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Abstract. One protection of cryptographic implementations against side-
channel attacks is the masking of the sensitive variables. In this article,
we present a first-order masking that does not leak information when the
registers change values according to some specific (and realistic) rules.
This countermeasure applies to all devices that leak a function of the
distance between consecutive values of internal variables. In particular,
we illustrate its practicality on both hardware and software implemen-
tations.

Moreover, we introduce a framework to evaluate the soundness of the
new first-order masking when the leakage slightly deviates from the rules
involved to design the countermeasure. It reveals that the countermea-
sure remains more efficient than the state-of-the-art first-order masking if
the deviation from the ideal model is equal to a few tens of percents, and
that it is as good as a first-order Boolean masking even if the deviation
is 50%.

Keywords: First-order masking, leakage in distance, leakage-free coun-
termeasure.

1 Introduction

During the last ten years, a lot of efforts have been dedicated towards the re-
search about side-channel attacks [9, 1] and the development of corresponding
countermeasures. In particular, there have been many endeavors to develop ef-
fective countermeasures against differential power analysis (DPA) [10] attacks.
DPA, and more generally side channel analysis (SCA for short), take advan-
tage of the fact that the power consumption of a cryptographic device depends
on the internally used secret key. Since this property can be exploited with rel-
atively cheap equipments, DPA attacks pose a serious practical threat to cryp-
tographic devices, like smart cards (ASICs) or embedded systems (DSPs, CPUs
and FPGAs).
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A very common countermeasure to protect implementations of block ciphers
against SCA is to randomize the sensitive variables by masking techniques. The
idea of masking the intermediate values inside a cryptographic algorithm has
been suggested in several papers [8, 5] as a possible countermeasure to power
analysis attacks. The technique is generally applicable if all the fundamental
operations used in a given algorithm can be rewritten in the masked domain.
This is easily seen to be the case in classical algorithms such as the DES or AES.
Masking ensures that the sensitive data manipulated by the device is masked
with at least one random value so that the knowledge on a subpart of the shares
(the masked data or the mask) does not give information on the sensitive data
itself.

The masking can be characterized by the number of random masks used per
sensitive variable. So, it is possible to give a formal definition for a high-order
masking scheme: a dth-order masking scheme involves d+1 shares. The security
is reached at order d provided that any combination of d intermediate variables
during the entire computation conveys no information about the sensitive vari-
able.

We must concur that computing with d + 1 shares without revealing infor-
mation from any set of size d of intermediate values can be challenging. Some
first-order masking techniques have been successfully proved to be secure against
first-order SCA (1O-SCA) attacks. Nonetheless, masked implementations can al-
ways be attacked, since all shares [7] or a judicious combination [16] of them un-
ambiguously leaks information about the sensitive variable. The construction of
an efficient dth-order masking scheme thus became of great interest. One sound
solution has been put forward recently in [17].

In this paper, we are not concerned with higher-order masking, but devise
optimised masking schemes when the leakage function is known. Typically, we
show that with d = 1, and assuming a Hamming distance leakage function (or
even some small variations of it), it is possible to zero the sensible information
leaked during the registers update.

The rest of the paper is structured as follows. In Sec. 2, the concept of Boolean
masking and 1O-SCA are formally defined. We also introduce some useful nota-
tions. The most critical part when securing implementations is to protect their
non-linear operations (i.e. the sbox calls). In Sec. 3, we recall the methods which
have been proposed in the literature. Then, we introduce a new and a simple
countermeasure which counteracts 1O-SCA when the device leaks the Hamming
distance. The security analysis is conducted for both idealized model in Sec. 4
and imperfect model in Sec. 5. The conclusion and some perspectives are in
Sec. 6. Simulation results in the imperfect model are in appendix A.

