
New World, New Worlds: Visual Analysis

of Pre-columbian Pictorial Collections

Daniel Gatica-Perez1,2, Edgar Roman-Rangel1,2,
Jean-Marc Odobez1,2, and Carlos Pallan3

1 Idiap Research Institute, Switzerland
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Abstract. We present an overview of the CODICES project, an inter-
disciplinary approach for analysis of pre-Columbian collections of pic-
torial materials – more specifically, of Maya hieroglyphics. We discuss
some of the main scientific and technical challenges that we have found
in our work, and present a summary of our current technical achieve-
ments. This overview stresses the importance of thinking globally and
acting both locally and globally with respect to developing approaches
for cultural heritage preservation, research, and education.

1 Introduction

The work presented in this paper arises from the collaboration between Switzer-
land’s Idiap Research Institute and Mexico’s National Institute of Anthropology
and History (INAH). The initial ideas and contacts were established as early
as 2005, and the resulting CODICES project started in the summer of 2008
with the support of the Swiss National Science Foundation (SNSF). Our inter-
disciplinary work aims to design, implement, and test computational tools that
allow for automatic and semi-automatic description, localization, retrieval, and
classification of hieroglyphs of a large digital Maya corpus collected in Mexico.

The Maya is one of several pre-Hispanic cultures that flourished in ancient
Mesoamerica. It originated and developed in the mid-Preclassic period (c.a.,
1,500 - 400 BC), in the territories that currently spread between the Gulf of
Mexico and the Isthmus of Tehuantepec, and southern portions of Mesoamerica
including Guatemala, Belize, and Honduras (Fig. 1). This culture reached its
climax during the late Classic period (c.a., 600 - 900 AD), when some of their
activities achieved impressive levels of refinement, including agriculture, astron-
omy, architecture, arts, and writing. Our work is contributing tools to facilitate
the management and analysis of large collections of photographs of artifacts,
monuments, and buildings within the Maya Mexican territory, which have been
collected by INAH over a number of years.

This overview discusses some of the main scientific and technical challenges
that we have found during our work in the project, and presents a summary
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Fig. 1. Maya territories

of our work so far [7] [8]. Our goal here is to illustrate the kind of computer
vision techniques that can be developed to analyze digital versions of ancient
materials produced by a culture that, while praised and studied in depth by
scholars worldwide – history, archaeology, the arts –, has received less attention
from the perspective of multimedia analysis. Our work can be seen as an instance
of the local/global research activities that could be envisioned for the future of
this domain.

The paper is organized as follows. In Section 2, we briefly introduce the Maya
writing system. Section 3 describes the tasks involved in the collection of a Maya
hieroglyphic corpus. Section 4 presents a summary of our technical work. Section
5 provides some concluding remarks.

2 The Maya Writing System

According to [10], the Maya writing system derives from a large group of lan-
guages that developed in southern Mesoamerica. Some of the earliest Maya in-
scriptions have been dated to be from the late Preclassic period (c.a., 400 BC -
250 AD). During the late Classic period (c.a., 600 - 900 AD), this script system
spread all over the entire Maya world, reaching its maximum in the terminal
Classic period (c.a., 800 - 950 AD). Since then on it started to diminish, al-
though it continued operational even after the so-called “Maya Collapse” [9] in
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few northern sites. Roughly, this writing tradition stayed operational during 17
centuries.

Linguists classify the Maya writing system as a member of the so-called logo-
syllabic writing systems. The systems in this class encompass two distinct types
of signs: syllabographs and logographs. The former are visual elements with-
out specific meaning, only used to represent phonetic values (i.e., sounds or
phonemes), and they usually correspond to a consonant-vowel (CV) or single
aspirated vowel structure (Vh). The latter are visual symbols encoding high-
level meaning: they approximate our notion of “word-signs”, and the majority
of them have a consonant-vowel-consonant (CVC) structure. Fig. 2 shows 5 vi-
sual examples of syllabographs and logographs. Roughly speaking, logographs
account for 80% of all the Maya hieroglyphs currently known.

(a) b’a (b) ’a (c) KAB’ (d) SUUTZ’ (e) K’AHK’

Fig. 2. Examples of Maya hieroglyphs. Syllabographs b’a and ’a; and logographs KAB’
(earth), SUUTZ’ (bat) and K’AHK’ (fire). Images taken from [4] and [11].

