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Abstract. The goal of the DPA contest v2 (2009 – 2010) was to find the
most efficient side-channel attack against a particular unprotected AES-
128 hardware implementation. In this paper we discuss two problems of
general importance that affect the success rate of profiling based attacks,
and we provide effective solutions. First, we consider the impact of tem-
perature variations on the power consumption, which causes a so-called
drifting offset. To cope with this problem we introduce a new method
called Offset Tolerant Method (OTM) and adjust OTM to the stochastic
approach (SA-OTM). The second important issue of this paper concerns
the choice of an appropriate leakage model as this determines the success
rate of SA and SA-OTM. Experiments with high-dimensional leakage
models show that the overall leakage is not only caused by independent
transitions of bit lines. Compared to the formely best submitted attack of
the DPA contest v2 the combination of SA-OTM with high-dimensional
leakage models reduces the required number of power traces to 50%.

Keywords: Side-Channel Analysis, Stochastic Approach, Environmen-
tal Influences, Drifting Offset, High-dimensional Leakage Models.

1 Introduction

For more than a decade side-channel analysis has been an important field of
research in both academia and industry. Usually these attacks apply mathemat-
ical techniques, e.g., statistical methods, to exploit compromising side-channel
leakage (e.g., runtime behavior, power consumption or electromagnetic emana-
tion), which is emitted during the regular execution of a cryptographic algorithm.
Power attacks can be divided into non-profiled and profiled methods. Prominent
representatives of non-profiled side-channel attacks are Differential Power Anal-
ysis [11], Correlation Power Analysis [2], and Mutual Information Analysis [6].
These attacks try to recover the secret information without a preceding profiling
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phase. Profiled side-channel attacks, such as template attacks [3] or the stochas-
tic approach [17], have the potential to be much more powerful and efficient.
In a profiling based attack an adversary (attacker, designer, evaluator) uses a
training device to characterize the leakage of a cryptographic implementation by
creating templates or by developing a well-fitted leakage model. Then he tries to
recover the key from the target device, using the knowledge from the profiling
phase.

Generally speaking, measurements performed by different laboratories are of-
ten difficult to compare due to different acquisition platform sensitivities, differ-
ent implementations of cryptographic algorithms, noise and other environmental
influences. The organizers of the DPA contest v2 [4] provided measurement traces
that allow a fair comparison of several side-channel attacks. We decided to apply
the stochastic approach.

In this contribution we deal with the two important problems that may affect
the success rate of profiling based attacks. First, we highlight difficulties that
arise from environmental influences during the acquisition phase. Motivated by
the DPA contest v2 measurements we investigate the impact of temperature
variations. In fact, variations of the environmental temperature as well as tem-
perature variations inside the device may change the (average) level of power
consumption and thus the level of electrical current and voltage consumption.
We denote this unexpected phenomenon as drifting offset. The origin of tem-
perature variations, their impact on the power and current consumption, and
possible preventive measures are discussed in Sect. 2. In Sect. 4 we introduce
a new algorithmic method, which we denote as Offset Tolerant Method (OTM)
and integrate it into the stochastic approach, abbreviated by SA-OTM.

Second, we consider the precise representation of the compromising side-
channel leakage by suitable leakage models. Profiling-based attacks are very
powerful and effective tools but their efficiency strongly depends on the suit-
ability of the applied leakage model. As stated in [13] several formal works as-
sume that independent transitions of bit lines imply independent contributions
of side-channel leakage. If this assumption is valid a leakage model that only
considers the input/output bits of the SBox separately will be sufficient. How-
ever, Renauld et al. [13] uses Mutual Information Analysis as an information
theoretic metric [18] to show that this assumption may not always be valid in
practice. With regard to this observation we apply different high-dimensional
leakage models, which represent the individual leakage of each bit line as well as
the leakage caused by the combination of several bit lines. Referred to the DPA
contest v2 the combination of SA-OTM with high-dimensional leakage models
results in the best success rates.

2 Extrinsic and Environmental Influences on
Side-Channel Evaluation Process

It is well-known that extrinsic and environmental influences as temperature, cos-
mic radiation and terrestrial radiation have an impact on the design in terms of
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Fig. 2. Drifting offset at data-
dependent and data-independent
time points

the reliability and dependability of the integrated circuits functionality. However,
the relevance of these phenomena in security analysis and, in particular in the
side-channel analysis, have not been subject of public discussions yet. Usually,
it is tacitly assumed that the power traces are recorded under constant environ-
mental conditions. Neither temperature changes nor explicit influences caused
by variations in the temperature of a system state are considered. We found out
that the power curves of the DPA contest v2 [4] show a drifting offset, which
might result from temperature variations. The template base of the DPA contest
v2 consists of 1.000.000 traces, which were recorded during approximately 3 days
and 19 hours. To give evidence for the drifting offset we selected particular time
instants for all power traces and calculated the mean value over non-overlapping
sets of 100 subsequent traces, which gave 10.000 mean values. Figure. 1 shows
the mean power values at the starting point of the power traces. The dotted line
corresponds to the beginning of a new day, and the solid line marks a 24 hour
cycle. Figure. 1 illustrates the correspondence of the mean power consumption
to the diurnal rhythm. Figure 2 shows the drifting offset for data-independent
time points where no encryption is performed (gray) and for data-dependent
points (black). Obviously, the drifting offset is larger than (average) effects that
stem from data-dependent computations.