2 Preliminaries

In this paper we focus on the Boolean masking countermeasure [5, 8]. Its idea
is to mask the sensitive data (which depends on both plaintext and the secret
key) by a XOR operation (denoted ⊕) with a random word, in order to avoid
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the correlation between the cryptographic device’s power consumption and the
data being processed. The main difficulty of masking resides in the handling of
shares of a unique intermediate variable through a non-linear function (i.e. the
cipher sboxes). An n × m sbox (i.e. with n input bits and m output bits) can
be described as a vectorial output mapping F : Fn

2 �→ F
m
2 , or a collection of

Boolean functions F = (f1, · · · , fm), where each fi is defined from F
n
2 to F2.

The vectorial function F is also called an (n,m)-function. A (n,m)-function F
such that every element Y ∈ F

m
2 has exactly 2n−m pre-images by F is said to

be balanced. Its outputs are uniformly distributed over Fm
2 when its inputs are

uniformly distributed over Fn
2 . As recalled in introduction, the manipulation of

sensitive data through this function may be protected using dth-order masking
scheme. When such a scheme is applied, it is expected that no HO-SCA of order
less than or equal to d is successful. The order relates to the number of different
instantaneous leakages considered by the attack. In this paper, we focus on first-
order masking scheme secure against 1O-SCA. For the rest of the paper, we
adopt the following notations. Random variables are printed in capital letters
(e.g. X), whereas their realization is noted with small letters (e.g. x), and their
support by calligraphic letters (e.g. X ). The mutual information between X and
Y is denoted I[X ;Y ]; it measures the mutual dependency of the two variables.
The Hamming weight of x, written as HW(x), is the number of ones in the binary
word x.

3 Secure Computation against 1O-DPA Using ROMs

Let X and K denote two random variables respectively associated with some
plaintext subpart values x and a secret sub-key k manipulated by a cryptographic
algorithm. Let us moreover denote by Z the sensitive variable X ⊕K. When a
first-order Boolean masking is involved to secure the manipulation of Z, the
latter variable is randomly split into two shares M0,M1 such that:

Z = M0 ⊕M1 . (1)

The share M1 is usually called the mask and is a random variable uniformly
distributed over Fn

2 . The share M0, called the masked variable, plays a particular
role and is built such that M0 = Z ⊕M1. Variables Z and M1 are assumed to
be mutually independent. To enable the application of a transformation S on a
variable Z split in two shares, as in (1), a so-called first-order masking scheme
must be designed. It leads to the processing of two new shares M ′

0 and M ′
1 such

that:
S(Z) = M ′

0 ⊕M ′
1 . (2)

Once again, the share M ′
1 is usually generated at random and the share M ′

0 is
defined such that M ′

0 = S(Z)⊕M ′
1. The critical point is to deduce M ′

0 from M0,
M1 and M ′

1 without compromising the security of the scheme (w.r.t. 1O-SCA).
When S is linear for the law ⊕, then deducing M ′

0 is an easy task. Actually,
since the relation S(Z) = S(M0 ⊕ M1) = S(M0) ⊕ S(M1) holds, then M ′

0 can
be simply chosen such that M ′

0 = S(M0)⊕ S(M1)⊕M ′
1.
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When S is non-linear for the law ⊕ (which occurs when S is a sbox), achieving
first-order security is much more difficult. The latter security indeed implies
that no instantaneous leakage during the processing leaks information on Z
and hence, particular attention must be paid on each elementary calculus or
memory manipulation. Several solutions have been proposed to deal with this
issue. Commonly, there are three strategies [15]:

1. The re-computation method [2, 11]: this technique involves the computation
of a precomputed table corresponding to the masked sbox and the generation
of one or several random value(s). In its most elementary version, two random
values M1 and M ′

1 are generated and the table T � representing the function
S′ : Y �→ S(Y ⊕M1) ⊕M ′

1 is computed from S and stored in RAM. Then,
each time the masked variable M ′

0 has to be computed from the masked
input Z ⊕M1, the table T � is accessed.