Syllabographs might be thought to be simpler than logographs since they only
encode sounds instead of ideas. However, this is not true in terms of visual com-
plexity: both syllabographs and logographs may be rich in visual details. Besides
the intrinsic complexity of each Maya hieroglyph, the challenge can be increased
by additional resources that enrich the inscriptions. Just to mention few exam-
ples: conflation occurs when two glyphs are visually fused, while retaining their
same relative size; infixation occurs when one glyph is reduced in size and in-
serted within another; superimposition appears when one glyph partially covers
another whose main characteristics remain visible as background; and pars pro
toto occurs when one glyph is represented by only a fraction of its characteristic
or diagnostic features. Fig. 3 shows examples of these phenomena.

Usually Maya hieroglyphs do not appear as single instances but they are
arranged inside glyph-blocks where usually logographs are phonetically comple-
mented by syllabographs, either on initial position (prefix or superfix) or in final
position (postfix or suffix). In turn, glyph-blocks are found inside complex in-
scriptions whose organization resembles to a set of pairs of columns. Reading an
inscription can be thought as following a scanning pattern in a grid indexed by a
system of coordinates, where letters refer to columns and number refer to rows.
For instance, the reading of the inscription showed in Fig. 4, with 4 columns and
2 rows would be: A1, B1, A2, B2, C1, D1, C2, D2.

Currently an approximate of 1000 distinct signs have been cataloged, from
which only 80% have been deciphered and are readable. Maya archeologists
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Fig. 3. Examples of complexity in the Maya writing system

Fig. 4. Reading order of Maya inscriptions in a paired columnar format

continue exploring and discovering new hieroglyphs at sites and monuments,
generating high-quality digital versions of them, which provides plenty of data
to researchers in the field of the Maya culture. However, this rapid generation of
digital data also posits the need for automatic tools than can help them classify
all the new signs discovered.

3 Constructing a Digital Maya Hieroglyphic Corpus

Through the project “Hieroglyphic and Iconographic Maya Heritage” (Acervo
Jerogĺıfico e Iconográfico Maya, AJIMAYA), INAH has collected a large collec-
tion of photographs of monuments and other buildings within the Maya Mexican
territory. Deciphering the inscriptions in these images is an eight-step laborious
process:
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1. Digital photographs, taken at night under raking-light illumination to bring
out the level of detail that facilitates the study of eroded monuments.

2. Line drawings, traced on top of photographs taken under different light con-
ditions, to capture the inner features that are diagnostic.

3. Manual identification of glyphic signs with the aid of glyphic catalogs.
4. Manual transcription, i.e., rendering the phonetic value of each Maya sign

into alphabetical conventions.
5. Transliteration, i.e., representing ancient Maya speech into alphabetic form.
6. Morphological segmentation, which breaks down recorded Maya words into

their minimal grammatical constituents (morphemes and lexemes).
7. Grammatical analysis to indicate the function of each segmented element.
8. Translation, which involves rendering ancient Maya text on a modern target

language, e.g., English.

In Fig. 5 we show an example of the first, second and third steps. Some of the
data used in this work has been generated through this process.

Fig. 5. First, second and third steps in the deciphering process of Maya inscriptions

4 Our Contribution

As part of the CODICES project, we have focused on shape representation ap-
proaches for retrieval of hieroglyphs. In this section we explain our two main
contributions to the area of cultural heritage. First, we provide details about
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the syllabic dataset that has been collected. Then, we briefly explain a shape
descriptor (HOOSC) that has been designed to deal with the Maya dataset. We
follow the explanation by commenting our current results. Finally, we discuss
about the need of automatic tools to support archaeological research.

4.1 Compilation of a Syllabic Dataset

The first contribution of our project is the compilation of a dataset of segmented
instances of Maya syllabographs, which is meant to be used as testbed for com-
puter vision techniques. Due to the difficulty of manually locating, segmenting,
and annotating these instances, we focus only on syllabographs, reserving lo-
gographs for future work. With the goal of gathering enough data, this dataset
contains instances of the 24 most popular syllabic classes within the AJIMAYA
corpus. To the best of our knowledge, this is the biggest dataset of Maya syl-
labographs that has been analyzed with automatic techniques.