In order to confirm that the environmental temperature is the true reason
for the existence of drifting offsets we performed own measurements on the
SASEBO-GII platform. We simulated environmental temperature variations by
mounting a peltier element and a cooling / heating system on the surface of the
target FPGA. Figure 3 shows the voltage drop over a measurement shunt VM for
a single time instant. This reveals the direct relation between the environmental
temperature and the power consumption of a device, which is proportionally
bounded to the measured voltage drop of the shunt in the ground line. Note
that the voltage drop at trace ≈ 7500 results from the activation of the peltier
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Fig. 3. Dependency between environmental temperature and power consumption. The
thin red line represents the temperature while the thick blue line stands for the mea-
sured voltage drop.

element. Physical coherencies and possible preventive measures are discussed in
the following.

3 Impact of Environmental Conditions

In the present section we analyze the impact of environmental conditions on the
power consumption. We focus on the material specific temperature coefficient,
denoted by αθ0 , and on the impact to the characteristic ohmic resistance ϑ(θ0) of
a target circuit. Eq. (1) provides a (linearized) formula that expresses the impact
of the difference between the actual temperature θ and a reference temperature
θ0 on an ohmic resistor

R(θ) = ϑ(θ0) · (1 + αθ0 · (θ − θ0)) . (1)

A measurement circuit usually consists of a target circuit (e.g., an FPGA con-
figured with the cryptographic ’target’ implementation) and a set of further
electronic board components. The measurement circuit is usually realized by an
ohmic shunt, which is chained between the target and a stable power supply.
The voltage drop over this shunt VM is used to calculate the power consumption
of the target. The voltage divider (2) provides a simplified model for the relation
between the supply voltage Vcc of the target device and VM ,

VM =
Rboard

Rboard +Rtarget
· Vcc , (2)

where Rtarget denotes the ohmic resistance of target under attack and Rboard

denotes the overall resistance of all ohmic components of the above mentioned
measurement circuit. Substituting Eq. (1) into the voltage divider for VM gives
Eq. (3)

VM =
Vcc

1 +
(

ϑtarget(θ0,target)
ϑboard(θ0,board)

)
·
(

1+αθ0,target
·(θtarget−θ0,target)

1+αθ0,board
·(θboard−θ0,board)

) . (3)
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Further experiments with the SASEBO-G II FPGA evaluation board verified
that the impact of αθ0,board

is much smaller than the impact of αθ0,target . Con-
sequently, the power consumption is more affected by temperature variations
on the FPGA than by the temperature variations of the shunt and other board
components. Hence Eq. (3) may be simplified to

VM =
Vcc

1 +
(ϑtarget(θ0,target)

ϑboard(θ0,S)

) · (1 + αθ0,target · (θtarget − θ0,target)︸ ︷︷ ︸
heating>0,
cooling<0

) . (4)

For the SASEBO-G II FPGA evaluation board (as for similar evaluation boards)
VM increases significantly if the target FPGA is cooled down and decreases
significantly if the FPGA is heated, which coincides with the expositions in
Sect. 2.

Preventing drifting offsets by providing constant environmental conditions. An
intuitive and natural method to prevent drifting offsets is to keep the tempera-
ture of both the device and the environment constant. The environmental tem-
perature can be controlled when using a heating cabinet or a climatic chamber.
The device may be preheated or cooled during the measurements in order to
stabilize the temperature of the device.

However, these measures reduce the thermal effects only to a certain level.
Since the thermal processes are very slow and the response time is very long it is
yet difficult to control them precisely. Thus, the temperature gradient between
the device and the environment should to be stable for a certain time interval.
This time interval is certainly shorter than the full profiling measurement period.
Moreover, the adversary may not have unlimited access to the target device so
that these measures may not always be possible. This raises several questions
for further research: If an attacker is able to learn on a training device of the
same type under stable environmental conditions, can he also ensure constant
conditions during the attack? Is it possible to enforce identical conditions in dif-
ferent situations? If not: how can unstable environmental conditions be handled
efficiently?

4 A Novel Method for Effective Offset Elimination

Like for other attacks that (maybe implicitly) consider the average power con-
sumption, e.g., template attacks, the efficiency of the stochastic approach may
decrease significantly in presence of drifting offsets (Figs. 1 and 2). In the light
of Sects. 2 and 3 we may assume that the offset drifts slowly. An intuitive ap-
proach to eliminate drifting offsets is to consider differences of consecutive power
traces in place of the power traces themselves. This is an Offset Tolerant Method
(OTM), and we adjust this method to the stochastic approach (SA), abbreviated
by SA-OTM. This may sound simple, however, it will turn out later that several
mathematical difficulties have to be overcome.



