

Lecture Notes in Computer Science 7178
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Orr Dunkelman (Ed.)

Topics in Cryptology –
CT-RSA 2012
The Cryptographers’ Track at the RSA Conference 2012
San Francisco, CA, USA, February 27 – March 2, 2012
Proceedings

13

Volume Editor

Orr Dunkelman
University of Haifa
Computer Science Department
31905 Haifa, Israel
E-mail: orrd@cs.haifa.ac.il

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-27953-9 e-ISBN 978-3-642-27954-6
DOI 10.1007/978-3-642-27954-6
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012930020

CR Subject Classification (1998): E.3, D.4.6, K.6.5, C.2, K.4.4, J.1

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The RSA conference has been a major international event for information
security experts since its introduction in 1991, including hundreds of vendors
and thousands of attendees with 20 tracks of talks. Among these tracks of the
RSA conference, the Cryptographers’ Track stands out, offering a glimpse of
academic research in the field of cryptography. Founded in 2001, the Cryptog-
raphers’ Track has established its presence in the cryptographic community as
a place where researchers meet with industry.

This year the RSA conference was held in San Francisco, California, from
February 27 to March 2, 2012. The CT-RSA conference servers were hosted by
the university of Haifa, Israel. This year, 113 submissions were received, a record
number of submissions. Out of the 113 submissions, the Committee selected 27
papers for presentation (one of the accepted papers was withdrawn). It is my
pleasure to thank all the authors of the submissions for the high-quality research.
The review process was thorough (each submission received the attention of at
least three reviewers and at least five for submissions involving a Committee
member). The record number of submissions, as well as their high quality, made
the selection process a challenging task, and I wish to thank all Committee
members and the referees for their hard and dedicated work.

Two invited talks were given. The first was given by Ernie Brickell about
“The Impact of Cryptography on Platform Security” and the second was given
by Dmitry Khovratovich on “Attacks on Advanced Encryption Standard: Results
and Perspectives.”

The entire Committee, and especially myself, are extremely grateful to Thomas
Baignères and Matthieu Finiasz for the iChair software, which facilitated a
smooth and easy submission and review process. I would also like to thank
Amy Szymanski who worked very hard to properly organize the conference
this year.

December 2011 Orr Dunkelman

CT-RSA 2012

The 12th Cryptographers’ Track — RSA 2012

San Francisco, California, USA, February 27–March 2, 2012

Program Chair

Orr Dunkelman University of Haifa, Israel

Steering Committee

Marc Fischlin Darmstadt University of Technology, Germany
Ari Juels RSA Laboratories, USA
Aggelos Kiayias University of Connecticut, USA
Josef Pieprzyk Macquarie University, Australia
Ron Rivest MIT, USA
Moti Yung Google, USA

Program Committee

Adi Akavia Weizmann Institute of Science, Israel
Giuseppe Ateniese Sapienza-University of Rome, Italy and

Johns Hopkins University, USA
Jean-Philippe Aumasson Nagravision, Switzerland
Roberto Avanzi Ruhr-Universität Bochum, and

Qualcomm CDMA Technologies GmbH,
Germany

Josh Benaloh Microsoft Research, USA
Alexandra Boldyreva Georgia Institute of Technology, USA
Carlos Cid Royal Holloway, University of London, UK
Ed Dawson Queensland University of Technology, Australia
Alexander W. Dent Royal Holloway, University of London, UK
Orr Dunkelman (Chair) University of Haifa, Israel
Marc Fischlin Darmstadt University of Technology, Germany
Pierre-Alain Fouque École Normale Supérieure and INRIA, France
Kris Gaj George Mason University, USA
Marc Joye Technicolor, France
Jonathan Katz University of Maryland, USA
Nathan Keller Weizmann Institute of Science, Israel
John Kelsey National Institute of Standards and Technology,

USA
Aggelos Kiayias University of Connecticut, USA
Çetin Kaya Koç Istanbul Şehir University, Turkey and

University of California, Santa Barbara, USA

VIII CT-RSA 2012

Markulf Kohlweiss Microsoft Research, UK
Tanja Lange Technische Universiteit Eindhoven,

The Netherlands
Arjen Lenstra École Polytechnique Fédérale de Lausanne,

Switzerland
Julio López University of Campinas, Brazil
Tatsuaki Okamoto NTT, Japan
Axel Poschmann Nanyang Technological University, Singapore
Bart Preneel Katholieke Universiteit Leuven, Belgium
Kazue Sako NEC, Japan
Martin Schläffer Graz University of Technology, Austria
Alice Silverberg University of California, Irvine, USA
Nigel Smart Bristol University, UK
Nicolas Thériault Universidad del Bio-Bio, Chile
Bo-Yin Yang Academia Sinica, Taiwan

Referees

Rodrigo Abarzúa
Shweta Agrawal
Elena Andreeva
Diego F. Aranha
Paul Baecher
Gregory Bard
Aurélie Bauer
David Bernhard
Daniel J. Bernstein
Joppe Bos
Christina Brzuska
Dario Catalano
Chien-Ning Chen
Lily Chen
Sherman Chow
Özgür Dagdelen
Emiliano De Cristofaro
Elke De Mulder
Jintai Ding
Laila El Aimani
Junfeng Fan
Pooya Farshim
Sebastian Faust
Cedric Fournet
Georg Fuchsbauer
Jun Furukawa
Philippe Gaborit

Steven Galbraith
Nicolas Gama
Paolo Gasti
Martin Goldack
Conrado Gouvêa
Eric Guo
Carmit Hazay
Nadia Heninger
Jens Hermans
Clemens Heuberger
Michael Hutter
Yuval Ishai
Toshiyuki Isshiki
Dimitar Jetchev
Marcio Juliato
Marcelo Kaihara
Nikolaos Karvelas
Markus Kasper
Mario Kirschbaum
Thorsten Kleinjung
Virendra Kumar
Sebastian Kutzner
Jorn Lapon
Marc Le Guin
Kerstin Lemke-Rust
Tancréde Lepoint
Richard Lindner

CT-RSA 2012 IX

Marco Macchetti
Alexander May
Florian Mendel
Daniele Micciancio
Oliver Mischke
Amir Moradi
Eduardo Morais
Andrew Moss
Debdeep Mukhopadhyay
Tomislav Nad
Samuel Neves
Juan Gonzalez Nieto
Maria Cristina Onete
Elisabeth Oswald
Roger Oyono
Pascal Paillier
Kenny Paterson
Souradyuti Paul
Ray Perlner
Ludovic Perret
Viet Pham
Thomas Plos
David Pointcheval
Elizabeth Quaglia
Christian Rechberger
Alfredo Rial

Thomas Ristenpart
Marcin Rogawski
Werner Schindler
Berry Schoenmakers
Dominique Schröder
Pouyan Sepehrdad
Igor Shparlinski
Rosemberg Silva
Joseph H. Silverman
Martijn Stam
Jaechul Sung
Qiang Tang
Isamu Teranishi
Mehdi Tibouchi
Michael Tunstall
Leif Uhsadel
Jeroen van de Graaf
Rajesh Velegalati
Frederik Vercauteren
Bogdan Warinschi
William Whyte
Kenneth Wong
M.-E. Wu
Keita Xagawa
Panasayya Yalla
Ching-Hua Yu

Table of Contents

Side Channel Attacks I

Black-Box Side-Channel Attacks Highlight the Importance of
Countermeasures: An Analysis of the Xilinx Virtex-4 and Virtex-5
Bitstream Encryption Mechanism . 1

Amir Moradi, Markus Kasper, and Christof Paar

Power Analysis of Atmel CryptoMemory – Recovering Keys from
Secure EEPROMs . 19

Josep Balasch, Benedikt Gierlichs, Roel Verdult, Lejla Batina, and
Ingrid Verbauwhede

Digital Signatures I

Short Transitive Signatures for Directed Trees . 35
Philippe Camacho and Alejandro Hevia

Short Attribute-Based Signatures for Threshold Predicates 51
Javier Herranz, Fabien Laguillaumie, Benôıt Libert, and Carla Ràfols

Public-Key Encryption I

Reducing the Key Size of Rainbow Using Non-commutative Rings 68
Takanori Yasuda, Kouichi Sakurai, and Tsuyoshi Takagi

A Duality in Space Usage between Left-to-Right and Right-to-Left
Exponentiation . 84

Colin D. Walter

Optimal Eta Pairing on Supersingular Genus-2 Binary Hyperelliptic
Curves . 98

Diego F. Aranha, Jean-Luc Beuchat, Jérémie Detrey, and
Nicolas Estibals

Cryptographic Protocols I

On the Joint Security of Encryption and Signature in EMV 116
Jean Paul Degabriele, Anja Lehmann, Kenneth G. Paterson,
Nigel P. Smart, and Mario Strefler

New Constructions of Efficient Simulation-Sound Commitments Using
Encryption and Their Applications . 136

Eiichiro Fujisaki

XII Table of Contents

Secure Implementation Methods

A First-Order Leak-Free Masking Countermeasure 156
Houssem Maghrebi, Emmanuel Prouff, Sylvain Guilley, and
Jean-Luc Danger

Practical Realisation and Elimination of an ECC-Related Software Bug
Attack . 171

Billy B. Brumley, Manuel Barbosa, Dan Page, and
Frederik Vercauteren

Symmetric Key Primitives

A New Pseudorandom Generator from Collision-Resistant Hash
Functions . 187

Alexandra Boldyreva and Virendra Kumar

PMAC with Parity: Minimizing the Query-Length Influence 203
Kan Yasuda

Boomerang Attacks on Hash Function Using Auxiliary Differentials 215
Gaëtan Leurent and Arnab Roy

Side Channel Attacks II

Localized Electromagnetic Analysis of Cryptographic
Implementations . 231

Johann Heyszl, Stefan Mangard, Benedikt Heinz,
Frederic Stumpf, and Georg Sigl

Towards Different Flavors of Combined Side Channel Attacks 245
Youssef Souissi, Shivam Bhasin, Sylvain Guilley,
Maxime Nassar, and Jean-Luc Danger

Digital Signatures II

Two-Dimensional Representation of Cover Free Families and Its
Applications: Short Signatures and More . 260

Shota Yamada, Goichiro Hanaoka, and Noboru Kunihiro

Secure Computation, I/O-Efficient Algorithms and Distributed
Signatures . 278

Ivan Damg̊ard, Jonas Kölker, and Tomas Toft

Table of Contents XIII

Cryptographic Protocols II

Delegatable Homomorphic Encryption with Applications to Secure
Outsourcing of Computation . 296

Manuel Barbosa and Pooya Farshim

Efficient RSA Key Generation and Threshold Paillier in the Two-Party
Setting . 313

Carmit Hazay, Gert Læssøe Mikkelsen, Tal Rabin, and Tomas Toft

Public-Key Encryption II

Plaintext-Checkable Encryption . 332
Sébastien Canard, Georg Fuchsbauer, Aline Gouget, and
Fabien Laguillaumie

Generic Construction of Chosen Ciphertext Secure Proxy
Re-Encryption . 349

Goichiro Hanaoka, Yutaka Kawai, Noboru Kunihiro,
Takahiro Matsuda, Jian Weng, Rui Zhang, and
Yunlei Zhao

Side Channel Attacks III

A New Difference Method for Side-Channel Analysis with
High-Dimensional Leakage Models . 365

Annelie Heuser, Michael Kasper, Werner Schindler, and
Marc Stöttinger

Getting More from PCA: First Results of Using Principal Component
Analysis for Extensive Power Analysis . 383

Lejla Batina, Jip Hogenboom, and Jasper G.J. van Woudenberg

Secure Multiparty Computation

An Efficient Protocol for Oblivious DFA Evaluation and Applications . . . 398
Payman Mohassel, Salman Niksefat, Saeed Sadeghian, and
Babak Sadeghiyan

Secure Multi-Party Computation of Boolean Circuits with Applications
to Privacy in On-Line Marketplaces . 416

Seung Geol Choi, Kyung-Wook Hwang, Jonathan Katz,
Tal Malkin, and Dan Rubenstein

Author Index . 433

Black-Box Side-Channel Attacks Highlight
the Importance of Countermeasures

An Analysis of the Xilinx Virtex-4 and Virtex-5
Bitstream Encryption Mechanism

Amir Moradi, Markus Kasper, and Christof Paar

Horst Görtz Institute for IT Security, Ruhr University Bochum, Germany
{moradi,mkasper,cpaar}@crypto.rub.de

Abstract. This paper presents a side-channel analysis of the bitstream
encryption mechanism provided by Xilinx Virtex FPGAs. This work cov-
ers our results analyzing the Virtex-4 and Virtex-5 family showing that
the encryption mechanism can be completely broken with moderate ef-
fort. The presented results provide an overview of a practical real-world
analysis and should help practitioners to judge the necessity to imple-
ment side-channel countermeasures. We demonstrate sophisticated at-
tacks on off-the-shelf FPGAs that go far beyond schoolbook attacks on
8-bit AES S-boxes. We were able to perform the key extraction by using
only the measurements of a single power-up. Access to the key enables
cloning and manipulating a design, which has been encrypted to protect
the intellectual property and to prevent fraud. As a consequence, the
target product faces serious threats like IP theft and more advanced at-
tacks such as reverse engineering or the introduction of hardware Trojans.
To the best of our knowledge, this is the first successful attack against
the bitstream encryption of Xilinx Virtex-4 and Virtex-5 reported in
open literature.

1 Introduction

The market for digital electronics is highly competitive. Thus, a new product
has to provide a unique selling point to be successful. It can be technologically
superior to other products, or convince with a better design, better quality, or
appealing price. But having invested a lot of efforts and money into the devel-
opment of a new product, which options does a company have to prevent com-
petitors from stealing or even cloning the product? On the legal side, patents
offer a handle to stem against many kinds of product piracy threats. However,
patent registration and monitoring is an expensive task that comes with many
pitfalls. Furthermore, patents expose know-how to competitors, and patent dis-
putes often imply a high financial risk. Besides that, not all technology qualifies
for patent registration. In this case a manufacturer only receives legal protection
within the scope of copyrights. At the end of the day the throughout protection
of intellectual property (IP) remains a task that needs to be considered at a
technological level.

O. Dunkelman (Ed.): CT-RSA 2012, LNCS 7178, pp. 1–18, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 A. Moradi, M. Kasper, and C. Paar

In our work we analyze the provided IP protection mechanism of Xilinx’s
Virtex-4 and Virtex-5 Field Programmable Gate Array (FPGA) families called
bitstream encryption. We provide a detailed description of this real-world side-
channel analysis, illustrating the steps required to perform a black-box analysis
of a mostly undocumented target, i.e., the embedded decryption module. Our
results provide many practical insights that are of avail for practitioners in indus-
try and academia. They will learn to judge the feasibility of possible side-channel
analyses and to evaluate the black-box side-channel security of electronic devices
in a realistic attack scenario.

1.1 Content of This Paper

The paper is organized as follows. Next, we give a short overview of FPGAs
and their security features. Here we mainly focus on Xilinx’s bitstream encryp-
tion solution employed in the analyzed Virtex FPGAs and the consequences of
a successful bitstream extraction. In Section 4 we provide an introduction to
the employed attack method and detail the practical issues we encountered to
mount our attack. Then, in Section 5 we have a short glance on the computing
architecture followed by our experimental results and the final conclusion.

2 Introduction to FPGAs

Designers of digital embedded systems have three different technology options
to choose from. These are application specific integrated circuits (ASICs), mi-
crocontrollers and FPGAs. ASICs are specially-tailored pieces of silicon that
realize exactly the desired functionality. They provide the highest performance
and are very cost efficient when produced in large quantities. On the other hand,
ASICs implement a static functionality that can not be modified or updated once
produced. Microcontrollers are a class of silicon devices that implement a fixed
instruction set allowing the designer to write pure software programs. This offers
a good flexibility and allows for updates of devices in the field. On the other hand,
a microcontroller’s performance is limited by its nature of sequential instruction
processing. The third option available to designers, the FPGAs, close the gap be-
tween powerful but inflexible ASICs and highly flexible but performance-limited
microcontroller-based solutions. An FPGA is an integrated circuit that consists
of many configurable logic blocks (CLBs), which can be configured to represent
basic digital design elements as, e.g., logic gates and registers. In addition, the
connections inside an FPGA are configurable such that inputs and outputs of
several building blocks can be connected to each other.

Similar to an ASIC, a designer of a digital system provides a hardware de-
scription language (HDL) representation of the digital design that the FPGA
should implement. Modern FPGAs come with additional built-in functionality,
such as RAMs, adders and multipliers or even complete microcontroller cores
that can be included into the design. Instead of mapping the design to tran-
sistors in silicon to manufacture ASICs, the development tools for FPGAs will
map the HDL representation to CLBs and routed connections. Developing for an

Black-Box Side Channel Attacks 3

FPGA is in fact very similar to the development of a microcontroller software.
The difference is that the software will be executed by the microcontroller in a
sequential fashion while the configuration of an FPGA allows for highly parallel
designs. The software equivalent for FPGAs is called bitstream or configuration.
There are multiple ways to store the configuration for an FPGA. Since their
first generation, FPGAs use SRAM (Static Random Access Memory) to store
the configuration. This requires that the FPGA has to be reconfigured after each
power loss. In this setup, the configuration data is stored in an external non-
volatile ROM (Read Only Memory) and is loaded on each power-up. Although
today there are also devices that provide an internal Flash, EPROM, EEPROM
or even one-time programmable memory (fuses), the market is still dominated
by FPGAs using an external configuration ROM.

Being in general re-programmable, FPGAs offer the same flexibility as mi-
crocontrollers. On the other hand, they can achieve a much higher performance
enabling many new applications that otherwise would require the power of an
ASIC. FPGAs allow a fast time to market and many design iterations within
a few hours. Therefore, FPGAs are often also used to test the digital function-
ality of ASIC designs in form of FPGA prototypes. Overall, FPGAs are more
expensive than ASICs in medium to high volumes.

3 FPGA Security

Coming back to the initial question of IP protection we now introduce the general
vulnerabilities arising from the existence of machine readable configuration files
of FPGA designs.

3.1 Bitstream Vulnerabilities

During power-up, an SRAM-based FPGA reads its configuration from an ex-
ternal non-volatile memory. The configuration includes the functional design as
well as the I/O configuration for the pins and the exact placement and routing
of all used components. The whole design of an FPGA application is encoded
within the configuration file, the role of which can be considered similar to the
role of software for microcontrollers. As introduced before, this nature provides
a means to update the configuration file of an FPGA to adapt its behavior to
new system requirements or to fix early design flaws.

On the other hand, it also gives rise to the fact that the bitstream needs to be
considered as the key element of an FPGA design and thus requires protection.
In this section we discuss the impact of attacks on an unprotected bitstream and
provide a glance at the broad scope of possible consequences.

Consider a company that just released a new product. An adversary will have
easy and anonymous access to hardware, once the product is released. Thus, it
seems reasonable to assume that a determined adversary will be able to find
a way to access the plain configuration file, unless it has been protected by
means of IP protection mechanisms. For now we ignore any possible protection
and restrict our discussion to unprotected bitstreams. The bitstream extraction

4 A. Moradi, M. Kasper, and C. Paar

could be performed by eavesdropping the configuration process, unsoldering the
configuration ROM or downloading a firmware update that includes a new FPGA
bitstream. An adversary who stole a bitstream file can copy it and thus steal
IP (Intellectual Property). This opens doors for product cloning and product
piracy. The pirated products could be brought to the black-markets to earn
money, without the need for the adversary to invest in product development.
This causes damage in several ways. The IP-owning company would suffer from
the lost sales directly due to the loss of income. But furthermore, the pirated
products may be of weak quality and thus pose the additional threat to cause
image loss. Even more, the cloned products might also come with additional
functionality (e.g., offering a remote control) or a fancy optical design, such
that there could even be seriously competing products originating from pirated
hardware. In this case it might be hard to prove or even find that IP has been
stolen and cloned.

Cloning FPGAs has even more serious implications in security sensitive sce-
narios, e.g., military technology like nuclear warheads or surveillance satellites.
Adversaries that are able to extract the FPGA configuration would get access
to highly sensitive technology. The possibility of bitstream reversal and manip-
ulation that are discussed next, makes these scenarios even worse.

For many years people challenged the bitstream’s security with respect to bit-
stream reversal. The motivations to do this are manifold. Some want to develop
their customized toolchain for FPGAs and thus need to be able to compile an
HDL design to a valid configuration file. Others are security researchers that
search to extract secret algorithms or keys from the bitstream, and other parties
might be interested in stealing a competitors technology. A good judgment of
the difficulty to reverse engineer a bitstream is also essential for security evalua-
tors and system designers that aim at increasing product security by selecting a
suitable combination of secure devices and anti-tamper technologies to minimize
the risk of vulnerabilities. Bitstream reversal can be used for proving infringe-
ment as well. These examples illustrate that both criminals and designers have
a decent motivation to reverse engineer bitstreams.

The most studied bitstream format is that of the FPGA world market leader
Xilinx, Inc. The Ph.D. thesis of Saar Drimer provides a good overview on FPGA
security [4]. For lack of space, we only sum up some small parts of his discussion
on bitstream reversal, and refer the interested reader to his work for all details.
The general description of the structure of the bitstream can be found in Xilinx
publicly available documents [18,20,21,22]. Ziener et al. have shown [23] that the
configuration of look-up tables (LUT) and RAM contents can be extracted from
bitstreams with moderate efforts. According to Drimer, methods translating a
bitstream to a netlist are not technically mature, yet. In open literature there are
two works documenting notably successful reversals of bitstreams. The first is
the free software project “Ulogic” by Note and Rannaud described in a report by
the developers [12]. This work relates Xilinx Design Language (XDL) plaintext
representations of placelists to bitstream bits, with a result that, as stated by the
authors, is still a step away from a true netlist. The related “FPGA analysis tool”

Black-Box Side Channel Attacks 5

by Kepa et al. [7] adds a graphical representation to the decoded bitstreams
and provides another step towards true reverse engineering. As the encoding of
bitstreams is undocumented but not confidential by means of cryptography, it is
a strong belief in industry and academia that bitstream reversal of FPGAs may
be a difficult and time consuming, but nevertheless a technically-feasible task.

The possibility to reverse engineer a bitstream lets arise even further threats.
Besides cloning and stealing IP, the reverse engineering of a bitstream also al-
lows modifying the designs. This way Trojan Hardware could be added to a
security-sensitive system. This malicious circuitry may, e.g., implement a hidden
backdoor or some kind of kill-switch functionality to an FPGA that implements
a sensitive application (e.g., nuclear power plant, military- or satellite technology
or a banking application). Besides this, the option to modify a design also allows
hobbyists to customize commercially available hardware to add functionality or
improve performance. Beyond the discussion of the bitstream security, the in-
terested reader is referred to [4] for a throughout evaluation of many aspects of
FPGA security and to [2] where invasive attacks on FPGAs are discussed.

3.2 IP Protection for FPGAs1

As of 2001 [16], Xilinx implemented an encryption mechanism in many of its
recent FPGA series released within the last decade to counter these threats.
This mechanism is called bitstream encryption and works in the following way:
instead of storing a plain bitstream file within the configuration ROM, the de-
signer encrypts the bitstream configuration beforehand. The encryption – using
AES-256 in CBC (Cipher Block Chaining) mode for the Virtex-4 and Virtex-5
FPGAs – is performed in software by the Xilinx ISE development tools. The
used key is chosen by the designing engineer and is programmed into the Virtex
FPGA. The part of the FGPA memory storing this secret key is battery-powered
so that the key will immediately be erased on power loss of the battery support.
This feature is designed to hinder invasive attacks to recover or reverse engineer
a device configuration.

With the known encryption key inside the FPGA and the encrypted bitstream
stored within a ROM, products can securely configure the FPGAs as only AES-
256 encrypted data passes the channel between ROM and FPGA. The FPGA
has a dedicated AES hardware to decrypt the bitstream. This hardware is not
accessible for other purposes within the FPGA due to export regulations of
cryptography.

3.3 Real-World Attacks

With this mostly theoretical discussion on several threats and countermeasures
for FPGA applications, the remaining question is whether the manufacturer’s
countermeasures are able to provide the advertised protection in the real world,

1 Due to page restriction we limit this discussion to only the scheme provided by Xilinx
FPGAs.

6 A. Moradi, M. Kasper, and C. Paar

i.e., successfully prevent attacks. Unfortunately decisions on implemented coun-
termeasures are in most cases driven by economical reasons. Thus, products in
industry will only be guarded against risks and threats when customers are ex-
pected to be willing to pay for the additional security. Thus, often well-known
security risks from academic literature are not considered when designing com-
mercial products, as long as there is no evidence for real-world implications.
One class of these attacks often underestimated in industry are the side-channel
attacks introduced in the next section. In our contribution we analyze the IP
protection mechanisms of recent FPGAs with respect to side-channel security.
We show that the implemented features of the studied products can be broken
with moderate efforts and thus fail to protect the implemented configuration file.

4 Side-Channel Analysis Attacks

4.1 Introduction to Side-Channel Analysis Attacks

Today Side-Channel Analysis (SCA) is a mature field in applied security research.
Differential side-channel analysis methods have been introduced first by Kocher
et al. around 10 years ago [8]. Since then the field has grown rapidly and many new
tools and distinguishers for side-channel analysis have been evaluated. In reply to
the new threat developed in the scientific literature many countermeasures have
been proposed, implemented and broken. Also, experts from the field of theoreti-
cal cryptography recognized side-channel attacks as an important topic seeding a
community of researchers working on general leakage resilience and provable se-
curity bounds for side-channel countermeasures. Beyond purely academic studies,
side-channel attacks and reverse engineering have been shown to also have real-
world impact. Examples are the attacks on NXP’s Mifare Classic devices [11], a
bouquet of attacks on Microchip’s KeeLoq remote keyless entry systems (primary
article [5]), and recently also SCA attacks on Mifare DESFire contactless smart-
cards [15]. Lately a successful side-channel key recovery attack on the bitstream
encryption feature of the older Xilinx Virtex-II pro FPGAs, which employ 3DES
as the decryption engine, has been reported in [10]. In this paper we describe a
practical side-channel analysis attack on the bitstream decryption engines of the
more recent Virtex-4 and Virtex-5 FPGAs. These attacks demonstrate that in-
dustrial products in fact require to implement side-channel countermeasures and
that side-channel attacks are not a pure academic playground but have a real-
world impact on the security of embedded systems.

The method employed in this work is a sophisticated type of Correlation Power
Analysis (CPA) as first introduced in [3]. In this method the power consumption
or electro-magnetic radiation (EM) of a device is measured while executing a
cryptographic algorithm. In addition to the physical power consumption of the
analyzed device, also the communication of the device is eavesdropped to get
access to the ciphertexts (or plaintexts) that will be (or have been) processed.
In our case the ciphertexts, i.e., blocks of the encrypted bitstream, are avail-
able by eavesdropping the configuration process and the analyzed cryptographic
primitive is an AES-256 decryption module.

Black-Box Side Channel Attacks 7

During the analysis itself the known ciphertexts are used to predict an in-
termediate value processed by the AES algorithm. A hypothetical intermediate
value for each trace is calculated assuming a fixed subkey2. In the next step
these hypothetical values are used in a hypothesis test, which allows distinguish-
ing the key used by the device from wrong key hypotheses. In a CPA attack the
used distinguisher is Pearson’s correlation coefficient estimated by the sample
correlation.

Side-channel analysis attacks follow a divide-and-conquer strategy. That is,
the key is recovered in small pieces. Typical attacks use subkeys of 8 (AES) or
6 (DES) bits and target S-box outputs.

In our attack we can use a full bitstream as a set of multiple ciphertexts. In
order to apply the correlation distinguisher, the predicted intermediate values
have to be mapped to hypothetical power consumptions, which will then be com-
pared with the measured power consumption. For hardware designs a reasonable
choice to do so is the Hamming distance (HD) model, which counts the number
of bits of an intermediate value that are toggled within a clock cycle.

4.2 Measurement Setup

We have started our analysis by examining a Virtex-4 FPGA. We have used
a “Virtex-4 FF668 Evaluation Board” [19], which provides a ZIF socket to host
Virtex-4 devices with FF668 packaging. Since the board has not been designed for
side-channel analysis, we have placed a resistor in the VCCINT path and removed
the blocking capacitors3. There are three different VCC paths in Virtex-4 FPGAs:
VCCINT (1.2V) as the power pin for internal core circuits, VCCAUX (2.5V) as the
power pin for auxiliary modules, and VCCO (1.2∼3.3V) as the power pins for
the output pin drivers. We analyzed all power pins, but similar to the results
reported in [10], the successful results were obtained when considering the power
traces measured in the VCCINT path.

Our target Virtex-4 FPGA model was an XC4VLX25, and the power traces
were captured using a LeCroy WP715Zi digital oscilloscope at a sampling rate
of 2.5 GS/s and a LeCroy AP033 active differential probe. We have also designed
a microcontroller based module which configures the FPGA in slave serial mode
(see [20] for more details on Virtex-4 configuration modes). It communicates
with a PC and passes the bitstream chunks4 to the FPGA. The same board also
provides a trigger pin to start the oscilloscope each time right before sending
a bitstream chunk to the FPGA. The acquisition of power traces started after
sending the header part of the bitstream. Each measured trace belongs to the
previously sent bitstream chunk.

2 By subkey we denote the part of a key that has an effect on the predicted intermediate
value.

3 This task is essential and common when performing power analysis attacks on real-
world devices, as the capacitors would filter the analyzed signal.

4 Since the Virtex-4 bitstream encryption uses AES-256, we define each block of 128
bits as a chunk.

8 A. Moradi, M. Kasper, and C. Paar

4.3 Introductory Experiments

In a real world attack, it is of major importance to work very accurately and
carefully to make sure the chosen method and all employed models are suited
for the analysis. Thus, some preliminary work is required to eliminate uncer-
tainties wherever possible. The first step in side-channel analysis is to find the
correct instance in time when the targeted security primitive (here the AES-
256 decryption) is processed. We created a very simple design using the Xilinx
ISE development tools and generated both, the corresponding bitstream and its
encrypted counterpart. The 128-bit IV (Initialization Vector)5 and the 256-bit
key used to generate the later one were loaded into the FPGA6, whose VCCBAT

pin was continuously battery powered at 3.0V. Using the public documentation
by Xilinx ([18,21]) we verified the order of the bits and bytes of the ciphertexts
within the encrypted bitstream.

Comparing the power traces corresponding to the plain and the encrypted
bitstreams let us to identify the interesting time instances. Two exemplary power
traces are shown in Fig. 1(b) and Fig. 1(c). Due to the high level of noise present
in the measurements we employed mean traces instead of raw measurement data
in this step, i.e., each mean trace has been obtained by calculating the average
of 10 000 traces. The mean traces, plotted in Fig. 1(d) and Fig. 1(e), show clear
differences between the configuration with an active decryption module and the
unencrypted configuration. We identified 26 clock cycles that show significant
differences.

We should emphasize that in contrary to the Virtex-II case [10] (in which the
full 3DES decryption is executed after a certain positive edge of the configura-
tion clock signal7), the computations of the AES decryption rounds are spread
and activated by consecutive positive edges of the corresponding configuration
clock signal. Thus, in the case of the Virtex-4 the performance of the decryption
module has much less impact on the maximum frequency of the configuration
clock signal, as just single rounds need to be processed within a configuration
clock cycle. According to the public documentation [17], when a Virtex-II is
configured in SelectMAP mode using an encrypted bitstream, the BUSY signal
has to be monitored8 to ensure that the decryption module is ready for next
data. The Virtex-4 FPGAs do not need to drive the BUSY signal during config-
uration, even when configuring using the maximum frequency and an encrypted
bitstream [20]. In summary, our first experiment allowed us to find the most
valuable instances in time for our SCA and gave us a hint towards a most likely
round-based architecture.

A close look at a power trace (Fig. 1(f)) reveals that the measurements include
HF-modulated waveforms. Therefore, we used a Chebyshev low-pass filter to
5 The IV is used as initial value in CBC mode.
6 Note that the only way to load the encryption key is through the JTAG interface [20]

and by means of a standard configuration device.
7 TCK in the case of JTAG and CCLK in the other configuration modes.
8 The SelectMAP mode enables sending 8 bits of the bitstream at each clock cycle,

and BUSY is one of relevant handshaking signals.

Black-Box Side Channel Attacks 9

(a) Configuration clock signal

(b) A sample power trace, plain bitstream

(c) A sample power trace, encrypted bitstream

(d) A mean trace over 10 000 power traces, plain bitstream

(e) A mean trace over 10 000 power traces, encrypted bitstream

50 51 54 55Time [μs]

(f) A part of a power trace, encrypted

0 5 10 15 20
−150

−100

−50

0

Frequency (MHz)

M
a

g
n

itu
d

e
 (

d
B

)

(g) Magnitude Response of the used
filter

(h) A sample filtered power trace, encrypted bitstream

Fig. 1. Virtex-4: Sample power traces, mean traces, and result of filtering

10 A. Moradi, M. Kasper, and C. Paar

128 128

128 128

128

128

CLKstart

128

128

128

i

128

Fig. 2. The employed model of the internal architecture of the AES-256 decryption
module

reduce the effect of the high frequency components. The configuration of the
used filter and the result of the filtering of a sample trace are shown in Fig. 1(g)
and Fig. 1(h) respectively.

With this initial analysis and preprocessing of our measurements a remaining
task was to find and verify a model for the internal architecture of the AES-256
decryption module, that allows us to relate the measured power consumption
to the processing of the decryption primitive. The method that we used is to
correlate the filtered power traces to predictions based on a hypothetical power
model of the architecture. Thus, by trial and error, we guessed several possible
architectures and modeled their power consumption. Using the known key we
applied the models to the encrypted bitstream and correlated the resulting hy-
pothetical power values to our measurements. In this experiment a significant
correlation indicates a valid power model that might be a candidate to be used
in the following cryptanalysis. Having examined several architectures and a cou-
ple of hypothetical power models, the only working model we found was the
combination of the architecture shown by Fig. 2 and a HD model targeting the
128-bit register R.

Figure 3 shows the results of correlating the bit flips of the intermediate
register between the first and second decryption rounds. More precisely, Fig. 3(a)
has been obtained computing Pearson’s correlation coefficient between each time
instance of the filtered power traces and HD of register R in the first and second
decryption rounds, i.e., Hamming weight (HW) of

ΔR1,2 =
[

C ⊕ K14︸ ︷︷ ︸
R1

]
⊕

[
MC−1

(
SB−1

(
SR−1(R1)

) ⊕ K13

)
︸ ︷︷ ︸

R2

]
,

where C, K14 and K13 represent ciphertext, round key 14 and round key 13
respectively. Also, MC−1, SB−1 and SR−1 are abbreviations for InvMixColumns,
InvSubBytes and InvShiftRows transformations. The high peak at around 52μs
indicates a very high dependency between the measured power traces and the
intermediate values in our considered internal architecture. This time instance
corresponds to the positive edge of the configuration clock signal at the sixth
clock cycle (see Fig. 1(a)). In order to find which bit flips in register R causes the
most significant correlation, we repeated the same computation considering each

Black-Box Side Channel Attacks 11

(a) Using HD of full 128 bits of ΔR1,2

(b) Superposition of 128 curves considering each single-bit of ΔR1,2

(c) Superposition of 128 curves considering each single-bit of ΔR2,3

Fig. 3. Virtex-4: Results of correlating the filtered power traces to the bit flips in the
intermediate register R

bit of ΔR1,2 independently. This led to the 128 curves shown in Fig. 3(b). For
some yet unknown reasons, additional high peaks also appear in 13 other time
instances. The results of applying a similar procedure in the next decryption
round, i.e., using

ΔR2,3 = R2 ⊕
[

MC−1
(
SB−1

(
SR−1(R2)

) ⊕ K12

)
︸ ︷︷ ︸

R3

]
,

are depicted in Fig. 3(c). Notably here the high peaks only appear at one sin-
gle time instance, i.e., 90μs corresponding to the start of the 9th configuration
clock cycle. The curves in Fig. 3 have been derived using the power traces of
the 60 000 decryptions performed during a single power-up of the FPGA. We
should emphasize that no significant peak appeared when we continued this pro-
cedure for the next decryption rounds. In fact, it seems that our guess about the
architecture does not completely match with the target internals. Nevertheless,
according to the results these assumptions are adequate to successfully perform
the attacks as shown later.

4.4 Implemented Attack

Using the extracted information about the leaking points and the architecture
the straightforward way to perform an attack is to guess parts of two consecutive
round keys K14 and K13, and then use the single-bit power model to predict

12 A. Moradi, M. Kasper, and C. Paar

the key dependent leakage of the subsequent rounds. Due to the structure of
InvMixColumns, at least one column (32 bits) of each round key has to be
guessed at each step of the attack, which means searching the large key space
of 264. However, because of the linear property of InvMixColumns one can write
R2 as

MC−1
(
SB−1

(
SR−1(R1)

))
︸ ︷︷ ︸

R′
2

⊕MC−1
(
K13

)
︸ ︷︷ ︸

K′
13

.

Moreover, since K13 and consequently K ′
13 are fixed and independent of the

ciphertexts and decryption intermediate values, they can only change the polar-
ity of our considered single-bit power model, i.e., bit flips of ΔR1,2. Therefore,
guessing a column of K14, i.e., searching a space of 232, is adequate when the
single-bit power model is used. Note that in this case, one cannot take a power
model using more bit flips, e.g., HD of whole 32 bits, in a CPA attack. However,
a Mutual Information Analysis [6] or a multi-bit DPA [9] may be feasible.

We should highlight that one can decrease the search space of the attacks to
the space of 28 by a chosen ciphertext scenario. For this, parts of R′

2 will be fixed
as long as the corresponding ciphertext bytes are fixed. However, configuring the
FPGA using a wrong encrypted bitstream (caused by the chosen ciphertexts) re-
sults in forbidden interconnections of internal wires, e.g., connecting two output
pins to each other. Thus, each configured invalid bitstream block causes addi-
tional leakage currents, which lead to additional interferences with the measured
side-channel signal. More importantly, these currents also heat up the FPGA and
may even damage it. For this reason we did not pursue this approach and stuck
to the approach using a valid encrypted bitstream. Nevertheless, when follow-
ing the chosen ciphertext approach, the destructive effect of invalid bitstream
chunks can be limited by resetting the configuration process after measuring a
certain number of power traces, e.g., after each eighth chunk.

As a result, a full 128-bit K14 can be recovered by performing four attacks,
each of which independently recovers a 32-bit part of the key. Note that in order
to recover the full 256-bit key of AES-256, one needs to extract two consecutive
128-bit round keys, e.g., here K14 and K13. We therefore need to extend the
attack on the next decryption round. R′

2 can be computed for every ciphertext
knowing K14, and one can write

ΔR2,3 = R′
2 ⊕ K ′

13 ⊕ MC−1
(
SB−1

(
SR−1(R2)

))
︸ ︷︷ ︸

R′
3

⊕MC−1
(
K12

)
︸ ︷︷ ︸

K′
12

.

As before, linear contributions of key bits, i.e., K ′
12 and K ′

13 can be omitted in
our single-bit power model (here single bit flips of ΔR2,3). The attack described
above can be run to recover the round key K13 which influences the hypotheses
due to its contribution to R2. Note that each part of this attack again recovers
only a 32-bit column of K ′

13. Knowing all bits of K ′
13 allows computing K13

by applying the MixColumns transformation. The result of the key extracting
attacks and more details about their efficiency are given in Section 5.2.

Black-Box Side Channel Attacks 13

4.5 Countermeasures

Today there exists a set of countermeasures that is believed to provide enough
protection against side-channel attacks, that they can be considered secure for
most practical purposes. More precisely, the reached level of security is boosted
to a certain level which makes practical attacks not impossible, but infeasible in
practice. Unfortunately most of these methods are patent-protected and thus of-
ten avoided in industry due to the involved royalties. Furthermore, many people
in industry still recognize side-channel attacks as academic playground without
any real-world impact and thus do not see the necessity of side-channel counter-
measures for their products.

5 Implementing the Attack

5.1 Employing nVidia’s CUDA

Our attack needs to perform an overall of eight analyses each statistically eval-
uating a set of 232 key candidates. For each key candidate a hypothetical in-
termediate needs to be calculated for each used power trace. Fortunately, the
locations of the occurring leakage we found earlier allowed us to limit the attack
to a single time instance per decryption round. To cope with the large amounts
of computations we employed NVidia’s CUDA architecture9 [14], to speed up
our attack using the parallel computing capabilities of modern GPUs (Graphic
Processing Unit). The used server was equipped with four NVidia Tesla C2070
cards [13], each having around 6 GB of memory and 448 thread processors ar-
ranged as 14 streaming multiprocessors. The implemented kernel processed one
key per thread and was launched using a granularity of 256 threads per block
and a (64, 256, 256) grid. The resulting 230 32-bit floating point correlation co-
efficients per card were then stored to the machine’s hard drive for visualisation
in, e.g., MATLAB. Using CUDA allowed us to perform our analysis on a single
point of 60 000 filtered power traces at a speed of one column each 33 minutes,
i.e., an overall runtime of the computations of 264 minutes for attacking all 8
columns of the first two round keys K14 and K ′

13. The corresponding correlation
coefficients for the full attack require 128 GiB of hard disk space.

5.2 Attack Results

Amongst the available 32 bits of the register R that are suited to attack a column
of the analyzed round key, we have selected the one which shows the highest
absolute correlation at the datapoint at 52μs (see Fig. 3(b)). More precisely, the
seventh LSB of the second byte of each column was selected in our attacks on the
first decryption round. The result of the attack on the first column of the first
round is shown in Fig. 4. Using 60 000 measurements, the highest correlation of
9 In the following we employ NVidias terminology of threads, blocks and grids as

introduced in [14].

14 A. Moradi, M. Kasper, and C. Paar

Fig. 4. Virtex-4: Result of an attack on the first column of the first decryption round
using bit flips of the 7th LSB of the second byte

0.081 for the correct key candidate can already be clearly distinguished from the
wrong key candidates. The next highest correlation value is already as low as
0.025. The attack on the second decryption round was performed in exactly the
same way; even the same target bit was selected for the power model. As the
results of the analysis of the second round closely reflect the results provided for
the first decryption round, we refrain from providing extra figures at this point.

As mentioned before, we have used the measurements corresponding to only
one power-up of the FPGA. The amount of possible measurements of each power-
up depends on the size of the FPGA fabric (not to the used-defined design). The
“Configuration Array Size” of the FPGA [20] defines how many 32-bit words have
to be configured by a bitstream. Since 243 048 configurable words are available
in our target, 60 762 traces can be measured using a single power-up. From the
smallest Virtex-4 FPGA, XC4VLX15, 36 900 traces can be acquired during one
power-up. Note that in the case of a high noise level the measurement process can
be repeated with the same encrypted bitstream, i.e., with the same ciphertext
values, and therefore provide more traces if required.

5.3 Differences to Virtex-5

We have examined the decryption module of a Virtex-5 FPGA re-employing
the introduced analysis developed for the Virtex-4 device. The targeted FPGA
model was an XC5VLX50 embedded on a SASEBO-GII [1]. We were able to reuse
the measurement setup introduced before with minor modifications: Since the
serial configuration pins used for the Virtex-4 were not present on the SASEBO-
GII board, our microcontroller module was adapted to support configuration
via JTAG interface, which is the only available configuration port on the used
platform.

Compared to Virtex-4, the main difference was that the attack on the Virtex-
5 FPGA required more power traces to be successful, which is mostly due to
a worse signal-to-noise ratio due to a newer process technology (i.e., 65 nm in-
stead of 90 nm). In our attacks we have used 90 000 traces10 acquired during
a single power-up of the FPGA, but using more traces of multiple power-ups
can still improve discriminability of the correct key hypothesis. To deal with
10 Our Virtex-5 target FPGA allows for measuring 98 031 traces during a single power-

up.

Black-Box Side Channel Attacks 15

the worse measurement conditions, we have acquired power traces with a sam-
pling rate of 20 GS/s and low-pass filtered the data as before. Approximately
the same results as Fig. 1 were obtained, i.e., comparing the mean traces of the
plain and encrypted bitstreams showed differences in the same positive edges of
the configuration clock signal. Also, correlating the filtered power traces with
the single-bit power model considering the same internal architecture led to the
similar results shown in Fig. 3 but with lower correlation value, i.e., 0.05 and
0.03 for the first and second decryption rounds respectively. The analysis run-
time increased due to the higher number of power traces to around 49 minutes
per column or around 6.5 hours for the overall computing time. We should em-
phasize that analyzing the pure Virtex-5 without having the knowledge obtained
during the analysis of Virtex-4, would have been a much more challenging task
with more uncertainties.

6 Conclusion

Today, industrial spying and technology theft are a major threat for both com-
panies and government-run facilities. Companies are mostly concerned about IP
theft and product piracy and the inflicted losses. Government institutions, on
the other hand, need to protect military secrets as well. Our attacks show that
the IP protection mechanism of the FPGA world market Xilinx, Inc. can be
circumvented using moderate efforts.

Our presented approach allows us to read out the configuration data of
Virtex-4 and Virtex-5 devices in the field, leading to the consequences elaborately
discussed in Section 3.1. Manufacturers of high-security products and security
evaluation labs are well aware of the side-channel vulnerabilities. Therefore, they
ensure that additional security countermeasures to protect devices are imple-
mented where necessary. Techniques include for example shielding and molding
the electronic circuit to provide additional tamper resistance and therefore deny
power or EM measurements. Unfortunately this awareness does not cover all
manufacturers of security sensitive devices yet.

We want to underline that this attack targets Xilinx’s bitstream encryption
engine, and not a third party crypto-implementation inside an FPGA. Although
reading out and interpreting the bitstream might also annihilate the security tar-
gets of an FPGA design, there is an important difference between a vulnerabil-
ity in the bitstream encryption and a vulnerability in an implemented primitive.
An engineer developing an FPGA design has no influence on the security of the
bitstream encryption and thus also no option to improve it. In other words, up to
now it is the FPGA manufacturer’s responsibility to provide secure IP protection
methods. This is slightly different to the microcontroller scenario. Designers us-
ing microcontrollers often have the freedom to implement customized bootloaders,
that might, e.g., add encryption functionality to the programming. Nevertheless,
the microcontroller’s manufacturer also has to ensure that the memory including
the bootloader and all its secrets cannot be read out.

There are many new insights from this attack. This is the first case to our
knowledge, where it was possible to probe and compare the security of subsequent

16 A. Moradi, M. Kasper, and C. Paar

technology generations of an embedded system in a real-world environment. In
this attack we were able to practically verify that an attack on more recent
technology nodes still scales within feasible bounds. Furthermore, we were able
to show that developing an attack tailored to one product can threaten the
security of another product, when a security design is being reused. In our case
the analysis of the Virtex-4 allowed us to study the architecture with much
less efforts than having to perform the same analysis on the Virtex-5 device.
In consequence, we suggest to limit the reuse of security designs, such that the
security of a newer product is not lowered by an easier attack on an older product.

Another argument we practically disproved is that attacks on intermediate val-
ues that require large key hypotheses are infeasible in practice. We have shown
that with todays available computing power an analysis on 60 000 power traces
using 32-bit key hypotheses can be performed in less than 4.5 hours. We also
explained the different steps that needed to be done to execute a black-box anal-
ysis. These differ from purely academic studies, as they include many additional
steps as identifying and filtering unknown additional noise sources, the identi-
fication of the time instances that need to be considered in the attack and the
deduction of a valid model of the implemented architecture. To our knowledge
there is no published real-world side-channel attack with a similar attack com-
plexity. Therefore, this work provides an update on the lower bound of attacks
that should be considered a realistic threat to real-world systems.

The presented approach practically illustrates that side-channel attacks on
real-world systems do not require any detailed knowledge of the implemented
architecture. Thus, the extend to which confidential details on the implemented
architecture can raise the difficulty of black-box side-channel analyses should not
be overestimated. Nevertheless, it remains an open research problem to evaluate
the security gain achieved by applying additional confidential obscurity measures
as transformations of the plaintexts prior to encryption.

Finally, the most exciting question is to ask why this attack was possible at
all. Side-channel analyses are known for more than ten years, and the same holds
for bitstream encryption protection mechanisms. Why did Xilinx not implement
the available countermeasures? As stated before, it is most likely due to an eco-
nomic reason. In this case the FPGA configuration has been protected by means
of an encryption mechanism. Customers accepted the solution without having the
expertise to recognize the obvious possibility of side-channel attacks, and thus
did not give rise to a market demand for a side-channel resistant configuration
solution. The fact that Xilinx’s bitstream encryption has not been broken in public
literature for around a decade shows that side-channel attacks on real-world tar-
gets, i.e., black-box attacks, just became mature within the last years. From our
point of view a prominent problem in security technology is that both, customers
and manufacturers, are not aware of the security risks that come with unprotected
implementations of cryptographic primitives in embedded systems. On the other
hand, those that are aware of the existence of side-channel attacks, often consider
them as a purely academic threat without any real-world counterpart. We see an
urgent need to change this wrong perception and to recognize the rapid advances

Black-Box Side Channel Attacks 17

in the minatory field of black-box side-channel analysis. A general guideline should
be that cryptographic routines in embedded systems without SCA countermea-
sures should be considered insecure for all applications where a successful attack
can give rise to financial benefits.

To assist hardware manufacturers, scientific research should in the future aim
at developing mechanisms beyond mere SCA resistance to face the increasing
threat of physical attacks. This could be, e.g., protocols and measures that limit
the effect of successful side-channel attacks. In the case of the bitstream encryp-
tion a solution avoiding repetitive use of the same key in CBC mode, e.g., by
means of some obscure key transformation, would have significantly hardened
the analysis. In this context researchers should also reconsider to add obscurity
measures in combination with the well-proven crypto primitives to raise the SCA
protection of their systems. This would require an attacker to first overcome an
additional reverse-engineering step, before being able to analyze the system.

Acknowledgments. The authors want to thank Alessandro Barenghi from Po-
litecnico di Milano for providing the programming tools needed to transfer our
attacks to the Virtex-5 FPGA family. Furthermore, we want to thank David Os-
wald for many fruitful discussions and his advices on the Fourier preprocessing.

The work described in this paper has been supported in part by the Euro-
pean Commission through the ICT program under contract ICT-2007-216676
ECRYPT II and by the German Federal Ministry of Education and Research
BMBF (grant 01IS10026A, Project EXSET).

References

1. Side-channel Attack Standard Evaluation Board (SASEBO-GII). Further informa-
tion is available via, http://staff.aist.go.jp/akashi.satoh/SASEBO/en/board/
sasebo-g2.html

2. Braeken, A., Kubera, S., Trouillez, F., Touhafi, A., Mentens, N., Vliegen, J.: Secure
FPGA Technologies and Techniques. In: FPL 2009, pp. 560–563. IEEE (2009)

3. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

4. Drimer, S.: Security for volatile FPGAs. PhD thesis, Computer Laboratory, Uni-
versity of Cambridge, United Kingdom (2009)

5. Eisenbarth, T., Kasper, T., Moradi, A., Paar, C., Salmasizadeh, M., Shalmani,
M.T.M.: On the Power of Power Analysis in the Real World: A Complete Break of
the KeeLoq Code Hopping Scheme. In: Wagner, D. (ed.) CRYPTO 2008. LNCS,
vol. 5157, pp. 203–220. Springer, Heidelberg (2008)

6. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,
Heidelberg (2008)

7. Kepa, K., Morgan, F., Kosciuszkiewicz, K., Braun, L., Hübner, M., Becker, J.:
FPGA Analysis Tool: High-Level Flows for Low-Level Design Analysis in Recon-
figurable Computing. In: Becker, J., Woods, R., Athanas, P., Morgan, F. (eds.)
ARC 2009. LNCS, vol. 5453, pp. 62–73. Springer, Heidelberg (2009)

http://staff.aist.go.jp/akashi.satoh/SASEBO/en/board/sasebo-g2.html
http://staff.aist.go.jp/akashi.satoh/SASEBO/en/board/sasebo-g2.html

18 A. Moradi, M. Kasper, and C. Paar

8. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

9. Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Investigations of Power Analysis At-
tacks on Smartcards. In: USENIX Workshop on Smartcard, pp. 151–161. USENIX
Association (1999)

10. Moradi, A., Barenghi, A., Kasper, T., Paar, C.: On the vulnerability of FPGA
bitstream encryption against power analysis attacks: extracting keys from xilinx
Virtex-II FPGAs. In: CCS 2011, pp. 111–124. ACM (2011)

11. Nohl, K., Evans, D., Starbug, Plötz, H.: Reverse-Engineering a Cryptographic
RFID Tag. In: USENIX Security Symposium, pp. 185–194. USENIX Association
(2008)

12. Note, J.-B., Rannaud, É.: From the Bitstream to the Netlist. In: FPGA 2008, p.
264. ACM (2008)

13. NVidia. NVIDIA’s Next Generation CUDA Compute Architecture: Fermi (2009),
http://www.nvidia.com/content/PDF/fermi_white_papers/
NVIDIAFermiComputeArchitectureWhitepaper.pdf

14. Nvidia. CUDA Developer Zone (Website) (2011),
http://developer.nvidia.com/category/zone/cuda-zone

15. Oswald, D., Paar, C.: Breaking Mifare DESFire MF3ICD40: Power Analysis and
Templates in the Real World. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS,
vol. 6917, pp. 207–222. Springer, Heidelberg (2011)

16. Trimberger, S.: Trusted design in FPGAs. In: DAC 2007, pp. 5–8. ACM (2007)
17. Xilinx, Inc. Virtex-II Pro and Virtex-II Pro X FPGA User Guide (2002),

http://www.xilinx.com/support/documentation/user_guides/ug012.pdf
18. Xilinx, Inc. Application Note XAPP151 (v1.7), Virtex Series Configuration

Architecture User Guide (2004),
http://www.xilinx.com/support/documentation/application_notes/
xapp151.pdf

19. Xilinx, Inc. Virtex-4 FF668 Evaluation Board (2004),
http://www.xilinx.com/products/boards-and-kits/HW-AFX-FF668-400.htm,
User Guide,
http://www.xilinx.com/support/documentation/boards_and_kits/ug078.pdf

20. Xilinx, Inc. Virtex-4 FPGA Configuration User Guide (2004),
http://www.xilinx.com/support/documentation/user_guides/ug071.pdf

21. Xilinx, Inc. Application Note XAPP138 (v2.8), Virtex FPGA Series Configu-
ration and Readback (2005), http://www.xilinx.com/support/documentation/
application_notes/xapp138.pdf

22. Xilinx, Inc. Virtex-5 FPGA Configuration User Guide (2006),
http://www.xilinx.com/support/documentation/user_guides/ug191.pdf

23. Ziener, D., Assmus, S., Teich, J.: Identifying FPGA IP-Cores Based on Lookup
Table Content Analysis. In: FPL 2006, pp. 1–6. IEEE (2006)

http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIAFermiComputeArchitectureWhitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIAFermiComputeArchitectureWhitepaper.pdf
http://developer.nvidia.com/category/zone/cuda-zone
http://www.xilinx.com/support/documentation/user_guides/ug012.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp151.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp151.pdf
http://www.xilinx.com/products/boards-and-kits/HW-AFX-FF668-400.htm
http://www.xilinx.com/support/documentation/boards_and_kits/ug078.pdf
http://www.xilinx.com/support/documentation/user_guides/ug071.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp138.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp138.pdf
http://www.xilinx.com/support/documentation/user_guides/ug191.pdf

Power Analysis of Atmel CryptoMemory –

Recovering Keys from Secure EEPROMs

Josep Balasch1, Benedikt Gierlichs1, Roel Verdult2,
Lejla Batina1,2, and Ingrid Verbauwhede1

1 K.U.Leuven ESAT/COSIC and IBBT
Kasteelpark Arenberg 10, 3001 Leuven-Heverlee, Belgium

firstname.lastname@esat.kuleuven.be
2 Radboud University Nijmegen, ICIS/Digital Security Group
Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands

{rverdult,lejla}@cs.ru.nl

Abstract. Atmel CryptoMemory devices offer non-volatile memory
with access control and authenticated encryption. They are used in com-
mercial and military applications e.g. to prevent counterfeiting, to store
secrets such as biometric data and cryptographic keys, and in electronic
payment systems. Atmel advertises the devices as “secure against all
the most sophisticated attacks, [...] including physical attacks”. We de-
veloped a successful power analysis attack on the authentication step
of CryptoMemory devices. Despite the physical security claims by At-
mel we found that the devices are not protected against power analysis
attacks, except for counters that limit the number of (failed) authenti-
cation attempts, and thus power traces, to at most three. We examined
the handling of these counters and discovered a flaw that allows us to
bypass them, and to obtain power traces from an unlimited number of
failed authentication attempts. Our attacks need as few as 100 power
traces to recover the secret 64-bit authentication keys. From measure-
ments to full key extraction, the attacks can be carried out in less than
20 minutes on a standard laptop. Once the keys are known, an adversary
can read protected contents, clone devices, and manipulate the memory
at will, e.g. to set the balance of an electronic wallet. To our knowledge,
this is the first power analysis attack on Atmel CryptoMemory products
reported in the literature.

Keywords: Atmel CryptoMemory, power analysis.

1 Introduction

In the past years, many commercial devices with security functionalities such as
the KeeLoq-based remote keyless entry systems [19,22], the contactless Mifare
DESFire MF3ICD40 card [29], or the FPGA bitstream encryption used by Xilinx
Virtex FPGAs [26], were shown to be susceptible to power analysis attacks, e.g.
DPA [23].

O. Dunkelman (Ed.): CT-RSA 2012, LNCS 7178, pp. 19–34, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

20 J. Balasch et al.

The first “secure memories with authentication” [11,12] manufactured by At-
mel appeared in 1999 under the name SecureMemory. These devices are mainly
formed by a piece of EEPROM memory with access control logic and a cryp-
tographic unit. A valid authentication grants read/write permissions to the
memory. Failed authentications are recorded by authentication attempt counters
(AACs), effectively locking the device after four or more attempts. A newer ver-
sion of Atmel secure memories, commonly known as CryptoMemory, was released
in 2002 as part of the Atmel AT88SCxxxxC series [7]. The AT88SCxxxxCRF [9]
family, referred to as CryptoRF, appeared in 2003 providing the same features
as CryptoMemory but with a contactless RF interface.

At the core of all these devices lies a proprietary stream cipher with secret
specification, that we refer to as Atmel cipher. This cipher is employed during
the mutual authentication protocol, in which a host and a CryptoMemory device
authenticate each other by proving knowledge of a 64-bit shared secret key. A
session key resulting from the mutual authentication can be further used to
provide authenticated encryption of the communication channel.

CryptoMemory’s security features, low cost, and ease of deployment have
allowed these devices to be widely used in plenty of commercial and military
applications [10]. A typical example is the use of the AT88SCxxxxC series to
store High Bandwidth Digital Content Protection (HDCP) keys in products
such as NVIDIA graphics cards [28], Labgear digital satellite receivers [4], or the
Microsoft Zune player [30]. CryptoMemory devices are also used to strengthen
security in systems vulnerable to counterfeiting schemes. They are for instance
used in printers and printer cartridges manufactured by Dell, Ricoh, Xerox, and
Samsung [1]. Other potential applications include “appliances with smart batter-
ies, set top boxes, video game consoles, video game cartridges, PDAs, GPS, and
any system with proprietary algorithms or secrets” [13], and storage of “biomet-
ric information” [10]. In smart card form, CryptoMemory devices are mainly
used in vendor-specific electronic payments, e.g. in laundromats or parkings [2].
Further applications recommended by the manufacturer include “ID and ac-
cess cards, health care cards, loyalty cards, internet kiosks, energy meters, and
e-government” [14].

Contribution. We show that the secret authentication keys used by a Cryp-
toMemory device can be extracted using basic, well-understood power analysis
techniques. We devise a practical, non-invasive approach to exploit a flaw in the
handling of AACs and to collect any number of power traces corresponding to
failed authentication attempts. We have fully implemented and tested our attack
on CryptoMemory devices from Atmel development kits and real world prod-
ucts, both in smart card and packaged IC form. Our attacks need as few as 100
power measurements for key extraction and can be carried out, including trace
collection, in less than 20 minutes on a standard laptop. We also discuss how to
fix the flaw in a way that future revisions of this (or similar) products are not
vulnerable to such practical attacks, while remaining backwards compatible1.

1 We have informed Atmel about the vulnerabilities found in this work prior to its
publication.

Power Analysis of Atmel CryptoMemory 21

Paper Organization. In Section 2 we provide background information about
CryptoMemory devices and their advertised security. We summarize previous
work and we briefly sketch their security mechanisms. In Section 3 we develop an
attack path for DPA attacks, and we provide the details and results of our attacks
in Section 4. We discuss the implications of our findings as well as potential
countermeasures in Section 5. We briefly conclude in Section 6.

2 Background

CryptoMemory devices are available either in plastic IC packages or as smart
cards. The former communicate via a synchronous Two-Wire serial Interface
(TWI), while the latter use the asynchronous T=0 protocol standardized in ISO
7816-3 [3]. CryptoMemory devices provide from 1 Kbit to 256 Kbits of memory
divided into several user zones that are individually configurable with different
access control policies. A separate configuration zone, customizable during the
device personalization phase, is used to store such policies. A set of security fuses
can be blown after the personalization phase in order to lock the configuration
zone. CryptoMemory offers a total of three different security policies:

a) In password mode, a host simply needs to provide a 24-bit password to gain
access to the zone. This mode offers a limited level of security, as all exchanged
data (including passwords) is transmitted in the clear, i.e. it is vulnerable to
eavesdropping and replay attacks.

b) In authentication mode, up to four 64-bit keys (in the following denoted
by k) can be set during the personalization phase as shared secrets between host
and device. An 8-bit AAC associated to each key controls the number of failed
authentication attempts. The protected user zone(s) become inaccessible once
AAC is set to x002. Data transmitted to/from protected memory in this mode
is in the clear but replay attacks do not apply.

c) In encryption mode, the communication channel between host and device
is protected by authenticated encryption. A 64-bit shared session key Ks that is
updated after each run of the mutual authentication protocol is used. Entering
encryption mode requires the device to be already in authentication mode.

Regardless of the security policy, memory contents in the user zones are stored
in the clear, i.e. CryptoMemory does not encrypt the data during the storage
process.

Security of CryptoMemory devices. Atmel claims that CryptoMemory de-
vices “can secure data against all the most sophisticated attacks, including al-
gorithmic attacks, systematic attacks, and physical attacks.” [6]. In particular,
physical attacks are counteracted by the use of tamper-proof features includ-
ing metal shield layers over the active circuitry, encrypted internal buses, high-
security test procedures, and defenses against timing and power supply attacks
(to be understood as active tampering attacks, e.g. fault injection via glitching).

2 In the most restrictive mode the maximum number of authentication attempts is
set to four. The decreasing values of AAC are (xFF,xEE,xCC,x88,x00). A correct
authentication automatically restores the value of AAC to xFF.

22 J. Balasch et al.

CryptoMemory also provides anti-tearing functionalities, i.e. in the event of a
power loss during an EEPROM writing cycle, data can be recovered at the next
power-up and written to the intended address. This feature is however optional,
and it needs to be requested by the host prior to a write operation. A typical
scenario in which this mechanism enhances security is payment systems, e.g. a
malicious customer could try to remove a CryptoMemory-based card from the
terminal slot before a decreased balance has been written to memory.

Surprisingly, we could not find a single reference to countermeasures against
power analysis attacks in Atmel’s marketing material and technical documenta-
tion. However, given the effort made to protect against invasive probing attacks
and non-invasive tampering attacks, it is reasonable to assume that also power
analysis attacks were considered. After all, it is claimed that “CryptoMemory is
designed to keep contents secure, whether operating in a system or removed from
the board and sitting in the hacker’s lab.” [5]. In our view, it is likely that At-
mel relies on the secrecy of the Atmel cipher and the AACs as countermeasures
against basic power analysis attacks.

Previous Work. As it has previously occurred with other products using propri-
etary cryptographic algorithms [16,20,27], the security of CryptoMemory
devices took a hit in 2010 when Garcia et al. [21] reverse-engineered the Atmel
cipher and the authentication protocol used in the CryptoMemory family. The au-
thors also cryptanalyzed these mechanisms and showed that an adversary could
recover CryptoMemory authentication keys in 252 cipher ticks using 2640 eaves-
dropped keystream frames. Biryukov et al. recently proposed an improved at-
tack [15] that requires 30 eavesdropped keystream frames and 250 cipher ticks to
recover authentication keys. Other attacks against systems using CryptoMemory
are known [24,32], but they exploit weaknesses in poorly designed protocols and
mistakes during deployment rather than vulnerabilities of CrypoMemory devices.

Atmel Cipher. In the following, and for the sake of completeness, we briefly
sketch the main functionality of the Atmel cipher. For a more formal and com-
plete specification we refer the reader to [21].

Figure 1 depicts the inner structure of the Atmel stream cipher. The cipher
state s is an element of F117

2 composed by a total of 4 shift registers. We denote
these elements as left register l, middle register m, right register r, and feedback
register f. In particular:

1. left register: l = (l0, l1, ..., l6) ∈ (F5
2)

7

2. middle register: m = (m0,m1, ...,m6) ∈ (F7
2)

7

3. right register: r = (r0, r1, ..., r4) ∈ (F5
2)

5

4. feedback register: f = (f0, f1) ∈ (F4
2)

2

At each tick, the cipher state s = (l,m, r, f) is transformed into a successor state

s′ = (l′,m′, r′, f ′) going through an intermediate state ŝ = (l̂, m̂, r̂, f̂). During
this whole process the cipher takes a single input a ∈ F8

2 and produces an output
keystream nibble output(s′) ∈ F4

2.

Power Analysis of Atmel CryptoMemory 23

l0 l1 l2 l3 l4 l5 l6 m0 m1 m2 m3 m4 m5 m6 r0 r1 r2 r3 r4 f0 f1

a

output(s’)

b

Fig. 1. Atmel cipher

Mutual Authentication Protocol. The mutual authentication protocol be-
tween a CryptoMemory device and a host is illustrated in Figure 2. Let nr ∈
(F8

2)
8 be a host nonce, nt ∈ (F8

2)
8 be a CryptoMemory device nonce, and

k ∈ (F8
2)

8 a shared secret key. We denote ar and a′r ∈ (F8
2)

8 the host challenge
authenticators, and at and a′t ∈ (F8

2)
7 the device challenge authenticators. Both

values are computed after feeding the values (nr, nt, k) into the Atmel cipher.

(nr, k)
↓

HOST

(nt, k)
↓

DEVICE
read(nt)−−−−−−−−−−−−−−−→

nt←−−−−−−−−−−−−−−−
(ar, at) = f(nt, nr, k) auth(nr, ar)−−−−−−−−−−−−−−−→

(a′
r, a

′
t) = f(nt, nr, k)

a′
r

?
= ar

read(nt)−−−−−−−−−−−−−−−→
nt = AAC ‖ a′

t

nt←−−−−−−−−−−−−−−−
AAC = nt0

?
=xFF

at
?
= a′

t = nt(1...7)

Fig. 2. CryptoMemory mutual authentication protocol

In the first phase of the protocol, the host reads the device randomness nt and
uses it, together with its own randomness nr and the shared key k, to compute
the authenticators (ar, at). In the second phase, the host sends an authentication
command to the device, namely auth(nr, ar), including the value nr and the
first authenticator ar. The device computes its own authenticators (a′r, a′t), and
checks whether the provided ar equals the calculated a′r. If the check fails, the

24 J. Balasch et al.

State Input bytes Output nibbles

(s0−6) nt0 nt0 nt0 nt1 nt1 nt1 nr0 - - - - - - -
(s7−13) nt2 nt2 nt2 nt3 nt3 nt3 nr1 - - - - - - -
(s14−20) nt4 nt4 nt4 nt5 nt5 nt5 nr2 - - - - - - -
(s21−27) nt6 nt6 nt6 nt7 nt7 nt7 nr3 - - - - - - -
(s28−34) k0 k0 k0 k1 k1 k1 nr4 - - - - - - -
(s35−41) k2 k2 k2 k3 k3 k3 nr5 - - - - - - -
(s42−48) k4 k4 k4 k5 k5 k5 nr6 - - - - - - -
(s49−55) k6 k6 k6 k7 k7 k7 nr7 - - - - - - -

(s56−62) 0 0 0 0 0 0 0 - - - - ar0 ar1 -
(s63−69) 0 0 0 0 0 0 0 - - - - ar2 ar3 -
(s70−76) 0 0 0 0 0 0 0 - - - - ar4 ar5 -
(s77−83) 0 0 0 0 0 0 0 - - - - ar6 ar7 -
(s84−90) 0 0 0 0 0 0 0 - - - - ar8 ar9 -
(s91−97) 0 0 0 0 0 0 0 - - - - ar10 ar11 -
(s98−104) 0 0 0 0 0 0 0 - - - - ar12 ar13 -
(s105−111) 0 0 0 0 0 0 0 - - - - ar14 ar15 -
(s112−118) 0 0 0 0 0 0 0 at0 at1 at2 at3 at4 at5 at6

(s119−125) 0 0 0 0 0 0 0 at7 at8 at9 at10 at11 at12 at13

(s126−132) 0 0 0 0 0 0 0 Ks0 Ks1 Ks2 Ks3 Ks4 Ks5 Ks6

(s133−139) 0 0 0 0 0 0 0 Ks7 Ks8 Ks9 Ks10 Ks11 Ks12 Ks13

(s140−141) 0 0 Ks14 Ks15

Fig. 3. Generation of authenticators (ar, at) and Ks given inputs (nt, nr, k)

value of AAC is decreased; otherwise, it is set to xFF. The device also updates
the value of nt by concatenating the 8-bit AAC with the 56-bit authenticator
a′t. In the final phase, the host reads the recently updated value of nt. It first
checks whether the authentication was successful (i.e. whether AAC holds the
value xFF), and later compares the authenticator at with the provided a′t. If all
checks are correct, then the mutual authentication protocol succeeds.

The procedure to compute the authenticators (ar, at) resulting of feeding the
values (nt, nr, k) into the Atmel cipher is intuitively depicted in Figure 3. Each
of the states si indicates one tick of the cipher for which an input byte a is
given and an output nibble output(s′) is obtained. At the start of the protocol
all registers of the internal state are initialized to zero. In a first phase, ranging
from states s0 to s55, the three parameters (nt, nr, k) are scrambled into the
cipher state. The output keystream nibbles generated by the cipher are for the
moment ignored. In a second phase, from states s56 to s125, all input bytes are
set to zero. The output nibbles obtained after some of the ticks are used to form
the authenticators ar and at. In the final phase, the session key Ks is computed
during states s126 to s141.

3 Developing an Attack Path

Attack Goal. The aim of an adversary targeting CryptoMemory devices may
vary depending on the deployment setting, but typically the objective will be

Power Analysis of Atmel CryptoMemory 25

to either read protected information (e.g. to manufacture clone chips) or to
overwrite memory contents (e.g. to increase the balance in payment scenarios).

In the following we will assume an adversary that possesses a CryptoMemory
device configured either in authentication mode or encryption mode. Note that
the first security operation in either of these modes is always the mutual au-
thentication protocol. In other words, their security relies on the secrecy of the
authentication key (or keys) k. If an attacker knew k, he could easily compute
session keysKs and encrypt/decrypt valid communications. Therefore, we define
the goal of the adversary as the recovery of k.

Attack Approach. Previous work has already pointed out cryptographic weak-
nesses in the Atmel cipher, but the most efficient attack still requires substantial
computational effort, e.g. two to six days computation on a cluster with 200
cores [15]. We focus on power analysis attacks as they are often more practical.
Note that in the case of deployed CryptoMemory devices, eavesdropping the
communication line for later cryptanalysis requires physical access to the target
device. Thus, physical access for power analysis does not imply an additional
requirement.

Target Devices. We have tested three different models of the CryptoMem-
ory family, namely the chips AT88SC0404C, AT88SC1616C, and the newer
AT88SC0808CA. These devices differ in the amount of user zone slots and/or
size available to the end application, but the protocol to carry out the mutual
authentication is identical for all of them.

Given that CryptoMemory devices do not contain a microcontroller, we can
assume that the cryptographic unit, including the Atmel cipher, is fully im-
plemented as a hardware module. We further assume that the implementation
computes one cipher tick in one or two clock cycles, which gives us an idea of
the type of pattern to look for in the power traces.

In the following we describe the experimental setup used in our analysis and
the steps followed to evaluate the smart card versions of CryptoMemory. We
summarize the slightly different approach required for CryptoMemory ICs, lead-
ing to the same results, at the end of the section.

3.1 Experimental Setup

The main element of our experimental setup is a Virtex-II FPGA [33] that
communicates with a PC (user interface) and a target device (CryptoMemory).
The FPGA can be configured to communicate with either of the CryptoMemory
device forms, i.e. as a T=0 compatible smart card reader or as a TWI master
device. Apart from the communication line, the FPGA fully controls all external
signals provided to the target device. For instance, the reset signal (RST), the
external clock (CLK), and even the power supply (VCC) can be manipulated
at will and at any point in time. A 50 Ohm resistor is inserted in series in
the ground (GND) line of the target device. We use a Tektronix DPO7254 [31]
oscilloscope to measure the voltage drop over this resistor, thus obtaining a trace
proportional to the device’s power consumption. Note that we do not exhaust

26 J. Balasch et al.

the capabilities of the oscilloscope and that a low-cost model could be used just
as well. For all experiments we used a sampling rate of 100 MS/s and 20 MHz
bandwidth. In addition to the power consumption we also use the oscilloscope
to monitor RST, CLK, and I/O lines.

3.2 Initial Investigation of Power Traces

The first step in a power analysis attack is to determine in which part of the
protocol the secret key is used by the target device, i.e. at which points in time
are the key bytes fed as input to the Atmel cipher. An overview of the I/O
and a power trace obtained during the processing of a mutual authentication
command is shown in Figure 4. Figure 4(a) represents a successful authentica-
tion, Figure 4(b) represents a failed authentication, and Figure 4(c) represents
an authentication attempt when the AAC is set to x00.

(a) Measurements for a successful authentication.

(b) Measurements for a failed authentication.

(c) Measurements for a not allowed authentication.

Fig. 4. I/O and power trace for a successful authentication (a), a failed authentication
(b), and a not allowed authentication (c)

The leftmost part of the figures start with the host sending 5 bytes corre-
sponding to an authentication command. After receiving these bytes, the card
can reply either with an acknowledgement ACK, indicating that it accepts the
command, or with a negative acknowledgement NACK, refusing to process the
command. The latter is shown in Figure 4(c), where the CryptoMemory device
has locked access to the associated user zones. If the device acknowledges the

Power Analysis of Atmel CryptoMemory 27

command then the host sends the payload data, i.e. 16 bytes corresponding to
the values nr and ar. Upon reception, the card performs a series of operations to
determine whether the authenticator provided by the host is correct. Finally, the
card sends a response to the host indicating the outcome of the authentication
attempt.

The most interesting part of the figure corresponds to the card calculations
upon reception of the payload data. One can clearly notice that the calculation
interval in Figure 4(b) is significantly shorter than in Figure 4(a). Further, a
clearly distinguishable pattern with higher power consumption appears twice
for the valid authentication and only once for the invalid authentication. This
pattern corresponds to EEPROMwritings in configuration memory: the first one,
present for both valid and invalid attempts, corresponds to decreasing the value
of AAC; the second one, only present for the valid authentication, corresponds
to writing the new value of nt and the session key Ks. Note that writing a new
value nt implies a valid authentication, and thus AAC is restored back to xFF.

Although not visible in these overview plots, we noticed that the cryptographic
unit appears to run at a clock frequency slower than that we provided externally.
Further investigations showed that the device internally derives this slower clock
signal by dividing the external clock by approximately a factor 200.

The card’s calculation of the values (a′r, a
′
t) must happen before the second

EEPROM write operation, simply because the nt cannot be updated without
having computed a′t beforehand. Our experiments have shown that the de-
vice computes the authenticators (a′r, a

′
t) on-the-fly, i.e. while the payload data

(nr, ar) is being received from the host. Similarly, the calculation of the session
key Ks is performed between the two EEPROM writings, only after the device
has authenticated the host by verifying that ar and a′r are equal.

Figure 5 shows a zoomed version of the I/O and power traces during the
transmission of the value nr = (nr0 , . . . , nr7) to the card. A clearly distinguish-
able peak in the power trace is visible at the end of each byte transmission,
while a total of six high peaks are also identifiable during the transmission of
a byte. As explained in Section 2 the calculation of (a′r, a

′
t) requires 126 cipher

ticks. The pattern in the power traces has a perfect mapping with the cipher
behavior illustrated in Figure 3 considering a hardware implementation. In fact,
the first peak in Figure 5 corresponds to the state s6, i.e. when the value nr0

is fed to the cipher. The following six peaks correspond to states s7 to s12, in
which the card uses its own randomness (values nt2 and nt3) as inputs. Once
nr1 has been received over the I/O line, a new peak corresponding to state s13
appears in the power trace, and the pattern is repeated for every transmitted
byte. In summary, each of the 50 peaks highlighted in Figure 5 corresponds to
a cipher state ranging from s6 to s55 in Figure 3.

Since the key k is scrambled into the cipher states s6 to s55, the device might
leak sensitive information through its power consumption. We could not imme-
diately identify a visible pattern in the power consumption that could relate to k
(SPA leak) but we also did not expect that from a hardware implementation of a
stream cipher. Therefore, we focused our attention on attacks that use statistical

28 J. Balasch et al.

Fig. 5. I/O and power traces during the transmission of nr in authentication command.
Interesting peaks are marked with *.

post-processing of the collected power traces. Recall that DPA attacks require
the processing of multiple power traces corresponding to multiple authentica-
tion attempts. For each attempt the device must use the same (unknown) k and
varying input data.

3.3 Overcoming Authentication Attempt Counters

Even though we have identified the parts in the power traces that correspond
to processing of the secret key k, an important practical issue still remains. In
our adversarial model, the adversary possesses a CryptoMemory device that is
already configured. Thus, he does not know the secret key k. In order to run the
mutual authentication protocol, an adversary needs to provide an authenticator
ar to the device. However, as the attacker cannot compute this value correctly,
the CryptoMemory device will not authenticate the host and, as a consequence, it
will decrease the associated AAC. Given that the user zones become inaccessible
to the host after four failed authentication attempts, an adversary can collect
at most three power traces before permanently locking the device. The issue is
that three traces are clearly not sufficient to carry out a successful DPA attack.

There are several ways to try to deal with this limitation. If the application
under attack were to use the same key in all deployed CryptoMemory devices,
then it would suffice to collect power measurements from several devices. One
could also try to take many measurements from a single device, effectively sac-
rificing it. But as can be seen in Figure 4(c), once the AAC value is set to x00
the device no longer computes the authenticators and measurements would thus
be worthless. Therefore, an adversary could obtain at most four power traces
per device tested. However, a scenario in which all devices share a single key k
seems unlikely to be found in secure deployments3.

An alternative could be to use template attacks as introduced by Chari et
al. [18]. The devices provided by Atmel in evaluation kits, completely config-
urable by the user, could be used to build such templates. We expect template
attacks to require very few power traces from the target device, but it is not clear
if three traces would suffice, due to the large cipher state. We did not investigate
this approach further as we were interested in more simple attack paths.

3 Atmel actually recommends to diversify keys in all CryptoMemory deployments by
combining the configurable device ID with a unique master key [8], e.g. using a hash
function.

Power Analysis of Atmel CryptoMemory 29

We followed a more intuitive approach to overcome the limitation imposed
by the AACs. Recall from Figure 4 that all the information required to perform
DPA, i.e. key-dependent information in power measurements, is obtained while
the value nr is being sent to the card. In other words, the information is available
to the attacker before the card actually decreases the value of AAC. Our approach
consists in injecting a negative pulse in the RST signal of the device before the
new value of AAC is written into configuration memory. Doing so forces the
device to reset its state before beginning the EEPROM write operation.

A successful implementation of this simple procedure is shown in Figure 6.
Besides the I/O and power traces, the figure also shows the RST signal input
to the device. Injecting a pulse on the RST line right after sending the payload
data successfully resets the device. This can be observed on the I/O line, as the
device sends its Answer-To-Reset (ATR) value to the host device right after the
rising edge in RST. Note also that the first EEPROM write pattern indicating
AAC being decreased does not appear in the power trace.

Fig. 6. I/O, RST, and power traces during interrupted authentication

The timing of the RST pulse is far from critical as the adversary can inject it
at any point after the reception of nr and before the first EEPROM writing, i.e.
during the transmission of the value ar. Recall that the transmission of a bit in
the I/O line requires 372 clock cycles, and a byte transmission requires a total
of 12 bits (1 start bit, 8 data bits, 1 parity bit, and 2 stop bits) [3]. Taking that
into account, the adversary has an interval of 35 712 clock cycles in which the
RST pulse can be sent to the card.

Note that resetting the device before the EEPROM writings implies that
the value nt can never be updated. As a consequence, all power measurements
collected using this approach will correspond to the same device randomness nt.
Although in other scenarios this characteristic could be problematic, in our case
it does not limit the success or applicability of DPA attacks. This is because an
attacker can still provide varying values of nr for each authentication attempt,
which is fed into the Atmel cipher some ticks before the key k.

Differences with CryptoMemory Packaged ICs. Besides some particular-
ities caused by the use of TWI instead of T=0, the overall behavior of Cryp-
toMemory packaged ICs resembles what we have presented until now. Most
important is the fact that the calculation of the parameters (a′r, a

′
t) is done

in exactly the same way as in the smart card, i.e. on-the-fly while the host
sends the values (nr, ar). It is thus possible to identify which zones of the power

30 J. Balasch et al.

measurements correspond to which states of the Atmel cipher during the feeding
of the values (nt, nr, k).

The main physical difference between CryptoMemory packaged ICs and smart
cards is that the former do not have an external RST pin. This could have been
a problem, but an “equivalent” mechanism to overcome the AACs consists in
cutting the supply voltage (VCC) before the counters are decreased. Similarly
to the RST mechanism the timing accuracy to cut the voltage is not critical,
and the adversary has plenty of time to perform it4.

Once the power traces are obtained, the attacks on CryptoMemory in smart
card form and in IC form are identical and lead to very similar results.

4 Power Analysis Attack

We obtained a set of 1000 power traces sampled during executions of the mutual
authentication protocol, for which we provided random nonces nr to the device
and, each time, reset it as described above.

We processed the traces with a simple routine that extracts the peaks high-
lighted in Figure 5, yielding a new set of highly compressed and well aligned
traces. Contrary to typical attacks on block cipher implementations, the key
bytes can not be recovered independently but should be recovered in the order
in which they are fed into the Atmel cipher implementation, i.e. first k0, then
k1, etc.

We first investigated the feasibility of basic DPA attacks that recover k one
byte at a time. We used a Hamming distance power model on the full cipher
state, i.e. the total number of bit flips in the transition from state s to state s′,
and Pearson’s correlation coefficient as distinguisher [17].

As explained in Section 2, each key byte is fed into the cipher three times
in consecutive cipher ticks. Our basic attack worked best when we attacked the
last cipher tick that fed in a given key byte, e.g. for byte k0 the transition from
state s29 to s30.

Figure 7 exemplarily shows the results we obtained when attacking k6 (the
worst case). The left part of the figure shows the correlation coefficients for all
256 hypotheses, plotted over “time”, computed using all 1000 measurements.
The right part of the figure shows the evolution of the maximum and minimum
correlation peaks per key hypothesis, plotted over the number of traces used.
We verified that all key bytes can be recovered in this way using less than 500
traces.

Our slightly more elaborate attack additionally exploits two simple facts.
First, we know exactly which sample in the power traces corresponds to which
cipher tick. Thus, the attack focuses on the correct sample in the traces and
ignores all other samples that appear as noise. Second, each key byte is fed into

4 CryptoMemory packaged ICs require the host to perform acknowledge polling after
sending a mutual authentication command. If the host does not send any polling
command the IC is effectively idle, which gives enough room for an adversary to
switch off the supply voltage.

Power Analysis of Atmel CryptoMemory 31

Fig. 7. Results of basic DPA attack. Correlation coefficients per key hypothesis (left),
and evolution of correlation peaks per key hypothesis (right).

the cipher three times. Thus, the attack targets all three transitions and adds
up the obtained correlation coefficients, per key hypothesis.

In addition, the attack further exploits that the dependence of the cipher
state on k grows only slowly and byte per byte. Similar to the strategy described
in [19], the attack does not aim to immediately identify the exact value of a key
byte, but it maintains a list of the best candidate values and re-evaluates them
when attacking the next key bytes.

We verified that this enhanced attack recovers the correct key k using less
than 100 measurements. We note that both attacks, from measurements to full
key recovery, can be carried out in less than 20 minutes on a standard laptop.
Algebraic side-channel analysis would perhaps allow to work with even fewer
traces, but it requires to build templates.

5 Implications and Countermeasures

We have shown that an adversary can easily extract the secret authentication
key(s) k from CryptoMemory devices using basic, well-understood power anal-
ysis techniques. As a consequence, the adversary can perform all actions that
any authenticated host could perform. This includes reading the memory, which
allows to clone the device, and manipulating its memory contents at will.

The success of our attack is due to two design flaws in CryptoMemory. First,
the implementation of the Atmel cipher is not protected by countermeasures
against power analysis attacks, except for the AACs that limit the number of
traces that can be obtained from a device before it locks itself to at most three.
And second, an inadequate handling of the AACs that allows an adversary to
bypass this limitation and to obtain any number of measurements from a given
device without locking it.

A simple way to prevent our attack would be to modify the handling of the
AACs. As learned from our experiments, CryptoMemory performs the authen-
tication procedure as follows: compute the authenticators, decrease the value of
AAC, compare the authenticators, and update the value of AAC according to
success/failure when writing nt in memory. This sequence can also be extracted

32 J. Balasch et al.

from Figures 4(a) and 4(b). Atmel explicitely states that this procedure is used
“to prevent attacks” [7]. In fact, the method protects only the comparison op-
eration and is often used e.g. in SIM cards during PIN verification. Our attacks
do, however, not target the comparison operation but the time instants when
the secrets are manipulated. Since CryptoMemory manipulates the secret key(s)
before it decreases AAC, the counters can be easily bypassed with a reset. A
more secure handling of the AACs could be to decrease the counter right upon
reception of a mutual authentication command, and prior to the reception of
the payload data and computation of the authenticators.

Protecting against more sophisticated attacks than ours may require to imple-
ment some of the well-known countermeasures against power analysis attacks,
e.g. noise generators and power filters at the hardware level, or masking, random
delays, and shuffling at the circuit level [25].

6 Conclusions

CryptoMemory is advertised to be used as a secure element in larger systems,
in a way that only authorized hosts with knowledge of the correct authentica-
tion keys can have access to the protected memory contents. It is ensured that
CryptoMemory “permanently lock these values [secret keys] after device person-
alization and guarantee these values can never be read” [8].

In this work we have shown how to extract such keys by using well-understood
power analysis techniques. CryptoMemory uses fuses to lock access control poli-
cies, access control to protect memory contents, and AACs to strengthen access
control. Therefore, a large part of CryptoMemory’s security relies on the AACs,
that we identified as a not sufficiently protected point of failure.

Acknowledgments. This work was supported in part by the European Com-
missions ECRYPT II NoE (ICT-2007-216676), by the Belgian States IAP pro-
gram P6/26 BCRYPT, and by the Research Council K.U. Leuven: GOA TENSE
(GOA/11/007). Josep Balasch and Roel Verdult are funded by a PhD grant
within the covenant between the universities K.U. Leuven and R.U. Nijmegen.
Benedikt Gierlichs is a Postdoctoral Fellow of the Fund for Scientific Research -
Flanders (FWO).

References

1. AT88SC0204 ChipResetter, http://chipreset.atw.hu/6/index61.html
2. Coinamatic, http://www.coinamatic.com
3. ISO/IEC 7816-3: Identification cards - integrated circuit(s) cards with contacts -

part 3: Electronic signals and transmission protocols (1997)
4. Labgear HDSR300 High Definition Satellite Receiver. User Guide,

http://www.free-instruction-manuals.com/pdf/p4789564.pdf

5. Anderson, D.: Understanding CryptoMemory - The World’s Only Secure Serial
EEPROM, http://www.atmel.com/atmel/acrobat/doc5064.pdf

http://chipreset.atw.hu/6/index61.html
http://www.coinamatic.com
http://www.free-instruction-manuals.com/pdf/p4789564.pdf
http://www.atmel.com/atmel/acrobat/doc5064.pdf

Power Analysis of Atmel CryptoMemory 33

6. Atmel. CryptoMemory features, http://www.atmel.com/microsite crypto

memory/iwe/index.html?source=tout other2
7. Atmel. CryptoMemory Specification,

http://www.atmel.com/atmel/acrobat/doc5211.pdf
8. Atmel. CryptoMemory Powerful Security at Low Cost,

http://www.atmel.com/atmel/acrobat/doc5259.pdf
9. Atmel. CryptoRF Specification,

http://www.atmel.com/atmel/acrobat/doc5276.pdf
10. Atmel. News Release,

http://www.cryptomemorykey.com/pdfs/AtmelPR.pdf

11. Atmel. Secure Memory with Authentication AT88SC153,
http://www.atmel.com/atmel/acrobat/doc1016.pdf

12. Atmel. Secure Memory with Authentication AT88SC1608,
http://www.atmel.com/atmel/acrobat/doc0971.pdf

13. Atmel Corporation. Plug-and-Play Crypto Chip for Host-Side Security,
http://www.atmel.com/dyn/corporate/view detail.asp?ref=&FileName=

Cryptocompanion 2 26.html&SEC NAME=Product

14. Benhammou, J.P., Jarboe, M.: Security at an affordable price. Atmel Applications
Journal, 29–30 (2004)

15. Biryukov, A., Kizhvatov, I., Zhang, B.: Cryptanalysis of the Atmel Cipher in Se-
cureMemory, CryptoMemory and CryptoRF. In: Lopez, J., Tsudik, G. (eds.) ACNS
2011. LNCS, vol. 6715, pp. 91–109. Springer, Heidelberg (2011)

16. Bogdanov, A.: Linear Slide Attacks on the KeeLoq Block Cipher. In: Pei, D., Yung,
M., Lin, D., Wu, C. (eds.) Inscrypt 2007. LNCS, vol. 4990, pp. 66–80. Springer,
Heidelberg (2008)

17. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

18. Chari, S., Rao, J.R., Rohatgi, P.: Template Attacks. In: Kaliski Jr., B.S., Koç,
Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003)

19. Eisenbarth, T., Kasper, T., Moradi, A., Paar, C., Salmasizadeh, M., Shalmani,
M.T.M.: On the Power of Power Analysis in the Real World: A Complete Break of
the KeeLoq Code Hopping Scheme. In: Wagner, D. (ed.) CRYPTO 2008. LNCS,
vol. 5157, pp. 203–220. Springer, Heidelberg (2008)

20. Garcia, F.D., de Koning Gans, G., Muijrers, R., van Rossum, P., Verdult, R.,
Schreur, R.W., Jacobs, B.: Dismantling MIFARE Classic. In: Jajodia, S., Lopez, J.
(eds.) ESORICS 2008. LNCS, vol. 5283, pp. 97–114. Springer, Heidelberg (2008)

21. Garcia, F.D., van Rossum, P., Verdult, R., Schreur, R.W.: Dismantling Secure-
Memory, CryptoMemory and CryptoRF. In: Keromytis, A., Shmatikov, V. (eds.)
Proceedings of ACM CCS 2010, pp. 250–259. ACM Press (2010)

22. Kasper, M., Kasper, T., Moradi, A., Paar, C.: Breaking KeeLoq in a Flash: On
Extracting Keys at Lightning Speed. In: Preneel, B. (ed.) AFRICACRYPT 2009.
LNCS, vol. 5580, pp. 403–420. Springer, Heidelberg (2009)

23. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

24. Lee, J., Pahl, N.: Bypassing Smart-Card Authentication and Blocking Debiting:
Vulnerabilities in Atmel CryptoMemory based Stored-Value Systems. DEFCON 18
(2010)

25. Messerges, T.: Power analysis attack countermeasures and their weaknesses. In:
CEPS Workshop (2000)

http://www.atmel.com/microsite_cryptomemory/iwe/index.html?source=tout_other2
http://www.atmel.com/microsite_cryptomemory/iwe/index.html?source=tout_other2
http://www.atmel.com/atmel/acrobat/doc5211.pdf
http://www.atmel.com/atmel/acrobat/doc5259.pdf
http://www.atmel.com/atmel/acrobat/doc5276.pdf
http://www.cryptomemorykey.com/pdfs/AtmelPR.pdf
http://www.atmel.com/atmel/acrobat/doc1016.pdf
http://www.atmel.com/atmel/acrobat/doc0971.pdf
http://www.atmel.com/dyn/corporate/view_detail.asp?ref=&FileName=Cryptocompanion_2_26.html&SEC_NAME=Product
http://www.atmel.com/dyn/corporate/view_detail.asp?ref=&FileName=Cryptocompanion_2_26.html&SEC_NAME=Product

34 J. Balasch et al.

26. Moradi, A., Barenghi, A., Kasper, T., Paar, C.: On the Vulnerability of FPGA
Bitstream Encryption against Power Analysis Attacks Extracting Keys from Xilinx
Virtex-II FPGAs. In: Danezis, G., Shmatikov, V. (eds.) Proceedings of ACM CCS
2011, pp. 111–124. ACM Press (2011)

27. Nohl, K., Evans, D., Starbug, Plötz, H.: Reverse-engineering a cryptographic RFID
tag. In: Proceedings of USENIX 2008, pp. 185–193. USENIX Association (2008)

28. NVIDIA. Checklist for Building a PC that Plays HD DVD or Blu-ray Movies,
ftp://download.nvidia.com/downloads/pvzone/Checklist for Building a

HDPC.pdf

29. Oswald, D., Paar, C.: Breaking Mifare DESFire MF3ICD40: Power Analysis and
Templates in the Real World. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS,
vol. 6917, pp. 207–222. Springer, Heidelberg (2011)

30. Hearst Electronic Products. Microsoft Zune HD 16GB, what’s inside,
http://www2.electronicproducts.com/Microsoft Zune HD 16GB-whatsinside

text-89.aspx

31. Tektronix. DPO7000C Oscilloscope Series,
http://www.tek.com/products/oscilloscopes/dpo7000/

32. Viksler, H.: Web Laundry (In)Security,
http://ihackiam.blogspot.com/2010/09/web-laundry-insecurity.html

33. Xilinx. XUP Virtex-II Pro Development System User Manual,
http://www.xilinx.com/univ/XUPV2P/Documentation/ug069.pdf

ftp://download.nvidia.com/downloads/pvzone/Checklist_for_Building_a_HDPC.pdf
ftp://download.nvidia.com/downloads/pvzone/Checklist_for_Building_a_HDPC.pdf
http://www2.electronicproducts.com/Microsoft_Zune_HD_16GB-whatsinside_text-89.aspx
http://www2.electronicproducts.com/Microsoft_Zune_HD_16GB-whatsinside_text-89.aspx
http://www.tek.com/products/oscilloscopes/dpo7000/
http://ihackiam.blogspot.com/2010/09/web-laundry-insecurity.html
http://www.xilinx.com/univ/XUPV2P/Documentation/ug069.pdf

Short Transitive Signatures for Directed Trees

Philippe Camacho and Alejandro Hevia

Dept. of Computer Science, University of Chile,
Blanco Encalada 2120, 3er piso, Santiago, Chile

{pcamacho,ahevia}@dcc.uchile.cl

Abstract. A transitive signature scheme allows us to sign a graph in
such a way that, given signatures on edges (a, b) and (b, c), it is possi-
ble to compute the signature on edge (a, c) without the signer’s secret.
Constructions for undirected graphs are known but the case of directed
graphs remains open. A first solution for the particular case of directed
trees (DTTS) was given by Yi at CT-RSA 2007. In Yi’s construction,
the signature for an edge is O(n log(n log n)) bits long in the worst case
where n is the number of nodes. A year later in Theoretical Computer
Science 396, Neven proposed a simpler scheme where the signature size is
reduced to O(n log n) bits. Although this construction is more efficient,
O(n log n)-bit long signatures still remain impractical for large n.