More precisely, the Maya syllabic dataset comprises 1270 segmented syllabo-
graphs distributed over 24 visual classes, where each class is referred to by its
Thompson catalog number [11]. The dataset also contains 2128 extra segmented
glyphs in a “negative class”. The sources for the selected instances are: the AJI-
MAYA project, the Macri and Looper syllabic catalog [4], the Thompson catalog
[11], and the website of the Foundation for the Advancement of Mesoamerican
Studies (FAMSI) [6]. Table 1 shows one visual example for each positive class.

Table 1. Thompson numeration, visual examples, and syllabic values (sounds) for the
24 classes of the Maya syllabographs in our dataset

T1 T17 T23 T24 T25 T59

/u/ /yi/ /na/ /li/ /ka/ /ti/

T61 T82 T92 T102 T103 T106

/yu/ /li/ /tu/ /ki/ /ta/ /nu/

T110 T116 T117 T126 T136 T173

/ko/ /ni/ /wi/ /ya/ /ji/ /mi/

T178 T181 T229 T501 T534 T671

/la/ /ja/ /’a/ /b’a/ /la/ /chi/
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For experiments, we have divided the dataset into two subsets, selecting at
random 80% of the instances from each positive class and labeling them as
“candidates” (GC), and labeling the remaining 20% as “queries” (GQ). The
purpose of this segmentation is to evaluate the generalization, from candidates
to queries, of any computer vision method that is tested on this dataset.

4.2 The HOOSC Descriptor

The Histogram of Orientation Shape-Context (HOOSC) descriptor has been
proposed in [8] to describe and retrieve Maya syllabographs in small datasets.
This descriptors is robust as it takes advantage of two traditional approaches
for image description: a log-polar regional formulation from the Shape Context
(SC) [1], and a distribution of orientations from the HOG descriptor [3].

In a nutshell, the HOOSC represents the same shape (glyph) several times
from different points; these points are uniformly and randomly selected along
the contours of the shape. This can be thought of as looking at the same shape
from different perspectives, thus resulting in an aggregated robust description.

More specifically, using a log-polar grid divided in 12 angular and 5 spatial
intervals as in [1] (Fig. 6), and whose external boundary spans twice the average
pairwise distances of all the points to be described, a feature vector representing
each of the selected points is computed as follows:

1. Impose the current point in the center of the log-polar grid, such that all the
remaining points are placed around, and the grid includes only those points
that are up to twice the average pairwise distances away from the center.

2. Compute the distribution of local orientations of all the points contained in
each of the log-polar regions. To take into account uncertainty in orientation
estimation and to avoid hard binning effects, this distribution is calculated
through a kernel-based approach for orientation density estimation [8].

3. Normalize the resulting vector for each of the 5 spatial intervals, indepen-
dently for one another, such that the resulting vector sums up to 5.

Since there are 60 log-polar regions and each of them is characterized by a 8-bins
histogram of local orientations, the resulting vector has 480 dimensions.

Shape retrieval with the HOOSC. Different shapes might have different de-
grees of complexity, and therefore different number of points when sampled from
their contours. Therefore, a direct comparison of two shapes is rather difficult,
and solving a point-to-point correspondence matching could be computation-
ally expensive in some cases. To avoid this, we have used a bag-of-visual-words
representation (bov) which efficiently compare glyphs.

More precisely, we use the k -means algorithm to quantize the descriptors and
to build a bag of visual words. Then we compare pairs of shapes based on the
distance between their respective bovs. To perform retrieval experiments, we
rank the bov of candidate-shapes according to their L1 similarity with respect
to the bov of a given query-shape [5] [8]. We found empirically that 2500 visual
words perform well for the HOOSC descriptor.
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Fig. 6. Log-polar grid with 60 regions used for shape description

Improving the HOOSC descriptor The HOOSC descriptor was tested in a
small dataset in [8]. However, when its performance is evaluated on the larger
syllabic Maya dataset, a drop of almost 10% in the retrieval precision was de-
tected. Recently, we have worked in an improved version of the HOOSC, which
not only allows to maintain the retrieval performance but also to improve it in
almost 20% compared with the original HOOSC descriptor.