2. Global Look-up Table [15, 24]: this method also involves the computation
of a precomputed look-up table, denoted T �, associated to the function
(X,Y, Y ′) �→ S(X ⊕ Y ) ⊕ Y ′. To compute the masked variable M ′

0, the
global look-up table method (GLUT for short) performs a single operation:
the table look-up T �[Z ⊕M1,M1,M

′
1]. The main and important difference

with the first method is that the value S(X ⊕ Y ) ⊕ Y ′ has been precom-
puted for every possible 3-tuple of values. Consequently, there is no need to
re-compute before each algorithm processing and it can be stored in ROM1.
In a simplified version (sufficient to thwart only 1O-SCA), the output mask
and the input mask are chosen equal. In this case, the dimension of the ta-
ble is 2n instead of 3n and the table look-up becomes T �[Z ⊕M1,M1]. We
consider this latter version of the GLUT method in the following.

3. The sbox secure calculation [17,5,14,18,26]: the sbox outputs are computed
on-the-fly by using a mathematical (e.g. polynomial) representation of the
sbox. Then, each time the masked value M ′

0 has to be computed, an algo-
rithm performing S and parametrized by the 3-tuple (M0,M1,M

′
1) is ex-

ecuted. The computation of S is split into elementary operations (bitwise
addition, bitwise multiplication, . . . ) performed by accessing one or several
look-up table(s).

Moreover, depending on the number of masks generated to protect the sbox
calculations, we can distinguish two modes of protections:

1. The single mask protection mode: in this mode, every computation S(Z) per-
formed during the execution is protected with a single pair of input/output
masks (M1,M

′
1).

2. The multi-mask protection mode: in this mode, the pair of masks (M1,M
′
1)

is re-generated each time a computation S(Z) must be protected and thus
many times per algorithm execution.

In [15], the authors have shown that the choice between the three methods
depends on the protection mode in which the algorithm is implemented. In fact,

1 Recall that in embedded systems, ROM is a much less costly resource than RAM.
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when the algorithm is protected in the single-mask protection mode, the re-
computation method is more appropriate and induces a smaller timing/memory
overhead. In the multi-mask protection mode, the re-computation method is
often much more costly since the recomputation must be done before every sbox
processing. Moreover, in both contexts it requires 2n bytes of RAM to be free,
which can be impossible in some very constrained environments. Concerning
the sbox secure computation, it is secure against first-order SCA and does not
need particular RAM allocation. However, it is often more time consuming than
the first two methods and can only be used to secure sboxes with a simple
algebraic structure (as e.g. the AES or the SEED sboxes). Regarding the GLUT
method, it seems at a first glance to be the most appropriate method. Its timing
performances are ideal since it requires only one memory transfer. Moreover, it
can be applied in both protection modes described above. From a security point
of view, the GLUT method has however a flaw since it manipulates the masked
data Z ⊕M1 and the mask M1 at the same time. Actually, Z ⊕M1 and M1 are
concatenated to address the look-up table T � and thus, the value Z ⊕M1 || M1

is transferred through the bus. Since the latter variable is statistically dependent
on Z, any leakage on it is potentially exploitable by a first-order DPA involving
the higher-order moments of the concatenated random variable. It must however
be noted that such a leakage on the address does not necessarily occurs during
the bus transfers or the registers updates. Indeed, when for instance the latter
ones leak the Hamming weight between an independent and random initial state
and the address Z ⊕M1||M1, then the leakage is independent on Z and no first-
order DPA is hence applicable. This example shows the importance of the device
architecture when assessing on a countermeasure soundness. In this paper, we
focus on the GLUT method. Our proposal is to benefit from all the seminal
assets of the method and to additionally achieve first-order security for some
realistic architectures (including the Von-Neumann ones).

3.1 Detailed Description of GLUT Method

In hardware, GLUT method can be implemented as shown in Fig. 1. This fig-
ure encompasses the masking scheme already presented in [25]. For the sake of
simplicity, the linear parts, like the expansion (in DES), MixColumns (in AES),
etc. are not represented. So, without loss of generality, we assume that the sbox
S in an (n, n)-function. For instance, using AES, n can be chosen equal to 8
(straightforward tabulation of SubBytes), 4 (with the decomposition of Sub-
Bytes in GF((24)2)), or even 2 (using the GF(((22)2)2) tower field [19]). The
registers R and M contain respectively the masked variable and the mask.