In this work, we propose a new DTTS scheme such that, for any value
λ ≥ 1 and security parameter κ: (a) edge signatures are only O(κλ) bits
long, (b) signing or verifying an edge signature requires O(λ) crypto-
graphic operations, and (c) computing (without the secret key) an edge
signature in the transitive closure of the tree requires O(λn1/λ) crypto-
graphic operations. To the best of our knowledge this is the first con-
struction with such a trade off.

Our construction relies on hashing with common-prefix proofs, a new
variant of collision resistance hashing. A family H provides hashing with
common-prefix proofs if for any H ∈ H, given two strings X and Y equal
up to position i, a prover can convince anyone that X[1..i] is a prefix of
Y by sending only H(X),H(Y), and a small proof. We believe that this
new primitive will lead to other interesting applications.

Keywords: Transitive Signatures, Collision-Resistant Hashing.

1 Introduction

Transitive signatures is a primitive introduced by Micali and Rivest [14] where a
signer wants to authenticate a graph. The main property of such scheme is that,
given the signatures of edges (a, b) and (b, c), it is possible to compute - without
the knowledge of the secret - a signature for the edge (a, c). In their work, the
authors propose an efficient scheme for undirected graphs based on the difficulty
of computing discrete logarithm for large groups. They left the existence of a
transitive signature scheme for directed graph (DTS) as a challenging open
question.

O. Dunkelman (Ed.): CT-RSA 2012, LNCS 7178, pp. 35–50, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

36 P. Camacho and A. Hevia

The easier problem of transitive signatures for directed trees (DTTS) was
first addressed by Yi [19]. Solutions for this case, even though it is a special
kind of directed graph, are still interesting in practice. For example they allow
to implement efficient military chains of command where the presence of a path
between a and b means b must execute orders of a. Yi’s construction, based
on a special assumption for the RSA cryptosystem, yields signatures of size
O(n log(n logn)) bits, where n is the number of nodes of the tree. Neven [16]
described a simpler solution based only on the existence of standard digital
signatures which also reduces signature size to O(n log n) bits.

In this work, we describe a new construction for a DTTS scheme that enjoys
much better worst-case complexity. We obtain a scheme where, for any λ ≥ 1, (a)
signing or verifying an edge signature requires O(λ) cryptographic operations,
and (b) computing (without the secret key) an edge signature in the transitive
closure of the tree requires O(λn1/λ) cryptographic operations. Also, signature
size is substantially improved: our signatures are only O(κλ) bits, where κ is
the security parameter. In particular, if λ = log(n) then signatures are only
O(κ log(n)) bits, while allowing efficient signature computation (O(log(n) time).
Alternatively, by setting for example λ = 2, we obtain optimal signature sizes of
O(2 · κ) = O(κ) bits if we are willing to afford O(

√
n) computation.

Our Approach. There are two main ideas in our construction. First, we use
the following fact observed by Dietz [9]. Let Pre and Post be the two strings
representing the sequences of nodes obtained by pre-order and post-order (re-
spectively) traversal of a given tree T . Dietz observed that there exists a path
from a to b if and only if a appears before b in Pre and b appears before a
in Post. This property captures the fact that the tree is directed (from top to
bottom) and gives us a characterization of the existence of a path between two
nodes. Armed with this result, we reduce the problem of deciding whether there
is a path between vertices a and b to comparing the position of a and b in a
string sequence S. Doing this efficiently is not trivial as the tree can grow, which
means the string S dynamically changes. An order data structure – a concept
also introduced in [9] – does exactly what we need: it supports element insertions
into a sequence while still providing an efficient method to decide element order.
Roughly speaking, we implement such data structure via a binary search tree
B, where each pair of elements x and y in S are associated to nodes x, y ∈ B
(respectively), each with efficiently computable short labels �(x) and �(y). We
then are able to define the relation “a appears before b in the sequence S” as a
total order relation ≺ which can be efficiently evaluated only from �(a) and �(b).

To achieve this, we use a labelling technique – based on tries [10] – which
allows efficient and incremental computations of labels for new elements. Any
newly inserted element v in T is mapped to a node v in B whose label �(v) will
share all but the last bit with another already computed label (see details in
Section 4). Thus, whether an element a comes before some other element b in S
can then be efficiently tested by lexicographical comparison between the labels
associated to the corresponding nodes in B. With this at hand, we then use two

Short Transitive Signatures for Directed Trees 37

of these data structures to keep track of Pre and Post lists and to test Dietz’s
condition on any pair of elements.

The problem, however, is that labels ofO(n) bits are now associated to vertices
of the n-node tree T , so at first sight little has been gained: signature length
is now O(n) bits compared to O(n logn) bits in Neven’s construction. That is
when our second idea comes into play: We use a new kind of collision-resistant
hash function with an extra property. Given only two hash values H(A), H(B)
and a small proof one can convince a verifier that A and B share a common
prefix up to a position i. We call this new primitive hashing with common-prefix
proofs. This tool allows us to prove Dietz’s condition using only hashed labels
(and a constant size proof), effectively compressing the signature.

We further improve our construction by showing how to balance the work
between the verifier and the combiner (the participant who combines edge sig-
nature without the help of the signer) using the natural idea of hashing con-
secutive chunks of the initial string to obtain a shorter one, and repeat this
operation several times. This technique leads to a novel tradeoff O(λn1/λ) vs.
O(λ) for λ ≥ 1 between the time to compute a proof versus the time to verify
a proof. The security of our primitive is based on the q-Bilinear Diffie Hellman
Inversion assumption, introduced by Boneh and Boyen [3].

Related Work. The concept of transitive signatures was introduced by Rivest
and Micali [14] who also gave constructions for undirected graphs. Bellare and
Neven in [2], as well as Shahandashti et al. in [17], introduced new schemes based
on bilinear maps (but still for undirected graphs). Hohenberger [12] showed that
the existence DTS implies the existence of abelian groups where inversion is
computationally infeasible except when given a trapdoor. Such groups are not
known to exist either. Transitive signatures are a special case of homomorphic
signatures, a primitive introduced by Rivest and explored in [13,5,4]. In [18], a
stateless DTTS scheme with constant size signature (as opposed to ours which
is constant size but stateful) is proposed but without security proof. Finally,
we observe that using accumulators techniques [7,8] we can improve Neven’s
construction [16] in order to obtain short signatures. Such a solution, however,
does not provide two key properties we achieve in this work. In particular, we
want the computation of edge signatures to be paralellizable, and a scheme that
allows unbounded growth for the trees (our construction is able to increase the
bound on the number of nodes by dynamically updating setup parameters, see
Sect. 3). We explore a DTTS construction based on accumulators in the full
version [6].

Our contributions. First, we propose a new practical DTTS scheme which,
to the best of our knowledge, is the most efficient one to the date. Our scheme
also provides a flexible tradeoff between signature computation and verification.
To achieve this goal, we describe a general and practical new type of collision-
resistant hashing called hashing with common-prefix proofs (HCPP). HCPP
functions enable efficient proofs that certain strings share common-prefixes.

38 P. Camacho and A. Hevia

We believe that this primitive may lead to many applications in the field of
authenticated data structures.

Organization of the paper. In Section 2, we introduce notations, definitions
for DTTS, and the complexity assumptions we use. Section 3 describes our new
primitive in detail. Then in Section 4, we show how to use hashing with common-
prefix proofs to obtain a practical DTTS scheme. We conclude in Section 5.

2 Preliminaries

Notations and Conventions. If κ ∈ N is the security parameter then 1κ

denotes the unary string with κ ones. A function ν : N → [0, 1] is said to be
negligible in κ if for every polynomial p(·) there exists κ0 such that ∀κ > κ0 :
ν(κ) < 1/p(κ). In the following, neg will denote some negligible function in κ.
An algorithm is called PPT if it is probabilistic and runs in polynomial time

in κ. We write x
R← X to denote an element x chosen uniformly at random

from a set X . Finally, in the rest of this work, we use the convention that time
complexities are expressed in terms of the number of cryptographic operations
(signatures, group exponentiations, and bilinear map computations).

Strings. A string S of size m = |S| is a sequence of symbols S[1], S[2], ..., S[m]
from some alphabet Σ. We assume there is a total order relation < over Σ.
If m = 0 then S = ε is the empty string. S[i..j] denotes the substring of S
starting at position i and ending at position j (both S[i] and S[j] are included).
In particular if A = S[1..j] for some j ≥ 0 then we say that A is a prefix of S
(by convention A[1..0] for any string A is the empty string ε). The concatenation
operator on strings is denoted as ||. We say a string C is a common prefix of
A and B if C is prefix of A and also of B. String C is said to be the longest
common prefix of A and B if C is a common-prefix of A and B but C||σ is not
a common prefix of A and B for any symbol σ ∈ Σ. Without lost of generality,
we assume < is the (standard) lexicographical order on {0, 1}∗. We single out $
as a special symbol that is used only to mark the end of a string, and satisfies
0 < $ < 1. We define the extended lexicographical order≺ on {0, 1}∗ as following:
let X,Y ∈ {0, 1}∗ and X ′ = X ||$, Y ′ = Y ||$ strings obtained by appending the
end marker to X,Y . We say that X ≺ Y ⇔ X ′ < Y ′.

Trees. Let T = (V,E) be a directed tree. The transitive closure of T is T ∗ =
{(a, b) : a, b ∈ T and there is a path from a to b}. When considering depth-
first traversals of a tree, we denote by Pre and Post the strings formed by
concatenating the successive labels of the nodes visited in a pre-order (i.e. the
node is appended to the string when it is visited for the first time) respectively
post-order (i.e. the node is appended to the string when it is visited for the last
time). Our construction also makes use of binary tries [10], a type of binary
tree, which associate labels to each node as follows. First, for each node, the
edge going to a left (resp. right) child is tagged 0 (resp. 1). Then, the label for
the node is obtained by concatenating the tags on the edges in a path from the

Short Transitive Signatures for Directed Trees 39

root to the node. This way, any node x in the trie B can be identified by its
associated label X ∈ {0, 1}∗. Given some label X , we denote by node(X) the
corresponding node in B if it exists. We say a node x′ ∈ B is a descendant of x
if x′ belongs to the sub-tree rooted at x or equivalently if there is a path from
x to x′. The lowest common ancestor of two nodes x, y of B is the node z such
that x and y belong to the sub-tree rooted at z, and for any child z′ of z, x or
y is not a descendant of z′.

Collision Resistance and Standard Signatures Schemes. The family of
functions H is said to be collision-resistant (CRHF) if, for H : {0, 1}∗ → {0, 1}κ
uniformly chosen at random in H, any computationally bounded adversary can
not find two different messagesM andM ′ such thatH(M) = H(M ′) except with
negligible probability. Let AlgH(·) be a PPT algorithm that computes H , then if
AlgH(·) is fed with input X and returns y, we write X = H−1(y). We denote by
SSig = (SKG, SSig, SVf) a standard signature scheme. A pair of private/public
keys is created by running SKG(1κ). Given a message M ∈ {0, 1}∗, a signature
on M under pk is σM = SSig(sk,M). A signature σ on M is deemed valid if
and only if SVf(pk,M, σ) returns valid. Regarding security, we use the standard
notion of existential unforgeability under chosen message attack [11].

Transitive Signatures for Directed Trees. In a transitive signature
scheme for directed trees, the signer can dynamically sign edges in a directed
tree. Then without the secret, given two signed edges (a, b) and (b, c) it is pos-
sible to combine them into a signature on the edge (a, c). This property enables
the computation of signature on any path in the tree.

Definition 1. (Transitive Signature Scheme, [14,16]) A transitive signature
scheme for directed trees is a tuple DTTS = (TSKG,TSign,TSComp,TSVf) where:

– TSKG(1κ) : returns a pair of private/public keys (tsk, tpk).
– TSign(tsk, a, b) : returns the signature τ(a,b) of edge (a, b).
– TSComp((a, b), τ(a,b), (b, c), τ(b,c), tpk): returns a combined signature τ(a,c) on

edge (a, c). Note that the secret key is not required.
– TSVf((a, b), τ, tpk) : returns valid if τ is a valid signature for the path (a, b)

and ⊥ otherwise.

A transitive signature scheme is correct if both original signatures (those gen-
erated honestly with TSign) and combined signatures (those generated honestly
with TSComp) do verify correctly with TSVf. Intuitively, a transitive signature
scheme is secure if, for any PPT adversary it is infeasible to compute a signature
for a path outside the transitive closure of T .

Definition 2. (Security of Transitive Signature Schemes, [14,16]) Let DTTS be
a transitive signature scheme. Consider the following experiment. A PPT adver-
sary A is given the public key tpk of the scheme. A may ask for a polynomial
number of edge signatures to the oracle OTSign(·). Finally A outputs (a, b) and τ
where a, b are nodes in the tree T formed by the successive validly signed edges.
The advantage of A is defined by:

40 P. Camacho and A. Hevia

Advtuf-cma(A, κ) = Pr

[
(a, b) /∈ T ∗∧

TSVf((a, b), τ, tpk) = valid

]

The scheme is said to be secure if we have Advtuf-cma(A, κ) = neg(κ) for any
PPT adversary A.

A trivial solution for DTTS can be implemented by simply concatenating
standard edge signatures, in which case the size of a signature grows linearly
with the length of the path and may reach O(nκ) bits. Yi’s solution [19] with
O(n log(n logn))-bit signatures is clearly better than the trivial construction.
Neven’s DTTS scheme [16] manages to reduce signature sizes to O(n log n) bits.
We remark that both solutions need to maintain the state of the tree to compute
new edge signatures (as opposed to the initial definition [14]).

Our solution, like previous ones, is stateful. This state is shared by the signer
and a combiner . The role of this new participant (the combiner) is to compute,
without help from the signer , signatures for any edge in the transitive closure of
the tree.

Bilinear maps. Our construction for hashing with common-prefix proofs re-
quires the use of bilinear maps. Let G,GT , be cyclic groups of prime order p.
We consider a map e : G×G→ GT which is

– bilinear : ∀a, b ∈ G, x, y ∈ Zp : e(ax, by) = e(a, b)xy.
– non-degenerate: let g be a generator of G then e(g, g) also generates GT .
– efficiently computable: there exists a polynomial time algorithm BMGen with

parameter 1κ that outputs (p, Ĝ, ĜT , ê, g) where Ĝ, ĜT is the representation
of the corresponding groups of size p (p being a prime number of κ bits), g is
a generator of G, and ê is an efficient algorithm to compute the map. For the
sake of simplicity, we will not distinguish between G,GT , e, and Ĝ, ĜT , ê.

The security of our construction relies on the q-Billinear Diffie-Hellman Inversion
(q-BDHI) assumption which was introduced by Boneh and Boyen [3].

Definition 3. (q-BDHI assumption [3]) Let P = (p,G,GT , e, g)← BMGen(1κ),

s
R← Zp, and T = (g, gs, gs

2

, ..., gs
q

) for q ∈ N. The q-Bilinear Diffie-Hellman

Inversion (q-BDHI) problem consists in computing e(g, g)
1
s , given P and T .

We say the q-BDHI assumption holds if for any PPT adversary A we have:

Advq-BDHI(A, κ, q) = Pr
[
e(g, g)

1
s ← A(1κ, P, T)

]
= neg(κ)

3 Collision-Resistant Hashing with Common-Prefix
Proofs

Standard collision-resistant hash functions have the property of compressing
possibly large inputs strings to small ones. Moreover, because of collision re-
sistance, in practice hash functions are considered injective. This makes them

Short Transitive Signatures for Directed Trees 41

useful constructs to manipulate shorter strings without loosing much security. In
that context, proving some relations or predicates on pre-images using only the
corresponding hash values (and perhaps an additional short proof) is certainly
very useful. For example, given two hash values H(A), H(B), proving efficiently
predicates like |A − B| ≥ 10 or A < B may help to simplify some protocols or
make them more efficient.

With the above goal in mind, in this work we consider a predicate for strings
called CommonPrefix: given A,B ∈ Σm, for some m ∈ N, CommonPrefix(A,B, i)
= true if and only if A and B share a common prefix up to position i. More
concretely, we seek collision-resistant hash function families H with the following
property: given H(A) and H(B) where A and B share a common prefix until
position i, it should be possible to produce a certificate π such that running
a verification algorithm on inputs H(A), H(B), i, π one can be convinced that
CommonPrefix(A,B, i) = true. Any such scheme should be secure in the sense
that if CommonPrefix(A,B, i) = false then forging a proof π∗ that makes the
verification algorithm accept should be computationally infeasible. Clearly, there
exist trivial instantiations of this primitive: just considerH a standard (collision-
resistant) hash function and π = (A,B). Of course, this is not really useful as
the size of the certificate is proportional to the size of the longest string. Thus,
interesting implementations should have short certificates. Additionally, we want
hash function H to be efficiently updatable: given H(A) one should be able to
compute H(A||σ) for any string σ, without knowing A (this concept is also
known as incremental hashing [1]).

Given a CommonPrefix predicate we can now implement more interesting
predicates over strings such as Compare, where Compare(A,B) = true if and
only if A ≺ B (where ≺ is the extended lexicographical order): If A ≺ B it
follows that there exists a (possibly empty) common prefix C for A and B, such
that (1) D = C||σ is a prefix of A, (2) C||σ′ is a prefix of B, and (3) σ < σ′.
In summary, once we know how to do short proofs for CommonPrefix, using
incremental hashing we can compare any two strings by only their hash values.

Hashing with common-prefix proofs. Let κ ∈ {0, 1}∗ be the security pa-
rameter, PK ∈ {0, 1}κ some public key, and n ∈ N a bound on the size of the
input1 which is a polynomial in κ. We denote by H = {HPK,n,κ} a hash function
family.

Definition 4. (Hashing with common-prefix proofs - Syntax) A family H of
hash functions with common-prefix proofs (HCPP) is a 4-tuple of algorithms
(HGen,HEval,HProofGen,HCheck) where:

– HGen(1κ, n): given a bound n on the length of the strings to hash, this
probabilistic algorithm returns a public parameter PK. Value PK implicitly
defines a hash function H = HPK,n,κ ∈ H where H : {0, 1}n → {0, 1}κ.

1 Here we use intentionally the same variable name n for the size of the input of the
hash function as well as the number of nodes of the tree. Indeed, our full construction
for trees of n nodes presented in section 4.2 requires hashing n-bit strings.

42 P. Camacho and A. Hevia

– HEval(M,PK): given M ∈ {0, 1}n, this deterministic algorithm efficiently
computes and returns the string H(M) ∈ {0, 1}κ.

– HProofGen(A,B, i, PK): given two messages A, B ∈ {0, 1}n, and an index
1 ≤ i ≤ n, this deterministic algorithm computes a proof π ∈ {0, 1}κ that
will be used by the HCheck algorithm.

– HCheck(HA, HB, π, i, PK): a deterministic algorithm that, given HA, HB ∈
{0, 1}κ, two hash values, and a proof π ∈ {0, 1}κ, returns either valid or ⊥.

The scheme is said to be correct if for any strings A,B and i ∈ N such that
CommonPrefix(A,B, i) = true, and π = HProofGen(A,B, i, PK), we have that
HCheck on inputs (H(A), H(B), π, i, PK) returns valid.

The notion of security is also rather natural: for any PPT adversary A it
should be difficult to compute two n-bit strings A,B, an index i ∈ {1, . . . , n},
and a proof π ∈ {0, 1}κ such that HCheck(H(A), H(B), π, i, PK) returns valid
but A[1..i] = B[1..i]. Note that the adversary is required to output pre-images
A and B to win, which guarantees that the hash values H(A) and H(B) have
been correctly computed.

Definition 5. (HCPP Security) Let H be a family of hash functions with
common-prefix proofs and A a PPT adversary. The HCPP advantage of A is

AdvHCPP
H (A, κ, n) = Pr

⎡
⎣PK ← HGen(1κ, n);A,B, π, i← A(1κ, n, PK) :
A[1..i] = B[1..i] ∧HA = H(A) ∧HB = H(B)∧

HCheck(HA, HB, π, i, PK) = valid

⎤
⎦

We say H is a secure hash function family with common-prefix proofs (HCPP)
if for every PPT A, we have AdvHCPP

H (A, κ, n) = neg(κ).

The following proposition states that hashing with common-prefix proofs implies
(standard) collision resistance. We omit the proof.

Proposition 1. Let H be a family of hash functions with common-prefix proofs.
Then H is a collision-resistant hash function family.

The Construction. We assume that the description of the hash function H
– i.e. the tuple (gs, gs

2

, ..., gs
n

) of the n-BDHI problem – has been computed
securely by a trusted third party or using multi-party computations techniques.

The basic idea is to represent a binary string M by H(M)
def
= gM [1]s · gM [2]s2 · · ·

gM [n]sn . Now if some message M ′ is equal to M up to position i then the value

Δ = H(M)
H(M ′) =

∏n
j=i+1 g

cjs
j

, where cj ∈ {−1, 0, 1}, will be a product of powers

of gs
j

for 1 ≤ j ≤ n where for all j ≤ i the exponents are equal to 0. Yet,

the related value π =
∏n

j=i+1 g
cjs

j−(i+1)

can easily be computed given M ,M ′

and H . The intuition behind the proof is that as M and M ′ are equal up to
position i then we can represent the difference between M and M ′ using only
n − i positions. Thus, verifying proof π simply consists in testing if using the
bilinear map we can “shift forward” the exponents in the proof by i positions, to
obtain Δ. More precisely, π will be a valid proof for H(M), H(M ′) if and only

if e(H(M)
H(M ′) , g) = e(π, gs

i+1

). Details follow.

Short Transitive Signatures for Directed Trees 43

Definition 6. (Hashing with Common-Prefix Proofs - Scheme) Let PH be the
scheme defined by the following algorithms:

– HGen(1κ, n): Run BMGen(1κ) to obtain P = (p,G,GT , e, g). Let s
R← Zp,

and T = (g, gs, gs
2

, ..., gs
n

). Return PK = (P, T).

– HEval(M,PK): M ∈ {0, 1}n. Compute H(M) =
∏n

j=1 g
M [j]sj . ReturnH(M).

– HProofGen(A,B, i, PK): Given n-bits strings A,B, let C be the array such

that ∀j ∈ {1, . . . , n} : C[j] = A[j]−B[j]. Return π =
∏n

j=i+1 g
C[j]sj−(i+1)

.

– HCheck(HA, HB, π, i, PK): Compute Δ = HA

HB
. If i = n and Δ = 1 return

valid. If i < n return valid if e(Δ, g) = e(π, gs
i+1

), otherwise return ⊥.

Proposition 2. Under the n-BDHI assumption the hash functions family de-
fined by the scheme PH is HCPP secure.

Proof. Given an adversaryA that breaks the HCPP security of PH, we construct
an adversary B that breaks the n-BDHI assumption as follows. Once B receives
the parameters (P, T = (g, gs, gs

2

, . . . , gs
n

)) as input, it forwards them to A.
Eventually A will output values A,B, π, i such that HCheck(H(A), H(B), π, i,
PK) = valid. Then, B computes the array C defined as C[j] = A[j]−B[j] = cj
for j ∈ {1, . . . , n}. Let k be the smallest index such that ck = 0. Clearly i−k > 0

since A[1..i] = B[1..i]. From the validity of π, we have that e(Δ, g) = e(π, gs
i+1

),

and thus π = Δ
1

si+1 . Then:

E = e(π, gs
i−k

) = e(Δ
1

si+1 , gs
i−k

)

=
∏n

j=k e(g, g)
cjs

j−k−1

= e(g, g)
ck
s

∏n
j=k+1 e(g, g)

cjs
j−k−1

= e(g, g)
ck
s D

As all cj are known, and ck = ±1, B can compute (ED)1/ck = e(g, g)
1
s .

Additional properties. The HCPP family H in our construction is homo-
morphic in the following sense: for any H ∈ H, and any bit b, H(M ||b) =

H(M) · H(0|M|||b). Moreover, since H(0|M|||b) = gbs
|M|+1

can be computed in
constant time w.r.t |M |, our construction yields in fact an incremental hash
function [1]. We call such combination of properties incremental hashing with
common-prefix proofs and it is what we actually require in our most efficient
construction. In terms of efficiency, both the computation of the hash function
and the proof can be easily parallelizable as they involve only group multiplica-
tions. In particular, with O(n) processors, we can compute a proof using only
O(log n) (sequential) group multiplications. Also, note that handling strings of
length m > n can be done dynamically, without having to recompute any proof,
by simply extending the public parameter T = (g, gs, gs

2

, . . . , gs
n

) say by in-
voking the distributed procedure (or calling the trusted generator) to compute

gs
n+1

, . . . , gs
m

.

44 P. Camacho and A. Hevia

4 Short Transitive Signatures for Directed Trees

Our construction for DTTS is based on the following idea: handling a growing
tree can be reduced to maintaining two ordered sequences, one corresponding
to the pre-order tree traversal and another to the post-order tree traversal in a
depth-first search. This was first observed by Dietz [9].

Proposition 3. ([9]) Let T be a tree of n nodes and consider a depth-first
traversal. Let Pre and Post be the strings formed by the nodes that are visited
in pre-order and post-order respectively, then for any pair of nodes a, b in T , b
is descendant of a if and only if ∃i, j : 0 < i < j and ∃i′, j′ : 0 < j′ < i′ such
that:

(Pre[i] = a ∧ Pre[j] = b) ∧ (Post[i′] = a ∧ Post[j′] = b)

For example, consider the tree depicted in Fig. 1, last row, first column. For that
tree, Pre = acdbe and Post = dcbea. Since there is a path from c to d, c appears
before d in Pre and d appears before c in Post. Also note that if there is no path
from some node x to another node y then y may appear before x in Pre or x
may appear before y in Post. See for example pairs (c, b), (e, d) or (b, a).

The challenge in using this result is that the ordered sequences are dynamic –
new elements can be inserted between any two existent elements. This problem
is addressed by the so called order data structure [9,15]. Such a data structure
allow us to compare any pair of labels and also insert a new label so that it may
lie between two existing ones. A naive way - mentioned in [9] - to implement
the proposed data structure would be to consider the interval [0..2n − 1] for the
labels; to insert an element between X and Y one would use label Z = �X+Y

2 �.
This way we can always find the label for an element between any two others
and the comparison algorithm consists in comparing the labels. Unfortunately,
this solution does not suffice for our application since the string representation
of a new label cannot be easily obtained from already computed labels, and the
signer must sign labels of length n for each new edge. So our first improvement
is a new order data structure with the following property: If X and Y are two
consecutive labels,then every new computed label Z such that X ≺ Z ≺ Y will
share all bits except one with X or Y .

Before describing our construction we introduce the formal definition of or-
der data structure [15]. Jumping ahead, we use this data structure to efficiently
create and update labels in U = {0, 1}∗, as well as to compare them using ex-
tended lexicographical order as the relation≺U . The particular mapping between
elements in lists Pre and Post to labels will depend on our construction.

Definition 7. Let (U ,≺U) be a totally ordered set of labels. An order data struc-
ture over U consists of three algorithms:

– ODSetup() : initializes the data structure.
– ODInsert(X,Y) : Let X and Y be two consecutive labels. Compute a new

label Z such that X ≺U Z ≺U Y .
– ODCompare(X,Y): returns true if and only if X ≺U Y .

Short Transitive Signatures for Directed Trees 45

Our construction for order data structure uses binary tries [10] to handle labels.
As mentioned before, in a trie, the label for a node is obtained by concatenating
the labels on the edges in a path from the root to the node. Comparing two
labels then reduces to comparing the labels as binary strings w.r.t. their extended
lexicographical order.

Construction 1. Let OrderDS be the order data structure over universe
({0, 1}∗,≺) defined by the following operations:

– ODSetup(): create a trie B with a single root node r. The label associated to
the root node is R = ε.

– ODInsert(X,Y) : If B has only one node with label R (root) then if X = R
(thus Y can be ignored) add a node node(Z) as the right child of R. Return
Z = R||1. If Y = R then add node(Z) as the left child of R. Return Z = R||0.
If B has at least two nodes, then search node(X) and node(Y), the nodes
associated to labels X and Y , in the binary tree. If node(Y) belongs to the
right sub-tree of node(X) then add node(Z) as the left child of node(Y);
Return Z = Y ||0.
If node(X) belongs to the left sub-tree of node(Y) then add node(Z) as the
right child of node(X). Return Z = X ||1.

– ODCompare(X,Y) : Return true if and only if X ≺ Y .

In terms of efficiency, we observe that in the worst case, the longest path of a
n-node tree is n, so labels are O(n) bits. It is also easy to see that for any pair of
consecutive labels X,Y the label Z returned by ODInsert(X,Y) is equal to X ||b
or Y ||b where b ∈ {0, 1}. Looking ahead, this property turns out to be crucial to
obtain our most efficient construction as these strings will be compressed using
the hash function with common-prefix proofs H introduced in the previous sec-
tion. Moreover, the homomorphic property of H will allow us to compute H(Z)
from H(X) or H(Y) in only a constant number of cryptographic operations.

4.1 Basic Construction

Our first construction is based only on standard digital signatures, as Neven’s
construction. The scheme is as follows. Each time an edge (and thus a vertex)
is inserted into the tree T two lists (one for pre-order Pre and another for
post-order Post) are updated with the newly inserted element. We efficiently
implement the latter by maintaining two order data structures OrderDSPre and
OrderDSPost, one for each list. More precisely, each element x ∈ T is associated
with a label XPre (resp. XPost) computed by the order data structure for pre-
order (resp. post-order). (As a convention, the label associated to each element
x ∈ T for list Pre is denoted by XPre, using the same symbol but in capital
letter and indexed by the list name. Same for Post.) We then use ODCompare
to evaluate if x appears before some y in Pre (resp. Post), which simply verifies
that XPre ≺ YPre and YPost ≺ XPost.

46 P. Camacho and A. Hevia

Construction 2. (DTTS from Standard Digital Signatures)
Let SSig = (SKG, SSig, SVf) be a standard digital signature scheme. The

scheme BasicDTTS is as follows.

– TSKG(1κ) : Run SKG to generate a pair of keys (sk, pk). Set tsk = sk and
tpk = pk. Initialize two order data structures OrderDSPre and OrderDSPost
to maintain the sequences for pre-order and post-order tree traversal re-
spectively. Set T = (V,E) as the tree with a single root r. We define two
tables �Pre[·] and �Post[·] that map nodes in T to their respective labels in
OrderDSPre and OrderDSPost respectively. That is, if x ∈ V , �Pre[x] will re-
turn XPre and �Post[x] will return XPost, the labels bound to x in OrderDSPre
and OrderDSPost respectively. We set �Pre[r] = �Post[r] = ε. Return (tsk, tpk).

– TSign(tsk, a, b) : If both a, b ∈ V or both a, b /∈ V or if the insertion does not
preserve the tree structure of T , return ⊥. (Recall that tree T is initialized
with a root node, so a, b should never be both not in V .)
Otherwise, let z ∈ {a, b} be the new vertex not yet in V and x ∈ {a, b} \ {z}
be the other one. Insert edge (a, b) in T , and update OrderDSPre, OrderDSPost
data structures to reflect the new pre-order and post-order tree traversal of T
as follows. Let y be the element in Pre such that z lies (strictly) between x and
y. Assume that x < z < y (the other case is similar). Let XPre = �Pre[x] and
YPre = �Pre[y]. Compute OrderDSPre.ODInsert(XPre, YPre) to obtain ZPre the
label associated to z in OrderDSPre. Similarly obtain ZPost the label associated
to z in OrderDSPost. Set �Pre[z] = ZPre and �Post[z] = ZPost. Then, compute
Mz = z||ZPre||ZPost and sign it to obtain σz = SSig(tsk,Mz). Now, obtain
XPost = �Post[x], and (re)compute signature σx = SSig(tsk,Mx) on Mx =
x||XPre||XPost. Return τ(x,z) = (Mx, σx,Mz, σz).

– TSComp((a, b), τ(a,b), (b, c), τ(b,c), tpk): Parse τ(a,b) as (Ma, σa,Mb, σb) and
τ(b,c) as (Mb, σb,Mc, σc). Return τ(a,c) = (Ma, σa,Mc, σc).

– TSVf((a, b), τ, tpk) : Parse τ as (Ma, σa,Mb, σb). If Ma or Mb are not of the
form (a,APre, APost) or (b, BPre, BPost) respectively, or if any signatures is
invalid, then return ⊥. Otherwise, verify that a appears before (resp. after)
b in Pre (resp. Post) by checking that ODCompare(APre, BPre) = true and
ODCompare(BPost, APost) = true. If verification succeeds return valid else
return ⊥.

Correctness and Security. We require that correct signatures, those hon-
estly computed by the signer as well as those combined by anyone from two exis-
tent signatures, verify correctly, meaning the verification algorithm on them re-
turns valid. To see this holds, it suffices to observe first, that the signing operation
preserves the tree structure of the graph, and second, that ODCompare(X,Y) is
true, if and only if x = �−1

Pre[X] (resp. y = �−1
Post[Y]) appears before y = �−1

Pre[Y]
(resp. x = �−1

Post[X]) in Pre (resp. Post) which allows correct verification by Di-
etz’s condition (namely, proposition 3). Our scheme is secure if the underlying
standard signature scheme is secure.

Theorem 1. If SSig is a signature scheme existentially unforgeable under cho-
sen message attack then BasicDTTS a is secure transitive signature scheme for
directed trees where edge signatures are O(n+ κ) bits long.

Short Transitive Signatures for Directed Trees 47

Step Tree T Pre/Post order
traversal

OrderDSPre OrderDSPost Labels

0 ε Pre = ε
Post = ε

r

ε ε

r

ε ε

�Pre[r] = ε
�Post[r] = ε

1 a

ε ε

Pre = a
Post = a

a

ε ε

a

ε ε

APre = ε
APost = ε

2 a

ε b

Pre = ab
Post = ba

a

ε b

a

b ε

BPre = 1
BPost = 0

3 a

c b

Pre = acb
Post = cba

a

ε b

c ε

a

b

c ε

ε

CPre = 10
CPost = 00

4 a

c

d

b

Pre = acdb
Post = dcba

a

ε b

c

ε d

ε

a

b

c

d ε

ε

ε

DPre = 101
DPost = 000

5 a

c

d

b e

Pre = acdbe
Post = dcbea

a

ε b

c

ε d

e

a

b

c

d ε

e

ε

EPre = 11
EPost = 01

Fig. 1. Example of order data structures after several insertions in a directed tree T
Step 0: The tree T to authenticate has no nodes. The sequences Pre and Post are
empty as well. The order data structure OrderDSPre and OrderDSPost contain a single
root node r. Each edge is marked implicitly by 0 (left child) and 1 (right child).
Step 1: The first node a of T is created. The pre/post-order lists contain only a. The
order data structures are updated by setting node a to be equal to r. In particular we
have that labels APre = APost = ε.
Step 2: A child b is added to a. Now the pre-order sequence Pre is equal to ab and the
post-order sequence is ba. As b comes after a in Pre we have that b is the right child
of a in OrderDSPre. Similarly b is the left child of a in OrderDSPost as it comes before a
in Post.
Step 3,4 and 5: We follow the same procedure and obtain for each node x its order
labels XPre and XPost respectively.

Comparing Two Node Labels: In step 5 we can check easily using the order labels
that for example d is a descendant of a. Indeed we have APre = ε and DPre = 101 which
means APre ≺ DPre. Also we can check that DPost = 000 ≺ APost = ε. We can also
observe that there is no path from b to c for example as CPre = 10 ≺ BPre = 1 and
also CPost = 00 ≺ BPost = 0.

4.2 Full Construction

We extend our basic construction as follows. Instead of comparing strings di-
rectly, we compare them by proving that labels from certain nodes contain the
labels of other nodes as prefixes. Such proofs are done using scheme PH. As
before, we use alphabet Σ = {0, $, 1} where 0 < $ < 1. That is, in order to
prove that two labels X,Y are such that X ≺ Y using their hashes H(X), H(Y)

48 P. Camacho and A. Hevia

instead of the strings, the combiner must compute: (1) the longest common
prefix C for X and Y , (2) a proof that C is a prefix of X up to position i = |C|,
(3) a proof that C is a prefix of Y up to position i = |C|, (4) a proof that C||c1
is a prefix of X ||$ up to position i + 1 for some c1 ∈ Σ, and (5) a proof that
C||c2 is a prefix of Y ||$ up to position i + 1, for some c2 ∈ Σ. Then, verifying
that X ≺ Y reduces to the checking of the proofs and verifying that c1 < c2.

Construction 3. (DTTS from HCPP)
Let PH = (HGen,HEval,HProofGen, HCheck) be a family of hash functions with
common-prefix proofs. The scheme PHDTTS consists of following algorithms:

– TSKG(1κ) : Do as in BasicDTTS and also generate the public parameters (ie.
PK) for the PH scheme. Return (tsk, tpk, PK).

– TSign(tsk, a, b) : Do as in BasicDTTS except that the message Mz to sign is
now Mz = z||HZPre

||HZPost
, where HZPre

= H(ZPre) and HZPost
= H(ZPost).

Store HZPre
and HZPost

on node z in the tree T . Notice that HZPre
, HZPost

can
be computed incrementally due to H’s homomorphism.

– TSComp((a, b), τ(a,b), (b, c), τ(b,c), tpk): Parse τ(a,b) as (Ma, σa,Mb, σb) and
τ(b,c) as (Mb, σb,Mc, σc). If σa, σb or σc is invalid, then reject. Parse Ma =
(a,HAPre

, HAPost
) and Mc = (c,HCPre

, HCPost
). Compute proof πPre as follows.

First, save (HAPre
, HAPost

, σa) on node a in T . Do the same with the infor-
mation for node b. Recover APre and CPre as the labels associated to a and c
respectively from OrderDSPre. Let DPre be the longest common prefix between
APre and CPre. Note that H(DPre) has already been computed by the signer
and thus Md = d ||H(DPre)||H(DPost), signature σd on Md are available to
the combiner. Let t = |DPre|. Compute the following values:
• π1 = HProofGen(DPre, APre, t, PK), π2 = HProofGen(DPre, CPre, t, PK)
• π3 = HProofGen(DPre||d1, APre||$, t+ 1, PK), and
• π4 = HProofGen(DPre||d2, CPre||$, t+ 1, PK)

where (d1, d2) ∈ {(0, $), (0, 1), ($, 1)}. Set π5 =
(Ma, σa,Mc, σc,Md, σd, t, d1, d2) and πPre = (π1, π2, π3, π4, π5). Compute
similarly πPost and return τ(a,d) = (πPre, πPost).

– TSVf((a, c), τ, tpk, PK) : If τ is of the form (Ma, σa,Mc, σc), verify that Ma

is a 3-tuple that starts with a and Mc with c, and return ⊥ if one of the signa-
ture σa or σc is invalid. Otherwise, extract πPre from τ = (πPre, πPost). Parse
πPre as (π1, π2, π3, π4, π5). Parse π5 as (Ma, σa,Mc, σc, Md, σd, t, d1, d2)
where Mx = x||XPre||XPost for x ∈ {a, c, d}. Check that all (standard) sig-
natures are valid under public key tpk. Check that d1, d2 ∈ Σ and d1 < d2.
Verify proofs π1, π2, π3, π4 using HCheck:
• HCheck(HDPre

, HAPre
, π1, t, PK), and HCheck(HDPre

, HCPre
, π2, t, PK),

• HCheck(HDPre
·H(0t||d1), HAPre

·H(0t||$), π3, t+ 1, PK), and
• HCheck(HDPre

·H(0t||d2), HCPre
·H(0t||$), π4, t+ 1, PK)

Perform the similar verifications relative to OrderDSPost. If all these
verifications pass return valid otherwise return ⊥.

Short Transitive Signatures for Directed Trees 49

This new construction combines the basic one with hashing with common-
prefix proofs so we can shrink the size of an edge signature to O(κ) bits. Further-
more, using a tradeoff technique for our hashing family we obtain the following
result2.

Theorem 2. Let λ ≥ 1. If SSig is a signature scheme existentially unforge-
able under chosen message attack and H is a family of secure hash functions
with common-prefix proofs, then PHDTTS with tradeoff is a secure DTTS scheme.
Moreover, (a) an edge signature is O(λκ) bits long can verified in O(λ) crypto-
graphic operations, (b) the signer has to perform O(λ) cryptographic operations
to sign an edge, and (c) computing the signature for any edge (in the transitive
closure of the tree) takes O(λn1/λ) cryptographic operations for the combiner.

5 Conclusion

In this work we propose a transitive signature scheme for directed trees which
achieves better worst-case complexity than previously known constructions, and
enables a practical trade off between the time to combine a signature, O(λn1/λ),
and the time to verify it, O(λ). However, the problem of building short and
stateless transitive signatures for directed trees remains open. Moreover, in order
to achieve the mentioned trade off, we introduce a new primitive hash functions
with common-prefix proofs. We believe it may find other useful applications.

Acknowledgements. The authors would like to thank the anonymous referees
for their valuable comments and suggestions to improve the quality of this paper.

References

1. Bellare, M., Goldreich, O., Goldwasser, S.: Incremental Cryptography: The Case
of Hashing and Signing. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839,
pp. 216–233. Springer, Heidelberg (1994)

2. Bellare, M., Neven, G.: Transitive Signatures: New Schemes and Proofs. IEEE
Transactions on Information Theory 51(6), 2133–2151 (2005)

3. Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity-Based Encryption
without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

4. Boneh, D., Freeman, D.: Homomorphic Signatures for Polynomial Functions. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer,
Heidelberg (2011)

5. Boneh, D., Freeman, D., Katz, J., Waters, B.: Signing a Linear Subspace: Signature
Schemes for Network Coding. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS,
vol. 5443, pp. 68–87. Springer, Heidelberg (2009)

2 Due to space constrainsts, the description of the trade off technique for the hash
function, its use in our signature scheme, and the security proofs are in the full
version of this paper [6].

50 P. Camacho and A. Hevia

6. Camacho, P., Hevia, A.: Short Transitive Signatures for Directed Trees. Full version
of this paper (2011), http://eprint.iacr.org/2011/438

7. Camenisch, J., Kohlweiss, M., Soriente, C.: An Accumulator Based on Bilin-
ear Maps and Efficient Revocation for Anonymous Credentials. In: Jarecki, S.,
Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 481–500. Springer, Heidelberg
(2009)

8. Camenisch, J., Lysyanskaya, A.: Dynamic Accumulators and Application to Effi-
cient Revocation of Anonymous Credentials. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002)

9. Dietz, P.F.: Maintaining order in a linked list. In: STOC, pp. 122–127. ACM Press
(1982)

10. Fredkin, E.: Trie memory. Communications of the ACM 3(9), 490–499 (1960)
11. Goldwasser, S., Micali, S., Rivest, R.L.: A Digital Signature Scheme Secure Against

Adaptive Chosen-Message Attacks. SIAM Journal on Computing 17(2), 281 (1988)
12. Hohenberger, S.: The Cryptographic Impact of Groups with Infeasible Inversion.

S.M. Thesis, MIT (May 2003)
13. Johnson, R., Molnar, D., Song, D.X., Wagner, D.: Homomorphic Signature

Schemes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262.
Springer, Heidelberg (2002)

14. Micali, S., Rivest, R.: Transitive Signature Schemes. In: Preneel, B. (ed.) CT-RSA
2002. LNCS, vol. 2271, pp. 236–243. Springer, Heidelberg (2002)

15. Bender, M.A., Cole, R., Demaine, E.D., Farach-Colton, M., Zito, J.: Two simplified
algorithms for maintaining order in a list. In: Möhring, R.H., Raman, R. (eds.) ESA
2002. LNCS, vol. 2461, pp. 152–164. Springer, Heidelberg (2002)

16. Neven, G.: A simple transitive signature scheme for directed trees. Theoretical
Computer Science 396(1-3), 277–282 (2008)

17. Shahandashti, S.F., Salmasizadeh, M., Mohajeri, J.: A Provably Secure Short Tran-
sitive Signature Scheme from Bilinear Group Pairs. In: Blundo, C., Cimato, S.
(eds.) SCN 2004. LNCS, vol. 3352, pp. 60–76. Springer, Heidelberg (2005)

18. Xu, J.: On Directed Transitive Signature (2009),
http://eprint.iacr.org/2009/209

19. Yi, X.: Directed Transitive Signature Scheme. In: Abe, M. (ed.) CT-RSA 2007.
LNCS, vol. 4377, pp. 129–144. Springer, Heidelberg (2006)

http://eprint.iacr.org/2011/438
 http://eprint.iacr.org/2009/209

Short Attribute-Based Signatures

for Threshold Predicates

Javier Herranz1, Fabien Laguillaumie2, Benôıt Libert3, and Carla Ràfols4

1 Universitat Politècnica de Catalunya, Dept. Matemàtica Aplicada IV, Spain
2 Université de Caen Basse - Normandie and CNRS/ENSL/INRIA/UCBL LIP,

Lyon, France
3 Université Catholique de Louvain, ICTEAM Institute – Crypto Group, Belgium

4 Universitat Rovira i Virgili, UNESCO Chair in Data Privacy, Tarragona, Catalonia

Abstract. Attribute-based cryptography is a natural solution for fine-
grained access control with respect to security policies. In the case of
attribute-based signatures (ABS), users obtain from an authority their
secret keys as a function of the attributes they hold, with which they
can later sign messages for any predicate satisfied by their attributes. A
verifier will be convinced of the fact that the signer’s attributes satisfy
the signing predicate while remaining completely ignorant of the identity
of the signer. In many scenarios where authentication and anonymity are
required, like distributed access control mechanisms in ad hoc networks,
the bandwidth is a crucial and sensitive concern. The signatures’ size of
all previous ABS schemes grows linearly in the number of attributes in-
volved in the signing predicate. We propose the first two attribute-based
signature schemes with constant size signatures. Their security is proven
in the selective-predicate and adaptive-message setting, in the standard
model, under chosen message attacks, with respect to some algorithmic
assumptions related to bilinear groups. The described schemes are for the
case of threshold predicates, but they can be extended to admit some
other (more expressive) kinds of monotone predicates.

1 Introduction

Attribute-based cryptography offers a real alternative to public-key cryptog-
raphy when the systems to be protected also require anonymity among users
following a security policy. In this setting, users obtain their secret keys from an
authority as a function of their attributes. The operation involving the secret
key proves somehow that the user holds a certain subset of attributes, without
leaking information on his identity or on his total set of attributes.

One of the major issues in attribute-based cryptography is to save bandwidth,
and in particular to get ciphertexts or signatures of constant size, i.e., not de-
pending on the number of involved attributes. Other important issues are the
construction of systems achieving security in the strongest possible model and
being as expressive as possible, i.e., admitting a wide variety of policies. The goal
of this work is to address the first question in the context of signature design.

O. Dunkelman (Ed.): CT-RSA 2012, LNCS 7178, pp. 51–67, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

52 J. Herranz et al.

Attribute-based cryptography first appeared in [15] with an attribute-based
encryption scheme, as an extension of fuzzy identity-based cryptosystems [29].
Since then, the notion of attribute-based encryption (ABE for short, conjugated
into key policy or ciphertext policy) has received a lot of attention (see, e.g.,
[2,17,20]), notably with attempts to compress ciphertexts (see [13,17,1]).

Attribute-based signatures (ABS) have been explicitly introduced more re-
cently in [24] (see also [30,21,22]), although the idea was implicitly considered
before (for instance, in [10]). They are related to the notion of (threshold) ring
signatures [28,9] or mesh signatures [8], but offer much more flexibility and versa-
tility to design secure complex systems, since the signatures are linked not to the
users themselves, but to their attributes. As a consequence, these signatures have
a wide range of applications, like private access control, anonymous credentials,
trust negotiations, distributed access control mechanisms for ad hoc networks or
attribute-based messaging (see [24] for detailed descriptions of applications). In
terms of security, ABS must first satisfy unforgeability, which guarantees that a
signature cannot be computed by a user who does not have the right attributes,
even if he colludes with other users by pooling together their secret keys. The
other security requirement is the privacy of user’s attributes, in the sense that a
signature should not leak any information about the actual attributes that have
been employed to produce it.

Related work. The schemes proposed by Maji, Prabhakaran, Rosulek in [24]
support very expressive signing predicates, but their most practical one is only
proven secure in the generic group model. The scheme of [27] is claimed to be
“almost optimally efficient”, although its signatures’ length grows linearly in
the size of the span program (which is greater than the number of involved
attributes in the signing predicate). Our result shows that specific families of
predicates (e.g., threshold predicates) allow for more compact signatures. Other
instantiations in [24] are secure in the standard model, but are substantially less
inefficient (i.e., signatures consist of a linear number of group elements in the se-
curity parameter) as they use Groth-Sahai proofs for relations between the bits of
elements in the group. In the standard model, Okamoto and Takashima designed
[27] a fully secure ABS which supports general non-monotone predicates. The
scheme is built upon dual pairing vector spaces [26] and uses proof techniques
from functional encryption [20]. Escala, Herranz and Morillo also proposed in
[14] a fully secure ABS in the standard model, with the additional property of
revocability, meaning that a third party can extract the identity of a signer in
case of dispute (thanks to a secret that can be computed by the master entity).
As it turns out, none of the previous schemes achieves constant-size signatures.

Our contribution. This paper describes the first two threshold ABS schemes fea-
turing constant-size signatures and proves them secure in the selective-predicate
setting (i.e., as opposed to the full security setting) in the standard model.
We hope our results will inspire ideas leading to the design of fully secure ABS
schemes with constant-size signatures and supporting more expressive predicates
than in this paper. The new schemes are built (non-generically) on two different

Short Attribute-Based Signatures for Threshold Predicates 53

constant-size attribute-based encryption schemes. In both schemes, n denotes
the maximum size of the admitted signing predicates.

– Our first scheme supports (weighted) threshold predicates for small1 uni-
verses of attributes. Its design is inspired by the constant-size ciphertext-
policy ABE scheme from [17] by Herranz, Laguillaumie and Ràfols, in the
sense that the signer implicitly proves his ability to decrypt a ciphertext by
using the Groth-Sahai proof systems [16], and by binding the signed message
(and the corresponding predicate) to the signature using a technique sug-
gested by Malkin, Teranishi, Vahlis and Yung [23]. The signature consists of
15 group elements, and the secret key of a user holding a set Ω of attributes
has |Ω|+n elements. Our scheme is selective-predicate and adaptive-message
unforgeable under chosen message attacks if the augmented multi-sequence
of exponents computational Diffie-Hellman assumption [17] and the Deci-
sion Linear assumption [5] hold. The privacy of the attributes used to sign
is proved in the computational sense under the Decision Linear assumption
[5].

– The second scheme supports threshold predicates (as well as compartmented
and hierarchical predicates) for large universes of attributes, which can be
obtained by hashing arbitrary strings. It is built upon a key-policy ABE
scheme proposed by Attrapadung, Libert and de Panafieu [1] and has signa-
tures consisting of only 3 group elements. The secret keys are longer than in
the first scheme, as they include (2n+2)× (|Ω|+n) group elements. On the
other hand, its selective-predicate and adaptive-message unforgeability relies
on the more classical n-Diffie-Hellman exponent assumption. Moreover, the
scheme protects the privacy of the involved attributes unconditionally.

Organization. Section 2 gives the algorithmic setting and defines the syntax
and the security properties of attribute-based signatures. In Sections 3 and 4
we describe our two constructions for threshold predicates. Section 5 discusses
extensions of both schemes to more general predicates.

2 Background

We will treat a vector as a column vector. For any α = (α1, . . . , αn)
� ∈ Zn

p ,

and any element g of a group G, gα stands for (gα1 , . . . , gαn)� ∈ Gn. The inner
product of a, z ∈ Zn

p is denoted as 〈a, z〉 = a�z. Given ga and z, (ga)z := g〈a,z〉

is computable without knowing a. For equal-dimension vectors A and B of
exponents or group elements, A · B stands for their component-wise product.
We denote by In the identity matrix of size n. For any set U , we define 2U =
{S | S ⊆ U}. Given a set S ⊂ Zp, and some i ∈ S, the i-th Lagrange basis
polynomial is ΔS

i (X) =
∏

j∈S\{i}(X − j)/(i− j).

1 i.e. polynomial in the security parameter, which is sufficient for many applications.

54 J. Herranz et al.

2.1 Complexity Assumptions

Our two schemes work in the setting of bilinear groups. That is, we use a pair
of multiplicative groups (G,GT) of prime order p with an efficiently computable
mapping e : G×G→ GT s.t. e(ga, hb) = e(g, h)ab for any (g, h) ∈ G×G, a, b ∈ Z
and e(g, h) = 1GT whenever g, h = 1G.

The security of our first scheme is partially based on the hardness of the com-
putational version of a problem appeared in [17] under the name of augmented
multi-sequence of exponents decisional Diffie-Hellman problem. Its decisional ver-
sion was proven to be hard in generic groups.

Definition 1 ((�̃, m̃, t̃)-aMSE-CDH - [17]). The (�̃, m̃, t̃)-augmented multi-
sequence of exponents computational Diffie-Hellman ((�̃, m̃, t̃)-aMSE-CDH) prob-
lem related to the group pair (G,GT) is to compute T = e(g0, h0)

κ·f(γ) when
κ, α, γ, ω are unknown random elements of Zp and g0 and h0 are generators of
G on input the vector x�̃+m̃ = (x1, . . . , x�̃+m̃)�, whose components are pairwise
distinct elements of Zp, and the values

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g0, g
γ
0 , . . . , g

γ �̃+t̃−2

0 , g
κ·γ·f(γ)
0 , (l.1)

gωγ
0 , . . . , gωγ �̃+t̃−2

0 , (l.2)

gα0 , g
αγ
0 , . . . , gαγ

�̃+t̃

0 , (l.3)

h0, h
γ
0 , . . . , h

γm̃−2

0 , h
κ·g(γ)
0 (l.4)

hω
0 , h

ωγ
0 , . . . , hωγm̃−1

0 , (l.5)

hα
0 , h

αγ
0 , . . . , hαγ2(m̃−t̃)+3

0 (l.6),

where f(X) =
∏�̃

i=1(X + xi) and g(X) =
∏�̃+m̃

i=�̃+1
(X + xi).

The security analysis of our first scheme also relies on the Decision Linear as-
sumption.

Definition 2 ([5]). In a group G of order p, the Decision Linear Problem
(DLIN) is to distinguish the distributions (g, ga, gb, ga·δ1 , gb·δ2 , gδ1+δ2) and

(g, ga, gb, ga·δ1 , gb·δ2 , gδ3), with a, b, δ1, δ2, δ3
R← Zp.

This problem is to decide if vectors g1 = (ga, 1, g)�, g2 = (1, gb, g)� and g3 =
(gaδ1 , gbδ2 , gδ3)� are linearly dependent in the Zp-module G3 formed by entry-
wise multiplication.

The security of our second scheme is based on a non-interactive and falsifiable
[25] assumption, the hardness of n-Diffie-Hellman Exponent problem, proven to
hold in generic groups in [4].

Definition 3 ([6]). In a group G of prime order p, the n-Diffie-Hellman Ex-

ponent (n-DHE) problem is, given a tuple (g, gγ , gγ
2

, . . . , gγ
n

, gγ
n+2

, . . . , gγ
2n

)

where γ
R← Zp, g

R← G, to compute gγ
n+1

.

Short Attribute-Based Signatures for Threshold Predicates 55

2.2 Groth-Sahai Proof Systems

To simplify the description, our first scheme uses Groth-Sahai proofs based on
the DLIN assumption and symmetric pairings, although instantiations based on
the symmetric external Diffie-Hellman assumption are also possible. In the DLIN
setting, the Groth-Sahai proof systems [16] use a common reference string com-
prising vectors g1, g2, g3 ∈ G3, where g1 = (g1, 1, g)

�, g2 = (1, g2, g)
� for some

g1, g2, g ∈ G. To commit to X ∈ G, one sets C = (1, 1, X)� · g1r · g2s · g3t

with r, s, t
R← Zp. In the soundness setting (i.e., when proofs should be per-

fectly sound), g3 is set as g3 = g1
ξ1 · g2ξ2 with ξ1, ξ2

R← Z∗
p. Commitments

C = (gr+ξ1t
1 , gs+ξ2t

2 , X · gr+s+t(ξ1+ξ2))� are then Boneh-Boyen-Shacham (BBS)
ciphertexts [5] that can be decrypted using a = logg(g1), b = logg(g2).

In contrast, defining g3 = g1
ξ1 · g2ξ2 · (1, 1, g−1)� gives linearly independent

{g1, g2, g3} and C is a perfectly hiding commitment. Moreover, proofs are per-
fectly witness indistinguishable (WI) in that two proofs generated using any two
distinct witnesses are perfectly indistinguishable. Under the DLIN assumption,
the WI and the soundness setting are computationally indistinguishable.

To prove that committed group elements satisfy certain relations, the Groth-
Sahai techniques require one commitment per variable and one proof element
(made of a constant number of group elements) per relation. Such proofs are
available for pairing-product relations, which are of the type

n∏
i=1

e(Ai,Xi) ·
n∏

i=1

·
n∏

j=1

e(Xi,Xj)
aij = tT , (1)

for variables X1, . . . ,Xn ∈ G and constants tT ∈ GT , A1, . . . ,An ∈ G, aij ∈ Zp,
for i, j ∈ {1, . . . , n}.

At some additional cost (typically, auxiliary variables have to be introduced),
pairing-product equations admit non-interactive zero-knowledge (NIZK) proofs
(this is the case when the target element tT has the special form tT =

∏t
i=1

e(Si, Ti), for constants {(Si, Ti)}ti=1 and some t ∈ N): on a simulated common
reference string (CRS), prepared for the WI setting, a trapdoor makes it pos-
sible to simulate proofs without knowing the witnesses. Linear pairing product
equations (where aij = 0 for all i, j in (1)) consist of only 3 group elements and
we only need linear equations here.

2.3 Syntax of Threshold Attribute-Based Signatures

We describe the syntax and security model of attribute-based signatures with
respect to threshold signing predicates Γ = (t, S), but the algorithms and security
model for more general signing predicates can be described in a very similar way.
In the threshold case, every message Msg is signed for a subset S of the universe
of attributes and a threshold t such that 1 ≤ t ≤ |S| of the sender’s choice.

An attribute-based signature ABS = (ABS.TSetup,ABS.MSetup,ABS.Keygen,
ABS.Sign,ABS.Verify) consists of five probabilistic polynomial-time (PPT)
algorithms:

56 J. Herranz et al.

– TSetup(λ,P , n): is the randomized trusted setup algorithm taking as input
a security parameter λ, an attribute universe P and an integer n ∈ poly(λ)
which is an upper bound on the size of threshold policies. It outputs a set
of public parameters pms (which contains λ, P and n). An execution of this
algorithm is denoted as pms← ABS.TSetup(1λ,P , n).

– MSetup(pms): is the randomized master setup algorithm, that takes as in-
put pms and outputs a master secret key msk and the corresponding master
public key mpk.We write (mpk,msk) ← ABS.MSetup(pms) to denote an ex-
ecution of this algorithm.

– Keygen(pms,mpk,msk, Ω): is a key extraction algorithm that takes in public
parameters pms, the master keys mpk and msk, and an attribute set Ω ⊂ P .
The output is a private key SKΩ. To denote an execution of this algorithm,
we write SKΩ ← ABS.Keygen(pms,mpk,msk, Ω).

– Sign(pms,mpk, SKΩ,Msg, Γ): is a randomized signing algorithm which takes
as input the public parameters pms, the master public key mpk, a secret key
SKΩ, a message Msg and a threshold signing policy Γ = (t, S) where S ⊂ P
and 1 ≤ t ≤ |S| ≤ n. It outputs a signature σ. We denote the action taken
by the signing algorithm as σ ← ABS.Sign(pms,mpk, SKΩ,Msg, Γ).

– Verify(pms,mpk,Msg, σ, Γ): is a deterministic verification algorithm taking
as input the public parameters pms, a master public key mpk, a message
Msg, a signature σ and a threshold predicate Γ = (t, S). It outputs 1 if the
signature is deemed valid and 0 otherwise. To refer to an execution of the
verification protocol we write b← ABS.Verify(pms,mpk,Msg, σ, Γ).

For correctness, for any λ ∈ N, any integer n ∈ poly(λ), any universe P , any
set of public parameters pms ← ABS.TSetup(1λ,P , n), any master key pair
(mpk,msk) ← ABS.MSetup(pms), any subset Ω ⊂ P and any threshold policy
Γ = (t, S) where 1 ≤ t ≤ |S|, it is required that

ABS.Verify
(
pms,mpk,Msg,ABS.Sign(pms,mpk, SKΩ,Msg, Γ), Γ

)
= 1

whenever SKΩ ← ABS.Keygen(pms,mpk,msk, Ω) and |Ω ∩ S| ≥ t.

2.4 Security of Threshold Attribute-Based Signatures

Unforgeability and privacy are the typical requirements for attribute-based sig-
nature schemes.

Unforgeability. An ABS scheme must satisfy the usual property of unforgeability,
even against a group of colluding users that pool their secret keys. We consider
a relaxed notion where the attacker selects the signing policy Γ � = (t�, S�) that
he wants to attack at the beginning of the game. However, the message Msg�

whose signature is eventually forged is not selected in advance. The attacker can
ask for valid signatures for messages and signing policies of his adaptive choice.
The resulting property of selective-predicate and adaptive-message unforgeability
under chosen message attacks (sP-UF-CMA, for short) is defined by considering
the following game.

Short Attribute-Based Signatures for Threshold Predicates 57

Definition 4. Let λ be an integer. Consider the following game between a prob-
abilistic polynomial time (PPT) adversary F and its challenger.

Initialization. The challenger begins by specifying a universe of attributes P as
well as an integer n ∈ poly(λ), which are sent to F . Then, F selects a subset
S� ⊂ P of attributes such that |S�| ≤ n and a threshold t� ∈ {1, . . . , |S�|}.
These define a threshold predicate Γ � = (t�, S�).

Setup. The challenger runs pms ← ABS.TSetup(1λ,P , n) and (mpk,msk) ←
ABS.MSetup(pms), and sends pms,mpk to the forger F .

Queries. F can interleave private key and signature queries.

Private key queries. F adaptively chooses a subset of attributes Ω ⊂ P
under the restriction that |Ω ∩ S�| < t� and must receive SKΩ ←
ABS.Keygen(pms,mpk,msk, Ω) as the answer.

Signature queries. F adaptively chooses a pair (Msg, Γ) consisting of a
message Msg and a threshold predicate Γ = (t, S) such that 1 ≤ t ≤ |S| ≤
n. The challenger chooses an arbitrary attribute set Ω ⊂ P such that
|Ω∩S| ≥ t, runs SKΩ ← ABS.Keygen(pms,mpk,msk, Ω) and computes2

a signature σ ← ABS.Sign(pms,mpk, SKΩ,Msg, Γ) which is returned to
F .

Forgery. At the end of the game, F outputs a pair (Msg�, σ�). We say that F
is successful if:

– ABS.Verify(pms,mpk,Msg�, σ�, Γ �) = 1, and
– F has not made any signature query for the pair (Msg�, Γ �).

The forger’s advantage in breaking the sP-UF-CMA security of the scheme is
defined as SuccsP-UF-CMA

F ,ABS (λ) = Pr[F wins]. A threshold attribute-based signature
scheme ABS is selective-predicate adaptive-message unforgeable (or sP-UF-CMA
unforgeable) if, for any PPT adversary F , SuccsP-UF-CMA

F ,ABS (λ) is a negligible func-
tion of λ.

Privacy (of Involved Attributes). This property ensures that a signature leaks
nothing about the attributes that have been used to produce it beyond the fact
that they satisfy the signing predicate. Privacy must hold even against attackers
that control the master entity and is defined via a game between an adversary D
and its challenger. Depending on the resources allowed to D and on its success
probability, we can define computational privacy and perfect (unconditional)
privacy.

Definition 5. Let λ ∈ N and consider this game between a distinguisher D and
its challenger.

Setup. The adversary D specifies a universe of attributes P and an integer
n ∈ poly(λ), that are sent to the challenger. The challenger runs pms ←

2 Since a given attribute set Ω may have many valid private keys SKΩ, a generalization
of the definition could allow F to obtain many signatures from the same private key
SKΩ . However, due to the signer privacy requirement, which is formalized hereafter,
this does not matter.

58 J. Herranz et al.

ABS.TSetup(1λ,P , n) and sends pms to D. The adversary D runs
(mpk,msk) ← ABS.MSetup(pms) and sends (mpk,msk) to the challenger
(who must verify consistency of this master key pair).

Challenge. D outputs a tuple (Γ,Ω0, Ω1,Msg), where Γ = (t, S) is a threshold
predicate such that 1 ≤ t ≤ |S| ≤ n and Ω0, Ω1 are attribute sets satisfying

|Ωb ∩ S| ≥ t for each b ∈ {0, 1}. The challenger picks a random bit β
R←

{0, 1}, runs SKΩβ
← ABS.Keygen(pms,mpk,msk, Ωβ) and computes σ� ←

ABS.Sign(pms,mpk, SKΩβ
,Msg, Γ), which is sent as a challenge to A.

Guess. D outputs a bit β′ ∈ {0, 1} and wins if β′ = β.

The advantage of D is measured in the usual way, as the distance AdvPrivD,ABS(λ) :=

|Pr[β′ = β]− 1
2 |.

A threshold attribute-based signature scheme ABS is said computationally
private if AdvPrivD,ABS(λ) is a negligible function of λ for any PPT distinguisher

D and it is said perfectly/unconditionally private if AdvPrivD,ABS(λ) = 0 for any
(possibly computationally unbounded) distinguisher D.

3 A First Short Attribute-Based Signature Scheme for
Threshold Predicates

We present here our first scheme to produce attribute-based signatures with
constant size, for threshold predicates. The secret key skΩ for a user holding a
set of attributes Ω contains |Ω|+n elements, where n is the maximum size of the
attribute set for any signing policy. This construction is for “small” universes of
attributes P = {at1, . . . , atη}, for some integer η ∈ N, as public parameters have
linear size in η; therefore, η must be polynomial in the security parameter of the
scheme. Attributes {ati}ηi=1 are arbitrary strings which some encoding function
ς maps to Z∗

p. Since the scheme is a small universe construction, we may set
n = η in the description hereafter.

The construction builds on the ABE scheme of Herranz et al. [17]. The in-
tuition is to have the signer implicitly prove his ability to decrypt a ciphertext
corresponding to that ABE scheme. This non-interactive proof is generated using
the Groth-Sahai proof systems [16], by binding the signed message (and the cor-
responding predicate) to the non-interactive proof using a technique suggested
by Malkin et al. [23]. In some sense, this technique can be seen as realizing
signatures of knowledge in the standard model: it consists in embedding the
message to be signed in the Groth-Sahai CRS by calculating part of the latter
as a “hash value” of the message. As noted in [23], Waters’ hash function [32]
is well-suited to this purpose since, in the security proof, it makes it possible
to answer signing queries using simulated NIZK proofs. At the same time, with
non-negligible probability, adversarially-generated signatures are produced using
a perfectly sound Groth-Sahai CRS and they thus constitute real proofs, from
which witnesses can be extracted.

In [23], the above technique was applied to an instantiation of Groth-Sahai
proofs based on the Symmetric eXternal Diffie-Hellman assumption (and thus

Short Attribute-Based Signatures for Threshold Predicates 59

asymmetric pairings). In this section, we adapt this technique so as to get it to
work with symmetric pairings and the linear assumption.

In the notations of the verification algorithm, when C = (C1, C2, C3)
� ∈ G3

is a vector of group elements and if g ∈ G, we denote by E(g,C) the vector of

pairing values
(
e(g, C1), e(g, C2), e(g, C3)

)�
.

� TSetup(λ,P , n): the trusted setup algorithm conducts the following steps.

1. Choose groups (G,GT) of prime order p > 2λ with an efficiently computable

bilinear map e : G×G→ GT . Select generators g, h
R← G and also choose a

collision-resistant hash function H : {0, 1}∗ → {0, 1}k, for some k ∈ poly(λ).
2. Define a suitable injective encoding ς sending each one of the n attributes

at ∈ P onto an element ς(at) = x ∈ Z�
p. Choose a set D = {d1, . . . , dn−1}

consisting of n − 1 pairwise different elements of Z∗
p, which must also be

different from the encoding of any attribute in P . For any integer i lower or
equal to n− 1, we denote as Di the set {d1, . . . , di}.

3. Generate Groth-Sahai reference strings by choosing random generators

g1, g2
R← G and defining vectors g1 = (g1, 1, g)

� ∈ G3 and g2 = (1, g2, g)
� ∈

G3. Then, for each i ∈ {0, . . . , k}, pick ξi,1, ξi,2
R← Zp at random and

define a vector g3,i = g1
ξi,1 · g2ξi,2 =

(
g
ξi,1
1 , g

ξi,2
2 , gξi,1+ξi,2

)�
. Exponents

{(ξi,1, ξi,2)}ki=0 can then be discarded as they are no longer needed.

The resulting public parameters are

pms =
(
P , n, λ, G, GT , g, h, g1, g2, {g3,i}ki=0, H, ς, D

)
.

� MSetup(pms): picks at random α, γ
R← Z∗

p and sets u = gαγ and v = e(gα, h).
The master secret key is msk = (α, γ) and the master public key consists of

mpk =
(
u, v, gα,

{
hαγi

}
i=0,...,2n−1

)
.

� Keygen(pms,mpk,msk, Ω): given an attribute set Ω and msk = (α, γ), pick

r
R← Z∗

p and compute

SKΩ =
({

g
r

γ+ς(at)

}
at∈Ω

,
{
hrγi

}
i=0,...,n−2

, h
r−1
γ

)
. (2)

� Sign(pms,mpk, SKΩ,Msg, Γ): to sign Msg ∈ {0, 1}∗ w.r.t. the policy Γ =
(t, S), where S ⊂ P is an attribute set of size s = |S| ≤ n and 1 ≤ t ≤ s ≤ n,
the algorithm returns ⊥ if |Ω ∩ S| < t. Otherwise, it first parses SKΩ as in (2)
and conducts the following steps.

1. Let ΩS be any subset of Ω ∩ S with |ΩS | = t. From all at ∈ ΩS , using the
algorithm Aggregate of [12], compute the value

A1 = Aggregate({g
r

γ+ς(at) , ς(at)}at∈ΩS) = g
r∏

at∈ΩS
(γ+ς(at)) .

From A1, compute T1 = A

1∏
at∈(S∪Dn+t−1−s)\ΩS

ς(at)

1 .

60 J. Herranz et al.

2. Define the value P(ΩS ,S)(γ) as

P(ΩS ,S)(γ) =
1

γ

⎛
⎝ ∏

at∈(S∪Dn+t−1−s)\ΩS

(γ + ς(at))−
∏

at∈(S∪Dn+t−1−s)\ΩS

ς(at)

⎞
⎠.

Since |ΩS | = t, the degree of P(ΩS ,S)(X) is n − 2. Therefore, from the pri-

vate key SKΩ, one can compute h
r·P(ΩS,S)(γ)/(

∏
at∈(S∪Dn+t−1−s)\ΩS

ς(at))
and

multiply it with the last element h
r−1
γ of SKΩ to obtain

T2 = h
r−1
γ · h

r
P(ΩS,S)(γ)∏

at∈(S∪Dn+t−1−s)\ΩS
ς(at)

.

Note that the obtained values T1, T2 ∈ G satisfy the equality

e(T2, u
−1) · e

(
T1, h

α· ∏
at∈(S∪Dn+t−1−s)

(γ+ς(at)))
= e(gα, h) (3)

and that, in the terms in the left-hand-side of equality (3), the second argu-
ment of each pairing is publicly computable using pms and mpk.

3. Compute M = m1 . . .mk = H(Msg, Γ) ∈ {0, 1}k and use M to form a
message-specific Groth-Sahai CRS gM = (g1, g2, g3,M). Namely, for i = 0
to k, parse g3,i as (gX,i, gY,i, gZ,i)

� ∈ G3. Then, define the vector g3,M =(
gX,0 ·

∏k
i=1 g

mi

X,i, gY,0 ·
∏k

i=1 g
mi

Y,i, gZ,0 ·
∏k

i=1 g
mi

Z,i

)�
.

4. Using the newly defined gM = (g1, g2, g3,M), generate Groth-Sahai com-

mitments to T1 and T2. Namely, pick r1, s1, t1, r2, s2, t2
R← Zp and compute

CTj = (1, 1, Tj)
� · g1rj · g2sj · g tj

3,M for j ∈ {1, 2}. Then, generate a NIZK
proof that committed variables (T1, T2) satisfy the pairing-product equation
(3). To this end, we introduce an auxiliary variable Θ ∈ G (with its own

commitment CΘ = (1, 1, Θ)� · g1rθ · g2sθ · g tθ
3,M , for rθ, sθ, tθ

R← Zp), which
takes on the value Θ = h, and actually prove that

e(T1, HS) = e(gα, Θ) · e(T2, u) (4)

e(g,Θ) = e(g, h), (5)

where HS = h
α· ∏

at∈(S∪Dn+t−1−s)

(γ+ς(at))

. The proofs for relations (4) and (5)
are called π1 and π2, respectively, and they are given by

π1 =
(
Hr1

S · (gα)−rθ · u−r2 , Hs1
S · (gα)−sθ · u−s2 , Ht1

S · (gα)−tθ · u−t2
)�

π2 =
(
grθ , gsθ , gtθ

)�
.

Finally, output the signature σ =
(
CT1 ,CT2 ,Cθ,π1,π2

)
∈ G15.

Short Attribute-Based Signatures for Threshold Predicates 61

� Verify(pms,mpk,Msg, σ, Γ): it first parses Γ as a pair (t, S) and σ as
(
CT1 ,CT2 ,

Cθ,π1,π2

)
. It computes M = m1 . . .mk = H(Msg, Γ) ∈ {0, 1}k and forms the

corresponding vector

g3,M =
(
gX,0 ·

k∏
i=1

gmi

X,i, gY,0 ·
k∏

i=1

gmi

Y,i, gZ,0 ·
k∏

i=1

gmi

Z,i

)�
∈ G3.

Then, parse the proofs π1 and π2 as vectors (π1,1, π1,2, π1,3)
� and

(π2,1, π2,2, π2,3)
�, respectively. Define HS = h

α· ∏
at∈(S∪Dn+t−1−s)

(γ+ς(at))

and return
1 if and only if these relations are both satisfied:

E(HS,CT1) = E(gα,Cθ) · E(u,CT2) ·E(π1,1, g1) · E(π1,2, g2) ·E(π1,3, g3,M) (6)

E(g,Cθ) = E
(
g, (1, 1, h)

)
· E(π2,1, g1) · E(π2,2, g2) · E(π2,3, g3,M). (7)

Correctness. The correctness follows from that of Groth-Sahai proofs.

Security Analysis. The scheme is selective-predicate and adaptive-message
unforgeable assuming the hardness of both the DLIN problem and the (�̃, m̃, t̃)-
aMSE-CDH problem. Computational privacy can be proven based on the hard-
ness of the DLIN problem.

Theorem 1. The scheme is selective-predicate and adaptive-message unforge-
able under chosen-message attacks assuming that (1) H is a collision-resistant
hash function; (2) the DLIN assumption holds in G; (3) the (�̃, m̃, t̃)-aMSE-CDH
assumption holds in (G,GT). (The proof can be found in [18]).

Theorem 2. This scheme has computational privacy, assuming that DLIN holds
in G.

Proof. (Sketch.) The proof consists in considering two games: Game0 and Game1.
The first game, Game0, is the real privacy game as described in Definition 5. In
particular, when executing the trusted setup algorithm ABS.TSetup, the chal-
lenger chooses the vectors (g1, g2, {g3,i}ki=0) such that g3,i is linearly dependent
with (g1, g2), for all i = 0, . . . , k. The only difference between Game1 and Game0
is that, in Game1, the vector g3,i is chosen at random so that it is linearly in-
dependent with (g1, g2), for all i = 0, . . . , k. Groth-Sahai [16] proved that this
change is indistinguishable, under the DLIN assumption. Finally, in Game1, the
only values that could leak any information about the subset of attributes held
by the signer are CT1 ,CT2 ,π1. But in the setting of Game1, these commitments
and proofs are perfectly hiding: they do not reveal any information about the
committed values T1, T2. Therefore, privacy of the attributes holds uncondition-
ally in Game1. ��

4 A Second Short Attribute-Based Signature Scheme for
Threshold Predicates

The main advantage of our second ABS scheme over the previous one is that
signatures are much shorter, since they have only three group elements. This

62 J. Herranz et al.

comes at the cost of longer secret keys skΩ, containing (2n + 2) × (|Ω| + n)
group elements. Another advantage is that the size of the considered universe of
attributes may be much larger, even exponential in the security parameter λ; we
only need that all attributes in the universe P are encoded as different elements
of Z∗

p.

� TSetup(λ,P , n): chooses a collision-resistant hash function H : {0, 1}∗ →
{0, 1}k, for some integer k ∈ poly(λ), as well as bilinear groups (G,GT) of prime

order p > 2λ with g
R← G. It also picks u0, u1, . . . , uk

R← G and sets U =
(u0, u1, . . . , uk)

�. It finally chooses a set D = {d1, . . . , dn} of n distinct elements
of Zp that will serve as dummy attributes.

The resulting public parameters are pms =
(
P , n, λ, G, GT , g, U , D, H

)
.

� MSetup(pms): randomly chooses α, α0
R← Zp, α = (α1, . . . , αN)� R← ZN

p ,

whereN = 2n+1. It then computes e(g, g)α, h0 = gα0 ,H = (h1, . . . , hN)� = gα.
The master secret key is defined to be msk = gα and the master public key is

mpk =
(
e(g, g)α, h0, H

)
.

� Keygen(pms,mpk,msk, Ω): to generate a key for the attribute set Ω, the
algorithm picks a polynomial QΩ[X] = α + β1X + · · · + βn−1X

n−1 where

β1, . . . , βn−1
R← Zp. Then, it proceeds as follows.

1. For each attribute ω ∈ Ω, choose a random exponent rω
R← Zp and generate

a key component SKω = (Dω,1, Dω,2,Kω,1, . . . ,Kω,N−1) where

Dω,1 = gQΩ(ω) · hrω
0 , Dω,2 = grω ,

{
Kω,i =

(
h−ωi

1 · hi+1

)rω}
i=1,...,N−1

. (8)

2. For each d ∈ D, choose a fresh random value rd ∈ Zp and generate a private
key component SKd = (Dd,1, Dd,2,Kd,1, . . . ,Kd,N−1) as in (8):

Dd,1 = gQΩ(d) · hrd
0 , Dd,2 = grd ,

{
Kd,i =

(
h−wi

1 · hi+1

)rd}
i=1,...,N−1

. (9)

The private key finally consists of SKΩ =
(
{SKω}ω∈Ω, {SKd}d∈D

)
.

� Sign(pms,mpk, SKΩ,Msg, Γ): to sign Msg ∈ {0, 1}∗ w.r.t. the policy Γ =
(t, S), where S is an attribute set of size s = |S| ≤ n and t ∈ {1, . . . , s}, the
algorithm first computes M = H(Msg, Γ) ∈ {0, 1}k and parses the private key
SKΩ as

(
{SKω}ω∈Ω, {SKd}d∈D

)
.

1. It considers the subset Dn−t ⊂ D containing the n − t first attributes of
D (chosen in some pre-specified lexicographical order). It also chooses an
arbitrary subset St ⊂ Ω∩S such that |St| = t and defines Y = (y1, . . . , yN)�

as the vector containing the coefficients of the polynomial

PS(Z) =

n−t+s+1∑
i=1

yiZ
i−1 =

∏
ω∈S

(Z − ω) ·
∏

d∈Dn−t

(Z − d). (10)

Short Attribute-Based Signatures for Threshold Predicates 63

Since n− t+ s+ 1 ≤ 2n+ 1 = N , the coordinates yn−t+s+2, . . . , yN are all
set to 0.

2. For each ω ∈ St, use SKω = (Dω,1, Dω,2, {Kω,i}N−1
i=1) to compute

D′
ω,1 = Dω,1 ·

N−1∏
i=1

K
yi+1

ω,i = gQΩ(ω) ·
(
h0 ·

N∏
i=1

hyi

i

)rω
. (11)

The last equality comes from the fact that PS(ω) = 0 for all ω ∈ S.
3. Likewise, for each dummy attribute d ∈ Dn−t, use SKd = (Dd,1, Dd,2,
{Kd,i}N−1

i=1) to compute

D′
d,1 = Dd,1 ·

N−1∏
i=1

K
yi+1

d,i = gQΩ(d) ·
(
h0 ·

N∏
i=1

hyi

i

)rd . (12)

4. Using {D′
ω,1}ω∈St and {D′

d,1}d∈Dn−t and the corresponding Dω,2 = grw ,
Dd,2 = grd , compute

D1 =
∏

ω∈St

D′
ω,1

Δ
St∪Dn−t
ω (0) ·

∏
d∈Dn−t

D′
d,1

Δ
St∪Dn−t
d

(0)
= gα · (h0 ·

N∏
i=1

hyi
i)r (13)

D2 =
∏
ω∈St

Dω,2
Δ

St∪Dn−t
ω (0) ·

∏
d∈Dn−t

Dd,2
Δ

St∪Dn−t
d (0) = gr, (14)

where r =
∑

ω∈St
Δ

St∪Dn−t
ω (0) · rω +

∑
d∈Dn−t

Δ
St∪Dn−t

d (0) · rd.
5. Parse M ∈ {0, 1}k as a string m1 . . .mk where mj ∈ {0, 1} for j = 1, . . . , k.

Then, choose z, w
R← Zp and compute

σ1 = D1 ·
(
h0 ·

N∏
i=1

hyi

i

)w · (u0 ·
k∏

j=1

u
mj

j

)z
, σ2 = D2 · gw, σ3 = gz.

Return the signature σ = (σ1, σ2, σ3) ∈ G3.

� Verify(pms,mpk,Msg, σ, Γ): it parses Γ as a pair (t, S). It computes M =
H(Msg, Γ) ∈ {0, 1}k and considers the subset Dn−t ⊂ D containing the n − t
first dummy attributes of D. Then, it defines the vector Y = (y1, . . . , yN)�

from the polynomial PS(Z) as per (10). The algorithm accepts the signature
σ = (σ1, σ2, σ3) as valid and thus outputs 1 if and only if

e(g, g)α = e(σ1, g) · e
(
σ2, h0 ·

N∏
i=1

hyi

i

)−1 · e
(
σ3, u0 ·

k∏
j=1

u
mj

j

)−1
. (15)

Correctness. The correctness of the scheme follows from the property that
for each attribute ω ∈ St ⊂ S ∩ Ω, the vector XN

ω = (1, ω, ω2, . . . , ωN−1) is
orthogonal to Y , so that we have

D′
ω,1 = gQΩ(ω) ·

(
h0 · h−(〈XN

ω ,Y 〉−y1)
1

N∏
i=2

hyi

i

)rω
= gQΩ(ω) ·

(
h0 ·

N∏
i=1

hyi

i

)rω
,

64 J. Herranz et al.

which explains the second equality of (11) and the same holds for (12). In addi-
tion, the values (D1, D2) obtained as per (13)-(14) satisfy e(D1, g) = e(g, g)α ·
e(h0 ·

∏N
i=1 h

yi

i , D2), which easily leads to the verification equation (15).

Security Analysis. This second scheme is selective-predicate and adaptive-
message unforgeable by reduction to the hardness of the n-Diffie-Hellman Ex-
ponent (n-DHE) problem ([6]). This scheme also enjoys unconditional privacy,
which is another advantage over our first scheme.

Theorem 3. The scheme is selective-predicate and adaptive-message unforge-
able under chosen-message attacks if H is collision-resistant and if the (2n+1)-
DHE assumption holds in G, where n is the maximal number of attributes in the
set S. (The proof can be found in [18].)

Theorem 4. This second ABS scheme enjoys perfect privacy.

Proof. A valid signature for the threshold policy (t, S) which was produced using
the subset of attributes St ⊂ S, |St| = t and with randomness w can also
be produced for any other set S′

t ⊂ S, |S′
t| = t with randomness w′. More

specifically, if r =
∑

ω∈St
Δ

St∪Dn−t
ω (0) · rω +

∑
d∈Dn−t

Δ
St∪Dn−t

d (0) · rd and r′ =∑
ω∈S′

t
Δ

St∪Dn−t
ω (0) · rω +

∑
d∈Dn−t

Δ
St∪Dn−t

d (0) · rd, any pair (w,w′) satisfying
r + w = r′ + w′ will result in the same signature for St and S′

t. ��

5 More General Signing Predicates

Our schemes admit some extensions to deal with more general monotone pred-
icates. In general, a predicate is a pair (S, Γ), where S = {at1, . . . , ats} is a set
of attributes and Γ ⊂ 2S is a monotone increasing family of subsets of S. An
attribute-based signature for a pair (S, Γ) convinces the verifier that the signer
holds some subset of attributes A ∈ Γ , without revealing any information on A.

5.1 Extensions for the First Scheme

Similarly to what is suggested in [12], our first signature scheme can be extended
to admit weighted threshold predicates, that is, pairs (S, Γ) for which there exists
a threshold t and an assignment of weights ω : S → Z+ such that Ω ∈ Γ ⇐⇒∑

at∈Ω ω(at) ≥ t.
Furthermore, since the final form of the signatures in our first threshold

scheme is that of a Groth-Sahai non-interactive proof, one could consider signing
predicates which are described by a monotone formula (OR / AND gates) over
threshold clauses. The Groth-Sahai proof would be then a proof of knowledge
of some values that satisfy a monotone formula of equations. The size of such a
proof (and therefore, the size of the resulting attribute-based signatures) would
be linear in the number of threshold clauses in the formula. We stress that this
is still better than having size linear in the number of involved attributes, as in
all previous constructions.

Short Attribute-Based Signatures for Threshold Predicates 65

5.2 Extensions for the Second Scheme

The idea of our second scheme is that a (threshold) attribute-based signature
can be computed only if the signer holds t attributes in S which, combined with
n − t dummy attributes, lead to n attributes at such that PS(at) = 0. This
makes it possible to interpolate a polynomial QΩ(X) with degree n− 1, recover
in some way the value gα and produce a valid signature. To admit any possible
value of the threshold t in {1, . . . , n}, the number of dummy attributes must be
n. We can use similar ideas for other families of predicates which are realized
with a secret sharing scheme with properties which resemble those of Shamir’s.
The ideas underlying this extension are quite related to those in [11], where
dummy attributes were used to design attribute-based encryption schemes for
general decryption predicates. An illustrative example, considering hierarchical
threshold predicates, is given in the full version of this paper [18].

Disclaimer and Acknowledgments. This work was started while the second
and third authors visited Universitat Politècnica de Catalunya. J. Herranz is sup-
ported by a Ramón y Cajal grant, partially funded by the European Social Fund
(ESF) of the Spanish MICINN Ministry, F. Laguillaumie by the French ANR-
07-TCOM-013-04 PACE Project and B. Libert by the F.RS.-F.N.RS. through a
“Chargé de recherches” fellowship and by the BCRYPT Interuniversity Attrac-
tion Pole. Both J. Herranz and C. Ràfols are partially supported by the Spanish
MICINN Ministry under project MTM2009-07694 and ARES – CONSOLIDER
INGENIO 2010 CSD2007-00004. C. Ràfols is with the UNESCO Chair in Data
Privacy, but the views expressed in this paper are her own and do not commit
UNESCO.

References

1. Attrapadung, N., Libert, B., de Panafieu, E.: Expressive Key-Policy Attribute-
Based Encryption with Constant-Size Ciphertexts. In: Catalano, D., Fazio, N.,
Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 90–108. Springer,
Heidelberg (2011)

2. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE S&P 2007, pp. 321–334. IEEE Society Press (2007)

3. Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity-Based Encryption
without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

4. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical Identity-Based Encryption with
Constant Size Ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 440–456. Springer, Heidelberg (2005)

5. Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

6. Boneh, D., Gentry, C., Waters, B.: Collusion Resistant Broadcast Encryption with
Short Ciphertexts and Private Keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005)

66 J. Herranz et al.

7. Boneh, D., Hamburg, M.: Generalized Identity-Based and Broadcast Encryption
Schemes. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 455–470.
Springer, Heidelberg (2008)

8. Boyen, X.: Mesh Signatures. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS,
vol. 4515, pp. 210–227. Springer, Heidelberg (2007)

9. Bresson, E., Stern, J., Szydlo, M.: Threshold Ring Signatures and Applications to
Ad-Hoc Groups. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 465–480.
Springer, Heidelberg (2002)

10. Chase, M., Lysyanskaya, A.: On Signatures of Knowledge. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 78–96. Springer, Heidelberg (2006)

11. Daza, V., Herranz, J., Morillo, P., Ràfols, C.: Extended access structures and their
cryptographic applications. Applicable Algebra in Engineering, Communication
and Computing 21(4), 257–284 (2010)

12. Delerablée, C., Pointcheval, D.: Dynamic Threshold Public-Key Encryption. In:
Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 317–334. Springer, Heidel-
berg (2008)

13. Emura, K., Miyaji, A., Nomura, A., Omote, K., Soshi, M.: A Ciphertext-Policy
Attribute-Based Encryption Scheme with Constant Ciphertext Length. In: Bao,
F., Li, H., Wang, G. (eds.) ISPEC 2009. LNCS, vol. 5451, pp. 13–23. Springer,
Heidelberg (2009)

14. Escala, A., Herranz, J., Morillo, P.: Revocable Attribute-Based Signatures with
Adaptive Security in the Standard Model. In: Nitaj, A., Pointcheval, D. (eds.)
AFRICACRYPT 2011. LNCS, vol. 6737, pp. 224–241. Springer, Heidelberg (2011)

15. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM CCS 2006, pp. 89–98. ACM
Press (2006)

16. Groth, J., Sahai, A.: Efficient Non-Interactive Proof Systems for Bilinear Groups.
In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

17. Herranz, J., Laguillaumie, F., Ràfols, C.: Constant-size Ciphertexts in Threshold
Attribute-Based Encryption. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010.
LNCS, vol. 6056, pp. 19–34. Springer, Heidelberg (2010)

18. Herranz, J., Libert, B., Laguillaumie, F., Ràfols, C.: Short attribute-based signa-
tures for threshold predicates (preprint) (2011),
http://hal.archives-ouvertes.fr/hal-00611651/fr/

19. Hofheinz, D., Kiltz, E.: Programmable Hash Functions and their Applications. In:
Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 21–38. Springer, Heidelberg
(2008)

20. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully Secure Func-
tional Encryption: Attribute-Based Encryption and (Hierarchical) Inner Product
Encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91.
Springer, Heidelberg (2010)

21. Li, J., Au, M.H., Susilo, W., Xie, D., Ren, K.: Attribute-based signature and its
applications. In: ASIACCS 2010, pp. 60–69. ACM Press (2010)

22. Li, J., Kim, K.: Hidden attribute-based signatures without anonymity revocation.
Information Sciences 180(9), 1681–1689 (2010)

23. Malkin, T., Teranishi, I., Vahlis, Y., Yung, M.: Signatures Resilient to Contin-
ual Leakage on Memory and Computation. In: Ishai, Y. (ed.) TCC 2011. LNCS,
vol. 6597, pp. 89–106. Springer, Heidelberg (2011)

http://hal.archives-ouvertes.fr/hal-00611651/fr/

Short Attribute-Based Signatures for Threshold Predicates 67

24. Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-Based Signatures. In:
Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 376–392. Springer, Hei-
delberg (2011)

25. Naor, M.: On Cryptographic Assumptions and Challenges. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003)

26. Okamoto, T., Takashima, K.: Homomorphic Encryption and Signatures from Vec-
tor Decomposition. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS,
vol. 5209, pp. 57–74. Springer, Heidelberg (2008)

27. Okamoto, T., Takashima, K.: Efficient Attribute-Based Signatures for Non-
Monotone Predicates in the Standard Model. In: Catalano, D., Fazio, N., Gennaro,
R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 35–52. Springer, Heidelberg
(2011)

28. Rivest, R.L., Shamir, A., Tauman, Y.: How to Leak a Secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)

29. Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

30. Shahandashti, S.F., Safavi-Naini, R.: Threshold Attribute-Based Signatures and
their Application to Anonymous Credential Systems. In: Preneel, B. (ed.)
AFRICACRYPT 2009. LNCS, vol. 5580, pp. 198–216. Springer, Heidelberg (2009)

31. Tassa, T.: Hierarchical threshold secret sharing. Journal of Cryptology 20(2), 237–
264 (2007)

32. Waters, B.: Efficient Identity-Based Encryption without Random Oracles. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer,
Heidelberg (2005)

Reducing the Key Size of Rainbow

Using Non-commutative Rings

Takanori Yasuda1, Kouichi Sakurai1,2, and Tsuyoshi Takagi3

1 Institute of Systems, Information Technologies and Nanotechnologies
2 Department of Informatics, Kyushu University

3 Institute of Mathematics for Industry, Kyushu University

Abstract. Multivariate Public Key Cryptosystems (MPKC) are can-
didates for post-quantum cryptography. Rainbow is a digital signature
scheme in MPKC, whose encryption and decryption are relatively effi-
cient. However, the security of MPKC depends on the difficulty in solving
a system of multivariate polynomials, and the key length of MPKC be-
comes substantially large compared with that of RSA cryptosystems for
the same level of security. The size of the public key in MPKC has been
reduced in previous research, but to the best of our knowledge, there are
no algorithms to reduce the size of a private key . In this paper, we pro-
pose NC-Rainbow, a variation of Rainbow using non-commutative rings
and we describe the ability of the proposed scheme to reduce the size of a
private key in comparison with the ordinary Rainbow while maintaining
the same level of security. In particular, using the proposed NC-Rainbow,
the size of a private key is reduced by about 75% at the 80 bit security
level. Moreover, the speed of signature generation is accelerated by about
34% at the 80 bit security level.

Keywords: Multivariate Public Key Cryptosystem, Digital signature,
Rainbow, Non-commutative ring, Key size reduction, Post-quantum
cryptography.

1 Introduction

Multivariate Public Key Cryptosystems (MPKC) [7] can be potentially applied
to post-quantum cryptography. Rainbow is a digital signature scheme in MPKC
that affords relatively efficient encryption and decryption [6]. However, the se-
curity of MPKC depends on the difficulty in solving a system of multivariate
polynomials, and a substantial number of their coefficients is required to attain
a reasonable level of security. Because the set of such coefficients is used for
public and secret keys, the key size eventually increases. In fact, in the case of
Rainbow(GF (256); 17, 13, 13), which is as secure as a 1024 bit RSA signature
scheme [19], the sizes of secret and public keys increase to about 150 and 200
times 1024 bits, respectively.

For a public key cryptosystem, it is important to study the reduction of key
size. In the case of RSA with a small key size, the lattice attack works efficiently

O. Dunkelman (Ed.): CT-RSA 2012, LNCS 7178, pp. 68–83, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Secret Key Reduction of Rainbow Using Non-commutative Rings 69

[26,5], whereas in the case of cryptosystems based on discrete logarithm, Pollard’s
λ-method [23,17] works efficiently [11]. Moreover, the key size of the McEliece
cryptosystem, which is another candidate for post-quantum cryptography, has
been reduced by Berger et al. [3]. In the case of Rainbow, it is known that
CyclicRainbow ([18,20,21]) reduces the size of the public key while maintaining
the security of the original Rainbow. However, to the best of our knowledge,
research on reducing the secret key size of Rainbow has yet to be reported.

In this paper, we try to reduce the secret key size of Rainbow by using
non-commutative rings. The proposed scheme is constructed by replacing a
definition field with a non-commutative ring in the original Rainbow scheme.
Non-commutative rings are a well-established topic in mathematics [10]; for ex-
amples, quaternion algebras and group rings have been studied in depth. A
non-commutative ring can be embedded into an appropriate matrix ring, which
yields a compact representation of elements. Therefore, if the matrices appearing
in the description of the secret key of Rainbow are described through embedding,
we are then able to obtain a compact representation of the secret key. Our pro-
posed scheme can also be regarded as a new method for constructing Rainbow.
In fact, for any construction of the proposed scheme, there is a corresponding
Rainbow with an identical public key.

