_code := $address /postal_code
let $longitude := $entry/longitude
let $latitude := $entry/latitude
return <dbp -ont:Place >

<foaf:name >{data($name)}</foaf:name >
<dbp-ont:address >{data($street)}, {data($city)}, {data($state)}, {data(

$postal_code)}</dbp-ont:address >
<geo:lat >{data($latitude)}</geo:lat >
<geo:long >{data($longitude)}</geo:long >

</dbp-ont:Place >} </rdf:RDF>

Listing 3. XSPARQL query for lifting CityGrid invocation results

22 D. Liu et al.

All the results of service invocation are transformed into RDF through data
lifting, and they conform to the same ontology. Thus, developers can easily merge
them together by adding them to a common RDF model before serialising and
sending them to the client side.

4 Related Work

Several platforms have been established to facilitate the design and development
of mashups. For instance, IBM Sharable Code is an online platform to support
the whole life-cycle of Web APIs and service mashups [11]. Mashup developers
are required to use Domain Specific Language (DSL) to specify data mediation,
process mediation and UI customisation. A lightweight framework, Mashlight,
is proposed in [5], which is composed of four components: Block Builder, Block
Library, Mashup Builder and Run-time Engine. Developers can use the Block
Builder to encapsulate functionalities as Mashlight Blocks, and save them into
the Block Library. Mashup Builder is a visual tool for defining the workflow,
and the Run-time Engine is the execution environment to enact the mashups.
The overall architecture of Mashlight is similar to our work, but lack of explicit
semantics and effective discovery and selection mechanisms.

MatchUp built on top of the IBM Mashup Center provides a solution to
the mashup autocompletion [4]. The proposed autocompletion algorithm can
recommend relevant components and the connections between them to help
users building mashups in a more convenient and intuitive way. Comparing with
MatchUp, our approach intends to enable mashups to automatically select and
invoke services at runtime, rather than design time.

In the context of Web services, RESTful service composition is another re-
lated topic to our work. Bite, a lightweight and executable language for RESTful
service composition, is proposed in [17]. Bite offers a basic set of language con-
structs for specifying the business logics of Web-scale workflows, and inherits
concepts from scripting languages such as dynamic data types. Bite has four
runtimes to satisfy different requirements. In contrast to introducing a new lan-
guage, minor extensions are made to BPEL for the composition of RESTful
services [12]. Efforts also have been made to automate the process of RESTful
service composition [21].

The work stated above adopts little semantic technology. SA-REST, an anno-
tation-based approach to add semantics to RESTful services, is briefly described
in [18]. Mashups created using SA-REST, denoted with smashup (semantic
mashup), are to be hosted at a proxy server together with domain ontologies.
Similar to our approach, the data mediation is carried out through lowering and
lifting, but implemented with XSLT. To my best knowledge, SA-REST does not
address the issues of service modelling, registry and discovery.

Apart form SA-REST, Semantic Web Pipes (SWP) proposed in [14] is a
rapid prototype method of semantic mashups on the data layer. SWP provides a
set of operators for merging, splitting and transforming RDF triples in the cloud
of Linked Data. It extends SPARQL with workflows, and implements dynamic

An Approach to Construct Dynamic Service Mashups 23

transformations of RDF data using XQuery and XSPARQL. Our approach also
follows the principles of Linked Data and applies SPARQL, XSPARQL for data
mediation.

5 Conclusions and Future Work

In this paper, we present a novel method of building mashups using Web ser-
vices with lightweight semantics, which is implemented based on iServe and its
extensions for service invocation. By applying our approach, mashups gain the
ability of selecting and invoking semantic services. Moreover, developers can
easily extend a mashup without programming work, as well as switch it to the
alternatives with a service is unaccessible. In short, our approach is effective for
building mashups more flexible, robust and extendible.

Our future work will involve realising the caching mechanisms for service
selection, and filtering services by QoS parameters, e.g. availability, response
time, throughput, etc. In addition, we will also focus on the context-awareness
of mashups, i.e. automatically change the strategies of service selection according
the running state of the involving services. For example, when a service is down,
mashups can be aware of it and automatically switch to alternative ones with
high semantic similarity.

Acknowledgements. This work is partly funded by the EU project SOA4All
(FP7-215219) and NoTube (FP7-231761). The authors would like to thank the
European Commission for their support.

References

1. Agarwal, S., Handschuh, S., Staab, S.: Annotation, composition and invocation of
semantic web services. Web Semantics 2(1), 31–48 (2004)

2. Akhtar, W., Kopecký, J., Krennwallner, T., Polleres, A.: XSPARQL: Traveling
Between the XML and RDF Worlds – and Avoiding the XSLT Pilgrimage. In:
Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008.
LNCS, vol. 5021, pp. 432–447. Springer, Heidelberg (2008)

3. Benslimane, D., Dustdar, S., Sheth, A.: Services Mashups: The New Generation of
Web Applications. IEEE Internet Computing 12(5), 13–15 (2008)

4. Greenshpan, O., Milo, T., Polyzotis, N.: Autocompletion for Mashups. Proceedings
of the VLDB Endowment 2(1), 538–549 (2009)

5. Guinea, S., Baresi, L., Albinola, M., Carcano, M.: Mashlight: a Lightweight Mashup
Framework for Everyone. In: Proceedings of 2nd Workshop on Mashups, Enterprise
Mashups and Lightweight Composition on the Web (MEM 2009) at WWW 2009
(2009)

6. Hadley, M., Pericas-Geertsen, S., Sandoz, P.: Exploring Hypermedia Support in
Jersey. In: Proceedings of the First International Workshop on RESTful Design,
WS-REST 2010, pp. 10–14. ACM, New York (2010)

7. Kopecký, J., Gomadam, K., Vitvar, T.: hRESTS: an HTML Microformat for De-
scribing RESTful Web Services. In: The 2008 IEEE/WIC/ACM International Con-
ference on Web Intelligence (WI 2008). IEEE CS Press (2008)

24 D. Liu et al.

8. Li, N., Pedrinaci, C., Kopecký, J., Maleshkova, M., Liu, D., Domingue, J.: Towards
Automated Invocation of Web APIs. In: Poster at the 8th Extended Semantic Web
Conference, ESWC 2011 (to appear, 2011)

9. Maleshkova, M., Pedrinaci, C., Domingue, J.: Supporting the Creation of Semantic
RESTful Service Descriptions. In: Workshop: Service Matchmaking and Resource
Retrieval in the Semantic Web (SMR2) at 8th International Semantic Web Con-
ference (2009)

10. Martin, D., Paolucci, M., McIlraith, S.A., Burstein, M., McDermott, D., McGuin-
ness, D.L., Parsia, B., Payne, T.R., Sabou, M., Solanki, M., Srinivasan, N., Sycara,
K.: Bringing Semantics to Web Services: The OWL-S Approach. In: Cardoso, J.,
Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 26–42. Springer, Heidel-
berg (2005)

11. Maximilien, E.M., Ranabahu, A., Gomadam, K.: An Online Platform for Web APIs
and Service Mashups. IEEE Internet Computing 12(5), 32–43 (2008)

12. Pautasso, C.: RESTful Web Service Composition with BPEL for REST. Data and
Knowledge Engineering 68(9), 851–866 (2009)

13. Pedrinaci, C., Liu, D., Maleshkova, M., Lambert, D., Kopecký, J., Domingue, J.:
iServe: a Linked Services Publishing Platform. In: Proceedings of Ontology Repos-
itories and Editors for the Semantic Web at 7th ESWC (2010)

14. Phuoc, D.L., Polleres, A., Tummarello, G., Morbidoni, C., Hauswirth, M.: Rapid
Semantic Web Mashup Development through Semantic Web Pipes. In: Proceedings
of the 18th World Wide Web Conference (WWW 2009), Madrid, Spain, pp. 581–
590 (2009)

15. Rao, J., Su, X.: A Survey of Automated Web Service Composition Methods.
In: Cardoso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 43–54.
Springer, Heidelberg (2005)

16. Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M., Polleres,
A., Feier, C., Bussler, C., Fensel, D.: Web Service Modeling Ontology. Applied
Ontology 1(1), 77–106 (2005)

17. Rosenberg, F., Curbera, F., Duftler, M.J., Khalaf, R.: Composing RESTful Services
and Collaborative Workflows: A Lightweight Approach. IEEE Internet Comput-
ing 12(5), 24–31 (2008)

18. Sheth, A.P., Gomadam, K., Lathem, J.: SA-REST: Semantically Interoperable and
Easier-to-Use Services and Mashups. IEEE Internet Computing 11(6), 91–94 (2007)

19. W3C: Semantic Annotations for WSDL and XMLSchema (2007),
http://www.w3.org/TR/sawsdl/

20. Yu, J., Benatallah, B., Casati, F., Daniel, F.: Understanding Mashup Development.
IEEE Internet Computing 12(5), 44–52 (2008)

21. Zhao, H., Doshi, P.: Towards Automated RESTful Web Service Composition. In:
Proceedings of 7th IEEE International Conference on Web Services(ICWS 2009),
pp. 189–196. IEEE Computer Society (2009)

http://www.w3.org/TR/sawsdl/

Task-Based Recommendation

of Mashup Components

Vincent Tietz�, Gregor Blichmann��, Stefan Pietschmann, and Klaus Meißner

Technische Universität Dresden, Faculty of Computer Science
01062 Dresden, Germany

{vincent.tietz,gregor.blichmann,stefan.pietschmann,
klaus.meissner}@tu-dresden.de

Abstract. Presentation-oriented mashup applications are usually de-
veloped by manual selection and assembly of pre-existent components.
The latter are either described on a very technical, functional level, or
using informal descriptors, such as tags, which bear certain ambigui-
ties. With regard to the increasing number and complexity of available
components, their discovery and integration has become a challenge for
non-programmers. Therefore, we present a novel concept for the task-
based recommendation of mashup components, which comprises a more
natural, task-driven description of user requirements and a correspond-
ing semantic matching algorithm for universal mashup components. By
its realization and integration with an composition platform, we could
prove the feasibility and sufficiency of our approach.

Keywords: Requirements specification, task modeling, mashup compo-
nent recommendation, semantics, methodology.

1 Introduction

Presentation-oriented mashups introduce the user interface (SWS) as a new in-
tegration layer for service-based applications and have become a prominent ap-
proach for the lightweight integration of distributed and decoupled web
resources. Originally, mashups have been developed by manual, script-based
integration of heterogeneous application programming interfaces (SWSs). Ad-
dressing non-programmers,mashup tools like Yahoo! Pipes, JackBe Presto or the
mashArt editor [7] have emerged to support the visual composition of technology-
independent web services, SWSs and SWS components.

Despite the simplicity of composition metaphors, the discovery of compo-
nents remains difficult. The search is occasionally facilitated by recommenda-
tions based on keywords, interface descriptions and community feedback, e. g.,
in programmableweb.com and IBM Mashup Center. However, in the light of grow-
ing repositories and ambiguous tags, the identification of proper search criteria
becomes an increasing challenge for unexperienced users.

� Funded by the European Social Fund (ESF), Free State Saxony (Germany) and
Saxonia Systems AG (Germany, Dresden), filed under ESF-080939514.

�� Funded by the ESF and Free State Saxony (Germany), filed under ESF-080951805.

A. Harth and N. Koch (Eds.): ICWE 2011 Workshops, LNCS 7059, pp. 25–36, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

26 V. Tietz et al.

Instead of coping with technical details, users – typically domain experts –
need to express their requirements in a more natural way. Since task analysis is
considered as an intuitive way to gather user requirements for interactive sys-
tems [12], we strive for a task-based elicitation of user requirements. Thereby,
user activities can be identified at design-time, avoiding low-level implementa-
tion details and using intuitive decomposition into smaller parts as well as the
identification of used domain and application objects [16].

Fig. 1 shows an exemplary task description for planning a conference partic-
ipation. In order to receive suggestions for routes of the public transportation
services, a participant needs to input start and destination location as well as cor-
responding temporal constraints. In addition he or she needs information about
available hotels and the weather near the conference location. Therefore, the
task “Conference Participation” is decomposed into “Specify Criteria”, “Calcu-
lation” and “Read Travel Information”. Mashup components can be considered
as self-contained entities solving these tasks. As an example, a map component
could be used to specify start and destination location (interaction task). Sim-
ilarly, list components can display routes and hotels. In contrast, for “Search
Hotels” and “Search Routes” components encapsulating web services could be
employed, as these tasks are performed by the system (system task).

Conference
Participation

Specify
Criteria

Specify
Starttime

Specify
Start

Specify
Destination

Read
Routes

Read
Hotels

Read
Weather

Read Travel
InformationCalculation

Search
Routes

Search
Hotels

Fig. 1. Travel planning scenario

In this paper, we present a concept for the task-based recommendation of
mashup components. It comprises a formal task model, whose instances serve
as requirements descriptions, and a corresponding semantic matching algorithm
that enables recommendation during design-time. The basis of our approach
is the idea of universal mashup composition that we outline in Section 2. In
Section 3, we summarize the related work for task modeling and task-based
web service discovery. Building on that, we describe our ontology-based task
model in Section 4 and our approach for task-based recommendation of mashup
components in Section 5. Finally, we discuss the results in Section 6 and outline
further work in Section 7.

Task-Based Recommendation of Mashup Components 27

2 Model-Driven Semantic Mashup Composition

As mashup components are considered as task-solving entities, a component de-
scription beyond the exposure of interface signatures is needed, representing both
functional and data semantics. Therefore, our concept builds on the component
model of the CRUISe project [19], as it provides a universal semantic interface
to heterogeneous web resources, ranging from UI widgets to SOAP and RESTful
web services. Additionally, automatic and semi-automatic encapsulation of web
content and applications is gradually improved by ongoing work.

The central idea of CRUISe is the extension of the service-oriented paradigm
to the presentation layer supporting universal composition [7]. Therein, mashups
are built from uniform constituents residing on all application layers. Back-end
services can be seamlessly integrated with UI components using the same princi-
ples and abstract interface descriptors. Thus, we denote a mashup application as
a composition of uniform components encapsulating distributed web resources,
i. e., services providing data, business logic, or user interface parts. With re-
spect to this paper, all of those components represent tasks or subtasks – either
involving user interaction or application logics.

CRUISe proposes a model-driven development process for building mashup
applications from these components. It includes a platform-independent compo-
sition model as well as a service-oriented infrastructure for the dynamic, context-
aware composition and adaptation at runtime. As our concept employs the same
component models and covers the design-time phase of this process, we briefly
outline the most relevant conceptual foundations for our work in the following.

2.1 Semantic Component Model

The universal composition of a mashup requires that all constituent parts adhere
to a generic component model [20]. In the following, we highlight the semantic
annotations, as they form the basis for our task-based recommendation.

In our conceptual space, every component – representing a service, applica-
tion logic, or UI – is a black-box of independent software with an internal state.
All components are described using three abstractions, namely property, event,
and operation. The set of properties resembles the visible state and allows the
configuration of components. Whenever the internal state changes, events are is-
sued to inform the runtime system and other components. Finally, state changes,
calculations and other arbitrary functionality of a component can be triggered
by invoking their operations with the help of events. Events and operations may
themselves contain parameters, realizing the data flow within the mashup.

The Semantic Mashup Component Description Language (SWS) allows the
description of a component interface – comparable to WSDL for web services
– and the semantic annotation of a component descriptor Cc at three different
levels by linking certain parts with semantic models: typing of properties and
parameters (data semantics), the definition of functional semantics of compo-
nents Ac, operations OPc, and events EVc, as well as non-functional semantics,
e. g., for pricing, licensing, and other metadata Mc.

28 V. Tietz et al.

Listing 1.1 shows a partial description of a SWS component “RouteHotel-
Comp” (C1), which facilitates the search for public transportation service routes
(using start/destination location and start/destination time) and hotels in a cer-
tain area. As a result, the component displays routes and hotels using sortable
lists. The semantic annotation of its interface is realized by linking it to semantic
descriptors for “functionality” and data “type”. The prefix “to” denotes concepts
of the travel domain as part of a domain ontology TO, while “ao” is used for
concepts of the action ontology AO, which currently represents actions through
a combination of specializations out of ao:Input, ao:Output and ao:Manipulate
via inheritance. Since the functionality of sortable lists is not represented by the
component interface (because it is triggered only by user interaction), the cor-
responding semantic concept ao:Sort is annotated at component level (line 1).
The data semantics of the parameter location in the operation setStart is related
to the concept to:Location (line 3). The functional semantics of setStart (line 2),
setDest (line 5), setStartTime (line 8), setDestTime (line 11) and rSearched (line
14) is equally ao:SearchRoute, because all this pieces are necessary to realize the
search of routes. The attribute “trigger” (e. g., line 14) indicates the source of
the event, which is either system, operation, or interaction.

1 <mcdl ... name=" RouteHotelComp" functionality="ao:Sort"> ...
2 <operation name=" setStart " functionality="ao:SearchRoute">
3 <parameter name=" location " type="to:Location "/>
4 </ operation >
5 <operation name=" setDest " functionality="ao:SearchRoute ao:SearchHotel">
6 <parameter name=" location " type="to:Location "/>
7 </ operation >
8 <operation name=" setStartTime" functionality="ao:SearchRoute">
9 <parameter name="time" type="to:StartTime"/>
10 </ operation >
11 <operation name=" setDestTime" functionality="ao:SearchRoute">
12 <parameter name="time" type="to:DestinationTime"/>
13 </ operation >
14 <event name=" rSearched" trigger =" operation" functionality="ao:SearchRoute">
15 <parameter name=" result" type="to:RouteList"/>
16 </event >
17 <event name=" hSearched" trigger =" operation" functionality="ao:SearchHotel">
18 <parameter name=" result" type="to:HotelList"/>
19 </event >
20 <event name=" rSelected" trigger =" interaction" functionality="ao:Input">
21 <parameter name=" result" type="to:Route"/>
22 </event > ... </mcdl >

Listing 1.1. Example mashup component C1 for searching routes and hotels

2.2 Semantic Mashup Composition

In CRUISe, a platform-independent composition model [20] specifies the com-
ponents to be integrated, incorporating information from their descriptors and
defining aspects like the data and control flow, the visual layout, the adap-
tive behavior of the overall composition. It is interpreted by a runtime environ-
ment, which further integrates all components from a repository and executes
the mashup, correspondingly. This infrastructure and integration process as well
as the adaptivity concepts have been realized and validated. Yet, it is impor-
tant to realize the crucial role of the design-process, i. e., the authoring, in this

Task-Based Recommendation of Mashup Components 29

context. They key challenge in rapid mashup development – especially with re-
gard to end-user development – is the discovery and seamless integration of the
right components in a certain context. Hence, the remaining paper addresses the
question, how non-programmers may be able to find components and build such
models. Before we get more into details, we discuss related efforts from the fields
of task modeling and task-based service discovery.

3 Related Work

As already stated, our work envisions the recommendation of mashup compo-
nents from task descriptions. Therefore, the latter must feature a formal repre-
sentation with semantic references, so that actions and data of the tasks can be
semantically matched with functionality and data of mashup components.

In this context, the lack in using semantic technologies and in formalism
of action and domain modeling impede the use of traditional task modeling
approaches (e. g., HTA [1], GOMS [5], GTA [22] and K-MAD [3]). A prominent
task modeling approach is CTT [17] that is used in many model-based user
interface development approaches, e. g., MARIA [18] and UsiXML [14]. However,
based on the CAMELEON reference framework [4], which includes a four-stage
transformation starting with a task model and ending up with the final SWS,
only the manual identification of presentation items and sets is utilized.

With regard to the semantic matching of data and functional concepts, seman-
tic web service (SWS) discovery utilizes logic-based, e. g., [6], non-logic-based,
e. g., [9], or hybrid matchings [10]. While logic-based approaches use deduction
to decide if concepts are equal (exact match), part of each other (subsume) and
(plug-in) or distinct (fail), non-logic-based ones rely on syntactic, structural and
numerical analysis, and hybrid approaches combine both. Overall, the major
drawback of SWS is the use of technical service templates for discovering web
services, which impedes non-expert users from expressing and satisfying their
business demands [21].

Task-based recommendation usually involves the mapping of an interaction
or system task to a SWS or non-SWS component, whereas also sets of tasks and
components need to be considered. Corresponding task-based discovery mecha-
nisms are supported by an extension of MARIA [11] and the SeTEF framework
[21]. However, the former only supports the discovery of web services for sys-
tem tasks, while the latter uses an ontology-based task description OWL-T that
is transformed to SAWSDL and, therefore, is restricted to non-UI components.
Furthermore, the description of tasks highly depends on knowledge about avail-
able service operations, and only one-on-one mapping between tasks and service
operations are supported, which impedes the search for combinations of oper-
ations. In contrast, our approach facilitates the task-based recommendation of
SWS and non-SWS mashup components during design-time by using semantic
annotations in tasks and components across operations and events.

In the following, we introduce the underlying ontology-based task model and
the matching algorithm employed for component recommendation.

30 V. Tietz et al.

4 Ontology-Based Task Model

Based on specific [15,17] and uniforming [8,13] task models, we derived a mini-
malistic task ontology – illustrated in Fig. 2 – to support user-centered analysis
and description of a specific domain problem. Since mashup components are
considered as black-boxes, we focus rather on the expression of required data
and functional semantics than on conditions and effects in order to recommend
components. Therefore, a task is mainly characterized by its inputs (hasInputOb-
ject), outputs (hasOutputObject), manipulating actions (hasAction) and category
(hasCategory). A composite task consists of at least two subtasks (hasChildTask),
whereas, subtasks are always a specialization of a parent task. Grouping enables
the temporal relations sequence, arbitrary sequence, choice and parallel between
subtasks of a composite task [2]. Both, task hierarchy and grouping facilitate
task analysis and description at different abstraction levels.

In order to express what is intended to be done, actions can be assigned to
composite and atomic tasks. Because, atomic tasks comprises only one action,
we can specify exactly the data objects involved to realize the functionality rep-
resented by the action (e. g., the search of a list of hotels based nearby a certain
location). Data objects (hasInputObject and hasOutputObject) are represented
as ontology concepts or individuals from a domain ontology. Actions are formal-
ized by the independent classification AO to represent the task’s functionality
(e. g., ao:Sort and ao:Search in Fig. 3).

Task

AtomicTask CompositeTask

subClassOf

subClassOf

hasID:String

hasName:String

hasDescription:String

hasMinIter:Integer

hasMaxIter:Integer

TaskDescription

hasTaskCategory

isChildTaskFrom

hasChildTask

hasID:String

hasName:String

hasDescription:String

Abstract

System

User

Interaction

oneOf

hasCategory

isCategoryFrom

Grouping
Seq.

Ar. Seq.

Choice

Parallel

oneOf

hasGroupingDatatype Property

oneOf Instance

Object Property

Inheritance

Class

Instance

Condition
hasID:String

hasExpression:String

hasPostCondition

hasPreCondition

hasRole:URI

hasInputObject:URI

hasOutputObject:URI

hasAction:URI

RO
DO
DO
AO

AO Action Ontology

DO Domain Ontology

RO Role Ontology

Fig. 2. Task ontology

Since mashups provide SWS and non-SWS components, we follow [17] and
distinguish the task categories : system, interaction, user and abstract. System
tasks are exclusively performed by components. For example, “Search Routes” in
our scenario could be modeled as a system task. Whereas, interaction indicates
that an interaction between humans and an SWS is required, e. g., setting a
marker on a map in order to specify the start location. User tasks require no
interaction with the system, e. g., fetching a folder. An abstract task groups
heterogeneous subtasks (e. g., “Conference Participation”) and is the default
task category providing all kinds of components during recommendation.

Task-Based Recommendation of Mashup Components 31

Finally, we formalize tasks as a tuple Tt = (Mt, At, ct, INt, OUTt, Rt, Ct)
defined by metadata Mt like name and description, a set of actions At ⊆
AO, a category ct ∈ {interaction, system, user, abstract}, a set of inputs and
outputs INt, OUTt ⊆ DO, roles Rt and conditions Ct. Considering our sce-
nario, an example task “Search Routes” requires a start and a destination lo-
cation as well as a start time to search a list of routes. Therefore, the task
T1 is defined as ({“Search Routes”}, {ao:Search}, system, {to:StartLocation,
to:DestinationLocation, to:StartTime}, {to:RouteList}, ∅, ∅). Because roles and
conditions are required neither in the scenario nor to explain the recommenda-
tion algorithm, these sets are empty. However, a role could be Administrator,
represented by a concept of a role ontology. The restriction that to:StartLocation
needs to be a European city is a possible pre-condition.

Using semantic technologies this ontology-based task model enables the task-
based recommendation of previously introduced mashup components which is
presented in the following section.

5 Task-Based Recommendation

Our approach aims to fill the gap between a user-centered requirements speci-
fication and semantic mashup component discovery. In order to match different
semantic concepts annotated in task and component descriptions, we propose
the two subsumption-based functions CoreMatch and SetMatch. Further, we
consider the mapping of inputs and outputs between tasks and components as
well as their functional semantics. Building on that, we present our task-based
recommendation algorithm.

5.1 Calculation of Subsumption-Based Similarity

In order to compare and rate different semantic annotations used in tasks and
components, we propose a subsumption-based matching, referring to logic-based
web service matchings [6].

The core matching degrees CoreMatch(r, a) between the request r and the
advertisement a are defined by exact (5 ⇔ r ≡ a), plug-in (4s ⇔ r � a), sub-
sume (3 ⇔ a � r) and fail (0 ⇔ else), where s is the number of sibling nodes
s (with s ≥ 1) at the same distance. Fig. 3 shows an example for request-
ing ao:SearchRoute. Therein, the advertisement ao:SearchBusRoute subsumes
ao:SearchRoute and, therefore, the result is 3. The distance dist(r, a) is defined
by the number of inheritances related from the request r to the advertisement a.
In the case of a plug-in, we divide the result by s in order to consider partial con-
cepts, e. g., the advertisement of ao:Sort represents only one part of the requested
functionality and can be potentially combined with other sub-functionalities. For
example, the functionality represented by ao:Search is a specialization of ao:Sort
and ao:Calculate. Therefore, ao:Sort and ao:Calculate are siblings at the distance
2 and CoreMatch(ao:SearchRoute , ao:Sort) = 4

2 = 2.
Further, we define the function SetMatch(R,A) that calculates the rank of R

and A as sets of requested and advertised ontology concepts. First, this function

32 V. Tietz et al.

ao:Calculate

ao:Sort

ao:SearchRoute ao:Searchao:SearchBusRoute

...

...

210 n...-1
Distance

Rating

Subsume

= 3
Exact

= 5
PlugIn = 4/(1 Sibling)

 = 4
PlugIn = 4/(2 Siblings)

 = 2 ...
Requested Action

Inheritance

ao:Action

Fig. 3. Rating and distances related to a request of ao:SearchRoute

groups all best core matches of each member of R and A and, finally, returns the
average of all best matching degrees. For example, SetMatch({ao:SearchRoute,
ao:SearchHotel},{to:Search}) = 2.0, because ao:SearchRoute builds the best as-
signment with ao:Search as subsumption (4) and ao:SearchHotel could not be
further matched because A has no concepts left. The final result is 2.0, the aver-
age of 4.0 and 0.0. In the following, we use SetMatch(R,A) for rating different
aspects (e. g. data and functional semantics) of tasks and components.

5.2 Mapping Data Semantics of Components with Tasks

In general, component descriptions include events representing output and op-
erations representing input (cf. Section 2). In order to match tasks and compo-
nents, a task-aligned interpretation of these descriptions is required. From the
perspective of user interaction, a SWS component signalizes the input of data
by triggering an event, e. g., as result of a user selecting a location on a map
component. On the other hand, the output of data, e. g., its visualization on the
map, is realized by an operation. Therefore, inputs of an interaction task must
be mapped to the data semantics of events INt → d(EVc), while its outputs
must be mapped to operations of a component OUTt → d(OPc), accordingly.

While this applies to interaction tasks, it does not for system tasks. In this
case, inputs are mapped naturally to operations (INt → d(OPc)), e. g., to invoke
a search for hotels based on a location as parameter, and the outputs are mapped
to events (OUTt → d(EVc)). If the task category is abstract, it cannot be decided
how to map inputs and outputs. Therefore, the mapping and rating needs to be
carried out for both, whereas the maximum of both ratings is returned.

5.3 Task-Based Recommendation

In the following, we describe the algorithm Match(T,C) that returns an ordered
list of rated recommendations out of a set of components C for a task instance
T that is compliant with the proposed task ontology. The algorithm exploits the
previously mentioned matching principles in order to rate CRUISe components
for each task.

Task-Based Recommendation of Mashup Components 33

Reducing complexity. In the first step, the complexity of the task model is
reduced in order to optimize the matching performance. Therein, user tasks are
omitted, because no component is required. Next, parent tasks are removed,
because subtasks are an equal or more detailed representation of their parents
regarding actions, inputs, and outputs. Finally, the amount of component candi-
dates is reduced for each task based on its category. If the category is interaction,
service and logic components are excluded, because they offer no SWS.

Interim ratings and data structure. In the second step, we compare each
task Tt with each component candidate Cc. The final rating rtcfin of a compo-
nent, is the maximum of the two interim ratings rtc1 and rtc2. rtc1 reflects the
matching of the overall semantic annotation of the component and rtc2 considers
the semantics of operations and events (including data and functionality) of the
component. In order to calculate the interim rating rtc2, a data structure similar
to Table 1 is created that represents a task-like interpretation of each component
description. With the help of the table, the ratings of the functional semantics
mi

act and the data semantics mi
in and mi

out of the component are determined. In
the following, we describe in detail, how the table is filled and how both interim
ratings are calculated. For this, we use the previously introduced task T1 (cf.
Section 4) and component C1 (cf. Section 2).

Table 1. Intermediate results of the matching algorithm Match(T1, C1)

i dti acti mi
act Din(acti) mi

in Dout(acti) mi
out ri

1 -1 ao:SearchRoute 3.0 to:Location 4.33 to:RouteList 5.0 3.83
to:Location
to:StartTime

to:DestinationTime
2 -1 ao:SearchHotel 3.0 to:Location 1.67 to:HotelList 0.0 1.92
3 ∞ ao:Input 0.0 ∅ 0.0 to:Route 0.0 0.0

rtc2 3.83

Functional semantics of components. The first interim rating rtc1 reflects
the matching of the overall semantic annotation of the component Ac requesting
the actions of the task At. Using our example, this is rtc1 = SetMatch(At, Ac) =
SetMatch({ao:Search}, {ao:Sort}) = 2.0 (cf. Fig. 3). Because we define that
functional and data semantic are equally weighted and no data semantic is an-
notated at this level, rtc1 is divided by 2 which results in 1.0.

Functional semantics of operations and events. In order to calculate the
ratings of the functional semantics mi

act, each annotated action acti of all op-
erations and events is added to a distinct action list. If an interaction task
is requested, only events with the trigger “interaction” are considered (e. g.,
line 20 in Listing 1.1). Then, the rating for the functional semantics mi

act is
calculated by SetMatch(At, acti). This means that all actions of the task At

are requested for each functionality acti of the component. In our example,
m1

act = SetMatch({ao:Search}, {ao:SearchRoute}) = 3.0.

34 V. Tietz et al.

Data semantics. The rating of the data semantics mi
in and mi

out is based on
both columns Din(acti) and Dout(acti) as advertisements and the input INt

and output OUTt of the task as requests. According to our example, the task
category equals system, therefore, Din(acti) gets filled with the data semantics
of all operations annotated by the functionality acti and Dout(acti) gets filled
with the data semantics of all events annotated the functionality acti (cf. Sec-
tion 5.2). In general, mi

in is calculated by SetMatch(INt, Din(acti)) and mi
out

by SetMatch(OUTt, Dout(acti)).
For example, m1

in = SetMatch({to:StartLocation, to:DestinationLocation,
to:StartTime}, Din(act1)) = 4.33. Further, m1

out = SetMatch ({to:RouteList},
Dout(act1)) = 5.0. Because we weight functional and data semantics equally, the
rating for each row (ri) is the average of mi

act and the average of mi
in and mi

out.
For example, r1 = 1

2 (3.0 +
1
2 (4.33 + 5.0)) = 3.83.

Detecting sub-functionalities. As mentioned in Section 5.1, it is possible to
detect and merge associated sub-functionalities like ao:Calculate and ao:Sort.
For this, we use the distance dti between the requested At and advertised acti
and group all subsumes (where 0 < d < ∞) having the same distance.

Then, we sum their functional semantics rating and build the average of their
data semantic rating, to end up in one new row including all sub-functionalities.
This allows us to handle functionalities across multiple operations and events. In
our example, no grouping is necessary, because we get two subsuming concepts
(ao:SearchRoute, ao:SearchHotel) and two fails (ao:Input, ao:Output).

Final rating result. As previously mentioned, rtc1 considers the overall func-
tionality of the component and rtc2 represents the best match for functional and
data semantics of all operations and events. Therefore, rtc2 is the maximum of
all ri. Finally, the highest value out of rtc1 and rtc2 is the final result rfin of
the matching algorithm for a task and a component. In our example rfin equals
3.83, because this is the maximum of rtc1 = 1.0 and rtc2 = 3.83. The match-
ing is done for all tasks ∈ T and all components ∈ C. In the end, the result
tuple RT = (Tt, {(Cc, rtcfin)}) includes for every task Tt a set of component
proposals, represented by their id and rating.

6 Implementation and Discussion

We have successfully implemented the proposed algorithm as a part of a service-
oriented and Java-based component repository of CRUISe. The repository regis-
ters, manages, matches and ranks components and offers a web service interface.
The matching can be based on a SMCDL template or, as used in this case, on
an instance of the task ontology. The repository and the matching algorithm use
the semantic web framework Jena (http://jena.sourceforge.net/) in order
to access OWL knowledge bases using plain Java.

We have tested the algorithm with a task model representing our scenario and
a set of components such as generic and specific input and output components
(e. g., for locations, time and routing) getting expected ranks. However, in order

http://jena.sourceforge.net/

Task-Based Recommendation of Mashup Components 35

to get reliable results we plan to evaluate the algorithm within a broad user
study utilizing more scenarios and components.

Since we address the design-time, performance is negligible to a certain degree.
However, the current response time is about 1s for one task and 50 components and
tends to bemore than proportional with the increasing number of components and
tasks. Therefore, we plan to implement caching and other optimizations.

Regarding the use of ontologies, we assume that component developers and
task modelers have a common understanding of how functionalities and data
are semantically represented. Currently, we use self-developed travel and action
ontologies on the basis of the introduced scenario. In principle, any knowledge
base can be used and matching as well as aggregating ontology concepts can be
applied in future.

7 Conclusion and Further Work

The contribution of this work is twofold. First, we presented an ontology-based
task model that allows formal and lightweight modeling of user’s requirements
for composite mashup applications on the basis of existing knowledge bases. This
addresses our key requirements regarding the formalization and abstraction of
any specific service operation or user interface component. Second, we provide
a matching algorithm based on semantically annotated mashup components in
order to support discovery for task-based requirements. The key feature is the
proposal and rating of components realizing specific as well as partly supported
functionalities across services and components during the design-time.

Regarding the discussion in Section 6, further work addresses the optimiza-
tion and evaluation of the recommendation algorithm particularly by utilizing
a user study. Further, we explore the opportunity of semi-automatic compo-
sition utilizing the proposed task model and recommendation of components.
Currently, we work on the design and the implementation of an authoring tool
in order to allow task modeling for non-programmers and to determine concepts
for ontology-based modeling. Finally, this work is an important step towards a
task-based development approach for composite mashup applications.

References

1. Annett, J., Duncan, K.: Task analysis and training design. Hull Univ. (England).
Dept. of Psychology (1967)

2. Betermieux, S., Bomsdorf, B.: Finalizing Dialog Models at Runtime. In: Baresi,
L., Fraternali, P., Houben, G.-J. (eds.) ICWE 2007. LNCS, vol. 4607, pp. 137–151.
Springer, Heidelberg (2007)

3. Caffiau, S., Scapin, D.L., Girard, P., Baron, M., Jambon, F.: Increasing the ex-
pressive power of task analysis: Systematic comparison and empirical assessment
of tool-supported task models. Interacting with Computers 22(6), 569–593 (2010)

4. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt,
J.: A Unifying Reference Framework for multi-target user interfaces. Interacting
with Computers 15, 289–308 (2003)

5. Card, S., Moran, T., Newell, A.: The Psychology of Human-Computer Interaction.
Lawrence Erlbaum, Hillsdale (1983)

36 V. Tietz et al.

6. Chabeb, Y., Tata, S., Ozanne, A.: YASA-M: A Semantic Web Service Matchmaker.
In: 24th IEEE International Conference on Advanced Information Networking and
Applications (AINA 2010), pp. 966–973 (2010)

7. Daniel, F., Casati, F., Benatallah, B., Shan, M.-C.: Hosted Universal Composition:
Models, Languages and Infrastructure in mashArt. In: Laender, A.H.F., Castano,
S., Dayal, U., Casati, F., de Oliveira, J.P.M. (eds.) ER 2009. LNCS, vol. 5829, pp.
428–443. Springer, Heidelberg (2009)

8. Goschnick, S., Sonenberg, L., Balbo, S.: A Composite Task Meta-Model as a Ref-
erence Model. In: Forbrig, P., Paternó, F., Mark Pejtersen, A. (eds.) HCIS 2010.
IFIP Advances in Information and Communication Technology, vol. 332, pp. 26–38.
Springer, Heidelberg (2010)

9. Klein, M., König-Ries, B.: Coupled Signature and Specification Matching for Au-
tomatic Service Binding. In: Zhang, L.-J., Jeckle, M. (eds.) ECOWS 2004. LNCS,
vol. 3250, pp. 183–197. Springer, Heidelberg (2004)

10. Klusch, M.: Semantic web service coordination. In: CASCOM: Intelligent Service
Coordination in the Semantic Web. Whitestein Series in Software Agent Tech. and
Autonomic Computing, Birkhäuser, pp. 59–104 (2008)

11. Kritikos, K., Paternò, F.: Service discovery supported by task models. In: 2nd ACM
SIGCHI Symp. on Engineering Interactive Computing Systems, EICS 2010 (2010)

12. Limbourg, Q., Vanderdonckt, J.: Comparing task models for user interface design.
In: The Handbook of Task Analysis for Human-Computer Interaction, pp. 135–154.
Lawrence Erlbaum Associates (2003)

13. Limbourg, Q., Pribeanu, C., Vanderdonckt, J.: Towards Uniformed Task Models
in a Model-Based Approach. In: Johnson, C. (ed.) DSV-IS 2001. LNCS, vol. 2220,
pp. 164–182. Springer, Heidelberg (2001)

14. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., López-Jaquero, V.:
USIXML: A Language Supporting Multi-Path Development of User Interfaces. In:
Feige, U., Roth, J. (eds.) DSV-IS 2004 and EHCI 2004. LNCS, vol. 3425, pp. 134–
135. Springer, Heidelberg (2005)

15. Mahfoudhi, A., Abid, M., Abed, M.: Towards a user interface generation approach
based on object oriented design and task model. In: Proc. of the 4th Intl. Worksh.
on Task Models and Diagrams, pp. 135–142. ACM (2005)

16. Mori, G., Paternò, F., Santoro, C.: CTTE: Support for developing and analyzing
task models for interactive system design. IEEE Trans. Software Eng. 28(8) (2002)

17. Paternò, F., Mancini, C., Meniconi, S.: ConcurTaskTrees: A diagrammatic notation
for specifying task models, pp. 362–369. Chapman & Hall (1997)

18. Paternò, F., Santoro, C., Spano, L.D.: MARIA: A universal, declarative, multiple
abstraction-level language for service-oriented applications in ubiquitous environ-
ments. ACM Trans. Comput.-Hum. Interact. 16(4), 1–30 (2009)

19. Pietschmann, S.: A model-driven development process and runtime platform for
adaptive composite web applications. Intl. Journal On Advances in Internet Tech-
nology (IntTech) 4(1), 277–288 (2010)

20. Pietschmann, S., Tietz, V., Reimann, J., Liebing, C., Pohle, M., Meißner, K.: A
metamodel for context-aware component-based mashup applications. In: Proc. of
the 12th Intl. Conf. on Information Integration and Web-Based Applications &
Service (iiWAS 2010), pp. 413–420 (2010)

21. Tran, V.X., Tsuji, H.: A task-oriented framework for automatic service composi-
tion. In: Proc. of the 2009 Congress on Services - I (SERVICES 2009), pp. 615–620.
IEEE (2009)

22. vanWelie, M., van der Veer, G.C., Eliëns, A.: An ontology for task world models. In:
5th Int. Worksh. on Design, Specification, and Verification of Interactive Systems,
DSV-IS (1998)

A. Harth and N. Koch (Eds.): ICWE 2011 Workshops, LNCS 7059, pp. 37–48, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Integration of Telco Services into Enterprise Mashup
Applications

Olexiy Chudnovskyy, Frank Weinhold, Hendrik Gebhardt, and Martin Gaedke

Department of Computer Science, Chemnitz University of Technology
09111 Chemnitz, Germany

{olexiy.chudnovskyy,frank.weinhold,hendrik.gebhardt,
martin.gaedke}@informatik.tu-chemnitz.de

Abstract. In this paper we present our approach to integrate telco services into
enterprise mashup applications. We show how cross-network integration and
multi-user-oriented mashup concept support execution and orchestration of
business processes. We identify the main classes of telco services and provide a
reference architecture for telco-enabled mashup applications. Finally, we
describe our approach for systematic integration process and give an outlook
into our further research.

Keywords: Mashup, Telco Services, Enterprise, Integration.

1 Introduction

The availability and ubiquity of mobile devices is a matter of course nowadays.
According to Gartner report of February 2011 more than 1.6 billion mobile devices
were sold 2010, which is a 32% increase compared to 2009 [1]. Both operator
networks and mobile devices provide sophisticated capabilities regarding voice, video
and data transfer (so called telco services), which can be leveraged in business
process integration and orchestration scenarios. However, the integration of these
functionalities into Web applications is still challenging. We identified the following
three problems: First, not all of the operator network services are exposed in ways
easy to deal with for Web developers. Though the number of dedicated gateways and
APIs grows with every year [2], their heterogeneity and fast evolution complicate the
development of consumer applications. Second, without adequate models and tools
the integration of telephony services is a time-consuming and error-prone task. And
finally, the novelty of the emerging services and device capabilities requires a
systematic approach and guidelines to support unskilled Web developers in the
integration process.

We claim the adoption of Web mashup techniques will significantly decrease the
effort to develop and maintain telco-enabled Web applications. Much work has
already been done on the field of Web mashup. Many dedicated models, architectures
and development tools exist [3]. All of them are characterized through the end-user
oriented development paradigm and continuous reuse of already existing components

38 O. Chudnovskyy et al.

and functionalities. New goal-oriented mashups can be constructed even without
programming skills - leveraging the experience and building blocks produced by other
developers [4].

Our goal is to extend traditional mashups towards telco-enabled ones, which would
simplify the integration of telephony services and reveal new application possibilities
of mashups within enterprise scenarios.

The rest of this paper is structured as follows. First, we illustrate an application
possibility of telco-enriched mashups using an example scenario from the property
management domain. Then we identify and describe challenges on the way towards
integration of telco services into Web mashups. Afterwards, we present a reference
architecture for telco mashups and the internals of a corresponding execution
platform. Section 5 reviews which aspects have to be considered when developing
telco mashups and how this can be done systematically. Finally, we conclude the
paper by pointing out the current challenges in our research.

2 Example Scenario

In the following example, we show how telco mashups can support business scenarios
dealing with orchestration and integration of business processes. In this example the
availability of alternative communication channel, i.e. operator network and mobile
devices, enable faster response and data transfer between involved parties. Especially
human actors get better integrated into the decision-making processes, as decisions
and required information can be provided from anywhere and to any time.

Pete’s Apartments (PA) is a medium-sized apartment leasing company. PA takes
care about billing and management issues, while flat maintenance is performed by
partner firms. PA uses classical Web mashups for business intelligence tasks but also
telco-enabled ones to coordinate different business processes and to communicate
with its partners.

Lucy works as a customer advisor for PA. She uses a dedicated telco-mashup
application to communicate with customers and to initiate various workflows
regarding management, flat maintenance etc. One day Lucy gets a call from the renter
Joe, who is having problems with his bathroom light (cf. Fig. 1). The mashup
identifies Joe by his phone number and displays his customer information on Lucy's
screen (1, 2). He reports the problem and Lucy captures it within a dedicated job-
management-component (3). Based on the given information the map-component
displays craftsmen from partner firms close to Joe's apartment. Lucy selects one or
several craftsmen, who should be notified about the job details (4). She uses one of
the messaging components (like instant messaging, voice-calls, SMS/MMS) to
contact the craftsmen. Lucy sends an MMS to the selected craftsmen with Joe's
address and problem description (5, 6).

The electrician Peter is one of the contacted craftsmen. He receives the message
from Lucy while on the road and confirms the task via a SMS from his mobile phone.
Usually, when in the office Peter replies by calling into the mashup application using
his traditional office phone to get further information or coordinate next actions with

 Integration of Telco Services into Enterprise Mashup Applications 39

Lucy (7). The mashup confirms that Peter accepted the job and displays a notification
message on Lucy's screen (8). Lucy accepts his confirmation and assigns him to this
job (9).

Fig. 1. Enterprise mashup application with integrated telco services

The example shows how two different processes (order registration and light
repair) can be seamlessly integrated into a single workflow under different
communication constraints (Internet, land and mobile phone lines). The integrating
medium hereby is the dedicated telco mashup application, transcending technological
communication constrains and thus enabling communication and data exchange
between involved parties in a new way.

The presented scenario is a typical everyday scenario and limited in complexity –
but its implementation is hindered through several problems we have identified during
our research.

1. Telecommunication networks and mobile devices are not yet perceived as an
efficient communication channel being able to perform process integration and
coordination.

2. The missing models and frameworks hinder the integration of telephony services
into Web- and software solutions.

3. Development of telco-enabled solutions is a time-consuming and error-prone task.
Despite many existing tools and frameworks there is no rigorous and systematic

Joe : Renter PA Web Solution : Telco Mashup Lucy : Customer Advisor Mike : Craftsman Peter : Craftsman

1 : call(problem)

(Telco Service)

2 : customerCalled(customerData, problem)

3 : saveProblemDescription(problem)

4 : selectAndInformCraftsmen()

5 : MMS with client data and problem description (Telco Service)

6 : MMS with client data and problem description (Telco Service)

7 : callAndConfirmTheOrder() (Telco Service)

8 : craftsmanResponsed(craftsmanId)

9 : assignCraftsman(craftsmanId)

40 O. Chudnovskyy et al.

approach enabling costs-efficient development and evolution of telco-enabled Web
applications.

To tackle the stated problems we derive the main research challenges discussed in the
next sections:

• What types of telco services do exist and what are their key characteristics?
It is important to classify and analyze different types of telco services. Services
may operate in various networks and provide different data transfer capabilities
(e.g. instant messaging, signaling, SMS/MMS etc.) Their characteristics have a
crucial impact on scenarios and application possibilities for process orchestration
and integration.

• How can telco services be combined with other functionalities and data sources?
Web mashups has shown that development of new applications based on existing
components and functionalities can be easy and even accessible for end users. It is
necessary to devise a dedicated mashup model and architecture, which would
support data transfer and process integration using telco services.

• How should a systematic approach for telco-enabled mashups development look
like?
It is necessary to devise a dedicated development process and a framework, which
would reduce time and costs for the development of telco mashups. The average
users should be supported in the process of creating their own mashups in a
systematic and efficient way.

In the following sections, we focus on these research questions, analyze different
kinds of telco services and introduce telco mashups with dedicated development
process and framework.

3 Telco Services and Enterprise Applications

We define telco services as software services that provide communication and
collaboration support. Depending on the network these services operate in, we
distinguish between internet telco services, converged services and signaling services.

Internet telco services operate exclusively in the Internet, e.g. Voice over IP
(VoIP) or instant messaging. The variety of available protocols and technologies
enable these services to be used in complex data transfer and workflow execution
scenarios between distributed systems. Internet telco services provide an efficient tool
for asynchronous data transfer and synchronous voice/video communication.
Furthermore, data transferred over services like instant messaging can be processed
automatically by software and initiate further execution steps. Skype [5], Sipgate [6]
or Google Voice [7] are some examples of the internet telco services providers.

Converged services mediate between different networks and communication
protocols. A SMS message or VoIP calls from Internet to a mobile phone are
examples of converged services. Converged services enable location-independent data
exchange between parties, who have no access to the Internet but can communicate
over other channels like operator networks. Especially processes and decision tasks,

 Integration of Telco Services into Enterprise Mashup Applications 41

where people are involved, can benefit from capabilities of operator networks and
pervasive availability of mobile devices. The data packets are usually limited in size
and the mediation between networks is more expensive. However, small messages are
often enough to confirm tasks or to provide required information. Monitoring and
management of processes can be performed as well by notification using SMS or
MMS. Tropo [8] and Twilio [9] are two wide-spread converged services providers.

Signaling services, which provide access to a network operator’s signaling
infrastructure. Examples of signaling services are notifications about incoming calls
or negotiation of Quality of Service (QoS) parameters. Furthermore, signaling
services can be used to establish a connection between two parties in order to initiate
data transfer over alternative communication channel. Providers of signaling services
are for example Developergarden [10], Comfone Signaling [11] or Orange API [12].

Finally, we define device APIs as services, which enable access to device
capabilities such as cameras, microphone, location services etc. Device APIs provide
additional data, which can be important or wishful for many enterprise scenarios. For
example, location data from smartphones with GPS support can be utilized for
decision making and task assignment process. As a result a better awareness of
communication partners can be achieved. Furthermore device APIs enable mashup
applications to be partially executed on the end devices and provide additional
functions to the user.

Based on this classification, we derive a reference architecture, which enables Web
mashups to integrate the presented telco services.

4 Integrating Telco Services into Mashups

Telco mashups represent an enhancement of classic Web mashups and leverage the
capabilities of telco services. Within a mashup telco services are combined with other
functionalities, which enable execution of both ad-hoc and complex cross-
organizational workflows. We identified several layers of combination and
aggregation possibilities regarding data, application logic and pieces of user interface:

• Service Binding Layer specifies data sources and services to be integrated into the

mashup. Due to the variety of available standards and protocols (SOAP, REST,
Atom, RSS etc.) the interface of services exposed to the upper layers should be
unified and expressed within one semantically enriched description language.
Policies, security considerations as well as quality of service aspects have to be
defined at this point to enable cross-organizational data transfer and service
invocation. Federation aspects of services should be systematically designed using
dedicated modeling languages as presented in [13, 14].

• The Data Mashup Layer represents a step, where data coming from a number of
heterogeneous sources are transformed, filtered and aggregated. The combination
algorithm to be applied might be given either in form of a simple script snippet or
using a dedicated mashup language, e.g. EMML [15] or DERI Pipes [16]. The
underlying models may vary as well, e.g. the combination of data can be expressed

42 O. Chudnovskyy et al.

in form of pipes (the output of service A is connected with input of service B) or in
terms of declarative instructions (data federation pattern). The data mashup enables
integration of information coming from different organizations and departments in
order to visualize workflows, execution states, relationships etc. In enterprise
scenarios the aggregated data can be used to make decisions and initiate further
execution steps or processes [17].

• The third layer, the Widget Layer specifies graphical interfaces and interaction
with underlying data mashups or services. The resulting components, called
widgets, can be based on various standards, e.g. W3C Widgets [18], Java Portlets
[19], Google Gadgets [20] etc. Pre-defined packaging formats and well-defined
interfaces to the run-time environment make widgets highly reusable and easily
distributable. Widgets can be produced by different vendors and business partners,
so that complete processes and workflows are implemented within one single
component. To facilitate the reusability of widgets we propose to use a dedicated
widget repository. The discovery of components should be enabled through an
expressive semantic description language.

• The composition of widgets towards the final Web application is performed within
the Workspace Layer. A workspace (or UI/UX-mashup) is a set of inter-connected
widgets with additional services and configurations regarding inter-widget
communication, layout, user interface presentation and user experience. The user
of a mashup works with the workspace and consumes functions provided by the
widgets. Widgets communicate with each other using a dedicated event bus and
access general services implemented by the telco mashup execution platform.
Incoming calls or messaging services are propagated by the platform to the
workspace, so that each widget is notified about context changes or events. Inter-
widget communication is a useful mechanism to transfer data between single
business processes and o coordinate execution of single tasks [21].

The Telco Mashup Execution Platform represents the core component of telco-
enabled mashups. The platform provides access to built-in telco services and supports
the whole lifecycle of a mashup. Based on the presented architecture we derive
requirements and identify main functions, which should be implemented by the
platform in order to operate telco mashups (Fig. 2).

The platform should provide a bridge between the Internet and one or several
operator networks. Telco mashups are executed within the platform, which is actually
distributed on the client side (embedded into the Web browser) and server side.
Server side provides access to embedded telco services and mashup management
facilities. Upon request, new mashups are instantiated based on their configuration
(stored in mashup repository) and user profile settings (security, billing and service
level agreements). The execution of mashups is managed by the life cycle manager
component, which guarantees, that charging and QoS settings, predefined availability
as well as security and federation rules are respected. The communication manager
hosted on the server side of the execution platform provides endpoints for mobile
devices, manages incoming calls and routes them to corresponding mashup instances.

 Integration of Telco Services into Enterprise Mashup Applications 43

As such, the execution platform provides facilities to manage and operate telco-
enabled mashups. Following, we analyze its application and provide guidance to take
all presented aspects of the platform and telco mashups into account.

Fig. 2. Telco mashup execution platform

5 Development of Telco Mashups

The development of telco mashups differs from traditional Web applications in many
aspects. First, mashups in general are based on the latest, easy-to-use Web
technologies like REST, Atom, RSS etc. and serve typically a specific situational
need [3]. Second, the development paradigm envisions that even end users are able to
build their own mashups. Finally, the heterogeneity of mashup components, data
sources and services requires a systematic evolution management and careful mashup
design [22]. Following, we analyze these and telco-specific aspects, which should be
considered while developing and maintaining telco mashups. We separate concerns
and describe tasks to be performed in different phases of mashup lifecycle (Fig. 3).

The lifecycle of a new telco mashup application begins with its Conceptual Design,
e.g. with the definition of essential mashup characteristics like title, description,
category and purpose. Financial and governance rules, quality of service aspects and
usage policies are specified within this stage. The definitions can be made both by
end-users as well as skilled developers. The specified policies should be respected in

44 O. Chudnovskyy et al.

the later design phases as well as during mashup execution. To support end-users in
this process, the mashup development platform should provide discovery and
recommendation facilities. Mashups built by other users can be re-used as a starting
point or as a template for the newly created one.

Fig. 3. Telco mashup lifecycle

Within the Logical Design stage one defines the abstract layout and basis components
of the mashup. Developer (or end-user) assign a layout to the workspace and select
components to be assembled. At this point the mashup is specified on a logical level
only, i.e. using abstractions of components instead of concrete implementations.
Pre-defined layouts as well as composition suggestions should be provided by the
development platform to simplify these steps. The logical description of a mashup
instance is an important artifact, which is used in later phases to suggest implementation
possibilities or to exchange components at run-time, especially in telco-specific scenarios
such as roaming. We suggest using RDF-based description languages and
dedicated knowledge models to enable automatic composition and context adaption
tasks [23].

The subsequent Physical Design phase can be completed either by skilled developer or
automatically derived from the logical description. At this point, the system assigns
concrete implementations of widgets, services and data sources to the logical
representatives that have been composed as workspace. The mashup development
platform should provide a repository with ready-to-use components and templates, which
can be completed by mashup developers. If no component satisfies the goals, a dedicated
widget editor is used to create new data mashups and wrap them using graphical
interface. The look and feel of mashup is customized in compliance to corporate design
and specific guidelines. Though the physical design will usually be done manually in the
early beginning, the mashup development platform should provide automatic completion
facilities as well. They can be used by unskilled developers, for prototyping purposes or
to produce simple short-living mashup applications. The decisions made in the logical
design phase, such as widget type or component requirements are used now to select
concrete implementation and service bindings. For example, a map widget defined in

 Integration of Telco Services into Enterprise Mashup Applications 45

logical design can be represented by either a Google Map or a Bing Map component.
After the physical design phase executable description of mashup is available. Parts of
the physical design like widget combinations or data mashup definitions are analyzed and
stored by recommendation engine, which will suggest them in future if similar mashups
are constructed.

The Execution phase is a step when a mashup instance is running and is used by
one or several actors to perform their tasks. Telco mashups provide plenty of
collaboration functionalities, which don't require the participants to act within one
single network. To achieve this mashup platform implements basic telco services and
gateways, takes care about network mediation, manages billing and QoS aspects of
mashup applications. The application is running according to policies and governance
rules defined in the conceptual phase. For example, the platform should guarantee that
the maximal number of participants is respected or the operation time is not exceeded.
The front-end of the mashup is rendered according to the physical design
specification. Hereby the presentation may differ on desktop and mobile clients.

An important phase of each mashup instance is the Evolution stage. While the
components and APIs used in the mashup evolve, obsolete widgets might be removed
from the workspace or replaced by better ones, and new requirements might be met
with the addition of new widgets. The dedicated repositories and recommendation
engines simplify modification and extension of existing mashup instances and support
their continuous evolution. Service bindings and operation rules can evolve as well,
so that dynamic adaption facilities are needed to deal with the changing context. At
this point, the logical definition of mashup helps to find alternative implementations
of components and to suggest the best fitting ones. Governance rules from the
conceptual phase define if and what components can be exchanged. For example, one
can disable or restrict messaging functions of mashup while operating abroad in
foreign operator networks. Mashup run-time can detect this context change and
switch from Internet-based communication to SMS-based one.

Finally, the Phase Out is the last phase of a mashup instance, where the data produced
during the execution is collected and archived according to the pre-defined rules and
policies. Users cannot access the mashup anymore, but are able to retrieve operation
statistics, log files, protocols or collect their own data etc. before the mashup is finally
terminated. What information is important and how data should be dealt with after
the mashup becomes unavailable is retrieved from the conceptual description of the
mashup.

As we have shown, systematic development of telco-enhanced mashup applications
and integration of telco services into mashup applications requires many additional
considerations (and often dedicated supporting software) during the development
process. The quality and effort needed to develop such kind of applications depend
among others on the facilities provided by the development platform. We consider
reusability as a key success factor for costs- and time-efficient development of mashup
applications. Therefore, components like mashup repository and recommendations are
integral parts of our proposed mashup platform and will gain more attention in future
research and development.

46 O. Chudnovskyy et al.

6 Related Work

Much work has already been done in the field of mashups, both on the consumer
mashups as well as on enterprise-oriented mashups side. The latter ones are especially
related to our work as they enable integration of heterogeneous sources in different
dimensions (data, services and UI/UX components) and take governance,
management and security aspects into account. Following, we present and analyze
some of the recent developments and show their relation to our approach.

IBM Mashup Center [24] is a popular enterprise mashup solution, which targets
enterprise users with different needs and skills. The produced mashups enable
integration of data, services and widgets from various (also legacy) sources. Similar
to our model and architecture, mashups produced by IBM Mashup Center are
assembled on both data and UI levels. Similar to our approach, a repository with
mashup templates is available, which significantly simplifies the development of new
applications. Though IBM Mashup Center provides much support in the mashup
design, the telco-related aspects and invocation of local services like device APIs are
not covered.

Another representative of mashup development platforms is JackBe Presto [25]. Its
goal is to facilitate implementation of management dashboards, enterprise mashups
and business intelligence applications. Same as IBM Mashup Center, the JackBe
Presto platform provides a graphical editor for data mashups and visualizes them
using widget-like objects called Apps. Though JackBe Presto provides a powerful
platform to develop enterprise mashup applications, the integration of telco services
remains challenging. Incoming voice calls and messages should be handled manually.
Collaborative functions and life cycle management is also not considered within this
approach.

In academia, the models and architectures of enterprise mashup applications have
been thoroughly explored, e.g. in [26], [27], or [28]. Similar to our proposal,
the proposed mashup models usually consist of several aggregation layers. The
aggregation is performed both on data and UI - this approach covers many of the
enterprise use cases and meets different needs of the end-users. Though many
approaches exist, none of them addresses the telco aspects of enterprise mashups.

There are some few initiatives in European projects which research on the field of
telco service and Web 2.0 integration. For example, OPUCE [29] focuses on building
an infrastructure to facilitate the development and orchestration of Web services. The
platform supports mashup adaptability and context awareness regarding users,
operator networks and devices. Furthermore, it integrates various telco services like
in- or outgoing calls, messaging services etc. However, billing and QoS management
aspects are not addressed by resulting mashups. OPUCE produces single-user-
applications and not multi-user-enabled ones as in our approach.

SPICE [30] is another European project, which targets particularly telco domain.
The editor produced in the project enables semantic annotation of services to take
non-functional telco-related aspects into account. In- and outgoing calls are supported
through a media gateway (Asterisk PBX [31]) and enable also dial-in clients to
communicate with mashup application. Also charging and management function are

 Integration of Telco Services into Enterprise Mashup Applications 47

addressed through communication with other platform components over FTP or Ro
interface. As with OPUCE, collaboration of several users using different devices is
not addressed within SPICE mashups.

The presented approaches deal well with enterprise mashups when it comes to
integration of sources available (or made available) over the Web. As we have seen
above, integration of telco services is rather challenging and thus requires dedicated
models, architectures and composition approaches.

7 Conclusions and Outlook

In this paper we have presented our 'work in progress' on the field of telco mashups.
We analyzed how business scenarios benefit from the availability of several
communication channels (i.e. Internet and operator network) and demonstrated it
using an example scenario from property management domain. We proposed a
dedicated telco mashup reference architecture and execution platform. To provide
guidance in the development process, we analyzed their lifecycle and gave
recommendations to each operation stage. Requirements made on the development
platform will serve as basis for our future research. Currently, we are working on the
specification of dedicated mashup and workspace description languages, which
should cover all the aspects of presented lifecycle. Furthermore, we are going to
develop first prototypes of execution and development platforms and apply them to
implement the example above.

Acknowledgements: This work was supported by funds from the European
Commission (project Omelette, contract no. 257635).

References

1. Market Share Analysis: Mobile Devices, Worldwide, 4Q10 and 2010 (April 22, 2011),
http://www.gartner.com/DisplayDocument?ref=clientFriendlyUrl
&id=1542114

2. ProgrammableWeb - Mashups, APIs, and the Web as Platform (June 09, 2011),
http://www.programmableweb.com/

3. Yu, J., Benatallah, B., Casati, F., Daniel, F.: Understanding Mashup Development. IEEE
Internet Computing 12, 44–52 (2008)

4. Roy Chowdhury, S., Rodríguez, C., Daniel, F., Casati, F.: Wisdom-Aware Computing: On
the Interactive Recommendation of Composition Knowledge. In: Maximilien, E.M., Rossi,
G., Yuan, S.-T., Ludwig, H., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6568, pp. 144–
155. Springer, Heidelberg (2011)

5. Skype (April 25, 2011), http://www.skype.com/intl/en/home
6. Sipgate (April 25, 2011), http://www.sipgate.de/basic
7. Google: Google Voice (April 25, 2011), https://www.google.com/voice
8. Tropo - Cloud API for Voice, SMS, and Instant Messaging Services (April 25, 2011),

https://www.tropo.com/home.jsp
9. Twilio (April 25, 2011), http://www.twilio.com/

10. Developergarden (April 25, 2011),
http://www.developergarden.com/startseite

48 O. Chudnovskyy et al.

11. Confome Signaling (April 25, 2011),
http://www.comfone.com/index.php/services/signalling

12. Orange API (April 25, 2011), http://www.api.orange.com/
13. Meinecke, J., Gaedke, M.: Modeling Federations of Web Applications with WAM. IEEE

(2005)
14. Heil, A., Gaedke, M., Meinecke, J.: Identifying Security Aspects in Web-Based

Federations. IEEE (2008)
15. Viswanathan, A.: Mashups and the Enterprise Mashup Markup Language (EMML)

(October 18, 2010), http://www.drdobbs.com/article/
printableArticle.jhtml?articleId=224300049&dept_url=/java/

16. Phuoc, D.L., Polleres, A., Tummarello, G., Morbidoni, C.: DERI Pipes: visual tool for
wiring Web data sources (2008)

17. Truong, H.-l., Dustdar, S.: Integrating Data for Business Process Management. IEEE Data
Eng. Bull. 32, 48–53 (2009)

18. Widget Packaging and Configuration (June 09, 2011),
http://www.w3.org/TR/widgets/

19. Sun Microsystems: Introduction to JSR 168—The Java Portlet Specification (June 09,
2011), http://developers.sun.com/portalserver/
reference/techart/jsr168/

20. Gadgets Specification - Gadgets API - Google Code (June 09, 2011),
http://code.google.com/intl/de-
DE/apis/gadgets/docs/spec.html

21. Daniel, F., Soi, S., Tranquillini, S., Casati, F., Heng, C., Yan, L.: From people to services
to UI: distributed orchestration of user interfaces, pp. 310–326 (2010)

22. Cappiello, C., Daniel, F., Matera, M., Pautasso, C.: Information Quality in Mashups. IEEE
Internet Computing 14, 14–22 (2010)

23. Fortier, A., Rossi, G., Gordillo, S.E., Challiol, C.: Dealing with variability in context-
aware mobile software. Journal of Systems and Software 83, 915–936 (2010)

24. IBM: IBM Mashup Center (2011),
http://www-01.ibm.com/software/info/mashup-center/

25. JackBe: Presto (April 24, 2011), http://www.jackbe.com/
26. López, J., Bellas, F., Pan, A., Montoto, P.: A Component-Based Approach for Engineering

Enterprise Mashups. In: Gaedke, M., Grossniklaus, M., Díaz, O. (eds.) ICWE 2009.
LNCS, vol. 5648, pp. 30–44. Springer, Heidelberg (2009)

27. Yu, J., Benatallah, B., Saint-Paul, R., Casati, F., Daniel, F., Matera, M.: A framework for
rapid integration of presentation components. In: Proceedings of the 16th International
Conference on World Wide Web - WWW 2007, p. 923 (2007)

28. Gurram, R., Mo, B., Gueldemeister, R.: A Web Based Mashup Platform for Enterprise 2.0.
In: Hartmann, S., Zhou, X., Kirchberg, M. (eds.) WISE 2008. LNCS, vol. 5176, pp. 144–
151. Springer, Heidelberg (2008)

29. Sienel, J., Martín, A.L., Zorita, C.B., Martínez, B.C.: OPUCE: A Telco-Driven Service
Mash-Up Approach. Bell Labs Technical Journal 14, 203–218 (2009)

30. Droegehorn, O., Konig, I., Le-Jeune, G., Cupillard, J., Belaunde, M., Kovacs, E.:
Professional and end-user-driven service creation in the SPICE platform. In: 2008
International Symposium on a World of Wireless, Mobile and Multimedia Networks, pp.
1–8. IEEE (2008)

31. Asterisk- The Open Source Telephony Projects | Asterisk (April 24, 2011),
http://www.asterisk.org/

A. Harth and N. Koch (Eds.): ICWE 2011 Workshops, LNCS 7059, pp. 49–61, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Orchestrated User Interface Mashups
Using W3C Widgets

Scott Wilson1, Florian Daniel2, Uwe Jugel3, and Stefano Soi2

1 University of Bolton, United Kingdom
scott.bradley.wilson@gmail.com

2 University of Trento, Povo (TN), Italy
{daniel,soi}@disi.unitn.it

3 SAP AG, SAP Research Dresden, Germany
uwe.jugel@sap.com

Abstract. One of the key innovations introduced by web mashups into the
integration landscape (basically focusing on data and application integration) is
integration at the UI layer. Yet, despite several years of mashup research, no
commonly agreed on component technology for UIs has emerged so far. We be-
lieve W3C’s widgets are a good starting point for componentizing UIs and a
good candidate for reaching such an agreement. Recognizing, however, their
shortcomings in terms of inter-widget communication – a crucial ingredient in
the development of interactive mashups – in this paper we (i) first discuss the
nature of UI mashups and then (ii) propose an extension of the widget model
that aims at supporting a variety of inter-widget communication patterns.

Keywords: UI Mashups, W3C widgets, Inter-widget communication.

1 Introduction

If we analyze the state of the art in mashups today, we recognize that basically two
different approaches have reached the necessary critical mass to survive: data ma-
shups and UI (user interface) mashups. Data mashups particularly focus on the inte-
gration and processing of data sources from the Web, e.g., in the form of RSS or
Atom feeds, XML files, or other simple data formats; mashup platforms like Yahoo!
Pipes (http://pipes.yahoo.com/pipes/), JackBe Presto (http://www.jackbe.com/), or
IBM’s Damia [1] are examples of online tools that aim at facilitating data mashup
development. UI mashups, instead, rather focus on the integration of pieces of user
interfaces sourced from the Web, e.g., in the form of Ajax APIs or HTML markup
scrapped from other web sites; Intel Mash Maker [2] or mashArt [3] both support the
integration of UI components, but most of the times these mashups are still coded by
hand (e.g., essentially all of the mashups on programmableweb.com are of this type).

The mashup platforms focusing on data mashups typically come with very similar
features in terms of supported data sources, operators, filters, and the like. RSS,
Atom, or CSV are well-known and commonly accepted data formats, and there are
not many different ways to process them. Unfortunately, this is not what happens in

50 S. Wilson et al.

the context of UI mashups. In fact, there are still many different ways to look at the
problem and, hence, each tool or programmer uses its own way of componentizing
UIs (both in JavaScript inside the browser and in other languages in the web server)
and of integrating them into the overall layout of the mashup. As a consequence, UI
components are not compatible among mashup tools, and we are far from common
concepts and approaches when it comes to UI mashups.

Given for granted that UI components are able to encapsulate and deliver pieces of
UIs that can be embedded into a mashup and operated by its users, the key ingredient
for UI componentization we identify is the component’s ability to interoperate with
its surroundings, i.e., with other UI components and the hosting mashup logic. Inter-
operability is needed to enable components to synchronize upon state changes, e.g., in
response to user interactions or internal logics. While technically this is not a huge
challenge, conceptually it is not trivial to understand which communication paradigm
to adopt, which distribution logic to support, or which data format to choose, max-
imizing at the same time the reusability of UI components across different mashup
platforms, also fostering interoperability among mashups themselves.

In this paper, we approach these challenges by leveraging on a UI componentiza-
tion technology that we believe will have a major impact in the near future, i.e.,
W3C’s Widgets [4]. This choice is motivated, firstly, by the comprehensiveness of
W3C’s Widgets specifications family which tries to cover models and functionalities
proper of the most used widget technologies existing so far, e.g., Google gadgets,
Yahoo widgets and, in particular, Open Social gadgets. Moreover, the W3C consor-
tium is a leading actor in web standards creation and its proposal already attracted
important vendors that are implementing W3C’s Widget compliant tools (e.g.,
Apache Wookie and Rave).

Specifically, in this paper, we provide the following contributions:

− We discuss three types of mashup logics for widgets and identify a set of re-
quirements the widgets should satisfy, in order for them to be mashed up.

− We propose an extension of the W3C widget model expressed in terms of an
API extension and set of expected behaviours.

− We report on our experience with the implementation of a UI mashup follow-
ing one of the described mashup logics and the extended widget model.

Before going into the details of our proposal, in the next section we briefly summarize
the logic of and technologies used in the implementation of W3C widgets. Then, in
Section 3, we investigate the basic mashup types for widgets. In Section 4 we specifi-
cally look at one type of mashups and derive a set of requirements for widgets. In
Section 5 we propose an according extension of the W3C widget model, also provid-
ing concrete implementation examples. Finally, in Section 6 we discuss related works,
in order to conclude the paper in Section 7.

2 W3C Widgets

The World Wide Web Consortium (W3C) provides a set of specifications collectively
known as the Widget family of specifications. A Widget is defined by W3C

 Orchestrated User Interface Mashups Using W3C Widgets 51

(http://dev.w3.org/2006/waf/widgets-land/) as “an end-user’s conceptualization of an
interactive single purpose application for displaying and/or updating local data or data
on the Web, packaged in a way to allow a single download and installation on a user’s
machine or mobile device.”

Widgets are made available to users by a widget runtime (also known as a widget
engine). A widget runtime is an application that can import a widget that has been
packaged according to the W3C Widgets: Packaging and Configuration specification
[4]; the runtime may also make available at runtime any script objects required by the
widget, for example the W3C Widget Interface [5] (the API a widget exposes to pro-
vide access to the widget’s metadata and to persistently store data) or W3C Device
APIs [6] (client-side APIs that enable the development of widgets that interact with
device services like calendar, contacts, or camera). Widget runtimes are available on
mobile devices, as desktop applications, or for embedding widgets in websites.

The Packaging and Configuration specification defines the metadata terms used to
describe the widget (such as name, author and description) and to enable the configu-
ration of the widget runtime. Configuration information includes the <feature> ele-
ment, which can be used by the widget author to request that the widget runtime
makes additional features available when the widget is running; examples of features
include JavaScript APIs, libraries, and video codecs.

Within the W3C Widget family of specifications, widgets are largely conceptua-
lized as operating independently, communicating with the widget runtime using the
Widget Interface and with the client environment using standard browser features
such as the Document Object Model and related JavaScript APIs.

While a widget runtime may render multiple widgets to the user simultaneously –
for example, on the Home screen of a mobile device, or as part of the layout of a por-
tal or social networking site – there are no mechanisms specified by the W3C Widget
family of specifications by which the widgets communicate with each other as mem-
bers of a mashup.

3 User Interface Mashups

Given a set of widgets that comply with the W3C Widget family of specifications, the
question is therefore how a mashup of widgets could look like. Considering the state
of the art in which widgets do not support inter-widget communications, we define a
basic UI mashup, as a tuple , , with:

• , being the layout of the mashup, of which is the layout template
(typically the template consists of an HTML page, a set of JavaScript and im-
age files, and one or more CSS style sheets) and is the set of view-
ports inside that can be used for the rendering of the widgets (e.g., iframes or
div elements);

• being the set of widgets in the mashup, where each widget is of type , , , , , with being a set of
configuration preferences (typically, name-value pairs); and

• | being the set of widget-viewport associations
needed for placing and rendering the widgets inside the mashup.

52 S. Wilson et al.

This model focuses on the layout only and is clearly not able to represent UI mashups
like most of the ones that can be found on programmableweb.com. In fact, UI ma-
shups typically are able to synchronize their widgets or UI elements upon user inte-
ractions, a feature that is missing in mashups of type above.

Assuming now that widgets are able to communicate, in the following subsections
we define three UI mashup models that are able to deal with inter-widget communica-
tions and to support widget synchronization:

• Orchestrated UI mashups, where the interactions between the widgets in the
mashup are defined using a central control logic;

• Choreographed UI mashups, where the interactions between the widgets in
the mashup are not defined, but instead emerge in a distributed fashion from
the internal capabilities of the widgets;

• Hybrid UI mashups, where the emerging behaviour of a choreographed UI
mashup is modified by inhibiting individual behaviours, practically con-
straining the ad-hoc nature of choreographed UI mashups.

We define each of these mashup types in the following, while in the rest of this paper
we will specifically focus on orchestrated UI mashups, which can be considered the
basis also for the development of the other two types of UI mashups.

3.1 Orchestrated UI Mashups

We define an orchestrated UI mashup as a tuple , , , with:

• being the layout as defined before;
• | , , , , , , , being

the set of widgets with | , being the set of events the
widget can generate, | , being the set of opera-
tions supported by the widget, and and , respectively, being the sets of
output and input parameters;

• | being the set of widget-viewport associations; and
• | , , being the set of direct inter-

widget communications, i.e., message flows between two widgets connecting
an event of the source widget with an operation of the target widget.

This definition of UI mashup implies that the mashup (and, therefore, the mashup
developer) knows which events are to be mapped to which operations and that it is
able to propagate the respective data items on behalf of the user of the mashup. This is
common practice, e.g., in web service composition languages like BPEL, and does not
require the widgets to know about each other.

The strength of this model is that mashups behave as they are expected to, that is,
as specified in the mashup specification. A drawback is that this central mashup logic
must be specified in advance, i.e., before runtime, which require a good knowledge of
the used widgets by the mashup developer.

Note that in the above definition and in the following we intentionally do not intro-
duce complex data mappings (e.g., requiring data transformation logics) or service

 Orchestrated User Interface Mashups Using W3C Widgets 53

components (e.g., requiring to follow web servie protocols), in order to keep the mod-
el simple and focused. We however assume each inter-widget communication also
contains the necessary mapping of event outputs to operation inputs.

We believe UI mashups are good candidates for end user development and that da-
ta transformations or web services are not intuitive enough to them in order to profit-
ably use them inside a mashup. Possible complex data transformations or service
composition logics can always be developed by more skilled developers and plugged
in in the form of dedicated widgets.

3.2 Choreographed UI Mashups

We define a choreographed UI mashup as a tuple , , , with:

• being the layout of the mashup;
• | , being the reference topic ontology for events and

operations, i.e., the set of concepts and associated parameters the widgets in
the mashup can consume as input or produce as output;

• | , , , , , , , being
the set of widgets with | , being the set of
events the widget can generate, | , being
the set of operations supported by the widget, and , , re-
spectively, being the set of topics an event sends data to and an operation
reacts to; and

• | being the of widget-viewport associations.

In contrast to orchestrated UI mashups, choreographed UI mashups do not have an
explicitly defined set of mappings of operations and events. Instead, each widget is
capable of sending and receiving communications and of acting on them independent-
ly. Interoperability is achieved in that each widget complies with the reference topic
ontology , which provides a reference terminology and semantics each widget is
able to understand. The behaviour of a choreographed UI mashup, therefore, is not
modelled centrally by the mashup developer and rather emerges in a distributed way
by placing one widget after the other into the mashup. That is, only placing a widget
into the mashup allows the developer to understand how it behaves in the mashups
and which features it supports.

The strength of this approach is that there is no need for explicit design of interac-
tions: a developer simply drops widgets into his mashup and they autonomously inte-
ract. One weakness is that the reference topic ontology must be “standardized” (or, at
least, understood by all widgets), in order for any meaningful communication to oc-
cur. This may reduce the overall richness of communication possible to a small num-
ber of fairly primitive topics – for example, location, dates and unstructured text.
Another weakness is that with no predefined “plan” of the mashup, there could be the
risk of the emergent behaviour of the widgets being pathological – for example, self-
reinforcing loops or hunting. This could be a serious problem where the mashup com-
ponents have real-world consequences, such as SMS-sending widgets or similar.

54 S. Wilson et al.

3.3 Hybrid UI Mashups

We define a hybrid UI mashup as a tuple ℎ , , , , with:

• being the layout of the mashup;
• | , being the reference topic ontology;
• | , , , , , , , being

the set of widgets with | , being the set of
events the widget can generate and | , be-
ing the set of operations supported by the widget;

• | being the set of widget-viewport associations; and
• | , being a set of constraints preventing opera-

tions from reacting to the publication of an event referring to a given topic.

In hybrid UI mashups, integration is achieved in a bottom-up fashion by the widgets
themselves, while there is still the possibility for the mashup developer to control the
interaction logic of the overall mashup in a top-down fashion by inhibiting interac-
tions and, hence, application features that are not necessary for the implementation of
his mashup idea.

The strength of this approach is that it brings together the benefits of both orches-
trated and choreographed UI mashups, that is, simplicity of development and control
of the behaviour. On the downside, the overall mashup logic is buried inside two op-
posite composition logics: the implicit capabilities of the widgets and the explicit
constraints by the developer. This may be perceived as non-intuitive by less skilled
developers or end users.

4 A W3C Widget Extension for Orchestrated UI Mashups

As a first step toward supporting the above UI mashup types, in this paper we aim at
enabling the development of orchestrated UI mashups, a task that is already not poss-
ible with the W3C widget model as is. From the definition of mo above we can, in
fact, derive a set of extension requirements for W3C widgets, without which the im-
plementation of interactive UI mashups is not possible:

1. Widgets must be able to communicate internal state changes via events to the
outside world, i.e., the mashup or other widgets in the mashup. That is, while
the users interacts with the widget, the widget must implement an internal
logic that tells the widget when it should raise an event, in order to allow
other widgets in a same mashup to synchronize.

2. Widgets must be able to accept inputs via operations, in order to allow the
outside world to enact widget-internal state changes. The enacting of an op-
eration is the natural counterpart of an event being raised. Typically, the op-
eration implements the necessary logic to synchronize the state of the widget
(e.g., the content rendered in the widget’s viewport) with the event.

3. The data formats for the data exchanged among widgets should be kept as
simple as possible (we propose simple name-value pairs), in order to ease

 Orchestrated User Interface Mashups Using W3C Widgets 55

inter-widget communication. Considering that synchronizing widgets based
on user interactions or internal state changes typically will require only the
transfer of one or two parameters [3], e.g., an object identifier upon a selec-
tion operated by the user, this assumption seems reasonable. Remember that
here we do not focus on web service orchestration or data processing.

We approach each of these requirements in the following sections and show how so
extended widgets can be mashed up into UI mashups.

5 A Prototype Implementation

In order to better explain our ideas, in the following we adopt a by-example approach
and contextualize them in our prototype implementation, finally also showing how the
extended widget model can be successfully used for the implementation of orches-
trated UI mashups.

5.1 Widget Configuration

The W3C Widgets: Packaging and Configuration specification supports the run-time
loading of extensions using the <feature> element of the widget’s config.xml file.
This requires that the widget runtime environment can resolve the URI of the feature
to an installed capability. For example, given the feature URI http://example.org/rpc a
runtime may install an implementation specific to that runtime environment, or a ge-
neric one if the functionality is relatively simple. If the URI is not recognized, the
runtime will reject the installation of the widget if the required attribute is set to
“true”, but will proceed (optionally warning the user) if it is set to “false”.

However, it is also possible for a W3C Widget to load capabilities dynamically
while running, using <script src> elements in the HTML start file or using lazy load-
ing techniques to dynamically insert new <script> elements based on the current con-
text. Therefore for an orchestration interface we have to make a decision as to which
approach to take in loading the required capabilities. Each has its advantages and
disadvantages.

An advantage of using <feature> loading is that it gives the runtime environment
the option to use server-side capabilities or augmented functionality. For example, to
load an API in the widget that then talks to a high-performance server-side messaging
service. The disadvantage is that if the runtime does not support the feature, then the
widget is either not able to be installed, or is installed without necessary functionality.
The advantage of using HTML-based script loading is that it should work in any wid-
get runtime environment; however it is not able to take advantage of any special ca-
pabilities of the runtime. A compromise solution is to use the <feature> declaration
but to set the required attribute to “false”, and provide a dynamic <script> tag loader
as a fallback. This enables the widget to take advantage of native runtime implemen-
tations, but has a fallback option if none is provided. This can be implemented using a
fairly simple script in the widget, as illustrated in Figure 1.

56 S. Wilson et al.

If (widget.intercom && typeof(widget.intercom)==function){

 // the runtime has provided the intercom API

} else {

 // load the fallback library – in this case PMRPC

 widget.intercom = loader.load(“pmrpc.js”);

}

Fig. 1. Widget-internal JavaScript logic to decide whether to load a fallback library or not

5.2 Widget Interface

We enable widgets to participate in orchestrated UI mashups through the specification
of a so-called Intercom interface as an extension of the W3C Widget Interface. An
implementation of the Intercom object must have the following three capabilities:

• It must be able to execute operations on the widget;
• It must be able to raise events; and
• It must be able to expose metadata about the operations and events supported

by the widget.

The implementation of the Intercom interface may be made available at runtime
through the use of a <feature> element in the widget configuration document or as a
direct extension to the W3C Widget Interface specification implemented by the wid-
get runtime.

The Intercom does not specify any orchestration configuration, but the capabilities
of the orchestration participants and an interface to access the inter-widget communi-
cation features of the Intercom implementation. Therefore, we propose to introduce an
attribute intercom to the W3C Widget Interface (see Figure 2).

[NoInterfaceObject]

interface Widget {

 readonly attribute DOMString author;

 readonly attribute DOMString authorEmail;

 readonly attribute DOMString authorHref;

 readonly attribute DOMString description;

 readonly attribute DOMString id;

 readonly attribute DOMString name;

 readonly attribute DOMString shortName;

 readonly attribute Storage preferences;

 readonly attribute DOMString version;

 readonly attribute unsigned long height;

 readonly attribute unsigned long width;

 readonly attribute Intercom intercom;

};

Fig. 2. Widget interface extended with intercom attribute

 Orchestrated User Interface Mashups Using W3C Widgets 57

The Intercom interface itself is defined as described in Figure 3: Inspecting the me-
tadata attribute of the Intercom interface allows the widget runtime environment to
obtain the list of events and operations implemented by the widget, along with their
respective output/input parameters. The two functions raise and call can then be
used to generate an event and to enact an operation, respectively.

interface Intercom {

 void raise(in DOMString operationName, in optional DOMString param1, ...);

 void call(in DOMString operationName, in optional DOMString param1, ...);

 readonly attribute IntercomMetaData metadata;

}

interface IntercomMetaData {

 readonly attribute sequence<IntercomSignature> events;

 readonly attribute sequence<IntercomSignature> operations;

}

interface IntercomSignature {

 readonly attribute DOMString name;

 readonly attribute sequence<IntercomArgument> parameters;

}

interface IntercomArgument {

 readonly attribute DOMString name;

}

Fig. 3. A possible Intercom interface, including access functions and metadata structures

For instance, Figure 4 exemplifies how a widget can use its Intercom to raise the
events “eventName”, and how an external RPC module (e.g., the one used by the
specific Intercom implementation) can use the widgets’ intercoms to call operations.

//called from widget

this.intercom.raise(“eventName”, arg1, arg2);

//called from communication module

widget.intercom.call(“operationName”, arg1, arg2);

Fig. 4. Using the intercom object

With the help of the Intercom interface, an automatic composition component or a
composition tool can use the metadata attribute of several widgets to learn about the
composition capabilities that the widget supports.

To keep the Intercom interface as simple as possible, we do not support operation
return types or complex parameter types.

58 S. Wilson et al.

5.3 Widget Implementation and Behaviour

In Figure 5 we provide a possible implementation of the Intercom interface, which
makes use of the external communication infrastructure (SOMERPC) declared as re-
quired <feature> in the widget configuration.

var SOMERPC = {/* some rpc module required by this Intercom implementation */};

var Intercom = function(widget) {
 var w = widget,
 rpcmodule = SOMERPC,
 operations = {},

 // reads the meta data from a config file, xml, etc.
 metadata = rpcmodule.getMetaData(w.name),
 raise = function(eventName){ //init public raiseEvent method
 var args = Array.prototype.splice.apply(arguments, 1,
 arguments.length-1);
 rpcmodule.raiseEvent(w, eventName, args);
 },
 call = function(opName){
 var args = Array.prototype.splice.apply(arguments, 1,
 arguments.length-1);
 //call widget operation if it is in the public operations
 if(operations[opName]) {
 operations[opName].apply(w, args);
 }
 },
 i = 0;

 //setup the private operations list for faster access when 'call' is executed
 for(i = 0; i < metadata.operations.length; i += 1) {
 operations[metadata.operation[i].name] = w[metadata.operation[i]];
 }

 this.raise = raise;
 this.call = call;
 this.metadata = metadata;

 //register this intercom at the rpc module
 rpcmodule.register(this);
};

Fig. 5. A basic implementation of the Intercom interface

The Intercom of a widget should be initialized in the widget constructor to prevent
modifications from the outside:

// called from the widget contructor

this.intercom = new Intercom(this);

After the intercom is set up, a widget can start raising events via its own Intercom,
and all modules that have access to the widget or the widget’s Intercom can call oper-
ations on the widget.

5.4 UI Mashup Implementation

Using the formalization introduced in Section 3, we are able to model a variety of
mashups involving multiple widgets. The specification does not include any addition-

 Orchestrated User Interface Mashups Using W3C Widgets 59

al runtime aspects, such as message delivery time, message buffering, or similar tech-
nical aspects. Thereby, it is flexible enough to also accomodate mashups with more
complex characteristics, such as mashups involving multiple windows or multiple
origins, and it is agnostic as to whether communication is purely within the browser
(e.g., using HTML 5 PostMessage) or also involving the server side.

Implementing a UI mashups can be achieved relatively simply through the use of
publish-subscribe services propagating events from one widget to others. In orches-
trated UI mashups of type , , , , it is the inter-widget communication
logic that subscribes widgets, i.e., their operations, to events. In choreographed UI
mashups of type , , , , each widget publishes its events to the topics in

 and subscribes to the topics it understands. In hybrid UI mashups
ℎ , , , , , the bottom-up subscriptions by the widgets can be fine-tuned

via the constraints . All this can implemented using a range of existing mature soft-
ware technologies, for example, client-side using OpenAjax Hub1 or server-side using
solutions such as Faye2 or ActiveMQ3.

6 Related Work

In our former work [8], we developed an approach to the componentization and inter-
communication of UI components. The approach is different from the one proposed in
this paper, in that it aims to wrap full-fledged web applications developed with tradi-
tional, server-side web technologies. The wrapping logic requires the presence of
simple event annotations inside the application’s HTML markup in order to intercept
events and a descriptor for the enacting of operations on the wrapped web app. Wid-
gets, instead, are pure client-side apps.

In the context of widgets, Sire et al. [7] proposed an idea that is similar to what we
propose in this paper, also advocating the use of events and event listeners (the equiv-
alent of our operations). The widget decides whether an event is distributed in a
unicast (one receiver), multicast (multiple receivers), or broadcast (all possible re-
ceivers) fashion. This design choice, however, leads to tightly coupled widgets, in that
a widget must know in advance with which other and how many widgets it will com-
municate, a limitation we do not have in our proposal. In fact, in our case it is the
mashup logic (which, for choreographed UI mashups, may be missing) that manages
the inter-widget communication, and widgets are unaware of their neighbours.

The Java Portlet Specification 2.0 [9] proposes inter-widget communication for
web portals. Portlets may communicate via events, but interactions occur on the serv-
er-side, a strong limitation in a UI-intensive Web 2.0 context. So far, the adoption of
this technique is relatively low, also because its limitation to the Java world.

Communicating across technical boundaries, as proposed in this paper, is required
in many networked computing domains. Especially for web browsers, the communi-

1 http://www.openajax.org/whitepapers/Introducing%20OpenAjax%20Hub%202.0%
 20and%20Secure%20Mashups.php
2 http://faye.jcoglan.com/
3 http://activemq.apache.org/

60 S. Wilson et al.

cation across domains and across browser windows (including iframes) is an impor-
tant issue. Therefore, the HTML 5 standard defines a messaging API [10], which is,
for example, used by the “pmrpc” project [11]. This project provides a Javascript
module that adds a pmrpc object to a running website window object. All scripts run-
ning inside this window may access pmrpc to register own operations, or make calls
to other windows/frames [12].

Our investigation of these and similar RPC approaches showed that different
projects use different interface syntax and mainly focus on cross-window communica-
tion. In comparison to that, our proposed interface extension does not specify any
cross-domain/window aspects. A single widget, in our case, is similar to a window in
these related approaches, but there can be many widgets in many windows that consti-
tute a mashup. All widgets will use their intercom transparently. Cross-domain issues
must be solved internally by the Intercom implementation, which may of course use,
e.g., pmrpc internally for this aspect.

7 Conclusion and Future Work

In this paper, we addressed a relevant issue in UI-based mashup development, i.e., the
intercommunication of W3C widgets. Mashups are typically heavily UI-based, but so
far no standard for how to componentize UIs and how to get them into communica-
tion has emerged. We believe W3C widgets have the potential to represent this
agreement and that they will gain importance in the near future in both desktop and
mobile computing environments.

The aim of our research in this context is to come up with an inter-widget commu-
nication interface and respective widget behaviours, which – thanks to our involve-
ment in the standardization of the widget technology – we would like to propose to
the W3C for standardization. This is an effort we carry on in the context of the Euro-
pean project Omelette (http://www.ict-omelette.eu).

In order to obtain a first feedback from the community regarding the proposed
communication interface, in this paper we focused on inter-widget communication at
the level of events and operations. In the future, we also aim to identify and propose a
standard format for the exchange of data among widgets, e.g., based on the OData
protocol or similar initiatives.

Acknowledgements. This work was supported by funds from the European Commis-
sion (project OMELETTE, contract no. 257635).