For any (n, n)-function S that must be processed in a secure way, the core
principle is to define from S the lookup table representation of a new (3n, n)-
function S′ which is indexed by both the masked data and the masking material.
Thanks to this new function, a masked representation S(Z) ⊕ M ′

1 of S(Z) is
securely derived from Z ⊕ M1, M1 and the output mask M ′

1 by accessing the
look-up table representing S′. The size of the table can be reduced by defining
the output mask as a deterministic function of the input mask. In such a case, the
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R
n

S

M
z ⊕m1 n m1

update
mask

ROM
S ′

(a)

ROM
(b)

m′
1S(z)⊕m′

1

Fig. 1. First-order hardware masking implementation

ROM lookup-table represents a (2n, n)-function S′ such that S′(Z ⊕M,M) =
S(Z) ⊕ M ′, where M ′ is a deterministic function of M (e.g. M ′ = M ⊕ α for
some constant α).

In the first case, the ROM look-up table has (3n)-bit input words: the two
shares and the new mask for the remasking, and one n-bit output (e.g. option (a)
of Fig. 1). In the second case, the new masks are derived deterministically from
the old ones, and thus the ROM look-up table can have only the two input shares
as inputs (e.g. option (b) of Fig. 1). The ROM look-up table thus represents a
(2n, 2n)-function. This is the scenario we consider in the rest of this article.

3.2 Leakage of the ROM-Based 1O-DPA Protection Implementation

During the processing of the scheme depicted in Fig. 1, we assume that only the
updating of the registers R and M leak information. Indeed, since the leakage
at the register level is perfectly synchronized with the system clock, it has a rel-
atively high density of energy which is easily detectable. On the other hand, the
leakage from the combinational logic is very dependent on the implementation
and spreads over the time. It can be seriously reduced by taking advantage of
the ROM tables [22]. In the following, we denote by LR and LM the leakage
variables corresponding to the updating of the registers R and M respectively.
We have:

LR = A(Z ⊕M1, Z
′ ⊕M ′

1) +NR

LM = A(M1,M
′
1) +NM , (3)

where A is a deterministic function representing the power consumption during
the register updating and where NR and NL are two independent noises. The
power consumption related to the simultaneous updating of the registers R and
M equals LR+LM and is denoted by O. In a first time, we assume that A in (3)
has the following property that will be relaxed in the second part of this paper.
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Property 1. For any pair (X,Y ), we have A(X,Y ) = A(X ⊕ Y ).

Remark 1. Many security analyses in the literature have been conducted in the
so-called Hamming Distance model [12, 3]. In this model, the function A is as-
sumed to be the Hamming distance between X and Y and thus clearly satisfies
Property 1.

When A satisfies Property 1, the variable O satisfies:

O = A(Δ(Z)⊕Δ(M)) +A(Δ(M)) +NR +NM , (4)

where Δ(Z) and Δ(M) respectively denote Z ⊕ Z ′ and M1 ⊕M ′
1.

The distribution of O (and in particular its variance) depends on the sensitive
variable Δ(Z). This dependency has already been exploited in several attacks
(e.g. [28]). In this paper, we study whether it can be broken by replacing the
bitwise data masking Z ⊕M1 by a new one denoted by Z α©M1 and by adding
conditions on M1 and M ′

1.