It is necessary to evaluate the security of the proposed scheme. There are
six types of attacks that can occur against Rainbow [19], namely 1) direct, 2)
UOV, 3) MinRank, 4) HighRank, 5) Rainbow-Band-Separation(RBS), and (6)
UOV-Reconciliation (UOV-R) attacks. We estimate the security of the proposed
scheme by applying these attacks. Our analysis determines that these attacks are
unable to achieve a lower complexity and break the proposed scheme. Finally,
combining this cryptanalysis with the secure parameter recommended [19], we
present the parameters of the proposed non-commutative Rainbow at a security
level of more than 80 bits. For 80 bit security, the size of the secret key used
in the proposed scheme is reduced by about 75% and the speed of signature
generation is accelerated by about 34%.

1.1 Related Works

There are several cryptographic schemes constructed over non-commutative
rings. Some encryption schemes using the Braid group have been proposed [1,14].
Polly Cracker has been extended to non-commutative versions [24]. Moreover,
Sato and Araki proposed a scheme in the quaternion ring over Z/NZ for com-
posite number N [25], which Hashimoto and Sakurai extended to the case of
more variables [13]. These schemes constructed over Z/NZ were not aimed at
resisting quantum attacks, but then Yasuda and Sakurai presented a scheme
replacing Z/NZ with finite fields [29]. The scheme proposed by Yasuda and
Sakurai is essentially equivalent to the proposed NC-Rainbow, in a special case:
namely, when the size of each layer is fixed. On the other hand, the proposed
NC-Rainbow can choose layers of flexible size. In this paper we discuss the de-
tails of secure parameters of the proposed scheme against known attacks and
estimate their efficiency in the quaternion ring.

70 T. Yasuda, K. Sakurai, and T. Takagi

This paper is organized as follows. In §2 we provide a brief overview of Rain-
bow and its key size. In §3 we describe the known attacks against Rainbow
generally. In §4 we present NC-Rainbow, a new variant of Rainbow using non-
commutative rings and with the public and secret key sizes of Rainbow. In §5 we
discuss the correspondence between the proposed NC-Rainbow and Rainbow,
and we analyze the security of the proposed scheme. In §6 we present some of
the parameters of NC-Rainbow at a security level of greater than 80 bits, and
we compare the secret key sizes and efficiency of NC-Rainbow with those of
corresponding Rainbow. Finally, in §7 we provide some concluding remarks.

2 Original Rainbow

Ding and Schmidt proposed a signature scheme called Rainbow, which is a mul-
tilayer variant of Unbalanced Oil and Vinegar [8].

First, we define the parameters that determine the layer structure of Rainbow.
Let t be the number of layers in Rainbow. Let v1, . . . , vt+1 be a sequence of t+1
positive integers such that

0 < v1 < v2 < · · · < vt < vt+1.

For i = 1, . . . , t, the set of indices of the i-th layer in Rainbow is defined by all
integers from vi to vi+1, namely

Oi = {vi + 1, vi + 2, . . . , vi+1 − 1, vi+1}.
The number of indices for the i-th layer, Oi is then vi+1−vi, and this is denoted
by oi = vi+1 − vi. Note that the smallest integer in O1 is v1 + 1. We then define
V1 = {1, 2, . . . , v1}, and for i = 2, 3, . . . , t + 1, we have

Vi = V1 ∪ O1 ∪ O2 ∪ · · · ∪ Oi−1 = {1, 2 . . . , vi}.
The number of elements in Vi is exactly vi for i = 1, 2, . . . , t + 1. The sets Oi

and Vi are used for the indices of the Oil and Vinegar variables in Rainbow,
respectively. We define n = vt+1, which is the maximum number of variables
used in Rainbow.

Next, let K be a finite field of order q. Rainbow consists of t layers of n
variables polynomials. For h = 1, 2, . . . , t, the h-th layer of Rainbow deploys the
following system of oh multivariate polynomials:

gk(x1, . . . , xn) =
∑

i∈Oh,j∈Vh

α
(k)
i,j xixj +

∑
i,j∈Vh, i≤j

β
(k)
i,j xixj

+
∑

i∈Vh+1

γ
(k)
i xi + η(k) (k ∈ Oh), (1)

where α
(k)
i,j , β

(k)
i,j , γ

(k)
i , η(k) ∈ K. We call the variables xi (i ∈ Oh) and xj (i ∈ Vj)

Oil and Vinegar variables, respectively. The central map of Rainbow is then
constructed according to

G = (gv1+1, . . . , gn) : Kn → Kn−v1 .

Secret Key Reduction of Rainbow Using Non-commutative Rings 71

Note that a system of oh equations,

gk(b1, . . . , bvh
, xvh+1, . . . , xvh+1) = ak (k ∈ Oh)

becomes oh linear equations in oh variables for any (avh+1, . . . , avh+1) ∈ Koh and
(b1, . . . , bvh

) ∈ Kvh . Therefore, once we know the values of the Oil variables in
the h-th layer, we can then compute the values of the Vinegar variables in the
(h + 1)-th layer. This is a trapdoor mechanism in Rainbow.

2.1 Scheme

We describe the key generation, signature generation and verification processes
of Rainbow as follows.

Key Generation. A secret key consists of a central map G and two affine trans-
formations A1 : Km → Km (m = n − v1), A2 : Kn → Kn. The public key
consists of the field K and the composed map F = A1 ◦ G ◦ A2 : Kn → Km,
which is a system of m quadratic polynomials of n variables over K. We denote
the public key by F = (fv1+1, . . . , fn)T where T denotes a transpose operation.
In addition, we call fk the k-th public polynomial of F for k = v1 + 1, . . . , n.

Signature Generation. Let M ∈ Km be a message. We compute A = A−1
1 (M),

B = G−1(A) and C = A−1
2 (B) in that order. The signature of the message is

C ∈ Kn. Note that B = G−1(A) can be easily computed on basis of the above-
mentioned property of G.

Verification. If F (C) = M, the signature is accepted, otherwise it is rejected.
This scheme is denoted as Rainbow(K; v1, o1, . . . , ot), and we call v1, o1, . . . , ot

the parameters of Rainbow.

2.2 Rainbow Key Sizes

We estimate the public and secret key sizes of Rainbow(K; v1, o1, . . . , ot) as fol-
lows. Recall that n = v1 + o1 + · · · + ot and m = n − v1. The public key F is
a system of m multivariate polynomials of n variables over K. The secret key
consists of central map G, which is a system of m multivariate polynomials of
n variables over K, and affine maps A1 : Km → Km, A2 : Kn → Kn. Therefore
the public and secret key sizes of Rainbow(K; v1, o1, . . . , ot) can be estimated
from the number of elements in field K.

Public Key Size

m(n + 1)(n + 2)
2

field elements.

Secret Key Size

m(m + 1) + n(n + 1) +
t∑

h=1

oh

(
vhoh +

vh(vh + 1)
2

+ vh+1 + 1
)

field elements.

72 T. Yasuda, K. Sakurai, and T. Takagi

3 Attacks against Rainbow

In this section, we summarize the known attacks against Rainbow that have been
reported in previous papers, and we analyze the security against each because
these are used in our proposed scheme, which is described in the subsequent
section. The known relevant attacks against Rainbow are as follows.

(1) Direct attacks [2,28],
(2) UOV attack [16,15],
(3) MinRank attack [12,27,4],
(4) HighRank attack [12,9,20],
(5) Rainbow-Band-Separation(RBS) attack [9,19],
(6) UOV-Reconciliation (UOV-R) attack [9,19].

The direct attacks try to solve a system of equations F (X) = M from public key
F and (fixed) message M [2,28]. By contrast, the goal of the other attacks is to
find a part of the secret key. In the case of a UOV attack or HighRank attack, for
example, the target Rainbow with parameters v1, o1, . . . , ot is then reduced into
a version of Rainbow with simpler parameters such as v1, o1, . . . , ot−1 without
ot. We can then break the original Rainbow with lower complexity. To carry out
a reduction we need to find (a part of) a direct sum decomposition of vector
space Kn,

Kn = Kv1 ⊕ Ko1 ⊕ · · · ⊕ Kot , (2)

because expressing Kn in an available basis enables returning the public
key to the central map. In fact, if we can decompose Kn = W ⊕ Kot for
a certain W that has a coarser decomposition than (2) then the security of
Rainbow(K; v1, o1, . . . , ot) can be reduced to that of Rainbow
(K; v1, o1, . . . , ot−1). There are two methods for finding this decomposition:

(1) Find a simultaneous isotropic subspace of Kn.
Let V be a vector space over K, and let Q1 be a quadratic form on V . We
determine that a subspace W of V is isotropic (with respect to Q1) if

v1, v2 ∈ W ⇒ Q1(v1, v2) := Q1(v1 + v2) − Q1(v1) − Q1(v2) = 0.

In addition, we assume that V is also equipped with quadratic forms Q2, . . . , Qm.
We determine that a subspace W of V is simultaneously isotropic if W is isotropic
with respect to all Q1, . . . , Qm.

In Rainbow, m quadratic forms on Kn are defined by the quadratic parts
of the public polynomials of F . Note that the subspace Kot appearing in (2)
is a simultaneous isotropic subspace of Kn. If we find a simultaneous isotropic
subspace, the basis of Kot is then obtained and the above attack is feasible. The
UOV, UOV-R and RBS attacks are classified as being of this type.

Secret Key Reduction of Rainbow Using Non-commutative Rings 73

(2) Find a quadratic form with the minimum or second maximum rank.
When the quadratic part of the k-th public polynomial of F in Rainbow is
expressed as

n∑
i=1

n∑
j=i

a
(k)
ij xixj ,

we associate it with a symmetric matrix Pk = A + AT, where A = (a(k)
ij).

We define ΩF = SpanK{Pk | k = v1 + 1, . . . , n}, which is a vector space over K
spanned by matrices Pv1+1, . . . , Pn. For example, if we find a matrix of rank v2 =
v1 + o1 in ΩF , there is a high probability that the image of this matrix coincides
with Kv1 ⊕ Ko1 appearing in (2). Therefore, we obtain the decomposition of
Kn = (Kv1 ⊕ Ko1) ⊕ W ′ for some W ′ that is a coarser decomposition than (2).
The MinRank and HighRank attacks are classified as being of this type.

The details of abovementioned six attacks can be found in the literature [19].

4 Our Proposed Scheme

In this section, we propose NC-Rainbow, a variant of Rainbow that utilizes
non-commutative rings. After describing some of the basic properties of non-
commutative rings, we explain the construction of the proposed scheme, and
estimate its key size.

4.1 Non-commutative Rings

Let R be a finite dimensional non-commutative K-algebra [10], namely, a non-
commutative ring satisfying the following condition:

(1) R is a vector space over K with finite dimension.
(2) α(vw) = (αv)w = v(αw) (∀α ∈ K, ∀v, ∀w ∈ R).

In the remainder of this paper, we simply call any R that satisfies the above
conditions a non-commutative ring.

Example 1 (Quaternion algebra). Let K ′ be any quadratic extension field of K.
For b ∈ K×, a non-commutative ring Qq(b) is defined as followsF

(Set) Qq(b) = K ′ · 1 ⊕ K ′ · e,
(Product) e2 = b, αe = eᾱ (∀α ∈ K ′).

Qq(b) is a four-dimensional K-space. This is called a quaternion algebra. We
write Q256 for Q256(−1) which is used later.

The following is a well-known and important property of a non-commutative
ring.

74 T. Yasuda, K. Sakurai, and T. Takagi

Proposition 1. For a non-commutative ring R, there is d ∈ N such that there
exists an injective ring homomorphism,

R ↪→ M(d, K).

In particular, using the regular representation we can take d = r. Here M(d, K)
is the full matrix ring consisting of d × d matrices with K entries.

We fix a non-commutative ring R, and r denotes its dimension over K. Then,
there exists a K-linear isomorphism,

φ : Kr ∼−→ R. (3)

Using the isomorphism φ, an element α ∈ R can be represented by r elements
in K.

4.2 Our Construction

In this section, we propose a new Rainbow scheme. The basic idea of the proposed
scheme is to change the field K over which Rainbow is constructed into a non-
commutative ring R. To avoid notational confusion, we change the parameters
used in Rainbow(K; v1, o1, . . . , ot) and n = v1 + o1 + · · · + ot, m = n − v1 as
follows:

t → s, n → ñ, m → m̃, vi → ṽi, oi → õi, ...

Using these parameters, we will construct the proposed Rainbow in the same
manner as Rainbow. Let ñ, s, ṽ1, ṽ2, . . . , ṽs+1 be integers such that

0 < ṽ1 < ṽ2 < · · · < ṽs < ṽs+1 = ñ.

For i = 1, . . . , s, we set the indices of the Oil and Vinegar variables in the
proposed scheme, as

Ṽi = {1, . . . , ṽi}, Õi = {ṽi + 1, . . . , ṽi+1}.
Note that the number of elements in Ṽi and Õi is ṽi and õi := ṽi+1 − ṽi, re-
spectively. The proposed Rainbow scheme consists of s layers of ñ variables
multivariate polynomials. For the h-th layer of the proposed Rainbow scheme
(h = 1, 2, . . . , s), we deploy the following system of õh variables polynomials over
the non-commutative ring R:

g̃k(x1, . . . , xñ) =
∑

i∈Õh,j∈Ṽh

(xiα
(k)
i,j xj + xjα

(k)
i,j xi) +

∑
i,j∈Ṽh

xiβ
(k)
i,j xj

+
∑

i∈Ṽh+1

(γ(k,1)
i xi + xiγ

(k,2)
i) + η(k) (k ∈ Õh). (4)

where α
(k)
i,j , β

(k)
i,j , γ

(k,1)
i , γ

(k,2)
i , η(k) ∈ R. Note that there are other possibilities

in constructing g̃k, such as changing xiα
(k)
i,j xj into α

(k)
i,j xixj , due to the non-

commutative property of R. We have chosen this construction of (4) because

Secret Key Reduction of Rainbow Using Non-commutative Rings 75

it has a relatively small number of coefficients, and yet, has the same level of
security. We will discuss the efficiency and security of this construction in the
subsequent section.

Using equation (4), the central map of the proposed Rainbow scheme is con-
structed by

G̃ = (g̃v1+1, . . . , g̃ñ) : Rñ → Rm̃ (m̃ = ñ − ṽ1).

The key generation and the signature generation and their verification are de-
scribed as follows.

Key Generation. A secret key consists of the above central map, G̃ : Rñ → Rm̃,
and two affine transformations, A1 : Km → Km (m = rm̃), A2 : Kn → Kn (n =
rñ). Note that G̃ is a map over the non-commutative ring R. We need to convert
G̃ into a map over K using φ in (3). The public key is then the composed map
F̃ = A1 ◦ φ−m̃ ◦ G̃ ◦ φñ ◦ A2 : Kn → Km.

Signature Generation. Let M ∈ Km be a message. We compute A = (φm̃ ◦
A−1

1)(M), B = G̃−1(A) and C = (A−1
2 ◦ φ−ñ)(B) in that order. The signature

of the message is C ∈ Kn. Here B = G̃−1(A) is computed using the following
procedure.

Step 1 Choose a random element b1, . . . , bṽ1 ∈ R.
Step 2 For h = 1, . . . , s, recursively conduct the following operation (called the

h-th layer):
{g̃ṽh+1, . . . , g̃ṽh+1} is a system of non-commutative polynomials with
respect to x1, . . . , xṽh+1 . By substituting x1 = b1, . . . , xṽh

= bṽh
into

this system, a new system {ḡṽh+1, . . . , ḡṽh+1} of non-commutative
polynomials with at most one degree with respect to xṽh+1, . . . , xṽh+1

is obtained. ⎧⎪⎨
⎪⎩

ḡṽh+1(xvh+1, . . . , xṽh+1) = aṽh+1

...
ḡṽh+1(xṽh+1, . . . , xṽh+1) = aṽh+1

(5)

where A = (ak) ∈ Rm̃. We compute the solution bṽh+1, . . . , bṽh+1 ∈
R for this system of equations (if there is no solution, return to
Step 1.)

Step 3 Set B = (b1, . . . , bñ).

Verification. If F̃ (C) = M, the signature is accepted; otherwise it is rejected.

This scheme is denoted by NC-Rainbow(R; ṽ1, õ1, . . . , õt), and we call ṽ1, . . . , õt

a parameter of non-commutative Rainbow.

Remark 1. In general, it is difficult to solve the system of non-commutative
equations (5) directly. However, if we fix a K-basis of R then this system produces
a system of commutative equations that has at most one degree with respect to
the coefficients with respect to the basis and thus is easy to solve in general.

76 T. Yasuda, K. Sakurai, and T. Takagi

4.3 Key Size in NC-Rainbow

We estimate the public and secret key sizes of NC-Rainbow(R; ṽ1, õ1, . . . , õt) as
follows. Recall that an element α ∈ R can be represented by r elements in K
using the isomorphism φ in (3). The equation (4) appearing in central map G̃
has 2ṽhõh + ṽ2

h +2ṽh+1 +1 coefficients, and there are oh polynomials in the h-th
layer, with a total of s layers. Thus, we can estimate the key size of the proposed
Rainbow based on the number of elements in field K as described in §2.2. The
public and secret key sizes of NC-Rainbow(R; ṽ1, õ1, . . . , õt) are as follows.

Public Key Size

rm̃(rñ + 1)(rñ + 2)
2

field elements.

Secret Key Size

rm̃(rm̃ + 1) + rñ(rñ + 1) +
s∑

h=1

rõh

(
2ṽhõh + ṽ2

h + 2ṽh+1 + 1
)

field elements.

Note that by substituting n = rñ, m = r(ñ − ṽ1), the public key size becomes
m(n + 1)(n + 2)/2, which is the same as that of the original Rainbow.

5 Security Analysis

In this section we analyze the security of our proposed NC-Rainbow. First we
discuss the relation between the proposed NC-Rainbow and the original Rain-
bow. The security of the proposed NC-Rainbow against known attacks is then
analyzed.

5.1 Reducing NC-Rainbow to Rainbow

In what follows we describe the correspondence between the proposed scheme
and the original Rainbow. We will show that the public key of the proposed
scheme can be represented as a public key of the original Rainbow.

Theorem 1. Let R be a non-commutative ring of dimension r over K. Let F̃
be a public key of NC-Rainbow(R; ṽ1, õ1, . . . , õs). Then F̃ becomes a public key
of Rainbow(K; rṽ1, rõ1, . . . , rõs).

Proof. It suffices to show that for the central map G̃ of NC-Rainbow(R; ṽ1, . . . , õs),
φ−m̃ ◦ G̃ ◦ φñ is a central map of Rainbow(K; rṽ1, rõ1, . . . , rõs). Fix an K-basis
of the isomorphism φ in (3) as

ei = φ((0, · · · , 0,
i
1, 0, · · · , 0)) ∈ R (i = 1, . . . , r).

Secret Key Reduction of Rainbow Using Non-commutative Rings 77

Denote the decomposition of the non-commutative variables x and x′ in R by

x =
r∑

j=1

x̄jej , x′ =
r∑

j=1

x̄′
jej .

A component g̃k of the central map G̃ where k is in the h-th layer Õh is described
as a sum of a constant and the following non-commutative monomials:

g1,α(x, x′) = xαx′, g2,α(x) = xαx,

h1,α(x) = αx, h2,α(x) = xα,

for some α ∈ R using the appropriate substitutions x = xi and x′ = xj . For
example, suppose that g1,α is a term of g̃k under the substitution x = xi. If we
write

g1,α(x, x′) =
r∑

j=1

f
(α)
j (x̄1, . . . , x̄r, x̄

′
1, . . . , x̄

′
r) ej,

each f
(α)
j (x̄1, . . . , x̄r, x̄

′
1, . . . , x̄

′
r) is a quadratic homogeneous polynomial. Since

φ−1 ◦ g1,α ◦ φ2 = (f (α)
1 , . . . , f (α)

r) : K2r → Kr,

when gk is expressed using variables x̄1, . . . , x̄r, x̄
′
1, . . . , x̄

′
r, the part correspond-

ing to g1,α is described as a quadratic homogeneous polynomial. Similarly, in the
case of g2,α(x), φ−1◦g2,α◦φ : Kr → Kr is described as a quadratic homogeneous
polynomial, and if h = h1,α, h2,α, φ−1 ◦h ◦φ : Kr → Kr is described as a linear
homogeneous polynomial. Moreover, if f1, . . . , fr are defined by

φ−1 ◦ g̃k ◦ φñ = (f1, . . . , fr) : Kn → Kr,

then, by the replacement xi =
∑r

l=1 xri−r+l el (i = 1, . . . , ñ), we have

fl(x1, . . . , xn) =
∑

i∈Oh,j∈Vh

α
(l)
i,jxixj +

∑
i,j∈Vh, i≤j

β
(l)
i,jxixj

+
∑

i∈Vh+1

γ
(l)
i xi + η(l) (l = 1, . . . , r).

Here α
(l)
i,j , β

(l)
i,j , γ

(l)
i , η(l) ∈ K and

Vh = {1, . . . , rṽh}, Oh = {rṽh + 1, . . . , rṽh+1}.
Thus fl is expressed in the form of a component with an index in the h-th layer
of a central map of Rainbow(K; rṽ1, rõ1, . . . , rõs). This implies that φ−m̃◦G̃◦φñ

is a central map of Rainbow(K; rṽ1, rõ1, . . . , rõs). 	

This theorem shows that the proposed NC-Rainbow is an additional method for
constructing Rainbow. This means that attacks against Rainbow can also be
applied to NC-Rainbow, and we can thus evaluate the security provided by the
latter scheme against such attacks.

78 T. Yasuda, K. Sakurai, and T. Takagi

5.2 Security against Known Attacks

UOV Attack. Regard L2 as the part of a linear transformation of A2 and place
Ot = L−1

2 ({0}n−ot×Kot) as the subspace of Kn corresponding to Kot appearing
in (2). The UOV attack finds a non-trivial invariant subspace of W12 = W1W

−1
2

that is included in Ot for invertible matrices W1, W2 ∈ ΩF . The probability that
W12 has a non-trivial invariant subspace included in Ot is equal to qn−2ot . This
is obtained by the following lemma.

Lemma 1 ([7] Lemma 3.2.4). Let J : Kn → Kn be an invertible linear map
such that

1. there exist two subspace O′ ⊂ V ′ of Kn where the dimensions of O′ and V ′

are o′ and v′, respectively, and
2. J(O′) ⊂ V ′.

Then the probability that J has a non-trivial invariant subspace in O′ is no less
than qo′−v′

.

This lemma is also available for NC-Rainbow. This means that the complexity
is the same as that of the corresponding Rainbow. Thus, we have the following
proposition:

Proposition 2. For K = GF (2a), NC-Rainbow(R; ṽ1, õ1, . . . , õs) has a security
level of l bits against the UOV attack if

n − 2rõs ≥ l/a + 1, (n = rñ).

MinRank Attack. In the MinRank attack, we solve MinRank(v2) for ΩF . If
there is a non-trivial P ∈ ΩF for a v ∈ Kn such that Pv = 0, there is high
probability that P is a solution for MinRank(v2). For v ∈ Kn, the probability
that a non-trivial P ∈ ΩF exists such that Pv = 0 is roughly q−v2 . This is also
true for NC-Rainbow. Therefore from [12], we have the following proposition:

Proposition 3. Let K = GF (2a) and assume that n ≥ m ≥ 10. Then
NC-Rainbow(R; ṽ1, õ1, . . . , õs) has a security level of l bits against the MinRank
attack if

rṽ2 = r(ṽ1 + õ1) ≥ l/a.

HighRank Attack. In the HighRank attack, we have an element W ∈ ΩF

such that rank(W) = vt. For any W ∈ ΩF , the probability that its rank is equal
to vt is q−ot . This is also true for NC-Rainbow. Therefore, from [12], we have
the following proposition:

Proposition 4. Let K = GF (2a) and assume that n ≥ m ≥ 10. Then
NC-Rainbow(R; ṽ1, õ1, . . . , õs) has a security level of l bits against the HighRank
attack if

rõs ≥ l/a.

Secret Key Reduction of Rainbow Using Non-commutative Rings 79

Direct Attacks and Others. From Theorem 1, the public key of NC-Rainbow
is exactly equal to that of the corresponding Rainbow. Therefore, the complexity
against the direct attacks is estimated to be the same for NC-Rainbow as for
the original Rainbow corresponding to it. Similarly, the complexities against the
RBS and UOV-R attacks are estimated to be the same for NC-Rainbow as for
the corresponding Rainbow.

The complexities of the direct, RSB and UOV-R attacks were discussed by
Petzoldt et al. [19], and we follow their data regarding the complexities of these
attacks. In particular, if ṽ1 ≥ õs, the complexities of the direct and UOV-R
attacks are equivalent.

6 Key Size in Our NC-Rainbow

In this section, we explain why the secret key size of the proposed scheme is
reduced, and we then present secure parameters for a security level of greater
than 80 bits.

6.1 Reason for Secret Key Size Reduction

First, we describe the theoretical reason that the secret key size in NC-Rainbow
is reduced. If we fix a K-basis for R, based on the right regular action,

R a �→ ar ∈ R,

the embedding R ↪→ M(r, K) is obtained (Proposition 1). In general, for d ∈ N,
we have the following embedding

φ : M(d, R) ↪→ M(dr, K).

Table 1. Security level against attacks on NC-Rainbow(Q256; ṽ1, õ1, õ2)

Attacks (5, 4, 4) (7, 5, 5) (9, 6, 6)

Direct, UOV-R,RBS (bits) 83 96 107

UOV (bits) 152 216 280

MinRank (bits) 288 384 480

HighRank (bits) 128 160 192

Security level 83 96 107

Table 2. Secret key sizes of NC-Rainbow and Rainbow

Proposed NC-Rainbow(Q256; ṽ1, õ1, õ2) (5, 4, 4) (7, 5, 5) (9, 6, 6)

Secret key size (kB) 8.0 15.1 25.5

⇓ corresponding to ⇓
Rainbow(GF (256); 4ṽ1, 4õ1, 4õ2) (20, 16, 16) (28, 20, 20) (36, 24, 24)

Secret key size (kB) 33.6 70.7 128.2

Ratio 23.9% 21.5% 19.9%

80 T. Yasuda, K. Sakurai, and T. Takagi

Here, an element of M(d, R) can be described using d2r field elements, while
an element of M(dr, K) requires using d2r2 field elements. In NC-Rainbow, a
matrix is expressed by φ. Since a secret key is described through matrices its
size is reduced. This is one reason for a reduction in the key size. Another reason
is that the number of equations in NC-Rainbow is 1/r times that in the original
Rainbow.

6.2 Secure Parameters and Their Key Size

Based on the security analysis in the last section, we try to present secure param-
eters and their length for NC-Rainbow(R; ṽ1, õ1, . . . , õs). We adopt the parame-
ters of Petzoldt et al. [19] for estimating the security against the direct and RBS
attacks. Next, we discuss the other types of attacks. From Propositions 2, 3 and
4, the following criteria are used for l-bit security against these attacks: Let a be
the bit length of q and r the dimension of R. For NC-Rainbow(R; ṽ1, õ1, . . . , õs),
we have n = rñ, m = r(ñ − ṽ1) and we assume that n ≥ m ≥ 10.

1. UOV attack n − 2rõs ≥ l/a + 1.
2. MinRank attack r(ṽ1 + õ1) ≥ l/a.
3. HighRank attack rõs ≥ l/a.
4. UOV-R attack ṽ1 ≥ õs (+ l-bits security against direct attack).

Table 1 presents exemplary parameters of NC-Rainbow(Q256; ṽ1, õ1, õ2) over the
quaternion Q256 (see §4.1 for the definition) over GF (256), as well as the com-
plexity against each attack. The examples in the table have a security level of
greater than 80 bits. Table 2 shows the ratio of between the secret key sizes
of Rainbow and NC-Rainbow for these examples. The secret key size of the
proposed NC-Rainbow is about 75% shorter than that of the corresponding
Rainbow.

6.3 Efficiency Comparison

Table 3 compares the efficiencies of the proposed NC-Rainbow and the corre-
sponding Rainbow. The proposed NC-Rainbow is constructed over the quater-
nion Q256 which can be expressed by a subring of 2 × 2 matrices of the finite
field GF (256). We compare the efficiency with the corresponding Rainbow over
the finite field GF (256) of the same security level in Table 2. Therefore we es-
timate the number of multiplication of GF (256) for an efficiency comparison.
The numbers in Table 3 represent the numbers of multiplications in the signa-
ture generation. In the signature generation of our proposed scheme, we need
to solve, 2õi linear equations over GF (256) for the i-th layer, Conversely, the
corresponding Rainbow requires 4õi linear equations over GF (256) for the same
i-th layer. Therefore the signature generation of our proposed scheme is about
34% faster than that of the corresponding Rainbow.

Secret Key Reduction of Rainbow Using Non-commutative Rings 81

Table 3. Efficiency comparison of the proposed NC-Rainbow with the corresponding
Rainbow (in terms of the number of multiplications in GF (28))

NC-Rainbow(Q256; ṽ1, õ1, õ2) (5, 4, 4) (7, 5, 5) (9, 6, 6)

Proposed NC-Rainbow 46452 97594 176624

Corresponding Rainbow 73236 153314 276832

Ratio 63.4% 63.7% 63.8%

7 Concluding Remarks

We proposed a new construction of Rainbow, called NC-Rainbow, which utilizes
non-commutative rings. A non-commutative ring has a canonical embedding,
which yields a compact representation of elements, and thus the proposed NC-
Rainbow is able to reduce the secret key size in comparison with Rainbow. We
also proved that for any public key of NC-Rainbow there exists a corresponding
original Rainbow whose public key is the same, and thus, we can analyze the
security of NC-Rainbow by applying the known attacks against Rainbow. Finally,
we presented several secure parameters of the proposed scheme at a security level
of greater than 80 bits. NC-Rainbow reduces the secret key size by about 75%
and improves the efficiency of signature generation by about 34%, as compared
with Rainbow at the same 80 bit security level.

In this paper, we mainly treated quaternion algebras as non-commutative
rings for our proposed NC-Rainbow. Of course, there are many other non-
commutative rings such as group rings, simple rings, etc. If we choose different
non-commutative rings, the efficiency of NC-Rainbow associated to them also
changes. We need further research to investigate the efficiency of NC-Rainbow
using different non-commutative rings.

Acknowledgements. This work was partially supported by the Japan Sci-
ence and Technology Agency (JST) Strategic Japanese-Indian Cooperative Pro-
gramme for Multidisciplinary Research Fields, which aims to combine Informa-
tion and Communications Technology with Other Fields. The first author is
supported by the JST A-step feasibility study program, No. AS231Z03613A.
The authors would like to thank Jintai Ding and the anonymous reviewers for
their insightful comments on the draft manuscript.

References

1. Anshel, I., Anshel, M., Goldfeld, D.: An Algebraic Method for Public-Key Cryp-
tography. Math. Res. Lett. 6(3-4), 287–291 (1999)

2. Bernstein, D.J., Buchmann, J., Dahmen, E.: Post Quantum Cryptography.
Springer, Heidelberg (2009)

3. Berger, T.P., Cayrel, P.-L., Gaborit, P., Otmani, A.: Reducing Key Length of
the McEliece Cryptosystem. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS,
vol. 5580, pp. 77–97. Springer, Heidelberg (2009)

82 T. Yasuda, K. Sakurai, and T. Takagi

4. Billet, O., Gilbert, H.: Cryptanalysis of Rainbow. In: De Prisco, R., Yung, M. (eds.)
SCN 2006. LNCS, vol. 4116, pp. 336–347. Springer, Heidelberg (2006)

5. Boneh, D., Durfee, G.: Cryptanalysis of RSA with Private Key d Less Than N0.292.
IEEE Trans. Inform. Theory 46(4), 1339–1349 (2000)

6. Chen, A.I.-T., Chen, M.-S., Chen, T.-R., Cheng, C.-M., Ding, J., Kuo, E.L.-H.,
Lee, F.Y.-S., Yang, B.Y.: SSE Implementation of Multivariate PKCs on Modern
x86 CPUs. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 33–48.
Springer, Heidelberg (2009)

7. Ding, J., Gower, J.E., Schmidt, D.S.: Multivariate Public Key Cryptosystems. In:
Advances in Information Security, vol. 25. Springer, Heidelberg (2006)

8. Ding, J., Schmidt, D.: Rainbow, a New Multivariable Polynomial Signature
Scheme. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS,
vol. 3531, pp. 164–175. Springer, Heidelberg (2005)

9. Ding, J., Yang, B.-Y., Chen, C.-H.O., Chen, M.-S., Cheng, C.-M.: New Differential-
Algebraic Attacks and Reparametrization of Rainbow. In: Bellovin, S.M., Gennaro,
R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 242–257.
Springer, Heidelberg (2008)

10. Farb, B., Dennis, K.: Noncommutative Algebra. Graduate Texts in Mathematics.
Springer, Heidelberg (1993)

11. Galbraith, S.D., Ruprai, R.S.: Using Equivalence Classes to Accelerate Solving the
Discrete Logarithm Problem in a Short Interval. In: Nguyen, P.Q., Pointcheval, D.
(eds.) PKC 2010. LNCS, vol. 6056, pp. 368–383. Springer, Heidelberg (2010)

12. Goubin, L., Courtois, N.T.: Cryptanalysis of the TTM Cryptosystem. In: Okamoto,
T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 44–57. Springer, Heidelberg
(2000)

13. Hashimoto, Y., Sakurai, K.: On Construction of Signature Schemes based on Bira-
tional Permutations over Noncommutative Ringsh. In: Proceedings of the 1st In-
ternational Conference on Symbolic Computation and Cryptography (SCC 2008),
pp. 218–227 (2008)

14. Ko, K.H., Lee, S., Cheon, J.J.H., Han, J.H., Kang, J.S., Park, C.: New Public-Key
Cryptosystems Using Braid Groups. In: Bellare, M. (ed.) CRYPTO 2000. LNCS,
vol. 1880, pp. 166–183. Springer, Heidelberg (2000)

15. Kipnis, A., Patarin, L., Goubin, L.: Unbalanced Oil and Vinegar Signature
Schemes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222.
Springer, Heidelberg (1999)

16. Kipnis, A., Shamir, A.: Cryptanalysis of the Oil and Vinegar Signature Scheme.
In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 257–266. Springer,
Heidelberg (1998)

17. van Oorschot, P.C., Wiener, M.J.: Parallel Collision Search with Cryptanalytic
Applications. Journal of Cryptology 12, 1–28 (1999)

18. Petzoldt, A., Bulygin, S., Buchmann, J.: A Multivariate Signature Scheme with a
Partially Cyclic Public Key. In: Proceedings of the Second International Conference
on Symbolic Computation and Cryptography (SCC 2010), pp. 229–235 (2010)

19. Petzoldt, A., Bulygin, S., Buchmann, J.: Selecting Parameters for the Rainbow
Signature Scheme. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp.
218–240. Springer, Heidelberg (2010)

20. Petzoldt, A., Bulygin, S., Buchmann, J.: CyclicRainbow - A Multivariate Signature
Scheme with a Partially Cyclic Public Key Based on Rainbow. In: Gong, G., Gupta,
K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 33–48. Springer, Heidelberg
(2010)

Secret Key Reduction of Rainbow Using Non-commutative Rings 83

21. Petzoldt, A., Bulygin, S., Buchmann, J.: Linear Recurring Sequences for the UOV
Key Generation. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC
2011. LNCS, vol. 6571, pp. 335–350. Springer, Heidelberg (2011)

22. Petzoldt, A., Thomae, E., Bulygin, S., Wolf, C.: Small Public Keys and Fast Ver-
ification for Multivariate Quadratic Public Key Systems. In: Preneel, B., Takagi,
T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 475–490. Springer, Heidelberg (2011)

23. Pollard, J.M.: Monte Carlo Methods for Index Computation mod p. Mathematics
of Computation 143(32), 918–924 (1978)

24. Rai, T.S.: Infinite Gröbner Bases and Noncommutative Polly Cracker Cryptosys-
tems. PhD Thesis, Virginia Polytechnique Institute and State Univ. (2004)

25. Satoh, T., Araki, K.: On Construction of Signature Scheme over a Certain Non-
commutative Ringh. IEICE Trans. Fundamentals E80-A, 702–709 (1997)

26. Wiener, M.J.: Cryptanalysis of Short RSA Secret Exponents. IEEE Trans. Inform.
Theory 36(3), 553–558 (1990)

27. Yang, B.-Y., Chen, J.-M.: Building Secure Tame like Multivariate Public-Key
Cryptosystems: The new TTS. In: Boyd, C., González Nieto, J.M. (eds.) ACISP
2005. LNCS, vol. 3574, pp. 518–531. Springer, Heidelberg (2005)

28. Yang, B.-Y., Chen, J.-M.: All in the XL Family, Theory and Practice. In: Park,
C.-s., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 67–86. Springer, Heidelberg
(2005)

29. Yasuda, T., Sakurai, K.: A Security Analysis of Uniformly-Layered Rainbow Revis-
iting Sato-Araki’s Non-commutative Approach to Ong-Schnorr-Shamir Signature
Towards PostQuantum Paradigm. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS,
vol. 7071, pp. 275–294. Springer, Heidelberg (2011)

A Duality in Space Usage between Left-to-Right

and Right-to-Left Exponentiation

Colin D. Walter

Information Security Group, Royal Holloway, University of London,
Egham, Surrey, TW20 0EX, United Kingdom

Colin.Walter@rhul.ac.uk

Abstract. Most exponentiation algorithms are categorised as being left-
to-right or right-to-left because of the order in which they use the digits
of the exponent. There is clear value in having a canonical way of trans-
forming an algorithm in one direction into an algorithm in the opposite
direction: it may lead to new algorithms, different implementations of
existing algorithms, improved side-channel resistance, greater insights.
There is already an historic duality between left-to-right and right-to-left
exponentiation algorithms which shows they take essentially the same
time, but it does not treat the space issues that are always so critical
in resource constrained embedded crypto-systems. To address this, here
is presented a canonical duality which preserves both time and space.
As an example, this is applied to derive a new, fast yet compact, left-to-
right algorithm which makes optimal use of recently developed composite
elliptic curve operations.

Keywords: Scalar multiplication, multi-base representation, addition
chain, division chain, dual chain, exponentiation, elliptic curve
cryptography.

1 Introduction

Exponentiation is the highest level arithmetic operation in all the most popular
public key crypto-systems, and in Diffie-Hellman, RSA and ECC in particular.
There are a number of different algorithms for performing exponentiation [8,7]
which have various properties that allow some control over their time efficiency,
their use of space resources and their susceptibility to side channel analysis.

The ability to choose between processing an exponent from left to right or
from right to left enables implementers to improve side channel resistance (e.g.
by avoiding pre-computed tables [13]) or to make use of more efficient composite
group operations such as double-and-add, triple-and-add and quintuple-and-add
elliptic curve operations [6,10,9]. The direction of treating the exponent bytes
may also be determined by the order in which those bytes become available.

These reasons make it of interest to find a canonical way of restructuring
an exponentiation algorithm so that it can process the exponent in the oppo-
site direction. An example of what we would like to do in practice is given

O. Dunkelman (Ed.): CT-RSA 2012, LNCS 7178, pp. 84–97, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Dual Exponentiation 85

by comparing the usual left-to-right m-ary algorithm due to Brauer [3] with
Yao’s right-to-left method [14]. These use the same time and space resources.
Moreover, it is clear how to extend both to sliding window versions that make
the same use of resources. In general, it would be useful to be able to take
any exponentiation algorithm processing the bits in one direction and deduce
immediately a corresponding algorithm for processing the bits in the opposite
direction. Knuth in his well-known Semi-numerical Algorithms [8] describes the
transposition method, [2] §5, which enables one to reverse the order of processing
the exponent and compute the required power using the same time. With care,
the same number of squarings and non-squarings occur in the two directions.
However, this method does not show how to preserve the space requirements,
nor does it provide a canonical re-ordering. Yet the preservation of space usage
is of critical importance to achieve when memory is limited, as on a smart card
or an embedded cryptographic device, as well as on SSL servers with systolic
arrays for processing many exponentiations in parallel. Nevertheless, these space
issues do not seem to have been treated satisfactorily in the literature.

The aim of the present work is too provide a canonical duality between the
two directions which not only preserves the time usage of an exponentiation al-
gorithm but also makes identical use of memory. This is done by starting with
an addition chain which is annotated with the register locations for the inputs
and output of each operation. A careful restriction on the allowable operations
makes the chain reversible, so that the use of space is clearly the same in both
directions. Some additional conditions are required to ensure that the numbers
of squaring and non-squaring operations are also the same for the addition chain
and its dual. The restriction on allowed operations is essentially just a require-
ment on the way the chain is presented, and so does not confine the applicability
of the method. The additional conditions are natural ones in an efficient system
and so are normally satisfied in a practical environment. The main novel contri-
butions here are the establishment of this correct set of allowable operations to
make duality possible, identification of the right conditions to preserve the time
cost of an exponentiation when the dual is applied, and a proof of this property.

Application of the duality process shows that Brauer’s m-ary method has
Yao’s method as its dual, and vice versa. Also, application to Walter’s division
chain method [11] yields a new compact left-to-right algorithm which can take
maximal advantage of recently developed composite elliptic curve operations
[6,10,9] because the recoding of the exponent can be tailored to the different rel-
ative costs of any desired combinations of squaring and non-squaring operations
on the underlying group, namely the elliptic curve in this case.

Finally, having established that the main space and time requirements are the
same for an exponentiation algorithm and its dual, there are some secondary
space issues to tidy up. When the duality is applied to an addition chain derived
from a recoding of the exponent, extra space may be required to store the com-
plete recoding when processed in one direction, but for the other direction the
recoding may be generated on-the-fly. One may also require the initial inputs

86 C.D. Walter

(the base and/or the exponent) to remain at the end of the exponentiation. This
may happen in one direction, whereas they may be overwritten in the other.

2 Notation and Addition Chains

The duality defined here applies to exponentiation schemes which are defined
in terms of addition or addition-subtraction chains [8]. Most exponentiation al-
gorithms first perform a re-coding of the exponent D, and then convert the re-
coding into an addition chain which is applied to an element M of some group G
to yield the element C = MD. With cryptographic applications in mind, M will
be called the plaintext, D the (secret) key, and C the ciphertext. G might be the
group of points on an elliptic curve. It will be written multiplicatively so that the
operation of interest is C ←MD, which is reasonably called an exponentiation.

In order to obtain a good measure of the computational time for exponentiat-
ing, we will assume there are two (probably distinct) algorithms for performing
the group operation. The first computes M2 for any M ∈ G and is called a
squaring. When the two arguments of the group operation are known to be iden-
tical this algorithm will be used. The other algorithm computes M1×M2 for
any M1,M2 ∈ G and is called a (non-squaring) multiplication. This will be used
whenever it is not possible to guarantee that M1 = M2. Normally M1 = M2

when this algorithm is applied, but it is possible that M1 = M2 could occur by
chance. However, the same computational cost will be assumed for all applica-
tions of it. Lastly, there may also be a unary operation for computing the inverse
M−1 of M , or, more generally, several unary operations M → M s, s ∈ S, for a
small subset S ⊂ Z of integers. This enables us to deal with a Frobenius map as
well as inversion. It may be convenient to include squaring in this category. The
following definition picks up these distinctions:

Definition 1
i) An addition chain of length n for D is a sequence D0, D1, D2, . . . , Dn of
integers such that

a) D0 = 1 and Dn = D;
b) for all k, 0<k≤n, either there are i, j < k, i = j, such that Di+Dj = Dk or

there is an i < k such that 2Di = Dk.

ii) A (generalised) addition-subtraction chain of length n for D is a sequence
D0, D1, D2, . . . , Dn of integers such that

a) D0 = 1 and Dn = D;
b) for all k, 0<k≤n, either there are i, j < k, i = j, such that Di+Dj = Dk or

there are i < k and s ∈ S such that sDi = Dk.

These translate into exponentiation schemes for D in the obvious way. The kth
step in obtaining MD ∈ G is to compute MDk = MDi+Dj = MDi×MDj or
MDk = M sDi = (MDi)s.

Memory locations for holding elements of G will, for convenience, be called
registers and denoted Ri, i ∈ I, for some small index set I. i (or Ri) will be

Dual Exponentiation 87

called a location of g ∈ G if Ri stores the value of g. In practice, Ri could be any
form of memory, perhaps different for each i so that the cost of reading from or
writing to Ri may very well depend on the value of i. Such costs generally result
in minor differences in execution times between an algorithm and its dual.

In general, for i, j, k ∈ I the multiplicative operation which writes the product
of the contents of Ri and Rj into Rk is denoted μijk, and the powering operation

writing the sth power of the content of Ri into Rk is denoted ι
(s)
ik (choosing “ι”

for inverse because often s = −1). It is clear that, once a location for each Dk

in an addition or addition-subtraction chain is known, then the chain can be

expressed as a sequence of operations of type μijk or ι
(s)
ik . However, to define the

dual chain, only the following restricted sets of operators are allowed:

Definition 2. For i, j ∈ I with i =j and s∈S, six sets of operators are defined:
i) Copying from Ri to Rj is denoted γij .
ii) Copying from Ri to Rj combined with initialising Ri to the group identity 1G

is denoted γ
(0)
ij .

iii) The multiplicative operation which writes the product of the contents of Ri

and Rj into Rj is denoted μij.
iv) The multiplicative operation which writes the product of Ri and Rj into Rj

and initialises Ri to 1G is denoted μ
(0)
ij .

v) The operation which raises the contents of Ri to the power s is denoted ι
(s)
i .

vi) The operation swapping the contents of registers Ri and Rj is denoted σij .
A location-aware chain is a finite sequence of such operations. ��

Location-aware chains will also be called space-aware chains, especially where
the overall space usage rather than individual data movements are of concern.

Any μijk or ι
(s)
ij can be expressed using a sequence of either one or two of

the above operations with no increase in the number or type of multiplicative
operations. For example, if i = k = j then Rj can be first copied to Rk using γjk
and then μik completes the process of computing μijk. Similarly, any squaring
μiik can be expressed by first using the copy γik if i = k and then the powering

operation ι
(2)
k , thereby making all squaring explicit. If required at execution time,

the two operations from such splittings can always be recombined into one when
deciding the code to execute. Also at execution time many of the initialisations

to 1G in γ
(0)
ij and μ

(0)
ij might be skipped as they are mostly redundant.

The swapping operation enables it to be made explicit when data is moved
around. It is included for completeness as it may be needed in implementations
to put data in a particular location without loosing the data which is already
in that location. Later conditions require this (for the symmetric property),
but data must also be moved around if only certain locations (such as actual
registers) can be used for the I/O of an operation. However, from here onwards,
and without loss of generality, swapping will be ignored in any proofs since it is
irrelevant to them and simply complicates the description of where data is.

88 C.D. Walter

3 The Dual of a Location-Aware Chain

The operations in Defn. 2 can be represented using matrices, indexed by I. For
example, if A = (ast) were the matrix for μij , i =j, then ass = 1 for s ∈ I,
aji = 1, and ast = 0 otherwise. It is the identity matrix except for an extra
non-zero entry at (j, i). This acts from the left on a column vector containing
the exponents of the powers of the input M which are in each register, adding
the values with indices i and j into the location with index j. In other words,
the matrix performs the same addition as an element of an addition chain.

For a device with two memory locations, i.e. |I| = 2, matrix examples of each
class are, respectively,

γ12 =

[
1 0
1 0

]
, γ

(0)
12 =

[
0 0
1 0

]
, μ21 =

[
1 1
0 1

]
, μ

(0)
21 =

[
1 1
0 0

]
,

ι
(s)
1 =

[
s 0
0 1

]
, and σ12 =

[
0 1
1 0

]
.

This view enables the transpose of each operator to be defined to coincide with
the transpose of its matrix:

Definition 3. The transposes of the operators in Definition 2 are as follows:

γT
ij = μ

(0)
ji , γ

(0)
ij

T = γ
(0)
ji , μT

ij = μji, μ
(0)
ij

T = γji, ι
(s)
i

T = ι
(s)
i and σT

ij = σij .

Clearly the transpose operator T is a bijection of order two on the set of op-
erations listed in Definition 2. In greater detail, it is the identity on elements
listed in parts (v) and (vi), a bijection on the subsets of parts (ii) and (iii), and
a bijection between the elements of parts (i) and (iv). Hence the transpose of a
list of such operations will also be a list of such operations, so that the following
concept of a dual chain is well-defined:

Definition 4. The dual of a location-aware chain ρ = (ρ1, ρ2, ρ3, . . . , ρn) is the
location-aware chain ρT = (ρTn, . . . , ρ

T
3 , ρ

T
2 , ρ

T
1).

The foregoing observations imply that the number and type of the powering
operations, such as squarings and inversions, is the same for a chain and its
dual. Also, the number of multiplications without initialisation, the number of
copyings with initialisation, and the number of swappings are all preserved un-
der application of the dual map. However, the number of multiplications with
initialisation and the number of copyings without initialisation are interchanged
by the dual. Additional conditions are required to make these numbers equal
so that the cost of a space aware chain, in terms of the counts of each type of
operation, is unchanged when the dual is taken.

Before tackling these conditions, let us reflect on the choice of operations
in Definition 2. The general operations μijk, i = k = j, were omitted be-
cause their transposes are too complicated for a sensible definition of a dual
chain. However, the remaining cases of multiplicative operations, namely μij , i =
j, are not powerful enough to enable all the required operations to be done.

Dual Exponentiation 89

As a result, the copying operations γij need to be included. The need for closure
under transpose results in the inclusion of multiplications with initialisation.
Lastly, the copying with initialisation arises naturally from the conditions in §4.

3.1 Example

In this example, the notation is illustrated by computingM15 using two registers,
and starting with the addition chain (1, 2, 3, 6, 12, 15). The construction of the
chain under Defn. 1 is usually given explicitly in the form

1 + 1 = 2, 1 + 2 = 3, 3 + 3 = 6, 6 + 6 = 12, 12 + 3 = 15.

but the three doublings can be exhibited by writing it as

2×1 = 2, 1 + 2 = 3, 2×3 = 6, 2×6 = 12, 12 + 3 = 15.

The corresponding computation with M is

(M1)2 = M2; M1×M2 = M3; (M3)2 = M6; (M6)2 = M12; M12×M3 = M15

which contains 3 squarings and 2 multiplications.
A minimum of 2 storage locations is required for this, say R1 and R2. Suppose

that only R1 may be used for input and output. So it is assumed to hold M
after initialisation, and should contain the final value M15 at the end of the
calculation. Using a vector to give the values in the registers, the computation
starts with (M,⊥) in (R1, R2) where ⊥ denotes an undefined or unknown value.
As M is still needed after it is squared, it must first be copied: γ12 yields values

(M,M). Then application of ι
(2)
2 creates (M,M2) and μ

(0)
21 yields (M3, 1G). Here

the 1G is created by the superscript (0), and used to overwrite the M2 as it is
no longer required. This is a feature of the chains of interest that is introduced
in the next section in order to obtain a dual of equal computational effort. Of
course, the computationally unnecessary, and essentially free, initialisation to
1G would probably be skipped in practice. Using γ12 to create (M3,M3) means

that M3 is not lost when the next squaring, ι
(2)
2 generates (M3,M6). Repeating

ι
(2)
2 produces (M3,M12) so that the final multiplication μ

(0)
21 achieves (M15, 1G).

This has the desired power M15 in the desired location R1 at the end of the
calculation. It has also eliminated the unwanted data from R2, which is again a
requirement described in the next section for the chains of interest. Summarising,
the sequence of operations and register contents is thus

(
M
⊥
) γ12−→

(
M
M

) ι
(2)
2−→
(
M
M2

) μ
(0)
21−→
(
M3

1G

) γ12−→
(
M3

M3

) ι
(2)
2−→
(
M3

M6

) ι
(2)
2−→
(
M3

M12

) μ
(0)
21−→
(
M15

1G

)
The transposes of the operations γ12, ι

(2)
2 , μ

(0)
21 , γ12, ι

(2)
2 , ι

(2)
2 , μ

(0)
21 are, in order,

μ
(0)
21 , ι

(2)
2 , γ12, μ

(0)
21 , ι

(2)
2 , ι

(2)
2 , γ12. Reversing the order yields the dual chain, which

acts on the registers thus:

(
M
⊥
) γ12−→

(
M
M

) ι
(2)
2−→
(
M
M2

) ι
(2)
2−→
(
M
M4

) μ
(0)
21−→
(
M5

1G

) γ12−→
(
M5

M5

) ι
(2)
2−→
(
M5

M10

) μ
(0)
21−→
(
M15

1G

)
It corresponds to the different addition chain (1, 2, 4, 5, 10, 15). In fact, at a higher
level, the dual of the computation M →M3 →M3×5 is M →M5 →M3×5.

90 C.D. Walter

4 Preserving the Number of Multiplications

A standard measure of the time taken by an exponentiation is given by the
following cost associated with the underlying addition chain. Once the execution
time for each type of operation is known, the corresponding weighted sum of the
entries in the cost tuple will yield the total time for exponentiation.

Definition 5. The cost of a location-aware chain is the tuple consisting of the
numbers of each type of operation in the chain, as classified in Definition 2 and
refined to separate the counts of the unary operations in part (v) according to
the value of s ∈ S.

Thus, in particular, the cost of a chain yields separately the numbers of copy-
ings, non-squaring multiplications, squarings and inversions, the first two being
divided into two parts according to whether the operation includes an initialisa-
tion to 1G or not. (Finer time measurements may be required [1].) In order to
preserve cost when taking the dual of a chain, some extra conditions are required:

Definition 6. A location-aware chain is said to be normalised if it satisfies the
following criteria:
i) There is a prescribed subset of registers, indexed by IIO ⊆ I, say, which is
used for I/O1.
ii) The inputs to every operation and the final value in any output register must
be defined, i.e. no operation output or final output depends on the initial value
of any non-input register.
iii) The initial value of an input register and the output from every operation in
the chain must be used, i.e. every operation output is the input to a subsequent
multiplicative operation or is the final value in an output register.
iv) 1G is never explicitly the input to any operation nor explicitly the final value
of an output register.
v) If an operation involving two registers does not include an initialisation to 1G
then the value remaining in the non-result register must be used by a subsequent
multiplicative operation or be the final value in an output register.

The conditions (ii)–(v) actually specify which registers are for input and output:

• Registers RJ with J ∈ IIO will have their initial values used by the chain
and their final values must be defined and not explicitly set to 1G.

• Initial values in registers RJ , J ∈ I \ IIO, must not be used, and final values
in these registers must be removed by initialising them to 1G.

Thus all the I/O registers will both import values and export values, but none of
the non-I/O registers will either import values or export values. Adding copying
operations, with initialisation if necessary, at the end of a chain enables any
outputs of the chain to be via the same set of registers as is used for inputs.

1 All that is needed is to have the same number of input registers as output registers
rather than the same subset for both. The restriction here is reasonable for hardware.

Dual Exponentiation 91

So this condition mainly imposes a requirement for there to be the same number
of outputs as inputs. There need not be just one input – the chain could perform
a multi-exponentiation.

Part (iii) means there are no redundant operations. This can be achieved from
any space-aware chain simply by deleting operations whose values are not used,
i.e. those operations whose output is neither an input to a subsequent operation
nor an output of the chain. Although redundant, it is allowed to have registers
which do not figure in any operations.

Property (iv) means, for example, that neither of the inputs to any multiplic-
ation has been set to 1G as a result of a previous operation with an initialisation
of one of the two named registers. Similarly, the input to a copy or powering
operation should not have been set to 1G by a preceding operation. This does
not impose any real restriction on allowable chains. The unary operations with
1G as an input have 1G as an output and so can be deleted from the chain with-
out affecting the final output(s). A multiplication with 1G as an input has an
output equal to the other input and so it can be replaced by a copy or deleted
entirely according to whether the output is to the register that contains 1G or
not. A copy of 1G can be removed, and an initialisation attached instead to the
previous operation that used value in the register that needs to be set to 1G.

Condition (v) is easily achieved in any chain by modifying every operation
to include an initialisation whenever it makes no difference to the computations
performed or the values exported. For any operation involving two registers but
with no initialisation, it means that the values in both the named registers will
be used by subsequent operations or exported. Unary operations, i.e. powering
operations, do not have registers affected by this rule.

Finally, the definition really assumes there are no swapping operations in-
volved. If there is any swapping, then, in the obvious way, the old and new
locations of the value in a register need to be taken into account when deciding
whether a value is used or exported or has been initialised to 1G or etc.

The example in section §3.1 is of a normalised chain, as is easily checked. The
I/O subset of I = {1, 2} is IIO = {1}. It is clear that all non-trivial intermediate
register values are used; the unused intermediate values have all been deliber-
ately set to 1G and are eventually overwritten. The dual chain is also clearly a
normalised chain. Both chains in this example have the same costs: there are
three squarings, two copyings, and two multiplications with initialisations.

Theorem 1. The cost of a normalised location-aware chain is unchanged by
taking the dual.

Proof. For simplicity, and without loss of generality, assume there are no unary
operations (i.e. those covered by Defn. 2(v)) and no swapping operations. It
has already been observed that the numbers of such operations are not changed
by taking the dual, nor are the numbers of copyings with initialisation and
multiplications without initialisation.

The proof works by counting the number of instances of 1G or ⊥ (undefined)
occurring in registers, and equating this 1) to the number of operations that
create them and 2) to the number of operations that destroy them. So let γ

92 C.D. Walter

be the number of copyings without initialisation, γI the number of copyings
with initialisation to 1G and μI the number of multiplications with initialisation
to 1G. It will be shown that γ = μI , from which the theorem follows almost
immediately. (In the example of §3.1, there are 2 instances of 1G, 1 of ⊥, and
γI = 0, γ = 2, μI = 2. Equating the numbers yields 1+μI+γI = 3 = 1+γ+γI ,
so that γ = μI (= 2).)

Suppose an arbitrary, fixed register R contains 1G or ⊥ at a given time. Then,
because the chain is normalised,

◦ The previous operation naming R, if any, initialised it to 1G;
◦ The next operation naming R, if any, must be a copy into R;
◦ If R is for I/O, there is always a previous and a next such operation;
◦ If R is not for I/O, the first such value has no preceding operation naming
R and the final one no such subsequent operation.

Of course, the 1Gs which occur are in one-to-one correspondence with the chain
operations which include an initialisation, each being associated with the oper-
ation which created it. Copyings can only overwrite 1G or ⊥, and so there is a
one-to-one correspondence between copyings (with or without an initialisation)
and any instance of ⊥ or non-final instances of 1G, each being associated with
the copying which destroys it. There is only an instance of ⊥ if R is not for
I/O, and then only one. A final instance of 1G means one which remains in the
register at the end of executing the chain. There can only be one such instance,
and it only occurs for a non-IO register. So there is the same number of instances
of ⊥ as number of instances of a final 1G. Thus the number of times register R
is explicitly initialised to 1G is equal to the number of occurrences of 1G in R
during the execution of the chain, and this in turn equals the number of copyings
(with or without initialisation) into R. Summing over all R, μI+γI = γ+γI . So
μI = γ. Since copyings without initialisation become multiplications with ini-
tialisation and vice versa when the dual is taken, and these numbers are the
same, the numbers of them are not changed when the dual is applied. ��

5 Preserving the Chain Output under Duality

The action of a space-aware chain ρ = (ρ1, ρ2, ρ3, . . . , ρn) is given by the compo-
sition ν(ρ) = ρn◦. . .◦ρ3◦ρ2◦ρ1 of its elements. For a specific chain, this would be
calculated as the matrix product, say Mρ, of the representatives for each opera-
tion. The dual chain has action given by the transpose ν(ρT) = ρT1 ◦ρT2 ◦ρT3 ◦. . .◦ρTn.
Definition 7. A location-aware chain ρ is symmetric if ν(ρT) = ν(ρ).

In other words, a symmetric chain is one such that the dual computes the same
output. Its matrix is symmetric because the dual is represented by the transpose
matrix.

Lemma 1
i) With the above notation for a location-aware chain ρ, MT

ρ = MρT .
ii) The chain ρ is symmetric if, and only if, its matrix Mρ is symmetric.

Dual Exponentiation 93

This gives a criterion for checking whether or not the dual chain will compute
the same value(s): it must be symmetric. In the case of a normalised chain,
Mρ = (mij) has mij = 0 if i is the index of a non-I/O register. This is because
1G is the final value left in register Ri by ρ. Similarly, mij = 0 if j is the index
of a non-I/O register. This is because the initial value in register Ri prior to
applying ρ is not used by ρ. Hence the action of ρ is entirely described by the
sub-matrix of elements indexed by IIO. Consequently,

Theorem 2. If a normalised, location-aware chain has only one I/O register,
then its dual computes the same value.

Thus, unless we are performing multi-exponentiations, a normalised chain and
its dual will certainly output the same values from a given input.

6 Mixed Base Representations

Most exponentiation algorithms start by performing a recoding of the exponent
D (normally from binary) into some variety of the mixed base form [4,11]:

D = ((dn−1rn−2+dn−2)rn−3+ . . .+d1)r0+d0 with (ri, di) ∈ R×D (1)

where R is a set of allowed radices, e.g. R = {2, 4} or R = {2, 3, 5}; D is a set
of possible digits, such as D = {0, 1, 2, 3, 4}, D = {0, 1, 3} or D = {0,±1,±2};
and there are some rules on the allowable choices for radix/digit pairs (ri, di),
such as a pair of consecutive digits having to include at least one 0 (as in NAF).
In general, these representations can be generated by the usual change-of-base
algorithm modified to vary the base choice as necessary at each step. As an
example, 23510 = (((((1)3 + 0)2+ 1)5+ 4)2 + 0)3 + 1 = 120312450213. A typical
step in generating this is to choose base 3 for 235, obtain the (least significant)
digit 13 as 235 mod 3 and repeat the process on (235− 1)/3 = 78.

The recoding enables the exponentiation to be simplified into a sequence of
easy steps which process the digits from left to right or right to left. Those steps
are converted into a space-aware addition chain when implemented. Normalised,

Inputs: M ∈ G, D = ((dn−1rn−2+dn−2)rn−3+ . . .+d1)r0+d0 ∈ N where di ∈ D
Output: MD ∈ G
———————————————————————————————–
read P ←M read P ←M

Initialisation: T [d]← P d for all d �= 0 Initialisation: T [d]← 1G for all d �= 0
P ← 1G for i← 0 to n−1 do {

for i← n−1 downto 0 do { if di �= 0 then T [di]← T [di]×P
if i �= n−1 then P ← P ri if i �= n−1 then P ← P ri }
if di �= 0 then P ← P×T [di] } Finalisation: P ←

∏
d �=0 T [d]

d

Finalisation: T [d]← 1G for all d �= 0 T [d]← 1G for all d �= 0
return P return P

Fig. 1. Left-to-Right (left) and Right-to-Left (right) Table-based Exponentiation

94 C.D. Walter

but high level, versions of Brauer’s m-ary scheme [3] and the scheme of Yao [14]
are illustrated in Figure 1. The first line reads the plaintext input M into the
only I/O register, namely P , and the last line writes the resulting ciphertext MD

from that register. The non-I/O registers named T [d], d∈D\{0}, are initialised
before use in the second line, and reduced to a final 1G in the second last line.
The second last line is included to meet the I/O conditions of being normalised;
it could be omitted, but is good for security.

Considering just the two registers P and T [di] for a fixed i, the matrix cor-
responding to the addition chain which performs the loop iteration of index i is[
ri 1
0 1

]
for the left-to-right version and its transpose,

[
ri 0
1 1

]
for the right-to-left

version. Using Defn. 4, this shows that the composite operations corresponding
to the loop bodies are duals of each other if they are written out in corresponding
ways using the atomic operations of Defn. 2 — the sequence for one composite
operation is transposed to give the sequence for the other.

The combination of the initialisation of table T and setting of P to 1G in the
left-to-right case has a matrix representation indexed by P and the T [d], and it
is entirely zero except that the P th column contains 0 in row P and d in the row
for T [d]. Its transpose is a matrix with only one non-zero row, namely that of
index P and with d in the column for T [d], which is clearly the matrix required
to achieve the product which is assigned to P after the loop in the right-to-left
case. Thus these two parts of the algorithms are also dual when defined suitably
in terms of the atomic operations. Lastly, the finalisation line of the left-to-right
case and the initialisation line of the right-to-left case are dual, because both are
given by the symmetric matrix, indexed by P and the T [d], which is all zeros
except for a 1 as the diagonal entry of index P . This completes a proof that
the formulations of the algorithms given in Fig. 1 are, in fact, dual because, in
the correspondence, the totality of composite operations in one is reversed and
transposed to give the operations of the other.

Strictly speaking, the definition of duality has been extended above to al-
gorithms which are described at the level of composite operations on registers
rather than the atomic ones of Defn. 2. However, as in Fig. 1, algorithms are
often presented at such a level. This presentation usually has to satisfy the I/O
requirements of normalised form in order that the transpose of the initialisation
stage of one algorithm yields the finalisation step of the other. This was done
for Fig. 1. As composite operations can always be decomposed into segements of
a normalised location-aware chain, this extended definition of duality between
algorithms means there is an underlying duality in the original sense of Defn. 4.

7 A New Compact Exponentiation Algorithm

In a typical resource-constrained embedded system, there is normally only room
for a very small table. This was the motivation for the division chain method
of Walter [11], given as the right-to-left algorithm in Figure 2. Typically it uses
only three registers: explicit T for the accumulating product and P providing

Dual Exponentiation 95

the right power of the plaintext input for each digit, and implicit working space
P ′ for temporary values. The idea is that pairs (ri, di) in the representation of
D have efficient addition chains for ri which include di as an intermediate value
so that P di can be computed cheaply en route to P ri . As in the table-based
algorithms of Fig. 1, the dual left-to-right algorithm given in Fig. 2 is derived
simply by reversing and transposing each step. Consequently, a duality proof
would follow the same pattern as for the table-based algorithms.

Inputs: M ∈ G, D = ((dn−1rn−2+dn−2)rn−3+ . . .+d1)r0+d0 ∈ N where di ∈ D
Output: MD ∈ G
———————————————————————————————–
read P ←M read P ←M
Initialisation: T ← P Initialisation: T ← 1G

P ← 1G for i← 0 to n−1 do in parallel {
for i← n−1 downto 0 do T ← T×P di

if i �= n−1 then P ← P ri×T di if i �= n−1 then P ← P ri }
else P ← T di Finalisation: P ← T

Finalisation: T ← 1G T ← 1G
return P return P

Fig. 2. Left-to-Right (left) and Right-to-Left (right) Compact Exponentiation

The dual space-aware chain of atomic operations is still needed for each loop
iteration. The right-to-left loop iteration is achieved by a matrix indexed by P

and T , namely

[
ri 0
di 1

]
. Its transpose,

[
ri di
0 1

]
, leads to the dual code given for the

left-to-right case. As an example, an iteration with pair (5, 3) can be computed
with the addition chain 1+1 = 2; 1+2 = 3; 2+3 = 5. Using the three registers
P , T , and working space P ′, this can be achieved by the space-aware chain
P → P ′;P ′×P ′ → P ′;P×P ′ → P ;T×P → T ;P×P ′ →I P where the subscript

I indicates the operation with an initialisation to 1G. The dual sub-chain is
P → P ′;P×T → P ;P ′×P → P ′;P ′×P ′ → P ′;P×P ′ →I P . One can readily
check that the numbers of each type of operation are the same in this example:
one squaring, one multiplication with initialisation, two other multiplications
and one copying. Thus there is the effect of having a table which includes M3

without having to reserve the space for it or spend extra time computing it.
Previously it was unclear which digits could be generated this way in a left-to-
right algorithm as there was no obvious construction for the required addition
sub-chain. Duality solves that problem, as illustrated here with the pair (5, 3).

As the time efficiency is the same for both directions, it is possible to use
figures from [12] to see that the algorithm has very similar execution time to the
usual algorithms which use similar space (e.g. three registers). When D is fixed
for many exponentiations, the cost of the mixed base recoding can be amort-
ised over the lifetime of the key, and the times from [11] apply. This recoding
can be biased to make the best use of any composite operations on G, such as
a Frobenius map, which are cheaper than their components. Depending upon

96 C.D. Walter

where the multiplication by T occurs in the sub-chain, one can also apply one of
the double-and-add, triple-and-add or quintuple-and-add formulae for composite
elliptic curve operations [6,10,9]. Consequently, the new algorithm appears part-
icularly suitable for SSL servers re-using the same key many times. Of course,
the time is the same for both directions only using the coarse measurement of
counting doubles and adds on the elliptic curve. Use of the composite operations
makes modest but different improvements in time to both directions (see [1]).

Finally, a few further words on the efficiency of the code. In order to present
symmetric versions of the algorithms, there is some extra copying to have a
single register for I/O. This is unnecessary in software, but often required in
hardware. So, in Fig. 2, M might have been read directly into T instead of P in
the left-to-right algorithm, and, dually, the output returned from T rather than
P in the right-to-left algorithm. Deletion of the two copyings would still have left
dual algorithms computing the same values, although not symmetric, because
the matrix for the computation has a single non-zero value. Lastly, if the rules
of normalisation are followed when converting the recoding into a space-aware
chain then the multiplications by P di or T di are automatically removed when
di = 0, rendering unnecessary the condition di = 0 that appeared in Fig. 1.

8 Miscellaneous Space Issues for Dual Chains

Returning to general exponentiation algorithms, there may be cost issues in stor-
ing the mixed base representation (1). If D is given in binary but one is allowed
to choose a base ri which is not a power of 2, then the recoding must be done
from right to left. This can be done on-the-fly for a right-to-left exponentiation
method so that minimal additional storage is required for the recoding. However,
the left-to-right algorithm requires the complete recoding to be determined and
stored in advance. This may not be able to re-use space occupied by D if the
key must be kept, but it makes the left-to-right version use more space. On the
other hand, as in Figs. 1 and 2, the initial value of M is normally destroyed in
the right-to-left direction, but preserved in the left-to-right direction. So extra
storage space for input M may be required to retain it in the right-to-left case.

The way in which registers are used also tends to differ between the two direc-
tions. Only P is updated in the example left-to-right algorithms, whereas both
P and T are updated in the right-to-left cases. This suggests more data move-
ment is required in right-to-left algorithms, especially if the hardware can only
write to memory from one register. Thus, although dual exponentiation schemes
nominally use the same time and space, there are often relevant secondary space
and data movement issues to consider when duality is used in practice.

9 Conclusion

A straight-forward duality mechanism has been provided for addition chains
which enables exponentiation algorithms to process digits of the exponent in
either direction. In terms of counts of basic operations on the group in which

Dual Exponentiation 97

exponentiation takes place, and storage for such elements, this mechanism pre-
serves both the time and space usage of an exponentiation scheme. It thereby
improves on current methods which only address time issues. Time and space
differences between the two directions are mainly confined to the recoding phase
of an exponentiation and data preservation. The duality was illustrated using
Brauer’s and Yao’s algorithms, and applied to derive a new, compact left-to-right
algorithm. This algorithm can make use of composite elliptic curve operations
to achieve very competitive execution speeds, and is useful in both embedded
crypto-systems and SSL servers.

References

1. Avanzi, R.M.: Delaying and Merging Operations in Scalar Multiplication: Appli-
cations to Curve-Based Cryptosystems. In: Biham, E., Youssef, A.M. (eds.) SAC
2006. LNCS, vol. 4356, pp. 203–219. Springer, Heidelberg (2007)

2. Bernstein, D.J.: Pippenger’s Exponentiation Algorithm (2002),
http://cr.yp.to/papers/pippenger.pdf

3. Brauer, A.: On Addition Chains. Bull. Amer. Math. Soc. 45(10), 736–739 (1939)
4. Dimitrov, V., Cooklev, T.: Two Algorithms for Modular Exponentiation using

Non-Standard Arithmetics. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences E78-A(1), 82–87 (1995)

5. Dimitrov, V.S., Jullien, G.A., Miller, W.C.: Theory and Applications for a Double-
Base Number System. In: Proc. ARITH 13, pp. 44–51. IEEE, Monterey (1997)

6. Dimitrov, V.S., Imbert, L., Mishra, P.K.: Efficient and Secure Elliptic Curve Point
Multiplication using Double-Base Chains. In: Roy, B. (ed.) ASIACRYPT 2005.
LNCS, vol. 3788, pp. 59–78. Springer, Heidelberg (2005)

7. Gordon, D.M.: A Survey of Fast Exponentiation Algorithms. Journal of Algo-
rithms 27, 129–146 (1998)

8. Knuth, D.E.: The Art of Computer Programming, 3rd edn. Seminumerical Algo-
rithms, §4.6.3, vol. 2, pp. 465–485. Addison-Wesley (1998)

9. Longa, P., Miri, A.: New Composite Operations and Precomputation Scheme for
Elliptic Curve Cryptosystems over Prime Fields. In: Cramer, R. (ed.) PKC 2008.
LNCS, vol. 4939, pp. 229–247. Springer, Heidelberg (2008)

10. Mishra, P.K., Dimitrov, V.: Efficient Quintuple Formulas for Elliptic Curves and
Efficient Scalar Multiplication Using Multibase Number Representation. In: Garay,
J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007. LNCS, vol. 4779, pp.
390–406. Springer, Heidelberg (2007)

11. Walter, C.D.: Exponentiation using Division Chains. In: Proc. ARITH 13, pp.
92–98. IEEE, Monterey (1997)

12. Walter, C.D.: MIST: An Efficient, Randomized Exponentiation Algorithm for Re-
sisting Power Analysis. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp.
53–66. Springer, Heidelberg (2002)

13. Walter, C.D.: Sliding Windows Succumbs to Big Mac Attack. In: Koç, Ç.K.,
Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 286–299. Springer,
Heidelberg (2001)

14. Yao, A.C.-C.: On the Evaluation of Powers. SIAM J. Comput. 5(1), 100–103 (1976)

http://cr.yp.to/papers/pippenger.pdf

Optimal Eta Pairing on Supersingular

Genus-2 Binary Hyperelliptic Curves

Diego F. Aranha1,�, Jean-Luc Beuchat2, Jérémie Detrey3,
and Nicolas Estibals3

1 Institute of Computing, University of Campinas
Av. Albert Einstein, 1251, CEP 13084-971, Campinas, Brazil

dfaranha@ic.unicamp.br
2 Graduate School of Systems and Information Engineering, University of Tsukuba,

1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
beuchat@risk.tsukuba.ac.jp

3 CARAMEL project-team, LORIA, INRIA / CNRS / Nancy Université,
Campus Scientifique, BP 239, 54506 Vandœuvre-lès-Nancy Cedex, France

{jeremie.detrey,nicolas.estibals}@loria.fr

Abstract. This article presents a novel pairing algorithm over super-
singular genus-2 binary hyperelliptic curves. Starting from Vercauteren’s
work on optimal pairings, we describe how to exploit the action of the
23m-th power Verschiebung in order to reduce the loop length of Miller’s
algorithm even further than the genus-2 ηT approach.

As a proof of concept, we detail an optimized software implementa-
tion and an FPGA accelerator for computing the proposed optimal Eta
pairing on a genus-2 hyperelliptic curve over F2367 , which satisfies the
recommended security level of 128 bits. These designs achieve favourable
performance in comparison with the best known implementations of 128-
bit-security Type-1 pairings from the literature.

Keywords: Optimal Eta pairing, supersingular genus-2 curve, software
implementation, FPGA implementation.

1 Introduction

The Weil and Tate pairings were independently introduced in cryptography by
Frey & Rück [18] and Menezes, Okamoto & Vanstone [34] as tools to attack the
discrete-logarithm problem on some classes of elliptic curves defined over finite
fields. The discovery of constructive properties by Joux [29], Mitsunari, Sakai &
Kasahara [37], and Sakai, Oghishi & Kasahara [41] initiated the proposal of an
ever-increasing number of protocols based on bilinear pairings: identity-based
encryption [10], short signature [12], and efficient broadcast encryption [11], to
mention but a few. However, such protocols rely critically on efficient implemen-
tations of pairing primitives at high security levels on a wide range of targets.

� This work was performed while the author was visiting University of Waterloo.

O. Dunkelman (Ed.): CT-RSA 2012, LNCS 7178, pp. 98–115, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

dfaranha@ic.unicamp.br
beuchat@risk.tsukuba.ac.jp

Optimal Eta Pairing on Genus-2 Binary Curves 99

Miller described the first iterative algorithm to compute the Weil and Tate
pairings back in 1986 [35, 36]. The Tate pairing seems to be more suited to ef-
ficient implementations (see for instance [25, 30]), and has therefore attracted a
lot of interest from the research community. A large number of articles, culmi-
nating in the ηT pairing algorithm [5], focused on shortening the loop of Miller’s
algorithm in the case of supersingular abelian varieties. The Ate pairing, intro-
duced by Hess et al. [28] for elliptic curves and by Granger et al. [24] in the
hyperelliptic case, generalizes the ηT approach to ordinary curves. Eventually,
several variants of the Ate pairing aiming at reducing the loop length of Miller’s
algorithm have been proposed in 2008 [27, 31, 43].

In this work, we target the AES-128 security level. When dealing with ordinary
elliptic curves defined over a prime finite field Fp, the family of curves introduced
by Barreto & Naehrig (BN) [6] is a nearly optimal choice for the 128-bit security
level. Their embedding degree k = 12 perfectly balances the security between the
�-torsion and the group of �-th roots of unity, where � is a prime number dividing
the cardinality of the curve #E(Fp). The latest software implementation results
on these curves by Aranha et al. report computation times below one millisecond
on a single core of an Intel Core i7 processor [1].

Supersingular curves over F2m and F3m are better suited to hardware imple-
mentation, and offer more efficient point doubling and tripling formulae than
BN-curves. Moreover, supersingularity allows the use of a distortion map and
thus provides Type-1 (or symmetric) pairings [19], which cannot be obtained
with ordinary curves. However, the embedding degree of a supersingular elliptic
curve is always less than or equal to 6 [34]. As a consequence, the security on
the curve is too high with respect to the security of the group of �-th roots of
unity, and one has to consider curves defined over very large finite fields. There-
fore, most of the hardware accelerators are struggling to achieve the AES-128
level of security (see for instance [9] for a comprehensive bibliography). Software
implementations at this security level have for instance been reported in [3, 8].
However, the computation of a pairing is at least 6 times faster on a BN curve [7].

To mitigate the effect of the bounded embedded degree, Estibals proposed
to consider supersingular elliptic curves over field extensions of moderately-
composite degree [17]. Curves are then vulnerable to Weil descent attacks [22],
but a careful analysis allowed him to maintain the security above the 128-bit
threshold. As a proof of concept, he designed a compact Field-Programmable
Gate Array (FPGA) accelerator for computing the Tate pairing on a supersin-
gular elliptic curve defined over F35·97 . Even though he targeted his architecture
to low-resource hardware, his timings are very close to those of software imple-
mentations of BN curves.

Yet another way to reduce the size of the base field of the Tate pairing in
the supersingular case is to consider a genus-2 binary hyperelliptic curve with
embedding degree k = 12 [20, 40], which is the solution investigated in this
work. We indeed show that, thanks to a novel pairing algorithm, these curves
can be actually made very effective in the context of software implementations
and hardware accelerators for embedded systems.

100 D.F. Aranha et al.

This paper is organized as follows: after a general reminder on the hyperel-
liptic Tate pairing (Section 2) and on the Eta pairing on in the case of those
particular curves (Section 3), we describe a novel optimal1 Eta pairing algorithm
that further reduces the loop length of Miller’s algorithm compared to the ηT
approach [5] (Section 4). We then present an optimized software implementa-
tion (Section 5) and a low-area FPGA accelerator (Section 6) for the proposed
pairing algorithm. We discuss our results and conclude in Section 7.

2 Background Material and Notations

In this section, we briefly recall a few definitions and results about hyperelliptic
curves, and more precisely the Tate pairing on such curves. For more details, we
refer the interested reader to [16, 24].

2.1 Reminder on Hyperelliptic Curves

Let C be an imaginary nonsingular hyperelliptic curve of genus g defined over
the finite field Fq, where q = pm and p is a prime, and whose affine part is given
by the equation y2 + h(x)y = f(x), where f , h ∈ Fq[x], deg f = 2g + 1, and
deg h ≤ g.

For any algebraic extension Fqd of Fq, we define the set of Fqd -rational points
of C as C(Fqd) = {(x, y) ∈ Fqd × Fqd | y2 + h(x)y = f(x)} ∪ {P∞}, where P∞ is

the point at infinity of the curve. For simplicity’s sake, we also write C = C(Fq).
Additionally, denoting by φq the q-th power Frobenius morphism φq : C → C,
(x, y) �→ (xq, yq), and P∞ �→ P∞, note that a point P ∈ C is Fqd -rational if and
only if φd

q(P) = P .
We then denote by JacC the Jacobian of C, which is an abelian variety of

dimension g defined over Fq, and whose elements are represented by the divi-
sor class group of degree-0 divisors Pic0C = Div0C /PrincC . In other words, two
degree-0 divisors D and D′ belong to the same equivalence class D ∈ JacC
if and only if there exists a non-zero rational function z ∈ Fq(C)∗ such that
D′ = D + div(z). Naturally extending the Frobenius map to divisors as φq :∑

P∈C nP (P) �→
∑

P∈C nP (φq(P)), we say that D is Fqd -rational if and only if

φd
q(D) = D.

It can also be shown that any divisor class D ∈ JacC(Fqd) can be uniquely

represented by an Fqd -rational reduced divisor ρ(D) =
∑r

i=1(Pi)− r(P∞), with
r ≤ g, Pi = P∞, and Pi = −Pj for i = j, where the negative of a point P = (x, y)
is given via the hyperelliptic involution by −P = (x,−y−h(x)). In the following,
we also denote by ε(D) =

∑r
i=1(Pi) the effective part of ρ(D).

Using the Mumford representation, any non-zero Fqd -rational reduced divisor

D = ρ(D) (and therefore any non-zero element of the Jacobian JacC(Fqd)) can
be associated with a unique pair of polynomials [u(x), v(x)], with u, v ∈ Fqd [x]

1 Here the “optimal” qualifier is to be understood more as a reference to Vercauteren’s
work [43] than an actual claim of optimality.

Optimal Eta Pairing on Genus-2 Binary Curves 101

and such that u is monic, deg(v) < deg(u) = r ≤ g, and u | v2 + vh − f .
Furthermore, given two reduced divisors D1 and D2 in Mumford representation,
Cantor’s algorithm [13] can be used to compute the Mumford representation of
ρ(D1 +D2), the reduced divisor corresponding to their sum on the Jacobian.

2.2 Hyperelliptic Tate Pairing

Let � be a prime dividing #JacC(Fq) and coprime to q. Let also k be the cor-
responding embedding degree, i.e., the smallest integer such that � | qk − 1. We
denote by JacC(Fqk)[�] the Fqk -rational �-torsion subgroup of JacC . The Tate
pairing on C is then the well-defined, non-degenerate, and bilinear map

〈., .〉� : JacC(Fqk)[�]× JacC(Fqk)/� JacC(Fqk)→ F∗
qk/(F

∗
qk)

�,

defined as 〈D1, D2〉� ≡ f�,D1(D2), where D1 and D2 represent the divisor classes
D1 and D2, respectively, with disjoint supports: supp(D1) ∩ supp(D2) = ∅.
Moreover, for any integer n and any Fqk -rational divisor D, the notation fn,D
denotes the Miller function in Fqk(C)∗ which is defined (up to a non-zero constant
multiple) by its divisor such that div(fn,D) = nD− [n]D, where [n]D = ρ(nD).
In the case of the Tate pairing, since D1 ∈ JacC [�], we have [�]D1 = 0 and
div(f�,D1) = �D1.

So as to obtain a unique value for the Tate pairing, we also define the reduced

Tate pairing as e : (D1, D2) �→ 〈D1, D2〉(q
k−1)/�

� ∈ μ�, with μ� ⊆ F∗
qk the sub-

group of �-th roots of unity. Note that for any L such that � | L | qk − 1, we also

have e(D1, D2) = 〈D1, D2〉(q
k−1)/L

L .
Ensuring that there are no elements of order �2 in JacC(Fqk), we can also show

that there is a natural isomorphism between the quotient JacC(Fqk)/� JacC(Fqk)
and JacC(Fqk)[�]. We can then identify these two groups, and define the Tate
pairing on the domain JacC(Fqk)[�]× JacC(Fqk)[�].

The actual computation of the (reduced) Tate pairing is achieved thanks
to Miller’s algorithm [35, 36], which is based on the observation that, for any
integer n, n′, and for any Fqk -rational divisor D, one can take the function
fn+n′,D = fn,D · fn′,D · g[n]D,[n′]D, where g[n]D,[n′]D ∈ Fqk(C)∗ is such that
div(g[n]D,[n′]D) = [n]D+[n′]D− [n+n′]D. Note that the function g[n]D,[n′]D can
be explicitly obtained from the computation of [n+ n′]D = ρ([n]D + [n′]D) by
Cantor’s algorithm. See for instance [24, Algorithm 2] for more details. Therefore,
computing f�,D1(D2) is tantamount to computing [�]D1 on JacC(Fqk) by means
of any suitable scalar multiplication algorithm (e.g., addition chain or double-
and-add) while keeping track of the g[n]D1,[n′]D1

functions given by Cantor’s
algorithm and evaluating them at the divisor D2. Miller’s algorithm, based on
the double-and-add approach, thus has a complexity of �log2(�)� + wg(�) − 1
iterations (i.e., evaluations of such g[n]D1,[n′]D1

functions), where wg(�) denotes
the Hamming weight of �.

Finally, let u∞ be an Fq-rational uniformizer at P∞ (i.e., ordP∞(u∞) = 1).

For any function z ∈ Fq(C)∗, we denote by lc∞(z) = (u
− ordP∞ (z)
∞ · z)(P∞)

102 D.F. Aranha et al.

the leading coefficient of z expressed as a Laurent series in u∞. Restricting
the domain of the Tate pairing to D1 ∈ JacC(Fq)[�], one can easily check that
lc∞(f�,D1) ∈ F∗

q with D1 = ρ(D1). We can then apply [24, Lemma 1] to show

that we can simply compute the Tate pairing as 〈D1, D2〉� = f�,D1(ε(D2)), as
long as supp(D1) ∩ supp(ε(D2)) = ∅. This last condition is ensured by taking
D2 ∈ JacC(Fqk)[�] \ JacC(Fq)[�].

3 Eta Pairing on Supersingular Genus-2 Binary Curves

3.1 Curve Definition and Basic Properties

In this work, we consider the family of supersingular genus-2 hyperelliptic curves
defined over F2 by the equation Cd : y2+y = x5+x3+d, where d ∈ F2. Because of
their supersingularity, which provides them with a very efficient arithmetic, along
with their embedding degree of 12, which is the highest among all supersingular
genus-2 curves, these curves are a target of choice for implementing pairing-
based cryptography. They have therefore already been studied in this context in
several articles [5, 14, 20, 32, 39, 40].

For m a positive integer coprime to 6, the cardinality L of the Jacobian of Cd

over F2m is L = #JacCd
(F2m) = 22m + δ2(3m+1)/2 + 2m + δ2(m+1)/2 + 1, where

the value of δ is

δ =

{
(−1)d when m ≡ 1, 7, 17, or 23 (mod 24), and

−(−1)d when m ≡ 5, 11, 13, or 19 (mod 24).

The embedding degree of Cd is k = 12, and #JacCd
(F2m) | 212m − 1. The Tate

pairing and its variants will then map into the degree-12 extension F212m , which
we represent as the tower field F212m

∼= F2m [τ, sτ,0] where τ ∈ F26 is such that
τ6 + τ5 + τ3 + τ2 + 1 = 0, and sτ,0 ∈ F212 is such that s2τ,0 + sτ,0 + τ5 + τ3 = 0.

3.2 Distortion Maps

Since Cd is supersingular, it has non-trivial distortion maps [21, 44] embedding
JacCd

(F2m) into distinct subgroups of JacCd
(F212m). Such a distortion map will

then allow us to construct Type-1 pairings [19], such as the modified Tate pairing
described in the next section. An exhaustive study of the distortion maps of
JacCd

is given by Galbraith et al. in [21], of which we now recall the key results.
From [21, Sec. 8], the automorphisms of Cd are of the form

σω : (x, y) �→ (x+ ω, y + sω,2x
2 + sω,1x+ sω,0),

where ω is a root of the polynomial x16 + x8 + x2 + x, sω,2 = ω8 + ω4 + ω,
sω,1 = ω4 + ω2, and sω,0 is a root of y2 + y + ω5 + ω3.

Considering τ as above, we also define θ = τ4 + τ2 + τ and ξ = τ4 + τ2. One
easily checks that τ , θ, and ξ are all roots of x16 + x8 + x2 + x. Let us now take
sτ,0 as above, along with sθ,0 = sτ,0+τ5+τ2+τ+1 and sξ,0 = τ4+τ2. Verifying

Optimal Eta Pairing on Genus-2 Binary Curves 103

that s2ω,0 + sω,0 + ω5 + ω3 = 0 holds for all ω ∈ {τ, θ, ξ}, we can now define the
three corresponding automorphisms of Cd, namely στ , σθ, and σξ, along with
their natural extension to its Jacobian JacCd

.
From [21, Prop. 8.1], all possible distortion maps can be found in Z[φ2m , στ , σθ],

where φ2m is the 2m-th power Frobenius map. Furthermore, Q[φ2m , στ , σθ] is a
16-dimensional vector space with the direct sum decomposition

Q[φ2m , στ , σθ] = Q(φ2m)⊕ στQ(φ2m)⊕ σθQ(φ2m)⊕ σξQ(φ2m).

In other words, the four endomorphisms of JacCd
1, στ , σθ, and σξ are linearly

independent over Q(φ2m), and any distortion map can be expressed as a Q(φ2m)-
linear combination of these endomorphisms.

Finally, a tedious computation—which, fortunately, can easily be checked
using any computer algebra system—gives the three following equalities over
End(JacCd

):

φ2mστφ
−1
2m = [2m]στφ

−2
2m + [ε22m]σθφ

−4
2m ,

φ2mσθφ
−1
2m = [−23m]σθφ

−6
2m , and

φ2mσξφ
−1
2m = [24m]σξφ

−8
2m + [ε25m]φ−10

2m ,

where ε = (−1)e and e = 0 when m ≡ 1 or 11 (mod 12), and 1 otherwise.

3.3 Modified Tate Pairing on Cd

Let � be a large (odd) prime dividing L = #JacCd
(F2m). After ensuring that

there are no points of order �2 in JacCd
(F212m), we can restrict the domain of

the Tate pairing to JacCd
(F2m)[�] × JacCd

(F212m)[�], as detailed in Section 2.2.
Using a non-trivial distortion map ψ which maps JacCd

(F2m)[�] to a subgroup
ψ(JacCd

(F2m)[�]) ⊂ JacCd
(F212m)[�] such that JacCd

(F2m)[�] ∩ ψ(JacCd
(F2m)[�])

= {0}, we can then define the reduced modified Tate pairing as the non-
degenerate, bilinear map

ê : JacCd
(F2m)[�] × JacCd

(F2m)[�] −→ μ� ⊆ F∗
212m

(D1 , D2) �−→ 〈D1, ψ(D2)〉(2
12m−1)/�

�

= 〈D1, ψ(D2)〉(2
12m−1)/L

L ,

where 〈D1, ψ(D2)〉L = fL,D1(ε(ψ(D2))), the divisor classes D1 and D2 being
represented by the F2m-rational reduced divisors D1 = ρ(D1) and D2 = ρ(D2).
As long as D1 and D2 are not both trivial, the distortion map ψ ensures that
the affine supports of D1 and ψ(D2) are disjoint.

At this stage, we have to point out that, in this case, the g[n]D1,[n′]D1
func-

tions required by Miller’s algorithm in the computation of the Tate pairing can
be simplified. Indeed, from Cantor’s algorithm, most of these functions involve
vertical lines, which all pass through multiples of the F2m -rational reduced di-
visor D1, meaning that their equations will also be F2m-rational. Furthermore,
noticing that the x-coordinate of ψ(P) is always in F26m when P is F2m- or F22m-
rational, we can conclude that the evaluation of those vertical lines at ε(ψ(D2))

104 D.F. Aranha et al.

for any F2m-rational reduced divisor D2 will also be in F∗
26m and therefore anni-

hilated by the final exponentiation to the (212m − 1)/L-th power. We can then
safely ignore the computation of those vertical lines.

3.4 Choosing an Efficient Pairing

Action of the Frobenius φ2m. Following the papers on hyperelliptic Ate and
optimal Ate pairings [24, 43], a natural choice is to study the action of φ2m ,
the 2m-th power Frobenius map, over JacCd

[�] in order to reduce the number of
iterations in Miller’s algorithm.

To that intent, let us first consider a non-zero element D1 ∈ JacCd
(F2m)[�].

Since the four endomorphisms 1, στ , σθ, and σξ are Q(φ2m)-linearly independent
as per [21, Prop. 8.1], this is also the case for the four elements D1, Dτ = στ (D1),
Dθ = σθ(D1), and Dξ = σξ(D1), which then form a basis B = (D1, Dτ , Dθ, Dξ)
of the 4-dimensional �-torsion JacCd

[�].
From the three equalities presented in Section 3.2, and noting that φ2m(D1) =

D1 since D1 is F2m-rational, one then obtains the following matrix describing
the action of φ2m on the �-torsion in the basis B:

φ2m ≡

⎛
⎜⎜⎝

1 0 0 ε25m

0 2m 0 0
0 ε22m − 23m 0
0 0 0 24m

⎞
⎟⎟⎠ (mod �).

From this matrix, one can remark that it is not completely diagonal. In par-
ticular, the eigenspace of eigenvalue 2m, which would allow one to construct
the optimal Ate pairing described by Vercauteren in [43, Sec. IV-G], is not di-
rectly attainable using the distortion map στ . This is not a problem in general,
but since we want to construct a Type-1 pairing, we cannot avoid the use of
distortion maps.

Diagonalizing the matrix shows that a way to map JacCd
(F2m)[�] to this

eigenspace would be to use the distortion map ψ = (23m + φ2m)στ , as one
can rapidly check that φ2m(ψ(D1)) = [2m]ψ(D1). However, contrary to the dis-
tortion maps στ , σθ, and σξ which are simple automorphisms of Cd, ψ only acts
on its Jacobian. As this might have a negative impact on the performance of the
corresponding hyperelliptic Ate pairing, we decide not to follow this option in
this paper, even though we plan to investigate it in the near future.

Sticking now to the diagonal parts of the matrix, one might alternatively
consider using the distortion map σθ, as it maps the F2m-rational �-torsion to
the eigenspace of eigenvalue −23m. However, since � | L | 26m + 1, the lattice in
which to look for an optimal pairing over this eigenspace is only of dimension
2, which is no better that the Eta pairing that we propose at the end of this
section.

Action of the Verschiebung φ̂2m . An alternative to relying on the action
of the Frobenius map φ2m would be to use its dual φ̂2m , the 2m-th power Ver-
schiebung. However, the curve Cd is not superspecial, which means that φ̂2m ,

Optimal Eta Pairing on Genus-2 Binary Curves 105

albeit purely inseparable, is not a map of Cd but only of JacCd
: the conditions

of [24, Lemma 5] are not met, and we are therefore unable to construct a non-
degenerate pairing from such a map.

Action of the Verschiebung φ̂23m. Nevertheless, as already noted by Barreto
et al. in [5], the 23m-th power Verschiebung φ̂23m can be used instead of φ̂2m .
We detail this construction in the following paragraphs.

First, let P = (xP , yP) be a point of Cd distinct from P∞, andD = (P)−(P∞)
be the corresponding degenerate divisor. Its Mumford representation is then
D = [x+ xP , yP]. Doubling and reducing D three times via Cantor’s algorithm,
we obtain [8]D = ρ(8D) = [x + x64

P + 1, x128
P + y64P + 1]. Note that the divisor

[8]D is also degenerate, as [8]D = ([8]P)− (P∞), and corresponds to the point
[8]P = (x64

P + 1, x128
P + y64P + 1) ∈ Cd.