References

1. Altinel, M., Brown, P., Cline, S., Kartha, R., Louie, E., Markl, V., Mau, L., Ng, Y.-H.,
Simmen, D., Singh, A.: Damia: a data mashup fabric for intranet applications. In: VLDB
2007, VLDB Endowment, pp. 1370–1373 (September 2007)

2. Ennals, R., Brewer, E., Garofalakis, M., Shadle, M., Gandhi, P.: Intel Mash Maker: join
the web. SIGMOD Rec. 36(4), 27–33 (2007)

 Orchestrated User Interface Mashups Using W3C Widgets 61

3. Daniel, F., Casati, F., Benatallah, B., Shan, M.-C.: Hosted Universal Composition: Mod-
els, Languages and Infrastructure in mashArt. In: Laender, A.H.F., Castano, S., Dayal, U.,
Casati, F., de Oliveira, J.P.M. (eds.) ER 2009. LNCS, vol. 5829, pp. 428–443. Springer,
Heidelberg (2009)

4. W3C. Widget Packaging and Configuration. W3C Working Draft (March 2011),
http://www.w3.org/TR/widgets/

5. W3C. The Widget Interface. W3C Working Draft (September 2010),
http://www.w3.org/TR/widgets-apis/

6. W3C. Device APIs and Policy Working Group Charter,
http://www.w3.org/2009/05/DeviceAPICharter

7. Sire, S., Paquier, M., Vagner, A., Bogaerts, J.: A Messaging API for Inter-Widgets Com-
munication. In: WWW 2009, pp. 1115–1116. ACM (April 2009)

8. Daniel, F., Matera, M.: Turning Web Applications into Mashup Components: Issues,
Models, and Solutions. In: Gaedke, M., Grossniklaus, M., Díaz, O. (eds.) ICWE 2009.
LNCS, vol. 5648, pp. 45–60. Springer, Heidelberg (2009)

9. Hepper, S.: Java(TM) Portlet Specification Version 2.0. Proposed Final Draft, Rev. 29,
http://jcp.org/aboutJava/communityprocess/
pfd/jsr286/index.html

10. WHATWG. HTML Living Standard, Communication. WHATWG specification (April
2011),
http://www.whatwg.org/specs/web-apps/current-
work/multipage/comms.html

11. Kovic, I., Zuzak, I.: Pmrpc, HTML5 inter-window and web workers RPC and pubsub
communication library (April 2011), http://code.google.com/p/pmrpc/

12. Kovic, I., Zuzak, I.: List of system that enable inter-window or web worker communica-
tion (April 2011), http://code.google.com/p/pmrpc/wiki/IWCProjects

A. Harth and N. Koch (Eds.): ICWE 2011 Workshops, LNCS 7059, pp. 62–73, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Cross-Domain Embedding for Vaadin Applications

Janne Lautamäki and Tommi Mikkonen

Department of Software Systems, Tampere University of Technology,
Korkeakoulunkatu 1, FI-33720 Tampere, Finland

{janne.lautamaki,tommi.mikkonen}@tut.fi

Abstract. Although the design goals of the browser were originally not at
running applications or at displaying a number of small widgets on a single web
page, today many web pages considerably benefit from being able to host small
embedded applications as components. While the web is full such applications,
they cannot be easily reused because of the same origin policy restrictions that
were introduced to protect web content from potentially malicious use. In this
paper, we describe a generic design for cross domain embedding of web
applications in a fashion that enables loading of applications from different
domains as well as communication between the client and server. As the proof-
of-concept implementation environment, we use web development framework
Vaadin, a Google Web Toolkit based system that uses Java for application
development.

Keywords: Vaadin, JSONP, cross-domain applications.

1 Introduction

Web applications – systems that resemble desktop applications in their behavior but
are run inside the browser – are becoming increasingly common. The current trend is
that web pages have dynamic components side by side with the traditional web
content, such as static text and images. These dynamic components can be small
widgets that for instance display current weather information or stock exchange data,
or even full-fledged web applications that offer a service related to the theme of the
web page where they are located [1].

Creating dynamic web pages is much more complex than building plain old web
pages. However, since numerous applications are readily available, it would be
attractive to simply reuse applications that already exist instead of building them from
scratch for a particular application. This would be a step towards ‘mashware’
envisioned in [2], where the idea of composing complex applications is out of
components readily available in different web sites. Furthermore, there are real-life
examples of this happening. For instance, it has been possible to embed Google Maps
(http://maps.google.com/) functionality as a part of any web site for some years by
now. Similarly, the popularity of embedded Google Maps components verifies our
assumption that application embedding is a valued feature.

 Cross-Domain Embedding for Vaadin Applications 63

Unfortunately, reusing web applications that already exist in some web site is not
straightforward, even if the applications could be downloaded in an uncomplicated
fashion. The same origin policy inside the browser, defined to protect web pages from
malicious code, prevents a document or script loaded from one web domain from
getting or setting the properties of a document from another domain [3]. Furthermore,
creating web pages that host such dynamic applications is much more complex than
building plain old web pages to begin with, because the page must offer hosting
services to the application. Consequently, implementing a service that readily
provides small applications in web pages requires considerably more attention than
simple reference to the service in the embedding web page.

At present, there are two obvious ways to perform application embedding. A web
application can be embedded inside a <div> or an <iframe> element. Both of the
approaches have been associated with consequences that deplete their potential, and
hence they are not too widely deployed solutions. These properties will be discussed
in more detail later on.

In this paper, we describe how to embed cross-domain web applications in a web
page. While the design itself is generic and technology-independent, we demonstrate
the approach with a server side web development framework called Vaadin [4]. The
implementation combines strengths of <div> and <iframe> based approaches, but is
not plagued by their main weaknesses. Furthermore, the implementation is kept as
simple as possible for the developer who wishes to embed an application in a web
page, to the extent that only a single line of HTML is needed for taking an application
to use.

The rest of the paper is structured as follows. In Section 2, we give an overview to
the Vaadin Framework and its particularities that are important for our
implementation. In Section 3, we explain the details of the embedding we have
enabled in detail, and in Section 4, we discuss some sample applications. In Section 5,
we provide some directions for future work, and in Section 6 we draw some final
conclusions.

2 The Vaadin Framework

The Vaadin Framework extensively relies on the facilities of Google Web Toolkit,
GWT (http://code.google.com/webtoolkit/) [5]. GWT is an open source development
system that allows the developer to write Ajax-based (Asynchronous JavaScript and
XML) web applications using Java that can then be compiled to highly optimized
JavaScript, which can be run in all browsers. In the Vaadin Framework, GWT is used
for compiling web browser client-side engine and for Ajax-based communication – in
essence asynchronous XMLHttpRequest calls – between a client and the server
(Figure 1).

Consequently, from the developer perspective individual Vaadin applications can
be implemented like Java Standard Edition desktop applications. The only difference
to common Java applications is that the developer has to use the specific set of Vaadin
UI components. For customized look and feel, the developer can use Cascading Style
Sheet (CSS) files or directly modify the properties of the components in Java.

64 J. Lautamäki and T. Mikkonen

Fig. 1. General architecture of Vaadin [4]

In the Book of Vaadin [4], the main introductory paper documentation regarding
the Vaadin Framework, two different approaches for embedding a Vaadin application
as a part of a static web page are described – the Vaadin application can be embedded
inside a <div> or <iframe> element. For the <div> approach, the downside is
associated with the same origin policy, which makes it difficult to embed applications
from other domains as a part of a website. Applications running on the same domain
can be embedded, but this means that a copy of the embedded application must be
available in the same domain. With the <iframe> approach, the same origin policy
related problems can be overlooked, and applications can be added from any domain
inside an <iframe>. However, upon enabling the download of applications, the
<iframe> also traps the application inside it. Consequently, if an application running
inside an <iframe> opens a dialog, the dialog stays inside original borders of the
<iframe>. In contrast, with a <div> the application would appear to be a part of the
web page as the new dialog could be opened anywhere on the web page.

As an example, Figure 2 shows the same Vaadin application embedded in an
<iframe> and in a <div>. In <iframe> based embedding the “My Window” dialog is
trapped inside the <iframe>, whereas with <div> approach the dialog can move freely
around the page. By examining the <iframe> solution, it is obvious that left side of
the “My Window” dialog has been cut away by the <iframe>.

Furthermore, another difficult with <iframe> approach is that communication
between the page and the application inside the <iframe> is limited to using URL
fragment IDs or hacks of different kind as with <div> approach the embedded
application can be manipulated using the document object model (DOM) tree.

When embedding a Vaadin application in a web page, the situation gets even more
complex, and being able to access an HTML file from another domain is just the
beginning. We must also support communication between the client running inside
the browser and the web site that runs the server part of the application. This is
commonly implemented using the XMLHttpRequest mechanism, an integral part of
Ajax, to enable data transmissions, which, even if we could download the client part
of the application, would be blocked due to the same origin policy based.

 Cross-Domain Embedding for Vaadin Applications 65

Fig. 2. Application in <iframe> (left) and in <div> (right)

However, there are some notable exceptions to the same origin policy. Images,
scripts and style sheets downloaded from another domain are not subjected to the
same origin policy. Consequently these formats can be used for circumventing the
restrictions related to the policy. Next, we explain how this can be implemented for
Vaadin applications.

3 Embedding Vaadin Applications

The traditional way to implement a web application that comprises a Vaadin component
from another web site would be to use a proxy to communicate with the component.
However, setting up the proxy is in some cases impossible and in any case the
introduction of the proxy is an unnecessary complicating step – the setup procedure of
such proxy is much more difficult than simply editing HTML source code. Therefore, we
aim at a more developer-friendly solution, described in the following.

In a nutshell, to make Vaadin application embedding work on an arbitrary web page,
two problems must be solved: (1) how to download the client-side part of the application,
and (2) how to enable communication between the client-side engine and the server. In
the following, we discuss two problems separately and explain our solutions.

3.1 Downloading the Client-Side Engine

Vaadin application consists of the server-side engine implemented with Java and
GWT based JavaScript client-side engine. The file structure of the Vaadin client-side
engine is presented in Figure 3. During the startup, the Vaadin client-side engine is

66 J. Lautamäki and T. Mikkonen

Fig. 3. Original (left) and modified (right) Structure of Vaadin WebContent

downloaded. Starting up the client-side engine is made in four phases listed in Table
1. Images and CSS files that are also needed for loading the client-side engine are not
subjected to the same origin restriction, and therefore they are omitted from the table.
At the first, browser requests an index.html file from the server and the file is
returned. In the second phase, the <script> tag inside file index.html causes the
download of file vaadinWidgetset.nocache.js. In the third phase, the nocache.js file
recognizes the browser version and requests for the right client-side engine version.
The server returns page hashNumber.cache.html, which contains the client-side
engine. In the fourth phase, the system is initiated and user interface description is
downloaded from the server.

Assuming that this approach is used for loading an embedded application to
foreign web pages, the same origin policy prohibits us from loading HTML pages
from other domains. Consequently phases 1 and 3 given in Table 1 will not succeed.

A brief analysis reveals that downloading index.html is not necessary when
embedding the application. Instead, we could start by requesting the
vaadinWidgetset.nocache.js script. However, index.html contains a lot of additional
information, including the locations of associated CSS files, and overlooking this part
would cause numerous problems for the developer. As a solution, we moved the
modified content of the index.html file to the index.js file, which can easily be
downloaded using <script> tag. The content of the hashNumber.cache.html files
consist almost completely of JavaScript and just a thin HTML wrapper around them is
needed. Consequently we moved JavaScript parts to JavaScript files and use
vaadinWidgetset.nocache.js to generate the necessary HTML code. The generated
HTML downloads scripts from JavaScript files using <script> tags. After this
modification, everything that the client-side engine needs can be downloaded, and the
engine can be initialized. The method for downloading the initial UIDL is described
in more detailed in the next subsection.

After modifications (Table 2), index.js is first downloaded inside the <script> tag
of the target page. In the second phase, vaadinWidgetset.nocache.js is downloaded. In
the third phase, the script in nocache.js recognizes the browser version and requests
for the right hashNumber.cache.js version to be downloaded. In the fourth phase,
HashNumber.cache.js is evaluated, the system starts up, and the user interface
description can be downloaded.

 Cross-Domain Embedding for Vaadin Applications 67

Table 1. Initialization of Client-Side Engine Table 2. Initialization of embedded
Client-Side Engine

Client-side engine Server
1 Requests root or

index.html
Returns
index.html

2 Requests nocache.js
startup script

Returns
startup script

3 Requests the client-side
engine HTML file

Returns the
HTML file

4 Requests the initial
UIDL

UIDL returned
as JSON

5 Renders user interface
and starts waiting for
user initiated events

Client-side engine Server
1 Requests index.js Returns a

JavaScript
file

2 Requests nocache.js
startup script

Returns
startup script

3 Requests the client-
side engine JavaScript
file

Returns the
JavaScript
file

4 Requests the initial
UIDL

UIDL
returned as
JSONP

5 Renders user interface
and starts waiting for
user initiated events

Since GWT is used to generate the file structure of the framework, we should not

modify files by hand, since then changes would be lost at the first time when the
framework is modified and recompiled. Fortunately, cross-domain scripting
capabilities are something that is commonly needed, and Google has included support
for such features in GWT. Therefore, we only added a single line to the GWT
configuration file:

<add-linker name="xs"/>

and recompile the system. The old file structure and the new cross-domain capable
web content are presented in Figure 3. Structures are the same apart from the filename
extensions – the content of html files is moved inside js files.

Index.js is not generated by GWT and the system can be used and embedded
without index.js script, but it would be much more complex for an embedding
developer. Without the index.js script, the embedding developer would have to use
paths to the actual WidgetSet.nocache.js script, which could be arbitrarily complex.
Furthermore, the developer would also have to define the location of the CSS file,
which again can be complex. Thus, in a nutshell the reason for using index.js is
redirecting the call to the actual files and linking the system to the right style sheets.

With the above modifications, embedding the Vaadin application as simple as
adding a single line of html to the body of the target document:

<script type="text/javascript" src="http://jlautamaki.
 virtuallypreinstalled.com/embedding/index.js">
</script>

3.2 Communication with the Server

As already discussed, after being able to download the client-side engine to the
browser, we must also enable the communication with the server that runs the actual

68 J. Lautamäki and T. Mikkonen

application. In Vaadin applications, the client-side engine uses the XMLHttpRequest
mechanism for all the interactions with the server side (Table 3). There are some
straightforward ways to make XMLHttpRequest familiar from Ajax work on cross-
domain environment. The most obvious alternative is to use <iframe> tags, as already
discussed above, but it is also possible to use on <iframe> as a proxy for
XMLHttpRequests [6]. In addition, W3C has proposed a method for Cross-Origin
Resource sharing [7], implemented already in Firefox 3.5, using an HTTP header:
Access-Control-Allow-Origin: * [8]. Finally, in some old Safari versions there was a
security leak that permitted cross-domain XMLHttpRequests to work, but this has now
been fixed [9].

Despite the possibilities provided by individual browser features and hacks, using
them as the basis for long-lasting, generic web services is not feasible. Therefore, we
decided to rely on another communication technology, JSONP (JSON with padding)
[10], which is commonly used for making cross-domain calls. Furthermore, JSONP
works in all modern browsers.

Our JSONP based design gains advantage of the open policy for the <script> tag
and uses scripts as a communication channel. A new script can be downloaded when
needed, and after the download, the scripts are evaluated and later removed. An
injected <script> tag has attribute src. This attribute points to the Vaadin application
and downloads the script from there. Messages from the client to the server can be
sent as an attribute of the URI:

<script type="text/javascript"
 src="http://URL/getjson?jsonp=parseResponse&
 secondAttribute=hello">
</script>

Vaadin application gets called the same way as with XMLHttpRequest based
communication. By default, Vaadin applications use JSON for communication, and
consequently the only thing we must add is the padding. With this approach, the
browser gets the following message:

parseResponse({“Name”: “Cheeso”, “Rank”: 7});

In this response, the padding is “parseResponse()” and JSON is {“Name”: “Cheeso”,
“Rank”: 7}. Return value will invoke the parseResponse function in the client side
engine. The actual message is handled similarly to previously discussed
XMLHttpRequest messages.

The communication process is summarized in Table 4. First, the user interacts with the
UI, for example pushes a button. As a consequence, (second phase) the client-side engine
adds a new <script> tag to the web page and sets the appropriate URI for the source of
the script. The message passed to the server side is added to the URI as an attribute. As a
result the URI for the new script could be for example: http://url/?okButton=pressed.
The server gets called and it uses request.getAttribute to get information that the button
has been pressed. Once the server has processed the actions associated with the button, it
returns the response to client-side engine, again using JSON with padding. The JSONP
message is loaded inside the <script> tag we previously created and is evaluated (the
third phase). The evaluation leads to calling the padding function with JSON as a
parameter and results are made visible for the user.

 Cross-Domain Embedding for Vaadin Applications 69

Table 3. Original communication Table 4. Modified communication

Client Server
1 User interaction

2 POSTS
XMLHTTPRequest
with requestData

Gets
message
and
returns
JSON

3 RequestCallback
function gets JSON
message

Client Server
1 User interaction

2 New script tag is added, src is
url+parameters:
“http://url/parameters”

Gets
message
and returns
JSONP

3 JSONP message is evaluated

In comparison to XMLHttpRequest, JSONP has a number of weaknesses. Perhaps

the biggest problem is that by allowing cross-domain accesses, the use of JSONP also
introduces vulnerabilities. When a JSONP call is made, there has to be absolute trust
to the other participant, since JavaScript programs are downloaded as data, and
consequently the loaded code can do anything. This has not been considered as a
problem in the usual case of Vaadin applications, where everything comes from the
same origin. However when embedding and mashupping applications, the problem is
that JavaScript loaded from the other domain inevitably gets full access to the content
loaded from another domain. In case of the malicious application developers,
anything can happen. In our case, we have decided that integrator of the html page
just trusts all the widget developers and their services and services have no critical
security aspects.

In addition, when using the XMLHttpRequest mechanism, there are certain
methods for handling errors that take place in communication. In contrast, with
JSONP there is no automatic error handling, and any actions to this end should be
included in the application. There are certain libraries to simplify this, but in general
error checking features are still missing.

Finally, there are a lot of minor implementation-level issues that have been
encountered. In particular, in Vaadin applications, messages were already padded
using for(;;); as a safety mechanism and for making cross site scripting more difficult.
This is of course something we had to remove in our implementation, and the obvious
consequence is less secure communication.

4 Examples

For demonstrating and explaining the value of our embedding facility, we have
created a web page to http://www.cs.tut.fi/ domain and used it for embedding two
different web applications running on the http://jlautamaki.virtuallypreinstalled.com/
domain. Our sample web page is based on Wikipedia’s Body Mass Index (BMI)
entry. BMI is a heuristic proxy for human body fat based on an individual’s weight
and height. BMI is defined as the individual's body weight divided by the square of
his or her height. If BMI index falls between 18.5 and 25 then the person is a normal

70 J. Lautamäki and T. Mikkonen

Fig. 4. Embedded Calculator (left) and Chat (right) applications

weighted. Most of the web page development systems can be used to create a simple
page like this. The page is just plain text and a couple of pictures and tables.
However, for our examples we have spiced up this simple page with two different
Vaadin applications.

Consider a user who visits the body mass index page. If the BMI is a new concept
for user, the first thing to do is obvious – the user wants to calculate his own BMI and
needs a calculator. Of course it would be possible to use a calculator from a mobile
phone or a separate desktop calculator application, but it would also be nice to have a
calculator embedded directly in the BMI page. The calculator is a web application and
is not easily implemented by every web developer. However, given a ready-made
calculator, it can be easily embedded in a web page by using our system. This is
visualized in Figure 4, and the actual web page is available at available for testing
purposes at the address: http://www.cs.tut.fi/~delga/vaadin/calc.html. Furthermore, it
is also possible to try out the embedding of the calculator application. Only things
needed are a web page that can be edited and some trust that we are not trying to do
anything hostile. To get the calculator embedded on the web page, only the following
script has to be added to the body of the html page:

<script type="text/javascript" src="http://jlautamaki.
 virtuallypreinstalled.com/embedding/calc.js">
</script>

Our second example, shown in Figure 4 and available at
http://www.cs.tut.fi/~delga/vaadin/chat.html, is providing a chat widget for the BMI
page. The goal of the widget is to enable the user to chat with other users of the page and
in this case for example send weight and height as a chat message and other users can
then comment on those values and give feedback. It would be possible to create a
channel for each page in which chat component has been embedded and then the visitors
of the page could communicate with each other. In our example, it is just one channel
chat. In the sense of the implementation, this application is considerably more complex
since it requires communication between users. Consequently it cannot be implemented
with plain client side JavaScript since the server must mediate messages between users.
The sequence diagram is presented in Figure 5. In the diagram, we have cheated a little
bit for sake clearness. In reality chat clients poll the server once in 2 seconds, but in
Figure 5 we have presented communication like messages could be pushed directly from

server to client. Similarly t
adding the following script t

<script type="text/
 virtuallypreinsta
</script>

5 Future Work

We still have some consid
aspects. At present, we are n
the embedded version, whic
However, we do acknowled
cannot be made as safe as wi

Fig. 5.

In order to consider the w
system in real world examp
http://vaadin.com/directory
system in real use cases wit

The long-term goal of th
could be used by anybo
technological details addr
associated with numerous b
how to set up an ecosystem
mode. On one hand, we sho
embedding web application
must provide support for de
we have not introduced an
embedded applications wo
future work.

Cross-Domain Embedding for Vaadin Applications

to the calculator, the chat application can be embedded
o the body of the html page:

/javascript" src="http://jlautamaki.
alled.com/embedding/chat.js">

erations and refinement to do with respect to the secu
not fully aware what kinds of new attacks are possible aga
ch would not be enabled for the original Vaadin applicatio
dge that the embedding might introduce some properties
ithout embedding, no matter how much we try.

Sequence diagram with two users chatting

wider use of embedding, an obvious target is to try out
ples. At present, the whole system is available for testing
y#addon/vaadin-xs and the next step would be to use
th real customers to gain feedback from actual users.
his work is to create a library of Vaadin applications t

ody. Assuming that we can figure out the remain
ressed above, there will also be research challen
business related issues. We are in the middle of consider
m of widgets, where they could be deployed in embed
ould be able to serve web developers who are interested
ns but do want to implement them, and at the same time
evelopers creating new widgets for others to embed. So
ny business logic that would define how parties host

ould get their income, so this is an obvious direction

71

d by

urity
ainst
ons.
that

our
g at
the

that
ning
nges
ring

dded
d in

e we
far,
ting
for

72 J. Lautamäki and T. Mikkonen

Finally, there are some possible advantages that can be gained with other web
technologies. In particular, instead of JSONP we could use CORS (Cross-Origin
Resource Sharing), a browser technology specification for scripts originating from
different domains [7]. Using CORS would introduce some potential benefits, mainly
because while JSONP only supports the GET request method, CORS also support the
other types of requests. Furthermore, CORS also has better error handling
mechanisms than JSONP. As a drawback, CORS is only supported by limited set of
modern browsers.

6 Conclusion

In this paper, we presented a way to compose embedded web applications in a fashion
that combines the best properties of commonly used approaches without their major
downsides. The implementation is composed using the Vaadin Framework, where any
completed application consists of the client-side engine. The client-side engine acts as
the front end for a Java application running on the server side. The approach was
demonstrated with two applications (or widgets) that can be tried out. Furthermore,
these applications embedded to any web site by just adding one <script> tag to the
body of the HTML document hosting the applications.

As a part of this work, we modified the Vaadin Framework. The modifications
have been contributed to the Vaadin community, and are available through Vaadin
directory (http://vaadin.com/directory#addon/vaadin-xs) for all Vaadin developers.

The most attractive direction for future work – apart from polishing the technology
itself – is the creation of an ecosystem where embeddable Vaadin applications could
be hosted as a service. In the long run, the vision is to establish a full library of
different kinds of web applications, available for embedding to different web pages
around the world. This in turn will introduce numerous technical and business
challenges for researches as well as for practitioners.

References

[1] O’Reilly, T.: What is Web 2.0: Design Patterns and Business models for the Next
Generation of Software. Communications & Strategies (1), 17 (2007)

[2] Mikkonen, T., Taivalsaari, A.: The Mashware Challenge: Bridging the Gap Between
Web Development and Software Engineering. In: Proceedings of the FSE/SDP
Workshop on the Future of Software Engineering Research (FoSER 2010), Santa Fe,
New Mexico, USA, November 7-8 (2010)

[3] Same origin policy, World Wide Web Consortium (W3C),
http://www.w3.org/Security/wiki/Same_Origin_Policy

[4] Grönroos, M.: Book of Vaadin (2009) (uniprint)
[5] Perry, B.W.: Google Web Toolkit for Ajax. O’Reilly Short Cuts, pp. 1–5. O’Reilly

(2007)
[6] How to make XMLHttpRequest calls to another server in your domain, Ajaxian,

http://ajaxian.com/archives/how-to-make-xmlhttprequest-
calls-to-another-server-in-your-domain

 Cross-Domain Embedding for Vaadin Applications 73

[7] Cross-Origin Resourced Sharing, World Wide Web Consortium (W3C),
http://www.w3.org/TR/cors/

[8] HTTP access control, Mozilla Foundation,
https://developer.mozilla.org/En/HTTP_Access_Control

[9] Safari same origin hole, The Spanner, JavaScript and general security blog,
http://www.thespanner.co.uk/2007/06/29/
safari-same-origin-hole/

[10] Remote JSON – JSONP (December 5, 2005),
http://bob.pythonmac.org/archives/2005/12/05/
remote-json-jsonp/

Web Linking-Based Protocols for Guiding

RESTful M2M Interaction

Jesus Bellido, Rosa Alarcon, and Cristian Sepulveda

Computer Science Department
Pontificia Universidad Catolica de Chile

jbellido@uc.cl, ralarcon@ing.puc.cl, cmsepul@uc.cl

Abstract. The Representational State Transfer (REST) style has be-
come a popular approach for lightweight implementation of Web ser-
vices, mainly because of relevant benefits such as massive scalability, high
evolvability, and low coupling. It was designed considering the human-
user as the one who drives service invocation and discovery. Attempts
to provide machine-clients a similar autonomy have been proposed and
recently, interesting discussion evaluate explicit semantics in the form of
well-defined media types but introducing higher levels of coupling. We
explore Web linking as a lightweight mechanism for representing link
semantics and guiding machine-clients in the execution of well-defined
choreographies and illustrate our approach with the OAuth and OpenId
protocols exploring asynchrony and machine expectations as the inter-
action moves forward.

1 Introduction

The web has become a platform not only for the delivery of content, but also
for the provision of services. Diverse functionality is made available to massive
amount of users, and new services are built on top of others offering aggregated
value. Popular service interfaces are generally classified into WSDL-based or
REST based services, although other variants such as XML-RPC, Atom, JSON-
RPC, etc. are also available1. In addition, the reuse of services into compounds
(service composition) is highly desirable not only because it reduces costs and
provides aggregated value, but also because it allows the creation of enriched
applications, leveraging the Web as a services platform.

A REST service is a web of interconnected resources identified with URIs,
that can be manipulated through a uniform interface (e.g. HTTP operations),
whose state is served through representations (e.g. an HTML page) embedding
links and controls (e.g. a form indicating a POST operation), which define the
underlying hypermedia model that determines not only the relationships among
resources but also the possible net of resource state transitions. REST consumers
discover and decide which links/controls to follow/execute at run-time. This
constraint is known as HATEOAS (Hypermedia As The Engine Of Application

1 see http://www.programmableweb.com/apis/directory

A. Harth and N. Koch (Eds.): ICWE 2011 Workshops, LNCS 7059, pp. 74–85, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.programmableweb.com/apis/directory

Web Linking-Based Protocols for Guiding RESTful M2M Interaction 75

State). A composition of REST services can be seen not only as the availability
of new resources but also of new navigation paths (links/controls) that allow
clients to traverse the hypermedia model corresponding to various independent
REST services.

Providing support for automatic composition is also desirable since it may
reduce development time and costs, but is far from trivial since REST services
lack a standard machine-readable description, so that REST service providers
describe their APIs in natural language (e.g. HTML pages) forcing machine-
client developers to interpret the intended way of use of the API, to identify any
change manually and to program the clients accordingly; most often, old APIs
version are not supported. REST suppose humans as its principal consumer and
they are expected to drive resource discovery and state transition by understand-
ing the representation’s content semantics, i.e. the links/controls embedded in
representations such as HTML pages. The lack of explicit domain-level seman-
tics in current media-types (e.g. HTML), makes harder for machine-clients to
select, among the available links and controls, those they must follow in order
to accomplish a specific navigation path or to engage in a predetermined way
with various resources, as is the case for instance, of business processes, chore-
ographies or authentication protocols. Some [1], propose the definition of domain
specific media-types that portray the resource’s state and the related hyperlinks.
A machine-client that is aware of such custom media-types could then under-
stand such representations and proceed accordingly. However, this requires that
both client and servers agree on the media-types meaning, which introduces a
strong coupling.

We are interested in exploring Web Linking [2] as a mechanism for specifying
application-domain semantics for complex interaction such as business processes.
In this paper we analyze the OAuth [3] and OpenID [4] protocols as case stud-
ies that implement Web choreographies, including control flow, asynchronous
calls, out-of-band interactions and various media-types. The proposal allows a
machine-client to understand resources’ representation and to dynamically de-
termine a navigation path, enacting the expected choreography. The paper is
organized as follows, section 2 discuss related work, section 3 presents our ap-
proach, and finally section 4 present our conclusions.

2 Related Work

A few languages have been proposed to create machine readable RESTful ser-
vices description. The Web Application Description Language (WADL) [5] de-
scribes RESTful services as resources identified by URI patterns, media types
and the schemas of the expected request and response as well as representations.
The latter supports parameters that can contain links to another resources.
WADL, however, does not support link discovery or link generation for new re-
sources, the resulting model is operation-centric and introduces additional com-
plexity with unclear benefits for both human and machine-clients.

In [6], we proposed ReLL (Resource Linking Language), a hypermedia-centric
REST service description. A ReLL description considers not only resources and

76 J. Bellido, R. Alarcon, and C. Sepulveda

representations, but fundamentally links and the mechanisms for identifying
changes in the described REST service (e.g. changes in the URIs). ReLL allows
machine-clients to retrieve, on run-time, links and state information embedded
in representations so that a simple Web machine-client (a crawler) is able to
traverse and discover the interlinked resources of a REST service. A ReLL de-
scription requires to annotate described resources and links/controls with types,
serving as the basis for generating a semantic model. This approach made pos-
sible to semantically integrate independent REST services and execute queries
that traverse the integrated web [7,8]. ReLL was used also as the basis for build-
ing machine-clients that traverse the Web enacting a predetermined workflow
defined by a Petri Net[9]. The latter approach delegates on the Petri Net the re-
sponsibility of determining, at design time, the navigation path a machine-client
must follow, resources, however, are dynamically bound. One of the main draw-
backs of this approach is that, even though separation of concerns facilitates the
design of workflows, it introduces coupling between the ReLL and Petri layers
(horizontal interfaces [10]), so that changes on the ReLL description would make
clients fail since the Petri Net is unaware of such changes.

Other approaches [1], avoid the need of a description by defining domain
specific media-types (e.g. an XML schema for a company’s bills) that portray the
resource’s state and the related hyperlinks. Authors define a Domain Application
Protocol (DAP) as a collection of media types, URI entry points, HTTP idioms
and the link relations portrayed in the representations. The DAP determines the
set of legal interactions between a consumer and a set of resources involved in a
business process and is also an implicit contract between the disparate parties
in the composition, it is not clear though, how a machine-client may understand
how to comply the DAP, unless both client and servers agree on the media-types
meaning, which introduces a strong coupling.

In [11], Steiner and Algermissen acknowledge the limitations of relying on
media-types to portray both content for human-consumption (that may require
human-friendly formats such as HTML) and semantics directed to machine-
clients (that may require RDF) and they propose content-negotiation (HTTP
Options) to dynamically find out the appropriate media type. They propose
also an extension of the RDF HTTP Vocabulary in order to become the media-
type intended for machine-clients as well as the usage of links served as HTTP
Headers annotated according to the Web linking standard [2].

The standard specifies relation types for Web links, defines a registry for them,
and regulates its usage in HTTP headers (Link headers). A link is a typed
connection between two resources, that involves a context URI (the origin re-
source URI), a link relation type, a target IRI, and optionally, target attributes.
No restrictions are placed on cardinality or relative ordering of the links. Tar-
get attributes are key/value pairs that further describe the link or its target
(e.g. media="text"). A link relation type identifies the semantics of a link (e.g.
rel="copyright") and there are two kind of relation types, registered and ex-
tension. The former are well-defined, registered tokens; while extension relation
types are URIs that uniquely identify the relation type. Steiner [11] relies on

Web Linking-Based Protocols for Guiding RESTful M2M Interaction 77

registered tokens and media-types that lack domain-level semantics which intro-
duces less coupling but makes impossible for a machine-client to make sense of
the presented information and decide which link to follow and which information
may be relevant for such decision. In addition the proposed media-type do not
allow to dynamically discover links and controls to related resources.

3 REST Services Composition and Interaction Protocols

We are interested in the development of machine-clients that enable service com-
position involving REST services. Statelessness is a key REST constraint that
dictates not to store the state of the interaction between clients and servers
on the server side. This constraint has two consequences, stateless servers are
much less complex than stateful ones, providing massive levels of scalability and
fault tolerance (e.g. hardware replicas); but this also requires that each request
to the server must contain all the information needed to provide a response.
Service composition has traditionally focused on stateful approaches where a
central component orchestrates the dialogue between the parties and store all
the necessary information to move forward the interaction.

A stateless, RESTful scenario where there is no such orchestrator but a co-
operation of the involved resources, that is a choreography, requires that the
representations served to each other mediate the interaction. The HATEOAS
constraint is fundamental in this scenario, provided that machine-clients can
understand the semantics of the links and controls served in the representations,
and they have the required semantics to move forward the interaction.

We could argue that at a very general level, Web linking registered relation
types such as start, previous, next, first, last [2], could be used to embed
instructions within the served representations and add basic semantics to guide
resources interaction. However, interaction have explicit semantics in particular
domains that can be exploited for servers to steer machine-clients. For instance,
let’s consider the REST APIs implementing the OAuth and OpenId protocols;
callbacks and redirection are part of the interaction; they implement an inter-
rupted, asynchronous conversation where third parties (out-of-band) later affect
resources’ state and dynamically generate pieces of information that are expected
to be carried out at various steps of the interaction.

3.1 Security Domain: OAuth 2.0 and OpenId

Modeling non functional aspects of services have captured the attention of re-
searchers as a medium for enriching and constraining automatic compositions
and one of these aspects is security. In [12], a survey determines that most
Web APIs use one of five authentication mechanisms, namely, they use creden-
tials (API key or username and password) to restrict access to a service, Web
authentication protocols (HTTP Basic Authentication, HTTP Digest Authen-
tication and OAuth), or even ad-hoc authentication mechanisms (parts of the
HTTP request). OAuth accounts for a mere 6% of the APIs surveyed, however

78 J. Bellido, R. Alarcon, and C. Sepulveda

recent adoption of stronger security capabilities such as OAuth and HTTPS for
mayor players in the industry (e.g. Facebook, Twitter) will have an influence on
applications developed on top of these platforms.

OAuth 2.0. The OAuth 2.0 authorization protocol allows to grant third-party
applications limited access to an HTTP service on behalf of a user, by orchestrat-
ing an approval interaction protocol between the user and the HTTP service.
OAuth defines four grant types: authorization code, implicit, resource owner
password credentials, and client credentials, and provides an extension mecha-
nism for defining additional grant types. Each grant type defines an authoriza-
tion interaction flow between four parties, the client, the resource owner, the
authorization server and the resource server.

The authorization code grant type flow is illustrated in Figure 1. The client ob-
tain some credentials (1, 2) and requests authorization from the resource owner
directly, or preferably through an authorization server (A). The server authen-
ticates the resource owner through a user-agent (e.g. a form displayed in a Web
browser). This communication occurs out-of-band between the Resource Owner
(e.g. LinkedIn) and the user. Once the resource owner grants access to the re-
quired resources, the authorization server redirects the user-agent to the callback
and includes an authorization code provided to the client (C). The authorization
code is used to request an access token (D) from the authentication server, once
the token is granted (E), the client application can use it to access resources
stored in the resource server (F, G).

Auth
Server '

Resource
Server

Client Auth
Server

(1)

(2)

(A)

GET http://[authServer']
Payload: Credentials

201 Created
Payload: RequestToken

GET http://[AuthServer]
Payload: Credentials, requestToken, callback

POST http://[AuthServer]]

200 Ok
Payload: access_token

(B)

GET http://[callback]/?authorization_code

Out of Band
Interaction

Resource
Owner

grant access

Payload: Credentials, authorization_code

(F)

(G)

GET http://[ResourceServerUri]/[resource]

20X Ok
Payload: representation of resource

 301 Redirect [Location]

GET http://[Location]
 301 Redirect [callback, authorization_code]

(D)

(E)

(C)

Fig. 1. OAuth 2.0 Abstract protocol sequence diagram

Web Linking-Based Protocols for Guiding RESTful M2M Interaction 79

Client

POST http://[OpenIdServerUri]

OpenId
Provider

Relying
Party

200 Ok

303 Redirect OpenIdProvider

GET http://[OpenIdProvider]

200 Ok

POST http://[OpenIdProvider] credentials

303 Redirect RelyingParty callback

GET http://[ReliyingParty]

20X Ok

POST http://[OpenIdProvider] authorize response
OAuth interaction

(A)

(B)

(C)

(D)

(E)

Fig. 2. OpenID abstract protocol sequence diagram

OpenID. The OpenID protocol allows consumers to present, to a service, claims
about their identity that have been authenticated by an identity provider trusted
by that service. OpenID allows a service to delegate the responsability for stor-
ing consumer credentials to one or more OpenID providers. The providers are
responsible for checking a consumers credentials and informing a service if an
identity claim is valid.

Figure 2 shows the protocol for a client to register an OpenID URI that they
claim to own to a Relying Party (e.g. LiveJournal). In an Initiation step (A), the
Party redirects the client to the proper OpenId Provider (e.g. Blogger) (B) that
requires the user to provide both, credentials (user, password) and optionally to
choose a preferred authentication server (C). With that information, the OpenID
provider validates user credentials and if necessary may redirect the client to the
appropriate OpenId provider (e.g. Google, PayPal, Yahoo, etc.), this in turn
verifies the consumer credentials and confirms the registry of the user OpenID,
otherwise, it redirects the consumer to the OAuth server in order to grant access
to identity information (e.g. Google, Facebook, etc.).

3.2 Linking Requirements: Modeling Stateless Choreographies

In order to design stateless interaction, state (client-server interaction) must be
explicitly modeled either as a different resource [10], as cookies, or be embedded
in the representations so that clients can build later the subsequent requests
properly. As seen in Figure 3, the latter approach can be accomplished without
requiring extensive changes in the representations by exploiting Web Linking.
The text in italics (red) shows our proposal for Link Headers, the URI part
represents the URI of the resource to be retrieved. The semantics of the link
are explicitly presented by the rel parameter as an extension relation type (an
abbreviated URI in our case) that refers to a particular realm, process or appli-
cation domain, a target attribute identify the expected state that can be achieved

80 J. Bellido, R. Alarcon, and C. Sepulveda

Link: <https://api.linkedin.com/uas/oauth/requestToken>; rel="oauth:start";
 state="[oauth:started | oauth:denied]"; method="GET"

GET https://api.linkedin.com/uas/oauth/requestToken
Authorization=OAuth
oauth_consumer_key= ...,
oauth_nonce="180098101",
oauth_timestamp="1284497324",
oauth_signature=...,
oauth_callback="oob",
oauth_signature_method="HMAC-SHA1",
oauth_version="1.0"

HTTP/1.1 201 Created
Content-Length=236, null=HTTP/1.1 201 Created, Date=Tue, 14 Sep 2010 20:52:18 GMT,
Content-Type=text/plain, Server=Apache-Coyote/1.1
Link: <https://api.linkedin.com/uas/oauth/authorize>; rel="oauth:grant";
 state="[oauth:granted | oauth:denied]"; method="GET";
Params:
oauth_token=142e1172-aca0-40e8-9a3f-163f52969cda
oauth_token_secret=b795c3ae-bf72-4451-baaf-eb31b6b024e1
oauth_callback_confirmed=true
oauth_request_auth_url=https://api.linkedin.com/uas/oauth/authorize
oauth_expires_in=599

GET https://api.linkedin.com/uas/oauth/authorize?oauth_token=142e1172-
aca0-40e8-9a3f-163f52969cda

HTTP/1.1 200 OK
Link: <https://api.linkedin.com/uas/oauth/accessToken>; rel="oauth:accessToken";
 state="[oauth:authorized | oauth:unauthorized]"; method="POST";
https://www.linkedin.com/uas/oauth/authorize/oob?
oauth_token=4be35e7e-9d5b-4cb9-82fa-3dfd6b694fdc

POST https://api.linkedin.com/uas/oauth/accessToken
Authorization=OAuth
Params:
oauth_consumer_key="..."
oauth_nonce="-46807422"
oauth_timestamp="1284754819"
oauth_signature="UCgAG4ueyGRcSZluUwz8dhOYCOk%3D"
oauth_verifier="92577"
oauth_callback="oob"
oauth_signature_method="HMAC-SHA1"
oauth_token="ae98a651-36a0-41c8-ab24-e2a2e1672bcb"
oauth_version="1.0"

(0)

(1)

(2)

(D)

(A)

(C)

Fig. 3. Messages exchanged during OAuth 2.0 protocol, for a LinkedIn implementation

by the machine-client if the link is followed, as well as the method to be per-
formed. Control flow operators that are common in service composition such
as conditional invocation, selection of the best result, parallel execution, etc.
[13], should be also considered. We model such controls as XPath expressions
(operators) that are evaluated at run-time with the assistance of a ReLL de-
scription. For the OAuth case, the choreography starts with a first link (Figure
3.0). For a more general case, such as a business process, this will indicate that a
process initiates a subtask at a particular entry-point (which can be dynamically
discovered). The request (1) to the URI changes the state of the oauth:start

resource. The new served response (2) is processed by the machine-client using
ReLL as a means to derive some hints from the content.

Web Linking-Based Protocols for Guiding RESTful M2M Interaction 81

For instance, it verifies that the URI matches clients’ expectancy (no changes
in the URI); it retrieves the representation expecting to be encoded as text/plain,
and verifies whether a regular expression is contained. In such case, it determines
wether the expected state oauth:started (a 201 HTTP code indicates, in the
LinkedIn implementation, that a new Request Token was created) was achieved
and prepares to discover the next step of the orchestration. The link request

grant is followed in order to obtain an oauth:grant resource, the link is re-
trieved from the representation by executing a select expression that can be
encoded as a regular expression or as an XPath expression depending on the
content media type. Since Web Linking determines rules to transform links to
XML, we decided to transform the link to XML and use XPath expressions
for illustrating the dependance on the media-type. The method can be also re-
trieved from the content. Once the link is followed (A), the new served response
includes instructions to force a redirection on the machine-client which will lose
control of the interaction, and could either wait for an asynchronous message
to regain control, look for an answer later, or stop its execution and trust that
the next message will contain the necessary information for resuming the in-
teraction without losing information. We implemented the latter alternative in
the machine-client by sending all which is necessary to continue the interaction,
since the OAuth protocol allows for an extra parameter for such kind of pur-
poses. Eventually, the interaction is resumed by a message received through a
callback (http://darwin.ing.puc.cl ...). Figure 4 presents a snippet of a
ReLL description for an Linkedin OAuth implementation shown in figure 3.

<resource xml:id="oauth:start">
 <uri match="https://api.linkedin.com/uas/oauth/requestToken" type="regex"/>
 <representation xml:id="requestToken-text" type="iana:text/plain">
 <name>oauth_token request parameters</name>
 <state name="oauth:started" select="HTTP\/1\.1\ 201" type="regex"/>
 <link type="request_grant" target="oauth:grant" minOccurs="0" maxOccurs="1">
 <selector name="href" select="//Link/@href" type="xpath"/>
 <selector name="state" select="//Link/@state" type="xpath"/>
 <protocol type="http">
 <request>
 <selector name="method" select="//Link/@method" type="xpath"/>
 </request>
 <response media="iana:text/plain"/>
 </protocol>
 </link>
 </representation>
</resource>
<resource xml:id="oauth:grant">
 <uri match="http://darwin.ing.puc.cl\?oauth_token=[a-zA-Z0-9\-]*" type="regex"/>
 ...
 </resource>

Fig. 4. ReLL snippet describing the RequestToken resource according to LinkedIn
implementation (step 1 in Figure 2)

82 J. Bellido, R. Alarcon, and C. Sepulveda

On run-time and starting from a seed, a machine-client retrieves a resource
(e.g. an HTML form indicating that the user must authenticate by clicking a but-
ton), such page (e.g. https://api.linkedin.com/uas/oauth/requestToken)
is described as an oauth:start resource, and the corresponding ReLL decla-
rations are applied; that is, the XPath expressions or selectors, retrieve both
state variables (state), and links. Since a control flow operator is omitted, the
request grant link determines that the next link to be retrieved corresponds
to the oauth:grant category (target). State variables are carried along and
stored by the machine-client.

It is also possible to dynamically generate new Links from the state vari-
ables and (part of ReLL dynamic late binding characteristics) add cardinal-
ity constraints for links. In Figure 2, step D indicates a REST composition of
both OpenId service (e.g. Blogger’s OpenId) and OAuth service (e.g. LinkedIn’s
OAuth). Again, this interaction is triggered by the OpenId Provider sending a
GET message to LinkedIn in order to access a resource. The message is directed
to the resource URI and a state variable (security token) is sent in the body of
the message. If valid, LinkedIn will confirm user authorization, if not, the user
will follow OAuth from step 1.

3.3 Coupling Facets in Our Approach

One of the risks of supporting REST services descriptions is the increasing of
coupling between clients and servers. Coupling has been described as a mul-
tidimensional property [10], where dimensions or facets include relevant design
aspects that determine the degree of coupling in a system. In our approach ReLL
serves as an abstraction layer between RESTful services and a machine-client.
According to the defined coupling facets, ReLL will not increase the coupling
degree between RESTful Web services and machine-clients as detailed below:

– Discovery. RESTful web services can be discovered by decentralized referrals
exchanging hyperlinks. Services are not registered in any standardized way
(e.g. UDDI). ReLL allows a machine client to discover resources by following
the links encountered in resource representations. ReLL’s select expression
allows the machine client to retrieve embedded links, and generate-uri al-
lows to dynamically mint new URIs from expressions embedded in a resource
representation. The latter feature allows a designer to compensate the lack
of hypermedia on current RESTful APIs.

– Identification. A URI globally identifies RESTful web services, URIs however
are not constrained only to the http scheme. URIs identify services in dif-
ferent contexts and services are free to use different identifications schemes.
ReLL allows a machine-client to follow a link that leads to discover another
URI under any scheme (i.e. any protocol).

– Binding. Dynamic binding resolves at run-time the URI to be invoked, the
binding is established only when it becomes necessary. ReLL allows a ma-
chine client to follow and resolve, at run-time, the URI of the link encoun-
tered in a representation obtained as a result of an invocation.

https://api.linkedin.com/uas/oauth/requestToken

Web Linking-Based Protocols for Guiding RESTful M2M Interaction 83

– Platform. Platform independency requires that services built using different
and heterogeneous platforms can interact with each other without a bridge.
ReLL describes resources using XML in a platform independent way. XPath
expressions are also well known and standard.

– Interaction. Asynchronous interaction allows two services to interact without
being available at the same time. HTTP is a synchronous communication
protocol, and ReLL supports both synchronous scenarios and asynchronous
scenarios which, in the Web context, requires to perform callbacks to a URI.
This is not trivial, since servers (instead of clients) redirect user-agents to the
callback URI which causes machine-clients a loss of context of the previous
interaction. For the case of REST, this is solved by carrying out context in-
formation along the interchanged messages, hence, no state of the interaction
is stored on the served side (session). ReLL supports this feature by injecting
links and context information (through the generate-uri expression) that
restores the interaction sequence obtained from the resource representations
only when it is required.

– Interface Orientation. Vertical interfaces rely on using protocols for allowing
components to directly communicate between them, horizontal interfaces
or layered architectural styles introduce a stronger dependency among the
layers which makes the architecture more coupled. ReLL relies on protocols
to allow client machines to interact with services, protocols are described in
terms of methods to be invoked and the media-types to be expected when a
link is followed. Our previous version, used a Petri Net layer that introduced
a stronger coupling between the ReLL description and the Petri Net making
it hard to support server evolution without breaking the machine-client.

– Model. Self describing messages do not require to share a model for marshal-
ing and unmarshaling messages. ReLL do not require any particular message
format (i.e. a canonical media-type), instead it allows a client machine to
recover information from representations by using XPath or regular expres-
sions. However, if the server changes the representations, the machine-client
will fail to retrieve information embedded in the content and proceed with
its intended interaction. By using Web Linking however, servers can change
arbitrarily the URLs of the resources involved in the choreography without
causing machine-clients to break.

– State. Stateless services keep the state in the messages that are passed be-
tween cooperating services instead of storing the client-server interaction on
the server side. ReLL discovers a cooperating service URI and its parameters
from the served resource representation, and then, it generates the link to
be invoked as well as the protocol and method. That is, it assumes that the
message contains the state information, and it is even capable of extracting
part of the message and mint context and links.

– Generated Code. A service description can be used to generate code, auto-
matically (stub), that represents the service facade, either on the server or
the client side. It introduces a strong contract between clients and servers and
hence strong coupling. Code generation only works if the communications
requirements are completely specified in a machine-readable form. It is not

84 J. Bellido, R. Alarcon, and C. Sepulveda

possible to generate code from a ReLL service description, because it does
not have a full detail of the URIs (i.e. do not register all the available URIs,
nor a URI pattern), nor a full detail of the representations (i.e. it annotates
the expected media-type and expected patterns in the representations, but
not the content itself). A ReLL document is a partial, arbitrary (since it
represents a particular client view of the service) description of a REST ser-
vice. Such description expresses the expectations of a generic machine-client
when interacting with a REST service but do not force servers to comply
with the description, allowing then servers to freely evolve.

– Conversation. A reflective inspection mechanism enables clients to interact
with the service by inquiring it about the possible future steps of the interac-
tion. In our proposal, servers have full control of the links and representation
served and can change them at any time, ReLL descriptions represent the
expectancies of a machine-client but do not constraint in any way the server
actions, instead, it contains the mechanisms (select expressions) to discover
on run-time the hyperlinks. By enriching the links with Web Linking features
(rel and target expressions such as state), the server explicitly indicates to
its clients what state could be achieved when following a link.

4 Conclusions

A set of media-types determined a priori (e.g. XML) allow machine-clients to
make sense of the contents and proceed accordingly, however, application-domain
media types evolve continuously, sometimes media-types with no support for
links or structure (e.g. binary) are required, and furthermore, they require an
agreement between clients and servers, introducing stronger coupling and lim-
iting service evolvability. By relying in well formed REST representations that
fully support the HATEOAS constraint, it is possible for a machine-client to
pursue a series of operations that transform the resource state.

Service descriptions (e.g. ReLL), increase coupling between clients and servers
but in less degree. ReLL allows machine-client designers to encode rules and
assumptions for the understanding and processing of the resources without lim-
iting service evolvability. It facilitates to detect whether some assumptions have
changed (e.g. more links than expected are served, the URIs have changed, the
protocol have changed etc.), and take a proper action. Web Linking relations
can be formally described as vocabularies with well-defined semantics so that
machine-clients can make complex assumptions and derive plans dynamically.
As for future work, we are interested in the definition of business processes
enabled by lightweight infrastructures that steer a machine-client dynamically
through the underlying hypermedia, so a vocabulary for Web Linking that ex-
tends relation types for Business Processes will be our next endeavor. This goal is
quite challenging because it requires also to deal with conversation state [10], but
also with user interaction, events, complex control flow and complex information
transformation. OAuth and OpenId features such as asynchronous communica-
tion, callbacks, and state handling shed some lights for facing events and user

Web Linking-Based Protocols for Guiding RESTful M2M Interaction 85

interaction as out-of-band communication, delegating control on third parties
and resuming later the navigation provided that state can be carried along the
interaction.

Acknowledgment. Research supported by the Center for Research on Educa-
tional Policy and Practice (CONICYT), Grant 11080143.

References

1. Webber, J., Parastatidis, S., Robinson, I.: REST in Practice: Hypermedia and
Systems Architecture. O’Reilly & Associates, Sebastopol (2010)

2. Nottingham, M.: Web linking. Internet RFC 5988 (October 2010)
3. Barnes, R., Lepinski, M.: The oauth security model for delegated authorization.

Internet Draft draft-barnes-oauth-model-01 (2009)
4. Recordon, D., Reed, D.: Openid 2.0: a platform for user-centric identity manage-

ment. In: Juels, A., Winslett, M., Goto, A. (eds.) Digital Identity Management,
pp. 11–16. ACM (2006)

5. Hadley, M.: Web application description language. World Wide Web Consortium,
Member Submission SUBM-wadl-20090831 (August 2009)

6. Alarcón, R., Wilde, E.: Restler: Crawling restful services. In: Rappa, M., Jones, P.,
Freire, J., Chakrabarti, S. (eds.) 19th International World Wide Web Conference,
pp. 1051–1052. ACM Press, Raleigh (2010)

7. Alarcon, R., Wilde, E.: Linking data from restful services. In: Third Workshop on
Linked Data on the Web, Raleigh, North Carolina (April 2010)

8. Alarcón, R., Wilde, E.: From restful services to rdf: Connecting the web and the
semantic web. School of Information, UC Berkeley, Berkeley, California, Tech. Rep.
2010-041 (June 2010)

9. Alarcón, R., Wilde, E., Bellido, J.: Hypermedia-driven restful service composition.
In: Feuerlicht, G., Lamersdorf, W., Ortiz, G., Zirpins, C. (eds.) 6th Workshop on
Engineering Service-Oriented Applications (WESOA 2010), San Francisco, Cali-
fornia (December 2010)

10. Pautasso, C., Wilde, E.: Why is the web loosely coupled?: a multi-faceted metric
for service design. In: Proceedings of the 18th International Conference on World
Wide Web, WWW 2009, pp. 911–920. ACM, New York (2009),
http://doi.acm.org/10.1145/1526709.1526832

11. Steiner, T., Algermissen, J.: Fulfilling the hypermedia constraint via http options,
the http vocabulary in rdf, and link headers. In: Pautasso, C., Wilde, E., Alarcón,
R. (eds.) Second International Workshop on RESTful Design (WS-REST 2011),
pp. 11–14 (March 2011)

12. Maleshkova, M., Pedrinaci, C., Domingue, J., Alvaro, G., Martinez, I.: Using Se-
mantics for Automating the Authentication of Web APIs. In: Patel-Schneider, P.F.,
Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.)
ISWC 2010, Part I. LNCS, vol. 6496, pp. 534–549. Springer, Heidelberg (2010)

13. Hamadi, R., Benatallah, B.: A petri net-based model for web service composition.
In: Schewe, K.-D., Zhou, X. (eds.) Fourteenth Australasian Database Conference
(ADC 2003), CRPIT, vol. 17, pp. 191–200. ACS, Adelaide (2003),
http://crpit.com/confpapers/CRPITV17Hamadi.pdf

http://doi.acm.org/10.1145/1526709.1526832
http://crpit.com/confpapers/CRPITV17Hamadi.pdf

Batched Transactions for RESTful Web Services

Sebastian Kochman, Pawe�l T. Wojciechowski, and Mi�losz Kmieciak

Poznań University of Technology

Abstract. In this paper, we propose a new transaction processing sys-
tem for RESTful Web services; we describe a system architecture and
algorithms. Contrary to other approaches, Web services do not require
any changes to be used with our system. The system is transparent to
non-transactional clients. We achieve that by introducing an overlay net-
work of mediators and proxy servers, and restricting transactions to be a
batched set of REST/HTTP operations (or requests) on Web resources
addressed by URIs. To be able to use existing Web hosts that normally do
not support versioning of Web resources, transaction resources are cur-
rently modified in-place, with a simple compensation mechanism. Con-
current execution of transactions guarantees isolation.

1 Introduction

The REpresentational State Transfer (REST) [5] is an architecture style for Web-
based applications. It has gained, and is still gaining, enormous popularity due to
its simplicity, scalability and, interoperability – thanks to wide acceptance of the
Hypertext Transfer Protocol (HTTP)1. REST offers simplicity at the expense
of lacking some standards well supported in other styles. For example, SOAP-
based Web Services have a WS-AtomicTransaction [12] standard for transaction
processing, while REST currently lacks a similar standard (see also [13]).

Transaction processing is a broad and complex issue. We may consider trans-
actions on different levels of abstraction and supporting different properties.
Transactions usually model operations that have to be executed atomically, i.e.,
they should either be executed completely and successfully or not at all. Alterna-
tive approaches are, e.g. Sagas [16] that do not guarantee atomicity. Transactions
are a very useful abstraction of the real world business operations. That’s why
transaction processing could be a valuable extension to REST.

Although there are many interesting proposals of introducing transactions to
REST, no one has gained wide acceptance among the community. In most cases
such systems or patterns arguably break some of the REST style principles.
For example, the client-server communication is constrained by no client con-
text being stored on the server between requests. This statelessness constraint
– a key requirement in relation to RESTful Web services – is often a subject of
discussions about interpretation. Developers of systems (including some trans-
action systems described later) often worked around the issue of statelessness
constraint by giving the session state a resource identifier on the server side. An

1 In this paper, we focus on REST over HTTP and URI.

A. Harth and N. Koch (Eds.): ICWE 2011 Workshops, LNCS 7059, pp. 86–98, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Batched Transactions for RESTful Web Services 87

interpretation proposed in [3] disallows it and claims that such a design cannot
be called RESTful. But it might be REST with some exceptions, and this ”with
exceptions” approach is probably right for most enterprise architectures.

In this paper, we introduce Atomic REST – a new, lightweight transaction
system. We restrict transactions to be a batched set of REST/HTTP opera-
tions (or requests) on Web resources addressed by URIs. While other proposals
of transactions in REST are mostly software design patterns or libraries to be
used by the client/server implementers, our approach is different: most of the
transaction processing work is done by separate services – proxies and mediators
– communicating using an overlay network. In particular, Web services do not
require any changes to be used with our system. Moreover, the system is trans-
parent to the clients that do not require transactions. These features enable easy
integration of Atomic REST with existing RESTful Web services.

To be able to use existing Web hosts that usually do not support versioning
of Web resources, transaction resources are currently modified in-place, with a
(best-effort) compensation mechanism that is based on the symmetry of HTTP
operations. Concurrent execution of transactions guarantees isolation. In the
paper, we describe the Atomic REST’s design and algorithms. To demonstrate
the main concept, we develop a prototype implementation of Atomic REST;
more information is available on the project page [7].

The paper has the following structure. First, we discuss related work. Then,
the main idea of our transaction system is presented in Section 3. In Section 4
we describe the algorithms that we designed for Atomic REST, followed by
the discussion of their properties and proofs of isolation in Section 5. Next, we
briefly describe an example validation test of our experimental implementation
in Section 6. Finally, we conclude.

2 Related Work

Pessimistic Transactions One of the first proposals of atomic transactions in
REST is described by JBoss [10]. It is an extension of JAX RS – a popular Java
API for RESTful Web services, with atomic transactions based on exclusive locks
represented as resources on the server side. Contrary to their approach, we have
adopted a different architecture, introducing separate services (mediators) that
are responsible for the execution of transactions, and using server proxies that
allow the services to remain unaware of transaction processing.

A similar approach to [10] is represented by RETRO [8] – a transaction model
that defines many fine-grained resources for transaction processing, with a choice
of exclusive and shared locks. We are not aware of any RETRO implementation
announced yet. Some authors [15] pointed out drawbacks of this model: clutter-
ing the business representations with transactional entities and the complexity
that makes programming cumbersome.

Optimistic Transactions. Optimistic concurrency control [2] fits REST better
than pessimistic transactions because it increases availability of a Web service
by decreasing resource blocking. Below we characterize example approaches.

88 S. Kochman, P.T. Wojciechowski, and M. Kmieciak

The most common solution for providing atomic transactions to REST is
using the POST method to execute a batched set of operations. The concurrency
control is optimistic since the data is cached by a client, and the consistency of
the cache is checked during commit-time. The main advantage of the overloaded
POST-based solution is its simplicity. On the other hand it is often criticized
because it does not respect the semantics of uniform interface methods [5]: POST
should create a resource, not execute any operations. Moreover, the mechanism
is quite limited, e.g. contrary to Atomic REST, it does not allow transactions
spanning many services.

Overloading the POST method is used, among other systems, in the cloud
computing environments, such as Microsoft Windows Azure [6]. It offers struc-
tured storage in the form of tables with a REST-compliant API, enabling to
perform a transaction across entities stored within the same table and partition.
An application can atomically perform multiple Create/Update/Delete opera-
tions across multiple entities in a single batch request to the storage system, as
long as the entities in the batch operation have the same partition key value
and are in the same table [9]. Thus, the high scalability and accessibility of the
service is achieved by introducing the limitation on the set of resources that may
be included in one transaction.

A simple design pattern that provides transactions in REST is described in
[14]. A new transaction is created by sending a POST to a factory resource.
Once the transaction is created successfully, we can access it as a “gateway” to
the main service, sending all possible HTTP requests to a variety of resources.
The pattern is simple and seems to be effective, but is it RESTful? In the same
book, the authors emphasize the difference between application state and re-
source state. The user transaction is, in fact, the application state, therefore
it should not be maintained by the server. Exposing it as resources does not
change anything. In fact, the authors admit that their proposal is not “the offi-
cial RESTful or resource-oriented way to handle transactions” – it is just “the
best one they could think up”. On the other hand, even if the pattern breaks the
statelessness constraint of REST, it is a clean concept that can work successfully
for a variety of services.

Compensation. An alternative (or complementary) approach to atomic trans-
actions is the transaction compensation mechanism, which can be well suited
for some applications. Operations are executed normally, and in case of a fail-
ure, the compensation procedure is called in order to revert the transaction’s
changes. Let’s consider an example of a holiday trip. One would like to reserve
an airline ticket, a hotel room and a bus trip to a national park. One wants
only all or nothing. How can we provide such transaction semantics over sev-
eral autonomous systems? This problem is solved frequently with compensation,
even though it does not guarantee atomicity. However, it may provide an accept-
able contract: a high probability of success and acceptable side effects in case of
failure (e.g. a cancellation fee at one of the services).

A model of compensating RESTful transactions, called jfdi, has been made
available by JBoss [11]. To our best knowledge, the model has not been

Batched Transactions for RESTful Web Services 89

implemented yet. In terms of the interface, it is similar to JBoss’s lock-based
transactions that we described earlier. Although it does not provide any locks,
the compensation logic is held on the server side – the transaction objects and
compensation controllers (called compensators) are exposed as resources. It is
very comfortable for the client that does not need to know how to compen-
sate each operation on that particular service. However, similarly to pessimistic
transactions, this design decision invalidates the statelessness constraint.

A popular compensation pattern known as Saga (described, e.g. in [16]) differs
from jfdi in many respects. Saga is not intended to be a product, it is just a
software pattern. In Saga, the whole compensation logic is held on the client’s
side. An advantage is that services do not have to be prepared anyhow. However,
a given client is specific for a certain case, and so it can be hard to extend the
client’s code to work with other services. On the other hand, jfdi is more service-
centric; it can only support services that use jfdi, but clients can be much simpler,
generic and, more reusable.

This section shows that the existing transaction processing patterns are either
too limited or do not produce generic, reusable clients. On the other hand,
service-centric products often break the REST statelessness constraint. When
designing our system, we have used the best ideas from the work described
above but at the same time we tried to develop a fresh approach. In the following
section we describe our system.

3 Basic Definitions

We explain the main idea of our system using two examples of interaction pat-
terns in Figures 1 and 2. We can identify four components (ignore the arrows
for a while):

– Server – provides a user-defined RESTful Web service, executing client re-
quests and returning results, without knowledge of Atomic REST;

– Client – a user-defined client, with or without knowledge of Atomic REST;
– Mediator (or Transaction Manager) – a Web service managing transaction

execution on behalf of the client;

Proxy + Server A Proxy + Server B

Mediator

1,2
���������������

1,2
���������������

Client 1

1

���������������

�������������
Client 2

2

��

Client 3

3

��

Fig. 1. An example interaction pattern of Atomic REST (single mediator)

90 S. Kochman, P.T. Wojciechowski, and M. Kmieciak

Proxy + Server A Proxy + Server B Proxy + Server C4

��
Mediator X

1

��

	�
	������������ Mediator Y

2,3

��

2,3,4

�
���������������

Client 1

1

��
2

�����������������

���������������
Client 2

3

��

Client 3

4

��

Fig. 2. An example interaction pattern of Atomic REST (many mediators)

– Proxy – a server’s façade, intercepting messages addressed to the server and
handling Atomic REST-specific requests; the proxy enables a RESTful Web
service to support transactions without any changes in its code.

A distributed transaction in our system (or a transaction, in short) is a batch of
REST operations (or requests) to be applied to different resources maintained
by servers. Thus, from a client view-point a transactional request does not dif-
fer much from an ordinary HTTP request. This means that clients are able to
cache transaction responses, which fulfills one of the REST architectural con-
straints, i.e. cacheable responses. Execution of concurrent transactions satisfies
the isolation property and a weak form of atomicity, described in Section 5.

Batching of transaction operations restricts transactions to be rather short
and non-interactive (similarly to, e.g. Sinfonia [1]). Hence the time when re-
sources are blocked by a client is reduced to a minimum. This means that our
system could be deployed on the Web and platforms, such as those provided
for cloud computing, in which dependencies between network nodes should be
avoided and the request processing time has to be short.

A client can submit several requests to be executed by many servers, as a
single transaction. For example, in Figure 1 there is a single mediator and two
clients who submit their transactions 1 and 2 to the mediator for execution. The
transactions request some resources on servers A and B. The mediator executes
transactions sequentially, first 1, then 2. Thus, isolation is satisfied. At the same
time, client 3 submits a non-transactional request to server B that does not
conflict with the transactions and is handled by server B normally.

In Figure 2, there is an example with many mediators. Introducing many
mediators supports privacy and load balancing. Each server gets transactions
only from its trusted (single) mediator, e.g. server A trusts only mediator X .
Each mediator can handle many servers. Mediators could be replicated for fault-
tolerance if required. Client 1 executes transactions 1 and 2 using, respectively
mediator X and Y , while client 2 uses only Y . At the same time client 3 submits
a non-transactional request to server C. Since the request conflicts with the
transactions, it is forwarded to B’s mediator Y as a transaction containing only
a single request. At the end, all results will be returned to the clients. In order
to agree upon the order of transaction execution, mediators communicate using
a coordination protocol described below.

Batched Transactions for RESTful Web Services 91

4 The Atomic REST Algorithm

Below we describe the algorithms that are executed by mediators, proxies and
clients. For clarity, we omitted some details. The symbols used in pseudocode
are as follows:

P a proxy or an URI of the proxy/server, depending on the context
tk a transaction’s unique identifier
op a tk’s single HTTP operation (or request) to be executed
resource a resource (defined by an URI) on which to execute the operation
〈xml〉 an operation (or request) payload
Mtk a set of mediators coordinating the execution of a transaction ttk
mtk

a leader mediator of a transaction tk
Otk a set of tk’s HTTP operations (or requests), of the form

〈op P/resource 〈xml〉〉
O

m
tk a set of tk’s HTTP operations (or requests), to be submitted for

execution by mediator m
R

m
tk a set of tk’s resources whose servers trust mediator m (we omit m

when the mediator is known from the context)
RP a set of resources to be marked as “transactional” at proxy P
r a fine-grained resource controlled by the Read/Write or Intention-

-to-{Read|Write} locks
res a result of operation (or request) execution

4.1 The Single Mediator’s algorithm

Algorithm 1 defines the mediator’s behaviour, assuming only one mediator in
the system (this corresponds to our current implementation of Atomic REST).
Later, we extend this algorithm to support many mediators.

When a mediator mtk receives a transaction tk from a client, it first extracts
all tk’s resources Rtk whose servers trust this mediator (lines 1-5). Then, it
tries to grab fine-grained locks on these resources atomically (lines 23-26). We
describe the locking mechanism used in Atomic REST below. If succeeded, the
mediator requests all proxies required to execute transaction tk, to set all their
resources required by tk into the “transactional” mode (lines 27-30). Otherwise,
it enqueues tk intomtk ’s First-In-First-Out queue of transactionsQ (lines 32-33).

Next, mediator mtk
synchronously sends the transaction tk’s HTTP requests

(or operations) 〈opi Pi/resourcei 〈xml〉i〉 to a corresponding proxy/server Pi for
execution, and collects the results (lines 7-8).

If some operation failed, e.g. due to the “503 Service Unavailable” error, all
tk’s operations executed so far must be withdrawn. Since, our system is intended
to be used with existing RESTful Web services that normally do not support
multiversioning of resources, all transaction operations modify resources in-place.
Thus, the only way to withdraw the operations that have already been executed
by a transaction is to compensate them (lines 9-19); below we explain it.

Finally, the locks on resources are released, non-conflicting transactions are
dequeued (line 20) and the composite result is returned to the client (line 21).

92 S. Kochman, P.T. Wojciechowski, and M. Kmieciak

Algorithm 1. A single mediator mtk
’s code.

1: receive 〈PUT mtk
/transaction/tk 〈{mtk

} Otk 〉〉: // a transaction from a client
2: return execute-transaction(tk,mtk

, Otk)
3:
4: function execute-transaction(tk,mtk

, Otk):
5: Rtk ← resources-of(Otk ,mtk

) // get resources whose servers trust this mediator
6: lock-resources(tk,mtk

, Otk , Rtk)
7: for all 〈opi Pi/resourcei 〈xml〉i〉 ∈ Otk , where i = 1..n and n = |Otk | do
8: resi ← 〈opi Pi/resourcei 〈xml〉i〉
9: if resi = error then
10: // opi failed - depending on the error, compensate opi or not
11: for all j = 1..i − 1 do
12: resj ← compensate 〈opj Pj/resourcej 〈xml〉j〉,
13: where resj ∈ {compensation-ok, compensation-failed}
14: end for
15: for all j = i+ 1..n do
16: resj ← compensation-ok // since opj (j > i) not executed yet
17: end for
18: end if
19: end for
20: unlock-resources(Rtk)
21: return {(1, res1), ..., (n, resn)}
22:
23: function lock-resources(tk,mtk

, Otk , Rtk):
24: // try to lock tk’s resources Rtk ; for clarity of pseudocode, semaphores are used
25: // but our implementation uses Read/Write and Intention-to-{Read|Write} locks
26: if atomically ∀rj ∈ Rtk semaphorej .P(rj) succeeded then
27: for all RPi ∈ Rtk , where i = 1..w do
28: // set “transactional” mode for tk’s resources RPi at proxy Pi

29: 〈PUT Pi/atomicrest/RPi 1〉
30: end for
31: else
32: Q.enqueue(tk,mtk

, Otk) // enqueque tk and wait till tk dequeued
33: lock-resources(tk,mtk

, Otk , Rtk)
34: end if
35:
36: function unlock-resources(Rtk):
37: for all RPi ∈ Rtk , where i = 1..w do
38: // unset “transactional” mode for tk’s resources RPi at proxy Pi

39: 〈PUT Pi/atomicrest/RPi 0〉
40: end for
41: for all rj ∈ Rtk do
42: semaphorej .V(rj) // unlock tk’s resource rj
43: end for
44: dequeue-trans() // dequeue non-conflicting transactions in a queue Q
45:
46: function dequeue-trans(), where Q = (t1,mt1 , Ot1); ... ; (tn,mtn , Otn), n = |Q|:
47: for all i = 1..l (l ≤ n) do
48: Q.dequeue(ti, mti , Oti), where
49: ∀a, b ∈ {1, ..., l} resources-of(Ota ,mta) ∩ resources-of(Otb ,mtb

) = ∅
50: end for

Batched Transactions for RESTful Web Services 93

Algorithm 2. Proxy Pi’s code.

1: receive 〈op Pi/resource 〈xml〉〉, where op ∈ {POST, PUT, GET, DELETE}:
2: if transactional-mode(resource) = 0 or (optionally) op = GET then
3: // resource not in a “transactional” mode or uncommitted read allowed
4: res ← 〈op Pi/resource 〈xml〉〉 // execute op by a server normally
5: else
6: // some transaction locked resource, pass op as a transaction to Pi’s mediator
7: (1, res) ← 〈PUT m/transaction/ 〈{m} {〈op Pi/resource 〈xml〉〉}〉〉
8: end if
9: return res

Resource locking. To simplify the pseudocode, we have used fine-grained
semaphores to block access to resources. However, in our implementation, we
use multigranularity locks [2] of four types: Read, Intention-to-Read, Write and
Intention-to-Write. The former two are used for GET and HEAD operations, while
the latter two for PUT, POST, and DELETE.

The Intention-to-{Read|Write} locks are acquired on “ancestor” resources of
the locked resources. For instance, consider a transaction containing an operation
GET http://www.service.org/books/medicine?author=foo. In this case, the
Intention-to-Read lock should be acquired both on http://www.service.org/

and http://www.service.org/books/ before the Read lock will be acquired on
http://www.service.org/books/medicine.

Since all locks of a subtransaction are taken by each mediator locally as a
single atomic operation, no deadlock can occur due to the locking order.

Compensation. To compensate an operation on some resource means to execute
a complementary operation on this resource. Transaction compensation could be
provided by a user or done automatically whenever possible. For the latter, the
following table presents REST/HTTP and complementary operations that are
used by Atomic REST for compensation (details omitted due to lack of space):

Request Compensating request

GET no compensation needed

PUT (modification) PUT

PUT (creation) DELETE

POST (creation) DELETE

DELETE PUT

4.2 The Proxy’s Algorithm

The Pi proxy (see Algorithm 2) simply receives HTTP requests, executes them,
and returns results. If any resource required by an operation op is in a “trans-
actional” mode, i.e. there exists some transaction that can access this resource
exclusively and op = GET, the operation cannot be directly executed by the
server at Pi. In such a case, the operation is forwarded to Pi’s trusted mediator

http://www.service.org/books/medicine?author=foo
http://www.service.org/
http://www.service.org/books/
http://www.service.org/books/medicine

94 S. Kochman, P.T. Wojciechowski, and M. Kmieciak

Algorithm 3. Client’s transactional code.

1: // get a set Mtk of all mediators required to execute Otk as a transaction
2: Mtk ← ∅
3: for all Pi ∈ servers-of(Otk) do
4: m ← 〈GET Pi/atomicrest/mediator〉
5: Mtk ← Mtk ∪ {m}
6: end for
7: // get the transaction’s unique ID tk and use any mediator m ∈ Mtk to execute tk

8: tk ← 〈POST m/transaction〉, where m ∈ Mtk

9: result ← 〈PUT m/transaction/tk 〈Mtk Otk〉〉

Algorithm 4. Mediator mi’s code (many mediators possible).

1: receive 〈PUT mi/transaction/tk 〈Mtk Otk〉〉:
2: // mtk ← mi, send transaction tk to all mediators using a total order broadcast
3: atomic-bcast(tk,Mtk , Otk) to all mediators in Mtk

4: // collect transaction tk’s partial results from all mediators and return to a client
5: while ∃m ∈ Mtk resulttk [m] = ∅ do
6: ()
7: end while
8: return resulttk
9:
10: receive atomic-bcast(tk,Mtk , Otk) from tk’s leader mediator mtk

:
11: // get transaction’s part that can be executed by this mediator
12: O

mi
tk

← get-my-part(mi, Otk)

13: res ← execute-transaction(tk, mi, O
mi
tk

)
14: send-result(tk, res) to mtk

15:
16: receive send-result(tk, res) from m // executed if mi is a leader (i.e. mi = mtk

)
17: resulttk [m] ← res

m that will execute it as a single-operation transaction (line 7). Otherwise, the
operation can be executed by the server as a normal HTTP request (line 4).
For efficiency, we allow uncommitted reads by non-transactional clients. If this
behaviour is not acceptable, the “or op = GET” must be removed (line 2).

4.3 The Client’s Algorithm

To execute a transaction (see Algorithm 3), the client first obtains a list of
mediators (lines 2-6) and then chooses one of them to get a transaction’s unique
ID and to pass the transaction to it for execution (lines 9-10).

4.4 The Many Mediators’ Algorithm

Algorithm 4 extends Algorithm 1 to support many mediators. Upon delivery of
a transaction tk from a client a mediator becomes a leader and broadcasts tk to

Batched Transactions for RESTful Web Services 95

all mediators that are required to execute it (including itself). For this, a total
order broadcast (also known as atomic broadcast) [4] is used. After getting tk,
each mediator extracts the part of tk that refers to resources accessible by the
mediator, and executes it (lines 10-14); we call each such a part a subtransaction.
The leader collects results and returns them to the client (lines 5-8, 16-17).

5 Properties

Below we discuss the isolation and atomicity properties that are guaranteed by
the Atomic REST algorithm (their definitions follow the ACID properties [2]).

5.1 Isolation

Below we prove that our algorithm satisfies isolation. In case of fatal failures
(defined in Section 5.2), the property can be guaranteed up to the fatal failure.

Lemma 1. All subtransactions executed by each mediator are isolated.

Proof. Each subtransaction is described by a set of resources. Since locks on the
resources are taken atomically and released after a subtransaction is finished,
no subtransactions sharing resources can be executed concurrently. This means
that they are executed sequentially, so they are isolated. Subtransactions that do
not share resources may be executed concurrently but they are isolated trivially.
From this we get that all subtransactions are isolated. �

Theorem 1. The Atomic REST algorithm guarantees transaction isolation.

Proof. Proof by contradiction. Let us assume that two transactions t and t′ are
not isolated. From Lemma 1, we get that for every mediator mi (mi ∈ M) all
subtransactions of t and t′ executed by mi (if any) are isolated. Thus, if t and t′

are not isolated, then there must exist two mediators m1 and m2, such that m1

first executes a subtransaction subtm1
of transaction t, then a subtransaction

subt′m1
of transaction t′, while m2 executes its subtransactions of transactions t′

and t in the opposite order. But this is not possible since by atomic broadcast
semantics, all mediators receive transactions in the same global order. Thus, ifm1

executes subt
m1
t followed by subt

m1

t′ , then m2 must execute subt
m2
t followed by

subt
m2

t′ . Moreover, non-transactional requests cannot modify resources processed
by a transaction since they are guarded by a “transactional” mode that is kept
during transaction execution. Hence by Lemma 1, it is possible to serialize all
transactions, which satisfies isolation. �

5.2 Atomicity

If there are no errors, transactions are executed atomically. If there are errors,
transaction atomicity is currently provided by the compensation mechanism.
Since automatic compensation of transaction operations is not always possible

96 S. Kochman, P.T. Wojciechowski, and M. Kmieciak

Fig. 3. Overhead induced by Atomic REST

(either due to HTTP-bound issues or application semantics), our system cannot
guarantee atomicity in all cases. This is acceptable since Atomic REST is no
more tolerant to failures than an average Web service that can fail at any time.
Therefore, in case of some failures, some transaction operations may or may not
have been executed or compensated; we call such failures fatal. Thus, the client
should always check the results returned by the system, and in case of some
error messages, execute a suitable action. For example, the client could repeat
transaction operations. For instance, the PUT, DELETE and GET methods are
idempotent methods, and so they can be repeated many times.

Implementing stronger semantics of atomicity would require significant
changes to the code of Web services, such as resource multiversioning and the
2PC (or 3PC) protocol for the mediator-server communication. Multiversioning
would allow transaction operations to be executed on shadow copies of resources,
made public on transaction commit and rejected on transaction abort. However,
we think that supporting existing Web services by Atomic REST compensates
the drawback of a weaker atomicity semantics. Moreover, we intend our transac-
tions to be a mechanism to increase expressiveness in Web programming, rather
than for implementing fault-tolerant Web services.

6 Validation

We define overhead value per an individual REST/HTTP request (or operation),
imposed by our transaction system, as α = Δ−Δmin

n (in seconds), where n is the
number of requests executed by a transaction, Δ is the elapsed time between
sending the first transaction request and receiving response to the last request,
and Δmin is the lower bound of transaction’s total processing time, computed
as Δmin = n ∗ δ (in seconds), where δ is the time of processing every request by
the server (in our tests we choose it to be a constant value of the sleeping time
before a server can accept another client request).

Batched Transactions for RESTful Web Services 97

In Figure 3 we show the result of an example validation test1. We can see
that while n is increasing the overhead time per request asymptotically reaches
a constant value. Thus, the total overhead time per transaction is linearly de-
pendant on the number n of transaction requests. We have used a least squares
method to compute the linear regression slope value, and obtained that the
overhead of Atomic REST is between 3.4 and 4 times larger than the overhead
of non-transactional client-server processing of the same REST/HTTP requests
(denoted as non-Atomic REST in Figure 3), when compared to a purely local
processing of these requests by the Web server.

7 Conclusion

The algorithms that we designed in this paper enabled us to develop a distributed
lightweight transaction system for REST that enjoys clean design, conformance
to REST constraints, support of existing Web services and transparency for
non-transactional clients. Moreover, validation results of our experimental single-
mediator implementation show that the overhead is acceptable.

Acknowledgments. This work has been partially supported by the Polish Ministry

of Science and Higher Education within the European Regional Development Fund,

Grant No. POIG.01.03.01-00-008/08.

References

1. Aguilera, M.K., Merchant, A., Shah, M., Veitch, A., Karamanolis, C.: Sinfonia:
A new paradigm for building scalable distributed systems. In: Proc. SOSP 2007
(2007)

2. Bernstein, P.A., Newcomer, E.: Principles of Transaction Processing. Morgan Kauf-
mann (2009)

3. Carlyle, B.: The REST statelessness constraint (June 2009),
http://soundadvice.id.au/blog/2009/06/13/#stateless

4. Défago, X., Schiper, A., Urbán, P.: Total order broadcast and multicast algorithms:
Taxonomy and survey. ACM Computing Surveys 36(4), 372–421 (2004)

5. Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine (2000)

6. Haridas, J., Nilakantan, N., Calder, B.: Windows Azure Table. Microsoft (2009)
7. IT-SOA. Atomic REST (2011), http://www.it-soa.eu/atomicrest
8. Marinos, A., Razavi, A., Moschoyiannis, S., Krause, P.: RETRO: A consistent and

recoverable RESTful transaction model. In: Proc. ICWS 2009 (July 2009)
9. Microsoft. Windows Azure - Team Blog, http://blogs.msdn.com/windowsazure

10. Musgrove, M.: (February 2009),
http://community.jboss.org/wiki/

TransactionalsupportforJAXRSbasedapplications

1 Configuration: Intel Xeon QuadCore X3230 @2.66GHz with 4MB cache and 4GB
RAM. Operating system: openSUSE 10.3 with Sun’s JRE 1.6.0

http://soundadvice.id.au/blog/2009/06/13/#stateless
http://www.it-soa.eu/atomicrest
http://blogs.msdn.com/windowsazure
http://community.jboss.org/wiki/TransactionalsupportforJAXRSbasedapplications
http://community.jboss.org/wiki/TransactionalsupportforJAXRSbasedapplications

98 S. Kochman, P.T. Wojciechowski, and M. Kmieciak

11. Musgrove, M.: Compensating RESTful Transactions (June 2009),
http://community.jboss.org/wiki/CompensatingRESTfulTransactions

12. OASIS. Web Services Atomic Transaction, Version 1.2 (February 2009)
13. Pautasso, C., Zimmermann, O., Leymann, F.: RESTful Web Services vs. ”Big”

Web Services: Making the Right Architectural Decision. In: Proc. WWW 2008
(2008)

14. Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly (2007)
15. Rotem-Gal-Oz, A.: Transactions are bad for REST (June 2009),

http://www.rgoarchitects.com/nblog/

2009/06/15/TransactionsAreBadForREST.aspx

16. Rotem-Gal-Oz, A., Bruno, E., Dahan, U.: Saga. In: SOA Patterns, ch. 5.4. Manning
Publications Co. (June 2007)

http://community.jboss.org/wiki/CompensatingRESTfulTransactions
http://www.rgoarchitects.com/nblog/2009/06/15/TransactionsAreBadForREST.aspx
http://www.rgoarchitects.com/nblog/2009/06/15/TransactionsAreBadForREST.aspx

A. Harth and N. Koch (Eds.): ICWE 2011 Workshops, LNCS 7059, pp. 99–108, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Secure Mashup-Providing Platforms -
Implementing Encrypted Wiring

Matthias Herbert, Tobias Thieme, Jan Zibuschka, and Heiko Roßnagel

Fraunhofer IAO,
Nobelstrasse 12,

70569 Stuttgart, Germany
{matthias.herbert,tobias.thieme,jan.zibuschka,heiko.rossnagel}

@iao.fraunhofer.de

Abstract. Mashups were not designed with security in mind. Their main selling
point is the flexible and easy to use development approach. The fact that
mashups enable users to compose services to create a piece of software with
new functionalities, integrating inputs from various sources, implies a security
risk. However, in many scenarios where mashups add business value, e.g.
enterprise mashups, security and privacy are important requirements. A secure
environment for the handling of potentially sensitive end user information is
needed, unless the user fully trusts the mashup-providing-platform (MPP),
which is unlikely for hosted enterprise mashups. In this paper we present a
proof-of-concept implementation which enables the secure usage of a mashup-
providing platform and protects sensitive data against malicious widgets and
platform operators.

Keywords: Secure mashups, security, mashup, enterprise mashups.

1 Introduction

Mashup technology has a clear benefit for both users and providers. The good
usability and flexibility of the mashup development process enables users to build
new services without requiring professional programming skills. They just have to
choose and wire up different services and widgets with the help of the mashup
platform. To fully leverage this advantage, especially small and medium enterprises
(SMEs) need to have their platforms hosted by a platform provider to avoid additional
system administration upkeep. However, both a hosted mashup platform (Mashup-
providing platform, MPP) and widgets within such a platform could intercept
sensitive user data. This lack of confidentiality is a barrier to the entrance of the
mashup technology in the enterprise environment.

We implemented a proof-of-concept demonstrator of a secure mashup platform
based on the approach described by Zibuschka et al. [1]. The authors propose an
architecture which secures the mashup’s users against a malicious platform or
widgets. The main benefit of this approach is that it requires neither a trusted third
party, nor substantial modifications of the mashup composition process. It also
suggests a way to have a client-side key generation in JavaScript without the steep
performance penalties associated with approaches such as [2].

100 M. Herbert et al.

The rest of this paper is structured as follows. We first present related work on
mashup-security in section 2. Based on this work we present our approach in section 3
and provide the implementation details in section 4. We discuss the benefits and
applications of our solution scenarios in section 5 and discuss our results in section 6
before we conclude our findings.

2 Related Work

To make our work more readable and readily comparable, we use the definitions from
Hoyer and Fischer [3], who define mashup as: a web-based resource that combines
existing resources be it content, data or application functionality, from more than one
resource by empowering the actual end-users to create and adapt individual
information centric and situational applications. They also define widgets as the
visual representations of aforementioned Web-based resources that are combined into
a mashup. Wiring is defined as communication between widgets within the platform,
and piping as the transfer of external resources into the platform via backend service.

Security in mashups has been investigated by several previous works. Hasan et al
[4] present a component controlling data flow within a mashup, using a ’Permit Grant
Service’ that acts on behalf of the mashup platform. Crites et al [5] introduce a
modified browser security model addressing some of the security shortcomings of
specifically mashups, while Jackson and Wang [6] describe a solution using the
existing browser origin policies. However, none of the systems offer protection versus
the platform itself. In the same vein, Keukelaere et al [7] propose a secure channel
communication model. We extend on their work, adding encryption to protect
confidentiality of the users’ information versus the MPP. Zarandioon et al [2] [8]
offer the most comprehensive approach to date, offering both a client-side identity
management providing data flow control as well as a single sign-on (SSO) solution.
However, it requires that each user administers a specific identity-providing server
outside the MPP, and understands a set of (non-trivial) mediating components. It also
requires that inter-widget (which are referred to as ’mashlets’) communication is
executed using specialized widgets, which is a counterintuitive modification of
mashup programming practices, threatening mashups’ main selling point, namely
their ease of modification by non-experts [1]. HTML 5 will offer cross-document
messaging, which potentially addresses integrity and confidentiality of
communication between components [7]. However, this requires browser support, and
will not be realistic in the next years [7], especially in enterprise scenarios, where
older browsers, especially Internet Explorer 6, are still widely used [9].

3 Concept

Our paper is based on Zibuschka et al. [1], who propose reversed identity based
encryption within a public-key-infrastructure to realize a secure MPP. Specifically, to
avoid the need of a Trusted-Third-Party inherent in identity based encryption, the
authors propose to let the users themselves act as the private key generators for
communication between widgets. The originally proposed system is based on
WebIBC [10], with a security model based on nested iFrames [7]. Widgets use the

 Secure Mashup-providing Platforms -Implementing Encrypted Wiring 101

generated private keys to communicate, sending encrypted messages through the
MPP. This idea reduces the amount of parties the user hast to trust, satisfying both the
business requirements stated in the introduction of this paper, as well as strong
security requirements in the vein of privacy-enhancing identity management [11].
However, Zibuschka et al. [1] only describe the theoretic concept in detail, and do not
give details of a proof-of-concept implementation. Our contribution aims to fill this
gap.

In contrast to their approach, we decentralize key generation by having each widget
in a mashup create its own set of keys within the user’s browser. This offers several
advantages over their solution. First, a key distribution from key generator to the
widgets, which in general offers a point of attack, is not necessary, as everybody
generates their own keys. Second, the individual keys are protected against
unauthorized access within each widget by the Same Origin Policy (SOP). The nested
iFrame model assures that each widget is loaded within its own domain, yet is still
able to communicate with the MPP and other widgets. This solution allows key
generation without any browser plug-ins [2] [3]. However, this approach requires a
high-performance JavaScript-implementation for the key generation.

We also use hybrid encryption instead of Combined-Public-Key-cryptography, as
we were unable to find a working implementation of CPK in JavaScript. We use RSA
[12] encryption to exchange the symmetric AES [13] session keys. A key exchange
takes place for each wiring the user defines in the wiring tool. Wiring is
unidirectional, meaning that if bidirectional communication between two widgets is
desired, two wirings have to be established. This enables the user to define services
that are only able to receive messages and not to send them.

Fig. 1. Architecture of the mashup providing platform (MPP)

Figure 1 shows the aspects of our architecture relevant to security. Alice and Bob
each generate their own set of keys. The public RSA keys are published to the MPP.
When Alice wants to send Bob a message, she uses his public RSA-key to encrypt her

Mashup Platform
mashup.com/mashup.html

Widget Alice
widget-a.com/widget.html#

Widget Bob
widget-b.com/widget.html#

Tunnel-iFrame
mashup.com/tunnel.html#

Tunnel-iFrame
mashup.com/tunnel.html#

AES RSA AES RSA

102 M. Herbert et al.

AES-key. Only Bob can decrypt Alice’s AES key, which will be used for the actual
communication.

We want the user to be able to use the mashup in a very intuitive way. Because of
this requirement we fully automated key generation within the widgets and bound the
key distribution to the wiring paths. During the initiation process of the mashup every
participating widget generates its own keys, with a public and a private RSA key for
the key exchange of symmetric AES session keys. The widgets send their public keys
to the MPP, which forwards them to every wired widget. All unwired widgets are not
able to read or manipulate the communication because of the SOP.

4 Implementation

For the proof-of-concept-implementation of our secure mashup platform we rely on
existing open source software and libraries. We use the Dreamface [14] mashup
platform as our MPP, which provides most common mashup functionalities, including
a wiring tool, user management and a drag and drop interface for the arrangement of
widgets.

Our approach requires reliable implementations of both asymmetric and symmetric
ciphers in JavaScript. A quick survey showed that there are a number of libraries that
implement symmetric algorithms, but only very few that implement asymmetric ones.
The complicated key generation procedures of ciphers such as RSA make asymmetric
schemes difficult to implement efficiently in an interpreted script language like
JavaScript.

The implementation of CPK presented in [10] turned out to be incomplete.
PidCrypt [15] provides a strong implementation of RSA in JavaScript, but also
requires a browser plug-in, which we want to avoid. The developers of Clipperzlib
[16] are working on an implementation of a public key cryptography system based on
elliptic curve cryptography, but describe their implementation as “still slow and
incomplete”. Therefore, we decided to use the JavaScript Cryptography Toolkit [17],
which provides several well-known algorithms. Among them is an implementation of
RSA that will not freeze the user’s browser during the time-consuming key
generation. The key generation is performed in a time frame ranging from a couple
dozen milliseconds to a few seconds, depending on the browser.

We use the standardized and efficient AES algorithm to encrypt the actual
messaging within the mashup. We chose the implementation of AES provided by the
Crypto-JS library [19] as it offers a compact interface, has a low performance
overhead, and only requires a single JavaScript file to be included.

For the implementation of our prototype we chose an incremental approach. We
began with the functions necessary to read from and write to the fragment identifier of
an iFrame and implemented the structure of three nested iFrames that forms the basis
for our secure mashup. Next, we integrated this structure into the Dreamface
framework. As Dreamface itself uses no frames that could be used as a point of
reference during communication, we had to assure that each message sent by a widget
was properly identified by the mashup. Communication from any widget to the

 Secure Mashup-providing Platforms -Implementing Encrypted Wiring 103

mashup platform is handled by a tunnel-page provided by the mashup platform. The
Widgets load this page on demand in an iFrame and include their message in the
fragment identifier of the page’s URL. The tunnel iFrame passes the message on to
the mashup platform. The mashup platform has no way of knowing which widget sent
the message, as all widgets use the same tunnel iFrame. Dreamface assures that all
widgets within a mashup have a unique name, even if they are instances of the same
widget class. Thus, we included the name of the widget with the message from the
widget to the mashup platform so the mashup platform knows which widget sent the
message and can handle it properly. This technique allows an impersonation attack if
a widget supplies the name of another widget in the mashup instead of its own.
However this attack can be thwarted by also including a random seed with each
message that only the mashup platform and the original widget know. An overview of
the mechanics of message transmission is given in figure 2. Upon clicking the “Send
message” link in the widget-iFrame, a test message is sent to the tunnel-iFrame and
displayed in an alert window. After the window is closed, the test message is
forwarded to the parent frame (representing the MPP) and displayed again.

Fig. 2. Message transmission in test UI

As vital elements of our architecture are located at the widgets, we implemented an
example widget class called “Alice” that was used to realize an “Alice & Bob”-type
communication scenario within a mashup. A widget consists of two parts: The actual
widget that is loaded within an iFrame and is located on the widget server, and a few
JavaScript functions that need to be implemented within the mashup platform to
display the widget (in our case this function loads the iFrame containing the actual
widget) and handle the messaging. The latter part is a concession we had to make due
to the architecture of Dreamface that assumes widgets are realized in JavaScript and
provided by the mashup platform. It is not part of our architecture and can be
neglected when a similar architecture is implemented within another mashup
platform.