370 A. Heuser et al.

4.1 The ’Normal’ Stochastic Approach: A Brief Summary

The ’normal’ stochastic approach is an established, effective method in profiled
power analysis, which combines engineer’s knowledge and expertise with ad-
vanced stochastic methods [17, 7, 16, 10, 8]. In this subsection we summarize its
central steps. In Subsection 4.2 we will refer to this description, and we work out
the differences to SA-OTM. Principal component analysis (PCA) is well-known
in the context of template attacks [1]. Below we adjust PCA to the stochastic
approach. We begin with some notations.

Notation 1. We denote subkeys by k ∈ {0, 1}s while x ∈ {0, 1}p stands for
(the relevant part of) the plaintext or ciphertext, respectively (typically, 8 or 16
bits). Random variables are denoted by capital letters, realizations thereof, i.e.
values taken on by these random variables, by the corresponding small letters.
Vectors are written in bold, e.g., t stands for (t1, . . . , tm), and Rt denotes the
random vector (Rt1 , . . . , Rtm). Accordingly, It(x, k), it(x, k), h

∗
t;k(x, k) etc. while

∼ indicates estimates. We write diagn(b1, . . . , bn) for a diagonal n × n square
matrix with diagonal elements b1, . . . , bn, andNn(μ, F ) denotes an n-dimensional
normal distribution with mean vector μ and covariance matrix F . Finally, fF (·)
denotes the density of N(0, F ).

The stochastic approach refers to the mathematical model

It(x, k) = ht(x, k) +Rt (5)

where t denotes a time instant. The power consumption it(x, k) is interpreted as
a realization of a random variable It(x, k) whose (unknown) distribution depends
on the pair (x, k). The leakage function ht;k(x, k) quantifies its deterministic part,
which depends on x and k, while Rt denotes the noise. W.l.o.g. we may assume
E(Rt) = 0. Note that both the leakage function ht(·, ·) and the distribution of
the noise are unknown and thus have to be estimated.

Profiling Phase. Let t ∈ {t1, . . . , tm} and k ∈ {0, 1}s be fixed for the moment.
We view the restricted function ht;k : {0, 1}p × {k} → IR, ht;k(x, k) := ht(x, k)
as an element of the 2p-dimensional real vector space Fk := {h′ : {0, 1}p →
IR}. Basis functions g0,j;k(·, k) = 1 (constant function), . . . , gu−1,t;k(·, k) shall
be selected under consideration of the concrete implementation, since they shall
capture the relevant source of side-channel leakage (cf. e.g., [8] and Sect. 5). The
SA does not aim at the exact function ht;k(·, k) itself but at its best approximator
h∗
t;k(·, k) in Fu,t;k, the subspace which is spanned by g0,j;k(·, k), . . . , gu−1,t;k(·, k).

Using the power measurements it(x1, k), . . . , it(xN1 , k) ∈ IR the least square

estimate h̃∗
t;k(·, k) of ht;k(·, k) is determined. Let

A :=

⎛
⎜⎝

g0,t;k(x1, k) . . . gu−1,t;k(x1, k)
...

. . .
...

g0,t;k(xN1 , k) . . . gu−1,t;k(xN1 , k)

⎞
⎟⎠ . (6)
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If ATA is regular (usual case) the normal equation ATAb = AT it has unique
solution

b̃ ∗ = (ATA)−1AT it, with b̃ ∗ := (β̃ ∗
0 , ..., β̃ ∗

u−1), and (7)

h̃∗
t;k(·, k) =

u−1∑
j=0

β̃∗
j,t;kgj,t;k(·, k) (least square estimate of h∗

t;k(·, k)) . (8)

The coefficients β̃∗
0,t;k, . . . , β̃

∗
u−1,t;k are called β-characteristic.

In the second profiling step the covariance matrix C of the noise vector Rt

is estimated, finally yielding a density for the random vector It(x, k). From an
information theoretic point of view it seems to be advisable to consider as many
time instants t1 < · · · < tm as possible. Unfortunately, then the covariance ma-
trix C is often ’almost’ singular so that even moderate estimation errors in C̃
may amplify drastically in C̃−1 (needed to calculate fC(·)), and matrix inversion

becomes an ill-posed numerical problem. Since C and its estimate C̃ are sym-
metric positive semi-definite matrices an orthogonal matrix P ∈ O(m) exists,

for which PT C̃P = D̃m with D̃m = diagm(λ̃1, . . . , λ̃m). The diagonal elements

λ̃1 ≥ · · · ≥ λ̃m ≥ 0 (eigenvalues of C̃), and the jth column vj of P is an eigen-

vector of C̃ to eigenvalue λ̃j (main axis transformation). If the first s eigenvalues

are considerably larger than the others, i.e. λ̃s+1 � λ̃s, we concentrate on that
subspace of IRm, which is spanned by the eigenvectors v1, . . . , vs. More precisely,
if Ps denotes the (m× s)-matrix with columns v1, . . . , vs then

PT
s C̃Ps = D̃s with D̃s = diags(λ̃1, . . . , λ̃s) (PCA). (9)

If the random vector Y is Nm(0, C)-distributed then PT
s Y is Ns(0, P

T
s CPs)-

distributed ( [9]), i.e. has the s-dimensional normal density fDs . For large m it is

not advisable to calculate Ps and D̃s via main axis transformation of C̃. Instead,
one should apply the singular value decomposition [9] as it is numerically more
stable.