Octupling therefore acts not only on JacCd
but also on the curve Cd itself,

and in fact restricts to a morphism of curves from Cd to itself, defined over F2

as [8] = σ1φ
2
8 with σ1 the automorphism (x, y) �→ (x+ 1, x2 + y+ 1) and φ8 the

8th power Frobenius map (x, y) �→ (x8, y8).
Iterating this octupling m times, we obtain the F2-rational map [23m] on Cd

defined as [23m] = γφ2
23m , with γ = σm

1 : (x, y) �→ (x + 1, x2 + y + ν) and
ν = (m + 1)/2 mod 2. Note that γ, φ23m , and [23m] can be naturally extended
to JacCd

, where the latter corresponds to the multiplication by 23m.
Furthermore, since φ23m is a degree-23m isogeny of JacCd

, we know that

φ̂23mφ23m = [23m]. Since [23m] = γφ2
23m , we then have φ̂23m = γφ23m and can

thus verify that φ̂23m is also a degree-23m purely inseparable endomorphism of
the curve Cd. We are therefore in the conditions of [24, Lemma 5], from which

we get that, for any reduced divisor D, φ̂23m(D) is also reduced and we have the
equality of Miller functions (up to a non-zero constant multiple)

fn,φ̂23m (D) ◦ φ̂23m = f23m

n,D . (1)

Let us now consider the action of φ̂23m on the �-torsion JacCd
[�]. Noting that

φ4
23m is the identity over the � torsion since JacCd

[�] ⊆ JacCd
(F212m), we obtain

the following diagonal matrix in the basis B:

φ̂23m = [23m]φ−1
23m ≡ [23m]φ3

23m ≡

⎛
⎜⎜⎝

23m 0 0 0
0 1 0 0
0 0 1 0
0 0 0 23m

⎞
⎟⎟⎠ (mod �).

From this matrix, it appears that JacCd
(F2m)[�] is in the eigenspace of eigen-

value 23m, while ψ(JacCd
(F2m)[�]) is in the eigenspace of eigenvalue 1, where

the distortion map ψ is either στ or σθ. In other words, for any F2m-rational
�-torsion element D, φ̂23m(D) = [23m]D and φ̂23m(ψ(D)) = ψ(D).

106 D.F. Aranha et al.

3.5 Eta Pairing on Cd

We now follow the construction of Barreto et al. [5] in order to obtain the ηT
pairing with T = 23m. Remarking indeed that � | L | N for N = 212m − 1 =
T 4 − 1, and taking M = N/L, we can write

ê(D1, D2)
M = fL,D1(ε(ψ(D2)))

M(212m−1)/L = fN,D1(ε(ψ(D2)))
(212m−1)/L.

As � | N , we can then take the Miller function

fN,D1 = fN+1,D1 = fT 4,D1
=

3∏
i=0

fT 3−i

T,[T i]D1
=

3∏
i=0

f2(3−i)·3m
23m,[2i·3m]D1

.

Furthermore, since D1 and D2 are F2m-rational reduced divisors, we also have
that [2i·3m]D1 = φ̂i

23m(D1) and ε(ψ(D2)) = φ̂i
23m(ε(ψ(D2))) for all i. Iterating

(1) then yields

f23m,[2i·3m]D1
(ε(ψ(D2))) =

(
f23m,φ̂i

23m
(D1)

◦ φ̂i
23m

)
(ε(ψ(D2)))

= f23m,D1
(ε(ψ(D2)))

2i·3m .

Putting it all together, we finally obtain

ê(D1, D2)
M = f23m,D1

(ε(ψ(D2)))
4·23·3m ·(212m−1)/L,

and, as � � 4 · 23·3m,

f23m,D1
(ε(ψ(D2)))

(212m−1)/L = ê(D1, D2)
M·(4·23·3m)−1 mod L.

From the bilinearity and the non-degeneracy of the Tate pairing, we can then con-
clude that the ηT pairing defined as follows is also bilinear and non-degenerate [5]:

ηT : JacCd
(F2m)[�] × JacCd

(F2m)[�] −→ μ� ⊆ F∗
212m

(D1 , D2) �−→ f23m,D1
(ε(ψ(D2)))

(212m−1)/L.

4 Optimal Eta Pairing on Cd

4.1 Construction and Definition

In order to further decrease the loop length in Miller’s algorithm, we adapt in
this work the optimal pairing technique as introduced by Vercauteren [43] to the

case of the action of the 23m-th power Verschiebung φ̂23m and the Eta pairing
detailed in the previous section.

To that intent, let us consider the 2-dimensional lattice spanned by the rows
of the matrix

L =

(
L 0

−23m 1

)
.

Optimal Eta Pairing on Genus-2 Binary Curves 107

Note that since � | L | 26m + 1, we know that 26m ≡ −1 (mod �), meaning that
there is no need to look for 23m-ary expansions of multiples of L having more
than two digits.

A shortest vector of L is [c0, c1] = [δ2(m−1)/2 + 1, 2m + δ2(m−1)/2], which
corresponds to taking the multiple N ′ = c12

3m + c0 = M ′L with M ′ = 22m −
δ2(3m−1)/2 − δ2(m−1)/2 + 1.

We then have the M ′-th power of the reduced modified Tate pairing

ê(D1, D2)
M ′

= fN ′,D1(ε(ψ(D2)))
(212m−1)/L,

for which we can take the Miller function

fN ′,D1 = fc123m,D1
· fc0,D1 · g[c0]D1,[c123m]D1

= f c1
23m,D1

· fc1,[23m]D1
· fc0,D1 · g[c0]D1,[c123m]D1

.

Remarking that c12
3m ≡ −c0 (mod �), g[c0]D1,[c123m]D1

actually corresponds
to the vertical lines passing through [c0]D1 and [−c0]D1, which can simply

be ignored. Furthermore, exploiting the action of the Verschiebung φ̂23m , we
can rewrite fc1,[23m]D1

(ε(ψ(D2))) as f23m

c1,D1
(ε(ψ(D2))). Finally, also note that

f23m,D1
(ε(ψ(D2)))

c1·(212m−1)/L is actually a power of the Eta pairing ηT (D1, D2)
defined in the previous section.

Consequently, let η[c0,c1] : JacCd
(F2m)[�]× JacCd

(F2m)[�]→ μ� be the optimal
Eta pairing defined as

η[c0,c1] : (D1, D2) �−→
(
f23m

c1,D1
· fc0,D1

)
(ε(ψ(D2)))

(212m−1)/L.

From the previous considerations, we thus have that

ê(D1, D2)
M ′

= η[c0,c1](D1, D2) · ηT (D1, D2)
c1 ,

whence η[c0,c1](D1, D2) = ê(D1, D2)
W with

W = M ′ − c1M · (4 · 23·3m)−1 mod L

= 22m + δ2(3m−1)/2 + 2m + δ2(m−1)/2 + 1.

Finally, as � � W , we show that the optimal Eta pairing η[c0,c1] is also bilinear
and non-degenerate.

Note that the ηT pairing introduced in [5] with T = −δ2(3m+1)/2 − 1 corre-
sponds to the lattice vector [−δ2(3m+1)/2 − 1,−1] ∈ L.

4.2 Computing η[c0,c1]

The computation of the optimal Eta pairing η[c0,c1] defined in the previous sec-
tion relies on the evaluation of the two Miller functions fc0,D1 and fc1,D1 at
ε(ψ(D2)). With [c0, c1] = [δ2(m−1)/2 + 1, 2m + δ2(m−1)/2], we can take the fol-
lowing functions{

fc0,D1 = fδ2(m−1)/2,D1
· g[δ2(m−1)/2]D1,D1

and
fc1,D1 = f2m,D1 · fδ2(m−1)/2,D1

· g[2m]D1,[δ2(m−1)/2]D1
.

108 D.F. Aranha et al.

Since we are ignoring the vertical lines, we can further rewrite

fδ2(m−1)/2,D1
= f2(m−1)/2,[δ]D1

and

f2m,D1 = fδ2(m−1)/2·δ2(m+1)/2,D1
= f δ2(m+1)/2

2(m−1)/2,[δ]D1
· f2(m+1)/2,[2(m−1)/2]D1

,

which finally gives

{
fc0,D1 = f2(m−1)/2,[δ]D1

· g[δ2(m−1)/2]D1,D1
and

fc1,D1 = f δ2(m+1)/2+1
2(m−1)/2,[δ]D1

· f2(m+1)/2,[2(m−1)/2]D1
· g[2m]D1,[δ2(m−1)/2]D1

.

The computation of η[c0,c1] therefore chiefly involves the evaluation of the two
Miller functions f2(m−1)/2,[δ]D1

and f2(m+1)/2,[2(m−1)/2]D1
of loop length (m− 1)/2

and (m+1)/2, respectively. This represents a saving of 33% with respect to the
ηT pairing presented in [5] whose Miller’s loop length is (3m+ 1)/2.

Note that in order to exploit the octupling formula, we have to consider two
cases, depending on the value of m mod 6, as described in Algorithm 1.

– When m ≡ 1 (mod 6), then (m− 1)/2 is a multiple of 3, and f2(m−1)/2,[δ]D1

can be computed via (m − 1)/6 octuplings, whereas f2(m+1)/2,[2(m−1)/2]D1

can be computed by means of another (m − 1)/6 octuplings and one extra
doubling.

– When m ≡ 5 (mod 6), (m − 1)/2 is not a multiple of 3, but (m + 1)/2 is.
We then compute η2[c0,c1] = η[2c0,2c1] instead, with the Miller functions

{
f2c0,D1 = f2(m+1)/2,[δ]D1

· f2,D1 · g[δ2(m+1)/2]D1,[2]D1
and

f2c1,D1 = f δ2(m+1)/2+1
2(m+1)/2,[δ]D1

· f2(m+1)/2,[2(m+1)/2]D1
· g[2m+1]D1,[δ2(m+1)/2]D1

.

The two f2(m+1)/2,D functions are then evaluated using (m+1)/6 octuplings
each, whereas f2,D1 only require one doubling.

Finally, one should note that, in our case, since the curve Cd is supersingular,
the final exponentiation step is much simpler than for ordinary curves such as
BN curves. Indeed, the exponent is

(212m − 1)/L = (26m − 1)(22m + 1)(22m − δ2(3m+1)/2 + 2m − δ2(m+1)/2 + 1),

whose regular form can be exploited to devise an efficient ad-hoc exponentiation
algorithm, of negligible complexity when compared to Miller’s loop.

4.3 Evaluation of the Complexity

From the above description of the optimal Eta pairing η[c0,c1], we can see that
most of its computational cost lies in the iterated octuplings of D1 and the evalu-
ation of the corresponding Miller functions of the form f8,[±8i]D1

at the effective
divisor ε(ψ(D2)). Here, we denote by [±8i]D1 a reduced divisor representing one
of the iterated octuples of D1 or of [δ]D1 as required in the evaluation of η[c0,c1].

Optimal Eta Pairing on Genus-2 Binary Curves 109

Algorithm 1. Computation of the optimal Eta pairing

Input: D1 and D2 ∈ JacCd(F2m)[�] represented by the reduced divisors D1 and D2.
Output: η[c0,c1](D1, D2) or η[c0,c1](D1, D2)

2 ∈ μ� ⊆ F
∗
212m , depending upon whether

m ≡ 1 or 5 (mod 6), respectively.
1. if m ≡ 1 (mod 6) then m′ ← m− 1 else m′ ← m+ 1 end if
2. G1 ← 1 ; R1 ← [δ]D1 ; E2 ← ε(ψ(D2))
3. for i← 1 to m′/6 do
4. G1 ← G8

1 · f8,R1(E2)
5. R1 ← [8]R1

6. end for // G1 = f
2m

′/2,[δ]D1
(E2) and R1 = [δ2m

′/2]D1.

7. G2 ← Gδ
1 ; R2 ← [δ]R1

8. for i← 1 to m′/6 do
9. G2 ← G8

2 · f8,R2(E2)
10. R2 ← [8]R2

11. end for // G2 = f2m′
,D1

(E2) and R2 = [2m
′
]D1.

12. if m ≡ 1 (mod 6) then
13. G2 ← G2

2 · f2,R2(E2) // G2 = f2m,D1(E2).
14. F0 ← G1 · gR1,D1(E2) // F0 = fc0,D1(E2).
15. F1 ← G1 ·G2 · g[2]R2,R1

(E2) // F1 = fc1,D1(E2).
16. else
17. F0 ← G1 · f2,D1(E2) · gR1,[2]D1

(E2) // F0 = f2c0,D1(E2).
18. F1 ← G1 ·G2 · gR2,R1(E2) // F1 = f2c1,D1(E2).
19. end if

20. return
(
F 23m

1 · F0

)(212m−1)/L

In that sense, since D1 is defined over F2m , then [±8i]D1 is also F2m-rational.
Moreover, as octupling directly acts on the curve Cd, if D1 is degenerate (i.e.,
of the form D1 = (P) − (P∞)), then so is [±8i]D1. Finally, note that if D2 is
degenerate, then so is ψ(D2), meaning that ε(ψ(D2)) is of degree 1 and has only
one point in its support.

Considering the Miller function for octupling, we rewrite f8,D = f2
4,D · f2,[4]D.

Each iteration of Miller’s algorithm is then just a matter of evaluating f4,[±8i]D1

and f2,[±4·8i]D1
at ε(ψ(D2)), squaring the former, and accumulating both into the

running product via two successive multiplications2 over F212m . The respective
costs of these operations are given in terms of basic operations over the base
field F2m in Table 1.

Note that in order to obtain these costs, we have constructed F212m as the
tower field F2m [i, τ, sτ,0], where i ∈ F22 is such that i2+ i+1 = 0, τ ∈ F26 is such
that τ3 + iτ2 + iτ + i = 0 (one can then check that we still have τ6 + τ5 + τ3 +
τ2+1 = 0), and sτ,0 is defined as before. Using Karatsuba for the two quadratic
extensions and Toom–Cook for the cubic one, we obtain the expected complexity
of 45 multiplications over F2m for computing one product over F212m [30].

2 Note that these multiplications are sparser than a regular multiplication over F212m

if at least one of the two divisors D1 or D2 is degenerate.

110 D.F. Aranha et al.

Where relevant, several costs are given in Table 1, depending on whether D1

andD2 are general (Gen.) or degenerate (Deg.) divisors. Making this disctinction
is particularly relevant, as some protocols might be able to constrain the domain
of their pairing computations in order to benefit from a possible speedup of 2
when one argument is degenerate, or even 4 in the case of two. For instance,
Chatterjee et al. [14] have proposed a variant of the BLS signature scheme [12]
in which one argument of each pairing function is a degenerate divisor.

Table 1. Costs of various operations involved in the computation of the optimal Eta
pairing in terms of basic operations (multiplication, addition, squaring, and inversion)
over the base field F2m

Operation D1 D2
Operations over �2m

Mult. Add. Sq. Inv.

Addition over F212m — — 0 12 0 0
Squaring over F212m — — 0 21 12 0

Multiplication over F212m — — 45 199 0 0

[±8i]D1 �→ [±8i+1]D1
Deg. — 0 2 13 0
Gen. — 0 5 24 0

Deg. Deg. 3 11 1 0
f4,[±8i]D1

(ε(ψ(D2))) Gen. Deg. 19 40 2 0

Gen. Gen. 83 247 17 0

Deg. Deg. 2 9 1 0
f2,[±4·8i]D1

(ε(ψ(D2))) Gen. Deg. 16 34 2 0

Gen. Gen. 81 236 17 0

Miller iteration Deg. Deg. 61 315 68 0{
Gi ← G8

i · f8,Ri
(E2)

Ri ← [8]Ri

Gen. Deg. 121 512 130 0
Gen. Gen. 254 949 160 0

Final exp. over F2367 — — 303 1 386 2 234 1

Optimal Eta pairing Deg. Deg. 7 894 40 356 11 571 1

η[c0,c1](D1, D2) Gen. Deg. 15 293 64 644 15 472 1
over C0(F2367) Gen. Gen. 31 644 118 382 19 161 1

In the two following sections, as a proof of concept, we detail the software and
hardware implementation results of the proposed optimal Eta pairing η[c0,c1].
The selected curve is C0 (i.e., d = 0) over the field F2367 . One can check that
#JacC0(F2367) = 13 · 7170258097 · �, where � is a 698-bit prime, while the fi-
nite field F212·367 ensures a security of 128 bits for the computation of discrete
logarithms via the function field sieve. The costs of the optimal Eta pairing on
C0(F2367) are also given in Table 1.

For comparison purposes, one might compare this with the costs for the ηT
pairing over Cd presented in [14] and [32]. In the former, Chatterjee et al. report
a cost of 15 111 F2m-multiplications for an ηT pairing on two degenerate divisors
over C0(F2459). Since the number of these multiplications scales linearly with the
size of the field, their approach would entail roughly 12 000 multiplications over
our curve. In [32], Lee and Lee require 11 488 multiplications for an ηT pairing
on two general divisors over Cd(F279), which would scale to approximately 53 000
multiplications on our curve C0(F2367). When compared to the figures in Table 1,
these costs reflect the 33% improvement achieved thanks to our proposed optimal
Eta approach.

Optimal Eta Pairing on Genus-2 Binary Curves 111

5 Software Implementation

A software implementation was realized to illustrate the performance of the pro-
posed pairing. The C programming language was used in conjunction with com-
piler intrinsics for accessing vector instructions. The chosen compiler was GCC
version 4.6.2 with compiler flags including optimization level -O3, loop unrolling
and platform-dependent tuning with -march=native. For evaluation, we consid-
ered as target platforms the Core 2 Duo 45 nm (Penryn microarchitecture) and
Core i5 32 nm (Nehalem microarchitecture), represented by an Intel Xeon X3320
2.5 GHz and a mobile Intel Core i5 540 2.53 GHz with Turbo Boost disabled, re-
spectively. Field arithmetic was implemented following the vectorization-friendly
formulation presented in [2], with the exception of the Core i5 platform, where
multiplication in F2367 was implemented with the help of the native binary field
multiplier [26] following the guidelines suggested in [42], that is, a 128-bit granu-
lar organization consisting of 3-way and 2-way Karatsuba formulas. We obtained
timings of 7, 41, 464 and 11162 cycles for addition, squaring, multiplication and
inversion in the Core 2, respectively; and efficiency gains of 47% and 27% for
multiplication and inversion in the Core i5, respectively.

Table 2 presents our timings in millions of cycles for the pairing computation
at the 128-bit security level. Timings from several related works are also collected
for direct comparison with our software implementation. Our implementation
considers all the three possible choices of divisors: general × general (GG), gen-
eral × degenerate (GD) and degenerate × degenerate (DD); and presents the
proposed genus-2 optimal Eta pairing as a very efficient candidate among the
Type-1 pairings defined on supersingular curves over small-characteristic fields.
In particular, the proposed pairing is more efficient than all other Type-1 pair-
ings when at least one of the arguments is degenerate. Considering the Nehalem
microarchitecture as a trend for future 64-bit computing platforms, the pro-
posed pairing computed with degenerate divisors is also the closest in terms of
performance to the current speed record for Type-3 pairing computation [1].

Table 2. Software implementations of pairing at the 128-bit security level. Timings
were obtained with the Turbo Boost feature turned off, and therefore are compatible
with the timings in Table 4 of the extended version of [1].

Implementation Curve Pairing
Intel Core 2 Intel Core Nehalem

(×106 cycles) (×106 cycles)

Beuchat et al. [8]
E(F21223) ηT

23.03 —

E(F3359) 15.13 —

Aranha et al. [3], [4] E(F21223) ηT 18.76 8.28

Chatterjee et al. [14]
E(F21223) ηT

19.0 —

E(F3359) 15.8 —

C0(F2439) ηT (DD) 16.4 —

Naehrig et al. [38] E(Fp) Opt. Ate 4.38 —

Beuchat et al. [7] E(Fp) Opt. Ate 2.95 2.82∗

Aranha et al. [1] E(Fp) Opt. Ate 2.19 2.04∗

This work C0(�2367)
Opt. Eta (DD) 4.44 2.75

Opt. Eta (GD) 8.37 5.04

Opt. Eta (GG) 16.95 9.90
∗Results adjusted by the maximum overclocking rate to eliminate the effect of Turbo Boost.

112 D.F. Aranha et al.

6 FPGA Implementation

We detail here an FPGA accelerator for our optimal Eta pairing on the curve
C0(F2367) when both inputs are general divisors (GG). In [9], Beuchat et al. have
presented a coprocessor architecture for computing the final exponentiation of
the ηT pairing over supersingular curves. The core of their arithmetic and logic
unit is a parallel–serial multiplier processing D coefficients of the multiplicand at
each clock cycle, along with a unified operator supporting addition, Frobenius
map, and n-fold Frobenius map. Intermediate results are stored in a register
file implemented by means of dual-ported RAM. We decided to adapt such a
finite field coprocessor for implementing our optimal Eta pairing. In the case
of the finite field F2367 , we selected the parameters D = 16 and n = 3 for
this coprocessor. We prototyped our architecture on several Xilinx FPGAs with
average speedgrade (Table 3). Place-and-route results show for instance that
our pairing accelerator uses 4518 slices and 20 RAM blocks of a Virtex-4 device
clocked at 220 MHz. For comparison purposes, we also included recent hardware
implementation results from the literature in Table 3. It appears that our design
is very compact and that its computation time remains comparable to other
128-bit-security implementations. This is even more so when noting that our
performance estimates are given for the pairing of two general divisors, and that
a speedup of 2 or 4 might be expected from the use of one or two degenerate
divisors, respectively.

Table 3. FPGA implementations of pairings at medium- and high-security levels

Implementation Curve
Sec.

FPGA
Area Freq. Time Area×time

(bits) (slices) (MHz) (μs) (slices·s)
Ronan et al. [39]

C0(F2103) 75 xc2vp100-6 30464 41 132 4.02
(DD)

Beuchat et al. [9]
E(F2691) 105 xc4vlx200-11 78874 130 19 1.48

E(F3313) 109 xc4vlx200-11 97105 159 17 1.64

Cheung et al. [15] E(Fp
254

) 126 xc6vlx240t-2 7032∗ 250 573 4.03

Ghosh et al. [23] E(F21223) 128
xc4vlx200-11 35458 168 286 10.14

xc6vlx130t-3 15167 250 190 2.88

Estibals [17] E(F35·97) 128
xc4vlx25-11 4755 192 2227 10.59

xc3s1000-5 4713 104 4113 19.38

This work
C0(�2367)

128
xc2vp30-6 4646 176 4405 20.5

(GG)
xc4vlx25-11 4518 220 3518 15.9

xc3s1500-5 4713 114 6800 32.0
∗Number of Virtex-6 slices; this design also uses 32 embedded DSP blocks.

7 Conclusion and Perspectives

We presented a novel optimal Eta pairing algorithm on supersingular genus-2
binary hyperelliptic curves. Starting from Vercauteren’s work on optimal pair-
ings [43], we described how to exploit the action of the 23m-th power Ver-
schiebung in order to further reduce the loop length of Miller’s algorithm with
respect to the genus-2 ηT approach [5], thus resulting in a 33% improvement.

Optimal Eta Pairing on Genus-2 Binary Curves 113

In order to demonstrate the efficiency of our approach, we implemented the
optimal Eta pairing at the 128-bit security level in software and hardware. As
far as Type-1 pairings are concerned, our results show that genus-2 curves are a
very effective alternative to supersingular elliptic curves and can even compete
with the Type-3 pairings provided by ordinary curves such as BN curves.

We have designed as well an FPGA coprocessor for computing the proposed
pairing, which also compares very well against other hardware pairing implemen-
tations. Additionally, this is the first known hardware pairing implementation
over a genus-2 hyperelliptic curve reaching 128 bits of security.

Building upon this work, we now plan to study more precisely the action of
other purely inseparable maps on Cd along with the corresponding pairing algo-
rithms, so as to identify which one is the most efficient from an implementation
point of view. Indeed, apart from the presented optimal Eta pairing based on the
action of φ̂23m , one can also construct optimal Ate pairings using the action of
φ23m , or that of φ2m under the distortion map σθ, the most promising candidate
being the optimal Ate pairing for the action of φ2m under the distortion map
ψ = (23m + φ2m)στ .

Furthermore, Lubicz & Robert have recently presented a novel technique for
computing the Weil and Tate pairings over abelian varieties based on an efficient
representation of their elements by means of theta functions [33]. We are planning
to investigate the application of this method to the case of our proposed genus-
2 optimal Eta pairing, as both software and hardware implementations might
benefit from the faster arithmetic of theta functions.

Acknowledgments. First of all, the authors would like to express their deepest
thanks to Guillaume Hanrot who advised us to have a go at genus-2 pairings.
He shall receive here our utmost gratitude. The authors would also like to thank
Pierrick Gaudry for the careful proof-reading of the technical sections of this
paper, along with Gaëtan Bisson, Romain Cosset, and Emmanuel Thomé who
were always available to provide some clear answers to our many questions. Last
but definitely not least, the authors would like to thank the anonymous reviewers
for their insightful comments and suggestions for improving this paper.

References

1. Aranha, D.F., Karabina, K., Longa, P., Gebotys, C., López, J.: Faster explicit
formulas for computing pairings over ordinary curves. In: Paterson, K. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 48–68. Springer (2011)

2. Aranha, D.F., López, J., Hankerson, D.: Efficient software implementation of binary
field arithmetic using vector instruction sets. In: Abdalla, M., Barreto, P. (eds.)
LATINCRYPT 2010. LNCS, vol. 6212, pp. 144–161. Springer (2010)

3. Aranha, D.F., López, J., Hankerson, D.: High-speed parallel software implementa-
tion of the ηT pairing. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp.
89–105. Springer (2010)

4. Aranha, D.F., Menezes, A., Knapp, E., Rodŕıguez-Henŕıquez, F.: Parallelizing the
Weil and Tate pairings. In: IMA-CC (2011), to appear.

114 D.F. Aranha et al.

5. Barreto, P., Galbraith, S., Ó Éigeartaigh, C., Scott, M.: Efficient pairing compu-
tation on supersingular Abelian varieties. Des. Codes Crypt. 42, 239–271 (2007)

6. Barreto, P., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Preneel,
B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer (2006)

7. Beuchat, J.L., Dı́az, J.G., Mitsunari, S., Okamoto, E., Rodŕıguez-Henŕıquez, F.,
Teruya, T.: High-speed software implementation of the optimal ate pairing over
Barreto–Naehrig curves. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010.
pp. 21–39. No. 6487 in LNCS, Springer (2010)

8. Beuchat, J.L., López-Trejo, E., Mart́ınez-Ramos, L., Mitsunari, S., Rodŕıguez-
Henŕıquez, F.: Multi-core implementation of the Tate pairing over supersingular
elliptic curves. In: Garay, J., Miyaji, A., Otsuka, A. (eds.) CANS 2009. pp. 413–432.
No. 5888 in LNCS, Springer (2009)

9. Beuchat, J.L., Detrey, J., Estibals, N., Okamoto, E., Rodŕıguez-Henŕıquez, F.:
Fast architectures for the ηT pairing over small-characteristic supersingular ellip-
tic curves. Bruguera, J., Cornea, M., Das Sarma, D. (eds.) IEEE Trans. Comput.
60(2), 266–281 (2011)

10. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. pp. 213–229. No. 2139 in LNCS, Springer (2001)

11. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. pp. 258–275.
No. 3621 in LNCS, Springer (2005)

12. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. pp. 514–532. No. 2248 in LNCS, Springer (2001)

13. Cantor, D.: Computing in the Jacobian of a hyperelliptic curve. Math. Comput.
48(177), 95–101 (1987)

14. Chatterjee, S., Hankerson, D., Menezes, A.: On the efficiency and security of
pairing-based protocols in the type 1 and type 4 settings. In: Hasan, M., Helle-
seth, T. (eds.) WAIFI 2010. LNCS, vol. 6087, pp. 114–134. Springer (2010)

15. Cheung, R., Duquesne, S., Fan, J., Guillermin, N., Verbauwhede, I., Yao, G.: FPGA
implementation of pairings using residue number system and lazy reduction. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. pp. 421–441. No. 6917 in LNCS, Springer
(2011)

16. Cohen, H., Frey, G. (eds.): Handbook of Elliptic and Hyperelliptic Curve Cryptog-
raphy. Discrete Mathematics and its Applications, Chapman & Hall/CRC (2006)

17. Estibals, N.: Compact hardware for computing the Tate pairing over 128-bit-
security supersingular curves. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing
2010. pp. 397–416. No. 6487 in LNCS, Springer (2010)

18. Frey, G., Rück, H.G.: A remark concerningm-divisibility and the discrete logarithm
in the divisor class group of curves. Math. Comput. 62(206), 865–874 (1994)

19. Galbraith, S., Paterson, K., Smart, N.: Pairings for cryptographers. Discrete Ap-
plied Mathematics 156, 3113–3121 (2008)

20. Galbraith, S.: Supersingular curves in cryptography. In: Boyd, C. (ed.)
ASIACRYPT 2001. pp. 495–513. No. 2248 in LNCS, Springer (2001)

21. Galbraith, S.D., Pujolàs, J., Ritzenthaler, C., Smith, B.: Distortion maps for genus
two curves. J. Math. Cryptol. 3(1), 1–18 (2009)

22. Gaudry, P., Hess, F., Smart, N.: Constructive and destructive facets of Weil descent
on elliptic curves. J. Cryptol. 15(1), 19–46 (2001)

23. Ghosh, S., Roychowdhury, D., Das, A.: High speed cryptoprocessor for ηT pairing
on 128-bit secure supersingular elliptic curves over characteristic two fields. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. pp. 442–458. No. 6917 in LNCS, Springer
(2011)

Optimal Eta Pairing on Genus-2 Binary Curves 115

24. Granger, R., Hess, F., Oyono, R., Thériault, N., Vercauteren, F.: Ate pairing on
hyperelliptic curves. In: Naor, M. (ed.) EUROCRYPT 2007. pp. 430–447. No. 4515
in LNCS, Springer (2007)

25. Granger, R., Page, D., Smart, N.: High security pairing-based cryptography revis-
ited. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS VII. pp. 480–494. No. 4076 in
LNCS, Springer (2006)

26. Gueron, S., Kounavis, M.E.: Carry-less multiplication and its usage for computing
the GCM mode. White paper (2010), http://software.intel.com/file/24918

27. Hess, F.: Pairing lattices. In: Galbraith, S., Paterson, K. (eds.) Pairing 2008. pp.
18–38. No. 5209 in LNCS, Springer (2008)

28. Hess, F., Smart, N., Vercauteren, F.: The Eta pairing revisited. IEEE Trans. Inf.
Theory 52(10), 4595–4602 (2006)

29. Joux, A.: A one round protocol for tripartite Diffie–Hellman. In: Bosma, W. (ed.)
ANTS IV. pp. 385–394. No. 1838 in LNCS, Springer (2000)

30. Koblitz, N., Menezes, A.: Pairing-based cryptography at high security levels. In:
Smart, N. (ed.) IMA-CC. pp. 13–36. No. 3796 in LNCS, Springer (2005)

31. Lee, E., Lee, H.S., Park, C.M.: Efficient and generalized pairing computation on
abelian varieties (2009)

32. Lee, E., Lee, Y.: Tate pairing computation on the divisors of hyperelliptic curves
of genus 2. J. Korean Math. Soc. 45(4), 1057–1073 (2008)

33. Lubicz, D., Robert, D.: Efficient pairing computation with Theta functions. In:
Hanrot, G., Morain, F., Thomé, E. (eds.) ANTS IX. LNCS, vol. 6197, pp. 251–
269. Springer (2010)

34. Menezes, A., Okamoto, T., Vanstone, S.: Reducing elliptic curves logarithms to
logarithms in a finite field. IEEE Trans. Inf. Theory 39(5), 1639–1646 (1993)

35. Miller, V.: Short programs for functions on curves (1986), unpublished manuscript
available at http://crypto.stanford.edu/miller

36. Miller, V.: The Weil pairing, and its efficient calculation. J. Cryptol. 17(4), 235–261
(2004)

37. Mitsunari, S., Sakai, R., Kasahara, M.: A new traitor tracing. IEICE Trans. Fun-
damentals E85–A(2), 481–484 (2002)

38. Naehrig, M., Niederhagen, R., Schwabe, P.: New software speed records for cryp-
tographic pairings. In: Abdalla, M., Barreto, P. (eds.) LATINCRYPT 2010. pp.
109–123. No. 6212 in LNCS, Springer (2010)

39. Ronan, R., Ó hÉigeartaigh, C., Murphy, C., Scott, M., Kerins, T.: Hardware ac-
celeration of the Tate pairing on a genus 2 hyperelliptic curve. J. Syst. Architect.
53, 85–98 (2007)

40. Rubin, K., Silverberg, A.: Using Abelian varieties to improve pairing-based cryp-
tography. J. Cryptol. 22(3), 330–364 (2009)

41. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: SCIS
2000. pp. 26–28 (2000)

42. Taverne, J., Faz-Hernández, A., Aranha, D.F., Rodŕıguez-Henŕıquez, F., Hanker-
son, D., López, J.: Speeding scalar multiplication over binary elliptic curves using
the new carry-less multiplication instruction. J. Cryptographic Engineering 1(3),
187–199 (2011)

43. Vercauteren, F.: Optimal pairings. IEEE Trans. Inf. Theory 56(1), 455–461 (2010)
44. Verheul, E.R.: Evidence that XTR is more secure than supersingular elliptic curve

cryptosystems. J. Cryptol. 17(4), 277–296 (2004)

http://software.intel.com/file/24918
http://crypto.stanford.edu/miller

On the Joint Security of Encryption

and Signature in EMV

Jean Paul Degabriele1, Anja Lehmann2, Kenneth G. Paterson1,
Nigel P. Smart3, and Mario Strefler4

1 Information Security Group, Royal Holloway, University of London
2 IBM Research – Zurich

3 Department of Computer Science, University of Bristol
4 INRIA / ENS / CNRS, Paris

Abstract. We provide an analysis of current and future algorithms for
signature and encryption in the EMV standards in the case where a single
key-pair is used for both signature and encryption. We give a theoretical
attack for EMV’s current RSA-based algorithms, showing how access to
a partial decryption oracle can be used to forge a signature on a freely
chosen message. We show how the attack might be integrated into EMV’s
CDA protocol flow, enabling an attacker with a wedge device to complete
an offline transaction without knowing the cardholder’s PIN. Finally, the
elliptic curve signature and encryption algorithms that are likely to be
adopted in a forthcoming version of the EMV standards are analyzed in
the single key-pair setting, and shown to be secure.

1 Introduction

According to the EMV Co website1,

EMV is a global standard for credit and debit payment cards based on
chip card technology. As of end-2010, there were more than 1.24 billion
EMV compliant chip-based payment cards in use worldwide. EMV chip-
based payment cards, also known as smart cards, contain an embedded
microprocessor, a type of small computer. The microprocessor chip con-
tains the information needed to use the card for payment, and is protected
by various security features.

The EMV standards [14, 15, 16, 17] are a complex set of documents defining
all aspects of the system, many unrelated to cryptography. In particular, they
define three main protocols, SDA, DDA and CDA, which offer different levels
of card (and card-holder) authentication and transaction authorization. A good
overview of the EMV system can be found in [26], for example.

This paper concerns the security of the encryption and signature schemes used
in the EMV standards. These are currently based on the RSA primitive, but there
are plans to move to elliptic curve based cryptography at some future date, with

1 http://www.emvco.com/

O. Dunkelman (Ed.): CT-RSA 2012, LNCS 7178, pp. 116–135, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.emvco.com/

On the Joint Security of Encryption and Signature in EMV 117

a draft specification for ECC in EMV having been available for several years [13]
and specifying the use of EC-DSA for signatures and ECIES for encryption, and
a more recent announcement2 that EC-Schnorr is under consideration. A main
motivation for switching to ECC is that the EMV standards have data formats
that do not allow public keys to be larger than 1984 bits.

EMV makes use of signatures during card authentication in DDA and for
transaction authentication in CDA. The latter gives the terminal an opportunity
to verify the transaction’s integrity, without needing to go on-line to communi-
cate with the back-end banking infrastructure to obtain such an assurance. As
an option, EMV allows public key encryption to be used for PIN encryption,
encrypting the PIN entered by the card-holder at a Point-of-Sale (PoS) terminal
to protect it as it is transferred from the terminal to the card, where it is de-
crypted and compared to the PIN stored on the card. In addition, EMV makes
extensive use of symmetric key techniques, but these will not concern us here.

The EMV standards allow the same RSA key-pair to be used for both sig-
nature and encryption (see [15, Section 7.1]). This brings benefits in terms of
reducing the number of certificates needed in the system, which in turn reduces
their storage and processing costs. Our understanding is that the same will be
permitted in future versions of EMV using ECC. But is this practice secure?
This question is what our paper sets out to address.

Joint security of signature and encryption: The topic of joint security of sig-
nature and encryption schemes has a fairly extensive history. The first paper
to study the problem formally seems to have been by Haber and Pinkas [19],
who introduced the concept of a combined public key scheme where the existing
encrypt, decrypt, sign and verify algorithms of a signature and an encryption
scheme are preserved, but where the two key generation algorithms are modified
to produce a single algorithm. This algorithm still outputs two key-pairs, but
the key-pairs are no longer necessarily independent, and may even be identical.
Haber and Pinkas also introduced the natural security model for combined pub-
lic key schemes, where the adversary against the encryption part of the scheme
is equipped with a signature oracle in addition to the usual decryption oracle,
and where the adversary against the signature part of the scheme is given a de-
cryption oracle in addition to the usual signature oracle. In this setting, we talk
about the joint security of the combined scheme. Further work on this topic can
be found in [6, 25] where the special case of combined schemes built from trap-
door permutations (including the RSA trapdoor permutation) was considered. A
recent paper [29] revisits this topic, giving constructions that are provably secure
in the standard model and a pathological example showing that schemes that are
individually secure may become catastrophically insecure when the same key-
pair is used for signature and encryption. That paper also notes that textbook
RSA is trivially insecure in such a setting, since access to a decryption oracle
(which on input c outputs m = cd mod N) instantly allows signature forgeries,
simply by setting c = H(m). Fortunately, EMV does not use textbook RSA, so
this attack does not apply.

2 See http://www.emvco.com/faq.aspx?id=38

http://www.emvco.com/faq.aspx?id=38

118 J.P. Degabriele et al.

Previous work on EMV security: Coron et al. [8] give an existential forgery
attack on the ISO/IEC 9796-2 signature standard, which is also used by EMV.
They improved on a previous attack by Coron et al. [23], itself an extension
of an attack by Desmedt and Odlyzko [11] to larger messages. For operational
reasons, these attacks do not threaten the security of EMV signatures. Coron et
al. [7] showed how to factor the RSA modulus using fault attacks on signatures
found in the EMV standard. Using about ten signatures, their attack recovers
the factors ofN in less than a second. More recently, Smart [33] used a ciphertext
validity checking oracle that may exist in certain implementations of the EMV
standard to recover the PIN from its encrypted version using as few as 30 queries
to the oracle.

At the protocol level, Murdoch et al. [26] reported an implementation of a
“wedge attack” on the EMV protocol. In the attack, the communications be-
tween a PoS terminal and a card are interfered with using a wedge device. This
device prevents the PIN validation request from reaching the card and returns
a “PIN valid” code to the terminal. This leaves the card and terminal with dif-
ferent views of the protocol, but the card’s view of the protocol may not be
transmitted to the terminal in a form that is interpretable by the terminal, so
the modification may go undetected. Murdoch et al. explain how this attack
could enable an attacker to make use of a stolen card while not knowing the
cardholder’s PIN. Their attack may work for all three protocol versions SDA,
DDA and CDA. It is notable that this class of attack was already anticipated
well before the publication of [26], with protections for CDA already existing in,
for example, the EMV Common Payment Application (CPA) specification [12].

Our contribution: None of the previous analysis of EMV examines the security
consequences of using the same key-pairs (whether RSA- or ECC-based) for both
signature and encryption. Our paper does so, with results that are both negative
and positive for EMV:

– We present a theoretical attack against EMV’s existing RSA-based algo-
rithms which shows how adversarial access to error information that may
be generated during decryption can be used to forge a signature on a freely
chosen message. We then show how the attack can be integrated into EMV’s
CDA protocol flow, enabling an attacker with a wedge device to complete
an offline transaction without knowing the cardholder’s PIN. Note that this
attack would still work even if the proposed countermeasures to the attacks
of [26] were adopted. However, the attack is unlikely to work in practice
because of other factors which we describe in detail in Section 3.

– We provide positive security results in the joint security setting for the ECC-
based encryption and signature schemes that are proposed in [13] and that
are likely to be adopted in future EMV standards. More specifically, we prove
that the ECIES encryption scheme and the EC-Schnorr signature scheme
are jointly secure in the Random Oracle Model, and that ECIES and the
EC-DSA signature scheme are jointly secure in the Generic Group Model
(GGM). Such results are the best that we can currently hope for, given the
state of the art in analyzing ECC signature schemes.

On the Joint Security of Encryption and Signature in EMV 119

Paper organisation: In the next section, we present our RSA signature forgery
attack. In Section 3 we explain how this attack might be used in the context
of the EMV protocols to forge a transaction signature for the CDA protocol.
Section 4 presents our analysis of the joint security of EMV’s likely choices for
ECC-based algorithms. We conclude in Section 5.

2 An Attack on Combined Signature and Encryption
Schemes from EMV

In this section, we show an attack on the combined signature and encryption
scheme from EMV in which an adversary, equipped with a partial decryption
oracle, is able to forge a signature on a message of his choice. The partial de-
cryption oracle only tells the adversary whether or not the underlying plaintext
is correctly formatted, and the attack is therefore closely related to the attack
of Bleichenbacher [3] on RSA with PKCS#1 encoding. However the low-level
details differ because of the specific format used in EMV encryption. Note that
the attack works independent of the particular encoding used when creating sig-
natures. The idea of using a (partial) decryption oracle to forge signatures in
the RSA setting was mentioned in passing in [3] and examined in more detail
in [24]. In the next section, we examine the applicability of this attack in the
context of the EMV protocol.

Description of the attack. According to [15], Table 25, the plaintext to be en-
crypted using the ICC’s RSA public key (e,N) consists of a 1-byte Data header
equal to 7F, followed by an 8-byte PIN block encoding the PIN in a particu-
lar format, followed by the 8-byte ICC Unpredictable Number, and then a final
k − 17 bytes of random padding. Here k is the length of the ICC’s RSA public
key in bytes, and is referred to as NIC in the EMV standards.

In what follows, we assume that the decryption process fails with an output
of invalid if the obtained plaintext does not begin with a byte 7F, and otherwise
outputs valid. The justification for making this assumption in an EMV context
is given in more detail in Section 3. To model this, we equip the adversary with
an oracle valid(·) that returns either true or false on input a ciphertext c.

Let k be the byte length of N (so 28(k−1) ≤ N < 28k). The 4-digit PIN is first
encoded as an 8-byte PIN block P = 24||pp||pp||(FF)5, where pp||pp denotes a
BCD encoding of the digits of the PIN. The PIN block is in turn encoded as a
plaintext m = 7F||P ||U ||R, where U is the 8-byte ICC Unpredictable Number
and R is the k − 17 bytes of random padding. A ciphertext c is valid if its
decryption m starts with 7F, so for B = 28(k−1) we have 127B ≤ m < 128B
when c is valid. We write L for the lower bound 127B, U for the upper bound
128B − 1. The modulus N has to be larger than this, so 128B ≤ N < 256B.

Let m be the message for which we wish to forge a signature σ, and let
μ(m) denote the encoding that is applied to m before the signing operation,
so that σ = μ(m)d mod N . For our attack, μ is arbitrary, but of course EMV
uses a specific encoding function. Our attack is then presented in Algorithm 1.

120 J.P. Degabriele et al.

Table 1. Number of queries needed to attack different key lengths

key length prediction max. 95th p. 90th p. median 10th p. 5th p. min.

512 1408 – 1792 1149495 5764 2837 1462 1166 1088 836

768 1920 – 2304 344278 5900 3318 2029 1682 1594 1233

1024 2432 – 2816 868159 10647 4660 2577 2106 2032 1610

1984 4320 – 4704 221440 17385 8524 4639 3855 3650 3216

The attack is divided into three steps: The blinding step is executed once at the
start, and is then followed by a series of iterations where each iteration comprises
searching for a new valid ciphertext (step 2) and updating the set of solutions
accordingly (step 3). The search is itself divided into three cases of which in
each iteration only one will be executed. Step 2a is executed only on the first
iteration. If it results in more than one interval, step 2b will be executed in order
to reduce this set of intervals to just one. Bleichenbacher [3] presents a heuristic
argument to show that a single iteration of step 2b will in most cases be enough.
Once the set of solutions is reduced to one interval, each iteration of step 2c will
attempt to halve this interval until it is narrowed down to a single value.

Complexity. We estimate the number of oracle accesses in a way analogous
to Bleichenbacher [3]. The probability Pr(A) that a randomly chosen integer
0 ≤ m < N begins with the byte 7F is bounded by 2−8 < Pr(A) < 2−7 if
we assume that the bitlength of the modulus N is a multiple of 8 (as it is in
EMV). Because we assume that the decryption oracle first checks whether the
recovered plaintext starts with 7F and that we can learn the result of this test,
the probability that our ciphertext passes this test is Pr(P) = Pr(A). Therefore,
step 1 needs about 1/Pr(P) ∈ [27, 28] decryption queries on average. Step 2a
will take the same number of queries on average, as does each execution of step
2b. Step 2c should on average take 2 queries, since we are trying to reduce the
interval by half each time. If we assume that step 2b is executed once, and the
modulus has logN bits, this yields an expected number of queries in the range
[3 · 27 + 2 · logN, 3 · 28 + 2 · logN].

Experimental Results. In order to experimentally validate our theoretical predic-
tions of the number of oracle queries needed to forge a signature, we implemented
Algorithm 1 in maple and ran it 1000 times for each of four different key lengths,
512 bits, 768 bits, 1024 bits and 1984 bits. The encoded message μ(m) was picked
uniformly at random from the interval [0, N − 1] for each trial. While this choice
does not respect the EMV encoding, the message is always blinded in step 1, so
results are not affected. Table 1 gives an overview of the results.

The first thing to notice is the length of the distribution’s tail, as evidenced
by the large difference between the 95th percentile and the maximum in each
row of Table 1. Similar behaviour was hinted at by Bleichenbacher [3] . On the
positive side, we note that the median lies nicely within the expected range,

On the Joint Security of Encryption and Signature in EMV 121

1 c← μ(m), s0 ← 1;

2 while ¬valid(cs0e mod N) do s0
$← ZN ; // step 1

3 c← cs0
e mod N ;

4 M ← {[L,U]};
5 i← 1;
6 while M = {[a, a]} do

7 if i = 1 then // step 2a

8 s← !N+L
U ";

9 while ¬valid(cse mod N) do s← s+ 1;

10 end

11 if i > 1 ∧ |M | > 1 then // step 2b

12 s← s+ 1;
13 while ¬valid(cse mod N) do s← s+ 1;

14 end

15 if i > 1 ∧ |M | = 1 then // step 2c

16 {[a, b]} ←M , sprev ← s;

17 r ← !2 bsprev−L
N ";

18 flag← false;
19 while ¬flag do

20 if �L+rN
b � < �U+rN

a � then
21 s← !L+rN

b ";
22 flag← valid(cse mod N);

23 end
24 r ← r + 1;

25 end

26 end

27 I ← ∅;
28 foreach [a, b] ∈M do // step 3

29 for r ← !as−U
N " to � bs−L

N � do
30 I ← I ∪ {[max(a, !L+rN

s "),min(b, �U+rN
s �)]}

31 end

32 end

33 M ← I, i← i + 1;

34 end

35 return σ ← as−1
0 mod N

Algorithm 1: Forging Algorithm

122 J.P. Degabriele et al.

and the 90th and 95th percentile are below twice, respectively four times, the
median. This means that the algorithm behaves well in the majority of cases.

3 Application of the Attack to EMV

In this section, we study to what extent the above attack can be realized in the
context of the EMV protocols, and what the impact of the attack would be. We
begin by studying in more detail how PIN decryption is specified in EMV, and
then examine how the forgery attack can be realized in the context of an offline
CDA transaction.

Decryption processing: From [15, Section 7.2] and [16, Section 10.5.1], the ICC
(integrated circuit card, or chip) carries out a particular sequence of steps when
decrypting. In part, the steps are as follows (we preserve numbering from [15]):

6. Use the ICC private key to decrypt the enciphered PIN data.
7. Check that the ICC Unpredictable Number recovered is equal to the ICC Un-

predictable Number that was generated by the ICC with the GET CHALLENGE

command.
8. Check whether the Data Header byte recovered is equal to 7F.
9. Check whether the PIN in the recovered PIN block corresponds with the

PIN stored in the ICC.

Each of steps 6-9 above may fail, in which case the ICC returns an error code
6983 or 6984. There is one exception, which arises as part of step 9. Here, if all
the format checks pass, but the PIN in the plaintext does not match the PIN
stored on the card, then the ICC PIN try counter is decremented and an error
0x63Cx is returned, where x is the new value of the PIN try counter. If all the
checks succeed and the recovered PIN is correct, the card returns 9000.

In our attack, each decryption attempt is highly likely to result in an error
code being returned by the ICC. This is because, in the attack, the probability
that the recovered ICC Unpredictable Number matches the ICC’s generated
value at step 7 is only 2−64. In order for our attack to proceed at all, we have
to make the assumption that the attacker can distinguish a failure at step 7
from a failure at step 8. We also have to assume that step 8 is either carried
out before step 7, or is performed irrespective of whether step 7 is successful.
These conditions might be met depending on the exact details of how the ICC’s
decryption procedure is implemented. We note that EMV’s CPA specification
[12], which specifies a “profile” for EMV cards, does provide more detail on how
decryption processing should be performed in order to be compliant with that
specification. In particular [12, Section 12.7, Requirements 12.30 and 12.31] and
the update in [18] make it clear that step 8 is not carried out if step 7 fails, so
our attack would not work for CPA-compliant cards.

The fact that each decryption attempt is highly likely to fail means that the
attack can proceed without the risk of the card locking because of the PIN try
counter reaching its limit. But cards may also keep a separate PIN decryption

On the Joint Security of Encryption and Signature in EMV 123

failure counter in addition to the PIN try counter – for example, this is an
optional feature in the CPA specification [12]. However this counter and its use
are not specified anywhere in the base EMV standards. Even if it is implemented
for a particular card, its maximum value may be quite large to cater for bad
terminal implementations. For example, in the CPA specification, it is a 2-byte
counter, potentially allowing as many as 216 failed decryption attempts. So an
attacker may be able to make many decryption queries in an attack, and possibly
without any limit.

Integration into the EMV CDA protocol: In an offline CDA transaction the trans-
action terminates with the card producing a summary of the transaction data
(called a Transaction Certificate, TC) which is digitally signed by the card. The
card’s view of the cardholder verification method used during the transaction
is normally present in the TC but in a data format that is proprietary to the
issuer bank, and hence the terminal may not be able to check it. This weak-
ness is exploited in the attacks of [26], through which an attacker may be able
to carry out transactions using a lost or stolen EMV card without knowing its
PIN. A natural fix to prevent these attacks for offline CDA transactions is to
standardize the data format so that the terminal can verify that the cardholder
verification method reported by the card in the TC matches its view of which
method was used. Our attack below shows that, even with this fix in place, an
attacker may still be able to complete offline CDA transactions without know-
ing the card’s PIN. Before explaining the attack, we first illustrate how an EMV
transaction would typically proceed. To simplify matters we focus mainly on the
salient events that occur during an offline transaction where both the terminal
and the card support CDA.

Offline CDA transaction processing: When a card is inserted into a terminal,
the terminal first requests a list of supported applications. The terminal then
selects an application from the list and starts a transaction. An EMV transac-
tion progresses over three phases: card authentication, cardholder verification,
and transaction authorization. Card authentication starts with a READ RECORD

command issued by the terminal to retrieve the card details and other data.
Included in the records is the card’s RSA public key together with a certificate
chain linking the card’s private key to a card scheme root key known to the
terminal. The terminal then requests the card to sign a provided nonce value.
The terminal verifies the signature on the nonce through the card’s public key
which it in turn authenticates via the supplied certificate chain.

Next is cardholder verification where commonly the cardholder is required
to enter his PIN through the terminal’s keypad. When the card and termi-
nal both support PIN encryption, the PIN will be encrypted at the terminal
and transmitted to the card in encrypted form. PIN verification is initiated by
the terminal requesting the PIN try counter from the card. This indicates the
number of PIN entry attempts left before the card locks. If the PIN is to be
encrypted the terminal also issues a GET CHALLENGE command to retrieve the
8-byte ICC Unpredictable number to be included in the encryption of the PIN

124 J.P. Degabriele et al.

Card Authentication

CARD WEDGE TERMINAL

Forging Attack

PIN: $$$$

PIN OK

Request TC + Payload

TC + Signature

card in

authentication

phase

terminal in

authentication

phase

terminal in

cardholder

phase

verification

terminal in

transaction

phase

authorization

card in

phase

cardholder

verification

Fig. 1. Executing an offline CDA transaction without the cardholder’s PIN

block. The terminal then encrypts the PIN block under the card’s public key
and submits it to the card for verification through the VERIFY command. The
card will recover the plaintext using its private key and carry out the decryption
checks described above, returning either an error message or the 9000 code that
indicates successful PIN verification.

Once the cardholder has been successfully verified, the terminal has to decide
whether the transaction requires online authorization from the issuer bank or
not. In the latter case, it requests the card to authorize the transaction. A
GENERATE AC command is sent to the card, containing transaction details and
a nonce generated by the terminal. If the card authorizes the transaction, it
will respond with a Transaction Certificate (TC) cryptogram. Alternatively it
can request the terminal to contact the issuer bank through an Authorisation
Request Cryptogram (ARQC), or reject the transaction by responding with an
Application Authentication Cryptogram (AAC) which aborts the transaction.
The TC contains the transaction details authenticated via a MAC tag (included
in the TC) that is computed using a symmetric key which the card and the
issuer bank share. The terminal would normally keep a copy of the TC in case
there is a dispute, and send a batch of the TCs to the acquiring bank at the end
of day for clearing. Note that the MAC tag in the TC can only be verified by the
issuer bank. Consequently offline transactions are susceptible to wedge attacks.
A CDA card prevents such attacks by additionally providing the terminal with a
signature computed over the TC, enabling the terminal to verify the authenticity
of the TC offline.

Our offline CDA attack: The attack requires a device that intercepts and ma-
nipulates the communication between the card and the terminal. This could for
instance be accomplished through a wedge device (a slim device that is inserted

On the Joint Security of Encryption and Signature in EMV 125

between the card and the terminal) or a fake card which relays communication
to the real card as described in [26]. The attack is outlined in Figure 1, showing
how the wedge interferes with the normal transaction flow. During the card au-
thentication phase the wedge behaves passively and merely forwards messages
between the terminal and the card. Once the terminal initiates the PIN verifica-
tion phase, the wedge takes over the role of the card. The wedge can return any
arbitrary value in response to the GET CHALLENGE command. When issued with
the VERIFY command the wedge will indicate that the PIN verified correctly
with a 9000 message, irrespective of the actual PIN value. Thus the attacker
can enter any value on the terminal’s PIN pad. Since the cardholder verification
completed successfully the terminal will go on to request the card to authorize
the transaction. At this point the wedge will extract the transaction details and
the nonce from the authorization request (GENERATE AC command) and com-
pose a TC in the same way that the card would. However, the wedge does not
know the card’s symmetric key in order to compute the MAC tag that should
be present in this TC. Instead, the wedge just assigns a random value to the
MAC tag. Since the transaction will be authorized offline, this defect will not be
detected until later by the issuer bank.

The wedge now obtains a signature for this TC by mounting the forgery attack
of Section 2 against the card. More specifically, the wedge will now impersonate
the terminal to the card and initiate a series of PIN verification requests. The
card will serve as the validity checking oracle, with the encrypted PIN in the
payloads of VERIFY commands being replaced by the attack ciphertexts. Prior
to each PIN verification request the wedge may need to issue a GET CHALLENGE

command (see Requirement 12.29 of [12]). Once the wedge has forged a signature
over the TC, the wedge forwards the TC together with its signature to the
terminal to complete the original transaction.

Impact and practical considerations: In principle, the attack described above
enables a wedge device to forge a signature on a TC, which the offline terminal
will accept as being valid and thus authorize the transaction. The problem will
only come to light later, once the issuer bank tries to verify the MAC in the TC,
by which time the attacker equipped with the wedge device and a stolen card,
will have made his escape with the purchased goods.

We stress that we have not implemented the above attack. There are several
factors that may prevent it in practice. These include the fact that PIN encryp-
tion is not yet widely enabled, the fact that cards may use PIN decryption failure
counters, the possibility of transaction time-outs being triggered because of the
amount of time needed to produce the signature forgery, and the possibility that
the 7F oracle may not be available because of the way in which decryption is
implemented (especially for CPA-compliant cards). Nevertheless, the attack il-
lustrates the potential problems that may arise through reusing a keypair in
different cryptographic operations.

126 J.P. Degabriele et al.

4 Security Analysis of Combined Encryption and
Signature for Elliptic Curve Algorithms

The prior sections detailed possible attacks when re-using the same key for en-
cryption and signature in the existing EMV Co standards. But what can we say
about upcoming versions of the standards? EMV Co has indicated that elliptic
curve based algorithms are likely to be adopted in future versions of the EMV
standards3. In particular PIN encryption will be performed by the public key
algorithm ECIES [21], whilst digital signatures will be produced using either
EC-DSA [20] or EC-Schnorr [22]. Before proceeding it is worth first recapping
on what is known about the security of these three algorithms when used on
their own, i.e. when used without sharing key-pairs.

ECIES is based on the DHIES encryption scheme [1]. In essence ECIES uses a
one-sided static Diffie–Hellman key exchange to obtain a shared secret which is
then combined with a one-time IND-CCA secure symmetric encryption scheme
via the KEM-DEM paradigm. There are various “options” for use of ECIES in
terms of how the agreed Diffie–Hellman key is used to obtain the shared secret.
These variants are needed to deal with the well-documented benign malleability
of ECIES when used in traditional mode. We use IND-gCCA to denote a scheme
which is IND-CCA secure up to benign malleability [2].

The known results for ECIES are that in traditional mode it is IND-gCCA
secure in both the random oracle model [1] and in the generic group model [32].
Other variants, as defined in [21], can be shown to be IND-CCA secure. A full
description of the various known results can be found in [10].

Security of EC-DSA is more problematic. The only known proof is that it is
secure, in the usual EUF-CMA sense, in the generic group model (GGM) [5]
with certain requirements on the hash function. No other security proof for EC-
DSA is known, and the proof in the GGM makes crucial use of the so-called
“conversion” function f which maps elliptic curve points in E(Fp) to elements
of Fq (note q = p). We also note that EC-DSA is known to be insecure if used
with a hash function for which collisions can be found.

Security of EC-Schnorr is much better understood. It is a classic result of
Pointcheval and Stern [30] that Schnorr signatures are secure in the random
oracle model, assuming the discrete logarithm problem is hard. In addition EC-
Schnorr has been proved secure in the GGM, under the assumption that the
hash function used meets further well-defined properties [27]. In particular, even
if general collisions can be found in the hash function used in EC-Schnorr, the
signature scheme is still secure. Thus EC-Schnorr is resistant to collision attacks
on hash functions. Paillier and Vernaud [28] have argued that the above security
results in idealized models are probably the best we can hope for, by providing
evidence that it is unlikely that a security proof for Schnorr signatures in the
standard model will be forthcoming.

In the rest of this section we study the joint security of ECIES and the sig-
nature schemes EC-DSA and EC-Schnorr, that is, the security of these schemes

3 See http://www.emvco.com/specifications.aspx?id=160 for draft specifications

http://www.emvco.com/specifications.aspx?id=160

On the Joint Security of Encryption and Signature in EMV 127

when the same key-pair is used for both signature and encryption. We show that
all known security results carry over to the joint setting. Hence, if EMV Co allow
the use of a single key-pair for their elliptic curve based algorithms (as they cur-
rently do for RSA-based schemes), there are no negative security implications:
they would still obtain the strong security guarantees described above, just as if
they had used two distinct key pairs.

4.1 Security Models for Joint Security

Security notions for the combinations of a signature scheme and a public key
encryption scheme that shares the same keypair (pk, sk) where given in [29].
Such a combined signature and encryption scheme consists of a tuple of al-
gorithms (KGen, Sign,Verify,Enc,Dec) where (KGen, Sign,Verify) form a signa-
ture scheme and (KGen,Enc,Dec) form a PKE scheme. The notions can easily
be extended to the case of a hybrid encryption scheme, i.e. a scheme follow-
ing the KEM-DEM paradigm for constructing a public key encryption scheme.
Such a combined signature and KEM scheme is given by a tuple of algorithms
(KGen, Sign,Verify,KEM.Enc,KEM.Dec). To avoid confusion we refer to security
of the KEM as KEM-IND-CCA.

In the full version of the paper we present the security notions for combined
schemes constructed in the KEM-DEM paradigm. In this shorter version the
reader should simply note that the standard notions of EUF-CMA and KEM-
IND-CCA security are augmented by giving the adversary additional access to a
signature (for KEM-IND-CCA/KEM-IND-gCCA) and decapsulation (for EUF-
CMA) oracle that can be queried under the same challenge public key. Informally,
we say that a combined scheme is jointly secure if it is both EUF-CMA secure
in the presence of a decapsulation oracle and KEM-IND-CCA (or KEM-IND-
gCCA) secure in the presence of a signing oracle.

4.2 ECIES, EC-Schnorr and EC-DSA in a Nutshell

In this section we briefly describe ECIES, EC-DSA and EC-Schnorr schemes
according to their respective ISO specifications.

ECIES Encryption Scheme

ECIES is a public-key encryption scheme based on elliptic curves which fol-
lows the KEM-DEM paradigm, i.e., it consists of a key encapsulation scheme
ECIES-KEM, and a data encapsulation scheme DEM which uses one-time pad
encryption in combination with HMAC [13,21]. Let (E,G, q) be system parame-
ters specifying a secure elliptic curve E together with a point G that generates a
secure cyclic subgroup of E, with prime order q, let KDF : {0, 1}m → {0, 1}∗ be a
key-derivation function, H : {0, 1}∗ → {0, 1}�H be a hash function and HMACH
be the HMAC-transform of H.

Key Generation. ECIES-KEM.KGen gets as input the system parameters (E,G,

q), chooses a random integer x
$← {1, . . . , q − 1}, sets Y := xG and outputs the

keys pk = (E,G, q, Y) and sk = x.

128 J.P. Degabriele et al.

Key Encapsulation. ECIES-KEM.Enc on input the public key pk and a mes-

sage length �M chooses a random value r
$← {1, . . . , q − 1}, sets C := rG and

K := KDF([rY]x) where [rY]x is the x coordinate of rY . The key-derivation
function KDF is specified as

KDF(m) = H(m‖ 〈1〉32) ‖ H(m‖ 〈2〉32) ‖ H(m‖ 〈3〉32) ‖ . . .H(m‖ 〈n〉32)

for n = (�M+�H/2)/�H and where 〈i〉32 denotes the integer i in binary encoding,
represented with 32 bits. It outputs the encapsulated key as (C,K).

Key Decapsulation. ECIES-KEM.Dec on input the public key sk = x and an
encapsulated key C first computes Q := xC and checks whether Q = 0. If so, it
outputs K := KDF(Qx) where Qx is the x coordinate of Q and “fail” otherwise.

Data Encapsulation. DEM.Enc on input a message M and a key K first
parses the key as K = K1‖K2. It then computes C := M ⊕K1 and a tag
t := HMACH(K2, C) and outputs (C, t)

Data Decapsulation. DEM.Dec on input a ciphertext (C, t) and a keyK parses
the key as K = K1‖K2 again. It then computes M := C ⊕K1 and verifies
whether t = HMACH(K2, C). If the verification fails, it returns ⊥ and M other-
wise.

The suggested KEM variant achieves IND-gCCA security only, as it hashes
only the x-coordinate of rY instead of the full point which allows for a sim-
ple — but in practice harmless – attack against the full-fledged CCA security.
Note also that the DEM above is easily malleable if variable-length messages are
allowed [31]. However, as the public-key encryption will be applied only to fixed-
length messages (containing variable length PINs), the security of the proposed
DEM is sufficient.

EC-Schnorr Signature Scheme

Let (E,G, q) be again system parameters specifying a secure elliptic curve E
together with a generator point G that generates a secure cyclic subgroup G
with prime order q.

Key Generation. EC-Schnorr.KGen gets as input the system parameters (E,G,

q), chooses a random integer x
$← {1, . . . , q − 1}, sets Y := xG and outputs the

keys pk = (E,G, p, Y) and sk = x.

Signing. EC-Schnorr.Sign on input the secret key sk = x and a message M

chooses a random value r
$← {1, . . . , q − 1}, sets R := rG and computes h :=

H(f(Rx)‖f(Ry)‖M), where Rx denotes the x-coordinate of R and f(·) is a
conversion function that converts a field element into a bit-string. It further
computes s := r + hx mod q and outputs the pair (h, s) unless s = 0 or h = 0.
In this latter case the whole procedure is repeated.

Verification. EC-Schnorr.Verify on input the public key pk, message M and a
signature (h, s) first verifies whether h = 0 and lies in the domain of the hash

On the Joint Security of Encryption and Signature in EMV 129

function and if s ∈ {1, . . . , q − 1}. If one of the conditions is not fulfilled it
outputs “invalid”, otherwise it continues the verification and computes R′ as
R′ := sG− hY and h′ := H(f(R′

x)‖f(R′
y)‖M). If h′ = h it outputs “valid” and

“invalid” otherwise.

EC-DSA Signature Scheme

Let (E,G, q) be again system parameters specifying a secure elliptic curve E
together with a generator point G that generates a secure cyclic subgroup with
prime order q.

Key Generation. EC-DSA.KGen gets as input the system parameters (E,G, q),

chooses a random integer x
$← {1, . . . , q− 1}, sets Y = xG and outputs the keys

pk = (E,G, p, Y) and sk = x.

Signing. EC-DSA.Sign on input the secret key sk = x and a messageM chooses

a random value k
$← {1, . . . , q − 1}, sets R := kG. If Rx = 0, where Rx denotes

the x-coordinate of R, this step is repeated. Otherwise r is set to be the value
of Rx mapped (via it’s bit representation) to an element of Fq. The signer then
computes h := H(M) and s := (h+ r · x)/k mod q and outputs the pair (r, s),
unless s = 0 or r = 0. In this latter case the whole procedure is repeated. For
future reference the function which sends R to r used in signing is referred to as
the “conversion function”, we write r := f(R).

Verification. EC-DSA.Verify on input the public key pk, message M and a
signature (r, s) first verifies whether r and s lie in the range {1, . . . , q − 1}. The
value h := H(M) is computed and the verifier computes a := h/s mod q and
b := r/s mod q. Then the value R′ := aG+ bY is computed, and the signature
is accepted if and only if r = f(R′).

4.3 On the Joint Security of ECIES and EC-Schnorr

We first sketch why ECIES and EC-Schnorr are jointly secure in the ROM. It is
clear we need only show that ECIES-KEM and EC-Schnorr are jointly secure,
see the full version for a proof of this elementary result. Thus in the signature
game for EC-Schnorr we need to simulate the ECIES decapsulation queries, and
in the security game for ECIES-KEM we need to simulate the signing queries
for EC-Schnorr. We do not present the proofs in full detail, but simply explain
how these extra simulations can be incorporated into the existing proofs.

Security of the KEM Component in the ROM. We start with the simpler case of
showing that one can answer EC-Schnorr signature queries within the ECIES-
KEM security proof without sacrificing security. Roughly, the ECIES-KEM proof
from [9, 1] reduces the IND-(g)CCA security to the gap-Diffie-Hellman problem
by embedding a DH challenge into the public key and the challenge ciphertext.
Recall that the symmetric key in ECIES-KEM is derived from applying the key
derivation function KDF on a “Diffie-Hellman key”. It is shown that if the KDF

130 J.P. Degabriele et al.

is assumed to be a random oracle, a successful adversary against the ECIES-
KEM needs to query the DH-key — and thus the solution to the DH challenge
— to the random oracle. In our joint setting we have to reduce this to assuming
that the hash function H, that is used to construct the KDF, is a random oracle
instead. This stems from the fact that the signature component makes use of
a hash function as well and we only want to assume a single random oracle.
However, it is easy to see that the KDF as described above inherits the random
oracle property from the underlying hash function. We further see that every
call to H is then of the form Px‖ 〈i〉32, where i is an integer and Px is a point
on the elliptic curve, which allows to adapt the argumentation from the original
proof. Note that the DHIES proof in [1] needs to be slightly modified to the
case of ECIES due to the benign malleability for the standardized variant of
ECIES-KEM mentioned above, but this is a trivial exercise.

To simulate EC-Schnorr queries within this proof we run the “standard” signa-
ture simulation from the forking-lemma proof of Schnorr signatures [30]; i.e. the
simulator generates h and s at random in {1, . . . , q−1}, then defines R = sG−hY
and then “patches” the random oracle so that h = H(Rx‖Ry‖M), where M is
the message being signed. One immediately sees that the input to the oracle in
this simulation will never interfere with the input to the oracle for the decapsula-
tion queries, and vice-versa. That is, an adversary can not exploit the signature
oracle to obtain decryptions of encapsulated keys. Thus the simulation of the
signing oracle is perfect, in the random oracle model.

Hence, security of ECIES-KEM in the presence of an EC-Schnorr signing
oracle is guaranteed, as long as the conditions for the proof of ECIES-KEM are
satisfied. This is that the gap-Diffie–Hellman (gap-DH) problem is hard; i.e. an
adversary cannot solve the Diffie–Hellman problem even when given access to a
decision Diffie–Hellman (DDH) oracle.

Security of the Signature Component in the ROM. Security of EC-Schnorr in the
presence of an ECIES decapsulation oracle follows in much the same way. We
simply need to modify the standard forking-lemma based proof of Schnorr sig-
natures so that the adversary in addition has a decapsulation oracle for ECIES-
KEM. In the proof the decapsulation queries are simply answered by using the
decapsulation simulator from the proof of ECIES-KEM in the random oracle
model. Again this latter simulation usually treats KDF as the random oracle,
but this is easily replaced by assuming H is a random oracle instead. Again we
also see that the two uses of the random oracle are compatible with each other,
due to the sizes of the input values. Thus, we can run the simulations of the hash
function for the EC-Schnorr proof and for the ECIES-KEM part in parallel (as
the simulator can easily detect if the adversary uses the RO in the context of the
signature or the ECIES-KEM component). However, to ensure the hash function
queries for the ECIES component are answered correctly the simulator will need
access to an oracle which solves DDH. Thus whilst EC-Schnorr is secure assum-
ing the DLP problem is hard, the scheme is only jointly secure assuming DLP is
hard even when given access to a DDH oracle. We call this the gap-DLP problem
(by analogy with the more standard gap-DH problem mentioned above).

On the Joint Security of Encryption and Signature in EMV 131

Putting these two informal arguments together, we have:

Theorem 1. In the random oracle model ECIES-KEM and EC-Schnorr are
jointly secure if the gap-DLP problem and gap-DH problem are both hard.

By adapting the method in the following section one can also show that ECIES-
KEM and EC-Schnorr are jointly secure in the GGM if the hash function is
random-prefix (second-)preimage resistant and the conversion function f is par-
tially invertible and uniform. This is done by combining the proof in the GGM
below for ECIES-KEM with the proof of EC-Schnorr in the GGM found in [27].
We refer to [27] for a definition of what it means for a hash function to be
random-prefix (second-)preimage resistant.

4.4 On the Joint Security of ECIES and EC-DSA

We now sketch why ECIES-KEM in combination with EC-DSA are jointly secure
in the generic group model (GGM). The idea of the generic group model is that
an adversary can not exploit any concrete feature of the group, i.e., the group is
considered to be ideal. This is modeled by giving the adversary only oracle —
and thus indirect — access to the group elements and group operations. That
is, for any input i ∈ Zq the oracle will return the representation τ(i) ∈ G, and
for any query (τ(i), τ(j), a, b) it responds with the element τ(ai+ bj). Note that
for the latter query one does not necessarily have to know i or j. To ensure that
the oracle is the only way to perform operations on the representations of the
group elements, the encoding function τ is chosen randomly from the set of all
possible mappings from Zq → G.

Similar to the ROM proof discussion above, we show that one is able to
simulate the additional decryption or signing oracle while retaining the original
proofs for EC-DSA or ECIES in the GGM. Again, we focus on showing how to
handle the extra simulations in the existing proofs.

Security of the KEM Component in the GGM. For full ECIES (i.e. KEM+DEM),
security in the GGM was shown under the DDH assumption (which trivially
holds in the GGM) and the security of the DEM, but interestingly without any
assumptions on the key derivation function. When switching to ECIES-KEM
only, it however requires some uniformity property of the KDF as briefly men-
tioned by Shoup [31]. This property roughly says that the output of a KDF/hash
function on a random (and secret) input can not be distinguished from a truly
random value.

The proof for ECIES-KEM starts with a tiny game hop, where in the modified
KEM-IND-CCA game the challenge ciphertext-key-pair for b = 1 is generated
as (rG,KDF(zG)) for a random z ∈ {1, . . . , q − 1} instead of (rG,K+) with
K+ being a random key. Due to the uniformity property of the KDF, this can
not result in a noticeable change of A’s success probability. For any successful
adversary in the new game that breaks the KEM-IND-CCA property, we can
now easily obtain an equally successful adversary breaking the DDH assump-
tion, which can only happen with exponentially small probability in the GGM.

132 J.P. Degabriele et al.

That is on input (τ(x), τ(y), τ(z)) an adversary has to output 0 if it believes that
z = xy and 1 otherwise. To this end, we embedded the DDH challenge in the
public key and challenge ciphertext as pk = τ(x) and C∗ = (τ(y),KDF(τ(z)).
Thus, if z is a valid DH value, this corresponds to b = 0 where the key has the
correct form KDF(τ(xy)) whereas it will correspond to b = 1 where a derivation
on a random point is given otherwise.

To answer queries to the decryption, signing and group oracle in a consistent
way, the simulator maintains a list L of tuples (τ(i), v, w) which denotes that
the adversary had learned (either directly via a GG call or indirectly via a
decryption/signing query) the representation τ(i) of i = v + w · x. For any
query (τ(i), τ(j), a, b) to the group operation oracle, where τ(i), τ(j) must be
encodings from previous queries, the simulator first checks if L contains an entry
(τ(k), avi + avj , bwi + bwj). If so, it returns τ(k), otherwise it chooses a random
representation τ(k) ∈ G which is different from all other elements stored in L,
adds (τ(k), avi + avj , bwi + bwj) to its list and returns τ(k).

The list is further initialized with the tuples (τ(1), 1, 0) for the generator of
the group and (τ(x), 0, 1) for the public key, where τ(1) is randomly chosen and
τ(x) is the first value of the DDH challenge.

When responding to a decryption query τ(r), the simulator first obtains
(τ(r), v, w), from its record and checks if L already contains an entry (τ(k), 0, v+
wx̄). If not it chooses a random representation τ(k) and adds the tuple (τ(k), 0, v+
wx̄)) to L. Note that we can not evaluate v + wx since we do not know x, thus
we keep it is as a polynomial with x̄ denoting a variable. The decryption oracle
finally returns K ← KDF(τ(k)).

To simulate signature queries the oracle on input of some message M , chooses
a random element τ(k), computes r, h according to the EC-DSA signing algo-
rithm, chooses s ∈ {1, . . . , q − 1} at random and returns (r, s) to the adversary.
It further adds the tuple (τ(k), h/s, r/s) to L. Thus, when an adversary wants
to verify a signature (r, s,M) it must obtain the value τ(h/s + rx/s) from its
group oracle which will then respond with τ(k) again.

Further, as long as no two entries (τ(i), ai, bi), (τ(j), aj , bj) with ai + bix̄ =
aj + bj x̄ but τ(i) = τ(j) exist, the simulation of the decryption and signature
oracle are perfect. The probability of this event can be upper bounded by |L|2/q.

Security of the Signature Component in the GGM. Brown proved in [4] that
EC-DSA is secure in the generic group model if the conversion function f is
almost invertible and the hash function is uniform, collision resistant and zero-
finder-resistant. The proof mainly shows that each successful forgery (M∗, s∗, r∗)
requires an entry (τ(k∗),H(M∗)/s∗, r∗/s∗) where r∗ = f(τ(k∗)). Depending on
the event that triggered this entry, reductions to the underlying hash function
assumptions are given. To embed a message for the collision-finder the proof
handles queries to the group oracle differently from the proof for IND-CCA
security above. Namely, for a query (τ(i), τ(j), a, b) where (τ(k), ai + bi, aj +
bj) is not defined yet, it chooses a random message M and computes τ(k) ←
f−1(H(M) · (ai + aj)

−1 · (bi + bj)). For this step the invertibility of f and the
uniformity of h are required, as τ(k) should not leak information about M .

On the Joint Security of Encryption and Signature in EMV 133

Queries M to the signing oracle are answered exactly as defined by the EC-
DSA algorithm. Here the secret key x is chosen at random, but known to the sim-
ulator since we do not play against any computational assumption in the generic
group. The simulator further adds for each query an entry (τ(k),H(M)/s, r/s)
to L. To handle the additional decryption queries, the simulator reacts as above,
i.e., on input a ciphertext τ(r), it obtains (τ(r), v, w), from its record and checks
if L already contains an entry (τ(k), 0, v+wx) (recall that this time x is known).
If not it chooses a random representation τ(k) and adds the tuple to L. It returns
K ← KDF(τ(k)). Due to the knowledge of x both simulations are perfect.

Brown showed that if the entry (τ(k∗),H(M∗)/s∗, r∗/s∗) corresponding to the
valid forgery was created by the group or signing oracle, this requires that either
H(M∗) = 0 or H(M∗) = H(M) for one of the messages that was “embedded” in
the group oracle responses. In our joint setting we have to consider the additional
event that the entry was created by the decryption oracle. As all tuples created
by the decryption oracle have a zero as second element that requires H(M∗) = 0
which also contradicts the zero-finder-resistance of H.

Putting both of the above arguments together we obtain:

Theorem 2. In the generic group model ECIES-KEM and EC-DSA are jointly
secure if the DDH problem is hard, the hash function H is uniform, collision-
resistant and zero-finder-resistant and the conversion function f is almost in-
vertible.

5 Conclusions

Our results on RSA in EMV provide an illustration, should one still be needed,
that the deployment of cryptographic algorithms having ad hoc designs not sup-
ported by formal security analysis can lead to potential and actual security weak-
nesses. This is especially true when the algorithms are used as components in
complex protocols where the possible interactions between algorithms are many
and therefore hard to assess.

While the key separation principle dictates using different keys for different
cryptographic functions, there are performance benefits that may accrue from
reusing keys in constrained environments, and the EMV standards allow key
reuse for this reason. We have provided positive security results for the likely
candidates for ECC-based algorithms in EMV when keys are re-used. Our results
rule out large classes of attack, including attacks like those we exhibited for the
existing RSA algorithms.

Acknowledgements. All authors would like to acknowledge the partial sup-
port by the European Commission through the ICT Programme under Contract
ICT-2007-216676 ECRYPT II. The first author was also supported by Voda-
fone Group Services Limited, a Thomas Holloway Research Studentship, and
the Strategic Educational Pathways Scholarship Scheme (Malta), part-financed
by the European Union – European Social Fund. The third author was also sup-
ported by EPSRC Leadership Fellowship, EP/H005455/1. The fourth author

134 J.P. Degabriele et al.

was also supported in part by ERC Advanced Grant ERC-2010-AdG-267188-
CRIPTO, and in part by a Royal Society Wolfson Merit Award. The fifth author
was also supported in part by the French ANR-07-TCOM-013-04 PACE Project.

We thank the EMVCo Security Working Group for reviewing an earlier version
of this paper.

References

1. Abdalla, M., Bellare, M., Rogaway, P.: The Oracle Diffie-Hellman Assumptions
and an Analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020,
pp. 143–158. Springer, Heidelberg (2001)

2. An, J.H., Dodis, Y., Rabin, T.: On the Security of Joint Signature and Encryp-
tion. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107.
Springer, Heidelberg (2002)

3. Bleichenbacher, D.: Chosen Ciphertext Attacks against Protocols Based on the
RSA Encryption Standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, p. 1. Springer, Heidelberg (1998)

4. Brown, D.: Generic groups, collision resistance, and ECDSA. Des. Codes Cryptog-
raphy 35, 119–152 (2005)

5. Brown, D.: On the provable security of ECDSA. In: Seroussi, G., Blake, I.F.,
Smart, N.P. (eds.) Advances in Elliptic Curve Cryptography, pp. 21–40. Cambridge
University Press (2005)

6. Coron, J.-S., Joye, M., Naccache, D., Paillier, P.: Universal Padding Schemes for
RSA. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 226–241. Springer,
Heidelberg (2002)

7. Coron, J.-S., Naccache, D., Tibouchi, M.: Fault Attacks against EMV Signatures.
In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 208–220. Springer,
Heidelberg (2010)

8. Coron, J.-S., Naccache, D., Tibouchi, M., Weinmann, R.-P.: Practical Cryptanal-
ysis of ISO/IEC 9796-2 and EMV Signatures. In: Halevi, S. (ed.) CRYPTO 2009.
LNCS, vol. 5677, pp. 428–444. Springer, Heidelberg (2009)

9. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Com-
puting 33, 167–226 (2003)

10. Dent, A.W.: Proofs of security for ECIES. In: Seroussi, G., Blake, I.F., Smart, N.P.
(eds.) Advances in Elliptic Curve Cryptography, pp. 41–66. Cambridge University
Press (2005)

11. Desmedt, Y., Odlyzko, A.M.: A Chosen Text Attack on the RSA Cryptosystem
and some Discrete Logarithm Schemes. In: Williams, H.C. (ed.) CRYPTO 1985.
LNCS, vol. 218, pp. 516–522. Springer, Heidelberg (1986)

12. EMV Co. EMV Common Payment Application Specification – Version 1.0
(December 2005)

13. EMV Co. EMV Book 2 – Security and Key Management – Version 4.1z ECC –
With support for Elliptic Curve Cryptography (May 2007)

14. EMV Co. EMV Book 1 – Application Independent ICC to Terminal Interface
Requirements – Version 4.2 (June 2008)

15. EMV Co. EMV Book 2 – Security and Key Management – Version 4.2 (June 2008)

16. EMV Co. EMV Book 3 – Application Specification – Version 4.2 (June 2008)

On the Joint Security of Encryption and Signature in EMV 135

17. EMV Co. EMV Book 4 – Cardholder, Attendant, and Acquirer Interface Require-
ments – Version 4.2 (June 2008)

18. EMV Co. EMV Specification Bulletin No. 84 (December 2010)
19. Haber, S., Pinkas, B.: Securely combining public-key cryptosystems. In: ACM Con-

ference on Computer and Communications Security, pp. 215–224 (2001)
20. ISO/IEC. ISO/IEC 14888-3:2006, Information technology – Security techniques –

Digital signatures with appendix – Part 3: Discrete logarithm based mechanisms
(2006)

21. ISO/IEC. ISO/IEC 18033-2, Information technology – Security techniques – En-
cryption algorithms – Part 2: Asymmetric ciphers (2006)

22. ISO/IEC. Final Draft of ISO/IEC 14888-3:2006, Information technology – Secu-
rity techniques – Digital signatures with appendix Part 3: Discrete logarithm based
mechanisms Amendment 1: Elliptic Curve Russian Digital Signature Algorithm,
Schnorr Digital Signature Algorithm, Elliptic Curve Schnorr Digital Signature Al-
gorithm, and Elliptic Curve Full Schnorr Digital Signature Algorithm (2010)

23. Naccache, D., Coron, J.-S., Stern, J.P.: On the Security of RSA Padding.
In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 1–18. Springer,
Heidelberg (1999)

24. Kĺıma, V., Rosa, T.: Further Results and Considerations on Side Channel At-
tacks on RSA. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS,
vol. 2523, pp. 244–259. Springer, Heidelberg (2003)

25. Komano, Y., Ohta, K.: Efficient Universal Padding Techniques for Multiplica-
tive Trapdoor One-Way Permutation. In: Boneh, D. (ed.) CRYPTO 2003. LNCS,
vol. 2729, pp. 366–382. Springer, Heidelberg (2003)

26. Murdoch, S.J., Drimer, S., Anderson, R., Bond, M.: Chip and PIN is broken. In:
Proceedings of the 2010 IEEE Symposium on Security and Privacy, Oakland, CA,
USA, pp. 433–446 (May 2010)

27. Neven, G., Smart, N.P., Warinschi, B.: Hash function requirements for Schnorr
signatures. J. Mathematical Cryptology 3, 69–87 (2009)

28. Paillier, P., Vergnaud, D.: Discrete-Log-Based Signatures May not be Equivalent
to Discrete Log. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 1–20.
Springer, Heidelberg (2005)

29. Paterson, K.G., Schuldt, J.C.N., Stam, M., Thomson, S.: On the Joint Security
of Encryption and Signature, Revisited. In: Lee, D.H. (ed.) ASIACRYPT 2011.
LNCS, vol. 7073, pp. 161–178. Springer, Heidelberg (2011)

30. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. J. Cryptology 13(3), 361–396 (2000)

31. Shoup, V.: A proposal for an ISO standard for public key encryption (version 2.1)
(2001), http://www.shoup.net/papers/iso-2_1.pdf

32. Smart, N.P.: The Exact Security of ECIES in the Generic Group Model. In: Honary,
B. (ed.) IMACC 2001. LNCS, vol. 2260, pp. 73–84. Springer, Heidelberg (2001)

33. Smart, N.P.: Errors Matter: Breaking RSA-Based PIN Encryption with Thirty
Ciphertext Validity Queries. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985,
pp. 15–25. Springer, Heidelberg (2010)

http://www.shoup.net/papers/iso-2_1.pdf

New Constructions of Efficient

Simulation-Sound Commitments
Using Encryption and Their Applications

Eiichiro Fujisaki

NTT Information Sharing Platform Laboratories, NTT Corporation,
3-9-11 Midori-cho Musashino-shi, Tokyo 180-8585 Japan

Abstract. Simulation-sound trap-door commitment (SSTC) schemes
are an essential ingredient for making non-malleable and universally com-
posable protocols. In previous work, the SSTC schemes and their variants
are all constructed in the same framework based on digital signatures.
In this paper, we provide new constructions of SSTC schemes using en-
cryption, which is somewhat surprising, because of the tight relationship
between SSTC and digital signature schemes. Although our constructions
require a few rounds of interactions between a committer and a receiver
and the notion of public-key encryption could be stronger than digital
signature, the resulting instantiations are much more efficient than these
based on digital signature schemes. In particular, we present an effi-
cient SSTC scheme under the CDH assumption in the bilinear groups,
with a tight security reduction and short public key parameters, and the
first efficient SSTC scheme under the factoring assumption. Our inter-
active SSTC schemes inherit properties of the non-interactive version of
SSTC schemes to construct non-malleable and universally composable
protocols.

1 Introduction

The notion of commitment is central in cryptographic protocol design. A commit-
ment scheme is a two-phase protocol between two probabilistic polynomial-time
interactive algorithms, committer C and receiver R. In the committing phase,
C takes message m as input and commits to message m by interacting with R,
and in the opening phase, C opens m with some witness. A commitment scheme
is required to have the binding property, meaning that once the commitment
phase is completed, C cannot open the commitment to two different messages,
except with a negligible probability, and the hiding property, meaning that for
any m �= m′ (of the same length), a commitment to m (i.e., a view of R in
interaction with C on m in the committing phase), is indistinguishable from a
commitment to m′. A commitment scheme comes in two different favors, statis-
tically binding and statistically hiding. In statistically-binding commitments, the
binding property holds against unbounded adversaries, whereas in statistically-
hiding commitments, the hiding property holds against unbounded adversaries.
By construction, a commitment scheme never holds statistically binding and
statistically hiding at the same time.

O. Dunkelman (Ed.): CT-RSA 2012, LNCS 7178, pp. 136–155, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

New Constructions of Efficient Simulation-Sound Commitments 137

1.1 Simulation-Sound Commitments

A trap-door commitment is a commitment scheme with an additional equivo-
cability property. In such a commitment scheme, there is trap-door information
that would allow one to open a commitment in any possible way. A trap-door
commitment scheme remains (computational) binding without the knowledge
of trap-door information. A simulation-sound trap-door commitment (SSTC)
scheme [14,8,21] is a trap-door commitment scheme with a strengthened bind-
ing property, called simulation-sound binding. Roughly speaking, in an SSTC
scheme, an adversary cannot equivocate on a commitment even after seeing the
equivocation of an unbounded number of different commitments.

The definition of SSTC looks somewhat artificial, but the notion of SSTC
implies the notion of reusable non-malleable commitment with respect to open-
ing [21,16]. A SSTC scheme can compile any Σ-protocol into a left-concurrently
non-malleable zero-knowledge proof of knowledge protocol [14,21,15]. Similarly,
an SSTC scheme can compile any Ω-protocol into a left and right-concurrently (or
fully) non-malleable zero-knowledge proof of knowledge protocol (and with some
extra modification even universally composable for static corruptions) [14,21].
By combining with mixed commitments [9], an SSTC scheme can yield a uni-
versally composable (interactive) string commitment scheme for at least static
corruptions with constant size common reference strings (see Chapter 6 in [16]),
where the constant size CRS means that the length of CRS is independent of
the number of players. Mixed commitment schemes can be efficiently constructed
from Paillier [24] and its variant [7]. When combined with an SSTC scheme, a
mixed commitment scheme based on [24,7] is transformed to an efficient uni-
versally composable string commitment scheme with a constant size CRS, with
a constant expansion factor, which means that when committing to k bits, the
communication costs just O(k) bit.

Multi-trapdoor commitments [15] have been proposed independently, but con-
ceptually similar to SSTCs, and what they can achieve is similar. SSTCs are also
defined slightly differently [14,8,21,16]. This paper basically follows the definition
of [21].

In the literature of SSTC (including its variant, multi-trapdoor commitments)
[14,8,15,21,16,10,22], they are all constructed in the same framework based on
digital signature schemes. [21] mentioned: “Interestingly, all of our constructions
are heavily based on signature schemes that are existentially unforgeable against
adaptive chosen message attacks. We show that this is not a coincidence, in
that there is a straightforward conversion of any SSTC scheme into a signature
scheme.”

All known SSTC schemes (including ours) is defined in the common reference
string model. It is not known to be able to achieve SSTC schemes in the plain
model.

1.2 Our Results

We present new constructions of SSTC schemes using encryption, which is some-
what surprising because of the tight relationship between SSTC and digital

138 E. Fujisaki

signature schemes. Initially, SSTC schemes are defined in a non-interactive way,
but it is somewhat straightforward to extend them into interactive ones. We
define SSTC schemes such that the commitment phase is interactive while the
opening phase remains non-interactive, which suffices for our purpose. We start
by showing a generic construction of a concurrent man-in-the-middle secure
(cMiM) identification (ID) scheme from a certain class of public-key encryptions.
We then convert an ID scheme so obtained to an (interactive) SSTC scheme.
According to the types of underlying encryption schemes, we present generic
constructions of two-round or five-round SSTC schemes. The resulting instan-
tiations can be much more efficient than those compiled from digital signature
schemes because we have very efficient public-key encryption schemes (of the
required class) from weak and concrete number-theoretic assumptions. Indeed,
we present an efficient SSTC scheme under the CDH assumption in the bilin-
ear groups, with tight security reduction and short public key parameters, and
the first efficient SSTC scheme under the factoring assumption. The interactive
version of SSTCs inherits many properties of the non-interactive counterpart for
constructing non-malleable and universally composable protocols.

2 Preliminaries

We let N denote the natural numbers. For n ∈ N, [n] denotes the set {1, . . . , n}.
For positive functions, f = f(n) and g = g(n), we say that f = O(g) if
limn→∞ f(n)/g(n) = c for some fixed constant c, and f = ω(g) if
limn→∞ g(n)/f(n) = 0. We let negl(n) denote an unspecified function f(n) such
that f(n) = n−ω(1). Let X = {Xn}n∈N and Y = {Yn}n∈N be probability ensem-
bles such that each Xn and Yn ranges over {0, 1}n. We write X ≈s Y to denote X
and Y are statistically indistinguishable. We say that X and Y are computation-
ally indistinguishable if for every polynomial-size circuit family D = (Dn)n>0

(ranging over {0, 1}), {Dn(Xn)}n∈N ≈s {D(Yn)}n∈N. We write X ≈ Y to denote
that X and Y are computationally or statistically indistinguishable.

2.1 Simulation-Sound Trap-Door Commitment Scheme

We consider commitment schemes equipped with tags, i.e., tag-based commit-
ment schemes. We define such schemes that the commitment phase is interactive
and the opening phase is non-interactive. In addition, we focus only on schemes
defined in the common reference string model. This setting fits our purpose.

Tag-Based Commitment Scheme: A tag-based commitment scheme CS =
(KGen, Cc, Rc, Rv) consists of the following algorithms: KGen is a probabilistic
polynomial-time (PPT) algorithm that on input 1n outputs pk, which seen as
the common reference string for the other algorithms. 〈Cc(m), Rc〉(pk, tag) is an
interactive protocol between two interactive algorithms, Cc and Rc, where Cc
takes as input, pk, tag tag ∈ {0, 1}n, and message m ∈ {0, 1}n and Rc takes
as input pk and tag. After the interaction, Cc outputs dec while Rc outputs
Rc’s view view, consisting of the transcript of the communication with Cc and

New Constructions of Efficient Simulation-Sound Commitments 139

the local input to Rc (including random coins to Rc). We write (dec, view, b) ←
〈Cc(m), Rc〉(pk, tag) to denote the experiment of one execution above, where
b = 1 if Rc accepts this communication; otherwise, b = 0. Rv(pk, tag, view, m, dec)
is a deterministic algorithm that takes (pk, tag, view, m, dec) and outputs a bit
b′. We require that CS satisfies the following properties:

(Completeness). For every tag ∈ {0, 1}n and every m ∈ {0, 1}n, Pr[pk ←
KGen(1n); (dec, view, b) ← 〈Cc(m), Rc〉(pk, tag): b = 1 ∧ Rv(pk, tag, view, m, dec)
�= 1] = negl(n).

(Binding). For every non-uniform PPT Cc∗ = (Cc∗1, Cc∗2), and every tag ∈
{0, 1}n,

Pr

[
pk ← KGen(1n); tag ← Cc∗1(pk); (m1, m2, dec1, dec2, view, b) ← 〈Cc∗2, Rc〉(pk, tag) :
Rv(pk, tag, view, m1, dec1) = Rv(pk, tag, view, m2, dec2) = 1 ∧ (m1 �= m2) ∧ b = 1

]

= negl(n), where (m1, m2, dec1, dec2) denotes the output of Cc∗2, view is Rc’s
view.

(Hiding). For every non-uniform PPT Rc∗, every tag, m1, m2 ∈ {0, 1}n,
where m1 �= m2, two Rc∗’s view are indistinguishable, i.e., {viewCc

Rc∗(m1, n)}
≈ {viewCc

Rc∗(m2, n)}, where viewCc
Rc∗(mb, n) is: pk ← KGen(1n); (decb, viewb, b

′) ←
〈Cc(mb), Rc∗〉(pk, tag); return viewb. We require that even if Rc∗ aborts the com-
munication, its view on m1 should be indistinguishable from the view on m2.
We say that Cc is statistically hiding if {viewCc

Rc∗(m1, n)} ≈s {viewCc
Rc∗(m2, n)}.