Messages in plaintext can now be exchanged between two instances of our
“Alice”-widget class. In the next step, we integrated the cryptographic components

104 M. Herbert et al.

into our prototype, beginning with RSA to properly exchange the symmetric AES
key. As the key exchange within the mashup is done using the same messaging
mechanism also used for regular messages, we defined a protocol for these messages,
stating message type, message source and target, whether the message is encrypted
and of course the message itself. Figure 3 shows a screenshot of the simple
communication scenario. On top are the widgets “Alice” and “Bob” and below is a
test widget that visualizes the messages transmitted over the MPP is displayed.

Fig. 3. Test Widgets within Dreamface

The implementation of AES provided by the Crypto-JS library offers a compact,
easy to use interface. AES accepts any string as key, thus time-consuming key-
generation procedures aren’t necessary. In our prototype, we use the name of the
widget the key belongs to as identifier. An implementation using entirely random
generated keys will be included in a future version of our prototype. Usage of a
password-based key derivation function like PBKDF#2 is also a possibility.

We made several changes to the mashup platform to automate the key exchange.
All communication is encrypted with the AES key of the sending widget, which needs
to be distributed to all widgets acting as receiver. Thus, this key needs to be encrypted
with the public RSA key of any receiving widget during key distribution. This
requires a reversal of message flow, as usually messages are only sent from sender to
receiver, but not the other way round – if bilateral communication between two
widgets is required, two communication channels need to be defined; in both channels
the AES key created by the widget defined as sender will be used for encryption. We
implemented several functions to achieve reversal of message flow during key
exchange. Whenever a widget publishes its public RSA key, these functions iterate
over the communication channels the user defined via the wiring tool. If the widget is

 Secure Mashup-providing Platforms -Implementing Encrypted Wiring 105

defined as the receiver in at least one of those relations, the mashup platform forwards
the key to the widget defined as sender. This widget uses the key to encrypt its own
AES key and sends it to the widget that sent the RSA key. The key handler functions
forward each AES key only to the widget that created the RSA key, that is used to
encrypt the AES key. As a widget can be defined as the sending party in several
communication channels, this relation can’t be evaluated from the wiring. Correct
delivery of all keys is guaranteed as each message contains the name of the widget
sending it. When sending an encrypted AES key, the message just has to be
forwarded to the widget that sent the RSA key used.

5 Scenarios

We implemented two example scenarios to illustrate the functionality of our
prototype. These are the aforementioned simple communication scenario and a
micropayment scenario, which is shown in figure 4. In both scenarios users can either
use encrypted or non-encrypted communication. A special widget visualizes the
message flow as the mashup platform sees it.

Fig. 4. Micropayment scenario

The micropayment scenario shown in figure 4 further demonstrates the possibility
for MPPs to provide altogether new services to the customers that would be
impossible without secure mashup technology. With secure and encrypted
communication the MPPs are able to realize new products like the ‘money account -
widget’ shown in the second scenario. Service and widget providers could provide
payable services with a lot of functionalities and use these money widgets as a central
and secure way of payment. This offers the advantage that the user can use the same
widget as an interface to pay for multiple different services by various providers.
Neither does he need to enter his payment information with each widget separately, as

106 M. Herbert et al.

is the case with current payment solutions, nor does he have to trust forwarding
mechanisms that, for example, direct him from the online shop to his credit card or
micropayment provider and back again.

6 Discussion

We implemented a secure mashup-providing platform by combining existing open
source software and libraries. Our implementation uses a hybrid encryption model to
secure message exchange within the mashup. It offers the same usability as older,
insecure platforms. Key generation, key exchange and all encryption and decryption
procedures are automated and run in the background. There is no significant
difference in performance to existing MPPs. The user is not impeded in his use of the
mashup in any way, which is a clear advantage over other solutions. She does not
need to enter a master passphrase. The wiring process is the same as in similar,
insecure frameworks. Our secure MPP can be used on any current browser without
having to install plug-ins or additional software. Furthermore, it does not rely on a
trusted-third-party to ensure security and the users don’t have to register to additional
services to use the mashup.

As mentioned above we have chosen the open-source platform Dreamface as the
MPP for our proof-of-concept implementation, but our approach can be generalized.
In contrast to other work, our implementation is portable to other MPPs, like IBM
Mashup Center [18] or JackBe [19]. Nearly every MPP is able to integrate this
widget-based client-side encryption to provide a secure and privacy-friendly mashup
environment. The integration is manageable without difficult changes and has
potential to enable several new uses cases that require security for MPP’s increasing
their service spectrum and appeal.

One possible business scenario is implementing web applications offering
chargeable services to users, e.g. in the context of telecommunication providers.
These services can also be made available in form of widgets. The user entrusts such
a mashup with potentially sensible personal information, e.g. location or payment
details, the confidentiality of which needs to be ensured.

Another important use case is the enterprise environment, where companies could
expand their software with mashup technology. Especially in this case the sensitive
business data has to be protected. Our implementation of a secure mashup platform
allows the move towards pay-per-use and enterprise mashups while maintaining
security. It proves that mashup technology can be transferred to more security
sensitive business fields.

Our work has several limitations. The most prominent one is the potential of a man
in the middle attack that can be executed by the MPP. This is a clear disadvantage in
comparison to the solution proposed in [1], which mitigates this problem using CPK.
However, as to our knowledge no working JavaScript implementation of CPK exists,
such a solution is not feasible at the moment, but might be possible in the near future.
In the meantime several steps could be undertaken to mitigate this problem. One
possible solution would be to use certification schemes to ensure the authenticity and

 Secure Mashup-providing Platforms -Implementing Encrypted Wiring 107

integrity of the exchange keys. However this would also require the presence of
trusted third parties, which was one of the things we wanted to avoid to sustain the
paradigm of easy service composition. An alternative approach could be to visualize
the fingerprints of the exchanged public keys in each of the widgets. This would
enable users to spot a man in the middle attack due to inconsistencies in the
fingerprints. However, this approach does require users that are at least partially
familiar with the basic functionality of asymmetric encryption. According to [18], this
might be too much to expect. Even if both of these approaches are not feasible there is
still some hope that such an attack would be spotted in an open source environment.

7 Conclusion

We presented a proof-of-concept implementation enabling the secure usage of a
mashup-providing platform, protecting sensitive data against malicious widgets and
platform operators. We gave the design rationale, implementation details, and
discussion of merits and limitations including possible application scenarios.
Benchmarking of several possible approaches against each other is in process, but the
first results from the proof-of-concept presented here are very encouraging.

Acknowledgments. This work was supported by the German Federal Ministry of
Education and Research (BMBF) under Grant Number 01BS0824 (COCKTAIL).

References

1. Zibuschka, J., Herbert, M., Roßnagel, H.: Towards Privacy-Enhancing Identity
Management in Mashup-Providing Platforms. In: Foresti, S., Jajodia, S. (eds.) Data and
Applications Security and Privacy XXIV. LNCS, vol. 6166, pp. 273–286. Springer,
Heidelberg (2010)

2. Zarandioon, S., Yao, D., Ganapathy, V.: OMOS: A Framework for Secure Communication
in Mashup Applications. In: Proceedings of the 2008 Annual Computer Security
Applications Conference, pp. 355–364. IEEE Computer Society (2008)

3. Hoyer, V., Fischer, M.: Market Overview of Enterprise Mashup Tools. In: Bouguettaya,
A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 708–721. Springer,
Heidelberg (2008)

4. Hasan, R., Winslett, M., Conlan, R., Slesinsky, B., Ramani, N.: Please Permit Me:
Stateless Delegated Authorization in Mashups. In: Proceedings of the 2008 Annual
Computer Security Applications Conference, pp. 173–182. IEEE Computer Society (2008)

5. Crites, S., Hsu, F., Chen, H.: OMash: enabling secure web mashups via object abstractions.
In: Proceedings of the 15th ACM Conference on Computer and Communications Security,
pp. 99–108. ACM, Alexandria (2008)

6. Jackson, C., Wang, H.J.: Subspace: secure cross-domain communication for web mashups.
In: Proceedings of the 16th International Conference on World Wide Web, pp. 611–620.
ACM, Banff (2007)

7. Keukelaere, F.D., Bhola, S., Steiner, M., Chari, S., Yoshihama, S.: SMash: secure component
model for cross-domain mashups on unmodified browsers. In: Proceeding of the 17th
International Conference on World Wide Web, pp. 535–544. ACM, Beijing (2008)

108 M. Herbert et al.

8. Zarandioon, S., Yao, D., Ganapathy, V.: Privacy-aware identity management for client-
side mashup applications. In: Proceedings of the 5th ACM Workshop on Digital Identity
Management, pp. 21–30. ACM, Chicago (2009)

9. Leyden, J.: One in five workers still clinging to IE6 - The Register,
http://www.theregister.co.uk/2010/08/19/zscaler_web_security
study/

10. Guan, Z., Cao, Z., Zhao, X., Chen, R., Chen, Z., Nan, X.: WebIBC: Identity Based
Cryptography for Client Side Security in Web Applications. In: International Conference
on Distributed Computing Systems, pp. 689–696. IEEE Computer Society, Los Alamitos
(2008)

11. Hansen, M., Berlich, P., Camenisch, J., Clauß, S., Pfitzmann, A., Waidner, M.: Privacy-
enhancing identity management. Information Security Technical Report 9, 35–44 (2004)

12. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and
public-key cryptosystems. Commun. ACM 21, 120–126 (1978)

13. Rijmen, V., Daemen, J.: The Design of Rijndael: AES. In: The Advanced Encryption
Standard. Springer, Berlin (2002)

14. Dreamface: DreamFace Interactive,
http://www.dreamface-interactive.com/

15. Versaneo GmbH: pidCrypt - pidder’s JavaScript crypto library,
https://www.pidder.com/pidcrypt/

16. Solario, G.C., Barulli, M.: Clipperzlib Javascript Crypto Library,
http://sourceforge.net/projects/clipperzlib/

17. Oka, A.: JavaScript Cryptography Toolkit,
http://ats.oka.nu/titaniumcore/js/crypto/

18. IBM: IBM Mashup Center,
http://www-142.ibm.com/software/products/de/de/mashupcenter/

19. JackBe: JackBe Mashup Editor and Composer,
http://www.jackbe.com/products/composers.php,

A Conceptual Framework for Linked Data

Exploration

Alessandro Bozzon, Marco Brambilla, Emanuele Della Valle,
Piero Fraternali, and Chiara Pasini

Politecnico di Milano, Dipartimento di Elettronica e Informazione
P.za L. Da Vinci, 32. I-20133 Milano - Italy

{name.surname}@polimi.it

Abstract. An increasing number of open data sets is becoming avail-
able on the Web as Linked Data (LD), many efforts has been devoted to
show the potential of LD applications from the technical point of view.
However, less attention has been paid to the analysis of the information
seeking requirements from the user point of view. In this paper we exam-
ine the Information Seeking Process and we propose a general framework
that address all its requirements in the context of LD-based applications.
We support seamless integration of both Linked and non-Linked data
sources and we allow designers to define complex, rank-aware result con-
struction and exploration rules based on rank aggregation and multiple
many-to-many data navigation.

1 Introduction

An increasing number of data sets is becoming available on the Web. In this
trend, Linked Data (LD) plays a central role thanks to initiatives such as the
W3C Linked Open Data (LOD) community project1 that are fostering LD best
practice adoption.

With the growth of the available corpus of Web data, the need arises for
effective mechanisms targeted to human users for searching, exploring, and con-
suming such data. The Semantic Web Community has largely investigated this
need from a technical point of view, but limited effort was devoted to consider-
ing the full set of requirements of an Information Seeking Process (ISP)[15,14],
which classifies the activities performed by search users into a well defined set of
information seeking stages, i.e. initialization, selection, exploration, formulation,
collection, and presentation. Indeed, whilst LD is intrinsically well shaped for
coping with information exploration and navigation, no existing works try to
apply the full extent of the ISP requirements to the LD domain.

In this paper, we propose a conceptual framework that covers all the stages
and requirements of the ISP in the LD setting. The approach is general enough
to cover exploration of any kind of source, including deep web sources, search
engines, LD sources, and proprietary repositories.

1 http://esw.w3.org/SweoIG/TaskForces/CommunityProjects/LinkingOpenData/

A. Harth and N. Koch (Eds.): ICWE 2011 Workshops, LNCS 7059, pp. 109–118, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://esw.w3.org/SweoIG/TaskForces/CommunityProjects/LinkingOpenData/

110 A. Bozzon et al.

Our approach introduces three additional innovative contributions with re-
spect to the existing solutions: 1) Seamless integration of both Linked and non-
Linked data sources. Exploration paths upon data sources can be defined using
both exact matching on IRIs within LD boundaries, and exact or approximate
matching on literals within LD boundaries and on generic data types outside
the LD cloud; 2) Multiple many-to-many navigation of data. Results can be
built in a structured way by combining several concepts and allowing naviga-
tion of multiple many-to-many associations at a time; 3) Support of complex
rank-aware result construction and exploration. Composite results can take into
account ranking and/or ordering of result parts coming from different sources,
by supporting aggregated ranking functions.

The rest of the paper is organized as follows: Section 2 compares our work to
other proposals; Section 3 presents a running example; Section 4 describes our
general-purpose approach; Section 4.3 discusses the two application scenarios
of free data exploration and vertical application in the context of the running
example; Section 5 describes our implementation experience; and Section 6 con-
cludes.

2 Related Work

In the past decades, several works proposed model for the characterization of the
information seeking process [15,14]. In [14] the ISP model is characterized by 6
information seeking stages: 1) Initialization recognizes the information need and
marks introduction of a problem; 2) Selection aims at identifying the general
area for investigation; 3) Exploration is about extending the user understanding
of the field and to relate it with what is already known; 4) Formulation makes a
focused perspective on the topic emerge; 5) Collection gathers information and
allows one to select interesting findings and to export them; and 6) Presentation
appropriately renders the collected information.

In the context of Linked Data, we can identify three classes of applications:
data exploration, concept exploration and vertical applications. Applications for
Data Exploration typically leverage the graph representation of data to allow
schema-free navigation of the existing information, and they typically apply
link-traversing strategies, with no support for search, filtering, data re-shaping
or alternative visualizations. Known example of Data Exploration are Linked
Data browsers like Tabulator [3] and Marble [2].

Concept Exploration applications aim at allowing users to explore a dataset
through concepts, their properties, and their relationships, by means of SPARQL
endpoints and rich visual interfaces. They also provide data analytics, aggrega-
tion functionalities, basic visualization, filtering, faceted search, and pivoting.
Parallax [12] and gFacet [11] are excellent solutions that cover formulation, col-
lection and presentation processes of ISP. Parallax also provides support for
expansion with related topics, where the available relationships are the ones
pre-defined in the underlying collection. The selection and formulation stages

A Conceptual Framework for Linked Data Exploration 111

are well covered by tools like Sig.ma [17], which provides end-users with search
tools for Linked Data. A key distinguish feature of Sig.ma is the incremen-
tal display of data while relevant sources are discovered, which enhances the
user experience by highlight data provenance. Explorator [8] provides extensive
functionalities for the visually-aided composition of queries, and result filtering.
Other noteworthy examples of visual exploration of linked data are DERI Pipes
[16], RKB Explorer [9] and VisiNav [10].

Other solutions, like Microsoft Pivot [1], have been adapted to Linked Data
browsing too [18], thus letting the user explore results by zooming, panning, or
pivoting. Our proposal is located in the same application space as the above men-
tioned tools, sharing several key features such as native support for incremental
exploration, data visualization, data relationships highlighting and navigation.
However, only RKB Explorer provides support for the initialization and selection
steps, whereby only Explorator, Pivot, VisiNav support pivoting.

A richer support to ISP is available in vertical LD-based applications, which
exploit a well-defined and constrained set of classes and relationships in a schema
to provide a predefined data exploration and rich interaction experience that
usually comprises: customized interaction features, integration with non LD,
and simultaneous visualization of result sets produced by several queries, along
with their relationships. The BBC’s Semantic Music Project [13]2 is an example
of domain specific LD based application. Although this kind of LD-based appli-
cations are targeted to a specific domain of interest, their development would
have benefited from a general purpose approach like the one proposed in this
paper.

3 Running Example

To provide a better understanding of our approach, the rest of the paper will
be discussed upon a running example targeted to the exploration of scientific
publications. This is a non trivial domain where multiple class of applications
can be built on the same data — e.g., recruiting of researchers, assessment of the
quality level of a scientific venue, search for bibliographic references on a topic,
etc. The required information is not available in a single repository, thus requiring
the integration of different data sources. Some of these sources expose LD, while
others expose semi-structured information. A sub-set of authors, papers and
conferences are available, for instance, on DBLP (and thus amenable for queries
through SPARQL end-points). Papers’ citations and conferences’ impact factors
can be retrieved through page scraping3 from a Web application like CiteSeer.
Data about European research projects are available in Cordis database which
is exposed as a SPARQL end-point.

2 http://www.bbc.co.uk/music/artists
3 We exploit YQL (Yahoo Query Language - http://developer.yahoo.com/yql/)
as a middleware infrastructure for page scraping.

http://www.bbc.co.uk/music/artists
http://developer.yahoo.com/yql/

112 A. Bozzon et al.

SELECT ?url ?title
WHERE {

 ?url dc:title ?title
 FILTER regex(?title, "$topicInput", "i") .

}
group by ?url

CONFERENCE - DBLP (SPARQL)

select a.content, em.content from html
where url="http://citeseerx.ist.psu.edu/stats/venues?y=$year"

and
 xpath='/html/body/div[4]/div/div[2]/ol/li/span'

and
 a.contente=

IMPACT FACTOR - CITESEER (YQL)

Fig. 1. An example of SPARQL and YQL queries involved in a pipe join

4 Our Approach

Our framework consists of a two-phase application life-cycle, comprising configu-
ration, which is oriented to the application specification, and consumption, which
is oriented toward the actual exploration of data sources within the boundaries
of the existing data relationships and/or within the navigation paths defined at
configuration time, possibly using the defined data visualization paradigms and
interaction mechanisms.

4.1 Application Configuration

In the configuration phase, a domain expert (or a technical stakeholder of the
application), knowledgeable about the information need and the relevant data
sources, defines some aspects of the application behavior.

In the most general case, the configuration phase requires the definition of
a comprehensive exploration template, an abstract application model that de-
fines the set of data sources consumed by the application, the set of exploration
targets, each one representing a distinct concept in the data sources (either de-
fined intensionally —in terms of constraints on properties — or extensionally,
through enumeration of concepts), a set of input, output and ranking properties
for each exploration target (where rankings denote the function that impose an
order on the retrieved data), and the set of relationships on pairs of exploration
targets, based on predicates upon input and output properties ; such predicates
can traverse existing relationships among concepts, or be applied on value-based
property matching (e.g., exact matching, string similarity, spatial approximate
matching, temporal approximate matching, and so on). Custom relationships
are calculated at run-time by means of orchestration of queries over distributed
(Linked and not-Linked) data sources. The actual sequence of queries depends on
the exploration pattern, on the access restrictions imposed by the data sources,
on the input-output parameters dependencies existing between the involved ex-
ploration targets (some output parameters of the second exploration target are
matched to some input parameters of the first one), and on the join selectivity
statistics that can be extracted from the actual joined data. The orchestration
may comprise two join operators over the results of queries: parallel join and
pipe join.

Figure 1 shows an example of pipe join that involves a Linked and a not-
Linked data source, to associate all the conferences about topic given as input

A Conceptual Framework for Linked Data Exploration 113

with their impact factor: the ?title output value of each instance result from the
leftmost query is provided as input to the rightmost query ($titleInput).

To enable advanced visualization and interaction features, the template can
provide the domain and range values for the output properties to visualize,
and the list of advanced interaction mechanisms allowed for the application; for
instance grouping and clustering criteria that can be applied on the extracted
result set to help users exploring the retrieved data.

We stress that all the above configurations can be manually or automatically
defined. Our approach makes no assumption on the actual origin of the appli-
cation configurations. In case of manual configuration, the configuration phase
requires higher domain and technical expertise than the consumption phase (be-
cause the user must be aware of the data sources, the meaning of the exploration
options, and the presentation options). However, we point out that the configu-
ration step can be performed in a declarative, visually-aided way.

In general, orchestration and query generation exploit parametric query tem-
plates in the native query language supported by the data source. In case of
non linked data, the query template must be specified by the registrar when
declaring the data source in the repository.

4.2 Application Consumption

The application consumption phase is based on the approach presented in [5],
which proposes a conceptualization of exploration primitives for addressing
“search as a process”.

Upon query submission, the system invokes the involved data sources, pro-
ducing a result set of joined results (ranked according to a given function) which
defines the initial user concepts space, shown to the user according to her data
visualization choices (e.g., tabular representation, geographic map, charts, etc.).
The result set conforms to an evolving result schema, which specifies projected
attributes, ranking attributes, and allowed relationships. A set of interaction
primitives enable manipulation, exploration and expansion of search results, thus
allowing for continuous evolution of the query and of the result set itself. For
instance, the system presents a first batch of results, and users browse them;
if users are not satisfied, a more operation calculates additional results (within
the currently defined concepts) by fetching new data and combining them, also
with the previous results. The re-rank operation re-orders the result set accord-
ing to a different ranking function; filtering, grouping and clustering allow the
user to re-shape the current information space to better suite its view point on
the retrieved data. At this point, the user can select the most relevant result
instances and continue with the exploration by executing an Expand operation
that traverse one of the available relationships of the selected results

After that, the user submits another object query, possibly by providing addi-
tional selection criteria; the system will then retrieve connected object instances
and form a “combination” with the objects retrieved at the preceding steps. At
any stage, users can “move forward” in the exploration, by adding a new class
to the query, or “move backward” (backtrack), by excluding one of the classes

114 A. Bozzon et al.

ConferencePaper

[IN] Title

[IN] Year

[OUT] ConfURI

[OUT] PaperURI

[OUT] PaperTitle

DBLP@l3s

User Inputs

Conference

[IN] ConfURI

[OUT] ConfTitles

DBLP@l3s

YearTitle
Conference

Impact Factor

[IN] Year

[IN] ConfTitle

[OUT] ConfFactor

CiteSeer

Authors

[IN] PaperURI

[OUT] AuthorNames

[OUT] AuthorURIs

DBLP@l3s

Papers of same

Conference

[IN] ConfURI

[OUT] PaperURI

[OUT] PaperTitle

DBLP@l3s

Journal Papers of

same Author

[IN] AuthorURI

[OUT] JournalTitle

[OUT] PaperURI

[OUT] PaperTitle

[OUT] Year

DBLP@l3s

Number of Citations

[IN] PaperTitle

[OUT] NumCitations

CiteSeer

Participations to EU

Research Projects

[IN] AuthorName

[OUT] ProjectTitle

[OUT] LeaderName

[OUT] MainContractor

[OUT] ProjectGoal

Cordis@EC

ConfURI
ConfTitle

ConfURI

PaperTitle

Author
Name

Author

URI
PaperURI

Author
(Optional)

Join based on exact match (URI)

Join based on label match (value)

User driven navigation (expand)

User Input X

Legend

param

param

Fig. 2. Visual representation of the exploration template for a vertical running example
application

from the query, or by “unchecking” some of their previous manual selections of
relevant object instances.

4.3 Our Approach at Work on the Running Example

To make our approach more concrete, we describe its application in the context
of the running example presented in Section 3.

We design a vertical application, where the user may submit a (part of a)
conference paper title, the year of publication, and possibly one or more authors;
as a response, the systems extracts for him the list of matching papers, the
corresponding authors and conferences, the number of citations of each paper,
and the impact factor of the conference, ordered according to the importance of
the paper, expressed as function of the number of citations and of the conference
relevance. To get a better overlook on the scientific relevance of the retrieved
publication, the user may then decide to extend the results by navigating toward
other papers published in the same conference, the journal papers of each author,
and the European research projects the authors have been responsible for. Some
of the information required by the application, i.e. the conference impact factor,
is not available on the original LD sources, and it therefore needs to be extracted
directly from the Web.

Figure 2 depicts an explanatory visual representation of the exploration
template for such an application. In the example we assume that the initial
results comprise information about combinations of: Conference Paper, Con-
ference, Authors, Conference Impact Factor, and Number Of Citations. Custom

A Conceptual Framework for Linked Data Exploration 115

Fig. 3. Overview of the toolsuite for application configuration

relationships include Participation To EU Projects, Papers Of Same Conference,
and Journal Papers Of Same Author. Some of these concepts are joined based on
the navigation of IRI-based relationships, while others are joined based on literal
comparison according to a predicate (e.g., string similarity, spatial distance, or
others, based on the attribute type). The result is a set of concept combinations,
ordered by the combination ranking function, which, in this case, rewards highly
cited papers published in relevant conferences.

Indeed, the Initialization and Selection stages of the ISP process are extremely
important for such an application, as the initial problem requires the definition of
an exploration starting point that comprises a ranked combinations of concepts.
The selection can be performed by means of appropriate visual aid tools, like
the ones depicted in Figure 3.

The Exploration stage is also stressed, as the application includes several nav-
igation steps to expand the retrieved information space. Likewise, the Formula-
tion stage is enabled by the availability of filtering and clustering conditions.

Finally, the Presentation stage can be enabled by alternative visualizations of
the same result set, which can stress the visual properties of the rendered outputs
according to the targeted purposes. objects that constitute it are highlighted.

5 Implementation Experience

This section describes the software prototype that implements our framework for
LD exploration applications. That showcases our approach by enabling the exe-
cution of (1) queries over selected data sources, (2) joins between queries results,
and (3) data manipulation primitives for content ranking, visualization and ex-
ploration. The prototype is built upon a three-tier, distributed Web architecture
(Figure 5), and it features rich and fluid user interactions (as described in Sec-
tion 4.2) by means of asynchronous server communications and client-side data
storage, processing and manipulation. Beside improving the user experience, a
rich-client architecture provides, as additional benefit, the implementation of a

116 A. Bozzon et al.

Fig. 4. User Interface prototype: set of concept tables (Paper, Conference, and Author
tables) and ranked list of combinations (numbered list at the bottom of the screenshot)

Browser Controller

Table
Vis

Query

MemCached

GoogleGears
DB Conference

Index

Paper Citation

DBLP

RDK Cordis

D
ata S

ervices

Query

Expand

More

Visualize

O
rchestrator

Local Data Management

Atom
Vis

Server

Fig. 5. System architecture overview

light-weight scalable REST server architecture, which naturally supports node
distribution and replication.

The user interface (Figure 4) is an HTML5 application written according to
the Model-View-Controller design pattern and exploiting the libraries jQuery
and JavascriptMVC. The UI has been designed to be dynamically instantiated
at run-time, based on the application configuration files.

The server-side is designed as a pluggable orchestration system featuring four
kinds of executable nodes: query nodes, for query execution, split nodes, to trigger
the parallel execution of queries, join nodes, to perform join operations over
query results, and data transformation nodes, devoted to the manipulation of
(joined) query results. Query and data transformation nodes provide standard
interfaces for configuration management, invocation and result manipulation; the
definition of the business logic required to interact with custom data sources is
therefore left to the application configuration, while the framework is responsible
to grant its correct execution. To reduce latency time, we adopted a distributed
memory object caching system (MemCached) to store information about user
interactions and to hold the results of query and join executions.

The server-side supports query formulation, evolution and storage. Each query
is uniquely identified in the orchestrator and can be re-executed at any mo-
ment. Each result set produced by a query execution is also identifiable and

A Conceptual Framework for Linked Data Exploration 117

retrievable. A prototype and a video based on the running example are published
at: http://www.search-computing.org/demo/ui. The system is now undergoing
a major implementation effort, and alternative application scenario has been
recently demonstrated [6,4].

6 Conclusions

In this paper we presented a conceptual framework for the exploration of Linked
(and non-Linked) Data that cover all the phases of the ISP process. The pro-
posed join-based approach for the creation of custom relationships saves the user
several exploratory link navigations between concepts and our tunable global
ranking function provides a customizable ranking of combinations of objects.
Furthermore, in our work exploration is not confined to data aggregated in one
repository, but, thanks to value-based joins, can span linked data and arbitrary
data sources wrapped as Web services.

Acknowledgements. This research is part of the Search Computing (SeCo)
project[7], funded by the ERC IDEAS program (www.search-computing.org).

References

1. Microsoft pivot: http://getpivot.com/
2. Becker, C., Bizer, C.: Workshop about Linked Data on the Web (LDOW2008). A

location-enabled linked data browser. In: Procedings of the 1st Workshop about
Linked Data on the Web, LDOW 2008 (2008)

3. Berners-lee, T., Chen, Y., Chilton, L., Connolly, D., Dhanaraj, R., Hollenbach,
J., Lerer, A., Sheets, D.: Tabulator: Exploring and analyzing linked data on the
semantic web. In: 3rd Int.l Semantic Web User Interaction Ws, SWUI 2006 (2006)

4. Bozzon, A., Braga, D., Brambilla, M., Ceri, S., Corcoglioniti, F., Fraternali, P.,
Vadacca, S.: Search computing: multi-domain search on ranked data. In: SIGMOD
Conference, pp. 1267–1270 (2011)

5. Bozzon, A., Brambilla, M., Ceri, S., Fraternali, P.: Liquid Query: Multi-domain
Exploratory Search on the Web. In: WWW 2010: 19th International Conference
on World Wide Web, pp. 161–170. ACM Press, New York (2010)

6. Bozzon, A., Brambilla, M., Ceri, S., Fraternali, P., Vadacca, S.: Exploratory search
in multi-domain information spaces with liquid query. In: WWW (Companion Vol-
ume), pp. 189–192 (2011)

7. Ceri, S., Brambilla, M. (eds.): Search Computing. LNCS, vol. 5950. Springer, Hei-
delberg (2010)

8. de Araújo, S.F.C., Schwabe, D.: Explorator: a tool for exploring rdf data through
direct manipulation. In: LDOW (2009)

9. Glaser, H., Millard, I., Jaffri, A.: RKBExplorer.com: A Knowledge Driven Infras-
tructure for Linked Data Providers. In: Bechhofer, S., Hauswirth, M., Hoffmann,
J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 797–801. Springer,
Heidelberg (2008)

10. Harth, A.: VisiNav: Visual Web Data Search and Navigation. In: Bhowmick, S.S.,
Küng, J., Wagner, R. (eds.) DEXA 2009. LNCS, vol. 5690, pp. 214–228. Springer,
Heidelberg (2009)

http://getpivot.com/

118 A. Bozzon et al.

11. Heim, P., Ertl, T., Ziegler, J.: Facet Graphs: Complex Semantic Querying Made
Easy. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H.,
Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part I. LNCS, vol. 6088, pp. 288–302.
Springer, Heidelberg (2010)

12. Huynh, D.F., Karger, D.R.: Parallax and companion: Set-based browsing for the
data web. Technical report, Metaweb Technologies Inc. (2009)

13. Kobilarov, G., Scott, T., Raimond, Y., Oliver, S., Sizemore, C., Smethurst, M.,
Bizer, C., Lee, R.: Media Meets Semantic Web – How the BBC Uses DBpedia
and Linked Data to Make Connections. In: Aroyo, L., Traverso, P., Ciravegna, F.,
Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl,
E. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 723–737. Springer, Heidelberg (2009)

14. Kuhlthau, C.C.: Inside the search process: Information seeking from the user’s
perspective. Journal of the American Society for Information Science 42(5)(5),
361–371 (1991)

15. Marchionini, G.: Exploratory search: from finding to understanding. Commun.
ACM 49(4), 41–46 (2006)

16. Phuoc, D.L., Polleres, A., Hauswirth, M., Tummarello, G., Morbidoni, C.: Rapid
prototyping of semantic mash-ups through semantic web pipes. In: WWW, pp.
581–590 (2009)

17. Tummarello, G., Cyganiak, R., Catasta, M., Danielczyk, S., Delbru, R., Decker,
S.: Sig.ma: live views on the web of data. In: WWW 2010: 19th International
Conference on World Wide Web, pp. 1301–1304. ACM, New York (2010)

18. Workbench, I.: http://iwb.fluidops.com/pivot

http://iwb.fluidops.com/pivot

A. Harth and N. Koch (Eds.): ICWE 2011 Workshops, LNCS 7059, pp. 119–126, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Support for Reusable Explorations of Linked Data in the
Semantic Web

Marcelo Cohen and Daniel Schwabe

Pontifical Catholic University of Rio de Janeiro
R. M. S. Vicente 225

Gávea, Rio de Janeiro, RJ, Brazil
mcohen21@gmail.com, dschwabe@inf.puc-rio.br

Abstract. The Linked Data cloud growth is changing current Web application
development. One of the first steps is to determine whether there is information
already available that can be immediately reused. We provide an environment
which allows non-technically savvy users, but who understand the problem do-
main, to accomplish these tasks. They employ a combination of search, query
and faceted navigation in a direct manipulation, query-by-example style inter-
face. In this process, users can reuse solutions previously found by other users,
which may accomplish sub-tasks of the problem at hand. It is also possible to
create an end-user friendly interface to allow them to access the information.
Once a solution has been found, it can be generalized, and optionally made
available for reuse by other users.

Keywords: RDF, exploratory search, exploration, ontology, semantic web,
reuse, interface, set-based navigation.

1 Introduction

The availability of Linked Open Data in the WWW has increased tremendously1.
Currently, when building a new application, it is becoming increasingly common to
first explore available data that can be leveraged to enhance and complete one’s own
data to provide the desired functionality. The BBC Music website2 is one visible ex-
ample of this approach, combining MusicBrainz and DBPedia with their own data.

Even though it is engineered to be processed by programs, it is still common that
human beings need to explore these datasets, especially when they are previously
unknown. In such cases, experts typically explore the repository to make sense out of
the available data, to eventually be able to formulate queries that will support their
tasks. Existing interfaces range from basic RDF browsers such as Tabulator3 , Zitgist

1 http://linkeddata.org
2 http://www.bbc.co.uk/music
3 http://www.tabulator.org/

120 M. Cohen and D. Schwabe

data viewer 4 , Marbles 5 , ObjectViewer 6 and Openlink RDF Browser 7 , to query
generators such as NITELIGHT [9] and iSPARQL8, to faceted browsers [8][3] and
set-based interfaces [4].

In previous work [2], we presented Explorator, a model for representing informa-
tion processing by users in exploratory tasks, and its associated tool, which provides a
browser interface supporting this model. Explorator is based on the metaphor of direct
manipulation of information in the interface, with immediate feedback of user actions.

Our experience with Explorator [1] has shown that to be effectively used, it is ne-
cessary for users to understand the RDF model. Even for these users, once a solution
was found, it was not possible to generalize it, and to save it for reuse later. These
two mechanisms are essential to enable a community of users around datasets of in-
terest, so that more experienced users can find and share solutions with less expe-
rienced ones. Furthermore, it is desirable to provide an end-user facing interface that
hides the underlying data and operations, and has the look-and-feel of a traditional
web application.

In this paper we present RExplorator9, a significant extension of Explorator that al-
lows

1. Parameterized interlinked operations, forming a graph of operations;
2. Saving these graphs for reuse;
3. The user to define new operators;
4. The user to define end-user friendly interfaces.

In the remainder of this paper, section 2 provides a running example, section 3 describes
RExplorator, section 4 discusses evaluation, and section 5 draws some conclusions.

2 Summary of Explorator and a Running Example

2.1 Summary of Explorator

Explorator is an environment that allows users to explore a set of RDF repositories by
direct manipulation of its contents, following a set-based metaphor. The user starts by
either executing a full-text search, or by executing pre-defined queries (e.g., “All RDF
Classes” or “All RDF Properties”). It is also possible to simply take a URI and
de-reference it. In all cases, the results are always sets of triples.

The user explores the repositories by executing operations that take as operands
sets of resources, and return new sets. The usual set operations, union, intersection
and difference are available. In addition, there is the SPO operator, which corresponds
to a match operation over <s, p, and o> triple patterns (e.g., <s, *, *>, <s, p, *>, for
given s and p values, which are URIs). This match is executed against all enabled
RDF triple repositories. Thus, <s, *, *> corresponds to the SPARQL query

SELECT ?s ?p ?o WHERE { ?s ?p ?o. Filter (?s = s)} .

4 http://dataviewer.zitgist.com/
5 http://beckr.org/marbles
6 http://objectviewer.semwebcentral.org/
7 http://demo.openlinksw.com/rdfbrowser/index.html
8 iSparql can be accessed at http://demo.openlinksw.com/isparql/
9 Available at http://www.tecweb.inf.puc-rio.br/rexplorator

 Support for Reusable Explorations of Linked Data in the Semantic Web 121

In reality, the SPO operator has been defined to operate on sets of resources instead of
individual ones, by taking the union of the triples resulting from individual match
operations as described above.

Since each new operation takes its parameter from existing sets, the end result is a
graph of inter-related operations, where the inputs of one are outputs of others. This is
analogous to an Excel spreadsheet, where each cell has formulas that reference the
value of other cells, forming a graph of interdependent formulas.

2.2 A Running Example

Consider the simple task of finding all publications of a given author. to be carried out
over the “Dogfood” data server10, containing collected publication information for
several conferences related to the Semantic Web. We assume the user has no prior
knowledge about the contents of this repository. The user has to

1. Find a class that represents persons
2. Find the desired person, “a”.
3. Find a property “p” that relates a person to publications,
4. Find all triples of the form <a p ?pub> and collect all objects from these

triples.

Fig. 1. All Persons, Details of a selected Person, and Publications of selected Person, in
RExplorator.

10 http://data.semanticweb.org

122 M. Cohen and D. Schwabe

In Explorator, this is achieved by first clicking on “Menu”-> All RDF Classes”,
noticing class Person, mousing over it to click on “All Instances”, which reveals a set
of all Persons. Double-clicking on a Person (e.g. “Steffen Staab”), a new box appears
with all details for this resource (i.e., all triples with this resource as subject). Looking
at the details, one notices the property “made”, which relates Person to Publications.

To get all publications by a Person, one may click on the “Selected Person Details”
box, then click on the “S” operand position at the top; click on the “made” box and
click on the “P” operand position at the top, and finally click on the “=” (“compute”)
operator at the top. Figure 1 shows the results after these steps.

3 RExplorator

RExplorator extends Explorator by
1. Allowing operations to be parameterized;
2. Allowing the results of a query to be fed as input of another query, thus

forming graphs of interconnected operations;
3. Allowing to keep such graphs as separate workbenches, while enabling in-

terconnection of graphs across workbenches;
4. Allowing the designer to import previously defined query graphs into the

current workbench;
5. Allowing the designer to define additional operators beyond the builtin set

and query operations provided;
6. Allowing the designer to define interfaces oriented towards end users, hiding

details and customizing the look-and-feel.

RExplorator’s metamodel is shown in Figure 2, which supports the implementation of
these features. Some of its aspects will be elaborated as we explain these added func-
tionalities in the coming sub-sections.

Fig. 2. RExplorator’s meta-model

 Support for Reusable Explorations of Linked Data in the Semantic Web 123

3.1 Parameterized Queries

The original Explorator metaphor lets users compose operations incrementally, seeing
the results at each composition step. Each new query takes its operands from existing
query results. In the end, one may regard this set of inter-related operations as a
graph, similar to an Excel spreadsheet. However, the operations are all grounded,
which would be akin to not having any variables in the formulas of the analogous
spreadsheet. Thus, the first generalization made was to allow operations to have their
operands parameterized, and to propagate values through the graph of operations
when the value of the parameter is changed. This is equivalent to introducing va-
riables in the expression that denotes the operation.

Consider step 4 in the example. In Explorator, this is achieved by selecting an in-
stance of Person (e.g., “Steffen Staab in box “All Persons”) in Figure 1, setting it as
the subject parameter, selecting the relation “make” as the property parameter, and
clicking on the “=” operator to find all triples of the form <<url for Steffen Staab>

made ?o>. Clicking on the icon in each box, as shown in Figure 3 reveals the
actual operations and their dependencies.

Fig. 3. Query structure and dependencies

The first box, Selected Person Details, represents the query that finds out all
triples with a given Person as subject. Notice that the first position, “S”, has been
parameterized, and the current parameter value is (the URI for) Stefen Staab. If we
drag any person from the rightmost box (All Persons) onto the “S” position in the
Selected Person Details box, the value is replaced and the query re-evaluated.

The Publication by Person query (middle box) is defined as taking its “subject”
parameter from the “subject” position of the Selected Person Details query. There-
fore, if a new value is plugged into the “S” position in the Selected Person Details
query, it is automatically propagated to this query, triggering its reevaluation.

124 M. Cohen and D. Schwabe

3.2 Workspace Organization

RExplorator organizes the workspace into workbenches. The idea is that each work-
bench represents a task, or a use case in traditional Software Engineering methods. A
user may save workbenches for later reuse, and share it with other users as well.

In RExplorator a workspace contains several workbenches, similar to the way an
Excel a workspace contains several worksheets, where there may be cross-references
between operations within separate workbenches. For example, workbench Co
Workers by Person contains the Co Workers query, which can be interconnected to
the “Publication by Person” query in the similarly named workbench.

3.3 End-user Interfaces

The development interface of RExplorator is best suited to allow users to explore
RDF repositories, and requires understanding the RDF model. For non-technical end
users, RExplorator allows expert users to provide end-user friendly interfaces – called
the Application Interface - to solutions found while exploring datasets. For reasons of
space, we refer the reader to http://www.tecweb.inf.puc-rio.br/rexplorator to visualize
the Application interface.

Views make full use of CSS, which is also defined in a separate view that can be
customized to change the look-and-feel of the generated interface.

3.4 User-Defined Operators

The original Explorator tool provides built-in set operators to manipulate the resource
(triple) sets, besides the SPO query operator. Besides this, RExplorator provides a
mechanism for the designer to define new operators.

Since operators work on sets of triples, a natural kind of function is the “list”, “ite-
rator” or “map” function commonly found in functional languages such as Lisp, Py-
thon, and Ruby, among others. In RExplorator, operators take two sets of triples as
input and produce a set of triples as output.

As an example, one may want to filter a result set that contains datatype properties
(e.g., rdf:label) according to a string value passed as a parameter. The Ruby code
snippet below shows the definition of an operator that takes a resource set and a string
as input parameters, and selects those triples whose object position matches the string.

param_a.select { |triple| triple[2].to_s.strip.downcase ==
param_b[0].to_s.strip.downcase }

4 Evaluation

We conducted a small qualitative study to have a preliminary evaluation of RExplora-
tor. We asked 5 persons with basic RDF knowledge to build simple applications using
a repository describing cellular phone models. The tasks consisted of

1. Exhibiting all available models
2. Showing models that support MP3
3. Showing models grouped by supported band

 Support for Reusable Explorations of Linked Data in the Semantic Web 125

First they were shown a short video with RExplorator’s basic functionalities. Then
they were allowed to experiment with RExplorator for a short time and have basic
questions about its functioning answered, after which they were given one hour to
accomplish the tasks.

Of the five people, three were able to successfully accomplish the tasks in less the
allotted time; one completed the tasks but with a slightly incorrect solution; and one
could not accomplish the task.

We consider these results to be positive, showing that the tool can be effective. The
test subjects were given minimal instructions, and yet most were able to accomplish
the tasks. It is clear that this interface is not for beginners, but once the developer has
become familiar with it, it is quite effective.

 Nevertheless, the experiments indicate that the authoring interface should be im-
proved, for example using graphics to better represent the dependencies between sets.

5 Conclusions

The environment that has the closest functionality to RExplorator is DERI Pipes [3],
which allows the definition of mash-ups by creating networks of interconnected oper-
ators, with strings, XML or RDF data flowing through them. The desired result is
obtained by the composition of the operators.

By analogy, RExplorator can be seen as a network of interconnected operators,
which can be queries, set operations or customized functions. The data that flows in
this network are sets of triples. Thus, the major difference is that it is oriented towards
mash-up development, and as such its operators work at a lower abstraction level. In
addition. DERI Pipes does not provide an interface layer, and is not meant to be used
together with an exploration environment.

One of the major focuses for future work is providing a graphical authoring inter-
face that makes it easier to visually identify the inter-dependence of the various opera-
tions. We are also investigating the reuse of solutions within communities that share
solutions over a specific set of repositories.

Acknowledgment. Daniel Schwabe was partially supported by a grant from CNPq.

References

1. Araújo, F.C.S., Schwabe, D., Barbosa, D.J.S.: Experimenting with Explorator: a Direct
Manipulation Generic RDF Browser and Querying Tool. In: Visual Interfaces to the Social
and the Semantic Web, VISSW 2009, Sanibel Island, Florida (February 2009),
http://www.smart-ui.org/events/vissw2009/index.html

2. Araújo F. C. S., Schwabe D.: Explorator A tool for exploring RDF data through direct ma-
nipulation. In: Proceedings of the Linked Data on the Web Workshop (LDOW 2009), Ma-
drid, Spain, April 20. CEUR Workshop Proceedings, pp. 1613–1673 (2009),
http://CEUR-WS.org/Vol-538/ldow2009_paper2.pdf ISSN 1613-0073

3. Hildebrand, M., Ossenbruggen, J.v., Hardman, L.: /facet: A Browser for Heterogeneous
Semantic Web Repositories. In: The 5th International Semantic Web Conference (ISWC),
Athens, GA, USA (2005)

126 M. Cohen and D. Schwabe

4. Huynh, D., Karger, D.: Parallax and companion: Set- based browsing for the data web,
http://davidhuynh.net/media/papers/2009/www2009-parallax.pdf

5. Le Phuoc, D., Polleres, A., Morbidoni, C., Manfred Hauswirth, M., Tummarello, G.: Rapid
semantic web mashup development through semantic web pipes. In: Proceedings of the
18th World Wide Web Conference (WWW 2009), Madrid, Spain (April 2009)

6. Luna, A.M., Schwabe, D.: Ontology Driven Dynamic Web Interface Generation. In: Pro-
ceedings of the 8th International Workshop on Web Oriented Technologies (IWWOST
2009), San Sebastian, Spain. CEUR, vol. 493, pp. 16–27 (2009), http://ceur-
ws.org/Vol-493/iwwost2009-luna.pdf ISSN 1613-0073

7. Moura, S.S., Schwabe, D.: Interface Development for Hypermedia Applications in the
Semantic Web. In: Proc. of LA Web 2004, pp. 106–113. IEEE CS Pres, Ribeirão Preto
(2004) ISBN 0-7695-2237-8

8. Oren, E., Delbru, R., Decker, S.: Extending Faceted Navigation for RDF Data. In: Cruz, I.,
Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M.
(eds.) ISWC 2006. LNCS, vol. 4273, pp. 559–572. Springer, Heidelberg (2006)

9. Russell, A., Smart, P.R., Braines, D., Shadbolt, N.R.: NITELIGHT: A Graphical Tool for
Semantic Query Construction. In: Semantic Web User Interaction Workshop (SWUI
2008), Florence, Italy (April 5, 2008)

A. Harth and N. Koch (Eds.): ICWE 2011 Workshops, LNCS 7059, pp. 127–134, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Generation of Semantic Clouds Based on Linked Data
for Efficient Multimedia Semantic Annotation

Han-Gyu Ko and In-Young Ko

Department of Computer Science, Korea Advanced Institute of Science and Technology,
335 Gwahangno, Yuseong-gu, Daejeon, 305-701, Republic of Korea

{kohangyu,iko}@kaist.ac.kr

Abstract. The major drawback of existing semantic annotation methods is that
they are not intuitive enough for users to easily resolve semantic ambiguities
while associating semantic meaning to a chosen keyword. We have developed a
semantic-cloud-based annotation scheme in which users can use semantic
clouds as the primary interface for semantic annotation, and choose the most
appropriate concept among the candidate semantic clouds. The most critical
element of this semantic-cloud-based annotation scheme is the method of
generating efficient semantic clouds that make users intuitively recognize
candidate concepts to be annotated without having any semantic ambiguity. We
propose a semantic cloud generation approach that locates essential points to
start searching for relevant concepts in Linked Data and then iteratively analyze
potential merges of different semantic data. We focus on reducing the
complexity of handling a large amount of Linked Data by providing context
sensitive traversal of such data. We demonstrate the quality of semantic clouds
generated by the proposed approach with a case study.

Keywords: Semantic Web, Semantic Annotation, Linked Data, Semantic Cloud
Generation.

1 Introduction

As users become the center of content creation and dissemination in the current Web
environment, they are playing a more significant role in metadata generation. For
instance, users may create tags that can be used to enhance content search results.
However, the attempts to improve content searching by merely considering tags as
plain text, have led to the problem of semantic ambiguity [5, 6]. Nevertheless, the
Semantic Web research community has been utilizing the semantic annotation of
contents as a way to overcome these limitations.

However, these previous efforts on semantic annotation of Web contents fail to
fulfill the requirements of scalability and usability [5, 6]. Most existing semantic
annotation tools use terms from ontologies created by domain experts. These
ontologies do not, however, provide sufficient options to cover various kinds of
semantics. That is, only domain specific terms are available. In addition, these
ontologies do not necessarily reflect newly created knowledge in an up-to-date
manner.

128 H.-G. Ko and I.-Y. Ko

In this paper, we propose a semantic-cloud-based annotation scheme that makes it
easier to add semantic annotations to multimedia contents in resource-constrained
environments, such as IPTV (Internet Protocol Television), since an interesting
application area of semantic annotation is the increasing market of businesses that use
multimedia contents on the Web [7]. The proposed approach uses semantic clouds as
the primary interface for semantic annotation. In order to generate the semantic
clouds, we first locate essential points to start searching for relevant concepts in
Linked Data [1] and then iteratively analyze potential merges of different semantic
data. Users can easily resolve semantic ambiguity and choose the most appropriate
semantic cloud among a set of candidates.

2 Multimedia Semantic Annotation Scheme

In this section, we describe the proposed semantic annotation scheme. As the
following figure shows, the semantic cloud generated from the Linked Data is used as
the primary interface for semantic annotation.

Fig. 1. Overview of the semantic annotation scheme applied to multimedia contents

When a user inputs a keyword while watching a multimedia content, the Linked
Data query manager makes a query and obtains the relevant RDF nodes from the
Linked Data. The proposed scheme generates recommended semantic clouds and the
user then annotates the contents by choosing the most appropriate concept from them.

In this annotation scenario, there are three technical issues to resolve: accessing
and processing large-scale Semantic Web data, generating relevant semantic clouds
and providing an efficient user interface that allows intuitive interactions. In this
paper, we focus on the issue of semantic cloud generation from the large-scale
Semantic Web data. In order to achieve this goal, we identify the requirements for
well-organized semantic clouds as follows:

 Generation of Semantic Clouds Based on Linked Data 129

1) Small number of clouds: The number of options should be four at most [8]
2) Balance of contents in the cloud: Semantically relevant terms should also be

included in the same cloud
3) No ambiguity among clouds: Semantic ambiguity among generated semantic

clouds should be minimized so as to facilitate awareness of semantic differences

The proposed semantic cloud generation approach that satisfies these requirements
will be introduced in the following section.

3 The Proposed Semantic Cloud Generation Approach

According to the statistics [13], Linked Data contains more than 28 billion RDF
triples from 203 different datasets that are domain independent. Hence, Linked Data
is a large-scale and heterogeneous Semantic Web data store. In order to generate
semantic clouds from the Linked Data, we need to make our semantic cloud
generation process incremental and iterative.

There are three steps in the cloud generation process. First, spotting points for the
clustering should be located. This entails finding representative RDF nodes that cover
the concepts related to an input keyword.

Fig. 2. Overall process of the semantic cloud generation

After locating the spotting points, the proposed approach selectively visits the
neighboring nodes connected via relation terms interlinked with user context. This
reduces the complexity of handling a large amount of Linked Data and also ensures
the quality of semantic coherence of the generated semantic clouds by filtering out the
less relevant relationships and the corresponding nodes.

In order to decide whether to include a visited RDF node in a cloud, it is necessary
to measure the semantic similarity between the spotting point and the visited RDF
node. Basically, the number of overlapping concepts could be the standard to measure
the semantic similarity. The distance between a spotting point and the visited RDF
node, which is measured by counting the number of hops from the spotting point to
the RDF node, can be also considered to measure the semantic similarity.

130 H.-G. Ko and I.-Y. Ko

3.1 Locating Spotting Points

The first step of finding and locating spotting points in the Linked Data is the most
important process to generate high quality semantic clouds that satisfy the
requirements discussed in the previous section. This is because the spotting points
decide the representative semantics of the user keyword and the generated semantic
clouds are dependent on the spotting points.

Locating spotting points starts with querying Linked Data to obtain the relevant
RDF nodes. There exists two ways to make queries to Linked Data: via SPARQL or
via Semantic Web search engines such as Swoogle [9], Falcons [10], or Sindice [11].
We chose the second method because we can obtain the relevant RDF nodes by
simply adopting and using one of their Web services.

Fig. 3. Finding spotting points in the Linked Data

When we make a query about the keyword ‘apple’ via the Sindice API, it returns
more than 400,000 RDF nodes. Rather than taking all the nodes, choosing some
representative nodes could reduce the complexity of semantic cloud generation.
Because Sindice ranks the resulting nodes by applying the principles of the PageRank
algorithm as well as term frequency [12], taking the top n number of query results
replaces RDF prioritizing.

We finally choose the most general concepts of RDF nodes as the spotting points
by comparing their relative concept hierarchies because it ensures semantic
unambiguity among the spotting points, thus supporting the requirement of no
ambiguity among generated semantic clouds. The SKOS (Simple Knowledge
Organization System) is a common data model for sharing and linking knowledge
organization system. It provides useful relationship terms such as skos:broader
and skos:narrower that can be exploited to find the relative concept hierarchies to
group the RDF nodes, then choose the most general RDF node as the spotting point.

Figure 3 shows an example of finding a spotting point by parsing SKOS relationships.
Some RDF nodes are extracted with the keyword ‘apple’ such as ‘Apple Inc.’, ‘Apple I’,
‘Apple IIGS’, and ‘Apple Lisa’. By parsing their SKOS relationships, we can recognize
the most general concept of the RDF nodes; in this case ‘Apple Inc.’.

 Generation of Semantic Clouds Based on Linked Data 131

3.2 Selecting Relations to Traverse

The second step of the proposed approach is to select relations that link the relevant
RDF nodes. We can thereby reduce the complexity for the semantic cloud generation
by setting traversal bounds. The ideal method to select semantically relevant relations
is to automatically associate the relation terms with user contexts such as interests and
preferences.

We assume that user interests are interlinked with relation terms and they are
defined by each user before semantic cloud generation. For example, in the case
where ‘movie’ is a user interest, relation terms such as ‘actor’, ‘director’, ‘rating’,
‘background music’, and ‘story’ become the relations to traverse.

In addition, W3C recommends that Linked Data publishers use well-defined and
popular terms such as FOAF, DC, SIOC, and SKOS in order to ensure interoperability
among the Linked Data datasets. The proposed approach firstly traverses the relations
and then takes into account the relations selected by users with consideration of their
contexts. This facilitates visiting relevant nodes while reducing the complexity for
clustering these nodes.

3.3 Identifying Similarity and Clustering

In the third step of the proposed approach, the semantic similarity between the RDF
nodes is measured in order to decide whether to include the visited RDF nodes in the
same cloud.

Similar to the term frequency in information retrieval, the number of query
responses from the Semantic Web search engine is also used to measure the similarity
between nodes. In the following equations, l1 and l2 are the labels of RDF nodes, n(l)
denotes the number of query responses for the RDF node l, and h is the number of
hops to traverse.

TermFreq(l1, l2) = n(l1, l2) / n(l1) + n(l1, l2) / n(l2). (1)

SemSim(l1, l2) = TermFreq(l1, l2) / w
h. (2)

As the number of hops from a spotting point becomes larger, the value of semantic
similarity exponentially decreases. For this reason the second equation that represents
the semantic similarity between two RDF nodes take the inverse of the weight value
w powered by h.

We need to carefully decide the threshold value h for clustering as well as the
weight value w such that it includes semantically related concepts toward the
keyword. Deciding each value is beyond the research scope of this paper, however.

4 A Case Study

There are three methods of semantic cloud generation. The first approach clusters
RDF nodes according to their rdf:type. However, this method does not ensure high

132 H.-G. Ko and I.-Y. Ko

quality semantic cloud generation. For instance, ‘Apple Inc.’ whose rdf:type is
‘company’ is separated from the groups ‘Apple I’, ‘Apple IIGS’, etc., whose
rdf:type is ‘Personal Computer’, despite that there clearly is semantic relevance.

The next approach is using SKOS relationships. This method is useful to
understand the relative concept hierarchy among RDF nodes. However, the obtained
results fail to satisfy balance of content in each cloud.

(a) SKOS parsing (b) The proposed approach

Fig. 4. The result of Linked Data clustering toward the keyword ‘apple’

As can be seen the above figure, the semantic clouds from the proposed approach
provide better results, since the proposed approach also includes relevant RDF nodes
which don’t contain the keyword ‘apple’ via relation traversal.

Fig. 5. Implementation of the semantic annotation method for a Web-based IPTV environment

The proposed approach was also applied to a Web-based IPTV environment. The
proposed approach allows users to put annotations on multimedia contents by
choosing the semantic options from the semantic clouds generated from Linked Data.
The annotation results are used to provide semantic search capability, which enriches
the search results for multimedia contents.

 Generation of Semantic Clouds Based on Linked Data 133

5 Related Work

In order to overcome the limitations such as semantic ambiguity of using tags as plain
text, a semantic annotation scheme has been defined and proposed. Its definition is
tagging ontology class instance data and mapping it into ontology classes [5]. The
major benefit of semantic annotation is enhanced information retrieval, because it
exploits ontologies to infer about data from heterogeneous resources, thereby
resolving ambiguities such as ‘Niger’ the country and ‘Niger’ the river.

There are three semantic annotation methods, differentiated according to the level
of automation: manual, semi-automatic, and automatic annotation. Because human
annotators are often fraught with errors and this form of annotation is very costly,
manual semantic annotation may cause knowledge acquisition bottleneck [2]. In
addition, it is impossible to provide fully automatic creation of semantic annotations.
In response, semi-automatic annotation approaches have been explored. The main
issues to be resolved are difficulties in choosing appropriate indexing terms for
annotating and dealing with unbalanced content arising from the different conventions
used in indexing by different users [3]. Also, as the basic prerequisite for
representation, most works uses an ontology defining the entity classes as a
knowledge base [4].

The proposed approach generates a few semantic clouds as the primary interface
for semantic annotation from Linked Data, enabling users to intuitively recognize
semantic options. Users can easily resolve semantic ambiguity and choose the most
appropriate node among the candidate semantic clouds even in resource constrained
environments.

6 Conclusion and Future Work

In this paper, we propose a semantic clustering approach that locates spotting points
to start searching relevant concepts in Linked Data and then iteratively analyze
potential merges of different semantic data. Using this approach, we attempt to reduce
the complexity of handling a large amount of Linked Data by providing context
sensitive traversal of Linked Data.

Through a case study, we showed that the proposed semantic cloud generation
approach ensures high quality semantic clouds in terms of optimal number of choices,
balance of contents, and no ambiguity among generated semantic clouds. Because it
allows users put annotations on multimedia contents by simply using keywords and
choosing the most appropriate concept among the generated semantic clouds, it can
also be applied in resource constrained environments such as the small screen of
smart phones and IPTV environments where it is difficult to use text input interfaces
of remote controllers.

In future research we will carry out user studies to measure and prove the usability
of the proposed semantic annotation approach as well as empirical studies to answer
questions such as how many RDF nodes need to be considered at the phase of
locating spotting point, how many hops need to be traversed to generate semantic
clouds efficiently, and what is the most appropriate threshold value to decide whether
a RDF node be included in the same cloud.

134 H.-G. Ko and I.-Y. Ko

Acknowledgments. This research was partially supported by WCU (World Class
University) program under the National Research Foundation of Korea and funded by
the Ministry of Education, Science and Technology of Korea (Project No: R31-
30007). This research was also supported by the KCC (Korea Communications
Commission), Korea, under the R&D program supervised by the KCA (Korea
Communications Agency) (KCA-2011-11913-05005).

References

1. Christian, B., Tom, H., Berners-Lee, T.: Linked Data – The Story So Far. International
Journal on Semantic Web and Information Systems 5(3), 1–22 (2009)

2. Bayerl, P.S., Lungen, H., Gut, U., Paul, K.I.: Methodology for reliable schema
development and evaluation of manual annotations. In: Knowledge Markup and Semantic
Annotation at the International Conference on Knowledge Capture 2003 (2003)

3. Vehvilaiinen, A., Hyvonen, E., Alm, O.: A Semi-Automatic Semantic Annotation and
Authoring Tool for a Library Help Desk Service. In: Proceedings of the 1st Semantic
Authoring and Annotation Conference 2006 (2006)

4. Kiryakov, A., Popov, B., Ognyanoff, D., Manov D., Kirilov A., Goranov M.: Semantic
Annotation, Indexing, and Retrieval. ELSEVIER Journal of Web Semantics 2004 (2004)

5. Reeve, L., Han, H.: Survey of Semantic Annotation Platforms. In: ACM Symposium on
Applied Computing (2005)

6. Uren, V., Cimiano, P., Iria, J., Handschuh, S., Vargas-Vera, M., Motta, E., Ciravegna, F.:
Semantic annotation for knowledge management: Requirements and a survey of the state
of the art. ELSEVIER Journal of Web Semantics (2005)

7. Ko, I.-Y., Choi, S.-H., Ko, H.-G.: A Blog-Centered IPTV Environment for Enhancing
Contents Provision, Consumption, and Evolution. In: Benatallah, B., Casati, F., Kappel,
G., Rossi, G. (eds.) ICWE 2010. LNCS, vol. 6189, pp. 522–526. Springer, Heidelberg
(2010)

8. Lord, F.M.: Optimal Number of Choices per Item – A Comparison of Four Approaches.
Journal of Educational Measurement 14(1), 33–38 (1977)

9. Ding, L., Finin, T., Joshi, A., Pank, R., Cost, S.R., Peng, Y., Reddivari, P., Doshi, V.,
Sachs, J.: Swoogle: a search and metadata eigine for the semantic web. In: Proceedings of
the CIMK 2004 (2004)

10. Cheng, G., Ge, W., Qu, Y.: Falcons: Searching and Browsing Entities on the Semantic
Web. In: Proceedings of the 17th International World Wide Web Conference, Beijing,
China, April 21-25 (2008)

11. Tummarello, G., Delbru, R., Oren, E.: Sindice.com: Weaving the Open Linked Data. In:
Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J.,
Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC
2007 and ISWC 2007. LNCS, vol. 4825, pp. 552–565. Springer, Heidelberg (2007)

12. Delbru, R., Rakhmawati, N.A., Tummarello, G.: Sindice at SemSearch 2010. In:
Proceedings of the 19th International World Wide Web Conference, Raleigh, North
Carolina, USA, April 26-30 (2010)

13. W3C SWEO Community Project Linking Open Data,
http://www.w3.org/wiki/SweoIG/TaskForces/
CommunityProjects/LinkingOpenData

A. Harth and N. Koch (Eds.): ICWE 2011 Workshops, LNCS 7059, pp. 135–144, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Ontology Based Segmentation of Geo-Referenced Queries

Mamoun Abu Helou

Politecnico di Milano, Dipartimento di Elettronica ed Informazione,
V. Ponzio 34/5, 20133 Milano, Italy
abuhelou@elet.polimi.it

Abstract. The last generation of search engines is confronted with complex
queries, whose expression goes beyond the capability of the Bag of Word model
and requires the systems which understand query sentences. Among these queries,
huge importance is taken by geo-referenced queries, i.e. queries whose understand-
ing requires localizing objects of interest, where the user location is the most im-
portant parameter. In this paper, we focus on geo-referenced queries and show how
natural language analysis can be used to decompose queries into sub-queries and
associating them to suitable real-world objects. In this paper we propose a syntactic
and semantic approach, which uses syntactic query segmentation techniques and
the ontological notion of geographic concepts to produce good query interpreta-
tions; an analysis of the method shows its practical viability.

Keywords: Query Segmentation, Query Understanding, Geo-Referenced
Query, Multi-Domain Query.

1 Introduction

Search engines perform poorly on complex queries [3]. When a query involves mul-
tiple domains and their interconnections, i.e., queries over multiple semantic fields of
interest, search engines fail in understanding the query’s meaning, also because they
try to use all the query information in order to locate one page containing all the re-
sults. In this paper, we propose an approach to complex query understanding which
focuses on the sub-problem of query segmentation. Such step is essential for decom-
posing a complex query into sub-queries, and then answering each sub-query inde-
pendently, as contemplated by Search Computing (SeCo)[2].

However, understanding a natural language (NL) query requires the application of
syntactical, semantic and conceptual knowledge to resolve the ambiguity that abounds
in NL. The output desired from a query understanding process must include the ob-
jects, properties of objects and relationships among the query objects. In this paper,
we focus upon geo-referenced queries, e.g. queries which ask about properties of
objects which are placed at specific positions. These queries are very much used in
practice, and are the majority of queries which are asked from mobile devices.

This paper is structured as follows. Section 2 presents the background and the pre-
liminaries. Section 3 presents the related work. Section 4 describes the design and
implementation. Section 5 presents the experimental results. Finally, we conclude and
present some plans for future development.

136 M. Abu Helou

2 Preliminaries

SeCo aims at the construction of a platform for multi-domain queries across search
services. The project is addressing many research problems, including search service
engineering and registration, efficient join methods for search services, and flexible
query execution engines. SeCo uses the Semantic Resource Framework (SRF) [2]
which is a multi-level (conceptual, logical, and physical level) description of data
sources for SeCo applications. The higher layers provide an abstract semantic descrip-
tion of the services, building on the notions of Service Marts and Connection Pat-
terns. The lower layers (service interfaces and access patterns) are concerned with the
physical properties of the services. Ideally, every service conceptually belongs to a
Service Mart. A Service Mart is structurally defined by means of attributes. Two Ser-
vice Marts can be connected by a Connection Pattern. At the logical level, each Ser-
vice Mart is associated with one or more access patterns representing the signatures of
the service calls. Access patterns contain a subset of the attributes of the Service Mart,
which are tagged with either I (input), or O (output). Attributes can also be tagged as
R (ranking), to denote attributes that are used for ordering result instances. Ranking is
particularly important in SeCo, because it allows mastering the combinatory explo-
sion of multi-domain queries typical in Search Computing. For example, a query such
as “Find me a theater in San Francisco showing a romantic movie near Hilton hotel”
requires the user to manually extract and combine the answers from various queries,
and this is an intricate and tedious job.

Syntax trees are widely used to preserve the original information conveyed by the
query, a syntax tree is an (ordered, rooted) tree that represents the syntactic structure
of a string according to some formal grammar. Figure 1 illustrates part of the Stanford
Syntactic pares tree [6] of the example query. The parse tree is entire structure, start-
ing from the ROOT and ending in the leaf nodes (find, ..., hotel). The following ab-
breviations given by the syntax tree help understanding the part of speech used for

Fig. 1. The syntactic tree of the example query

 Ontology Based Segmentation of Geo-Referenced Queries 137

the query words : NP is a noun phrase (e.g. a theater), NN (e.g. theater) and NNP
(e.g. Hilton) are used for nouns and proper nouns, respectively. VP (e.g. find me), and
PP (e.g. near Hilton hotel) are used for verb, and proposition phrases, respectively. JJ
(e.g. romantic) is used for adjectives, and IN (e.g. in) is used for preposition or subor-
dinating conjunction.

YAGO [5] is a large semantic KB which has been automatically built from Wiki-
pedia, GeoNames1, and WordNet2, and contains nearly 10 million entities and events,
as well as 80 million facts representing general world knowledge. In YAGO, know-
ledge is represented in the RDFS model. This model can be seen as a directed labeled
multi-graph, in which nodes represent entities and edges represent relationships be-
tween the entities as illustrated in Figure 2. Furthermore, both the instances (such as
San Francisco) and concepts, i.e., groups of similar instances (such as city), are nodes
in the RDF graph. An instance is linked to its concept by the relation type. A concept
is linked to a more general concept by the relation subclassOf. Instance of a sub-
concept automatically inherits from super-concept, and can also be generalized as
super-concept. Every concept’s relation will apply automatically to all its instances
(sub-classes) that exist somewhere down in the hierarchy.

Fig. 2. RDF Model representing the example query based on YAGO

3 Related Work

The research work on Query Segmentation (QS) is focused on how to decompose a
query into sub-queries. In [4], authors have shown that query segmentation has a posi-
tive impact on the retrieval performance. The segmentation process takes a user's
query and automatically tries to separate the query words into segments so that each
segment maps to a semantic component. Ideally, each segment should map to exactly
one “concept” [8]. Recent work in QS [1] used a supervised learning method. Howev-
er, this approach, as all supervised learning methods, requires a significant number of
labeled training samples and well designed features to achieve good performance.

1 http://www.geonames.org/
2 http://wordnet.princeton.edu/

138 M. Abu Helou

This makes it hard to adapt in real applications. As an alternative, [8] suggests unsu-
pervised method based on expectation maximization. This approach, as it happens
with most unsupervised learning methods, heavily relies on corpus statistics. In some
cases, highly frequent patterns with incomplete semantic meaning may be produced.
These segmentation algorithms take into account the sequential ordering of words,
and do not study non-adjacent terms, therefore these approaches just deal with key-
word-based short queries but hardly adapt to long NL queries, including complex
queries. Also, they do not try to identify named entities or to assign class labels. NL
Interface (NLI) systems to structured data use an underlying ontology to drive the
meaning to the queries expressed by a user. [7] utilized pattern matching of a NL
query to subject-property-object triples in a knowledge base (KB), before converting
the query to one of SPARQL. [9] employed a named entity recognition engine, and
supplemented it with more entity types and relation types to convert NL queries into
SeRQL expressions. Nevertheless, the focus of NLI systems is on efficient porting
interfaces between different domains rather on the understanding itself. Besides that,
the understanding step should not be mixed up with the answering step. That is, we
focus in understanding the search text queries leveraging the KB features although
there is no matched answer to it in a KB of discourse.

4 Methodology

We propose a method with the objective to split a given query into sub-queries by
combining the syntactic parsing with the knowledge encoded in a KB (ontology) to
identify entities and their respective relations in a query. The method views a query as
a sequence of entities and relations. The next issue is to determine the relations which
link the entities. Valid relations between entities are actually constrained by the KB.
Therefore, transformation of the NL query into a set of ontology concepts (i.e. classes,
instances, properties) which is based on the assignment of a proper ontology concept
to the query words is carried out first. Then the relations between the extracted enti-
ties are identified using the ontology. This is explained below in this section. There-
fore, the main focus is to correctly recognize entities and determine their relations as
expressed by the query.

Thus, the proposed method can be broken into two phases: Query Analysis (QA),
where the key concepts/“Web objects” will be extracted from the given query. , Here,
the Web objects are a new way of abstraction to reinterpret concept organization in
the Web, and go beyond the unstructured organization of Web page. The second
phase is Query Interpretation (QI), where the possible object properties and entities
are identified, and also the relationships among the extracted objects are discovered.

4.1 Query Analysis (QA)

The QA focuses on the identification of key concepts in the query. QA decomposes
the user query into concepts, where each concept represents one search objective in a
specific domain. The concept can either be a simple concept which consists of one
word (e.g. hotel), or a complex concept consisting of multiple words (e.g. train sta-
tion). QA employs two steps.

 Ontology Based Segmentation of Geo-Referenced Queries 139

Step 1: Morphological Analysis: In this step we use the Stanford parser to get the
syntax tree for the user’s query. Shallow parsing is adopted to divide the sentences
into a series of words that together compose a grammatical unit, mostly noun phrase
(NP), and preposition phrase (PP), and also running a tokenizer, part-of-speech tag-
ger.

Step 2: Concept Identification: This step identifies the key concepts in the query
through a matching process, between the query words (QW) and the KB’s concepts, to
extract the query concepts “geo concepts” (GC). A concept is a GC if it is mapped to
one of the KB geographical entities. The matching process, first checks if the query
word is a GC, if not it checks if any synonym of the query word is a GC, failing to
which it combines the query word with its consecutive word and checks if this com-
posite word is GC, using the above 2 steps. Knowing that the geo spatial concepts are
nouns, only the nouns among the QW are examined. For instance, running the QA
over the example query the GC list :{ theater, hotel} was identified.

4.2 Query Interpretation (QI)

QI tries to extract any possible geo spatial information “geoEntities” (i.e. address, and
geo spatial entity name). It also extracts the concept properties which could be seen as
service invocation parameters and filtering criterion. Besides that, it identifies the
relation among the extracted parts based on the defined relation in the KB. QI per-
forms the following steps.

Step 1: Concept properties extraction. The adjectives and nouns associated with

the concepts represent either a property of the entity or a more specific type for that
entity than the type expressed by the concepts itself (e.g. Hilton hotel). For that, the
adjectives and entities name are extracted based on the NP which has a concept. The
concept’s consecutive nouns are considered as entity name, while the adjectives are
filtering criteria. Running step1 over the example query the name property “Hilton”
was extracted for the concept “hotel”.

Step 2: GeoEntity extraction. The geoEntity (GE), i.e. the entity with a permanent
physical location on Earth can be described by geographical coordinates, consisting of
latitude and longitude. Any geo-spatial entity/concept identified in the query should
be associated with at least one component of the address field (street name, zip/postal
code, city, country). The query may also contain the name for a geo concept (name of
the geo-spatial entity), which would be extracted in (step1) e.g. Eiffel Tower. First
candidate GEs are collected, we process the syntax tree for this purpose, and assume
such entities are the NPs which are a child of a PP. And also the GC will be filtered
and checked if any concept with its extracted entities names (step 1) would express a
GE. Then, the geo validation process is performed to confirm these candidate entities
and check if they are real world geo spatial entities.

The validation process is performed in two ways. Firstly, with the help of the KB.
As mentioned above, YAGO the adopted KB already holds information about geo-
graphical entities (i.e. GeoNames entities) which holds the names of geographical
entities e.g. cities, streets, monuments etc. Therefore, we are able to identify such
entities and also provides the geo-concept under which this GE falls. Secondly, via

140 M. Abu Helou

Google GeoCoder API3, or similar APIs; the test succeeds if we are able to retrieve
the address components of the candidate entity. Later, the extracted entities are
processed to identify the address components by finding the best match between the
name of the candidate entity and the GeoCoder results components. For this com-
parison we use Levenshtein distance metrics, if such distance is less than a certain
threshold. The Levenshtein distance between two strings is the minimum num-
ber of operations needed to transform one string into the other, where an op-
eration is an insertion, deletion, or substitution of a single character. And also
the relation of the extracted GE components are defined based on the hierarchal repre-
sentation of the address components (i.e. street is located in a city which is located in
a country). Running step 2 over the example query, the chunk “San Francisco” was
recognized and mapped to the ontology concept “city”.

Step 3: Relation identification. To achieve the best possible query interpretation,
we retrieve and analyze the potential relations between the identified concepts and
entities, based on the defined relations in the KB. These relations are very important
as they add descriptions to the concept, and define their behavior by adding rules and
constraints. To resolve these relations the following steps are employed.

1. Candidate relations extraction. The possible relations for concepts will be ex-
tracted from the KB. Distinction is made between the relation’s Domain and
Range concepts. The query words, which have not been recognized in the extrac-
tion phases before (i.e. as a concept or GE) will be searched to match the ex-
tracted relation’s Domain/Range concepts. For instance, the word “movie” is an
instance of the event class which is a Range concept of the happendIn relation.

2. Filtering the Improper relations. The identified concepts and entities might have
more than one possible relation. Similarly to [9], the candidate relations are fil-
tered based on the property position in the hierarchy of concepts and properties.
Initially, all possible matches between the extracted concepts and relation’s Do-
main/Range concepts is performed, and then they are ranked based on the follow-
ing factors: (i) on the sub property relation in the ontology, i.e. the property
which placed at deeper levels in the property hierarchy has higher score, (ii) the
position of the domain and range classes of the property, that is, a relation with
more specific domain and ranges are ranked higher, and (iii) if any ambiguity
raise up (i.e. the concept could be mapped to 2 or more concepts) the closet con-
cepts will be related. For instance, Location, the sub-class of GeoEntity, is a
Range concept of isLocatedIn which is a sub property of placedIn that has the
GeoEntity as Range concept. Thus, the isLocatedIn is preferred instead of the
placedIn to relate the location concepts or its sub classes (e.g. city, county).

 Domain Concepts Relation Range Concepts

1 Person wasBornIn, deidIn, livesIn Location (city)

2 GeoEntity (structure, location) placedIn (isLocatedIn),… Location (city)

3 Event (movie) happenedIn GeoEntity (structure , location)

Fig. 3. The example query potential relations

3 http://code.google.com/apis/maps/

 Ontology Based Segmentation of Geo-Referenced Queries 141

Figure 3 shows part of the possible relations and their Domain/Range concepts
for the example query. The bold concepts are the one recognized in the query.
The first relation will be discarded since the concept person was not found
among the query words. The other relations are kept and resolved to {movie hap-
penedIn theater, theater isLocatedIn San Francisco, hotel isLocatedIn San Fran-
cisco}.

Additionally, a spatial nearness relation which maintains the context of the geo- refe-
renced query is handled based on existing keywords (e.g. near, close to,…etc). Pat-
tern matching is carried based on the patterns in Figure 4 , where Ci and N represent
the concept and nearness keywords, respectively. Else a conjunctive (default) connec-
tion will be used by relating the closest concepts by walking through the syntax tree.
Once step 3 is carried out, the relations among the concepts for the example query
was defined, as follows :{ theater near hotel}.

Figure 5 shows the result of running the system over the example query as a di-
rected graph, where the square nodes are the concepts in the user’s query. The ellipses
are the GEs, and the concept’s properties which will serve as the services invocation
parameter. The graph edges are the relations among these nodes that SeCo engine [2]
will utilize as a filtering and join criteria; each concept node with its attached proper-
ties would be recognized as a sub query which will be mapped to a Web service. In
SeCo each sub query ideally should be mapped to the appropriate access pattern of a
Service mart by a Mapping tool (this would be a feature we looking to do in the fu-
ture). The following represent an access pattern (AP) for a movie, theater, and hotel
respectively.

Movie (TitleO, DirectorO, ScoreR, YearO, Genres.GenreI, Openings.CityI,Openings.DateI, Actor.NameO)
Theatre (NameO, AddressI, CityI, CountryI, AddressO, CityO,CountryO, DistanceR, Movie.TitleO)
Hotel (NameI, AddressI, CityI, CountryI, AddessO, CityO, CountryO, DistanceR, RatingR)

The Movie AP filters the movies by time (e.g., whose opening date in US is recent
enough) and genre (e.g. romantic movies) and then extracting them ranked by their
quality score. The theater AP offers a list of movie theatres with the related films
ordered w.r.t. the distance from a given location. Theatre AP is connected to Movie
AP via a connection pattern „Shows‰ using a join on titles attribute. Once the theatres
have been decided, then we look for a near Hotel. The hotel AP offers a list of hotel
ordered w.r.t the distance from a given address (the theater address) and filtered
based on the name of the hotel (Hilton). At the end the user should have and order list
w.r.t the distance between the theaters which are showing a romantic movies and the
hotels which called Hilton in san Francisco.

5 Experiments

The RestQueries dataset provided by Mooney's group4 was used in the experiments,
consisting of 251 queries about restaurants. Out of the 251 queries 13 were redundant
and removed; the rest were manually annotated with the GC class, GE address

4 http://www.cs.utexas.edu/ users/ml/nldata/restquery.html

142 M. Abu Helou

components (street, city, administrative area, country), and also the relation among
the GC and GE as well as the GE relations and the concept properties (adjective,
name) relations. The experiment is designed to measure the capability of the proposed
system to extract the geo spatial concepts “concepts”, the geo spatial entities compo-
nents “geoEntities”, the concepts properties, and also the relations among aforemen-
tioned parts, the relations are; Concept-to-Concept “cc”, Concept-to-geoEntity “ce”,
geoEntity-to-geoEntity “ee”, and Concept-to-Propriety “cp”.

Query Pattern Concepts spatial relation

c1 N c2 c1 N c2

c1 N c2 and c3 c1 N c2 and c1 N c3

c1 and c2 N c3 c1 N c3 and c2 N c3

c1 and c2 N c1 N c2

c1 and c2 c1 and c2

Fig. 4. Spatial nearness patterns, where Ci and N represent the concept and spatial nearness
relation, respectively

Query:

 “Find me a theater in San Francisco showing a

romantic movie near Hilton hotel”

Candidate sub queries:

Romantic Movie

happenedIn (shown in)

theater (in San Francisco)

near

Hilton hotel (in San Francisco)

Fig. 5. The result of processing the example query

The correctness of the system was measured based on Recall and Precision. Recall
is defined as the ratio between the numbers of correctly extracted parts by the system
(true positive “TP”) to the total number of manually tagged parts in the dataset (TP
and false negative “FN” which been miss extracted). Precision is the ratio between
the numbers of correctly extracted parts (TP) to the total number of the extracted parts
using the system (TP and false positive “FP” which been extra/wrongly extracted).
Figure 6 reports the results of running the system over the RestQueries. The Precision
and the Recall were recorded for each extracted part. The experiment data and the
result are available at (5).

The system was able to extract 297 concepts, then 101 out of these concepts have
been filtered in (QI step2), for example, “mountain view” is GE. Thus 100%, 196
concepts, have been all correctly extracted. 91.4% of the GE address components

5 http://home.dei.polimi.it/abuhelou/data.htm

 Ontology Based Segmentation of Geo-Referenced Queries 143

were correctly extracted. The reason behind the incorrect and the missed extraction is
due to syntax tree, and also the geo validation process. For example, “what are some
good places for ice cream on blanding ave in alameda”, “blanding ave” was tagged
with verb phrase which cause the system to miss such entity. And the geo validation
process was unable to recognize “fairgrounds dr”, in the query “where is a good
american restaurant on fairground dr in sunyvale”, as a street in the city “sunny-
vale”. 69.1% of the concepts properties was correctly extracted, again the syntax tree
affect the extraction process. For instance, the adjective properties e.g. italian, was
tagged as nouns, which caused 37 missed adjectives as well as 37 extra entity name.
Furthermore, the syntax tree split some NPs into NP and VP which cause the system
again to wrongly extract part of this name, which also will be considered as an extra
extraction , for instance, the nouns “ice, and ave” were extra extracted and the name
“ice cream” and the street “balnding ave” was missed as well as their relations. The
overall correct extracted relations were 85%. However, the relation extraction was
directly affected by the abovementioned extracted parts, the main factor was the prop-
erty extraction.

An important consideration is that, the queries in this dataset mainly consist of only
one geo-spatial concept. As a next step creation of a dataset consisting of more com-
plex queries, having multiple geo-spatial concepts, attributes and relations is antic-
ipated to test the approach more effectively.

Fig. 6. The results of running the RestQueries dataset

6 Conclusions

This paper presents an approach for understanding natural language queries using
geo-localizations by splitting long queries into sub-queries and understanding the role
of each word in each sentence, specifically by extracting objects with their properties
and identifying the geographic relationship between them. The precision and recall of
the method are sufficiently high to warrant its use for geo-referenced queries. Future
plans include improving and extending the method, by addressing not only geo-
localized queries, but also general compound queries; we aim again at combining the
syntactic method for query decomposition to other semantic methods and heuristics,

144 M. Abu Helou

using general-purpose ontological knowledge. In this way, it will be possible to un-
derstand if the method “scales” to arbitrary query decomposition, or instead its good
performance descends from the extensive use of geo-localizations concepts. In future,
the objective is to test the proposed approach for more complex queries. Furthermore,
a stronger integration of Semantic Resource Framework with the proposed approach
is anticipated to improve the results.

Acknowledgements. This research is part of the Search Computing (SeCo) project,
funded by the European Research Council (ERC), under the 2008 Call for "IDEAS
Advanced Grants", a program dedicated to the support of frontier research.

References

1. Bergsma, S., Wang, Q.I.: Learning noun phrase query segmentation. In: EMNLP-CoNLL
2007, pp. 819–826 (2007)

2. Ceri, S., Brambilla, M. (eds.): Search Computing. LNCS, vol. 5950. Springer, Heidelberg
(2010)

3. Chen, Y., Zhang, Y.-Q.: A query substitution – search result refinement approach for long
query web searches. In: WI-IAT, pp. 245–251 (2009)

4. Guo, J., Xu, G., Li, H., Cheng, X.: A unified and discriminative model for query refine-
ment. In: ACM SIGIR Conference on R&D in IR, pp. 379–386 (2008)

5. Hoffart, J., et al.: YAGO2: Exploring and Querying World Knowledge in Time, Space,
Context, and Many Languages. In: WWW 2011, Hyderabad, India (2011)

6. Klein, D., Manning, C.D.: Fast exact inference with a factored model for natural language
parsing. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in NIPS, pp. 3–10. MIT
Press (2002)

7. Kaufmann, E., Bernstein, A., Fischer, L.: NLP-Reduce: A “Nave” but Domain Indepen-
dent Natural Language Interface for Querying Ontologies. In: Demo-Paper at the 4th Eu-
ropean Semantic Web Conference, pp. 1–2 (2007)

8. Tan, B., Peng, F.: Unsupervised query segmentation using generative language models and
Wikipedia. In: WWW 2008, pp. 347–356. ACM (2008)

9. Tablan, V., Damljanovic, D., Bontcheva, K.: A Natural Language Query Interface to
Structured Information. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M.
(eds.) ESWC 2008. LNCS(LNAI), vol. 5021, pp. 361–375. Springer, Heidelberg (2008)

SimSpectrum: A Similarity Based Spectral

Clustering Approach to Generate a Tag Cloud

Frederico Durao, Peter Dolog, Martin Leginus, and Ricardo Lage

IWIS — Intelligent Web and Information Systems,
Aalborg University, Computer Science Department

Selma Lagerlöfs Vej 300, DK-9220 Aalborg-East, Denmark
{fred,dolog,mlegin09,ricardol}@cs.aau.dk

Abstract. Tag clouds are means for navigation and exploration of in-
formation resources on the web provided by social Web sites. The most
used approach to generate a tag cloud so far is based on popularity of
tags among users who annotate by those tags. This approach however
has several limitations, such as suppressing number of tags which are not
used often but could lead to interesting resources as well as tags which
have been suppressed due to the default number of tags to present in the
tag cloud. In this paper we propose the SimSpectrum: a similarity based
spectral clustering approach to generate a tag cloud which improves the
current state of the art with respect to these limitations. Our approach
is based on finding to which extent the tags are related by a similarity
calculus. Based on the results from similarity calculation, the spectral
clustering algorithm finds the clusters of tags which are strongly related
and are loosely related to the other tags. By doing so, we can cover
part of the tags which are discarded by traditional tag cloud generation
approaches and therefore, present the user with more opportunities to
find related interesting web resources. We also show that in terms of
the metrics that capture the structural properties of a tag cloud such
as coverage and relevance our method has significant results compared
to the baseline tag cloud that relies on tag popularity. In terms of the
overlap measure, our method shows improvements against the baseline
approach. The proposed approach is evaluated using MedWorm medical
article collection.

Keywords: tag, cloud, medical, information, retrieval, navigation.

1 Introduction

Tag clouds have been popularized as a means for navigation and exploration
by social sites, such as Flickr, Technorati and del.icio.us. These sites are used
by users to annotate shared resources using short textual labels, called tags.
In general, tag annotation are used remembering which meaning the annotated
resource had for particular readers or users of the resource and this in a collab-
orative manner. Aggregated set of the tags form tag clouds. Tag clouds allow
users searching for certain tags and to locate resources tagged by these tags also

A. Harth and N. Koch (Eds.): ICWE 2011 Workshops, LNCS 7059, pp. 145–154, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

146 F. Durao et al.

by other users [10,15]. Tags in the cloud are hyperlinks which users can click
and by following the links to see related content. The tags in the tag clouds are
mostly presented alphabetically and according to their popularity, i.e. the more
a tag was used in annotations of information resources on the Web, the larger
the font size it has in a tag cloud. Further, the number of tags in a tag cloud is
usually restricted by predefined number which results in cutting out number of
tags after the number was reached following the alphabetic order.

We share the same opinion with [18] that “popularity” does not provide the
most meaningful groupings to help a user to locate items of interest. For example,
if we select the 20 most popular tags assigned to the results of a query “swine
flu” at the MedWorm portal 1, there might be some articles in the query results
that have not been tagged with any of the selected 20 tags and hence the article
would not be reachable by the user. The issue is also that despite the popularity,
the tags are not necessarily related.

Due to these limitations, we focus on the generation of tag clouds by consid-
ering the relatedness of tags. The intention is to partition all tags into disjoint
groups of related tags. For instance, the tags “swine”, “flu”, “mexico”, “2010”
should be part of one sub cloud while the tags “tumor”, “cancer”, “blood”,
“biopsy” should be part of another sub cloud. The sub clouds are treated in this
paper as clusters. Our hypothesis is that the organization of the entire tag cloud
considering the existence of those sub clouds can better cover and represent the
information it links to. Note also, that we are looking for a specific solution to
group tags but in this paper, we are not studying how to effectively present those
groups for which there are several options. We select only one of the possible
presentations for now. The chosen presentation is close to the traditional pre-
sentation of tag clouds and only for illustration purposes. The contributions of
this paper can be summarized as follows:

– We propose a method which combines a similarity calculus with a spectral
clustering algorithm to generate a tag cloud for navigation and exploration
purposes. We argue for this solution because spectral clustering performs
the best in situations where computed clusters should contain strongly re-
lated members insight and are very loosely related to the members of other
clusters.

– We show that the proposed approach has promising results in terms of cov-
erage, relevance, and overlap especially in the context of the very sparse and
low quality tagging data set such as that from a medical domain from the
MedWorm portal. We look especially at this domain as the tag clouds can
support surveillance and analysis of information relevant to some medical
events such as a disease outbreak. Here the navigation and exploration aids
are even more important than in general purpose tagging systems such as
del.icio.us.

The remainder of this paper is organized as follows. In the next section we
review related work on tag cloud systems. Section 3 describes our approach for

1 http://www.medworm.com/rss/blogtags.php

SimSpectrum: A Similarity Based Spectral Clustering Approach 147

generation of the tag cloud. Next, Section 4 describes the evaluation, based on
the MedWorm dataset. Finally, we conclude the work and point out future works.

2 Related Work

Research on tag clouds has mostly focused on presentation and layout aspects
[2,15]. For selecting tags to be displayed in a tag cloud, social information shar-
ing sites mostly use popularity-based schemes. Recently, tag selection algorithms
that try to find good and not necessarily popular tags have been developed for
structured data [14]. This work relates to our approach in the sense that tag
relatedness was also addressed however with less focus on the generation of the
tag cloud. There has been extensive research on clustering search results [9,12].
Although not dealing with tag clouds, our work converge to those approaches
since all rely on clustering techniques based on tag relatedness. There is also
work on query results labeling [13] and categorizing results of SQL queries [5].
[6] adapt tag clouds to provide visual summaries of researchers’ activities and use
these to promote awareness within a research group. [11] show how tag clouds
can be used alongside more traditional query languages and data visualization
techniques as a means for browsing and querying databases by both experts and
non-expert users. In the same line, Sinclair et al. [16] studied the usefulness of
tag clouds versus search interfaces for different types of tasks (general versus
specific searches). Similarly to our work, [16] investigate the idea that tag clouds
can provide a helpful visual summary of the contents regardless tag popularity.
[3] applies tag clustering to overcome the problem of limited search in tag spaces.
The difference from our work, is that while we apply the traditional spectral algo-
rithm [19], they combine the spectral bisection algorithm [17] and a modularity
function Q, which measures the quality of a particular clustering of nodes in a
graph. Technically, the spectral bisection algorithm is a extension of the spectral
algorithm that bisects graphs into two graphs. Division into a larger number of
graphs is usually achieved by repeated bisection. Another difference in compari-
son to our work is that we extend the weights for tag relatedness with similarity
calculation while [3] only considers co-occurrence of tags. The final difference is
that we have also performed an evaluation study based on compactness metrics.

In a medical domain, [8] propose a lightweight technique that uses multiple
synchronized tag clouds to support iterative visual analysis and filtering of query
results. The proposal was evaluated in a user study which presents typical search
and comparison scenarios to users trying to understand heterogeneous clinical
trials from a leading repository of scientific information. Unlike our work, they
did not use any specific technique for analyzing the relatedness of tags. Therefore,
our work provide a better solution for their problem as well. [1] introduce a
new model for collaborative tagging in medical blogs, i.e. tagging blog entries
with medical information. MTag includes two modules: the service module and
the semantic module. The service module enables health professionals provide
blog posts with auto-completed tags that represent actual medical terms and
categorize their tags. Tags are mapped to URIs from online medical knowledge

148 F. Durao et al.

datasets to clarify their medical meaning. [4] describe a prototype which retrieves
biomedical information from different sources, manages it to improve the results
obtained and to reduce response time and, finally, integrates it so that it is useful
for the clinician, providing all the information available about the patient at the
POC. Moreover, it also uses tools which allow medical staff to communicate and
share knowledge.

3 Tag Cloud Approach Based on Spectral Clustering

Figure 1 shows an excerpt of the MedWorm tag cloud (on the left side) and
our generated tag cloud (on the right side). The first visible observation is that
our tag cloud reduces the amount of tags in the cloud. Tags as “award, awards,
Australia, ethics, advocacy” are not considered by our approach since they are
not closely related to the other tags in the cloud. The second observation refers to
the organization of the cloud itself. In the MedWorm cloud, many unrelated tags
are located next to each other. Examples include “aids and alcohol”, “awards
and back pain” and “advocacy and affairs”. In our tag cloud, we organize the
“sub clouds” (clusters) per line and provide an allocation of tags based on their
relatedness. Examples include “protein and aids” and “alcoholic and addiction”.
These sets are not found in the MedWorm tag cloud.