3.3 Towards a New Masking Function

A simple solution, deeply analyzed in this paper, is to choose a function α© such
that Z α© M1 = Z ⊕ F (M1) for some well chosen function F . For such a new
masking function, α© is not commutative and M1 and Z do no longer need to
have the same dimension n. Only the output size of the function F must be n.
In the following, we denote by p the dimension of M1 and we assume that F is a
(p, n)-function. We will see in Sec. 4.1 that p and n must satisfy some conditions
for the masking to be sound. In this case, the deterministic part in (4) can be
rewritten:

A(Z α©M1, Z
′ α©M ′

1) +A(M1,M
′
1)

.
= A(Z ⊕ Z ′ ⊕ F (M1)⊕ F (M ′

1)) +A(M1 ⊕M ′
1)

= A(Δ(Z)⊕ F (M1)⊕ F (M ′
1)) +A(Δ(M1)) . (5)

In view of (5), we deduce the two following sufficient conditions for O to be
independent of Δ(Z):

1. [Constant Masks Difference]: M1 ⊕M ′
1 is constant and

2. [Difference Uniformity]: F (M1)⊕ F (M ′
1) is uniform.

To the two security conditions above, a third one must also be introduced to
enable the bitwise introduction of the key on the internal state X :

3. [Operations Commutativity]: For every (X,M1,K), we have:

X α©M1 ⊕K = (X ⊕K)α©M1 .
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In the following section, we propose a way to specify M1, M
′
1 and F to satisfy the

three sufficient conditions. We structure our study of this new technique in two
steps: the first one (cf. Sec. 4) is performed by assuming that A satisfies Prop-
erty 1 (i.e. A(X,Y ) = A(X⊕Y )) and the second one (cf. Sec. 5) is conducted in
an imperfect model where A satisfies A(X,Y ) = P (X,Y ), with P (X,Y ) being
a polynomial function in R[X1, · · · , Xn, Y1, · · · , Yn] where Xi and Yi denote the
ith Boolean coordinate of X and Y respectively.

4 Study in the Idealized Model

4.1 Our Proposal

Under Property 1 and as argued in the previous section, we can render the
variable O independent of Δ(Z). It indeed amounts to fix the condition M ′

1 =
M1 ⊕ α for some nonzero constant term α and to design a function F s.t. the
function Y �→ F (Y )⊕F (Y ⊕α) is uniform for this α. The latter function is usually
called derivative of F with respect to α. The construction of functions F having
such uniform derivatives has been highly investigated in the literature [4, Chp. 4].

We give hereafter two examples of construction of such functions F .

First Construction Proposal: we choose p = n + 1 and we split F
n+1
2 into the

direct sum E ⊕ (E ⊕ α), where E is a n-dimensional vector space and α ∈ F
p
2.

One bijective function G from E into F
n
2 is arbitrarily chosen and F is defined

such that for every Y ∈ F
n+1
2 , we have F (Y ) = G(Y ) if Y ∈ E and F (Y ) = 0

otherwise.

Second Construction Proposal: we choose p = n + n′ with n′ < n and we
select one injective function G from F

n′
2 into F

n
2 −{0}. Then, for every (X,Y ) ∈

F2n′ × F2n = F2p we define F (X,Y ) = G(X) · Y with · the field product over
F2n . The outputs of the (p, n)-function F are uniformly distributed over Fn

2 (since
the functions Y �→ G(X) · Y are linear and non-zero for every X). Moreover,
for every non-zero element α′ in F2n′ , the function DαF defined with respect
to α = (α′, 0) ∈ F2n′ × F2n is also balanced. Indeed, we have DαF = (G(X) ⊕
G(X +α′)) · Y and, since the injectivity of G implies that G(X)⊕G(X ⊕ α′) is
never zero, the functions Y �→ (G(X)⊕G(X⊕α′))·Y are linear and non-constant
for every X .