Trap-Door Commitment Scheme: A tag-based trap-door commitment
scheme is a tag-based commitment scheme with an additional equivocal prop-
erty so that trap-door key tk for each pk can open a commitment in any possible
way. Formally, a tag-based trap-door commitment scheme TC = (KGen, Cc, Rc,
Rv, TKGen, TCc, TDc) consists of the following algorithms: (KGen, Cc, Rc, Rv)
is a tag-based commitment scheme. TKGen is a PPT algorithm that takes 1n

and outputs (pk, tk). TCc is a probabilistic interactive algorithm that takes as
input (pk, tk) generated by TKGen(1n) and tag tag ∈ {0, 1}n. It interacts with
Rc and executes 〈TCc(tk), Rc〉(pk, tag). It finally outputs ξ. We write (ξ, view, b)
← 〈TCc(tk), Rc〉(pk, tag) to denote the experience of one execution above, where
view denotes Rc’s view and b = 1 if and only if Rc accepts the communication.
TDc is a deterministic algorithm that takes as input (pk, tk), ξ, tag, m, and
outputs dec.

(Trap-door property). We require that {viewCc
Rc∗(m, n)} ≈ {viewTCc

Rc∗ (m, n)}
for every non-uniform PPT Rc∗, every tag ∈ {0, 1}n, and every m ∈ {0, 1}n,
where viewCc

Rc∗(m, n) is: pk ← KGen(1n); (dec, view, b′) ← 〈Cc(m), Rc∗〉(pk, tag);
return (view, m, dec), and viewTCc

Rc∗ (m, n) is: (pk, tk) ← TKGen(1n); (ξ, view, b′)
← 〈TCc(tk), Rc∗〉(pk, tag); dec ← TDc(pk, tk, ξ, tag, m, b′); return (view, m, dec).
Here we assume that Cc and TDc set dec = ⊥ if Rc∗ does not accept the com-
munications, i.e., b′ = 0.

140 E. Fujisaki

Simulation-Sound Commitment Scheme: A tag-based trap-door commit-
ment scheme TC = (KGen, Cc, Rc, Rv, TKGen, TCc, TDc) is a tag-based SSTC
scheme if the following simulation-sound binding property additionally holds.

(Simulation-Sound Binding). For every adversely polynomial-size circuit en-
semble A, Advss−bind

A,SSTC(n) = negl(n), where Advss−bind
A,SSTC(n) �

Pr

[
(pk, tk)← TKGen(1n); (tag, m1, m2, dec1, dec2, view)← ATCctk,TDctk,Rc(pk) :

Rv(pk, tag, view, m1, dec1) = Rv(pk, tag, view, m2, dec2) = 1 ∧ (m1 �= m2) ∧ tag �∈ Q

]
,

where ATCctk,TDctk,Rc(pk) is the following left-concurrent man-in-the middle exe-
cution: A may activate unbounded polynomial copies of (TCctk, TDctk), while it
may activate Rc only once. This execution is done in the manner of the man-in-
the-middle execution and A can activate other algorithms with its chosen tags.
More precisely, A activates TCctk, TDctk, and Rc as follows.

– TCctk: On input tag, execute 〈TCc(tk), A〉(pk, tag), add tag to Q if A accepts
the communication, where set Q is initially empty, and hand (tag, ξ) to
TDctk.

– TDctk: On input (tag, m), if tag is stored, return dec ← TDc(pk, tk, ξ, tag, m);
otherwise, ⊥.

– Rc: On input tag, execute 〈A, Rc〉(pk, tag) and output view.

Our definition of SSTC is a natural extention of that of [21] to an interactive
one.

2.2 (Tag-Based) Key Encapsulation Mechanisms

A Tag-KEM Π = (Gen, Enc, Dec) is a tag-based KEM [26,1] that consists of
three polynomial-time algorithms: Gen, the key-generation algorithm, is a PPT
algorithm which on input 1n outputs a pair of the public and secret keys, (pk, sk).
Enc, the encryption algorithm, is a PPT algorithm that takes public key pk and a
string tag ∈ {0, 1}∗, and produces (C, K) ← Enc(pk, tag; r), picking up random
coins r, where K ∈ {0, 1}n. Dec, the decryption algorithm, is a deterministic
polynomial-time algorithm that takes a secret key sk, tag, and a ciphertext
C ∈ {0, 1}∗, and outputs Dec(sk, tag, C). We require that for every (sufficiently
large) k ∈ N, every tag ∈ {0, 1}∗ every (pk, sk) generated by Gen(1k) and every
(C, K) generated by Enc(pk, tag), it always holds Dec(sk, , tag, C) = K. A tag
is simply a binary string of appropriate length and does not need to have any
particular internal structure. Tag-KEM is a generalization of KEM. If the tag is
a fixed string, it is a KEM. For using in later sessions, we define the following
two binary relations for Tag-KEM Π :

– Rpub
pk,tag � {(C, r) | (C, K) = Enc(pk, tag; r)}, and

– Rpriv
pk,tag � {(C, K) | ∃ r : (C, K) = Enc(pk, tag; r)}.

New Constructions of Efficient Simulation-Sound Commitments 141

We say that a Tag-KEM Π is publicly verifiable if there is an efficient algorithm
that takes pk (generated by Gen), tag ∈ {0, 1}∗, and C ∈ {0, 1}∗ and evaluates
C ∈ L

R
pub
pk,tag

.

OW-stCCA. Let Π = (Gen, Enc, Dec) be a Tag-KEM. We introduce a security
notion of one-way security of Tag-KEM against selective-tag chosen-ciphertext
attacks. Let A = (A1, A2) be a pair of non-uniform PPT algorithms. We define
the advantage of A = (A1, A2) for Π against one-wayness against selective-tag
chosen ciphertext attacks as Advow−stcca

A,Π (n) =

Pr
[

(tag∗, s) ← A1(1n); (pk, sk) ← Gen(1n); C∗ ← Enc(pk, tag∗) :
A

Dec(sk,·,·)
2 (pk, tag∗, C∗, s) = Dec(sk, tag∗, C∗)

]
,

where, when oracle Dec(sk, ·, ·) takes (tag, C) from A2, it returns Dec(sk, tag, C)
if tag �= tag∗, otherwise ⊥. Tag-KEM Π is said to be OW-stCCA if Advow−stcca

A,Π (n)
= negl(n) for every A.

OW-ftCCA. Similarly, we define the notion of one-way security of Tag-KEM
against full-tag chosen-ciphertext attacks. Let A = (A1, A2) be a pair of non-
uniform PPT algorithms. We define the advantage of A = (A1, A2) for Π against
one-wayness against full-tag chosen ciphertext attacks as Advow−stcca

A,Π (n) =

Pr

[
(pk, sk) ← Gen(1n); (tag∗, s) ← A

Dec(sk,·,·)
1 (pk); C∗ ← Enc(pk, tag∗) :

A
Dec(sk,·,·)
2 (tag∗, C∗, s) = Dec(sk, tag∗, C∗) ∧ tag∗ �∈ Q

]
,

where, when oracle Dec(sk, ·, ·) takes query (tag, C) from A1 or A2, it returns
Dec(sk, tag, C), and adds tag to Q, where set Q is initially empty. Tag-KEM Π
is said to be OW-ftCCA if Advow−ftcca

A,Π (n) = negl(n) for every A.

Generic Conversion from OW-stCCA to OW-ftCCA. As shown in [20], a selective-
tag secure Tag-KEM can be converted to a full-tag secure Tag-KEM, using a
one-time digital signature that is strong existentially-unforgeable against chosen
message attacks (sEUF-CMA). In this case, however, we insist that one-time dig-
ital signatures can be replaced with (non-interactive) trap-door commitments or
chameleon hash functions (as defined in Appendix A.1). Although they are theo-
retically stronger primitives than one-time signature schemes, they can be often
implemented more efficiently under concrete number-theory based assumptions.

Let Π = (Gen, Enc, Dec) be a OW-stCCA Tag-KEM and let CH = (CHGen,
CHEval, CHColl) be a chameleon hash function. We construct a new Tag-KEM
Π ′ = (Gen′, Enc′, Dec′) as follows:

– Gen′: Run (pk, sk) ← Gen(1n) and pkch ← CHGen(1n). Set pk′ := (pk, pkch)
and sk′ := (pk, pkch, sk). Output (pk′, sk′).

– Enc′(pk′, tag): Pick up random r ← COIN and set t := CHEval(pkch, tag; r),
(C, K) ← Enc(pk, t), C′ := (C, r), K ′ := K, and outputs (C′, K ′).

– Dec′(sk′, tag, C′): Parse C′ as C and r. Compute t = CHEval(pkch, tag; r).
Output Dec(sk, t, C).

142 E. Fujisaki

Theorem 1. Π ′ is a OW-ftCCA Tag-KEM if Π is a OW-stCCA Tag-KEM and
CH is a chameleon hash function.

Proof. Let A be an adversary to break Π ′ in the OW-ftCCA game. Let S be
a simulator using adversary A and break Π in the OW-stCCA game. First, a
simulator sets up (pkch, tkch) ← CHGen(1κ). It then computes t∗ =
CHEval(pkch, 0κ; r′) with random r and hands t∗ to the challenger as the se-
lected tag. When S receives pk and C∗ = Enc(pk, t∗), S runs A with pk. When
A outputs tag∗, S computes r∗ such that t∗ = CHEval(pkch, tag∗; r∗) by using
tk, and feeds C∗ = Enc(pk, t∗) and r∗ to A. If A outputs the decryption, S
outputs it. It is obvious by construction that the advantage of S is equivalent to
that of A. 	

2.3 Sigma-Protocol

Let us remind you of Σ-protocols [5]. Let R = {(x, w)} be a binary relation
(possibly not only an NP binary relation). A Σ-protocol for a polynomial-time
relation R is the following 3-round (public coin) interactive proof system between
the prover and the verifier, with some special properties. Let x be a statement
to be proven that there is a witness w such that (x, w) ∈ R. x is given to both
the prover and the verifier as common input and w is given only to the prover
in advance. A Σ-protocol on common input x is executed as follows: The prover
picks up random coins ra, computes a using statement x and witness w, denoted
a = Σcom(x, w; ra), and sends it to the verifier. The verifier picks up a random
challenge element c ←R Σch, where Σch is a uniform distribution over a specified
set, and sends it to the prover. The prover responds with z = Σans(x, w, ra, c).
The verifier returns a bit b = Σvrfy(x, a, c, z). We say that (a, c, z) is an accepting
communication for x if Σ vrfy(x, a, c, z) = 1. We require that Σ-protocols satisfy
the following properties:

(Completeness). For every ra (in a specified domain) and every c ∈ Σch, it
always holds that Σvrfy (x, Σcom(x, w; ra), c, Σans(x, w, ra, c)) = 1.

(Special Soundness). For every x �∈ LR and every a, there is the only one
c in Σch such that there is z such that Σvrfy(x, a, c, z) = 1. In addition, one
can always compute witness w from two accepting communications for x of the
form (a, c, z) and (a, c′, z′), where c �= c′. The pair of accepting communications,
(a, c, z) and (a, c′, z′), where c �= c′, is called a collision. Note that a collision on
x immediately implies that x ∈ LR.

(Special Honest-Verifier Zero-Knowledge). Given any x ∈ LR, one can
produce a valid transcript (a, c, z) ← simΣ(x, c) with the same distribution of
real valid transcripts, without knowledge of witness w.

3 Generic Construction of cMiM Secure IDs

We start by observing that any OW-ftCCA Tag-KEM can be converted to a con-
current man-in-the-middle (cMiM) secure tag-based identification (ID) scheme

New Constructions of Efficient Simulation-Sound Commitments 143

in a straightforward way1. The construction is as follows: Let Π be a OW-ftCCA
Tag-KEM. The prover and the verifier have the same tag tag in advance. The
verifier simply computes (C, K) ← Enc(pk, tag) with public-key pk of the prover
and sends ciphertext C to the prover, who returns K ′ = Dec(sk, tag, C). The
verifier accepts if and only if K = K ′.

Theorem 2. The tag-based ID scheme shown above is cMiM secure if the under-
lying Tag-KEM is OW-ftCCA. In addition, for any non-uniform PPT A against
ID under cMiM attacks, there is a polynomial-size ensemble S against Tag-KEM
Π such that Advcmim

A,ID(n) ≤ Advow−ftcca
S,Π (n).

Proof. In a cMiM attack for an ID scheme, a cMiM adversary A is allowed only
left-concurrency. Therefore, when the cMiM adversary starts only one execution
of the ID scheme in the right interaction and sends a tag tag∗ to the simulator S,
it simply sends it to the encryption oracle Enc(pk, ·) in the OW-ftCCA game, and
sends A the challenge ciphertext C∗ ← Enc(pk, tag∗). Note that S can simulate
any execution of the ID scheme in the left interaction because any tag in the
right interaction is not equivalent to tag∗ and so S can get any decryption of
ciphertexts in the left interaction with the help of the decryption oracle in the
OW-ftCCA game. S simply outputs K ′ that A returns in the right interaction.

	

4 Weak Extractable Sigma-Protocol

We introduce a new variant of the Σ-protocol, called the weak extractable Sigma
protocols, denoted Σ̂-protocols. A Σ̂-protocol Σ̂ = (ˆGen, Σ̂com, Σ̂ch, Σ̂ans, Σ̂vrfy,
simΣ̂) consists of the following algorithms: Ĝen, the key-generation algorithm,
is a probabilistic polynomial-time algorithm which on input 1k outputs a pair
comprising the public and trap-door keys, (pk, tk). Let Rpk = {(x, w)} be a
polynomial-time binary relation indexed by a public-key pk. A Σ̂-protocol for
relation Rpk is the following 3-round (public coin) interactive proof system be-
tween the prover and the verifier, where letting (x, w) ∈ Rpk, x is given to
both the prover and the verifier as common input and w is given only to the
prover in advance. The prover picks up random coins ra, computes a using x
and w, denoted a = Σ̂com(x, w; ra), and sends it to the verifier. The verifier
picks up a random challenge element c ←R Σ̂ch, where Σch is a uniform distri-
bution over a specified set, and sends it to the prover. The prover responds with
z = Σ̂ans(x, w, ra, c). The verifier returns a bit b = Σ̂vrfy(x, a, c, z). We say that
(a, c, z) is an accepting communication for x if Σ̂ vrfy(x, a, c, z) = 1. We require
that the Σ̂-protocol has the following properties:

1 The idea to use public-key encryption in the concurrent attacks appears in [3], but
the paper only starts with IND-CCA2 encryptions. Independently of us, Anada and
Arita [2] have proposed the similar idea to ours to construct cMiM IDs.

144 E. Fujisaki

(Completeness). For every ra (in a specified domain) and every c ∈ Σ̂ch, it
always holds that Σ̂vrfy (x, Σ̂com(x, w; ra), c, Σ̂ans(x, w, ra, c)) = 1.

(Weak Special Soundness). For every pk ∈ Ĝen(1n), every x �∈ LRpk
and

every a ∈ Σcom(x, w), there is the only one c in Σ̂ch such that there is z such
that Σ̂vrfy(x, a, c, z) = 1. It implies that if there is a collision on x, i.e. a pair
of accepting communications for x, (a, c, z) and (a, c′, z′) where c �= c′, then
x ∈ LRpk

.

(Weak Extractability). For every pk ∈ Ĝen(1n), every x �∈ LRpk
, every a ∈

Σ̂com(x, w), and every c ∈ Σ̂ch, one can efficiently check whether there exists z
such that Σ̂vrfy (pk, x, a, c, z) = 1, with his knowledge of trap-door key tk.

(Special Honest-Verifier Zero-Knowledge). For every pk ∈ Ĝen(1n) and
every x ∈ LRpk

, one can produce the valid transcript (a, c, z) ← simΣ̂(x, c) with
the same distribution of real valid transcripts, without knowing the witness w.

We note that when x �∈ LR, the first message sent by the prover commits to c
in the statistically binding manner, because there is only one valid c in Σ̂ch due
to the weak special soundness property. The weak extractability implies that if
trap-door key tk is given and challenge c is given, one can test whether such a
first message really commits to c .

5 The SSTC Schemes

We present two constructions of SSTC schemes based on the ID scheme de-
scribed in Sec. 3. The high-level idea behind our constructions is as follows. We
put public-key pk for Tag-KEM Π = (Gen, Enc, Dec) as the common reference
string. In the commitment phase, the receiver creates (C, K) ← Enc(pk, tag)
and sends C to the committer. Then, the committer simulates the first mes-
sage, denoted a, of the Σ-protocol on C for relation Rpriv

pk,tag � {(C, K) | ∃ r :
(C, K) = Enc(pk, tag; r)}. Here we note that unlike the prover in the ID scheme
above, the committer is not given secret key sk and hence, he does not know
K = Dec(sk, tag, C). So, the committer is to commit to some c when creating
the first message a. Otherwise, we can construct an adversary that decrypts ci-
phertext C by using the committer who can open the commitment in two ways,
which contradicts the one-wayness for Π . On the other hand, if the simulator
(playing the role of the committer) is given trap-door key sk, he can decrypt C
and create the first message of the Σ-protocol such as a ← Σcom(C, K). This
implies that he can open the commitment a in any possible way, because he can
compute z for any message c2. Here, we note that even if the simulator shows
an adversary two ways of opening of a commitment on a tag, it is still infeasible
for the adversary to open a commitment on another tag in two ways, because
it implies that it decrypts a ciphertext on a fresh tag, on which the adversary
2 We note that the idea to use the simulator of a Σ protocol in commitment protocols is

not novel. It has their origin in the earlier zero-knowledge papers [12,13]. In addition,
all previous SSTC schemes based on digital signatures also use the idea.

New Constructions of Efficient Simulation-Sound Commitments 145

never asks for decryption (If it can decrypt the ciphertext, which contradicts
OW-ftCCA of Tag-KEM Π). Therefore, this commitment scheme seems to have
the simulation-sound binding, too.

This observation above intentionally overlooks an important point. In the
commitment phase, an adversary can send invalid ciphertexts when he plays
the role of the receiver, which ruins the trap-door property of the commitment
scheme, because there is no key K such that K = Dec(sk, tag, C), and the simu-
lator cannot open a commitment in two ways (or it cannot open a commitment
to the value given after the commitment phase was completed). However, if we
can make an adversary send only valid ciphertexts, the above observation is true.

Therefore, we now consider two cases. The first case is that Tag-KEM Π is
publicly verifiable. As defined in Sec. 2.2, Tag-KEM Π is said to be publicly
verifiable if there is an efficient algorithm that is able to check if ciphertext C
is valid, given only pk, C. For such Tag-KEMs, we can easily fix the scheme
above. We just modify the commitment phase so that the committer checks that
the ciphertext sent by the receiver is valid. If it is an invalid ciphertext, the
committer simply aborts, otherwise he simulates the first message of Σ-Protocol
on the valid ciphertext. If Tag-KEM Π is not publicly verifiable, we do not use
this strategy, but there is still a case in which we can construct SSTC schemes.
In such a case, we require that Π has a weak extractable Σ-protocol for relation
Rpub

pk,tag = {(C, r) | (C, K) = Enc(pk, tag; r)}.
Hereafter, we describe a construction of a 2-round SSTC scheme if Tag-KEM

Π is publicly verifiable OW-ftCCA, and we provide a construction of a 5-round
SSTC scheme if Tag-KEM Π is OW-ftCCA and Π has a weak extractable Σ-
protocol for relation Rpub

pk,tag.

5.1 The 2-Round SSTC Scheme from Publicly Verifiable OW-ftCCA
Tag-KEM

Let Π = (Gen, Enc, Dec) be a publicly-verifiable OW-ftCCA Tag-KEM. We then
construct a 2-round SSTC scheme based on Π as described in Fig. 1.

Common Reference String. (pk, Π), where pk is a public key according to the
distribution of Gen(1k) in publicly verifiable OW-ftCCA Tag-KEM Π .
The Commitment Phase.
– On given tag (possibly sent by the committer Cc) and given the common

reference string (CRS), the receiver Rc computes (C, K) ← Enc(pk, tag) and
sends C to Cc.

– The committer Cc takes C as well as the CRS, and commits to message m, by
computing (a, z) ← simΣ(C,m) for relation Rpriv

pk,tag = {(C, K) | ∃ r : (C, K) =
Enc(pk, tag; r)}. Cc sends a to Rc.

– Rc always accepts when it receives a reply from Cc.

The Opening Phase. The committer sends (m,z) to the receiver, who accepts if
and only if Σvrfy(x, a, m, z) = 1 for Rpriv.

Fig. 1. The 2-round SSTC scheme

146 E. Fujisaki

Theorem 3. Let Π be a publicly verifiable OW-ftCCA Tag-KEM. The scheme
obtained above is an SSTC scheme. In particular, for any polynomial-sized en-
semble A against SSTC, there is a polynomial-sized ensemble S against publicly
verifiable Tag-KEM Π such that Advss−bind

A,SSTC(n) ≤ Advow−stcca
S,Π (n).

Proof. (Hiding) Since Π is publicly verifiable, {viewCc
Rc∗(m, n)} ≡ {viewCc

Rc∗(m
′, n)}

for every m = m′ and every unbounded Rc∗. (Binding) If follows from the dif-
ficulty of breaking one-wayness of Π and the special soundness property of
Σ-protocol for Rpriv

pk,tag. (Trap-door property) It follows from the special honest-
verifiable zero knowledge property of Σ-protocol for Rpriv

pk,tag and publicly ver-
ifiability of Π . (Simulation-sound binding) The proof is similar to the proof of
Thm. 2. When an adversary plays the role of the receiver in the commitment
phase (i.e., interacting with oracle TCcsk), it may ask TDcsk with (tag, c) and
(tag, c′), c �= c′, and receive dec (= z) and dec′ (= z′), respectively. By special
soundness, it leads that the adversary obtains K such that Dec(sk, tag, C) = K
for some (tag, C) stored in the commitment phase (in the left interaction). The
goal of the adversary is to open a commitment in two ways on tag∗, which does
not appear in the left interaction. However, opening a commitment in two ways in
the right interaction implies that the adversary outputs K∗ = Dec(sk, tag∗, C∗)
for target tag tag∗, which contradicts OW-ftCCA for Tag-KEM Π . 	

5.2 The 5-Round SSTC Scheme from OW-ftCCA Tag-KEM

Suppose that Tag-KEM Π is not publicly verifiable, but has a weak extractable
Σ-protocol for relation Rpub

pk,tag. In such a case, we can instead construct a 5-round
SSTC scheme based on Π if Π is OW-ftCCA .

Since Π is not publicly verifiable, we instead let the receiver prove that he re-
ally create a valid ciphertext. To prove this, we let the prover send an IND-CCA2
encryption of challenge ĉ to the receiver. Then, we let the receiver produce a Σ
protocol for Rpub

pk,tag, as playing the role of the prover, where the committer sends
the same ĉ as challenge. This is to have a straight-line simulator. However, this
does not satisfy soundness, because the CCA encryption conceals the challenge
only computationally. So, we need more property in Σ protocol for Rpub

pk,tag, which
is called weak extractability.

Let Π ′ = (K, E ,D) be an arbitrary standard IND-CCA2 public key encryption
where K is the key generation algorithm, E is the encryption algorithm, and D
is the decryption algorithm. The construction is shown as in Fig. 2.

Theorem 4. Let Π be a OW-ftCCA Tag-KEM. Let Π ′ be a IND-CCA2 public-
key encryption scheme. The scheme obtained above is an SSTC scheme:

(Simulation-sound binding) For any polynomial-sized ensemble A against SSTC,
there is a polynomial-sized ensembles, S and S′, such that Advss−bind

A,SSTC(n) ≤
Advow−ftcca

S,Π (n).
(Trap-door property) In addition, {viewTCc

Rc∗ (m, n)} ≈c {viewCc
Rc∗(m, n)}, where the

computational distance of the two views is almost twice the advantage of breaking
Π ′ in IND-CCA2 attacks.

New Constructions of Efficient Simulation-Sound Commitments 147

Common Reference String. (pk, pk′, Π,Π ′), where pk and pk′ are each public
key according to the distribution of Gen(1k) in OW-ftCCA Tag-KEM Π and K(1k)
in IND-CCA2 Π ′, respectively.
The Commitment Phase.
– Given tag and given the common reference string (CRS), the committer Cc

picks up ĉ ←R Σ̂ch for Rpub
pk,tag and encrypts it using pk′ and randomness r′,

i.e., C′ ← E cca
pk′(ĉ; r′). Cc sends C′ to the receiver Rc.

– Given tag (possibly sent by the committer), the CRS, and C′ from the com-
mitter, the receiver Rc computes (C, K) ← Enc(pk, tag; r). He then computes
â ← Σ̂com(C, r; ra) for Rpub

pk,tag = {(C, r) | (C, K) = Enc(pk, tag; r)}, and sends
(C, â) to Cc.

– Cc takes (C, â), and sends (ĉ, r′) to Rc.
– Rc aborts if C′ �= E cca

pk′(ĉ; r′); otherwise, it replies ẑ ← Σ̂ans(C, r, ra, ĉ) for

Rpub
pk,tag.

– Cc aborts if Σ̂vrfy(pk,C, â, ĉ, ẑ) �= 1 for Rpub
pk,tag, otherwise it commits to

message m, by computing (a, z) ← simΣ(C, m) for relation Rpriv
pk,tag =

{(C, K) | ∃ r : (C, K) = Enc(pk, tag; r)}. Cc sends a to Rc.
– Rc always accepts when it gets a reply from Cc.

The Opening Phase. The committer sends (m,z) to the receiver, who accepts if
and only if Σvrfy(x, a, m, z) = 1 for Rpriv

pk,tag.

Fig. 2. The 5-round SSTC scheme

Proof. (Simulation-Sound Binding) Let S be an adversary against Π in the OW-
ftCCA game, where (tag∗, C∗) denotes the challenge. S sets up (pk′, sk′) ←
K′(1n) by himself and runs A in the simulation-sound binding game. In the right
interaction, A can interact with the receiver only once with a tag tag∗, and S can
freely decrypt the first message C′ sent by A in the right interaction, because he
knows sk′. Then, S plays the role of the receiver in the right interaction and sends
back C∗ with â, where C∗ is the challenge ciphertext in the OW-ftCCA game.
â is the simulated message such that (â, ẑ) ← simΣ̂((pk, C∗),Dsk′ (C′)). Since S
always knows Dsk′ (C′), he can always reply with a valid ẑ. In the left interaction,
whenever S receives (tag, C), he can obtain the decryption with the help of the
decryption oracle in the OW-ftCCA game, because by definition, tag �= tag∗.
Therefore, in the left interaction, S can always open a commitment into any
message requested by A. Hence, S can perfectly simulate the environment of
A in the simulation-sound binding game. When A succeeds to equivocate a
commitment in the right interaction, it implies that S can obtain the decryption
of C∗ on tag∗, because of the special soundness property of the Σ-protocol.

(Trap-door property) Since A receives C′ in the left interaction, A has a chance,
with some probability, to complete the commitment phase with an invalid C,
which makes a difference between Cc and TCc. Namely, TCc always aborts if such

148 E. Fujisaki

an event occurs, whereas Cc proceeds with the commitment protocol. However,
the chance of A can be bounded by the advantage of IND-CCA2 Π ′. Consider
an IND-CCA2 game of Π ′, where we construct simulator S as follows: Stakes
pk′ as input and sets up (pk, sk) ← Gen(1n) by itself. it chooses two messages,
m and m′, and obtains the challenge ciphertext C′, which is the encryption of
one of the two messages. it then feeds C′ to A in the left intersection. Then, A
sends back C and â. Note that if C sent by A is an invalid encryption, â must be
the statistically binding commitment to m or m′ (otherwise, A cannot complete
the commitment phase). Since S knows secret key sk and â is the first message
in a weak extractable Σ-protocol, it can check which of the two messages that A
committed to in â. Therefore, the chance that A can complete the commitment
phase with invalid C is bounded by the advantage of IND-CCA2 Π ′; otherwise,
it leads to a contradiction. 	

6 Applications

As with [21], our tag-based SSTC schemes can be converted to body-based SSTC
schemes by replacing tags with verification keys otvk of a strong one-time sig-
nature scheme and in the last message, sending a signature w.r.t. otvk on the
whole communication of one execution between the committer and the receiver.

We insist that any (interactive or non-interactive) SSTC scheme can be con-
verted to a cMiM secure ID scheme, which can be seen as a generalization of the
fact stated in [21] that any non-interactive SSTC scheme can be converted to
an EUF-CMA digital signature scheme. Let pk and sk be a common reference
string and a trap-door key in an SSTC scheme, respectively. We regard them as
public and secret keys for an ID scheme. In order to identify himself, the prover
interacts with the verifier, firstly by playing the role of TCc. Then, he shows the
verifier that he can open the commitment in two ways. The verifier accepts if
the prover succeeds in doing so.

Any non-interactive SSTC scheme can compile any Σ-protocol into a
left-concurrently non-malleable zero-knowledge proof of knowledge protocol
[14,21,15]. By replacing a Σ-protocol with an Ω-protocol, it becomes a fully
concurrently non-malleable zero-knowledge proof of knowledge protocol [14,21]3.
Our interactive SSTC schemes can safely replace non-interactive ones in these
applications without harming non-malleable properties. In addition, by com-
bining with mixed commitments [9], a non-interactive SSTC scheme can yield
a universally composable (interactive) string commitment scheme [16]. In the
model of static corruptions, our interactive SSTC schemes can safely replace
non-interactive SSTC schemes. We prove this in the full version. The basic idea
is that since corruptions are only static, each party is either corrupted before the
3 An Ω-protocol is a Σ-protocol in the CRS model with an additional property: In-

formally, it is such a property that if x is a true instance (namely, x ∈ L) and the
Ω-protocol is for language L, then one can directly extract witness w from x and
one accepted communication (a, e, z), by using the trap-door information behind the
CRS.

New Constructions of Efficient Simulation-Sound Commitments 149

protocols start or never corrupted. Therefore, even if we replace non-interactive
SSTC commitments with interactive SSTC ones, we do not need to consider cor-
ruptions at intermediate states in the commitment phase, and hence universally
composability still holds.

Non-interactive SSTC schemes imply reusable non-malleable commitments
with respect to opening [21,16]. It is straightforward to show that interactive
SSTC schemes also imply reusable non-malleable commitments with respect to
opening. A stronger notion is (simulation-based) concurrent non-malleable com-
mitment with respect to opening [23]. Our interactive SSTC schemes also imply
(simulation-based) concurrent non-malleable commitment with respect to open-
ing. Due to the space limitation, we prove this in the full version, although the
proof is almost straight-forward.

7 Instantiations

7.1 2-Round, CDH-Based Implementation

We provide a publicly verifiable OW-ftCCA Tag-KEM based on CDH assumption
in the bilinear map, which can be obtained by converting a OW-stCCA Tag-KEM
[20,28] with a chameleon hash function. As mentioned in in Sec. 2.2, any OW-
stCCA Tag-KEM can be converted to a OW-ftCCA Tag-KEM using a chameleon
hash function. We also provide a Σ-protocol for Rpriv

pk,tag.
Let e : G × G → GT be a non-degenerate bilinear map defined over two

(multiplicative) cyclic groups, G and GT , of order prime q. By bilinearity, we
have e(xa, yb) = e(x, y)ab for all x, y ∈ G, and a, b ∈ Z/qZ. Let g be a gen-
erator of G By non-degeneration, e(g, g) is a generator of GT , too. We as-
sume that the computational Diffie-Hellman (CDH) problem in G is difficult.
Let H = {H}ι be a keyed collision-resistant (CR) hash function family. Let
CH = (CHGen, CHEval, CHColl) be a chameleon hash function. As a concrete ex-
ample, we can use a Pedersen commitment with a CR hash function. Let H, H ′

: {0, 1}∗ → {0, 1}k be CR hash functions. Let G′ be a cyclic group of prime order
q. Then, for picking up random g′, h′ from G′, we can set CHEval(pk′, m; r′) =
H ′((g′)H(m)(h′)r′

), where pk′ = (g′, h′) and sk′ = logg′(h′).
We construct a Tag-KEM scheme as follows:

– Gen(1n): ι ← I ∩ {0, 1}n; H := Hι; x, y ←R Z/qZ; X := gx; Y := gy;
(pk′, sk′) ← CHGen(1n); return (pk, sk), where pk = (e, g, g, X, Y, H, pk′)
and sk = (pk, x, y).

– Enc(pk, tag; r): r ← Z/qZ; u := gr; r′ ← COIN; t := CHEval(pk′, H(tag, u); r′);
τ = (XtY)r; C := (u, r′, τ); K := Xr; return (C, K).

– Dec(sk, tag, C). Parse C = (u, r′, τ); t := CHEval(pk′, H(tag, u); r′); abort if
e(u, XtY) �= e(g, τ); otherwise, return K := ux.

This Tag-KEM scheme is OW-ftCCA secure under the CDH assumption and
publicly verifiable.

150 E. Fujisaki

Σ-Protocol for Rpriv
pk,tag. Let C = (u, r′, τ) such that e(u, XtY) = e(g, τ) for t :=

CHEval(pk′, H(tag, u); r′). To prove (C, K) ∈ Rpriv
pk,tag, where C = (u, r′, τ), the

prover picks up random s, w ← (Z/qZ)×, computes K̂ := Ks and a = e(g, K̂)w,
and sends (K̂, a) to the verifier. The verifier picks up random c ← Z/qZ and
sends c back. The prover answers z := w + cs−1 mod q. The verifier accepts if
e(g, K̂)z = a · e(u, X)c.

Note that simΣ(C, c) can be computed as follows: The committer picks up
random K̂ ← G× = (G − {1G}); picks up random z ← Z/qZ; and outputs
a = e(g, K̂)z ·e(u, X)−c. To open the commitment to c, he sends z to the verifier.

7.2 5-Round, Factoring-Based Implementation

We present a OW-ftCCA Tag-KEM based on the factoring assumption. This can
be obtained by converting a OW-stCCA Tag-KEM [18,28] using a chameleon
hash function. We also provide a Σ-protocol for Rpriv

pk,tag and a Σ̂-Protocol for
Rpub

pk,tag.
Let n = PQ be a Blum integer for safe primes P, Q, i.e., P, Q ≡ 3 (mod 4)

where p = (P − 1)/2 and q = (Q − 1)/2 are both primes. Let QR+
n � {x ∈

Z∗
n | (x

P) = (x
Q) = 1}. We assume that the factoring of N is hard. Let H be

a keyed CR hash function family. Let CH = (CHGen, CHEval, CHColl) be a
chameleon hash function. Its concrete implementation is, for instance, as fol-
lows: Let H : {0, 1}∗ → {0, 1}k and H ′ : Z/nZ → {0, 1}k be CR hash func-
tions. Let n′ = p′q′ be a composite number of large primes, p′ and q′. Let
g′ = g2k

0 for some g0 ∈ (Z/n′Z)×, pk′ = (H, g′, k), and sk′ = (p′, q′). Then define
CHEval(pk′, m; r′) = H ′((g′)H(m)r′2

k

mod n′), where r′ ∈ (Z/n′Z)×.
We construct a Tag-KEM scheme as follows:

– Gen(1λ): ι ← I ∩ {0, 1}λ; H := Hι; (n, (P, Q)) ← GenBlum(1λ); pick up
random g ∈ QR+

n such that #〈g〉 = pq; s ← [(n − 1)/4]; Y := g2k+ls:
(pk′, sk′) ← KGen(1λ); return (pk, sk), where pk = (k, l, g, Y, H, pk′) and
sk = (pk, s, P, Q).

– Enc(pk, tag): r ← [(n − 1)/4]; u := g2k+lr; r′ ← COIN; t := CHEval(pk′,
H(tag, u); r′); τ := (gtY)r ; C := (u, r′, τ); K := g2lr; return (C, K).

– Dec(sk, tag, C) = K: Parse C = (u, r′, τ); t := CHEval(pk′, H(tag, u); r′);
abort if τ2k �= u2k+ls+t; otherwise, compute K := 2k√

u (which is unique and
easy to compute by using (P, Q) because of the property of Blum integers);
return K.

This Tag-KEM scheme is OW-ftCCA under the factoring assumption [18,28].

Σ-protocol for Rpriv
pk,tag. Observe that u = K2k

. There is a classic efficient Σ-
protocol for Rpriv

pk,tag , called the Guillou-Quisquater scheme [17]. Let C = (u, τ)

such that τ2k

= u2k+ls+t. To prove (C, K) ∈ Rpriv
pk,tag, where C = (u, τ), the

prover picks up random w ← 〈g〉, computes a = w2k

mod N , and sends a to

New Constructions of Efficient Simulation-Sound Commitments 151

the verifier. The verifier picks up random c ← [2k] and sends c back. The prover
answers z := wKc mod N . The verifier accepts if z2k

= a · uc (mod N).
simΣ(C, c) can be computed as follows: The committer picks up random z ←

〈g〉; and outputs a = z2k

u−c. To open the commitment to c, he sends z to the
verifier.

Σ̂-Protocol for Rpub
pk,tag . Since this Tag-KEM scheme is not publicly verifiable,

we require a weak extractable Σ̂-protocol for Rpub
pk,tag . What should be shown

here is that u = (g2k+l

)r and τ = (gtY)r have the same exponent r. Here we
slightly relax Rpub

pk,tag such that logg2k+l(u) ≡ loggtY (τ) (mod pq), which suffices
for our purpose. Then we have the following Σ̂-protocol.

– The prover chooses w ∈ [N · 22l] at random and sends au = (g2k+l

)w and
aτ = (gtY)w to the verifier.

– The verifier chooses c ∈ [2l] at random and sends it to the prover.
– The prover sends back z = w + c · r ∈ Z.
– The verifier accepts if (g2k+l

)z = auuc (mod N) and (gtY)z = aττc (mod N).

We show that this protocol is weak extractable. Assume ru = logg2k+l(u) �=
loggtY (τ) = rτ (mod pq). Let wu = logg2k+l (au) mod pq and wτ = loggtY (aτ)
mod pq. Then for given c, one can verify that c is a value committed to in
(au, aτ), by checking (u′

τ ′)e = a′
τ

a′
u

(mod N), where u′ = gru, τ ′ = grτ , a′
u = gwu

and a′
τ = gwτ , which can be computed from primes, P, Q where N = PQ is a

William integer.

7.3 Comparison

The non-interactive SSTC schemes and their variants [14,8,15,21,16,10,22] are all
constructed in the same framework: Let (KGen, Sign, Vrfy) be a digital signature

Table 1. Comparison with previous schemes

Starting Scheme Assumption Reduction Size a Resulting Scheme

[14,21] sig (DSA) strong (DSA) tight short efficient

[14,21,15,16] sig ([6]) mild (sRSA) loose short practical b

[14,21] sig ([25]) weak (OWPc) loose long very inefficient

[15] sig ([4]) mild (sDH) tight short efficient

[10] sig ([27]) weak (CDH) very loose long efficient

[22] sig ([19]) weak (RSA) very loose short inefficient

This work (2-rnd) KEM ([20,28]) weak (CDH) tight short efficient

This work (5-rnd) KEM ([18,28]) weak (Factoring) loose long d less practical

a Total size of public parameters and commitments.
b Resulting scheme is not so efficient because committer should hash tag into set

of primes.
c One-way permutation (OWP) is needed to construct Σ-protocol.
d IND-CCA2 PKEs based on factoring [18,28] need long public keys.

152 E. Fujisaki

scheme that is existentially unforgeable against chosen message attacks (EUF-
CMA). In addition, it must not be a one-time digital signature scheme. Let vk
be a verification key of the signature scheme, which is seen as the CRS and let
tag be a tag. To commit to m, a committer uses the simulator of a Σ-protocol
on instance (vk, tag) and challenge m, for relation R = {((vk, tag), σ) | ∃ r :
σ = Sigsk(tag; r)}. Indeed the commitment is a ← simΣ((vk, tag), m) for R.
Hence, the only essential difference among the previous works depends on which
signature scheme they used.

In the state-of-the-art techniques, it is more expensive to construct practical
(non-one-time) EUF-CMA secure digital signatures than practical CCA secure
public-key encryption schemes. We compare our instantiations with the previous
results in Table 1.

References

1. Abe, M., Gennaro, R., Kurosawa, K.: Tag-KEM/DEM: A new framework for hybrid
encryption. Journal of Cryptology 21(1), 97–130 (2008)

2. Anada, H., Arita, S.: Identification Schemes from Key Encapsulation Mechanisms.
In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp.
59–76. Springer, Heidelberg (2011)

3. Bellare, M., Fischlin, M., Goldwasser, S., Micali, S.: Identification Protocols Se-
cure against Reset Attacks. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 495–511. Springer, Heidelberg (2001)

4. Boneh, D., Boyen, X.: Short Signatures without Random Oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

5. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of Partial Knowledge and Sim-
plified Design of Witness Hiding Protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

6. Cramer, R., Shoup, V.: Signature schemes based on the strong rsa assumption.
ACM Trans. Inf. Syst. Secur. 3(3), 161–185 (2000)

7. Damg̊ard, I., Jurik, M.: A Generalisation, a Simplification and some Applications
of Paillier’s Probabilistic Public-Key System. In: Kim, K. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 125–140. Springer, Heidelberg (2001)

8. Damg̊ard, I., Groth, J.: Non-interactive and reusable non-malleable commitment
schemes. In: STOC 2003, pp. 426–437 (2003)

9. Damg̊ard, I., Nielsen, J.: Perfect Hiding and Perfect Binding Universally Compos-
able Commitment Schemes with Constant Expansion Factor. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 581–596. Springer, Heidelberg (2002)

10. Dodis, Y., Shoup, V., Walfish, S.: Efficient Constructions of Composable Commit-
ments and Zero-Knowledge Proofs. In: Wagner, D. (ed.) CRYPTO 2008. LNCS,
vol. 5157, pp. 515–535. Springer, Heidelberg (2008),
http://www.shoup.net/papers/gucc.pdf

11. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. SIAM. J. Comput-
ing 30(2), 391–437 (2000); (Presented in STOC 1991)

12. Feige, U., Shamir, A.: Zero-Knowledge Proofs of Knowledge in Two Rounds.
In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 526–544. Springer,
Heidelberg (1990)

http://www.shoup.net/papers/gucc.pdf

New Constructions of Efficient Simulation-Sound Commitments 153

13. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In:
Proceedings of the 21st Annual ACM Symposium on Theory of Computing, STOC
1990 (1990)

14. Garay, J.A., Mackenzie, P., Yang, K.: Strengthening Zero-Knowledge Protocols
using Signatures. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp.
177–194. Springer, Heidelberg (2003)

15. Gennaro, R.: Multi-Trapdoor Commitments and their Applications to Proofs of
Knowledge Secure under Concurrent Man-in-the-Middle Attacks. In: Franklin, M.
(ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 220–236. Springer, Heidelberg (2004),
http://eprint.iacr.org/2003/214

16. Groth, J.: Honest Verifier Zero-Knowledge Arguments Applied. PhD thesis, Basic
Resarch in Computer Science, University of Aarhus (2004)

17. Guillou, L.C., Quisquater, J.-J.: A Practical Zero-Knowledge Protocol Fitted to
Security Microprocessor Minimizing both Transmission and Memory. In: Günther,
C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 123–128. Springer, Heidelberg
(1988)

18. Hofheinz, D., Kiltz, E.: Practical Chosen Ciphertext Secure Encryption from Fac-
toring. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 313–332.
Springer, Heidelberg (2009)

19. Hohenberger, S., Waters, B.: Short and Stateless Signatures from the RSA Assump-
tion. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 654–670. Springer,
Heidelberg (2009)

20. Kiltz, E.: Chosen-Ciphertext Security from Tag-Based Encryption. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg
(2006)

21. MacKenzie, P.D., Yang, K.: On Simulation-Sound Trapdoor Commitments. In:
Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 382–
400. Springer, Heidelberg (2004)

22. Nishimaki, R., Fujisaki, E., Tanaka, K.: A Multi-Trapdoor Commitment Scheme
from the RSA Assumption. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS,
vol. 6168, pp. 182–199. Springer, Heidelberg (2010)

23. Ostrovsky, R., Persiano, G., Visconti, I.: Simulation-Based Concurrent Non-
Malleable Commitments and Decommitments. In: Reingold, O. (ed.) TCC 2009.
LNCS, vol. 5444, pp. 91–108. Springer, Heidelberg (2009)

24. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

25. Rompel, J.: One-way functions are necessary and sufficient for secure signature. In:
Proceedings of the 21st Annual ACM Symposium on Theory of Computing (STOC
1990), pp. 387–394 (1990)

26. Shoup, V.: A proposal for an ISO standard for public key encryption. Technical
report, Cryptology ePrint Archive, Report 2001/112 (December 2001)

27. Waters, B.: Efficient Identity-Based Encryption without Random Oracles. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer,
Heidelberg (2005)

28. Wee, H.: Efficient Chosen-Ciphertext Security Via Extractable Hash Proofs. In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 314–332. Springer, Heidelberg
(2010)

http://eprint.iacr.org/2003/214

154 E. Fujisaki

A Definitions

A.1 Chameleon Hash Function

A chameleon hash function CH = (CHGen, CHEval, CHColl) consists of three
algorithms: CHGen is a PPT algorithm that takes as input security parameter
1κ and outputs a pair of public and trap-door keys (pk, tk). CHEval is a PPT
algorithm that takes as input pk and message m ∈ {0, 1}∗, drawing random r
from coin space COINpk, and outputs chameleon hash value c = CHEval(pk, m; r).
Here COINpk is uniquely determined by pk. CHColl is a DPT algorithm that takes
as input (pk, tk), m, m′ ∈ {0, 1}∗ and r ∈ COINpk, and outputs r′ ∈ COINpk such
that CHEval(pk, m; r) = CHEval(pk, m′; r′). We require that for every (pk, tk)
generated by CHGen(1κ), every m, m′ ∈ {0, 1}∗, and every r ∈ COINpk, there
exists a unique r′ ∈ COINpk such that CHEval(pk, m; r) = CHEval(pk, m′; r′),
and CHColl(pk, tk, m, m′, r) always computes r′ in time poly(κ+ |m|+ |m′|). We
say that CH is collision-resistance if for every non-uniform PPT adversary A,

Pr
[
(pk, tk) ← CHGen(1κ); (m1, m2, r1, r2) ← A(pk) :
CHEval(pk, m1; r1) = CHEval(pk, m2; r2) ∧ (m1 �= m2)

]
= negl(κ).

A.2 Man-In-The-Middle Attacks

Let (A, B) be a two-party (interactive) protocol between A and B. The man-
in-the-middle execution is defined on any two-party protocol. In the man-in-
the-middle execution, the man-in-the-middle adversary A is simultaneously par-
ticipating in (unbounded polynomially many) multiple concurrent executions of
protocol (A, B). Executions in which A is playing the role of B are said to belong
to the left interaction, whereas the executions in which A is playing the role of
A are said to belong to the right interaction. In the cMiM execution, adversary
A may start executions in both left and right interactions and may interact with
both left and right parties in arbitrarily interleaved order of messages. We say
that a cMiM execution is left-concurrent if A may interact with multiple copies
of A on (possibly different) common inputs xi in the left interaction, whereas A
may interact with only one copy of B on common input x′ in the right interac-
tion. We say that a cMiM execution is fully-concurrent if A may interact with
multiple copies of A on (possibly different) common inputs xi in the left inter-
action and A may interact with with multiple copies of B on (possibly different)
common inputs x′

i in the right interaction.

A.3 Tag-Based Identification Schemes

Tag-Based ID Schemes. A tag-based identification scheme ID = (KGen, P, V)
consists of a PPT algorithm KGen and a pair of probabilistic polynomial-time
interactive algorithms, (P, V) , where for every (sufficiently large) n ∈ N, KGen
takes 1n and outputs (pk, sk), and (P, V) is an interactive protocol between
P and V , where, (p(sk), V)(pk, tag) denotes the random variable of one bit

New Constructions of Efficient Simulation-Sound Commitments 155

outputted by V , representing whether V accepts or rejects the communication
after P took (pk, tag, sk) and V took (pk, tag) and they run one execution of the
protocol. For completeness, we require that for every (pk, sk) ∈ KGen(1n) and
every tag ∈ {0, 1}n, it always holds that (P (sk), V) (pk, tag) = 1 for honest P
and V .

cMiM Security of Tag-Based ID Schemes. We define the concurrent man-
in-the-middle security (cMiM) of a tag-based identification scheme, as follows.
Let A be a cMiM adversary for a tag-based ID scheme. The action of A in this
case is the same as that in the non-tag case, except that A can activate P and
V with his chosen tags. The advantage of A is defined as the probability that
(AP (sk), V)(pk, tag) = 1 for tag that A has chosen in the right interaction, and
any tag in the left interaction should be different from the tag tag. A tag-based
ID scheme is cMiM secure if for every adversely polynomial-size circuit ensem-
ble A, AdvcMiM

A,ID (n) = negl(n), where AdvcMiM
A,ID (n) � Pr[(pk, sk) ← KGen(1n) :

(APsk , V)(pk, tag) = 1].

A First-Order Leak-Free Masking

Countermeasure

Houssem Maghrebi1, Emmanuel Prouff2,
Sylvain Guilley1,3, and Jean-Luc Danger1,3

1 TELECOM-ParisTech, Crypto Group,
37/39 rue Dareau, 75 634 PARIS Cedex 13, France
{maghrebi,guilley,danger}@telecom-paristech.fr

2 Oberthur Technologies,
71-73, rue des Hautes Pâtures 92726 Nanterre Cedex, France

e.prouff@oberthur.com
3 Secure-IC S.A.S.,

2 rue de la Châtaigneraie, 35 576 CESSON SEVIGNÉ, France

Abstract. One protection of cryptographic implementations against side-
channel attacks is the masking of the sensitive variables. In this article,
we present a first-order masking that does not leak information when the
registers change values according to some specific (and realistic) rules.
This countermeasure applies to all devices that leak a function of the
distance between consecutive values of internal variables. In particular,
we illustrate its practicality on both hardware and software implemen-
tations.

Moreover, we introduce a framework to evaluate the soundness of the
new first-order masking when the leakage slightly deviates from the rules
involved to design the countermeasure. It reveals that the countermea-
sure remains more efficient than the state-of-the-art first-order masking if
the deviation from the ideal model is equal to a few tens of percents, and
that it is as good as a first-order Boolean masking even if the deviation
is 50%.

Keywords: First-order masking, leakage in distance, leakage-free coun-
termeasure.

1 Introduction

During the last ten years, a lot of efforts have been dedicated towards the re-
search about side-channel attacks [9, 1] and the development of corresponding
countermeasures. In particular, there have been many endeavors to develop ef-
fective countermeasures against differential power analysis (DPA) [10] attacks.
DPA, and more generally side channel analysis (SCA for short), take advan-
tage of the fact that the power consumption of a cryptographic device depends
on the internally used secret key. Since this property can be exploited with rel-
atively cheap equipments, DPA attacks pose a serious practical threat to cryp-
tographic devices, like smart cards (ASICs) or embedded systems (DSPs, CPUs
and FPGAs).

O. Dunkelman (Ed.): CT-RSA 2012, LNCS 7178, pp. 156–170, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.telecom-paristech.fr/en/eng/home.html
http://www.comelec.enst.fr/recherche/sen.en
http://www.oberthur.com/
http://www.Secure-IC.com/

A First-Order Leak-Free Masking Countermeasure 157

A very common countermeasure to protect implementations of block ciphers
against SCA is to randomize the sensitive variables by masking techniques. The
idea of masking the intermediate values inside a cryptographic algorithm has
been suggested in several papers [8, 5] as a possible countermeasure to power
analysis attacks. The technique is generally applicable if all the fundamental
operations used in a given algorithm can be rewritten in the masked domain.
This is easily seen to be the case in classical algorithms such as the DES or AES.
Masking ensures that the sensitive data manipulated by the device is masked
with at least one random value so that the knowledge on a subpart of the shares
(the masked data or the mask) does not give information on the sensitive data
itself.

The masking can be characterized by the number of random masks used per
sensitive variable. So, it is possible to give a formal definition for a high-order
masking scheme: a dth-order masking scheme involves d+1 shares. The security
is reached at order d provided that any combination of d intermediate variables
during the entire computation conveys no information about the sensitive vari-
able.

We must concur that computing with d + 1 shares without revealing infor-
mation from any set of size d of intermediate values can be challenging. Some
first-order masking techniques have been successfully proved to be secure against
first-order SCA (1O-SCA) attacks. Nonetheless, masked implementations can al-
ways be attacked, since all shares [7] or a judicious combination [16] of them un-
ambiguously leaks information about the sensitive variable. The construction of
an efficient dth-order masking scheme thus became of great interest. One sound
solution has been put forward recently in [17].

In this paper, we are not concerned with higher-order masking, but devise
optimised masking schemes when the leakage function is known. Typically, we
show that with d = 1, and assuming a Hamming distance leakage function (or
even some small variations of it), it is possible to zero the sensible information
leaked during the registers update.

The rest of the paper is structured as follows. In Sec. 2, the concept of Boolean
masking and 1O-SCA are formally defined. We also introduce some useful nota-
tions. The most critical part when securing implementations is to protect their
non-linear operations (i.e. the sbox calls). In Sec. 3, we recall the methods which
have been proposed in the literature. Then, we introduce a new and a simple
countermeasure which counteracts 1O-SCA when the device leaks the Hamming
distance. The security analysis is conducted for both idealized model in Sec. 4
and imperfect model in Sec. 5. The conclusion and some perspectives are in
Sec. 6. Simulation results in the imperfect model are in appendix A.

2 Preliminaries

In this paper we focus on the Boolean masking countermeasure [5, 8]. Its idea
is to mask the sensitive data (which depends on both plaintext and the secret
key) by a XOR operation (denoted ⊕) with a random word, in order to avoid

158 H. Maghrebi et al.

the correlation between the cryptographic device’s power consumption and the
data being processed. The main difficulty of masking resides in the handling of
shares of a unique intermediate variable through a non-linear function (i.e. the
cipher sboxes). An n ×m sbox (i.e. with n input bits and m output bits) can
be described as a vectorial output mapping F : Fn

2 �→ Fm
2 , or a collection of

Boolean functions F = (f1, · · · , fm), where each fi is defined from Fn
2 to F2.

The vectorial function F is also called an (n,m)-function. A (n,m)-function F
such that every element Y ∈ Fm

2 has exactly 2n−m pre-images by F is said to
be balanced. Its outputs are uniformly distributed over Fm

2 when its inputs are
uniformly distributed over Fn

2 . As recalled in introduction, the manipulation of
sensitive data through this function may be protected using dth-order masking
scheme. When such a scheme is applied, it is expected that no HO-SCA of order
less than or equal to d is successful. The order relates to the number of different
instantaneous leakages considered by the attack. In this paper, we focus on first-
order masking scheme secure against 1O-SCA. For the rest of the paper, we
adopt the following notations. Random variables are printed in capital letters
(e.g. X), whereas their realization is noted with small letters (e.g. x), and their
support by calligraphic letters (e.g. X). The mutual information between X and
Y is denoted I[X ;Y]; it measures the mutual dependency of the two variables.
The Hamming weight of x, written as HW(x), is the number of ones in the binary
word x.

3 Secure Computation against 1O-DPA Using ROMs

Let X and K denote two random variables respectively associated with some
plaintext subpart values x and a secret sub-key k manipulated by a cryptographic
algorithm. Let us moreover denote by Z the sensitive variable X ⊕K. When a
first-order Boolean masking is involved to secure the manipulation of Z, the
latter variable is randomly split into two shares M0,M1 such that:

Z = M0 ⊕M1 . (1)

The share M1 is usually called the mask and is a random variable uniformly
distributed over Fn

2 . The share M0, called the masked variable, plays a particular
role and is built such that M0 = Z ⊕M1. Variables Z and M1 are assumed to
be mutually independent. To enable the application of a transformation S on a
variable Z split in two shares, as in (1), a so-called first-order masking scheme
must be designed. It leads to the processing of two new shares M ′

0 and M ′
1 such

that:
S(Z) = M ′

0 ⊕M ′
1 . (2)

Once again, the share M ′
1 is usually generated at random and the share M ′

0 is
defined such that M ′

0 = S(Z)⊕M ′
1. The critical point is to deduce M ′

0 from M0,
M1 and M ′

1 without compromising the security of the scheme (w.r.t. 1O-SCA).
When S is linear for the law ⊕, then deducing M ′

0 is an easy task. Actually,
since the relation S(Z) = S(M0 ⊕M1) = S(M0) ⊕ S(M1) holds, then M ′

0 can
be simply chosen such that M ′

0 = S(M0)⊕ S(M1)⊕M ′
1.

A First-Order Leak-Free Masking Countermeasure 159

When S is non-linear for the law ⊕ (which occurs when S is a sbox), achieving
first-order security is much more difficult. The latter security indeed implies
that no instantaneous leakage during the processing leaks information on Z
and hence, particular attention must be paid on each elementary calculus or
memory manipulation. Several solutions have been proposed to deal with this
issue. Commonly, there are three strategies [15]:

1. The re-computation method [2, 11]: this technique involves the computation
of a precomputed table corresponding to the masked sbox and the generation
of one or several random value(s). In its most elementary version, two random
values M1 and M ′

1 are generated and the table T � representing the function
S′ : Y �→ S(Y ⊕M1) ⊕M ′

1 is computed from S and stored in RAM. Then,
each time the masked variable M ′

0 has to be computed from the masked
input Z ⊕M1, the table T � is accessed.

2. Global Look-up Table [15, 24]: this method also involves the computation
of a precomputed look-up table, denoted T �, associated to the function
(X,Y, Y ′) �→ S(X ⊕ Y) ⊕ Y ′. To compute the masked variable M ′

0, the
global look-up table method (GLUT for short) performs a single operation:
the table look-up T �[Z ⊕M1,M1,M

′
1]. The main and important difference

with the first method is that the value S(X ⊕ Y) ⊕ Y ′ has been precom-
puted for every possible 3-tuple of values. Consequently, there is no need to
re-compute before each algorithm processing and it can be stored in ROM1.
In a simplified version (sufficient to thwart only 1O-SCA), the output mask
and the input mask are chosen equal. In this case, the dimension of the ta-
ble is 2n instead of 3n and the table look-up becomes T �[Z ⊕M1,M1]. We
consider this latter version of the GLUT method in the following.

3. The sbox secure calculation [17,5,14,18,26]: the sbox outputs are computed
on-the-fly by using a mathematical (e.g. polynomial) representation of the
sbox. Then, each time the masked value M ′

0 has to be computed, an algo-
rithm performing S and parametrized by the 3-tuple (M0,M1,M

′
1) is ex-

ecuted. The computation of S is split into elementary operations (bitwise
addition, bitwise multiplication, . . .) performed by accessing one or several
look-up table(s).

Moreover, depending on the number of masks generated to protect the sbox
calculations, we can distinguish two modes of protections:

1. The single mask protection mode: in this mode, every computation S(Z) per-
formed during the execution is protected with a single pair of input/output
masks (M1,M

′
1).

2. The multi-mask protection mode: in this mode, the pair of masks (M1,M
′
1)

is re-generated each time a computation S(Z) must be protected and thus
many times per algorithm execution.

In [15], the authors have shown that the choice between the three methods
depends on the protection mode in which the algorithm is implemented. In fact,

1 Recall that in embedded systems, ROM is a much less costly resource than RAM.

160 H. Maghrebi et al.

when the algorithm is protected in the single-mask protection mode, the re-
computation method is more appropriate and induces a smaller timing/memory
overhead. In the multi-mask protection mode, the re-computation method is
often much more costly since the recomputation must be done before every sbox
processing. Moreover, in both contexts it requires 2n bytes of RAM to be free,
which can be impossible in some very constrained environments. Concerning
the sbox secure computation, it is secure against first-order SCA and does not
need particular RAM allocation. However, it is often more time consuming than
the first two methods and can only be used to secure sboxes with a simple
algebraic structure (as e.g. the AES or the SEED sboxes). Regarding the GLUT
method, it seems at a first glance to be the most appropriate method. Its timing
performances are ideal since it requires only one memory transfer. Moreover, it
can be applied in both protection modes described above. From a security point
of view, the GLUT method has however a flaw since it manipulates the masked
data Z ⊕M1 and the mask M1 at the same time. Actually, Z ⊕M1 and M1 are
concatenated to address the look-up table T � and thus, the value Z ⊕M1 ||M1

is transferred through the bus. Since the latter variable is statistically dependent
on Z, any leakage on it is potentially exploitable by a first-order DPA involving
the higher-order moments of the concatenated random variable. It must however
be noted that such a leakage on the address does not necessarily occurs during
the bus transfers or the registers updates. Indeed, when for instance the latter
ones leak the Hamming weight between an independent and random initial state
and the address Z ⊕M1||M1, then the leakage is independent on Z and no first-
order DPA is hence applicable. This example shows the importance of the device
architecture when assessing on a countermeasure soundness. In this paper, we
focus on the GLUT method. Our proposal is to benefit from all the seminal
assets of the method and to additionally achieve first-order security for some
realistic architectures (including the Von-Neumann ones).

3.1 Detailed Description of GLUT Method

In hardware, GLUT method can be implemented as shown in Fig. 1. This fig-
ure encompasses the masking scheme already presented in [25]. For the sake of
simplicity, the linear parts, like the expansion (in DES), MixColumns (in AES),
etc. are not represented. So, without loss of generality, we assume that the sbox
S in an (n, n)-function. For instance, using AES, n can be chosen equal to 8
(straightforward tabulation of SubBytes), 4 (with the decomposition of Sub-
Bytes in GF((24)2)), or even 2 (using the GF(((22)2)2) tower field [19]). The
registers R and M contain respectively the masked variable and the mask.

For any (n, n)-function S that must be processed in a secure way, the core
principle is to define from S the lookup table representation of a new (3n, n)-
function S′ which is indexed by both the masked data and the masking material.
Thanks to this new function, a masked representation S(Z) ⊕M ′

1 of S(Z) is
securely derived from Z ⊕M1, M1 and the output mask M ′

1 by accessing the
look-up table representing S′. The size of the table can be reduced by defining
the output mask as a deterministic function of the input mask. In such a case, the

A First-Order Leak-Free Masking Countermeasure 161

R
n

S

M
z ⊕m1 n m1

update
mask

ROM
S ′

(a)

ROM
(b)

m′
1S(z)⊕m′

1

Fig. 1. First-order hardware masking implementation

ROM lookup-table represents a (2n, n)-function S′ such that S′(Z ⊕M,M) =
S(Z) ⊕M ′, where M ′ is a deterministic function of M (e.g. M ′ = M ⊕ α for
some constant α).

In the first case, the ROM look-up table has (3n)-bit input words: the two
shares and the new mask for the remasking, and one n-bit output (e.g. option (a)
of Fig. 1). In the second case, the new masks are derived deterministically from
the old ones, and thus the ROM look-up table can have only the two input shares
as inputs (e.g. option (b) of Fig. 1). The ROM look-up table thus represents a
(2n, 2n)-function. This is the scenario we consider in the rest of this article.

3.2 Leakage of the ROM-Based 1O-DPA Protection Implementation

During the processing of the scheme depicted in Fig. 1, we assume that only the
updating of the registers R and M leak information. Indeed, since the leakage
at the register level is perfectly synchronized with the system clock, it has a rel-
atively high density of energy which is easily detectable. On the other hand, the
leakage from the combinational logic is very dependent on the implementation
and spreads over the time. It can be seriously reduced by taking advantage of
the ROM tables [22]. In the following, we denote by LR and LM the leakage
variables corresponding to the updating of the registers R and M respectively.
We have:

LR = A(Z ⊕M1, Z
′ ⊕M ′

1) +NR

LM = A(M1,M
′
1) +NM , (3)

where A is a deterministic function representing the power consumption during
the register updating and where NR and NL are two independent noises. The
power consumption related to the simultaneous updating of the registers R and
M equals LR+LM and is denoted by O. In a first time, we assume that A in (3)
has the following property that will be relaxed in the second part of this paper.

162 H. Maghrebi et al.

Property 1. For any pair (X,Y), we have A(X,Y) = A(X ⊕ Y).

Remark 1. Many security analyses in the literature have been conducted in the
so-called Hamming Distance model [12, 3]. In this model, the function A is as-
sumed to be the Hamming distance between X and Y and thus clearly satisfies
Property 1.

When A satisfies Property 1, the variable O satisfies:

O = A(Δ(Z)⊕Δ(M)) +A(Δ(M)) +NR +NM , (4)

where Δ(Z) and Δ(M) respectively denote Z ⊕ Z ′ and M1 ⊕M ′
1.

The distribution of O (and in particular its variance) depends on the sensitive
variable Δ(Z). This dependency has already been exploited in several attacks
(e.g. [28]). In this paper, we study whether it can be broken by replacing the
bitwise data masking Z ⊕M1 by a new one denoted by Z α©M1 and by adding
conditions on M1 and M ′

1.

3.3 Towards a New Masking Function

A simple solution, deeply analyzed in this paper, is to choose a function α© such
that Z α© M1 = Z ⊕ F (M1) for some well chosen function F . For such a new
masking function, α© is not commutative and M1 and Z do no longer need to
have the same dimension n. Only the output size of the function F must be n.
In the following, we denote by p the dimension of M1 and we assume that F is a
(p, n)-function. We will see in Sec. 4.1 that p and n must satisfy some conditions
for the masking to be sound. In this case, the deterministic part in (4) can be
rewritten:

A(Z α©M1, Z
′ α©M ′

1) +A(M1,M
′
1)

.
= A(Z ⊕ Z ′ ⊕ F (M1)⊕ F (M ′

1)) +A(M1 ⊕M ′
1)

= A(Δ(Z)⊕ F (M1)⊕ F (M ′
1)) +A(Δ(M1)) . (5)

In view of (5), we deduce the two following sufficient conditions for O to be
independent of Δ(Z):

1. [Constant Masks Difference]: M1 ⊕M ′
1 is constant and

2. [Difference Uniformity]: F (M1)⊕ F (M ′
1) is uniform.

To the two security conditions above, a third one must also be introduced to
enable the bitwise introduction of the key on the internal state X :

3. [Operations Commutativity]: For every (X,M1,K), we have:

X α©M1 ⊕K = (X ⊕K)α©M1 .

A First-Order Leak-Free Masking Countermeasure 163

In the following section, we propose a way to specify M1, M
′
1 and F to satisfy the

three sufficient conditions. We structure our study of this new technique in two
steps: the first one (cf. Sec. 4) is performed by assuming that A satisfies Prop-
erty 1 (i.e. A(X,Y) = A(X⊕Y)) and the second one (cf. Sec. 5) is conducted in
an imperfect model where A satisfies A(X,Y) = P (X,Y), with P (X,Y) being
a polynomial function in R[X1, · · · , Xn, Y1, · · · , Yn] where Xi and Yi denote the
ith Boolean coordinate of X and Y respectively.

4 Study in the Idealized Model

4.1 Our Proposal

Under Property 1 and as argued in the previous section, we can render the
variable O independent of Δ(Z). It indeed amounts to fix the condition M ′

1 =
M1 ⊕ α for some nonzero constant term α and to design a function F s.t. the
function Y �→ F (Y)⊕F (Y ⊕α) is uniform for this α. The latter function is usually
called derivative of F with respect to α. The construction of functions F having
such uniform derivatives has been highly investigated in the literature [4, Chp. 4].

We give hereafter two examples of construction of such functions F .

First Construction Proposal: we choose p = n + 1 and we split Fn+1
2 into the

direct sum E ⊕ (E ⊕ α), where E is a n-dimensional vector space and α ∈ Fp
2.

One bijective function G from E into Fn
2 is arbitrarily chosen and F is defined

such that for every Y ∈ Fn+1
2 , we have F (Y) = G(Y) if Y ∈ E and F (Y) = 0

otherwise.

Second Construction Proposal: we choose p = n + n′ with n′ < n and we
select one injective function G from Fn′

2 into Fn
2 −{0}. Then, for every (X,Y) ∈

F2n′ × F2n = F2p we define F (X,Y) = G(X) · Y with · the field product over
F2n . The outputs of the (p, n)-function F are uniformly distributed over Fn

2 (since
the functions Y �→ G(X) · Y are linear and non-zero for every X). Moreover,
for every non-zero element α′ in F2n′ , the function DαF defined with respect
to α = (α′, 0) ∈ F2n′ × F2n is also balanced. Indeed, we have DαF = (G(X) ⊕
G(X +α′)) · Y and, since the injectivity of G implies that G(X)⊕G(X ⊕ α′) is
never zero, the functions Y �→ (G(X)⊕G(X⊕α′))·Y are linear and non-constant
for every X .

The two constructions of F satisfy the difference uniformity condition defined
in Sec. 3.3. The mask dimension p for the first construction is only slightly greater
than the dimension n of the data to be masked. This makes it more efficient than
the second construction. However, the second construction ensures that not only
DαF but also F is balanced. This is not mandatory to ensure the security of the
countermeasure in our context where the targeted leakage is assumed to satisfy
Property 1, but it can be of interest if one wishes that the data Z and Z ′ be
masked with a uniform mask F (M1) and F (M ′

1) respectively.
Figure 2 shows a hardware implementation of our countermeasure. The reg-

isters R and M contain respectively the masked variable Z ⊕ F (M1) and the
mask M1. The mask update operation is constrained to be a ⊕ operation with

164 H. Maghrebi et al.

R
n

α©

S

α©

α

m′
1

ROM α

M
z ⊕ F (m1) p m1

F (m′
1)

S(z)⊕
m′

1

Fig. 2. Leak-free masking hardware implementation

a constant value α in order to satisfy the first condition. Consequently, every
computation in the algorithm is protected with the single pair of masks (M1,
M ′

1 = M1⊕α). Nonetheless, the value of M1 changes at every computation; thus,
the injected entropy in one computation is p bits. The table T � representing the
function S′ : (X,Y) �→ S(X α©Y)α©(Y ⊕α) = S(X⊕F (Y))⊕F (Y ⊕α) has been
pre-computed and stored in ROM. The new masked variable S(Z) ⊕ F (M ′

1) is
got by accessing the ROM table T � as described in Fig. 2. We assume that
this address is not leaking sensitive information but the leakage comes from the
updating of the registers R and M following Equations (4) and (5).

4.2 Security Evaluation

In our security analysis, we assume that the attacker can query the targeted
cryptographic primitive with an arbitrary number of plaintexts and obtain the
corresponding physical observations, but cannot choose its queries in function
of the previously obtained observations (such a model is called non-adaptive
known plaintext model in [23]). We also assume that the attacker has access
to the power consumption and electromagnetic emanations of the device and
applies a first-order DPA attack but is not able to perform HO-DPA.

Regarding the leakage model, we assume that the device leaks a function
A of the distance between the processed data and its initial state handled in
the register (i.e. A satisfies Property 1). This situation is more general than
the Hamming distance model, and notably encompasses the imperfect model
studied in [27, Sec. 4]. The mutual information I[A(Δ(Z)⊕ F (M1)⊕ F (M ′

1)) +
A(Δ(M));Δ(Z)] = 0 since Δ(M) is constant and since F (M1)⊕ F (M ′

1) is uni-
formly distributed over Fn

2 and independent of Δ(Z). Hence, our construction
is leak-free and immune against first-order attacks. Furthermore, as A(Δ(M)) is
constant, the mutual information

I[A(Δ(Z)⊕ F (M1)⊕ F (M ′
1)), A(Δ(M));Δ(Z)]

is also null, which means that the masking countermeasure is secure against
an adversary who observes the leakage in the transition from one state during

A First-Order Leak-Free Masking Countermeasure 165

the registers update and can repeat this as many times as he wants. The ad-
versary recovers the observations of the variable (LR + LM) and can make all
the treatments he wants (e.g. computation of mutual information univariate or
multivariate, raise to any power the variable LR + LM , . . .).

4.3 Application to the Software Implementation Case

Our proposal can be applied also in some particular software implementations.
In some access memory schemes, the address and the value read are transferred
through the same bus (e.g. Von-Neumann architecture). Thus, when accessing
a table, the value overwrites the address and a leakage as in (4) occurs. Such
access is obtained with a code such as:

mov dptr, #tab

mov acc, y

movc acc, @acc+dptr

In the code above, dptr refers to a data memory pointer and #tab to the address
of a table stored in data. The variable y is assumed to contain the index of the
value that must be read in table tab. After the third step, the accumulator
register acc contains the value tab[y]. During this processing, the accumulator
goes from state y to state tab[y]. Let us now assume that tab refers to the
table T ′ defined in Sec. 4.1 and that y refers to the variable (Z α©M1,M1). If
we associate the most significant bits of the accumulator acc to a (sub-)register
R and its least significant bits to a (sub-)register M then we are in the same
context as the analysis conducted in Secs. 4.1 and 4.2. A first-order DPA attack
can be conducted on this register to reveal information about the sensitive data.
Taking advantage from our proposal, the memory access is made completely
secure under the assumption of Property 1.

5 Study in the Imperfect Model

It must first be remarked that the countermeasure proposed in the previous sec-
tions stays valid if A(X,Y) can be rewritten under the form P (X1⊕Y1, · · · , Xn⊕
Yn) with P being any polynomial defined over Fn

2 with real coefficients.
In this section we assume that the hardware has been protected under the

assumption that A satisfies Property 1, while the assumption is wrong. Namely,
A was assumed to be s.t. A(X,Y) = A(X⊕Y) whereas in reality, it is a polyno-
mial P (X1, · · · , Xn, Y1, . . . , Yn) that does not satisfy this property. In the follow-
ing, we study experimentally the amount of information that the pair (LR, LM)
defined in (3) leaks on (Z,Z ′) in this context where P is of (multivariate)
degree d.

We recall that a polynomial of degree d in R[X1, · · · , Xn, Y1, · · · , Yn] takes
the following form:

P (X1, · · · , Xn, Y1, · · · , Yn) =
∑

(u,v)∈F
n
2×F

n
2 ,

HW(u)+HW(v)≤d

a(u,v)X
u1
1 · · ·Xun

n Y v1
1 · · ·Y vn

n ,

166 H. Maghrebi et al.

where the a(u,v) are real coefficients. This leakage formulation is similar to that
of the high-order stochastic model [21]. For example, it is shown in [16, Eqn. (3)]
that P (X1, · · · , Xn, Y1, · · · , Yn) is equal to HW(X ⊕ Y) when the coefficients
a(u,v) satisfy:

aHD

(u,v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

+1 if HW(u) = 1 and v = 0,

+1 if u = 0 and HW(v) = 1,

−2 if HW(u) = 1 and v = u,

0 otherwise.

(6)

In the following experiment, we compute the mutual information between
(LR, LM) and (Z,Z ′) when d ≤ 2 or 3 and when the coefficients a(u,v) devi-
ate randomly from those of (6)2. More precisely, the coefficients a(u,v) are drawn
at random from this law:

a(u,v) ∼ aHD

(u,v) + U(
[
−deviation

2 ,+deviation
2

]
) ,

a(u,v) = 0 if HW(u, v) > d .
(7)

The randomness lays in the uniform law U(
[
−deviation

2 ,+deviation
2

]
), that we

parametrize by deviation ∈ {0.1, 0.2, 0.5, 1.0}. The low deviation values (such as
0.1 or 0.2) are realistic in hardware, as attested by [13]; in this paper, the leak-
age captured by a tiny coil has been shown to differ from the Hamming distance
model by 17%. We thus consider that a a deviation of ≈ [10, 20]% is representa-
tive of the hardware imperfections or on the model bias by integrated probes. A
deviation of 1 has the same order of magnitude as the actual coefficients in (6); it
indicates that the Hamming distance model is an incorrect hypothesis. Nonethe-
less, this case is very unlikely: indeed, the designer of the countermeasure can be
expected to know (or to have checked) that the circuit leaks approximately in
Hamming distance. Eventually, the deviation 0.5 represents an intermediate case:
the leakage model is in-between an approximate Hamming distance model and
a full random leakage model. The computed mutual information is I[O;Z,Z ′],
where O = P (Z⊕F (M), Z ′⊕F (M⊕α))+NR+P (M,M⊕α)+NM . Therefore O
is a RV, sum of a function of Z,Z ′,M and ofNR+NM ∼ N (μR+μM , σ2

R+σ2
M) =

N (μ, σ2), a normal law. The simulation parameters and the results are shown
in Appendix A.

It appears that the degree d has minor influence on the leakage. The major
factor is the deviation from the Hamming distance model. As expected, for low
deviations (much smaller than 1, e.g. 10% or 20%), the one-mask countermeasure
(abridged CM) of Fig. 2 definitely outperforms the CM of Fig. 1. However, in
the presence of deviations close to the unity, the state-of-the-art CM remains
the best. In this case, the proposed countermeasures still leaks less that an

2 This approach clearly differs from that put forward in [6, §5.2] for comparing uni-
variate side channel attacks (treated in the special d = 1 case, i.e. the linear case).
In the later paper, the coefficients are drawn at random in the [−1,+1] interval, ir-
respective of the sensitive data (i.e. the model is randomized, of expectation a “null
model”), whereas in our paper, the coefficients are considered as deviations from a
known non-trivial model.

A First-Order Leak-Free Masking Countermeasure 167

unprotected design. Nonetheless, we insist that this situation is unlikely, as the
deviations from the assumed Hamming distance model is of the order of one bit
flip. This means that the designer has a very poor knowledge of the technology
as he applies the countermeasure without checking the assumption (Property 1).

Eventually, it is noteworthy that state-of-the-art CM is even slightly improved
by the imperfection of the leakage function A. This reflects the fact that the
random variable HW(Z ⊕M1) + HW(M1) do carry a lot of information on Z,
and the noise help reduce the dependency (and thus favors the defender).

Also, both CM are equivalent for an intermediate deviation of 0.5. As this
value is already quite large, we can conclude that our countermeasure is relevant
even if the assumptions on the hardware leakage are extremely approximate.

6 Conclusion and Perspectives

We have presented a new masking scheme for hardware sbox implementations.
We have argued that our proposal is a leak-free countermeasure under some real-
istic assumptions about the device architecture. The solution has been evaluated
within an information-theoretic study, proving its security against 1O-SCA under
the Hamming distance assumption. When the leakage function deviates slightly
from this assumption (by a few tens of percent), our solution still achieves ex-
cellent results. However, if the model is very noisy (the model deviates from the
Hamming distance by ≈ 50%), then our countermeasure remains all the same
as good as state-of-the-art countermeasures.

It has been underlined (in the second construction) that some functions F have
a balanced derivative in more than one direction α = 0. As a perspective, we
mention that this feature can be taken advantage of to increase the security of the
countermeasure. Indeed, in the perfect model, the leakage remains null. However,
using many αs certainly help counter model imperfections, thus reducing the
leakage in this case.

Also, we underline that the proposed countermeasure can be adapted to
the hypothetical case where the perfect model is not the Hamming distance
A(X,Y) = HW(X ⊕ Y), but is asymmetrical in rising and falling edges (e.g.
A(X,Y) = HW(X · ¬Y)). Such leakages can be found in near-field electromag-
netic measurements (refer to: [13] or [20, Fig. 4, left]).

References

1. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM Side-Channel(s).
In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp.
29–45. Springer, Heidelberg (2003)

2. Akkar, M.L., Giraud, C.: An Implementation of DES and AES, Secure against
Some Attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS,
vol. 2162, pp. 309–318. Springer, Heidelberg (2001)

3. Brier, É., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

168 H. Maghrebi et al.

4. Carlet, C.: Vectorial Boolean Functions for Cryptography (June 1 2008); Crama,
Y., Hammer, P. (eds.): To appear as a chapter of the volume Boolean Methods
and Models. Published by Cambridge University Press

5. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards Sound Approaches to
Counteract Power-Analysis Attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS,
vol. 1666, pp. 398–540. Springer, Heidelberg (1999)

6. Doget, J., Prouff, E., Rivain, M., Standaert, F.X.: Univariate side channel attacks
and leakage modeling. J. Cryptographic Engineering 1(2), 123–144 (2011)

7. Gierlichs, B., Batina, L., Preneel, B., Verbauwhede, I.: Revisiting Higher-Order
DPA Attacks: Multivariate Mutual Information Analysis. In: Pieprzyk, J. (ed.)
CT-RSA 2010. LNCS, vol. 5985, pp. 221–234. Springer, Heidelberg (2010)

8. Goubin, L., Patarin, J.: DES and Differential Power Analysis. In: Koç, Ç.K., Paar,
C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172. Springer, Heidelberg (1999)

9. Kocher, P.C., Jaffe, J., Jun, B.: Timing Attacks on Implementations of Diffie-
Hellman, RSA, DSS, and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996.
LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996),
http://www.cryptography.com/timingattack/paper.html

10. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

11. Messerges, T.S.: Securing the AES Finalists Against Power Analysis Attacks. In:
Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 150–164. Springer, Heidelberg
(2001)

12. Peeters, É., Standaert, F.X., Donckers, N., Quisquater, J.J.: Improved Higher-
Order Side-Channel Attacks With FPGA Experiments. In: Rao, J.R., Sunar, B.
(eds.) CHES 2005. LNCS, vol. 3659, pp. 309–323. Springer, Heidelberg (2005)

13. Peeters, É., Standaert, F.X., Quisquater, J.J.: Power and electromagnetic anal-
ysis: Improved model, consequences and comparisons. Integration, The VLSI
Journal, special issue on Embedded Cryptographic Hardware 40, 52–60 (2007),
doi:10.1016/j.vlsi.2005.12.0 13

14. Prouff, E., Giraud, C., Aumônier, S.: Provably Secure S-Box Implementation Based
on Fourier Transform. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 216–230. Springer, Heidelberg (2006)

15. Prouff, E., Rivain, M.: A Generic Method for Secure SBox Implementation. In:
Kim, S., Yung, M., Lee, H.W. (eds.) WISA 2007. LNCS, vol. 4867, pp. 227–244.
Springer, Heidelberg (2008)

16. Prouff, E., Rivain, M., Bevan, R.: Statistical Analysis of Second Order Differential
Power Analysis. IEEE Trans. Computers 58(6), 799–811 (2009)

17. Rivain, M., Prouff, E.: Provably Secure Higher-Order Masking of AES. In:
Mangard, S., Standaert, F.X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427.
Springer, Heidelberg (2010)

18. Rudra, A., Dubey, P.K., Jutla, C.S., Kumar, V., Rao, J.R., Rohatgi, P.: Effi-
cient Rijndael Encryption Implementation with Composite Field Arithmetic. In:
Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 171–184.
Springer, Heidelberg (2001)

19. Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A Compact Rijndael Hardware
Architecture with S-Box Optimization. In: Boyd, C. (ed.) ASIACRYPT 2001.
LNCS, vol. 2248, pp. 239–254. Springer, Heidelberg (2001)

20. Sauvage, L., Guilley, S., Danger, J.L., Mathieu, Y., Nassar, M.: Successful At-
tack on an FPGA-based WDDL DES Cryptoprocessor Without Place and Route
Constraints. In: DATE, pp. 640–645. IEEE Computer Society, Nice (2009)

http://www.cryptography.com/timingattack/paper.html

A First-Order Leak-Free Masking Countermeasure 169

21. Schindler, W., Lemke, K., Paar, C.: A Stochastic Model for Differential Side Chan-
nel Cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659,
pp. 30–46. Springer, Heidelberg (2005)

22. Shah, S., Velegalati, R., Kaps, J.P., Hwang, D.: Investigation of DPA Resistance of
Block RAMs in Cryptographic Implementations on FPGAs. In: Prasanna, V.K.,
Becker, J., Cumplido, R. (eds.) ReConFig, pp. 274–279. IEEE Computer Society
(2010)

23. Standaert, F.X., Malkin, T., Yung, M.: A Unified Framework for the Analysis of
Side-Channel Key Recovery Attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

24. Standaert, F.X., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B., Medwed, M.,
Kasper, M., Mangard, S.: The World Is Not Enough: Another Look on Second-
Order DPA. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 112–129.
Springer, Heidelberg (2010),
http://www.dice.ucl.ac.be/~fstandae/PUBLIS/88.pdf

25. Standaert, F.X., Rouvroy, G., Quisquater, J.J.: FPGA Implementations of the DES
and Triple-DES Masked Against Power Analysis Attacks. In: Proceedings of FPL
2006. IEEE, Madrid (2006)

26. Trichina, E.: Combinational logic design for aes subbytes transformation on
masked data (2003), http://eprint.iacr.org/2003/236, not published elsewhere.
e.v.trichina@samsung.com 12368 (received November 11, 2003)

27. Veyrat-Charvillon, N., Standaert, F.X.: Mutual Information Analysis: How, When
and Why? In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 429–443.
Springer, Heidelberg (2009)

28. Waddle, J., Wagner, D.: Towards Efficient Second-Order Power Analysis. In: Joye,
M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 1–15. Springer,
Heidelberg (2004)

A Simulation Results in the Imperfect Model

We assume that F has been designed thanks to the first construction presented
in Sec. 4.1. Hence it is a function from Fn+1

2 into Fn
2 . The mask M and the

constant α are of dimension n+ 1, whereas Z is n-bit long.
The mutual information I[O +N ;Z,Z ′] is represented in Tab. 1 for:

– a Gaussian noise N of standard deviation σ varying in]0, 5],
– n = 3 bit (to speed up the computations),
– E = {0} × Fn

2 ⊂ Fn+1
2 and the constant α is equal to 1000 in binary, and

– F (x3x2x1x0) = 0 if x3 = 1 or x2x1x0 otherwise.

For each experiment just described, we also compute the mutual information
for the straightforward CM of the state-of-the-art (implementation of [25] rep-
resented in Fig. 1). We also give the mutual information of this CM if the model
is exactly the Hamming distance, and indicate the corresponding leakage with-
out any countermeasure. We recall that, still with a perfect model, the mutual
information for our countermeasure with (Z,Z ′) is null, whatever sigma.

For every d ∈ {2, 3} and deviation ∈ {0.1, 0.2, 0.5, 1.0}, the random number
generator is seeded the same. The noisy Hamming distance model is plotted
for ten sets of random coefficients a(u,v) defined in (7), and the average is
superimposed using a thick line.

http://www.dice.ucl.ac.be/~fstandae/PUBLIS/88.pdf
http://eprint.iacr.org/2003/236

170 H. Maghrebi et al.

Table 1. Leakage comparison of one state-of-the-art CM and our proposed CM in the
imperfect model

-18

-16

-14

-12

-10

-8

-6

-4

-2

 0

 2

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

lo
g 2

(m
ut

ua
l i

nf
or

m
at

io
n)

Noise standard deviation (σ)

n=3, model deviation=0.1 of order d≤2

No CM (unnoised HD)
1st-order CM (unnoised HD)

1st-order CM (noised HD)
Our CM, Eqn. (5) (noised HD)

-18

-16

-14

-12

-10

-8

-6

-4

-2

 0

 2

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

lo
g 2

(m
ut

ua
l i

nf
or

m
at

io
n)

Noise standard deviation (σ)

n=3, model deviation=0.1 of order d≤3

No CM (unnoised HD)
1st-order CM (unnoised HD)

1st-order CM (noised HD)
Our CM, Eqn. (5) (noised HD)

-16

-14

-12

-10

-8

-6

-4

-2

 0

 2

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

lo
g 2

(m
ut

ua
l i

nf
or

m
at

io
n)

Noise standard deviation (σ)

n=3, model deviation=0.2 of order d≤2

No CM (unnoised HD)
1st-order CM (unnoised HD)

1st-order CM (noised HD)
Our CM, Eqn. (5) (noised HD)

-16

-14

-12

-10

-8

-6

-4

-2

 0

 2

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

lo
g 2

(m
ut

ua
l i

nf
or

m
at

io
n)

Noise standard deviation (σ)

n=3, model deviation=0.2 of order d≤3

No CM (unnoised HD)
1st-order CM (unnoised HD)

1st-order CM (noised HD)
Our CM, Eqn. (5) (noised HD)

-14

-12

-10

-8

-6

-4

-2

 0

 2

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

lo
g 2

(m
ut

ua
l i

nf
or

m
at

io
n)

Noise standard deviation (σ)

n=3, model deviation=0.5 of order d≤2

No CM (unnoised HD)
1st-order CM (unnoised HD)

1st-order CM (noised HD)
Our CM, Eqn. (5) (noised HD)

-14

-12

-10

-8

-6

-4

-2

 0

 2

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

lo
g 2

(m
ut

ua
l i

nf
or

m
at

io
n)

Noise standard deviation (σ)

n=3, model deviation=0.5 of order d≤3

No CM (unnoised HD)
1st-order CM (unnoised HD)

1st-order CM (noised HD)
Our CM, Eqn. (5) (noised HD)

-12

-10

-8

-6

-4

-2

 0

 2

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

lo
g 2

(m
ut

ua
l i

nf
or

m
at

io
n)

Noise standard deviation (σ)

n=3, model deviation=1.0 of order d≤2

No CM (unnoised HD)
1st-order CM (unnoised HD)

1st-order CM (noised HD)
Our CM, Eqn. (5) (noised HD)

-12

-10

-8

-6

-4

-2

 0

 2

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

lo
g 2

(m
ut

ua
l i

nf
or

m
at

io
n)

Noise standard deviation (σ)

n=3, model deviation=1.0 of order d≤3

No CM (unnoised HD)
1st-order CM (unnoised HD)

1st-order CM (noised HD)
Our CM, Eqn. (5) (noised HD)

Practical Realisation and Elimination

of an ECC-Related Software Bug Attack

Billy B. Brumley1, Manuel Barbosa2, Dan Page3, and Frederik Vercauteren4

1 Department of Information and Computer Science,
Aalto University School of Science, P.O. Box 15400, FI-00076 Aalto, Finland

billy.brumley@aalto.fi
2 HASLab/INESC TEC

Universidade do Minho, Braga, Portugal
mbb@di.uminho.pt

3 Department of Computer Science, University of Bristol,
Merchant Venturers Building, Woodland Road, Bristol, BS8 1UB, UK

page@cs.bris.ac.uk
4 Department of Electrical Engineering, Katholieke Universiteit Leuven,

Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium
fvercaut@esat.kuleuven.ac.be

Abstract. We analyse and exploit implementation features in OpenSSL
version 0.9.8g which permit an attack against ECDH-based functional-
ity. The attack, although more general, can recover the entire (static)
private key from an associated SSL server via 633 adaptive queries when
the NIST curve P-256 is used. One can view it as a software-oriented ana-
logue of the bug attack concept due to Biham et al. and, consequently,
as the first bug attack to be successfully applied against a real-world sys-
tem. In addition to the attack and a posteriori countermeasures, we show
that formal verification, while rarely used at present, is a viable means of
detecting the features which the attack hinges on. Based on the security
implications of the attack and the extra justification posed by the possi-
bility of intentionally incorrect implementations in collaborative software
development, we conclude that applying and extending the coverage of
formal verification to augment existing test strategies for OpenSSL-like
software should be deemed a worthwhile, long-term challenge.

Keywords: Elliptic curve, OpenSSL, NIST, fault attack, bug attack.

1 Introduction

Concrete implementation of cryptographic primitives is becoming easier as a
result of more mature techniques and literature. Elliptic Curve Cryptography
(ECC) is a case in point: twenty years ago ECC was limited to experts, but
is now routinely taught in undergraduate engineering courses. However, such
implementation tasks are still hugely challenging. This is because as well as
functional correctness, the quality of an implementation is, in part, dictated by
efficiency (e.g., execution speed and memory footprint) and physical security.

O. Dunkelman (Ed.): CT-RSA 2012, LNCS 7178, pp. 171–186, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

172 B.B. Brumley et al.

For (at least) two reasons, the efficiency of cryptographic primitives is an
important issue within many applications. On one hand, many primitives rep-
resent an inherently expensive workload comprised of computationally-bound,
highly numeric kernels. On the other hand, said primitives are often required
in high-volume or high-throughput applications; examples include encryption of
VPN traffic and full-disk encryption, both of which represent vital components
in e-business. Both reasons are amplified because the primitive in question will
often represent pure overhead at the application level. That is, cryptography
is often an implicit enabling technology rather than an explicit feature: there
is evidence to show it is common (and perhaps sane [11]) for users to disable
security features in an application if it improves performance or responsiveness.

To summarise, some engineer must find an efficient way to map a complex,
high-level specification of some primitive onto the characteristics of a demanding
target platform, potentially using low-level programming languages and tools.
Both the semantic gap between specification and implementation, and the skills
gap between cryptography and engineering can be problematic. Two examples
of the problems encountered, both relating to components in modern e-business
work-flows, are as follows:

1. Nguyen [14] described an attack on GPG version 1.2.3, an open-source im-
plementation of the OpenPGP standard. In short, the size of some security-
critical parameters had been reduced; this meant computation was faster,
but that the system as a whole was vulnerable to attack.

2. In part because of such wide-spread use, the open-source OpenSSL library
has been subject to numerous attacks. Examples include issues relating to
random number generation1, and badly formulated control-flow logic allow-
ing malformed signatures to be reported as valid2.

Although other factors clearly contribute, one could argue that overly zealous
optimisation is a central theme in both cases. Focusing on the provision of ECC
in OpenSSL version 0.9.8g, this paper presents further evidence along similar
lines. We stress that our aim is not to implicitly or explicitly devalue OpenSSL:
one can, and should, read the paper more as a case study on the difficulty of
cryptographic software implementation.

At the crux is an arithmetic bug, initially reported on the openssl-devmail-
ing list [16] in 2007 and later traced to the modular arithmetic underlying im-
plementation of specific NIST elliptic curves; in short, the bug causes modular
multiplications to (transiently) produce incorrect output. To the best of our
knowledge, no cryptanalytic exploitation of this bug was previously known. Per-
haps for this reason, it has not been considered a security risk, but rather a minor
issue of functionality. Indeed, although the bug has been resolved in OpenSSL
versions 0.9.8h and later it persists3; for example versions of the library are de-
ployed in (at least) two major Linux distributions, namely Debian (as late as 5.0
“Lenny”) and Ubuntu (as late as 9.10 “Karmic”).

1 http://www.openssl.org/news/secadv_20071129.txt
2 http://www.openssl.org/news/secadv_20090107.txt
3 http://marc.info/?t=131401133400002

http://www.openssl.org/news/secadv_20071129.txt
http://www.openssl.org/news/secadv_20090107.txt
http://marc.info/?t=131401133400002

An ECC-Related Software Bug Attack 173

The main contribution of this paper is a concrete attack: we show how the bug
can be exploited to mount a full key recovery attack against implementations
of Elliptic Curve Diffie-Hellman (ECDH) key agreement. The nature of the bug
means the attack represents a software analogue (or a first practical realisation)
of the bug attack concept [4] due to Biham et. al. Our attack works whenever the
ECDH public key is static, and therefore reused across several key agreement
protocol executions. In particular, any higher-level application relying on the
SSL/TLS implementation of OpenSSL in the following two scenarios could be
vulnerable:

1. Use of static ECDH-based cipher suites, (e.g., ECDH-ECDSA and ECDH-
RSA). In such cipher suites, the TLS server holds a public key certificate
that directly authenticates the ECDH public key; this is shared across an
arbitrary number of key exchanges.

2. Use of ephemeral ECDH-based cipher suites (e.g., ECDHE-ECDSA and
ECDHE-RSA) in combination with the OpenSSL ephemeral-static ECDH
optimisation. In such cipher suites, and according to the TLS specification,
a fresh ECDH public key should be generated for each key exchange. How-
ever OpenSSL allows one-time generation of said key when the TLS server is
initialised, sharing it across an arbitrary number of key exchanges thereafter.

As a concrete example, we demonstrate the attack on stunnel version 4.42 (when
linked against OpenSSL version 0.9.8g), an SSL-based tunnelling proxy.

As well as discussing potential countermeasures for vulnerable versions of
the library, we also explore an alternative, longer-term solution. Specifically, we
investigate use of formal verification as a means to prevent similar bugs rather
than just detecting them a posteriori. This approach is particularly relevant
in addressing the possibility of intentionally incorrect implementations, which
could constitute a serious risk in software components developed using an open,
collaborative approach. Our conclusion is that although such techniques can
already play an important role, a step-change in attitude toward their use is
required as software complexity increases; despite the effort required to adopt a
development strategy that supports formal verification, this seems an important
area for future work in the context of OpenSSL-like software.

From here on we use OpenSSL as a synonym for OpenSSL version 0.9.8g
unless otherwise stated. In Section 2 we present a detailed analysis of features
in OpenSSL that permit our attack to work, before explaining the attack itself,
and possible countermeasures, in Section 3. In Section 4 we discuss approaches
to formal verification that could help prevent similar defects in OpenSSL, and
therefore similar attacks, and offer some concluding remarks in Section 5.