Fig. 1. An example of tag clouds from MedWorm dataset, on the left the original
popularity based tag cloud and on the right generated by our approach

The tag cloud approach used in the Figure 1 is described bellow. It is based on
two main steps: first, it calculates a similarity measure among tags, and, second,
it runs a clustering technique on the tag cloud space to identify the sub clouds.

3.1 Calculating Tag Relatedness

We represent the tag space as a similarity matrixW that captures the relatedness
of all tags. Since our goal is to find strongly related tags, we use the frequency
counts of all the co-occurred tag pairs (co-tags) and attempt to identify the
significant co-tags. In order to do that, we determine the pairs of tags that co-
occur more frequently, i.e., the pair of tags that are frequently assigned to the
same article. In short, W is calculated as:

W =
∑

|tagi ∩ tagj|, (1)

SimSpectrum: A Similarity Based Spectral Clustering Approach 149

where tagi ∈ T and tagj ∈ T and T is the set of tags. The second step is to look
for a cutoff point above which the co-tags are considered strongly related. The
weakly related co-tags are discarded and not considered in further computations.
The cutoff point is calculated based on the analysis of co-tags statistics and it is
important to discard the noisy and weakly related co-tags which cause inaccurate
clustering.

Once the strongly related co-tags are identified, we compute affinity among
co-tags according to a similarity function. Different similarity measures can be
exploited, but for this work, we opted for using cosine similarity because we
obtained the best results in our preliminaries analysis [7]. The cosine similarity
is calculated as follows:

Cosine(tagi, tagj) =
2|I ∩ J |

2
√|I| × |J | (2)

, where the amount of tag occurrences for tagi and tagj within all tag assignments
is denoted by |I| and |J | respectively. The number of co-occurrences between tagi
and tagj is given by |I∩J |. This similarity measure is computed for every strongly
related co-tag in the tag space, once we can transform the tag pair relations into
a graph structure. It is an undirected weighted graph G(V,E,W) consisting of:

– a set of nodes V , where a vertex vi of the graph corresponds to a tag tagi.

– a set of edges E, where an edge ei connects vertices vi and vj if the tag tagi
relates strongly to tag tagj or vice versa.

– weights are given by the affinity matrix W , where a weight wi,j corresponds
to the similarity between tagi and tagj.

As the graph G is undirected, it holds that wi,j = wj,i and the affinity matrix
W is symmetric. The next step is to group similar tags into clusters.

3.2 Clustering Tag Space

Once the graph G is created, we then proceed to find (sub) clusters of tags that
address the same topic. For instance, a cluster of tags addressing the topic “diet”
could contain the tags “meal”, “vitamin”, “periodicity”, while a cluster of tags
addressing the topic “infectious diseases” could contain the tags “contamina-
tion”, “virus”, “oral contact”. This requirement matches exactly the principle of
spectral clustering algorithms, i.e. to cut a weighted graph into a number of dis-
joint pieces (clusters) such that the intra-cluster weights (similarities) are high
and the inter-cluster weights are low [19]. To obtain clusters, we therefore rely
on a spectral clustering algorithm which input is the undirected weighted graph
G. The spectral clustering algorithm partitions the graph G based on its spectral
decomposition into subgraphs. The affinity matrix W expresses the graph G, in
such way that for each node the matrix W contains a row with graph weights
(similarities values) between a given node and all other nodes. The steps to run
the spectral clustering are:

150 F. Durao et al.

1. We build the Laplacian matrix L = D−1/2WD−1/2 derived from the affinity
matrix W . The D is n × n diagonal matrix whose (i, i)− th element is the
sum of W ’s i − th row, in other words it is degree of a given node i - sum
of all weights corresponding to the edges that are connected to a given node
i. The Laplacian matrix L is symmetric and has identical size as affinity
matrix W .

2. We compute the k largest eigenvectors of L, these obtained top k eigenvectors
are used as columns to create a new matrix U ∈ Rn×k. We consider each row
of U as a point in Rk, hence we can apply standard K-means algorithm to
cluster these points into k clusters. In our experiment, we empirically tried
different numbers of clusters to run our analysis and concluded that for our
experiment and the dataset 10 clusters perform the best. This could however
differ from a dataset to dataset and can even change with the evolution of
the tag set. Thus, an approach that automatically defines the member of
clusters is envisaged as part of our future works.

3. Finally, we map original node i to the cluster j if and only if row i from
matrix U belongs to the same cluster j. We obtained disjoint groups of
similar and related tags and we are able to build enriched tag cloud.

4 Evaluation

4.1 Dataset and Experimental Setup

Methodology. In order to evaluate the generated tag cloud, we analyzed the
problem from a traditional information retrieval perspective. We used tags from
each sub cloud as query terms and analyzed the search results issued by these tag
queries. Indeed, we compared the set of tags assigned to returned results against
the set of tags in the each sub cloud (or cluster). In this sense we could calculate
three structural properties of the cloud: coverage, overlap and relevance. For
issuing the queries, we utilized the Apache Lucene 2 as our search engine.

For the matter of comparison, we repeated the same procedure on the Med-
Worm tag cloud. Since MedWorm’s cloud relies on tag popularity and does not
deal with explicit clusters, we decided to create “fake” clusters composed by
tag neighbors located after and before a tag query q present in our sub clouds.
Thus, the clusters were made up around all tag queries common in both clouds.
In this sense, we could build clusters of Tneighbors for the MedWorm tag cloud
and compare the results against our approach. The amount of clusters and size
was the same as used in our approach. Regarding the amount of clusters for the
cloud, we empirically set the number of cluster based on our observations of the
cluster quality. After testing a tag cloud containing 5 to 20 clusters, we ran our
experiments with 5, 10 and 15 clusters.

Data and Queries. We crawled medical articles from MedWorm repository
and stemming out the entity attributes from the data. Thus, we obtained the

2 http://lucene.apache.org/

SimSpectrum: A Similarity Based Spectral Clustering Approach 151

tags, resources and its associations. The resulting dataset comprises 13,509 tags
and 26,1501 documents. We also indexed the stemmed words from documents
to build up the search space. Finally, the tag cloud was pre-processed according
to the steps described in Section 3.

As noted before, all tags from the clusters of our generated tag cloud were
utilized as individual queries as long as they were also found in the baseline tag
cloud. In this sense, both approaches could be evaluated on the same search
results. We justify the utilization of tags as queries to avoid using “arbitrary”
terms (even medical related), that eventually could not retrieve results and thus
not contributing the evaluation.

Evaluation Metrics. The quality of tag cloud has been studied in many stud-
ies [10,18]. In this work, we evaluate the quality of our cloud inspired by metrics
established by [18]. In particular, we pay special attention to the coverage, over-
lap and relevance of the cloud. We understand that these metrics capture the
structural properties of a cloud and indicate the its quality for representing the
collection of tagged documents. In order to formally describe the metrics, let Tc

be the set of tags in a cluster c; and Cq be the set of items retrieved when a
query q is issued.

– Coverage of Tc: Some items in Cq may not be assigned with any tag from
Tc. Then, these objects are not covered by Tc. Coverage gives us the fraction
of Cq covered by Tc. Thus, coverage cov(Tc) is defined as:

cov(Tc) =
|Tc|
|Cq| , (3)

This metric can take values between 0 and 1. If cov(Tc) is close to 0, then
Tc is associated with a few items of Cq.

– Overlap of Tc: Different tags in Tc may be assigned with the same item in
Cq. The overlap metric captures the extent of such redundancy. Thus, given
ti ∈ Tc and tj ∈ Tc, we define the overlap over(Tc) of Tc as:

over(Tc) = avgti �=tj

|ti ∩ tj |
|Cq| , (4)

This metric also lies in [0,1]. If over(Tc) is close to 0, then the intersections
of tags in the same cluster are small and redundancy is minor.

– Relevance of Tc: It says how relevant the tags in Tc are to the original query
q. To answer this, we treat each t in Tc − q as a query and we consider the
set Ct of items that this query returns. Since we decided to use one tag in
Tc as q, for obvious reasons, we set the constraint: t = q. The more Ct and
Cq overlap, the more related t is to q. If Ct ⊆ Cq, then t is practically a
sub-category of the original query q. Let us first define the relevance rel(t, q)
of a tag t to the original query q as the fraction of results in Ct that also
belong to Cq, i.e.:

rel(Tc) = avgt∈Tc

|Ct ∪ Cq|
|Ct| , (5)

152 F. Durao et al.

The rel(Tc) lies in [0,1]. The closer it is to 1, the more relevant is Tc to the
query q.

4.2 Evaluation Results

We generated our cloud based on the baseline MedWorm cloud containing 200
tags. This is the approximate amount of tags available on MedWorm web site.
After generating our cloud, only 125 tags were considered. The 75 tags missing
were discarded by the clustering algorithm. Only 70 tags from our tag cloud were
also found in the baseline tag cloud. All those 70 tags were used as queries in
the evaluation. Table 1 shows the comparative results of our analysis taking into
account the three aforementioned metrics. The results on the left side of the table
refer to MedWorm tag cloud while the results on the right side of the table are
achieved from our approach. The results correspond to the mean values for the
metrics assessed. As results show, our approach obtained significant advantage

Table 1. Mean Values for the Metrics Assessed

MedWorm Tag Cloud Our Tag Cloud

Cluster Coverage Relevance Overlap Coverage Relevance Overlap

5 0.53 0.56 0.65 0.67 0.66 0.61
10 0.51 0.55 0.67 0.70 0.68 0.61
15 0.56 0.52 0.61 0.65 0.63 0.59

(on average) in terms of coverage and relevance at rates of 20.4% and 16.4%
respectively. We also achieved better overlap rates than the MedWorm tag cloud
at a satisfactory rate of 5.7%. As to the number of clusters, we observed best
results with 10 clusters were considered.

Focusing exclusively on the coverage metric, we can argue that reorganization
of the cloud in sub clusters of related terms made it more representative. This
means that each tag covers a more expressive part of the whole indexed cor-
pus. Although no significant improvements were observed for overlap, at least
we could observe that tags assigned to the search results were more equally dis-
tributed thus reducing scarcity. The immediate benefit is that searchers if using
the tags as queries might increase the chances for hits of desired documents. As
to the relevance metric, we can argue that the clusters contribute to generate a
more cohesive cloud that better cover and represent the information it links to.
We outline two benefits of our approach: i)it demonstrates how closely related
the tags are in the cloud and ii) how closely related the search results are to the
sub clouds.

5 Conclusion and Future Works

In this paper we propose an approach to generate quality tag clouds by consider-
ing the relatedness of tags and separation of concerns. Our hypotheses was that

SimSpectrum: A Similarity Based Spectral Clustering Approach 153

the organization of the whole cloud considering the relatedness of tags could
improve structural properties of the cloud and thereby enhance information re-
trieval capabilities.

According to our results, we reached higher levels of coverage, overlap and
relevance compared to a baseline medical tag cloud. As a future work, we plan
to investigate how different metrics may correlate to each other in order to
determine which independent metrics make sense as optimizations objectives. In
addition, it is possible that metrics may exhibit different correlation trends in
different datasets. As previously said, we plan to utilize an clustering approach
that automatically define the amount of clusters. Further, digital dictionaries as
WordNet or even domain ontologies should be considered for calculation of tag
relatedness. We also plan to compare the clustering algorithm using the bisection
technique with the one used in this work. Finally, a task-based evaluation using
a navigation tool is planned to better support the validity of the approach.

Acknowledgment. This work has been supported by FP7 ICT project M-Eco:
Medical Ecosystem Personalized Event-Based Surveillance under grant number
247829 and FP7 ICT project KiWi: Knowledge in a Wiki under grant agreement
No. 211932.

References

1. Batch, Y., Yusof, M.M., Noah, S.A.M., Lee, T.P.: Mtag: A model to enable collab-
orative medical tagging in medical blogs. Procedia Computer Science 3, 785–790
(2011); World Conference on Information Technology

2. Bateman, S., Gutwin, C., Nacenta, M.: Seeing things in the clouds: the effect of
visual features on tag cloud selections. In: Proceedings of the Nineteenth ACM
Conference on Hypertext and Hypermedia, HT 2008, pp. 193–202. ACM, New
York (2008)

3. Begelman, G., Keller, P., Smadja, F.: Automated tag clustering: Improving search
and exploration in the tag space. In: Proceedings of the WWW Collaborative Web
Tagging Workshop, Edinburgh, Scotland (2006)

4. Cabarcos, A., Sanchez, T., Seoane, J.A., Aguiar-Pulido, V., Freire, A., Dorado, J.,
Pazos, A.: Retrieval and management of medical information from heterogeneous
sources, for its integration in a medical record visualisation tool. IJEH 5(4), 371–
385 (2010)

5. Chakrabarti, K., Chaudhuri, S., Hwang, S.-W.: Automatic categorization of query
results. In: Proceedings of the 2004 ACM SIGMOD International Conference on
Management of Data, SIGMOD 2004, New York, NY, USA, pp. 755–766 (2004)

6. de Spindler, A., Leone, S., Geel, M., Norrie, M.C.: Using Tag Clouds to Promote
Community Awareness in Research Environments. In: Luo, Y. (ed.) CDVE 2010.
LNCS, vol. 6240, pp. 3–10. Springer, Heidelberg (2010)

7. Durao, F., Lage, R., Dolog, P., Coskun, N.: Exploring multi-factor tagging activity
for personalized search. In: WEBIST 2011, Proceedings of the 7th International
Conference on Web Information Systems and Technologies, The Netherlands, May
6-9 (2011)

154 F. Durao et al.

8. Hernandez, M.-E., Falconer, S.M., Storey, M.-A., Carini, S., Sim, I.: Synchronized
tag clouds for exploring semi-structured clinical trial data. In: Proceedings of the
2008 Conference of the Center for Advanced Studies on Collaborative Research:
Meeting of Minds, CASCON 2008, pp. 4:42–4:56. ACM, New York (2008)

9. Koutrika, G., Zadeh, Z.M., Garcia-Molina, H.: Coursecloud: summarizing and re-
fining keyword searches over structured data. In: Proceedings of the 12th Inter-
national Conference on Extending Database Technology: Advances in Database
Technology, EDBT 2009, pp. 1132–1135. ACM, New York (2009)

10. Kuo, B.Y.-L., Hentrich, T., Good, B.M., Wilkinson, M.D.: Tag clouds for summa-
rizing web search results. In: Proceedings of the 16th International Conference on
World Wide Web, WWW 2007, pp. 1203–1204. ACM, New York (2007)

11. Leone, S., Geel, M., Muller, C., Norrie, M.C.: Exploiting tag clouds for database
browsing and querying. In: Aalst, W., Mylopoulos, J., Rosemann, M., Shaw, M.J.,
Szyperski, C., Soffer, P., Proper, E. (eds.) Information Systems Evolution. LNBIP,
vol. 72, pp. 15–28. Springer, Heidelberg (2011)

12. Maslowska, I.: Phrase-Based Hierarchical Clustering of Web Search Results. In:
Sebastiani, F. (ed.) ECIR 2003. LNCS, vol. 2633, pp. 555–562. Springer, Heidelberg
(2003)

13. Nigam, K., McCallum, A.K., Thrun, S., Mitchell, T.: Text classification from la-
beled and unlabeled documents using em. Mach. Learn. 39, 103–134 (May 2000)

14. Rivadeneira, A.W., Gruen, D.M., Muller, M.J., Millen, D.R.: Getting our head in
the clouds: toward evaluation studies of tagclouds. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI 2007, pp. 995–998.
ACM (2007)

15. Schrammel, J., Leitner, M., Tscheligi, M.: Semantically structured tag clouds: an
empirical evaluation of clustered presentation approaches. In: Proceedings of the
27th International Conference on Human Factors in Computing Systems, CHI 2009,
pp. 2037–2040. ACM (2009)

16. Sinclair, J., Cardew-Hall, M.: The folksonomy tag cloud: when is it useful? J. Inf.
Sci. 34, 15–29 (2008)

17. Van Driessche, R., Roose, D.: An improved spectral bisection algorithm and its
application to dynamic load balancing. Parallel Comput. 21, 29–48 (1995)

18. Venetis, P., Koutrika, G., Garcia-Molina, H.: On the selection of tags for tag clouds.
In: Proceedings of the Fourth ACM International Conference on Web Search and
Data Mining, WSDM 2011, pp. 835–844 (2011)

19. von Luxburg, U.: A tutorial on spectral clustering. Statistics and Computing 17,
395–416 (2007)

A. Harth and N. Koch (Eds.): ICWE 2011 Workshops, LNCS 7059, pp. 155–158, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Graph Access Pattern Diagrams (GAP-D):
Towards a Unified Approach for Modeling Navigation
over Hierarchical, Linear and Networked Structures

Matthias Keller and Martin Nussbaumer

Steinbuch Centre for Computing (SCC)
Karlsruhe Institute of Technology (KIT) D-76128 Karlsruhe, Germany

{Matthias.keller,martin.nussbaumer}@kit.edu

Abstract. In this paper we motivate the advantages of a unified, language-
independent concept for describing and defining navigation systems based on
underlying graph structures. We expect that such an approach will lower the
effort for implementing navigation systems with application frameworks while
increasing the configurability and reusability of navigation systems at the same
time. It also allows adapting navigation components to new data sources easily.
A visual notation called Graph Access Pattern Diagrams (GAP-Ds) is outlined
and its expressivity is demonstrated by examples.

Keywords: Navigation Systems, Graphs, Content Organization.

1 Introduction

The non-scientific standard works on navigation design and Web information
architecture (e.g. [1],[2] or [3]) distinguish between different basic types of content
organization systems on the one hand and navigation systems build on top of it on the
other hand. Organization systems define relations on content items on an abstract
level. In contrast navigation systems provide hyperlinks between pages representing
content items. The hyperlink structure differs from the content structure. In a
hierarchical content structure e.g. the first level nodes and the third level nodes are not
connected directly, but there will be a hyperlink from all third level pages to all first
level pages in a global navigation system based on that hierarchy.

If the underlying organization system is modeled as graph, different navigation
systems can be described by simple patterns (Fig. 1). For example a local navigation
may render the hyperlinks to the page representing the parent item in the organization
system and to all the children. The idea presented in this paper is to develop a formal
notation for this kind of pattern. Our vision is a general, lightweight, application-
independent concept for defining common navigation systems such as menus or
navigation aids that are based on hierarchical, linear or networked content structures
which can be modeled as graphs. According to [1] other forms of content organization
are the database-model and social classification. The Web Engineering methods as
WebML [4] or OOHDM [5] focus on the database-content-model and provide
elaborated models for this purpose.

156 M. Keller and M. Nu

We experienced that al
belong to one of a few
navigation [2], there are a
into hyperlink structures. A
always expand all levels o
closed. Children may be
moved over the parent elem

Fig. 1. Navigation systems a

We want to transform th
on graphs into a small, sim
Domain-Specific Language
graphical notation is outline

Web application framew
components implementing
can be modeled as graphs,
problem is that the naviga
configurability and the way

2 Benefits

The proposed approach sep
layer and the presentation l
the content organization as
defines the hyperlink structu
form of nested lists. The p
guarantee a consistent visua

We expect benefits for
abstraction that allows adap
GAP-Ds complement the c
for describing the behavior
method may be a reason
compared to software engi
GAP-Ds allow specifying
precisely and extending t

ussbaumer

lthough the largest part of common navigation syste
types such as global, local, supplementary or court
plethora of ways how navigation systems translate gra
A navigation system implementing a hierarchy e.g. m

or just the active level. Parent levels may be expanded
visible permanently or only when the mouse pointer

ment, etc.

as access patterns on top of graphs. Illustrations taken from [2

he intuitive concept of classifying navigation systems ba
mple and highly focused language. According to the idea
es (DSLs) a Domain Interaction Model (DIM) as intuit
ed in this paper [6].

works such as content management systems usually incl
the basic types of Web navigation on top of structures t
e.g. folder-like structures (hierarchical graphs) or lists

ation components provided, their behavior, the extent
y they can be configured depends on the application.

parates three common layers: The data layer, the navigat
layer. The data layer provides an abstraction for model
a graph with two types of relations. The navigation la

ure with GAP-Ds that is rendered by a processor e.g. in
presentation layer consists of presentation templates t
alization of all possible results.
all three layers: On the data layer the graph model is

pting new data sources more easily. On the navigation la
oncept of HCI interaction patterns [7] by a formal meth
of navigation systems in detail. The current lack of suc
for the low consensus on identified interaction patte
ineering design patterns that can be described by UM

g navigation systems in corporate design style gui
he configurability of navigation systems in applicat

ems
tesy
aphs
may
d or
r is

].

ased
a of
tive

lude
that
s. A
t of

tion
ling
ayer

the
that

s an
ayer
hod
ch a
erns
ML.
ides
tion

 Graph Access Pattern Diagrams (GAP-D) 157

frameworks. GAP-Ds reduce the effort of implementing navigation systems. GAP-Ds
can be reused and shared beyond the scope an application or framework. Considering
GAP-Ds also makes presentation templates more universal and allows combining
them with a broader range of navigation systems.

3 Outline of a Notation for GAP-Ds

In this section we outline the basic elements (Fig. 2) of a notation for GAP-Ds that we
are discussing at the moment and demonstrate their expressivity by examples. Since
in the proposed approach navigation systems are modeled with GAP-Ds on top of
graphs, a notation for describing them is the foundation.

Fig. 2. GAP-D notation

Fig. 3. GAP-D examples for a hierarchical organization system [H] and a linear organization
system [L]: (1) All levels are expanded; (2) Active reference / breadcrumb; (3) First and current
level and all ancestors and children are expanded (4) Paging

We propose to model organization systems as a graph with resources (1) as nodes
and two types of edges, one representing succession (2) and the other representing
subordination (3). When modeling hierarchies with the subordination relation,
siblings are always considered as successors too (10). A graph representing an

158 M. Keller and M. Nussbaumer

organization system can be named and referred by [name] (5). The model also
contains dictionaries that associate names with resources (4). This allows using
different labels for the same resource depending on the navigation system. GAP-Ds
describe the navigation options depending on the active resource (6). The content
relations are used to select neighbored resources. E.g. with the subordination symbol
(3) all children of the active resource can be selected. A square indicates that that a
hyperlink to a resource is displayed (7). A wildcard symbol models repetition (8). A
line crossing a relation symbol (9) indicates a mouseover-effect. Finally an
abbreviation for modeling bi-directional relations seems useful (11). The examples in
Fig. 3 illustrate the expressivity of these few elements.

4 Discussion and Ongoing Work

Before developing tools, we want to include the feedback from the community in our
considerations. We are also planning to analyze selected Web sites in order to
evaluate which percentage of navigation systems can be described with GAP-Ds and
how the notation can be extended while keeping the balance between simplicity and
expressivity. It should be evaluated how quick developers can adopt and use the
concept. Implementing a GAP-D editor and developing application-specific Solution
Building Blocks [6] that are able to process GAP-Ds would be the next steps.

References

1. Morville, P.: Information architecture for the World Wide Web. O’Reilly, Sebastopol
(2007)

2. Garrett, J.: The elements of user experience: user-centered design for the web. American
Institute of Graphic Arts, New Riders (2003)

3. Kalbach, J.: Designing Web navigation. O’Reilly, Beijing (2007)
4. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing Data-

Intensive Web Applications. Morgan Kaufmann Publishers Inc. (2002)
5. Schwabe, D., Rossi, G., Barbosa, S.D.J.: Systematic hypermedia application design with

OOHDM. In: Proceedings of the the Seventh ACM Conference on Hypertext, pp. 116–
128. ACM, Bethesda (1996)

6. Nussbaumer, M., Freudenstein, P., Gaedke, M.: The Impact of Domain-Specific
Languages for Assembling Web Applications. The Journal Engineering Letters 13, 387–
396 (2006)

7. Kruschitz, C., Hitz, M.: Analyzing the HCI Design Pattern Variety. In: Proceedings of
AsianPLoP 2010 (2010)

A. Harth and N. Koch (Eds.): ICWE 2011 Workshops, LNCS 7059, pp. 159–166, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Data-Driven and User-Driven Multidimensional Data
Visualization*

Rober Morales-Chaparro, Juan C. Preciado, and Fernando Sánchez-Figueroa

Quercus Software Engineering Group, Universidad de Extremadura
{robermorales,jcpreciado,fernando}@unex.es

Abstract. Data Visualization on the Web is one of the main pillars for
understanding the information coming from Business Intelligence based
systems. However, the variety of data sources and devices together with the
multidimensional nature of data and the continuous evolution of requirements is
making this discipline more complicated as well as passionate. This paper
outlines a process for obtaining a multidimensional data visualization driven by
both, the data and the user, providing an automatic code generation. While the
designer is automatically provided with a wide range of possible visualizations
for a given data set, the user can change the visualization in several ways: the
dominant dimension, the kind of visualization and the data set itself by adding,
removing or grouping variables.

Keywords: Data Visualization, Web Engineering, Business Intelligence.

1 Introduction

Data Visualization is becoming more and more important in Web applications for
Business Intelligence. Not only is important extracting the relevant information for
the company but also showing it in the appropriate way. Company managers want to
see their business’ situation in a quick and easy way, in order to make decisions
correctly, efficiently and on-time.

Different Data Visualization techniques are being widely used for this purpose
[Bro08, TSD10]. Their interactive nature enables users to explore patterns, test
hypotheses, discover exceptions, and explain what they find to others [Rob08].

These techniques have proven to be useful when the requirements do not change
over time. However, for those applications with evolving requirements, this kind of
systems generates a growing dissonance between what the users want to know, and
what the application can show. Step by step, original requirements differ more and
more from the actual necessities.

Under this situation, company managers have two options: managing more than
one application and/or document to take decisions or contacting again the software
company that developed the application to adapt it to the new requirements. The
former has the problem of being an error-prone and tedious task, while the latter has
the risk of not providing the information on-time for the company purposes.

* This work has been developed under the Spanish Contract MIGRARIA - TIN2011-27340

funded by Ministerio de Ciencia e Innovación.

160 R. Morales-Chaparro, J.C. Preciado, and F. Sánchez-Figueroa

If the users know exactly how to see the information, why not letting them to drive
and customize the presentation just to obtain the information in the most appropriate
way? Several authors have identified this challenge as “interdisciplinary
collaboration”: there should be a communicative balance between visualization
masters and application domain experts [KEM07]. So, it is time for user-driven
visualization on the Web.

However, the variety of current data sources (query languages, APIs, etc.) together
with the plethora of different devices for visualization and the ultimate practices
coming from social applications for tagging information, are making data
visualization on the Web even more challenging. The existence of semantic and/or
contextual information around data is very useful for visualization purposes [Ber67].
This fact opens the opportunity to reason about data, bringing the possibility of
automating Data Visualization. So, it is time for data-driven and user-driven
visualization on the Web.

When combining several kinds of data, the visualization can be different depending
on the dominant dimension (i.e. it is not the same showing the “hair color of some
people”, that showing “number of people with a certain hair color”). From a user-
driven point of view, it would be interesting to play with different visualizations for
the same set of data or even changing the dominant dimension just to find the
information he is interested in. Under this multidimensional nature of data, we can say
it is time for data-driven and user-driven multidimensional visualization on the Web.

Precisely, the main contribution of this paper is presenting a data-driven and user-
driven process to visualize multidimensional data on the Web. The main benefits of
the proposal are twofold. On the one hand, the possibility for the designer to reuse one
visualization among different applications; on the other hand, the possibility for the
user (and the designer) to have automatically more than one visualization for the same
data set. Far from giving details, this paper outlines the whole process we are
following in our research.

The rest of the paper is organized as follows. Section 2 introduces a motivating
example while Section 3 presents the process. Finally, Section 4 outlines conclusions
and related works.

2 Motivating Example

The restaurants manager of an international airport has a visualization software
solution that shows up important data to her. The dashboard shown in Figure 1
summarizes data about time and target country of departures.

This solution fit well her needs in the past. However, now she wants to change the
thematic of the airport restaurants, to be of cultures around the world: the menu at a
given time will depend on the nationality of most of the passengers in the airport at
that time. So it is needed to obtain which countries are the destinations/origins of most
flights at different moments of the day. Desirably, she would be able to query the
system, and the system able to answer.

 Data-Driven and User-Driven Multidimensional Data Visualization 161

From the system point of view: there are neither new data nor new casuistry among
them or new actors. In addition, from the manager point of view: she knows better
than everyone around the world how is the new visualization she needs. Despite this,
her visualization software is not able to show her the data in the appropriate way. She
needs a system that i) knows very well the nature of the data, ii) offers the possibility
of choosing between different visualizations, playing with the number of items to be
showed and the dominant dimension that drives the visualization.

Such a system is briefly introduced in next section. This system should be able to
automatically show the dashboard of Figure 2.

Fig. 1. Original dashboard. Left: average departures by target country. Center: average
departures by hour. Right: average departures by month.

Fig. 2. Desired dashboard. At 9am and 3pm, frequency by target country.

Fig. 3. Sequential steps of the process, from the data to the user

3 Proposal

The process is divided into three main sub-engines: data mining, visualization
proposal and code generation (Figure 3). Next we briefly explain the whole process.

162 R. Morales-Chaparro, J.C. Preciado, and F. Sánchez-Figueroa

3.1 Data-Driven Concerns and the Multidimensional Challenge

Dimensions are the attributes of every object from the data set (i.e. name, age,
gender,…), or the aggregations of attributes (i.e. average age, distinct name, count,
etc.). Together with the name, their semantic annotations include (a) the type, (b) the
range if applicable, (c) the relevance, (d) the relationship with other dimensions and
(e) the organizational level (roughly: qualitative ⊂ ordinal ⊂ quantitative) [Ber67].

Each visualization has two parts. The first is constrained by the dominant
dimension, which is usually mapped with the 2D position of the objects, i.e. used as
the axis. The second is the selection of visual variables (mainly: color, intensity, size,
orientation, grain and shape). Their accuracy for human perception is very well
documented [CM84]. This part is usually summarized in a legend.

The “data mining engine” (Figure 3-1) is the entry point of the process. Its goal is
to propose visualizations with the maximum utility and accuracy of perception. The
utility is the capacity of showing the snapshot of the data that reveals potential non-
obvious patterns. The accuracy of perception is about choosing the visual variables
that best represents the selected attributes. To get these two goals, it automates every
concern inferable from the multidimensional data. The input of the engine is a “data
model” with semantic annotations (Figure 3-A). The output is an “information
model”, which stores all the decisions taken in the phase (Figure 3-B).

This phase is supported by a semiotic ontology, which contains the rating between
the semantic markup of the dimensions and the visual variables, i.e., it stores that a
quantitative dimension fits well with size but not with color.

The first task of the phase is building the most relevant perspectives: 1. Which is
the dominant dimension of the data? 2. Which are the most relevant dimensions
(which potentially will reveal patterns or trends)? and 3. Is it suitable to make groups,
filters or annotations, to see the data better?

Then, it tentatively performs the matching of dimensions with visual variables: 1.
Taking into account the dominant dimension: what is the best disposition of the object
set? 2. For each output dimension: what visual properties do fit better? 3. Seeing the
size of the dataset: is it needed managing filters, or perhaps the focus and the context?

In our motivating example, the input of the engine is the data model in Figure 4.
Table 1 shows the first stage: the relevant perspectives that the system has found
based on the data mining analysis of the data model. Table 2 represents the second
task of the phase: the best visual variables for the dimensions of those perspectives.
The decision takes into account, mainly, their organizational level as scored in the
ontology (not shown). After that, the data-driven phase ends with an “information
model”: the composition of tables 1 and 2 (not shown).

Fig. 4. Annotated data model

 Data-Driven and User-Driven Multidimensional Data Visualization 163

Table 1. Proposed perspectives

Perspective
Dimensions

dominant outputs group

Flights by hour When Count Hour
Flights by month When Count Month
Flights by country Country Count Hour

Table 2. Map between attributes and visual variables

Dimensions → Organizatio
nal level

→ Variables

Count Qualitative Intensity, size
When Ordinal Hor. Axis
Country Qualitative map

3.2 Model-Driven Flow

At this stage, the modeler has the option of improving the skeleton of the
“information model”. After this optional refinement, a “visualization proposal engine”
selects the best patterns to display the perspectives (Figure 3-2).

Patterns are the formalization of a reusable graphical representation. The suitable
patterns and their requirements are stored in the visualization ontology. For instance,
one pattern is the “bar chart”, which can be used for lots of different data sets, as long
as the structure required for its usage is very common. While the input of the phase is
the “information model”, the output is a skeleton of a “visualization model” (Figure
3-C). Over that, the modeler can change the patterns and edit their preferences.

In our example, it is easy to see what the ontology will propose, seeing the output
scoring at table 3: 1. Flights by hour → Bar chart; 2. Flights by month → Bar chart; 3.
Flights by country → Intensity map.

Two facts must be observed: on the one hand, how the pattern “bar chart” can be
used more than once. On the other hand, there is more than one pattern that could fit
well for a given perspective; these are precisely two of the main benefits outlined in
Section 1.

Table 3. Scoring of some patterns about displaying the indicated perspectives

 ba
r

ch
ar

t

co
lu

m
n

ch
ar

t

li
ne

 c
ha

rt

pi
e

ch
ar

t

he
at

 m
ap

ti
m

e
li

ne

…

flights by hour 0.8 0.7 0.5 0.4 0.0 0.3 …
flights by month 0.8 0.7 0.5 0.4 0.0 0.3 …
flights by country 0.5 0.4 0.0 0.3 0.9 0.0 …

164 R. Morales-Chaparro, J.C. Preciado, and F. Sánchez-Figueroa

The “code generation engine” (Figure 3-3) is intended to generate the runtime code
for the system, using all the information previously collected. This is done by model
transformations. It uses the “visualization model” as input, and outputs the final code
of the application. Previous studies [JJK08] shows up the fact that web-native display
technologies (HTML5, SVG, etc.) have the potential to expand the impact of
visualization in some cases. So, we use them for the final code.

3.3 User Experience

Using the formal storage provided by ontologies, and, also, the formal representation
of models, the proposed framework can now allow the user: a) maintaining the
visualization patterns, editing their preferences (color, disposition, etc.) b) moving
(maintaining the dominant dimension) from one visualization pattern to another, if the
current one does not fit well with her interests. Afterwards, she optionally can
perform a). c) changing the dominant dimension to get a new perspective, and then
optionally b) and a). d) changing the dataset she wants (probably editing the filter),
and then optionally c), b) and a).

Fig. 5. SPEM diagram, with phases and artifacts of the methodology

Now, the example of the airport should be revisited from this perspective. Suppose
that the user chooses the interaction referred as c). As expressed in the initial example:
she wants to see “flights by hour and country”. Then, the “data mining engine” finds new
visual metaphors for the new dimensions and the “visualization proposal engine”
searches for visualization patterns that best ranks the new combination. The user finally
ends with the desired dashboard, like the one shown in Figure 2. A running demo of the
motivation example can be seen at http://visualligence.com/airport_gv/. Although it has
been manually developed, follows the process in order to show the viability and the
possibility of automation.

 Data-Driven and User-Driven Multidimensional Data Visualization 165

3.4 SPEM Representation

The different parts of the proposal have been formalized in a SPEM representation
(Figure 5). From row 1 to 3 it can be observed the correlation with the diagram in
Figure 3. On row 5 there is the correspondence with the “code generation engine”.
The figure also reveals a learning process from selections performed by both, the
designer and the user (row 4). The more frequent a pattern is selected, the more
probably it will be automatically suggested for similar problems in the future. Also, it
is useful storing those selections in the users’ profile: so the system can adapt better to
their preferences.

4 Conclusions and Related Work

This paper has presented a data-driven and user-driven approach for visualizing
multidimensional data on the Web. Far from giving details, the paper has outlined the
whole process with all its phases. This process is being integrated in RUX [LPSF07],
a tool aimed to model advanced user interfaces. This integration is not over yet.

Table 4 shows some related works. Different features have been considered for
them (user-driven, data-driven, model-driven, multidimensional, tool available and
Web oriented). Although there are relevant works such as [BBC+11], to our
knowledge there is not an existing approach considering all these issues.

Table 4. Summary of related proposals

 User Data MDE High-dim Tool Web
[MLG+10] ✔ ✔ ✔

[The03] ✔ ✔ ✔

[BSL+01] ✔ ✔ ✔

[SCB98] ✔ ✔ ✔

[FPSSO96] ✔ ✔ ✔

[Mac86] ✔ ✔ ✔

[SH00] ✔ ✔ ✔

[BBC+11] ✔ ✔ ✔ ✔ ✔

Our proposal ✔ ✔ ✔ ✔ ✔ ✔

References

[BBC+11] Bozzon, A., Brambilla, M., Catarci, T., Ceri, S., Fraternali, P., Matera, M.:
Visualization of Multi-domain Ranked Data. In: Search Computing, pp. 53–69
(2011)

[Ber67] Bertin, J.: Semiologie Graphique: Les Diagrammes, Les Reseaux, Les Cartes
(1967)

[Bro08] Brooks, M.G.: The Business Case for Advanced Data Visualization (2008)

166 R. Morales-Chaparro, J.C. Preciado, and F. Sánchez-Figueroa

[BSL+01] Buja, A., Swayne, D.F., Littman, M., Dean, N., Hofmann, H.: XGvis: Interactive
data visualization with multidimensional scaling. Journal of Computational and
Graphical Statistics, 1061–8600 (2001)

[CM84] Cleveland, W.S., McGill, R.: Graphical perception: Theory, experimentation, and
application to the development of graphical methods. Journal of the American
Statistical Association 79(387), 531–554 (1984)

[FPSSO96] Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., et al.: Knowledge discovery and data
mining: Towards a unifying framework. In: Proc. 2nd Int. Conf. on Knowledge
Discovery and Data Mining, Portland, OR, pp. 82–88 (1996)

[JJK08] Johnson, D.W., Jankun-Kelly, T.J.: A scalability study of web-native information
visualization. In: Proceedings of Graphics Interface 2008, pp. 163–168. Canadian
Information Processing Society (2008)

[KEM07] Kerren, A., Ebert, A., Meyer, J.: Human-Centered Visualization Environments.
Springer, Heidelberg (2007)

[LPSF07] Linaje, M., Preciado, J.C., Sánchez-Figueroa, F.: Engineering Rich Internet
Application User Interfaces over Legacy Web Models. IEEE Internet
Computing 11(6), 53–59 (2007)

[Mac86] Mackinlay, J.: Automating the design of graphical presentations of relational
information. ACM Transactions on Graphics 5(2), 110–141 (1986)

[MLG+10] Matković, K., Lež, A., Gračanin, D., Ammer, A., Purgathofer, W.: Event Line View:
Interactive Visual Analysis of Irregular Time-Dependent Data. In: Taylor, R.,
Boulanger, P., Krüger, A., Olivier, P. (eds.) Smart Graphics. LNCS, vol. 6133, pp.
208–219. Springer, Heidelberg (2010)

[Rob08] Roberts, J.C.: The Craft of Information Visualization (January 2008)
[SCB98] Swayne, D.F., Cook, D., Buja, A.: XGobi: Interactive Dynamic Data Visualization

in the X Window System. Journal of Computational and Graphical Statistics 7(1),
113 (1998)

[SH00] Stolte, C., Hanrahan, P.: Polaris: a system for query, analysis and visualization of
multi-dimensional relational databases. In: Proceedings of IEEE Symposium on
Information Visualization 2000, INFOVIS 2000, pp. 5–14 (2000)

[The03] Theus, M.: Interactive data visualization using mondrian. Journal of Statistical
Software 7(11), 1–9 (2003)

[TSD10] Turban, E., Sharda, R., Delen, D.: Decision support and business intelligence
systems. Prentice Hall Press, Upper Saddle River (2010)

Context-Aware and Adaptive Web Interfaces:

A Crowdsourcing Approach

Michael Nebeling and Moira C. Norrie

Institute of Information Systems, ETH Zurich
CH-8092 Zurich, Switzerland

{nebeling,norrie}@inf.ethz.ch

Abstract. Web site providers currently have to deal with the growing
range and increased diversity of devices used for web browsing. It is not
only technically challenging to provide flexible interfaces able to adapt
to the large variety of viewing situations, but also costly. We discuss the
idea and challenges of adopting a crowdsourcing model in which end-
users can participate in the adaptation process with the goal of enabling
a much wider range of use contexts to which applications can adapt.

1 Introduction

Nowadays, web-based services are accessed from a wide range of devices with
very different characteristics, not only in terms of screen size and resolution, but
also supported input and output modalities. It is becoming increasingly difficult
and also cost intensive for web site providers to cater for the large variety of
client devices used today. We believe that the only feasible way to address this
challenge is to adopt a crowdsourcing model in which end-users can become
involved in the adaptation of web interfaces for different devices and preferences.
To achieve this, we have started to address the technical challenges of designing
a model, architecture, language and runtime system capable of supporting the
dynamic definition and deployment of web site adaptations in a safe and efficient
manner [1]. In this paper, we focus on the crowdsourcing principles underlying
the approach and discuss how they relate to previous research on context-aware
and adaptive interfaces and the many new forms of human computation [2].

We start by discussing different approaches to adaptation in Sect. 2. We then
characterise our crowdsourcing approach in Sect. 3 and discuss how we aim
to improve user participation, quality control and aggregation of contributions.
Finally, Sect. 4 outlines remaining challenges and our ongoing research efforts.

2 Adaptation Approaches

In a recent study, we have shown that the majority of web sites today still use
a fixed layout designed for a resolution of 1024x768 pixels despite the fact that
average screen settings are much higher than that [3]. Rather than thinking of
more flexible layout solutions, a number of web sites nowadays come in several

A. Harth and N. Koch (Eds.): ICWE 2011 Workshops, LNCS 7059, pp. 167–170, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

168 M. Nebeling and M.C. Norrie

special versions. However, the employed adaptations are typically designed for
only a certain class of devices, e.g. for touchphones or tablets. The same is true for
most of the advanced algorithms that promote automatic adaptation techniques,
as these typically require substantial server-side processing [4], or only work for
very specific scenarios, e.g. desktop-to-mobile adaptation [5]. The new approach
for devices such as the iPhone or iPad is to provide special browser support, e.g.
by enabling gestures for zooming and automatic scaling of the viewport, but this
means that the problem is treated as a matter of input technique rather than
an interface design issue and also requires user intervention.

Research in web engineering has focused on languages and model-driven ap-
proaches to support context-awareness and adaptivity in applications [6,7]. A
second stream of research has looked at different abstraction levels of the user
interface to be able to adapt to multiple user, platform and environment con-
texts [8]. The authoring of adaptive and multi-modal user interfaces has also
been the subject of extensive research [9]. The suggested development processes
typically start from some kind of domain or task model and logical descriptions
of the interface. This is then followed by subsequent transformation steps to
generate the final interface for a particular context of use. However, all these
approaches rely on developers to specify the required forms of adaptation, which
is almost impossible with the diverse and rapidly evolving range of settings.

Our new idea was to adopt a crowdsourcing model in which system developers
provide an initial interface and adaptive features of the system can evolve at run-
time with the help of users [1]. A number of interesting systems have been built
to demonstrate the potential benefits of using crowdsourcing techniques. For ex-
ample, Soylent [10] is an extension of Microsoft Word that allows users to create
tasks related to the document, such as shortening of paragraphs or proof-reading,
to be carried out by other users. Another useful system is HelpMeOut [11] which
recommends potential solutions for compiler errors and runtime exceptions that
other programmers have also encountered. While many crowdsourcing solutions
tend to build on external services such as Amazon’s Mechanical Turk1, our goal
was to embed crowdsourcing mechanisms into applications in order to provide
end-users with the tools to collectively solve problems such as the lack of adaptiv-
ity. To achieve this, we first had to develop visual tools for end-users to be able to
design new adaptations directly in the browser and then extend the common web
application architecture with several components so that adaptations can also be
shared between users and even across sites (Fig. 1). Popular examples of crowd-
sourcing platforms with somewhat similar goals are programmableweb.com and
userscripts.org, where already large communities of active users maintain shared
collections of web mashups and augmentations.

3 Crowdsourcing Approach

For a characterisation of our approach, we will use the taxonomy proposed by
Quinn and Bederson [2].

1 http://mturk.com

Context-Aware and Adaptive Web Interfaces: A Crowdsourcing Approach 169

Adaptation Service

Client 2

Adaptation Toolkit

Client 1

Adaptation Toolkit Review

and

Rating

System

Adaptation

Store

Context

Engine

640 x 960

Fig. 1. Architecture showing two clients that contribute and consume web site adapta-
tions for small-screen devices using the adaptation operations provided by the toolkit
and server-side components for sharing and deployment of crowdsourced adaptations

Motivation. User motivation and participation can depend on many factors.
Our intention was to provide end-users with simple, visual tools for customising
directly the final interface according to the viewing situation without the need to
understand the underlying languages or models. This makes it easy also for non-
technical users. We expect a major effect on motivation by letting users see that
the interface can improve through their actions and, similar to [12], by letting
them know that other users can so benefit as well. Also, what to them may seem
like a personalisation of the interface will in fact describe an adaptation for a
particular use context when it is shared with the crowd. Even if only a few users
share the adaptations created on their devices, then already many others using
the same devices can directly benefit. Along the lines of Quinn and Bederson,
this would mean that motivation in our approach is primarily guided by implicit
work and a very light form of altruism.

Quality. In our crowdsourcing model where the viewing quality of a web site
is primarily regulated by end-users, quality control may involve a number of
schemes where we have given the highest priority to defensive task design. The
main idea was to provide adaptation operations concerning only those aspects of
the design that are directly related to the viewing context, such as size and po-
sition of web site elements, rather than content or functionality [1]. To increase
the quality of adaptation scenarios, we capture precisely the context in which
the adaptation process takes place by collecting all kinds of context information
related to the device and the user. Finally, the recommender system used by
our platform to determine the best-matching adaptations for a given context is
complemented by a review and rating system. This enables multilevel review and
a reputation system corresponding to [2], where system administrators, or pro-
moted users, have a bigger say so that their approval or rejection have significant
impact on the ranking and therefore the deployment of adaptations.

Aggregation. Also important for our crowdsourcing approach is the the idea
of iterative improvement. Depending on the individual viewing situation and the
current quality of adaptations, participating users may come up with whole new
designs or only provide minor improvements over the original layout or other
user-adapted versions. We support this by building on an adaptation technique
that uses cascading stylesheet definitions and server-side components that are
capable of managing different versions of adaptations for the same context [1].

170 M. Nebeling and M.C. Norrie

4 Conclusion

Given the large variety of devices used for web browsing, we have started to
explore a crowdsourcing approach to support web site providers in the design of
flexible interfaces and to enable a much wider range of use contexts to which ap-
plications can adapt. As a first step, we developed a platform and visual toolkit
for crowdsourced adaptations of web interfaces, which we discussed in this paper.
We are currently carrying out extensive technical evaluations of this approach
when it is applied to a number of existing web sites and used by a larger group
of users. In particular, we are experimenting with different sharing and ranking
modes for the controlled definition and deployment of new adaptations. This is
important for cases when really a crowd of users contribute with web site adap-
tations and several different sets of adaptations have been defined for the same or
similar contexts. The data we are collecting can provide interesting insight into
adaptation requirements, help us improve both the underlying methods and the
overall crowdsourcing approach and potentially lead to new web design patterns
and guidelines for the wide variety of devices and platforms available today.

References

1. Nebeling, M., Norrie, M.C.: Tools and Architectural Support for Crowdsourced
Adaptation of Web Interfaces. In: Auer, S., Dı́az, O., Papadopoulos, G.A. (eds.)
ICWE 2011. LNCS, vol. 6757, pp. 243–257. Springer, Heidelberg (2011)

2. Quinn, A.J., Bederson, B.B.: Human Computation: A Survey and Taxonomy of a
Growing Field. In: Proc. CHI (2011)

3. Nebeling, M., Matulic, F., Norrie, M.C.: Metrics for the Evaluation of News Site
Content Layout in Large-Screen Contexts. In: Proc. CHI (2011)

4. Schrier, E., Dontcheva, M., Jacobs, C., Wade, G., Salesin, D.: Adaptive Layout for
Dynamically Aggregated Documents. In: Proc. IUI (2008)

5. Hattori, G., Hoashi, K., Matsumoto, K., Sugaya, F.: Robust Web Page Segmenta-
tion for Mobile Terminal Using Content-Distances and Page Layout Information.
In: Proc. WWW (2007)

6. Ceri, S., Daniel, F., Matera, M., Facca, F.M.: Model-driven Development of
Context-Aware Web Applications. TOIT 7(1) (2007)

7. Frăsincar, F., Houben, G.J., Barna, P.: Hypermedia presentation generation in
Hera. IS 35(1) (2010)

8. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt,
J.: A Unifying Reference Framework for Multi- Target User Interfaces. IWC 15
(2003)

9. Paternò, F., Santoro, C., Mäntyjärvi, J., Mori, G., Sansone, S.: Authoring pervasive
multimodal user interfaces. IJWET 4(2) (2008)

10. Bernstein, M.S., Little, G., Miller, R.C., Hartmann, B., Ackerman, M.S., Karger,
D.R., Crowell, D., Panovich, K.: Soylent: A Word Processor with a Crowd Inside.
In: Proc. UIST (2010)

11. Hartmann, B., MacDougall, D., Brandt, J., Klemmer, S.R.: What Would Other
Programmers Do? Suggesting Solutions to Error Messages. In: Proc. CHI (2010)

12. Rashid, A.M., Ling, K.S., Tassone, R.D., Resnick, P., Kraut, R.E., Riedl, J.: Moti-
vating Participation by Displaying the Value of Contribution. In: Proc. CHI (2006)

Massive Multiplayer Human Computation for Fun,
Money, and Survival

Lukas Biewald

CrowdFlower
3265 17th Street, Suite 302
San Francisco, CA 94110

lukas@crowdflower.com

Abstract. Crowdsourcing is an effective tool to solve hard tasks. By bringing
100,000s of people to work on simple tasks that only humans can do, we can go
far beyond traditional models of data analysis and machine learning. As technolo-
gies and processes mature, crowdsourcing is becoming mainstream. It powers
many leading Internet companies and a wide variety of novel projects: from con-
tent moderation and business listing verification to real-time SMS translation for
disaster response. However, quality assurance can be a major challenge. In this
paper CrowdFlower presents various crowdsourcing applications, from business
to ethics, to money and survival, all of which showcase the power of labor-on-
demand, otherwise known as the human cloud.

Keywords: Crowdsourcing, quality, democracy, data, labor, human.

1 Introduction

Before the Internet enabled human beings to connect as they do now, collecting large-
scale datasets that require human computation was a time-consuming and expensive
process. At CrowdFlower[2], we produce new datasets on-demand by routing tasks to
large groups of distributed workers who work simultaneously. We see people collecting
creative and innovative datasets for businesses, for fun, and even to improve the lives of
others.

Topics of study in disciplines that focus on quantitative or technical data, like
machine-learning research, have always been limited by the availability of datasets. For
example, the Brown Corpus is a dataset compiled in the 1960s that has served as the
basis for thousands of linguistics studies. It has been exhaustively parsed and tabbed.
Graduate students would center entire research plans on the availability of previously
collected data, and as a result, generations of papers on word disambiguation were tai-
lored to the constraints of old data.

Crowdsourcing democratizes the data-collection process, cutting researchers’ re-
liance on stagnant, over-used datasets. Now, anyone can gather data overnight rather
than waiting years. However, some of the data collection may be sloppy. CrowdFlower
addresses this issue by building robust quality-control mechanisms in order to stan-
dardize the results that come back from the crowd. The type of crowd, task design, and

A. Harth and N. Koch (Eds.): ICWE 2011 Workshops, LNCS 7059, pp. 171–176, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

172 L. Biewald

quality control tactics all affect the quality of the data. The important thing to remem-
ber is that crowdsourcing provides channels that allow researchers, businesses, or even
armchair social scientists to gather data having high quality data obviously affects the
accuracy of the research.

The first time I used Amazon’s Mechanical Turk[1] was at a search-engine startup,
Powerset[6] (later acquired by Microsoft). I used Mechanical Turk to compare the qual-
ity of our search-relevancy algorithm against Yahoo! and Google. Initially, I thought it
would be necessary to hire a team of people to compare the quality of results every day
over the course of months. Instead, I set up an experimental task with no quality control,
put in about $50, and let it run overnight. The data that came back was noisy, but I was
able to find meaningful differences between the search engines.

The following examples showcase the role that crowdsourcing plays in data col-
lection. Many of these are featured on our blog, and we often post new datasets and
projects. We invite researchers to post new experiments on our site.

2 Crowdsourcing Applications

2.1 Ethics

Crowds can be used to source answers to philosophical questions. Stalin said, “A single
death is a tragedy; a million deaths is a statistic.” So what about 100 deaths? What about
five? We tested this experimentally by asking people on Amazon Mechanical Turk to
participate in the classic philosophical conundrum “The Trolley Problem,”[8] in which
a person must decide whether to sacrifice one person in order to save several others.

The three sample scenarios are below. Here, the scenarios refer to saving five people,
but we varied the number of people saved between 1 and 1,000 to see if it would affect
the results.

Scenario A. A trolley is running out of control down a track. In its path are five
people who have been tied to the track. Fortunately, you can flip a switch, which will
lead the trolley down a different track to safety. Unfortunately, there is a single person
tied to that track. Should you flip the switch?

Scenario B. As before, a trolley is hurtling down a track toward five people. You are
on a bridge under which it will pass, and you can stop it if you drop something heavy
in its way. As it happens, there is a very fat man next to youyour only way to stop the
trolley is to push him over the bridge and onto the track, killing him to save five. Should
you proceed?

Scenario C. A brilliant transplant surgeon has five patients, each in need of a different
organ, each of whom will die without that organ. Unfortunately, there are no organs
available to perform any of these five transplant operations. A healthy young traveler,
just passing through the city the doctor works in, comes in for a routine checkup. In the
course of doing the checkup, the doctor discovers that his organs are compatible with
all five of his dying patients. Suppose further that if the young man were to disappear,
no one would suspect the doctor. Should the doctor sacrifice the man to save his other
patients?

How does our decision change based on the number of people who will die? The
results were unexpected. For all three scenarios, subjects were increasingly willing to

Massive Multiplayer Human Computation for Fun, Money, and Survival 173

Fig. 1. Willingness to sacrifice a life

kill one person when it meant saving up to 100 people, but this willingness dipped when
it meant saving between 100 and 200 people, and began to rise again when more than
200 people could be saved.

Each scenario also affected subjects’ ethical calculus. Subjects were more willing to
sacrifice a life when they controlled the trolley switch (Scenario A) than when someone
else (i.e., the surgeon in Scenario C) acted as executioner (see Figure 1). By putting
this experiment out to the crowd, we were able to gather responses from more than 100
subjects in a matter of hours[3].

2.2 Business

CrowdFlower provides a way for businesses to complete large tasks by giving them
access to tens of thousands or hundreds of thousands of workers. By layering our tech-
nology across multiple labor channels, CrowdFlower enables access to a large sample

174 L. Biewald

of people. This means businesses can connect to a labor force in the cloud depending
on their needs.

Just as cloud computing eliminated the need for businesses to predict how many
servers they were going to need at any given time, crowdsourced labor eliminates the
need for businesses to predict how many people they’re going to need at any given
minute. The quality-control algorithms we’ve developed ensure that workers are doing
the tasks well, that they are trained when they make mistakes, and that they are removed
if they are inefficient or spammy.

CrowdFlower has been able to assist clients in many ways, such as improving the ac-
curacy of data for clients who publish business listings: e.g., business leader information
(CEO and CFO names), contact information (phone, fax, and address), and company
information (company name, description, and industry label).

In particular, our use of quality-controlled human intelligence excels at removing
duplicate business listings that a computer program would gloss over. For example, a
computer cannot say for certain whether the McDonald’s restaurant in Manhattan and
the McDonald’s restaurant in New York City are the same place, but a person could do
the additional research required to confirm whether the two restaurants are the same. In
one instance, we improved the accuracy of a client’s data by more than 20 percent.

2.3 The Greater Good

Crowdsourced data collection will continue to benefit businesses and revolutionize aca-
demic research. It can also benefit disenfranchised people by giving them access to
dignified work.

For starters, the microtasks involved in crowdsourced labor mean that anyone any-
where can be productive, even if just for 10 minutes. They don’t have to kill time playing
solitaire at their computers or working on cross- words. Instead, they could be paid to do
a job, earn virtual credits for an online game, or even give work to people in developing
nations through a paired work program.

The developing world needs employment opportunities that crowdsourcing can pro-
vide by connecting women, youth, and refugees living in poverty to computer-based
work. One of CrowdFlower’s labor channels, Samasource[7], does just that.

CrowdFlower and Samasource created GiveWork[5], an iPhone app that allows users
to support people in developing countries by completing short, on-screen tasks, which
can either give a donation or an additional unit of work that is used for training purposes.
People volunteer to tag a video or trace a road alongside someone who is learning
computer skills. This is just the beginning for mobile-based crowdsourced labor.

Further, getting work to refugee populations is difficult whenever that work requires
raw materials: e.g., building physical structures; but projects that require building infor-
mation can move quickly and globally.

Crowdsourced labor has begun to level the playing field with respect to job access.
This lends greater meritocracy to the job market: it is a natural extension of what the
Internet has al- ready done, but rather than “who you know,” the focus is on “what you
know.” Thus, a person in Berlin or Jakarta is not immediately ruled out of a job due
geography.

Massive Multiplayer Human Computation for Fun, Money, and Survival 175

2.4 Disaster Relief

Crowdsourcing also helps disaster relief efforts because disasters are, by definition,
unpredictable, and relief requires a scalable workforce. The response to the Haitian
earthquake in January 2010 demonstrated how a rapidly deployed workforce of far-
flung volunteers can be critical to emergency relief efforts. After the quake, aid workers
flooded Port-au-Prince, but they lacked information about who needed help, where the
victims were, and what type of help they needed. FrontLineSMS[4] and the U.S. De-
partment of State worked with Haitian telcom companies to set up an SMS short code,
allowing Haitians to submit real-time reports using less bandwidth than the two-way
audio that had caused system outages on the country’s cell networks. The messages that
came in were in Kryol and the aid agencies were unable to translate the messages fast
enough.

CrowdFlower provided the infrastructure to route SMS texts to hundreds of thou-
sands of Haitians (located by Samasource) who translated texts from Port-au-Prince
in real time and categorized the victims’ issues, allowing the agencies to direct spe-
cialists to the people who needed their services: e.g., getting potable water to thirsty
people, routing doctors to injured people. Further, so that agencies could see hotspots,
maps were created through Ushahidi[9], an open-source platform that allows people or
organizations to collect and visualize information.

The rapid proliferation of broadband, wireless, and cell phone technology has rev-
olutionized disaster relief efforts so that now, anyone with a computer or phone can
provide assistance.

3 Conclusion

3.1 The Future of Democracy

What does the future look like for crowdsourcing, human computation, data exchange,
and data transparency? When data is made widely available, it becomes widely analyz-
able, and through this process, crowdsourcing can empower us all.

4 Biography

Lukas Biewald is the CEO of CrowdFlower. Prior to co-founding CrowdFlower, he
was a senior scientist and manager within the ranking and management team at Pow-
erset, Inc., a natural language search technology company later acquired by Microsoft.
Biewald has also led the search relevance team for Yahoo! Japan. He graduated from
Stanford University with a BS in mathematics and an MS in computer science. He is an
expert level Go player.

References

1. Amazon Mechanical Turk, http://mturk.com
2. CrowdFlower, http://www.crowdflower.com

http://mturk.com
http://www.crowdflower.com

176 L. Biewald

3. Crowdsourcing an Ethical Dilemma,
http://blog.crowdflower.com/2009/01/crowdsourcing-ethics/

4. FrontLineSMS, http://www.frontlinesms.com
5. GiveWork,

http://itunes.apple.com/us/app/give-work/id329928364?mt=8
6. Powerset, http://www.powerset.com
7. Samasource, http://www.samasource.org
8. The Trolley Problem,

http://en.wikipedia.org/wiki/Trolley_problem
9. Ushahidi, http://www.ushahidi.com/

http://blog.crowdflower.com/2009/01/crowdsourcing-ethics/
http://www.frontlinesms.com
http://itunes.apple.com/us/app/give-work/id329928364?mt=8
http://www.powerset.com
http://www.samasource.org
http://en.wikipedia.org/wiki/Trolley_problem
http://www.ushahidi.com/

A. Harth and N. Koch (Eds.): ICWE 2011 Workshops, LNCS 7059, pp. 177–180, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Enterprise Crowdsourcing Solution for Software
Development in an Outsourcing Organization

Ranganathan Jayakanthan and Deepak Sundararajan

TCS Innovation Labs – Web 2.0, Tata Consultancy Services, Chennai, India
jayakanthan@acm.org,deep.sun@tcs.com

Abstract. Enterprise Crowdsourcing has the potential to be a very powerful and
disruptive paradigm for human resource deployment, project development and
project management as we know them. This paper details ongoing work at TCS
Innovation Labs – Web 2.0, Tata Consultancy Services, Chennai, India to develop
an Enterprise Crowdsourcing Solution to tackle the various processes involved in
the development of software by leveraging the untapped human resource in the
organization. Large IT organizations have a lot of untapped manpower in the form
of trainees, the bench strength and people involved in roles which do not fully
employ their strengths in particular technologies they are experts in. This system
aims to allow untapped talent to get access to challenging tasks part of other
projects and work on them while providing a disruptive way to allocate resources
in a conventional software development environment.

Keywords: Enterprise crowdsourcing, Crowdsourcing, Web 2.0, Collaborative
work, Social networking.

1 Introduction

Jeff Howe's influential 2006 essay “The Rise of Crowdsourcing” starts off as,
“Remember outsourcing? Sending jobs to India and China is so 2003. The new pool
of cheap labor: everyday people using their spare cycles to create content, solve
problems, even do corporate R & D.” [1] This being 2011, outsourcing and
crowdsourcing have both had tremendous growth in the meanwhile. This paper will
look into an ongoing project to develop an enterprise crowdsourcing enabler for
software development, inside a large outsourcing organization, attempting to fuse
Howe's idea posited as an alternative to crowdsourcing, by subsuming it within the
larger outsourcing paradigm. We have come full circle, in some sense!

1.1 Crowdsourcing

Howe presented developments in the 2006 essay [1] about how distributed, talented
amateurs were disrupting the business models of established professionals through
mechanisms which allowed them to reach out to potential employers and large business -
buyers of their products and services, allowing them to provide previously inconceivable
amounts of savings in terms of money as well as other resources. Since then,
crowdsourcing has grown by leaps and bounds, transforming chimera like into various

178 R. Jayakanthan and D. Sundararajan

avatars which result in radically different ways of looking at developing solutions to
problems with enormous amounts of savings of resources with remarkable efficiencies
achieved in attracting the right talent to work on the right problems.

1.2 Enterprise Crowdsourcing

Enterprise crowdsourcing posits the use of crowdsourcing in the enterprise to “access
scalable workforce on-line.” [2] Various organizations have succeeded at enterprise
crowdsourcing by adopting various approaches. Organizations as diverse as GoldCorp
and Proctor & Gamble have utilized crowdsourcing to attract the attention of external
talent to tackle their hard problems. Enterprise crowdsourcing to attract talent from
within the organization has mostly been restricted to uses such as knowledge sharing
and idea generation.

In this paper we present an attempt inside a large outsourcing organization with
200,000 employees (and growing) to leverage untapped talent and target them
towards software development subtasks. In our organization, as with many other such
large outsourcing organizations, a significant percentage of the available human
resources remain latent and untapped due to various reasons such as people being
unallocated (on bench), in training and in projects in which all their relevant skills are
not being utilized. Allocation of people into a project is a rigid, structured process,
which involves multiple interviews and evaluation, processes that make it difficult to
dynamically allocate resources to tackle smaller projects or problems. We detail a
work-in-progress solution to apply enterprise crowdsourcing to outsourced software
development.

2 Crowdsourcing Application

The TCS crowdsourcing application provides an integrated solution comprising of a
marketplace for jobs (tasks), a workflow for creation of jobs, roles for users such as
reviewer, requester and freelancer, a reputation mechanism, a virtual currency and a
reviewing system. Let us look at some of the system.

2.1 Scope

The scope of the system is defined to address two types of requirements. The first is
to cater to tasks that are generic and internal to the outsourcing company, TCS in this
case. The second would be to crowdsource customer specific tasks. While the first is
straightforward, the second would require an agreement with the customer and the
tasks be made available only to the employees involved in the customer project.

2.2 Participants and User Roles

The participants of the system are the employees of TCS. They can be in internal
projects, customer projects, undergoing training or in bench waiting for their next
assignment.

The users in the system have roles such as requester (where they create jobs, invite
participation, and manage jobs), freelancer (where they participate in a particular job)
and reviewer (where they review work completed as part of a job.) Reviewers are

 Enterprise Crowdsourcing Solution for Software Development 179

nominated by the job requesters primarily on the basis of their reputation in the
category the job was posted in. Users can have multiple roles.

2.3 Job Creation and Allocation

Tasks in the system are referred to as jobs. Task might involve a variety of subtasks
which are part of the software development process in an outsourced IT firm. A
wizard is provided for creating a job in the system. (Fig 1.) The job can be selected
from among templates in the system with the ability to represent details dates,
milestones and checklists, completion checklist, category and skillset, completion
criteria along with the ability to nominate people to the job.

Once the job is created, it will be available in the Job Marketplace for the users to
view and apply for the job.

The system will support three modes of job allocation according to the need of the
requester. First, the requester will have the ability to nominate a freelancer or pick and
choose a freelancer based on the applications received (applies for critical jobs).
When there is need for more people to perform similar tasks – testing for instance, the
requester can choose to allocate the job in a first come first served basis. Lastly, when
the requester wants to get the best solution for a given problem, he can create a
competition where any number of freelancers can take up the job and submit their
solution.

Fig. 1. Job creation wizard

180 R. Jayakanthan and D. Sundararajan

3 Conclusion

The system provides a means to implement a crowdsourcing paradigm to traditional
project management through a simplified job creation wizard, a marketplace and a
reputation mechanism which apply salient social networking features to this problem.
We look forward to deploying this application as a pilot with a selected number of
projects in a month.

References

1. Howe, J.: The Rise of Crowdsourcing. Wired 14(6) (2006)
2. Vukovic, M.: Crowdsourcing for Enterprises. In: 2009 Congress on Services I, pp.

686–692 (2009)

A Model-Driven Framework for Developing Web

Service Oriented Applications

Achilleas Achilleos, Georgia M. Kapitsaki, and George A. Papadopoulos

Department of Computer Science, University of Cyprus,
75 Kallipoleos Str., Nicosia, CYPRUS

{achilleas,gkapi,george}@cs.ucy.ac.cy
http://www.cs.ucy.ac.cy

Abstract. The advancements made in terms of the capabilities of mo-
bile devices have shifted the interest of service engineering towards frame-
works that are able to deliver applications rapidly and efficiently. The
development of services that can be fully functional in mobile environ-
ments and operable on a variety of devices is an important and complex
task for the research community. In this work, we propose a Model-
Driven Web Service oriented framework that combines Model-Driven
Engineering (MDE) with Web Services to automate the development of
platform-specific web-based applications. The importance of this work is
revealed through a case study that involves modelling and generation of
a representative Web Service oriented mobile application.

Keywords: model-driven, web applications, code generation, mobile
services, web services.

1 Introduction

Web Services (WSs) as the most representative implementation of the Service
Oriented Architecture (SOA) are usually exploited in the field of Web-based
applications for stationary devices. Lately, the advance of the field of mobile
computing has introduced the need for developing Web Services that can be
consumed through platform-specific clients in different environments, not only
static ones, but also those dominating the mobile computing world [1]. End-
users, constantly on the move, wish to be offered the same choices when working
on their smartphones as on desktop devices [2]. In such environments, where
users exploit a variety of devices in terms of complexity, size, computational
capabilities etc., the need of developing services and applications that can target
different mobile platforms arises.

At the same time the wide adoption of Model-Driven Engineering (MDE)
from the research community has led to the advance of platforms and tools
that facilitate the transformation of models between different abstraction levels
resulting to functional code fragments at the final stage. Many of the approaches
follow the paradigm of OMG’s Model Driven Architecture (MDA) [3]. In MDA,
a major separation mentioned includes the Platform Independent Model (PIM)

A. Harth and N. Koch (Eds.): ICWE 2011 Workshops, LNCS 7059, pp. 181–195, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.cs.ucy.ac.cy

182 A. Achilleos, G.M. Kapitsaki, and G.A. Papadopoulos

and the Platform Specific Model (PSM). PIM is a rather abstract representation
of a system and contains no information on implementation details. Conversely,
PSM represents the system and takes into account platform specific properties.
In the research community many attempts evolve around the issue of model
transformation, where model transformation can be performed from PIM to
PIM, PIM to PSM, PIM to code, etc. Although in MDE the model is the basic
software component, models that do not result in functional applications have
no practical use to the end-users and, consequently, nor to the service providers.
For this reason, this paper focuses on the practicalities of the transformation
conducted: the model to code step.

Taking the above challenges into account, in the framework of the current
work, the issue of mobile application development for different platforms focus-
ing on the Graphical User Interface (GUI) aspect is addressed. A number of code
generators targeting different mobile platforms are defined (e.g., J2ME, C#) us-
ing as input the application model represented in the Presentation Modelling
Language (PML). The PML, which was conceived and presented in previous
work of the authors [18], provides means for designing GUI models that facil-
itate the generation of Web Service clients. The application modelling is com-
plemented by the Web Services Description Language (WSDL) specification.
The set of developed generators covers all major mobile and stationary device
technologies. Using this approach, the development of functional Web Service
Oriented applications for the following categories of devices is supported: (i)
Resource-rich devices; e.g., desktops, laptops, (ii) Resource-competent devices;
e.g., Netbooks, IPad, Kindle and (iii) Resource-constrained devices; e.g., mobile
smartphones such as Google Nexus One, IPhone, HTC Desire, Nokia N8. This
category set is based on the categorisation performed by Ortiz et al. [4], which
was extended by adding the second category. The importance of the proposed
framework lies in the high-degree of automation achieved, which improves the
efficiency of the development process, since it allows developers to generate code
for various platforms with limited effort.

The rest of the paper is structured as follows: Section 2 gives an overview
of the related work in the field, whereas the description of the framework is
provided in Section 3. This section is dedicated specifically to the details of
the code generation process, which is the main and driving component of the
proposed framework. The framework’s applicability is exemplified in Section 4
through a mobile bookstore use case. Section 5 concludes the paper.

2 Related Work

In the literature various approaches exploiting the principles of MDE exist, ei-
ther for the development of software applications in general or specifically for
GUI development. Concerning modelling, it is important to keep the applica-
tion’s presentation independent from other layers (i.e., application’s logic) so
as to facilitate the integration with different technologies. Additionally, mod-
elling GUIs in an abstract way facilitates mapping to different implementations.

A Model-Driven Framework for Developing WS Oriented Applications 183

Thus, we argue that a framework should provide components (e.g., architecture,
code generators) to model and implement independently the GUIs and the WS
implementation logic.

Initial work on GUI modelling focuses on the definition of the GUI structure
using presentation diagrams and its behaviour using hierarchical statechart dia-
grams [5]. The definition of GUI structural and behaviour models is supported
by the GuiBuilder tool, which allows the transformation from models to Java
code. This work focuses simply on the development of Java-based GUIs, which
can be used for implementing fully-functional multimedia desktop applications.
Other examples of GUI modelling can be found in [6] and [7], although no details
on the support for transformations to code are given.

Dunkel and Bruns [8] propose a simple and flexible approach for the devel-
opment of mobile applications. They present a model-driven approach that al-
lows defining the client’s GUIs and the service workflow using graphical models,
which are then transformed into XML-based descriptions (i.e., XForms code).
The XForms W3C standard has been chosen because of its close correlation
with the Mobile Information Device Profile (MIDP) of J2ME, which facilitates
the mapping of XForm elements to MIDP elements. The approach is thus tai-
lored towards J2ME and does not exploit the interoperability benefits of Web
Services technology. Additional approaches [9], [10] overcome the issues faced
by pure XML-based approaches, such as being data centric and the inability to
expressively model behaviour, by developing graphical modelling environments
that ”speak” XML. This imposes though the overhead of developing and main-
taining the modelling environments, which is a laborious and costly task. An
extended discussion on various solutions for user interface design in application
development is present in the survey of Perez-Media et al. [12].

Kapitsaki et al. [11] present an approach that automates the development of
composite context-aware Web applications. The defined model-based approach
proposes complete separation of the Web application functionality from the
context adaptation. In particular, the methodology adopted utilises the Uni-
fied Modelling Language (UML) for the design and automatic generation of a
functional context-aware Web application. The approach tackles and automates
the development of context-aware Web applications, intended mainly for mobile
users, which are formulated by third-party WSs. The use of UML should be re-
placed by standards that provide methods of accessing model stereotypes across
different modelling tools.

The heterogeneity of mobile platforms in conjunction with the use of WSs is
discussed also by Ortiz et al. [13]. The authors propose a service-side, aspect-
oriented approach that allows developers to extend the implemented WS in order
to enable the adaptation of the WS invocation result in accordance to the client
device. The actual WS code is not directly affected, since additional aspect
code is implemented, which intercepts the invocation of the service operation
and adapts it according to the device type detected. This approach suffers from
three main issues: the client-side implementation needs to include code that
allows declaring from which device the WS is invoked, response time is slightly

184 A. Achilleos, G.M. Kapitsaki, and G.A. Papadopoulos

increased since the service-side aspect code requires to process and adapt the
result, and implementation of different platform-specific service-clients is not
considered.

In the area of Web development, not specific to Web Services, a number of
tools have been proposed offering the means to model Web applications. Good
examples can be found in UML-based Web Engineering (UWE1), where the
application is modelled in UML notation containing a presentation model for the
GUI properties, and Object-Oriented Hypermedia Design Method (OOHDM)
[14], which targets hypermedia Web applications. Significant works, where Web
Service-enabled applications are partially supported, can be found in the WebML
CASE tool [15], a visual language used to represent the content structure of a
Web application, and Hera [16], which focuses on Web Information Systems
and hypermedia applications exploiting tools from the semantic Web, i.e., RDF
(Resource Description Framework)) and RDFS. Although most of these works
are quite mature, they differ from our approach in the motivation and in the
target platforms supported, i.e., stationary devices in the above cases and mobile
devices, which are the main focus in our case.

3 The proposed Framework

In this section the main steps of the development process are described; PML
is briefly introduced, while particular emphasis is devoted to the transformation
step. We emphasise on the specifics of the code generation phase in order to
reveal the practicality and applicability of the transformation approach, which
enables targeting different mobile but also stationary platforms. The description
of the earlier steps is required and has been included in order to provide a com-
prehensive view of the proposed model-driven Web Service oriented framework.

3.1 Scope of Use and Overall Development Process

The proposed development process combines the characteristics of Web Services
with the development directives given by Model-Driven Engineering. The pre-
sentation layer and the Web Service layer are kept distinct, in order to allow
each one to be mapped to different implementations. This transformation logic
is presented in Fig. 1, where each client is defined and developed in the form
of GUIs and collection of Web Service communication classes. In the presenta-
tion particular focus is given on the GUI-related part depicted on the left side
of the figure. Note that the Web Service implementation is conducted by the
developer through a manual process. Nevertheless, the technology employed for
implementing the WS main functionality does not restrict the client implemen-
tation to a specific platform. This is because Web Services allow the exchange of
XML-based messages between entities regardless of the implementation details
or the programming language used for the WS development.

1 http://uwe.pst.ifi.lmu.de/

A Model-Driven Framework for Developing WS Oriented Applications 185

Fig. 1. Model-Driven, Web Service-oriented Architecture

The PML and WSDL models are designed at modeling time and act as input
for the code generators that produce the respective code fragments. Regarding
the WS part, existing WSDL code generation tools are used that enable the
transformation of WSDL models to platform-specific proxy classes exploited for
sending and receiving information via WS request and response messages.

In particular, the PML allows modelling GUIs in the form of screen layouts; as
desired by the developer. The presentation models include the necessary abstract
information on GUI elements (e.g., text box, label), properties (e.g., label’s text)
and relationships (e.g., panel contains button) of existing major mobile and
stationary devices and platforms. A brief overview of PML is provided next. In
accordance to the PML notation a number of platform specific code generators
have been implemented for the technologies indicated in Fig. 1.

3.2 Brief Overview of PML

The Presentation Modelling Language is defined as an Eclipse Modeling Frame-
work (EMF) based metamodel, using the Graphical Modelling Framework (GMF)
Ecore diagram tool included in the environment presented in previous work [17].
The PML metamodel is presented in Fig. 2 and describes the graphical mod-
elling elements, their associations and graphical properties, which enable the
design of GUIs in the form of visual abstract models. The metamodel definition
is based on an analysis and evaluation performed to identify elements, properties
and associations that share similarities across different major platforms. Fig. 3
showcases that the metamodel definition is complemented by the Model-2-Code

186 A. Achilleos, G.M. Kapitsaki, and G.A. Papadopoulos

Fig. 2. Presentation Modelling Language metamodel

(M2C) transformation rules, which map abstract PML elements, properties and
associations to platform specific implementation components, properties and as-
sociations (i.e., platform-specific code).

Most elements defined in the metamodel are self-explainable. DocumentRoot
is the basic metaclass, where the rest of the model elements are aggregated,
such as a number of displays corresponding to the screen of the mobile device
(metaclass Display). The discontainers aggregation defines the containment rela-
tionship between the display and its container elements. The common graphical
components are defined as children of the Component metaclass (e.g., Message,
Label, Button). Similarly typical associations that exist between objects, such
as the fact that container (e.g., panel) includes component (e.g., label), are also
visible in the metamodel. The Property metaclass is an important element of the
PML since it allows describing different graphical properties for the modelling el-
ements. Each modelling element may contain various graphical properties, which
are defined as instances of the Property metaclass. This provides the capability
to extend easily and efficiently the PML by introducing new properties simply
by adding parsing support within code generators.

The elements included in instances of the PML metamodel are analysed based
on a number of transformation rules defined in the code generators. A deeper

A Model-Driven Framework for Developing WS Oriented Applications 187

Fig. 3. Mapping PML to platform-specific implementations

analysis on the elements comprising PML is not included in the current paper.
More information on the initial version of PML can be found in [18].

3.3 The Transformation Mechanism

The generation of the Web Service invocation part (from the client) is not ad-
dressed; instead, existing literature works on generating this part from WSDL
descriptions are employed. WSDL, serving as the specification descriptor lan-
guage for WSs, offers an abstract layer depicting the service functionality. Clients
that wish to consume specific WSs rely on this WSDL specification, in order to
discover the operations supported, the input arguments needed and the expected
response details. WSDL code generators can be found in Java WS frameworks,
such as the Novell exteNd Director development environment and the Axis2 Ser-
vice Archive Generator Wizard offering the wsdl2java tool. .NET offers its own
custom wsdl code generation tool. In the proposed framework the two latter
tools have been employed along with the J2ME generator that forms part of the
Sun Java Wireless Toolkit for CLDC. However, since no such tool is available
for the Android platform, in the current stage of the presented work the WS
communication classes were developed manually.

Further discussion on code generators for WSs has not been included, since
the focus is given on the applicability of the presentation code generation tools
on multi-platform environments. However, some works that exploit WS models
and introduce tools for model transformation procedures in the framework of
MDE exist. The reader can refer to relevant publications [19], [11].

In terms of the presentation layer, the code generation process allows trans-
forming PML models to the appropriate platform-specific code. A set of genera-
tors targeting the following platforms of stationary and mobile devices have been

188 A. Achilleos, G.M. Kapitsaki, and G.A. Papadopoulos

implemented: Java, J2ME, Android, Windows Mobile and Windows Desktop. In
this subsection two of the above generators have been chosen for demonstration
purposes; specifically, the versions targeting Android and Windows Mobile are
described in order to showcase also the main differences between the two tech-
nologies. In order to keep the paper comprehensive and due to space limitations,
it is not possible to describe the whole generators set.

The Eclipse-based MDE environment, proposed in previous work [17], includes
the openArchitectureWare (oAW) software tool that enables the development of
code generators by defining model-to-text transformation rules. The tool com-
prises the Xpand template language, a text-editor, the workflow execution engine
and two supplementary languages (i.e., Check, Xtend) with their individual text
editors. Foremost, the Xpand language supports the definition of advanced code
generators as templates, which capture the transformation rules and control the
output document generation (e.g., XML, Java, C#, HTML). The transformation
rules are defined using the Xpand text-editor and include references to extension
functions specified using the Xtend language. In particular, extension functions
are considered as utility functions (i.e., similar to Java utility functions), which
support the definition of well-formulated generators and improve the structure
of the generated code. Moreover, the Check language supports the definition of
additional constraints using a proprietary language. Finally, the workflow exe-
cution engine drives the code generation on the basis of the defined templates
and the input model.

The combination of the components supports the code generation process
as depicted in Fig. 4. The transformation is executed via the workflow engine
of oAW, on the basis of a workflow script that specifies information, such as
the classes and components participating in the generation, output folders etc.
The template definition, which drives code generation, constitutes the most im-
portant part of the transformation process. Appropriate templates have been
defined for all participating platforms (i.e., C#, Java, J2ME, Android).

Listing 1 presents a sample part of the Android-specific template definition
that allows demonstrating how code generation is achieved. Lines containing in-
formation such as generated files and package names have been omitted. The
main part of the sample generator presented in this work is included in lines 31-
74. This part is repeated for all display containers of the model enabling access
to the graphical properties of the containers and the secondary components asso-
ciated to them. For instance, line 34 illustrates how we can generate an Android
TableLayout object and set accordingly its name in accordance to the name of

Fig. 4. The PML code generation process

A Model-Driven Framework for Developing WS Oriented Applications 189

the current container in the iteration, i.e., << discon.name >>. The iteration
through the collection of secondary components associated with each container
is performed in the lines that follow (36-72). Depending on the type of element
visited during the parsing of the PML model (indicated by the properties of con-
comp), the respective object creation with the appropriate name is generated.
For example a new TextView object corresponds to each Label model element
as indicated in lines 37-39, where the keyword/property ”text” used at line 39
provides the capability to set the text on the label to the value parsed from the
Label modelling element. The list of conditional statements allows to parse and
generate other types of secondary components using the same reasoning.

Listing 1. Sample for the Android-specific template

1. <<EXTENSION templates::AndroidPresentation>>
2. <<DEFINE Root FOR presentation::DocumentRoot>>

.....
30. <<REM>>Starts iteration and creates a View for each container.<<ENDREM>>
31. <<FOREACH this.discontainers AS discon->>
32. public View <<discon.name+"View">>(){
33. this.setTitle(<<discon.conproperties.select

(e|e.name.contains("title")).value.first()>>);
34. <<discon.name>> = new TableLayout(this);
35. <<REM>>Create the respective components contained in each View.<<ENDREM>>
36. <<FOREACH discon.concomponents AS concomp->>
37. <<IF concomp.metaType.name.matches("presentation::Label")->>
38. <<concomp.name>> = new TextView(this);
39. <<concomp.name>>.setText(<<concomp.compproperties.select

(e|e.name.contains("text")).value.first()>>);
40. <<ELSEIF concomp.metaType.name.matches("presentation::TextField")->>
41. <<concomp.name>> = new EditText(this);

.....
71. <<REM>>Ends the loop associated with the components collection.<<ENDREM>>
72. <<ENDFOREACH>>
73. <<REM>>Ends the loop associated with the containers collection.<<ENDREM>>
74. <<ENDFOREACH>>

.....
98. <<ENDDEFINE>>

For the template definition targeting Windows Mobile a sample part is illus-
trated in Listing 2. The same approach has been employed for the remaining
platform-specific code generators.

Listing 2. Sample for the Windows mobile-specific template

1. <<EXTENSION templates::WindowsMobilePresentation>>
2. <<DEFINE Root FOR presentation::DocumentRoot>>

.....
23. <<REM>>Create the constructor that creates Windows mobile main form.<<ENDREM>>
24. public <<this.toFirstUpper()+"WindowsMobile">>(){
25. <<FOREACH discontainers AS discon->>
26. <<REM>>Set the name and title of the Windos mobile main form.<<ENDREM>>
27. this.Name = <<discon.conproperties.select

(e|e.name.contains("title")).value.first()>>;
28. this.Text = <<discon.conproperties.select

(e|e.name.contains("title")).value.first()>>;
29. <<REM>>Create the components associated to each layout of the main Form.<<ENDREM>>
30. <<FOREACH discon.concomponents AS concomp ITERATOR it->>
31. <<IF concomp.metaType.name.matches("presentation::Label")->>
32. <<concomp.name>> = new Label();

190 A. Achilleos, G.M. Kapitsaki, and G.A. Papadopoulos

33. <<concomp.name>>.Name = "<<concomp.name>>";
34. <<concomp.name>>.Location = new System.Drawing.Point(0, 0);
35. <<concomp.name>>.Size = new System.Drawing.Size(0, 0);
36. <<concomp.name>>.TabIndex = <<it.counter0>> ;
37. <<concomp.name>>.Text = <<concomp.compproperties.select

(e|e.name.contains("text")).value.first()>>;
39. <<ELSEIF concomp.metaType.name.matches("presentation::TextField")->>
40. <<concomp.name>> = new TextBox();
41. <<concomp.name>>.Name = "<<concomp.name>>";
42. <<concomp.name>>.Location = new System.Drawing.Point(0, 0);
43. <<concomp.name>>.Size = new System.Drawing.Size(0, 0);
44. <<concomp.name>>.TabIndex = <<it.counter0>>;
45. <<concomp.name>>.Text = "";
46. <<REM>> Ends the loop associated with the components collection. <<ENDREM>>
47. <<ENDFOREACH>>
48. <<REM>> Ends the loop associated with the containers collection. <<ENDREM>>
49. <<ENDFOREACH>>

.....
70. <<ENDDEFINE>>

4 The Book Store Use Case

4.1 Overview

The chosen use case consists of a BookStore WS that provides means for search-
ing and purchasing books. Specifically, the user exploiting the service can search
for books, providing as input the book title. The WS returns all details of the
book and gives the opportunity to the user to purchase the book. This latter
operation is invoked by filling a number of necessary fields to complete the order
and payment (including the customer information and the details of the payment
method). Upon successful completion of the transaction a result page is shown.

Although not directly exploited in the context of the current work, the model
of the BookStore WS is depicted in Fig. 5. The server side part of the BookStore
prototype has been manually implemented in Java. The demonstration of this
section concentrates on the generation of the presentation layer of the client side.

Fig. 5. The BookStore Web Service Description Language Model

A Model-Driven Framework for Developing WS Oriented Applications 191

4.2 Models Design and Code Generation

Due to the complexity of the WS and space limitations the PML model, which
is degined manually by the application developer, is not provided in full; its
basic parts demonstrating the use of the PML metamodel are given instead.
The modeling part of the containers corresponding to distinct screens is shown
in Fig. 6. At the top of the model an instance of the Display metaclass represents
the main frame/display of the GUI. The display is associated with a number of
container components that form instances of the Container metaclass. The first
container, i.e., searchForBooks, corresponds to the first step of book searching,
whereas the rest serve the book purchasing procedure.

Fig. 6. Top level elements of the BookStore Presentation Model

Each container has its own properties and contains also secondary compo-
nents, i.e., label, textfield, textpane and button elements, as shown for a spe-
cific container in Fig. 7. The secondary components are defined as instances of
the respective metaclasses and include their own graphical properties. The cus-
tomerDetails container corresponds to the phase, where the customer needs to
provide as input her details with information, such as name and shipping ad-
dress. These fields correspond to different GUI element types and are marked
appropriately in the model.

Listing 3. The GUI code generated for the Android target platform.

1. /** Called when the activity is first created. */
2. public View searchForBooksView() {
3. this.setTitle("BookStore - Multi-platform Web Service");
4. searchForBooks = new TableLayout(this);
5. bookTitle = new TextView(this);
6. bookTitle.setText("Enter Book Title:");
7. titleOfBook = new EditText(this);
8. ... }

A segment of the generated code for the Android platform corresponding
to lines 31-74 of Listing 1 is shown in Listing 3. These lines of code are the

192 A. Achilleos, G.M. Kapitsaki, and G.A. Papadopoulos

outcome of the transformation of the modelling elements corresponding to the
Display and the individual graphical properties of two of the components of
the searchForBooks Container. Although hidden in the models presented above,
the name provided for the book store (i.e., BookStoreWSClient) forms part
of the information that can be edited through the model properties editor view.
In a similar fashion the generated code fragment corresponding to Windows
Mobile is visible in Listing 4 following the specifics of the platform.

Fig. 7. Example container of the BookStore Presentation Model

Fig. 8 demonstrates some of the screenshots captured during the use of the
BookStore WS on mobile clients deployed on the Android and the Windows
Mobile platform. The screens for searching for a book, displaying the results
and filling out the information for purchasing the book are shown. Alternated
screenshots capture different steps in the functionality of the WS, while run-
ning on these platforms. Moreover, Table 1 presents a quantitative evaluation
by comparing the generated code against the complete implementation (i.e.,
including manual code) for the examined platforms. Manual implementation
for each platform is limited to: (i) calling the method that displays the next
form, (ii) getting user input from form fields, (iii) calling the appropriate WS
method (passing user input as arguments) via the proxy class and (iv) obtain-
ing and displaying the WS response. The Lines of Code (LoC) belongs to the
size metrics that can be used for analyzing the quality of model transformations
in MDE. In future work, we aim to extend the evaluation by examining other
software metrics, such as software cyclomatic complexity, and include a perfor-
mance analysis evaluation that can provide more accurate results than the LoC
metric.

A Model-Driven Framework for Developing WS Oriented Applications 193

Fig. 8. The BookStore Web Service Deployed on Different Devices

Table 1. LoC percentage for the different platforms

LoC Metric Generated Overall Generated/

per Platform Code Code Overall (%)

Java 189 334 56.59

J2ME 267 369 72.36

Android 244 361 67.59

Windows Mobile 360 481 74.84

Windows Desktop 360 475 70.30

All Platforms 1420 2020 70.30

Listing 4. The GUI code generated for the Windows mobile target platform.

1. public BookStoreWSClientWindowsMobile(){
2. this.Name = "BookStore - Multi-platform Web Service";
3. this.Text = "BookStore - Multi-platform Web Service";
4. bookTitle = new Label();
5. bookTitle.Name = "bookTitle";
6. bookTitle.Location = new System.Drawing.Point(20, 20);
7. bookTitle.Size = new System.Drawing.Size(200, 20);
8. bookTitle.TabIndex = 0;
9. bookTitle.Text = "Enter Book Title:";
10. titleOfBook = new TextBox();
11. titleOfBook.Name = "titleOfBook";
12. titleOfBook.Location = new System.Drawing.Point(20, 45);
13. titleOfBook.Size = new System.Drawing.Size(200, 20);
14. titleOfBook.TabIndex = 1;
15. titleOfBook.Text = "";
16. ... }

The results show that each generator can be exploited in an efficient way, in
order to automate a significant part of the implementation process (the average
percentage is kept at 70.3%). Note that in the case of Java the percentage is
lower, since it is not possible to generate the code that handles components

194 A. Achilleos, G.M. Kapitsaki, and G.A. Papadopoulos

placement for each screen. This is due to the layout choices offered by Java,
which are missing in other technologies. For this reason the respective lines of
code in Java need to be added manually.

5 Conclusions

In this work, a Model-Driven framework that automates the development of Web
Service oriented applications has been presented. The process described allows
modelling service-client GUI elements using the notation of the Presentation
Modelling Language, whereas the key contribution refers to the transformation
of PML models to functional code, targeting the different platforms encountered
on mobile and stationary terminals (Java, Android, etc.). The code generators
proposed have been implemented using a set of tools offered by the openArchi-
tectureWare modelling component. Regarding the communication of the client
with the Web Service, existing tools that support the transformation of WSDL
models to corresponding proxy classes have been used.

The developed prototype and its applicability have been demonstrated
through the book store WS, which was showcased running on mobile environ-
ments but deployed also on desktop devices (i.e., Java, Windows Desktop). The
efficiency of the approach has been discussed on the basis of the use case and the
results derived using the LoC metric. The proposed model-driven WS-oriented
framework, consisting of the PML and WSDL along with the code generators set,
has the capability to address heterogeneity when developing platform-specific ap-
plications. In particular, the approach allows users to automatically generate the
required source code for Web Service client applications, which can consequently
invoke Web Services from different devices and platforms. An interesting exten-
sion of this work is to consider the preferences of the user when adapting the
Web Service, making this way the service user-aware. For instance, a user might
want to receive the full book details even if she is using a resource-constrained
device, while another user is satisfied with receiving the book’s title and price.