Attack Phase. In the attack phase the adversary performs N3 measurements
at the target device and obtains power vectors it(x1, k

†), . . . , it(xN3 , k
†) with

the unknown subkey k†. The adversary decides for that subkey candidate k∗ ∈
{0, 1}s that maximizes

N3∏
l=1

f
˜Ds

(
PT
s

(
it(xl, k

†)− h̃∗
t;k(xl, k

∗)
))

. (10)

4.2 SA-OTM: A New Variant of SA

In the following we assume that the power traces are labelled in the same order
as they have been recorded, and that the data-independent offset drifts slowly.
We denote the offsets at time t by τt;1, τt;2, . . . where the second index indicates
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the number of the power trace. In particular, τt;l − τt;l+1 ≈ 0 for all l ≥ 1.

For ’normal’ SA β̃∗
0,t,k estimates the average power consumption in the profiling

phase. Note that this average might differ from the corresponding value within
the attack phase. Moreover, regarding the measurements of the DPA contest v2
the ratio |β̃∗

0,t,k|/
∑8

j=1 |β̃∗
j,t,k| ≈ 70, and hence even moderate relative differences

in β̃∗
0,t,k might have considerable impact on the attack efficiency. We refine (5)

and get
It(xl, k) = ht(xl, k) + τt;l + Rt . (11)

In particular, It(xl, k) ∼ N(ht(xl, k)+τt;l, σ
2). Of course, if τt;l = 0 for all power

traces (11) reduces to (5). SA-OTM applies to the enhanced mathematical model
(11).

SA-OTM: Profiling Phase

Estimation of h∗◦
t,k and of the β-characteristic Since the drifting offset τt;l only

affects the coefficient β0,t;k in contrast to ’normal’ SA we do not aim at h∗
t,k(·, k)

but at h∗◦
t,k(·, k) :=

∑u−1
j=1 β∗

j,t;kgj,t;k(·, k). In place of Fu,t;k we consider the sub-
space

F◦
u,t;k := {h′ : {0, 1}p × {k} → IR | h′ =

u−1∑
j=1

β′
j,t,kgj,t;k with β′

j,t,k ∈ IR}, (12)

i.e., we neglect the first basis vector g0,t;k = 1. The straight-forward approach is
to proceed as in ’normal’ SA, by simply cancelling the first column of matrix A
(Eq. (6)).

Alternatively, one may consider differences of consecutive power measure-
ments. More precisely, for l = 1, . . . , N1− 1 let dj,t,k(xl, xl+1, k) := gj,t;k(xl, k)−
gj,t;k(xl+1, k) and dit(xl, xl+1, k) := it(xl, k)− it(xl+1, k). Further, we define the
(N1 − 1)-dimensional vector Δit := (dit(xl, x2, k), . . . , dit(xN1−1, xN1 , k)) and

A◦ :=

⎛
⎜⎝

d1,t;k(x1, x2, k) . . . du−1,t;k(x1, x2, k)
...

. . .
...

d1,t;k(xN1−1, xN1 , k) . . . du−1,t;k(xN1−1, xN1 , k)

⎞
⎟⎠ . (13)

If the (u − 1 × u − 1) dimensional matrix product (A◦TA◦) is regular then in
analogy to (7) and (8) we obtain

b̃ ∗◦ = (A◦TA◦)−1A◦TΔit with b̃ ∗◦ := (β̃ ∗
1 , ..., β̃ ∗

u−1), and (14)

h̃∗ ◦
t;k(·, k) =

u−1∑
j=1

β̃∗
j,t,kgj,t;k(·, k) (least square estimate of h ∗◦

t;k (·, k)) . (15)

For infinite sample sizeN1 the estimates β̃∗
1,t;k, . . . , β̃

∗
u−1,t;k from both estimation

methods (’straight-forward’, ’difference method’) converge to the exact parame-
ter values β∗

1,t;k, . . . , β
∗
u−1,t;k. For the power traces from the DPA contest v2 the
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difference method turned out to be more efficient (higher rate of convergence),
which should be due to the fact that β∗

0,t;k clearly dominates the other coef-
ficients. Note that in the first profiling step it is a (reasonable) option to use
differences of power traces while it is unavoidable in the second profiling step
and in the attack phase.

Estimation of the Distribution of Rt and PCA. Since the offsets τt;l are un-
known, we apply OTM. In fact, since τt;l − τt;l+1 ≈ 0 and

(It(xl, k)− It(xl+1, k))− (h∗◦
t (xl, k)− h∗◦

t (xl+1, k)) ≈ (16)

It(xl, k)− ht(xl, k)− τt;l − (It(xl+1, k)− ht(xl+1, k)− τt;l+1) ∼ N (0, 2C).