2 Background and Analysis

The aim of this section is to relate high-level, standardised ECC with an analysis
of associated low-level implementation features in OpenSSL which support our
attack.

174 B.B. Brumley et al.

2.1 OpenSSL Implementation of NIST Standard Curves

For a GM-prime p, multi-precision integer multiplication modulo p can be par-
ticularly efficient. OpenSSL uses this fact to support ECC implementations over
the NIST standard curves P-192, P-224, P-256, P-384 and P-521. Using P-256
as an example, we have

p = 2256 − 2224 + 2192 + 296 − 1

and, from here on, we refer to the resulting elliptic curve as E.
Assuming a processor with a 32-bit word size, imagine that given two 8-

word operands 0 ≤ x, y < p, the goal is to compute x · y (mod p). Solinas
demonstrates [17, Example 3, Page 20] that given z = x · y, the 16-word integer
product of x and y, one can compute z (mod p) by first forming nine 8-word
intermediate values

S0 = (z7, z6, z5, z4, z3, z2, z1, z0)
S1 = (z15, z14, z13, z12, z11, 0, 0, 0)
S2 = (0, z15, z14, z13, z12, 0, 0, 0)
S3 = (z15, z14, 0, 0, 0, z10, z9, z8)
S4 = (z8, z13, z15, z14, z13, z11, z10, z9)
S5 = (z10, z8, 0, 0, 0, z13, z12, z11)
S6 = (z11, z9, 0, 0, z15, z14, z13, z12)
S7 = (z12, 0, z10, z9, z8, z15, z14, z13)
S8 = (z13, 0, z11, z10, z9, 0, z15, z14)

and then computing S (mod p) with

S = S0 + 2S1 + 2S2 + S3 + S4 − S5 − S6 − S7 − S8 . (1)

Note that |S| cannot be much larger than p, meaning a small number of extra
modular additions or subtractions, depending on the sign of S, would give the
correct result.

OpenSSL adopts a similar approach for P-192, P-224 and P-521 but deviates
for P-256 and P-384: we again use P-256 as an example, but note that the same
problem exists for P-384. It proceeds using the following faulty algorithm: first it
computes t = S mod 2256 and the correct carry c (which is positive or negative)
such that

S = t+ c · 2256.

Note that per the comment above, the carry has a small magnitude; by inspection
it is loosely bounded by −4 ≤ c ≤ 6, which is used from here on wlog. The result
is computed, potentially incorrectly, via two steps:

1. set r′ = (t− c · p) mod 2256, then
2. if r′ ≥ p, r′ = r′ − p.

The concrete implementation of these steps uses a fixed look-up table T [i] = i ·p
mod 2256 for small i, by computing r′ = t−sign(c)·T [|c|] mod 2256. The modular

An ECC-Related Software Bug Attack 175

reduction in this case is implicit, realised by truncating the result to 8 words.
The intention is to eliminate any possibility of overflow; the assumption is that
c is the exact quotient of division of S by p.

The reasoning behind the faulty algorithm is that if one writes S = t+c ·2256,
then the exact quotient q = S ÷ p is given by
1. if c ≥ 0, then q = c or q = c+ 1,
2. if c < 0, then q = c or q = c− 1
since c is small. Indeed, write Δ = 2256−p, then after subtracting c ·p we obtain

S − c · p = t+ c · 2256 − c · p = t+ c ·Δ .

Since −4 ≤ c ≤ 6 and Δ < 2224, this shows the result is bounded by −p <
t + c · Δ < 2p. The faulty algorithm therefore computes an incorrect result in
the following cases:

– If c ≥ 0, the algorithm fails when t + c · Δ ≥ 2256 since it computes r′

only modulo 2256 and not as a full integer (for which the resulting algorithm
would have been correct). Note that in this case the correct result would be
r′ +Δ and that modulo p, the correct result thus is r′ + 2256 (mod p).

– If c < 0, the algorithm fails when t + c · Δ < 0. The correct result then
depends on whether (t+ c ·Δ) mod 2256 ≥ p or not: in the former case, the
correct result is r′−Δ, whereas in the latter case, the correct result is given
by r′ + 2256 − 2Δ. Note that although there are two different subcases for
c < 0, the errors −Δ and 2256 − 2Δ are congruent modulo p, i.e. modulo p,
the correct result is given by r′ − 2256 (mod p).

Note that Ciet and Joye [5, Section 3.2] consider the case of faults in the under-
lying field; the fault (resp. bug) here is certainly related, but occurs as a result
of erroneous computation rather than corrupted parameters.

The resulting bug is difficult to detect using the (random) test vector approach
employed by OpenSSL: it simply manifests itself too rarely. An upper bound
for the probability of the bug being triggered can be obtained by ignoring the
probabilities of certain carries occurring and analysing the case t+6 ·Δ ≥ 2256:
if t was chosen uniformly over the interval [0, 2256[, then this case occurs with
probability less than 2−29, so OpenSSL computes the result incorrectly with
probability less than 10 · 2−29.

To deliberately trigger the bug, we empirically arrived at the following strate-
gies (after inspection of partial products within the integer product of
x and y):
– For modular multiplication, selecting x, y as follows should induce an incor-

rect result for any random 0 ≤ Rx, Ry < 231:

x = (232 − 1) · 2224 + 3 · 2128 + Rx

y = (232 − 1) · 2224 + 1 · 296 + Ry

– For modular squaring, selecting x = (232 − 1) · 2224 + 1 · 2129 + Rx, should
induce an incorrect result for any random 0 ≤ Rx < 231.

176 B.B. Brumley et al.

C S

kiC
$← {1, 2, . . . , n− 1}
Qi

C ← [kiC]G

kiS
$← {1, 2, . . . , n− 1}
Qi

S ← [kiS]G

Ri
C ← [kiC]Q

i
S = [kiC · kiS]G Ri

S ← [kiS]Q
i
C = [kiS · kiC]G

Qi
C

Qi
S

Fig. 1. A description of ECDH key exchange

2.2 ECC Cipher Suites for TLS

Modern versions4 of the Transport Layer Security (TLS) standard provide a
number of different cipher suites that rely on ECC for key exchange. We focus
on Elliptic Curve Diffie-Hellman (ECDH) and Ephemeral Elliptic Curve Diffie-
Hellman (ECDHE) based cipher suites5. To be precise, in these cipher suites
the key exchange protocol is conducted to establish a secret key for a session
i between a client C and a server S; it proceeds in three stages outlined in
Figure 1, with client and server assumed to share D = {p,A,B, xG, yG, n, h}, a
set of domain parameters. After the protocol terminates, Ri

S = Ri
C represents

the shared key.
Figure 2 illustrates the TLS handshake at a higher level of abstraction. We

now describe how said handshake proceeds, detailing how the ECDH protocol
messages formalised above are embedded in the communication. While our at-
tacks are equally applicable in the case of client authentication, we omit the
details for this case. The ClientHello message conveys the protocol version,
supported cipher and compression methods, and a nonce to ensure freshness.
The ServerHello message is analogous, but selects parameters from the meth-
ods proposed by the client (contingent on the server supporting them). The
content of the Certificate message varies depending on the selected cipher
suite:

– In ECDH-ECDSA, the Certificatemessage contains a static ECDH public
key authenticated by a public key certificate signed with ECDSA; ECDH-
RSA is analogous, but the public-key certificate is signed using an RSA
signature. The static ECDH public key corresponds to the value Qi

S above,
and the server will reuse this value for multiple key exchanges with an arbi-
trary number of clients. For this reason, the ServerKeyExchangemessage is
omitted in ECDH suites.

4 http://tools.ietf.org/html/rfc5246
5 http://tools.ietf.org/html/rfc4492

http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc4492

An ECC-Related Software Bug Attack 177

C S

Start handshake Start handshake

Activate cipher suite

End handshake

Activate cipher suite

End handshake

ClientHello

ServerHello
Certificate

ServerKeyExchange†
ServerHelloDone

ClientKeyExchange
ChangeCipherSpec

Finished

ChangeCipherSpec
Finished

ApplicationData

Fig. 2. Message flow in a TLS handshake with ECDH cipher suites; messages relating
to client authentication are omitted for clarity, and those marked with † are only sent
under specific circumstances

– In ECDHE-ECDSA, the Certificate message contains an ECDSA veri-
fication key, which is authenticated by a certificate signed with the same
algorithm; ECDHE-RSA is analogous but an RSA signature verification
key is sent, and the public-key certificate is signed using an RSA signa-
ture. The server also sends message ServerKeyExchange, containing both
a fresh ephemeral ECDHE public key (i.e., Qi

S) and a digital signature au-
thenticating this and other handshake parameters, including the exchanged
nonces. Said signature is produced with either the ECDSA or RSA signing
key matching to the verification key sent in the Certificate message.

The ServerHelloDone message marks the end of this stage of the protocol; the
client then sends its ephemeral ECDHE key in the ClientKeyExchangemessage,
which always includes a fresh ephemeral Qi

C . Finally, the negotiated symmetric
cipher suite is activated via the ChangeCipherSpecmessage. A session key for the
cipher suite is derived from Ri

S = Ri
C and the exchanged nonces. The Finished

messages provide key confirmation for both parties, notably occurring client-first,
and depend on all previous messages in the protocol execution.

2.3 OpenSSL Implementation of the ECC Cipher Suites

The ECDH implementation in OpenSSL is seemingly straightforward, and follows
the TLS specification. However, the ECDHE implementation offers two distinct
options for server applications. The first follows the specification and generates
a new ephemeral ECDH key pair for every protocol execution. Deviating from

178 B.B. Brumley et al.

the specification, the second features an optimisation termed ephemeral-static
ECDH6.

When activated, the optimisation means a single ECDH key pair is gener-
ated during initialisation of the OpenSSL context within an application. This
key pair is reused for all protocol executions thereafter; with ephemeral-static
ECDH, OpenSSL has the server use a static key (i.e., a fixed kSi and hence QS

i for
all i) for each OpenSSL context. Put another way, the key pair is ephemeral for
each application instance and not (necessarily) per handshake instance. While
this preserves forward secrecy between application instances, it violates for-
ward secrecy within a single application instance when performing more than
a single protocol execution. Interestingly, the default behaviour is the latter: to
“opt out” and disable the optimisation, the application must explicitly use the
SSL_OP_SINGLE_ECDH_USE option during initialisation of the context.

3 An Attack on ECDH in OpenSSL

Implementing Scalar Multiplication. For scalar multiplication on E(Fp),
OpenSSL uses a textbook double-and-add algorithm along with the modified
width-w NAF representation of k. For P-256 OpenSSL sets w = 4, i.e., each non-
zero digit from digit set D = {0,±1,±3,±5,±7} is followed by at least three
zero digits. Modified NAF is otherwise identical to traditional NAF but allows
the most-significant digit to violate the non-adjacency property, if doing so does
not increase the weight but reduces the length. This slight distinction between
the two affects neither the derivation of our attack nor the implementation of it:
henceforth we use NAF synonymously with traditional NAF.

Attack Goals and Limitations. The goal of the attacker is to recover the
fixed kS in the server-side computation of Ri

S = [kS]Q
i
C . The algorithm we pro-

pose and implement recovers the digits of kS by detecting faults in the server-side
computation of Ri

S . The ability of the attacker to observe these faults heavily
depends on the protocol and/or cryptosystem under attack. For example, when
kS is fixed but Qi

C is not, it is uncommon for a protocol to directly reveal Ri
S to

another participant. Inspecting TLS, one way the attacker can detect faults is by
attempting to complete the handshake. If Ri

S is fault-free (denoted Ri
S ∈ E) then

the computed session key is the same for both the client and server. Consider
the phase of the handshake when the client sends ChangeCipherSpec, signalling
that it has activated the newly negotiated session cipher suite, and transmits the
encrypted Finished handshake message for key confirmation. Then, if the server
successfully decrypts said message, the handshake continues, and ultimately suc-
ceeds. On the other hand, if Ri

S is faulty (denoted Ri
S ∈ E) then the session keys

differ, the server will not obtain the expected key confirmation message, and the
handshake ultimately fails. The practical consequence is that the attacker can-
not arbitrarily choose each Qi

C in the protocol, rather he must know the discrete
logarithm of said point in order to correctly calculate the negotiated session key.

6 http://tools.ietf.org/html/rfc5753

http://tools.ietf.org/html/rfc5753

An ECC-Related Software Bug Attack 179

The Attack Algorithm. Having established a method to detect the occurrence
of faults, the algorithm proceeds in an exhaustive depth-first search for NAF(kS)
starting from the most-significant digit, trimming limbs and backtracking by it-
eratively observing handshake results. At each node in the search, the attacker
submits a different carefully chosen point, termed a distinguisher point, to de-
termine if the next unknown digit takes a specific value at the given iteration,
tracing the execution path of the server-side scalar multiplication. We define a
distinguisher point for an integer prefix a and target digit b ∈ D \ {0} to be a
point Da,b = [l]G ∈ E such that [a ‖ b ‖ d]Da,b ∈ E and [a ‖ c ‖ d]Da,b ∈ E for
all c ∈ D\{0, b} both hold. Here, l is known, a is the known portion of NAF(kS),
and d is any sufficiently long random padding string that completes the resulting
concatenation to a valid NAF string. In practice, testing a single distinguisher
point requires varying d over many values to ensure the computation reaches a
sufficient number of possible subsequent algorithm states: this acts to deter false
positives.

We step through the first few iterations to demonstrate the algorithm. For
clarity, we use subscripts on variables a and D to identify the iteration, i.e., the
digit index in the NAF representation from most- to least-significant, we are
referring to. For i = 1, a1 is the empty string and D1 = {1, 3, 5, 7}. The attacker
finds a distinguisher point D∅,b for each b ∈ D1 \ {1} and uses these three points
in attempted handshakes to the server7. Handshake failure reveals the correct
digit, and allows us to set a for the next iteration as a2 = b; if all handshakes
succeed, the attacker deduces a2 = 1 for the next iteration. Enforcing NAF rules,
for i = 5 we have a5 = a2 ‖ 000 and D5 = {0,±1,±3,±5,±7}. The attacker
then finds Da5,b for each b ∈ D5 \ {0} and uses these eight points in attempted
handshakes to the server. Handshake failure reveals the correct a6 = a5 ‖ b and
if all handshakes succeed the attacker deduces a6 = a5 ‖ 0. The attack continues
in this manner to recover all subsequent digits. On average, our attack takes
4 handshake attempts to recover subsequent non-zero digits, and 8 handshake
attempts to detect zero digits (note that we do not explicitly check for zeros
which are implied by the NAF representation).

Relation to the Bug Attacks of Biham et al. This algorithm relates to that
which Biham et al. used to mount a bug attack against Pohlig-Hellman in the
F∗
p setting [4, Section 4.1.1]. The authors consider recovering the binary digits

of the exponent from a left-to-right binary modular exponentiation algorithm.
It does this by finding input X ∈ F∗

p such that (X2)2 fails yet (X2)X does
not, i.e., it uses the former to query explicitly for any zero digits and implicitly
obtain any non-zero digits. Assume the attacker knows l such that X = gl (this
is not necessary to carry out their attacks, but is necessary when adapting their
strategy to attack TLS). The most-significant digit of the victim’s binary string is
a non-zero digit by definition. The attacker queries the next digit by submitting
X . Assume wlog. that it fails: the attacker now knows the two most-significant

7 When i = 1 finding a distinguisher point D∅,1 is less practical as it can cause the
table of pre-computed points to be erroneously populated, so in this case querying
for that particular digit value occurs implicitly.

180 B.B. Brumley et al.

digits are 1 and 0. To obtain the (or analogy of a) distinguisher point for the
next iteration, the attacker simply computes X1/2 and, knowing the discrete
logarithm of X to the base g, can easily derive the logarithm of this group
element. This procedure essentially cancels out the effect of the known digits,
forcing the accumulator to take value X at the intended iteration.

In the discussion that follows we will see that, in our attack, we search for
all distinguishing points independently. Indeed, although it is tempting to use
existing distinguisher points to derive subsequent points, which would reduce
the complexity of our attack, this approach does not seem to apply in our sce-
nario. The distinguishing point derivation technique by Biham et al. works for
F∗
p (and even E(Fp) when using affine coordinates) because there is a unique

representation for group elements in both cases (i.e., elements of Fp are stored
as their smallest non-negative residue). There are a number of reasons why this
strategy is ineffective for the OpenSSL implementation of ECC, the most promi-
nent being the use of projective coordinates: group element representations are
not unique, as the implementation computes in an equivalence class. As a result,
the attacker cannot force the accumulator to the desired value since it undergoes
projective point doublings. To summarise, there is no obvious way to cancel out
the effect of the known digits. In any case, we will see in the following that this
does not impact on the practicality of our attack in a significant way.

Finding Distinguisher Points. Lacking an analytical method to derive dis-
tinguisher points, our implementation of the attack resorts to random search.
This is done by choosing l at random and testing whether Da,b satisfies the
properties of a distinguisher point and, as previously mentioned, varying d over
a reasonable amount of random values. The practicality of carrying out the at-
tack thus hinges (in part) on the effort required to find said points, i.e., the
average number of l values to test. Figure 3 (left) depicts our observed effort
in two different parts of the attack. The solid line represents effort required at
the beginning of the attack with less than 12 digits recovered. The dashed line
represents effort required towards the end of the attack with roughly 224 digits
recovered. This empirical data suggests not only that the computational effort
to find a specific distinguisher point is rather modest, but that said effort does
not significantly depend on the amount of known key digits. That is, as the
attacker recovers successive digits, the effort to find new distinguisher points
remains fairly constant. It is worth mentioning that the search scales perfectly
with the number of computing nodes.

Attack Analysis and Results. The practicality of the attack additionally
hinges on the number of required distinguisher points, i.e., the average number
of attempted handshakes to recover the entire key. Our theoretical analysis of the
expected number of queries, based on a rough approximation to the distribution
of digits in the NAF representation of a random 256-bit secret exponent, points
to an approximate value of 635 handshakes, suggesting that said value is similarly
modest. We also measured this value empirically and obtained a consistent result,
as illustrated in Figure 3 (right).

An ECC-Related Software Bug Attack 181

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 18 20 22 24 26 28 30

R
el

at
iv

e
fr

eq
ue

nc
y

Steps (base 2 log)

less than 12 known digits
appx. 224 known digits

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 400 500 600 700 800 900

R
el

at
iv

e
fr

eq
ue

nc
y

Queries

Fig. 3. Left: distribution of required search steps to find distinguisher points (lg-linear).
The solid line represents effort towards the beginning of the attack (mean 26.5 s.d. 2.0)
and the dashed line towards the end (mean 26.9 s.d. 1.9). Right: distribution of required
queries to the server, or distinguisher points, for the full attack (mean 633.2 s.d. 57.7).

The proof-of-concept source code for our attack implementation includes dis-
tinguisher points for all NAF strings up to length 12. As it stands this immedi-
ately removes roughly 12 bits of entropy from the private key, and is of course
easily extendible. The code includes instructions for running the attack in two
different use cases:

1. The stunnel application provides a flexible SSL proxy for any application
that does not natively support SSL; it links against OpenSSL to provide the
SSL functionality. When stunnel is configured to support ECDH suites with
a static ECDH key, our attack implementation facilitates recovery of said
private key. Once carried out, it allows the attacker to decrypt all previous
SSL sessions and to impersonate the server indefinitely.

2. The s server application within OpenSSL is a generic SSL server. This ap-
plication, and those similar to it supporting ECDHE suites, are vulnerable
since they feature the ephemeral-static ECDH optimisation. The attack im-
plementation facilitates recovery of the application instance’s ECDH private
key. Once carried out, it allows the attacker to decrypt all previous SSL ses-
sions from the application instance and to impersonate the server until the
application restarts.

Algebraic and Algorithmic Countermeasures. Coron outlines three meth-
ods to thwart DPA attacks [7, Section 5]. In general, they seek to counteract the
deterministic nature of double-and-add style scalar multiplication routines, and
are therefore quite effective against the bug attack presented above.

Scalar blinding, i.e., [k]P = [k + rn]P for (small) random value r, effectively
randomises the execution path of the scalar multiplication algorithm. This is not
“free” however: the performance overhead (and security) is proportional to the
size of the random multiplier. Point blinding, i.e., [k]P = [k](P + R) − S, with
randomly chosen R ∈ E and S = [k]R (updating both R = [r]R and S = [r]S
for small, random r periodically), is equally effective. However, this also entails

182 B.B. Brumley et al.

some performance overhead and is slightly more intrusive to integrate. Lastly,
coordinate blinding, i.e., multiplying the projective coordinates of the accumu-
lator by a random element of the finite field in such a way that preserves the
equivalence class, effectively randomises the states of the scalar multiplication
algorithm. In this case, said blinding would only need to occur at the beginning
of the algorithm and hence does not entail anywhere near as significant a per-
formance overhead. Our implementation as a patch to the OpenSSL source code
is available from the openssl-dev mailinglist8.

Algorithmic countermeasures seem ineffective against the attack if they are
deterministic. The Montgomery ladder [13, Section 10.3.1], for example, can
resist many forms of side-channel attack due to the regular nature of operations
performed; it cannot resist a varient of the attack in Section 3 however, since
one can still select distinguisher points that target the control-flow and hence
(iteratively) recover the scalar. See the full version of this paper for a more
detailed discussion.

4 Approaches to Formal Verification

In this section we investigate whether it is realistic to use current formal verifi-
cation technology to prevent similar bug attacks in open-source projects such as
OpenSSL. We focus our analysis in two complementary aspects of this problem:
first the design of efficient algorithms for carrying out the necessary numeric
computations, and second checking that these algorithms are correctly imple-
mented in machine code. The concrete arithmetic bug that we explore in this
paper serves as a perfect illustration of why these two aspects should be consid-
ered separately.

A high-level specification of the procedure for modular reduction that was
found to be incorrect is described in Section 2.1. Producing a concrete implemen-
tation of this procedure implies a need to refine it into a lower-level specification;
the particular refinement we are analysing can be described as follows:

1. Pre-compute a table T , where the i-th element T [i] = i · p (for small i).
2. To reduce the integer product z = x · y modulo p, first construct the inter-

mediate values S0, S1, . . . , S8 based on the representation of z.
3. Write the integer sum S = S0 + 2S1 +2S2 + S3 + S4 − S5 − S6 − S7 − S8 as

S = t+ 2256 · c.
4. Return the result r′ = t− sign(c) · T [|c|] (mod 2256).

This highlights a subtle point: rather than a programming error, the bug is
more accurately characterised as a design error. That is, the incorrectly designed
refinement is correctly implemented in OpenSSL.

We next discuss how one can formally verify the design of such refinements
using existing technology. We discuss the viability of fully verifying implemen-
tation correctness in the full version of this paper.

8 http://marc.info/?l=openssl-dev&m=131194808413635

http://marc.info/?l=openssl-dev&m=131194808413635

An ECC-Related Software Bug Attack 183

The first question we consider is whether it is feasible to verify that a par-
ticular refinement is correct wrt. the associated high-level specification. In order
to illustrate the techniques that can be employed at this level, we present two
examples inspired in the bug described in the previous sections; each represents
a refinement (invalid and valid respectively) along the lines above.

We have used the CAO domain specific language for cryptography [3] and
the CAOVerif deductive verification tool [19]. The CAO language is syntactically
close to C, but is equipped with type system (including, in particular, multi-
precision integers) that make it straightforward to express mathematically-rich
algorithms. The CAOVerif tool 9 takes an annotated version of the program one
wishes to prove correct as input (the specification of correctness is included in the
annotations), and generates a set of proof obligations that need to be validated
as output. If one is able to validate all the proof obligations, this implies the
program meets the specification. The proof obligations can be discharged by
automatic provers such as Simplify [8] or Alt-Ergo [6] or, if these fail, one can
use an interactive theorem prover such as Coq [18]. The verification condition
generation procedure is based on Hoare logic [12], and uses the Jessie/Frama-C [9]
and Why [10] platforms as a back-end.

Failed Proof for an Incorrect Refinement. Proving that the refinement
used by OpenSSL is functionally equivalent to the original specification essen-
tially reduces to proving that steps 1, 3 and 4 compute the same result as Equa-
tion 1. To illustrate how the proof proceeds we implemented these steps in CAO,
annotating the result using the CAO Specification Language [2] (closely inspired
by the ANSI C Specification Language) to indicate the proof goal. The most rel-
evant fragment is presented below, where Prime and Power2 are global variables
holding the values of p and 2256, respectively:

1 typedef modPower2 := mod[2**256];
2
3 /*@ requires ((0 <= sum) && (sum <= 7*(Power2 -1))
4 && (Prime == 2**256 - 2**224 + 2**192 + 2**96 - 1)
5 && (Power2 == 2**256))
6 ensures ((0 <= result) && (result < Prime)
7 && (exists d : int; result + d*Prime == sum)) */
8 def modPrime (sum : int) : int {
9 def c,res : int;

10 c := sum / Power2;
11 /*@ assert c >= 0 && c <= 6 */
12 /*@ assert 0 <= (sum - c*Prime) */
13 /*@ assert (sum - c*Prime) < Power2 */
14 res := (int)((modPower2)sum - (modPower2)(c*Prime));
15 if (res >= Prime) {
16 res := res - Prime;
17 }
18 return res;
19 }

Ignoring the embedded annotations for the moment, modPrime takes the sum-
mation sum as input (which for simplicity and wlog. we assume to be positive),

9 A distribution of the CAOVerif tool and source code for the examples in this paper
are available from http://crypto.di.uminho.pt/CACE/

http://crypto.di.uminho.pt/CACE/

184 B.B. Brumley et al.

and computes a (possibly incorrect) output of sum modulo Prime. This compu-
tation is performed in three steps that mimic the OpenSSL implementation: 1) it
calculates the (computationally inexpensive) division by Power2, 2) it uses the
result c to subtract a multiple of Prime from the input (this operation is car-
ried out efficiently modulo Power2 by casting the values to an appropriate data
type), and 3) the result is placed in the correct range by applying a conditional
subtraction.

The annotations in the code can now be described. The specification of
modPrime is a contract including a precondition requires and a post-condition
ensures. It states that provided sum is in the correct range, i.e., 0 ≤ sum ≤
7·(Power2−1), and that the output meets the mathematical definition of the least
residue of sum modulo Prime, i.e., (0 ≤ res < Prime)∧ (∃d st. res+ d · Prime =
sum). Inside the function, a series of assertions guide the proof tool toward es-
tablishing intermediate results towards an attempted proof. For example, one
is able to establish the correct range of c after the division. The proof fails,
however, when one tries to establish that performing the subsequent calculation
modulo Power2 will produce a result that is still congruent with sum modulo
Prime. In particular, one will not be able to prove (if that was the initial intu-
ition) that sum − c · Prime < Power2 which would be sufficient to ensure that
the calculations could be performed modulo Power2.

Robust Proof for a Correct Refinement. Consider the following alternative
refinement to that presented above.

1 /*@ requires ((0 <= sum) && (sum <= 7*(Power2 -1))
2 && (Prime == 2**256 - 2**224 + 2**192 + 2**96 - 1)
3 && (Power2 == 2**256))
4 ensures ((0 <= result) && (result < Prime)
5 && (exists d : int; result + d*Prime == sum)) */
6 def modPrime (sum : int) : int {
7 def res : int := sum;
8 /*@ ghost def t : int :=0; */
9 /*@ assert res + t*Prime == sum */

10 /*@ invariant (res >=0) && (res == sum + t*Prime) */
11 while (res >=Prime) {
12 /*@ ghost t:=t -1; */
13 res := res - Prime;
14 }
15 /*@ assert ((0 <= res) && (res < Prime)
16 && (res + (-t)* Prime == sum)) */
17 return res;
18 }

This implements the “natural” refinement: it simply subtracts the Prime from
the input until the result is in the appropriate range. In order to complete the
proof, one needs to include a loop invariant that keeps track of how many times
Prime is subtracted; to achieve this, we use a “ghost” variable t that is only visi-
ble to the verification tool. The annotated result can be fed to the CAOVerif tool,
which will automatically check that the program indeed meets the specification
(noting that this automation relies partly on the assertions included).

An ECC-Related Software Bug Attack 185

5 Conclusions

This paper presents a concrete attack against ECDH-based functionality sup-
ported by OpenSSL version 0.9.8g. The attack works whenever the ECDH public
key is static: this may occur either explicitly as a result of the selected cipher
suite, or (partly) implicitly as a result of the (non-standard) ephemeral-static
optimisation supported by OpenSSL. It is worth noting that we also considered
exploiting the bug to mount invalid curve attacks [1]: while this allowed us to by-
pass OpenSSL point validation routines, it did not lead to a practical attack due
largely to the nature of the bug severely limiting the number of invalid curves.

The arithmetic bug has been resolved in OpenSSL versions 0.9.8h and later. As
a result, it is tempting to conclude that the attack does not represent a serious
threat. However, vulnerable versions of the library are deployed in (at least)
two major Linux distributions, namely Debian (as late as 5.0 “Lenny”) and for
Ubuntu (as late as 9.10 “Karmic”). Although they selectively apply patches to
the default installation, the arithmetic bug persists in both. That is, although
a patch resolving the bug has been available since 2008, it has yet to permeate
existing installations. This represents a concrete example of the premise that
patching is no panacea for similar problems.

Whether OpenSSL should prevent optimisations like ephemeral-static being
included or invoked is perhaps a more philosophical question aligned to a bigger
picture. For example, problems relating to IPsec support for encryption-only
modes of the Encapsulating Security Payload (ESP) protocol seems conceptually
similar; a comprehensive overview and resulting attack is given by Paterson and
Yau [15]. One can conjecture that the motivation for encryption-only ESP, like
ephemeral-static ECDH, is efficiency. Given that provision of a more efficient,
less secure option will inevitably lead to someone using it, our work lends weight
to the argument that a better approach may be to permit only secure, albeit less
efficient options.

While (non-)support for various options in OpenSSL is subjective in part,
the correctness of what is supported is less debatable. As such, detecting bugs
in a more rigorous manner represents a difficult and extremely resource- and
time-consuming task if undertaken over the entire implementation. OpenSSL
clearly differs from a formal cryptographic standard, but it represents a de facto,
ubiquitous and mission-critical software component in many settings. As such,
we suggest that the effort required to adopt a development strategy capable of
supporting formal verification is both warranted, and an increasingly important
area for future work.

Acknowledgements. This work has been supported in part by EPSRC via
grant EP/H001689/1 and by project SMART, funded by ENIAC Joint Under-
taking (GA 120224).

186 B.B. Brumley et al.

References

1. Antipa, A., Brown, D.R.L., Menezes, A., Struik, R., Vanstone, S.A.: Validation of
Elliptic Curve Public Keys. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567,
pp. 211–223. Springer, Heidelberg (2002)

2. Barbosa, M.: CACE Deliverable D5.2: formal specification language definitions and
security policy extensions (2009), http://www.cace-project.eu

3. Barbosa, M., Moss, A., Page, D.: Constructive and destructive use of compilers in
elliptic curve cryptography. J. Cryptology 22(2), 259–281 (2009)

4. Biham, E., Carmeli, Y., Shamir, A.: Bug Attacks. In: Wagner, D. (ed.) CRYPTO
2008. LNCS, vol. 5157, pp. 221–240. Springer, Heidelberg (2008)

5. Ciet, M., Joye, M.: Elliptic curve cryptosystems in the presence of permanent and
transient faults. Designs, Codes and Cryptography 36(1), 33–43 (2005)

6. Conchon, S., Contejean, E., Kanig, J.: Ergo : a theorem prover for polymorphic
first-order logic modulo theories (2006), http://ergo.lri.fr/papers/ergo.ps

7. Coron, J.-S.: Resistance against Differential Power Analysis for Elliptic Curve
Cryptosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717,
pp. 292–302. Springer, Heidelberg (1999)

8. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking.
J. ACM 52(3), 365–473 (2005)

9. Filliâtre, J.-C., Marché, C.: Multi-Prover Verification of C Programs. In: Davies,
J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp. 15–29.
Springer, Heidelberg (2004)

10. Filliâtre, J.-C., Marché, C.: The Why/Krakatoa/Caduceus Platform for Deduc-
tive Program Verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 173–177. Springer, Heidelberg (2007)

11. Herley, C.: So long, and no thanks for the externalities: The rational rejection
of security advice by users. In: New Security Paradigms Workshop (NSPW), pp.
133–144 (2009)

12. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications
of the ACM 12, 576–580 (1969)

13. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Math. Comp. 48(177), 243–264 (1987)

14. Nguyen, P.Q.: Can We Trust Cryptographic Software? Cryptographic Flaws in
GNU Privacy Guard v1.2.3. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 555–570. Springer, Heidelberg (2004)

15. Paterson, K.G., Yau, A.K.L.: Cryptography in Theory and Practice: The Case of
Encryption in IPsec. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004,
pp. 12–29. Springer, Heidelberg (2006)

16. Reimann, H.: BN nist mod 384 gives wrong answers. openssl-dev mailing list
#1593 (2007), http://marc.info/?t=119271238800004

17. Solinas, J.A.: Generalized Mersenne numbers. Technical Report CORR 99-39, Cen-
tre for Applied Cryptographic Research (CACR), University of Waterloo (1999),
http://www.cacr.math.uwaterloo.ca/techreports/1999/corr99-39.pdf

18. The Coq Development Team. The Coq Proof Assistant Reference Manual – Version
V8.2 (2008), http://coq.inria.fr

19. Vieira, B., Barbosa, M., Sousa Pinto, J., Filliatre, J.-C.: A deductive verification
platform for cryptographic software. In: International Workshop on Foundations
and Techniques for Open Source Software Certification, OpenCert (2010)

http://www.cace-project.eu
http://ergo.lri.fr/papers/ergo.ps
http://marc.info/?t=119271238800004
http://www.cacr.math.uwaterloo.ca/techreports/1999/corr99-39.pdf
http://coq.inria.fr

A New Pseudorandom Generator

from Collision-Resistant Hash Functions

Alexandra Boldyreva� and Virendra Kumar��

School of Computer Science, Georgia Institute of Technology
266 Ferst Drive, Atlanta, GA 30332-0765 USA
{aboldyre,virendra}@cc.gatech.edu

Abstract. We present a new hash-function-based pseudorandom gener-
ator (PRG). Our PRG is reminiscent of the classical constructions iterat-
ing a function on a random seed and extracting Goldreich-Levin hardcore
bits at each iteration step. The latest PRG of this type that relies on
reasonable assumptions (regularity and one-wayness) is due to Haitner
et al. In addition to a regular one-way function, each iteration in their
“randomized iterate” scheme uses a new pairwise-independent function,
whose descriptions are part of the seed of the PRG. Our construction
does not use pairwise-independent functions and is thus more efficient,
requiring less computation and a significantly shorter seed. Our scheme’s
security relies on the standard notions of collision-resistance and regu-
larity of the underlying hash function, where the collision-resistance is
required to be exponential. In particular, any polynomial-time adversary
should have less than 2−n/2 probability of finding collisions, where n is
the output size of the hash function. We later show how to relax the reg-
ularity assumption by introducing a new notion that we call worst-case
regularity, which lower bounds the size of primages of different elements
from the range (while the common regularity assumption requires all such
sets to be of equal size). Unlike previous results, we provide a concrete
security statement.

Keywords: Pseudorandom generator, hash function, collision-resistance,
provable security.

1 Introduction

A pseudorandom generator (PRG) is an important cryptographic primitive that
was introduced by Blum and Micali [3], and later formalized into its current
form by Yao [23]. PRGs are used to generate pseudorandom bits from a short
random seed, which can then be used in place of truly random bits that most
cryptographic schemes rely on. On the foundational side, PRGs can be used
as a building block for more complex cryptographic objects like pseudorandom
function (PRF) [8], bit commitment [20], etc.

� Supported in part by NSF CAREER award 0545659 and NSF Cyber Trust award
0831184.

�� Supported in part by the grants of the first author.

O. Dunkelman (Ed.): CT-RSA 2012, LNCS 7178, pp. 187–202, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

188 A. Boldyreva and V. Kumar

In their seminal work, H̊astad et al. [15] building on the previous works [17,14]
show how to construct a PRG, henceforth called the HILL-PRG, from any one-
way function. While the construction is of great theoretical value, it is extremely
(orders of magnitude) inefficient compared to the Blum-Micali-Yao (BMY) PRG
that builds on a one-way permutation. BMY-PRG is the most efficient known
construction, whose security relies on a reasonable assumption. Practical stan-
dardized PRGs based on block-ciphers and hash functions (a hash function is a
function whose range is smaller than the domain, also referred to as a compres-
sion function) [6], though much more efficient, rely on a rather strong and not
well-studied assumption (in the theoretical cryptography community) that the
underlying function is a PRF [5], and thus are not a focus of this work. In this
paper, we investigate a question of finding an efficient hash-function-based PRG,
whose security relies on collision-resistance, a very well-studied and widely-used
property of a hash function. A collision-resistant hash function (CRHF) is of
course one-way but certainly not a permutation, as it compresses the input, and
hence the BMY-PRG is not suitable for our problem.

1.1 Related Work

The seed length (as a function of the input length m of the underlying function)
is an important measure of the efficiency and the security of a PRG. The best
known bound for the HILL-PRG of O(m8) was shown by Holenstein [16]. This
was later improved (for an alternative construction) to O(m7) and O(m4) by
Haitner et al. in [11] and [13], respectively. While the efficiency is obvious from
the seed length, we present an example to truly appreciate the effect of seed
length on the security of a PRG. Say, we have a one-way function that is secure,
according to current standards, only for inputs of size at least 128 bits, then
Holenstein’s proof shows that the HILL-PRG is secure only for seeds of size
(ignoring constants) at least 256 bits! Several works have tried to bridge this huge
gap from the BMY-PRG’s seed length of O(m), by making stronger assumptions
on the underlying function. Following are the two main types of strengthening
in the assumption:

– Regularity. Goldreich et al. [9] gave a construction of PRG with seed length
O(m3), whose security requires that the underlying function is one-way and
regular. This was later improved by Haitner et al. [11], where they first
present a tighter security proof for a construction similar to that of Goldreich
et al., thus improving the seed length to O(m2) (cf. Section 3.3 in [11]). In
the following section of the same work, Haitner et al. show how the seed
length can be further reduced to O(m logm) by the use of bounded-space
generators of Nisan [21] (or, Impagliazzo et al. [18]).

– Exponential Hardness. Holenstein [16] gave a construction of PRG with
seed length O(m5), whose security relies on the underlying function being
an exponentially hard one-way function. This was later improved by Haitner
et al. to seed length O(m2) in [12] and [13], where the latter (unlike prior
works) doesn’t require adaptive calls to the one-way function.

A New Pseudorandom Generator 189

1.2 Our Result

We construct a new hash-function-based PRG with seed length less than 2m, i.e.
as efficient as the BMY-PRG, thus improving the efficiency over all prior works
which do not rely on permutations (i.e., function-based PRGs). Our scheme is
reminiscent of the classical constructions [3,23] iterating a function on a random
seed and extracting Goldreich-Levin hardcore bits [10] at each iteration step.
One notable difference from the BMY-PRG is that instead of a permutation, we
use a hash function. Let h be a hash function mapping strings of size m bits to
strings of size n bits, for m > n. Assume we have a random seed x‖r, where both
x and r are n bits long, and we want to generate l(> 2n) pseudorandom bits.
The first bit of the output is the inner product of x and r, 〈x, r〉. To generate
the second bit, compute h1

n(x) ← h(x‖0m−n), and output 〈h1
n(x), r〉. For the

third bit, compute h2
n(x)← h(h1

n(x)‖0m−n), and output 〈h2
n(x), r〉. Repeat this

process until (l − n) bits are output, and also output r.
The latest PRG of this type that relies on reasonable assumptions (regularity

and one-wayness) is due to Haitner et al. [11]. In addition to a regular one-way
function, each iteration in their scheme uses a new pairwise-independent func-
tion (which is basically the only main difference from our construction), whose
descriptions are part of the seed of the PRG. Our construction presented above
does not use pairwise-independent functions and is thus more efficient, requiring
less computation and a significantly shorter seed. Our scheme’s security relies
on the standard notions of collision-resistance and regularity of the underlying
hash function, where the collision-resistance is required to be exponential (such
a function is also referred in the literature as an “exponentially hard CRHF”).
In particular, any polynomial-time adversary should have less than 2−n/2 prob-
ability of finding collisions, where n is the output size of the hash function. This
should not be confused with the famous birthday bound, which roughly says
that with 2n/2 number of random trials one can find collisions (with noticeable
probability) in any hash function of output size n. Here, we are talking about
the probability of collision and not the number of trials.

To the best of our knowledge, this is the first attempt to combine the above two
strengthenings (i.e., regularity and exponential hardness) for improving the effi-
ciency of a function-based PRG. While our assumption of exponential collision-
resistance is quite strong, unlike the pseudorandomness of hash functions (which
not only do not use secret keys, but are usually keyless) ours is still a very well
accepted assumption in the community. Also, given the search for a new hash
standard SHA-3 by the NIST [22], it is plausible that some (if not all) of the can-
didate submissions to the competition provide exponential collision-resistance.
We later show how to relax the regularity assumption by introducing a new
notion that we call worst-case regularity. The notion of worst-case regularity
lower bounds the size of the smallest set of preimages of different elements in
the range, while the common regularity assumption requires all such sets to be
of equal size. It was shown by Bellare and Kohno [1] that collision-resistance
degrades exponentially (in the range of the function) when a function deviates
from regularity, so a CRHF must be very “close” to regular, and experiments

190 A. Boldyreva and V. Kumar

on practical hashes like SHA-1 support this claim (cf. Section 11 in [1]). So, the
worst-case regularity assumption on a practical CRHF seems to be reasonable.
We note that a notion similar to ours, called “weakly regular” was introduced in
[9]. This notion doesn’t seem to be useful for our proof, because at a high level
it captures the average of the sizes of different preimage sets of a function, while
we need a lower bound on these sizes.

Levin [19] observed that the BMY-type constructions are secure for functions
that are one-way even when applied on their own outputs, a property called one-
way on iterates (OWI), which one-way permutations trivially satisfy. However,
it would be a stretch to assume that practical hashes have this property. We also
note that collision-resistance alone may not be sufficient to prove that a function
has the OWI property. Consider a CRHF h that acts as a permutation after one
application, i.e. for any x in the domain of h, h(h(x)) is a permutation on h(x)
(some padding can be used to make h(x) of input size, we omit this padding here
for simplicity). For such a CRHF, a security reduction from OWI to collision-
resistance is not possible. The reason is that the output of an adversary that can
break the OWI security

(
y ∈ h−1(h(h(x)))

)
cannot be used to find collisions in h,

because the set h−1(h(h(x))) has just one element due to h being a permutation
after one application. Someone familiar with the proofs of BMY and related
PRG constructions may also be skeptical about the other direction, i.e. proving
the security of our scheme assuming only the regularity and collision-resistance
of h, without employing the “re-randomizing” pairwise-independent functions.
The reason is that the security requires h to remain one-way on every iteration,
but while h is believed to be collision-resistant and thus one-way (i.e., it is hard
to invert h(x) for a random point x in the domain), it is not necessarily hard
to invert h(h(x)), because h(x) (for a random x) is not necessarily a random
point in the domain. In other words, the sets of points to which h is applied may
shrink with each iteration, diminishing the one-wayness property of h, and thus
violating the security of the PRG. Somewhat surprisingly, we show that these
sets in our construction do not shrink significantly, if it is exponentially hard to
find collisions in h. Unlike previous results on the security of PRGs, our theorem
provides a concrete security statement, so that it is possible to see exactly how
the security of our PRG degrades with the degradation in the collision-resistance
of the underlying hash function, and thus allows a more accurate comparison
with other schemes.

Our construction is very efficient (though still not comparable to practical
standardized PRGs [6]) and simple, as at each iteration it uses a hash function
and an inner-product computation, both of which are relatively fast. In the full
version of this paper [4], we show how using a classical method of [9,7] the
efficiency of our scheme can be further improved by extracting up to a constant
fraction of n hardcore bits at each iteration, as the underlying CRHF is assumed
to be exponentially hard. While our construction is mainly of theoretical interest,
we believe our approach and treatment has moved theoretically sound PRGs
much further towards practical use. The novel worst-case regularity definition
may be of independent interest.

A New Pseudorandom Generator 191

2 Preliminaries

Notation. If f is a function, then Im(f) denotes the image set of f , and for any
y ∈ Im(f), Preim(f, y) denotes the set of preimages of y under f . Let a, b ∈ IN,
for simplicity and correctness, we define

(
a
b

)
to be 1 if a < b.

2.1 Hash Functions and Their Security

Hash Function. Because of the known difficulties of defining collision-resistance
(cf. Section 6.1 in [2]), we follow the standard approach and define hash function
families. A hash function family H is a collection of functions, where each h ∈ H
is a mapping from {0, 1}m to {0, 1}n, such that m > n.

Collision-Resistance and Target Collision-Resistance. Let H be a hash
function family, where each h ∈ H is a mapping from {0, 1}m to {0, 1}n. The
collision-resistance advantage of an adversary C attacking H , Advcr

H(C) is de-
fined as

Pr
[
h

$← H, x, x′ $← C(h) : x = x′ ∈ {0, 1}m
∧

h(x) = h(x′)
]
.

Also, the target collision-resistance advantage of an adversary C attacking H ,
Advtcr

H (C) is defined as

Pr
[
h

$← H,x
$← {0, 1}m, x′ $← C(h, x) : x′ ∈ {0, 1}m

∧
x = x′∧h(x) = h(x′)

]
.

Birthday Attack. The birthday attack on a function f : {0, 1}m → {0, 1}n is
defined in Fig. 1. In this attack, q ∈ IN points, x1, ..., xq are picked independently
at random from the domain. If any two of these points form a collision for
f , then the attack is successful and those two points are returned. We denote
the probability of success of the birthday attack on f by collision probability,
CP(f, q). We will slightly abuse the notation sometimes, and use it for function
families, where in CP(F, q) for a function family F , would mean the collision
probability of a function picked at random from F .

For i = 1, ..., q

xi
$← {0, 1}m

yi ← f(xi)
If (∃j : j < i

∧
yi = yj

∧
xi �= xj), return (xi, xj).

Fig. 1. Birthday attack (with q trials) on a function f : {0, 1}m → {0, 1}n

Regularity. A function f : {0, 1}m → {0, 1}n is said to be regular, if every
point in the image set of f have equal number of preimages. Bellare and Kohno
introduced the notion of a balance measure, denoted μ(f) (cf. Section 1 in [1]) to
measure the regularity of a function: μ(f) = 1 indicates that the function is fully

192 A. Boldyreva and V. Kumar

regular and μ(f) = 0 means fully irregular (an image point has the maximum
number of preimages). The collision probability in the birthday attack for q trials,
CP(f, q) =

(
q
2

)
·2−nμ(f) (up to constant factors), so the collision-resistance of any

function degrades exponentially (in the range of the function) with the decline in
its balance. A CRHF must therefore have a balance close to 1, and experiments
on practical hashes like SHA-1 support this claim (cf. Equation 2, Section 11
in [1]). So, SHA-1 and other hash functions (SHA-256, SHA-512, etc.) can be
assumed to be close to regular. We introduce a notion that we call worst-case
regularity in Sect. 6 that also captures this closeness.

One-Wayness. Let F be a family of functions, where each f ∈ F is a mapping
from {0, 1}m to {0, 1}n. The one-way advantage of an adversary I attacking F ,
Advow

F (I) is defined as

Pr
[
f

$← F, x
$← {0, 1}m, x′ $← I(f, f(x)) : x′ ∈ {0, 1}m

∧
f(x′) = f(x)

]
.

The one-way advantage of a function f (instead of a function family) can be
defined similarly: the adversary is given f(x) for a random x, and it has to
return an element x′ ∈ {0, 1}m such that f(x′) = f(x).

Target Collision-Resistance and One-Wayness. The following relation be-
tween the notions is well-known.

Theorem 1 ([2], Corollary 5.5). Let H be a hash function family, where
each h ∈ H is a mapping from {0, 1}m to {0, 1}n. Then for an adversary I with
running time tI, there exists an adversary C with running time tC, so that

Advow
H (I) ≤ 2 ·Advtcr

H (C) + 2n−m, and tC ≈ tI .

We now present a more general definition that also captures the one-wayness.

Hard to Compute. Let f and g be functions with the same domain Sm ⊆
{0, 1}m. The hard-to-compute advantage of an adversary I attacking (f, g),
Advhtc

f,g(I) is defined as

Pr
[
x

$← Sm : I(f(x)) ∈ Preim(g, f(x))
]
.

Note that for any adversary I and any function f , Advow
f (I) = Advhtc

f, f (I).

2.2 Hardcore Predicate

Informally, a hardcore predicate of a function is at least as hard to predict as
inverting the function itself. Formally, let g : {0, 1}m → {0, 1}n, b : {0, 1}m →
{0, 1} be two functions, and a

$← {0, 1} be a random bit. The hardcore predicate

advantage of adversary A, Advhcp
g,b (A) is defined as

Pr
[
x

$← {0, 1}m : A(g(x), b(x)) = 1
]
− Pr

[
x

$← {0, 1}m : A(g(x), a) = 1
]
.

A New Pseudorandom Generator 193

Here b(x) is called the hardcore predicate (or bit) of g(x). In this paper, we
use the general hardcore predicate construction of Goldreich and Levin [10],
called the “GL-hardcore bit”. For two bitstrings x (= x1‖ . . . ‖xm) and r (=
r1‖ . . . ‖rm), define b(x, r) = 〈x, r〉, the inner product of x and r modulo 2, i.e.∑m

i=1 xi · ri (mod 2). The following theorem is from [11], and states (using our
notation) the security of the GL-hardcore bit.

Theorem 2 (Theorem 2.7, [11]). Let f and g be functions with the same
domain Sm ⊆ {0, 1}m. For a random x ∈ Sm and a random r ∈ {0, 1}m,

define f̂ as f̂(x, r) = (f(x), r), and its GL-hardcore bit b as 〈z, r〉, where z ∈
Preim(g, f(x)) is one of the preimages of f(x) under g. Then for an adversary
A with running time tA, there exists an adversary I with running time tI , so
that

Advhcp

f̂ ,b
(A) ≤ 4 ·Advhtc

f,g(I), and tI = O
(
m3 · tA ·

(
Advhcp

f̂ ,b
(A)
)−4
)
.

2.3 Pseudorandom Generator

Informally, a pseudorandom generator (PRG) is a function that expands a ran-
dom seed into a longer pseudorandom bit sequence. PRGs were first proposed
and constructed by Blum and Micali [3], and Yao [23]. Let G : {0, 1}m → {0, 1}l
be a function, so that l > m. The prg advantage of an adversary P attacking G,
Advprg

G (P) is defined as

Pr
[
s

$← {0, 1}m : P(G(s)) = 1
]
− Pr

[
y

$← {0, 1}l : P(y) = 1
]
.

Here m is the seed length, and l is the number of pseudorandom bits generated.

3 PRG from Iterates

Most of the pseudorandom generators (PRGs) that we know today employ a
general design technique: take a function that remains one-way on iterates, and
iterate that function for a desired number of times, extracting hardcore bits at
every iteration. Below we give a general theorem for the security of such PRGs.
The theorem already exists in some form in the cryptographic literature (or, is
implied from results in several papers, [19,9,11], to name a few), but we restate
it and sketch its proof in the full version of this paper [4] for two main reasons.
One is that the proof has evolved over time, starting from Levin’s work [19],
followed by a proof sketch by Goldreich et al. (cf. Appendix B in [9]), and the
improved construction of hard-core predicate by Goldreich and Levin [10]. The
second reason is that none of the prior works state the result in its entirety with
a concrete security statement.

We will start with a more general definition that also captures the definition
of pseudorandomness presented in Sect. 2.3. Let X and Y be random variables

194 A. Boldyreva and V. Kumar

with equal output lengths. Let D be an adversary for distinguishing X from Y .
The indistinguishability advantage of D, Advind

X,Y (D) is defined as

Advind
X,Y (D) = Pr

[
x

$← X : D(x) = 1
]
− Pr

[
y

$← Y : D(y) = 1
]
.

For any adversary P and any pseudorandom generator G, Advind
G,U|G|(P) =

Advprg
G (P), where U|G| is a uniform distribution of size equal to the output size

of G.

Theorem 3. Let f : {0, 1}m → {0, 1}n be any function, and for any i ∈ IN, let
f i denote its ith iterate, defined arbitrarily but satisfying the following condition:
given only f i(x) for any x ∈ {0, 1}m, f i+1(x) should be efficiently computable.
For any k ∈ IN, if fk is one-way on iterates1, then for random x, r ∈ {0, 1}m,
the random variables

X = 〈x, r〉 ‖
〈
f1(x), r

〉
‖ . . . ‖

〈
fk−1(x), r

〉
‖r‖fk(x) and Y = Uk‖r‖fk(x)

are indistinguishable, where Uk is a uniform distribution of k bits. More for-
mally, for an adversary D with running time tD, there exists an adversary I
with running time tI, so that

Advind
X,Y (D) ≤ 8k · k

max
i=1

(
Advhtc

fi,f (I)
)
, and tI = O

(
m3 · tD ·

(
Advind

X,Y (D)
)−4

)
.

Informally, the above theorem states that 〈x, r〉 ‖
〈
f1(x), r

〉
‖ . . . ‖

〈
fk−1(x), r

〉
is pseudorandom, given r and fk(x).

4 Our PRG Construction

We first define the subset iterate, a particular way to iterate a hash function on
a subset of the actual domain. We use this in our PRG construction.

Subset Iterate. Let H be a hash function family, where each h ∈ H is a
mapping from {0, 1}m to {0, 1}n. For any i ∈ IN and any h ∈ H , we define
the ith subset iterate of h, hi

n, and denote the corresponding family by Hi
n. For

x ∈ {0, 1}n, hi
n is defined recursively as

h1
n(x) = h(x‖0m−n) ,

hi
n(x) = h

(
hi−1
n (x)‖0m−n

)
∀i > 1 .

Any unambiguous padding (in place of zeroes, above) can be used to make the
input to h of size m bits. For any i ∈ IN, we define the one-way on iterates or
owi advantage of an adversary I attacking Hi

n, Advowi
Hi

n
(I) as

Pr
[
h

$← H,x
$← {0, 1}n, x′ $← I

(
h, hi

n(x)
)
: h(x′‖0m−n) = hi

n(x)
]
.

We now present our PRG construction.

1 fk is one-way on iterates, if given fk(x) for a random x ∈ {0, 1}m, it is hard to
compute x′ ∈ {0, 1}m such that f(x′) = fk(x).

A New Pseudorandom Generator 195

Construction 4. Let H be a hash function family, where each h ∈ H is a map-
ping from {0, 1}m to {0, 1}n. For any l > 2n, a random h ∈ H, which we assume
becomes publicly known, and a random seed s ∈ {0, 1}2n, the pseudorandom gen-
erator G parses the input s as x‖r, such that both x and r are n-bit strings, and
outputs

〈x, r〉 ‖
〈
h1
n(x), r

〉
‖ . . . ‖

〈
hl−n−1
n (x), r

〉
‖r ,

where for two bitstrings x (= x1‖ . . . ‖xn) and r (= r1‖ . . . ‖rn), 〈x, r〉 =
∑n

i=1 xi·
ri (mod 2) is their inner product modulo 2.

Note that the seed length of G is 2n, and it is independent of the output length
l. We now present the security analysis of the above construction. For simplicity,
in the following theorem we assume that the underlying hash function family is
regular. We will show how to relax this assumption to worst-case regularity in
Sect. 6.

Theorem 5. Let H be a hash function family, where each h ∈ H is a regular
function from {0, 1}m to {0, 1}n and takes time tH in computation. For any
l > 2n, let G be the associated PRG, as defined by Construction 4. Then for
an adversary P with running time tP , there exists an adversary C with running
time tC, and q = �tC/tH�, so that

Advprg
G (P) ≤ 24 · (l − n) ·

[(
�q/(l − n)− 2�

2

)−1

· 2n · (Advcr
H(C))2

] 1
3

,

and tC = max
{
O
(
n3 · tP · (Advprg

G (P))−4
)
, 2(l − n)tH

}
.

Remark. The above advantage equation is meaningful only if Advcr
H(C) <

2−n/2. Also, as pointed out in the proof of Theorem 6, the above advan-
tage expression can be made tighter (i.e., (Advcr

H(C))2 could be replaced with
Advtcr

H (C1) · Advcr
H(C2) for C1, C2 attacking the target collision-resistance and

collision-resistance ofH , respectively), though the expression would become even
more complicated.

5 Proof of Theorem 5

We start with a short overview of the proof. The proof consists of two main
parts: first we prove that the subset iterate used in the construction of our PRG
is one-way on iterates (Theorem 6), and then we use the general result of Levin
[19] (Theorem 3) to show that our PRG is secure.

The subset iterate is constructed using a hash function. Now, suppose that
we have an algorithm I that can invert the subset iterate, i.e. given (h, hi

n(x))
for any i ≥ 2, random h, and random x, it returns x′ such that h(x′‖0m−n) =
hi
n(x). Then, we can use I to break the target collision-resistance (TCR) of the

underlying hash function. The challenge for the TCR attack (h, x) is used to
compute h(x), and then (h, h(x)) given to I, and assuming that h(x) ∈ Im(hi

n),

196 A. Boldyreva and V. Kumar

with a very high probability the output of I, x′ (and x) is a collision instance
for h. These steps are similar to those in the proof from [11].

Now, the main challenge is to show that with a non-negligible probability
h(x) ∈ Im(hi

n) (Lemma 9). The proof of the above is the crux and the main
novelty of our analysis. We basically show that on iteration, the image set of
the subset iterate shrinks by only a polynomial fraction, i.e. for any i ≥ 2,
|Im(hi

n)|/|Im(hi−1
n)| is a polynomial fraction. For this purpose, we rely on Lemma

7, which says that the collision probability (in the birthday attack) of a subset
iterate degrades only by a multiplicative factor of the square of the number of
iterations. It may not be obvious, but the size of the image set and the collision
probability of any function are closely related, which is precisely the reason why
we are able to prove Lemma 7.

In order to prove Theorem 5, we state the following theorem about the OWI
security of the subset iterate used in the construction of our PRG. This theorem
together with Theorem 3 (by substituting (l − n) for k) will imply Theorem 5.
(One might notice some inconsistencies between Theorem 6 and Theorem 3 in
the sense that the underlying primitive in the former is a function family, while
it is only a function in the latter. We note, however, that Theorem 3 is applicable
without any change in the security reduction to our PRG construction from a
hash function family.)

Theorem 6. Let H be a hash function family, where each h ∈ H is a regular
function from {0, 1}m to {0, 1}n and takes time tH in computation. For any i ∈
IN, let Hi

n be the associated ith subset iterate function family of H, as defined in
Sect. 4. Then for an adversary I with running time tI, there exists an adversary
C with running time tC, and q = �tC/tH�, so that

Advowi
Hi

n
(I) ≤ 3·

[(
�q/i− 2�

2

)−1

· 2n · (Advcr
H(C))2

] 1
3

, and tC = max {tI , 2itH} .

Proof. We construct an adversary C1 with running time tC1 = tI , for attacking
the target collision-resistance of H . C1 is given a random h ∈ H and a random
x ∈ {0, 1}m. It runs the adversary I attacking one-wayness on iterates of Hi

n

with input (h, h(x)). Let x′ be the output of I. If x = x′‖0m−n and h(x) =
h(x′‖0m−n), it returns x′‖0m−n.

We state the following three lemmas from which we will derive the inequality
of Theorem 6. Lemma 7 gives an upper bound on the collison probability of
birthday attack on the subset iterate of a hash function family. Lemma 8 which
is similar to Claim 3.3 of [11], states that the set of inputs on which the adversary
I succeeds reasonably well (better than one third of its advantage) is not small
(at least two thirds of its advantage) in size. And, Lemma 9 which is similar
to Lemma 3.4 of [11], states that the set of inputs that I should get in the
actual experiment (hi

n(x) for a random x ∈ {0, 1}n) and the set of inputs that
it actually gets in the above experiment simulated by C1 (h(x) for a random
x ∈ {0, 1}m), overlap for the most part.

A New Pseudorandom Generator 197

Lemma 7. Let H be a hash function family, where each h ∈ H is a mapping
from {0, 1}m to {0, 1}n and takes time tH in computation. For any i ∈ IN, let
Hi

n be the associated ith subset iterate of H, as defined in Sect. 4. Then for any
q ≥ 2i, there exists an adversary C2 that runs in time (at most) q · tH , such that

CP(Hi
n, 2) ≤

Advcr
H(C2)(�q/i−2�
2

) .

Proof. We know that for any function f with output size n bits and balance
measure μ(f), (upto constant factors) the collision probability for any t ∈ IN
trials, CP(f, t) =

(
t
2

)
· 2−nμ(f), see [1] for details. Let q′ = �q/i− 2�, then

CP(Hi
n, 2) =

CP(Hi
n, q

′)(
q′
2

) .

Also, it is immediate that there exists an adversary C′ running in time equivalent
to q′ computations of hi

n ∈ Hi
n, such that

Advcr
Hi

n
(C′) ≥ CP(Hi

n, q
′) .

(In the worst case, C′ could simply run the birthday attack with q′ trials.)
Now, given C′ we will construct the adversary C2 (from the lemma) that runs

in time at most q · tH , so that

Advcr
H(C2) = Advcr

Hi
n
(C′) .

Note that for any hi
n ∈ Hi

n, and any x = x′ ∈ {0, 1}n, if hi
n(x) = hi

n(x
′),

then there exists j < i, such that hj
n(x) = hj

n(x
′) and hj+1

n (x) = hj+1
n (x′).

When C′ returns (x, x′), C2 computes y ← hj
n(x), y′ ← hj

n(x
′), and returns

(y‖0m−n, y′‖0m−n). Recall that y = y′ and h(y‖0m−n) = h(y′‖0m−n), so the
advantage of C2 is the same as that of C′. Assuming that one computation of
hi
n ∈ Hi

n requires the same time as i computations of h ∈ H , we have that
the running time of C2 is at most q · tH (≥ (i · q′ + 2i) · tH), because apart from
running C′ (which is equivalent to i ·q′ computations of h ∈ H), C2 does 2j(< 2i)
computations of h ∈ H to compute its own output. Thus, Advcr

H(C2) is equal to

Advcr
Hi

n
(C′) ≥ CP(Hi

n, q
′) = CP(Hi

n, 2) ·
(
q′

2

)
= CP(Hi

n, 2) ·
(
�q/i− 2�

2

)
,

from which the lemma follows. ��

Lemma 8. Let H be a hash function family, where each h ∈ H is a mapping
from {0, 1}m to {0, 1}n. For any i ∈ IN and any h ∈ H, let hi

n be the associated
ith subset iterate and Hi

n be the corresponding family, as defined in Sect. 4. For
any adversary I, consider the following probabilities in an experiment where a
random h ∈ H and a random x ∈ {0, 1}n are picked, and a set S ⊆ Im(hi

n) is
defined as

S =

{
y ∈ Im(hi

n) : Pr [h (I (h, y)) = y] >
1

3
·Advowi

Hi
n
(I)
}
.

198 A. Boldyreva and V. Kumar

Then,

Pr
[
hi
n(x) ∈ S

]
≥ 2

3
·Advowi

Hi
n
(I).

The proof is in the full version of this paper [4].

Lemma 9. Let H be a hash function family, where each h ∈ H is a mapping
from {0, 1}m to {0, 1}n. For any i ∈ IN and any h ∈ H, let hi

n be the associated
ith subset iterate and Hi

n be the corresponding family, as defined in Sect. 4.
Consider the following probabilities in an experiment where a random h ∈ H
and a random x ∈ {0, 1}n are picked. If for any T ⊆ Im(hi

n) and any δ ∈ [0, 1],

Pr
[
hi
n(x) ∈ T

]
≥ δ,

then

Pr [h(x) ∈ T] ≥ δ2

2n+1 ·CP(hi
n, 2)

.

Proof. We will first compute a lower bound on the collision probability of hi
n for

two trials,CP(hi
n, 2). Pick two elements x1, x2 uniformly at random from {0, 1}n,

and then compute the probability that both hi
n(x1), h

i
n(x2) are equal and belong

to the set T . This probability is clearly a lower bound on CP(hi
n, 2), because T

is a subset of Im(hi
n). The probability that both hi

n(x1), h
i
n(x2) ∈ T is at least

δ2, and given that hi
n(x1), h

i
n(x2) ∈ T , the probability that hi

n(x1) = hi
n(x2)

is at least 1/|T |. The reason is that even though x1, x2 are uniformly random
elements in {0, 1}n, hi

n(x1), h
i
n(x2) may not2 be uniformly random elements in

T . So, the probability that hi
n(x1) = hi

n(x2) can be lower bounded by computing
the probability of getting the same element, when two elements are picked (with
replacement) uniformly at random from the set T . By simple probability theory,
the probability of such an event is 1/|T |. It may however be noted that in the
above calculation, we are also counting trivial collisions, i.e. when x1 = x2. To
compensate for this, we subtract 2−n from the above probability. Hence,

CP(hi
n, 2) ≥

δ2

|T | −
1

2n
. (1)

From (1), we have

|T | ≥ δ2

CP(hi
n, 2) + 2−n

≥ δ2

2 ·CP(hi
n, 2)

,

because CP(hi
n, 2) ≥ 2−n.

For any h ∈ H , Im(hi
n) ⊆ Im(h), and since T ⊆ Im(hi

n), we have that T ⊆
Im(h). Also, since h is a regular function3 and Im(h) ≤ 2n, we have that

Pr
[
h

$← H, x
$← {0, 1}m : h(x) ∈ T

]
=

|T |
|Im(h)| ≥

|T |
2n

. (2)

Thus, the statement of the lemma follows. ��
2 These elements are uniformly distributed, only if hi

n is a regular function.
3 We note that this is the only point in the proof that relies on the assumption that
h is a regular function.

A New Pseudorandom Generator 199

Implication of Lemma 7, Lemma 8, and Lemma 9. Substituting S for T
and 2

3 ·Advowi
Hi

n
(I) (from Lemma 8) for δ in Lemma 9, we get that for a random

h ∈ H , adversary I and subset S as defined in Lemma 8

Pr
[
h

$← H, x
$← {0, 1}m : h(x) ∈ S

]
≥

(
2
3 ·Advowi

Hi
n
(I)
)2

2n+1 ·CP(hi
n, 2)

≥ 22

32
·

(
Advowi

Hi
n
(I)
)2

2n+1 ·CP(hi
n, 2)

.

The above equation is a lower bound on the probability that for a random h ∈ H
and a random x ∈ {0, 1}m, I’s challenge, h(x) belongs to the subset S. From
the description of C1, it is clear that Advtcr

H (C1)

= Pr
[
h

$← H,x
$← {0, 1}m, x′ $← I(h, h(x)) : x �= x′‖0m−n

∧
h(x′‖0m−n) = h(x)

]
= Pr

[
h

$← H,x
$← {0, 1}m, x′ $← I(h, h(x)) : x �= x′‖0m−n | h(x′‖0m−n) = h(x)

]
× Pr

[
h

$← H,x
$← {0, 1}m, x′ $← I(h, h(x)) : h(x′‖0m−n) = h(x)

]
.

Let us denote the two probabilities in the last equation by P1 and P2, respec-
tively. So, Advtcr

H (C1) = P1 · P2. We know that

P1 ≥ Pr
[
z

$← {0, 1}m−n : z = 0m−n
]

≥ 2m−n − 1

2m−n
≥ 1

2
,

because x is a uniformly random m-bit string, so the probability that the last
m− n bits of x are all 0’s is at most 2n−m. Also, from Lemma 8, we have that
for a random h ∈ H , adversary I and subset S as defined in Lemma 8

P2 ≥ Pr
[
h

$← H, x
$← {0, 1}m : h(x) ∈ S

]
· 1
3
·Advowi

Hi
n
(I)

≥ 22

32
·

(
Advowi

Hi
n
(I)
)2

2n+1 ·CP(hi
n, 2)

· 1
3
·Advowi

Hi
n
(I)

≥ 22

33
·

(
Advowi

Hi
n
(I)
)3

2n+1 ·CP(hi
n, 2)

.

The second inequality is from the lower bound on the probability that I’s chal-
lenge h(x) belongs to the subset S, as computed above. Thus,

Advtcr
H (C1) ≥

(
Advowi

Hi
n
(I)
)3

33 · 2n ·CP(hi
n, 2)

.

200 A. Boldyreva and V. Kumar

Combining the above inequality with Lemma 7, we have that for any q ≥ 2i,
there exists an adversary C2 that runs in time (at most) q · tH , such that

Advtcr
H (C1) ·Advcr

H(C2) ≥
(�q/i−2�

2

)
33 · 2n ·

(
Advowi

Hi
n
(I)
)3

.

Recall that the running time of C1, tC1 = tI . Let q = max{�tI/tH�, 2i}, and let C
denote the adversary (among C1, C2) with higher collision-resistance advantage,
i.e. C = C1 if Advcr

H(C1) ≥ Advcr
H(C2), otherwise C = C2. (Note that we are get-

ting rid of target collision-resistance advantage for a simpler theorem statement,
albeit at a loss in the security guarantee) Then,

(Advcr
H(C))2 ≥

(�q/i−2�
2

)
33 · 2n ·

(
Advowi

Hi
n
(I)
)3

.

The running time of C, tC = max{tI , 2itH}, and hence, Theorem 6 follows. ��

6 Relaxing the Regularity Assumption

We introduce a new notion that we call worst-case regularity. It captures the
lower bound on the size of the smallest set of preimages of elements from the
range of a function. The notion appears somewhat similar to the notions of
“weakly regular” introduced by Goldreich et al. [9] and “balance measure” in-
troduced by Bellare and Kohno [1]. However, the reason for introducing a new
notion (instead of working with the previous ones), is that it seems unlikely that
one can find a tight relation between worst-case regularity and balance measure
(or, weak regularity), and thus a tight bound for our theorem, for any general
function (or, a CRHF in particular). The intuition behind this is that while
worst-case regularity measures the lower bound on the size of preimages, the
other two notions are related to the average of these sizes. We will first present
the formal definition of worst-case regularity, and then adjust the statement of
our main theorem for the case when the underlying CRHF is not necessarily
regular.

Worst-Case Regularity. Let F be a family of functions, where each f ∈ F is a
mapping from {0, 1}m to {0, 1}n, and let α ∈ (0, 1]. We say that F is α-worst-case
regular, if for all f ∈ F and all y ∈ Im(f)

|Preim(f, y)| ≥ α · 2m−n .

For a completely regular function family, α = 1.
As pointed out before, the only place where the regularity assumption is

required for our proof is in (2) of Lemma 9. So, we will first modify this equation
and give justification for this modification, and then adjust our main theorem
accordingly. For a not-necessarily regular function family (2) changes as follows.

For any h ∈ H and any T ⊆ Im(h), if H is α-worst-case regular, then

Pr
[
h

$← H, x
$← {0, 1}m : h(x) ∈ T

]
≥ α · |T |

2n
, (3)

A New Pseudorandom Generator 201

where H is a hash function family as defined in Lemma 9. Since H is α-worst-
case regular, the lower bound on the total size of the preimages of elements in
T is (α · 2m−n · |T |). So, when an element is picked uniformly at random from a

set of size 2m, the probability that it hits a subset of size (α ·2m−n · |T |) is α·|T |
2n .

Taking the above equation into account, we present the modified main
theorem.

Theorem 10 (Modified Theorem 5). Let H be an α-worst-case regular hash
function family, where each h ∈ H is a function from {0, 1}m to {0, 1}n and takes
time tH in computation. For any l > 2n, let G be the associated pseudorandom
generator, as defined by Construction 4. Then for an adversary P with running
time tP , there exists an adversary C with running time tC, and q = �tC/tH�, so
that

Advprg
G (P) ≤ 24 · (l − n) ·

[(
�q/(l− n)− 2�

2

)−1

· α−1 · 2n · (Advcr
H(C))2

] 1
3

,

and tC = max
{
O
(
n3 · tP · (Advprg

G (P))−4
)
, 2(l − n)tH

}
.

7 Conclusion

We propose a hash-function-based construction of a pseudorandom generator.
Our scheme is similar to the “randomized iterate” construction of Haitner et
al., but eliminates the need for the use of pairwise-independent functions on
each iteration of the PRG. As a result, our PRG is significantly more efficient
in terms of computation and the seed length. We first prove the security of our
scheme assuming the underlying hash function is regular and collision-resistant,
where the collision-resistance is required to be exponential. Then we show how
to relax the regularity assumption on the hash function by introducing a new
notion called worst-case regularity, which lower bounds the size of the smallest
preimage set in a function. Unlike the previous similar schemes, our construction
is accompanied by a concrete security statement.

References

1. Bellare, M., Kohno, T.: Hash Function Balance and Its Impact on Birthday
Attacks. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 401–418. Springer, Heidelberg (2004),
http://eprint.iacr.org/2003/065

2. Bellare, M., Rogaway, P.: Hash Functions. Introduction to Modern Cryptography,
ch. 5, http://www-cse.ucsd.edu/users/mihir/cse207/w-hash.pdf

3. Blum, M., Micali, S.: How to Generate Cryptographically Strong Sequences of
Pseudo Random Bits. In: FOCS 1982, pp. 112–117. IEEE (1982)

4. Boldyreva, A., Kumar, V.: A New Pseudorandom Generator from Collision-
Resistant Hash Functions. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178,
pp. 187–202. Springer, Heidelberg (2012), http://eprint.iacr.org

http://eprint.iacr.org/2003/065
http://www-cse.ucsd.edu/users/mihir/cse207/w-hash.pdf
http://eprint.iacr.org

202 A. Boldyreva and V. Kumar

5. Desai, A., Hevia, A., Yin, Y.L.: A Practice-Oriented Treatment of Pseudorandom
Number Generators. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 368–383. Springer, Heidelberg (2002)

6. FIPS PUB 186-2, Digital Signature Standard, National Institute of Standards and
Technologies (1994)

7. Goldreich, O.: Foundations of Cryptography, vol. 1. Cambridge University Press
(2001)

8. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. Jour-
nal of the ACM 33(4), 792–807 (1986)

9. Goldreich, O., Krawczyk, H., Luby, M.: On the Existence of Pseudorandom Gen-
erators (Extended Abstract). In: FOCS 1988, pp. 12–24. IEEE (1988); Full version
in SIAM Journal of Computing, 22(6), 1163–1175 (1993)

10. Goldreich, O., Levin, L.: A Hard-Core Predicate for all One-Way Functions. In:
STOC 1989, pp. 25–32. ACM (1989)

11. Haitner, I., Harnik, D., Reingold, O.: On the Power of the Randomized Iterate. In:
Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 22–40. Springer, Heidelberg
(2006), http://eccc.hpi-web.de/eccc-reports/2005/TR05-135

12. Haitner, I., Harnik, D., Reingold, O.: Efficient Pseudorandom Generators from
Exponentially Hard One-Way Functions. In: Bugliesi, M., Preneel, B., Sassone,
V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 228–239. Springer, Hei-
delberg (2006)

13. Haitner, I., Reingold, O., Vadhan, S.: Efficiency improvements in constructing pseu-
dorandom generators from one-way functions. In: STOC 2010, pp. 437–446. ACM
(2010)

14. H̊astad, J.: Pseudo-Random Generators under Uniform Assumptions. In: STOC
1990, pp. 395–404. ACM (1990)

15. H̊astad, J., Impagliazzo, R., Levin, L., Luby, M.: A Pseudorandom Generator from
any One-way Function. SIAM Journal of Computing 28(4), 1364–1396 (1999)

16. Holenstein, T.: Pseudorandom Generators from One-Way Functions: A Simple
Construction for Any Hardness. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS,
vol. 3876, pp. 443–461. Springer, Heidelberg (2006)

17. Impagliazzo, R., Levin, L., Luby, M.: Pseudo-random Generation from one-way
functions (Extended Abstracts). In: STOC 1989, pp. 12–24. ACM (1989)

18. Impagliazzo, R., Nisan, N., Wigderson, A.: Pseudorandomness for network algo-
rithms. In: STOC 1994, pp. 356–364. ACM (1994)

19. Levin, L.: One-way functions and pseudorandom generators. Combinatorica 7(4),
357–363 (1987)

20. Naor, M.: Bit Commitment Using Pseudorandomness. Journal of Cryptology 4(2),
151–158 (1991)

21. Nisan, N.: Pseudorandom generators for space-bounded computation. Combina-
torica 12(4), 449–461 (1992)

22. SHA-3: Cryptographic Hash Algorithm Competition. National Institute of Stan-
dards and Technology (2008),
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

23. Yao, A.: Theory and Applications of Trapdoor Functions (Extended Abstract). In:
FOCS 1982, pp. 80–91. IEEE (1982)

http://eccc.hpi-web.de/eccc-reports/2005/TR05-135
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

PMAC with Parity:

Minimizing the Query-Length Influence

Kan Yasuda

NTT Information Sharing Platform Laboratories, NTT Corporation, Japan
yasuda.kan@lab.ntt.co.jp

Abstract. We present a new variant of PMAC (Parallelizable Message
Authentication Code). The new mode calls an n-bit block cipher using
four different block-cipher keys but attains a security bound of a novel
form O(q2/2n + �σq/22n). Here, q denotes the total number of queries,
� the maximum length of each query (in blocks), and σ the total query
complexity (in blocks). Our bound improves over the previous PMAC
security O(�q2/2n) from FSE 2007 and over O(σq/2n) from FSE 2010.
Moreover, when � > 2n/6, our bound holds valid for larger values of q than
the beyond-birthday bound O(�3q3/22n) does—the bound of the PMAC
variant from CRYPTO 2011. In particular, our bound becomes “�-free”
as O(q2/2n) under the condition that all queries are shorter than 2n/2

blocks (i.e., � ≤ 2n/2). Our construction is fairly efficient; it runs at rate
2/3 (meaning 1.5 encryptions to process n bits), which can be made even
faster by increasing the number of keys. Thus our construction brings
substantial gain in security guarantee without much loss in efficiency,
which becomes especially valuable for 64-bit block ciphers.

Keywords: Block cipher, permutation, mode of operation, provable
security, game-playing technique, checksum.

1 Introduction

Message Authentication Codes (MACs) are often realized via some modes of
operation using n-bit block ciphers, where typically we have n = 64 or n = 128.
Prominent modes are CBC MACs (e.g., [2,15,6,11,9,13]) and PMAC [7,17,18].

Most of these block-cipher MAC constructions are provided with proofs of
security, which generally guarantee the level of “birthday security.” The basic
birthday bounds look like O(�2q2/2n) or O(σ2/2n),1 where q is the total number
of (chosen-message) queries (to the MAC oracle), � the maximum length of each
query, and σ the total length of all queries (The lengths are measured in terms
of the number of blocks).

The basic birthday bounds often become insufficient, especially when n = 64.
In legacy systems or lightweight applications where 64-bit block ciphers are used,
it is desirable to provide a higher security guarantee. Roughly speaking, we see

1 With abuse of notation we use the big-O notation to mean that constant coefficients
are omitted.

O. Dunkelman (Ed.): CT-RSA 2012, LNCS 7178, pp. 203–214, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

204 K. Yasuda

that there are two aspects of improving the birthday bounds—improving the
�-factor in the bounds, or the q-factor.

Improving in �: Minimizing the Query-Length Influence. The basic
birthday bound O(�2q2/2n) would become void when � ≈ 2n/2. This limitation
on � can be relaxed in multiple ways.

The first is to provide better security analysis, as done for many of the MAC
constructions. Frequently, bounds of the form O(σ2/2n) can be obtained, rather
than O(�2q2/2n). Bounds of the form O(�q2/2n) are proven for CBC MAC [3]
and for PMAC [12]. Even better bounds O(σq/2n) are achieved for a wide class
of block-cipher MAC constructions [14].

The second is to provide constructions that make use of a counter. The idea
of using a counter appears in previous constructions such as XOR MAC [1]
and PCS [5]. For example, the following PMAC-type construction yields an “�-
free” bound O(q2/2n): For simplicity assume that n is even; divide a (padded)
message M into n/2-bit blocks as M [1],M [2], . . . ,M [m]; then compute C[i] ←
EK1

(
i‖M [i]

)
, where EK1 is an n-bit block cipher using a key K1, which encrypts

the counter i encoded into an n/2-bit string and concatenated to the message
block M [i]; finally output the tag value T ← EK2

(
C[1]⊕ · · · ⊕ C[m]

)
, where ⊕

means bitwise xor. Unfortunately this construction runs at rate 1/2 (meaning
two encryptions to process n bits), and by specification the maximum message
length � is limited to 2n/2 blocks.

The third is to utilize randomization (e.g., [8]), which also yields an �-free
O(q2/2n) bound. Such a scheme requires a (pseudo-)random number generator
and must attach each generated random salt to each tag, which results in a larger
tag size.

Improving in q: Maximizing the Query-Number Acceptance. All of the
above bounds so far have the limitation q < 2n/2. Unlike the case of �, this is
inevitable for classical MAC constructions that possess n-bit intermediate state
values, because for such iterated MACs there exists a generic attack that can
produce a forgery using about 2n/2 queries [16].

To get rid of the limitation q < 2n/2, one must come up with new con-
structions that achieve so-called beyond-birthday security. Such constructions
exist [10,20,21], achieving O(�3q3/22n) bounds. So these constructions remain
secure up to O(22n/3) query complexity.

Unbalance between q and �. Let us look more closely at the two bounds
O(�q2/2n) and O(�3q3/22n). It is not the case that one of them is better than
the other for all parameters of � and q. Indeed, we have seen that, when � = 1,
the former provides only the birthday security O(q2/2n), whereas the latter
O(q3/22n). However, when � = 22n/3, the former still gives us (some) security
O(q2/2n/3), whereas the latter beyond-birthday bound vanishes completely.

It depends on each application which factor, � or q, is more important. In the
current work we focus on the situations where the �-factor is more important.
For example, consider the case of 64-bit block ciphers. The figure � = 2n/2 = 232

PMAC with Parity: Minimizing the Query-Length Influence 205

Fig. 1. Values of � and q (unequally scaled) that make the three bounds vacuous

corresponds to 32 GB, whereas q = 232 ≈ 4.3 × 109 corresponds to about 136
years if executed every second. Then our target is, for example, those systems
that handle data of gigabyte sizes but produce at most one tag per second. We
are unable to list specific examples of such targets but believe that a number of
security applications fall into the category.

Our Contributions. We present a new variant of PMAC which attains a
security bound of a novel form O(q2/2n + �σq/22n). This bound improves over
the previous bounds in terms of �-factor. The new construction has the following
features:

1. The scheme does not use randomization.
2. The algorithm can handle messages having � > 2n/2 blocks.
3. The basic version of our construction runs at rate 2/3 (meaning 1.5 encryp-

tions to process n bits).
4. The new bound improves over O(�σ/2n) for all values of � and q.
5. The new bound improves overO(�3q3/22n) for the following values of � and q:

(a) when � > 2n/3,
(b) when 2n/3 ≥ � ≥ 2n/6 and q > 2n/�3.

See Fig. 1, which plots the values of � and q that voids the bounds O(q2/2n +
�σq/22n), O(�3q3/22n) and O(�q2/2n). For n = 64, � = 2n/6 corresponds to
about 12.7 kB and � = 2n/3 to 20.2 MB. In practice, one is interested more
in the curve for which there is some (e.g., 1/232) security left rather than in
the curve for which the security vanishes. The diagram indicating such locations
would become essentially the same, except that it is drawn on a sliding scale.

206 K. Yasuda

Unfortunately, the new construction has some serious disadvantages:

1. The basic version uses four independent block-cipher keys.
2. Different versions run faster at rate 3/4, 4/5, ..., but using five, six, ... dif-

ferent keys.
3. The new construction requires larger memory to store intermediate state

values.

These undesirable features may prevent us from applying the new construction to
some of the lightweight or legacy systems using 64-bit block ciphers. However,
the current work still makes a significant contribution to the construction of
block-cipher MACs, demonstrating a new tradeoff between performance and
security.

Organization of the Paper. Necessary symbols and security notions are given
in Sect. 2. We start with the basic version, a rate-2/3 construction, which is
defined in Sect. 3. Its security proof is given in Sect. 4. In Sect. 5 we describe
other (rate-3/4, 4/5, etc.) versions. We end the paper by making some remarks
in Sect. 6.

2 Preliminaries

Notation System. Let the symbol Perm(n) denote the set of all permutations
P : {0, 1}n → {0, 1}n. Similarly, let Func(n) denote the set of all functions
F : {0, 1}n → {0, 1}n. Fix a key spaceK. UsuallyK = {0, 1}k, where k = 80, 128,
192 or 256. We define a blockcipher E as a function E : K × {0, 1}n → {0, 1}n
such that for each key K ∈ K the specified function EK is in Perm(n). Here
EK : {0, 1}n → {0, 1}n is defined as EK(X) := E(K,X). We write E−1

K for the
inverse permutation.

We sometimes treat {0, 1}n as a set of integers {0, 1, . . . , 2n − 1}. This can
be done by converting an n-bit string an−1 · · ·a1a0 ∈ {0, 1}n to an integer
an−12

n−1 + · · · + a12 + a0, where multiplication and addition are arithmetic
(modulo 2n.)

We let GF (2n) be the finite field having 2n elements. We treat {0, 1}n also as
GF (2n). That is, we identify an n-bit string an−1 · · · a1a0 ∈ {0, 1}n with a formal
polynomial an−1x

n−1 + · · ·a1x + a0 ∈ GF (2)[x]. For this we fix an irreducible
polynomial a(x) = xn + an−1x

n−1 + · · ·+ a1x+ a0 ∈ GF (2)[x]. For example we
can choose irreducible polynomials a(x) = x64 + x4 + x3 + x+ 1 for n = 64 and
a(x) = x128+x7+x2+x+1 for n = 128. These are actually primitive polynomials,
meaning the element 2 = x generates the entire multiplicative group GF (2n)∗

of order 2n − 1.

Security Definitions. In this paper an adversary A is an oracle machine.
We write AO(·) = y to denote the event that A outputs y after interacting
with an oracle O(·). We measure the resources of A in terms of time and
query complexities. We fix a model of computation and a method of encoding.

PMAC with Parity: Minimizing the Query-Length Influence 207

The query complexity is measured in terms of the number q of queries, in terms of
the maximum length � of each query, and in terms of the total query complexity
σ. The resources � and σ are measured in blocks (n bits).

We say that (informally) a block cipher E is a (secure) pseudo-random permu-

tation (PRP) if it is indistinguishable from a random permutation P
$←− Perm(n),

where
$←− means uniformly random sampling. Specifically, we consider the ad-

vantage function

AdvprpE (A) := Pr
[
AEK(·) = 1;K

$←− K
]
− Pr

[
AP (·) = 1;P

$←− Perm(n)
]
,

and if this quantity is “small enough” for a class of adversaries, then we say that
E is a “secure” PRP. Here note that the probabilities are defined over internal
coin tosses of A, if any, as well as over the choices of K and P . We further define
AdvprpE (t, q) := maxA AdvprpE (A), where the max runs over adversaries A whose
time complexity is at most t, making at most q queries to its oracle.

With abuse of notation let {0, 1}∗ denote the set of finite bit strings whose
length is at most � blocks. Let Func(∗, n) denote the set of functionsG : {0, 1}∗ →
{0, 1}n. Our goal is to construct a pseudo-random function (PRF) FK : {0, 1}∗ →
{0, 1}n having keys K ∈ K′. Recall that any PRF can be used as a secure MAC.
We say that F is a secure PRF if it is indistinguishable from a random function
G

$←− Func(∗, n), or more precisely, we define

AdvprfF (A) := Pr
[
AFK(·) = 1;K

$←− K′]− Pr
[
AG(·) = 1;G

$←− Func(∗, n)
]
.

We also define AdvprfF (t, q, �, σ) to be the maximum advantage running over
adversaries A whose resources are limited to t, q, �, σ.

Game-Playing Techniques and Lazy Sampling. Our security proofs are
based on the game-playing techniques [4]. We perform lazy sampling for a ran-

dom permutation P
$←− Perm(n). That is, P is initially everywhere undefined,

and when a value P (X) becomes necessary at some point in the game, a corre-

sponding range point C is randomly sampled as C
$←− {0, 1}n.

3 Description of the New Mode

In this section we define the rate-2/3 version of our PMAC variant. See Algo-
rithm 1 and Fig. 2. The algorithm uses four permutations P1, P2, P3 and P4,
which are in practice realized via a block cipher using four keys.

In pre-computation stage the algorithm PMAC2/3 prepares mask values as
L1 ← P1(0), L2 ← P2(0) and L3 ← P3(0). These values are updated via finite-
field multiplication by 2 as 2iL1, 2

iL2 and 2iL3.
The algorithm takes a message input M and adds the usual 10∗ padding

so that the number of (n-bit) blocks becomes an even number. The padded
message M‖10∗ is then divided into n-bit blocks as M [1], . . . ,M [2m] before
being processed.

208 K. Yasuda

Input: a message M ∈ {0, 1}∗
Output: a tag T
L1 ← P1(0); L2 ← P2(0); L3 ← P3(0)(
M [1], . . . ,M [2m]

)
←M‖10∗

for i = 1 to m do
X[2i − 1]← M [2i− 1]⊕ 2i−1L1; X[2i]←M [2i] ⊕ 2i−1L2

C[2i− 1]← P1

(
X[2i − 1]

)
; C[2i]← P2

(
X[2i]

)
Y [i]←M [2i − 1]⊕M [2i] ⊕ 2i−1L3

D[i]← P3

(
Y [i]

)
end
S ← C[1]⊕ · · · ⊕ C[2m]⊕D[1] ⊕ · · · ⊕D[m]
T ← P4(S)
return T
Algorithm 1: The rate-2/3 construction PMAC2/3[P1, P2, P3, P4]

Fig. 2. A pictorial representation of the rate-2/3 construction

The rest of the process is PMAC-like, except that 1) we use different keys be-
tween odd-numbered blocks and even-numbered blocks, 2) we have extra “check-
sum” blocks M [2i− 1]⊕M [2i] for which another key is used, and 3) we use yet
another key for the finalization.

The exact amount of memory to run the rate-2/3 construction depends on the
specific implementation. Generally, the different keys K2,K3,K4, the different
mask values L2, L3, and the checksum block M [2i − 1] ⊕M [2i] are the state
values that need extra memory.

4 Security Proofs

We now prove our security result for the rate-2/3 construction; we prove that
the algorithm PMAC2/3[EK1 , EK2 , EK3 , EK4] is a secure PRF having a bound of
the form O(q2/2n + �σq/22n):

Theorem 1. The algorithm PMAC2/3[EK1 , EK2 , EK3 , EK4] is a secure PRF on
the assumption that the underlying block cipher E is a secure PRP. More pre-
cisely, we have

PMAC with Parity: Minimizing the Query-Length Influence 209

initialize: P1, P2, P3
$←− Perm(n), F

$←− Func(n)
on α-th query M (α) do

S(α) ← inner[P1, P2, P3]
(
M (α)

)
T ← F

(
S(α)

)
if S(β) = S(α) for some β ∈ {1, . . . , α− 1} then

if ¬bad then
coll(β, α)← true

end

bad← true T
$←− {0, 1}n

end
return T

end

Algorithm 2: Games G0 (with the boxed statement) and G1 (without)

Advprf
PMAC2/3[EK1 ,EK2 ,EK3 ,EK4]

(t, q, �, σ) ≤ q2

2n
+

�σq

22n
+ 4AdvprpE (t′, σ),

where t′ is t plus the time complexity to compute the E algorithm σ times.

Proof. We consider the algorithm PMAC2/3[P1, P2, P3, F] where P1, P2, P3 are
three independent random permutations and F an independent random function.

Let A be an adversary playing the games defined in Algorithm 2. We limit
the resources of A by t, q, �, σ. In the games we use the algorithm inner, which
is defined to be the subroutine of PMAC2/3 that outputs S, so that we have

PMAC2/3[P1, P2, P3, F](M) = F
(
inner[P1, P2, P3](M)

)
.

Without loss of generality we assume that adversary A never repeats its queries.

We observe that on one hand game G0 corresponds to a truly random function
mapping {0, 1}∗ to {0, 1}n. On the other hand, game G1 corresponds to the
algorithm PMAC2/3[P1, P2, P3, F]. Therefore, by the fundamental lemma of game
playing, we get

Advprf
PMAC2/3[P1,P2,P3,F](A) = Pr

[
G1(A) outputs 1

]
− Pr

[
G0(A) outputs 1

]

≤ Pr
[
G1(A) sets bad

]

= Pr

[∨
β<α

(
G1(A) sets coll(β, α)

)]

≤
∑
β<α

Pr
[
G1(A) sets coll(β, α)

]
,

so in the following we evaluate the probability Pr
[
G1(A) sets coll(β, α)

]
.

210 K. Yasuda

initialize: P1, P2, P3
$←− Perm(n)

(M,M ′)← B
S ← inner[P1, P2, P3](M)
S′ ← inner[P1, P2, P3](M

′)
if M �= M ′ and S = S′ then

bad← true
end

Algorithm 3: Game G for adversary B

To do this, let us consider game G defined in Algorithm 3. The goal of the
adversary B playing game G is to find an inner collision S = S′ for different
messages M = M ′.

Let us construct an adversary Bβ,α that uses A and plays game G. The ad-
versary Bβ,α runs A and returns random strings to A’s oracle queries. At the
β-th query, Bβ,α stores the query M (β) and resumes A. At the α-th query, Bβ,α

stops A and outputs (M (β),M (α)). If A is to set coll(β, α), then we observe
that Bβ,α correctly simulates game G1 for A, up to (α − 1)-th query, and Bβ,α

must set bad in game G. Therefore, we get

Pr
[
G1(A) sets coll(β, α)

]
≤ Pr

[
G(Bβ,α) sets bad

]
,

and in the following lemma we evaluate the quantity Pr
[
G(B) sets bad

]
:

Lemma 1 (Main Lemma). For two messages M,M ′ ∈ {0, 1}∗ such that M =
M ′, we have

Pr
[
inner[P1, P2, P3](M) = inner[P1, P2, P3](M

′);

P1, P2, P3
$←− Perm(n)

]
≤ 1

2n
+

m2

22n
,

where m is half the block length of the longer message (M or M ′).

Proof. We prove this lemma by lazy sampling of P1, P2, P3. Without loss of
generality assume m ≥ m′.

Case m > m′. We focus on the last input blocks X [2m−1], X [2m]. We sample
P1(0) and P2(0). The probability that both of the inputsX [2m−1], X [2m] collide
with some other inputs to P1, P2 (including the zero input 0) is at most

m

2n
· m
2n

=
m2

22n
.

Otherwise at least one of the inputs must get sampled in computing the state
value S or S′. In that case the probability that S = S′ happens is at most 1/2n,
which proves the lemma for this case.

PMAC with Parity: Minimizing the Query-Length Influence 211

Case m = m′. Let i be the maximum index such that
(
M [2i − 1],M [2i]

)
=(

M ′[2i − 1],M ′[2i]
)
(The value i is uniquely determined as soon as the two

messages M and M ′ are fixed.) We also look at the checksum blocks M [2i −
1] ⊕M [2i] and M ′[2i − 1] ⊕M ′[2i]. We observe that, of these three blocks in
comparison, at least two of them are different (betweenM andM ′); so choose two
different blocks (according to some fixed order). Sample P1(0), P2(0) and P3(0).
The probability that both of that different input blocks collide with somewhere
else (including zero) is at most

m

2n
· m
2n

=
m2

22n
.