The two constructions of F satisfy the difference uniformity condition defined
in Sec. 3.3. The mask dimension p for the first construction is only slightly greater
than the dimension n of the data to be masked. This makes it more efficient than
the second construction. However, the second construction ensures that not only
DαF but also F is balanced. This is not mandatory to ensure the security of the
countermeasure in our context where the targeted leakage is assumed to satisfy
Property 1, but it can be of interest if one wishes that the data Z and Z ′ be
masked with a uniform mask F (M1) and F (M ′

1) respectively.
Figure 2 shows a hardware implementation of our countermeasure. The reg-

isters R and M contain respectively the masked variable Z ⊕ F (M1) and the
mask M1. The mask update operation is constrained to be a ⊕ operation with
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R
n

α©

S

α©

α

m′
1

ROM α

M
z ⊕ F (m1) p m1

F (m′
1)

S(z)⊕
m′

1

Fig. 2. Leak-free masking hardware implementation

a constant value α in order to satisfy the first condition. Consequently, every
computation in the algorithm is protected with the single pair of masks (M1,
M ′

1 = M1⊕α). Nonetheless, the value of M1 changes at every computation; thus,
the injected entropy in one computation is p bits. The table T � representing the
function S′ : (X,Y ) �→ S(X α©Y )α©(Y ⊕α) = S(X⊕F (Y ))⊕F (Y ⊕α) has been
pre-computed and stored in ROM. The new masked variable S(Z) ⊕ F (M ′

1) is
got by accessing the ROM table T � as described in Fig. 2. We assume that
this address is not leaking sensitive information but the leakage comes from the
updating of the registers R and M following Equations (4) and (5).

4.2 Security Evaluation

In our security analysis, we assume that the attacker can query the targeted
cryptographic primitive with an arbitrary number of plaintexts and obtain the
corresponding physical observations, but cannot choose its queries in function
of the previously obtained observations (such a model is called non-adaptive
known plaintext model in [23]). We also assume that the attacker has access
to the power consumption and electromagnetic emanations of the device and
applies a first-order DPA attack but is not able to perform HO-DPA.

Regarding the leakage model, we assume that the device leaks a function
A of the distance between the processed data and its initial state handled in
the register (i.e. A satisfies Property 1). This situation is more general than
the Hamming distance model, and notably encompasses the imperfect model
studied in [27, Sec. 4]. The mutual information I[A(Δ(Z)⊕ F (M1)⊕ F (M ′

1)) +
A(Δ(M));Δ(Z)] = 0 since Δ(M) is constant and since F (M1)⊕ F (M ′

1) is uni-
formly distributed over F

n
2 and independent of Δ(Z). Hence, our construction

is leak-free and immune against first-order attacks. Furthermore, as A(Δ(M)) is
constant, the mutual information

I[A(Δ(Z)⊕ F (M1)⊕ F (M ′
1)), A(Δ(M));Δ(Z)]

is also null, which means that the masking countermeasure is secure against
an adversary who observes the leakage in the transition from one state during
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the registers update and can repeat this as many times as he wants. The ad-
versary recovers the observations of the variable (LR + LM ) and can make all
the treatments he wants (e.g. computation of mutual information univariate or
multivariate, raise to any power the variable LR + LM , . . . ).

4.3 Application to the Software Implementation Case

Our proposal can be applied also in some particular software implementations.
In some access memory schemes, the address and the value read are transferred
through the same bus (e.g. Von-Neumann architecture). Thus, when accessing
a table, the value overwrites the address and a leakage as in (4) occurs. Such
access is obtained with a code such as:

mov dptr, #tab

mov acc, y

movc acc, @acc+dptr

In the code above, dptr refers to a data memory pointer and #tab to the address
of a table stored in data. The variable y is assumed to contain the index of the
value that must be read in table tab. After the third step, the accumulator
register acc contains the value tab[y]. During this processing, the accumulator
goes from state y to state tab[y]. Let us now assume that tab refers to the
table T ′ defined in Sec. 4.1 and that y refers to the variable (Z α©M1,M1). If
we associate the most significant bits of the accumulator acc to a (sub-)register
R and its least significant bits to a (sub-)register M then we are in the same
context as the analysis conducted in Secs. 4.1 and 4.2. A first-order DPA attack
can be conducted on this register to reveal information about the sensitive data.
Taking advantage from our proposal, the memory access is made completely
secure under the assumption of Property 1.