Consequently, we go for an estimate of 2C instead of C. Now let wt,l;k :=

it(xl, k)− h̃∗◦
t (xl, k). Then

2̃C :=
1

N2 − 1
M̃◦T M̃◦ with the (m× (N2 − 1))-matrix

M̃◦T := (wt,1;k −wt,2;k, . . . ,wt,N2−1;k −wt,N2;k) (17)

provides an estimate for 2C. We point out that the columns of M◦ are not
independent. However, let M◦

ev and M◦
odd denote the submatrices of M◦, which

consist of the columns with even indices or of the columns with odd indices,
respectively. For odd N2

1

N2 − 1
M̃◦T M̃◦ =

1

2

(
2

N2 − 1
M̃◦T

ev M̃
◦
ev +

2

N2 − 1
M̃◦T

oddM̃
◦
odd

)
. (18)

Both submatrices have independent columns, which yield estimates for 2C (anal-

ogously to the SA case). We point out that M̃◦
ev and M̃◦

odd are only weakly

correlated since the lth row of M̃◦ is only correlated to rows (l − 1) and l. The
matrices C and 2C have the same eigenspaces and thus the same transformation
matrix Ps (cf. Eq. (9)). Applying the singular value decomposition to M̃◦ yields

Ps as well as estimates 2̃Ds = 2D̃s and D̃s for 2Ds and Ds, respectively.

SA-OTM: Attack Phase. We assume that the attacker has recorded N3 mea-
surement vectors it(x1, k

†), . . . , it(xN3 , k
†) from a target device with a secret

(unknown) subkey k†. As for SA the attacker applies a maximum likelihood
estimation rule but for SA-OTM the situation becomes more complicated (The-
orem 1).

Notation 2. If F1, . . . , Fr are matrices with the same number of columns then
RV (F1, . . . , Fr) denotes the block matrix whose first rows are given by F1, the
next rows by F2 etc.
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Theorem 1. For l = 1, . . . , N3 let Wt,l;k := It(xl, k)− h∗◦
t,k(xl, k).

Then the s(N3 − 1)-dimensional random vector

Wt;k :=RV
(
PT
s (Wt,1;k−Wt,2;k),P

T
s (Wt,2;k−Wt,3;k),. . .,P

T
s (Wt,N3−1;k−Wt,N3;k)

)

∼ N(RV (PT
s (τt;1 − τt;2), P

T
s (τt;2 − τt;3), . . . , P

T
s (τt;N3−1 − τt;N3)), G(Ds))

≈ N(0, G(Ds)) (19)

with the (s(N3 − 1)× s(N3 − 1))-dimensional block tridiagonal matrix

G(Ds) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2Ds −Ds

0−Ds 2Ds −Ds

−Ds 2Ds −Ds

0

. . .
. . .

. . .

−Ds 2Ds −Ds

−Ds 2Ds

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Proof. Since the random vectors Wt,1;k, . . . ,Wt,N3;k are independent the ran-
dom vector

V := RV (PT
s (Wt,1;k), P

T
s (Wt,2;k), . . . , P

T
s (Wt,N3;k))

is N
(
RV (PT

s (τt;1), P
T
s (τt;2), . . . , P

T
s (τt;N3)), D̂

)
-distributed where D̂ stands for

the (sN3 × sN3)-dimensional block diagonal matrix whose N3 diagonal blocks
equal Ds. We conclude Wt;k = L(V ) where L : IRsN3 → IRs(N3−1) denotes the
linear mapping

L(RV (z1, . . . , zN3)) := RV (z1 − z2, z2 − z3, . . . , zN3−1 − zN3).

By [9] (3.31) we have

L(V) ∼ N (RV (PT
s (τt;j − τt;2), P

T
s (τt;2 − τt;3), . . . , P

T
s (τt;N3−1 − τt;N3), LD̂LT ).

A careful computation verifies LD̂LT = G(Ds), which proves the first assertion
of Theorem 1. Since L is linear the second assertion follows from the assumption
that the differences τt;1 − τt;2, τt;2 − τt;3, . . . , τt;N3−1 − τt;N3 ≈ 0. �	
If the vector space F◦

u,t;k catches the relevant parts of the leakage then h∗◦
t;k(xl, k)−

h∗◦
t;k(xl+1, k) ≈ h∗

t;k(xl, k)− τt;l −h∗
t;k(xl+1, k) + τt;l+1, which motivates the fol-

lowing maximum likelihood decision rule. The adversary decides for the subkey
k ∈ {0, 1}s, which maximizes fG( ˜Ds)

, or equivalently minimizes

(w′
t;k

T
G(D̃s)

−1w′
t;k) with (20)

w′
t;k :=RV

(
P T
s (w′

t,1;k −w′
t,2;k), P

T
s (w′

t,2;k −w′
t,3;k), . . . , P

T
s (w′

t,N3−1;k −w′
t,N3;k)

)

and w′
t,l;k := it(xl, k

†)− h̃∗◦
t,k(xl, k) while G(D̃s) is the estimate of G(Ds).
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Remark 1. Eq. (20) can be evaluated without inverting G(D̃s)
−1. Instead, one

first solves the matrix-vector equation G(D̃s)v = w′
t;k first, for which efficient

numerical algorithms exist (e.g., iterative Krylov Methods [20]). Finally, one

computes w′T
t;kv. We point out that also these calculations could be saved by

cancelling every second component in w′
t;k (at cost of doubling the number of

attack traces!). As a compromise between efficiency and computational workload
one might cancel every αth component of w′

t;k, which results a block diagonal

matrix with N3

α matrices Gl for 1 ≤ l ≤ N3

α and dim(Gl) ≤ s · (α − 1) �
dimG(D̃s) in its diagonal. Here one ’wastes’ N3

α power traces for the sake of
faster calculation. This method is of particular interest in context of the DPA
contest v2 since the contest rules demand the continued evaluation of an attack
for increasing sets of power traces. In our experiments (Sect. 6) we used α = 200,
without claiming that the choice of α is optimal.