Otherwise at least one of the inputs must get sampled in computing the state
value S or S′. In that case the probability that S = S′ happens is at most 1/2n.
So this case is also proven. ��

Now we go back to computing the overall probability. We would like to evaluate
the quantity

∑
β<α

Pr
[
G(Bβ,α) sets bad

]
≤
∑
β<α

(
1

2n
+

m2

22n

)
,

where m is half the block size of the longer message, either M (β) or M (α).
We reorder the messages so that M (1), M (2), . . ., M (q) are in (weakly) length-
increasing order, M (1) being (one of) the shortest message and M (q) (one of)
the longest. Now we have

∑
β<α

(
1

2n
+

m(α)2

22n

)
=
∑
β<α

1

2n
+
∑
β<α

m(α)2

22n

≤
(
q

2

)
· 1

2n
+

�+ 1

2
·
∑
β<α

m(α)

22n

≤ q2

2n+1
+

�+ 1

2
·

q∑
α=2

α−1∑
β=1

m(α)

22n

≤ q2

2n+1
+

�+ 1

2
·

q∑
α=2

m(α)(α− 1)

22n

≤ q2

2n+1
+

�+ 1

2
· (σ − 1)(q − 1)

22n

≤ q2

2n+1
+

�σq

22n
,

to which we add terms q2/2n+1 (PRP/PRF switching lemma [4] for P4), and
4AdvprpE (t′, σ) (replacing P1, P2, P3, P4 with EK1 , EK2 , EK3 , EK4). This would
give us the desired bound. ��

212 K. Yasuda

Input: a message M ∈ {0, 1}∗
Output: a tag T
L1 ← P1(0); L2 ← P2(0); L3 ← P3(0); L4 ← P4(0)(
M [1], . . . ,M [3m]

)
←M‖10∗

for i = 1 to m do
X[3i − 2]← M [3i− 2]⊕ 2i−1L1; X[3i − 1]← M [3i− 1]⊕ 2i−1L2;
X[3i]←M [3i] ⊕ 2i−1L3

C[3i− 2]← P1

(
X[3i − 2]

)
; C[3i− 1]← P2

(
X[3i − 1]

)
; C[3i]← P3

(
X[3i]

)
Y [i]←M [3i − 2]⊕M [3i− 1]⊕M [3i]⊕ 2i−1L4

D[i]← P4

(
Y [i]

)
end
S ← C[1]⊕ · · · ⊕ C[3m]⊕D[1] ⊕ · · · ⊕D[m]
T ← P5(S)
return T
Algorithm 4: The rate-3/4 construction PMAC3/4[P1, P2, P3, P4, P5]

Fig. 3. A pictorial representation of the rate-3/4 construction

5 Smaller-Rate Versions

We generalize our basic version to obtain rate-3/4, 4/5, etc. constructions. To
do this, we use the idea from [19]. See Algorithm 4 and Fig. 3 for the definition
of rate-3/4 version. The key idea is to make the sum of three blocks, rather than
two. Similarly, the sum of four blocks would yield the rate-4/5 construction.

The three-sum version indeed has a smaller rate of 3/4 but at the same time
introduces a couple of problems. One is inefficiency in padding; depending on
the message length, one might have to pad relatively large number of zeros to
make the number of blocks divisible by three. The other is the larger number of
keys and larger memory size; note that now we have to store four mask values,
L1, L2, L3 and L4.

However, we still have the same security level as the rate-2/3 construction,
as shown in the following theorem. Its proof is similar to the rate-2/3 case and
hence omitted.

PMAC with Parity: Minimizing the Query-Length Influence 213

Theorem 2. The algorithm PMAC3/4[EK1 , . . . , EK5] is a secure PRF on the as-
sumption that the underlying block cipher E is a secure PRP. More precisely,
we have

Advprf
PMAC3/4[EK1 ,...,EK5]

(t, q, �, σ) ≤ q2

2n
+

�σq

22n
+ 5AdvprpE (t′, σ),

where t′ is t plus the time complexity to compute the E algorithm σ times.

6 Concluding Remarks

We have provided a new PMAC variant whose security bound is of the form
O(q2/2n+ �σq/22n). The bound becomes �-free as O(q2/2n) under the condition
� ≤ 2n/2. Ideally, we would like to obtain O(q2/2n) under the condition � ≤ 2n,
but no such constructions (without randomization) seem to be known.

Our construction achieves rate 2/3, 3/4, etc.. Ideally, we would like to have a
rate-1 construction having a similar security bound. Again, no such constructions
(without randomization) seem to be known.

Finally, we make a remark about the number of keys. Our construction re-
quires at least four independent keys. It would certainly be desirable if one could
reduce the number of block-cipher keys. It is of both practical and theoretical
interest to develop techniques to reduce the number of keys in this kind of situ-
ation.

Acknowledgments. The author would like to thank CT-RSA 2012 PC mem-
bers and reviewers for accurate and helpful feedback.

References

1. Bellare, M., Guérin, R., Rogaway, P.: XOR MACs: New Methods for Message
Authentication Using Finite Pseudorandom Functions. In: Coppersmith, D. (ed.)
CRYPTO 1995. LNCS, vol. 963, pp. 15–28. Springer, Heidelberg (1995)

2. Bellare, M., Kilian, J., Rogaway, P.: The Security of Cipher Block Chaining. In:
Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 341–358. Springer, Hei-
delberg (1994)

3. Bellare, M., Pietrzak, K., Rogaway, P.: Improved Security Analyses for CBC MACs.
In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 527–545. Springer, Hei-
delberg (2005)

4. Bellare, M., Rogaway, P.: The Security of Triple Encryption and a Framework
for Code-Based Game-Playing Proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

5. Bernstein, D.J.: How to stretch random functions: The security of Protected
Counter Sums. J. Cryptology 12(3), 185–192 (1999)

6. Black, J.A., Rogaway, P.: CBC MACs for Arbitrary-Length Messages: The Three-
Key Constructions. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp.
197–215. Springer, Heidelberg (2000)

214 K. Yasuda

7. Black, J.A., Rogaway, P.: A Block-Cipher Mode of Operation for Parallelizable
Message Authentication. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS,
vol. 2332, pp. 384–397. Springer, Heidelberg (2002)

8. Dodis, Y., Pietrzak, K.: Improving the Security of MACs via Randomized Message
Preprocessing. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 414–433.
Springer, Heidelberg (2007)

9. Iwata, T., Kurosawa, K.: OMAC: One-Key CBC MAC. In: Johansson, T. (ed.)
FSE 2003. LNCS, vol. 2887, pp. 129–153. Springer, Heidelberg (2003)

10. JTC1. ISO/IEC 9797-1:1999 Information technology—Security techniques—
Message Authentication Codes (MACs)—Part 1: Mechanisms using a block cipher
(1999)

11. Kurosawa, K., Iwata, T.: TMAC: Two-Key CBC MAC. In: Joye, M. (ed.) CT-RSA
2003. LNCS, vol. 2612, pp. 33–49. Springer, Heidelberg (2003)

12. Minematsu, K., Matsushima, T.: New Bounds for PMAC, TMAC, and XCBC. In:
Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 434–451. Springer, Heidelberg
(2007)

13. Nandi, M.: Fast and Secure CBC-Type MAC Algorithms. In: Dunkelman, O. (ed.)
FSE 2009. LNCS, vol. 5665, pp. 375–393. Springer, Heidelberg (2009)

14. Nandi, M.: A Unified Method for Improving PRF Bounds for a Class of Blockcipher
Based MACs. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 212–
229. Springer, Heidelberg (2010)

15. Petrank, E., Rackoff, C.: CBC MAC for real-time data sources. J. Cryptology 13(3),
315–338 (2000)

16. Preneel, B., van Oorschot, P.C.: MDx-MAC and Building Fast MACs from Hash
Functions. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 1–14.
Springer, Heidelberg (1995)

17. Rogaway, P.: Efficient Instantiations of Tweakable Blockciphers and Refinements
to Modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004)

18. Sarkar, P.: Pseudo-random functions and parallelizable modes of operations of a
block cipher. IEEE Transactions on Information Theory 56(8), 4025–4037 (2010)

19. Yasuda, K.: Multilane HMAC—Security beyond the Birthday Limit. In: Srinathan,
K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 18–32.
Springer, Heidelberg (2007)

20. Yasuda, K.: The Sum of CBC MACs Is a Secure PRF. In: Pieprzyk, J. (ed.) CT-
RSA 2010. LNCS, vol. 5985, pp. 366–381. Springer, Heidelberg (2010)

21. Yasuda, K.: A New Variant of PMAC: Beyond the Birthday Bound. In: Rogaway,
P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 596–609. Springer, Heidelberg (2011)

Boomerang Attacks on Hash Function

Using Auxiliary Differentials

Gaëtan Leurent and Arnab Roy

Université du Luxembourg and SnT

Abstract. In this paper we study boomerang attacks in the chosen-key
setting. This is particularly relevant to hash function analysis, since many
boomerang attacks have been described against ARX-based designs.

We present a new way to combine message modifications, or auxiliary
differentials, with the boomerang attack. We show that under some con-
ditions, we can combine three independent paths instead of two for the
classical boomerang attack. Our main result is obtained by applying this
technique to round-reduced Skein-256, for which we show a distinguisher
on the keyed permutation with complexity only 257, and a distinguisher
on the compression function with complexity 2114. We also discuss appli-
cation of the technique to Skein-512 and show some problems with the
paths used in previous boomerang analysis of Skein-512.

Keywords: Hash function, SHA-3 competition, chosen-key, Skein, Three-
fish, boomerang attack, higher order differential, zero-sum.

1 Introduction

The boomerang attack was proposed by Wagner in 1999 [16] as a cryptanalysis
technique against block ciphers. This clever idea allows to combine short differ-
ential paths for the top half and the bottom half of a cipher, instead of using a
long differential path for the full cipher.

Recently, this idea has been applied to hash function building blocks, as part of
the new hash function results inspired by the SHA-3 competition. In [4] Biryukov
et al. proposed boomerang distinguishers on compression functions and applied
it to round-reduced BLAKE. Mendel and Lamberger [11] also independently pro-
posed a boomerang attack on the compression function of SHA-2. More recently
at SAC 2011, Yu Sasaki [14] gave a boomerang distinguisher on the full com-
pression function of HAVAL. Boomerang distinguishers have also been applied
to Skein/Threefish [1,5].

Another related work by Joux and Peyrin [7] studies boomerangs in the con-
text of hash functions. However this result does not try to build a boomerang
property for a hash function, but only uses auxiliary differential paths, which are
related to the boomerang idea, as a tool for message modifications.

The SHA-3 competition [13] is now at the final phase with 5 remaining
hash function candidates; and Skein is one of them. It is one of the two ARX
(Addition-Rotation-Xor) designs amongst those candidates.

O. Dunkelman (Ed.): CT-RSA 2012, LNCS 7178, pp. 215–230, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

216 G. Leurent and A. Roy

The most successful attack proposed against Skein is the rotational rebound
attack [10], by Khovratovich et al., reaching 57 out of 72 rounds. This work im-
proves upon the rotational cryptanalysis technique [9] which reached 42 rounds
for Skein-512 and 39 rounds for Skein-256. Those results are based on rotation-
invariant constants in the key schedule. However for the final round of the SHA-3
competition, Skein has been tweaked [6] to avoid those rotation invariant con-
stants, and this technique is no longer applicable.

Various other techniques have also been applied to Skein, which do not depend
on rotation-invariant constants. Su et al. [15] gave near collisons on 24 rounds
for a cost of 260 and 2230 compression function calls on Skein-256 and Skein-
512 respectively. Aumasson et al. [1] also used a boomerang attack to launch
a key recovery attack on Threefish-512 for 32, 34 and 35 rounds. In [5] Chen
and Jia proposed a bommerang distinguisher with complexity 2189 on 32-rounds
of Threefish-512, and used it to mount a key-recovery attacks on 33 and 34
rounds, with complexity 2324.6 and 2474.4, respectively. However, we show in
Section 5.2 that the paths used in this attack are in fact incompatible. Another
recent result by Yu et al. gives semi-free start near collision for up to 32 rounds
of Skein-256 [18] with complexity 2105.

Our Contributions. We study boomerang distinguishers on round-reduced
Skein-256. The analysis is based on high probability related-key differential trails
in Threefish (probability 1, 2−6, and 2−39 for 8, 12, and 16 rounds respectively),
like previous analysis [1,5,15].

Our main contribution is a technique using auxiliary differentials, which al-
lows to skip some rounds in the middle of the boomerang in a chosen-key setting.
This is similar to previous works using message modifications (e.g. on Skein-
512 [18,10]) but we use it in a boomerang setting. When applied to the 32-round
attack on Skein, we can avoid 8 rounds in the middle, and this results in a sig-
nificant complexity improvement. Moreover, since the complexity is relatively
low, we can experimentally measure the amplification effect, by implementing
the attack on 28 rounds. This results in a boomerang distinguisher with com-
plexity 257 for the keyed-permutation (i.e. for Threefish-256). When applied to
the compression function with the feed-forward, we show that our attack has
complexity at most 2114, but we cannot measure experimentally the full effect of
the amplification, so we expect the actual complexity to be significantly lower.
A summary of our results is given in Table 1.

Additionally, we also discuss the hypothesis of independence between the
boomerang paths for ARX primitives, and give an example of previous work
where the hypothesis is not valid, and the paths are in fact incompatible.

2 The Boomerang Attack

The boomerang attack was introduced by David Wagner in 1999 [16] against
block ciphers, and the initial idea has been developed through many later results,

Boomerang Attacks on Hash Function Using Auxiliary Differentials 217

Table 1. Summary of the attacks on the compression function (CF) and the keyed
permutation (KP) of Skein. We only mention results which are independent of the
constants used Skein (i.e. which apply to the round-3 version).

Attack CF/KP Rounds CF/KP calls Reference

Near collisions (Skein-256) CF 24 260 [15]
Boomerang dist. (Threefish-512) KP 32 2189 [5]
Key Recovery (Threefish-512) KP 33 2324.6 [5]
Key Recovery (Threefish-512) KP 34 2474.4 [5]
Near collisions (Skein-256) CF 32 2105 [18]
Key Recovery (Threefish-512) KP 32 2312 [1]
Key Recovery (Threefish-512) KP 35 2478 [1]

Boomerang dist. (Skein-256) CF and KP 24 218 Sec. 4.2
Boomerang dist. (Threefish-256) KP 28 221 Sec. 4.2
Boomerang dist. (Skein-256) CF 28 224 Sec. 4.2
Boomerang dist. (Threefish-256) KP 32 257 Sec. 4.2
Boomerang dist. (Skein-256) CF 32 2114 Sec. 4.2

including [16,8,2,3,4,11]. In this section, we go through the main results of those
papers, in order to explain the techniques needed used in our attack on Skein.

The main idea of the boomerang attack is to consider a block cipher as a com-
position of two sub-ciphers, and to use an encryption oracle as well as a decryp-
tion oracle in order to build differential pair for each sub-cipher independently.
Given a permutation f that can be decomposed into two sub-permutations fa
and fb with f = fb ◦ fa (e.g. a block cipher), one first identifies some high
probability differentials1 α → α′ with probability pa for fa and γ → γ′ with
probability pb for fb, relative to a group operation + (in practice, the group
operation is either the exclusive or ⊕, or the modular addition �).

The attacker selects two plain-texts P (0) and P (1) with P (1) = P (0) + α, and
requests the corresponding cipher-texts C(0) and C(1). Then he builds the cipher-
texts C(2) = C(0)+γ′ and C(3) = C(1)+γ′, and requests the corresponding plain-
texts P (2) and P (3). This is illustrated by Figure 1. With this construction, we
expect that P (3) = P (2)+α with probability p2ap

2
b . This comes from the following

observations:

(i) With probability pa, (P
(0), P (1)) is a good pair for the differential α → α′

in fa, and we have X(1) = X(0) + α′, where X(i) = fa(P
(i)).

(ii) With probability p2b , (C
(0), C(2)) and (C(1), C(3)) are good pairs for the

differential γ′ → γ′ in f−1
b , and we have X(2) −X(0) = X(3) −X(1) = γ,

where X(i) = f−1
b (C(i)).

(iii) If (i) and (ii) are satisfied, then we have

X(3) −X(2) = (X(3) −X(1))− (X(2) −X(0)) + (X(1) −X(0)) = α′.

1 We use this to denote Prx,k [fa(x+ α) = fa(x) + α′] = pa.

218 G. Leurent and A. Roy

With probability pa, (X
(2), X(3)) is a good pair for the differential α′ → α

in f−1
a , and we have P (3) = P (2) + α.

This basic attack gives a distinguisher for f , and it can be extended to a key-
recovery attack using partial encryption/decryption.

P (0)

P (1)

P (2)

P (3)

X(0)

X(1)

X(2)

X(3)

C(0)

C(1)

C(2)

C(3)

α

α

α′

α′

γ

γ

γ′

γ′

fa : Pr [α→ α′] = pa

fb : Pr [γ → γ′] = pb

Fig. 1. The boomerang attack

Boomerang attack are particularly efficient on ARX-like designs because the
probability of differential paths drops quickly when the number of rounds grows.
It is usually possible to find good differential for a few rounds, but extending
them leads to more diffusion and very bad probabilities. More generally, if we
denote the probability of the best differential for function f by bp(f), then the
boomerang attack is better than classical differential attack if:

bp(fa)
2 bp(fb)

2 > bp(fb ◦ fa)

2.1 Amplified Probabilities

We can compute a better estimate of the complexity of a boomerang attack
if we remark that we don’t actually need to specify the differences α′ and γ.
As long as the two pairs (C(0), C(2)) and (C(1), C(3)) reach the same difference
X(2) −X(0) = X(3) −X(1), the boomerang attack will work. We can compute

Boomerang Attacks on Hash Function Using Auxiliary Differentials 219

the complexity by summing over all possible α′ and γ, which is equivalent to
replacing the probabilities pa and pb by the following values:

p̂a =

√∑
α′

Pr [α→ α′] p̂b =

√∑
γ

Pr [γ → γ′]

These are sometimes called amplified probabilities, but this is unrelated to the
amplified bommerang attack of [8].

We can further improve the complexity by considering two independent dif-
ferentials α0 → α′

0 and α1 → α′
1 in fa, and γ0 → γ′

0 and γ1 → γ′
1 in fb. The

paths can be used for a boomerang attack as long as α′
1−α′

0 = γ1−γ0, as shown
in [16].

In practice, the amplified probabilities are often estimated experimentally
with random values.

2.2 Related-Key Boomerang

The boomerang attack can also be used with related-key differentials, instead
of fixed-key differentials, as shown in [3]. In this case, we use a differential2

α, αk → α′ with probability pa for fa, and β, βk → β′ with probability pb for fb.
Starting from a random plain-text P (0), we compute

P (1) = P (0) + α

C(0) = f(P (0), k) C(1) = f(P (1), k + αk)

C(2) = C(0) + β′ C(3) = C(1) + β′

P (2) = f−1(C(2), k + βk) P (3) = f−1(C(3), k + αk + βk)

and we obtain P (3) = P (2) + α with probability p2ap
2
b .

2.3 Application to the Known-Key Setting

In a known-key or chosen-key setting, a boomerang property can be used to
distinguish a given permutation from a random one, as first used in [4] and [11].
The boomerang attack can generate quartets (C(i), P (i))3i=0 with:

C(i) = f(P (i))

P (1) − P (0) = P (3) − P (2) = α C(2) − C(0) = C(3) − C(1) = γ′ (1)

Alternatively, we can consider the boomerang as a zero-sum property [4], or
higher-order differential collision [11] since a quartet satisfies:

ΔP (i) = (P (3) − P (2))− (P (1) − P (0)) = 0

ΔC(i) = (C(3) − C(2))− (C(1) − C(0)) = (C(3) − C(1))− (C(2) − C(0)) = 0

2 We use this to denote Prx,k [fa(x+ α, k + αk)− fa(x, k) = α′] = pa.

220 G. Leurent and A. Roy

Moreover, in a known-key or chosen-key setting, it is possible to start from the
middle. First one selects some values X(0), X(1), X(2), X(3) with X(2) −X(0) =
X(3) −X(1) = γ and X(1) −X(0) = X(3) −X(2) = α′; then he compute P (i) =
f−1
a (X(i)) and C(i) = fb(X

(i)). This allows to select specific X(i)’s that satisfy
the paths with better probability that a random quartet.

For an n-bit random permutation, the generic complexity for obtaining a
quartet satisfying (1) with fixed α, γ′ is 2n. However, if only the difference
(P (3) − P (2)) = (P (1) − P (0)) = α is fixed, the complexity is only 2n/2. If we
only want ΔP (i) = 0 and ΔC(i) = 0, the complexity is lower bounded by 2n/3,
but the best known attack still takes time 2n/2.

2.4 Application to Hash Function

Boomerang attacks have been applied to hash function, in order to attack some
of the components of the design. A bommerang attack can readily be applied
to the block-cipher or permutation inside most of the designs. It can also be
extended to a distinguisher against the compression function of most block-
cipher based designs, as shown in [11] and [4]. For instance let us consider a
compression function following the MMO construction: CF(h,m) = Eh(m)+m,
and a quartet P (i), C(i) for the block cipher E under the related keys K(i). The
quartet satisfies:

C(i) = EK(i)(P (i))

ΔK(i) = (K(3) −K(2))− (K(1) −K(0)) = 0

ΔP (i) = (P (3) − P (2))− (P (1) − P (0)) = 0

ΔC(i) = (C(3) − C(1))− (C(2) − C(0)) = 0.

Moreover, we have

ΔCF(K(i), P (i))

=
[
CF(K(3), P (3))− CF(K(2), P (2))

]
−
[
CF(K(1), P (1))− CF(K(0), P (0))

]

=
[
(C(3) + P (3))− (C(2) + P (2))

]
−
[
(C(1) + P (1))− (C(0) + P (0))

]

= (C(3) − C(1))− (C(2) − C(0)) + (P (3) − P (2))− (P (1) − P (0)) = 0

This is a zero-sum property for the compression function. For an n-bit random
compression function the best known attack to build a quartet with a zero-sum
output takes time 2n/3 using Wagner’s generalized birthday attack [17]. If we
also want the inputs to be a zero-sum, the best known attack takes time 2n/2.

3 Boomerang Attack Using Auxiliary Differentials

The main idea of our attack is to use auxiliary paths as message modifications.
This idea has already be applied to hash function cryptanalysis by Joux and

Boomerang Attacks on Hash Function Using Auxiliary Differentials 221

Peyrin in [7], in the context of a classical differential attack. Here, we apply
it to the boomerang setting, with related-key paths. The main idea is to build
boomerang quartet in an inside-out fashion, and to use auxiliary paths to effi-
ciently generate values in the middle, so that they conform to several rounds.

We consider a function f that can be decomposed into three sub-functions
f = fc ◦ fb ◦ fa, and we consider a differential in each of those sub-functions:

– for fa, we use a differential α→ α′ with probability pa
– for fb, we use a set B of b differentials βj → β′

j with probability pb
– for fc, we use a differential γ → γ′ with probability pc

We describe the idea with fixed-key differential for simplicity, but it works in
the same way with related key differentials. We start with a boomerang quartet
(U (0), U (1), U (2), U (3))→ (V (0), V (1), V (2), V (3)) for fb, with

U (1) = U (0) + α′ U (3) = U (2) + α′ V (2) = V (0) + γ V (2) = V (1) + γ

Using an auxiliary path βj → β′
j, we construct U

(i)
∗ = U (i)+βj . With probability

p4b , we obtain a new quartet (U
(0)
∗ , U

(1)
∗ , U

(2)
∗ , U

(3)
∗) → (V

(0)
∗ , V

(1)
∗ , V

(2)
∗ , V

(3)
∗),

where V
(i)
∗ = V (i) + β′

j . Then, we have

U
(1)
∗ = U

(0)
∗ + α′ U

(3)
∗ = U

(2)
∗ + α′ V

(2)
∗ = V

(0)
∗ + γ V

(2)
∗ = V

(1)
∗ + γ

We compute the plain-texts and cipher-texts corresponding to these values, and
with probability p2a · p2c , this will result in a boomerang quartet for f , as shown
in Figure 2.

If the initial cost to build a quartet for fb is C, then we can build a quartet
for the full f with complexity:

1

p2ap
2
c

(
C

b · p4b
+ 1

)

For the application to Skein, we use properties of the key-schedule to build a set
of related-key differentials βk with probability 1. This results in C ' b · p4c , and
we essentially skip rounds in the middle of the permutation for free.

4 Application to Skein

Brief Description of Skein. The compression function of Skein is based on
the block cipher Threefish. Let Ur,i be the ith word of the encrypted state after
r rounds and nw be the number of words in a state. Then for each round we
have

Vr,i =

{
Ur,i +Kr/4,i if r mod 4 = 0

Ur,i otherwise

222 G. Leurent and A. Roy

U(0)

U(1)

U(2)

U(3)

V (0)

V (1)

V (2)

V (3)

α′

α′

γ

γ

U(0)
∗

U(1)
∗

U(2)
∗

U(3)
∗

V (0)
∗

V (1)
∗

V (2)
∗

V (3)
∗

α

α

α′

α′

γ

γ

γ′

γ′

βk

βk

βk

βk

β′
k

β′
k

β′
k

β′
k

fa

Pr
[
α → α′] = pa

fb

Pr
[
βk → β′

k

]
= pb

fc

Pr
[
γ → γ′] = pc

Fig. 2. Using auxiliary paths in a boomerang distinguisher

where Kr/4,i is the ith word of the round key at round r/4. The state Ur+1,i

(for i = 0, 1, .., nw) after round r + 1 is obtained from Vr,i by applying a MIX

transformation and a permutaion of nw words as following:

(Xr,2k, Xr,2k+1) := MIXr,k(Vr,2k, Vr,2k+1) for k = 0, 1, .., nw/2
Ur+1,i := Xr,σ(i) for i = 0, 1, .., nw

where σ is a permutaion specified in [6] and (c, d) = MIXr,k(a, b) is described as

c = (a+ b) mod 264

d = (b ≪ Rr mod 8,k)⊕ c

The rotations Rr mod 8,k are speicifed in [6]. The key scheduling algorithm of
Threefish produces 18 round keys from a tweak (T0, T1) and a key as following

Kl,i = K(l+i) mod (nw+1) for i = 0, 1, .., nw − 4
Kl,i = K(l+i) mod (nw+1) + Tl mod 3 for i = nw − 3
Kl,i = K(l+i) mod (nw+1) + Tl mod 3 for i = nw − 2
Kl,i = K(l+i) mod (nw+1) + l for i = nw − 1

.

where Knw = C240 ⊕
⊕nw−1

i=0 Ki with C240 a constant specified in [6], and T2 =
T0 ⊕ T1. The compression function F for Skein is given as F = ECV,T (M)⊕M .
For Skein-256 nw = 4 and word size is 8 byte. We use the notation k(l) to denote
the expanded key used at round 4l, i.e. k(l) = Kl,0,Kl,1, . . .Kl,nw−1.

Boomerang Attacks on Hash Function Using Auxiliary Differentials 223

Δ4Δ30Δ1Δ0

Δ⊥ +Δ4Δ⊥Δ30000Δ1Δ	Δ	 +Δ0

Pr
[
Δ3 → Δ⊥] = 2−6

p = 1p = 1

Pr
[
Δ1 → Δ] = 2−33

Fig. 3. Linearized differential path for Skein

Table 2. Subkey differential trails

Round Subkey Trail1: K3,K4, T0, T2

0 K0 K1 + T0 K2 + T1 K3 + 0
4 K1 K2 + T1 K3 + T2 K4 + 1
8 K2 K3 + T2 K4 + T0 K0 + 2
12 K3 K4 + T0 K0 + T1 K1 + 3
16 K4 K0 + T1 K1 + T2 K2 + 4

Round Subkey Trail2: K2,K3, T0, T1

16 K4 K0 + T1 K1 + T2 K2 + 4
20 K0 K1 + T2 K2 + T0 K3 + 5
24 K1 K2 + T0 K3 + T1 K4 + 6
28 K2 K3 + T1 K4 + T2 K0 + 7
32 K3 K4 + T2 K0 + T0 K1 + 8

4.1 Round-Reduced Differential Trails in Skein-256

Due to the key schedule of Skein, it is possible to build differential trails over 8
rounds with probability one, using a difference in the tweak T . To do this, we
just use a key difference and tweak difference that cancel each other at a given
round r, and we compute the corresponding key differences for rounds r+4 and
r − 4. By injecting this difference in the state, we obtain an 8-round path.

In order to achieve the best probability, we use a difference Δmsb on the most
significant bit of both tweaks used at round r, and on the corresponding keys.
This results in a 12-round path with probability 2−6 and a 16-round path with
probability 2−43 (we don’t consider the key addition for those probabilities). The
path is shown in Figure 3. For a boomerang attack on 32-round Skein, we use
this with r = 8 and r = 24, and the corresponding key-differential as shown in
Table 2. Previous analysis of Skein[1,5,15,18] are based on the same trails.

For our attack, we also need a set of auxiliary paths. We build this set using
the same 8-round paths with probability one, but we do not restrict ourselves to
a difference on the most significant bit. We can set the tweak T to an arbitrary
value, and recompute the key in order the have the same expanded key k(4) at
rounds 16. This gives a set of 2128 paths with probability one.

4.2 Description of the Attack on Skein-256

Our attack on skein is similar to a boomerang attack on 32 rounds using two
16-round trails, but we build a valid quartet starting from the middle, and we
use auxiliary trails to avoid paying the probabilities of 8 rounds in the middle.
We proceed with three consecutive steps, as shown by Figure 5, page 230.

224 G. Leurent and A. Roy

First Step. The first part of the attack considers rounds 16 to 20. We try to
build a quartet u(i) = R(t(i)) with

t(0) ⊕ t(1) = t(2) ⊕ t(3) = Δ⊥ ⊕Δ4 (2)

u(0) ⊕ u(2) = u(1) ⊕ u(3) = Δ1 (3)

One possible way to build such a quartet is to start with a set of t(i) that satisfies
(2) and t(0) ⊕ t(2) = t(1) ⊕ t(3) = Δ⊥ ⊕Δ4, and to compute the corresponding
u(i) = R(t(i)). The quartet will satisfy (3) with probability 2−66, but we can fix
some bits of the state in order to improve this complexity.

Actually, it is more efficient to follow the steps of a boomerang attack:

– start from a pair t(0), t(1) with t(0) ⊕ t(1) = Δ⊥ ⊕Δ4;
– compute u(0) = R(t(0)), u(1) = R(t(1)), u(2) = u(0) ⊕Δ1, u

(3) = u(1) ⊕Δ1;
– compute t(2) = R−1(u(2)) and t(3) = R−1(u(3)); check whether (2) holds.

Using this procedure allows us to benefit from amplified probabilities, since we
do not specify the path from (u(0), u(2)) to (t(0), t(2)) and from (u(1), u(3)) to
(t(1), t(3)), respectively, we only check that the differences are the same. Experi-
mentations show that this step costs around 218.

Second Step. The second part of the attack concerns rounds 12 to 16. We start
with a quartet u(i) = R(t(i)) satisfying (2) and (3), and we want to extend it

with s(i) = R−1(t(i) − k
(i)
4) so that

s(0) ⊕ s(1) = s(2) ⊕ s(3) = Δ3. (4)

The main idea is to use the key injection at round 16 in order to randomize the
state, until we find pairs that follows the differential Δ⊥ → Δ3. First we select
the keys that result in:

(t(0) − k
(0)
4)⊕ (t(1) − k

(1)
4) = (t(2) − k

(2)
4)⊕ (t(3) − k

(3)
4) = Δ⊥ with

k
(0)
4 ⊕ k

(1)
4 = k

(2)
4 ⊕ k

(3)
4 = Δ4 and k

(0)
4 ⊕ k

(2)
4 = k

(1)
4 ⊕ k

(3)
4 = Δ0.

We can find the suitable solution by solving a simple system of additions and
xors. Then, we compute the corresponding s(i), and we check whether(4) is
satisfied. On average, we expect this step to cost 212. According to our experi-
mentations, however, there seem to be some dependency between the paths, and
the average cost is about 218.

This step can be seen as an application of the technique of Section 3. We use
a trivial related-key differential where the key difference just cancels the state
difference in order to extend a 4-round quartet into 8-round quartets.

Third Step. This is the main step of the attack, following the ideas of Sec-

tion 3. We start with a quartet u(i) = R(R(s(i))+k
(i)
4), and we use probability-1

differentials to build many more quartets, until the top and bottom paths are
satisfied.

Boomerang Attacks on Hash Function Using Auxiliary Differentials 225

The best result are achieved using the modular difference, because the key-
additions are modular additions. Note that we include the initial and final
key-addition in our 32-round reduced Threefish/Skein. More precisely, for each
quartet generated for rounds 12–16 verifying (3) and (4), we compute the cor-
responding plain-text and cipher-text and we check whether

Δ�P (i) = (P (3) � P (2))� (P (1) � P (0)) = 0 (5)

Δ�C(i) = (C(3) � C(2))� (C(1) � C(0)) = 0 (6)

Experimentally, a quartet satisfies (5) with probability 2−36 and (6) with prob-
ability 2−21 (see Appendix A). This gives a distinguisher for the keyed permu-
tation with complexity around 257. Note that if we do an analysis similar to the
one in [5], we would expect this attack to have a complexity of around 295; the
amplification effect detected in practice is much stronger than predicted by [5].

If we want to build a distinguisher for the compression function, we will instead
use the xor-difference, because the feed-forward is an xor operation. Therefore,
we will check whether:

Δ⊕P (i) = P (0) ⊕ P (1) ⊕ P (2) ⊕ P (3) = 0 (7)

Δ⊕C(i) = C(0) ⊕ C(1) ⊕ C(2) ⊕ C(3) = 0 (8)

Experimentally, we find that (8) is verified with probability 2−24. The probability
for (7) is too low to check experimentally, but we can estimate it from the
probability of (5): a quartet satisfying (5) is composed of two pairs of plain-text
with (P (1)�P (0)) = (P (3)�P (2)) = Δ, where Δ has weight around 34. For each
active position, there is a probability 1/3 that the carry extension in (P (0), P (1))
is the same as in (P (2), P (3)), which leads to:

Pr
[
Δ⊕P (i) = 0

]
≥ Pr

[
Δ�P (i) = 0

]
× (1/3)34 ≥ 2−90.

This gives a distinguisher on the compression function with complexity 2114. In
practice we expect the complexity to be significantly lower, because a quartet
satisfying (7) does not necessarily satisfy (5).

Attack on 24 and 28 rounds can be build with the same approach.

5 Extensions and Limitations

The technique described in the previous sections can be applied to improve al-
most any chosen-key boomerang distinguisher. The main limitation is that we
need to be able to generate an initial quartet for the middle rounds, similarly to
what we do in steps one and two of the attack on Skein-256. We note that any
successful boomerang attack does provide such quartets; therefore, as long as a
standard boomerang attack works, our improved attack with auxiliary differen-
tials will also work.

226 G. Leurent and A. Roy

However, an often overlooked problem of boomerang attacks is that we need
the top and bottom paths to be somehow independent. More precisely, in a
standard boomerang attack as depicted by Figure 1, we expect that if a pair
(P0, P1) → (X0, X1) with is a good pair for fa (i.e. P1 = P0 + α and X1 =
X0 + α′), then the pair (X0 + γ,X1 + γ) behaves like a random pair regarding
fa, and will satisfy the differential with probability pa. However, in practice this
may not be the case.

In the following section, we discuss cases where boomerang attacks on ARX
design can fail because of this property. This problem was already discussed by
Murphy in [12], where he gives examples of non-compatible paths for the DES
and the AES. It has also been discussed by Sasaki in [14] for boomerang attacks
on Haval.

5.1 Extension to More Rounds

We tried to extend the attack by adding middle rounds, at the bottom of the top
path, or at the top of the bottom path. For instance, using a 16-round path for
the bottom part should only increase the complexity by a factor of roughly 212.
However, this usually results in incompatible paths, for which no valid quartet
exist. In particular linearized paths are incompatible, and we have not been able
to build compatible paths.

By studying those incompatible paths, we found that very simple patterns
can lead to incompatibilities. Figure 4 gives an example of a pattern that results
in incompatible paths. A quartet following those paths would have to satisfy:

x(0) ⊕ x(2) = x(1) ⊕ x(3) = 01 y(0) ⊕ y(2) = y(1) ⊕ y(3) = 00 (Top) (9)

x(0) ⊕ x(1) = x(2) ⊕ x(3) = 01 y(0) ⊕ y(1) = y(2) ⊕ y(3) = 01 (Bottom) (10)

x(0) � y(0) = x(1) � y(1) x(2) � y(2) = x(3) � y(3) (11)

Without loss of generality, we can assume that lsb(x(0)) = 0. This implies
lsb(x(1)) = 1 from (10), and lsb(x(2)) = 1 and lsb(x(3)) = 0 from (9). We
can deduce y(0) = y(1) � 1 and y(3) = y(2) � 1 from (11). Combined with (10)
this yields lsb(y(0)) = 1, lsb(y(1)) = 0, lsb(y(2)) = 0, and lsb(y(3)) = 1. This is
incompatible with (9).

This pattern seems to appear very frequently when using linearized paths in
ARX designs, and shows that some very natural paths cannot be combined in a
boomerang attack.

5.2 Application to Skein-512

By applying our technique to Skein-512, we would expect distinguishers with a
similar complexity for the same number of rounds. However, in order to apply the
technique, we need to be able to generate quartets for the middle rounds, and we
failed to build any such quartet for a 32-round attack. Since a boomerang attack
on Skein-512 was presented in [5], we studied the paths used in this attacks, and
we found that they are in fact not compatible.

Boomerang Attacks on Hash Function Using Auxiliary Differentials 227

δx = -x δy = -- Top path

(x(0), y(0);x(2), y(2)) (x(1), y(1); x(3), y(3))

Bottom path

(x(0), y(0);x(1), y(1)) (x(2), y(2); x(3), y(3))

δx = -x δy = -x

δx′ = -- δy′ = -x

Fig. 4. Example of incompatible paths

Following the notations of [5], the path for rounds 0–16 has a difference
e15,5[10, 39, 49, ∗64]. If this path is applied to states (e(0), e(1)) and (e(2), e(3)),
this implies that on bit 49, we have:

v
(0)
15,5 = 0 v

(1)
15,5 = 1 v

(2)
15,5 = 0 v

(3)
15,5 = 1 (12)

Assuming there are no carries, the path for round 16–32 has e16,5[−34,−50] and
e16,2[5, 11, 16, 41, 44, 47]. Since e16,2, e16,5 = MIX(e15,4, e15,5), and the rotation
used at that step is 56, we have e15,5 = (e16,2 ⊕ e16,5)

≫56. This results in e15,5
being active on bits 13, 19, 24, 42, 49, 52, 55, and 58. If this path is applied to

states (e(0), e(2)) and (e(1), e(3)), this implies that on bit 49, we have v
(0)
15,5 = v

(2)
15,5

and v
(0)
15,5 = v

(2)
15,5. This is contradictory with (12).

We tried to fix the paths using a carry extension from bit 34 to 41 in e16,5,
by using different signs in the paths (e(0), e(1)) and (e(2), e(3)), or by using a
carry extension in e15,5[49], but this always ends up with a similar contradiction.
However, we note that if the attack of [5] can be fixed, then our technique is
expected to yield a distinguisher on Skein-512 with complexity similar to the
distinguisher on Skein-256.

6 Conclusions

In this paper we have presented a technique to improve the boomerang attack
in the chosen-key setting and applied it to obtain an efficient distinguisher for
32 rounds of the compression function of Skein-256. We also discuss extension
of the attack, and application of the technique to Skein-512. This technique
can essentially be used to improve any chosen-key boomerang distinguisher.
However, we explain that boomerang attack on ARX-design can fail because
of incompatible paths. This is not a limitation of the auxiliary paths, but of the
underlying boomerang technique.

228 G. Leurent and A. Roy

Acknowledgment. Gaëtan Leurent is supported by the AFR grant PDR-10-
022 of the FNR Luxembourg.

References

1. Aumasson, J.P., Calik, C., Meier, W., Ozen, O., Phan, R.C.W., Varici, K.: Im-
proved Cryptanalysis of Skein. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS,
vol. 5912, pp. 542–559. Springer, Heidelberg (2009)

2. Biham, E., Dunkelman, O., Keller, N.: The Rectangle Attack - Rectangling the
Serpent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–
357. Springer, Heidelberg (2001)

3. Biham, E., Dunkelman, O., Keller, N.: Related-Key Boomerang and Rectangle
Attacks. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 507–525.
Springer, Heidelberg (2005)

4. Biryukov, A., Nikolić, I., Roy, A.: Boomerang Attacks on BLAKE-32. In: Joux, A.
(ed.) FSE 2011. LNCS, vol. 6733, pp. 218–237. Springer, Heidelberg (2011)

5. Chen, J., Jia, K.: Improved Related-Key Boomerang Attacks on Round-Reduced
Threefish-512. In: Kwak, J., Deng, R.H., Won, Y., Wang, G. (eds.) ISPEC 2010.
LNCS, vol. 6047, pp. 1–18. Springer, Heidelberg (2010)

6. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas,
J., Walker, J.: The Skein hash function family. Submission to NIST (2008/2010)

7. Joux, A., Peyrin, T.: Hash Functions and the (Amplified) Boomerang Attack. In:
Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 244–263. Springer, Heidel-
berg (2007)

8. Kelsey, J., Kohno, T., Schneier, B.: Amplified Boomerang Attacks against Reduced-
Round MARS and Serpent. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp.
75–93. Springer, Heidelberg (2001)

9. Khovratovich, D., Nikolić, I.: Rotational Cryptanalysis of ARX. In: Hong, S., Iwata,
T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 333–346. Springer, Heidelberg (2010)

10. Khovratovich, D., Nikolić, I., Rechberger, C.: Rotational Rebound Attacks on Re-
duced Skein. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 1–19.
Springer, Heidelberg (2010)

11. Lamberger, M., Mendel, F.: Higher-order differential attack on reduced SHA-256.
Cryptology ePrint Archive, Report 2011/037 (2011), http://eprint.iacr.org/

12. Murphy, S.: The return of the cryptographic boomerang. IEEE Transactions on
Information Theory 57(4), 2517–2521 (2011)

13. National Institute of Standards and Technology: Cryptographic hash algorithm
competition, http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

14. Sasaki, Y.: Boomerang distinguishers on MD4-based hash functions: First practical
results on full 5-pass HAVAL. In: SAC (2011)

15. Su, B., Wu, W., Wu, S., Dong, L.: Near-Collisions on the Reduced-Round Com-
pression Functions of Skein and BLAKE. In: Heng, S.H., Wright, R.N., Goi, B.M.
(eds.) CANS 2010. LNCS, vol. 6467, pp. 124–139. Springer, Heidelberg (2010)

16. Wagner, D.: The Boomerang Attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 156–170. Springer, Heidelberg (1999)

17. Wagner, D.: A Generalized Birthday Problem. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 288–303. Springer, Heidelberg (2002)

18. Yu, H., Chen, J., Ketingjia, Wang, X.: Near-collision attack on the step-reduced
compression function of Skein-256. Cryptology ePrint Archive, Report 2011/148
(2011), http://eprint.iacr.org/

http://eprint.iacr.org/
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
http://eprint.iacr.org/

Boomerang Attacks on Hash Function Using Auxiliary Differentials 229

A Boomerang Quartets for 28 Round Threefish

In this section, we give examples of quartets, to show that the techniques used
for the 32-round attack are valid. Table 3 gives is a zero-sum for rounds 4–32
of Threefish, with Δ�P ′(i) = 0 and Δ�C(i) = 0. Generating such a quartet
costs around 221. Table 4 gives is a zero-sum for rounds 0–28 of Threefish, with
Δ�P (i) = 0 and Δ�C′(i) = 0. Generating such a quartet costs around 236.

Table 3. A quartet that satisfies the paths for rounds 4–32

Plain-text before round 4

P ′(0) fe5ab24b9481e005 dcf5504b75b919e5 076e43e18e3a50ce d31433344b540c75

P ′(1) fe5ab24b9481e005 dcf5504b75b919e5 076e43e18e3a50ce 531433344b540c75

P ′(2) 64309deb8a55633f 71f578e8ddfd6e89 4e299c34006568b0 95847e8860164845

P ′(3) 64309deb8a55633f 71f578e8ddfd6e89 4e299c34006568b0 15847e8860164845

Key

K(0) 674dfabf537e5a73 92a94934d0ca3e21 90ce87c17d8540d1 ff65c869e8cdadd4

K(1) 674dfabf537e5a73 92a94934d0ca3e21 90ce87c17d8540d1 7f65c869e8cdadd4

K(2) 674dfabf537e5a73 92a94934d0ca3e21 10ce87c17d8540d1 7f65c869e8cdadd4

K(3) 674dfabf537e5a73 92a94934d0ca3e21 10ce87c17d8540d1 ff65c869e8cdadd4

Tweak

T (0,1) 182d916b255ae5e8 5cba243a3b82278e 982d916b255ae5e8 5cba243a3b82278e

T (2,2) 982d916b255ae5e8 dcba243a3b82278e 182d916b255ae5e8 dcba243a3b82278e

Table 4. A quartet that satisfies the paths for rounds 0–28

Plain-text before round 0

P (0) d9d7934ee20a9c9a d7c7d25a8f42f324 25ac377afcb411bb 424daed3f2425bc1

P (1) d4d82358b1e9945a 58c7c2587f63fb24 25ec3b7b6eb84fb7 c20daed37e421dc5

P (2) 0404cce3c56e92df 1887e00caa229acc 5bdad7995f5f036a a7b69f1a1274d559

P (3) ff055ced954d8a9f 9987d00a9a43a2cc 5c1adb99d1634166 27769f199e74975d

Key

K(0) 8cb950f444a069e3 48380fb03c6b84c6 2034665dbf7fbfb9 59a45c529130786a

K(1) 8cb950f444a069e3 48380fb03c6b84c6 2034665dbf7fbfb9 d9a45c529130786a

K(2) 8cb950f444a069e3 48380fb03c6b84c6 a034665dbf7fbfb9 d9a45c529130786a

K(3) 8cb950f444a069e3 48380fb03c6b84c6 a034665dbf7fbfb9 59a45c529130786a

Tweak

T (0,1) 684e3541ef841667 b3a8cd11bb94bb5d e84e3541ef841667 b3a8cd11bb94bb5d

T (2,3) e84e3541ef841667 33a8cd11bb94bb5d 684e3541ef841667 33a8cd11bb94bb5d

230 G. Leurent and A. Roy

t(
0
)

t(
1
)

t(
2
)

t(
3
)

u
(
0
)

u
(
1
)

u
(
2
)

u
(
3
)

Δ
⊥
+

Δ
4

Δ
⊥
+

Δ
4

Δ
1

Δ
1

s
(
0
)

s
(
1
)

s
(
2
)

s
(
3
)

k
(
0
)

4
k
(
1
)

4

k
(
2
)

4
k
(
3
)

4

u
(
0
)

u
(
1
)

u
(
2
)

u
(
3
)

Δ
⊥
+

Δ
4

Δ
⊥
+

Δ
4

Δ
⊥

Δ
⊥

Δ
3

Δ
3

Δ
1

Δ
1

Δ
	

Δ
	

0

0

Δ
3

Δ
3

Δ
1

Δ
1

0

0

Δ
⊥

Δ
⊥

T
o
p
p
a
th

(0
–
1
2
)

M
id
d
le

p
a
r
t

(1
2
–
2
0
)

B
o
tt
o
m

p
a
th

(2
0
–
3
2
)

F
ig
.
5
.
O
v
er
v
ie
w

o
f
th
e
a
tt
a
ck
,
sh
ow

in
g
th
e
th
re
e
co
n
se
cu

ti
v
e
st
ep

s

Localized Electromagnetic Analysis
of Cryptographic Implementations

Johann Heyszl1, Stefan Mangard2,
Benedikt Heinz1, Frederic Stumpf1, and Georg Sigl3

1 Fraunhofer Research Institution AISEC, Munich, Germany
{johann.heyszl,benedikt.heinz,frederic.stumpf}@aisec.fraunhofer.de

2 Infineon Technologies AG, Munich, Germany
stefan.mangard@infineon.com

3 Technische Universität München, EI SEC, Munich, Germany
sigl@tum.de

Abstract. High resolution inductive probes enable precise measure-
ments of the electromagnetic field of small regions on integrated circuits.
These precise measurements allow to distinguish the activity of regis-
ters on the circuit that are located at different distances to the probe.
This location-dependent information can be exploited in side-channel
analyses of cryptographic implementations. In particular, cryptographic
algorithms where the usage of registers depends on secret information are
affected by side-channel attacks using localized electromagnetic analysis.
Binary exponentiation algorithms which are used in public key cryptog-
raphy are typical examples for such algorithms. This article introduces
the concept of localized electromagnetic analysis in general. Further-
more, we present a case study where we employ a template attack on
an FPGA implementation of the elliptic curve scalar multiplication to
prove that location-dependent leakage can be successfully exploited. Con-
ventional countermeasures against side-channel attacks are ineffective
against location-dependent side-channel leakage. As an effective general
countermeasure, we promote that the assignment of registers to physical
locations should be repeatedly randomized during execution.

Keywords: Side-channel analysis, electromagnetic, near-field, location-
dependent leakage, template attack, FPGA, ECC.

1 Introduction

The physical security of cryptographic implementations is a topic of increasing
importance besides the conventional, mathematical security of cryptographic al-
gorithms. Passive side-channel attacks as well as active fault attacks are a major
threat. Examples for passive side-channel attacks are timing attacks or simple
and differential power attacks [8,9]. Electro-Magnetic (EM) radiation is propor-
tional to the power consumption of devices as well and is a known side-channel
since the 1950s [6]. EM side-channels of cryptographic devices and cartogra-
phy thereof [15] are mostly used to improve conventional side-channel analysis

O. Dunkelman (Ed.): CT-RSA 2012, LNCS 7178, pp. 231–244, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

232 J. Heyszl et al.

by finding locations where analysis methods lead to better results [18,17,16].
However, it has been demonstrated how the analysis of EM radiation provides
advantages compared to the analysis of the power consumption because the
analysis can can be limited in terms of location and magnetic field directions [1].
Inductive probes allow high spatial resolutions [6] and can be used to locally re-
strict measurements of EM radiation [5] if they are placed close to the surface of
an integrated circuit. Different distances of hardware registers on an integrated
circuit to high-resolution, near-field probes influence EM measurements. This
allows to determine locations, where EM radiation is emitted and to coarsely
trace data-flows in implementations using local EM measurements [7].

In this article, we present how fine-grained, localized EM measurements can be
used to attack cryptographic implementations by exploiting location-dependent
side-channel leakage. This is contrary to conventional side-channel attacks which
use data-, or operation-dependent leakage. Side-channel analysis methods like
collision attacks [20,19] or template attacks [2], which are currently used to
exploit data-dependent side-channel leakage, can be applied to exploit location-
dependent leakage instead. Potential targets for this localized approach are all
cryptographic algorithms where the usage of registers depends on secret informa-
tion. Binary exponentiation algorithms which are used in modular exponentia-
tions for RSA and in Elliptic Curve Scalar Multiplications (ECSM) are examples
of algorithms that are particularly susceptible to location-based side-channel at-
tacks. Hence, we discuss how such algorithms can be attacked in more detail.
In a case study, we successfully perform a template attack based on location-
dependent EM leakage on an FPGA implementation of the ECSM. Our practical
results show how localized electromagnetic analysis leaks sufficient information
about the secret to recover it using a single trace. We discuss the insufficiency of
previous countermeasures and present a countermeasure which is based on ran-
domizing register locations. As a general countermeasure for affected algorithms
we promote that the assignment of certain registers to physical locations should
be randomized by swapping their locations at random times.

Our contribution is organized as follows. We explain the principle of localized
EM analysis and general attacks based on the localized EM analysis in Sect.
2. In Sect. 3, we apply attacks on binary exponentiation algorithms. Section 4
contains our practical case study. We discuss countermeasures in Sect. 5 and
draw conclusions in Sect. 6.

2 Localized EM Analysis

Value changes in CMOS gates lead to dynamic power consumption. The corre-
sponding currents produce concentric magnetic fields around conductors. Vari-
ations in the superposed magnetic field of multiple conductors can be measured
using inductive sense coils. The field strength is proportional to current changes
and decreases with distance to the conductors. In order to measure the magnetic
field of small regions of a device, a high spatial resolution, near-field sense coil
can be placed close to the surface of an integrated circuit die.

Localized Electromagnetic Analysis of Cryptographic Implementations 233

Fig. 1. The distance to the power consuming elements influences the measurement

Cryptographic algorithms use registers to hold data values which are dis-
tributed over the integrated circuit. Figure 1 depicts an inductive near-field
probe close to the surface of an integrated circuit die with three implemented
registers a, b and c in a simplified example. A register is written to by changing
control lines and supplying it with a clock signal to update its internal value.
All the involved logic gates (e.g., also multiplexers in the datapath) processing
the value change consume dynamic power from the supply network which can be
measured. A register which is not updated keeps the current value in a feedback
mode or is even clock-gated, thus, not consuming dynamic power. The probe in
Fig. 1 is closer to register a than to register b. Therefore, activity in register a will
lead to greater measured values than activity in register b. However, note that
typically, the single bit cells which belong to one multi-bit register will not be
located within confined areas. They will be located interspersed. Nevertheless,
there are locations on the surface of the die, where the accumulated distance of
the probe to the power consuming elements of one multi-bit register is shorter
than the distance to the elements of another multi-bit register. At those loca-
tions it is possible to distinguish, which of the registers has been used based on
different signal strengths. Cryptographic algorithms which use their registers dif-
ferently, depending on the value of the secret, are prone to location-dependent
side-channel leakage because the recovery of the fact which registers are used
leaks information about the secret.

Location-dependent information leakage can be exploited through attacks
based on localized EM analysis. Many concepts which exploit data- or operation-
dependent side-channel leakage such as SPA attacks in general, side-channel-
based collision attacks [20,19], template attacks [2], correlation-based attacks
and DPA attacks can be adapted to exploit location-dependent side-channel
leakage instead of data-dependent leakage.

In the conventional case of exploiting data-dependent leakage, the unfavorable
influence of electronic noise can be reduced through averaging multiple traces
with the same processed data. When exploiting location-dependent leakage, the
data-dependency of side-channels presents as an unfavorable influence and can
be reduced through averaging multiple traces with different processed data.

234 J. Heyszl et al.

3 Attacking Binary Exponentiation Algorithms

Algorithm 1. Main loop of an abstract algorithm. Computation sequence and
timing are uniform while the register usage depends on secret d.
Input: Secret d = dDdD−1...d2d1 with di ∈ {0, 1}
1: for i = D downto 1 do
2: if di = 1 then
3: c ← a
4: c ← c2

5: a ← c
6: else
7: c ← b
8: c ← c2

9: b ← c
10: end if
11: end for

Binary exponentiation algorithms are used for modular exponentiations in RSA
and for Elliptic Curve Scalar Multiplications (ECSMs) on additive group struc-
tures. The double-and-add-always algorithm (ECC), the square-and-multiply-
always algorithm (RSA) as well as the Montgomery ladder algorithm (RSA and
ECC) are examples for algorithms of this kind. They are a perfect target for
side-channel attacks based on localized EM analysis because the use of registers
depends on the processed secret while the processing sequence has a constant
timing. Binary exponentiation algorithms typically consist of a main loop and
process one secret bit in each loop iteration. Secure implementations of crypto-
graphic algorithms typically also contain uniform operation sequences in each
loop iteration, which are independent of the secret, as a countermeasure against
simple side-channel analyses. However, the operations are performed on a differ-
ent set of registers depending on the value of the currently processed secret bit.
An attacker can use localized EM analysis to detect the usage sequence of those
registers to derive the secret.

Algorithm 1 presents an abstract example showing the relevant properties
of such algorithms. The depicted pseudo-algorithm has an uniform operation
sequence and contains two operations in the loop iteration which are prone to
location-dependent leakage because the register usage depends on the currently
processed secret bit. In Lines 3 and 7, either register a or b are read. In Lines 5
and 9, a result is either written to register a or b. As described in Sect. 2, the
registers are placed on an integrated circuit and an attacker can use location-
dependent leakage to detect which of two registers is used in every iteration to
recover the secret. The usage of the register c is independent of the secret bit
and therefore not relevant for an attacker.

Figure 2 depicts a simplified example of a recorded EM trace vector t =
(t1, ... , tT) containing the loop part of a binary exponentiation algorithm.

Localized Electromagnetic Analysis of Cryptographic Implementations 235

Fig. 2. Segmentation of trace vector t into sub-vectors ti

This trace vector is split into sub-vectors each containing one loop iteration,
ti = (t(1+(i−1) T

D), ... , t(i T
D)), 1 ≤ i ≤ D and D the number of loop iterations.

The segmentation is derived from visual inspection and can be enhanced through
cross-correlation of sub-vectors with the trace. All sub-vectors ti are samples of
the same operation sequence while processing a different secret bit di. Thus, the
values from the different sub-vectors can be seen as belonging to same points in
time within the loop iterations.

The measured power consumption of digital hardware processing uniformly
distributed data consists of operation- and data-dependent parts and electronic
noise and is typically distributed according to a Gaussian function. At certain
relative points in time in the sub-vector set, two different registers are used
in Alg. 1 which are placed at different locations. Hence, power is consumed at
different locations on the circuit. Each location leads to a Gaussian distribution
of the consumption. The goal of an attacker is to distinguish the distributions
and to partition the sub-vectors ti into two sub-sets. One set contains the sub-
vectors where one register was used, the other one the sub-vectors where the
other was used. This equals recovering the secret. In order to do this, an attacker
must find similarities among the sub-vectors ti which are due to the location-
dependence. The following side-channel attacks can be applied to exploit such
location-dependent leakage.

Side-Channel-Based Collision Attacks. Collision attacks [20,19] can be
used to find similar sub-vectors ti and classify them into two groups, hence, re-
covering the secret. Collisions can for instance be detected through least-square
tests [19] or correlation [13,22]. A collision attack can be performed using a single
recorded trace, where the secret exponent or scalar is processed. Data-dependent
influence of the power consumption might make correct classifications more dif-
ficult. If the cryptographic protocol allows multiple executions with a constant
secret and different processed data, those can be averaged to reduce this.

Template Attacks. Template attacks require a profiling phase using a known
exponent or scalar. Fortunately, when exploiting location-based information, a
public exponentiation can be used for profiling even if it uses a different base (e.g.,

236 J. Heyszl et al.

base point in the ECSM). This is different to exploiting data-dependent leakage
where templates are built to characterize certain intermediate data values. Such
template attacks on binary exponentiation algorithms [2,12] require profiling
with a chosen exponent or scalar and multiple templates. In case of exploiting
location-based information, only two templates are required to classify all sub-
vectors ti into two groups. The sub-vectors from a profiling trace are grouped
according to the bit values of the known exponent and the two groups’ mean
vectors and covariance matrices are used as templates. Since different data is
processed in each sub-vector, data-dependencies are reduced in this process. In
the attack, the sub-vectors ti of a recorded trace with a secret exponent or scalar
are matched against the templates to recover the scalar.

Finding Location-Dependent Leakage. If the attacker can observe execu-
tions with known data, he can employ a difference-of-means test to find eli-
gible locations. Generally, the sample values from a localized EM analysis are
distributed according to a Gaussian mixture of two superposed normal distri-
butions instead of one because power is consumed at different locations when
location-based information is leaked. This property can be used in order to find
eligible locations on the surface of an integrated circuit die where an attack can
be performed. Such Gaussian mixtures can be estimated using the expectation-
maximization algorithm. Alternatively, a chi-square test or simply search of high
variances can be performed.

4 ECC Case Study - A Proof-of-Concept

As a proof-of-concept, we employed a reduced template attack [11] to exploit
location-dependent leakage of an FPGA implementation of the Elliptic Curve
Scalar Multiplication (ECSM).

4.1 ECSM Implementation

The FPGA-based hardware implementation of the ECSM takes affine x- and
y-coordinates of the base point xP and the scalar d as input and returns affine
x- and y-coordinates of the resulting point d ·P . The design uses an elliptic curve
defined over the binary field GF (2163) with elements represented in polynomial
base. The field polynomial, curve parameters a and b, base point (xP , yP) and
base point order n are published by NIST [14] under the denominator Curve B-
163. The Montgomery ladder ECSM algorithm presented by López and Dahab
[10] with projective coordinates during the Montgomery ladder and no repeated
computation of an inverse in GF (2m) is employed and depicted in Alg. 2. The
affine x- and y-coordinates are computed from the resulting point’s projective
coordinates in a routine denoted by Mxy from López and Dahab [10].Different
to the description of López and Dahab [10], we use ∞ and P instead of P and
2 ·P as starting points for the Montgomery ladder in order to permit zero-valued
most significant bits of the scalar.

Localized Electromagnetic Analysis of Cryptographic Implementations 237

Algorithm 2. Montgomery ladder ECSM algorithm.
Input: Scalar d = dDdD−1...d2d1 with di ∈ {0, 1}, Point P = (xP , yP) ∈ E,
Curve Parameter b
Output: Point Q = d · P = (xQ, yQ)

1: X0 ← 1, Z0 ← 0, X1 ← xP , Z1 ← 1
2: for i = D downto 1 do
3: T ← Z1−di

4: Z1−di ← (X1−di · Zdi + Xdi · Z1−di)
2

5: X1−di ← xP · Z1−di + X1−di · Xdi · T · Zdi

6: T ← Xdi

7: Xdi ← X4
di

+ b · Z4
di

8: Zdi ← T 2 · Z2
di

9: end for
10: (xQ, yQ) ← Mxy(X0, Z0, X1, Z1, xP , yP)
11: return (xQ, yQ)

The algorithm processes the 163 bit scalar d bitwise employing a uniform op-
eration sequence to prevent simple side-channel analyses and C-safe fault attacks
[4]. To protect the Montgomery ladder against DPA, the projective coordinates
of the input point are randomized [3]. The registers T, xP and b are used equally,
independent of the scalar bit values. The working registers X0, Z0 and X1, Z1 are
used differently, depending on the scalar bits di. This makes the implementation
prone to localized EM analysis. Those registers’ design is completely equal on
the RTL level. No further manual effort or constraints were employed during
FPGA synthesis and placement on the die.

Fig. 3. Near-field probe close to the back-side-decapsulated surface of the die

4.2 Measurement Setup

Our measurement setup is depicted in Fig. 3. We decapsulated a Xilinx Spartan-
3 (XC3S200) FPGA from the back-side as suggested by Skorobogatov et al.
[21]. Back-side decapsulation is less complex than front-side decapsulation for
smartcards and many plastic packages. An inductive near-field EM probe with

238 J. Heyszl et al.

a 100 μm resolution and a 30 dB amplifier was used at a close distance to the
surface of the die. The near-field probe was moved over the surface by an x-
y-table with a positioning accuracy of 50 μm. At every location, one trace was
recorded at a sampling rate of 5 GS/s and compressed to one sample per clock
cycle, extracting the difference of the maximum peak to the minimum peak EM
value in every cycle. This was done to reduce the amount of data.

4.3 Template Attack

In our case study, we assumed that an attacker can observe public operations
using a public and known exponent on the device he is attacking. We used these
to find eligible locations for the attack and to build templates. In ECC, the public
operation can for instance be a signature verification using a known scalar for
the ECSM.

Fig. 4. Recorded EM trace t at location (x, y) = (37, 42) as an example

Profiling. Figure 4 depicts an EM trace vector as an example which was
recorded using our measurement setup and a known scalar. It includes about
90 k points in time, covering the main loop of Alg. 2 (Lines 3 to 8). The recorded
trace vector t was split into 163 sub-vectors ti corresponding to 163 scalar bits
as described in Sect. 3. All sub-vectors correspond to an uniform operation se-
quence which is depicted in Alg. 2, Lines 3 to 8 and include about 550 EM values,
thus, cycles each. The addressing of the registers depends on the value of the
corresponding scalar bit which will be exploited during the attack.

The sub-vectors were assigned to two sets according to the known scalar bits.
Figure 5(a) and Fig. 5(b) depict the mean vectors m0 and m1 of those two
sets. Figure 5(c) shows the difference-of-means as a black graph. The Figure also
depicts a grey zero line including a confidence interval at a confidence level of
99.9 % marked by two grey graphs. Points in time, where the black difference-of-
means graph exceeds the zero-region, which is confined through the grey graphs,
are clearly visible, showing that this design leaks location-dependent information.
In our case study, we used the mean vectors m0 and m1 as reduced templates
without covariance matrices and employed a least-square matching.

We performed the described difference-of-means test on every location on the
surface of the die using a single recorded trace at every location. Figure 6 presents
an (x, y) map of the greatest absolute difference-of-means in mV for each location

Localized Electromagnetic Analysis of Cryptographic Implementations 239

(a) Estimated mean m0 of sub-set where di is zero.

(b) Estimated mean m1 of sub-set where di is one.

(c) Difference-of-means m0 − m1 as a black graph including a confidence interval
depicted by two grey graphs around a grey zero line.

Fig. 5. Sub-vector means and difference of means

on the die. The maximum of about 63 mV is clearly significant compared to the
amplitudes from Fig. 4. A pattern of locations with high information leakage can
be observed. For the actual attack, the location with the greatest difference-of-
means was used.

Figure 7 depicts a map with average EM amplitudes of the recorded traces.
It can be observed that regions with high EM amplitudes are not congruent to
regions leaking most location-based information.

Significance of the Location Dependence. In order to illustrate the signifi-
cance of the location dependence, we narrowed the previously described analysis
down to a single point-in-time. We chose the time-point 88 within the trace
sub-vectors which exhibits a significant information leakage in Fig. 5(c). Figure
8 shows a map where each value corresponds to the signed difference-of-means
when looking at this single operation. Most of the map is colored in turquoise
indicating a 0 mV difference-of-means, thus, no information leakage. However,
while the probe is moved over the die, it gets closer to cells belonging to one
of two registers. In those regions, which are colored in blue to pink, this first

240 J. Heyszl et al.

Fig. 6. Greatest absolute difference-of-means for all locations

Fig. 7. Average EM amplitude for all locations

register leads to higher EM values than the other one. At other regions, colored
in green to red, the probe gets closer to cells belonging to the other register. In
those regions, the other register leads to higher EM values and, therefore, the
difference-of-means changes sign. This shows that there are significant location-
dependences of the information leakage. The oppositely signed differences will
likely cancel out each other when analyzing the power consumption of the entire
device.

Generally, it is hard to balance the physical implementation of registers to
achieve identical power consumptions. The differences in the registers’ power
consumption might be detectable in overall power consumption measurements.

Localized Electromagnetic Analysis of Cryptographic Implementations 241

Fig. 8. Signed difference-of-means for point-in-time 88 at all locations

However, those differences are usually small and hard to exploit in single trace
attacks. The additional localized aspect provides a significant improvement in
this respect.

Attack. A single trace is used by the attacker to recover the secret scalar. Re-
trieving the scalar is equivalent to a total break of the system since the secret
key can be computed easily from it. The segmented sub-vectors are compared to
both templates using a least-square distance test. In this practical experiment
we classified 161 of 163 secret scalar bits correctly, leaving 2 erroneous bits. This
proves that location-dependent leakage can be successfully exploited in practice.
The remaining erroneous bits are most likely due to electric and data-dependent
noise. The error probability is highest for those recovered bits, where the classifi-
cation was least decisive. In this manner, an attacker incrementally brute-forces
bits where the difference between the two least-square values is smallest until the
recovered secret is correct. In this practical experiment, we recovered the correct
scalar after brute-forcing 14 bits at maximum. Hence, even if the classification
does not provide a full recovery of the scalar, it reduces the search space to a
practical level.

We tested recording multiple traces with a constant scalar and different input
data to reduce the data-dependent influence through averaging. The success rate
increased to 100 % using only 3 averaged traces.

5 Countermeasures

Designers can generally use traces with a known exponent or scalar to per-
form difference-of-means tests to look for leaks of location-dependent informa-
tion. Countermeasures against power or EM analyses such as e.g., employing
the Montgomery ladder, randomization of projective coordinates [3], base point

242 J. Heyszl et al.

Algorithm 3. Our countermeasure for Alg. 2.
9: r ← random ∈ [0, 1]

10: c ← swap_state ⊕ r
11: T ← X0 + X1

12: X0 ← T − X1−c, X1 ← T − Xc {swap X0 and X1 if c = 1}
13: T ← Z0 + Z1

14: Z0 ← T − Z1−c, Z1 ← T − Zc {swap Z0 and Z1 if c = 1}
15: swap_state ← r

blinding or exponent blinding do not prevent location-dependent information
leakage. Exponent blinding only prevents template attacks based on location-
dependent leakage if it is also employed for the public operation. However, this
introduces a significant computational overhead and does for example not pre-
vent collision attacks based on location-dependent leakage. Randomizing the
assignment of registers to physical locations on an integrated circuit gener-
ally prevents location-dependent information leakage because the relation between
location-based information and the secret is eliminated.

Accordingly, we present a countermeasure for implementations of the López-
Dahab Montgomery ECSM which is depicted in Alg. 3. The additional operations
are integrated into the ECSM Alg. 2 within the loop beyond Line 8 and swap
the register contents of X0, X1 and Z0, Z1 according to a chosen random number
r. The value of the scalar bit di, thus, the addressing of the registers within the
loop, is inverted according to whether the registers are swapped (swap_state).
The countermeasure is uniform in its operation sequence, hence, not detectable
through simple analyses. It requires 2 field additions and 4 field subtractions
(equal to addition in GF (2m)) in every loop iteration which resulted in a com-
putational overhead of about 4 %.

Fig. 9. Greatest absolute difference-of-means when using our countermeasure

Localized Electromagnetic Analysis of Cryptographic Implementations 243

We repeated the known scalar difference-of-means test. Figure 9 depicts a
map of the resulting greatest absolute difference-of-mean values. A comparison
to the results in Fig. 6 from the unprotected implementation confirms that the
random swapping of register locations effectively destroys the relation between
location-based information and the secret.

6 Conclusion

We present how location-dependent leakage instead of data-dependent leakage
of cryptographic implementations can be used for side-channel attacks. As a
conclusion we promote that in all implementations of affected cryptographic
algorithms, the assignment of concerned registers to physical locations should
be repeatedly randomized by swapping their locations at random times during
execution. This randomization also renders it unnecessary to carefully balance
the physical implementation of those registers.

Acknowledgements. The work presented in this contribution was supported
by the German Federal Ministry of Education and Research in the project RE-
SIST through grant number 01IS10027A.

References

1. Agrawal, D., Archambeault, B., Rao, J., Rohatgi, P.: The EM Side–channel(s). In:
Kaliski Jr., B.S., Koç, C., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 29–45.
Springer, Heidelberg (2003)

2. Chari, S., Rao, J., Rohatgi, P.: Template Attacks. In: Kaliski Jr., B.S., Koç,
C., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003)

3. Coron, J.S.: Resistance against Differential Power Analysis for Elliptic Curve Cryp-
tosystems. In: Koç, C., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302.
Springer, Heidelberg (1999)

4. Fan, J., Guo, X., De Mulder, E., Schaumont, P., Preneel, B., Verbauwhede, I.:
State-of-the-art of secure ECC implementations: a survey on known side-channel
attacks and countermeasures. In: IEEE International Symposium on Hardware-
Oriented Security and Trust, HOST 2010 (2010)

5. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic Analysis: Concrete Re-
sults. In: Koç, C., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162,
pp. 251–261. Springer, Heidelberg (2001)

6. Hofreiter, P., Laackmann, P.: Electromagnetic espionage from smart cards - attacks
and countermeasures. Secure 6, 40–43 (2002)

7. Kirschbaum, M., Schmidt, J.M.: Learning from electromagnetic emanations - a case
study for iMDPL. In: Workshop Proceedings COSADE 2011, pp. 50–55 (2011)

8. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

9. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

244 J. Heyszl et al.

10. López, J., Dahab, R.: Fast Multiplication on Elliptic Curves over GF(2m) with-
out Precomputation. In: Koç, C., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717,
pp. 316–327. Springer, Heidelberg (1999)

11. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Advances in Information Security. Springer-Verlag New York, Inc.,
Secaucus (2007)

12. Medwed, M., Oswald, M.E.: Template Attacks on ECDSA. In: Chung, K.-I., Sohn,
K., Yung, M. (eds.) WISA 2008. LNCS, vol. 5379, pp. 14–27. Springer, Heidelberg
(2009)

13. Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-Enhanced Power Analysis
Collision Attack. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS,
vol. 6225, pp. 125–139. Springer, Heidelberg (2010)

14. National Institute of Standards and Technology: Recommended elliptic curves for
federal government use (July 1999)

15. Quisquater, J.J., Samyde, D.: Electromagnetic Analysis (EMA): Measures and
Counter-Measures for Smart Cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)

16. Real, D., Valette, F., Drissi, M.: Enhancing correlation electromagnetic attack us-
ing planar near-field cartography. In: Design, Automation Test in Europe Confer-
ence Exhibition, DATE 2009, pp. 628–633 (April 2009)

17. Sauvage, L., Guilley, S., Flament, F., Danger, J., Mathieu, Y.: Cross-correlation
cartography. In: International Conference on Reconfigurable Computing and FP-
GAs (ReConFig 2010), pp. 268–273 (December 2010)

18. Sauvage, L., Guilley, S., Mathieu, Y.: Electromagnetic radiations of fpgas: High
spatial resolution cartography and attack on a cryptographic module. ACM Trans.
Reconfigurable Technol. Syst. 2, 4:1–4:24 (2009)

19. Schramm, K., Leander, G., Felke, P., Paar, C.: A Collision-Attack on AES. In: Joye,
M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 163–175. Springer,
Heidelberg (2004)

20. Schramm, K., Wollinger, T., Paar, C.: A New Class of Collision Attacks and
its Application to DES. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887,
pp. 206–222. Springer, Heidelberg (2003)

21. Skorobogatov, S.: Optical fault masking attacks. In: 2010 Workshop on Fault Di-
agnosis and Tolerance in Cryptography (FDTC), pp. 23–29 (August 2010)

22. Witteman, M., van Woudenberg, J., Menarini, F.: Defeating RSA Multiply-always
and Message Blinding Countermeasures. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS,
vol. 6558, pp. 77–88. Springer, Heidelberg (2011)

Towards Different Flavors of Combined Side

Channel Attacks

Youssef Souissi1, Shivam Bhasin1, Sylvain Guilley1,
Maxime Nassar1,2, and Jean-Luc Danger1

1 TELECOM ParisTech, 46 rue Barrault, 75634 Paris, France
2 Bull TrustWay, 78340 Les Clayes-sous-Bois, France

firstname.lastname@TELECOM-ParisTech.fr

Abstract. Side Channel Attacks (SCA) have come a long way since
first introduced. Extensive research has improved various aspects of SCA
like acquisition techniques, processing of traces, choice of leakage model,
choice of distinguishers etc. As a result, side-channel countermeasures
have also improved. It is difficult to defeat such countermeasures and
requires a huge number of traces. So far, only a few works studied the
combination of SCA. In this paper, we put forward two methods to com-
bine different attacks to accelerate SCA or to reduce the number of traces
to attack. The first method is a combination of commonly used distin-
guishers. We provide a theoretical method and an empirical approach
to combine Pearson and Spearman correlation coefficients. The second
method suggests a combination of different measurements corresponding
to the same activity. A metric to assess this combination using infor-
mation theory is also given. Both methods are supported by application
on real traces. The gain is expressed in terms of reduction in number of
traces to attack. We report a gain of 50% for the first method and 45%
for the second method.

Keywords: Correlation Power Analysis (CPA), Spearman Correlation
Analysis, Gini Correlation, Combined Side Channel Attacks.

1 Introduction

Side Channel Attacks (SCA) have become an important issue in applied cryp-
tography. SCA pose a serious practical threat to physical implementation of
secure devices. These attacks exploit unintentional physical leakage, such as the
timing information, power consumption or radiated magnetic field. Since Kocher
et al. [15] introduced Differential Power Analysis (DPA) in 1998, an intensive
research has been done to improve and extend side-channel attacks.

Generally speaking, countermeasures against SCA try to increase the minimal
number of traces to attack. These countermeasures rely on adding noise to the
system, masking or hiding the sensitive data. Another countermeasure proposes
to change the secret key used for encryption and decryption regularly [14] which
is often used in real-life devices. Such countermeasures make the number of traces

O. Dunkelman (Ed.): CT-RSA 2012, LNCS 7178, pp. 245–259, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

246 Y. Souissi et al.

to attack a scarce resource. Hence, there is a need to find methods to accelerate
these attack.

Some previous works compare side-channel distinguishers.1 A recent study
shows that most univariate distinguishers are equivalent asymptotically [16],
and that they only differ by statistical artifacts that are data-dependent when
the environmental noise tends to zero. However, very few papers have tried to
combine these distinguishers or methods to improve existing attacks.

In [22], a combination of timing and power attack is used to attack RSA.
Two different kinds of combined attacks were put forward in [1]. In the first
attack, a set of traces is partitioned using two different leakage models: a 4-bit
model and a mono-bit model. A third model built combining these two models
is used for the attack. In the second method, some relevant time samples are
localised and combined. The authors of [1] suggest to compute the product of
the correlation coefficient at relevant time samples. Both these methods result
in a faster convergence towards a success rate of 100%. Another related work
is [24], where the authors tend to concatenate and combine electromagnetic (EM)
and power traces. The problem of the method proposed in [24] is that principle
component analysis (PCA) when applied to the traces without normalization,
favors the one with higher variance. Some works also tried to combine SCA with
faults as in [3, 23] to accelerate the attack and open new attack paths.

In this article, we put forward two new methodologies to combine common
side channel attacks in order to accelerate the key recovery. The combination
can be anticipated at different stages varying from the acquisition to the attack.
The two combinations we propose are:

Combination of Distinguishers. The choice of a proper side-channel dis-
tinguisher is essential for a successful SCA. We propose to combine different
distinguishers to accelerate the attack. We demonstrate our methodology by
combining the Pearson and the Spearman correlation coefficients, though more
than two distinguishers can also be combined. We propose two methods for com-
bination. Complex correlation coefficients combining the advantages of different
distinguishers is popular research interest in the field of statistics. Such correla-
tion can be seen as a theoretical combination. We show that the Gini correlation,
a combination of the Pearson and the Spearman correlation is an optimal distin-
guisher for SCA. Some practical methods can also be applied to use the results
of different distinguishers increasing the signal to noise ratio. Under some con-
ditions, we show that the combination of these coefficients is possible and leads
to a more powerful SCA.

Combination of Measurements. A common practice to carry out Electro-
magnetic Analysis (EMA [20]) is to acquire the strongest and most obvious
leakage points on the device. However, there are other points which also leak
exploitable information. We propose to acquire multiple simultaneous leakages

1 A distinguisher is basically a statistical test, that aims at putting forward any bias.
Some examples include a difference of means [15], a covariance [11], a correlation
(linear [6] or rank-based [5]), mutual information [9] or variance [25].

Towards Different Flavors of Combined Side Channel Attacks 247

from different leakage points using multiple antennae. These multiple leakages for
a single activity could be combined for an efficient SCA. Multi-channel attacks
have already been introduced in [2] for mono-bit DPA and template attacks.
In this article we give a more generic outlook towards combining measurements
using any distinguisher. We also provide a metric based on information theory to
test if the possibility of combination exists for a given pair of traces collections.

The rest of this paper is organised as follows. Section 2 gives a general back-
ground on power analysis. Sections 3 and 4 detail the aforementioned combina-
tion attacks along with corresponding results on real traces. Finally, Section 5
lists the conclusions drawn and possible extensions to this work.

2 Power Analysis: General Background

2.1 The Principle

Power analysis consists of exploiting dependencies between the manipulated data
and the analog quantities (power consumption, electromagnetic radiation . . .)
leaked from a CMOS circuit. In practice, it is difficult to model the signal leaked
by a hardware implementation. The reason is that hardware implementations
manipulate a large amount of data in parallel, but we target only a few bits of
this data when performing power analysis. Suppose that D power consumption
traces are recorded while a cryptographic device is performing an encryption
or a decryption operation. The attacker chooses an intermediate result of the
cryptographic algorithm. The intermediate value can be modelled as a deter-
ministic function that takes two parameters: a known d which can be either the
plain text or the cipher text and a secret (unknown) sk. Indeed, sk is a small
part of the cryptographic key and can take K possible values referred to as key
hypotheses, denoted by k̆. In what follows, we denote the intermediate value by
vd,sk generating a physical leakage, ld,sk. In the literature of SCA, the leakage
ld,sk is assumed to be composed of two terms: a deterministic term, φ(vd,sk),
and an independent noise term εd. With these notations, the actual leakage ld,sk
is written as follows:

ld,sk = φ(vd,sk) + εd. (1)

Practically, a leakage model2 is based on a logical function which enables an
attacker to compute a hypothetical intermediate value hd,k̆ = hfunc(vd,k̆) for

every possible k̆ key hypothesis and d. This way, the leakage measurements
are implicitly classified into several partitions, according to the hypothetical
intermediate values computed for each key hypothesis. Eventually, the attacker
uses a statistical test, referred to as distinguisher Δk̆, to compare hd,k̆ with ld,k.

Formally, the attacker builds a score vector Δvect = (Δk̆)
K
k̆=1

. The key candidate

k̆ that is the most likely to be the right key hypothesis (i.e the secret key sk) is the

2 The most commonly used power models for characterizing the power consumption
are the Hamming distance (HD) and the Hamming weight (HW) [6].

248 Y. Souissi et al.

one which corresponds to the absolute maximum score k̆ = argmaxk |Δk̆|. The
distinguisher used by the Correlation Power Analysis (CPA [6]) is the Pearson’s
product moment correlation coefficient ρ, defined as:

ρX,Y =
E[(X − μX) · (Y − μY)]

σX · σY
=

Cov(X,Y)

σX · σY
, (2)

where X and Y are two random variables with expected values μX and μY and
standard deviations σX and σY , respectively, E is the expected value operator
and Cov(X,Y) is the Covariance between X and Y . ρ is a dimensionless index
and is invariant to affine transformations of either variable.

3 Combination of Distinguishers

Gini correlation, which is often used in computing finance and income distribu-
tion, combines the advantages of the Pearson correlation ρ and the Spearman
correlation r. In this section, we first introduce the Gini correlation coefficient
followed by its application to side-channel analysis.

3.1 Mathematical Background

Let X be a random variable that takes its values from a finite set X (e.g.,
X = Fq

p). We denote by x a particular element from X . The probability density
function (pdf) of the event (X = x) is referred to as pX(x). Suppose we want
to best approximate Y with another variable X based only on the knowledge of
their joint distribution PX,Y (x, y). The problem is to find a function φ(.) of X
that best fits Y among all possible forms of φ. In our study, the variable X is
deterministic since it is theoretically predicted from a known cryptographic pro-
cess. Whereas, the variable Y is a real measure acquired by an oscilloscope. Thus,
for sake of clarity, the variableX is called the prediction and Y the measurement.
Depending on the causal connections between X and Y , their true relationship
may be linear or non linear. The independence of X and Y implies that they
are uncorrelated. The converse is true only under the Gaussian assumption. In
fact, this assumption states that the joint distribution of X and Y is bivariate
normal. In this case, X and Y are said to be jointly Gaussian variables.

However, regardless of the true nature of the relation, a linear model can be
used for an initial approximation when X and Y are scalar:

Y = φ(X) + ε = (α+ βX) + ε, (3)

where α is the intercept, β is the slope of the line, and ε is the error of the
approximation.

Definition: Jointly Gaussian
A set of n random variables X1, X2, . . . , Xn are jointly Gaussian if

∑n
i=1(aiXi)

is a Gaussian random variable ∀ real ai, with i ∈ [1..n].

Towards Different Flavors of Combined Side Channel Attacks 249

A common pitfall about the validity of the Gaussian assumption is to check
only that X and Y are drawn from normal distributions. If X and Y are each
individually Gaussian then this does not imply that they are jointly Gaussian.
Generally, a joint distribution PX,Y (x, y) is said to be bivariate normal if the four
conditions normal conditional distribution, linearity, homoscedasticity
and normal marginal distribution are satisfied [4]. Homoscedasticity means
that the conditional distribution of Y given X = x has finite variance for each
x. Moreover, under these conditions, ε must be drawn from a zero mean normal
distribution. In other words, ε is a random variable strictly independent from X
and a linear function φ characterizes the dependence between X and Y , entirely.
Estimation theory shows that under the Gaussian assumption, ρ is the best tool
to totally characterize the association (purely linear) betweenX and Y [27,7,13].
However, in real situations, it is hard to get a perfect binormal joint distribution.
In such situations, the higher the deviation from the Gaussian assumption is,
the lower the efficiency of ρ is. In this case, other correlation coefficients have
been developed to be more robust3 than the Pearson correlation. Some examples
include the Spearman coefficient r and Kendall’s tau rτ (rank correlations),
biserial and tetrachoric [17]. Spearman correlation measures both the linear and
the non-linear relationship between the two variables, as it does not requires that
the observations are drawn from a Gaussian distribution. It is a non-parametric
coefficient that was first applied in side-channel context in [5].

In the literature of correlation analysis, there is no rule to determine whether
the ρ will outperform its competitors or not, provided the deviation from Gaus-
sianity is not excessive. In this insight, statisticians have recently started to
investigate actual combinations between existing correlation coefficients, which
bridge the gap between Pearson coefficient and its competitors.

3.2 Gini Correlation: A Mixture of Pearson and Spearman
Coefficients

Pearson correlation, ρ, might perform poorly when the data is attenuated by
non-linear transformations, in contrast to Spearman correlation, r. However, r
is not as efficient as ρ under the Gaussianity. This robust alternative to ρ might
lose its efficiency especially when the data involves different types of variables
(e.g. discrete/continuous). Moreover, when the number of different values taken
by either variables is small, then this might create a problem of ties (i.e. there is
a tie while ranking the data. This affects considerably the quality of r [10]). In
such cases, the loss of efficiency might not be compensated by the robustness in
practice. For this purpose, statisticians have recently came with an interesting
combination between Pearson and Spearman coefficients, namely Gini correla-
tion (ξ), which has been proposed in [21].

3 A statistical criterion that does not make any assumption about the joint distribution
is said to be robust or distribution free.

250 Y. Souissi et al.

Spearman correlation r , which is just ρ applied on already ranked data, can
be defined using the notion of cumulative distributions as:

r(X,Y) = ρ(FX ,FY) =
1

σFXσFY

Cov(FX(X), FY (Y)) (4)

where FX and FY are the cumulative distribution of X and Y , respectively.
Similarly to Eq (4) and Eq (5), the Gini correlation coefficient is given by:

ξX,Y =
Cov(X,FY (Y))

Cov(Y, FX(X))
(5)

Note that in general ξ is not symmetric i.e. ξX,Y = ξY,X . In practice, the choice
between the two forms, depends on the type of variables X and Y . In statistics,
it has been reported that if, for instance, X is discrete and Y is continuous, then
ξY,X would be a good choice.

Practical Computation of Gini Correlation and Properties. Consider n
couples (Xi, Yi) with i ∈ [1..n] of independent variables drawn from a bivariate
distribution. If these couples of variables are ordered (sorted from low values
to high values) with respect to the Xi, new couples of variables (X(i), Y[i]) can
be generated, where X(1) < · · · < X(n). Y[1], · · · , Y[n] are the related concomi-
tants [18], which depend on the ordering of the Xi. As proposed in [21], ξY,X is
computed as:

ξY,X =

∑n
i=1(2i− 1− n)Y[i]∑n
i=1(2i− 1− n)Y(i)

. (6)

Note that, ξX,Y is computed in the same way as ξY,X , by just reversing the roles
of X and Y . For more details about the Gini correlation coefficient, we refer the
reader to [28].

We compared the three correlation functions (Pearson, Spearman and Gini)
using simulated traces. The leakage function of a FPGA can be modelled as
L(x) = HW(x) + α · δ(x), where δ(·) is the Kronecker symbol. Here L is the
leakage function and HW is the Hamming weight function. We verified this leak-
age model on public AES traces of DPA contest v2 [26] as shown in Fig. 1.
We attack 8 bits at the output of an AES Sbox, using a linear base function
of length 9 (8 bits and 1 constant). Thus, HW function can take 9 possible
values (HW=0,1,2,3,4,5,6,7,8). The figure 2 (a) shows the comparison of three
correlation coefficients as a function of α. A proper approximation for the Gaus-
sian case is seen when α is 0 and all three correlation coefficients are equivalent
empirically. When α is negative, Pearson correlation is not optimal. Spearman
and Gini still perform very well as they are not sensitive to monotonic trans-
formation. For positive α, Pearson is not suitable and Spearman also becomes
less optimal as the function L is no more monotonic. Since the transformation is
not drastic we see that the Spearman correlation tries to stabilise itself (Fig. 2
(b)). However, Gini does show some improvement over Pearson and Spearman.
As stated earlier, Gini is a combination of Pearson and Spearman, we can say
that combination can help in non-ideal cases. Next, we propose some empirical
approach to combine Pearson and Spearman.

Towards Different Flavors of Combined Side Channel Attacks 251

 38000

 39000

 40000

 41000

 42000

 43000

 0 1 2 3 4 5 6 7 8

Hamming distance

Template averages

 3500

 3600

 3700

 3800

 3900

 0 1 2 3 4 5 6 7 8

Hamming distance

Template standard deviations

 34000

 36000

 38000

 40000

 42000

 44000

 46000

 0 1 2 3 4 5 6 7 8

Hamming distance

Template averages + stddevs

Fig. 1. Leakage function of Sbox 0 (DPA contest v2)

−4 −3 −2 −1 0 1 2 3 4
0.8

0.85

0.9

0.95

1

1.05

1.1

C
or

re
la

tio
n

Alpha

Pearson
Spearman
Gini

−50 −40 −30 −20 −10 0 10 20 30 40 50

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

C
or

re
la

tio
n

Alpha

Pearson
Spearman
Gini

(a) (b)

Fig. 2. (a) Three correlation coefficients on the leakage function L, extended in (b) to
higher values of α

3.3 Pearson-Spearman Combination: An Empirical Approach

Why the Combination Works. As stated previously, most side channel at-
tacks differ in the measurements partitioning process and the used distinguisher.
Otherwise, they usually run iteratively and a new ranking of all secret hypothe-
ses is created at each iteration. Our starting argument to combine two different
distinguishers, (Δk̆)sca′ and (Δk̆)sca′′ , involves four observations: the first ob-
servation is that the two distinguishers are equivalent (i.e. similar evolution), in
terms of success rate and guessing entropy security metrics [25], when performed
in parallel, on the same set of side-channel traces. In addition, we observe that
the secret key mostly keeps the same temporal position for both distinguishers
unlike the false key hypotheses. We define the predicted key4 as the key hypoth-
esis that has the best rank PK for the current iteration. Its value is updated

4 The predicted key is also known as the best key.

252 Y. Souissi et al.

for each trace processed. We observed that the two distinguishers often do not
have the same predicted key (PK(Δk̆)sca′ = PK(Δk̆)sca′′). But more importantly,
this emphasizes the fact that (Δk̆)sca′ and (Δk̆)sca′′ are statistically different,
even if they are exploiting the same dependency. Eventually, the last observation
is that the secret key is always ranked among the best ranked key hypotheses
for both distinguishers. In fact, once the correct classification (partitioning) of
the traces for each iteration is done, the attack succeeds as the predicted key is
the actual secret key. The secret key achieves a Guessing entropy of zero when
the attack succeeds. This is not the case for false keys which should have an
unstable (random) rank.

Combination Formula. Consider two side-channel attacks, sca′ and sca′′, that
verify the empirical observations mentioned before. LetΔvectsca′ = ((Δk̆)sca′)K

k̆=1

and Δvectsca′′ = ((Δk̆)sca′′)K
k̆=1

, respectively. We can combine sca′ and sca′′

distinguishers by taking into account the scores given by both distinguishers for
the same key hypothesis, k̆. We use aggregate functions5 Ψ for the combination
(like the Max() and the Sum() functions). Similarly, Gini correlation can be

imagined to use ratio as an aggregate function. For each key hypothesis, k̆, a new
score is generated by computing Ψ((Δk̆)sca′ , (Δk̆)sca′′), which is the aggregate
function of (Δk̆)sca′ and (Δk̆)sca′′ . This way, a new vector of scores, denoted by
Δvectcombi

is built. An illustration of the combination mechanism is shown in
Fig. 3.

Key hyp (k̆) k̆ = 1 k̆ = i k̆ = K

(Δvect)sca′

(Δvect)sca′′ . . .

.

. . .

.(Δvect)comb Ψ((Δ1)sca′, (Δ1)sca′)

Ψ

(Δ1)sca′

(Δ1)sca′′

(Δi)sca′

(Δi)sca′′

(ΔK)sca′

(ΔK)sca′′

Ψ((ΔK)sca′, (ΔK)sca′′)Ψ((Δi)sca′, (Δi)sca′′)

Fig. 3. The mechanism of combination using an aggregate function Ψ

3.4 Experimental Results and Discussion

Our measurement setup consists of one Altera Stratix-II FPGA soldered on an
SASEBO-B platform, an 54855 Infiniium Agilent oscilloscope with a bandwidth
of 6 GHz and a maximal sampling rate of 40 GSa/s, antennas of the HZ–15
kit from Rohde & Schwarz. We recorded 5000 side-channel traces (averaged 256
times) related to the activity of an unprotected DES crypto-processor.

The analysis of the marginal distributions of both the prediction X and the
measurement Y , revealed that their joint distribution is not perfectly Gaus-
sian. In fact, there is some deviation from the bivariate normal assumption; and

5 An aggregate function is a special type of operator that returns a single value based
on multiple rows of data.

Towards Different Flavors of Combined Side Channel Attacks 253

therefore the Pearson correlation coefficient ρ might not be optimal. Moreover,
Spearman correlation coefficient r might not be optimal too, because X takes
a small number of different values which does not allow a reliable approxima-
tion by a normal distribution. As stated before, this might create a problem of
ties, which affects considerably the quality of r. The experiment that we have
conducted involves five side-channel attacks evaluated in term of their first-
order success rate (SR) and Guessing entropy (GE) security metrics: correlation
power attack (CPA), Spearman rank correlation, Gini correlation, and two em-
pirical combination attacks. In this experiment, two aggregate functions have
been investigated: the Sum(), and the Max(). These two attacks are denoted by
CombSum and CombMax, respectively.

According to Fig. 4 (a) and Fig. 4 (b), CPA and Spearman attacks have
similar behaviours. This agrees with our empirical statements stated previously.
Clearly, the combined attacks (Gini Correlation, CombMax and CombSum) out-
perform CPA and Spearman attacks. As a matter of fact, for a SR threshold
fixed at 80%, the number of traces needed to succeed in the combined attack
is around 200 traces. CPA and Spearman attacks need much more traces to do
so (400 traces) and thus the gain is about 50%. Unsurprisingly, the GE metric
shows a superior efficiency for the combined attacks as the rank of the secret key
converges more rapidly toward the best rank much faster than CPA and Spear-
man attacks. Besides, for both metrics, Gini correlation is slightly less efficient
than the empirical combinations, CombSum and CombMax. Let S1, S2 be two
inputs of aggregate function with respective noise of standard deviation σ1, σ2.
The signal-to-noise ratio (SNR) of the CombSum is (S1+S2)/

√
σ1

2 + σ2
2. When

S1 and S2 are equal, the SNR of combination using CombSum is increased by√
2. Similarly, the increase in SNR when two distinguishers are combined us-

ing CombMax can be computed. However, Gini Correlation is more generic and
might be more suitable in other empirical circumstances.

4 Combination of Measurements

Cartography is often used to reconstruct a dynamic image of the device using a
sensor. An attacker can use this dynamic image in identifying the areas where
the information leakage is the most intense [20]. As a matter of fact, the electro-
magnetic radiations correlated to a given process are not necessarily produced
at the exact location of the processing zone. The power lines or clock paths leak
more information and therefore power supply and ground networks as well as
the clock buffer trees are of special interest. Another interesting source of leak-
age are the decoupling capacitors which can leak radiated emanations about an
internal process. An EMA starts with research of a relevant leakage point for
capturing EM radiations. An attacker can perform a complete cartography of
the chip or carefully choose a decoupling capacitor. When dealing with complex
cryptographic circuits which are often bulky, several leakage points are identi-
fied. Some of these leakage points provide enough leakage to mount a successful
attack, however, the speed of attack could vary. A common practice is to choose

254 Y. Souissi et al.

(a) (b)

Fig. 4. CPA, Spearman vs Combination: (a) Success Rate and (b) Guessing Entropy

the point which could lead to the fastest attack. We put forward a methodol-
ogy to combine leakages from several leakage points in order to accelerate the
attack. We use multiple antennae to capture the radiation from different chosen
points, during a single encryption, for a given message and a fixed secret key. A
combination of power measurement and EM measurement can also be used.