5 Study in the Imperfect Model

It must first be remarked that the countermeasure proposed in the previous sec-
tions stays valid if A(X,Y ) can be rewritten under the form P (X1⊕Y1, · · · , Xn⊕
Yn) with P being any polynomial defined over Fn

2 with real coefficients.
In this section we assume that the hardware has been protected under the

assumption that A satisfies Property 1, while the assumption is wrong. Namely,
A was assumed to be s.t. A(X,Y ) = A(X⊕Y ) whereas in reality, it is a polyno-
mial P (X1, · · · , Xn, Y1, . . . , Yn) that does not satisfy this property. In the follow-
ing, we study experimentally the amount of information that the pair (LR, LM )
defined in (3) leaks on (Z,Z ′) in this context where P is of (multivariate)
degree d.

We recall that a polynomial of degree d in R[X1, · · · , Xn, Y1, · · · , Yn] takes
the following form:

P (X1, · · · , Xn, Y1, · · · , Yn) =
∑

(u,v)∈F
n
2×F

n
2 ,

HW(u)+HW(v)≤d

a(u,v)X
u1
1 · · ·Xun

n Y v1
1 · · ·Y vn

n ,
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where the a(u,v) are real coefficients. This leakage formulation is similar to that
of the high-order stochastic model [21]. For example, it is shown in [16, Eqn. (3)]
that P (X1, · · · , Xn, Y1, · · · , Yn) is equal to HW(X ⊕ Y ) when the coefficients
a(u,v) satisfy:

aHD
(u,v) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

+1 if HW(u) = 1 and v = 0,

+1 if u = 0 and HW(v) = 1,

−2 if HW(u) = 1 and v = u,

0 otherwise.

(6)

In the following experiment, we compute the mutual information between
(LR, LM ) and (Z,Z ′) when d ≤ 2 or 3 and when the coefficients a(u,v) devi-
ate randomly from those of (6)2. More precisely, the coefficients a(u,v) are drawn
at random from this law:

a(u,v) ∼ aHD
(u,v) + U([−deviation

2 ,+deviation
2

]
) ,

a(u,v) = 0 if HW(u, v) > d .
(7)

The randomness lays in the uniform law U([−deviation
2 ,+deviation

2

]
), that we

parametrize by deviation ∈ {0.1, 0.2, 0.5, 1.0}. The low deviation values (such as
0.1 or 0.2) are realistic in hardware, as attested by [13]; in this paper, the leak-
age captured by a tiny coil has been shown to differ from the Hamming distance
model by 17%. We thus consider that a a deviation of ≈ [10, 20]% is representa-
tive of the hardware imperfections or on the model bias by integrated probes. A
deviation of 1 has the same order of magnitude as the actual coefficients in (6); it
indicates that the Hamming distance model is an incorrect hypothesis. Nonethe-
less, this case is very unlikely: indeed, the designer of the countermeasure can be
expected to know (or to have checked) that the circuit leaks approximately in
Hamming distance. Eventually, the deviation 0.5 represents an intermediate case:
the leakage model is in-between an approximate Hamming distance model and
a full random leakage model. The computed mutual information is I[O;Z,Z ′],
where O = P (Z⊕F (M), Z ′⊕F (M⊕α))+NR+P (M,M⊕α)+NM . Therefore O
is a RV, sum of a function of Z,Z ′,M and ofNR+NM ∼ N (μR+μM , σ2

R+σ2
M ) =

N (μ, σ2), a normal law. The simulation parameters and the results are shown
in Appendix A.