The recent improvements are: a preprocessing filter to thin the contours of the
glyphs which results in more stable inputs; an efficient approach to select only
key points for the description while remaining accurate; an effective detection
and selection of the most informative spatial scope of the descriptor, which allows
for shorter feature vectors; and the inclusion of the explicit spatial position of
each described point.

4.3 Results

Initially, we compared the performance of different shape descriptors in retrieval
tasks [1] [5] [8]. This comparison is made in terms of mean average precision
(mAP), computed after querying and retrieving candidate hieroglyphs in a small
dataset in the order of hundreds of glyphs [8]. The initial results obtained with
these descriptors indicate that our method is more suitable to describe complex
shapes than the other two approaches. Namely, the SC and the Generalized
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Fig. 7. Retrieval results. The First column shows one random query for each class, fol-
lowed by its Top 15 retrieved candidate-glyphs shown in terms of decreasing similarity.
Relevant glyphs are enclosed in a square.



New World, New Worlds 99

Shape Context (GSC) result in a mAP value of 0.322 and 0.279, respectively,
whereas the HOOSC descriptor reached a mAP of 0.39.

More recently, the experiments performed on the compiled syllabic Maya
dataset, using an improved version of the HOOSC descriptor, resulted in a mAP
of 0.54. Fig. 7 shows one query example randomly chosen from each syllabic class
and the 15 candidates best ranked by the improved HOOSC. Note that in most
of the cases our method retrieves relevant glyphs within the first positions.

4.4 Towards a Tool for Learning about Maya Hieroglyphics

Multimedia and Computer Vision techniques can help facilitate the daily work of
researchers in the field of Maya archaeology. In our research, we are targeting two
specific tools: an automatic analyzer of visual variability and a visual retrieval
system.

Automatic analyzer of visual variability. This tool will allow Maya re-
searchers to analyze the visual evolution of the inscriptions through time and
across different regions of the Maya territory. In [8] we conducted a preliminary
analysis of the intra-class visual variability for 8 syllabic classes. The instances
in these classes are labeled as belonging to one of three epochs and one of four
distinct regions of the Maya territory. Table 2 shows the average intra-class
variability computed for three different periods of time.

Table 2. Average intra-class visual variability for syllabographs over three time periods
of the ancient Maya world

Period Time (A.D.) average

Early Classic 250 - 600 0.277
Late Classic 600 - 900 0.238
Terminal Classic 900 - 1500 0.228

Table 3 shows the average intra-class variability for the four Maya regions.

Table 3. Average intra-class visual variability for syllabographs across four regions of
the ancient Maya world. The colors in the bullets correspond to the colors in the map
of Fig. 1.

In map Region average

� Petén 0.251
� Motagua 0.258
� Usumacinta 0.349
� Yucatán 0.214

Overall, this preliminary analysis suggests that visual representations con-
verged as time passed, but perhaps diverged as glyphs got spread towards the
borders of the Maya world.
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Fig. 8. Inter-class similarity. Each node shows an example of one syllabic class, edges
are weighted with the similarity between the two classes it connects to.

Fig. 9. The system retrieves, from a database, the segmented instances most similar
to the selected glyph. Searching within an inscription given a segmented query is also
possible.
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A second possible analysis with this tool is that of inter-class similarity. We
define a distance measure between classes A and B, as the average of all the
distances from each instance of class A to each instance of class B. We use the
inverse of this distance as similarity measure and as link strength to construct
the graph shown in Fig. 8.

Visual retrieval machine. An accurate visual retrieval system is the main
motivation for our current research. This tool will allow archaeologists to quickly
search in large collections for instances of a given visual query. Fig. 9 shows one
snapshot taken from the first version of this system.

When such a tool is further improved, it will ameliorate the time usually
invested by archaeologists in manual search, and it also could help as a training
tool for novice scholars learning about the Maya writing system. A video demo
of this preliminary tool is available at the website of the project [2].

5 Conclusions

In this overview, we have presented the main developments of the CODICES
project. Our work has spanned data collection, shape-based analysis, and the
initial steps towards a visual retrieval tool that can be used by archaeologists.
In particular, the HOOSC descriptor is an approach that has shown compet-
itive performance w.r.t. state-of-the-art approaches, and represents a suitable
starting point to address some of the complexities of Maya hieroglyphics. Fur-
ther technical details, and future research opportunities were discussed at the
workshop.
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