References

1. Bartolomeo, G., Blefari Melazzi, N., Cortese, G., Friday, A., Prezerakos, G., Walker,
R., Salsano, S.: SMS: Simplifying Mobile Services - for Users and Service Providers.
In: Advanced International Conference on Telecommunications and International
Conference on Internet andWeb Applications and Services, p. 209. IEEE Computer
Society, Washington (2006)

2. Dern, D.: Cross-Platform Smartphone Apps Still Difficult. In: IEEE Spectrum.
IEEE Press (2010)

3. Singh, Y., Sood, M.: Model Driven Architecture: A Perspective. In: IEEE Interna-
tional Advance Computing Conference, pp. 6–7. IEEE Computer Society (2009)

4. Ortiz, G., Garcia de Prado, A.: Adapting Web Services for Multiple Devices: A
Model-Driven, Aspect-Oriented Approach. In: IEEE Congress on Services, pp. 754–
761. IEEE Computer Society, Los Alamitos (2009)

A Model-Driven Framework for Developing WS Oriented Applications 195

5. Sauer, S., Duerksen, M., Gebel, A., Hannwacker, D.: GuiBuilder: A Tool for Model-
Driven Development of Multimedia User Interfaces. In: Workshop on Model Driven
Design of Advanced User Interfaces in MODELS 2006 (2006)

6. Link, S., Schuster, T., Hoyer, P., Abeck, S.: Focusing Graphical User Interfaces
in Model-Driven Software Development. In: First International Conference on Ad-
vances in Computer-Human Interaction, pp. 3–8. IEEE Computer Society, Wash-
ington (2008)

7. da Cruz, A.M.R., Faria, J.P.: A Metamodel-Based Approach for Automatic User
Interface Generation. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS
2010. LNCS, vol. 6394, pp. 256–270. Springer, Heidelberg (2010)

8. Dunkel, J., Bruns, R.: Model-Driven Architecture for Mobile Applications. In:
Abramowicz, W. (ed.) BIS 2007. LNCS, vol. 4439, pp. 464–477. Springer, Hei-
delberg (2007)

9. Paternó, F., Santoro, C., Spano, L.D.: User task-based development of multi-device
service-oriented applications. In: International Conference on Advanced Visual In-
terfaces. LNCS, vol. 5726. ACM (2010)

10. Paternò, F., Santoro, C., Spano, L.D.: Model-Based Design of Multi-Device Inter-
active Applications Based on Web Services. In: Gross, T., Gulliksen, J., Kotzé, P.,
Oestreicher, L., Palanque, P., Prates, R.O., Winckler, M. (eds.) INTERACT 2009.
LNCS, vol. 5726, pp. 892–905. Springer, Heidelberg (2009)

11. Kapitsaki, G.M., Kateros, D.A., Prezerakos, G.N., Venieris, I.S.: Model-driven de-
velopment of composite context-aware web applications. Information and Software
Technology 51(8), 1244–1260 (2009)

12. Pérez-Medina, J.-L., Dupuy-Chessa, S., Front, A.: A Survey of Model Driven En-
gineering Tools for User Interface Design. In: Winckler, M., Johnson, H. (eds.)
TAMODIA 2007. LNCS, vol. 4849, pp. 84–97. Springer, Heidelberg (2007)

13. Ortiz, G., Garcia de Prado, A.: Mobile-Aware Web Services. In: International Con-
ference on Mobile Ubiquitous Computing, Systems, Services and Technologies, pp.
65–70. IEEE Computer Society, Los Alamitos (2009)

14. Moura, S.S., Schwabe, D.: Interface Development for Hypermedia Applications in
the Semantic Web. In: LA Web, pp. 106–113. IEEE CS Press (2004)

15. Brambilla, M., Ceri, S., Comai, S., Fraternali, P.: A CASE tool for modelling and
automatically generating web service-enabled applications. International Journal
of Web Engineering and Technology 2(4), 354–372 (2006)

16. van der Sluijs, K., Houben, G.J., Leonardi, E., Hidders, J.: Hera: Engineering Web
Applications Using Semantic Web-based Models. In: de Virgilio, R., Giunchiglia,
F., Tanca, L. (eds.) Semantic Web Information Management - A Model-Based
Perspective, pp. 521–544. Springer, Heidelberg (2010)

17. Achilleos, A., Yang, K., Georgalas, N.: A Model Driven Approach to Generate
Service Creation Environments. In: IEEE Global Telecommunications Conference,
pp. 1–6. IEEE (2008)

18. Achilleos, A.: Model-driven Petri Net based Framework for Pervasive Service Cre-
ation. School of Computer Science and Electronic Engineering. University of Essex
(2010)

19. Gronmo, R., Skogan, D., Solheim, I., Oldevik, J.: Model-driven Web services de-
velopment. In: IEEE International Conference on e-Technology, e-Commerce and
e-Service, p. 42045. IEEE Press (2004)

20. van Amstel, M.F., Lange, C.F.J., van den Brand, M.G.J.: Metrics for Analyzing
the Quality of Model Transformations. In: 12th ECOOP Workshop on Quantitative
Approaches on Object Oriented Software Engineering (2008)

Developing Enterprise Web Applications

Using the Story Driven Modeling Approach

Christoph Eickhoff, Nina Geiger, Marcel Hahn, and Albert Zündorf

University of Kassel, Software Engineering,
Department of Computer Science and Electrical Engineering,

Wilhelmshöher Allee 73,
34121 Kassel, Germany

{cei,nina.geiger,hahn,zuendorf}@cs.uni-kassel.de
http://se.eecs.uni-kassel.de

Abstract. Today’s browsers, tools and Internet connections enable the
growth of Enterprise Web Applications. These applications are no longer
page-based and designed using HTML code. Enterprise Web Applications
bring the capabilities and concepts of traditional desktop applications to
the browser. We are used to the development of desktop applications for
years and have defined our own process to enable the full model-driven
development of applications without source code. Using this process and
its tools, we are able to define not only data models for traditional ap-
plications and generate code out of it. Combined with the story-driven
modeling approach, we are able to design the logic of applications us-
ing models and generate fully functional code. To use our knowledge
and tools as well as our usual process for the development of Enterprise
Web Applications, we investigated our process and adapted it to the new
needs. As result we propose a new development process that combines
the needs of complex software development with the implementation of
web user interfaces and control flows between these user interfaces. The
process is a guideline to use models and tools for the development of
complex Enterprise Web Applications including data model, behaviour
and user interface.

1 Introduction

We have developed traditional Java applications for years. Our main research
area has been the model- and story-driven development of such applications. We
have investigated ways to do the complete development of applications with our
own development process and own tools: The Fujaba Process [2], [3] and Fu-
jaba Toolsuite [9]. However, over the last years the type of applications changed.
We more and more faced the challenge of developing so called Enterprise Web
Applications. What we exactly mean by this term is further defined in section
2. Since we have gained expertise in the modeling of applications over years,
the question we asked ourselves was: “Is it possible to develop web applications
without the need to write any sourcecode, too?”. We started by investigating our
development of traditonal Java applications and apparently faced the differences

A. Harth and N. Koch (Eds.): ICWE 2011 Workshops, LNCS 7059, pp. 196–210, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://se.eecs.uni-kassel.de

Developing Enterprise Web Applications 197

between traditional software and web applications. First of all, web applications
will mostly be divided into a client part and a server part. These two parts com-
municate using Remote Procedure Calls or other request technologies known in
the web domain. These topics were not clearly addressed in the development
process we used until now. Additionally, there is no full modeling and code
generation support for these techniques inside the Fujaba Tool Suite, yet. An-
other point missing in the traditional Fujaba Process is the design of Graphical
User Interfaces (GUIs) and the binding of application data to these interfaces
(databinding). The last point had resided on our todo list even before web appli-
cations turned out to be the new research point. We thus decided to enhance our
processes and tool integration to be able to do full development of Enterprise
Web Applications, including distributed application parts and user interfaces.
We therefore started to adopt and enrich the traditional Fujaba Process to be
able to support all these new requirements. Also we tried to support the process
with tool integration of the new requirements. We propose the use of the Google
Web Toolkit (GWT)1 as user interface and client side logic library. GWT auto-
matically generates browser specific JavaScript code from Java Code. The Java
code can easily be generated using the Fujaba Toolsuite code generation mecha-
nisms. A first step towards modeling of databinding and support for server calls
with GWT was already introduced with the Fujaba Action Charts, [5], in 2010.
The design of user interfaces as well in source code as in story-driven model-
ing is a painstaking task. We therefore propose the use of the GWTDesigner2

which is a visual GUI builder generating Java code. To enable the completely
model driven development of web applications, we have to close the gap be-
tween Java code for the visual components and the diagrams modeling the rest
of the application. We propose to use UML Lab 3 and its reverse engineering
technologies to derive a structural representation of the GUI. This is sufficient
to enable the modeling of client side behaviour, databinding, GUI listeners and
server calls using story-diagrams and Action Charts. While the main points of
the Web Fujaba Process have already been defined and will be presented in this
paper, there are still some weak points. We currently do not explicitly state how
the databinding will be incorporated into the process. Also, we have automatic
test generation for the server parts, but not for the logical parts residing in the
client and the user interface. These points will be handled in future revisions
of the process. The remainder of this paper is structured as follows: Section 2
defines the class of targeted applications. After having defined the application
class, we introduce the story-driven modeling approach, our adaptations needen
for web applications, as well as a running example in section 3. As a result of our
research, section 4 answers the question raised in the Introduction and defines
the Web Fujaba Process and the associated toolchain. Section 5 shows similar-
ities and differences to other modeling approaches. Section 6 finally concludes
and gives information about work which still has to be carried out in the future.

1 http://code.google.com/intl/de-DE/webtoolkit/
2 http://code.google.com/intl/de-DE/webtoolkit/tools/gwtdesigner/
3 http://www.uml-lab.com/

198 C. Eickhoff et al.

Fig. 1. The traditional Fujaba Process used for story-driven development of traditional
applications

2 Targeted Applications - What We Call Enterprise Web
Applications

As stated in section 1 our web application development process ist tailored to a
special class of applications. We call these applications Enterprise Web Applica-
tion and define them as follows:

– Ajax based applications with excessive Document Object Model
restructuring. We explicitly do not target page based applications with
traditional link infrastructure such as HTML links. Enterprse Web Applica-
tions will change the “page content” by resturucturing the Document Object
Model of the web page. This way we do not have page reloads. This behaviour
is also known from Rich Internet Applications.

– Client side data model and logic.We try to shift as much of the business
logic of our applications to the client. The web browsers Ajax Engine takes
care of computations and data model changes. This way, most of the appli-
cation logic can be shifted to the client. The applications will only contact
the server in special cases.

– Desktop-like user interfaces. Enterprise Web Applications have inter-
faces composed of so called widgets. We have controls similar to the ones
known from desktop applications. Lists, buttons, dropdown-boxes and menus
are used to provide access to the data model and logic.

Developing Enterprise Web Applications 199

– Minimized server side code. As stated above, we try to limit the server
computations wherever possible. Only security critical issues are still com-
puted by the server and persistent storage is carried out using the WebCoo-
bra persistency and data replication framework.

– Workflow driven. This last item is no must. However, we state that most
applications are developed to provide tool support for some kind of workflow.
This is why we have introduced the workflow driven requirement into our
application class as well as in our process. Workflow hereby does not mean
to be forced to describe the work to be carried out using a Business Process
Model. Nevertheless, recurring tasks may also form a workflow in some ways.

As example for what we call Enterprise Web Applications, the GoogleDocs4 may
be reviewed. While this application is also able to have multiple simultaneous
users on one document, the technology used for this differs from our approach.
However, the requirements to be of class Enterprise Web Application are fulfilled
by GoogleDocs. Being similar in many cases, in contrast to traditional software
the Enterprise Web Applications are accessible from everywhere in the world
without the need to be installed. Being more flexible, this way, they still contain
similar features than desktop software and are even more complex to develop
due to the distributed nature. The story-driven development of this kind of
applications is target to our research and development process.

3 Story-Driven Modeling of Enterprise Web Applications

The story-driven modeling approach is taught and researched by the Fujaba
community for years now. There also exists a process, defining the steps needed
to develop applications this way, the FUjaba Process (FUP). Figure 1 shows
the complete process. The research of story-driven modeling of Enterprise Web
Applications was based on this existing work, as described above. However, our
targeted web applications still differ from the kinds of applications the FUP was
targeted to. Nevertheless, FUP can still be used for the server parts and for parts
of the data model of Enterprise Web Applications. A description of application
development accourding to the FUP can be found in [3]. In the following, we
will only give a short introduction on the main story-driven modeling features.

The development process starts by the definition of textual scenarios. One
example scenario could be the following: “Alice and Bob are playing Ludo. It is
Alice’s turn. She has rolled the dice which shows 2. Alice takes her red piece and
moves it forward two fields.” The textual scenarios will then be translated to
so called storyboards. Figure 2 shows the storyboard resulting from the example
scenario shown above. These storyboards are used for automatic test generation.
One Test is generated from every storyboard, testing the described scenario. Ad-
ditionally, storyboards serve as starting point for the application development.
As can be seen from Figure 2 the method move(2) is called on the piece ob-
ject. This method can be implemented graphically using storydiagrams inside

4 http://docs.google.com

200 C. Eickhoff et al.

at

belongsTo

die

play play
turn

Ludo:ludo

2:=value

Die:die

red:=color

Piece:piece

1: move(2)

Player:Alice
Player:Bob

Field:field

// start situation:

Scenario

at
next

next

belongsTo

die

turn

play
play

Bob ludo Alice

2==value

die

red==color

piece

Field:f3

field

Field:f2

// result situation:

Fig. 2. Storyboard describing the example textual scenario of Alice and Bob playing
ludo

the Fujaba Toolsuite. This way, the logic and data model changes are handled.
The move() method will change the data model of the application by placing
the piece object on a different Field. The diagram showing an example imple-
mentation of the move() method is shown in Figure 3. The Fujaba story-driven
modeling techniques and capabilities are described in detail in [14]. Using the
Fujaba Toolsuite and process, we are able to create classdiagrams for the data
model as well as application logic using storydiagrams. All of these diagrams
are used as input for the code generation process. This code generation results
in Java source code implementing data model and application logic. The source
code can be compiled using standard Java compilers and afterwards be executed
within the Java Virtual Machine. The development of highly complex systems
is possible this way. As an example: The code generation engine of Fujaba is
bootstrapped and was developed using story-driven modeling approaches, itself.

The Fujaba development process described above in context of Enterprise Web
Applications sufficient only for the server part and data model. There are some
major issues missing in FUP concerning these kind of applications. The modeling
of distributed systems is not clearly defined. These systems contain client and
server part as well as communication between these parts. Additionally, the data
model, which is created using the FUP techniques has to be bound to the client

Developing Enterprise Web Applications 201

Piece::move (amount: Integer): Void

]failure[

]success[

«create»
at

next

«destroy»at

1: amount--

}amount > 0{

this

Field:next

Field:at

Fig. 3. Activity Diagram modeling the logic of the move() method

side user interface in some way. First steps towards the modeling of server calls
and data bindings were introduced with the Fujaba Action Charts [5]. However,
we have to provide modeling capabilities for the issues missing in this approach.
The process for Enterprise Web Applications had to provide information on how
to model server calls, do the databinding and create controller logic for the user
interface. The implementation of graphical user interfaces is a painstaking task.
This holds for hand coding as well as for modeling UIs with storydiagrams. How-
ever, we need support for visual user interface design in our process. Fortunately,
the publication of Googles GWT-Designer5 in 2010 opened a way for visual user
interface definition. While the definition of UIs using the GWT-Designer makes
life easier, the output of the graphical editor is Java source code. Since we in-
tend to have a completely model-driven development process of Enterprise Web
Applications we do not want to switch back to source code. We thus had to in-
corporate some kind of automatic mapping at this point. Following our process
and using the associated toolchain we are able to generate source code, cross-
compile it with the Google Web Toolkit and run a completely modeled web
application. As a result of our research on the development of Enterprise Web
Applications this paper presents our story-driven modeling approach defined in
the Web Fujaba Process (WFUP).

3.1 Running Example

While the whole approach presented in this paper is still conceptual in some
points, we needed an example application to test the whole process. This ap-
plication had to be complex, support multiple users and have different user
interfaces (views) for different kinds of tasks. Since Enterprise Web Applications
will mostly be used to support some kind of workflow, as stated in 2 there also
had to be a workflow with sufficient complexity to be solved by the example
application. We choose a management workflow for the creation of animated
computer films. The Enterprise Web Application modeled to support the whole

5 http://code.google.com/intl/de-DE/webtoolkit/tools/gwtdesigner/index.html

202 C. Eickhoff et al.

storyboard

Production
calendar

Character
design

Scene design

Write story

render

Task list

compositing

Setup scenes
and

animation

Choose
project

Fig. 4. Workflow of the example application to manage the creation of animated films

management of film productions like this will need to support the whole workflow
shown in figure 4.

The application will need to manage different film projects from which the user
can choose when starting the application. After this, information for the choosen
project will be shown. Every step of the workflow shown will have its own user
interface (view). The views will consist of similar items as user interfaces known
from desktop applications, e.g. a calender with information about the project
status, giving the project manager some kind of timely overview. Another view,
the write story view (shown in Figure 5), will consist of a web editor, which will
enable the user to define scenes, dialogues and the action taking place within
the scene. This is done textually. Not every task of the workflow will be done
within the webbrowser, 3D modeling, design and animation will as well be done
with specified desktop applications as rendering and compositing processes. The
web application will only show the current status of these action points. The
example application serves as basis for the development of tool support for the
proposed process. Therefore, we will develop the application according to this
process. However, some parts of the application or process may be changed
during development and further research. The process introduced in section 4
is the first version and will need further refinement. Even the workflow of the
application might be changed, rearranged or further enriched. Maybe it might
be necessary to define subworkflows for more complex action points.

4 The Web Fujaba Process (WFUP)

As a result to the question raised in section 1: “Is it possible to develop web
applications without the need to write any sourcecode, too?” we propose the
Web Fujaba Process. Combining the experience from traditional story-driven
modeling and the research work introduced in section 3 we propose this process
as guidance for the completely story-driven modeling of Enterprose Web Ap-
plications. The Web Fujaba Process hereby is based on the traditional Fujaba

Developing Enterprise Web Applications 203

Fig. 5. Write story view from example application within GWT-Designer view in
Eclipse

Process shown in figure 1. The Fujaba Process was further enriched with the
description of user interface design and the possibilities to model UI controllers
as well as server calls for distributed applications. However, the original process
is still part of the development. The server parts of applications will be devel-
oped according to the original process. Figure 6 shows an overwiew of the Web
Fujaba Process (WFUP).

The process starts by describing the intened application textually, as it was
done in the old process. Taking the description as input, usecase scenarios are
created and documented as well textually as in usecase diagrams. This step
should be carried out together with the potential users or the customer. Since
Enterprise Web Applications will be divided into a client- and a server part
the process is divided at this point, too. The server part takes its textual and
usecase scenarios and is further developed according to the FUP. This also is
done for the application data model. This model can be designed the traditional
way, resulting in class diagrams which can in turn be used inside the WFUP
to do the data binding and controller parts. Since the applications we intend
to create with the WFUP will deploy the data model both on server side and
on client side, it is extremely necessary here, to integrate the model into both
development steps. For the server part, the application data model can be used
as in the development of traditional applications with the FUP. However, the
controller structure will be able to do changes on the data model directly in the
client, without the need to make server calls. This results in the need of having
the class diagrams of the data model in the WFUP process, too. Having special
annotations and interfaces in the application data model will enable the use of
the WebCoobra Framework [1] for the data model. This gives us support for
automatic replication of data between the server and multiple clients, enabling
the system to keep consistency. These annotations and interfacing can easily be

204 C. Eickhoff et al.

Fig. 6. The Web Fujaba Process, a proposal for story-driven development of Enterprse
Web Applications with the Google Web Toolkit and Fujaba

done during the FUP for the server part and data model and do not have to be
taken into account while developing the client side with the WFUP. The clients
side code can handle every object of the data model directly, this way, which
eases the modeling of controllers for the user interface. The client part of the
application will be developed using the additional steps introduced in this paper.
Enterprise Web Applications mostly will follow some kind of workflow. This is
due to the case that applications will mostly be designed to carry out some kind
of work. In our running example introduced in section 3.1 the application to be
developed is designed to enable the management of animated film productions.
Thus, there is a workflow driving the application - the steps to be carried out to
manage an animated film production in our case. This is true to the major part of
applications. Hence, we try to extract a workflow from the textual scenarios. This
workflow is modeled using Fujaba and will result in so called workflow boards.
For every workflow step there will be one graphical user interface instance - one
view. The view for the workflow step should be designed to support the user in
performing the task associated with the workflow step. To enable this, we define
one view component for every workflow step. The view components are simply UI

Developing Enterprise Web Applications 205

Fig. 7. Reverse engineered classdiagram of script view user interface. This reverse
engineering step is carried out by UML Lab, using the Java source code generated
from the Google GWT-Designer.

classes inside a class diagramm. To link between the view class and the associated
workflow step, we use a new kind of diagram, the UI board. The next step would
be to further design the user interface. This will be done using the Google GWT-
Designer. In a graphical way the user interface will be created and saved. As
stated in 3 the GWT-Designer creates Java source code as output. We therefore
retrieve back the structural information of the created classes to be able to use
it within the remainder of the process. Figure 7 shows the classdiagram of the
example view from Figure 5 after retrieving back the structural information from
the GWT-Designer. The resulting class diagram has referenced classes to all the
used user interface components as well as all the attributes set. Additionally, the
structure of the view is represented by links between the different user interface
classes in the diagram. After this step is finished, the structure of the view can
be combined with the data model for the application, enabling the controller
and application logic to perform model changes. The simplified version of the
data model for the example application is shown in Figure 8. The logic of the
controllers as well as the databinding can be modeled with Fujaba storydiagrams
using the information of both of the classdiagrams shown above. The controllers
in turn will result in a third classdiagram containing the controller structure.
Every controller class will have methods which are automatically called by the
associated user interface components when actions occur. The methods of these
controller classes can be modeled with story driven techniques in Fujaba. After

206 C. Eickhoff et al.

0..1

0..1

0..1

0..1

0..1

0..1

0..1 0..*

0..1

composedOf

0..1

0..1

0..1

0..1

0..1

0..*0..1

projects

scene

richTextBody

0..*

character

0..*

0..*

0..*

0..1

takesPartIn

0..1
0..10..1

0..1 associatedScriptscriptMultiMediaManager

Script
scene

String : text

Note

Character

0..1

date

Date

«reference»

end
start

Asset

RichTextBody

storyBoards
StoryBoard

String : name

Project

Scene

Fig. 8. Simplified data model for the example application in Fujaba notation

the modeling process is done, the runnable application will be created using code
generation mechanisms.

The process described above enables the complete modeling of web applica-
tions including user interface components and client as well as server side logic.
To support the user in carrying out this process, we started to implement tool
support for this process. The suggested toolchain is further described in the
following section.

4.1 WFUP Toolchain - Adding Tool Support to Our Process

The Fujaba Toolsuite already supports class and storydiagrams. However, the
user interface designing process using Google GWT-Designer produces source
code. We therefore need some kind of mapping from this source code to Fujaba’s
model here. We choose to retrieve back the structural informations of the de-
signed user interfaces into Fujaba, here. This way, it would be possible to run
further process steps with this structures. We found the tool support for this
step in UMLLab. This tool is able to reverse engineer source code into struc-
tural model information and provide real-time synchronisation between model
and code. The structural information gained from UML Labs reverse features
enables us to close the gap between source code and model at this point. Still,
the structural model gained through UML Lab does not help in the Fujaba
development process because of incompatible meta models of both tools. Addi-
tionally, it is not possible to model the logical parts of web applications with
story-driven modeling using UML Lab, yet. To overcome this problem, a real-
time adapter between UML Lab and Fujaba has been created [6]. Using this
adapter the structural information can be duplicated into Fujaba class diagrams
and afterwards be used for the story-driven modeling of client side logic, con-
trollers and databinding. The adapter also takes care of consistency between
class diagrams residing within Fujaba and those within UMLLab. This means,
we are able to apply changes to any of those diagrams later. To enable more
comfortable access to the controllers, we have started to add right-click menus
to the GWT-Designer. This way, we can add controllers to our user interface in a

Developing Enterprise Web Applications 207

graphical way and only need to implement the logic of the controller afterwards.
Having defined the whole application, the process takes the resulting diagrams;
class diagrams of the view, story diagrams for the controllers and for server calls
and generates code for all of these diagrams. Different code generation strategies
will be used here, depending on the type and semantics of the diagram to be
generated. This code generation step will result in Java source code that can be
tested and debugged with the Google Plugins and which can be cross-compiled
with the GWT cross compiler to gain the JavaScript code that is run inside
the webbrowser and which can be deployed onto an application server. The tool
support for the Web Fujaba Process is not yet completely implemented. How-
ever, the design of user interfaces, retrieval of structural information and design
of user interface controllers and server calls can already be done using current
versions of GWT-Designer, UML Lab and Fujaba.

5 Related Work

The approach and process proposed in this paper is not the only research work
in the domain of model-driven development of web applications. However, we
face on the development of a special class of applications: Enterprise Web Appli-
cations. Additionally, we want to be able to do this with the tool support we are
used for the implementation of traditional applications. Thus, we try to broaden
our modeling and graph transformation expertise to the domain of web applica-
tion development. However, we will try to sum up some of the similarities and
differences to other research work in this sector in the remainder of this section:

[7] shows the use of patterns for the development of Rich Internet Applica-
tions. The authors insist to use patterns on a higher abstraction layer, meaning in
the modeling stage. The approach uses models of these patterns that are modeled
once and then reused by model-to-model transformations or manually. Similar
to our approach of Action charts [5] the authors introduce UML state diagrams
for the modeling of user interface actions. The reuse of some patterns modeled
to execute common user interface operations will be further invesitigated and
might be included into our process in the future.

The Orchestration Model which is introduced in [10] in combination with
the “Model-Driven Development Process for RIAs” follows similar steps than
the process introduced here. However, there is a lot of model transformation
between platform independent and platform specific models needed, following
this approach. These meta layers often get confused as well from developers
as customers. We have tried to hide these meta-information from the customer
using our story-driven approaches in the past. Tests with students showed that
application development following the story approach often is simpler for the cus-
tomers and developers to understand and in additon there is always a document
which can easily be understood by both. The simple notation of storyboards
and usecase diagrams in some points enabled the customer to design parts of
the development process on his own.

[12] contains activity diagrams for the generation of user interfaces as well as
WYSIWYG user interface design. These diagrams are similar to our workflow

208 C. Eickhoff et al.

boards. However, we will use the information flow of workflow boards to generate
the exchange of one view or parts of it by another. The user interface design
will, like in [12] be carried out with graphical design. However, the approach
introduced in [12] is designed for Enterprise Applications using Eclipse and SWT
rather than web applications.

The UWE4JSF method [8] again uses similar approaches than the WFUP
introduced above. However, it faces on JSF6 applications rather than real Ajax
applications. The navigation structure shown in this paper can be seen similar to
our workflow boards, again. Nevertheless, transitions within our workflow boards
will not trigger page changes. It will rather result in the Document Object Model
Tree to be changed, meaning that part of the views or even complete views will
be exchanged without the page to be reloaded.

[4] shows ways for multi-level testing of model driven web applications. This
point will be start for future research of WFUP. While the traditional FUP
enables testing and even automatic generation of test code, the WFUP cur-
rentls lacks this for the client side of applications. We will have to find ways to
(semi)automatically incorporate tests into the WFUP in the future.

Another interesting idea is the model-driven way of importing user interface
mockups into the real development process described in [11]. The implementation
of this idea into our intended toolchain would really be nice to have. However,
since the GWT-Designer is not yet open-source there is currently no plan to
implement this into our process.

WebML is widely used in the domain of model driven web engineering. The
approach and process presented on [13] are used to define applications which
do not fit into our targeted application class as defined in section 2. While we
target on Enterprise Web Applications without page reload and with client side
application state, WebML is mainly targeted on traditional page based web ap-
plications. Thus, the process defined by WebML is not useful for the story-driven
development of applications we want to create. We therefore defined our own
process, which is exactly tailored to the needs of Enterprise Web Applications.

As far as we know, the completely story-driven modeling of web applications
was not yet done in the community of web engineering. We tried to introduce
the process we are used to and adopt it to the special needs of our targeted
application class. Getting input from additional research in the are of web engi-
neering will hopefully further enrich this process in the future and make it less
experimental.

6 Conclusion and Future Work

This paper showed the research steps and methods carried out to design a com-
pletely story-driven approach for the development of Enterprise Web Applica-
tions. The Web Fujaba Process (WFUP) was introduced as our proposal for the
development of these applications. The predecessor, the Fujaba Process, used for
the development of traditional desktop applications was introduced. The changes

6 Java Server Faces - http://java.sun.com/javaee/javaserverfaces

Developing Enterprise Web Applications 209

and enhancements made to extend this process for the development of Enter-
prise Web Applications including user interface design were shown. The work to
be carried out to completely implement tool support and user friendly usage of
the proposed tool chain is still going on. Since we intend to have a development
process that resides completely within the model, without switching to source
code writing, we still have some minor problems to face. At the moment there is
still the need to combine different tools to develop applications. GWT-Designer
for the user interface specification, UML Lab for the sturctural information re-
trieval, Fujaba for the main development of the rest of the application. While
all of these applications can be combined at this point, there is still the need
for better tool integration. The diagrams for databinding and controllers of user
interfaces, as well as the ones for server calls will need some rework. Some new
diagrams might be introduced for these purposes, in case we figure out that the
traditional story diagrams will not suffice for our proposal. Additionally, there
will have to be some wizards for the generation of complete web applications as
well as for the creation of different kinds of diagrams. Having new diagrams will
also mean to have to update code generation to fulfill the needs of web applica-
tions. There will be different semantics of storydiagrams, so we will have some
kind of context-sensitive code generation here, depending on the purpose of the
diagram. While there has to be done a lot of work with the distributed parts of
the web application, the server parts can be designed and generated following
the current standard FUP process. This means, there is automatic generation
of test for the server part of the application. Hence, we will try to enable test
generation for client parts as well. Since this is current research work, we do
not yet know which ways of testing will be used within the web application pro-
cess of Fujaba. There is still a lot of work to be carried out to enable complete
story-driven development of web applications and have all the different tools and
parts integrated well into each other. Nevertheless, we still want to stay with the
model-centric and story-driven approach. This way, we hope to bring the com-
mon advantages of model-driven development to the web domain. The diagrams
we propose to use might, in addition, often be better to read and understand by
customers than this is the case with source code.

References

1. Aschenbrenner, N., Dreyer, J., Hahn, M., Jubeh, R., Schneider, C., Zündorf, A.:
Building Distributed Web Applications based on Model Versioning with CoObRA:
an Experience Report. In: Proc. 2009 Intl. Workshop on Comparison and Version-
ing of Software Models, pp. 19–24. ACM (May 2009)

2. Diethelm, I., Geiger, L., Zündorf, A.: Systematic Story Driven Modeling. Technical
Report (February 2004)

3. Diethelm, I., Geiger, L., Zündorf, A.: Systematic Story Driven Modeling, a case
study. Edinburgh, Scottland (May 2004)

4. Fraternali, P., Tisi, M.: Multi-Level Tests for Model Driven Web Applications.
In: Benatallah, B., Casati, F., Kappel, G., Rossi, G. (eds.) ICWE 2010. LNCS,
vol. 6189, pp. 158–172. Springer, Heidelberg (2010)

210 C. Eickhoff et al.

5. Geiger, N., George, T., Hahn, M., Jubeh, R., Zündorf, A.: Using actions charts for
reactive web application modelling (2010)

6. Koch, A.: Echtzeit synchronisierung von uml-modellen unterschiedlicher technis-
cher basis am beispiel von uml lab und fujaba. Master’s thesis, Kassel University,
Fachbereich 16, Fachgebiet Software Engineering, Wilhelmshöher Allee 73, 34121
Kassel (September 2010)

7. Koch, N., Pigerl, M., Zhang, G., Morozova, T.: Patterns for the Model-Based De-
velopment of RIAs. In: Gaedke, M., Grossniklaus, M., Dı́az, O. (eds.) ICWE 2009.
LNCS, vol. 5648, pp. 283–291. Springer, Heidelberg (2009)

8. Kroiss, C., Koch, N., Knapp, A.: UWE4JSF: A Model-Driven Generation Approach
for Web Applications. In: Gaedke, M., Grossniklaus, M., Dı́az, O. (eds.) ICWE
2009. LNCS, vol. 5648, pp. 493–496. Springer, Heidelberg (2009)

9. Nickel, U., Niere, J., Zündorf, A.: The Fujaba Environment, Limmerick, Ireland,
pp. 742–745. ACM press (June 2000)

10. Pérez, S., Dı́az, O., Meliá, S., Gómez, J.: Facing interaction-rich rias: The orches-
tration model. In: Schwabe, D., Curbera, F., Dantzig, P. (eds.) ICWE, pp. 24–37.
IEEE (2008)

11. Rivero, J.M., Rossi, G., Grigera, J., Burella, J., Luna, E.R., Gordillo, S.E.: From
Mockups to User Interface Models: An Extensible Model Driven Approach. In:
Daniel, F., Facca, F.M. (eds.) ICWE 2010. LNCS, vol. 6385, pp. 13–24. Springer,
Heidelberg (2010)

12. Schramm, A., Preußner, A., Heinrich, M., Vogel, L.: Rapid UI Development for En-
terprise Applications: Combining Manual and Model-Driven Techniques. In: Petriu,
D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394,
pp. 271–285. Springer, Heidelberg (2010)

13. The Web Modeling Language (2011), http://www.webml.org
14. Zündorf, A.: Rigorous object oriented software development. Habilitation Thesis,

University of Paderborn (2001)

http://www.webml.org

Aspect-Oriented Modeling of Web Applications
with HiLA

Gefei Zhang1 and Matthias Hölzl2,�

1 Arvato Systems Technologies GmbH
2 Ludwig-Maximilians-Universität München

{gefei.zhang, matthias.hoelzl}@pst.ifi.lmu.de

Abstract. Modern web applications often contain features, such as landmarks,
access control, or adaptation, that are difficult to model modularly with existing
Model-Driven Web Engineering approaches. We show how HILA, an aspect-
oriented extensions for UML state machines, can represent these kinds of features
as aspects. The resulting models achieve separation of concerns and satisfy the
“Don’t Repeat Yourself” (DRY) guideline. Furthermore, HILA provides means
to detect potential interferences between features and a declarative way to specify
the behavior of such feature combinations.

1 Introduction

The history of Model-Driven Web Engineering (MDWE) is also a history of Separation
of Concerns. Even in the early hours of MDWE, numerous modeling approaches, such
as [3,8,10,18], which considered only the static web sites with primitive GUIs common
at that time, were designed so that the domain model, the navigation model, and the
presentation model, were separated from each other.1 This way, the complexity of the
models could be reduced, the legibility and maintainability improved.

While web applications evolved to modern, ubiquitous, adaptive applications imple-
menting complex business processes presented by elaborate GUIs, new concerns also
emerged and had to be taken into account. Unfortunately, models of these concerns are
often tightly entangled with the rest of the application and therefore hard to separate.
For instance, adapting the behavior of a web application to different navigation patterns
of different users often means introducing changes throughout the model so that the
adaptation mechanism is interwoven with the normal application behavior. This makes
the effect of adaptation difficult to discern in the model and, even more importantly,
makes it difficult to consistently modify the adaptive behavior. Similarly, access con-
trol in the context of web applications often requires checking the current user’s rights
throughout in the navigation structure.

The growing complexity of web applications also poses another challenge for the
separation-of-concerns efforts of the MDWE research: the growing number of concerns

� This work has been partially sponsored by the EU project ASCENS, 257414.
1 There were also approaches that did not care about separation of concerns, though. In these

approaches the model just contained everything, i.e. navigation, presentation, etc. However,
we think a clean separation of concerns is generally beneficial w.r.t. model readability. See
also [11].

A. Harth and N. Koch (Eds.): ICWE 2011 Workshops, LNCS 7059, pp. 211–222, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

212 G. Zhang and M. Hölzl

in web applications increases the chance that some of them are interfering. Modeling
the interaction of concerns, i.e. how concerns are combined with each other, is often
quite unintuitive, changing the interaction logic an error-prone task.

It is therefore desirable to have a language which supports 1) the separate mod-
eling of different concerns of web applications, and 2) a high-level, i.e. declarative
definition of the combination of concerns. In this paper, we present the power of the
language High-Level Aspects (HILA) in Model-Driven Web Engineering. HILA is an
aspect-oriented extension of UML state machines [15] and can be used on top of state-
machine-based MDWE approaches, such as [2,6,14,20]. In HILA, different concerns
of a software system are modeled in aspects, separately from the base functionalities of
the applications and from each other. Therefore, different behavioral concerns of a web
application can be cleanly separated. Moreover, HILA is defined in such a way that
potential interference between aspects can be detected mechanically, and that combina-
tion of aspects can be defined in a simple, declarative way. Hence, HILA can be very
useful in model-driven engineering of modern web applications. HILA is integrated
in the Hugo/RT UML model translator which supports formal software-engineering
aproaches with model checking, theorem proving, and code generation for HILA
models.

The remainder of this paper is organized as follows: in the following Sect. 2 we
briefly overview the techniques of modeling web applications using UML state ma-
chines and point out some modularity problems. After a short introduction of the HILA
language in Sect. 3 it is shown in Sect. 4 how HILA can help mitigate the problems.
Combination of concerns is discussed in Sect. 5. Related work is discussed in Sect. 6
before we finally draw conclusions and sketch some future work in Sect. 7.

2 Modeling Web Applications with UML State Machines

The language of UML state machines is very popular for behavioral modeling. It is
even considered “the most popular modeling language for reactive components” [7].
Therefore, it also provides a natural and widely-used way of modeling web applications,
see e.g. [2,6,13,14,20]. Usually states model navigation nodes, transitions model links
between the navigation nodes, and events model user input or system events.

For example, the state machine in Fig. 1 models a simple online book store. Very
simply spoken, the user of this book store can browse over the books (state Browse),
select a book (event book) and view either its summary (BookSummary) or detail infor-
mation (BookDetail), and, after successfully logging in (Login), buy the book (Buy).

However, modularization in state machine models is generally difficult, see [23].
In particular, even this simple state machine containing only seven states shows some
modularity deficiencies. This is also why Fig. 1 is not very easy to comprehend. In
particular, the following features complicate the state machine and obscure (at least
partially) the behavior of the web application:

1. In this application, the user can go back to the home of the application from every
other site. This is modeled by a transition leaving every other state to Home. This
is a violation of the Don’t Repeat Yourself (DRY) principle.

Aspect-Oriented Modeling of Web Applications with HiLA 213

Login

Buy

Login

BookSummary
book

[d > s]

[d <= s]

[detailOK()]

detail

BrowseHome
browse [user.isLoggedIn]

summary

[ok]

[ok]

buy / d++; [! user.isLoggedIn]

[user.isLoggedIn]

[! user.isLoggedIn]

buy / s++;

BookDetail

[fail]

home

home

[! detailOK()]

[fail]
home

home

homehome

Fig. 1. Example: Modeling a book store with a UML state machine

2. In order for the user to buy a book, he is required to be logged in. Since there
are two ways of entering Buy (from BookDetail and BookSummary), Login is also
modeled twice. Again, the DRY principle is violated.

3. When the user finishes browsing and selects a book (event book), it is difficult to
see which view, BookDetail or BookSummary is shown. In fact, two features are
modeled in a tightly entangled way:
(a) The system checks whether the summary or the detail view is more “com-

mercially successful” and shows the user this view. That is, it stores in the
two variables d and s (updated on the transitions leaving BookDetail and
BookSummary) the frequencies of the user proceeding to buy the book from
these views, and shows him the “right” view when the user has selected a book.

(b) Meanwhile, the systems also checks if it is technically appropriate to show the
detail view. Reasons for this view being inappropriate could be that the client
device, due to factors like processing power, band width, or size of the display,
does not support the display of the detail information. The detail of this check
is modeled in a rather abstract function call detailsOK(). Only then this function
returns true, the detail view is shown, otherwise the summary is shown instead.

4. The relation of the above two features is not easy to comprehend. Only after careful
study of Fig. 1 is it clear that currently an AND relation is implemented, that is, both
of the conditions must be satisfied for the book detail to be shown. Changing to OR
or any other combination (e.g. the detail view should be shown as soon as it is more
successful, no matter if the client is adequate or not) would be an error-prone task.

Such modularity problems of UML state machines can be addressed by HILA. In the
following, we first give a brief overview of HILA and then show how it can be used in
modeling web applications to improve the model modularity.

214 G. Zhang and M. Hölzl

3 HILA in a Nutshell

High-Level Aspects (HILA) [23] is an aspect-oriented extension of UML state ma-
chines. It provides a new language construct to separately model parts of the system
behavior, and thus enhances the modularity of the models.

This construct is called aspect. An aspect is applied to a UML state machine, which
is called the base machine, and defines some additional or alternative behavior of the
base machine at some points of time during the base machine’s execution. The behavior
is defined in the advice of the aspect; the points of time to execute the advice are defined
in the pointcut. The advice also has the form of a state machine, except that the final
states may carry a label, indicating which state should be activated when the advice
is finished and the the execution of the base machine should be resumed. This state is
referred to as the resumption state. The pointcut is a specification of the points of time
when certain states of the base machine are just about to become active or have just
been left, or the time spans during which certain states are active. Actually, the first two
kinds of pointcuts can also be regarded as those points of time when some transition is
fired: a state S is just about to become active whenever any transition leading to S is
fired, and it has just been left whenever a transition leaving it is fired.2

Overall, an aspect is a graphical model element stating that at the points of time
specified by the pointcut the behavior defined by the advice should be executed, and
that thereafter the base machine should resume execution by activating the state given
by the label of the advice’s final state. Intuitively, it can also been understood as a
statement that certain transitions should be “interrupted” (what we call advised) by the
advice.

HILA also allows the definition of history properties. A history property contains
a pattern, and yields the number of matches of this pattern in the execution history of
the base machine. History properties can considerably reduce the complexity of the
modeling of history-based features. Since HILA is an extension of the UML, UML
templates as defined in [15] can be applied to reuse HILA aspects even more frequently.

Some examples of HILA aspects are given in Fig. 2. Aspect B in Fig. 2(a) states that
whenever state S is just about to become active (�before�) (that is, the aspect advises
every transition leading to S), an additional state X should be activated, and then, when
the final state of the advice is activated, the base machine should resume execution at
the source (label goto src) of the advised transition (which means that S will en effet
never be active). Note this aspect is defined as a template. Instantiating S with different
states will specify a multitude of points of time and advise a multitude of transitions.
Aspect A in Fig. 2(b) advises every transition leaving A (�after�), activates state Y, and
then returns to the original target (label goto tgt) of the advised transition. This aspect
therefore defines an additional navigation node Y after the user has left T. Aspect W
shown in Fig. 2(c) states that whenever the state U is active, and the current event is ev,

2 Since UML state machines may actually contain concurrent regions, and there may be multiple
active states at run time, pointcuts and labels actually are defined in terms of sets of states,
see [23]. However, we currently do not have an example in which concurrent constructs of
state machines are necessary for modeling web applications, and consider only the simple
case of single-region state machines in this paper.

Aspect-Oriented Modeling of Web Applications with HiLA 215

S

X

«pointcut»

«advice»

«aspect»
B

«before»

goto src

S: State

(a) �before� aspect

T

Y

«pointcut»

«advice»

«aspect»
A

«after»

goto tgt

(b) �after� aspect

Z

U

«pointcut»

«advice»

«aspect»
W

«whilst»

goto V

{trigger = ev}

(c) �whilst� aspect

Fig. 2. HILA Examples

the state Z should be activated, and, after that, the base machine should go to state V to
resume execution.

The weaving algorithms of HILA are described in [23]. The algorithms are proto-
typically implemented in HILA/Hugo, an extension of the UML model translator and
model checker Hugo/RT [12]. HILA was applied to several case studies, including a
larger-scale crisis management system, see [9].

4 Modeling Web Applications with HILA

HILA helps to achieve a better separation of concerns in modeling web applications
as follows: first the modeler starts with a very simple state machine (which we call
the base machine) to model the basic navigation structure. Typical hard-to-modularize
features of web applications, such as landmarks, access control and adaption, are then
modeled separately in aspects. This way, the basic navigation structure, as well as the
other features, are kept simple and easy to read, hence the model is less error-prone.
Potential interactions between the aspects are then resolved in a simple, declarative
way.

4.1 Basic Navigation Structure

To keep the application model easy to understand and maintain, the base machine
should be as simple as possible. Ideally, all information needed to determine the next
transition to fire should be locally available in the source state, and there should be as
little redundancy of model elements as possible. In the context of web applications this
implies that the base machine should not model features like landmarks, access con-
trol, and adaptation rules. The basic navigation structure of our book store example is
given in Fig. 3. The aforementioned out-sourcing of the more elaborate features makes
it possible to start with a textbook state machine, i.e. one that is simple and intuitive.

4.2 Landmarks

“Landmarks” are navigation nodes that are supposed to be (directly) reachable from
every other node. In order to avoid the violation of the DRY principle, some Web En-
gineering approaches, such as [8,16], define a keyword landmark to model landmarks.

216 G. Zhang and M. Hölzl

detail

Book
Detail

Book
Summary BuyBrowseHome

summary

buy

browse book buy

Fig. 3. Book store: basic navigation structure

S

«pointcut»

«advice»

«aspect»
Home

«whilst»
{trigger = home}

goto Home

S: State

Fig. 4. Book store: aspect template defining a landmark

Unfortunately, this solution is not applicable to state-machine-based approaches, for it
is not clear which event should fire the transition to the landmark. Moreover, this key-
word can only be used to model landmarks that should be directly reachable from every
other state and does not support modeling a navigation link for an arbitrary subset of
the navigation nodes. In plain UML, composite states, which consist of one or more
regions, are used to model common reaction of different states to the same event. Un-
fortunately, in the context of Web Engineering, composite states only provide partial
help, but do not work if there exist landmarks which are supposed to be directly reach-
able from different sets of states upon different events, since a state can belong to only
one region.

Using HILA, we only need a �whilst� aspect to overcome these problems, see Fig. 4:
whenever state S is active (stereotype �whilst�), and the current event is home (tagged
value trigger = home), the advice should be executed. Since the advice does not define
any behavior (the transition leaving the initial vertex leads to the final state directly), but
only tells the base machine to go to state Home (label goto Home), the aspect actually
state that the state machine should go to Home from state S upon event home. This
aspect is defined as a UML template, instantiating the formal parameter S with different
states thus models a direct navigation link from each of the states to Home.

4.3 Access Control

Access control is also hard to modularize in web application since the same logic often
has to be implemented on a multitude of navigation links and this often means violation
of DRY, see also [25].

Aspect-Oriented Modeling of Web Applications with HiLA 217

Login

S

«before»
«pointcut»

«advice»
[user.isLoggedIn]

[ok]

[fail]

goto
tgt

goto
src

«aspect»
AccessControl

Fig. 5. Book store: aspect template for access control

Using HILA, a simple �before� aspect often suffices to efficiently model access
control, see Fig. 5: every time just before (�before�) state S gets active, it is checked
(in the advice) if the user is currently logged in (user.isLoggedIn). If this is the case,
the final state labeled goto tgt is activated, upon which the advice is finished, and the
base machine resumes execution by going to the target of the advised transition. On
the other branch, if the user is not logged in, a login site is shown (Login). Again, the
base machine resumes at the target of the advised transition after a successful log in
(ok), otherwise the user cannot goto the state, and is “pulled” back to the source of the
advised transition (label goto src).

4.4 Adaptation

An adaptive web application is one that changes its behavior automatically to meet
the preferences of the user. Adaptation is a cross-cutting concern that may easily be
intertwining with other concerns of the application [1]. We show how HILA can help
to model adaptation of web applications in a highly modular fashion.

Checking whether showing details is appropriate on the client (rule 3b on page 213)
before actually moving to BookDetail is pretty simple. Again, what we need is no more
than a �before� aspect, see Fig. 6(a): whenever the state BookDetail is about to become
active, function detailOK() is called. We do not specify this function in more detail in
this paper, but simply assume that it returns true iff showing details of the current book
on the client is appropriate w.r.t. the predefined conditions like network bandwidth and
processing power, etc. If the function returns true, the final state labeled goto BookDetail
is activated, and the base machine resumes execution at the state BookDetail, otherwise,
an error message is shown (Error), and the base machine resumes execution at the state
BookSummary (label goto BookSummary).

The other adaptation rule, showing the more successful view (rule 3a on page 213),
defines a system behavior that is dependent on the navigation history of the user. We
thus define two history properties, d and s in (the �history� compartment of) the aspect
SuccessfulView (Fig. 6(b)): the pattern of d contains a transition from BookDetail to
Buy. The value of d is the number of matches of this pattern in the execution history of
the base machine, that is, the number of times of this transition was fired. Therefore, d
is a counter of how often the user proceeded from the detail view (BookDetail) to buying
the book. Similarly, the history property s counts how often the user proceeded from

218 G. Zhang and M. Hölzl

Error
goto

BookSummary

«pointcut»

«advice»

«aspect»
DetailView

«before»
Book
Detail

[detailOK()]

goto
BookDetail[else]

(a) Checking if showing de-
tails is fine with the client

Browse

goto
BookSummary

Buy

BuyBook
Summary

Book
Detaild =

s =

«pointcut»

«advice»

«after»

[d > s]

goto
BookDetail

«history»
SuccessfulView

«aspect»

[else]

(b) Finding the more successful view

Fig. 6. Book store: two aspects for two adaptation rules

the summary view (BookSummary) to buying the book. If d > s, i.e. it is more likely
for the user to buy a book when he is viewing the details of the book, then the better
view is the detail view; otherwise, if it is more likely for the user to buy a book when
he is viewing the summary of the book, then the summary view should be shown after
the user has selected a book from Browse.

5 Feature Combination

Modern web applications usually come with an array of different features. Although it
is desirable to model these features in separation, more often than not they are supposed
to work together, as a whole. For instance, the two adaptation rules in our simple book
store are modeled separately, but since both of them restrict the navigation to the detail
view of the book, their interference has to be carefully designed.

More concretely, each of the two rules defines a constraint that has to be satisfied
for the system to show the detail view of the book, but what is the relation between
these two constraints? Do they both have to be satisfied? Or only one of them? For (the
designer of) a modeling language, the most important question to answer is probably
how easy (or hard) it is to design such a relation or to switch to another.

The UML model Fig. 1 actually implements an AND of the two rules. Only when
both of them are satisfied, the system will show the detail information of the book. Com-
prehension of this logic requires careful study of the guards of a whole array of transi-
tions, switching to another combination requires careful modification of the guards.

In HILA, we therefore provides means both to detect pairs of aspects that can be
interfering, and declarative ways to define their interaction.

5.1 Interference Detection

Checking whether any two aspects are possibly interfering requires checking if the la-
bels of the final states, which finish the execution of the advices, are conflicting. Since
in general an advice may contain more than one final states and not even the determi-
nation of the one that actually finishes the advice is decidable, we restrict ourselves to

Aspect-Oriented Modeling of Web Applications with HiLA 219

a conservative analysis, with the intention of finding all possible pairs of conflicting
aspects, which are then subject to further investigations by more powerful instruments
like model checking, or by human experts.

While the general analysis of HILA aspects is pretty complex (see [23]), in our book-
store application, it suffices to apply a simple analysis rule: if the aspect of an aspect A1
contains a final state labeled goto G1, and another aspect A2 has a pointcut of the form
�before� G1, then A1 and A2 may be interfering. Note that the two adaptation rules
of the book store satisfy this condition: the advice in Fig. 6(b) contains a final state
with the label goto BookDetail, while pointcut of the aspect in Fig. 6(a) has the form of
�before� BookDetail. Therefore, these two aspects may be conflicting. Further inves-
tigations, for example by a human expert, show that the constraints of the conflicting
labels, i.e. detailOK() in Fig. 6(a) and d > s in Fig. 6(b) can actually be simultaneously
satisfied, and therefore the two aspects are actually conflicting.

5.2 Declarative Feature Combination

The definition of feature combination is declarative in HILA. After finding all poten-
tially interfering aspects, we simply define a resumption state for each combination of
the aspects. Despite an exponential complexity in theory, this procedure is often suffi-
ciently practicable, since the sets of interfering aspects are usually small enough.

Table 1. Book store: feature combination

DateilView SuccessfulView Combined

goto BookDetail goto BookDetail goto BookDetail
goto BookDetail goto BookSummary goto BookSummary
goto BookSummary goto BookDetail goto BookSummary
goto BookSummary goto BookSummary goto BookSummary

In our book store, the only interfering aspects are Fig. 6(a) and Fig. 6(b). Two
different labels, hence two different resumption states are defined: BookDetail and
BookSummary. Table 1 shows a possible combination of these two aspects, where the
column Combined contains the value that should actually be used. It is easy to see that
only when both of the aspects set BookDetail to be the resumption state, the detail view
is shown. This is the same logic as the UML solution given in Fig. 1. In contrast to the
UML state machine, switching to another combination is now a simple task.

6 Related Work

Aspect-orientation has been recognized by Web Engineering researchers as helpful for
improving the modularity of software design models. In [1] aspect-oriented language
constructs are defined for separate modeling of adaptation. Compared with this ap-
proach, which contains only four kinds of web-specific aspects, the general-purpose
language of HILA is much more expressive.

220 G. Zhang and M. Hölzl

The approaches [4,17] also propose to use aspect-oriented techniques to model adap-
tation modularly. Compared to HILA, interference detection and declarative definition
of aspect (feature) combination is not supported. In fact, even the more general topic, the
interference between different parts of web design models, is surprisingly little investi-
gated by the MDWE community, the only work that we are aware of being [21], which
is not state-machine-based and not aspect-oriented, and our previous paper [22], which
considered only navigation modeling, whereas the current paper also covers landmark
and access control modeling.

Compared with other approaches of aspect-oriented state machines, the distinguish-
ing feature of HILA is that it is high-level. That is, HILA aspects are defined seman-
tically, based on the dynamic run time information of the base machine, whereas the
other approaches, such as [5,19,26], are defined syntactically, based only on the static
structure of the base machine. Due to this difference, HILA aspects are simpler and
easier to comprehend, and detection of interference is also easier. For a more thorough
discussion, see [23].

In the MDWE context, HILA may be applied on top of state-machine-based
approaches like [2,6,14,20].

7 Conclusions and Future Work

We showed in this paper some modularity problems exhibited by UML state machines
when they are used in the context of MDWE, and we showed how to use HILA to
mitigate them. In particular, using HILA can considerably enhance the modularity and
thus reduce the complexity of state machines when modeling web applications that
involve landmarks, access control, and adaptation. One of the highlights of our approach
is the automated detection of potential interference between the aspects, and the simple,
declarative definition of feature combination.

Future work includes code generation out of HILA aspects, and extending HILA to
model other concerns of web applications. In particular, the aspect-oriented approach
of modeling rich user interface defined in [24] should be integrated in HILA.

References

1. Baumeister, H., Knapp, A., Koch, N., Zhang, G.: Modelling Adaptivity with Aspects. In:
Lowe, D., Gaedke, M. (eds.) ICWE 2005. LNCS, vol. 3579, pp. 406–416. Springer, Heidel-
berg (2005)

2. Busch, M.: Integration of Security Aspects in Web Engineering. Diplomarbeit, Ludwig-
Maximilians-Universität München (2011)

3. Cachero, C., Gómez, J., Pastor, Ó.: Object-Oriented Conceptual Modeling of Web Applica-
tion Interfaces: the OO-H Method Abstract Presentation Model. In: Bauknecht, K., Madria,
S.K., Pernul, G. (eds.) EC-Web 2000. LNCS, vol. 1875, pp. 206–215. Springer, Heidelberg
(2000)

4. Casteleyn, S., Van Woensel, W., van der Sluijs, K., Houben, G.-J.: Aspect-Oriented Adap-
tation Specification in Web Information Systems: A Semantics-Based Approach. The New
Review of Hypermedia and Multimedia (NRHM) 15(1), 39–71 (2009)

Aspect-Oriented Modeling of Web Applications with HiLA 221

5. Clarke, S., Baniassad, E.: Aspect-Oriented Analysis and Design. Addison-Wesley (2005)
6. Dolog, P.: Engineering Adaptive Web Applications. PhD thesis, Universität Hannover (2006)
7. Drusinsky, D.: Modeling and Verification Using UML Statecharts. Elsevier (2006)
8. Hennicker, R., Koch, N.: A UML-Based Methodology for Hypermedia Design. In: Evans,

A., Kent, S., Selic, B. (eds.) UML 2000. LNCS, vol. 1939, pp. 410–424. Springer, Heidelberg
(2000)

9. Hölzl, M., Knapp, A., Zhang, G.: Modeling the Car Crash Crisis Management System with
HiLA. Trans. Aspect-Oriented Software Development (TAOSD) 7, 234–271 (2010)

10. Houben, G.-J., Frasincar, F., Barna, P., Vdovjak, R.: Modeling User Input and Hyperme-
dia Dynamics in Hera. In: Koch, N., Fraternali, P., Wirsing, M. (eds.) ICWE 2004. LNCS,
vol. 3140, pp. 60–73. Springer, Heidelberg (2004)

11. Int. Wsh. Aspect-Oriented Modeling (April 17, 2011),
http://dawis2.icb.uni-due.de/aom/home

12. Knapp, A., Merz, S., Rauh, C.: Model Checking - Timed UML State Machines and Collabo-
rations. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT 2002. LNCS, vol. 2469, pp. 395–414.
Springer, Heidelberg (2002)

13. Knapp, A., Zhang, G.: Model Transformations for Integrating and Validating Web Applica-
tion Models. In: Mayr, H.C., Breu, R. (eds.) Proc. Modellierung (MOD 2006). Lect. Notes
Informatics, vol. P-82, pp. 115–128. Gesellschaft für Informatik (2006)

14. Meliá, S., Gómez, J., Pérez, S., Dı́az, O.: A Model-Driven Development for GWT-Based
Rich Internet Applications with OOH4RIA. In: Schwabe, D., Curbera, F., Dantzig, P. (eds.)
Proc. 8th Int. Conf. Web Engineering (ICWE 2008), pp. 13–23. IEEE (2008)

15. Object Management Group. OMG Unified Modeling Language (OMG UML), Superstruc-
ture, Version 2.4. Specification, OMG (2010),
http://www.omg.org/spec/UML/2.4/Superstructure

16. Rossi, G., Schwabe, D., Lyardet, F.: Web Application Models Are More Than Conceptual
Models. In: Kouloumdjian, J., Roddick, J., Chen, P.P., Embley, D.W., Liddle, S.W. (eds.) ER
Workshops 1999. LNCS, vol. 1727, pp. 239–253. Springer, Heidelberg (1999)

17. Schauerhuber, A.: AspectUWA: Applying Aspect-Orientation to the Model-Driven Develop-
ment of Ubiquitous Web Applications. PhD thesis, Technische Universität Wien (2007)

18. De Troyer, O., Leune, C.J.: WSDM: A User Centered Design Method for Web Sites. Com-
puter Networks 30(1-7), 85–94 (1998)

19. Whittle, J., Moreira, A., Araújo, J., Jayaraman, P. K., Elkhodary, A.M., Rabbi, R.: An Ex-
pressive Aspect Composition Language for UML State Diagrams. In: Engels, G., Opdyke,
B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735, pp. 514–528. Springer,
Heidelberg (2007)

20. Winckler, M., Palanque, P.A.: StateWebCharts: A Formal Description Technique Dedicated
to Navigation Modelling of Web Applications. In: Jorge, J.A., Jardim Nunes, N., Falcão e
Cunha, J. (eds.) DSV-IS 2003. LNCS, vol. 2844, pp. 61–76. Springer, Heidelberg (2003)

21. Wu, H.: A Reference Architecture for Adaptive Hypermedia Applications. PhD thesis, Tech-
nische Universiteit Eindhoven (2002)

22. Zhang, G.: Aspect-Oriented Modeling of Adaptive Web Applications with HiLA. In: Kot-
sis, G., Taniar, D., Pardede, E., Khalil, I. (eds.) Proc. 7th Int. Conf. Advances in Mobile
Computing & Multimedia (MoMM 2009), pp. 331–335. ACM (2009)

23. Zhang, G.: Aspect-Oriented State Machines. PhD thesis, Ludwig-Maximilians-Universität
München (2010)

http://dawis2.icb.uni-due.de/aom/home
http://www.omg.org/spec/UML/2.4/Superstructure

222 G. Zhang and M. Hölzl

24. Zhang, G.: Aspect-Oriented UI Modeling with State Machines. In: Van den Bergh, J., Sauer,
S., Breiner, K., Hußmann, H., Meixner, G., Pleuss, A. (eds.) Proc. 5th Int. Wsh. Model-
Driven Development of Advanced User Interfaces (MDDAUI 2010), pp. 45–48 (2010)

25. Zhang, G., Baumeister, H., Koch, N., Knapp, A.: Aspect-Oriented Modeling of Access Con-
trol in Web Applications. In: 6th Int. Wsh. Aspect Oriented Modeling (AOM 2005), Chicago
(2005)

26. Zhang, J., Cottenier, T., van den Berg, A., Gray, J.: Aspect Composition in the Motorola
Aspect-Oriented Modeling Weaver. Journal of Object Technology 6(7), 89–108 (2007)

A. Harth and N. Koch (Eds.): ICWE 2011 Workshops, LNCS 7059, pp. 223–235, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Model-Driven Web Form Validation
with UML and OCL

Eban Escott1, Paul Strooper1, Paul King2, and Ian J. Hayes1

1 The University of Queensland, School of Information Technology
and Electrical Engineering, Brisbane, QLD, 4072, Australia

2 ASERT, Level 23, 127 Creek St, Brisbane, QLD, 4001, Australia
{eescott,pstroop,ianh}@itee.uq.edu.au,

paulk@asert.com

Abstract. Form validation is an integral part of a web application. Web
developers must ensure that data input by the user is validated for correctness.
Given the importance of form validation it must be considered as part of a
model-driven solution to web development. Existing model-driven approaches
typically have not addressed form validation as part of the model. In this paper,
we present an approach that allows validation constraints to be captured within
a model using UML and OCL. Our approach covers three common types of
validation: single element, multiple element, and entity association. We provide
an example to illustrate an architecture-centric approach.

Keywords: Model-driven, web engineering, web form validation.

1 Introduction

The user experience of any web application is crucial to its success. This experience
is influenced by many factors, including form validation. Users will fill out forms that
are submitted to the server and these forms must be validated to ensure that the data
entered is acceptable. Subsequently, this data could be used for some immediate
operations, such as email or to invoke a web service. It could also be stored in a
database for later use. No matter the intended use of the data, it is imperative that it is
validated for correctness.

Form validation can be achieved on either the client-side or server-side of the
application. Client-side validation offers a richer user experience by using
technologies such as JavaScript and AJAX. Solely relying on client-side validation is
a risk as a user may disable JavaScript via a browser setting. Therefore, server-side
validation is a necessity that should not be avoided. For this reason, and to reduce
scope, we focus only on server-side validation, although our approach could be
applied to client-side validation as well.

Given the importance of form validation it must be considered as part of a model-
driven solution to web development. There are many proposed web-modelling
languages, but most do not address form validation. In this paper, we categorise form

224 E. Escott et al.

validation and propose a model-driven solution that uses UML [1] and OCL [2].
UML is a general purpose modelling language and OCL augments UML to make
more precise models. We analysed four different web application frameworks to
ensure our approach can be used for a number of target platforms and show an
example of generating form validation for one framework.

Section 2 discusses the related work and how other web modelling languages have
included form validation. Section 3 shows how form validation is coded in a web
application framework. This demonstrates the code that we must generate as part of
our solution and in Section 4 we give an example of how to achieve this using UML
and OCL. Section 5 discusses the results of using the approach on the example and
relates the approach to generating form validation code for other web application
frameworks. We conclude in Section 6 and summarise our future work.

2 Related Work

There are many different ways of applying model-driven development and each has
its goals and priorities. We subscribe to Architecture-Centric Model-Driven Software
Development (AC-MDSD) [3] in which the goals are development efficiency,
software quality, and reusability. This is in contrast with other well-known
approaches, such as the Model Driven Architecture (MDA) [4], where the goals are
interoperability and software portability.

Stahl and Völter [3] describe AC-MDSD alongside an iterative two-track
development process in which there is an implementation track, which is the target
application, and a modelling and transformation track1. The implementation track is
responsible for building the reference implementation that is used to derive the
models and transformations. Stahl and Völter recommend that the implementation
track should be one development iteration in front of the modelling and
transformation track. The implementation track emphasises the importance of web
application frameworks, which we discuss in Section 3. It may seem counter-intuitive
to build a reference implementation as this creates an extra cost, but when considering
that the outcome of AC-MDSD is to build many applications of the same software
family, this cost is offset by later gains. This is not too dissimilar to a software
product line where an initial investment must be made [5].

Existing web modelling languages have rarely discussed the issue of form
validation. During our literature review of OOWS [6], OOHDM [7], UWE [8], IDM
[9], WebML [10], Hera [11], and WSDM [12], we did not find references addressing
form validation. Additionally, the code generators UWE4JSF [13] for UWE,
OOHDMDA [14] for OOHDM, and HPG [15] for Hera, do not have form validation
included. WebRatio [16] for WebML includes form validation by adding validation
rules to entry units that are part of its domain-specific language (DSL). The tool

1 Stahl and Völter refer to the two-track development process as having a domain architecture

track and an application track. We refer to these as the implementation track and the models
and transformations track respectively. We believe these terms are more intuitive in the
context of this paper.

 Model-Driven Web Form Validation with UML and OCL 225

generates code for the Struts [17] web application framework but the details are not
published as the tool is proprietary.

The only web modelling language openly addressing form validation is WebDSL
[18]. WebDSL maintains separation of concerns while integrating its sublanguages,
enabling consistency checking and reusing common language concepts. Groenewegen
and Visser [19] have designed a WebDSL sublanguage for form validation and
categorised form validation into value well-formedness, data invariants, input
assertions, and action assertions. Value well-formedness checks that the input
conforms to its expected type, data invariants are constraints in the domain model,
input assertions are for form elements which are not directly connected to the domain
model, and action assertions are validation checks during the execution of actions.

The WebDSL approach contrasts with our work as we apply a reusable UML-
compliant solution, not a textual DSL specific to WebDSL. The WebDSL validation
categories of value well-formedness and action assertions are not considered relevant
in our context. For us, value well-formedness is handled by the web application
framework and action assertions are not applicable to standard web form validation,
which is the scope of our research. WebDSLs input assertions do not warrant a new
category in our research as our UML profile can be applied to multiple models as
discussed in Section 4.4. The last WebDSL category of data invariants is comparable
to our validation categories. We use a finer-grained approach that is suited for specific
web application frameworks.

We believe that the target web application framework is important. WebDSL
attempts to create an implementation-neutral language that can be applied to multiple
code generators. This approach has merit but risks missing opportunities to utilise
features that exist in one web application framework and not in another. This point
relates to the goals and priorities given the model-driven philosophy discussed at the
beginning of this section and elaborated further in Section 5.

3 Web Application Frameworks

In our approach, the target architecture is closely aligned with a chosen web
application framework. We examined four such frameworks and what the generated
code might look like. This is part of an AC-MDSD approach whereby a developer
should start by building the reference implementation first. Subsequently, this is used
to abstract to the models and drive the transformations.

Web application frameworks form the backbone of modern web development. The
features available for each framework vary but they all have some built-in mechanism
to support form validation. For our research, we analysed four frameworks all with
different programming languages. The frameworks are Spring MVC [20], Ruby on
Rails [21], Grails [22], and ASP.NET MVC [23] using programming languages Java,
Ruby, Groovy, and C# respectively. Spring MVC is used for our example in Section 4
based on its popularity in the market place, but we believe any of the four frameworks
could be used as discussed in Section 5.

226 E. Escott et al.

The Spring MVC web framework validation is based on JSR:303 Bean Validation
[24] by the Java Community Process. JSR:303 allows developers to define declarative
validation constraints based on annotations. For example, in the following program
code on lines 6 and 7, a persons age has a minimum of 0 and a maximum of 110.

1 public class PersonForm {
2
3 @NotNull
4 private String name;
5
6 @Min(0)
7 @Max(110)
8 private int age;
9 …
10 }

The annotations are applicable to single HTML elements only. If the developer
needs to validate multiple elements or ensure entity associations are correct then they
must use a custom validator. The following program code is a custom validator for
Spring. The method validate on line 7 is invoked and provides an opportunity for
developers to add in custom validation beyond what is available via JSR:303
annotations, or implement validation without annotations as shown in the following
program code.

1 public class PersonValidator implements Validator {
2
3 public boolean supports(Class clazz) {
4 return Person.class.equals(clazz);
5 }
6
7 public void validate(Object obj, Errors e) {
8 ValidationUtils.rejectIfEmpty(e, “name”, “empty”);
9 Person p = (Person) obj;
10 if(p.getAge() < 0) {
11 e.rejectValue(“age”, “negativevalue”);
12 } else if(p.getAge() > 110) {
13 e.rejectValue(“age”, “too.old”);
14 }
15 }
16 }

All of the four web application frameworks we analysed have some mechanism for
standard validation and custom validation. It is important to recognise the target code
generation as this will become the reference implementation in the iterative two-track
development process described in Section 2. In AC-MDSD, it is the implementation
track that drives the modelling and transformation track.

 Model-Driven Web Form Validation with UML and OCL 227

4 Example

Our example shows how we use UML and OCL for form validation. The example
involves generating a web application and manually testing the form validation. The
generated web application provides create, read, update, and delete (CRUD)
functionality for applicable parts of the domain. Fig. 1 is the domain model for our
example and it is part of a typical e-commerce web application. A product belongs to
a brand, can be categorised, and purchased via a shopping cart.

Fig. 1. Domain Model

In Section 4.1 we discuss the scope of the HTML elements we will consider for
validation. In Section 4.2 we categorise the different types of validation and in
Section 4.3 we describe our model-driven solution. The UML Profile is presented in
the Section 4.4.

4.1 Target Elements

The W3C develops standards to ensure the long-term growth of the Web. At the time
of writing this paper, the current version of HTML is 4.0.12. We will be focusing our
validation on these HTML elements. Section 17 of the HTML 4.01 specification [25]
lists all possible form elements. Fig. 2 shows example HTML with a typical rendering
below. A developer can place an element on a form to allow a user to input some
data.

There are technologies available that allow for more complex elements by
combining these elements together in a meaningful way. For example, a developer
can use JSF [26] to create custom controls, or mixing HTML with JavaScript different
input types are possible. At this stage, we have considered HTML 4.01 elements only
though the approach is extensible and part of our future work.

2 HTML 5.0 is not finalised but our approach could include new elements from the

specification.

228 E. Escott et al.

Fig. 2. HTML 4.01 form elements

4.2 Validation Categories

We conducted an analysis of several web sites to categorise different types of
validation. These categories are used to determine how the validation will be included
in the meta-models and eventually transformed into generated code for the target web
application framework. The three categories we found are: single element, multiple
element, and entity association.

Single element refers to validation that occurs on one HTML element only. For
example, a text field must not be empty, or the integer entered must be less than ten.
Depending on the type of HTML element, different web application frameworks
provide built-in validation. All frameworks allow setting minima and maxima for
numerical types and string lengths. They also all have some way to use regular
expressions for validation; for example, email addresses, credit cards, dates, etc.

Multiple element validation occurs when the value entered by a user on one
element has an effect on what is expected in another element. For example, if a
checkbox is ticked then a text field must not be empty, or a date entered in an element
must be before another date in a different element.

Entity association refers to the class relationships that exist in the domain. The
domain is included in the majority of web modelling languages, e.g. in UWE it is
known as a content model. UML class diagrams and the associations between the
classes have a multiplicity, e.g. a one-to-many relationship. In this case, unlike a zero-
to-many, it may be required that the one multiplicity is required.

All of the three validation categories are included in our example. Fig. 3 is a screen
capture of the validation that occurs when a user attempts to save a new product
without filling in any of the form. The error messages are displayed to the right of the
element. The form has been generated and is part of a web application.

 Model-Driven Web Form Validation with UML and OCL 229

Fig. 3. Example of Product form validation

4.3 Modelling and Transformations

Our model-driven solution to web form validation is part of a solution that generates
web applications using Spring MVC and Hibernate [27]. For the context of this
section we will give a brief summary of our models and transformations. Since the
majority of web application frameworks are based on MVC we create three models,
one model for each of the MVC-triad. We name our models the same: Model, View,
and Controller. These models form the basis of our graphical DSL for web
applications.

We build our target application and then, through a process of abstraction, map the
application to the models. Stahl and Völter [3] describe AC-MDSD alongside a two-
track iterative development process and we have had success in generating web
applications with this approach. A full description of our models and transformations
is beyond the scope of this paper, although recognition of the included models is
needed to understand this section.

Single Element. UML stereotypes are used to model single element validation. By
analysing the target web application framework, in this case Spring using JSR:303,
we identify that the annotations can be generated using UML stereotypes. For
example, as shown in Fig. 4, the Product’s name is stereotyped <<NotEmpty>> and
the price is stereotyped <<Min>>. The <<Min>> stereotype has a property that is used
in the transformation and, in this case, the developer has set the value to zero.

230 E. Escott et al.

Fig. 4. Product with stereotypes

We use the Eclipse Modelling Project [28] and subprojects for our modelling and
transformation track. The models are UML2 [29] with Profiles using JET [30] for the
model-to-code transformations. JET uses templates and we implement a multi-stage
generator that uses intermediate XML beans.

Multiple element. We use OCL constraints (invariants) to represent multiple element
validation, as UML stereotypes do not provide sufficient flexibility. For example, a
Contact must input an email address, a phone number, or both. The OCL invariant is:

email.size() > 0 or phone.size() > 0

We place these invariants on the UML class in the domain model. If an invariant is
found during the transformations, we use the Eclipse subproject OCL [31] to assist
generate the form validation code. OCL has an abstract syntax tree and we have
implemented a visitor (pattern) that produces Java expressions. The following
program code shows how the OCL constraint is created on line 1; and on line 3 the
expression is visited by our OCL to Spring Visitor which outputs the required Java
code.

1 OCLExpression query = helper.createQuery(expression);
2 OCL2SpringVisitor visitor = new OCL2SpringVisitor();
3 String code = query.accept(visitor);

The Java code is stored as a string and further along the transformation process it is
passed to a JET template that is responsible for producing the Spring validator class
shown below. The boolean expression for the if statement on lines 7 and 8 is the code
produced by our visitor. It is the negation of the OCL constraint, which is the
condition that should reject the value.

1 public class ContactValidator implements Validator {
2 public boolean supports(Class clazz) {
3 return ContactForm.class.equals(clazz);
4 }
5 public void validate(Object obj, Errors e) {
6 ContactForm form = (ContactForm) obj;
7 if((form.getEmail().length() <= 0) &&
8 (form.getPhone().length() <= 0)) {
9 e.rejectValue(“contact.multiple”);
10 }
11 }
12 }

 Model-Driven Web Form Validation with UML and OCL 231

The result of an OCL expression is true or false, making it well suited for form
validation. By visiting an OCL expression we are able to create the equivalent Java
expression needed to be placed in the web application custom validator. Eclipse OCL
does model checking prior to our transformations ensuring that the OCL is
syntactically correct and references valid attributes in a UML class diagram.

Entity Association. Enforcing multiplicities on class associations is dependent on the
requirements of the web application. Some projects do not require this to be validated
while others do. For our example, when an entity is either created or updated the
association multiplicities are enforced. This entails checking the associations and if an
association had a value of ‘1’, we then add in validation. In Fig. 3, this can be seen as
a Product has a *..1 association to a Brand. So, the user must select a brand before
saving.

No additional UML stereotypes or OCL needs to be included. The UML class
associations can have multiplicities and during the transformation we check for these.
When one is found we add validation to the appropriate validator as shown in the
following code. Line 7 checks that the user has selected a Brand other than the default
value of ‘0’. Fig. 3 shows the validation working in a browser.

1 public class ProductValidator implements Validator {
2 public boolean supports(Class clazz) {
3 return ProductForm.class.equals(clazz);
4 }
5 public void validate(Object obj, Errors e) {
6 ProductForm form = (ProductForm) obj;
7 if(form.getSelectedBrand()[0].equals(“0”)) {
9 e.rejectValue(“brand.atLeastOne”);
10 }
11 }
12 }

4.4 UML Profile

Fig. 5 shows part of the UML Profile used for single and multiple element validation.
All stereotypes inherit from Bundle, which has two properties: errorMessage and
errorCode. In our generated web application, these are transformed into a resource
bundle that is used by Spring MVC to display error messages to the user.

The Single stereotype is abstract and subclassed for each annotation of JSR:303.
For brevity, Fig. 5 only shows some of the JSR:303 annotations. A Single
stereotype can be applied to a Property, which is called an extension and is depicted
by an arrow with the head filled in [1, p.659]. Similarly, the Multiple stereotype can
be a applied to a Class. The extension restricts the UML elements that the stereotype
can be applied to.

232 E. Escott et al.

Fig. 5. Validation Profile

We have illustrated by example in this section how to apply our UML profile to a
domain model. It is possible to have form elements that are not directly related to an
entity from the domain model. These form elements may need to be validated. In
WebDSL, this category of validation is called input assertions. We do not have a
separate category, as we are able to apply the UML profile to our View model and
reuse all of the same validation. It is beyond the scope of this paper to explain our
View model in depth, but the UML profile enables us to apply validation to other
models than the domain.

5 Discussion

Stahl and Völter [3] recommend that target artefacts are hand-written at least once in
AC-MDSD. So, we build a reference implementation and then infer our model and
transformations. If we wanted to include client-side validation we would start with
making changes to the reference implementation. Once we were satisfied with the
client-side validation we would then update our transformations and include any extra
information necessary in the model. Similarly, for new HTML 5 elements we would
include them following this same process.

So, if we were to follow the process again, but for a different web application
framework, would we be able to reuse this approach with UML and OCL? Each of
the four frameworks we analysed has some standard validators as shown in Table 1.
Additionally, each framework provides custom validation whereby the developer can
validate any of the form input. Therefore, it would be possible to use our approach
again as single element validation can use UML stereotypes with a simple one-to-one
mapping with the standard validators in Table 1. Multiple element validation and
entity association would again need to be implemented via a custom validator.

The AC-MDSD goals of development efficiency, software quality, and reusability
differ from the MDA goals of interoperability and software portability. MDA aims to
achieve these goals via transformations from the platform independent model (PIM)
to the platform specific model (PSM) and subsequently to the code. In our example,
by mapping the web application framework standard validators to UML stereotypes

 Model-Driven Web Form Validation with UML and OCL 233

we are making our models specific to that web application framework, effectively
creating PSMs. If we were interested in creating a PIM we would need a suitable
approach that would cover the standard validators as seen in Table 1. Using OCL for
single element validation could be a viable solution and this is part of our future work.

Table 1. Standard validators for web application frameworks. In addition, each framework has
the ability to provide custom validation.

Framework Validation
Spring AssertFalse, AssertTrue, DecimalMax,

DecimalMin, Digits, Email, Future, Length, Max,
Min, NotNull, NotEmpty, Null, Past, Pattern,
Range, Size, Valid

ASP.NET MVC Range, RegularExpression, Required,
StringLength

Ruby on Rails validates_acceptance_of, validates_associated,
validates_confirmation_of, validates_each,
validates_exclusion_of, validates_format_of,
validates_inclusion_of, validates_length_of,
validates_numericality_of, validates_presense_of,
validates_size_of, validates_uniqueness_of

Grails blank, creditCard, email, inList, matches, max,
maxSize, min, minSize, notEqual, nullable, range,
scale, size, unique, url

6 Conclusion

Form validation is an important part of a web application and must be considered in
model-driven web development. In this paper, we present an example of applying
AC-MDSD using a two-track development methodology. Our models are UML and
OCL compliant and the scope of our example is HTML 4.01 form elements with
server-side validation. Client-side validation and complex form elements are future
work.

We categorised validation into single element, multiple element, and entity
association. We used UML stereotypes for single element and OCL for multiple
element validation. Entity association is expressed as part of the domain model, which
is a UML class diagram. In our transformations we checked the multiplicity of the
associations and applied validation accordingly. We were able to successfully
generate a Spring web application from our models and display them in a browser for
manual testing.

Our analysis of web application frameworks included four frameworks with
different programming languages. We observed some similarities between the
different frameworks and this could be exploited to create a validation meta-model to
be applied to more than one implementation. This approach does have an inherent risk
that attempting to apply a general model for all implementations may miss some
features of a framework. This issue will be addressed as part of our future work.

234 E. Escott et al.

Acknowledgements. We would like to thank the Australian Postgraduate Award, The
University of Queensland.

References

1. Unified Modeling Language (April 10, 2011),
http://www.omg.org/spec/UML/2.2

2. Object Constraint Language (April 10, 2011),
http://www.omg.org/spec/OCL/2.2

3. Stahl, T., Völter, M.: Model-Driven Software Development: Technology, Engineering,
Management. John Wiley, Chichester (2006)

4. Model Driven Architecture, http://www.omg.org/mda
5. Bockle, G., Clements, P., McGregor, J.D., Muthig, D., Schmid, K.: Calculating ROI for

Software Product Lines. IEEE Software 21(3), 23–31 (2004)
6. Valderas, P., Fons, J., Pelechano, V.: Transforming Web Requirements into Navigational

Models: AN MDA Based Approach. In: Delcambre, L., Kop, C., Mayr, H.C., Mylopoulos,
J., Pastor, Ó. (eds.) ER 2005. LNCS, vol. 3716, pp. 320–336. Springer, Heidelberg (2005)

7. Rossi, G., Schwabe, D.: Modeling and Implementing Web Application with OOHDM. In:
Rossi, G., Pastor, O., Schwabe, D., Olsina, L. (eds.) Web Engineering: Modelling and
Implementing Web Applications, pp. 109–155. Springer, Heidelberg (2008)

8. Hennicker, R., Koch, N.: A UML-Based Methodology for Hypermedia Design. In: Evans,
A., Kent, S., Selic, B. (eds.) UML 2000. LNCS, vol. 1939, pp. 410–424. Springer,
Heidelberg (2000)

9. Bolchini, D., Garzotto, F.: Designing Multichannel Web Applications as “Dialogue
Systems”: the IDM Model. In: Rossi, G., Pastor, O., Schwabe, D., Olsina, L. (eds.) Web
Engineering: Modelling and Implementing Web Applications, pp. 193–219. Springer,
Heidelberg (2008)

10. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): a modeling
language for designing Web sites. Computer Networks 33(1-6), 137–157 (2000)

11. Houben, G.J., Sluijs, K., Barna, P., Broekstra, J., Casteleyn, S., Fiala, Z., Frasincar, F.:
HERA. In: Rossi, G., Pastor, O., Schwabe, D., Olsina, L. (eds.) Web Engineering:
Modelling and Implementing Web Applications, pp. 263–301. Springer, Heidelberg
(2008)

12. Troyer, O.D., Casteleyn, S., Plessers, P.: WSDM: Web Semantics Design Method. In:
Rossi, G., Pastor, O., Schwabe, D., Olsina, L. (eds.) Web Engineering: Modelling and
Implementing Web Applications, pp. 303–351. Springer, Heidelberg (2008)

13. Kroiss, C., Koch, N., Knapp, A.: UWE4JSF: A Model-Driven Generation Approach for
Web Applications. In: Gaedke, M., Grossniklaus, M., Díaz, O. (eds.) ICWE 2009. LNCS,
vol. 5648, pp. 493–496. Springer, Heidelberg (2009)

14. Schmid, H., Donnerhak, O.: OOHDMDA – An MDA Approach for OOHDM. In: Lowe,
D., Gaedke, M. (eds.) ICWE 2005. LNCS, vol. 3579, pp. 569–574. Springer, Heidelberg
(2005)

15. Rutten, B., Barna, P., Frasincar, F., Houben, G.J., Vdovjak, R.: HPG: a tool for
presentation generation in WIS. In: Proceedings of the 13th International World Wide
Web Conference on Alternate Track Papers & Posters, pp. 242–243. ACM (2004)

16. Acerbis, R., Bongio, A., Brambilla, M., Butti, S.: WebRatio 5: An Eclipse-Based CASE
Tool for Engineering Web Applications. In: Baresi, L., Fraternali, P., Houben, G.-J. (eds.)
ICWE 2007. LNCS, vol. 4607, pp. 501–505. Springer, Heidelberg (2007)

 Model-Driven Web Form Validation with UML and OCL 235

17. Apache Struts, http://www.struts.apache.org
18. Visser, E.: WebDSL: A Case Study in Domain-Specific Language Engineering. In:

Lämmel, R., Visser, J., Saraiva, J. (eds.) Generative and Transformational Techniques in
Software Engineering II. LNCS, vol. 5235, pp. 291–373. Springer, Heidelberg (2008)

19. Groenewegen, D.M., Visser, E.: Integration of Data Validation and User Interface
Concerns in a DSL for Web Applications. In: van den Brand, M., Gašević, D., Gray, J.
(eds.) SLE 2009. LNCS, vol. 5969, pp. 164–173. Springer, Heidelberg (2010)

20. Spring Framework (March 1, 2011), http://www.springsource.org
21. Ruby on Rails (March 1, 2011), http://www.rubyonrails.org
22. Grails (March 1, 2011), http://www.grails.org
23. ASP.NET MVC (March 1, 2011), http://www.asp.net.mvc
24. JSR: 303 (March 1, 2011), http://jcp.org/en/jsr/detail?id=303
25. HTML 4.0.1 Specification, http://www.w3.org/TR/html401/
26. Java Server Faces (March 1, 2011),

http://java.sun.com/javaee/javaserverfaces/
27. Hibernate (March 1, 2011), http://www.hibernate.org
28. Eclipse Modeling Project (March 15, 2011),

http://www.eclipse.org/modeling/
29. UML2 (March 15, 2011),

http://www.eclipse.org/modeling/mdt/?project=uml2
30. JET (March 15, 2011),

http://www.eclipse.org/modeling/mdt/?project=jet
31. OCL (March 15, 2011),

http://www.eclipse.org/modeling/mdt/?project=ocl

Modernization of Legacy Web Applications into

Rich Internet Applications�

Roberto Rodŕıguez-Echeverŕıa, José Maŕıa Conejero, Pedro J. Clemente,
Juan C. Preciado, and Fernando Sánchez-Figueroa

University of Extremadura Spain,
Quercus Software Engineering Group

{rre,chemacm,pjclemente,jcpreciado,fernando}@unex.es
http://quercusseg.unex.es

Abstract. In the last years one of the main concerns of the software
industry has been to reengineer their legacy Web Applications (WAs) to
take advantage of the benefits introduced by Rich Internet Applications
(RIAs), such as enhanced user interaction and network bandwith opti-
mization. However, those reengineering processes have been traditionally
performed in an ad-hoc manner, resulting in very expensive and error-
prone projects. This situation is partly motivated by the fact that most
of the legacy WAs were developed before Model-Driven Development
(MDD) approaches became mainstream. Then maintenance activities of
those legacy WAs have not been yet incorporated to a MDA development
lifecycle. OMG Architecture Driven Modernization (ADM) advocates for
applying MDD principles to formalize and standardize those reengineer-
ing processes with modernization purposes. In this paper we outline an
ADM-based WA-to-RIA modernization process, highlighting the special
characteristics of this modernization scenario.

Keywords: Web Models Transformations, Software Modernization,
Software Reengineering, Rich Internet Applications.

1 Introduction

Rich Internet Applications (RIAs) have emerged as the most promising platform
for Web 2.0 development by the combination of the lightweight distribution ar-
chitecture of the Web with the interface interactivity and computation power
of desktop applications, with benefits on all the elements of a WA (data, busi-
ness logic, communication, and presentation). Among others, RIAs offer online
and offline capabilities, sophisticated user interfaces, the possibility to store and
process data directly on the client side; they offer high levels of user interac-
tion, usability and personalization. RIAs also minimize bandwidth usage, and
separate presentation and content at the client side [16].

� This work has been supported by MEC (TIN2008-02985), FEDER and Junta
Extremadura.

A. Harth and N. Koch (Eds.): ICWE 2011 Workshops, LNCS 7059, pp. 236–250, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://quercusseg.unex.es

Modernization of Legacy Web Applications into Rich Internet Applications 237

To take advantage of these new capabilities, the industry is performing a
reengineering of their legacy WAs to produce RIA clients. Unfortunately, a
huge number of those legacy WAs were developed before most promising Model-
Driven Web Engineering (MDWE) [18] methodologies were mature enough for
mainstream. Then the industry posses a wide catalogue of complex WAs that
were developed without following any MDD principle or technique. And the
maintenance activities of those legacy WAs cannot be incorporated to the MDA
development lifecycle of a company. Among other negative consequences, a lot of
those legacy applications may lack a comprehensive up-to-date documentation
and they may have been poorly maintained integrating new technologies without
a defined strategy. In this complex scenario, the industry demands formalization
and standardization of reengineering processes to reduce the expensive costs
and high risks introduced by ad-hoc reengineering processes. In this setting,
OMG Architecture-Driven Modernization (ADM) advocates for the application
of Model-Driven Development (MDD) techniques and tools to formalize and
standardize software reengineering processes.

Precisely, the major objective of the work presented in this paper is to de-
fine a flexible framework for the systematic and semi-automatic modernization
of legacy non-model-based data-driven WAs into RIAs following OMG ADM
principles. This paper shows then part of our work performed inside a com-
plete modernization project we are currently developing in partnership with a
national software company. In concrete, in this paper we only present a brief
outline of our process, focusing specially on the RIA pattern identification ac-
tivity. We conceived WA-to-RIA modernization as the process of building a RIA
client from the legacy WA presentation and navigation layers and the required
service-oriented connection layer with the underlying business logic at server
side. Besides, we consider a RIA client is characterized for satisfying a set (or
subset) of RIA features (presented in Section 2).

According to the OMG Architecture-Driven Modernization (ADM), the main
objectives of our work may be summarized as follows:

– Legacy WA knowledge discovery. Our framework tries to define which infor-
mation from the legacy system should be of interest for the modernization.
And it tries to refine the knowledge extracted to alleviate the modernization
costs. The acquired knowledge could be very heterogeneous covering aspects
from technical (e.g. components, flow controls, etc.) to business domains (e.g.
tasks, business rules, etc.).

– Target architecture definition. Recently, many approaches have appeared
[6][14][22] in the Web Engineering community for the definition of RIA ar-
chitectures. We try to apply the results of those proposals in our intent to
derive a conceptual description of RIAs, which was independent of any par-
ticular technological platform and was useful on modernization processes.

– Transformation steps from the original system to the target one. Our frame-
work tries to define the necessary sequence of steps to transform a legacy
WA into a RIA, keeping the required flexibility to cope with different mod-
ernization scenarios.

238 R. Rodŕıguez-Echeverŕıa et al.

The rest of the paper is structured as follows. Section 2 presents the collection
of RIA features we consider to define the RIA client concept. Section 3 defines
the system we use to illustrate our approach. Section 4 introduces our approach.
The related work is commented in Section 5. Finally, main conclusions and future
work are presented in Section 6.

2 Main Features of RIAs

In order to give a definition to the RIA client concept and to identify the rel-
evant information to extract from the legacy WA for modernization, we have
performed a deep analysis of the RIA-extended MDWE approaches and col-
lected all the RIA features covered by them from a conceptual point of view.
We have performed the collection and annotation of RIA features in a high level
of abstraction, trying to avoid low level or technological concerns, and trying to
provide a unified vision of them.

We consider the work in [16] as the starting point in the evolution and ex-
tension of a set of MDWE approaches in order to fulfill the new expressivity
requirements introduced by the RIA development. According to that decision,
we have only considered works published since 2005. Among the different pro-
posals available in literature, we have studied both the most mature ones and
also the recent proposals under development that may have some impact in the
next future: WebML4RIA [6], OOHDM-RIA [19], OOH4RIA [11], UWE for RIA
[7], RUX-Method [9], UWE-R [10], OOWS 2.0 [22], ADRIA [5] and IAML [24].

Following we present the collecion of RIA features we have:

– RF01. Data storage on client side. This feature refers to the capability of
the client side to store data in a volatile or persistent way. The persistent
data storage on client side is becoming a clear trend for current RIAs (key
feature of HTML 5 standard).

– RF02. Multiple data sources or types. Actual RIAs can connect to different
data providers (databases, Web services, Web APIs, etc.) and use different
data formats (raw datasets, XML, JSON, etc.).

– RF03. Multimedia and Animation Support. Temporal Behavior. This feature
refers to the capability of the client side to manage complex animations and
multimedia content properly in order to enhance the user interaction.

– RF04. Logic execution on client side. It refers to the capability of the client
side to execute part of the business logic inside its own runtime. Together
with RF01 may reduce considerably server roundtrips and enhance user ex-
perience and productivity.

– RF05. Multithreading or concurrency. This feature refers to the capability
of the client side to launch simultaneously different functionality threads. Its
most widespread use is the ability of the client side of keeping a responsive
interface while requesting data from the server side.

– RF06. Multidevice User Interface. This feature refers to the capability of
a RIA to be accessed from a wide range of heterogeneous client terminals
(user agents or devices). In the last years, RIAs have spreaded to the mobile

Modernization of Legacy Web Applications into Rich Internet Applications 239

market and they have become one of the most preferred approaches to deploy
applications because of their independence of technology.

– RF07. Single-Page Paradigm or Partial Page Refresh. This feature refers to
the capability of a RIA client to present a desktop-like user interface avoiding
the Click-Wait-and-Refresh-Cycle, characteristic of Web clients. This feature
could be seen as a consequence of RF04 and RF12, at least.

– RF08. Rich UI Components (widgets). This feature refers to the capability of
a RIA client to use a whole constellation of interactive and complex controls
and components for UI composition. It supposes logic execution on client
side.

– RF09. Rich User Interaction. This feature refers to the capability of a RIA
client to define enhanced interactions and complex UI behaviours by explic-
iting orchestrations among widgets and server-side logic.

– RF10. Client runtime control. This feature refers to the capability of a RIA
client to use and control partially the functionality of its runtime and to
change its default behaviour, e.g. the back button of a Web browser.