It appears that the degree d has minor influence on the leakage. The major
factor is the deviation from the Hamming distance model. As expected, for low
deviations (much smaller than 1, e.g. 10% or 20%), the one-mask countermeasure
(abridged CM) of Fig. 2 definitely outperforms the CM of Fig. 1. However, in
the presence of deviations close to the unity, the state-of-the-art CM remains
the best. In this case, the proposed countermeasures still leaks less that an

2 This approach clearly differs from that put forward in [6, §5.2] for comparing uni-
variate side channel attacks (treated in the special d = 1 case, i.e. the linear case).
In the later paper, the coefficients are drawn at random in the [−1,+1] interval, ir-
respective of the sensitive data (i.e. the model is randomized, of expectation a “null
model”), whereas in our paper, the coefficients are considered as deviations from a
known non-trivial model.
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unprotected design. Nonetheless, we insist that this situation is unlikely, as the
deviations from the assumed Hamming distance model is of the order of one bit
flip. This means that the designer has a very poor knowledge of the technology
as he applies the countermeasure without checking the assumption (Property 1).

Eventually, it is noteworthy that state-of-the-art CM is even slightly improved
by the imperfection of the leakage function A. This reflects the fact that the
random variable HW(Z ⊕ M1) + HW(M1) do carry a lot of information on Z,
and the noise help reduce the dependency (and thus favors the defender).

Also, both CM are equivalent for an intermediate deviation of 0.5. As this
value is already quite large, we can conclude that our countermeasure is relevant
even if the assumptions on the hardware leakage are extremely approximate.

6 Conclusion and Perspectives

We have presented a new masking scheme for hardware sbox implementations.
We have argued that our proposal is a leak-free countermeasure under some real-
istic assumptions about the device architecture. The solution has been evaluated
within an information-theoretic study, proving its security against 1O-SCA under
the Hamming distance assumption. When the leakage function deviates slightly
from this assumption (by a few tens of percent), our solution still achieves ex-
cellent results. However, if the model is very noisy (the model deviates from the
Hamming distance by ≈ 50%), then our countermeasure remains all the same
as good as state-of-the-art countermeasures.

It has been underlined (in the second construction) that some functions F have
a balanced derivative in more than one direction α 
= 0. As a perspective, we
mention that this feature can be taken advantage of to increase the security of the
countermeasure. Indeed, in the perfect model, the leakage remains null. However,
using many αs certainly help counter model imperfections, thus reducing the
leakage in this case.

Also, we underline that the proposed countermeasure can be adapted to
the hypothetical case where the perfect model is not the Hamming distance
A(X,Y ) = HW(X ⊕ Y ), but is asymmetrical in rising and falling edges (e.g.
A(X,Y ) = HW(X · ¬Y )). Such leakages can be found in near-field electromag-
netic measurements (refer to: [13] or [20, Fig. 4, left]).
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A Simulation Results in the Imperfect Model

We assume that F has been designed thanks to the first construction presented
in Sec. 4.1. Hence it is a function from F

n+1
2 into F

n
2 . The mask M and the

constant α are of dimension n+ 1, whereas Z is n-bit long.
The mutual information I[O +N ;Z,Z ′] is represented in Tab. 1 for:

– a Gaussian noise N of standard deviation σ varying in ]0, 5],
– n = 3 bit (to speed up the computations),
– E = {0} × F

n
2 ⊂ F

n+1
2 and the constant α is equal to 1000 in binary, and

– F (x3x2x1x0) = 0 if x3 = 1 or x2x1x0 otherwise.

For each experiment just described, we also compute the mutual information
for the straightforward CM of the state-of-the-art (implementation of [25] rep-
resented in Fig. 1). We also give the mutual information of this CM if the model
is exactly the Hamming distance, and indicate the corresponding leakage with-
out any countermeasure. We recall that, still with a perfect model, the mutual
information for our countermeasure with (Z,Z ′) is null, whatever sigma.

For every d ∈ {2, 3} and deviation ∈ {0.1, 0.2, 0.5, 1.0}, the random number
generator is seeded the same. The noisy Hamming distance model is plotted
for ten sets of random coefficients a(u,v) defined in (7), and the average is
superimposed using a thick line.

http://www.dice.ucl.ac.be/~fstandae/PUBLIS/88.pdf
http://eprint.iacr.org/2003/236
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Table 1. Leakage comparison of one state-of-the-art CM and our proposed CM in the
imperfect model
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