5 On the Selection of Stochastic Leakage Models

The approximator of the leakage function ht;k (i.e., h∗
t;k or h ∗◦

t;k) is close only
for an appropriate subspace Fu,t;k. The appropriateness depends on the leakage
model and thus on the concrete subspace. In this section we consider different
subspaces that may be used for attacks on the last round of an AES-128 hard-
ware implementation. In [10] a 9-dimensional subspace F9,t;k was investigated in
detail (SA). The selection of F9,t;k is reasonable if (one assumes that) the side-
channel leakage is only caused by the sum of the individual transitions on all bit
lines. High-dimensional subspaces also capture effects that arise from interac-
tions between the transitions on two or more bit lines. Such effects occur due to
properties of internal circuit structures, e.g., propagation glitches or cross-talk
phenomena during the metastable phase of the registers, which is a well-known
problem in CMOS VLSI Circuit Design [12, 5]. In Sect. 6 we consider F◦

u,t;k for
u ∈ {9, 37, 93, 163, 219, 247, 255, 256}. Recall that dimF◦

u,t;k = u− 1. Of course,
also high-dimensional subspaces keep the regression linear.

The possibility of applying high-dimensional subspaces was already pointed
out in [17,16]. In [13], Renauld et al. analyzed the information theoretic impact
of high-dimensional leakage models on the mutual information. To the best of the
authors’ knowledge very high-dimensional subspaces have not been evaluated in
concrete attacks yet.

5.1 High-Dimensional Subspaces for SA-OTM

With regard to an ordinary hamming distance model we first consider the 8-
dimensional subspace F◦

9,t;k which exploits the corresponding intermediate value

of the 9th round XORed with the 10th round key. More precisely, we select the
following basis vectors
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gj,t;k(y)
((x(z), x(y)), k(y)) = ((x(z) ⊕ S−1(x(y) ⊕ k(y)))j︸ ︷︷ ︸

:=(φ(x(z),x(y),k(y)))j :=ĝj,t;k

−2−1) (21)

for j = 1, . . . , 8.

The subtrahend 2−1 ensures EX(gj,t,k(y)(X, k(y))) = 0 for independent and uni-
formly distributed random variables X(y) and X(z), a reasonable model for two
ciphertext bytes. The indices y and z are chosen according to the distance model
of the AES design (cf. [10, 8]).

Moreover, we consider high-dimensional subspaces. To simplify we introduce
new notation. First, B1 := {g1,t;k(y)

, . . . , g8,t;k(y)
} collects all basis vectors from

Eq. (21), which capture the contribution of the individual bit lines. Moreover,
for 2 ≤ i ≤ 8 the set

Bi := {ĝj1,t;k(y)
· · · ĝji,t;k(y)

− 2−i | 1 ≤ j1 < . . . < ji ≤ 8} (22)

contains all unordered i-fold products of elements in B1 minus 2−i. (A typical
element in B2 is ĝ4,t;k(y)

· ĝ7,t;k(y)
− 2−2.) The subtrahend 2−i ensures the zero-

mean property for all elements of Bi. Table 1 provides the basis vectors for all
relevant subspaces (the elements of the sets in the second column).

Table 1. Set of basis functions for each subspace

dim(F◦
u,t;k) (= u− 1) Set of basis functions

8 B1

36 B1 ∪ B2

92 B1 ∪ B2 ∪ B3

162 B1 ∪ B2 ∪ B3 ∪ B4

218 B1 ∪ B2 ∪ B3 ∪ B4 ∪ B5

246 B1 ∪ B2 ∪ B3 ∪ B4 ∪ B5 ∪ B6

254 B1 ∪ B2 ∪ B3 ∪ B4 ∪ B5 ∪ B6 ∪ B7

255 B1 ∪ B2 ∪ B3 ∪ B4 ∪ B5 ∪ B6 ∪ B7 ∪ B8

5.2 Leakage Models for the Stochastic Approach

As pointed out in Subsect. 4.2 the subspaces for SA-OTM are similar to the
subspaces for SA, just the first basis vector g0,t;k(y)

is omitted. In particular, the
subspace F9,t;k is spanned by

g0,t;k(y)
((x(z), x(y)), k(y)) = 1 (23)

gj,t;k(y)
((x(z), x(y)), k(y)) = ((x(z) ⊕ S−1(x(y) ⊕ k(y)))j − 2−1) for j = 1, . . . , 8 .