– RF11. Communication started on server side (push model). This feature
refers to the capability of a RIA to overcome the request-response commu-
nication model of Web applications. In a RIA both tiers (client and server)
can innitiate a communication process with the other one.

– RF12. Asynchronous communication. This feature refers to the capability
of a RIA client to send a request to the server without blocking until a
response is sent back. A RIA can keep working normally and handle the
response when necessary.

– RF13. Bulk data client-to-server transfers. It refers to the capability of a
RIA client to send a collection of data to the server at once to reduce the
server roundtrips. A RIA client stores collections of related data produced
by the normal execution process and, at a given time, it sends the whole set
of data to the server at once.

– RF14. Synchronization between client and server tiers. This feature refers to
the capability of a RIA to keep data consistency among the different tiers of
the application. This is a high level feature and then it can be decomposed
in communication sequences between tiers. This feature could be seen as a
combination of RF01, RF04, RF13, and a concrete synchronization policy.

– RF15. Offline mode. This feature refers to the capability of a RIA client
to change seamlessly its operation mode between standalone, without live
connection to the server, and online modes, with connection to the server.
This is also a high level feature (referred as an architectural feature in some
works) and then it can be seen as a consequence of the application of RF01,
RF04, RF07 and RF14, at least.

240 R. Rodŕıguez-Echeverŕıa et al.

3 Illustrative Example

In order to illustrate the main steps of our approach, let us consider JAVA Pet
Store1 Demo (Petstore) as our legacy WA. Petstore 1.3.2 was built on 2003 by
JAVA BluePrints team to exemplify the development of a WA by means of the
J2EE SDK technologies. Following we present the main reasons to select this
sample legacy WA.

– The source code is publicly available. And it is a medium-size system.
– There exists a comprehensive documentation because it is conceived as a

training project.
– It could be considered a well-known sample application and the baseline code

of many WAs developed during those years.
– Its development is based on the BluePrints Web Application Framework

(WAF), which inspired next JAVAWeb application frameworks. So it presents
the main elements of current MVC-based Web Application Frameworks.

– We think it is representative enough to illustrate the main points of the
proposed approach.

– Additionally, Petstore has been evolving along with the JEE SDK to illus-
trate the features of the new versions. So, with the release of JEE 5 SDK,
Petstore was reengineered to illustrate how the Java EE 5 platform can be
used to develop an AJAX-enabled Web 2.0 application.

In this setting, Petstore WA is perfectly suitable to be used as our case study
since the original application is used as the input for our approach whilst the
new Petstore 2.0 WA represents the desired output of the approach.

Basically, Petstore WA provides customers with online shopping. Through a
Web browser, a customer can browse the catalog, place items to purchase into
a virtual shopping cart, create and sign in to a user account, and purchase the
shopping cart contents by placing an order with a credit card.

As one of our main goals consists on modernizing the presentation tier, we have
focused on the catalog functionality of the Storefront component. In concrete, we
are interested in product and item page shown in figure 1. These two web pages
are dinamycally generated from application data. The former displays a product
listing (all items of Chihuahua product in figure). The latter shows the details
of a concrete item (Adult Male Chihuahua in figure). Every product item of the
product page links with its corresponding item page. Clearly a Master/Detail
relationship is set between the main data displayed by both pages.

From a RIA viewpoint, contrary to the multipage solution presented by Pet-
store 1.3.2, this scenario of data relationship is realized in a single page by
applying the Master/Detail screen pattern [20]. This is an ideal pattern for cre-
ating an efficient user experience by allowing the user to stay in the same screen
while navigating between items. Moreover, as figure 2 illustrates, Master/Detail
screen pattern is the solution adopted by the Petstore 2.02 implementation for

1 Version 1.3.2: [Aug 04, 2003]
http://java.sun.com/blueprints/code/jps132/docs/index.html

2 http://java.sun.com/developer/technicalArticles/J2EE/petstore/

Modernization of Legacy Web Applications into Rich Internet Applications 241

Fig. 1. Master/Detail relationship between product and item pages

Fig. 2. Master/Detail Screen pattern merging legacy product and item pages

the scenario depicted above. This modernization scenario is precisely the case
study we have selected to illustrate our approach.

4 The Approach

As aforementioned, the approach presented in this work briefly introduces and
outlines our modernization process of a legacy WA. As figure 3 shows, the main
objective of our process is to generate a RIA client of the legacy WA and the
necessary service-oriented connection layer with the underlying business logic.
The RIA client could be composed of a rich UI (highly interactive), the data
stored at client side, the logic processed at client side, and the infrastructure
logic for server communication and synchronization. Most of the server-side code
would remain unmodified so the system could keep working as a WA. With that
purpose, a connection layer would be built between the new RIA client and the
original business logic. This layer aims to cope with the derived data and logic
distribution concerns and seamlessly integrate an asynchronous communication
model between client and server.

As depicted in figure 4, our modernization process consists on 5 main phases:
(1) static and dynamic information extraction from the source (data, logic and
presentation) and the configuration files of the original WA; (2) knowledge repre-
sentation and refinement on a technology independent language (we use KDM),

242 R. Rodŕıguez-Echeverŕıa et al.

Fig. 3. Target system architecture

the extracted information is incorporated in a model with a higher level of ab-
straction; (3) optional projection of the conceptual system to a specific RIA-
extended MDWE approach; (4) optional Web models refinement by applying
RIA patterns at more concrete level; and (5) final code generation.

According the ADM horseshoe model proposed by OMG [21], which defines 3
modernization domain levels (technology, application & data, and business), we
argue our approach would be located at the second domain level (application and
data architecture) because we think it involves major changes (beyond technical
domain) that clearly affect the application architecture. Fundamentally, these
changes are related to:

– The UI structure and organization (RF06-RF08). The multipage structure of
the legacy WA presentation layer should be frequently modified according to
the single-page paradigm (RF07) characteristic of RIA clients. A componen-
tization process should be performed to map plain HTML display elements
and controls into RIA widgets. And all the main elements of the legacy UI
layout should be rearranged according to the new paradigm.

– The UI control flow (RF05, RF09-RF10). The hyperlink-based interaction
model should be transformed to an event-based interaction model. In a RIA
client navigation is not conceived as a sequence of hyperlinked page. Nav-
igation is realized as a sequence of UI state transitions driven by events.
Some of those transitions could not imply a request to the server. An UI
state transition could be basically defined as an update (screen update) of
the current UI components or as a new components load (new screen load).

– The client to server communication (RF11-RF14). RIA clients frequently
interact with server logic following a service-oriented model, which may im-
ply major changes on server side logic interface. Additionally, single-page
RIA clients require an asynchronous communication model to maintain a
responsive UI.

Modernization of Legacy Web Applications into Rich Internet Applications 243

Fig. 4. Modernization process overview

– The offline work mode (RF15). Many RIA clients provide their users with
the capability of switching between online and offline modes. Obviously, this
is a highly device-dependant feature, because at client side: data should be
stored (RF01); and business logic should be executed (RF04).

Following, we try to provide a more detailed vision of the main stages of our
modernization process, using the Petstore sample WA to illustrate them. We
will take special attention to the RIA pattern recognition step in phase 2.

4.1 Information Extraction and Representation

As shown in figure 4, the first phase of our process tries to reduce the com-
plexity of the modernization process by switching from the heterogeneous world
of implementation technologies to the homogeneous world of models. For this
purpose, following ADM recommendations, we have used available solutions for
code to model transformation (static analysis), such as MoDisCo discoverers and
metamodels for Java, JSP and XML (Specific Abstract Syntax Tree Metamod-
els, SASTM3). Language-dependent models representing the whole legacy WA
are then obtained as final products of this phase. Then, the process provides us,
thus, with the ability of working directly with models since this moment. Fur-
ther we have considered the convenience of specifying additional metamodels to

3 http://www.omg.org/spec/ASTM/

244 R. Rodŕıguez-Echeverŕıa et al.

capture supplemental information from the legacy WA, e.g. WAF information.
But we decided to postpone that goal to the next iteration of our approach.

According to our goal of generating a RIA client, the most relevant informa-
tion to extract accurately is the one involved in the following concerns:

– UI Layout. Commonly, legacy WAs have been built to keep a uniform UI
structure and organization to increase usability and to present a recognizable
look&feel. To capture that UI Layout is then a preponderant requirement of
our modernization process. So the legacy WA look&feel could be regenerated
in the RIA client. That is a difficult task. Our approach consists on extract-
ing that kind of information from the template system used by the Web
application framework. In the concrete case of our example, we get some ba-
sic UI Layout information from the configuration file of the template system.
Figure 5 (left side) shows the UI Layout of the item page.

– Web page and data relationships. Dynamic Web pages are generated on the
fly to display different values of the application data. So every dynamic Web
page defines a concrete view of application data. The correct specification of
those views and the related data entities are key to infer the proper compo-
nentization of the legacy WA UI. Figure 5 (right side) shows the JSP code
excerpt that relates the item page to the item data.

– Navigational map. In order to generate a RIA client according to the single
page paradigm (RF07) is necessary to extract and process the whole navi-
gational map of the legacy WA. So grouping and clustering activities could
be performed to assist on the componentization process. In our example, the
navigation information could be extracted from different sources: JSP pages,
template system configuration file, request mapping file (concrete responses
to client request may be specified) and Java code, indeed. For this work, we
are only considering the navigational map extracted from the JSP pages.

– Operational map. This map is a subset of the navigational map concerning
only the requests dispatched by the controller component of the legacyWA as
action calls to the business layer. The operational map is useful to discover
the request flows between client and server tiers (communication model)
and to identify the operations performed over the data. In our example, the
operational map could be extracted from JSP pages and the request mapping
file.

Fig. 5. Legacy code

Modernization of Legacy Web Applications into Rich Internet Applications 245

Finally, we introduce an activity to analyze dynamically the legacy WA. We
argue that the analysis of the runtime traces could provide us with valuable
information about user interaction. That interactivity information could drive
modernization decisions to take in following phases of the process.

4.2 Knowledge Inference and Representation

This is the main phase of the modernization process. The goal of this phase
would be to derive an enriched conceptual specification of the legacy system in a
technology-independent model (knowledge model) from the information stored
inside the static and dynamic models generated on the previous phase. Moreover,
the knowledge model will be continuously refined according to the modernization
goals. From an overall viewpoint, this phase is composed of three fundamental
steps:

1. Transformation of the intermediate static models (SASTM) onto the
technology-independent knowledge model (KDM4), integrating all the ex-
tracted information. ADM suggests to use a M2M transformation to perform
this step, as [15][4][3] exemplified.

2. Enrichment of the KDM models from the dynamic information obtained.

3. Intermediate model refinement by finding expressions of characteristic RIA
patterns.

On one hand, figure 6 shows an excerpt of the KDM representation (simplified)
of the Petstore sample WA, as an example of the output of the first step of this
phase. As shown, we are only considering UI and Code KDM Packages. In the UI
Packages JSP pages are modeled as instances of the Screen metaclass, product
and item Screen instances in the figure. Both Screen instances are related by
a UIFlow instance that represents a navigation flow from the product Screen
instance to the item Screen instance. We are considering only the main area of
the JSP pages. So both Screen instances are only composed of UIField instances
representing the data to be displayed. Every UIField is related with a Member
Unit instance by a Display relationship. In this case, the Member Unit instances
represent members of the item instance of Class Unit. That way both screens
specify a different view of the item Class Unit. Additionally (not shown in the
figure), the product Screen instance actually displays a collection of instances of
item Class Unit.

On the other hand, the model refinement step is performed in two sequential
activities: (1) identification of pattern expressions in the knowledge model; and
(2) restructuring of the knowledge model according to the patterns identified.

First of all, we try to refine the model by locating automatically RIA pattern
expressions in the knowledge model. This activity is performed by a pattern
matching process. Selected RIA patterns stored in the repository are processed
sequentially. Marks are introduced in the model knowledge to signal pattern

4 http://www.omg.org/spec/KDM/1.1/

246 R. Rodŕıguez-Echeverŕıa et al.

Fig. 6. Mater/Detail Screen Pattern in KDM (simplification)

identifications. As mentioned in section 3, the illustrative scenario we are con-
sidering is the detection of the Master/Detail screen pattern. In this case, ba-
sically, we try to locate two instances of the kdm::ui::Screen metaclass related
in a sequential flow and displaying the same data entity but at different level of
detail. In concrete, the master page will display less data than the detail page.
This scenario is precisely the situation depicted in figure 6. To automatize this
activity we are trying to use the QVT5 language. Current results are promising,
but the precision of the pattern matching process is still low. One reason of this
low precision could be related with the high level of abstraction of the KDM
UI Package which may lack necessary elements to represent Web user interfaces
as [2] suggests. Probably we should also review the way we are using KDM.
Another reason could be the lack of contextual information that could lead to
detect false positives. To alleviate that situation we think it would be necessary
to get additional information to semantically define both Web pages (and the
data displayed) and their relationship within the whole system.

After pattern recognition and signalling, the knowledge model is ready to be
restructured according to the patterns identified. We considered this activity
requires human intervention. The modernization engineer should review all the
marks introduced in the knowledge model and select one of the available restruc-
turings for each one, keeping a valid model. Returning to our example, the engi-
neer could select between 2 restructuring choices: (1) applying the Master/Detail
Screen pattern as mentioned in section 3; or (2) applying the Quicklook pattern

5 http://www.omg.org/spec/QVT/

Modernization of Legacy Web Applications into Rich Internet Applications 247

Fig. 7. Quicklook pattern in the search results page

(hover text) as the search page of Petstore 2.0 does to present details of the
search results (figure 7).

4.3 Platform Projection

We have decided to introduce an optional step previous to the generation of
the final code of the RIA client. This step consists on projecting the refined
knowledge models of the legacy WA into RIA-extended MDWE models. Current
techniques and tools of M2M transformation could assist on this projection.
We consider this optional step could provide the engineer with the following
advantages:

– The target system would be specified in a language nearer to Web and RIA
domains. So it could be processed at a fine-grained level.

– Some tool or tool chain to support the development of the system, e.g. We-
bRatio for WebML [1], would assist the engineer in the modernization process
or future maintenance activities.

– A repository of patterns could be used to leverage the stored know-how on
system refinement [17], and to detect potential problems generated during
the modernization process.

– A code generation engine that appears as a fundamental requirement for the
forward engineering stage of the modernization process.

4.4 Code Generation

Following our idea of reusing MDD techniques and tools, final code generation
could be performed by means of available code generation engines. On one hand,
for instance, to generate the client side we could use the generation engines of the
toolkits of main MDWE-RIA approaches, such as WebRatio and RUX-Tool [8].
On another hand, for server side connection layer generation we should evaluate
the application of different model to code transformation tools, such as OMG
MOF Model to Text, JET, Xpand, etc.

248 R. Rodŕıguez-Echeverŕıa et al.

5 Related Work

Due to the wide scope and complexity of the process presented here, there is
a high number of related approaches and they are really heterogeneous. This
section points out some of these works as example of this heterogeneity.

During the last decade, as stated in [13], important works in the reverse engi-
neering domain have been developed. VAQUISTA [23] proposes the utilization
of different reverse engineering techniques to make the migration of the user
interface of a WA to different platforms easer. Similarly, the work in [12] applies
reverse engineering techniques to migrate a multipage interface of a WA to a
single page interface (Web 2.0). All these approaches are closely related to the
reverse engineering phase of the modernization process presented here.

[19]and [17] propose approaches to systematically incorporate RIA features
into legacy WAs. However, contrary to the work presented here, these approaches
are applied to legacy WAs that were developed by using MDD techniques and
methodologies.

On the other hand, in the last years there have appeared some approaches to
the application of MDD principles and techniques for the maintainability of soft-
ware systems, e.g. in activities of software migration or modernization. In that
sense, MoDisco [3] is a generic, extensible and open source approach for software
modernization that makes an intensive use of MDD principles and techniques.
Our work presents a specialization of the framework defined by MoDisco to be
applied in concrete modernization scenarios from legacy WAs into RIAs.

6 Conclusions and Future Work

This work present an outline of our approach for the definition of a systematic
process for WA-to-RIA modernization, by applying MDE principles, techniques
and tools. One main requirement of this process is to make an extensive use
of ADM related specifications. In concrete, the main goal of the moderniza-
tion process presented consists on generating a RIA client from the legacy WA
presentation and navigation layers and its corresponding service-oriented con-
nection layer with the underlying business logic at server side. We have specially
focused on the RIA pattern identification activity. Master/Detail Screen pattern
and Quicklook pattern has been proposed as possible solutions for multipage
master/detail relationships on the legacy WA.

Moreover, this work also depicts a collection of essential RIA features we have
collected to understand the concept of RIA client. On one hand, these features
provided us with the necessary information to define a conceptual modernization
architecture in KDM. On another hand, they helped us on the specification of
the kind of information we should extract from the legay WA in order to perform
its RIA modernization.

Regarding the tool support, we are currently involved in the definition of our
tool chain to systematize the modernization process by assisting the engineer
team in the many and complex tasks to accomplish. For the reverse engineering

Modernization of Legacy Web Applications into Rich Internet Applications 249

phase, we are evaluating the possibility of adopting MoDisco as tool framework.
Meanwhile, for the forward engineering phase, we may use mainstream MDWE
methods and tools, e.g. WebRatio and RUX-Tool.

Given the extension and complexity of every modernization process and the
initial stage of our approach, we have a great amount of related researching lines
to follow. Among them, we are principally interested in 3: (1) extracting more
accurate dynamic information (interaction models) from the legacy WA in or-
der to infere the necessary knowledge to drive the data and logic distribution
between client and server sides; (2) extending the application of ADM specifi-
cations to the whole process and considering business domain modernization;
and (3) integrating properly the modernization tool chain to reduce costs and
to leverage modernization knowledge reuse. Additionally, to confirm our RIA
features relevance we will try to validate them with practitioners.

References

1. Acerbis, R., Bongio, A., Brambilla, M., Butti, S., Ceri, S., Fraternali, P.: Web Ap-
plications Design and Development with WebML and WebRatio 5.0. In: Bertrand
Aalst, W., Mylopoulos, J., Sadeh, N.M., Shaw, M.J., Szyperski, C., Paige, R.F.,
Meyer (eds.) TOOLS EUROPE 2008. LNBIP, vol. 11, pp. 392–411. Springer, Hei-
delberg (2008)

2. Barbier, F., Deltombe, G., Parisy, O., Youbi, K.: Model Driven Reverse Engineer-
ing: Increasing Legacy Technology Independence. In: Second India Workshop on
Reverse Engineering, Thiruvanantpuram (2011)

3. Bruneliere, H., Cabot, J., Jouault, F.: MoDisco: A Generic And Extensible Frame-
work For Model Driven Reverse Engineering. In: IEEE/ACM International Con-
ference on Automated Software Engineering, pp. 1–2 (2010)

4. Izquierdo, J.L.C., Molina, J.G.: An Architecture-Driven Modernization Tool for
Calculating Metrics. IEEE Software 27(4), 37–43 (2010)

5. Dolog, P., Stage, J.: Designing Interaction Spaces for Rich Internet Applications
with UML. In: Baresi, L., Fraternali, P., Houben, G.-J. (eds.) ICWE 2007. LNCS,
vol. 4607, pp. 358–363. Springer, Heidelberg (2007)

6. Fraternali, P., Comai, S., Bozzon, A., Carughi, G.T.: Engineering rich internet
applications with a model-driven approach. ACM Transactions on the Web 4(2),
1–47 (2010)

7. Koch, N., Pigerl, M., Zhang, G., Morozova, T.: Patterns for the Model-Based De-
velopment of RIAs. In: Gaedke, M., Grossniklaus, M., Dı́az, O. (eds.) ICWE 2009.
LNCS, vol. 5648, pp. 283–291. Springer, Heidelberg (2009)

8. Linaje, M., Preciado, J.C., Morales-Chaparro, R., Rodŕıguez-Echeverŕıa, R.,
Sánchez-Figueroa, F.: Automatic Generation of RIAs Using RUX-Tool and Webra-
tio. In: Gaedke, M., Grossniklaus, M., Dı́az, O. (eds.) ICWE 2009. LNCS, vol. 5648,
pp. 501–504. Springer, Heidelberg (2009)

9. Linaje, M., Preciado, J.C., Sanchez-Figueroa, F.: Engineering Rich Internet Appli-
cation User Interfaces over Legacy Web Models. IEEE Internet Computing 11(6),
53–59 (2007)

10. Machado, L., Filho, O., Ribeiro, J.: UWE-R: an extension to a web engineering
methodology for rich internet applications. WSEAS Transactions on Information
Science and Applications 6(4), 9 (2009)

250 R. Rodŕıguez-Echeverŕıa et al.

11. Meliá, S., Gómez, J., Pérez, S., Dı́az, O.: A Model-Driven Development for GWT-
Based Rich Internet Applications with OOH4RIA. In: 2008 Eighth International
Conference on Web Engineering, pp. 13–23 (July 2008)

12. Mesbah, A., van Deursen, A.: Migrating Multi-page Web Applications to Single-
page AJAX Interfaces. In: 11th European Conference on Software Maintenance
and Reengineering (CSMR 2007), pp. 181–190 (March 2007)

13. Patel, R., Coenen, F., Martin, R., Archer, L.: Reverse Engineering of Web Appli-
cations: A Technical Review. Technical Report July 2007, University of Liverpool
Department of Computer Science, Liverpool (2007)

14. Pérez, S., Dı́az, O., Meliá, S., Gómez, J.: Facing Interaction-Rich RIAs: The Or-
chestration Model. In: 2008 Eighth International Conference on Web Engineering,
pp. 24–37 (July 2008)

15. Pérez-Castillo, R., De Guzmán, I.G.-R., Piattini, M.: Business Process Archeology
using MARBLE. In: Information and Software Technology (2011)

16. Preciado, J.C., Linaje, M., Sanchez, F., Comai, S.: Necessity of methodologies to
model Rich Internet Applications. In: Seventh IEEE International Symposium on
Web Site Evolution (2005)

17. Rodŕıguez-Echeverŕıa, R., Conejero, J.M., Linaje, M., Preciado, J.C., Sánchez-
Figueroa, F.: Re-engineering legacy Web applications into Rich Internet Applica-
tions. In: 10th International Conference on Web Engineering (2010)

18. Rossi, G., Pastor, O., Schwabe, D., Olsina, L.: Web Engineering: Modelling and
Implementing Web Applications. Human-Computer Interaction Series (October
2007)

19. Rossi, G., Urbieta, M., Ginzburg, J., Distante, D., Garrido, A.: Refactoring to Rich
Internet Applications. A Model-Driven Approach. In: 2008 Eighth International
Conference on Web Engineering, pp. 1–12 (July 2008)

20. Scott, B., Neil, T.: Designing Web Interfaces: Principles and Patterns for Rich
Interactions. O’Reilly Media (2009)

21. Ulrich, W.: Modernization Standards Roadmap, pp. 46–64 (2010)
22. Valverde, F., Pastor, O.: Facing the Technological Challenges of Web 2.0: A RIA

Model-Driven Engineering Approach. In: Vossen, G., Long, D.D.E., Yu, J.X. (eds.)
WISE 2009. LNCS, vol. 5802, pp. 131–144. Springer, Heidelberg (2009)

23. Vanderdonckt, J., Bouillon, L., Souchon, N.: Flexible reverse engineering of web
pages with VAQUISTA. In: Proceedings Eighth Working Conference on Reverse
Engineering, pp. 241–248 (2001)

24. Wright, J.M.: A Modelling Language for Interactive Web Applications. In: 2009
IEEE/ACM International Conference on Automated Software Engineering, pp.
689–692 (November 2009)

A. Harth and N. Koch (Eds.): ICWE 2011 Workshops, LNCS 7059, pp. 251–265, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Quality Models for Web [2.0] Sites:
A Methodological Approach and a Proposal

Roberto Polillo

University of Milano Bicocca, Dept. of Informatics, Systems and Communication,
Building U14, Viale Sarca 336, 20126 Milano Italy

roberto.polillo@unimib.it

Abstract. This paper discusses a methodological approach to define quality
models (QM) for Web sites of any kind, including Web 2.0 sites. The approach
stresses the practical use of a QM, in requirement definition and quality
assessment, during design & development processes or during site operation.
An important requirement for such QMs is organization mapping, which allows
who is in charge of quality management to easily identify the actors in the
organization responsible for implementing or improving each specific quality
characteristic. A family of QMs is proposed and compared with ISO/IEC 25010
QMs for software products and software-intensive computer systems.

Keywords: quality, quality model, web, web engineering, web 2.0, ISO/IEC
25010.

1 Introduction

According to ISO/IEC 25000:2005 [1], a quality model (QM) is a “defined set of
characteristics, and of relationships between them, which provides a framework for
specifying quality requirements and evaluating quality.”

QMs are very important in Web engineering. Having a good QM at hand can be
extremely useful in all phases of a Web site life cycle. In the requirement
specification phase, a QM helps in elicitating and orderly describing all important
facets of the site to be designed. Indeed, the table of contents of a good requirement
specification document could strictly mirror the QM, by assigning to each model
characteristic a specific section of the document [2]. During the development process,
a QM helps the project team in keeping their eyes on all desired quality attributes of
the system to be implemented. In assessing the quality of an existing site, or different
sites for comparison or benchmarking, a QM provides a structured approach to the
evaluators, helping them to stay focused on the important issues. In the operation
phase, a QM provides the site management with a “compass” to keep its evolution on
the right track. Indeed, all Web sites are very dynamic; their evolution is constant and
substantial: it is therefore essential to continuously monitor their quality, to avoid that
the frequent changes disrupt piecemeal an initially sound project. This is particularly
important for Web 2.0 sites, whose evolution is determined not only by the site
management, but also by the (possibly large and uncontrollable) user community. A
“suitable” QM is the necessary supporting tool for these monitoring actions.

252 R. Polillo

But how do we choose it? The selection of a QM is a delicate task, because it may
have a large impact on the site’s success, and is not trivial at all, for two main
difficulties: orthogonality and measurability of characteristics. Orthogonality is
difficult to achieve because the quality attributes of a Web site interact in complex
ways; measurability, because many of them are subjective.

The literature on Web quality is very large, and a number of QMs for Web sites
have been proposed over the years, approaching the problem from different
perspectives. QM characteristics may be chosen on the basis of their semantic
orthogonality, their measurability, the feasibility of their automatic evaluation, their
relationship with the Web site development process, or with the use of statistic or
probabilistic models (among others: [3],[4],[5],[6],[7]). Some QMs address specific
types of Web sites, such as e-commerce or information portals; others analyze
specific attributes, like data quality or quality in use (e.g. [8], [9], [10], [11]). Most of
them are in some way related with the ISO quality standards. However, there seems to
be no general consensus on their definition and characteristics.

This paper will contribute to this debate, by proposing an approach specifically
oriented to the needs of the people responsible for the management of a Web site, and
by sketching a QM family which can be proficiently used by project managers and
Web properties managers both in the development and operation phase. This is a
revision and extension of a simple QM for Web 1.0 sites previously defined by the
author [4], following its experimentation in the Web site development road-map
described by the author in [2] and the Web evolution of recent years.

In Section 2 the ISO approach to QMs for software and computer systems is
summarized. Section 3 will discuss the main peculiarities of Web sites with respect to
traditional software systems, and lay down a few basic requirements for Web sites
QMs, also considering the evolution of the role of users in Web 2.0 sites. Section 4
will describe the proposed QM family, and Section 5 will briefly compare it with the
ISO standard. Finally, Section 6 will contain some conclusions.

2 The ISO System and Software Quality Models

In the software engineering literature, software QMs have been discussed for many
years. The ISO/IEC 9126, issued as an International Standard (IS) in 1991 [12] and
revised in 2001 [13], is the best known reference in this area. Part 1 of this multi-part
document provides a very general QM for software products external and internal
quality, based on a set of 6 quality characteristics (Functionality, Reliability,
Usability, Efficiency, Maintainability, Portability) and 27 sub-characteristics. A
second QM defines 4 characteristics for Quality in use, i.e. “the user view of the
product”. This IS has been recently canceled, and replaced by ISO/IEC 25010 [14],
which updates the previous QMs in various ways. It addresses “software products and
software-intensive computer systems” of any kind, and defines two QMs. The
Product quality model encompasses internal and external qualities of the system, and
is composed of 8 characteristics and 31 sub-characteristics (Fig.1).

 Quality Models for Web [2.0] Sites: A Methodological Approach and a Proposal 253

Fig. 1. Product quality model according to ISO/IEC 25010

Fig. 2. Quality in use model according to ISO/IEC 25010

The Quality in use model is now composed of 5 characteristics and 9 sub-
characteristics (Fig.2). Note that quality in use is a superset of usability, classically
defined in [15] as “the degree to which a product or system can be used by specified
users to achieve specified goals with effectiveness, efficiency and satisfaction in a
specified context of use.”

Each QM sub-characteristic may be further hierarchically decomposed. Quality
characteristics and sub-characteristics at any level should be measurable, either
directly or indirectly, through a set of associated measurable properties.

Fundamental in the ISO approach is the distinction between the internal properties of
a product (which contribute to the internal quality), its external properties (which
contribute to the external quality), and its quality in use properties, i.e. properties which

254 R. Polillo

Fig. 3. Conceptual approach to quality, according to ISO/IEC 25010

can be measured when the product is actually in use in specific contexts. All these
properties influence each other and the resulting quality in a complex way, as
schematized in Fig.3.

ISO/IEC 25010 belongs to the SQuaRE series of International Standards (see [1]).
In SQuaRE, ISO/IEC 25012 [16] defines a third QM, for data retained in a structured
format within a computer system, composed of 15 characteristics: Accuracy,
Completeness, Consistency, Credibility, Currentness, Accessibility, Compliance,
Confidentiality, Efficiency, Precision, Traceability, Understandability, Availability,
Portability and Recoverability.

3 Quality Models for Web Sites: Why They Should Be Different

3.1 Web Sites Peculiarities

The ISO standards provide a very general conceptual framework for defining QMs for
complex systems with a substantial software component. The basic approach of
defining a hierarchy of quality characteristics, and measurable properties which can
be aggregated to obtain quantitative measures of characteristics provides a sound
foundation for defining any QM, in any domain. Moreover, the ISO model is the
result of three decades of discussions about the basic quality dimensions of software-
based systems. Its categorization and terminology can be discussed and - in a few
cases - may also be considered somehow obscure, but certainly cannot be ignored in
any approach to quality in software engineering.

On the other hand, it should be clearly understood that the ISO documents only
provide a conceptual framework, and not a ready-to-use QM. To be of practical use,
this framework must be tailored to the specific [class of] system[s] under
consideration. This may not be a simple task, especially when these systems do not fit
well with the systems considered in classical software engineering, such as ERP,
command & control, embedded systems. This is the case of Web sites, which possess
a number of peculiarities that greatly differentiate them from the above systems:

Information content. In the large majority of cases, unstructured information
content prevails on structured data. Emphasis is on user navigation, not on data
management and computation. Therefore, a fundamental dimension of quality relates

 Quality Models for Web [2.0] Sites: A Methodological Approach and a Proposal 255

to information architecture [17]. Information architects are more and more involved
in large Web sites, together with content editors, who create and manage its
information content. Information-rich sites may employ large editing staffs, with an
organization in some ways similar to that of traditional magazines.

Communication. In most cases, Web sites can be considered machines whose main
purpose is communication, rather than computing and data management. This is also
true for e-commerce or other sites offering online services. Web sites address a global
audience, in a strongly competitive, “open” environment. There is no user lock-in:
competition is only a few clicks away, so visitors’ loyalty must be won on a day-by-
day basis. User attention span can be extremely short, so his/her interest must be
captured in brief time-intervals. So big efforts are required on communication and
branding, and professionals typically not seen in traditional software projects are
necessary (visual designers, art directors, communication and marketing people).

Continuous evolution. Web sites are living organisms. Their contents are
constantly updated, and even their information architecture changes frequently. This
is true for any site, not only for information portals. Visitors of a site often expect the
content to be updated practically in real time. Site managers must strive hard to
comply with these expectations, just to keep their site reputation. Interactive services
and the user interface are frequently modified and improved. According to the
perpetual-ß concept, the software behind these services is continuously modified to
better serve user needs. These – in turn – change as new possibilities are discovered,
in a constant co-evolution of usage patterns and system functions. In a word,
managing the evolution of a Web site sets pressing requirements to site
administrators, and this should be taken into account seriously in any QM designed
for these systems.

3.2 Web Site Quality Actors

By [quality] actor we mean any system stakeholder with an active role in
creating/maintaining some quality attribute, such as Web designers, visual designers,
content editors, software developers. Actors of a Web site are more numerous and
more varied than in traditional software systems. Indeed, the development of any site
is really a multi-disciplinary project, involving many different roles (Fig.4).1

In a typical Web 1.0 site, end users have a passive role, so they are not considered
actors because they do not contribute to its quality: they only navigate the site and
possibly interact with it in predefined transactions (as in e-commerce). In Web 2.0
sites the situation is completely different. The users can typically create and upload
content, embed content from other sites, tag, comment or rate content created by other
users and share it with their “friends”, and interact with them in public. This is not
only true for large social networks such as Facebook, Twitter, YouTube and Flickr,
but also for an increasingly large number of small sites, due to the many available
tools which allow to easily implement these functions, such as share buttons, plugins,
html snippets. Therefore, in Web 2.0 sites, the users themselves must be considered
quality actors and critical ones indeed, since they can have a big impact on the global
functioning of the site. Even a perfectly designed and implemented site can fail as a

1 Different roles may not necessarily be played by different people. For very small sites, all of

the above roles may also be impersonated by the same person.

256 R. Polillo

Fig. 4. The main quality actors of a Web site

consequence of “bad” (or unexpected) user behavior. So users must be continuously
monitored and in some way controlled or stimulated, requiring the presence of new
roles (denoted as community management in Fig.4), and in some cases the
evolutionary modification of specific site functions, intended – so to speak – to
improve the user-generated quality. A typical example is the evolution of the
community content moderation mechanisms in Yahoo!Answer, where they had to
oppose the unexpected volume of user spam and troll activity, that seriously risked
crashing the site [18].

3.3 Organization Mapping

The ISO definition of a QM, quoted in Section 1, emphasizes the practical purposes
of any QM, which is not viewed as a mere categorization of the quality attributes of a
system, but rather as a practical tool, to steer design (‘‘specifying requirements’’) and
evaluation (‘‘evaluating quality’’) processes. In our view, this should be constantly
kept in mind when defining any QM. To this end, we require that there be as simple
as possible relation between quality [sub-]characteristics and the roles (actors)
responsible for implementing and improving them. In this way, responsibility for
different quality characteristics can be easily allocated and tracked, being always clear
who is responsible for what. We call this attribute of a QM organization mapping. In
Fig. 5, mapping on the left can be considered better than the mapping on the right,
because responsibilities are better isolated and quality characteristics improvements
are easier to manage.

A good mapping is a crucial requirement of a Web site QM because, as shown in
Fig.4, the actors involved in Web projects are many, and the involved skills are
extremely varied. In a multi-disciplinary team, different cultures, practices and value
systems may sometimes create interaction difficulties, as anybody involved in
medium to large Web site development or operations may have experienced. To avoid
these problems, it is necessary that the teams be correctly organized, with a clear
allocation of responsibilities on the different system components and associated
quality characteristics.

 Quality Models for Web [2.0] Sites: A Methodological Approach and a Proposal 257

Of course, the goodness of the mapping does not depend only on the QM, but also
on the actual organization which develops and manages the site. A chaotic
organization will nullify the practical utility of even the best QM. Nevertheless, after
fifteen years of Web engineering experiences, the roles and functions of the different
quality actors in e Web project are today sufficiently well understood. This allows to
define good QMs which are reasonably applicable to most Web organizations.

Fig. 5. Organization mapping of quality models

3.4 Requirements for Web Sites Quality Models

With the above premises, we can now lay down the main requirements for our QM.
Requirement 1. QM should have an organization mapping as simple as possible, as

discussed in 3.3. We do not require that it be related to a specific project organization
schema, but simply that the quality [sub-]characteristics be associated in a simple way
to the quality actors of Fig.4. It is rather evident that the ISO QM of Fig.1 does not
satisfy at all this requirement.

Requirement 2. QM should be tailorable to the class of sites under consideration.
Web sites are enormously diversified. They may differ in size, in technology, in
purpose, in complexity, in relationship with the front users (from purely informative
to interactive to social), in impact on their activities (from critical to non-critical). So
there will be no universal QM. Tailoring the QM would mean adding or dropping
some sub-characteristics or specializing some of them with further levels of detail.
Sometimes we would also assign different weights to the [sub-]characteristics, to
express their importance in the particular context.

Requirement 3. QM should be subsettable according to its specific purpose. Some
[sub-]characteristics should be droppable from the QM, when they are not needed in
its actual context of use. E.g., when using a QM to compare a site with its
competition, we usually do not have access to information on their internal structure.
Thus, we would drop all [sub-]characteristics associated to internal properties from
the QM.

Requirement 4. QM should be scalable according to site complexity. Any site
(even the simplest) is really a very complicated system, as briefly discussed in 3.1.
But it is totally unrealistic to pretend that small organizations (which own the large
majority of sites) may (or want to) deal with all the subtleties of a conceptually sound
and complete QM. Simple users need simple tools. Therefore, a scalable QM would
be available in simplified versions to be used in simple contexts.

258 R. Polillo

Requirement 5. QM should be universally usable and accessible. Last but not least,
if we want to have a real impact on the quality of the present day Web, we should
design QMs that, as much as possible, are universally usable and accessible. This
would entail the use of broadly understood concepts described in a simple language,
with easy and free accessibility. 2

The stated requirements imply that we need a family of closely related QMs, and
not a single QM, if possible with a common set of top-level characteristics. These are
the “foundations” of the QM, and therefore should be easily recognizable by anybody
as the basic dimensions of the quality of any Web site. They would constitute the
main sections of the requirement specifications of any Web development project, and
the main aspects to be considered in any assessment or evaluation. QM
personalization should then be localized in the lower levels of the hierarchy of
characteristics, to cope with specific Web applications (Req.2), purpose (Req.3), site
complexity (Req.4) and to the complexity of the organization (Req.5). This will be
mostly done by adding/dropping sub-characteristics or defining lower levels in the
characteristics tree.

4 A Quality Model Family for Web Sites

4.1 Defining the Top-Level Characteristics

Rather than start from the ISO model and modify it piecemeal to comply with the
stated requirements, it seems more reasonable to start anew, and see where this
approach leads. Requirement 1 suggests to start by defining a general model of a Web
site, showing its main logical components (the quality of which we wish to take under
control), its main quality actors and the relationship between actors and components.
This can be done a)- considering the Web site design & development process, or b)-
considering the Web site in operation. The second approach seems more
comprehensive because of the constantly evolving nature of Web sites (which are not
“frozen” when they are published online after development) and because it allows to
consider the role of end users as quality actors, which is fundamental in a Web 2.0
context. Thus this paper will use approach b).3

2 Lack of usability and accessibility are, in our opinion, the main problems with the ISO QMs,

which hinder their large scale adoption by the general community of Web practitioners. ISO
documents are difficult to read and organized in a complex structure, which is continuously
evolving. To understand the status of the ISO document system and to identify the documents
relevant to a particular activity, it is not easy and very costly, since documents are not freely
available, but cost a lot of money. Regrettably, this is also true for quality related standards,
which should be, in our opinion, as openly available as possible.

3 Approach a) has been used in the previous version of this QM, dealing only with Web 1.0
sites [4], using the design & development model described in [2], in which the quality of a
Web site is formed incrementally, through an ordered iterative process. Not unexpectedly, the
results are the same, since the same actors and components are present in both approaches.
Lack of space does not allow to further comment on this issue here.

 Quality Models for Web [2.0] Sites: A Methodological Approach and a Proposal 259

Therefore, a Web site in operation will be modeled as a set of nested logical
components, as shown in Fig.6. The Site component is nested in a Site platform,
typically representing the used Content Management System (CMS) and related
software components (e.g., DBMS). In turn, the Site platform is nested in the Server
& Network Platforms component, representing the server(s) hosting the site and the
network infrastructure. The Site component is in turn decomposed in five
components: Information architecture & navigation, Graphics & branding, Software
functions and Content components, which are self-explaining.

Fig. 6. A general model of Web site components and quality actors, and the resulting QM

Each logical component is associated to its (prevailing) quality actor. For example,
the Company generated content component is under the responsibility of Content
editor(s). Actors are all members of the back-office organization, except in Web 2.0
sites, where the users are also considered actors. The bottom line in Fig.6 shows the 9
top-level characteristics of the proposed QM: Architecture, Communication,
Functionality, Software code, Content, Community, Usability, Accessibility, Platform.

Here, the term Architecture refers exclusively to information architecture [17],
including site navigation facilities, and not to internal software architecture. Its
associated actor is therefore the Web designer (or information architect).

Communication refers to all aspects of site communication, typically embodied in
the site Style Guide, defining graphics, typography, multimedia usage and user
experience issues. The associated actors are the visual designers because in
small/medium sites this responsibility is usually assigned to them. Note, however, that
larger sites may have a more complex organization, involving art directors,
communication departments, and the like.

260 R. Polillo

Like the ISO Functional suitability [14], Functionality means “the degree to which
the site provides functions that meet stated and implied needs when used under
specified conditions”. Note that this does not include navigation functions (menus,
breadcrumbs, and so on), which are part of the site Architecture.

Content collects all the quality characteristics related to the company-generated
information/data content of the site, under the responsibility of the content editors.

Community is mostly used only for Web 2.0 sites, and considers user-generated
content: associated actors are site users and site community managers.

Platform considers the site platform (CMS, DBMS, and similar components, under
responsibility of the Web master), the hardware and software of the hosting servers,
and the network infrastructure. Its quality characteristics are both static (i.e.: are they
suitable for the context?) and dynamic (i.e.: are their operations well managed? Are
their performances adequate?). Here the quality actors may differ depending on the
specific organization: in Fig.6 we consider the case when server and network
management are outsourced to an external organization, and there is a data center
manager interfacing the service.

Usability and Accessibility have the usual meaning of the ISO documents. Since
these characteristics are the result of the cooperation of all involved actors, in Fig.6
we have indicated a usability professional, as the actor with the responsibility of
managing the usability and accessibility issues of the site.

Finally, Software code refers to
the quality of the software
specifically developed for the site
(therefore excluding platform
components acquired on the
market), under responsibility of
the software developers.

 Note that in most cases there is
a one-to-one relationship between
characteristics and actors, as
shown in the bottom line of the
schema, thus the QM has a good
organization mapping, as
required.

Because the names chosen for the top-level characteristics are very mundane, the
site quality profile can be easily communicated to all site stakeholders, e.g. with a
simple radar diagram, as in Fig.7.

4.2 Defining the Sub-characteristics

The definition of sub-characteristics is less critical. Once the top-level framework is
stable and well understood, the lower levels can be tailored to specific contexts and
improved over time, as experience in their use increases and Web applications

Fig. 7. The quality profile of a Web site

 Quality Models for Web [2.0] Sites: A Methodological Approach and a Proposal 261

evolve.4 Our proposal is based on 33 sub-characteristics (Fig.8), including internal
quality (Standards conformance, Code and Platform Maintainability) and Web 2.0
sites (Community Management).5 These should be dropped when assessing only
external quality and quality in use of Web 1.0 sites, as in [4].

Fig. 8. The proposed QM. Sub-characteristics for Web 2.0 are in italics

In most cases, the meaning of sub-characteristics is self-evident.
For Content, we evaluate separately the content categorization

(Categorization/labelling),6 the conformance to organization-defined style guides –
possibly including external standards (Style guide conformance), the timeliness of
content updating (Content currentness), and the quality of internationalization and
localization of the site (Content localization). Finally, Content/data quality would
consider such attributes as accuracy, completeness, and so on of the content elements
(including structured data stored in data bases), such.

4 The ISO standard itself explains that “the set of sub-characteristics associated with a

characteristic have been selected to be representative of typical concerns without necessarily
being exhaustive” (see [14], pag.2).

5 User relations concern the management of user requests, and applies also to Web 1.0 sites.
6 Note that, while the Architecture characteristic deals with the overall information architecture

and navigation of the site, the Categorization/labelling sub-characteristic deals with the
organization of the site contents. They are considered separately, because one is defined by
the Web designer, the other by the content editors.

262 R. Polillo

Note that here Accessibility is intended in its wider meaning, as the characteristic
that can limit the digital divide. Therefore, its sub-characteristics are: Findability,
Band requirements, Browser independence and User ability requirements, i.e.
accessibility for people with disabilities.

For Usability, we used, for simplicity, the characteristics of the ISO/IEC 95010
model for Quality in use.7

Under Platform, Platform adequacy collects all issues referring to the static
properties of CMS, DBMS, server and network infrastructures (hardware and
software), while Site performances deals with their dynamic properties (time
behavior, resource utilization, and so on). Access monitoring evaluates SEO and Web
analytics activities.

We considered Reliability and Maintainability separately for the site-specific
Software code, and for the (often standard) Platform, since the involved quality actors
are usually different.

A number of third-level characteristics should be further defined, tailored to
specific classes of sites. This is typically the case of Functional adequacy, to deal
with specific classes of functionalities, such as Shopping functions adequacy for e-
commerce, Uploading functions adequacy for file sharing sites, Identity profiling
functions adequacy for social networks, and so on.

As we shall see in the following sections, a number of ISO/IEC 25010 sub-
characteristics can be used at the third or fourth level of our QM. For Content/data
quality, sub-characteristics of the ISO/IEC 25012 data quality model may be used,
such as Accuracy, Completeness, Consistency, Credibility, Precision, Traceability,
and so on.

5 Comparison with the ISO Standard

A comparison between ISO 25010 and the proposed QM shows the following main
differences and analogies:

1. Top-level characteristics Architecture, Communication, Content and Community

and their sub-characteristics, which differentiate Web sites from traditional
software systems, are not considered in ISO/IEC 25010 models. (Structured data
- but not textual and multimedia information - are considered in ISO/IEC 25012).

2. Functionality is included in both models (though with slightly different names).
In our model, Security is a sub-characteristic of Functionality (as it was in
ISO/IEC 9126:2001), but it might be considered a top-level characteristic as well
if desired (this would be advisable, e.g. in Web banking applications).

3. Usability is included in both models. As sub-characteristics, we considered the
characteristics of Quality in use (Fig.2).

7 Indeed, the ISO/IEC 25010 itself specifies that “Usability can either be specified or measured

as a product quality characteristic in terms of its sub-characteristics, or specified or
measured directly by measures that are a subset of quality in use.” (§4.2.4) We prefer the
second option, closer to the “classical” definition of usability [15].

 Quality Models for Web [2.0] Sites: A Methodological Approach and a Proposal 263

Table 1. Comparison of ISO/IEC 25010 vs the proposed QM

ISO/IEC 25010 Product QM Corresponding level in the proposed QM

Functional suitability 1 (name changed to Functionality)
Functional appropriateness 3 (under Functional adequacy)
Functional completeness 3 (under Functional adequacy)
Functional correctness 2 (under Functionality)

Performance efficiency Not used
Time behaviour 3 (under Site performance)
Resource utilization 3 (under Site performance)
Capacity 3 (under Platform adequacy)

Compatibility 3 (under Platform adequacy)
Co-existence 4 (under Compatibility)
Interoperability 4 (under Compatibility)

Usability 1 (uses sub-attributes of ISO Quality in use QM)
Appropriateness recognizability Not used
Learnability Not used
Operability Not used
User error protection Not used
User interface aesthetics Not used
Accessibility 1 (top-level characteristic)

Reliability 2 (under Software code and Platform)
Maturity 3 (under Reliability)
Availability 3 (under Reliability)
Fault tolerance 3 (under Reliability)
Recoverability 3 (under Reliability)

Security 2 (under Functionality)
Confidentiality 3 (under Security)
Integrity 3 (under Security)
Non-repudiation 3 (under Security)
Accountability 3 (under Security)
Authenticity 3 (under Security)

Maintainability 2/3 (under Software code and Platform adequacy)
Modularity 3/4 (under Maintainability)
Reusability 3/4 (under Maintainability)
Analysability 3/4 (under Maintainability)
Modifiability 3/4 (under Maintainability)
Testability 3/4 (under Maintainability)

Portability 3 (under Platform adequacy)
Adaptability 4 (under Portability)
Installability 4 (under Portability)
Replaceability 4 (under Portability)

264 R. Polillo

4. We put Accessibility at the top-level, given its importance in many Web sites (in
ISO it is a sub-characteristic of Usability).

5. While Maintainability, Portability and Compatibility are given much emphasis in
ISO/IEC 25010, they do not need a front-line position in present day Web sites,
more and more built on-top of widely used and compatible platforms, in some
cases maintained by large communities of developers. We considered
Maintainability separately for the site-specific Software code, and for the (often
standard) Platform, as a second level characteristic. Compatibility and Portability
do not appear in Fig.8, as they may be considered third level characteristics under
Platform adequacy, for the evaluation of the selected platform, and a component
of Browser independence, under Accessibility.

In summary, with respect to ISO/IEC 25010, the proposed QM considers some new
characteristics related to the Web sites specificities, has an higher level of abstraction
and allocates common sub-characteristics in a different way, according to their level
of importance in Web sites and to the organization mapping requirement.

A detailed mapping between ISO/IEC 25010 and the proposed QM is shown in
Table 1. Here, the shaded [sub-]characteristics are not used in our QM, but might be
added at third or fourth level in the hierarchy, where indicated in the table. If this is
done, our QM can be said to conform to the ISO standard, being a superset of it.8

6 Conclusion

This paper has proposed a methodological approach to define QMs for Web sites of
any kind, including Web 2.0 sites and applications. The approach stresses the
practical use of a QM, in requirement definition and quality assessment, during design
& development processes or during site operations. Therefore, the main driver for
QM definition has been what we called organization mapping, as opposed to the
conceptualization of abstract quality characteristics. Organization mapping allows
who is in charge of quality management to easily identify the actors in the
organization responsible for implementing or improving each specific quality
characteristics. This is much more important for Web sites than in traditional software
systems, given the high number and diversity of the actors involved, and the
possibility of conflicts arising from their diverse approaches.

Accordingly, a simple QM family has been proposed, starting from a very general
model of Web site, mapping its main logical components to the actors responsible for
their quality. This QM defines the characteristics down to the second level: it is
general enough to be applicable to a very large class of sites and to be used as a viable
table of contents for requirement definition documents. It should be specialized and
tailored for specific classes of Web sites and applications, intended purposes and
organizations, typically by dropping the sub-characteristics which are not relevant to
the particular context, and defining lower levels of the hierarchy.

8 According to ISO/IEC 25010, “any quality requirement, quality specification, or evaluation

of quality that conforms to this International Standard shall either; a)- use the quality models
defined in it or b)- tailor the quality model giving the rationale for any changes and provide a
mapping between the tailored model and the standard model”.

 Quality Models for Web [2.0] Sites: A Methodological Approach and a Proposal 265

A comparison with the ISO QMs for software and software intensive systems has
shown differences and similarities, originating from the particular nature of Web sites
and applications, and the approach adopted in the QM construction. The proposed
QM is essentially a superset and an abstraction of the ISO/IEC 25010 Product QM,
where the common parts are allocated differently in the hierarchy of characteristics,
mainly to comply to the organization mapping requirement.

References

1. ISO/IEC 25000:2005: Software Engineering – Software Product Quality Requirements and
Evaluation (SQuaRE) – Guide to SQuaRE (2005)

2. Polillo, R.: Plasmare il Web – Road map per siti di qualità. Apogeo, Milano (2006)
3. Mich, L., Franch, M., Gaio, L.: Evaluating and Designing the Quality of Web Sites.

Journal IEEE Multimedia 10(1), 34–43 (2003)
4. Polillo, R.: Il Check-up dei Siti Web. Apogeo, Milano (2004)
5. Signore, O.: A Comprehensive Model for Web Sites Quality. In: Proc. of WSE 2005 – 7th

IEEE Int. Symposium on Web Site Evolution – Budapest, pp. 30–36 (2005)
6. Moraga, A., Calero, C., Piattini, M.: Comparing Different Quality Models for Portals.

Online Information Review 30(5), 555–468 (2006)
7. Malak, G., Sahraoui, H., Badri, L., Badri, M.: Modeling Web Quality Using a Probabilistic

Approach: An Empirical Evaluation. ACM Transactions on the Web 4(3) (2010)
8. Stefani, A., Xenos, M.: E-Commerce System Quality Assessment Using a Model Based on

ISO 9126 and Belief Networks. Software Quality Control 16(1), 107–129 (2008)
9. Herrera, M., Moraga, M.Á., Caballero, I., Calero, C.: Quality in Use Model for Web

Portals (QiUWeP). In: Daniel, F., Facca, F.M. (eds.) ICWE 2010. LNCS, vol. 6385, pp.
91–101. Springer, Heidelberg (2010)

10. Lew, P., Olsina, L., Zhang, L.: Quality, Quality in Use, Actual Usability and User
Experience as Key Drivers for Web Application Evaluation. In: Benatallah, B., Casati, F.,
Kappel, G., Rossi, G. (eds.) ICWE 2010. LNCS, vol. 6189, pp. 218–232. Springer,
Heidelberg (2010)

11. Moraga, C., Moraga, M.A., Calero, C., Caro, A.: SQuaRE-Aligned Data Quality Model for
Web Portals. In: QSIC 2009 Proc. of the 2009 9th Int. Conf. on Quality Software, pp. 117–
122. IEEE Press, Los Alamitos (2009)

12. ISO/IEC 9126:1991: Information Technology – Software Product Evaluation – Quality
Characteristics and Guidelines for their Use (1991)

13. ISO/IEC 9126-1:2001: Software Engineering – Product Quality – Part 1: Quality Model
(2001)

14. ISO/IEC 25010:2011: System and Software Engineering – Systems and Software Quality
Requirements and Evaluation (SQuaRE) – System and Software Quality Models (2011)

15. ISO/IEC 9241-11:1998: Ergonomic Requirements for Office Work with Visual Display
Terminals – Part 11: Guidance on Usability (1998)

16. ISO/IEC 25012:2008: Software Engineering – Software Product Quality Requirements and
Evaluation (SQuaRE) – Data Quality Model (2008)

17. Morville, P., Rosenfeld, L.: Information Architecture for the World Wide Web. 3rd edn.
O’Reilly Media (2007)

18. Farmer, F.R., Glass, B.: Building Web Reputation Systems. O’Reilly Media (2010)

A. Harth and N. Koch (Eds.): ICWE 2011 Workshops, LNCS 7059, pp. 266–277, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Exploring the Quality in Use of Web 2.0 Applications:
The Case of Mind Mapping Services

Tihomir Orehovački1, Andrina Granić2, and Dragutin Kermek1

1 University of Zagreb, Faculty of Organization and Informatics
Pavlinska 2, 42000 Varaždin, Croatia

{tihomir.orehovacki,dragutin.kermek}@foi.hr
2 University of Split, Faculty of Science
Nikole Tesle 12, 21000 Split, Croatia
andrina.granic@pmfst.hr

Abstract. Research in Web quality has addressed quality in use as the most
important factor affecting a wide acceptance of software applications. It can be
conceived as comprising two complementary concepts, that is, usability and
user experience, which accounts for the employment of more user-centred
evaluations. Nevertheless, in the context of Web 2.0 applications, this topic has
still not attracted sufficient attention from the HCI community. This paper
addresses the quality in use of Web 2.0 applications on the case of mind
mapping services. The evaluation methodology brings together three
complementary methods. The estimated quality in use is measured by means of
the logging actual use method, while the perceived quality in use is evaluated
by means of the retrospective thinking aloud (RTA) method and a
questionnaire. The contribution of our work is twofold. Firstly, we provide
empirical evidence that the proposed methodology in conjunction with the
model, set of attributes, and measuring instruments is appropriate for evaluating
quality in use of Web 2.0 applications. Secondly, the analysis of qualitative data
reveals that performance and effort based attributes considerably contribute to
mind mapping services success.

Keywords: Web 2.0, Quality in Use, Evaluation Methodology, Study Results.

1 Introduction

Usability evaluation plays an essential role in the human-centred design process of
interactive software applications. Usability, as a quality of use in context [4], is
related to ease-of-use and ease-of-learning. More recently, a concept of user
experience (UX) [9] has been gaining popularity, leading to a switch in the research
focus from product-centred evaluation to more user-oriented one. Furthermore, due to
the emergence of Web 2.0 applications, the role of user experience in the assessment
process has become even more important. As a result of these developments, latest
research in Web quality has been addressing quality in use that is considered to be one
of the most important factors affecting a wide acceptance of software applications in
general.

 Exploring the Quality in Use of Web 2.0 Applications 267

1.1 Research Background

In recent research in the field of usability, user experience and quality in use, e.g. [3],
[6], [11], [13] along with the latest quality standard [10], no agreement has so far
been reached on attributes which reflect the ‘real quality’ of a software application.
Moreover, it is not clear how the concept of quality in use should be defined in the
context of Web 2.0 applications. According to the ISO standard on quality models
[10], usability (along with flexibility and safety) is a characteristic of quality in use,
with effectiveness, efficiency and satisfaction as its sub-characteristics. In accordance
with ISO 25010, Bevan perceived usability as performance in use and satisfaction in
terms of its relation with user experience [3]. To encompass the overall user
experience, satisfaction needs to be concerned with both pragmatic and hedonic user
goals. Lew et al. [11] proposed extending the ISO 25010 standard to incorporate new
characteristics, in particular information quality and learnability. They also argued for
including usability and user experience concepts into the modelling framework.
Taking the above into consideration, quality in use could be seen as comprising two
complementary concepts: (i) usability, which refers to the product-centred evaluation
of pragmatic attributes through the use of both subjective and objective measuring
instruments as well as (ii) user experience (UX), which concerns the use of subjective
measuring instruments for the assessment of hedonic attributes.

HCI literature offers a lot of different models, methods and standards aimed at
evaluating the quality and usability of software applications. However, research
related to the evaluation of Web 2.0 applications in general has been deficient. Recent
studies suggested that the reason for that might be the inappropriateness of current
approaches for evaluation of those applications. A research into usability assessment
carried out by Hart et al. [8] revealed that the popular social networking site Facebook
complies with only two of ten heuristics originally proposed by Nielsen [12]. They
also reported that the attributes such as ease of use, usefulness and playfulness have a
major impact on users’ loyal behaviour. When subjected to conventional usability
evaluation, YouTube appears to score badly as well, meeting only two traditional
heuristics [17]. Thompson and Kemp [18] argued that one of the main reasons why
Web 2.0 applications such as Flickr, Wikipedia and YouTube have a large number of
active users is their focus on user experience. Moreover, they extended and modified
a set of Nielsen’s traditional heuristics with an objective to evaluate the usability of
Web 2.0 applications. However, the validity of the proposed set of heuristics has so
far not been empirically confirmed. In addition, current research is usually focused on
the development of methods and models aimed for the evaluation of particular quality
aspects (e.g. information quality [1]) or types of Web 2.0 applications (e.g. mashups
[5]). All the afore-mentioned findings motivated us to initiate our research into the
design of a methodology that would enable the evaluation of the quality in use of Web
2.0 applications, regardless of their type and the context in which they are used [14].

1.2 Proposed Classification of Quality in Use Attributes

Our analysis of relevant recent research in the field of Web quality and usability
assessment resulted in a set of attributes that may have a significant role in the
evaluation of the quality in use of Web 2.0 applications [16]. The developed

268 T. Orehovački, A. Granić, and D. Kermek

conceptual model shown in Figure 1 classifies quality in use attributes into six basic
categories: system quality (SYQ), service quality (SEQ), information quality (INQ),
performance (PFM), effort (EFO), and acceptability (ACP).

Fig. 1. Proposed model for evaluating Quality in Use of Web 2.0 applications [16]

System Quality (SYQ) measures quality in use of Web 2.0 application at the level of
its interface features. It is comprised of six attributes: navigability (NVG, degree to which
interface elements are well organized and alternative navigation mechanisms are
provided), consistency (CNS, degree to which the same structure, design, terminology
and components are used throughout a Web 2.0 application), aesthetic (AES, degree of
visual attractiveness of a Web interface), familiarity (FML, degree to which a Web
interface is similar to previously used applications), customizability (CUS, degree to
which interface elements can be adapted to the characteristics of the task or user), and
security (SCR, extent to which personal data and files are protected from unauthorized
access). Service quality (SEQ) is the extent of quality of interaction between the user and
a Web 2.0 application. This category is further decomposed into eight attributes:
helpfulness (HLP, degree to which a Web application contains modules for user's
assistance), availability (AVL, degree to which interface elements are continuously

 Exploring the Quality in Use of Web 2.0 Applications 269

available), interactivity (ITR, degree to which a Web 2.0 application creates the feeling
of use of a desktop application), error prevention (ERP, degree to which a Web
application prevents the occurrence of errors), reliability (RLB, degree to which a Web
2.0 application works without errors or interruptions), recoverability (RCV, the extent to
which a Web 2.0 application can recover from errors and interruptions in its running),
responsiveness (RSP, extent of the speed of a Web 2.0 application’s response to users’
requests and actions), and feedback (FDB, extent to which a Web 2.0 application displays
its status or progress at any time). Information Quality (INQ) captures the quality of the
content which proceeds out of using a Web 2.0 application. This category contains five
different attributes: correctness (CRC, degree to which information content is free of
errors), coverage (CRG, degree to which information content is appropriate, complete
and compactly represented), credibility (CDB, degree to which information content is
unbiased, trustworthy, and verifiable), timeliness (TLS, degree to which information
content is up to date), and value-added (VAD, degree to which information content is
advantageous). Performance (PFM) refers to the quality of performing assignments by
means of a Web 2.0 application interface functionalities. This category includes three
attributes: effectiveness (EFE, degree to which an assignment can be achieved with
accuracy, and completeness), usefulness (UFL, degree to which the user perceives a Web
2.0 application as the most appropriate solution for performing the assignment), and
efficiency (EFI, degree to which a goal can be achieved with minimal consumption of
resources). Effort (EFO) is the extent of perceived and estimated mental and physical
energy when executing a task with Web 2.0 applications. This category is subdivided into
eight attributes: minimal action (MAC, degree to which an assignment solution can be
achieved in a minimum number of steps), minimal memory load (MEL, amount of
information the user needs to remember when carrying out tasks), accessibility (ACS,
extent to which a Web 2.0 application can be used by people with a widest range of
disabilities), controllability (CTR, level of user’s freedom while completing the task),
ease of use (EOU, degree to which a Web 2.0 application can be used without help),
learnability (LRN, which measures how easily the user can learn to use a Web interface
functionalities), memorability (MRB, which measures how easy it is to memorize and
remember how to use a Web 2.0 application), and understandability (UND, extent to
which interface elements are clear and unambiguous to the user). To facilitate data
collection in this study, two theoretically separated attributes, that is, minimal action and
minimal memory load, are logically combined into a single attribute that is named
physical and mental effort (PME). Acceptability (ACP) consists of attributes that directly
contribute to the success of a Web 2.0 application, including playfulness (PLY, extent to
which using a Web 2.0 application is fun and stimulating), satisfaction (STF, extent to
which a Web 2.0 application can meet user's expectations) and loyalty (LOY, the users’
intention to continue to use a Web application or to recommend it to their colleagues).
The main aim of this paper is to investigate to what extent the proposed model and
associated measuring instruments are appropriate for evaluating the quality in use of Web
2.0 applications, particularly mind mapping services.

2 Methodology

Participants. A total of 86 respondents (70.9% male, 29.1% female), aged 20.31
years (SD = 1.868) on average, participated in the survey. Participants were students

270 T. Orehovački, A. Granić, and D. Kermek

of Information Science from the University of Zagreb. All of them had been using
popular Web 2.0 applications (Facebook and YouTube) on a regular basis (71% and
77.9%, respectively, did that twice a day or more often). The study was conducted
within the Data Structures course. It should be noted that students had not participated
in similar studies before.

Procedure and apparatus. The study adopted a within-subjects design contrasting
four different Web 2.0 applications for mind mapping. During one semester, students
had to solve four different programming tasks. In addition to writing the programming
code, an integral part of each task was to graphically display an algorithm by means
of a mind map. All the tasks were of equal complexity. Before the experiment started,
we had defined which Web 2.0 application must be used when performing a particular
task. Web 2.0 applications that were involved in the study are presented in Figure 2.

Fig. 2. Screenshots of evaluated Web 2.0 applications (clockwise, starting from top left: Mind
42, Mindomo, Wise Mapping, and Mindmeister)

Data were gathered by both objective and subjective means. Objective quality in
use attributes (efficiency and effort) were measured using a Mousotron [2], which
kept track of timing, mouse movements, mouse clicks, and keystrokes. To ensure
maximum data accuracy, students were given detailed written and oral instructions at
the beginning of each assignment. In the first step, students had to create an account
and log in. Once the working environment had been loaded, it was necessary to run
Mousotron and start task execution. Immediately after the task was completed,
students needed to stop the data collecting process. The results gathered by means of
Mousotron and the solutions for the assignment were supposed to be uploaded to the
e-learning system. In order to obtain as much data about the advantages and
disadvantages of the used mind mapping Web 2.0 applications as possible, the
retrospective thinking aloud (RTA) method was employed. RTA allowed students to
complete the assignment first, and then describe their experiences of working with a

 Exploring the Quality in Use of Web 2.0 Applications 271

Web 2.0 application. Immediately after they had completed the educational activity,
students had to provide a critical review of the mind mapping application and deliver
it in the form of a written report. One of the authors conducted a two-phase analysis
of the data collected with the RTA method. Firstly, positive and negative comments
related to the particular Web 2.0 applications were extracted from reports.
Subsequently, each comment was attached to quality in use attributes whose definition
they fit most closely. At the end of the semester, the perceived quality in use was
evaluated by means of a post-use questionnaire.

Measures. Effort was measured by means of three metrics: distance traversed, mouse
clicks, and keystrokes. Distance refers to the number of millimeters traversed by the user
while moving the mouse between two points. Mouse clicks are the sum of all the mouse
clicks (left, right, middle) that were made while reaching the task solution. Double clicks
were not specifically analyzed, but were recorded as left clicks. Keystrokes denote the
total number of keys on the keyboard that the user clicked while reaching the task
solution. Other parameters that potentially affect the amount of physical effort, such as
the number of the mouse wheel scrolls, are beyond the scope of this study. The sum of
previous three metrics is referred to as estimated effort. Apart from physical effort,
efficiency in use was also measured. Time is the amount of time expressed in seconds
required to complete the task. Mouse moving speed (MMS) is the ratio of distance and
time expressed in millimetres per minute (mm/min). Keyboard typing speed (KTS) is the
ratio of keystrokes and time expressed in the number of keystrokes per minute (ks/min).
Mouse clicking speed (MCS) is the ratio of mouse clicks and time expressed in the
number of mouse clicks per minute (mc/min). The sum of keyboard typing speed,
mouse moving speed and mouse clicking speed is referred to as estimated efficiency.
Given that the execution of assignments was not time limited, objective assessment of the
effectiveness was beyond the scope of this study. The post-use questionnaire was used
for gathering data about perceived quality in use of the evaluated Web 2.0 applications.
Each quality in use attribute was measured with between three and eight items.
Responses were modulated on a five point Likert scale (1-strongly agree, 5-strongly
disagree). In addition, overall preferences were assessed directly by a 4-point semantic
differential item (1-best, 4-worst) in which users were asked to rank the quality in use of
mind mapping Web 2.0 applications. The Cronbach’s alpha values (presented in Table 1)
ranged from .701 to .896, thus indicating a high reliability of the scale. Combining three
different methods (logging actual use, questionnaire and RTA), complementary data of
the estimated and perceived quality in use of the mind mapping applications was
gathered. In this way, the process of detection of problems in Web 2.0 applications
usage was accelerated, while the identification of key quality in use attributes was
facilitated. The research results are presented in more detail in the following section.

Table 1. Internal reliability of scale

 Mind 42 Mindmeister Mindomo Wise Mapping
System Quality .779 .767 .798 .794
Service Quality .720 .701 .732 .741
Information Quality .811 .789 .769 .788
Performance .816 .741 .774 .796
Effort .896 .868 .884 .885
Acceptability .855 .850 .863 .831

272 T. Orehovački, A. Granić, and D. Kermek

3 Results

Given that data were not normally distributed (K-S 1,2,3,4 > 0.05), the analysis was
conducted by means of non-parametric tests. All the reported results are expressed as
the median value.

3.1 Estimated Quality in Use

Effort. The analysis of the data revealed statistically significant differences among
the four Web 2.0 interfaces in terms of mouse movements during task execution
(χ2(3) = 23.255, p < .001). The Wilcoxon Signed-Rank Tests with Bonferroni
pairwise comparisons revealed that participants needed to make significantly fewer
mouse movements to solve the task using the Mind 42 than either Mindmeister (Z = -
3.585, p = .000, r = - .27) or Mindomo (Z = -4.433, p = .000, r = - .34). Both effects
were medium in size with the significance level set at p < .008. No significant
differences were observed in other pairwise comparisons.

The type of the Web 2.0 application used significantly affected the amount of mouse
clicks made by users during the mind map design (χ2(3) = 11.102, p < .05). A
comparison of the number of mouse clicks among all four Web 2.0 applications
revealed that users made much fewer mouse clicks using Mind 42 or Mindmeister than
using Mindomo or Wise Mapping. Therefore, the number of required comparisons in
the post-hoc analysis was reduced and the significance level set at p < .0125. A
significant difference in the number of mouse clicks was found between Mindmeister
and Wise Mapping (Z = -2.995, p = .003, r = - .23), Mind 42 and Wise Mapping (Z = -
2.824, p = .005, r = - .22), and Mindmeister and Mindomo (Z = -2.556, p = .011, r = -
.19), respectively, while the difference between Mindmeister and Mindomo was not
significant (Z = -1.955, p = .051). All the effects were small in size. No significant
difference was found among all four Web 2.0 applications in terms of the amount of
keystrokes made when reaching the task solution (χ2(3) = 1.806, p = .614).

Table 2. Results of objective measure effort for four selected mind mapping Web 2.0
applications (note that a lower score means a better result)

 Mind 42 Mindmeister Mindomo Wise Mapping
Distance (mm) 30759 38049 41313 39411
Keystrokes 554 536 612 561
Mouse clicks 292 286 353 361
Effort 31610 38993 42693 40248

There was a significant difference in the amount of estimated effort among all four

Web 2.0 applications (χ2(3) = 22.858, p < .001). Pairwise comparison revealed a
significant difference between Mind 42 and Mindomo (Z = -4.407, p = .000,

 Exploring the Quality in Use of Web 2.0 Applications 273

r = - .37), and between Mind 42 and Mindmeister (Z = -3.563, p = .000, r = - .27). The
difference between Mind 42 and Wise Mapping was on the verge of the significance
level (p < .0125). According to the summary of the results presented in Table 2,
students experienced less effort using Mind 42 than any of the three remaining Web
2.0 applications.

Efficiency. Friedman’s ANOVA revealed a significant difference among four
different Web 2.0 applications in the speed of moving the mouse during task solving
(χ2(3) = 40.083, p < .001). As a follow up for this finding, a post-hoc analysis with
the significance level set at p < 0.125 was applied. A significant difference in the
speed of mouse movements was found between Mind 42 and Mindmeister (Z = -
4.567, p = .000, r = - .35), Mind 42 and Mindomo (Z = -4.825, p = .000, r = - .37),
Wise Mapping and Mindmeister (Z = -4.192, p = .000, r = - .32), and between Wise
Mapping and Mindomo (Z = -3.718, p = .000, r = - .28), respectively. Neither the
keyboard typing (χ2(3) = 1.806, p = .614) nor mouse clicking (χ2(3) = 6.402, p =
.094) speeds were significantly different among all four evaluated Web 2.0
applications. A significant difference in the estimated efficiency of evaluated Web 2.0
applications was discovered (χ2(3) = 41.829, p < .001). A post hoc analysis showed a
significant difference in the overall efficiency between Mindomo and Mind 42 (Z = -
4.851, p = .000, r = - .37), Mindmeister and Mind 42 (Z = -4.549, p = .000, r = - .35),
Wise Mapping and Mindmeister (Z = -4.231, p = .000, r = - .35), and Wise Mapping
and Mindomo (Z = -3.757, p = .000, r = - .29). According to the results presented in
Table 3, of all four evaluated Web 2.0 applications, Mindmeister was the most
efficient in accomplishing the assignments.

Table 3. Results of objective measure efficiency for four selected mind mapping Web 2.0
applications (note that a higher score means a better result)

 Mind 42 Mindmeister Mindomo Wise Mapping
MMS (mm/min) 1952 2573 2550 2074
KTS (ks/min) 35 34 35 33
MCS (mc/min) 18 19 19 20
Efficiency 2013 2635 2604 2122

3.2 Perceived Quality in Use

Rank. A significant value of chi square (χ2(3) = 37.381, p < .001) indicates the
existence of differences in the subjective ranking measure among the evaluated Web
2.0 applications. A post-hoc procedure with the significance level set at p < .0167
revealed differences between Wise Mapping and Mindmeister (Z = -4.800, p = .000, r
= - .37), Wise Mapping and Mindomo (Z = -4.668, p = .000, r = - .36), Mindomo and
Mind 42 (Z = -2.864, p = .004, r = - .22), Mindmeister and Mind 42 (Z = -2.671,

274 T. Orehovački, A. Granić, and D. Kermek

p = .008, r = - .20), and Wise Mapping and Mind 42 (Z = -2.605, p = .009, r = - .20).
The results of overall subjective preferences presented in Table 4 indicate that
Mindomo has the highest rank of perceived quality in use.

Table 4. Results of subjective measure rank for four selected mind mapping Web 2.0
applications (note that a lower score means a better result)

 M Rank χ2 df p
Mind 42 2.65 37.381 3 < .001
Mindmeister 2.19
Mindomo 2.04
Wise Mapping 3.12

Questionnaire. The results show that the scores of the four applications differ
significantly (χ2(3) = 27.599, p < .001). Wilcoxon Signed-Rank Tests with a
Bonferroni correction were used to follow up on this finding. Significant differences
were found between Wise Mapping and Mindomo (Z = -4.394, p = .000, r = - .34),
Mindomo and Mind 42 (Z = -4.073, p = .000, r = - .31), Wise Mapping and
Mindmeister (Z = -3.926, p = .000, r = - .30), and between Mindmeister and Mind 42
(Z = -2.915, p = .004, r = - .22). All the effects were medium in size. The summary of
the results obtained from the post-use questionnaire is presented in Table 5.

Table 5. Results of overall perceived quality in use of four selected mind mapping Web 2.0
applications (note that a lower score means a better result)

 Median SD χ2 p
Mind 42 334.00 50.471 27.599 < .001
Mindmeister 328.00 46.658
Mindomo 321.50 47.000
Wise Mapping 338.50 46.962

Retrospective Thinking Aloud. Data analysis revealed that students had generated a
total of 1711 comments related to the advantages (63.18%) and disadvantages
(36.82%) of the used Web 2.0 applications. In general, effort and performance based
attributes were reported in most cases during RTA sessions, while the attributes
related to the information quality were mentioned rather rarely. In particular, the most
important quality in use attributes reported by students are ease of use, effectiveness,
controllability and interactivity, while in the context of Web 2.0 applications used for
mind mapping the attributes such as consistency, feedback, accessibility and
memorability are of little importance. Based on overall results presented in Table 6,
the best ratio of reported advantages and disadvantages in use belongs to Mindomo,
followed by Mindmeister, Mind 42, and Wise Mapping.

 Exploring the Quality in Use of Web 2.0 Applications 275

Table 6. Results of Retrospective Thinking Aloud (RTA) method

 Mind 42 Mindmeister Mindomo Wise Mapping
Pros Cons Pros Cons Pros Cons Pros Cons

NVG 27 5 16 7 17 5 9 14
CNS
AES 12 3 14 6 12 5 7
FML 5 1 5 22 1 4 5
CUS 1 13 15 15 21 5 5 17
SCR 1
HLP 1 3 3 7 7 1
AVL 1 1 6 8 12 5 5 1
ITR 24 1 24 27 5 15 18
ERP 10 3 8 4 5 5 2 9
RLB 7 1 10 6 14 2 7 13
RCV 1 1 1
RSP 1 3 5 1 4
FDB
CRG 4 7 3 12 13 3 4 20
EFE 24 37 28 24 52 8 16 38
UFL 14 2 17 1 11 2 3 10
EFI 15 1 11 3 14 5 8 16
PME 2 1
ACS
CTR 40 7 20 17 10 4 26
EOU 64 2 53 5 71 3 42 14
LRN 3 3 7 4 12 1 5 5
MRB
UND 16 1 6 5 15 4 6 13
PLY 1 1 1
STF 34 14 26 9 39 7 15 20
LOY 1 4 1 1 1
CMP* 3 1 3 23

* Attribute was not included in model proposed in [16]

4 Discussion and Concluding Remarks

The objective of the research described in this paper was the design of a methodology
for evaluating quality in use of Web 2.0 applications [14]. In order to accomplish the
research goal, the quality in use of mind mapping applications was evaluated with
three different methods: logging actual use, questionnaire, and retrospective thinking
aloud.

The purpose of the experiment presented in this paper was twofold. Firstly, we
aimed to determine to what extent the conceptual model and the corresponding
measuring instrument we developed would be suitable for the evaluation of Web 2.0
applications. The analysis of the data gathered by means of the logging actual use
method revealed that in the analysis and comparison of Web 2.0 applications the
following can be used: distance traversed, number of mouse clicks and mouse moving
speed. Namely, through the use of these objective metrics a statistically significant

276 T. Orehovački, A. Granić, and D. Kermek

difference between the evaluated Web 2.0 applications can be determined. However,
the measures of numbers of keystrokes, keyboard typing and mouse clicking speeds
did not show discriminant validity. We believe that this occurred because the
experiment was not time-limited. Another possible reason may be a narrow
specialization of evaluated applications. Accordingly, the results obtained from the
post-use questionnaire showed statistically significant differences among all four
evaluated Web 2.0 applications. This suggests that Web 2.0 applications can be
ranked by mean values.

Secondly, we aimed to identify the importance that users attach to certain attributes
of quality in use and to detect whether the set of the most important attributes depends
on the type of Web 2.0 application. The results gathered by means of the retrospective
thinking aloud (RTA) method revealed the importance of effort (28.99%) and
performance (21.43%) based attributes of quality in use. In particular, participants felt
highly satisfied and comfortable working with Web 2.0 applications meeting the
following quality in use attributes: ease of use, effectiveness, controllability,
interactivity, navigability, customizability, efficiency, information content coverage,
understandability, and reliability. In addition, data analysis showed that some attributes
(consistency, feedback, accessibility, and memorability) were not mentioned at all
during the RTA session. Possible reasons may be: majority of users not having any
kind of disability; the ability to evaluate memorability when the application is re-used
with a time lag, etc. On the other hand, compatibility, i.e. the degree to which a Web
2.0 application works equally well within different browsers, operating systems, or
devices, which was not included in the proposed model, has proven to be an important
indicator of problems in use of Web 2.0 applications. The results were similar to the
findings presented in [15] which suggest that: (i) there is a general set of attributes
that needs to be measured independently of the type of Web 2.0 applications; (ii) the
weight of an attribute depends on the type of the evaluated Web 2.0 application; and
(iii) there is a set of attributes aimed for measuring the quality in use of specific types
of Web 2.0 applications. In our research, the results of the estimated and perceived
quality in use do not match. Such findings are in accordance with those presented in
e.g. [7]), indicating that quality in use should be measured with both subjective and
objective instruments since they are aimed for evaluating different aspects of Web 2.0
applications. In addition, we must emphasize that a homogeneous set of four
evaluated applications is a fairly modest sample on the basis of which generalizable
sound conclusions on the importance of each category on the quality in use of Web
2.0 applications can not be drawn. Therefore, our future work will be focused on: (i)
applying the proposed model to evaluate the quality in use of various Web 2.0
applications in a different context of use; (ii) revision of attributes, model and
measuring instruments; (iii) improvement of a proposed methodology with an aim to
facilitate analysis and comparison of the evaluated Web 2.0 applications.

References

1. Almeida, J.M., Gonçalves, M.A., Figueiredo, F., Pinto, H., Belém, F.: On the Quality of
Information for Web 2.0 Services. IEEE Internet Computing 14(6), 47–55 (2010)

2. Blacksun Software (2011),
http://www.blacksunsoftware.com/mousotron.html

 Exploring the Quality in Use of Web 2.0 Applications 277

3. Bevan, N.: Extending Quality in Use to Provide a Framework for Usability Measurement.
In: Kurosu, M. (ed.) HCD 2009. LNCS, vol. 5619, pp. 13–22. Springer, Heidelberg (2009)

4. Bevan, N., Macleod, M.: Usability measurement in context. Behaviour & Information
Technology 13, 132–145 (1994)

5. Cappiello, C., Daniel, F., Matera, M.: A Quality Model for Mashup Components. In:
Gaedke, M., Grossniklaus, M., Díaz, O. (eds.) ICWE 2009. LNCS, vol. 5648, pp. 236–
250. Springer, Heidelberg (2009)

6. Chiou, W.-C., Lin, C.-C., Perng, C.: A strategic framework for website evaluation based
on a review of the literature from 1995-2006. Information & Management 47, 282–290
(2010)

7. Frøkjær, E., Hertzum, M., Hornbæk, K.: Measuring usability: Are effectiveness,
efficiency, and satisfaction really correlated? In: Proceedings of the ACM CHI Conference
on Human Factors in Computing Systems, pp. 345–352. ACM, New York (2000)

8. Hart, J., Ridley, C., Taher, F., Sas, C., Dix, A.: Exploring the Facebook Experience: A
New Approach to Usability. In: 5th Nordic Conference on Human-Computer Interaction:
Building Bridges, pp. 471–474. ACM, Lund (2008)

9. Hassenzahl, M., Tractinsky, N.: User experience - a research agenda. Behaviour &
Information Technology 25(2), 91–97 (2006)

10. ISO/IEC 25010:2011. Systems and software engineering - Systems and software Quality
Requirements and Evaluation (SQuaRE) - System and software quality models (2011)

11. Lew, P., Olsina, L., Zhang, L.: Quality, Quality in Use, Actual Usability and User
Experience as Key Drivers for Web Application Evaluation. In: Benatallah, B., Casati, F.,
Kappel, G., Rossi, G. (eds.) ICWE 2010. LNCS, vol. 6189, pp. 218–232. Springer,
Heidelberg (2010)

12. Nielsen, J.: Heuristic evaluation. In: Nielsen, J., Mack, R.L. (eds.) Usability Inspection
Methods, John Wiley & Sons, New York (1994)

13. Olsina, L., Sassano, R., Mich, L.: Specifying Quality Requirements for the Web 2.0
Applications. In: Proceedings of 7th International Workshop on Web-oriented Software
Technology (IWWOST 2008), pp. 56–62. CEUR, Bratislava (2008)

14. Orehovački, T.: Development of a Methodology for Evaluating the Quality in Use of Web
2.0 Applications. In: Campos, P., Graham, N., Jorge, J., Nunes, N., Palanque, P., Winckler,
M. (eds.) INTERACT 2011, Part IV. LNCS, vol. 6949, pp. 382–385. Springer, Heidelberg
(2011)

15. Orehovački, T.: Perceived Quality of Cloud Based Applications for Collaborative Writing.
In: Pokorny, J., et al. (eds.) Information Systems Development – Business Systems and
Services: Modeling and Development, pp. 575–586. Springer, Heidelberg (2011)

16. Orehovački, T.: Proposal for a Set of Quality Attributes Relevant for Web 2.0 Application
Success. In: 32nd International Conference on Information Technology Interfaces, pp.
319–326. IEEE Press, Cavtat (2010)

17. Silva, P.A., Dix, A.: Usability – Not as we know it! In: 21st British HCI Group Annual
Conference on HCI 2007: People and Computers XXI: HCI...But not as We Know It,
vol. 2, pp. 103–106. ACM, University of Lancaster (2007)

18. Thompson, A.-J., Kemp, E.A.: Web 2.0: extending the framework for heuristic evaluation.
In: 10th International Conference NZ Chapter of the ACM’s Special Interest Group on
Human-Computer Interaction, pp. 29–36. ACM, New Zealand (2009)

A. Harth and N. Koch (Eds.): ICWE 2011 Workshops, LNCS 7059, pp. 278–288, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Detecting Conflicts and Inconsistencies in Web
Application Requirements

Matias Urbieta1,3, Maria Jose Escalona2, Esteban Robles Luna1,
and Gustavo Rossi1,3

1 LIFIA, Facultad de Informática, UNLP, La Plata, Argentina
{murbieta,esteban.robles,gustavo}@lifia.info.unlp.edu.ar

2 IWT2 Group. University of Seville, Spain
mjescalona@us.es

3 Conicet

Abstract. Web applications evolve fast. One of the main reasons for this
evolution is that new requirements emerge and change constantly. These new
requirements are posed either by customers or they are the consequence of
users’ feedback about the application. One of the main problems when dealing
with new requirements is their consistency in relationship with the current
version of the application. In this paper we present an effective approach for
detecting and solving inconsistencies and conflicts in web software
requirements. We first characterize the kind of inconsistencies arising in web
applications requirements and then show how to isolate them using a model-
driven approach. With a set of examples we illustrate our approach.

1 Introduction

Eliciting web application requirements implies understanding the needs of different
stakeholders, those that are related with the same underlying enterprise business. Most
of the times, requirements are agreed by stakeholders in such a way that the semantics
and meanings of each used term is well understood; however when different points of
view [11] of the same business concept exist, ambiguities and/or inconsistencies may
arise, being them detrimental to the Software Requirement Specification (SRS).
Traditionally, conciliation tasks are performed using meeting-based tools, in order to
eliminate requirements ambiguity and inconsistence. When requirement
inconsistencies are not detected on time -being this one of the most severe reason of
project cost overrun [12][17]-, they may become defects in the web software. In this
context, the effort to correct the faults is several orders of magnitude higher than
correcting requirements at the early stages [12].

Inconsistencies may also arise from new requirements, which introduce new
functionality or enhancements to the application or, even, for existing requirements
that change during the development process. For example, an online e-commerce site
may plan a promotion for Christmas, where some products have free shipping for a
period of time; meanwhile other products keep the usual shipping cost. This new

 Detecting Conflicts and Inconsistencies in Web Application Requirements 279

requirement introduces changes that are perceived by the user because he can see
promotional banners in different pages. It is noteworthy that the existing “shipping”
requirement is overridden (and contradicted) with the shipping cost exception,
introducing ambiguities: what products have the free shipping promotion? In which
way users are notified? How long will the promotion be available?

In this paper we present a model-based validation and inconsistency detection
technique for web application requirements, particularly for those that reflect
themselves during navigation and interaction, two aspects are the key features of web
applications. Though we exemplify our technique with WebSpec[15], the same ideas
can be easily applied to other similar approaches such as WebRE[8] or Molic[6]. By
using this technique we reduce the risk of errors and costs caused by inconsistencies
detected in the final stages of software development.

The main contributions of this paper are threefold: a characterization of web
application requirement inconsistencies depending on a taxonomy for conflicts; a
modular approach for detecting inconsistencies that can easily complement any web
application engineering process no matter its style: agile or unified; and a set of
running examples to illustrate our approach.

The rest of this paper is structured as follows. Section 2 presents some related work
in requirements validation. Section 3 introduces the background for the paper. Section
4 presents our characterization of web requirement conflicts. Section 5 describes our
approach to detect and deal with inconsistencies. Section 6 presents a tool which
provides support for conflict detection analysis. Finally Section 7 concludes this work
discussing the lessons learned, our main conclusions and some further work on this
subject.

2 Related Works

The analysis and detection of conflicts in the requirements phase are one of the most
critical tasks in requirements engineering [15]. A global view presented in [7] divides
this phase in three main tasks: requirements capture, requirements definition and
requirements validation. The detection of conflicts is normally executed in the last
one. In [7] the authors surveyed the way in which web engineering approaches dealt
with these three phases and conclude that requirements validation is one of the less
treated. Besides, none of these techniques offers a systematic detection of conflicts in
requirements. Approaches studied in this survey support four main techniques for
requirements validation: reviews, audits, traceability matrix and prototypes. In [16]
this set is enriched adding requirements test. It consists in the generation of early test
cases derived from requirements, which enables the early validation with users.

Recently, some web design approaches, such as WebML[5], support this idea using
the model-driven paradigm. However, even offering systematic (or even automatic)
support for early testing, the detection of inconsistencies in the requirements
specification continues being “too artisanal” and depends on the analyst’s experience
and his/her capability for supporting the review with customers and users.

280 M. Urbieta et al.

Focusing only on the detection of conflicts, in [3], an approach to detect conflict in
concerns is presented. In this approach, the authors propose the use of a Multiple
Criteria Decision Making method to support aspectual conflict management in aspect
oriented requirements. The main limitation of this approach it that it is oriented to
aspect-oriented requirements treatment and it only deals with concern conflicts.

In other phases of the life cycle, the conflict detection process has been researched
intensively by the model-driven community mainly focused to UML model conflicts.
In [1] the author proposes detecting conflict in a twofold process: analyzing syntactic
differences raising candidate conflicts and understanding these differences from a
semantic view.

3 Background

In this work we focus on detecting conflicts in web applications requirements which
are modeled using WebSpec, a web requirement meta-model describing interactions,
navigations and interface aspects.

WebSpec[15] is a visual language; its main artifact for specifying requirements is
the WebSpec diagram which can contain interactions, navigations and rich behaviors.

A WebSpec diagram defines a set of scenarios that the web application must
satisfy. An interaction (denoted with a rounded rectangle) represents a point where
the user can interact with the application by using its interface objects (widgets).
Interactions have a name (unique per diagram) and may have widgets such as labels,
list boxes, etc. In WebSpec, a transition (either navigation or rich behavior) is
graphically represented with arrows between interactions while its name,
precondition and triggering actions are displayed as labels over them. In particular, its
name appears with a prefix of the character ‘#’, the precondition between {} and the
actions in the following lines.

The scenarios specified by a WebSpec diagram are obtained by traversing the
diagram using the depth-first search algorithm. The algorithm starts from a set of
special nodes called “starting” nodes (interactions bordered with dashed lines) and
following the edges (transitions) of the graph (diagram).

As an example of WebSpec’s concepts we present in Fig. 1 the specification for
the user story: “As a customer, I would like to search products by name and see their
details” in an e-commerce application. Home represents the starting point of the
specification and it contains 2 widgets: searchField text field and search button (see
[15] for further details).

4 Characterizing Requirements Conflicts in Web Applications

During requirement specification, there may be cases where two or more scenarios
that reflect the same business logic differ subtly from each other producing an
inconsistency. When these inconsistencies are based on contradictory behaviors, we
are facing a conflict of requirements [10]. Conflicts are characterized by differences
of objects’ features, logical (what is expected) or temporal (when is expected)
conflicts between actions, or even difference of terminology that creates ambiguity.

 Detecting Conflicts and Inconsistencies in Web Application Requirements 281

In this analysis, we will emphasize on web application navigation, as well as user
interaction peculiarities that are not covered in the traditional characterization of
requirement conflicts [10]. Consequently, we provide an interpretation of each
conflict type in the web application realm, using simple but illustrative examples. We
use WebSpec terminology to specify the requirements.

Fig. 1. WebSpec diagram of the Search by name scenario

Structural conflicts stand for a difference in the data expected to be presented in
one web page by different stakeholders. A stakeholder may demand a data to be
shown in a web page that contradicts other stakeholder requirement. For example, a
stakeholder expects a product content description just as a read-only label, while
another one may expect the content as a list of packaged items with an overall
description contradicting the first requirement.

Two web application requirements may contradict the way in which links are
traversed producing navigational conflicts, e.g. having a single source node but two
targets. The target nodes are different, but the event that triggers the navigation and
the condition guards are the same, producing an ambiguity of such requirement. In
WebSpec terms, for a given navigation sequence (or path) composed with
interactions and navigations, there are two navigation alternatives triggered by the
same event. For instance, a WebSpec navigation can define that after clicking the
“Buy” button at the Product interaction, a shopping cart is presented. On the other
hand, the same navigation has as target the PaymentMethod interaction, which allows
selecting a payment method instead of presenting the Shopping cart.

A semantic conflict occurs when the same real world object is described with
different terms. This situation may generate a false negative in the conflict detection
process, since a conflict may not be detected and new terms are introduced into the
system space thus increasing its complexity. As a consequence the same domain
object is modeled in two entities having different terminology. For instance, an e-
commerce site can wrongly define two entities that stand for the same concept: Good
and Product.

5 Detecting and Correcting Conflicts

Next we present our approach that helps detecting conflicts checking the existences of
false positives and false negatives conflicts. The approach comprises the following
steps, depicted in Fig. 2 (notice that steps 1 and 2 are already part of any development
process; therefore the novel contribution begins in step 3):

282 M. Urbieta et al.

1. Requirement gathering: Using well-known requirement elicitation techniques such
as meetings, surveys, Joint Application Development (JAD), etc. a Software
Requirement Specification (usually in natural language) is produced. In the case of
an agile underlying development process, a briefer description is usually produced
with user stories [4]; use cases are often used in a unified process style.

2. Requirement modeling: Web application requirements are formalized using a
requirement domain specific language (DSL) (e.g. WebSpec, WebRE or Molic).
This formalization is essential during the validation process with stakeholders. By
means of using a requirement DSL, the validation process can automated.

3. Structural analysis of the web requirements model: by means of an algebraic
comparison of models, candidate structural and navigational conflicts are detected.
Additionally, navigation paths are evaluated for checking their consistency.

4. Semantic analysis: candidate conflicts are analyzed and semantic equivalences are
detected. For each candidate conflict, both the new requirement and the
compromised requirement are translated from a high abstraction level (the
requirements DSL) to a minimal form, using an atomic constructor in order to
detect semantic differences.