We define B0 := {g0,t;k(y)
}, and the construction of high-dimensional subspaces

follows analogously to Tab. 1 with additional basis vector B0.
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5.3 Symmetry

References [10,16] consider leakage models with symmetries (for SA). In fact, the
basis vectors gj;t;k(y)

from Subsect. 5.1 and 5.2 can be expressed by a composition

of a key-independent function gj,t : {0, 1}8 → IR with the mapping φ : {0, 1}8 ×
{0, 1}8 × {0, 1}8 → {0, 1}8, given by

φ(x(z), x(y), k(y)) := (x(z) ⊕ S−1(x(y) ⊕ k(y))) .

This essentially reduces the argument of gj;t;k(y)
from 24 to 8 bits. If the

leakage function ht,k(y)
((x(z), x(y)), k(y)) also depends on its arguments only

through φ(x(z), x(y), k(y)) one can compute h∗
t,k′

(y)
((·, ·), k′(y)) for each k′(y) if

h∗
t,k(y)

((·, ·), k(y)) is known for arbitrary subkey k(y). In particular, for uniformly

distributed (X(y), X(z)) for each j < u

βj,t;k′
(y)

≡ βj,t for all k′(y) ∈ {0, 1}8. (24)

Reference [8] explains how to verify, resp. to falsify, whether symmetry assump-
tions are indeed valid, and a symmetry metric is introduced. Eq. (24) says that
the coefficients βj,t,· are identical for all admissible subkeys. This property al-
lows to use all 1000.000 power traces of the template base (though belonging to
different (sub)keys) jointly in a single least square estimation process. This gives
more stable results, and (for each key byte) profiling step 1 has to be carried out
only once.

6 Experimental Analysis

In this section we compare the efficiency of SA-OTM and of SA on basis of the
DPA contest v2 power traces. We apply the leakage models from Sect. 5. The
DPA contest v2 provides two data bases: A template base with 1.000.000 power
traces (to develop an attack), and a public base, which contains power traces
for 32 fixed keys, 20.000 traces for each key (to test the attack). The organizers
of the contest evaluated the submitted attacks on a (non-public) private base to
avoid ”biased” attacks. The measurements were recorded on the SASEBO-G II
FPGA-evaluation board [14] using a Virtex 5 FPGA [19]. Each encryption (AES
with 128 bit keys) takes 10 clock cycles, and the SBOX realization is based on a
composite field [15]. In analogy to the DPA contest v2 we calculate the partial
success rate (PSR) and the global success rate (GSR) to compare the efficiency
of the particular attacks. The PSR is the probability that the correct subkey
is ranked first among all possible subkeys, while GSR denotes the probability
that the complete key is ranked first. We are mainly interested in the minimum
number of power traces for which the PSR is stable above 80% (i.e. the ’worst’
byte is stable in > 80% of the experiments), and in the minimum number of
power traces for which the GSR is stable above 80% (→ evaluation criteria for
the DPA contest v2).
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As already mentioned the template base consists of 1.000.000 traces, i.e. for
each subkey ≈ 4.000 traces. This number is too small for a sufficiently precise
estimation of the β-characteristic for each key. However, due to the symmetry
properties of the attacked implementation (cf. Subsect. 5.3) we could circumvent

this problem. Accordingly, we computed the coefficients β̃∗
j,t (cf. Eq. (24)) on

basis of all 1.000.000 power traces.
The application of PCA to the Covariance matrices C̃ and 2C̃ showed that

the first eigenvalue λ̃1 is at least 20 times larger than the other eigenvalues
λ̃2, . . . , λ̃m. Consequently, we selected s = 1, and hence Ps is an (m× 1) matrix
(cf. Eq. (9)). For the evaluation of the PSR and the GSR we used the power
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Fig. 4. Partial success rate: SA
with a 9-dim. model
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Fig. 5. Partial success rate: SA-
OTM with a 8-dim. model

traces from the public base. Figure 4 depicts the PSR for the SA with the 9-
dimensional leakage model from Eq. (23). Each curve corresponds to one of the
16 subkeys. Figure 5 shows the PSR for SA-OTM with the 8-dimensional leakage
model (e.g., Eq. (21)). All bytes achieve the 80% threshold, and except for one
subkey, even the 100% threshold. Figure 6 and 7 depict the PSR for SA and
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Fig. 6. Partial success rate: SA
with a 37-dim. model
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Fig. 7. Partial success rate: SA-
OTM with a 36-dim. model
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SA-OTM using the 37-dimensional and 36-dimensional model, which capture
the individual leakage of each bit line and the leakage caused by the interaction
between two arbitrary bit lines. Evidently, these leakage models describe the
existing leakage more precisely. However, for SA the PSR criterion fails due to
the same 4 bytes. Compared to the 8-dimensional leakage model for SA-OTM
the minimum number of traces with stable PSR > 80% drops down from 8781
to 5876. The 93- and the 92-dimensional leakage model additionally capture the
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Fig. 8. Partial success rate: SA
with a 93-dim. model
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Fig. 9. Partial success rate: SA-
OTM with a 92-dim. model

leakage that arises from the combinations of three bit lines. Experimental results
are depicted in Figure 8 and Figure 9. The 93-dimensional model (SA) improves
the PSR, but 3 bytes still do not reach 80% PSR. SA-OTM reaches the PSR
stable above 80% after 5195 traces. The significant improvement of the PSR for
specific bytes does not necessarily imply that the drifting offset only influences
those bytes. It rather underlines that not all subkey bytes ’leak’ in the same way.
One might conjecture that those subkey bytes, which have less influence on the
overall leakage are more affected by the drifting offset than the others. Figure 10
shows the GSR. SA-OTM requires about 6734 traces to achieve a GSR stable
> 80%. A GSR of 100% is only archived for SA-OTM with the 92-dimensional
leakage model.