5. Conciliation process: once the existence of a conflict is confirmed, we must start
conciliating requirements. This process demands the establishment of a
communication channel among those stakeholders concerned to the conflict.

6. Refinement: When a conflict is confirmed some adjustment and tuning must be
done in order to remove the detected conflict and reach a consistent state.

Fig. 2. The overall process for detecting requirement conflicts

The process is applied iteratively each time a new set of requirement rises. The
new incoming set of requirements is checked with each one of the already
consolidated requirements of the system space. In Fig. 2, those steps that can be
implemented to be automated are grouped with a dashed box and those steps outside
the dashed box are manually elaborated.

Fig. 3. User stories for gathered requirements

 Detecting Conflicts and Inconsistencies in Web Application Requirements 283

5.1 Requirement Gathering and Requirement Modeling (Steps 1 and 2)

In order to describe clearly and accurately the aforementioned process, we use as a
running example the development and extension of an e-commerce site. In Fig. 3,
user stories [4] derived from gathered requirements are shown. Instead of including in
this section the corresponding WebSpec diagrams, we show them in each of the
subsequent steps.

5.2 Detecting Syntactic Differences (Step 3)

A candidate conflict arises when the set of syntactic differences between requirement
models is not empty. These differences may be a consequence of the absence of an
element in one model but present in the other, the usage of two different widgets for
describing the same information, and finally a configuration difference in an element
such as the properties values of a widget. This situation may arise when two different
stakeholders have different views of a single functionality, or when an evolution
requirement contradicts an original one. As the result of having a formal tool for
describing requirements, the detection task can be implemented by reasoning over the
specification. In this case using the WebSpec support tool [15], this task can be
performed using OCL [14] sentences or RDF [9] queries.

Structural conflicts detection can be implemented by a comparison operation
between interactions, in order to detect the absence of elements or elements
constructions differences. Since WebSpec interactions are containers of widgets, we
can apply set’s difference operations in order to detect inconsistencies. For example, a
Product interaction version called Product1 have Name, Valorization and Content
Labels, and an addToShopping Button and, on the other hand, a different version
called Product2 comprises a Name, and Description Label, and a list of PackageItem
Labels. After applying the symmtric difference, following widgets differs:
Valorization, Content, addToShoppingCart, Description, and a list of PackageItem.

Notice that for the comparison operation, two elements are equal if and only if they
have the same identifier and have the same widget type and compatible configuration.

To detect navigational conflicts, outgoing navigations from a given node with
identical triggering events but different targets must be detected. The task is pretty
straightforward; since navigations are described by a guard and a set of actions that
trigger them, the navigations for a given interaction must be compared to each other
taking into account their guards and set of actions. The main challenge of this
procedure is to check whether or not the sets of actions that correspond to navigations
are semantically equivalent considering that the actions can be syntactically different.

Next we introduce an analysis process that helps avoiding false positives.

5.3 Semantic Analysis (Step 4)

As the result of the structural analysis of models, a list of candidate conflicts is
reported; this list must be verified in order to detect false positives, i.e. conflicts that
actually are not conflicts since the compromised specifications describe the same
requirement. This issue has been already studied in [1][13] where models are
analyzed in order to expose their underlying goals. When the underlying goals are
different, we are facing a confirmed conflict.

284 M. Urbieta et al.

We use an approach proposed in [1] and based on having an additional semantic
view of requirements that complements the existing syntactic view. For achieving
this, requirements models are downgraded in terms of abstraction, obtaining a refined
model formed only with semantically simple elements. The resultant model is larger
than the source diagram but has the same semantics.

This approach is twofold: a meta-model called semantic view, defined as a reduced
subset of the web application requirement DSL is specified, and a transformation is
specified that takes elements from the source model to the “semantic view”.

The compromised models (the new and the stable one) are transformed into a
semantic view where the derived models are finally compared syntactically. For each
conflict detected in step 3, this approach helps detecting false positives because the
semantically equivalent constructions imply that different models specify the same
requirement. In the other hand, models are compared when no conflict is detected to
expose false negative cases.

We will use as semantic view a simplified WebSpec meta-model where the
Transition’s hierarchy and Container widgets are removed. The transition hierarchy
is formed by two specializations - Navigation and RichBehavior - that are removed in
order to focus on determining what is the intent of the interaction, independently of
the used interaction pattern: traditional navigation or RIA interaction. When
containers do not have a name, they are removed in order to reduce composition
complexity and avoid unnecessary object aggregations.

Finally a model transformation must turn a WebSpec model into a semantic one in
order to provide a simpler understanding.

 In the transformation, a set of rules closely related to the Web requirement meta-
model used are applied over the input model obtaining the semantic view. These rules
are based on heuristics defined by the requirement engineer and the available set of
rules must be improved iteratively by means of lessons learned of its application.

 If other Web requirement meta-model is used such as WebRE, a different set of
rules must be defined where each one must increase the abstraction level in such a
way the intent of the model is emphasized.

Some of the rules for WebSpec meta-model comprised by the transformation are:

• Disabled TextFields are translated to Labels. As disabled TextFields do not
allows user inputs these are replaced by simple Labels.
• Links are translated to buttons. Links and Buttons are usually used for
describing an action triggering. Therefore, links are normalized to buttons.
• Navigations and RichBehavior are simplified into a single transition
abstraction. This rule makes the diagram focus more on the data itself instead of
the way in which it is accessed. Finally, Navigation´s and RichBehavior ´s
actions are removed.

In order to detect if the syntactic conflict is in fact a conflict, the semantic
transformation is applied over both requirement specifications. Both transformations
produce the same model that is formed by Labels and a Button. Thus, as both
semantic views are equal, there is not conflict at all.

The following example aims at illustrating how semantic conflicts are detected; in
particular a false negative case. In Fig. 4 two requirements, namely “show product

 Detecting Conflicts and Inconsistencies in Web Application Requirements 285

information” and “show product summary” represent the same interaction idea but
use two different interaction patterns: traditional web navigation and RIA´s mouse
hover pattern.

The left-hand image specifies that after clicking the name of a product, the link is
traversed and a product detail is shown. On the other hand, in the picture at the right,
when the mouse´s pointer is place over the product´s name, a product detail is
popped-up. It is remarkable that both requirements´ models have the same intent but
are described with distinct WebSpec constructors.

The resultant of applying the transformation to both conflicted WebSpec is a pair
of normalized diagrams that must be syntactically compared in order to detect
differences. Fig. 5.a and Figure 5.b show the result of applying the transformation to
the examples presented in Fig. 4.a and 4.b respectively where Navigations and
RichBehavior were normalized into the more abstract Transitions, and the Home link
was removed because it is not referenced anymore.

Fig. 4a. Specification of conventional
navigation requirement.

Fig. 4b. Interaction based on a RIA feature.

Fig. 5a. Normalized conventional navigation
model into Semantic view.

Fig. 5b. Normalized RRIA feature model into
Semantic view.

Then a semantic conflict is detected because both models are not syntactically
equal in the semantic view because Price and Description Labels are not present in
both ProductDetail interactions (Fig. 5.a and Fig. 5.b).

There are cases were both traditional navigation and RIA features are required, in
this case the raised warning for a false negative conflict must be omitted.

5.4 Conciliation Process (Step 5)

So far, we have shown how to detect conflicts that must be resolved in order to keep
the SRS sound and complete. Next we will introduce a set of heuristics that helps
resolving structural and navigation conflicts and that have been implemented as
suggested refactorings in our tool support.

In the case of structural conflicts, the absence of a given widget in a model but
present in the other, we can take an optimistic position understanding that the best

286 M. Urbieta et al.

solution is to include the construction as an improvement when it is not present. This
idea comes from the fact that new requirements may improve others requirement´s
functionality; therefore the new requirement widget may enrich an existing
interaction.On the other hand, the widget type incompatibility demands a deeper
analysis understanding the context of the difference.

Navigational conflicts express ambiguity in the way in which the web application
is browsed, having two targets (WebSpec interactions) in a navigation triggered by
the same event. This situation is naturally resolved enriching the scenario in such a
way that the conflict is dissolved because the scenario detail is increased. Since we
are using WebSpec as a requirement modeling tool, there are two strategies available
for disambiguating: adding precondition clauses or extending the scenario path; both
increase scenario detail.

As we have previously introduced, different stakeholders may provide slightly
different specification for the same application goal. Nonetheless, there are scenarios
where it is more prone to face inconsistencies such as the presence of business
objects’ hierarchies. At the requirement elicitation stage, hierarchies of business
objects may not be clearly detected and defined, and as a consequence several
business objects structurally different are referenced with the same name.

6 Tool Support

We have extended the WebSpec tool [15] with a reasoning support that helps
detecting inconsistencies in the requirement modeling process. The tool provides a
consistency checker engine based on the Eclipse EMF OCL[14] query system. By
means of executing OCL queries over diagrams both structural and navigational
inconsistencies are detected. The tool automates the structural analysis of web
requirement models, transformation of requirements into semantic view and the
syntactic analysis discussed in Section 5. Its main intent of use is during the
requirement gathering and requirement modeling steps of the process, as it aids
analysts in the requirement modeling, requirement management, and consistency
checking activities. The tool provides a consistency report is generated showing
detected conflicts and compromised widgets. Finally, when inconsistencies are
detected, candidates list of automatic and semiautomatic (those that require an input
parameter) refactorings that correct inconsistencies are presented. Since conflicts can
not be trivially resolved, the tool provides a list of refactorings that could be applied
to resolve the problem. The analyst should decide which option is the best to be
applied, and afterwards the tool will perform automatically the refactoring over the
WebSpec diagrams.

7 Concluding Remarks and Further Work

We have presented a novel approach for detecting conflict and inconsistencies in web
application requirements in the early stages of software development. The presented
approach leans on a web requirement meta-model used for specifying, in a formal

 Detecting Conflicts and Inconsistencies in Web Application Requirements 287

way, the application requirements. Any new requirement is checked against the
consolidated requirement set in order to detect conflicts. By means of syntactic and
semantic analysis inconsistencies are detected. The approach is modular so it can be
plugged in any software engineering approach to ensure application consistency,
validate requirements, and save time and effort to detect and solve error in latest
software development steps. Our support tool helps to automate the analysis and
correction of these inconsistencies.
 We have presented some simple examples that illustrate the approach feasibility
but it still requires further work. We are currently working on the following issues:
complete the approach with a set of ontology matching algorithms in order to improve
semantic conflicts detection; extend the available heuristics for resolve detected
conflicts in order to provide automated conflict detection and solving solution; and
carry out an experiment instantiating the approach in order to provide evidence and to
measure the time and effort effectively saved.

References

[1] Altmanninger, K.: Models in Conflict - Towards a Semantically Enhanced Version
Control System for Models. In: MoDELS Workshops 2007, pp. 293–304 (2007)

[2] Boehm, B.W., Grünbacher, P., Briggs, R.O.: Developing Groupware for Requirements
Negotiation: Lessons Learned. IEEE Software 18(3) (2001)

[3] Brito, I.S., Vieira, F., Moreira, A., Ribeiro, R.A.: Handling Conflicts in Aspectual
Requirements Compositions. In: Rashid, A., Aksit, M. (eds.) Transactions on AOSD III.
LNCS, vol. 4620, pp. 144–166. Springer, Heidelberg (2007)

[4] Cohn, M.: Succeeding with Agile: Software Development Using Scrum, 1st edn.
Addison-Wesley Professional (2009)

[5] Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing
Data-Intensive Web Applications. Morgan Kaufmann Publishers Inc., San Francisco
(2002)

[6] de Paula, M.G., da Silva, B.S., Barbosa, S.D.: Using an interaction model as a resource
for communication in design. In: CHI 2005 Extended Abstracts on Human Factors in
Computing Systems, Portland, USA, April 02-07, pp. 1713–1716 (2005)

[7] Escalona, M.J., Koch, N.: Requirements Engineering for Web Applications: A Survey.
Journal of Web Engineering II(2), 193–212 (2004)

[8] Escalona, M.J., Koch, N.: Metamodeling Requirements of Web Systems. In: Proc.
International Conference on Web Information System and Technologies (WEBIST 2006),
INSTICC, Setúbal, Portugal, pp. 310–317 (2006)

[9] Euzenat, J., Shvaiko, P.: Ontology Matching, 1st edn. Springer, Heidelberg (2007) ISBN:
978-3540496113

[10] IEEE Recommended Practice for Software Requirements Specifications. IEEE Std 830-
1998 (1998)

[11] Kotonya, G., Sommerville, I.: Requirements engineering with viewpoints. Software
Engineering Journal 11(1), 5–18 (1996)

[12] Leffingwell, D.: Calculating the Return on Investment From More Effective
Requirements Managament. American Programmer 10(4), 13–16 (1997)

[13] Li, C., Ling, T.W.: OWL-Based Semantic Conflicts Detection and Resolution for Data
Interoperability. In: ER (Workshops) 2004, pp. 266–277 (2004)

288 M. Urbieta et al.

[14] Object Management Group, Object Constraint Language, Version 2.2,
http://www.omg.org/spec/OCL/2.2/

[15] Luna, E.R., Garrigós, I., Grigera, J., Winckler, M.: Capture and Evolution of Web
Requirements Using WebSpec. In: Benatallah, B., Casati, F., Kappel, G., Rossi, G. (eds.)
ICWE 2010. LNCS, vol. 6189, pp. 173–188. Springer, Heidelberg (2010)

[16] Sommerville, I.: Software Engineering. Addisson Wesley (2002); Van Der Straeten, R.,
Mens, T., Simmonds, J., Jonckers, V.: Using Description Logic to Maintain Consistency
Between UML Models. In: Stevens, P., Whittle, J., Booch, G. (eds.) UML 2003. LNCS,
vol. 2863, pp. 326–340. Springer, Heidelberg (2003)

[17] Yang, D., Wang, Q., Li, M., Yang, Y., Ye, K., Du, J.: A survey on software cost
estimation in the chinese software industry. In: ESEM 2008, pp. 253–262 (2008)

A. Harth and N. Koch (Eds.): ICWE 2011 Workshops, LNCS 7059, pp. 289–301, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Streamlining Complexity: Conceptual Page Re-modeling
for Rich Internet Applications

Andrea Pandurino1, Davide Bolchini2, Luca Mainetti1, and Roberto Paiano1

1 University of Salento, Department of Innovation Engineering
Graphics and Software Architectures Lab
Via Monteroni - 73100 Lecce (LE), Italy

{andrea.pandurino,luca.mainetti,roberto.paiano}@unisalento.it
2 Indiana University, School of Informatics at IUPUI

User Simulation and Experience Research Lab
535 W. Michigan St., 46202 Indianapolis, IN, U.S.A.

dbolchin@iupui.edu

Abstract. The growth of Rich Internet Applications (RIAs) calls for new
conceptual tools that enable web engineers to model the design complexity un-
leashed by innovative interaction (with increasing communication potential)
and to carefully consider the impact of the design decisions on the optimal flow
of the User Experience (UX). In this paper we illustrate how is particularly re-
levant for RIA engineering not only to capture existing RIA technologies with
suitable design artifacts but also to model an effective dialogue between users
and RIA interfaces. Through a case study, we propose a set of conceptual de-
sign primitives (Rich-IDM) to enable web engineers to characterize the fluid,
smooth and organic nature of the user interaction, and to take design decisions
which meet both usability and communication requirements.

Keywords: User Experience, Rich Internet Application, Dialogue Modeling,
Information Architecture, UX Requirements.

1 Introduction

The technologies enabled by RIA offer designers the opportunity to experiment with a
novel interaction grammar that is radically changing the dialogue rules between the
application and the user. The metaphor of the dialogue seems appropriate to represent
the new communication aspects enabled by RIA technologies; in fact, for long time,
Human-Computer Interaction (HCI) researchers assume that a sort of dialogue is es-
tablished between the user and the interactive application during its use [2]. On this
basis, every element of the application interface can be considered as a dialogue
fragment that can be built using several “dialogue types and techniques” (such as
form filling, menu selection, icons, direct manipulation, etc.) [8]. It is our opinion that
RIAs are completely changing the core vocabulary of the dialogue for two reasons:

290 A. Pandurino et al.

(i) the set of interface primitives is raised through the introduction of new widgets; (ii)
the interface primitives respond to more interaction events (such as mouse-over,
drag-and-drop) than the corresponding primitives in a standard Web Application
(WA). These new events allow users to enrich the dialogue with the application.

Two principal flaws could affect the design of RIAs if they are modeled using
standard WA methods: (i) underutilization of the features of the RIA interface be-
cause the used methodology does not consider expressly the new primitives. Thus, the
application interface has the same behavior of a standard WA and simply the system
is re-written using a new technology; (ii) weak use of the RIA interface primitives: the
designer models the new features of RIAs considering only the technological aspects,
without evaluating the impact on the UX. This can cause serious problems to the inte-
raction quality of the entire web application. To better understand this important as-
pect, in section 2 we report some examples of this defect using a commercial web site.
Here we propose a design approach that can mitigate these flaws. Our approach,
called Rich-IDM, can help designers to consider properly the RIA interface features,
taking under control the communication aspects of the application. Rich-IDM can
improve the dialogue between users and application, and, thus, the design of the UX
because its primitives are characterized by a strong semantics (based on the metaphor
of web-as-dialogue) derived by the information model. The dialogue is the bridging
metaphor between the need to plan a product (design) and its UX, as defined in [11]
“a representation of designers’ hypotheses on experiences of the user needs or wants
to have with the product in the future” or in [12] “a dynamic, context-dependent and
subjective concept, which stems from a broad range of potential benefits users may
derive from a product”, which is in line with the UX definition proposed by ISO
(2008) [10]: “A person's perceptions and responses that result from the use or antic-
ipated use of a product, system or service.”

The paper is organized as follows: section 2 provides the reader with a brief intro-
duction to the poor RIA design problem caused by the introduction in RIA features
considering only as technological improvements; section 3 gives a brief presentation
of our methodological approach in order to address these issues; section 4 reports on
key related work in the area of RIA engineering approaches and User eXperience
(UX) requirements design; finally, in section 5 the conclusions summarize our key
messages and sketch future research directions.

2 Potential and Weaknesses of RIA Design

The features of RIAs tend to exhibit potential flaws that can negatively affect the
usability of the interaction. In detail: (i) at the micro-interaction level, the aesthetic
impact of the presentation layer can obscure the real intent of the page at any given
moment of the interaction, diverting the user’s attention; (ii) recurring attention tunne-
ling can easily bring users to misplace the saliency of the overall message of the page
content. This problem can be summarized by implicit questions of the user: What is
the designer showing me now? What is the main intent of this page? What is the mes-
sage of this page?; (iii) users may have difficulty in capturing the underlying concep-
tual model of the designers, which should ideally match the user’s mental model, thus
starting an errant mental model; and (iv) the massive use of animations (such as

Streamlining Complexity: Conceptual Page Re-modeling for Rich Internet Applications 291

sliding windows), that trigger continuous changes of the interface, greatly stresses
user working memory by forcing users to recall their specific position in the local and
global information architecture, the affordance of specific controls, and their location.
In a previous work [16], we presented a set of case studies providing examples of
flaws derived by the analysis of real web sites. For lack of space, here we limit our
analysis to only one example.

Case study. A clear example of user working memory stressing can be found in the
homepage of the Verizon corporate (Fig. 1), a communication carrier of the North
America. The intent of the page is to show the features of the offered services. The
page content is not so dense, but the page is long and requires the use of the mouse
scroll to be completely viewed. The page presents various mechanisms that allow
users to change (hide/unhide) completely the provided information without a page
reload: (i) the menus in the highlighted area 1 (see Fig. 1) are composed of several
items that inside have multiple columns with buttons and advanced options; (ii) the
images of the area 3 allow to change completely the content showed in the area 2; (iii)
the area 4 contains a set of messages “what’s HOT” automatically updated or by user
choice through the specific button in the same section; (iv) the area 6 controls the
vertical banners, which are sliding elements with contents.

Fig. 1. www.verizon.com, homepage (April 2010)

292 A. Pandurino et al.

Summarizing, there are 6 areas and 17 contents that can contain other dynamically
showed elements.

The information presented one-shot to the user is few if compared to the global
quantity of information of the page but, to have a complete schema of the page con-
tent, the user should access all the hided elements, which are mutually exclusive.
Then, to reach specific product, the user must remember its position and the corres-
ponding path; moreover, in order to compare two products (not displayed at the same
time), the user must remember the features of the first while he/she is reading the
other one. This situation is a clear example of poor user experience caused by a weak
application of the RIA features.

In order to prevent the flaws described in the case study and the UX defects ana-
lyzed (but not reported) in this paper, in the following paragraph we present our con-
ceptual approach called Rich-IDM.

3 Disciplined RIA Modeling for Improved UX Requirements

The new features of the RIA have changed radically the UX and put new questions
that must be carefully evaluated during the design time. From this point of view, as
described in the related work section, the existing approaches reach the goal to for-
malize the technological aspects of RIAs but they do not consider how to evaluate the
changes in the UX and how it evolves. Thus, it is clear that it is necessary to define a
methodological layer in which the single primitive has a well-defined communication
semantics able to model the interaction and navigation paradigms of RIAs.

On the basis of these needs, in the following we present a conceptual approach
(Rich-IDM) based on the Interactive Dialogue Model (IDM) [3]. First, we give a brief
introduction to IDM (see Table 1), then we present all the primitives of Rich-IDM
considering their notation and semantics (see Table 2). To give an example of the
effectiveness of the Rich-IDM primitives to prevent and to correct UX poor usability
situations, we report an artifact of the reengineering activity we did on the homepage
of www.verizon.com, already used to describe the interface flaw.

3.1 A Brief Introduction to IDM

The idea to use the concepts of the dialogue as basis to describe the human-computer
communication is not new. For long time, the research in the field of the Human–
Computer Interaction (HCI) assumes that between the user and the interactive
application a sort of dialogue is established during its use [1]. Often, in HCI literature,
“dialogue” is used as synonymous “interaction”. On this basis, every element of the
application interface such as the information retrieved from a database, the pop-up
windows, the buttons, and other widgets, can be considered as dialogue fragments that
can be built using several “dialogue types and techniques” (such as such form filling,
menu selection, icons, direct manipulation, etc. [7]). Hence, the design of the
interaction is often called “dialogue design” and, therefore, it is defined as the activity
of modeling the structure of the conversation between the user and the system.

Streamlining Complexity: Conceptual Page Re-modeling for Rich Internet Applications 293

A complete model of a dialogue must describe all its aspects: the information and
its structure, the relationships among information pieces and how this information
must be showed and delivered to the user. Starting from this perspective and consi-
dering that often the new features of RIAs affect the quality of the dialogue, raveling
the user interface and forcing the user to understand the interaction paradigms, we
choose to extend IDM that is a dialogue-based design technique for shaping the com-
municative structure of information-intensive interactive applications.

IDM is based on proven hypermedia/web design concepts and dialogue theories. It
can be used to describe the essential interactive and navigation features of informa-
tion-intensive applications at the proper conceptual level, by focusing on the dynam-
ics of the dialogue. The main advantages of IDM may be summarized as follows: a)
easiness of use and understandability of the design primitives employed with respect
to their expressive power; b) primitives semantics based on dialogue concepts, thus
more accessible by novice designers without a technical background; c) separation
between channel-independent (or technology-independent) design (determining the
expected deep structure and dynamics of the dialogue) and channel-dependent design
(conceptual specification for the applications available on different devices). IDM
primitives are organized in two main design layers: Conceptual IDM (C-IDM) and
Logical IDM (L-IDM).

C-IDM is used to describe the “conceptual schema” of the application. It is simple
to grasp and effective enough in representing the most relevant features of the appli-
cation, defining the topics of the dialogue and relations between its elements; in other
word, it is used to shape the deep dialogic structure of the interaction. Starting from
the C-IDM design, the logical design models the decisions that are typically depen-
dent on a specific fruition channel through which the application may be conveyed.
The conceptual schema is unique in the application because defines the overall inte-
raction strategy; while, the designers can develop one or more logical schemas, one
for each specific channel they want to design the application for.

The L-IDM is used to shape the application dialogic features specific of a given
channel or technologies of fruition such as standard web browsers, mobile devices,
screen readers, etc. IDM breaks down the application information (according to its
semantics) defining the topics (core content entities) and dialogue acts (interaction
units) in a L-IDM schema. Considering the goal of this paper, the main L-IDM primi-
tives (used in the case studies) are described in the Table 1.

Readers interested in a complete introduction to IDM can refer to [3]. Currently,
IDM is being used in several research and industrial projects allowing capturing the
dialogue features of the applications, and providing a valid design to project the non-
technical aspects.

3.2 The Rich Extension of IDM

In the rest of this section we provide readers with a brief introduction to Rich-IDM,
which is our extension of IDM to cover RIAs. Table 2 shows all Rich-IDM design
primitives at a glance; after, for each primitive, we describe its semantics and its
specific features.

294 A. Pandurino et al.

Table 1. The IDM design primitives.

Name Notation Design Semantics

Topic /

Multiple
Topic

Topic

Multiple
Topic

It is the dialogue subject: the argument of a
dialogue between user and application. A topic
should contain information with a precise sense
for the final user independently from the appli-
cation and from the arguments presented inside.

If the topic has more instances, it is a multiple
topic.

Content
Dialogue Act

A piece of dialogue that represents contents for
users. The information of a topic can be struc-
tured using the content dialogue acts.

Transition
Dialogue Act

A piece of dialogue that allow users to navigate
from a topic to an other one. Its goal is to enable
users to change dialogue arguments, following
semantic relationships.

Introductory
Dialogue Act
/

Parametric
Dialogue Act

Introductory

 Parametric

A piece of dialogue that allows starting a dialo-
gue from a specific topic. The main message of
an introductory act is a list of instances of the
same topic.

It may be multiple.

Relevant
Relation

A relevant semantic relation represents the
possibility to move the attention from a topic to
other one that is semantically related to the
same argument.

RIA-Page Element. In Rich-IDM, the minimum piece of information is called RIA-
Page Element and it is managed as a unique block. In detail, the RIA-Page Element is
defined as a coherent atomic fragment of RIA page, which displays a specific content
with its proper meaning for the users. It could be specialized in: (i) Introductory RIA-
page Element which main goal is to introduce the specific content and, often, is re-
lated to an introductory dialogue act; (ii) Content RIA-page Element that, mapping
one or more content dialogue acts, displays to the user the payload of the dialogue;
and (iii) Transition RIA-page Element that shows the semantic information (taken
from transition dialogue act) that links two topics. The specific semantics of this set of
primitives allows establishing a direct link with the functions of the contents inside.
Thus, it is possible to evaluate in the early phase of the design the balance between
the different types of delivered contents. The UX model is improved because the de-
signer has the tools to assess into the page the correct quantity of information, avoid-
ing pages without contents and stuffed with links represented by graphical elements
that are more usual in RIAs.

Streamlining Complexity: Conceptual Page Re-modeling for Rich Internet Applications 295

Table 2. The Rich-IDM design primitives

Name Notation Design Semantics

Content RIA-
Page Element

A coherent, atomic fragment of RIA page, which displays a
content unit, as directly mapped from IDM content dialo-
gue acts.

Introductory
RIA-Page Ele-
ment

A fragment of a RIA page which displays mechanisms to
enable access to multiple instances of a dialogue topic, as
directly mapped to an introductory dialogue act of the IDM
logical design.

Transition RIA-
Page Element

The reification of an IDM transition dialogue act on the
RIA page. It allows users to follow the semantic relation of
two dialogue topics.

RIA-Handle

An interaction affordance, which enables users moving
within two or more page elements of the same User Expe-
rience Core.

User Experience
Core

A connected composition of page elements, which commu-
nicates the semantic nucleus of what is offered to the user
at a given moment.

Context View

A set of User Experience Cores, which maintains naviga-
tional context, orientation, organic, and fluid transition
between the cores.

Default Element Indicate the default RIA-Page Element showed to the user.

RIA-Handle. After the definition of the RIA-Page Elements, that are the interaction
objects, it is necessary to define a new primitive able to model the mutual relation
between the elements of the page. This new concept is the RIA-Handle, which main
goal is to model all the dynamic aspects of the UX. The RIA-Handle is a directional
relationship between the RIA-Page Elements involved in a user action. The RIA-
Handle captures the syntactic of RIA interaction, on top of the semantics modeled by
the other elements. From the methodological point of view, the RIA-Handle allows
designers to represent all the relations contained in the information architecture.

User Experience Core. In RIAs, many information elements (that could not be se-
mantically directly connected) can be collapsed in the same page. Thus, the core of
the dialogue is not directly related with the displayed elements. To satisfy this need,
the User Experience Core is defined. Its main goal is to model clearly the elements of
the Rich-IDM design that must be the heart of the dialogue with the users. The

296 A. Pandurino et al.

Fig. 2a. The AS-IS model of the www.verizon.com homepage (April 2010) described using the
Rich-IDM notation

designer must carefully manage the elements contained in the User Experience Core
because their perception affects strongly the sense and the quality of the message
delivered to the user. On this basis, the semantics of the User Experience Core is to
define the unit of perception of the dialogue. Formally, the User Experience Core is a
container of the RIA-page Elements. At the start of the navigation, the default RIA-
page Elements showed to the user is marked with the Default Element described in
Table 2. The RIA-Handle mechanism is used to model the navigation between the
User Experience Cores independently if they are (or not) part of the same Context
View.

Streamlining Complexity: Conceptual Page Re-modeling for Rich Internet Applications 297

Context View. The look&feel of the RIA is relevant and often the visualization as-
pects are used to define specific areas of the application and delimitate related argu-
ments. To capture these characteristics crucial for the quality of the dialogue flow,
designers need to define the User Experience Cores that must be shown in the same
way to the user. The Context View enables designers to define a specific navigational
context allowing harmoniously connecting related User Experience Cores.

Fig. 2b. The TO-BE model of the www.verizon.com homepage reengineered using Rich-IDM.
The UX has been transformed reducing the stress of the user working memory to compare
options. This model avoids the sliding elements (lower UX Core) of the AS-IS page (Fig. 2a)
and allows the user to compare the services in a one-shot view (upper UX Core). Both UX
Cores are contained in a unique Context View that guarantees a uniform navigational context.

298 A. Pandurino et al.

Formally, the Context View is a container of User Experience Cores. Its name is
due to the idea that the User Experience Cores of the same view are shown to the user
in uniform manner, thus providing a common (and stable) visualization environment
to the user. In order to better explain the usefulness of Rich-IDM to improve the UX,
we report in Fig. 2b the Rich-IDM reengineering of a homepage fragment of the Veri-
zon web site; then we compare the TO-BE model with the AS-IS model showed in
Fig. 2a.

At the beginning of the reengineering phase, in the TO-BE model we created two
User Experience Cores: the first one groups the information about the company and
the news; the second one (in the bottom of Fig. 2b) shows the information contained
in the sliding elements of the Fig. 2a (marked with box “1”). Then, we focused on the
middle of the homepage where there is the “What’s up” news (marked with box “2”)
with a button to stop them. In Fig. 2b, we have removed the control button and we
have implemented a “mouse over” event that the user can use to block the news.
At the end of the reengineering activity, we have removed six navigation links and
one button, and we have introduced a new User Experience Core that allows users to
compare all the carrier’s products.

4 Related Work

Researchers approach the RIA design mainly modeling: (i) the information of the
application, the core objects and their behavior; (ii) the navigation through the infor-
mation nodes; (iii) the interface as “what the user perceives”; and (iv) the interaction
between the user and the application, specifying the available events on the interface.

The Object Oriented Hypermedia Design Method [19] (OOHDM) proposes a mod-
el process structured according five steps: requirements modeling, conceptual model-
ing, navigation design, interface design, and implementation. The interface design is
defined using the Abstract Data View (ADV) [5] that enables specifying the status
and the behavior of each interface objects using state charts.

WebML for RIAs [4] extends the WebML method considering two aspects: (i) a
well-defined separation between the client side and the server side; (ii) a better defini-
tion of the application interface. The data design is based on the Entity-Relationship
(E-R) model that is extended considering the levels of persistence. The business logic
model provides the specification of operations at the client side and server. WebML
adopts the Rich Internet Application User eXperience (RUX) model [13] to design the
interface aspects.

The RUX method defines the interface of an application through four levels: con-
cepts and tasks, abstract interface, concrete interface, and final interface. The concepts
and tasks level describes the data and business logic, and can be modeled using a web
design methodology such as WebML. The abstract interface level describes the as-
pects of the interface common to all RIA technologies. The concrete interface level is
the implementation of the abstract interface and it defines three presentation sub-
levels: spatial presentation, temporal presentation, and interaction presentation. The
final interface level translates the designed model into the specific RIA concrete
technology.

Streamlining Complexity: Conceptual Page Re-modeling for Rich Internet Applications 299

UML-based Web Engineering [17] (UWE) is a method for systematic and model-
driven development of web applications. It exploits an UML profile to provide a spe-
cification of the domain-relevant information of a web system. To design RIAs, UWE
integrates the RUX method. UWE propose to apply patterns [18] at a high abstraction
level to minimize the design efforts and to maximize the expressiveness of model
artifacts, describing the behavior of the RIA features. UWE-R [14] is a light-weighted
extension of UWE for RIAs, covering navigation, process and presentation aspects.

OOH4RIA [15] has the main goal to cover the entire development lifecycle of
RIAs. It is based on model-driven approach that specifies the artifacts to model a
complete RIA for the GWT framework [9]. The starting point of the OOH4RIA de-
sign is the definition of the OOH domain model to represent the domain entities and
the navigational connections. Also, OOH4RIA enable transforming the navigation
model into the presentation model.

OOWS [20] is a methodological approach to develop web applications in an OO
modeling oriented software development environment. It integrates appropriate mod-
els to capture the structure, behavior, navigation and presentation requirements of a
web application. Also, it proposes an extension to support Web 2.0 application
development.

ADRIA [6] is method for designing RIAs departing from the results of an object-
oriented analysis; it employs interaction spaces as the basic abstraction mechanism
coherently throughout all the design activities; its notation is based on UML.

Internet Application Modeling Language (IAML) [21] aims to provide modeling
support for all of the fundamental concepts of RIAs. Along with operations and do-
main objects, it models events and conditions as first-class citizens, also promoting
users and security as first-class. It uses concepts from existing languages where ap-
propriate, such as ECA rules, ER diagrams, and UML Activity and Class diagrams.

Whereas these approaches provide support for abstracting existing RIA technolo-
gies and to design (and generate) the development artifacts, they lack in bridging the
fluid, smooth and organic nature of the user interaction and navigation in RIAs to the
design.

To meet this challenge, we propose to extend this perspective to examine the con-
nection between RIA interface modeling and the requirements for the user experience.
This perspective is only partially covered by existing works (RUX and ADV, in
particular).

5 Conclusions

Due to the superior user interaction unleashed, RIAs require web engineers to balance
the potential sophistication of the user interface and the need to ensure proper usabili-
ty, cognitive workload, and efficiency. To meet this challenge, we have proposed a set
of high-level modeling constructs, which bridges UX requirements and RIA design.
Through a case study and extending the IDM method, we have shown some relevant
features of our approach: expressiveness to capture interaction grammars and semi-
formality to facilitate the establishment of a common ground between UX designers

300 A. Pandurino et al.

and web engineers. In detail, we proposed new primitives with a strong semantics: the
User Experience Core, the Content / Introduction / Transition RIA-Page Element, the
RIA-Handle, and the Context View.

Future research will concern the execution of measurements exploiting model me-
trics we are working on, in order to provide quantitative feedbacks on the level of
transformative improvements the Rich-IDM can introduce in UX design of RIAs.

References

1. Andersen, P.B.: A Theory of Computer Semiotics. Cambridge Univ. Press, Cambridge
(1997)

2. Andersen, P.B.: A Theory of Computer Semiotics. Cambridge University Press (1997) [2]
3. Bolchini, D., Paolini, P.: Interactive Dialogue Model: A Design Technique for Multi-

Channel Applications. IEEE Trans. on Multimedia 8(3), 529–541 (2006)
4. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): a modeling

language for designing Web sites. Computer Networks: The International Journal of Com-
puter and Telecommunications Networking 33(1-6), 137–157 (2000)

5. Cowan, D., Pereira de Lucena, C.: Abstract Data Views: An Interface Specification Con-
cept to Enhance Design for Reuse. IEEE Trans. on Software Eng. 21(3), 229–243 (2005)

6. Dolog, P., Stage, J.: Designing Interaction Spaces for Rich Internet Applications with
UML. In: Baresi, L., Fraternali, P., Houben, G.-J. (eds.) ICWE 2007. LNCS, vol. 4607, pp.
358–363. Springer, Heidelberg (2007)

7. Hewett, T., Baecker, R.M., et al.: Dialogue Techniques. In: ACM SIGCHI Curricula for
Human-Computer Interaction ACM Special Interest Group on Computer-Human Interac-
tion Curriculum Development Group, http://sigchi.org/cdg/cdg2.html

8. Hewett, T., Baecker, R.M., et al.: Dialogue Techniques. ACM SIGCHI Curriculum Devel-
opment Group, http://www.sigchi.org

9. Houben, G.J., Van der Sluijs, K., Barna, P., Broekstra, J., Casteleyn, S., Fiala, Z., Frasin-
car, F.: Hera: Chapter 10. In: Web Engineering: Modelling and Implementing Web Appli-
cations. HCI Series, pp. 263–301. Springer, Heidelberg (2008)

10. ISO DIS 9241-210:2008. Ergonomics of human system interaction - Part 210: Human-
centred design for interactive systems (formerly known as 13407). International Organiza-
tion for Standardization (ISO), Switzerland (2008)

11. Kankainen, A.: Thinking model and tools for understanding user experience related to in-
formation appliance product concept. In: Dissertation of Degree of Doctor of Philosophy,
pp. 1–59. Helsinki University of Technology, Espoo (2002)

12. Lai-Chong Law, E., Roto, V., Hassenzahl, M., Vermeeren, A., Kort, J.: Understanding,
scoping and defining user experience: a survey approach. In: Proc. of the 27th Internation-
al Conference on Human Factors in Computing Systems (CHI 2009), pp. 719–728. ACM,
New York (2009)

13. Linaje, M., Preciado, J.C., Sánchez-Figueroa, F.: A Method for Model Based Design of
Rich Internet Application Interactive User Interfaces. In: Baresi, L., Fraternali, P., Houben,
G.-J. (eds.) ICWE 2007. LNCS, vol. 4607, pp. 226–241. Springer, Heidelberg (2007)

14. Machado, L., Filho, O., Ribeiro, J.: UWE-R: An Extension to a Web Engineering Metho-
dology for Rich Internet Applications. WSEAS Trans. Info. Sci. and App. 6(4), 601–610
(2009)

Streamlining Complexity: Conceptual Page Re-modeling for Rich Internet Applications 301

15. Meliá, S., Gómez, J., Pérez, S., Diaz, O.: A Model-Driven Development for GWT-Based
Rich Internet Applications with OOH4RIA. In: Proc. of ICWE 2008, pp. 13–23. IEEE,
New York (2008)

16. Pandurino, A., Bolchini, D., Mainetti, L., Paiano, R.: Rich-IDM: Extending IDM to Model
Rich Internet Applications. In: Proc. of 12th ACM iiWAS Int. Conf., pp. 145–152 (2010)

17. Preciado, J.C., Linaje, M., Morales-Chaparro, R., Sanchez-Figueroa, F.: Designing Rich
Internet Applications Combining UWE and RUX-Method. In: Proc. of ICWE 2008, pp.
148–154. IEEE, New York (2008)

18. Preciado, J.C., Linaje, M., Morales, R., Sánchez-Figueroa, F., Zhang, G., Kroiß, C., Koch,
N.: Designing Rich Internet Applications Combining UWE and RUX-Method. In: Proc. of
8th Int. Conf. on Web Engineering (ICWE 2008), pp. 148–154. IEEE, New York (2008)

19. Schwabe, D., De Almeida Pontes, R., Moura, I.: OOHDM-Web: an environment for im-
plementation of hypermedia applications in the WWW. ACM SIGWEB Newsl. 8(2), 18–
34 (1999)

20. Valverde, F., Pastor, O.: Facing the Technological Challenges of Web 2.0: A RIA Model-
Driven Engineering Approach. In: Vossen, G., Long, D.D.E., Yu, J.X. (eds.) WISE 2009.
LNCS, vol. 5802, pp. 131–144. Springer, Heidelberg (2009)

21. Wright, J.M., Dietrich, J.B.: Requirements for Rich Internet Application Design Metho-
dologies. In: Bailey, J., Maier, D., Schewe, K.-D., Thalheim, B., Wang, X.S. (eds.) WISE
2008. LNCS, vol. 5175, pp. 106–119. Springer, Heidelberg (2008)

A Flexible Graph-Based Data Model Supporting

Incremental Schema Design and Evolution

Katrin Braunschweig, Maik Thiele, and Wolfgang Lehner

Database Technology Group, Faculty of Computer Science,
Technische Universität Dresden,

01062 Dresden, Germany
{katrin.braunschweig,maik.thiele,wolfgang.lehner}@tu-dresden.de

Abstract. Web data is characterized by a great structural diversity as
well as frequent changes, which poses a great challenge for web applica-
tions based on that data. We want to address this problem by developing
a schema-optional and flexible data model that supports the integration
of heterogenous and volatile web data. Therefore, we want to rely on
graph-based models that allow to incrementally extend the schema by
various information and constraints. Inspired by the on-going web 2.0
trend, we want users to participate in the design and management of
the schema. By incrementally adding structural information, users can
enhance the schema to meet their very specific requirements.

Keywords: data integration, schema flexibility, schema evolution, web
data, graph theory.

1 Introduction

Recent years have seen a rise in data-driven technologies and applications on
the web. Data on a wide range of topics is made publicly available following the
trend towards open data. This data is inherently heterogenous in its structure
and subject to frequent change. Due to these characteristics, it is a very complex
task for application developers to handle web data efficiently. This is particu-
larly true for so-called situational analytics and mashups which are developed
by users with very different skill levels. To leverage the heterogenous resources
on the web and to provide a uniform interface for applications, it is necessary
for the data to be integrated into a queryable and consistent, but also flexible
data model.
This challenge of integrating data from a number of diverse sources bears resem-
blance to ETL (extract, transform and load) processes common in data ware-
house scenarios. Data from different sources, conforming to different schemas, is
integrated using a mediated schema. This schema remains unchanged for long
periods of processing and is only rebuild when it is required due to significant
changes in the original schemas. In the context of the web, we need to inte-
grate not only data with structural diversity, but also data that is schema-free.
The main challenge, however, is the volatility of the resources. In contrast to

A. Harth and N. Koch (Eds.): ICWE 2011 Workshops, LNCS 7059, pp. 302–306, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Flexible Data Model for Incremental Schema Design 303

the resources of a data warehouse, resources on the web change frequently and
erratically. Traditional data models, such as the relational data model, do not
provide the flexibility required to efficiently deal with these characteristics. In-
stead, we take a graph-based approach towards a flexible data model supporting
the integration as well as the continuous evolution of web data. The model is
meant to form the basis of a data repository for web applications. Inspired by
the Web 2.0 trend of user participation, we plan to provide users with tools to
collaboratively and incrementally enhance the integration of the data.

2 Research Problems and Objectives

The main problem we want to address in our research is the heterogeneity of
web data and the resulting issues for applications regarding the integration and
management of the data. In this scenario we have identified the following chal-
lenges, which we will address in our research. First of all, schema management
should be flexible enough to handle both, structured and unstructured data.
To achieve this, schema information should be optional so that different levels
of structure can appear simultaneously in the system. This will, for example,
enable unstructured data to be imported without extensive transformations. In-
consistencies in the schemas of different sources of structured data need to be
addressed through mapping techniques. Furthermore, the query functionality
should be determined by the amount and quality of metadata available. Due to
the volatility of resources on the web, we need to take the evolution of the schema
into consideration as well. However, extending and changing schema information
should be non-destructive, which means it should not require the re-building of
application processes. This requires a balance between flexibility and consistency
regarding the schema. Additionally, we need to incorporate schema versioning,
to ensure that schema changes do not invalidate previously existing applications.
Apart from these features, which are closely related to the data integration and
schema design challenge, there are further related topics that need to be studied
in this context, but which are not the primary focus of our research. They include
amongst others transaction support, permission and privacy issues, efficient data
storage and distribution.

3 Research Methodology and Approach

To achieve the outlined objectives we will build on existing data models and
query languages. Instead of enforcing a static mediated schema during the data
load process, we plan to enable incremental extraction and enhancement of
schema information. Leveraging the current web trend, we want to encourage
users to participate in the management and integration of their data by collabo-
ratively building schemas as they are required for querying. Automated extrac-
tion and integration techniques will be incorporated to support users through, for
example, recommendations. An overview of our approach is depicted in Figure 1.

304 K. Braunschweig, M. Thiele, and W. Lehner

Fig. 1. Overview: Graph-based data model supporting incremental and collaborative
schema evolution

3.1 Graph-Based Data Model

The traditional relational data model is a well established choice for structured
data. However, it is not considering the heterogeneity and volatility of web re-
sources. Instead, we use a directed, labeled multi-relational graph, a common
model in graph databases, as a basis for our approach. Vertices and edges in the
graph represent entities and relationships respectively. Both, vertices and edged,
can be labeled with name/value pairs which represent properties. Schema in-
formation can be stored in a schema graph that defines entity types, primitive
types and relationship types. Instance data is stored in an instance graph which
contains concrete entities, primitive values as well as concrete relationships. We
take a graph based approach due to a number of characteristic features that
support our proposition. First of all, the graph structure supports different lev-
els of complexity within the same graph. Not all instances are required to have
the same amount and type of properties and relationships. Additionally, a tight
coupling of data and meta data is achieved by representing both as graphs that
are connected. This leads to a natural integration of metadata into the system
and facilitates meta data querying. Finally, graph structures are easy to inter-
pret, which is beneficial for our plan to enable strong user participation.

3.2 Tentative Research Plan

The tentative plan for our research consists of the following steps:

A Flexible Data Model for Incremental Schema Design 305

1. First, we have to define a uniform data model that enables efficient integra-
tion of structurally diverse data and flexible evolution of the schema. So far,
we have selected the graph model described above as a suitable basis for our
data model.

2. Our next task is the development and incorporation of basic operators for the
definition, manipulation and querying of both, data and metadata. Our goal
is to exploit the natural features of the graph structure for the operators as
much as possible. For example, we can utilize graph traversal techniques for
the propagation of schema modifications. These operators include operators
that enable users to incrementally enhance the schema.

3. Additionally, we will consider suitable techniques to ensure stability for ap-
plications despite schema changes. Therefore, schema inconsistencies with
regard to the applications must be compensated to a certain degree in order
to delay expensive reorganizations.

4. In connection with schema evolution we will study options for supporting
schema versioning in our data model.

5. In addition to studying the flexible schema design and evolution on a theo-
retical level, we will implement our approach in a prototype to validate our
assumptions. In order to evaluate the flexibility, scalability and efficiency of
our approach, we will look for a suitable benchmark [4].

4 Related Work

In addition to the relational data model, which is often the standard when deal-
ing with structured data, a number of alternative data models have emerged
in the context of the web. Often associated with the term ”NoSQL databases”,
these alternatives include basic key/value stores, column-oriented stores, docu-
ment stores and graph databases. The main concerns of these systems are on
the one hand scalability that meets the requirements of big web applications and
on the other hand, relaxation of the tight schema requirements of relational sys-
tems towards a schema-free solution. In our research we focus on graph databases
which offer the highest flexibility. Angeles et al. [1] provide an extensive survey of
existing graph database models including various graph query languages. In [6],
a hypergraph model is introduced. Based on this model, storage, querying as
well as indexing techniques are described. A well established open source graph
database is Neo4j1. In [2], Bollacker et al. present Freebase, a graph database
for storing human knowledge in a structured manner. Freebase provides tools
for users to collaboratively augment the data and schema. In contrast to our
approach, data in Freebase has to conform to predefined types, which can be
extended by the user, but do not provide the flexibility we aim to achieve.
The incremental extraction of metadata from unstructured data has been ad-
dressed in [3]. Chu et al. propose a relational approach based on the interpreted
storage format using three basic operators (extract, integrate and cluster) to in-
crementally discover and extract structure. It maintains the flexibility of schema-
less models, since keyword search can be applied at any time, but also enables

1 http://neo4j.org/

306 K. Braunschweig, M. Thiele, and W. Lehner

the user to run complex queries as soon as more schema information has been ex-
tracted. A similar concept for structured data can be found in research regarding
dataspace systems [5]. Data sources, that have not been integrated fully, can be
queried through keyword search, for example. If more complex operations like
data mining are requested, the data sources can be integrated incrementally.
This approach is often referred to as ”pay as you go”, which also inspired the
web-scale data integration architecture PayGo by Madhavan et al. [7]. PayGo
aims at incrementally integrating structured data found on the Web by apply-
ing techniques for automated schema mapping and schema clustering as well as
techniques for discovering additional relationships between data.

5 Conclusion

The heterogeneity of data resources on the web present a difficult challenge
for web application developers. Many existing data integration solutions are
not flexible enough to handle both structured and unstructured data and are
not designed to address the volatility of data sources on the web. We have
presented our concept for a graph-based solution, which utilizes a combination of
automated techniques and user participation to achieve flexible data integration
and evolution.

References

1. Angles, R., Gutierrez, C.: Survey of graph database models. ACM Comput. Surv. 40
(2008)

2. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collabora-
tively created graph database for structuring human knowledge. In: SIGMOD 2008
(2008)

3. Chu, E., Baid, A., Chen, T., Doan, A., Naughton, J.: A relational approach to
incrementally extracting and querying structure in unstructured data. In: VLDB
2007, pp. 1045–1056 (2007)

4. Curino, C.A., Tanca, L., Moon, H.J., Zaniolo, C.: Schema evolution in wikipedia:
toward a web information system benchmark. In: Enterprise Information Systems
(2009)

5. Franklin, M., Halevy, A., Maier, D.: From databases to dataspaces: a new abstraction
for information management. SIGMOD Rec. 34 (2005)

6. Iordanov, B.: HyperGraphDB: A Generalized Graph Database. In: Shen, H.T., Pei,
J., Özsu, M.T., Zou, L., Lu, J., Ling, T.-W., Yu, G., Zhuang, Y., Shao, J. (eds.)
WAIM 2010. LNCS, vol. 6185, pp. 25–36. Springer, Heidelberg (2010)

7. Madhavan, J., Jeffery, S.R., Cohen, S., Dong, X.L., Ko, D., Yu, C., Halevy, A., Inc,
G.: Web-scale data integration: You can only afford to pay as you go. In: CIDR 2007
(2007)

ProLD: Propagate Linked Data

Peter Kalchgruber

University of Vienna, Faculty of Computer Science, Liebiggasse 4/3-4, A-1010 Vienna
peter.kalchgruber@univie.ac.at

Abstract. Since the Web of Data consists of different data sources
maintained by different authorities the up-to-dateness of the resources
varies a lot. However a number of applications are built upon that. To
tackle the problem of out-dated resources, we propose to develop a frame-
work that utilizes the linkage between Linked Data nodes to propagate
updates in the cloud. For that purpose we have observed propagation
strategies developed in the database domain and have created a list of
currently unsolved problems which emphasize the difference between the
propagation in the Web of Data and state of the art approaches. Apart
from the improvement of the up-to-dateness of data, by following the
approach of propagation the network improves and inconsistencies will
be reduced.

1 Introduction

The Web of Data is growing continuously1. As of today, a large amount of appli-
cations2 already utilize data from the Linked Open Data (LOD) cloud; however,
the experience of such applications closely correlates with the data quality of the
underlying data. Bizer [1] illustrates that the timeliness beside others (accuracy,
completeness) is one of the most popular dimension of information quality.

The Web of Data reflects knowledge about things of the real world. Changes
in the real world, in terms of updates, will be executed in the Web, by the main-
taining data node owner or local community. The problem is, that currently it
takes a long time, until all concerned resources in the cloud become updated and
a consistent status is achieved. For example, taken the actual political changes
in the country Egypt, it is expected, that the Parliament website, will update
the change of government directly. Only after the time Δt, news sites, encyclope-
dias and other data nodes will update their Web resources. Δt varies depending
on the maintaining data node owner or community and the underlying tech-
nology. For example, due to the required manual effort, data of the most linked

1 In May 2009 the Linked Data cloud of 4.7 billion triples [2]. By February 2011 it
had grown to 27 billion triples.
http://www4.wiwiss.fu-berlin.de/lodcloud/state/#structure

2 http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/
/LinkingOpenData/Applications

A. Harth and N. Koch (Eds.): ICWE 2011 Workshops, LNCS 7059, pp. 307–311, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

308 P. Kalchgruber

data node DBpedia is currently only updated about semiannually. The example3

demonstrates that, real world updates are visible in the Web of Data, but they
are not propagated to data sets they are interlinked with.

Our objective is to propagate updates of resources to all linked resources with
the same identity in the cloud. Although it is obvious to use database propagation
approaches to tackle the problem, we discovered several problems on using them
in Section 2. As a possible solution we present our prototypical framework in
Section 3.

2 Background and Related Work

Globally, the Web of Data contains huge sets of redundant partially linked data.
Thus it bears some similarities with databases, also in context of propagation
of updates. But we found a list of differences and open problems displaying the
non-triviality of propagation in the Web of Data. Based on the following list, we
discuss the approaches in related work and define our field of research:

– Schema mapping (neither unique IDs, nor unique vocabulary)
– Availability of data nodes (online/offline)
– Properties stating equality between resources not always reliable
– Synchronization with relational databases (Wikipedia ↔ DBpedia)
– Trust / Authority (every triple must be read as claim from the corresponding

data node not as a fact [8])
– Propagation of triples which do not exist at all nodes
– Behavior if data nodes drop their data and do a general dump import (as

DBpedia is built on a regularly basis)

As known from related domains (e.g. Distributed Database Management Sys-
tems) updating distributed data sources is a critical issue. The approach of
propagation in the Web of Data expose similar characteristics as data propa-
gation [10] and data replication [6]. However the linkage between data nodes
is neither symmetric nor complete and due to the AAA principle4 (data can
be incomplete or inconsistent) the use of this traditional approaches are not
applicable in the Web of Data.

Data nodes use a mix of commonly used vocabularies for describing their
data. This mix is often not sufficient, and therefore expanded with proprietary
terms [3]. This results in heterogeneity and problems with the interoperability of
metadata. It is still difficult to map metadata with the same semantic meaning
together although there are already different approaches to map metadata [9,3]
or match ontologies [5]. However our tests have shown that they are not imple-
mented broadly.

3 Change of government in Egypt: Only the data node Freebase has updated its data
about the recent change of the regime. However DBpedia, DBpedia Live, New York
Times still hold data of the previous state, although they are linked as identical.

4 Anyone can say Anything, Anywhere

ProLD: Propagate Linked Data 309

Another problem is the non-assured availability of data sets. Anytime a server
can be temporarily unavailable, or stop its service. If a data node is offline for
a while, it needs to receive the missed updates, after it has recovered. It cannot
know which server has propagated updates in the meanwhile. Since there is no
master server, as in traditional distributed databases, this information must be
saved in the cloud.

sparqlPuSH [11] allows clients to get informed about data updates in RDF
stores via PubSubHubbub5, a simple open server-to-server publish/subscribe pro-
tocol. sparqlPuSH uses the PubSubHubbub infrastructure to notify clients over
hubs via a push based approach. sparqlPuSH can only be used for the notifi-
cation use case and could be used in the framework to notify remote datasets
about updates.

The property owl:sameAs of the Web Ontology Language (OWL)6 per defini-
tion [4] is interconnecting equivalent resources between two data sets. It indicates
that two resources exhibiting different URIs actually refer to the same resource
- they share the same “identity”. But sometimes, historical resources (e.g. the
resource East Berlin) are set equivalent with new ones [7], or no distinction is
made between the context of resources (e.g. Republic of Ireland vs. Island Ire-
land). Strategies for the aggregation of equivalent resources are proposed in [4].
A more detailed ontology of owl:sameAs has been proposed by Halpin [7]. How-
ever, the currently inappropriate usage of owl:sameAsmakes it difficult to build
a framework on it.

3 Approach

Our overall objective is to develop an efficient update strategy for Linked Data.
Once a resource at a single node become updated, by means of propagation all
resources with the same identity in the cloud, should receive this update, too.
Our framework called ProLD is based on RDF properties that define the equality
between linked resources (e.g. owl:sameAs). ProLD follows links between same
identities on distributed data nodes to propagate the updates in the cloud.

It can be used as an add-on to existing services, to help data node owners
to propagate updates made on datasets that are under their control and to
receive updates from other datasets, which propagate their updates. The ProLD
Framework consists of three elements:

– The Observer is responsible to detect local changes at a dataset. It searches
for equivalent resources (e.g. marked with owl:sameAs), compose a propaga-
tion package and handle it to the Propagator. The Observer has an interface
to commonly used RDF storages such as Virtuoso, Jena, or 4store.

– The Receiver receives updates sent from the Propagator of other data nodes,
does integrity checks and triggers the changes at the local dataset.

– The Propagator receives a list from the Observer containing update packages
for remote resources. It propagates the updates to the cloud.

5 http://code.google.com/p/pubsubhubbub/
6 http://www.w3.org/TR/owl-ref/

310 P. Kalchgruber

The Observer can be informed about changes at the local triple store by
change logs created by triple stores, or by adding triggers to the database. Once
it becomes informed about a change at a local data set, it scans the local resource
for equivalent resources in the cloud. An object with the collected information
will be sent to the Propagator. The Propagator creates a unique hash value
of the package and saves it with a time stamp in a local buffer. Thereafter, it
sends a package to all servers listed in the owl:sameAs field of the local resource.
The Receiver at the remote data set is listening to receive packages. After the
integrity check, it asks the Propagator, whether the package was already pro-
cessed by comparing hash-values with a buffer list. If the information about the
updated resource is new, there are different ways to proceed: Either the tool is
configured in automatic mode, it will do the changes at the local resource, scan
for owl:sameAs values and hand the package (as described above) to the Prop-
agator. Alternatively, in semi-automatic mode the update could be reviewed by
local quality review programs, a community or the data node owners.

In case of an update, the modification package will always include the old
and the new triples. This enables the Receiver to decide carefully based on rules
whether a.) the subject resource of the package is equal to the local resource and
b.) both triples refer to the same property. Thereby it use schema concepts such
as sub-property or super-property to take a decision. It is also being considered to
add more surrounding triples to the modification package, to help to distinguish
between similar resources by the identification of the resources by fingerprints.

3.1 Scenario Open Government Data

Governments increasingly use the cloud to expose their data. The owners of
data.gov.eg, DBpedia and Freebase have installed ProLD on their data nodes.
The government of Egypt will update the form of government at the local re-
source eg:Government to “Military junta”. The Observer detects the change and
sends the required update information to the Propagator. Data nodes with iden-
tical resources (e.g. DBpedia or Freebase) listed as owl:sameAs at eg:Government
will receive this propagation package. Before they process the content, each Re-
ceiver proofs if the package was not processed earlier by comparing the hash-
value and timestamp with the list of already processed packages. If so, it drops
the package. Otherwise the Receiver updates the local resource, looks for local
owl:sameAs resources and forwards the package to their data nodes.

4 Research Methodology

Currently, there is no solution to handle update propagation in the Web of
Data. The previous section indicates that there are several solutions for partial
problems but also many open problems. But research about a general view of
the problem has not been done so far.

In particular we are concerned with the following research questions:

ProLD: Propagate Linked Data 311

– Which protocols and techniques are available and which are required to allow
propagation in the Web of Data?

– How can propagation of updates be performed considering its scalability?

Our methodology to solve the research questions consists of three phases: First
additional research in the state of the art and technology evaluation needs to be
done. Based on the results a prototype will be developed. It will be improved and
extended incrementally through testing in real life scenarios. Finally, the third
phase contains the evaluation of the framework. There the time until updates
appear in data nodes using ProLD is compared with data nodes not using the
framework. Furthermore the rate of successful updates should be compared with
error cases.

5 Conclusion

In this paper we have discussed several problems concerning the propagation
of updates in the Web of Data. Although the Web of Data can be seen as a
big distributed database, research in the field of propagation of updates in the
cloud has shown that there are so far several unsolved problems. The combina-
tion of existing approaches reveals that propagation is reasonable and possible.
A sketched rough concept of our framework gives an overview, how propaga-
tion could be done in the cloud. Thus, the time until updates in the cloud are
performed can be reduced to a minimum.

References

1. Bizer, C.: Quality-Driven Information Filtering- In the Context of Web-Based In-
formation Systems. VDM Verlag, Saarbrücken (2007)

2. Bizer, C., Heath, T., Berners-Lee, T.: Linked data – the story so far. Int. J. Se-
mantic Web Inf. Syst. 5(3), 1–22 (2009)

3. Bizer, C., Schultz, A.: The R2R Framework: Publishing and Discovering Mappings
on the Web. In: COLD 2010, Shanghai (2010)

4. Ding, L., Shinavier, J., Finin, T., McGuinness, D.L.: owl:sameAs and Linked Data:
An Empirical Study . In: Proc. of the 2nd Web Science Conference, Raleigh NC,
USA (April 2010)

5. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Berlin (2007)
6. Gifford, D.K.: Weighted voting for replicated data. In: Proc. of the 7th ACM SOSP,

SOSP 1979, pp. 150–162. ACM, NY (1979)
7. Halpin, H., Hayes, P.J.: When owl:sameAs isn’t the Same: An Analysis of Identity

Links on the Semantic Web. In: CEUR Workshop Proceedings (2010)
8. Hartig, O., Langegger, A.: A database perspective on consuming linked data on

the web. Datenbank-Spektrum 10, 57–66 (2010)
9. Haslhofer, B.: A Web-based Mapping Technique for Establishing Metadata Inter-

operability. PhD thesis (November 2008)
10. IBM. IMS DataPropagator Implementation Guide. IBM, 650 Harry Road San Jose,

3 edn. (2002)
11. Passant, A., Mendes, P.N.: sparqlpush: Proactive notification of data updates in

rdf stores using pubsubhubbub. In: 6th Workshop on Scripting and Development
for the Semantic Web (May 2010)

Causal Relation Detection for Activities
from Heterogeneous Sources

Philipp Katz and Alexander Schill

Technische Universität Dresden, Germany
Department of Computer Science, Chair of Computer Networks

philipp.katz@tu-dresden.de

Abstract. On the web, information representing specific activities is
often scattered over different systems. Although, causal relations exist
between these activities, these are usually not obviously visible to the
user, unless explicitly given. This paper outlines the difficulties which are
caused by missing relations. The core contribution of this work will be a
system which is capable of identifying cause-effect relations between sin-
gle activities. The system will use these relations to form coarse-grained
groups consisting of sequences with single activities. The intended goal is
to employ the detected relations to reduce information overload while in-
creasing accountability, clarity, and traceability for its users. The research
is conceived under the assumption of handling heterogeneous sources of
information. A further objective is to create a highly generic and flexible
system which can be adapted to different use cases. The system will be
evaluated with concrete case studies, one of them analyzing relations on
software development sites such as SourceForge.

Keywords: Internet Information Extraction, Information Aggregation,
Information Integration, Relation Extraction, Data Linking.

1 Introduction

Over the last years, the WWW has evolved into a highly dynamic and interactive
medium. In conjunction with the buzzword “Web 2.0”, so called user-generated
content, published on different platforms such as blogs, wikis, social networks,
or media portals, is gaining influence. As well as the number of different sources,
the amount and frequency of generated information is increasing continuously.
Besides the general and often discussed phenomenon of “information overload”,
which has already been characterized in various different sources [1], a further
problem can be observed: “information scattering”, where information concerning
one specific topic is usually published across various different sources. In [2],
information scattering is described as a situation, where few sources exist, “that
contain many items of relevant information, while most sources have only a
few”. Although, their analysis is influenced by a standpoint of library science,
their general notion can be transferred to the heterogeneity and diversity of the
WWW, including user-generated content.

A. Harth and N. Koch (Eds.): ICWE 2011 Workshops, LNCS 7059, pp. 312–316, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Causal Relation Detection for Activities from Heterogeneous Sources 313

2 Terminology and Scenario

In this work, the term “activity” is defined as an atomic event occurring at a
certain time. A source propagating activities is called “activity generator”. Ob-
viously, activities exist which are triggered by other activities, leading to causal
relations between pairs of activities, which can be considered as “cause-effect
relations”.

To substantiate the idea behind this work, consider the following concrete
usage example: The workflow of a typical open source software project is or-
ganized using various tools such as an issue tracker, a version control system,
discussion forums, and mailing lists as depicted in Fig. 1. End users experiencing
issues with the software, use the forums or mailing lists to start a discussion.
Different users and developers are involved in this discussion, and finally a bug
report is posted to the tracker. After a period of time, a developer reads about
the problem, commits a bug fix to the version control system, and closes the
ticket. The described scenario consists of various activities; the bug report is
triggered by the forum discussion, the committed fix is triggered by the bug
report.

The scenario outlines the difficulty to get the current situation of the project.
While there obviously exists a latent sequence of activities triggered by the initial
discussion, it is later difficult to reconstruct such a process, as events are scattered
over different heterogeneous sources. Decisions which had an impact on activities
are hard to trace from a retrospective point of view. Support is complex, as users
need to search for information concerning a specific problem on different sources,
manually synthesizing a causal chain representing a decision process.

Time

Activity Generators

Mailing List

Forum

Tracker

SVN

Blog

Activities Cause-Effect Relation

Fig. 1. Example for an activity flow in an open source software project

3 Research Questions

Based upon the outlined scenario in the preceding section, the following three
research questions form the main contributions of this work:

314 P. Katz and A. Schill

How can a system to reduce information overflow and scattering be de-
signed? The goal of this work is to address the problem of information overflow
by establishing relations between single pieces of information, forming seman-
tically related groups. Such a group can be characterized as an abstraction of
single, fine-grained pieces of information, which are connected by cause-effect
relations. Such representations help users to gain a view on “the global picture”,
making it possible to understand compound, scattered activities formed of sin-
gle events. The notion of activities will be employed to reduce the information
overflow, allowing the user to filter out irrelevant information, only getting into
detail where applicable. To establish these relations in a precise way, suitable
algorithms need to be employed and necessary components of the system need
to be identified.

How can the system cope with highly heterogeneous types of data?
The sources considered by the system can be characterized as highly heteroge-
neous. Where, from a low-level and technical standpoint, the term “heteroge-
neous” can be used to describe varying formats and standards, on a more ab-
stract level, a great spectrum of quality in respect to the actual data has to be
considered. Different sources usually provide diverse amounts and types of meta-
data. Besides explicit features which can be extracted directly from their sources,
also implicit information will be taken into account, which needs to be induced
by the system automatically. This might include correlations between different
authors, temporal aspects, or characteristics concerning different sources. Those
features will be employed to create a generic model for the data, which forms the
foundation for the applied algorithms. Due to the heterogeneous nature of the
considered data, the potential sparsities and unequal distributions concerning
the presence of those features need to be taken into account.

Which methodologies can be applied to ensure the adaptiveness of
the system to various usage scenarios and domains? The general aim of
this work is a highly generic and flexible system, which is capable of covering a
wide range of potential use cases. Therefore, a parametrizable and configurable
framework which can furthermore be integrated into various existing workflows
needs to be provided.

4 Related Work

In the domain of network monitoring and management, event correlation and fil-
tering systems (ECS) are employed to diagnose network failures. Various proposals
for approaches and practical implementations exist [3,4,5], sharing the general goal
to identify “root causes” for specific problems and to filter the massive amount of
single events by correlating and aggregating them to more abstract, “conceptual”
events [6]. Obviously, these approaches focus on technical events generated by ma-
chines such as servers or routers. To the author’s knowledge, there have been no
efforts on mapping the concepts from ECS to honor the specific properties of event
streams with content generated by and for human users.

Causal Relation Detection for Activities from Heterogeneous Sources 315

Research in the area of Topic Detection and Tracking (TDT), which was initi-
ated under a DARPA program, is analyzing textual and audio-visual data from
news broadcast sources in order to perform a topic based characterization and
to detect links between pieces of information [7]. More recently, efforts have been
conducted to identify events in data from community and social media sources
such as Flickr, Youtube, or Facebook [8,9,10] employing document clustering
techniques to identify groups of information associated to a specific event. As a
general constraint, each instantiation of the mentioned approaches allows to con-
sider only one specific source, disregarding the possibility to establish relations
between different types of heterogeneous data spread over various sources.

Work on Process Mining deals with extracting process models from event log
data [11]. However, this data is generated by technical systems and therefore
conforms to a very strict, well-defined and homogeneous structure which is in
general not reflected by user-generated content on which this work puts its focus.

5 Current Progress

For an initial analysis, a crawler for SourceForge1 was developed. The crawler
was used with the phpMyAdmin project, aggregating activity feeds, tracker data,
messages from mailing lists, forum posts and commit messages from their source
code repositories. The resulting dataset consists of over 180,000 individual items
spanning a time interval of approximately ten years. After a first naïve experi-
ment using text clustering techniques based on a plain term model to identify
causal relations, it can be concluded, that more elaborate approaches need to be
employed in order to achieve reasonable results.

The outlined dataset contains a set of explicit features which can be taken
into consideration for creating connections between pairs of items. These features
include hyperlinks between items or indicators such as revision or tracker IDs
given in the text, which can be extracted using patterns. They will be employed
for building a preliminary baseline and for evaluating the initial results. Further
iterations will be measured with regard to this baseline.

With PRISMA2, a system architecture for handling the information overload
in an enterprise context has been described [12]. The implementation of this
system will provide the framework for evaluating the algorithms from this work.

6 Future Work Plan

In the short term, the future work will focus on extracting further features from
the given dataset. Therefore, an extensive feature engineering will be performed,
evaluating implicit features which can be extracted from the data. In general,
these might include structural, temporal, statistical, linguistical or semantic fea-
tures, regarding individual properties.
1 http://sourceforge.net/
2 PeRsonalization of Information StreaM Aggregates.

http://sourceforge.net/

316 P. Katz and A. Schill

In the medium term, following a bottom-up approach, an abstraction from the
knowledge gained from practical experiments concerning the data from Source-
Forge will be performed. Regarding further use cases, an evaluation is neccessary,
on how the model needs to be generalized and extended, in order to allow for
the aimed adaptiveness. Therefore, a further concrete scenario which considers
the domain of Wikipedia content will be described. The objective is to research
the impact of pieces of news published by different sources on Wikipedia articles.
Evidently, a great amount of edits performed in the Wikipedia is triggered by
current events of the day. In the long term, an instantiation of the system will
be used as a component within PRISMA.

Acknowledgments. The PRISMA project is funded by the Free State of Sax-
ony and the EU (European Social Fund).

References

1. Richtel, M.: Lost in E-Mail, Tech Firms Face Self-Made Beast,
http://www.nytimes.com/2008/06/14/technology/14email.html
(retrieved March 7, 2011)

2. Bhavnani, S.K., Wilson, C.S.: Information Scattering. In: Encyclopedia of Library
and Information Sciences, 3rd edn., pp. 2564–2569 (2010)

3. Vaarandi, R.: Platform Independent Event Correlation Tool for Network Manage-
ment. In: Proc. of the 2002 IEEE/IFIP Network Operations and Management
Symposium (2002)

4. Liu, G., Mok, A.K., Yang, E.J.: Composite Events for Network Event Correlation.
In: Proc. of the Sixth IFIP/IEEE International Symposium on Integrated Network
Management, pp. 247–260 (1999)

5. Jiang, G., Cybenko, G.: Temporal and Spatial Distributed Event Correlation for
Network Security. In: Proc. of the 2004 American Control Conference, vol. 2, pp.
996–1001 (2004)

6. Hasan, M., Sugla, B., Viswanathan, R.: A Conceptual Framework for Network Man-
agement Event Correlation and Filtering Systems. In: Proc. of the Sixth IFIP/IEEE
International Symposium on Integrated Network Management, pp. 233–246 (1999)

7. Allan, J.: Introduction to Topic Detection and Tracking. In: Topic Detection and
Tracking: Event-Based Information Organization, Springer, pp. 1–16. Springer, Hei-
delberg (2002)

8. Becker, H., Naaman, M., Gravano, L.: Learning Similarity Metrics for Event Iden-
tification in Social Media. In: Proc. of the Third ACM International Conference
on Web Search and Data Mining, pp. 291–300 (2010)

9. Sayyadi, H., Hurst, M., Maykov, A.: Event Detection and Tracking in Social
Streams. In: Proc. of International Conference on Weblogs and Social Media,
ICWSM (2009)

10. Zhao, Q., Mitra, P., Chen, B.: Temporal and Information Flow Based Event De-
tection From Social Text Streams. In: Proc. of the 22nd National Conference on
Artificial Intelligence, vol. 2, pp. 1501–1506 (2007)

11. van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time prediction based on
process mining. Information Systems 36(2), 450–475 (2011)

12. Katz, P., Lunze, T., Feldmann, M., Röhrborn, D., Schill, A.: System Architecture for
handling the Information Overload in Enterprise Information Aggregation Systems.
In:Proc.of the14th InternationalConferenceonBusiness InformationSystems(2011)

http://www.nytimes.com/2008/06/14/technology/14email.html

XML Document Versioning, Revalidation

and Constraints�

Jakub Malý and Martin Nečaský

Faculty of Mathematics and Physics
Charles University in Prague, Czech Republic

maly@ksi.mff.cuni.cz

Abstract. One of the prominent characteristics of XML applications
is their dynamic nature. When a system grows and evolves, old user
requirements change and/or new requirements accumulate. Apart from
changes in the interfaces used/provided by the system or its components,
it is also necessary to modify the existing documents with each new
version, so they are valid against the new specification. In this doctoral
work we will extend an existing conceptual modeling approach with the
support for multiple versions of the model. Thanks to this extension,
it will be possible to detect changes between two versions of a schema
and generate revalidation script for the existing data. By adding integrity
constraints to the model, it will be able to revalidate changes in semantics
besides changes in structure.

Keywords: XML schema, schema evolution, conceptual modeling,
constraints.

1 Introduction and Motivation

Recently, XML has become a corner stone of many information systems. It is
a de facto standard for data exchange and it is also a popular data model in
databases [1]. XML applications are very dynamic in their nature. Requirements
change during the life cycle of the system and so do the XML schemas. Without
any tools to help, the old and new schema need to be examined by a domain
expert. Each change must be identified, analyzed and all the relevant components
of the system modified accordingly. Moreover, all the existing documents must
be updated. This can be a time-consuming and error-prone process, but, in fact,
a significant portion of the operations could be performed automatically.

Applications usually utilize XML in two scenarios: either 1) XML docu-
ments are used for data exchange in intra/inter-system communication and XML
schemas define interfaces of the individual components and systems themselves,
while the data itself are stored in another (usually relational) data storage or 2)
XML documents are also used to store the physical data and XML schemas are
used to describe the structure and check the validity of these documents.

� This work was supported in part by the Czech Science Foundation (GAČR), grant
number P202/10/0573, and by the grant SVV-2011-263312.

A. Harth and N. Koch (Eds.): ICWE 2011 Workshops, LNCS 7059, pp. 317–321, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

318 J. Malý and M. Nečaský

As schemas change with a new version of the system, the system needs to
be updated, but it is also usually required to accept data valid against the
old version, at least for some transitional period of time. In the first scenario,
the affected component can be equipped with some adapter component that
modifies the structure of the document. In the second scenario, the existing
documents stored in the system need to be augmented to conform to the new
version of the schemas (this process is usually called revalidation). In both cases,
the problem can be solved by accompanying the new version of the schema
with some kind of “revalidation script” every time schemas change and using
this script to either preprocess incoming data or update the existing internal
documents. The revalidation script can be either a script in an implementation
language (XSLT, XQuery Update Facility), or a sequence of formalized update
operations.

2 Current Approaches

For the goal of determining whether documents are no longer valid against the
new version, the system must recognize and analyze the differences between the
old version (S ′) and the new version (S̃ ′) of the schema. There are two possible
ways to recognize changes:

a) Recording the changes as they are conducted during the design process (and
propagate each change immediately to the documents [2,3] or propagate all
changes in one batch [4])

b) Comparing the two versions of the diagram [5,6]

All the existing evolution frameworks work only in the scope of one schema.
However, in a complex system, the specification can be comprised of hundreds
of schemas with interrelated changes. When new data needs to be added to the
existing documents (e.g. when new mandatory element is added to the schema)
the existing frameworks offer only trivial solutions (creating only the empty
structure, the content must be filled by the user). But in a sound and consistent
model, the content can be added automatically, as we will outline later. In some
schema evolution scenarios, elements, attributes or whole subtrees are moved
from one location in the document to another. These so-called migratory opera-
tions are not supported in many frameworks or the support is insufficient. None
of the existing frameworks deal with the semantics of the changes (e.g. when
time-spent attribute is moved from Task element to Project element, its value
should be equal to the sum of all the values in Task elements in the old version)
or integrity constraints.

3 Conceptual Modeling with Versioning and Revalidation

This doctoral work will follow the work on conceptual modeling of XML data.
In [7], a two-layered model XSEM was introduced, with platform-independent

XML Document Versioning, Revalidation and Constraints 319

(PIM) and platform-specific (PSM) layers. A PIM schema (UML class diagram)
models a problem domain at the conceptual level. A PSM schema is an extended
(necessary for modeling hierarchical XML data) UML class diagram that models
one XML schema. It is proven that a PSM schema is equivalent to regular tree
grammars (RTG). Components of the PSM schemas in the system are linked to
concepts in the PIM and thus correctness and coherence can be maintained dur-
ing initial design and further evolution phase (e.g. change in a concept Purchase
in the PIM schema can be easily propagated to all the PSM schemas where
Purchase is referenced) – the two-layered design is made to measure to the sce-
narios, where there are multiple XML schemas (modeled by PSM schemas) shar-
ing a common problem domain (modeled by PIM schema), each XML schema
representing a different view on some part of the domain (e.g a PIM concept
Purchase is referenced in a purchase-request and yearly-report schema,
both using different attributes and associations of Purchase).

Also, having separate PIM and PSM makes possible to add additional models
(e.g. model of a relational database) and linked them to PIM too. This way it is
possible to depict the relation between XML schema constructs and RDB tables
and columns via the links to common PIM.

To date, XSEM was enhanced with support for multiple versions in order to
support schema evolution (XSEM-Evo [8]). XSEM-Evo uses combination of the
methods mentioned in Section 2. The core of the algorithm uses schema com-
parison, but besides the two versions of the schema, it requires the set of version
links, which connect the same concept in different versions (e.g. the old version
and the new version of the concept Purchase will be linked). These version links
can be maintained automatically as user edits the schema (this idea comes from
the change recording approach), entered manually or by heuristics matching
the similar concepts. Combined approach of schema comparison with version
links sufficiently handles the addition, removal and also migratory changes in
schemas, additional annotations enable it to handle non-trivial migratory oper-
ations mentioned in the previous section. The experimental implementation was
incorporated into XCase editor [9]).

4 Research Objectives and Methodology

The aim of this doctoral work is to further enhance capabilities of XSEM-Evo
in two main perspectives: 1) increase the power of XSEM model via introducing
constraints at both PIM and PSM layers and 2) fully utilize the links to PIM
layer during document revalidation, especially for adding missing content to the
revalidated documents.

Constraints in XML UML allows the designer to specify constraints and in-
variants in the model via Object Constraint Language (OCL) in those situations,
where classes and associations do not describe the model precisely enough. At
the level of XML schemas, constraints are required too. And some types of con-
straints are impossible to define via languages based on RTGs, such as DTD and
classic XML Schema. Examples of such constraints are choices between groups

320 J. Malý and M. Nečaský

of attributes or so called co-occurrence constraints (e.g. element E1 must occur
only if the value of element E2 is v2 – classic XML Schema cannot do better
than to declare E1 as optional). To allow such constraints, XML Schema was
extended with the possibility to declare non-RTG based constructs assert and
test and even a separate schema validation language Schematron was designed
for this purpose.

As we modified UML to serve us in XML modeling, we plan to modify OCL
to serve us to define constraints in XML schemas. Our PSM schemas can be
translated to XSDs and it will be possible to translate the PSM level constraints
to Schematron schemas analogously.

From the evolution point of view, with OCL constraints, it will be possible
to track changes in semantics. For example, the request for customer history
returned the list of all purchases in the old version, but in the new version, the
list will contain only realized purchases. The structure of the schema will remain
unchanged, but in the new version, a new constraint will be added. The evolution
algorithm will be able to revalidate the document accordingly via deleting all
the unrealized purchases. Since all the existing evolution frameworks only deal
with structure and do not recognize semantics, none of them is even capable to
detect such change, let alone revalidate it.

Adding content. To date, XSEM-Evo is able to deal with changes that modify
the structure and data present in the document. However, sometimes, new data
need to be added to the document (e.g. when new mandatory attribute is added
to some document). The existing approaches also offer only insufficient solutions.
They either only a) create the minimal empty structure (elements and attributes
without values) or b) use default values (same in all instances) or c) require the
new content to be provided by the user.

Possible link to other models, in particular relational database model (RDM),
besides PSM was suggested in Section 3. With RDM linked to PIM, one possible
solution (for the first scenario from Section 1) for adding content suggest itself –
the required values for the content can be retrieved via a query from the database.
E.g. when new attribute date-of-birth is added to element student, the sys-
tem can trace the attribute being linked to PIM attribute date-of-birth of
class Person and this can be traced to be stored in a column PERSON BIRTHDATE

of table T PERSON. From this table, the value can be retrieved via a query during
revalidation.

Another solution for the same problem would be to provide the algorithm with
an additional input data document Di (for the previous example that would be
the list of birth dates of the people in the system) and generate the revalida-
tion script so that it will query the document Di when assigning values for
date-of-birth attributes. The improvement brought by either of the two solu-
tions is that the revalidation script will again be able to process all the existing
documents automatically without requiring user’s input.

Both extensions described above will be based on a strictly formal model.
Another possibility of adding data not already present in any form in the

system, is by retrieving it from the external sources, e.g. from the Web.

XML Document Versioning, Revalidation and Constraints 321

5 Conclusion

Our approach to XML schema evolution and data revalidation can considerably
simplify the process of transition to the new version. With the proposed enhance-
ments, XSEM-Evo framework will be able to detect changes in the revalidation
schema, decide, whether the detected changes may invalidate existing documents
and in that case it generate a revalidation script.

Thanks to the two-layer architecture of XSEM, it is possible to define con-
ceptual changes in one place on the PIM level and let the system to consistently
propagate them to all the PSM schemas, where they may have impact. Con-
straints at both the PIM and PSM levels will complete the structural consistency
with proper semantics and consistency of content/values.

The two-layer architecture also enables us to link XML schemas to other
components of the system (e.g. relational database). With the introduction of
constraints, the ability to detect changes in semantics and provide proper reval-
idations will be further improved. Together, XSEM framework will facilitate
both initial design and further evolution with (special emphasis on consistency
and coherence) of the systems, applications and specifications, especially in the
area of web engineering, where XML, XML schemas and related technologies are
utilized to a large degree.

References

1. Bourret, R.: XML and Databases (September 2005),
http://www.rpbourret.com/xml/XMLAndDatabases.htm

2. Guerrini, G., Mesiti, M., Sorrenti, M.A.: XML Schema Evolution: Incremental Val-
idation and Efficient Document Adaptation. In: Barbosa, D., Bonifati, A., Bel-
lahsène, Z., Hunt, E., Unland, R. (eds.) XSym 2007. LNCS, vol. 4704, pp. 92–106.
Springer, Heidelberg (2007)

3. Su, H., Kramer, D.K., Rundensteiner, E.A.: XEM: XML Evolution Management,
Technical Report WPI-CS-TR-02-09 (2002)

4. Klettke, M.: Conceptual xml schema evolution — the codex approach for design and
redesign. In: Workshop Proceedings Datenbanksysteme in Business, Technologie und
Web (BTW 2007), Aachen, Germany, pp. 53–63 (March 2007)

5. Domı́nguez, E., Lloret, J., Rubio, Á.L., Zapata, M.A.: Evolving XML Schemas and
Documents Using UML Class Diagrams. In: Andersen, K.V., Debenham, J., Wagner,
R. (eds.) DEXA 2005. LNCS, vol. 3588, pp. 343–352. Springer, Heidelberg (2005)

6. Kwietniewski, M., Gryz, J., Hazlewood, S., Van Run, P.: Transforming xml docu-
ments as schemas evolve. Proc. VLDB Endow. 3, 1577–1580 (2010)

7. Nečaský, M., Mlýnková, I.: When Conceptual Model Meets Grammar: A Formal
Approach to Semi-Structured Data Modeling. In: Chen, L., Triantafillou, P., Suel,
T. (eds.) WISE 2010. LNCS, vol. 6488, pp. 279–293. Springer, Heidelberg (2010)

8. Malý, J.: XML Schema Evolution Master Thesis (2010),
http://www.jakubmaly.cz/master-thesis.pdf

9. XCase – tool for XML data modeling, http://www.ksi.mff.cuni.cz/xcase/

http://www.rpbourret.com/xml/XMLAndDatabases.htm
http://www.jakubmaly.cz/master-thesis.pdf
http://www.ksi.mff.cuni.cz/xcase/

A Reuse-Oriented Product-Line Method
for Enterprise Web Applications

Neil Mather and Samia Oussena

School of Computing and Technology
University of West London, London, UK, W5 5RF

Abstract. Software product line engineering (SPLE) is a methodology
for achieving systematic asset reuse in a family of software. The author
of this proposal is producing a range of enterprise web portal products
for Higher Education Institutions. The commonalities and variabilities
of this product family suggest a SPLE approach would be beneficial.
However, research indicates that full-blown, proactive SPLE is not al-
ways suited to small businesses. Efforts exist to reduce the overheads
of SPLE. In this vein, this research proposes to develop a method for
applying software product line engineering to enterprise web application
development that makes efficient use of existing frameworks. This re-
search falls into the domain of model-driven processes and methods for
web engineering.

1 Introduction and Motivation

This research involves the creation of a software product line for enterprise web
portals. The portals from this product line are to be deployed to Higher Educa-
tion Institutes (HEIs) in various domains, such as nursing, social care, occupa-
tional therapy and teaching, for the administration of practice-based learning.1

While there are many similarities between practice-based learning in each of
these domains, there are also many subtle (and not-so-subtle) differences. These
differences are not just between domains, but also between HEIs. The variabili-
ties can be in many places. There can be differences in the concepts and business
processes in the domain. For example, while a nursing student may have a “men-
tor”, in social work this may be their “practice educator” – a similar yet different
concept. Similarly, the process of sending a student on placement varies from
HEI to HEI. There can also be differences in the basic functionality of a portal
for each HEI – each has its own set of requirements for basic functionality and
customisations such as branding and available features. In developing software
systems for practice-based learning across domains and HEIs, techniques are
required to account for these commonalities and variabilities. Traditional ap-
proaches to software reuse are not suited to this purpose. This research seeks to
utilise SPLE to enable efficient reuse in the creation of these enterprise portals,
and to investigate the use of SPLE in web applications at large.
1 Practice-based learning is a form of higher education wherein a significant portion

of a student’s education is spent training in real-world environments.

A. Harth and N. Koch (Eds.): ICWE 2011 Workshops, LNCS 7059, pp. 322–326, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Reuse-Oriented Product-Line Method for Enterprise Web Applications 323

2 Background

SPLE is a systematic approach to achieving software reuse. It aims to minimise
the overheads incurred when building a family of software products that have
significant shared features, yet various differences. SPLE and its reuse-oriented
methodology has many purported advantages, both financial and technical, and
a number of industrial case studies document the successes it can bring [9,14]. Yet
due to its relative newness and its perceived overheads it is not yet in widespread
use in small- to medium-sized enterprises [8, p. 205]. Efforts exist to bring the
benefits of SPLE to companies less able to absorb its large up-front analysis
times [7,5,11].

SPLE is commonly split into two main processes: domain engineering and
application engineering [13, p. 20]. In domain engineering the scope of the do-
main of the product family is defined, and common and variable parts across
products are identified. Variability management, a key component of SPLE, is
used to manage these commonalities and variabilities. Feature modelling is the
most common method for variability management [3]. In application engineer-
ing concrete products are produced from the assets and models that have been
produced in the domain engineering process. This requires the production of a
configuration specification of the variability model, which defines the features
to be included (and excluded) from the product in question. A transformation
process must then take place, mapping the assets and the configuration specifi-
cation into a concrete product. While frequently the goal is for this mapping to
be automated, human intervention in the process is often required.

Enterprise portals are web-based systems that provide the means for research-
ing, collaborating and manipulating data within the enterprise. They provide
functionality such as targeted information provision, easy content management,
inter-personnel communication and collaboration, business intelligence reporting
and quick access to line-of-business data [4]. The utility of enterprise portals has
infiltrated the corporate consciousness enough for several pre-fabricated, com-
mercial portal frameworks to exist, which can be used by companies to ‘roll
their own’ portal without having to start entirely from scratch. These portal
frameworks are predominantly component-based architectures.

Web systems are seen as an area where the rapid response times of SPLE
for new products can be beneficial. However, the high upfront costs can be
off-putting to small- to medium-sized enterprises. The extractive and reactive
approaches are ways around these costs [7], and similarly the use of pre-existing
tools can be another time-saving measure [8]. Despite this, much prior work in
integrating the SPLE paradigm with web applications and portals has involved
the construction of a new, custom-built portal framework each time [12,8,2,1].
This is a missed opportunity for software reuse. This research will suggest that a
process for variability management and application engineering using an existing
portal framework will further increase the productivity gains of SPLE in the
sphere of the web.

324 N. Mather and S. Oussena

3 Aims and Objectives

The specific aims of this research are:

– To demonstrate that the software reuse savings of SPLE can be further
increased by making use of existing portal and web frameworks.

– To build upon prior work and develop the concepts around SPLE and web
systems, and to define new concepts where required.

– To develop a methodology that describes how to take an ‘off-the-shelf’ por-
tal/web framework and apply variability management and SPLE techniques
to produce applications in a product line.

4 Research Methodology

This research will begin with a design science creational phase, followed by an
empirical evaluative stage [10]. The first stage will create the software artifacts
and methodologies, and the second stage will empirically investigate the utility
of these artifacts in a real-world context.

The first stage will utilise the Formulative-Process research approach, and the
research method will be Concept Implementation. These are the most predomi-
nant approaches in software engineering research [6]. These methodologies will
be used to create the research artifacts of this research – newly defined con-
cepts for the use of SPLE with web systems; a general methodology for reusing
frameworks for web systems; and an instantiation of this methodology in one
technology.

The product-line will be defined in a reactive fashion based on demand, as
opposed to the heavy up-front analysis of the proactive approach [7]. The core
and variable assets and models will evolve as new portals are created for new
customers. Initial portals will go through the software product life-cycle of re-
quirements engineering, analysis, design, implementation and testing. As the
portal product-line is produced, the toolkit for portal generation will be devel-
oped. This artifact will take the form of a generator that, given a configuration
specification (derived from a variability model such as a feature model), will pro-
duce a generator script. This script will compile and install the required assets
in the portal framework to produce an individual product. This toolkit will be
used to inform the definition of the generalised methodology for reusing portal
frameworks in an SPLE approach.

The initial evaluation of the method will be based on the proof by implementa-
tion research method. The construction of a fully-operational product line from
which applications can be produced and sold will be taken as partial validation
of the method. It is important, however, to more rigorously validate the method
in comparison to alternative methods. This can be performed quantitatively by
analysing the reduction in developer-written lines of code by the method. Fur-
ther software reuse metrics can also be employed. In addition to this, empirical
evaluation via case study will be performed in the second stage of the research.

A Reuse-Oriented Product-Line Method for Enterprise Web Applications 325

Feature
Model

Configuration
Specification

Generator Builds and installs HEI X Portal

Features
are chosen
for HEI X

Assets
(SharePoint

.wsp features)

BrandingFeature
EvaluationsFeature
ContentManagementFeature
etc

PowerShell
script

Fig. 1. Process for generating a portal from a configuration specification and pre-built
assets. Selected assets are installed by the Generator. Future iterations will allow for
variability within individual assets, for example through compilation-time bindings in
source code, or run-time parameterisation.

5 Research Plan

Work to date has involved the production of conceptual models, business pro-
cess models, and domain glossaries of the social work and nursing domains of
practice-based learning. Research into portal frameworks has been performed,
as has research into product line and variability management techniques. Initial
requirements engineering has been performed with one HEI in the social work
domain. Use cases have been created and a prototype portal has been developed
using C#, ASP.NET, and Microsoft SharePoint. This portal is currently being
tested by the HEI. A prototype version of the toolkit for portal generation has
been produced, as shown in Figure 1.

Going forward into the 2nd year, the reactive SPLE approach will be used as
portals are produced for other HEIs. This will define the practice-based learning
portal product-line as variability is incorporated into the existing models and
assets. As this process occurs, concepts for web systems product-lines will be
defined, with a focus on reuse of the portal framework infrastructure and com-
ponents. The toolset with which to automate the generation of new web applica-
tions from product-family assets will be enhanced. The concepts of this toolset
will be generalised to describe a methodology applicable to portal frameworks
and web systems in general. In the 3rd year of research, empirical, evaluative
analysis of the utility of the methodology and its instantiation will be made via
case study. This will be achieved at the company as more portals are rolled out
to customers.

6 Contributions to Web Engineering

The main contributions of this research will be:

– Definition of concepts related to SPLE and enterprise web systems. This
will include variability management techniques for enterprise ontologies and
business processes, and investigations into aspect-oriented programming for
web-related software product lines.

326 N. Mather and S. Oussena

– A general methodology with which existing portal/web frameworks can be
used in the software product line engineering paradigm.