The best attack that was submitted during the contest achieves a PSR stable
above 80% for 5.890 traces and a stable GSR > 80% for 7.061 traces. SA-OTM
with the 92-dimensional model outperforms these benchmarks. Moreover, we
computed the success rates of SA-OTM for the 162-, 218, 246-, 254-, 255- di-
mensional model, which increased this success rate further. These results indicate
that the 218-dimensional subspace F◦

219,t;k, which is spanned by the basis vectors
in B1 ∪ B2 ∪ B3 ∪ B4 ∪ B5, seems to essentially capture the leakage. Tab. 2 con-
tains all results for the public base and the private base (as far as known). For
the private base a third contest criterion, the maximal partial guessing entropy
below 10 (max PGE below 10) [18], is listed.
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Fig. 10. Global success rate of SA and SA-OTM for different models

Remark 2. Following the expositions in Sect. 2 one might simply try to combine
’normal’ SA with vertical trace alignment. However, as explained below also in
combination with vertical alignment SA-OTM remains more efficient than SA.

Vertical Trace Alignment. We combined SA and SA-OTM with vertical trace
alignment, a well-known method in power analysis. We ’normalized’ each
measurement trace to mean zero (over the whole trace), i.e. we computed
aligned it(xl, k) = it(xl, k)−mean(it(xl, k)), with t ranging over the complete
trace. However, even then SA with the 93-dimensional model did not exceed
PSR > 80% for all bytes.

Since SA-OTM itself solves the problem with the drifting offset our goal here
was to reduce the impact of outliers. Apart from the drifting offset, Figure 1
displays a few extreme values that might be caused by such outliers, which
result from measurement errors or any other interference during the acquisition.

Table 2. Success rate (PSR stable > 80% / GSR stable > 80%), and max PGE below
10 for the private base

Attack Public Base Private Base
1

SA-OTM: dim 8 ( 8781 / 13020 ) unknown
SA-OTM: dim 36 ( 5876 / 7533 ) unknown
SA-OTM: dim 92 ( 5195 / 6734 ) ( 4358 / 5571), 1.894
SA-OTM: dim 162 ( 4353 / 6144 ) unknown
SA-OTM: dim 218 ( 3552 / 4564 ) unknown
SA-OTM: dim 246 ( 3769 / 4691 ) unknown
SA-OTM: dim 254 ( 3720 / 4740 ) unknown
SA-OTM: dim 255 ( 3718 / 4748 ) unknown
SA-OTM: dim 255 incl. alignment ( 2682 / 3836 ) ( 2748 / 3589 ), 1.356
Best submitted attack during the first & second period unknown ( 5890 / 7061), 2.767

1 See http://www.dpacontest.org/v2/hall_of_fame.php for the results on the
private base.

http://www.dpacontest.org/v2/hall_of_fame.php
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Alternatively, one could also try to identify and omit the outliers. SA-OTM with
the 255-dimensional leakage model and vertical alignment SA-OTM achieves a
PSR stable > 80% within 2748 traces and a GSR stable above 80% within 3589
traces (private base). These results reduce the required number of traces to 50%
compared to the best submitted attack during the contest, cf. Tab. 2.

Further Work / Open Problems Our analysis raises several questions. Can the
drifting offset be effectively prevented in practice? What is the smallest sub-
space that captures all relevant parts of the compromising leakage? Do different
types of implementations demand different subspaces? Another ambitious topic
for future work could be an automatized search for optimal (high-dimensional)
subspaces, which finally might yield to appropriate basis vector selection
methods.

7 Conclusion

In this contribution we investigated two fundamental problems that may affect
the efficiency of profiling based attacks, and we developed efficient solutions.
Drifting offsets (caused by temperature variations) cause difficulties for attacks,
which consider (implicitly or explicitly) the average power consumption (typ-
ically profiling based attacks). We introduced a new method, denoted as the
Offset Tolerant Method (OTM), which considers differences of consecutive pairs
of power traces. We adjusted OTM to the stochastic approach (SA), abbreviated
by SA-OTM. In presence of a drifting offset SA-OTM turned out to be clearly
more efficient than SA, even in combination with vertical trace alignment.

We further addressed the problem of how to select suitable leakage models,
which shall represent the compromising leakage as precise as possible. Our re-
sults show that leakage may also arise from the interaction of several bit lines.
This effect can only be captured by high-dimensional leakage models. Combining
these two improvements we achieved the best results of all participants of the
DPA contest v2. Further research work might consider open problems formu-
lated at the end of Sect. 6 or concentrate on improvements of SA-OTM, maybe
in combination with alternative dimension reduction techniques.
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Resist through grant number 01IS10027A. We thank Christian Brandt for the
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