– An instantiation of the methodology – i.e. a toolkit that can be used to
generate enterprise web applications incorporating the reuse of one existing
framework technology.

– An empirical, industrial case study of the methodology in practice.

References

1. Balzerani, L., Di Ruscio, D., Pierantonio, A., De Angelis, G.: A product line ar-
chitecture for web applications. In: Proceedings of the 2005 ACM Symposium on
Applied Computing, pp. 1689–1693. ACM (2005)

2. Capilla, R., Dueñas, J.C.: Light-weight product-lines for evolution and maintenance
of Web sites. In: Proceedings of the Seventh European Conference on Software
Maintenance and Reengineering, pp. 53–62. IEEE Computer Society (2003)

3. Chen, L., Babar, M.A.: A Status Report on the Evaluation of Variability Manage-
ment Approaches. In: 13th International Conference on Evaluation and Assessment
in Software Engineering (EASE). BCS (2009)

4. Dias, C.: Corporate portals: a literature review of a new concept in Information
Management. International Journal of Information Management 21(4), 269–287
(2001)

5. Ghanam, Y., Maurer, F.: Extreme Product Line Engineering: Managing Variability
and Traceability via Executable Specifications. In: Proceedings of the 2009 Agile
Conference, pp. 41–48. IEEE Computer Society (August 2009)

6. Glass, R.: Research in software engineering: an analysis of the literature. Informa-
tion and Software Technology 44(8), 491–506 (2002)

7. Krueger, C.W.: Easing the transition to software mass customization. In: Software
Product-Family Engineering, pp. 178–184 (2002)

8. Laguna, M., González-Baixauli, B., Hernández, C.: Product Line Development of
Web Systems with Conventional Tools. In: Proceedings of the 9th International
Conference on Web Engineering, pp. 205–212. Springer, Heidelberg (2009)

9. Van Der Linden, F., Schmid, K., Rommes, E.: Software product lines in action: the
best industrial practice in product line engineering. Springer, Heidelberg (2007)

10. March, S.T., Smith, G.F.: Design and natural science research on information tech-
nology. Decision Support Systems 15(4), 251–266 (1995)

11. McGregor, J.D.: Agile Software Product Lines - A Working Session. In: Proceedings
of the 2008 12th International Software Product Line Conference, vol. 7. IEEE
Computer Society (September 2008)

12. Pettersson, U., Jarzabek, S.: Industrial experience with building a web portal prod-
uct line using a lightweight, reactive approach. In: Proceedings of the 10th Euro-
pean Software Engineering Conference, vol. 30, pp. 326–335. ACM (September
2005)

13. Pohl, K., Böckle, G., Van Der Linden, F.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer, Heidelberg (2005)

14. Software Engineering Institute. Catalog of Software Product Lines (2010)

A. Harth and N. Koch (Eds.): ICWE 2011 Workshops, LNCS 7059, pp. 327–331, 2011.
© Springer-Verlag Berlin Heidelberg 2011

A Flexible Architecture for Client-Side Adaptation

Sergio Firmenich1,2, Gustavo Rossi1,2 , Silvia Gordillo1,3, and Marco Winckler4

1 LIFIA, Facultad de Informática,
2 Universidad Nacional de La Plata and Conicet Argentina

3 CiCPBA
{sergio.firmenich,gordillo,gustavo}@lifia.info.unlp.edu.ar

4 IRIT, Université Paul Sabatier, France
winckler@irit.fr

Abstract. Currently the Web allows users to perform complex tasks which
involve different Web applications. Anyway they still have to face these tasks
in a handcrafted way. Although it is possible to build service-based software,
such as mashups, to combine data and information from different providers,
many times this approach has limitations. In this paper we present an approach
for Client-Side Adaptation aimed to support complex concern-sensitive and
task-based adaptations with user-collected data. Our approach improves user
experience by supporting user tasks among several Web applications.

1 Research Context

The evolution of the web has given more and more capabilities to users. From only
allowing them browsing contents, at present users not only modify and add new ones
but that they choose the way in which the content is presented. Nowadays, users
perform several tasks on the Web in general using more than one application. As a
consequence they have to perform some extra work when they change the Web
application in use and want to continue their task in it. With each switch the work
context is generally lost. It means that both what the user was doing and the relevant
information which was used is lost when he navigates. As part of a solution to this
problem, users can combine contents and services from different resources in order to
generate new applications like mash-ups. Another current trend is to adapt Web sites
on the client-side, which implies modifying the original contents of Web applications
by adding, removing or modifying elements into the Web sites DOMs. This
phenomenon of Client-Side Adaptation (CSA) has given new capabilities to users,
who now can adapt Web sites correspondingly with their preferences or requirements
even those which are not contemplated by Web applications developers.

CSA is a promising trend since at the Client-Side all information about the user
activity is available even outside the boundaries of a single Web application.
However, while CSA provides a new opportunity to integrate information from
several Web sites this power does not seem to be fully exploited. Our first step was to
apply concern-sensitive navigation (CSN) at the Client-Side [2]. CSN is a conceptual
tool to improve the user experience by taking into account his concern while he
navigates the Web. Suppose the user is navigating from A to B; then when he arrives
to application B, the application is adapted with information or functionalities

328 S. Firmenich et al.

according with the user concern in A, but if the user would be navigated from C the
adaptation would be different. The main idea of CSN is to adapt the current node
considering the contents of previous ones in the navigation. CSN can occur in two
ways. When both pages A and B belong to the same Web application we say that it is
intra-application CSN. On other hand, CSN is inter-application when target and
source nodes belong to different applications.

In this work we show a flexible architecture to support CSN and other kinds of
adaptations. We have developed a set of tools for supporting users in developing
adaptations, which can be shared such as in a crowdsourced development structure.

This paper is organized as follows: in section 2 we introduce the objectives of our
research; in section 3 we present a software structure to support all our approach.
Finally, section 4 presents conclusions and further works.

2 Research Objectives

The research proposal of this position paper tries to answer the following research
question: How can adaptation of existing Web applications be directed in order to
improve the user’s experience by empowering him with mechanism to fulfil volatile
adaptation requirements while he navigates different Web applications to accomplish
his tasks?

Different objectives were identified in order to success deal with the main research
question. The first one is to clearly identify which information is available at the
Client-Side. In comparison with typical approaches for adaptation, CSA gives us new
possibilities. For our approach two kinds of information are mainly relevant:

• Navigational history: on Client-Side all navigational history is available instead
of being restricted to a single Web application. This information is really
important to realize inter-application CSN when the user switches from an
application to another (either by following a link or typing a new URL).

• Information Used: knowing which other Web applications the user has used or is
using is really powerful to make adaptations, but it would be even more if we
could also use information from these applications.

A second objective is to analyze and design mechanisms to allow users make
adaptations under demand in order to fulfil volatile requirements to adapt Web sites
in a concern-sensitive or task-based way.

Differently to other, more static, Web augmentation [1] approaches (e.g. those
using GreaseMonkey [3]), we want to empower adaptation by allowing users to
develop complex components that will be used in the adaptations (see section 3).
Basically the main idea is to accomplish a deeper CSA approach by fully exploiting
all Client-Side capabilities instead of limiting ourselves to attach restricted JavaScript
code when the Web pages are loaded as when using GreaseMonkey. Then, we have a
third objective, which is to clearly determine what kind of software artefacts can be
developed by users with programming skills. As a consequence of the previously
described objectives we have the followings new ones. First we want to ease the
development process of the artefacts found by giving users the guidelines to develop a
particular kind of artefact. On the other hand we have to design a robust but flexible
architecture to orchestrate the – crowdsourced – developed artefacts.

 A Flexible Architecture for Client-Side Adaptation 329

Figure 1 shows an adaptation to depict the potential of our approach. Here a user is
using IMDB. The image 1 shows the page of the movie “Black Swan” and from it the
user navigates (with the link showed in image 2) to Amazon.com in order to buy the
“Black Swan” DVD. When Amazon.com is loaded a menu is added (image 3) to offer
searches about other movies which the user had visited before in IMDB (image 4).

Fig. 1. Example of Client-Side adaptation based on navigational history

In the following section we propose a structure where the whole approach is
modularized into components with specific responsibilities.

3 Solution Approach

Current solutions for CSA provide mechanisms to modify Web pages DOM in order
change content or functionalities. Our goal is to provide a better support to the current
user task or concern, but at the end we always need to change the pages’ DOM to
materialize the adaptation. We have to perform two different activities: 1) detect the
current user concern/task, 2) change the Web pages DOM accordingly with the needs
of the concern or task detected. Note that two different concerns could need similar
DOM changes, for instance to remove some DOM elements, only changing the target
DOM elements. As a consequence it is reasonable to reuse those software pieces
which manipulate DOMs. We call these components: augmenters since they respond
to classical definition of Web augmentation. Augmenters perform generic adaptations
such as automatic form filling or text highlighting. Meanwhile, those artefacts which
analyze concerns and apply augmenters are called scenarios since they realize
scenario of Web applications usage. By combining augmenters, scenarios support
customized adaptations for specific domains such as trip planning, house rental, etc.
For example a scenario can use the form filling augmenter when the user is navigating
among several Web sites for booking flights and hotels. The same augmenter can be
used to fill forms related to a product search in e-commerce Web sites, for example
by taking the department (e.g. electronics) and the keyword (e.g. iphone4) used in
amazon.com to complete the form automatically in fnac.fr. Scenarios can use data
collected by users to execute augmenters with different arguments.

A third kind of artefacts in our approach are components. These are auxiliary tools
used to perform adaptations. From the point of view of scenarios, components
perform critical functionality such as accessing the user navigational history, getting
relevant information, etc. On the other hand, components are useful to empower

330 S. Firmenich et al.

augmenters by providing them more privileges that would not be available in simple
JavaScript code, for example to get geo-location information. These three kinds of
elements are developed and shared by users, then a crowdsourced development of
three layers is achieved where: 1) augmenters are responsible of manipulating the
DOMs, 2) scenarios are aware of the user activity and opportunely trigger some
augmenter in order to adapt the Web pages, 3) components act as libraries used to get
information or make operations allowing to reuse them by augmenters or scenarios.

Augmenters, Scenarios and Components are software artefacts that need to be
coordinated. In the following section we introduce our framework for CSA which
includes a set of tools which help to coordinate these user-developed artefacts.

3.1 A Framework for Client-Side Adaptation

Figure 2 shows the framework architecture based on the pyramid approach [4].

Fig. 2. Framework structure

Top levels are more abstract while lower ones are more detailed. At the top layer,
final users can collect relevant information for their current task or concern by using
DataCollector tools. When they navigate to other sites they are able to execute
augmenters using this information; in this way they can satisfy volatile adaptation
requirements (not foreseen by developers). At the middle layer, end users with
programming skills can extend the framework by developing augmenters or scenarios
as classes inheriting of AbstractAdapter and AbstractScenario, two outstanding
framework hot-spots. The bottom layer shows the framework design in a more
detailed view; a third hot-spot, AbstractComponent abstracts concrete components;
for example we developed a component which offers geo-location information.

By conciseness reasons we outline only the main components:

• Adaptation Support Layer
o ClientSideAdaptationManager: is the Framework’s core, whose functions are to

coordinate others elements and to serve as communicator with the browser.
o ConceptPersistenceManager: is responsible for saving and restoring user data

into the local files system.

 A Flexible Architecture for Client-Side Adaptation 331

o AbstractAdapter and AbstractScenario: are abstract classes from which concrete
augmenters and scenarios, correspondingly, developed by users must inherit.

o AbstractCommponent: is an abstract class used for extending the framework by
developing components to support new capabilities (e.g. geolocation).

• Adaptation Definition Layer
o EventManager: is the responsible of adding and removing listeners (Adaptation

Definition Layer) of events from the lower layer.
o ConcreteAdapter and ConcreteScenarios: are scripts developed by users with

programming skills. These classes are shown in Figure 3 in order to highlight
their place in the hierarchy. Some concrete augmenters as HighlightAdapter,
WikiLinkConverter, CopyIntoInputAdapter are included in our framework.

• Adaptation Execution Layer
o DataCollector: is the tool to allow users collecting information while navigating.

So far, two concrete DataCollectors have been implemented: one for selecting
plaintext information, and another to handle DOM elements.

o PocketManager: is our tool to allow users to move information among sites.
o AdaptationDispatcher: is the responsible of executing an adaptation under user

demand. It is useful to accomplish volatile requirements of adaptation.

4 Conclusions and Future Work

In this work we have presented a novel approach for CSA which proposes a flexible
structure to support concern-sensitive and task-based adaptations. The framework
allows three kinds of extensions to support and execute adaptations on Client-Side.
The framework can be extended and/or used both by end-users or developers (e.g. by
developing JavaScript code). In comparison with usual the CSA tools, we provide a
flexible mechanism to integrate information while users navigate the web, instead of
“just” providing tools to statically adapt Web sites.

We are working in two main directions to improve the approach. The first one is to
improve the development process using the framework. The second one is to raise the
abstraction level for developers by creating a domain specific language that will
simplify the specification of both augmenters and scenarios; this will let users without
JavaScript knowledge to develop adaptations easily.

References

1. Bouvin, N.O.: Unifying Strategies for Web Augmentation. In: Proc. of the 10th ACM
Conference on Hypertext and Hypermedia (1999)

2. Firmenich, S., Rossi, G., Urbieta, M., Gordillo, S., Challiol, C., Nanard, J., Nanard, M.,
Araujo, J.: Engineering Concern-Sensitive Navigation Structures. Concepts, tools and
examples, JWE 2010, pp. 157–185 (2010)

3. Greasemonkey, http://www.greasespot.net/ (last visit on April 11, 2011)
4. Meusel, M., Czarnecki, K., Köpf, W.: A Model for Structuring User Documentation of

Object-Oriented Frameworks Using Patterns and Hypertext. In: Aksit, M., Auletta, V.
(eds.) ECOOP 1997. LNCS, vol. 1241, pp. 496–510. Springer, Heidelberg (1997)

Applications of Mobile Application Interface

Description Language MAIDL

Prach Chaisatien, Korawit Prutsachainimmit, and Takehiro Tokuda

Department of Computer Science, Tokyo Institute of Technology
Meguro, Tokyo 152-8552, Japan

{prach,korawit,tokuda}@tt.cs.titech.ac.jp

Abstract. Developments of mobile mashup applications have a rapid
growth in the recent years. We present a development of Mobile Applica-
tion Interface Description Language (MAIDL) and its applications. The
language enables the development of mobile mashup applications with
less programming efforts. Using our description language, composers are
able to reuse existent mobile applications, Web services, and Web ap-
plications as the components to create a mashup mobile application or
a Tethered Web service on a mobile device (TeWS). We demonstrate
the further application of a TeWS to deliver a cooperative mashup via a
functionality exchange between an Android and an iOS device.

Keywords: Mobile mashup application, description language, tethered
Web service, mobile Web server.

1 Introduction

A composition of Web information and mobile devices unique features has re-
cently become an important development trend. In this paper, we approach a
development of an XML-based description language to compose mobile mashup
applications and Tethered Web services on a mobile device (TeWS). Compo-
nents in the mashup execution are derived from a combination of existent mo-
bile applications, JavaScript-based Web automations and Restful Web service
consumptions. The composition method applied a workflow model which later
translated into a script in description language called Mobile Application Inter-
face Description Language (MAIDL). Finally, a mobile application or a TeWS is
generated from the MAIDL script as an output. Furthermore, a complex mashup
example is provided to demonstrate applications of the generated TeWS between
mobile devices.

To integrate various functionalities to a mashup component, developers are
having no alternative but to study a very specific programming language API.
Divided by its target platform, mobile applications are generally created as mo-
bile Web pages and native language applications. The major drawback when
creating a multiplatform mobile Web application is that it tends to employ
fewer amounts of mobile devices useful features. Moreover, mobile software de-
velopments using the devices native programming language require more explicit

A. Harth and N. Koch (Eds.): ICWE 2011 Workshops, LNCS 7059, pp. 332–336, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Applications of Mobile Application Interface Description Language MAIDL 333

knowledge. In the term of data flows and Web-enabled information reuses, cur-
rent approaches do not allow applications be developed as rapid as the Web-
based ones do.

Code, which is generated from MAIDL, is in a procedural paradigm rather
than declarative [1], since the control part mainly consists of procedures that
are passing parameters and synchronizing processes in the mashup runtime en-
vironment. For this reason, we proposed automatic code generation algorithms,
which assist composers in creating mobile mashup applications. In this research,
we applied partial information extraction [2] and the final output is not limited
to mobile application as traditional methods are [3]. A TeWS can be generated
and later consumed by other clients. Later in an example, we show how the
TeWS is applied to a platform-independent communication between devices.

2 Overview

2.1 Objective

Explore a mobile mashup model. The topics discussed in section 1 show that a
mashup model for the mobile mashup application is not concretely defined. We
aim to find an optimal mashup model which leads to a better solution in creating
mashup applications for mobile devices.

Deliver reusability. Our mashup components include existent mobile applica-
tions and Web information. Developing mashup applications with low-level API,
such as creating an image recognition component with a new algorithm, is be-
yond our research scope.

Enable fast prototyping. Mashup applications can be created from a Web-based
software generation tool. Composers are allowed to generate source code, com-
pile, and test it immediately after the composition model is correctly prepared.
Methods called Mashup Output Context Transformation and Mashup Process
Scheduling Algorithm would assist composers by automatically managing fore-
ground and background runtime behaviors of the mashup components.

Demonstrate a Tethered Web service on mobile devices. A mashup application
in our approach can be created as a mobile application to run on a device
or as a TeWS. Functionality exchanges and interactive collaborations between
devices can be derived from our approach, and these are unique features and
contributions which do not appear in other approaches. In order to run the most
flexible configuration on mobile devices (such as third party mobile applications
and embedded server modules), we use the Android open source platform [5] as
our mashup runtime environment.

2.2 Overview of MAIDL and Its Abstract Model Composition

The general concept of MAIDL (shown in Fig. 1) is to provide data flows between
mashup components for its execution and output. The components consist of:

334 P. Chaisatien, K. Prutsachainimmit, and T. Tokuda

Fig. 1. Overview of MAIDL and its abstract model composition

1. Web Application Component (WA). A part of a Web page or a query through
form in an HTML document can be reused through a WA component. Com-
posers are provided with a tool to annotate tags and specify execution com-
mands. JavaScript code will be generated according to the specification and
execute automatically in the runtime environment on the mobile device.

2. Web Service Component (WS). Connections to REST Web services are ap-
plicable to our mashup composition. Composers specify a URL, a query path
and a query expression (such as XPath or JSON dot notation) to access a
part of the whole data.

3. Mobile Application Component (MA). A part of mashup execution can be
derived from a mobile application. Our method allows an application which
implemented Intent and Service [4] messaging protocol to be integrated.

4. Arithmetic Component (AR). A mathematical operation between parame-
ters from one or more components can be performed through an Arithmatic
Component. The operation includes addition, subtraction, division, multipli-
cation, summation, comparison, array merge and GPS distance calculation
from 2 pairs of GPS coordinates.

3 Cooperative Mashup

To demonstrate functionality exchanges and a cooperative mashup application,
we created a mashup application using our approach. It requires interaction
between 2 or more mobile devices. In this way, the application created in a
TeWS output context can be deployed on an Android mobile phone. On the
other hand, the iOS device [6] is manually programmed to consume the TeWS
on the Android phone.

In this mashup application, geolocation of 2 devices are used as a data to find
a list of restaurants located near the middle point between each devices GPS

Applications of Mobile Application Interface Description Language MAIDL 335

Fig. 2. Mashup models and screenshots of Meeting Point

coordinates (via the GourNavi Web service [7]). Fig. 2 shows 2 mashup models
and mashup applications, Meeting Point Registration and Meeting Point Con-
firmation, which communicate between devices via TeWS in separated contexts.

For the internal runtime and the connection performance, the application on
the iOS side was presumably lightweight. Since this is a cooperative mashup
application for 2 devices with a handshaking-like protocol, multiple connections
are not considered as a performance factor. Overall performance of this mashup
application depends on the performance of GourNavi Web service. All other
components work in native code. In usability and interaction test, if we assumed
that 2 devices are connected using global IP addresses and are placed outdoors,
the interactions between 2 devices might be interrupted by signal loss. Both sides
must have a timeout configuration and a reconnection arrangement in the case
of failure execution.

4 Evaluation

To deliver smooth interactions between devices of a mashup application in the
context of TeWS, the behavior of running process, network latency and usage
scenario has to be observed. Since MAIDL files contain information about each
component and its runtime behavior, an alternative application of MAIDL for

336 P. Chaisatien, K. Prutsachainimmit, and T. Tokuda

performance measurement can be considered. MAIDL files also contain a con-
crete description of the output message sent via TeWS. Applications on the
client side might be generated or adapt themselves according to the description.
A good example for the combination of a TeWS and a desktop-based Web ap-
plication is to exchange multiple data from a mobile phone to automatically fill
in personal information in an HTML form. The desktop Web application first
observes the applicable TeWS on the device and connects to it. In addition, the
result from our usability evaluation of MAIDL can be interpret that MAIDL
might not perform well when mashup applications are composed by novice com-
posers because of its complexity. Expert users are able to use MAIDL without
confusion and may apply it to external libraries. However, both groups expecta-
tions are met. Composers in both groups rated that the approach delivered 75%
subjective rating for creating mashup applications.

5 Conclusion

In this research, we proposed a fast-paced mashup development using MAIDL.
The composition enables integration of annotated parts of Web pages, connec-
tions to Web services and the use of existent mobile applications. The output can
be designated for a single device, as a normal mobile application, or for multiple
devices, as a Tethered Web service. In the mashup example, we demonstrated
how a mashup application works in a Tethered Web service context to deliver
functionality exchange and cooperative application between devices. Our future
work is to enable mobile mashups in the context of a Web application on a mo-
bile device. To support a higher interactivity to run on desktop computers, the
process control and the composition method might be different from the contexts
we have observed.

References

1. Gruhn, V., Schäfer, C.: An Architecture Description Language for Mobile Dis-
tributed Systems. In: Oquendo, F., Warboys, B.C., Morrison, R. (eds.) EWSA 2004.
LNCS, vol. 3047, pp. 212–218. Springer, Heidelberg (2004)

2. Guo, J., Chaisatien, P., Han, H., Noro, T., Tokuda, T.: Partial Information Extrac-
tion Approach to Lightweight Integration on the Web. In: Daniel, F., Facca, F.M.
(eds.) ICWE 2010. LNCS, vol. 6385, pp. 372–383. Springer, Heidelberg (2010)

3. Kaltofen, S., Milrad, M., Kurti, A.: A Cross-Platform Software System to Create
and Deploy Mobile Mashups. In: Benatallah, B., Casati, F., Kappel, G., Rossi, G.
(eds.) ICWE 2010. LNCS, vol. 6189, pp. 518–521. Springer, Heidelberg (2010)

4. Android Intents, http://developer.android.com/guide/topics/intents/
5. Android Developers, http://developer.android.com/index.html
6. iOS Technology Overview, http://developer.apple.com/technologies/ios/
7. Gourmet Navigator API, http://api.gnavi.co.jp/api/manual.htm

http://developer.android.com/guide/topics/intents/
http://developer.android.com/index.html
http://developer.apple.com/technologies/ios/
http://api.gnavi.co.jp/api/manual.htm

A Domain-Specific Language for Do-It-Yourself

Analytical Mashups

Julian Eberius, Maik Thiele, and Wolfgang Lehner

Technische Universität Dresden
Faculty of Computer Science, Database Technology Group

01062 Dresden, Germany
{julian.eberius,maik.thiele,wolfgang.lehner}@tu-dresden.de

Abstract. The increasing amount and variety of data available in the
web leads to new possibilities in end-user focused data analysis. While
the classic data base technologies for data integration and analysis (ETL
and BI) are too complex for the needs of end users, newer technologies
like web mashups are not optimal for data analysis. To make productive
use of the data available on the web, end users need easy ways to find,
join and visualize it.

We propose a domain specific language (DSL) for querying a reposi-
tory of heterogeneous web data. In contrast to query languages such as
SQL, this DSL describes the visualization of the queried data in addi-
tion to the selection, filtering and aggregation of the data. The resulting
data mashup can be made interactive by leaving parts of the query vari-
able. We also describe an abstraction layer above this DSL that uses
a recommendation-driven natural language interface to reduce the diffi-
culty of creating queries in this DSL.

Keywords: data analytics, data mashups, natural language queries.

1 Introduction

The increasing amount and variety of data available in the web leads to new
possibilities in end-user focused data analysis. In the course of the Open Data
trend, public agencies have started to make governmental data available using
web services. In addition, there is a large amount of “crowdsourced” data from
services such as Yelp (venue ratings) or Twitter (trending topics, sentiments).

To make productive use of this data, two elements are needed: first, a way to
integrate the heterogenous data into a common representation, second, a way to
analyze the integrated data to make it usable. cities The well-known solutions
to these two problems are data integration through ETL processes into data
warehouses, and the usage of BI (business intelligence) tools for analytics. These
tools could basically be applied to these new forms of data as well, but for
end-user data analysis they have two disadvantages: First, they are designed
for skilled users. Second, ETL processes are constructed for static sets of input
sources and are not suitable for on-demand joining of web data sources.

A. Harth and N. Koch (Eds.): ICWE 2011 Workshops, LNCS 7059, pp. 337–341, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

338 J. Eberius, M. Thiele, and W. Lehner

To make web data accessible to end users, new integration and analysis meth-
ods are necessary. They should accommodate to the skill levels of end-users, but
also to their needs: compared with the business intelligence in enterprises, the
skill level as well as the query complexity are much lower.

With regard to the vast amount tools for end-user driven mashup develop-
ment that have been developed in recent years, we argue that there is room for
improvement. Specifically, we argue that their scope, general mashup application
development, and their user interface styles, for example data- and work flow
graphs, are not optimal for the problem of end user data analytics.

We will discuss our view of the requirements of end-user data analytics in
the next section (Section 2). We will then propose an approach to tackle the
presented problems in Section 3 and finally discuss related work in Section 4.

2 Research Questions

Consider an exemplary use case for end-user business intelligence: a user plans
to open a cafe, and needs to decide on its location. He requires to join data from
multiple heterogenous sources. He needs statistical data about the districts of
the city, such as average income, rent or age structure, data which is available
from public agencies. In addition he needs data about the popularity of existing
cafes in the various districts, available from services such as Yelp. When he has
found the data, the user needs to to join, filter and aggregate it. For example,
he needs to merge the statistical information about the cities districts with the
average rating of existing venues in the district.

In a next step, a visualization the be preferable to a tabular display of the
result data. The type and the properties of the visualization should be config-
urable by the user. In a last step, it would be beneficial if the user could easily
vary the parameters of the mashup, e.g., aggregation or filter parameters, to
enable an exploratory style of data analysis.

From this scenario, a number of requirements and research questions can be
derived.

– How to deal with heterogenous data sources with varying degrees of structure
when creating data mashups?

– How well-suited are the interfaces currently used (e.g. drag and drop data
flow languages) for end-user mashup construction and are there alternatives?

– How to enable users to find the data sets that contain the information they
are interested in?

– How can techniques such as (automatic) tagging and matching be used to
recommend data sets that could fit into the user’s data mashup?

– How to facilitate the selection of visualizations and interaction patterns that
are appropriate for the data?

3 Approach

To support the outlined use cases we propose a declarative domain specific lan-
guage (DSL), as well as a higher level natural language interface that supports

A DSL for DIY Analytical Mashups 339

the user in creating data mashups using this DSL. The language allows the user
to query a repository of possibly heterogenous information that can have various
degrees of structure, ranging from free text over CSV files and graph-structured
data to relational databases.

It supports a set of operations such as joining of different data sets, filtering
according to a given predicate or grouping. In contrast to the result of a query in
a relational database system, executing a query in the proposed DSL results in a
data mashup, which is a visualization of the selected data. The form of the visu-
alization, e.g. a chart or map, can be specified in the query, or be automatically
inferred from the data used in the mashup. In addition, it includes interaction
features that can be specified in the query. Specifically, for each value in the
query that is given as a variable, an interaction feature (slider, drop-down menu
etc.) that allows to set this value will be present in the mashup.

To accommodate the language to the needs of end users while keeping it
expressive enough for developers, the language can be used on two abstraction
levels.

1. End-User Level: This level is suitable for end-user mashup creation. In con-
trast to previous mashup systems that mostly either use WYSIWYG ap-
plication editing or a pipeline-style graphical connection of operators, we
propose a iterative, recommendation-supported natural language interface,
which will be described below.

2. DSL-Level: On this level, the actual domain specific language, i.e. the query
language described above, resides. On this level, the language is similar to
typical data flow languages, with the addition of the visualization operators,
and variables which result in interaction features in the mashup. Input from
the high-level interface are mapped to executable operators on this level to
create executable mashups.

With the higher level interface, users can enter a query in natural language, which
is then incrementally refined until a fitting data mashup can be created from
the query. The first step would be very similar to systems like WolframAlpha1

in which users enter entities and attributes which they want to compare, e.g.,
“unemployment usa germany”. In the proposed system, more complex cases
including visualization directions or filter conditions are also possible, in the
style of “plot the unemployment rates in the usa and germany between 1990 and
2010.”

However, instead of presenting an answer on a best-effort basis, the platform
would go through an incremental process of assisting the user in refining the
query, as shown in Figure 1. In this process, the system will interpret the query
using techniques from natural language processing to find the elements needed for
the construction of the mashup: data sets, joins/filters/aggregates, visualization
and interaction forms. These elements will be mapped to concrete operators on
the DSL-level. For every missing element the user will be prompted to refine the
query, giving recommendations based on the elements that have been recognized.

1 http://www.wolframalpha.com/

340 J. Eberius, M. Thiele, and W. Lehner

Natural
Language

Query

Lookup fitting
data sets

Infer visualization
options

Infer interaction
options

1.

2.

3.

update query

check relation- and
attribute names
(use synonyms/

wordnet)

check filter and
aggregate conditions

for variable values

check data types and
relations

Fig. 1. Incremental Refinement of the Original Query Input

4 Related Work

An overview of available general end-user mashup development systems is given
by Grammel et al [2]. Beyond these general systems, a number of data mash-up,
analysis and visualization platforms have been proposed. Google Fusion Tables
[1] provides tools for users to upload tabular data files, join, filter and aggregate
the data and visualize the results. The interface is a standard, menu-based point
and click interface, no steps of the process are assisted or automated. Similar
tools are, for example, GeoCommons2 and to some extend ManyEyes3, which
focus on the visualization and do not offer analytical functions.

One of the more successful platforms focusing on end-user data mashups is
Yahoo Pipes4. It uses a visual data flow language to merge and filter feeds
and to model user input. Executing a pipe (a data flow) results in a new feed,
which can include parameters that the user specifies on execution. Resulting
feed data can be displayed as a list, or on a map if the items contain spatial
data. The system offers many operators and thus a high degree of flexibility, but
lacks visualization or data other data exploration features, instead focusing on
merging and processing of data. Furthermore, to use the system, the user has
to understand the concept of data flow graphs, as well as many specific mashup
problems, for example how web services are called with URL parameters, or that
a geo-coding component has to be inserted into the pipe to display addresses on
a map.

2 geocommons.com
3 manyeyes.alphaworks.ibm.com
4 pipes.yahoo.com

A DSL for DIY Analytical Mashups 341

There are many current systems that explore the application of natural lan-
guage querying to semantic data bases. Kaufmann et al. propose a classification
for these system that ranges from completely free form query entry to more
structured or guided approaches with almost formal query languages [4]. They
evaluate several systems and conclude that neither end of this spectrum is opti-
mal for end-users. They argue that a guided free entry approach is preferable.

Recommending components to mashup creators has been explored for example
by Greenshpan et al [3]. They developed a system that offers autocompletions
based on previous mashups created by other users. Picozzi et al. on the other
hand propose a system that recommends components to be added to a mashup
using quality metrics that take both the new components as well as the already
chosen components into account [5].

5 Conclusion and Planned Contributions

The increasing amount of publicly available data on the web raises the question
how this data can be made usable for end-users. There is a need for simple tools
for data joining, analyzing and visualizing web data from different sources.

The following specific contributions are planned:

– A DSL for data mashup construction, with query, visualization and interac-
tion operators for working on heterogenous web data.

– A high-level natural language query interface and an iterative process for
refining queries and mapping them to the concrete DSL.

– A recommendation engine for finding data sets, visualization and interaction
forms fitting the given query.

The project is in the initial research phase. The next steps in the research plan
include concretizing the operators of the DSL, exploring the capabilities of cur-
rent NL-querying systems and experimenting with different ways of mapping
natural language input to operators of the DSL and data sets in the repository.

References

1. Gonzalez, H., Halevy, A.Y., Jensen, C.S., Langen, A., Madhavan, J., Shapley, R.,
Shen, W., Goldberg-Kidon, J.: Google fusion tables: web-centered data management
and collaboration. In: SIGMOD 2010 (2010)

2. Grammel, L., Storey, M.-A.: A Survey of Mashup Development Environments.
In: Chignell, M., Cordy, J., Ng, J., Yesha, Y. (eds.) The Smart Internet. LNCS,
vol. 6400, pp. 137–151. Springer, Heidelberg (2010)

3. Greenshpan, O., Milo, T., Polyzotis, N.: Autocompletion for mashups. In: VLDB
2009 (2009)

4. Kaufmann, E., Bernstein, A.: Evaluating the usability of natural language query lan-
guages and interfaces to semantic web knowledge bases. In: Web Semantics: Science,
Services and Agents on the World Wide Web (2010)

5. Picozzi, M., Rodolfi, M., Cappiello, C., Matera, M.: Quality-Based Recommenda-
tions for Mashup Composition. In: Daniel, F., Facca, F.M. (eds.) ICWE 2010. LNCS,
vol. 6385, pp. 360–371. Springer, Heidelberg (2010)

Information Extraction from Web Pages Based

on Their Visual Representation

Ruslan R. Fayzrakhmanov�

Database and Artificial Intelligence Group
Institute of Information Systems, TU Vienna
Favoritenstrasse 9, A-1040 Vienna, Austria

fayzrakh@dbai.tuwien.ac.at

Abstract. This research is dedicated to enhancing the efficiency of web
information extraction and web accessibility. The motivation behind the
research, its aim and objectives are presented, and the performed work on
developing web page model for information extraction is described. We
also present work on making extracted information accessible to blind
users, providing them with the means to navigate and access required
information quickly. We also present our ongoing research on creating
efficient methods and approaches for information extraction from the
proposed model. There are two main approaches considered: 1) develop-
ment of the library which provides required functionality to the program-
mer; 2) development of declarative Datalog-like language for information
extraction.

Keywords: web information extraction, web page, wrapper, web
accessibility.

1 Introduction

The Web is an enormous repository of information. It plays an important role
in business, politics, science, and our everyday life. Web pages are the main
components of the Web, presenting information in semi-structured and unstruc-
tured forms, using well-known standards, such as HTML and XHTML. These
forms of representation and CSS are solely used for specifying visual formatting,
and they are convenient forms for storing and transferring information through
the Internet. But HTML, XHTML as well as DOM tree are not designed to
present semantics and data types on a web page. As is generally known, most of
the contemporary information extraction systems consider only source code or
DOM tree, which, besides the characteristics mentioned, are exposed to frequent
change. The semantics of a web page are hidden in its visual representation,
where — beside textual and multimedia contents — colour, size, style (of text),
and the relative position of elements play and important role. Regardless of the

� Supported by the Erasmus Mundus External Cooperation Window Programme of
the European Union.

A. Harth and N. Koch (Eds.): ICWE 2011 Workshops, LNCS 7059, pp. 342–346, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Information Extraction from Web Pages 343

template used for web page generation and its source code, humans are able to
distinguish and identify different web objects on different web pages (e.g. news
article, navigation menu) that allow us to put forward a hypothesis about exis-
tence of some permanent characteristics in web objects such as relative position
and relative size.

The idea behind this research, which is a part of ongoing ABBA1 porject,
is based on utilizing positional information, spatial expansion of visual objects,
and their visual characteristics for information extraction. In addition, in the
research we solve the problem of accessibility of the extracted information for
blind users. The aim of the research is the development of methods and tools
to enhance the efficiency of information extraction for web pages based on their
visual representation, and to present it in a form accessible for blind users. To
achieve this goal, the following objectives were formulated:

1. Review and analysis of related work (100% completed).
2. Development of a web page model based on its visual representation (90%

completed).
3. Development of methods for information extraction from the proposed web

page model (10% completed).
4. Development of methodology for navigation through the extracted informa-

tion for blind users (90% completed).
5. Development of the information extraction system on the basis of proposed

methods (10% completed).
6. Development of a navigation system according to proposed methodology

(90% completed).
7. Analysis of efficiency of proposed methods of information extraction and

navigation (10% completed).

This research is carried out under the supervision of Prof. Reinhard Pichler, Dr.
Robert Baumgartner (TU Vienna).

2 A Web Page Model

For the tasks of information extraction and web page understanding within the
scope of the ABBA project, a web page model was developed, describing its
visual characteristics and taking into account its DOM tree [6]. Continuing the
research, we propose a web page model as a conjunction of its geometrical (GM)
and logical (LM) models (cf. Fig. 1).

A GM is an ontological model and is formed as a result of the analysis
of web page visual representation (its CSS model), generated by the browser’s
layout engine. A GM represents visual information in a form convenient for both
information extraction and web page understanding. The geometric object (GO)
of the GM has a rectangular shape and wraps some part of the web page canvas.

1 The ABBA project (Advanced Barrier-free Browser Accessibility) is sponsored by
the Austrian Forschungsförderungsgesellschaft FFG under grant 819563.

344 R.R. Fayzrakhmanov

Web Page
Analysis

Web Page
Understanding Domain

Ontology

CSS-model Geometric Model Logical Model

Web Page
Model

Information
Extraction

Viewpoint

Query

&

left-aligned

near

QntGM QltGM

(x, y)

w h

Product

Name
Price

Description

Row

Column
Cell

West-of

North-of

Table

MANM

apply to

XML,
Records in

DB

transform into

Fig. 1. Diagram represents the process of automatic creation of a web page model

It can correspond to some CSS box. The main attributes of a GO are features of a
background (colour, background image), border (width, colour, style), contained
text (colour, font size and style) as well as drawing order, which is used to define
visibility of overlapped GOs. It can be calculated according to the painting order
(W3C specification [1]).

Depending on the type of information representation, we define quantitative
GM (QntGM) and qualitative GM (QltGM). Spatial relationships, such as dis-
tance and direction, are defined between GOs in the QntGM and expressed
quantitatively (in pixels and angles respectively). In the QltGM, besides dis-
tance and direction, there are alignment and topological relationships (we use
RCC8 [5]) expressed qualitatively via linguistic variables. These relationships
are widely used both for graphical user interfaces [10] and positional informa-
tion representation in GIS [4].

A LM is an ontological model and is formed as a result of the process of web
page understanding or information extraction (cf. Fig. 1). In the first case, an
LM represents a semantics of web objects on the web page with the required
level of detail. In the second case, an LM describes the necessary part of the
web page according to the request. An LM set a correspondence between GOs
of the GM and concepts of the applied domain ontology. Thus, this solution
contributes also to the Semantic Web development, providing us with necessary
semantic metadata annotations [9].

An LM can be transformed to the XML format or stored in a database, but in
this research we focus on accessibility of extracted information for blind users.

3 Development of Information Extraction Methods

Information extraction from the GM is represented as a gradual process of suc-
cessive refinement of extracted information characteristics and its extraction [8].

Information Extraction from Web Pages 345

For instance, to extract posts in a web forum, we need to indicate the location
(in our case it is center) and occupied area of the object to be extracted. A post
can be further described as a rectangular area which contains a textual message
occupying a major part, and also contains an icon at the top-left corner, etc.
When extracting items from the navigation menu, for instance, we first define
its approximate area of occurrence and define the menu as a horizontally or
vertically oriented list of textual elements. To specify extracted web object or
its parts, one can use positional information, an HTML type of corresponding
element in the source code, and its CSS style, provided by the GM of the web
page.

We consider two solutions for information extraction. The first one involves
developing the Java library, which provides necessary functionality for a pro-
grammer to create a wrapper. Algorithms implemented in the library should be
efficient, giving a posibility to the programmer to utilize all potential of GM.
The second solution involves developing declarative Datalog-like extraction lan-
guage. Its predicates will not be evaluated over an extensional database of the
facts representing the GM, but directly over the GM, represented as an ontologi-
cal model. It will make the performance more efficient. This solution is similar to
the Lixto solution, where ELog language is used and which predicates are evalu-
ated over DOM tree [3]. This language is very efficient and useful for automatic
wrapper generation according to the performed specifications of extracted infor-
mation by the user, using only GUI. Thus, it does not require any programming
skills from the end user.

4 Navigating Extracted Information

Within the scope of the ABBA project in which the author participate, multi-
axial navigation model (MANM) along with the methodology of navigation were
developed to make web pages more accessible to a blind user [7], [2]. In this
research, the MANM is used for making extracted information (concepts in the
LM) accessible.

The main component of the MANM is the axis (cf. Fig 2), which is a se-
quence of web page model elements to be read. The MANM is provided both
with the possibility to navigate on the axis (e.g., news titles) and change axis.
Moving from one to another axis can be performed by its selection from the

Fig. 2. Example of the quantitative geometrical model

346 R.R. Fayzrakhmanov

set of all available axes, from the set of axes intersecting current element, from
the spatial, or semantic neighbourhood of current element. For this reason, we
consider semantic relationship between elements defined in the LM and their
spatial relations defined in the GM.

5 Conclusion

This paper describes the current state of Ruslan R. Fayzrakhmanov’s research.
The work is dedicated to problems in information extraction from web page
visual representation and web accessibility. The model of web pages for infor-
mation extraction and the multi-axial navigation model are presented. Further
work on the development of methods of information extraction is also described.

References

1. Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification (2009),
http://www.w3.org/TR/2009/CR-CSS2-20090908/

2. Baumgartner, R., Fayzrakhmanov, R.R., Holzinger, W., Krüpl, B., Göbel, M.C.,
Klein, D., Gattringer, R.: Web 2.0 vision for the blind. In: Proc. of Web Science
Conference 2010 (WebSci 2010), Raleigh, USA, p. 8 (2010)

3. Baumgartner, R., Flesca, S., Gottlob, G.: The Elog Web Extraction Language. In:
Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp.
548–560. Springer, Heidelberg (2001)

4. Clementini, E., Di Felice, P., Hernández, D.: Qualitative representation of posi-
tional information. Artificial Intelligence 95(2), 317–356 (1997)

5. Cohn, A.G.: Qualitative spatial representation and reasoning techniques, pp. 1–30.
Springer, Berlin (1997)

6. Fayzrakhmanov, R.R., Göbel, M.C., Holzinger, W., Krüpl, B., Baumgartner, R.:
A Unified ontology-based web page model for improving accessibility. In: Proc.
WWW 2010, pp. 1087–1088. ACM, New York (2010)

7. Fayzrakhmanov, R.R., Göbel, M.C., Holzinger, W., Krüpl, B., Mager, A., Baum-
gartner, R.: Modelling Web navigation with the user in mind. In: Proc. W4A 2010,
Raleigh, USA, p. 4 (2010)

8. Gottlob, G., Koch, C., Baumgartner, R., Herzog, M., Flesca, S.: The Lixto data ex-
traction project - back and forth between theory and practice. In: Transformation,
pp. 1–12. ACM, Paris (2004)

9. Kashyap, V., Bussler, C., Moran, M.: The Semantic Web. Semantics for Data and
Services on the Web. Springer, Berlin (2008)

10. Kong, J., Zhang, K., Zeng, X.: Spatial graph grammars for graphical user interfaces.
ACM Transactions on Computer-Human Interaction 13(2), 268–307 (2006)

http://www.w3.org/TR/2009/CR-CSS2-20090908/

End-User Programming for Web Mashups

Open Research Challenges

Saeed Aghaee and Cesare Pautasso�

Faculty of Informatics, University of Lugano, Switzerland
firstname.familyname@usi.ch

http://www.pautasso.info/

Abstract. Mashup is defined as the practice of lightweight composi-
tion, serendipitous reuse, and user-centric development on the Web. In
spite of the fact that the development of mashups is rather simple due
to the reuse of all the required layers of a Web application (functionality,
data, and user interface), it still requires programming experience. This
is a significant hurdle for non-programmers (end-users with minimal or
no programming experience), who constitute the majority of Web users.
To cope with this, an End-User Programming (EUP) tool can be de-
signed to reduce the barriers of mashup development, in a way that even
non-programmers will be able to create innovative, feature-rich mashups.
In this paper, we give an overview of the existing EUP approaches for
mashup development, as well as a list of open research challenges.

1 Introduction

Facilitating software development from reusable components has always been
one of the priorities in software engineering [1]. Recently, the proliferation of
reusable Web resources, in the form of Web APIs, Web widgets, and Web data
sources, has again brought up the notion of reuse within Web engineering with
the advent of Web mashups.

The key characteristic of mashups, distinguishing them from other forms of
service and software composition, lies in a development approach being carried
out in a lightweight manner, in which simplicity and usability are more of a
priority than quality and completeness [2]. This enables end-user composition
activities, in which ordinary Web users are themselves the developers of creative
mashups, which can fulfill their personal needs, and can be rapidly adapted as
soon as their situational needs change [3]. However, developing mashups still
requires significant technical skills. These range from knowing how to reuse
components, to at least a basic understanding of programming and familiar-
ity with Web technologies. Yet, such skills by definition are not mastered by
non-programmers.

To address the above challenges, one solution is to reuse and adapt existing
mashups that, thanks to directories such as ProgrammableWeb [4], can be eas-
ily discovered and shared. However, this should be complemented by leveraging

� PhD Supervisor.

A. Harth and N. Koch (Eds.): ICWE 2011 Workshops, LNCS 7059, pp. 347–351, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

348 S. Aghaee and C. Pautasso

End-User Programming (EUP) [5] to reduce the complexity of mashup develop-
ment as much as possible, to the extent that even non-programmers can develop
and share their desired mashups. In doing so, mashups can reach their full po-
tential to serve as user-centric situational applications on the Web, from which
the vast majority of Web users can benefit.

Our research objective is to design, implement, and evaluate a EUP approach
for mashups that satisfies the following two requirements. 1) supporting the
needs and abilities of non-programmers. 2) enabling creation of any types of
mashup that can be developed using manual approaches (i.e. programming and
scripting languages). To this end, in the rest of the paper, we will provide a brief
survey of existing EUP approaches for mashups, and further discuss a number
of open challenges, which are not yet fully solved by the state of the art.

2 Overview of Existing EUP Approaches for Mashups

The research efforts behind the design of EUP approaches for mashups (so-called
”mashup tools”) have resulted in the growth of this field as an interesting re-
search topic spanning areas including Model-Driven Development (MDD) [6],
programming languages [7], software and service composition [8], and Human-
Computer Interaction (HCI) [9]. Existing mashup tools can be classified accord-
ing to the EUP technique [10] they utilize as follows:

– Spreadsheets. The advantage of using spreadsheets for creating mashups
lies in its ease-of-use, intuitiveness, and expressive power to represent and man-
age complex data [11]. Mashroom [12] adapts the idea of spreadsheets and adds
the nesting tables feature to support complex data formats such as XML and
JSON. Husky [13] is also another spreadsheet-based tool aiming at streamlining
service composition. However, the main shortcoming of such tools is the lack of
support for designing the mashup User Interface (UI).

– Programming by Demonstration (PbD). PbD enables users to teach
a system to do a task by demonstrating how the task is done [14]. Intel Mash
Maker (IMM) [15] utilizes PbD to extract, store, manage, and integrate data
from the Websites being browsed by the user. Vegemite [16] is another browser-
based tool like IMM which adds scripting capabilities. The use of scripting allows
users to augment and operate the extracted data. The focus of these tools are
more on data extraction and visualization, and therefore, they do not provide
support for service composition and orchestration.

– Domain-Specific Language (DSL). DSLs are small languages targeted
for solving certain problems in a specific domain. DSLs can also be used as a EUP
technique for reducing programming efforts [17]. The Enterprise Mashup Markup
Language (EMML) [18] is a DSL based on XML for creating mashups. It supports
variety of components as well as the use of scripting languages. Swashup [19] is
also another DSL for mashups, based on Ruby-on-Rails. It simplifies invocation,
and integration of Web APIs and data sources. Though these DSLs help to
reduce programming efforts, they still can not be used by non-programmers due
to the difficulty of learning their syntax and vocabulary [14].

End-User Programming for Web Mashups 349

– Visual Programming. Programming languages can also be expressed by
visual symbols and graphical notations [20]. Visual programming is widely used
by existing mashup tools in the form of wiring diagrams, in which users drag-
and-drop mashup components (visualized as boxes) and connect them to form a
mashup. Examples are Yahoo Pipes (YP) [21], IBM Mashup Center (IMC) [22],
ServFace [23], and Presto Cloud [24]. The main problem of these tools, according
to a recent study conducted by Namoun et. al., is the fact that the wiring
paradigm is difficult to understand by non-programmers [25].

– Model-based Automation. This is concerned with automatically creat-
ing mashups based on knowledge about the user and the context in which she
operates. Due to the fact that there is much more work on the tool side, this
technique best serves the needs of non-programmers. The framework proposed
by Carlson et. al. automatically creates mashups out of non-web service com-
ponents [26]. Bakalov et. al., on the other hand, present an automatic mashup
generation framework that is also capable of composing Web services (REST and
SOAP) [27]. As described in [5], the problem of this technique lies in the high
risk of generating irrelevant mashups with respect to the given requirements.

3 Open Research Challenges

– Simplicity and Expressive Power Tradeoff. When it comes to cre-
ate complex mashups, the majority of existing mashup tools are not powerful
enough. This can be witnessed by the fact that most of the registered mashups
in the ProgrammableWeb are all developed using general-purpose Web scripting
languages. If these are called real mashups, the majority of current EUP tools
are limited to creating toy mashups that are not as feature-rich. On the other
hand, increasing the expressive power of mashup tools (e.g., DSLs) can poten-
tially result in a decrease in simplicity (gentle learning curve, and ease-of-use).
Hence, the major challenge is to cope with this tradeoff.

– Mashup Components Heterogeneity. Mashup components are hetero-
geneous in terms of the technology through which they are made accessible. They
can be classified into Web APIs, Web widgets, and Web data sources. Within
enterprises, another class of mashup components may encompass legacy services
such as databases, Plain Old Java Object (POJO), and Enterprise Java Beans
(EJB). The challenge is how to abstract all these heterogeneous components in
a way that facilitates their seamless composition.

– Mashup Composition Techniques. The development of mashups con-
sists of Process Integration (PI), Data Integration (DI), and UI integration [28].
PI forms the logic of mashup by composing the functionality obtained from Web
APIs. UI integration creates the visual front-end, by which users interact with
the mashup. This is obtained through integration of various widgets [29]. The
underlying data model of the mashup is obtained by the integration of two or
more remote data sources [30]. A challenge for mashup tools is to fully support
development within all of these three levels.

– Mashup Evolution. Mashup evolution can be caused by two reasons.
The first is the change in the user requirements, which forces the mashup to be

350 S. Aghaee and C. Pautasso

reengineered to meet the new ones [31]. The other is the evolution of the building
blocks of the mashup, that in case of Web services is very likely to happen. From
the mashup EUP perspective, this has however remained a challenging matter.

– Online Communities. Empowering end-user communities is of value in
the area of EUP [5]. With the growth of the Web 2.0, online communities and
social networks can be used to promote sharing of mashups, technical discussion,
and collaborative categorization [32]. Yet, only a few mashup tools, such as YP,
offer online communities. Moreover, the potential of these communities to enable
mashup development as a collaborative process has still to be fully exploited.

4 Conclusion and Future Work

This paper provides an overview and classification of existing approaches and
open research challenges for enabling EUP for mashups. Our future research will
be geared towards addressing these challenges by designing, implementing, and
evaluating a novel mashup tool. To do so, we will utilize a User-Centered Design
(UCD) methodology [33], in which the end-user needs and feedback affect every
step of the design process. Getting closer to the mindset of the end-users can
help with the design of a more natural and powerful EUP tool for mashups [34].

References

1. Mcllroy, D.: Mass-produced Software Components. In: Software Engineering Con-
cepts and Techniques, NATO Science Committee, pp. 138–155 (1969)

2. Yu, J., Benatallah, B., Casati, F., Daniel, F.: Understanding Mashup Development.
IEEE Internet Computing 12, 44–52 (2008)

3. Anderson, C.: The Long Tail: Why the Future of Business Is Selling Less of More.
Hyperion (2006)

4. ProgrammableWeb, http://www.programmableweb.com/
5. Nardi, B.A.: A Small Matter of Programming: Perspectives on End User Comput-

ing. MIT Press (1993)
6. Bozzon, A., Brambilla, M., Facca, F.M., Carughu, G.T.: A Conceptual Modeling

Approach to Business Service Mashup Development. In: Proc. of ICWS 2009 (2009)
7. Ennals, R., Gay, D.: User-Friendly Functional Programming for Web Mashups. In:

Proc. of ICFP 2007 (2007)
8. López, J., Bellas, F., Pan, A., Montoto, P.: A Component-Based Approach for

Engineering Enterprise Mashups. In: Gaedke, M., Grossniklaus, M., Dı́az, O. (eds.)
ICWE 2009. LNCS, vol. 5648, pp. 30–44. Springer, Heidelberg (2009)

9. Wong, J., Hong, J.: What do we ”mashup” when we make mashups? In: Proc. of
WEUSE 2008, pp. 35–39 (2008)

10. Myers, B.A., Ko, A.J., Burnett, M.M.: Invited Research Overview: End-User Pro-
gramming. In: Proc. of CHI 2006 (2006)

11. Hoang, D.D., Paik, H.Y., Benatallah, B.: An Analysis of Spreadsheet-Based Ser-
vices Mashup. In: Proc. of ADC 2010 (2010)

12. Wang, G., Yang, S., Han, Y.: Mashroom: End-User Mashup Programming Using
Nested Tables. In: Proc. of WWW 2009 (2009)

13. Husky, http://www.husky.fer.hr/

http://www.programmableweb.com/
http://www.husky.fer.hr/

End-User Programming for Web Mashups 351

14. Cypher, A., Halbert, D.C., Kurlander, D., Lieberman, H., Maulsby, D., Myers,
B.A., Turransky, A. (eds.): Watch What I Do: Programming by Demonstration
(1993)

15. Ennals, R., Brewer, E., Garofalakis, M., Shadle, M., Gandhi, P.: Intel Mash Maker:
Join the Web. SIGMOD Rec. 36, 27–33 (2007)

16. Lin, J., Wong, J., Nichols, J., Cypher, A., Lau, T.A.: End-User Programming of
Mashups With Vegemite. In: Proc. of IUI 2009 (2009)

17. Prähofer, H., Hurnaus, D., Mössenböck, H.: Building End-User Programming Sys-
tems Based on Domain-Specific Language (2006)

18. EMML, http://www.openmashup.org/)
19. Maximilien, E.M., Wilkinson, H., Desai, N., Tai, S.: A Domain-Specific Language

for Web APIs and Services Mashups. In: Krämer, B.J., Lin, K.-J., Narasimhan, P.
(eds.) ICSOC 2007. LNCS, vol. 4749, pp. 13–26. Springer, Heidelberg (2007)

20. Shu, N.C.: Visual Programming. Wiley (1992)
21. Yahoo Pipes, http://pipes.yahoo.com/pipes/)
22. IBM Mashup Center, http://www.ibm.com/software/info/mashup-center)
23. Nestler, T., Feldmann, M., Hübsch, G., Preußner, A., Jugel, U.: The ServFace

Builder - A WYSIWYG Approach for Building Service-Based Applications. In: Be-
natallah, B., Casati, F., Kappel, G., Rossi, G. (eds.) ICWE 2010. LNCS, vol. 6189,
pp. 498–501. Springer, Heidelberg (2010)

24. Presto Cloud, http://www.jackbe.com/enterprise-mashup/)
25. Namoun, A., Nestler, T., Angeli, A.D.: Service Composition for Non-programmers:

Prospects, Problems, and Design Recommendations. In: ECOWS 2010 (2010)
26. Carlson, M.P., Ngu, A.H.H., Podorozhny, R., Zeng, L.: Automatic Mash Up of

Composite Applications. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) IC-
SOC 2008. LNCS, vol. 5364, pp. 317–330. Springer, Heidelberg (2008)

27. Bakalov, F., Konig-Ries, B., Nauerz, A., Welsch, M.: Ontology-Based Multidi-
mensional Personalization Modeling for the Automatic Generation of Mashups in
Next-Generation Portals. In: Proc. of ONTORACT 2008 (2008)

28. Hanson, J.J.: Mashups: Strategies for the Modern Enterprise. Addison-Wesley Pro-
fessional (2009)

29. Daniel, F., Yu, J., Benatallah, B., Casati, F., Matera, M., Saint-Paul, R.: Under-
standing UI Integration: A Survey of Problems, Technologies, and Opportunities.
IEEE Internet Computing 11, 59–66 (2007)

30. Di Lorenzo, G., Hacid, H., Paik, H.Y., Benatallah, B.: Data Integration in Mashups.
SIGMOD Rec. 38, 59–66 (2009)

31. Dorn, C., Schall, D., Dustdar, S.: Context-aware adaptive service mashups. In:
Proc. of APSCC 2009 (2009)

32. Grammel, L., Storey, M.A.: An End User Perspective on Mashup Makers. Technical
report, University of Victoria (2008)

33. Vredenburg, K., Mao, J.Y., Smith, P.W., Carey, T.: A Survey of User-Centered
Design Practice. In: Proc. of CHI 2002 (2002)

34. Myers, B.A., Pane, J.F., Ko, A.: Natural Programming Languages and Environ-
ments. Commun. ACM 47, 47–52 (2004)

http://www.openmashup.org/
http://pipes.yahoo.com/pipes/
http://www.ibm.com/software/info/mashup-center
http://www.jackbe.com/enterprise-mashup/

A. Harth and N. Koch (Eds.): ICWE 2011 Workshops, LNCS 7059, pp. 352–354, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Multi-dimensional Context-Aware Adaptation
for Web Applications

Vivian Genaro Motti and Jean Vanderdonckt

Louvain Interaction Laboratory – Louvain School of Management, Place des Doyens 1,
Université catholique de Louvain - 1348 Louvain la Neuve, Belgium

{vivian.genaromotti,jean.vanderdonckt}@uclouvain.be

Abstract. This tutorial presents the state-of-the-art of adaptation for web
interfaces concerning multi-dimensionality and context-awareness. The specific
goals include the presentation of: (i) fundamental concepts, as motivations,
definitions and relevant context information; (ii) adaptation techniques for web
applications, as methods, models, strategies and technologies; (iii) adaptable
and adaptive web applications in scientific and commercial aspects.

Keywords: Web Interface Adaptation; Context-awareness; Multi-dimensions.

1 Context-aware Adaptation

A pre-defined context of use, of an able-bodied user, in a stable environment, with a
conventional desktop PC, is often adopted for web applications currently developed.
Though, actual web users are heterogeneous in their backgrounds, knowledge and
goals; different devices, means and environments are used for interaction. Thus,
considering a standard context of use may difficult or even prevent the interaction.
Context concerns relevant information for the interaction, as: the user, the place, and
available devices [1]. It can be mapped as a formal model by the triple (U,P,E) that
characterizes the user, the platform and the environment [2]. The ‘Future Internet’
aims at providing users the right information, in the right time and in the right format,
which requires high-level adaptation [3]. Since the early 90’s, adaptation studies are
being reported; in spite of the wide effort, the studies are widespread, and hard to be
compiled to support the implementation of adaptation in web applications [4]. This
tutorial presents an overview of the state of the art of Multi-Dimension Context-
Aware Adaptation. It is organized in 3 parts:

Fundamental Concepts. Aiming to improve the users’ interaction, adaptation
transforms different levels and dimensions of systems. In this process context mainly
involves user profiles, platforms and devices; and the dimensions are aspects, as
modality or resources, subject to adaptation in different levels (e.g. at system level).

Methods. Many concepts support adaptation [5], [6] as: (i) The Context-Aware
Design Space (CADS), a descriptive, exploratory and comparative, graphical
representation for adaptation dimensions (means, UI component, deployment) [7];

 Multi-dimensional Context-Aware Adaptation for Web Applications 353

(ii) The Context-Aware Reference Framework (CARF) lists context information,
concerning: what, who, where, when, how, to what and why. A technique to adapt
images can be initiated by the system, performed in the client, at run time, considering
users and improve the accessibility; animation can be used to smoothly present it for
users [8]; (iii) Technologies support the adaptation, but to accommodate varied
scenarios, the system architecture must be organized in layers (content, presentation
and processing), User-Interface Description Languages are recommended; (iv)
Distinct adaptation levels are modeled in 3-layers, first-order rules define commands,
as: R1=’if it is a mobile device, then replace radio boxes by edit fields’, a second-
order and a third-order rule define priority strategies in richer ways ‘if the user is an
expert, then prefer R1 than R2’ and ‘if user is an expert and device is a tablet, then
reverse the preference order of R1 and R2’. Evolutive models capture user feedbacks,
analyzes dynamic context, adapting efficiently [9].

Examples. Many web applications exemplify adaptation, as (i) Rekimoto’s pre-
distributed pick and drop exemplifies static UI deployment [10]. Pick and drop
extends the drag-and-drop paradigm, users select a resource icon, drag it to another
device, copying and sharing it. (ii) Sedan-Bouillon is a plastic website, users specify
platform screens for its workspaces that are re-molded and re-distributed at the
workspace level (title, content, navigation bar) [11]. (iii) A toolkit distributes
interfaces in different levels partitioning the GUI over the display processes and
distributing over devices and users a complex application. An interface and a
workspace can be decomposed and migrated, and atomic elements, as buttons, can be
detached and distributed [12].

References

1. Dey, A., Abowd, G.: CybreMinder: A Context-Aware System for Supporting Reminders.
In: HUC 1999. LNCS, vol. 1707, pp. 172–186. Springer, Heidelberg (1999)

2. Calvary, G., et al.: A Unifying Reference Framework for Multi-Target User Interfaces.
Interacting with Computers 15(3), 289–308 (2003)

3. Brusilovsky, P., Kobsa, A., Nejdl, W.: The Adaptive Web, Methods and Strategies of Web
Personalization. Springer, Heidelberg (2007)

4. Motti, V.G.: A computational framework for multi-dimensional context-aware adaptation.
In: Proceedings of the 3rd ACM SIGCHI Symposium on Engineering Interactive
Computing Systems (EICS 2011), pp. 315–318. ACM, New York (2011),
http://doi.acm.org/10.1145/1996461.1996545,
doi:10.1145/1996461.1996545

5. de Koch, N.P.: Software Engineering for Adaptive Hypermedia Systems. Reference
Model, Modeling Techniques and Development Process. Munich. Thesis (2000)

6. López-Jaquero, V., Vanderdonckt, J., Montero, F., González, P.: Towards an Extended
Model of UI Adaptation: the ISATINE framework. In: Gulliksen, J., Harning, M.B., van
der Veer, G.C., Wesson, J. (eds.) EIS 2007. LNCS, vol. 4940, pp. 374–392. Springer,
Heidelberg (2008)

354 V.Genaro Motti and J. Vanderdonckt

7. Vanderdonckt, J., Grolaux, D., Van Roy, P., Limbourg, Q., Macq, B., Michel, B.: A
Design Space for Context-Sensitive User Interfaces. In: Proc. of ISCA - IASSE 2005, pp.
207–214 (2005)

8. Dessart, C.-E., Motti, V., Vanderdonckt, J.: Showing User Interface Adaptivity by
Animated Transitions. In: Proc. EICS 2011, Pisa. ACM Press, New York (2011)

9. Vanderdonckt, J.: Model-Driven Engineering of User Interfaces: Promises, Successes, and
Failures. In: Proc. of ROCHI 2008 (Iasi), pp. 1–10. Matrix ROM, Bucharest (2008)

10. Rekimoto, J.: Pick and Drop: A Direct Manipulation Technique for Multiple Computer
Environments. In: Proc. of 10th UIST 1997, pp. 31–39. ACM Press, New York (1997)

11. Balme, L., Demeure, A., Calvary, G., Coutaz, J.: Sedan-Bouillon: A Plastic Web Site. In:
PSMD 2005, INTERACT 2005 Workshop on Plastic Services for Mobile Devices (2005)

12. Melchior, J., Grolaux, D., Vanderdonckt, J., Van Roy, P.: A Toolkit for Peer-to-Peer DUI:
Concepts, Implementation, and Applications. In: Proc. of EICS 2009, pp. 69–78. ACM
Press (2009)

Engineering the Personal Social Semantic Web

Fabian Abel and Geert-Jan Houben

Web Information Systems, Delft University of Technology
{f.abel,g.j.p.m.houben}@tudelft.nl

Abstract. In this tutorial, we discuss challenges and solutions for en-
gineering the Personal Social Semantic Web, a Web where user model-
ing and personalization is featured across system boundaries. Therefore,
we learn user modeling and personalization techniques for Social Web
systems. We dive into engineering aspects of social tagging and micro-
blogging services and examine appropriate modeling and mining tech-
niques for these systems. We discuss Semantic Web and Linked Data
principles that allow for linkage and alignment of distributed user data
and show how system engineers can exploit the Social Semantic Web to
personalize user experiences.

1 Summary

Social Web sites, such as Facebook, YouTube, Delicious, Flickr and Wikipedia,
and numerous other Web applications, such as Google and Amazon, rely on
implicitly or explicitly collected data about their users and their activities to
provide personalized content and services. As these applications become more
and more connected on the Web, a major challenge is to allow various applica-
tions to exchange, reuse, and integrate the user data from different sources. Such
data comes in different flavors: user data such as user profiles, social networks,
social tagging data, blogs, etc. as well as usage data like clickthrough data or
query logs. The amount of user data available on the Web is tremendously grow-
ing so that sharing and mining these heterogeneous data corpora distributed
on the Web is a non-trivial problem that poses several challenges to the Web
engineering community.

A core challenge is to support people in overcoming the information over-
load on the Web. Here, adaptation and personalization are key strategies as
people have individual demands and thus need individual support. However, un-
derstanding the personal demands of people is another non-trivial challenge. It
requires appropriate solutions that allow for inferring and modeling the personal
concerns, interests, preferences and other user characteristics. In this tutorial,
we discuss user modeling and personalization within the context of today’s Web
sphere where Social Web systems foster user participation and where Semantic
Web technologies provide means to engineer interoperable services.

This tutorial is composed of four modules: we give (i) an introduction into
basic concepts and approaches for user modeling, adaptation and personaliza-
tion (UMAP) on the Web and (ii) summarize methods and metrics that allow

A. Harth and N. Koch (Eds.): ICWE 2011 Workshops, LNCS 7059, pp. 355–356, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

356 F. Abel and G.-J. Houben

engineers and researchers to evaluate the quality of UMAP systems. We outline
(iii) basic and advanced models and algorithms for implementing UMAP func-
tionality in the context of Social Web systems and finally present (iv) strategies
and techniques for engineering the personalized systems on the Social Web by
leveraging Semantic Web technologies. In each module we give an overview of re-
lated work and recent trends, discuss selected models, algorithms and techniques
in detail and provide hands-on examples.

Introduction to UMAP. We introduce basic user modeling techniques such
as stereotyping or overlay user modeling, basic adaptation principles and
personalization techniques. In particular, we summarize core principles of
content-based and collaborative recommender systems and present Web min-
ing methods.

Evaluation of UMAP systems. Evaluating the quality of user modeling and
personalization often requires implicit or explicit user feedback which can
be costly to obtain. We give an overview on evaluation strategies such as
user studies and leave-n-out evaluation methods. Furthermore, we outline
useful metrics, significance tests and present examples on evaluating UMAP
functionality on the Web.

UMAP on the Social Web. Here, we discuss models and techniques for in-
ferring user interests in Social Web systems and exploiting user profiles for
personalization such as personalized search or social recommender systems.
Moreover, we examine the challenges and opportunities of cross-system user
modeling and personalization.

Engineering the Personal Social Semantic Web. Given techniques learnt
before, we investigate principles for personalizing user experiences in the So-
cial Semantic Web. We discuss Linked Data principles, techniques for con-
necting online accounts of users – including useful vocabularies, tools and
services – and approaches for aligning user data originating from different
sources. Based on these solutions, we explore architectures for cross-system
user modeling and personalization, methods and protocols for ensuring trust
and privacy and outline future perspectives for building a Personal Social
Semantic Web.

Some parts of this tutorial are based on [2]. Supplemental material, slides and
references for this tutorial are publicly available via the supporting website [1].

References

1. Abel, F., Houben, G.J.: Engineering the Personal Social Semantic Web – Supporting
Website (2011), http://wis.ewi.tudelft.nl/icwe2011/tutorial/

2. Abel, F., Herder, E., Houben, G.J., Henze, N., Krause, D.: Cross-system User Mod-
eling and Personalization on the Social Web. In: User Modeling and User-Adapted
Interaction (UMUAI), Special Issue on Personalization in Social Web Systems,
vol. 22(3), pp. 1–42 (2011)

http://wis.ewi.tudelft.nl/icwe2011/tutorial/

Automating the Use of Web APIs through

Lightweight Semantics

Maria Maleshkova1, Carlos Pedrinaci1, Dong Liu1, and Guillermo Alvaro2

1 Knowledge Media Institute (KMi)
The Open University, Milton Keynes, United Kingdom

{m.maleshkova,c.pedrinaci,d.liu}@open.ac.uk
2 Intelligent Software Components (iSOCO). Madrid, Spain

{galvaro}@isoco.com

Abstract. Web services have already achieved a solid level of acceptance
and play a major role for the rapid development of loosely-coupled
component-based systems, overcoming heterogeneity within and between
enterprises. Current developments in the world of services on the Web are
marked by the proliferation ofWebAPIs andWeb applications, commonly
referred to as RESTful services, which show high potential and growing
user acceptance. Still, despite the achieved progress, the wider adoption
of Web APIs is hindered by the fact that their implementation and publi-
cation hardly follow any standard guidelines or formats. REST principles
are indeed a good step in this direction but the vast majority of the APIs
do not strictly adhere to these principles. As a consequence, in order to use
them, developers are obliged to manually locate, retrieve, read and inter-
pret heterogeneous documentation, and subsequently develop custom tai-
lored software, which has a very low level of reusability. In summary, most
tasks during the life-cycle of services require extensive manual effort and
applications based on existingWeb APIs suffer from a lack of automation.

This tutorial introduces an approach and a set of integrated methods
and tools to address this drawback, making services more accessible to
both experts and non-expert users, by increasing the level of automation
provided during common service tasks, such as the discovery of Web
APIs, their composition and their invocation. The tutorial covers i) the
conceptual underpinnings, which integrate Web APIs with state of the
art technologies from the Web of Data and Semantic Web Services; ii)
the presentation of an integrated suite of Web-based tools supporting
service users; iii) and hands-on examples illustrating how the tools and
technologies can help users in finding and exploiting existing Web APIs.

1 Description

The tutorial is entirely driven by and supported by current developments on
the Web, and will familiarise the participants with innovative yet applicable
tools and technologies that could directly be integrated in Web developers daily
activities. It provides both key background information as well as an approach
for addressing some of the main challenges faced when using Web APIs. We
introduce an integrated set of tools, which support the automated use of APIs:

A. Harth and N. Koch (Eds.): ICWE 2011 Workshops, LNCS 7059, pp. 357–358, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

358 M. Maleshkova et al.

– Web API Annotation via SWEET [1] is a Web application that supports
users in creating lightweight semantic descriptions of Web APIs by enabling
the marking of service properties within HTML documentation and associating
these with semantic annotations.

– Storage and discovery via iServe [2] is a public registry of semantic Web ser-
vices, which unifies service publication and discovery on the Web through the use
of semantics. iServe imports the semantic descriptions of Web services conform-
ing to heterogeneous formalisms (hRESTS, MicroWSMO, SAWSDL, and OWL-
S) and publishes them as RDF triples on the Web of Data using a lightweight
service model.

– Consumption via the generic client of an invocation framework that provides
a unique entry point for the invocation of most Web APIs that can be found on
the Web. The framework relies on non-intrusive semantic annotations of HTML
pages describing Web APIs, in order to capture both their semantics as well as
information necessary to carry out their invocation.

2 Tutorial Modules

Introduction (morning session): This presentation provides required background
information, short overview of the key issues and concepts related to the usage
of Web services, best practices while dealing with Web APIs, and the support
offered through applying lightweight semantics.

- Current trends and developments in the world of services on the Web
- Problems and challenges faced when using Web APIs
- Current approaches for discovering and invoking Web APIs
- Best practices with Web APIs and use of lightweight semantics

Hands-on session part I (afternoon session): Using the presented approach and
tools to support Web API search and discovery.

- Performing service search without tools support
- Web service annotation
- Web service search and discovery

Hands-on session part II (afternoon session): Using the presented approach and
tools to support service invocation.

- Invoking services
- Service monitoring
- Example applications and implementations

Slides from the training session can be viewed at http://www.slideshare.net/
mmaleshkova/automating-the-use-of-web-apis-through-lightweight-semantics.

References

1. SWEET, http://sweet.kmi.open.ac.uk
2. iServe, http://iserve.kmi.open.ac.uk

http://sweet.kmi.open.ac.uk
http://iserve.kmi.open.ac.uk

A. Harth and N. Koch (Eds.): ICWE 2011 Workshops, LNCS 7059, pp. 359–360, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Improving Quality in Use of Web Applications in a
Systematic Way

Philip Lew1 and Luis Olsina2

1 School of Software, Beihang University, China
2 GIDIS&Web, Engineering School, Universidad Nacional de La Pampa, Argentina

philiplew@gmail.com, olsinal@ing.unlpam.edu.ar

Abstract. A first step to evaluate quality is to define nonfunctional requirements
usually through quality models. The ISO 25010 standard describes one such model
for general usage in specifying and evaluating software quality requirements, but
its concepts need to be adapted based on a specific information need and context,
i.e. for evaluating WebApps in a real situation particularly when it comes to
evaluating quality in use (QinU). WebApps and their quality evaluation have been
proposed in research through many approaches, but mostly for the purpose of
understanding, rather than improving. In this tutorial, we demonstrate employing a
quality modeling framework and strategy to instantiate quality models with the
specific purpose not only to understand the current situation of a WebApp, but also
to improve it.

Keywords: Quality in use, Actual usability, Improvement, SIQinU strategy.

1 Tutorial Contents

Web applications (WebApps) have evolved considerably since the simple
informational and ecommerce websites of the 90’s. We start by giving an overview
of the Web eras as well as the unique intrinsic features of WebApps. This
characterization will help us identifying/mapping quality features. As background,
the ISO 25010 [1] characteristics and the relationship among internal quality,
external quality, and QinU models are discussed. We argue the need to model
information quality and learnability in use dimensions for measuring and evaluating
quality for WebApps which is absent in this standard.

Then, we illustrate how to instantiate quality models for the purpose of
improvement assuming that understanding is the means and improvement is the
ultimate goal. With evaluation as a step toward improvement, quality models must be
instantiated with this in mind. So, by using the 2Q2U (Quality, Quality in use,
Usability and User experience) modeling framework [2, 4], we show how to
instantiate external quality (EQ) and QinU models with the goal of improving. These
models are developed and used while executing a specific strategy for improving
QinU for WebApps, namely SIQinU (Strategy for Improving Quality in Use) [3].

SIQinU has a six-phased process which starts with identifying problems in the
QinU of a WebApp and then characterizing these problems using an instantiated
QinU model. These problems come from evaluating a WebApp in a real context of

360 P. Lew and L. Olsina

use, collecting data directly from the application through the use of weblogs.
Weblogs are not new, but this approach is novel in that our objective in data
collection is not related to where users go and how long they stay on each page, but
rather related to when executing planned real tasks. These problems in QinU are then
mapped to potential problems in the WebApp’s EQ, or intrinsic properties which
lead to deriving a specific instantiated EQ model for the WebApp that is tied to the
problems in QinU. This is followed by evaluating the WebApp using this EQ model
resulting in an EQ benchmark. The EQ benchmark gives us indication of poorly
performing EQ attributes and these poorly performing attributes give us the basis to
make recommendations for improvements to the WebApp. After recommendations
have been implemented, we evaluate EQ again to determine where and to what
degree EQ was improved. Then finally, we use the same context of use as in the first
phase, using real users executing a real task, and evaluate QinU again to determine
the improvement gained as a result of the changes in EQ and improvements just
made.

Ultimately, in the process of using SIQinU, we are able to gain insight regarding
the depends on and influences relationships [1] for the particular 2Q2U instantiated
models, and their characteristics and attributes driven by our purpose to improve. In
addition, we can continue to iterate the SIQinU improvement cycle to gain further
insight and granularity adding a temporal component for later study. Finally, in the
tutorial, we illustrate SIQinU using JIRA (www.atlassian.com), a well-known defect
tracking WebApp, by specifying a task designed to collect information at the sub-
task level so that specific screens and their properties (EQ attributes) could be
identified for potential problems leading to poor performance in QinU.

References

1. ISO/IEC 25010:2011(E): Systems and software engineering. Systems and software Quality
Requirements and Evaluation (SQuaRE). System and software quality models (2011)

2. Lew, P., Olsina, L., Zhang, L.: Quality, Quality in Use, Actual Usability and User
Experience as Key Drivers for Web Application Evaluation. In: Benatallah, B., Casati, F.,
Kappel, G., Rossi, G. (eds.) ICWE 2010. LNCS, vol. 6189, pp. 218–232. Springer,
Heidelberg (2010)

3. Lew, P., Olsina, L.: Instantiating Web Quality Models in a Purposeful Way. In: Auer, S.,
Díaz, O., Papadopoulos, G.A. (eds.) ICWE 2011. LNCS, vol. 6757, pp. 214–227. Springer,
Heidelberg (2011)

4. Olsina, L., Papa, F., Molina, H.: How to Measure and Evaluate Web Applications in a
Consistent Way. In: Modelling and Implementing Web Applications, ch. 13, pp. 385–420.
Springer HCIS (2008)

Author Index

Abel, Fabian 355
Abu Helou, Mamoun 135
Achilleos, Achilleas 181
Aghaee, Saeed 1, 347
Alarcon, Rosa 74
Alvaro, Guillermo 357

Bellido, Jesus 74
Biewald, Lukas 171
Blichmann, Gregor 25
Bolchini, Davide 289
Bozzon, Alessandro 109
Brambilla, Marco 109
Braunschweig, Katrin 302

Chaisatien, Prach 332
Chudnovskyy, Olexiy 37
Clemente, Pedro J. 236
Cohen, Marcelo 119
Conejero, José Maŕıa 236

Daniel, Florian 49
Della Valle, Emanuele 109
Dolog, Peter 145
Domingue, John 13
Durao, Frederico 145

Eberius, Julian 337
Eickhoff, Christoph 196
Escalona, Maria Jose 278
Escott, Eban 223

Fayzrakhmanov, Ruslan R. 342
Firmenich, Sergio 327
Fraternali, Piero 109

Gaedke, Martin 37
Gebhardt, Hendrik 37
Geiger, Nina 196
Genaro Motti, Vivian 352
Gordillo, Silvia 327
Granić, Andrina 266

Hahn, Marcel 196
Hayes, Ian J. 223
Herbert, Matthias 99

Hölzl, Matthias 211
Houben, Geert-Jan 355

Jayakanthan, Ranganathan 177
Jugel, Uwe 49

Kalchgruber, Peter 307
Kapitsaki, Georgia M. 181
Katz, Philipp 312
Keller, Matthias 155
Kermek, Dragutin 266
King, Paul 223
Kmieciak, Mi�losz 86
Ko, Han-Gyu 127
Ko, In-Young 127
Kochman, Sebastian 86
Kopecký, Jacek 13

Lage, Ricardo 145
Lautamäki, Janne 62
Leginus, Martin 145
Lehner, Wolfgang 302, 337
Lew, Philip 359
Li, Ning 13
Liu, Dong 13, 357

Mainetti, Luca 289
Maleshkova, Maria 13, 357
Malý, Jakub 317
Mather, Neil 322
Meißner, Klaus 25
Mikkonen, Tommi 62
Morales-Chaparro, Rober 159

Nebeling, Michael 167
Nečaský, Martin 317
Norrie, Moira C. 167
Nussbaumer, Martin 155

Olsina, Luis 359
Orehovački, Tihomir 266
Oussena, Samia 322

Paiano, Roberto 289
Pandurino, Andrea 289

362 Author Index

Papadopoulos, George A. 181
Pasini, Chiara 109
Pautasso, Cesare 1, 347
Pedrinaci, Carlos 13, 357
Pietschmann, Stefan 25
Polillo, Roberto 251
Preciado, Juan C. 159, 236
Prutsachainimmit, Korawit 332

Robles Luna, Esteban 278
Rodŕıguez-Echeverŕıa, Roberto 236
Rossi, Gustavo 278, 327
Roßnagel, Heiko 99

Sánchez-Figueroa, Fernando 159, 236
Schill, Alexander 312
Schwabe, Daniel 119
Sepulveda, Cristian 74
Soi, Stefano 49

Strooper, Paul 223
Sundararajan, Deepak 177

Thiele, Maik 302, 337
Thieme, Tobias 99
Tietz, Vincent 25
Tokuda, Takehiro 332

Urbieta, Matias 278

Vanderdonckt, Jean 352

Weinhold, Frank 37
Wilson, Scott 49
Winckler, Marco 327
Wojciechowski, Pawe�l T. 86

Zhang, Gefei 211
Zibuschka, Jan 99
Zündorf, Albert 196

	Title Page
	Foreword
	Preface
	Search, Exploration and Navigation of Web Data Sources (exploreWeb 2011)
	Organization
	Second International Workshop on Enterprise Crowdsourcing (EC 2011)
	7th Model-Driven Web Engineering Workshop(MDWE 2011)
	Organization
	Second International Workshop on Quality in Web Engineering (QWE 2011)
	Second Workshop on the Web and Requirements Engineering (WeRE 2011)
	Organization
	Doctoral Symposium 2011
	Organization
	ICWE 2011 Tutorials
	Table of Contents
	Third International Workshop on Lightweight Composition on the Web (ComposableWeb 2011)
	An Evaluation of Mashup Tools Based on Support for Heterogeneous Mashup Components
	Introduction
	Evaluation Framework
	Discovery
	Input/Output Data Type
	Access Method
	Recursion
	Output
	Behavior

	Evaluation
	Yahoo Pipes
	Presto Cloud
	Serena Mashup Composer
	JOpera
	Husky

	Discussion
	Related Work
	Conclusion
	References

	An Approach to Construct Dynamic Service Mashups Using Lightweight Semantics
	Introduction
	Services, Mashups and Semantics
	Building Dynamic Mashups
	Semantic Services Authoring
	Service Selection
	Service Invocation
	Extensions to Existing Mashups

	Related Work
	Conclusions and Future Work
	References

	Task-Based Recommendation of Mashup Components
	Introduction
	Model-Driven Semantic Mashup Composition
	Semantic Component Model
	Semantic Mashup Composition

	Related Work
	Ontology-Based Task Model
	Task-Based Recommendation
	Calculation of Subsumption-Based Similarity
	Mapping Data Semantics of Components with Tasks
	Task-Based Recommendation

	Implementation and Discussion
	Conclusion and Further Work
	References

	Integration of Telco Services into Enterprise Mashup Applications
	Introduction
	Example Scenario
	Telco Services and Enterprise Applications
	Integrating Telco Services into Mashups
	Development of Telco Mashups
	Related Work
	Conclusions and Outlook
	References

	Orchestrated User Interface Mashups Using W3C Widgets
	Introduction
	W3C Widgets
	User Interface Mashups
	Orchestrated UI Mashups
	Choreographed UI Mashups
	Hybrid UI Mashups

	A W3C Widget Extension for Orchestrated UI Mashups
	A Prototype Implementation
	Widget Configuration
	Widget Interface
	Widget Implementation and Behaviour
	UI Mashup Implementation

	Related Work
	Conclusion and Future Work
	References

	Cross-Domain Embedding for Vaadin Applications
	Introduction
	The Vaadin Framework
	Embedding Vaadin Applications
	Downloading the Client-Side Engine
	Communication with the Server

	Examples
	Future Work
	Conclusion
	References

	Web Linking-Based Protocols for Guiding RESTful M2M Interaction
	Introduction
	Related Work
	REST Services Composition and Interaction Protocols
	Security Domain: OAuth 2.0 and OpenId
	Linking Requirements: Modeling Stateless Choreographies
	Coupling Facets in Our Approach

	Conclusions
	References

	Batched Transactions for RESTful Web Services
	Introduction
	Related Work
	Basic Definitions
	The Atomic REST Algorithm
	The Single Mediator's algorithm
	The Proxy's Algorithm
	The Client's Algorithm
	The Many Mediators' Algorithm

	Properties
	Isolation
	Atomicity

	Validation
	Conclusion
	References

	Secure Mashup-Providing Platforms -Implementing Encrypted Wiring
	Introduction
	Related Work
	Concept
	Implementation
	Scenarios
	Discussion
	Conclusion
	References

	First International Workshop on Search, Exploration and Navigation of Web Data Sources (ExploreWeb 2011)
	A Conceptual Framework for Linked Data Exploration
	Introduction
	Related Work
	Running Example
	Our Approach
	Application Configuration
	Application Consumption
	Our Approach at Work on the Running Example

	Implementation Experience
	Conclusions
	References

	Support for Reusable Explorations of Linked Data in the Semantic Web
	Introduction
	Summary of Explorator and a Running Example
	Summary of Explorator
	A Running Example

	RExplorator
	Parameterized Queries
	Workspace Organization
	End-user Interfaces
	User-Defined Operators

	Evaluation
	Conclusions
	References

	Generation of Semantic Clouds Based on Linked Data for Efficient Multimedia Semantic Annotation
	Introduction
	Multimedia Semantic Annotation Scheme
	The Proposed Semantic Cloud Generation Approach
	Locating Spotting Points
	Selecting Relations to Traverse
	Identifying Similarity and Clustering

	A Case Study
	Related Work
	Conclusion and Future Work
	References

	Ontology Based Segmentation of Geo-Referenced Queries
	Introduction
	Preliminaries
	Related Work
	Methodology
	Query Analysis (QA)
	Query Interpretation (QI)

	Experiments
	Conclusions
	References

	SimSpectrum: A Similarity Based Spectral Clustering Approach to Generate a Tag Cloud
	Introduction
	Related Work
	Tag Cloud Approach Based on Spectral Clustering
	Calculating Tag Relatedness
	Clustering Tag Space

	Evaluation
	Dataset and Experimental Setup
	Evaluation Results

	Conclusion and Future Works
	References

	Graph Access Pattern Diagrams (GAP-D): Towards a Unified Approach for Modeling Navigation over Hierarchical, Linear and Networked Structures
	Introduction
	Benefits
	Outline of a Notation for GAP-Ds
	Discussion and Ongoing Work
	References

	Data-Driven and User-Driven Multidimensional Data Visualization
	Introduction
	Motivating Example
	Proposal
	Data-Driven Concerns and the Multidimensional Challenge
	Model-Driven Flow
	User Experience
	SPEM Representation

	Conclusions and Related Work
	References

	Second International Workshop on Enterprise Crowdsourcing (EC 2011)
	Context-Aware and Adaptive Web Interfaces: A Crowdsourcing Approach
	Introduction
	Adaptation Approaches
	Crowdsourcing Approach
	Conclusion
	References

	Massive Multiplayer Human Computation for Fun, Money, and Survival
	Introduction
	Crowdsourcing Applications
	Ethics
	Business
	The Greater Good
	Disaster Relief

	Conclusion
	The Future of Democracy

	Biography
	References

	Enterprise Crowdsourcing Solution for Software Development in an Outsourcing Organization
	Introduction
	Crowdsourcing
	Enterprise Crowdsourcing

	Crowdsourcing Application
	Scope
	Participants and User Roles
	Job Creation and Allocation

	Conclusion
	References

	Seventh Model-Driven Web Engineering Workshop (MDWE 2011)
	A Model-Driven Framework for Developing Web Service Oriented Applications
	Introduction
	Related Work
	The proposed Framework
	Scope of Use and Overall Development Process
	Brief Overview of PML
	The Transformation Mechanism

	The Book Store Use Case
	Overview
	Models Design and Code Generation

	Conclusions
	References

	Developing Enterprise Web Applications Using the Story Driven Modeling Approach
	Introduction
	Targeted Applications - What We Call Enterprise Web Applications
	Story-Driven Modeling of Enterprise Web Applications
	Running Example

	The Web Fujaba Process (WFUP)
	WFUP Toolchain - Adding Tool Support to Our Process

	Related Work
	Conclusion and Future Work
	References

	Aspect-Oriented Modeling ofWeb Applications with HiLA
	Introduction
	Modeling Web Applications with UML State Machines
	HiLA in a Nutshell
	Modeling Web Applications with HiLA
	Basic Navigation Structure
	Landmarks
	Access Control
	Adaptation

	Feature Combination
	Interference Detection
	Declarative Feature Combination

	Related Work
	Conclusions and Future Work
	References

	Model-Driven Web Form Validation with UML and OCL
	Introduction
	Related Work
	Web Application Frameworks
	Example
	Target Elements
	Validation Categories
	Modelling and Transformations
	UML Profile

	Discussion
	Conclusion
	References

	Modernization of Legacy Web Applications into Rich Internet Applications
	Introduction
	Main Features of RIAs
	Illustrative Example
	The Approach
	Information Extraction and Representation
	Knowledge Inference and Representation
	Platform Projection
	Code Generation

	Related Work
	Conclusions and Future Work
	References

	Second International Workshop on Quality in Web Engineering (QWE 2011)
	Quality Models for Web [2.0] Sites:A Methodological Approach and a Proposal
	Introduction
	The ISO System and Software Quality Models
	Quality Models for Web Sites: Why They Should Be Different
	Web Sites Peculiarities
	Web Site Quality Actors
	Organization Mapping
	Requirements for Web Sites Quality Models

	A Quality Model Family for Web Sites
	Defining the Top-Level Characteristics
	Defining the Sub-characteristics

	Comparison with the ISO Standard
	Conclusion
	References

	Exploring the Quality in Use of Web 2.0 Applications: The Case of Mind Mapping Services
	Introduction
	Research Background
	Proposed Classification of Quality in Use Attributes

	Methodology
	Results
	Estimated Quality in Use
	Perceived Quality in Use

	Discussion and Concluding Remarks
	References

	Second Workshop on the Web and Requirements Engineering (WeRE 2011)
	Detecting Conflicts and Inconsistencies in Web Application Requirements
	Introduction
	Related Works
	Background
	Characterizing Requirements Conflicts in Web Applications
	Detecting and Correcting Conflicts
	Requirement Gathering and Requirement Modeling (Steps 1 and 2)
	Detecting Syntactic Differences (Step 3)
	Semantic Analysis (Step 4)
	Conciliation Process (Step 5)

	Tool Support
	Concluding Remarks and Further Work
	References

	Streamlining Complexity: Conceptual Page Re-modeling for Rich Internet Applications
	Introduction
	Potential and Weaknesses of RIA Design
	Disciplined RIA Modeling for Improved UX Requirements
	A Brief Introduction to IDM
	The Rich Extension of IDM

	Related Work
	Conclusions
	References

	Doctoral Symposium2011
	A Flexible Graph-Based Data Model Supporting Incremental Schema Design and Evolution
	Introduction
	Research Problems and Objectives
	Research Methodology and Approach
	Graph-Based Data Model
	Tentative Research Plan

	Related Work
	Conclusion
	References

	ProLD: Propagate Linked Data
	Introduction
	Background and Related Work
	Approach
	Scenario Open Government Data

	Research Methodology
	Conclusion
	References

	Causal Relation Detection for Activities from Heterogeneous Sources
	Introduction
	Terminology and Scenario
	Research Questions
	Related Work
	Current Progress
	Future Work Plan
	References

	XML Document Versioning, Revalidation and Constraints
	Introduction and Motivation
	Current Approaches
	Conceptual Modeling with Versioning and Revalidation
	Research Objectives and Methodology
	Conclusion
	References

	A Reuse-Oriented Product-Line Method for Enterprise Web Applications
	Introduction and Motivation
	Background
	Aims and Objectives
	Research Methodology
	Research Plan
	Contributions to Web Engineering
	References

	A Flexible Architecture for Client-Side Adaptation
	Research Context
	Research Objectives
	Solution Approach
	A Framework for Client-Side Adaptation

	Conclusions and Future Work
	References

	Applications of Mobile Application Interface Description Language MAIDL
	Introduction
	Overview
	Objective
	Overview of MAIDL and Its Abstract Model Composition

	Cooperative Mashup
	Evaluation
	Conclusion
	References

	A Domain-Specific Language for Do-It-Yourself Analytical Mashups
	Introduction
	Research Questions
	Approach
	Related Work
	Conclusion and Planned Contributions
	References

	Information Extraction from Web Pages Based on Their Visual Representation
	Introduction
	A Web Page Model
	Development of Information Extraction Methods
	Navigating Extracted Information
	Conclusion
	References

	End-User Programming for Web Mashups Open Research Challenges
	Introduction
	Overview of Existing EUP Approaches for Mashups
	Open Research Challenges
	Conclusion and Future Work
	References

	ICWE 2011 Tutorials
	Multi-dimensional Context-Aware Adaptation for Web Applications
	Context-aware Adaptation
	References

	Engineering the Personal Social Semantic Web
	Summary
	References

	Automating the Use of Web APIs through Lightweight Semantics
	Description
	Tutorial Modules
	References

	Improving Quality in Use of Web Applications in a Systematic Way
	Tutorial Contents
	References

	Author Index