4.1 Theoretical Background

Information gain of a single attribute X with respect to class C, also known as
mutual information between X and C, measured in bits is:

Gainc(X) = I(X ;C) =
∑
x

∑
c

P (x, c) log
P (x, c)

P (x)P (c)
. (7)

Equivalently:
I(X ;C) = H(X)−H(X |C) . (8)

Here H(X) is the entropy of X and H(X |C) is the conditional entropy of X
given C. Information gain is a measure of the strength of a 2-way interaction
between an attribute X and the class C. 3-way interactions were introduced
as interaction gain [12] which is equivalent to mutual information of 3-variables.
Interaction gain is also measured in bits, and can be understood as the difference
between the actual decrease in entropy achieved by the joint attribute (X,Y) and
the expected decrease in entropy with the assumption of independence between
attributesX and Y . Interaction gain can be considered equivalent to multivariate
mutual information [8]. To simplify the calculation of entropy we consider the
distribution of X is Gaussian. In this case entropy can be calculated as a function
of standard deviation σx of X as:

H(X) = −
∑
i

p(xi) log2 p(xi) = log2(σx

√
(2πe)) . (9)

Towards Different Flavors of Combined Side Channel Attacks 255

Estimating entropy using Gaussian parametric method might not be very accu-
rate but it works well in practice [19]. Nevertheless, other methods of estimating
entropy can be equally applied.

I(X ;Y ;Z) = I(X,Y ;Z)− I(X ;Z)− I(Y ;Z)

I(X ;Y ;Z) = (D + F +G)− (F +G)− (D +G) = -G (10)

B

G

F D

C

E

H(X)

A

H(Z)

H(Y)

C

H(X)

H(Y)
H(Z)

DBA E

Fig. 5. Venn diagram representation of a case when combination is (a) possible, (b)
not possible

The Venn diagram representation of interaction gain is shown in Fig. 5. As
per Eq (10), interaction gain is equal to -G. If X and Y are independent,
I(X,Y ;Z) = I(X ;Z)+I(Y ;Z). This means that the interaction gain I(X ;Y ;Z)
is zero. Interpreting from Fig. 5 (a) and (b) combination is possible when the
information equal to D is added to I(X ;Z) with introduction of Y . This makes
I(X,Y ;Z) = D+G+F. If D is zero, then the introduction of the Y is not pro-
viding any extra information.

To check this condition we propose a simple test. The possibility of combina-
tion (PC) can be calculated as a ratio:

PC =
Max(I(X ;Z), I(Y ;Z))

I(X,Y ;Z)
. (11)

For a combination to exist, the value of PC should lie between 0.5 and 1, where
PC=1 will suggest no combination is possible. In the context of combined at-
tacks, interaction gain can be directly applied. This is a profiling step because
the knowledge of the secret key is required to calculate the value of PC. Alter-
natively, PC can also be used as a distinguisher. However, in this paper we show
how to apply combination using CPA.

4.2 Practical Results

The experimental setup is the same as in Section 3.4. We target two decoupling
capacitors on the backside of the FPGA which show emanations corresponding

256 Y. Souissi et al.

to a DES execution. As the number of capacitors on the backside of the FPGA is
small, we can use the trial-and-error method to choose the set of capacitance. A
complex cryptographic operation generally consumes more than other operations
on a chip which can be observed on an EM trace. We choose the capacitors where
these cryptographic operation are obvious or clearly distinguishable on the EM
trace. We collect two sets of 5000 traces from two chosen capacitors for the
same data set. A crypto-processor is a bulky design and could be spread over
different power banks in an FPGA which are terminated by different capacitors.
Therefore, different capacitors leak more information about a certain part of the
circuit. Here the partition can be seen as different Sboxes.

We start with testing the possibility of combination. Fig. 6 shows the PC
values for the first Sbox. Fig. 6 (a) considers traces from two capacitance called
C1 and C2 which are leaking relevant information. It can be seen that the value
of PC is close to 0.5 when the value of mutual information is relevant. Fig. 6
(b) considers traces from a leaking capacitance and another point which is not
leaking. Here the value of PC is close to 1. In other parts of the trace there is
noise and the value of PC is changing randomly. Unfortunately, we did not have
a set of traces for which the value of PC takes values between 0.5 and 1. It can
be inferred from this experiment that combination is possible for the traces in
Fig. 6 (a).

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

Time Samples

M
ut

ua
l I

nf
or

m
at

io
n/

P
C

(MI−C1)X100

(MI−C2)X100

PC

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

Time Samples

M
ut

ua
l I

nf
or

m
at

io
n/

P
C

(MI−C1)X100

(MI−C3)X100

PC

Fig. 6. Calculation of PC for two cases when combination is (a) possible, (b) not
possible (mutual information of the two measurements is multiplied by 100 to visualize
on the same scale as PC)

The next step is to observe practical application of combination of measure-
ments using a common attack like CPA. We applied CPA on the traces collected
from C1 and C2 independently. Table 1 summarises the result of CPA on each
set of traces. These results are averaged over 30 attacks. We see that C1 is better
suited for Sbox no. 1, 2, 4 and 8 and C2 for the rest.

Before testing the combination, we concatenate traces of C1 and C2 together.
Traces can be normalised before concatenation specially when techniques like

Towards Different Flavors of Combined Side Channel Attacks 257

PCA are applied but if the traces are taken with the same scale then normal-
isation will not help a lot. In our experiments the traces are taken with the
same scale on the oscilloscope therefore normalisation is not needed. We attack
the concatenated trace by computing the Pearson correlation coefficient of the
key hypothesis for each trace on each of the two sections of concatenated trace.
To test the combination, we use an aggregate function Ψ as listed previously
(Section 3.3). The aggregate function used in this experiment is the Sum() on
the calculated coefficient values. The attack used to apply combination is CPA.
Spearman, Gini and other coefficients can also be used. It is shown that Sum()
can increase the SNR even if the two traces contain equivalent information. If
the amount of information is not equivalent Sum() will further increase the SNR
hence a faster attack. Performance of Sum() as a basis for combination has al-
ready been demonstrated in Fig. 4. We repeat the same attack using the Max()
aggregate function. The results are slightly worse than for Sum().

The computation complexity of this attack is equivalent to processing a trace
with twice the number of samples with minor overhead of applying the aggre-
gate function. Two parallel attacks on non-concatenated traces will have similar
computation overhead but concatenation makes it easy to manage the key hy-
potheses and apply aggregate functions.

Table 1 shows the number of traces to attack when combination is applied. We
find that in each case the combination is better than individual attack and the
gain varies from 4.16% to 44.86%. This also complies with our observations from
the computed PC values. The values of PC computed previously and gain from
table 1 cannot be directly compared because the basis of both the quantities
are different. As mentioned before, some countermeasures change encryption
key after a specific number of encryption to prevent SCA. Since the number of
traces acquired is considered a scarce resource, we demonstrate that multiple
measurements can be exploited for faster attack.

Table 1. No. of traces to attack using C1, C2 and combination of both.

Sbox No. 0 1 2 3 4 5 6 7

C1 350 943 733 400 410 320 548 592

C2 432 1073 720 980 176 281 551 192

Comb sum 212 750 397 251 165 270 448 184

Percent Gain 39.42 20.46 44.86 37.25 6.25 3.96 18.24 4.16

5 Conclusion

In this article we proposed two new methodologies of combined attacks. The first
methodology combines commonly used side-channel distinguishers like Pearson
and Spearman coefficient both theoretically (Gini correlation) and empirically
(aggregate function). The second methodology combines measurements. We pro-
vide theoretical background based on information theory metrics to test combi-
nation by computing possibility of combination PC. Practical results show a gain

258 Y. Souissi et al.

of about 50% with the first method and 45% with the second. We emphasize that
we discuss methodologies to improve attacks in general, but there maybe cases
which are better off using the prior techniques. Depending on the target, different
distinguishers can be combined using appropriate aggregate functions. Choice of
the aggregate functions depends on the practical behavior of distinguishers.

References

1. Aabid, M.A.E., Meynard, O., Guilley, S., Danger, J.L.: Combined Side-Channel
Attacks. In: Chung, Y., Yung, M. (eds.) WISA 2010. LNCS, vol. 6513,
pp. 175–190. Springer, Heidelberg (2011)

2. Agrawal, D., Rao, J.R., Rohatgi, P.: Multi-Channel Attacks. In: Walter, C.D., Koç,
C., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 2–16. Springer, Heidelberg
(2003)

3. Amiel, F., Villegas, K., Feix, B., Marcel, L.: Passive and Active Combined Attacks:
Combining Fault Attacks and Side Channel Analysis. In: FDTC, September 10,
pp. 92–102. IEEE Computer Society, Vienna (2007)

4. Arnold, B., Castillo, E., Sarabia, J.: Conditional specification of statistical models.
Springer series in statistics. Springer, Heidelberg (1999)

5. Batina, L., Gierlichs, B., Lemke-Rust, K.: Comparative Evaluation of Rank Corre-
lation Based DPA on an AES Prototype Chip. In: Wu, T.-C., Lei, C.-L., Rijmen,
V., Lee, D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp. 341–354. Springer, Heidelberg
(2008)

6. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

7. Dagnelie, P.: Statistique théorique et appliquée. Tome 2. Inférence statistique á
une et á deux dimensions. De Boeck (2006)

8. Gierlichs, B., Batina, L., Preneel, B., Verbauwhede, I.: Revisiting Higher-Order
DPA Attacks: In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 221–234.
Springer, Heidelberg (2010)

9. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,
Heidelberg (2008)

10. Gravetter, F., Wallnau, L.: Essentials of statistics for the behavioral sciences.
Thomson/Wadsworth (2008),
http://books.google.com.nf/books?id=hcoYNW4BujYC

11. Guilley, S., Sauvage, L., Danger, J.L., Selmane, N., Pacalet, R.: Silicon-level solu-
tions to counteract passive and active attacks. In: FDTC, 5th Workshop on Fault
Detection and Tolerance in Cryptography, pp. 3–17. IEEE-CS, Washington DC,
USA (2008)

12. Jakulin, A., Bratko, I.: Analyzing Attribute Dependencies. In: Lavrač, N., Gam-
berger, D., Todorovski, L., Blockeel, H. (eds.) PKDD 2003. LNCS (LNAI),
vol. 2838, pp. 229–240. Springer, Heidelberg (2003)

13. Kamen, E.W., Su, J.: Introduction to optimal estimation. Advanced textbooks
in control and signal processing. Control and Signal Processing Series. Springer,
Heidelberg (1999)

14. Kocher, P.C.: Leak-resistant cryptographic indexed key update (March 25, 2003),
United States Patent 6,539,092 filed at San Francisco, CA, USA (July 2, 1999)

http://books.google.com.nf/books?id=hcoYNW4BujYC

Towards Different Flavors of Combined Side Channel Attacks 259

15. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

16. Mangard, S., Oswald, E., Standaert, F.X.: One for All - All for One: Unifying
Standard DPA Attacks. Cryptology ePrint Archive, Report 2009/449 (2009)

17. Myers, J., Well, A.: Research design and statistical analysis. L. Erlbaum Associates
(1995)

18. Nagaraja, H.N.: Functions of concomitants of order statistics. Journal of the Indian
Society for Probability and Statistics 7, 15–32 (2003)

19. Prouff, E., Rivain, M.: Theoretical and Practical Aspects of Mutual Information
Based Side Channel Analysis. In: Abdalla, M., Pointcheval, D., Fouque, P.-A.,
Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 499–518. Springer, Heidel-
berg (2009)

20. Sauvage, L., Guilley, S., Mathieu, Y.: ElectroMagnetic Radiations of FP-
GAs: High Spatial Resolution Cartography and Attack of a Cryptographic
Module. ACM Trans. Reconfigurable Technol. Syst. 2(1), 1–24 (2009),
http://hal.archives-ouvertes.fr/hal-00319164/en/

21. Schechtman, E., Yitzhaki, S.: A measure of association base on Gini’s Mean dif-
ference. Communications in statistics. Theory and methods 16, 207–231 (1987)

22. Schindler, W.: A Combined Timing and Power Attack. In: Naccache, D., Paillier,
P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 263–279. Springer, Heidelberg (2002)

23. Schmidt, J.M., Tunstall, M., Avanzi, R.M., Kizhvatov, I., Kasper, T., Oswald, D.:
Combined Implementation Attack Resistant Exponentiation. In: Abdalla, M., Bar-
reto, P.S.L.M. (eds.) LATINCRYPT 2010. LNCS, vol. 6212, pp. 305–322. Springer,
Heidelberg (2010)

24. Standaert, F.X., Archambeau, C.: Using Subspace-Based Template Attacks to
Compare and Combine Power and Electromagnetic Information Leakages. In: Os-
wald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 411–425. Springer,
Heidelberg (2008)

25. Standaert, F.X., Gierlichs, B., Verbauwhede, I.: Partition vs. Comparison Side-
Channel Distinguishers: An Empirical Evaluation of Statistical Tests for Uni-
variate Side-Channel Attacks against Two Unprotected CMOS Devices. In: Lee,
P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 253–267. Springer, Hei-
delberg (2009)

26. TELECOM ParisTech SEN research group: DPA Contest 2nd edn. (2009-2010),
http://www.DPAcontest.org/v2/

27. Tufféry, S., Saporta, G.: Data mining et statistique décisionnelle. L’intelligence des
données. Technip (2010); ISBN: 978271080946-3

28. Yitzhaki, S.: Gini’s mean difference: a superior measure of variability for non-
normal distributions. International Journal of Statistics 2, 285–316 (2003)

http://hal.archives-ouvertes.fr/hal-00319164/en/
http://www.DPAcontest.org/v2/

Two-Dimensional Representation

of Cover Free Families and Its Applications:
Short Signatures and More

Shota Yamada1,�, Goichiro Hanaoka2, and Noboru Kunihiro1

1 The University of Tokyo
{yamada@it.,kunihiro@} k.u-tokyo.ac.jp

2 National Institute of Advanced Industrial Science and Technology (AIST)
hanaoka-goichiro@aist.go.jp

Abstract. Very recently, Hofheinz, Jager, and Kiltz proposed novel dig-
ital signature schemes that yield significantly shorter signatures. How-
ever, in contrast to such remarkably short signatures, the size of the
public key is still huge, making it desirable for this to be reduced. In this
paper, we present a two-dimensional representation technique for cover
free families, and show that this technique is quite useful for reducing the
public key size in various cryptographic primitives. As immediate appli-
cations, we give constructions of the k-resilient identity-based key encap-
sulation mechanism (KEM), q-bounded CCA-secure KEM, and m-time
signature which yield shorter public keys than previous schemes. More-
over, by applying our technique, we propose a (fully-fledged) signature
scheme with the public key approximately 1/100 the size of that in the
Hofheinz-Jager-Kiltz scheme with the same signature size and security
assumption.

1 Introduction

Background. Designing more efficient basic cryptographic primitives, e.g., dig-
ital signatures, is one of the central research topics in cryptography. In perfor-
mance evaluations of such primitives, the size of the public key is often considered
to be less important since it does not need to be hidden from others and can
even be kept in insecure storage. Nevertheless, it needs to be taken into account
when it becomes extremely large. For example, if the size of a public key is sig-
nificantly larger than the capacity of main memory in the device, the time to
load the public key dominates the whole processing time.

Very recently, Hofheinz et al. [20] proposed novel digital signature schemes
that yield significantly shorter signatures than the previously best known schemes
(under reasonable assumptions). For a typical parameter setting, the size of
their signature is only 200 bits long (for 80-bit security). However, in contrast
to such surprisingly short signature length, the public key size is very large,
approximately 26,000,000 bits for the same parameter settings. Therefore, it is

� The first author is supported by a JSPS Research Fellowship for Young Scientists.

O. Dunkelman (Ed.): CT-RSA 2012, LNCS 7178, pp. 260–277, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Two-Dimensional Representation of Cover Free Families and Its Applications 261

worth discussing the possibility of reducing the public key size in the Hofheinz-
Jager-Kiltz scheme without increasing the signature size or strengthening the
underlying security assumption.

Besides the Hofheinz-Jager-Kiltz scheme, there are many other cryptographic
schemes that are very efficient except with respect to public key size (and thus,
the computational cost of key generation). For example, Cramer et al. [9] pro-
posed a q-bounded chosen-ciphertext secure public key encryption scheme whose
ciphertext length is the same as that in the ElGamal scheme under the same se-
curity assumption, i.e., the decisional Diffie-Hellman (DDH) assumption. Thus,
it is desirable to develop a general method for reducing the size of the public
key in a certain class of cryptographic primitives (which includes the Hofheinz-
Jager-Kiltz scheme).

Our Contribution. In this paper, we discuss a two-dimensional representation
of a cover free family, and show that it is useful for reducing the size of the
public key in a wide range of cryptographic schemes. An m-cover free family is
a family of sets such that any m sets do not cover any another set. Each set in
the family is a subset of [d](= {1, 2, . . . , d}). Due to its combinatorial property,
a cover free family has been used as a building block for constructions of many
cryptographic protocols, such as [13,26,9,23,20], to name but a few. Some of the
previous constructions, such as [9,20], associate one index i ∈ [d] with one group
element gai , and consequently, these require at least d group elements in a public
key. This is the main reason that the public key in cryptographic schemes reliant
on a cover free family is generally huge.

In this work, to avoid the above problem, we introduce an m-cover free family
over [

√
d]× [

√
d], which can easily be obtained from an ordinary cover free family

over [d]. We call this representation of a cover free family, the two-dimensional
representation. Then, we associate each index of row i ∈ [

√
d] with one group

element gai , and each index of column j ∈ [
√
d] with one group element gbj .

Similarly, we associate index (i, j) (or a coefficient of the matrix) with gaibj .
With this two-dimensional representation of a cover free family (and a bilinear

map), it is possible to compress the size of the public key in various cryptographic
schemes that depend on cover free families. Specifically, in our schemes, we re-
quire only 2

√
d group elements in a public key, as opposed to d group elements

in the previous scheme. A similar technique for reducing the public key size has
also been used in [7,18,30], and our proposed technique can be considered to be
an extension of this technique in cases where a cover free family is used.

As an immediate application of the above technique, a novel q-resilient identity
based key encapsulation mechanism (IBKEM) with a very short ciphertext can
be obtained. Specifically, its ciphertext length is only one group element, whereas
previous (q-resilient and standard) IBKEM schemes [19,2,28,29] require at least
two group elements in a ciphertext. Via the Canetti-Halevi-Katz (CHK) trans-
formation [8,5,6] and the Naor transformation [4,11], we can obtain a novel key
encapsulation mechanism (KEM) that is indistinguishable under q-bounded cho-
sen ciphertext security (IND-q-CCA) [9] and a novel m-time signature scheme,
respectively. In the above KEM, a ciphertext and a public key consist of only a

262 S. Yamada, G. Hanaoka, and N. Kunihiro

single group element and O(q
√
λ) group elements, respectively, and our scheme

can be proven secure under the decisional bilinear Diffie-Hellman (DBDH) as-
sumption. On the other hand, in the above signature scheme, a signature consists
of only one group element with the size of its public key O(m

√
λ).

Finally, based on the two-dimensional representation of a cover free family,
we demonstrate the construction of a fully-fledged signature scheme with very
small signature size. More specifically, its signature is the same size as that of
the Hofheinz-Jager-Kiltz scheme, and its public key size is approximately 1/100
of that of the Hofheinz-Jager-Kiltz scheme. For a typical parameter setting (with
80-bit security), our scheme yields signatures with only 200 bits and public keys
with approximately 200,000 bits, while in the Hofheinz-Jager-Kiltz scheme, the
signature size is the same, and the public key is approximately 26,000,000 bits
long.

Related Works. Construction of a digital signature scheme with existential
unforgeability under chosen message attack (EUF-CMA) [17] in the standard
model is a main research topic in cryptography. In particular, the construction
of a short signature from a mild assumption has been extensively studied. Ear-
lier research proposed signature schemes from the strong RSA [10,16,15] and the
strong q-Diffie Hellman (strong q-DH) assumptions [3]. Waters [28] proposed
a signature scheme from the computational Diffie-Hellman (CDH) assumption.
Many of these constructions implicitly or explicitly use a chameleon hash [24]
to obtain a fully secure signature scheme. This conversion adds extra redun-
dancy to the signature size. Hofheinz and Kiltz [21] introduced the notion of
programmable hash functions and proposed generic constructions of short sig-
natures using (m, 1)-programmable hash functions (see Section 2.3 for the defi-
nition). They also showed that Waters’ hash [28] is indeed a (2, 1)-programmable
hash function. As a result, from the strong q-DH and strong RSA assumptions,
they obtained short signature schemes that do not require a chameleon hash.
However, the construction of an (m, 1)-programmable hash function for m ≥ 3,
which could yield a shorter signature, was left as an open problem. Another
recent progress was due to Hohenberger and Waters [22], who succeeded in con-
structing a signature scheme from the standard RSA assumption using a novel
“prefix guessing” technique. Similar to most of the previous schemes, their con-
struction uses a chameleon hash.

Very recently, Hofheinz, Jager, and Kiltz [20] solved the above open problem
by constructing an (m, 1)-programmable hash function from an m-cover free
family. They also removed the necessity of the chameleon hash from the RSA
based signature in [22] using the technique from [21]. As a result, they obtained
short signature schemes from the RSA assumption. Furthermore, they used the
power of the (1, poly)-programmable hash function to obtain short signature
schemes based on the (not strong, more standard) q-DH assumption. The scheme
provides the shortest signatures in the literature, but with the drawback of huge
public keys.

Two-Dimensional Representation of Cover Free Families and Its Applications 263

2 Preliminaries

For λ ∈ N, 1λ denotes the string of λ ones, with λ expressing the security
parameter throughout this paper. [�] denotes the set {1, 2, . . . , �}. Moreover,
|x| and |S| denote, respectively, the length of bitstring x, and the size of set

S. If S is a set, s
$← S denotes the action of uniform randomly selecting an

element of S. Given algorithm A, we write z
$← A(x, y, . . .) to indicate that A

is a (probabilistic) algorithm that outputs z on input (x, y, . . .). We denote all
generators in a group G by G∗.

2.1 Number Theoretic Assumptions

Here we recall some number theoretic assumptions used in this paper.

Discrete Logarithm (DL) Assumption. Let G be a group of prime order p.
We say that an adversary A (t, ε)-breaks the DL assumption on G if A runs in

time t and Pr[A(g, gx) $→ x] ≥ ε where g
$← G and x

$← Zp. We assume that no
algorithm exists that (t, ε)-breaks the DL assumption with polynomial t and non-
negligible ε.

DBDH Assumption [6]. Let G1, G2, and GT be groups of prime order p
with bilinear map e : G1 × G2 → GT . We say that an adversary A (t, ε)-
breaks the DBDH assumption on G1, G2, and GT if A runs in time t and
1
2 |Pr[A(g1, gx1 , g

y
1 , g2, g

y
2 , g

z
2 , e(g, g)

xyz)
$→ 0] − Pr[A(g1, gx1 , g

y
1 , g2, g

y
2 , g

z
2 , T)

$→
0]| ≥ ε where g1

$← G∗
1, g2

$← G∗
2, T

$← GT , x, y, z
$← Zp. We assume that

no algorithm exists that (t, ε)-breaks the DBDH assumption with polynomial t
and non-negligible ε.

q-DH Assumption. Let G1, G2, and GT be groups of prime order p with bilin-
ear map e : G1 ×G2 → GT . We say that an adversary A (t, ε)-breaks the q-DH

assumption on G1 and G2 if A runs in time t and Pr[A(g1, gy1 , . . . , g
yq

1 , g2, g
y
2)

$→
g
1/y
1] ≥ ε where g1

$← G∗
1, g2

$← G∗
2, y

$← Z∗
p. We assume that no algorithm exists

that (t, ε)-breaks the q-DH assumption with polynomial t and non-negligible ε.

2.2 Syntax and Security Notions

In this paper, we concentrate on the construction of an (IB)KEM scheme. Due
to the KEM-DEM theorem [27], a q-resilient IBKEM and an IND-q-CCA secure
KEM can be used as a q-resilient identity based encryption (IBE) and IND-q-
CCA secure PKE, respectively by combining them with an appropriate DEM
(data encapsulation mechanism).

IBKEM and Its q-Resilient Security. Here, we define the syntax of an
IBKEM and its q-resilient security [19]. We assume that the upper bound
of the number of users q is known a priori. Thus, Setup takes as input not
only security parameter 1λ, but also q. An IBKEM comprises four algorithms,

264 S. Yamada, G. Hanaoka, and N. Kunihiro

namely, Setup,KeyExtract,Encapsulate, and Decapsulate. We represent the ID
space as ID. The setup algorithm Setup generates the key pair (PK,MSK)

$←
Setup(1λ, q) for master secret key MSK and public key PK. The key extrac-
tion algorithm KeyExtract inputs the public key, master secret key, and user
ID and outputs a private key SKID

$← KeyExtract(PK,MSK, ID) for ID.
The encapsulation algorithm Encapsulate takes a public key and ID as in-
put and outputs the ciphertext for ID and its corresponding session key K
as (ψ,K)

$← Encapsulate(PK, ID). The decapsulation algorithm Decapsulate
takes a ciphertext and private key for ID as input and outputs K or ⊥ =
Decapsulate(ψ, SKID). K is the corresponding secret key and ⊥ indicates that
the ciphertext is not in a valid form. We require the usual correctness property.

We recall the q-resilient security experiment between a challenger and an
adversary A. First, the challenger runs (PK,MSK)

$← Setup(1λ, q) and the
adversary is given PK. Proceeding adaptively, A requests private keys for
ID1, . . . , IDq ∈ ID under PK. The challenger responds to each query with

a private key SKIDi

$← KeyExtract(PK,MSK, IDi). A can interleave the key
extraction queries with the challenge query at an arbitrary point. A queries for
ID∗ on which it wishes to be challenged. Then the challenger selects a random
bit b ∈ {0, 1} and runs (ψ∗,K∗) $← Encapsulate(PK, ID∗). It sets K0 = K∗ and

chooses a random key K1
$← K from the key space K. Then it gives (ψ∗,Kb) to

A. Finally, A outputs its guess b′ ∈ {0, 1} for b and wins if b = b′.
In the above game, we constrain A so that ID∗ ∈ {ID1, . . . , IDq} to exclude

a trivial attack. We define the advantage of A as |Pr[b = b′] − 1
2 |. We say that

A (t, ε)-breaks q-resilient security of the IBKEM if A runs in time t, makes at
most q key extraction queries, and has advantage ε. We say that the IBKEM
scheme is q-resilient secure if ε is negligible for any probabilistic polynomial-time
algorithm A, the number of key extraction queries of which is bounded by q.

KEM and its IND-q-CCA Security. The syntax of a KEM and its IND-q-
CCA security is defined as in [9]. We assume that the upper bound of the number
of decryption queries q is known a priori. Thus, a key generation algorithm takes
q as input besides 1λ. In the IND-q-CCA experiment, we constrain adversary A
so that it does not issue the decryption query more than q times.

Digital Signature and Its EUF-CMA Security. We define the syntax of a
digital signature scheme and its EUF-CMA security. A digital signature scheme
is defined by the three algorithms, Gen, Sign, andVerify. The key generation al-
gorithm Gen generates a keypair (PK, sk)

$← Gen(1λ) for a secret key sk and a
public key PK. The signing algorithm Sign inputs a message and the secret key,
and returns a signature σ

$← Sign(sk,M) of the message. The verification algo-
rithm Verify takes a public key and a message with a corresponding signature
as input, and returns) or ⊥, indicating “accept” or “reject”, respectively. We
require the usual correctness properties.

We recall the EUF-CMA experiment played by a challenger and a forger F .
First, the challenger runs (PK, sk)

$← Gen(1λ) and F is given PK. Proceeding
adaptively, F requests signatures on messages M1, . . . ,Mq ∈ {0, 1}∗ under PK.

Two-Dimensional Representation of Cover Free Families and Its Applications 265

The challenger responds to each query with a signature σi
$← Sign(sk,Mi). Even-

tually, F outputs the pair (M∗, σ∗). We say that the adversary wins the game if
Verify(M∗, σ∗, PK) =) and M∗ ∈ {M1, . . . ,Mq}. We say that F (t, q, ε)-breaks
the EUF-CMA security of the signature if F runs in time t, makes at most q
signing queries, and has success probability ε. We say that the signature scheme
is EUF-CMA secure if ε is negligible for any probabilistic polynomial-time al-
gorithm F . If we include m as input for Gen and limit the adversary A in the
above game so that the number of signing queries is less than m, then the above
definition corresponds to the definition of an m-time signature.

2.3 Programmable Hash Functions ([21])

Let G be a group of known order p. A group hash scheme D over G with input
length l is associated with two efficient algorithms PHF.Gen and PHF.Eval. The
probabilistic algorithm κ

$← PHF.Gen generates a hash key κ for security param-
eter λ. PHF.Eval is a deterministic algorithm that takes as input a hash function
key κ and s ∈ {0, 1}l and returns PHF.Eval(κ, s) ∈ G. In fact, our scheme does
not use PHF.Gen, but we include it here for completeness of the programmable
hash function definition.

Definition 1. A group hash scheme D = (PHF.Gen,PHF.Eval) is (m,n, γ, δ)-
programmable, if there exists an efficient trapdoor key generation algorithm
PHF.TrapGen and an efficient trapdoor evaluation algorithm PHF.TrapEval with
the following properties.
◦ The probabilistic algorithm (κ, τ)

$← PHF.TrapGen(1λ, g, h) generates hash
function key κ together with trapdoor information τ given security parame-
ter λ and g, h ∈ G.

◦ For all g, h ∈ G∗, the keys κ
$← PHF.Gen(1λ) and κ′ $← PHF.TrapGen(1λ, g, h)

are statistically γ-close.
◦ On input s ∈ {0, 1}l and trapdoor information τ , the deterministic trapdoor
evaluation algorithm (es, fs)← PHF.TrapEval(τ, s) produces es, fs ∈ Zp so that
for all s ∈ {0, 1}l, PHF.Eval(κ, s) = geshfs . We denote D(s) = PHF.Eval(κ, s).

◦ For all g, h ∈ G, all κ output by κ
$← PHF.Gen(1λ, g, h) and all s∗1, . . . , s∗m ∈

{0, 1}l and s1, . . . , sn ∈ {0, 1}l such that s∗i = sj for all i, j, we have Pr[es∗1 =
· · · = es∗m = 0 ∧ es1 , . . . , esn = 0] ≥ δ, where (es∗i , fs∗i) = PHF.TrapEval(τ, s∗i)
and (esj , fsj) = PHF.TrapEval(τ, sj) and the probability is taken over the trap-
door τ produced together with κ.

If γ is negligible and δ is noticeable, we say that D is (m,n)-programmable for
short. Moreover, if D is (1, q)-programmable for every polynomial q = q(λ), we
say that D is (1, poly)-programmable.

We note that Waters’ hash [28] is a concrete example of a (1, poly)-programmable
hash function.

3 Our Basic Idea and Its Direct Applications

In this section, we first recall the standard definition of a cover free family.
Then, we introduce a slight twist to the use of cover free families and propose

266 S. Yamada, G. Hanaoka, and N. Kunihiro

a novel q-resilient IBKEM under the DBDH assumption as a direct application
of our technique. The ciphertext and user private key of q-resilient IBKEM
consist of only one group element. Next, we apply the CHK transformation
[8,5,6] and Naor transformation [4,11] for the scheme to obtain a new IND-q-
CCA secure KEM and a multiple-time signature, respectively. A public key of the
resulting KEM consists of O(q

√
λ) group elements, which is shorter than that

of the previous IND-q-CCA secure KEM [9], which consists of O(q2λ) group
elements. The public key of our multiple-time signature consists of O(m

√
λ)

group elements, which is shorter than that in most of the previous multiple-time
signature schemes based on a cover free family [26,20,12], consisting of O(m2λ)
group elements.

3.1 Two-Dimensional Representation of Cover Free Family

We begin by recalling the definition of cover-free families. Let S1, S2 be sets.
We say that S2 does not cover S1 if S1 ⊆ S2. Let d,m, α be integers, and let
F = (Fμ)μ∈[α] be a family of α subsets of [d]. We say that F is m-cover free if
for any set I containing (up to) m indices I = {μ1, . . . , μm} ⊆ [α], it holds that
Fν ⊆ ∪μ∈IFμ for any ν that is not contained in I. In other words, if |I| ≤ m,
then the union ∪μ∈IFμ does not cover Fν for all ν ∈ [α]\I. We say that F is
w-uniform if |Fμ| = w for all μ ∈ [α]. Throughout this paper, we use a parameter
in the following lemma.

Lemma 1. ([14,25]) There is a deterministic polynomial-time algorithm that,
on input of integers m,α = 2n, returns d ∈ N and the set family F = (Fμ)μ∈[α],
such that F is m-cover free over [d] and w-uniform, where d ≤ 16m2n and
w = d/4m.

Here, we introduce our novel technique for the use of a cover free family. In this
paper, we regard [d] as [�1]× [�2], where �1 and �2 are integers satisfying �1 ≥ �2
and �1�2 ≥ d. We regard i ∈ [d] as an element of [�1]× [�2] by associating it with
(i− �1(!i/�1"− 1), !i/�1"). Then, all Fμ can be seen as a subset of [�1]× [�2] in a
natural way and (Fμ)μ∈α can be seen as an m-cover free family over [�1]× [�2].

In our construction, we associate an element D ∈ D of some domain D with a

subset of [�1]× [�2] by defining S : D → 2[�1]×[�2] as S(D)
def
= FH(D) ⊆ [�1]× [�2],

where F = (Fμ)μ∈[α] is an m-cover free family over [�1] × [�2] and H : D → [α]
is an injective (or hash) function. In the following, we treat H as an injective
function for simplicity, but it is enough to assume that H is a collision resistant
hash for our schemes to be secure. To avoid a birthday attack, we typically set
n = 2λ. From the property of F , for all D∗, D1, . . . , Dm it holds that S(D∗) ⊆
∪m
i=1S(Di) if D

∗ ∈ {D1, . . . , Dm}. Besides, if we require F to be w-uniform, then
|S(D)| = w for all D ∈ D.

3.2 q-Resilient IBKEM

Here, we show the construction of a q-resilient IBKEM from the DBDH as-
sumption using our technique explained above. Since a q-resilient IBKEM is a

Two-Dimensional Representation of Cover Free Families and Its Applications 267

powerful cryptographic protocol, it can be used as a building block for various
cryptographic schemes such as the IND-q-CCA KEM and multiple-time signa-
ture scheme via the CHK transformation [8,5,6] and Naor transformation [4,11],
respectively. Our IBKEM can be seen as a modification of the IBKEM implicit
in [9] from the DDH assumption. The ciphertext of our IBKEM consists of only
one group element, and it is smaller than any previous (q-resilient and standard)
IBKEM schemes [19,2,28,29]. This is a remarkable property of our scheme.

Let G1, G2, and GT be groups of prime order p with bilinear map e : G1 ×
G2 → GT . Typically, we set (�1, �2) = (O(q

√
λ), O(q

√
λ)). Let S be a map

S : ID → 2[�1]×[�2] where ID is the ID space of the scheme. We assume that
for all ID∗, ID1, . . . , IDq ∈ ID it holds that S(ID∗) ⊆ ∪q

i=1S(IDi) if ID∗ ∈
{ID1, . . . , IDq}. We define the scheme as follows.

Setup(1λ, q): This selects g1
$← G∗

1, g2
$← G∗

2, a1, . . . , a�1 , b1, . . . , b�2
$← Zp and

computes A1 = ga1
1 , . . . , A�1 = g

a�1
1 , B1 = gb12 , . . . , B�2 = g

b�2
2 . Then, it

returns the public key PK = (g1, g2, A1, . . . , A�1 , B1, . . . , B�2) and master
secret key MSK = (a1, . . . , a�1 , b1, . . . , b�2).

KeyExtract(PK,MSK, ID): This computes SKID = g
∑

(i,j)∈S(ID) aibj
2 and re-

turns it.
Encapsulate(PK, ID): This first selects r

$← Zp and computes ψ = gr1, K =(∏
(i,j)∈S(ID) e(Ai, Bj)

)r
. Then, it returns ciphertext ψ and its correspond-

ing key K.
Decapsulate(ψ, PK, SKID): This computes K ′ = e(ψ, SKID) and returns it.

Remark. In the Encapsulate algorithm, we need at most �2 (not |S(ID)|) pair-
ing computations to compute K. To confirm this, it is enough to check that

K =
(∏

j∈[�2]
e
(∏

i∈{i|(i,j)∈S(ID)} Ai, Bj

))r
. A similar technique can be applied

to other constructions in this paper. We also note that the above and all other
schemes in this paper can also be implemented in symmetric pairing groups
where G1 = G2. The resulting schemes are secure under the corresponding num-
ber theoretic assumptions in the symmetric pairing group.

The following theorem establishes the security of the scheme.

Theorem 1. Suppose there exists an adversary A that (t, q, ε)-breaks the q-
resilient security of the above IBKEM scheme. Then there exists an adversary
B that (t′, ε′)-breaks the DBDH assumption on G1, G2, and GT with t′ ≈ t and
�1�2ε

′ ≥ ε.

Proof. Let IDk be the k-th query to the key extraction oracle and ID∗ be the
challenge ID. In the following, let Xi denote that A’s guess is correct (i.e., b′ = b)
in Game i. We consider the following games.

Game 0. We define Game 0 as the q-resilient security experiment between a
challenger and an adversary A. By definition we have |Pr[X0]− 1/2| = ε.

Game 1. Game 1 proceeds like Game 0. The only difference is that at the begin-
ning of the game, the challenger chooses (i∗, j∗) $← [�1]× [�2]. Since nothing
has essentially been changed, we have Pr[X1] = Pr[X0].

268 S. Yamada, G. Hanaoka, and N. Kunihiro

Game 2. Game 2 proceeds like Game 1, but we introduce some notations for
later use. Let Q ⊆ [�1]× [�2] be Q = ∪q

k=1S(IDk). From the property of S,

we have S(ID∗) ⊆ Q. Thus we can define (i∗min, j
∗
min)

def
= min(S(ID∗)\Q)

where min is the minimum function based on some well-defined order (e.g.,
lexicographic order) over [�1]× [�2]. Call Fail the event that (i∗, j∗) = (i∗min,
j∗min). Note that Pr[Fail|X2] = (�1�2 − 1)/�1�2 = Pr[Fail] so X2 and Fail are
independent events, and in particular, Pr[X2] = Pr[X2|¬Fail]. Since we did
not actually change anything, Pr[X2] = Pr[X1].

Game 3. In Game 3, we substitute A’s output b′ with a random bit whenever
Fail occurs. Obviously, Pr[X3|¬Fail] = Pr[X2|¬Fail] and Pr[X3|Fail] = 1

2 .
Since Pr[Fail] = (�1�2 − 1)/�1�2 in Game 3 as well, we can establish that
|Pr[X3]− 1/2| = |Pr[X2]− 1/2|/�1�2.

Game 4. In Game 4, we immediately stop the experiment and set Fail to true
(hence immediately taking a random bit for A’s output) as soon as A asks
for a key for IDk such that (i∗, j∗) ∈ S(IDk) or (i

∗, j∗) ∈ S(ID∗). Note that
even in Game 3, such a query would imply (i∗min, j

∗
min) = (i∗, j∗) and hence

Fail. Consequently, Pr[X4] = Pr[X3].

Proving the following lemma completes the proof. �

Lemma 2. There exists an adversary B that (t′, ε′)-breaks the DBDH assump-
tion with t′ ≈ t and ε′ ≥ |Pr[X4]− 1/2|.

Proof. DBDH Adversary. We replace the challenger with DBDH adversary
B with advantage |Pr[X4]− 1

2 |. B receives a DBDH challenge (g1, g
x
1 , g

y
1 , g2, g

y
2 ,

gz2 , R) as input and tries to distinguish whether R = e(g1, g2)
xyz or R is a random

element of GT .

Setup of Public Keys. B first sets g1 = g1, g2 = g2 and chooses i∗ $← [�1],

j∗ $← [�2]. Then, it chooses ai
$← Zp for all i = i∗ and bj

$← Zp for all j = j∗.
The public key is set as Ai = gai

1 for all i = i∗, Ai∗ = gy1 , Bj = g
bj
2 for all

j = j∗, and Bj∗ = gz2 . Note that B implicitly sets ai∗ = y, bj∗ = z. Then, B gives
PK = (g1, g2, A1, . . . , A�1 , B1, . . . , B�2) to A.

Setup of Challenge Ciphertext. At some point, B outputs ID∗. If (i∗, j∗) ∈
S(ID∗), A aborts and outputs a random bit. Otherwise, B sets ψ = gx1 and
computes K by K = R ·

∏
(i,j)∈S(ID∗)\{(i∗,j∗)} Ki,j . Note that B sets r = x

implicitly. Here, the Ki,j are computed as follows:

Ki,j =

⎧⎪⎨
⎪⎩

e(gx1 , g2)
aibj =

(
e(Ai, Bj)

)r
(i = i∗, j = j∗)

e(gx1 , g
y
2)

bj =
(
e(Ai∗ , Bj)

)r
(i = i∗, j = j∗)

(gx1 , g
z
2)

ai =
(
e(Ai, Bj∗)

)r
(i = i∗, j = j∗).

Then, B gives (ψ,K) to A. If R = e(g1, g2)
xyz, R = e(Ai∗ , Bj∗)

r and K is the
corresponding key for the challenge ciphertext ψ. If R is a random element of
GT , K is distributed uniform randomly in GT .

Two-Dimensional Representation of Cover Free Families and Its Applications 269

Answering Key Extraction Queries. When A makes a key extraction query
for IDk, B first checks whether (i∗, j∗) ∈ S(IDk). If so, B aborts and outputs a
random bit. Otherwise, B computes SKID by SKID =

∏
(i,j)∈S(IDk)

ski,j where
the ski,j are computed as follows:

ski,j =

⎧⎪⎪⎨
⎪⎪⎩

g
aibj
2 (i = i∗, j = j∗)

(gy2)
bj = g

ai∗bj
2 (i = i∗, j = j∗)

(gz2)
ai = g

aibj∗
2 (i = i∗, j = j∗).

Guessing the Answer to DBDH Challenge. A outputs its guess b′. Then,
B checks whether (i∗min, j

∗
min) = (i∗, j∗). If so, B outputs the same b′ as its guess.

Otherwise, B outputs a random bit.
By the construction, it is easy to see that |Pr[B′s guess is correct] − 1/2| =

|Pr[X4]− 1/2|. ��

3.3 IND-q-CCA Secure KEM with Shorter Public Keys

By applying the CHK transformation [8,5,6] to our IBKEM, we can obtain a
novel IND-q-CCA secure KEM. The security of our scheme can be proven under
the DBDH assumption. In our scheme, a ciphertext consists of only one group
element, while a public key consists of only O(q

√
λ) group elements, which

is less than the O(q2λ) group elements required by the previous IND-q-CCA
scheme [9].

Here, we compare our scheme with the IND-q-CCA secure KEM scheme in
[9] under the DDH assumption. A ciphertext in the latter scheme consists of
only one group element, which is the same as our construction. As for public
and secret key size, however, the latter construction is O(q2λ), whereas our
construction is O(q

√
λ). This difference has an important implication, in that,

if the q operation is infeasible in practice, then it might be unnatural to assume
that a user can generate the O(q2λ) key pairs required in [9], as opposed to only
O(qλ) key pairs required in our construction. Reducing the computational cost
of setup to be O(q) at the cost of security under a stronger number theoretic
assumption (i.e., DBDH) than that of the previous construction (i.e., DDH) can
be seen as a partial solution to this problem.

3.4 Multiple-Time Signature with Shorter Public Key

Similarly, by applying the Naor transformation [4,11] to our IBKEM, we can ob-
tain a novel multiple-time signature. The security of our scheme can be proven
under the CDH assumption. In the resulting scheme, a signature consists of
only one group element (in G1) while the public key consists of O(m

√
λ) group

elements if we set the parameters appropriately. No other scheme achieves si-
multaneously the same signature size and public key size as our scheme.

The signature size of our scheme is O(1), while the public and secret key size
is O(m). (Here, we ignore the dependency on λ and focus on the dependency

270 S. Yamada, G. Hanaoka, and N. Kunihiro

on m.) We compare our scheme with previous multiple-time signature schemes
[26,31,12,20] based on the cover free family technique. In most of these schemes,
the public key consists of O(m2) elements. The only scheme that achieves an
O(1) signature size and O(m) public key size simultaneously is given in [20].
Such a scheme can be obtained by combining a (m, 1) weak programmable hash
function in [20] with a chameleon hash as suggested in [20]. If we choose prime
order group G as the underlying group, the scheme can be proven secure under
the DL assumption. Although the other scheme can be proven secure under a
weaker assumption than ours, the signature length of that scheme is longer than
ours due to the use of a chameleon hash. We also note that there is no known
(fully fledged, not m-time) signature scheme that achieves the same signature
size as ours in the standard model.

4 Short Signature with Smaller Public Key Size

So far, we have seen several direct applications of our technique. In this section,
we show a further complicated and non-trivial application of our technique.
Our ultimate goal is the construction of a digital signature scheme with a short
parameter under a mild assumption. Toward achieving this goal, we present a
signature scheme with very short signatures and smaller public key size than the
previous construction [20]. Our starting point is the signature scheme proposed
very recently in [20] (Sigq-DH[Hcfs,Hwat]). This construction provides the shortest
signatures yet in the literature and can be proven secure under the q-DH assump-
tion. While providing very short signatures, the scheme suffers from a large public
key size. This inefficiency is mainly due to the use of an (m, 1)-programmable
hash function. Thus, we remove the necessity of the (m, 1)-programmable hash
function from the construction and show that the scheme remains secure if we
use our m time signature scheme instead. By this modification, we can reduce
the public key size of the scheme, while preserving its security and signature
size.

4.1 Construction

Let G1, G2, and GT be groups of prime order p with bilinear map e : G1×G2 →
GT . Typically, we set (�1, �2) = (O(m

√
λ), O(m

√
λ)). Let D : {0, 1}l → G2

be a (1, poly)-programmable hash function with algorithms (PHF.Gen,PHF.Eval,
PHF.TrapGen,PHF.TrapEval). Let S be a map S : M → 2[�1]×[�2] where M is
the message space. We assume that for all M∗,M1, . . . ,Mm ∈ M it holds that
S(M∗) ⊆ ∪m

i=1S(Mi) if M
∗ ∈ {M1, . . . ,Mm}. We define the scheme as follows.

Gen(1λ): This first selects g1
$← G∗

1, g2
$← G∗

2, and then generates a hash func-

tion through (κ, τ)
$← PHF.TrapGen(1λ, g2, g

y
2), where y

$← Zp. Then, it

selects a1, . . . , a�1 , b1, . . . , b�2
$← Zp and computes A1 = ga1

1 , . . . , A�1 = g
a�1
1 ,

B1 = gb12 , . . . , B�2 = g
b�2
2 . It returns public key PK = (κ, g1, g2, A1, . . . , A�1 ,

B1, . . . , B�2) and secret key sk = (y, τ, a1, . . . , a�1 , b1, . . . , b�2).

Two-Dimensional Representation of Cover Free Families and Its Applications 271

In the following, D(s) denotes PHF.Eval(κ, s) and d(s) ∈ Zp denotes logg2 D(s)

(i.e., g
d(s)
2 = D(s)).

Sign(sk,M): This computes H(M) = g
∑

(i,j)∈S(M) aibj
1 . Then it selects a random

s
$← {0, 1}l until d(s) = 0 and computes σ = H(M)1/d(s). 1 Since d(s) =

es+yfs where (es, fs) = PHF.TrapEval(τ, s), d(s) can be efficiently computed
from y and τ . The signature is (σ, s) ∈ G1 × {0, 1}l.

Verify(M, (σ, s), PK): This returns) if e(σ,D(s)) =
∏

(i,j)∈S(M) e(Ai, Bj). Oth-
erwise, it returns ⊥.

Remark. Signature σ can be computed by σ = g
∑

(i,j)∈S(M) aibj/d(s)

1 instead of
first computing H(M) and then computing σ = H(M)1/d(s). The exponentiation
needed to compute the signature occurs only once. Also note that H(M) is
our multiple-time signature in Section 3.4. Since H(M) cannot be computed
efficiently without a secret key, H is not an (m, 1)-programmable hash function.
Thus our construction above does not fall into a special case of the generic
construction in [20], which uses an (m, 1)-programmable hash function.

4.2 Security

Theorem 2. Let D be (1, poly, γ, δ)-programmable. Suppose there exists a forger
F that (t, q, ε)-breaks the EUF-CMA security of the above scheme. Then there
exists an adversary A that (t′, ε′)-breaks the q-DH assumption on G1 and G2

with t ≈ t′ and ε ≤ 1+q�1�2
δ ε′ + qm+1

2ml .

In the rest of this subsection, we prove Theorem 2. Before going into the details,
we give an intuitive explanation of the security proof of our scheme. The high
level structure of the security proof is very similar to that in [20]. Let Mk, (sk, σk)
be the k-th signing query of forger F and the response to it. Let M∗, (s∗, σ∗) be
F ’s final output.

We consider two types of forgers, Type1 and Type2, as in [20]. A type1 forger
reuses sk. That is, s∗ = sk for some k ∈ [q]. A type2 forger outputs a forgery
such that s∗ = sk for all k ∈ [q]. We construct a q-DH adversary A from the
forger against our scheme. To deal with Type1 forgers, since |{k|sk = s∗}| ≥ 1,
A has to compute signatures of the form H(Mk)

1/d(s∗) more than once. In fact,
due to the generalized birthday bound by [20] (see Lemma 3 below), Pr[|{k|sk =
s∗}| ≥ m + 1] is negligible. Thus, it is sufficient if A can compute a signature
with form H(Mk)

1/d(s∗), m times. To handle this problem, [20] used the power of
the (m, 1)-programmable hash function. Conversely, we use the power of the m
time signature scheme. The security of the scheme is essentially reduced to the
security of the multiple-time signature. The reduction for a Type2 forger is more

1 This step makes Sign run in the expected polynomial time. To avoid this, we can
modify Sign so that when d(s) = 0, it outputs secret key sk as suggested in [20]. This
change does not harm the security of the scheme since the probability of d(s) = 0 is
negligible as proven in the security proof of the scheme.

272 S. Yamada, G. Hanaoka, and N. Kunihiro

similar to the security proof of previous schemes. Here, we recall the following
lemma from [20], which is needed in our security proof.

Lemma 3. Let A be a set with |A| = a. Let X1, . . . , Xq be q independent random
variables, with uniformly random values taken from A. Then, the upper bound
on the probability that there exists m + 1 pairwise distinct indices i1, . . . , im+1

such that Xi1 = · · · = Xim+1 is qm+1

am .

Theorem 2 follows directly from Lemmas 4 and 5, proving security against Type2
and Type1 forgers, respectively. We omit the proof of Lemma 5 due to a lack of
space.

Lemma 4. Let F be a Type1 forger that (t, q, ε)-breaks the existential unforge-
ability of our scheme. Then there exists an adversary A that (t′, ε′)-breaks the

q-DH assumption on G1 and G2 with t ≈ t′ and ε′ ≥ δ
1+q�1�2

(ε− qm+1

2ml).

Lemma 5. Let F be a Type2 forger that (t, q, ε)-breaks the existential unforge-
ability of the above scheme. Then there exists an adversary A that (t′, ε′)-breaks
the q-DH assumption with t ≈ t′ and ε′ ≥ δε

3+δp/(p−1) .

Proof. (of Lemma 4) In the following, let Xi denote the probability that F is
successful in Game i and the challenger does not abort.

Game 0. We define Game 0 as the EUF-CMA experiment between a challenger
and forger F . By definition we have Pr[X0] = ε.

Game 1. In this game, the challenger aborts if there exist at least m+1 indices
k1, . . . , km+1 ∈ [q] such that sk = sk′ for all k, k

′ ∈ {k1, . . . , km+1}. We

denote this event by AbortmColl. We know that Pr[AbortmColl] ≤ qm+1

2ml from

Lemma 3. Thus, we have Pr[X1] ≥ Pr[X0]− qm+1

2ml .
Game 2. In this game, the challenger chooses randomness s1, . . . , sq in advance

and aborts if D(sk) = 1G2 (which means d(sk) = 0) for some k ∈ [q]. We de-
note this event as AbortDzero. Then we have Pr[X2] ≥ Pr[X1]−Pr[AbortDzero].

Game 3. In this game, the challenger guesses k∗ $← [q] such that sk∗ = s∗ in
advance and aborts if F outputs a forgery (M∗, σ∗, s∗) with sk∗ = s∗. Since
s∗ ∈ {si}qi=1, we have Pr[X3] ≥ Pr[X2]/q.

Game 4. In this game, the challenger chooses i∗ $← [�1], j
∗ $← [�2] before setting

the public key and aborts if (i∗, j∗) ∈ S(M∗) or (i∗, j∗) ∈ S(Mk) for some k ∈
{k | sk = s∗}. Recall that {k | sk = s∗} ≤ m, so S(M∗) ⊆ ∪k∈{k|sk=s∗}S(Mk)
from the property of S. Thus, there exists at least one (i′, j′) ∈ [�1] × [�2]
such that (i′, j′) ∈ S(M∗) and (i′, j′) ∈ S(Mk) for all k ∈ {k | sk = s∗}. We
have Pr[X4] ≥ Pr[X3]/�1�2.

Game 5. In the following, let E = ∪q
i=1{si}, E∗ = E\{sk∗}. In this game the

challenger sets Ai = g
ãi

∏
t∈E d(t)

1 for all i = i∗, and Ai∗ = g
ãi∗

∏
t∈E∗ d(t)

1 .

The challenger also sets Bj = g
d(sk∗)b̃j
2 for all j = j∗, and Bj∗ = g

b̃j∗
2 . Here,

ã1, . . . , ã�1 , b̃1, . . . , b̃�2
$← Zp. Since d(t) = 0 for all t ∈ E, the distribution

of the public key is unchanged from the previous game. Since this change is
only conceptual, we have Pr[X5] = Pr[X4].

Two-Dimensional Representation of Cover Free Families and Its Applications 273

Game 6. In this game, the challenger computes (esk , fsk)← PHF.TrapEval(τ, sk)
for k ∈ [q]. In the following, let (e∗, f∗) = (es∗ , fs∗) ← PHF.TrapEval(τ, s∗).
The challenger aborts if esk = 0 for some k ∈ [q] such that sk = s∗ or
e∗ = 0. Note that if d(s∗) = e∗ + yf∗ = 0 and e∗ = 0, then f∗ = 0. By
(1, poly)-programmability of D, we have Pr[X6] ≥ δ Pr[X5].

Proving Claims 1 and 2 below completes the proof. We omit the proof of Claim
1 since it can be proven easily. �
Claim 1. There exists an adversary A that (t′, ε′)-breaks the DL assumption on
G2 (and thus, (t′, ε′)-breaks the q-DH assumption on G1 and G2) with t′ ≈ t and
ε′ ≥ δPr[AbortDzero].

Claim 2. There exists an adversary A that (t′, ε′)-breaks the q-DH assumption
on G1 and G2 with t′ ≈ t and ε′ ≥ Pr[X6].

Proof. (of Claim 2) q-DH adversary. We replace the challenger in Game 6
with q-DH adversary A whose advantage is Pr[X6]. A receives a q-DH challenge

(g1, g
y
1 , . . . , g

yq

1 , g2, g
y
2) as input and tries to compute g

1/y
1 .

Setup of Public Keys. A first sets g1 = g1, g2 = g2 and prepares a hash func-
tion by (κ, τ)

$← PHF.TrapGen(1λ, g2, g
y
2). Then it chooses s1, . . . , sq

$← {0, 1}l
and aborts if D(sk) = 1G2 for some k ∈ [q]. Next, it sets k∗ $← [q], i∗ $← [�1], j

∗ $←
[�2]. The public key is set as Ai = g

ãi
∏

t∈E d(t)

1 for all i = i∗, Ai∗ = g
ãi∗

∏
t∈E∗ d(t)

1 ,

Bj = g
d(sk∗)b̃j
2 for all j = j∗, and Bj∗ = g

b̃j∗
2 where ã1, . . . , ã�1 , b̃1, . . . , b̃�2

$← Zp.
Since

∏
t∈E d(t) =

∏
t∈E(et + yft) and

∏
t∈E∗ d(t) =

∏
t∈E∗(et + yft) are poly-

nomials of y with degree at most q, A can compute all Ai from (g1, g
y
1 , . . . , g

yq

1)
even though A does not explicitly know y. Similarly, A can compute all Bj from
g2, g

y
2 since d(sk∗) = esk∗ + yfsk∗ is a polynomial of y with degree 1. Then, A

gives PK = (κ, g1, g2, A1, . . . , A�1 , B1, . . . , B�2) to F .

Answering Signing Queries. For the k-th signing query, A has to compute

(∏
(i,j)∈S(Mk)

g
aibj
1

)1/d(sk) = ∏
(i,j)∈S(Mk)

σi,j

where σi,j = g
aibj/d(sk)
1 . We consider two cases. We show σi,j can be computed

for all (i, j) ∈Mk unless (i∗, j∗) ∈ S(Mk) ∧ sk = sk∗ .

1. If sk = sk∗ , the σi,j are computed as follows.

σi,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

g
ãib̃jd(sk∗)

∏
t∈Ek

d(t)

1 = g
ãib̃j(esk∗ +yfsk∗)

∏
t∈Ek

(et+yft)

1 i �= i∗, j �= j∗

g
ãib̃jd(sk∗)

∏
t∈E∗

k
d(t)

1 = g
ãib̃j (esk∗ +yfsk∗)

∏
t∈E∗

k
(et+yft)

1 i = i∗, j �= j∗

g
ãib̃j

∏
t∈Ek

d(t)

1 = g
ãib̃j

∏
t∈Ek

(et+yft)

1 i �= i∗, j = j∗

g
ãib̃j

∏
t∈E∗

k
d(t)

1 = g
ãib̃j

∏
t∈E∗

k
(et+yft)

1 i = i∗, j = j∗

Here, Ek = E\{sk} and E∗
k = E∗\{sk}.

274 S. Yamada, G. Hanaoka, and N. Kunihiro

2. If sk = sk∗ , the σi,j are computed as follows. We assume (i∗, j∗) ∈ S(Mk),
since otherwise A aborts.

σi,j =

⎧⎨⎩ g
ãib̃j

∏
t∈E∗ d(t)

1 = g
ãib̃j

∏
t∈E∗ (et+yft)

1 (i �= i∗, j = j∗) ∨ (i = i∗, j �= j∗)

g
ãib̃j

∏
t∈E d(t)

1 = g
ãib̃j

∏
t∈E (et+yft)

1 i �= i∗, j �= j∗

In all these cases, σi,j can be computed efficiently from g1, g
y
1 , . . . , g

yq

1 since
logg1 σi,j is a polynomial of y with degree at most q.

Extracting the Solution to the q-DH Challenge. When F forges (M∗, σ∗, s∗),
A computes g

1/y
1 as follows. We assume s∗ = sk∗ and (i∗, j∗) ∈ S(M∗), since

otherwiseA aborts. If the forgery of the adversary is valid, the following equation
holds:

σ∗ =
(∏
(i,j)∈S(M∗)

g
aibj
1

)1/d(s∗)
=

∏
(i,j)∈S(M∗)

σ∗
i,j .

Here we define σ∗
i,j = g

aibj/d(s
∗)

1 . It is easy to see that, unless (i, j) = (i∗, j∗), σ∗
i,j

can be computed efficiently in exactly the same way as in the simulation of the
signing oracle. Thus, A obtains σ∗

i∗,j∗ by σ∗/
(∏

(i,j)∈S(M∗)\(i∗,j∗) σ
∗
i,j

)
= σ∗

i∗,j∗ .

Let β(y) be a polynomial defined by
∏

t∈E∗(et + yft) =
∑q−1

i=0 βiy
i. We assume

that β0 =
∏

t∈E∗ et = 0 and e∗ = 0, f∗ = 0. Otherwise, like the challenger
in Game 6, A aborts. Then A can compute the solution to the problem by((

σ∗
i∗,j∗

)f∗/(ãi∗ b̃j∗)/
∏q−1

i=1 (g
yi−1

1)βi

)1/β0

= g
1/y
1 . �

4.3 Comparison with the Previous Scheme

We compare our scheme with the short signature scheme Sigq-DH[Hcfs,HWat] in
[20]. The differences between our scheme and the other scheme are summarized
in Table 1. Two sets of parameters for our scheme are presented in the table.
For the first set, (�1, �2) = (570, 290) so that the public key size is the minimum
under the condition �1�2 = 16mn2. With these parameters, the public key size
of our scheme is less than 1/100 of that of the other scheme. On the other hand,
the computational cost of verification is very high. For the second parameter set,
(�1, �2) = (16530, 10). This choice of parameters indicates that we can reduce the
size of the public key to about 1/10 of that of the other scheme if we allow a
relatively small increase in the computational cost of verification. Signature size
and computational cost of signing in our scheme are comparable to those in the
other scheme. We also note that the reduction cost of our scheme is essentially
the same as that of the other scheme. The only drawback of our scheme compared
to the other is a more costly verification algorithm. To sum up, our scheme and
Sigq-DH[Hcfs,HWat] in [20] provide a trade-off between the public key size and the
computational cost of verification.

Two-Dimensional Representation of Cover Free Families and Its Applications 275

Table 1. Comparison of signature schemes based on the q-DH assumption

Signature scheme Signature size Public key size Signing Verification
(bits) (bits) cost cost

Sigq-DH[Hcfs,HWat] [20] |g1|+ |s| 16mn2|g1|+ |s||g2| 1× Exp 2× Pairing
(m = 8) =200 = 2.6× 107

Ours (m = 8) |g1|+ |s| �1|g1|+ (|s|+ �2)|g2| 1× Exp (�2 + 1)Pairing
(�1, �2) = (570, 290) =200 = 2.0× 105 =291 ×Pairing
Ours (m = 8) |g1|+ |s| �1|g1|+ (|s|+ �2)|g2| 1× Exp (�2 + 1)Pairing
(�1, �2) = (16530, 10) =200 = 2.7× 106 =11 ×Pairing
The chosen parameters are λ = 80, q = 230, n = 2λ = 160. We also set
l = |s| = log q + λ/m = 40 so that the term qm+1/2ml in Theorem 2 is at
most 1/2λ as in [20]. We use the BN curve [1] for asymmetric pairing groups and
assume that elements in G1 and G2 can be represented by |g1| = 160 bits and
|g1| = 320 bits, respectively. In our evaluation for computational cost, only the number
of exponentiation and pairings are taken into account, and other operations (e.g.
individual exponentiations) are ignored.

References

1. Barreto, P.S.L.M., Naehrig, M.: Pairing-Friendly Elliptic Curves of Prime Or-
der. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331.
Springer, Heidelberg (2006)

2. Boneh, D., Boyen, X.: Secure Identity Based Encryption without Random Oracles.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer,
Heidelberg (2004)

3. Boneh, D., Boyen, X.: Short Signatures without Random Oracles. In: Cachin,
C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73.
Springer, Heidelberg (2004)

4. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

5. Boneh, D., Katz, J.: Improved Efficiency for CCA-Secure Cryptosystems Built
using Identity-Based Encryption. In: Menezes, A. (ed.) CT-RSA 2005. LNCS,
vol. 3376, pp. 87–103. Springer, Heidelberg (2005)

6. Boyen, X., Mei, Q., Waters, B.: Direct chosen ciphertext security from identity-
based techniques. In: ACM Conference on Computer and Communications Secu-
rity, pp. 320–329 (2005)

7. Boyen, X., Waters, B.: Shrinking the Keys of Discrete-Log-Type Lossy Trapdoor
Functions. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 35–52.
Springer, Heidelberg (2010)

8. Canetti, R., Halevi, S., Katz, J.: Chosen-Ciphertext Security from Identity-Based
Encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

9. Cramer, R., Hanaoka, G., Hofheinz, D., Imai, H., Kiltz, E., Pass, R., Shelat,
A., Vaikuntanathan, V.: Bounded CCA2-Secure Encryption. In: Kurosawa, K. (ed.)
ASIACRYPT 2007. LNCS, vol. 4833, pp. 502–518. Springer, Heidelberg (2007)

10. Cramer, R., Shoup, V.: Signature schemes based on the strong RSA assumption.
In: ACM Conference on Computer and Communications Security, pp. 46–51 (1999)

276 S. Yamada, G. Hanaoka, and N. Kunihiro

11. Cui, Y., Fujisaki, E., Hanaoka, G., Imai, H., Zhang, R.: Formal security treat-
ments for ibe-to-signature transformation: Relations among security notions. IE-
ICE Transactions 92-A(1), 53–66 (2009)

12. Dodis, Y., Haitner, I., Tentes, A.: On the (in)security of RSA signatures. Cryptol-
ogy ePrint Archive, Report 2011/087 (2011), http://eprint.iacr.org/

13. Dodis, Y., Katz, J., Xu, S., Yung, M.: Key-Insulated Public Key Cryptosystems.
In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 65–82. Springer,
Heidelberg (2002)

14. Erdös, P., Frankl, P., Füredi, Z.: Families of finite sets in which no set is covered
by the union of two others. J. Comb. Theory, Ser. A 33(2), 158–166 (1982)

15. Fischlin, M.: The Cramer-Shoup Strong-RSA Signature Scheme Revisited. In:
Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 116–129. Springer, Hei-
delberg (2002)

16. Gennaro, R., Halevi, S., Rabin, T.: Secure Hash-and-Sign Signatures without
the Random Oracle. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592,
pp. 123–139. Springer, Heidelberg (1999)

17. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

18. Haralambiev, K., Jager, T., Kiltz, E., Shoup, V.: Simple and Efficient Public-
Key Encryption from Computational Diffie-Hellman in the Standard Model. In:
Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 1–18.
Springer, Heidelberg (2010)

19. Heng, S., Kurosawa, K.: k-Resilient Identity-Based Encryption in the Standard
Model. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 67–80. Springer,
Heidelberg (2004)

20. Hofheinz, D., Jager, T., Kiltz, E.: Short Signatures from Weaker Assumptions.
In: Lee, D.H. (ed.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 647–666. Springer,
Heidelberg (2011), http://eprint.iacr.org/2011/296

21. Hofheinz, D., Kiltz, E.: Programmable Hash Functions and Their Applications. In:
Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 21–38. Springer, Heidelberg
(2008)

22. Hohenberger, S., Waters, B.: Short and Stateless Signatures from the RSA Assump-
tion. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 654–670. Springer,
Heidelberg (2009)

23. Katz, J., Vaikuntanathan, V.: Signature Schemes with Bounded Leakage Resilience.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 703–720. Springer,
Heidelberg (2009)

24. Krawczyk, H., Rabin, T.: Chameleon signatures. In: NDSS (2000)
25. Kumar, R., Rajagopalan, S., Sahai, A.: Coding Constructions for Blacklisting Prob-

lems without Computational Assumptions. In: Wiener, M. (ed.) CRYPTO 1999.
LNCS, vol. 1666, pp. 609–623. Springer, Heidelberg (1999)

26. Pieprzyk, J., Wang, H., Xing, C.: Multiple-Time Signature Schemes against Adap-
tive Chosen Message Attacks. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003.
LNCS, vol. 3006, pp. 88–100. Springer, Heidelberg (2004)

27. Shoup, V.: Using Hash Functions as a Hedge against Chosen Ciphertext Attack.
In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 275–288. Springer,
Heidelberg (2000)

http://eprint.iacr.org/
http://eprint.iacr.org/2011/296

Two-Dimensional Representation of Cover Free Families and Its Applications 277

28. Waters, B.: Efficient Identity-Based Encryption without Random Oracles. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer,
Heidelberg (2005)

29. Waters, B.: Dual System Encryption: Realizing Fully Secure IBE and HIBE under
Simple Assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
619–636. Springer, Heidelberg (2009)

30. Yamada, S., Kawai, Y., Hanaoka, G., Kunihiro, N.: Public key encryption schemes
from the (B)CDH assumption with better efficiency. IEICE Transactions 93-A(11),
1984–1993 (2010)

31. Zaverucha, G.M., Stinson, D.R.: Short one-time signatures. Cryptology ePrint
Archive, Report 2010/446 (2010), http://eprint.iacr.org/

http://eprint.iacr.org/

Secure Computation, I/O-Efficient Algorithms
and Distributed Signatures

Ivan Damgård, Jonas Kölker, and Tomas Toft	

Dept. of Computer Science, Aarhus University

Abstract. We consider a setting where a set of n players use a set of
m servers to store a large, private data set. Later the players decide on
functions they want to compute on the data without the servers need-
ing to know which computation is done, while the computation should
be secure against a malicious adversary corrupting a constant fraction
of the players and servers. Using packed secret sharing, the data can
be stored in a compact way but will only be accessible in a block-wise
fashion. We explore the possibility of using I/O-efficient algorithms to
nevertheless compute on the data as efficiently as if random access was
possible. We show that for sorting, priority queues and data mining, this
can indeed be done. We show actively secure protocols of complexity
within a constant factor of the passively secure solution. As a technical
contribution towards this goal, we develop techniques for generating val-
ues of form r, gr for random secret-shared r ∈ Zq and gr in a group of
order q. This costs a constant number of exponentiation per player per
value generated, even if less than n/3 players are malicious. This can be
used for efficient distributed computing of Schnorr signatures. We fur-
ther develop the technique so we can sign secret data in a distributed
fashion at essentially the same cost.

1 Introduction

In this paper, we consider a setting where a set of n players P1, . . . , Pn with lim-
ited memory use m remote servers D1, . . . , Dm to store a large data set securely,
and later wish to do secure computation on these data.

As a motivating example, think of a set of authorities in the public sector,
each of which initially possesses a database with personal information on various
citizens. Suppose they wish to compute results requiring access to all databases,
to gain some administrative advantage, for instance, or to do data mining. Allow-
ing a single entity access to everything raises some obvious privacy concerns and
is in fact forbidden by law in several countries. A standard solution is to store
all data in secret shared form and compute results by multiparty computation.
� The authors acknowledge support from the Danish National Research Foundation

and The National Science Foundation of China (under the grant 61061130540) for
the Sino-Danish Center for the Theory of Interactive Computation, within which
part of this work was performed; and from the CFEM research center, supported by
the Danish Strategic Research Council.

O. Dunkelman (Ed.): CT-RSA 2012, LNCS 7178, pp. 278–295, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Secure Computation, I/O-Efficient Algorithms 279

But this would require every player to store an amount of data corresponding to
all the original databases put together. It may be a more economic and flexible
solution to buy storage “in the cloud”, i.e., involve some remote servers whose
main role is to store the data, and thus we arrive at the situation described
above.

An important property of the model is that we do not assume that the com-
putations we want on the database are given in advance. Instead players will
decide dynamically which computations to do as a result of input received from
the environment – indeed this seems to us to be a more realistic model. This is
the main reason why we want the servers to act as storage devices only, rather
than have them do computation for us. If the servers had to be involved in the
computation, we would have to pay for the communication needed to specify
each new computation to all servers. In practice we may also face the problem
of installing new software on the servers. In our model, all a server has to do is
to supply storage and do a fixed and simple computation on demand, namely
whatever is required to read or write a block of data.

We stress that although cloud computing is one motivation for our work, our
results can also be applied in a case where no servers are physically present.
Namely the players can choose to play the role of the servers themselves. Even
in this case, our result offers a way to save memory at little or no extra cost to
do the computation. We give more details on this below.

We will assume that our data can be represented as N elements in some
finite field, and the computation is specified as a program P using arithmetic
operations in the field, comparison and branching on public data. In addition, the
program may read from or write to a “disk”, modeling the storage supplied by the
servers. Of course, we cannot allow the servers to see any data in cleartext, and
since we want to do secure computation on the data later, the computationally
most efficient approach is to use secret sharing1. A first naive approach is to
use standard Shamir secret-sharing[21]; this will require Ω(Nm) space. A well-
known improvement is to use packed secret sharing, suggested by Franklin and
Yung [12]. This variant of Shamir’s method is a Ramp Scheme[5] that stores
data in large blocks (of size Θ(m) in our case). This will allow us to tolerate
a constant fraction of the servers being corrupted, while requiring only storage
O(N). However, the usage of packed secret-sharing format means that we can
only read or write a large block of data at a time, and we will be wasting resources
if we only use a small part of each block we access.

Our first observation is that we can handle this issue by making use of so
called I/O-efficient algorithms [1]. In the I/O model, we assume we have a fast
computing device (a CPU) with small internal memory, that connects to a large,
but much slower memory such as a disk, which only allows you to read or write
data in blocks of a given length. The goal of an I/O-efficient algorithm is to
solve some computational problem while minimizing the number of times blocks
have to be transferred between CPU and external memory. There is a large body

1 Using fully homomorphic encryption is an option as well, but would incur a huge
computational overhead with current state of the art.

280 I. Damgård, J. Kölker, and T. Toft

of research in this area, and the I/O-complexity of several basic computational
problems is known.

Now, if we think of the n players as the CPU and the m servers as the mem-
ory device, it is clear that there should be hope that if the players follow an
I/O-efficient algorithm, we can minimize the number of transfers and in this
way use only O(N) storage while still being able to perform the computation
essentially as efficiently as if random access was possible – thus enabling us to
use any available technique for optimizing the computation. This idea of com-
bining MPC and I/O-efficient algorithms (which to the best of our knowledge,
we are the first to explore) is not completely trivial to capitalize on, however:
we need protocols for reading from and writing to the servers’ memory. This
involves converting between secret sharing among the servers and secret sharing
among the players, and must be efficient enough to not dominate the rest of the
computation. The program must also be oblivious in the sense that its memory
access pattern should only depend on the data known to the adversary, other-
wise the construction would clearly be insecure. This, however, is an issue in all
known multiparty computation protocols.

In this paper, we give efficient protocols for reading from and writing to the
memory formed by the servers, tolerating a constant fraction of malicious players
and servers. We build from this a “compiler” that transforms any program that
is oblivious (in the sense explained above) into a protocol the runs the program
securely in our model. We furthermore show that if the program is also I/O-
efficient, then the overhead from the format conversion is insignificant. Here,
I/O efficiency means that, up to logarithmic factors, the program needs O(N/�)
I/O operations, where � is the size of blocks that are transferred. We show that
our method applies to a rich class of computational problems by giving oblivious
I/O-efficient programs for sorting, priority queues and some forms of datamining.

The table below shows a comparison between running an oblivious and I/O
efficient program P using our approach and “Shamir with servers” which is the
naive method where we use standard individual Shamir sharing of all N values
on the servers and standard protocols for reading and writing. Here, storage and
communication is the total number of field elements while computation is the
total number of field operations. CompP(N) is the total number of operations
done by P on input size N while CommP(N) counts only operations that require
communication for a secure implementation, such as multiplication and compar-
ison. We have simplified the table by ignoring logarithmic factors; all details can
be found in Section 5.

storage communication computation
Shamir with servers O(mN) Ω(nmN) + CommP(N)n Ω(nmN) + CompP(N)n
Shamir, no servers O(nN) CommP(N)n CompP(N)n
Our results O(N) O(nN) + CommP(N)n O(nmN) + CompP(N)n

We see that our technique is in all respects as efficient or better than the
“Shamir with servers” approach. The “Shamir, no servers” is a scenario where
the players store all the data themselves using standard Shamir sharing and pro-
tocols. In this case, the comparison to our results shows that even if players have

Secure Computation, I/O-Efficient Algorithms 281

massive amounts of memory themselves, our approach still offers a tradeoff be-
tween memory usage and computational work: as soon as CommP (N) is Ω(N),
our result offers smaller storage, similar or smaller communication complexity,
and perhaps a factor m larger computational complexity. We say perhaps because
this factor may or may not be significant, depending on how large CompP(N) is.
For instance, the players could choose to play the role of the servers themselves
(so that m = n). Then, if CompP(N) dominates nN , our results allow saving a
factor n memory at no essential extra computation or communication cost.

To achieve our results, we develop some techniques of independent interest:
we show how a set of players can compute several values of form gr ∈ G, where
G is a group of prime order, and r is random and secret shared among the
players. The cost of this is a constant number of exponentiations per player per
instance produced, even if less than n/3 players are malicious. To the best of our
knowledge, the most efficient solution following from previous work would be for
each player to do a Feldman-style VSS [10] of a random value and then combine
these shared values to a single one. This would require Ω(n) exponentiations
per player. Our technique can be used, for instance, to do threshold Schnorr
signatures very efficiently in an off-line/on-line fashion: by preparing many gr-
values in preprocessing (or in idle time), a signature can be prepared using
only cheap linear operations once the message becomes known. While this on-
line/off-line property of Schnorr signatures is well-known, it is new that the total
computational cost per player in a distributed implementation can be essentially
the same as what a single player would need to prepare a signature locally. We
extend this technique so that the message to be signed can be secret-shared
among the players and remains secret, at a constant factor extra cost.

On the technical side, we start from techniques for verifiable secret sharing
based on hyperinvertible matrices from [3]. While in [3] information theoretically
secure protocols were considered, in our case the secret r is only computationally
protected as gr becomes public. This requires some modification to the protocol
but more importantly, some non-trivial issues must be handled in the security
proof. We show that our protocol implements an ideal functionality that chooses
a random r, secret shares it and publishes gr. This fixes the value of r, yet the
simulator must make a view that is consistent with gr without knowing r. Fi-
nally, we are concerned with the computational efficiency, and a naive extension
of the VSS from [3] would cost a factor n more exponentiations than we can
afford. To solve this, we devise a technique that allows players to distribute the
exponentiations required among themselves while still being able to verify the
work of each player efficiently.

2 Preliminaries

As in classical MPC, we have n players P1, . . . , Pn who want to compute the
value of an arithmetic circuit C over a finite field Fq

∼= Zq for a prime q. At
most tp players may be statically corrupted by the adversary, who may be either
active or passive. We also have m disk servers D1, . . . , Dm. They take part in

282 I. Damgård, J. Kölker, and T. Toft

the protocol, but their role is to store data rather than to compute on it. We
assume the adversary can adaptively corrupt at most ts of these. We assume
synchronous communication and secure point to point channels between any
pair of players. We will use the UC model for formalizing security of protocols.

We believe that at least our so-called scalable protocols shown towards the end
of the paper can be shown secure even against adaptive corruption of players.
This is on-going work and will be reported on in a future version of the full
paper[9].

Recall that Shamir’s secret sharing scheme, when sharing one secret among n
players, where t of them may be corrupt, uses a polynomial f of degree at most
t, and that given t + 1 points we can reconstruct the polynomial and recompute
the secret value f(0). We can think of this as “spending” t points on corrupt
players and a single point on storing secrets. If we instead use more points to
store secrets and fewer points to handle corrupt players, we can store our data
more densely, as observed by Franklin and Yung [12].

Definition 1. A block is a vector of secrets (x1, . . . , x
) over the field F. A block
sharing among m servers with threshold ts is a vector of shares (f(1), . . . , f(m)),
where f is a random polynomial of degree at most d = ts + �− 1 < m, such that
f(−k) = xk for k = 1, . . . , �.

Given a block (x1, . . . , x
) of known values it is easy to generate a suitable
polynomial f for a block sharing: let f(−k) = xk for k = 1, . . . , �. Next, choose
random values for f(i), for i = 1, . . . , ts + 1. Use Lagrange interpolation to
compute the coefficients of f . Then f can easily be evaluated in 1, . . . , m. It
is easy to see that any ts shares reveal no information on the secret block,
while any d+1 shares allow reconstruction of the entire block. Of course there’s
nothing special about −1, . . . ,−� or 1, . . . , m, except the two sets are disjoint
and notationally conventient. In the following, we will choose both ts and � to
be linear in m; exact choices will depend, e.g., on whether adversary is passive
or not, as detailed later.

In the following, [x]f will denote a Shamir sharing of value x among the n
players using polynomial f , of degree at most tp. Likewise, for x = (x1, . . . , x
),
we let [[x]]g = [[(x1, . . . , x
)]]g denote a block sharing among the m servers using
polynomial g, of degree at most d as defined above. Depending on the context,
we will sometimes omit f and g from the notation. Both types of sharings are
linear; in particular, for blocks x,y we have [[x]]f + [[y]]g = [[x + y]]f+g where
addition of blocks and vectors of shares is done component-wise.

A Word on Broadcast and Byzantine Agreement. When players and
servers may be actively corrupted, we sometimes need broadcast among the
players for a string of length Θ(m) field elements. In [11], it is shown how to do
this with communication complexity mn + poly(n). Since our protocols commu-
nicate at least O(nm) field elements anyway, the cost of this will not dominate
if m is sufficiently large compared to n (actually it will always be sufficient if m
is cubic in n). However, we emphasize that in practice it will be a much better
solution to use protocols without the poly(n) overhead that do not guarantee

Secure Computation, I/O-Efficient Algorithms 283

termination (see [13]), and take some out-of-band action if the protocol blocks.
In this case there is no demand on how m compares to n.

3 The Main Functionality

We will use the UC framework of Canetti [6] to argue security of our protocols.
In this framework, one defines what a protocol is supposed to do by specifying an
ideal functionality, and then shows that using the protocol is equivalent to using
the functionality. The functionality F that we implement is basically a black-box
computer for doing secure arithmetic in F. In addition to these operations, it
has a “main memory” and a “disk”, and commands for writing to and reading
from the disk. A command is executed on request by all honest players.

Functionality F

input(i, v) Get a value x from Pi and store it in main memory at address v.
open(v) Send value stored at location v in main memory to all players and the

adversary.
operation(�, v1, v2, v3) Here, � can be +,−, ∗ or ≤. Let val(v1), val(v2) be the values

stored at locations v1, v2 in main memory. Compute val(v1) � val(v2) (0 or 1
in case of ≤), and store the result in location v3.

const(v, x) Store the constant x ∈ Zq at memory location v.
random(v) Sample a uniformly random r ∈ Zq and store at the memory location

v.
write(addrs, blockaddr) Here, addrs is a tuple of � distinct addresses in main mem-

ory. Write the values stored there as a block on disk, at location blockaddr.
read(addrs, blockaddr) As above, addrs is a tuple of � distinct addresses in main

memory, Read the block from disk at location blockaddr and stores the � values
obtained in the locations specified in addrs.

Fig. 1. The Functionality we implement

4 The Protocols

Standard techniques can be used to implement the input, open and arithmetic
(including const and random) commands of F , so we focus on the read and write
commands. These commands reflect that we want the players to store blocks of
data on the servers and be able to read the blocks back. As a warm-up we first do
this assuming passive corruption, and then show methods for handling malicious
players and servers. The write protocol converts � secrets, shared independently,
into a block sharing which is given to the servers. The read protocol converts
the block sharing back into � separate sharings. For a passive adversary, this is
relatively straightforward. The idea is related to the results from [7], except that
here we convert between shares held by separate sets of players.

284 I. Damgård, J. Kölker, and T. Toft

4.1 Passively Secure Implementation of F

We can use the standard technique from [4] to implement the input, output,
addition and multiplication commands. This simply amounts to representing a
value x stored in main memory by F as a secret sharing [x]. Given this, one can
build a (constant round) implementation of the comparison [8].

Hence, to implement the write command, we may assume that the players
P1, . . . , Pn hold [x1], . . . , [x
], that is, sharings of secrets x1 through x
 to be
written. We then implement write by converting this to a block sharing held by
the servers. The following lemma is useful

Lemma 1. For i = 1, . . . , m and k = 1, . . . , d + 1, there exist λi
k ∈ F, such

that the following holds: For any x1, . . . , x
, r1, . . . , rd−
+1 ∈ F, let f be the
polynomial with f(−i) = xi, f(j) = rj . In other words, f defines a block-sharing
[[(x1, . . . , x
)]]f . Then each share in this block sharing can be computed as a
linear combination of the xi’s and rj’s. More precisely,

f(i) =

∑

k=1

λi
kxk +

d+1∑
k=
+1

λi
krk−

Proof. If we set f(−i) = xi and f(j) = rj (for all sensible i and j), this
uniquely defines a polynomial f of degree at most d. This can be computed
through Lagrange interpolation, which is a linear computation. More precisely,
Let y = (x1, . . . , x
, r1, . . . , rd−
+1)�. Writing f(x) = c0x

0 + . . . + cdx
d, let

c = (c0, . . . , cd)�, and let V be a (d + 1) × (d + 1) Vandermonde matrix over
the points −�, . . . ,−1, 1, . . . , d − � + 1. Then V · c = y and thus V −1 · y = c.
We can then compute f(x) as (x0, . . . , xd) · c. Since each entry in c is a linear
combination of entries in y, so is (x0, . . . , xd) · c and this defines the λi

k’s we
promised.

In the protocol we assumes that players can generate shares of random values
unknown to the adversary. Several techniques exist for this, and for now, we
simply assume access to a functionality FRand, defined below, and discuss later
how to implement it.

Functionality FRand

Share(num) For i = 1, . . . , num, choose random si ∈ F, form [si]fi , where fi is
random subject to fi(0) = si, deg(fi) ≤ tp, and in each point owned by a
corrupt player, fi evaluates to a share chosen by the adversarya. Finally, send
shares of all num values to all honest players.

a We need to allow the adversary to choose shares for corrupted players, in order
to be able to implement the functionality.

Fig. 2. The functionality delivering randomness

Secure Computation, I/O-Efficient Algorithms 285

The idea behind the definition of FRand is that we can use known techniques
to implement it for large values of the num parameter, with low amortized cost
per sharing generated.

Protocol Write(addrs, blockaddr)

1. Call Share(d − � + 1) to get sharings of random values [r1], . . . , [rd−�+1].
2. For i = 1, . . . , m compute

[f(i)] =
�∑

k=1

λi
k[xk] +

d+1∑
k=�+1

λi
k[rk−�]

where {[xk]} is a set of individually shared values pointed to by addrs and f is
the polynomial from Lemma 1. Note that this only requires local computation.

3. For i = 1, . . . , m each player sends “write blockaddr” and his share of [f(i)] to
server Di.

4. For i = 1, . . . , m Di uses the shares received to reconstruct and store f(i) under
blockaddr.

Fig. 3. Protocol for writing a block

Next, let us consider a passively secure protocol for reading a block. Each
server i has a share from the sharing of the block to be read, [(x1, . . . , x
)]. We
implement read by converting this to individual sharings held by the players,
[x1], . . . , [x
]. For this, we use the following lemma which is easy to show in a
way similar to Lemma 1:

Lemma 2. There exist constants δi
j such that for any block sharing [x1, . . . , x
]f ,

we have xi =
∑m

j=1 δi
jf(j).

Protocol Read(addrs, blockaddr)

1. each player sends “read blockaddr” to each server.
2. Each server Di retrieves f(i) using blockaddr, forms a set of shares [f(i)] from

f(i) and sends a share to each player.
3. For k = 1, . . . , �, the players locally compute [xk] =

∑m
i=1 δk

i [f(i)] and associate
the results with the addresses in addrs.

Fig. 4. Protocol for reading a block.

Security of the read and write protocols follow from a standard and straight-
forward simulation argument, which can be found in the full paper[9].

By inspection, it is easy to see that each call to Read or Write involves
communication of O(nm) field elements and O(nm2) local field operations.

286 I. Damgård, J. Kölker, and T. Toft

4.2 Implementation for Malicious Servers and Players

In this section we show how to handle the case where a constant fraction of
the servers and players are corrupted by a malicious adversary. A first easy ob-
servation is that when less than tp < n

3 players are actively corrupted, we can
implement the input, open and arithmetic operations of F using standard tech-
niques from [4] such that ordinary Shamir secret sharing is still the way values
are represented. Moreover, when an honest server receives shares of some value
from the players, it can use standard error correction techniques to reconstruct
the right value. We need, of course, an implementation of FRand with active
security and we show how to do this later.

The main problem is that malicious servers may return incorrect shares in
read operations. While an obvious solution is to authenticate each share held by
a server, this is not trivial to do efficiently: since shares must be kept private, the
players have to do a secure computation of the authentication value. We present
two solutions that work along these lines. The first uses information theoretically
secure macs, leading to protocols RobustRead and RobustWrite found in the
full paper[9]. We get the following result:

Theorem 1. Together with the standard techniques for implementing the input,
open and arithmetic operations, RobustRead and RobustWrite form a statis-
tically secure implementation of F in the FRand-hybrid model for an adversary
corrupting at most tp < n/4 players and ts ∈ Θ(m) servers actively, or an ad-
versary corrupting at most tp < n/2 players passively and ts ∈ Θ(m) servers
actively. Each call to RobustRead or RobustWrite involves communication of
O(nm) field elements and O(nm2) local field operations.

This solution is relatively simple but needs extra functionality from FRand that
we only know how to implement for passive corruption or for a small number
of players in case of active corruption. In the next section, we present a second
solution that scales better with the number of players.

Additional functions for FRand

share+(num) Same as share, generate num random shared values [ri], but in
addition send αri to all players.

share++(num) Generate num pairs of random shared values [ui], [vi] in the same
way as in share, but in addition, send guihvi to all players.

Fig. 5. Additional randomness functions for the scalable solution

4.3 A Scalable Method for Handling Malicious Players and Servers

In this section, we show how to handle actively corrupted players and servers
in a way that scales well with n. The solution is based on making Schnorr
signatures [20] on Pedersen commitments [18] to a combination of the data and
a sequence number (which prevents replay attacks). The Schnorr signatures are

Secure Computation, I/O-Efficient Algorithms 287

in a group G of order q where q is the size of F, the field we compute in, and
where we assume q to be prime. We will define protocols ScalableRobustWrite
and ScalableRobustRead and show the following:

Theorem 2. Assuming that Pedersen commitments and Schnorr signatures in
G are secure, then, together with the standard techniques for implementing then,
together with the standard techniques for implementing the input, open and arith-
metic operations, the protocols ScalableRobustRead and ScalableRobustWrite
form a computationally secure implementation of F in the FRand-hybrid model
for an adversary corrupting at most tp < n/3 players and ts ∈ Θ(m) servers
actively. ScalableRobustRead and ScalableRobustWrite each involve commu-
nication of O(nm) field elements and O(nm2) local field operations plus O(nm)
exponentiations in G per invocation.

The O(nm) exponentiations in G we require are equivalent to O(log(|F|)nm)
multiplications in G. To see if this extra cost is going to dominate, consider that
if we use a state of the art implementation of G based on elliptic curves, a mul-
tiplication in G takes time comparable to a multiplication in F. So comparing
O(nm2) field operations to O(log(|F|)nm) multiplications in G boils down to
comparing m and log(|F|). These parameters are not really comparable in gen-
eral, but since the idea of our model is to consider a moderate number of players
and many servers, it does not seem unreasonable to consider m and log(|F|) to
be the same order of magnitude. Under this assumption, the solution has the
same complexity as the passively secure protocol up to a constant factor. We
add that in many settings, the communication cost is the main limiting factor,
in which case our solution will be satisfactory regardless of other factors.

Some words on the basic ideas of our protocols: the main problem we face is
that the servers may send incorrect data in the read protocol. To protect against
this, the players will sign each server’s share using a shared signing key. However,
this share must not become publicly known and we know of no signature scheme
where we can sign efficiently when both the signing key and the message are
secret-shared. To overcome this, we instead sign a commitment to the server’s
share since this commitment can indeed be publicly known. We also have the
problem of the servers replaying old signed values, but this can be solved easily
by maintaining a sequence number cblockaddr (initally 0) counting how many
times we wrote to blockaddr, signing this, and having the servers remember it.

Next we describe the protocol in more detail. First, some setup: let G be a
group of order q where random elements g, h ∈ G have been chosen to be used
as public key for Pedersen commitments in G, that is, a commitment to m ∈ Zq

is of form gmhr for random r ∈ Zq. We also assume that a verification key α, β
for our Schnorr signature scheme has been set up, with β = αa for some a ∈ Zq

where the players hold a sharing [a] of a. This is formalized in the UC model by
assuming a functionality that outputs these values initially.

Recall that in Schnorr’s scheme, a signature on m is a pair (γ, δ) satisfying
γ = αδ · βH(γ,m) for some collision intractable hash function H . Observe that
signatures can be easily verified, and computed knowing a by setting γ = αr and

288 I. Damgård, J. Kölker, and T. Toft

Protocol ScalableRobustWrite(addrs, blockaddr)

1. Send “begin write at blockaddr” to the servers. Each server returns its value
of cblockaddr, players decide the correct value by majority, and increment the
value.

2. Call Share(d − � + 1) to get sharings of random values [r1], . . . , [rd−�+1].
3. For i = 1, . . . , m compute

[f(i)] =
�∑

k=1

λi
k[xk] +

d+1∑
k=�+1

λi
k[rk−�]

where {[xk]} are a set of individually shared values pointed to by addrs and f is
the polynomial from Lemma 1. Note that this only requires local computation.
In the following, we set si = f(i).

4. Call subprotocol share++(m) to obtain c′i = guihvi and sharings [ui], [vi] for
i = 1 . . . m. Also call share(1) to get [x].

5. We now want to adjust c′i so it becomes a commitment to si. Players compute
locally shares in [si − ui] and send them to Pu who computes τi = si − ui and
broadcasts all the τi’s. To verify Pu’s work, players open x by sending all shares
to everyone and compute locally

∑
i xi([si] − [ui] − τi) = [

∑
i xi(si − ui − τi)].

This value is opened by each player sending his share to all players. If the
resulting value is 0 continue to the next step. Otherwise, Pu is disqualified, we
set u = u+1, and all players exchange shares of si−ui and compute the correct
values τi.

6. All players compute ci = gτic′i. We now want to sign ci (and some more data).
7. Call share+(m) to obtain a sharing [ri] of some random value ri ∈ Zq, and

γi = αri , for i = 1 . . . m.
8. Using hash function H , each player computes their share [δi]j = [ri] −

[a]H(γi, ci, cblockaddr) of δi.
9. The players all send “complete write at blockaddr using ([si], [vi], [δi], γi)” to

server i.
10. Each server i reconstructs si, vi, δi using error correction to handle incorrect

shares from corrupt players, computes γi (taking majority decision on the values
received), increments cblockaddr and stores all values.

Fig. 6. Scalable protocol for writing a block

δ = r − a · H(γ, m) for a random r ∈ Zq. We will need functions from FRand in
addition to those we defined earlier. The new functions are defined in Figure 5.

Our protocol as well as some subprotocols described later uses player elim-
ination where some players are disqualified underway, so that only a subset of
the players actually participate at any given time. For ease of exposition, we
suppress this fact in our description below, but emphasize that an actual im-
plementation must keep track of who participates. Furthermore, in the protocol
below for reading and writing, we use a global variable u that is remembered
between calls to the read/write protocols. It points to a player and is initially
1. Pu is a player that does computational work on behalf of all players, to save
resources. If Pu is found to be corrupt, he is replaced by Pu+1. In such a case,

Secure Computation, I/O-Efficient Algorithms 289

Protocol ScalableRobustRead(addrs, blockaddr)

1. All players send “read at blockaddr towards Pu” to all the servers. The servers
each compute u by majority decision.

2. Each server Di sends γi, δi, ci to player u and a share from [s′i], [v
′
i] to each

player, with the implied claim that (s′i, v
′
i) = (si, vi) as last stored by the read

protocol, and that ci = gsihvi . The current value of cblockaddr is also sent, and
players decide on reception on the correct value of cblockaddr by majority.

3. Since we cannot rely on servers to supply consistent shares of s′i, v
′
i, players

generate their own consistent shares and adjust them to what the (honest)
servers sent: Call share++(m) to obtain sharings [bx,i] and [by,i] of random
elements of F, for i = 1, . . . , m as well as a commitment gbx,ihby,i to bx,i, using
by,i as the randomness.

4. For i = 1, . . . , m, everybody sends their shares in [s′i−bx,i] and [v′
i −by,i] to Pu.

Pu attempts to reconstruct xi = s′i − bx,i and yi = v′
i − by,i. He verifies for all i

that (γi, δi) is a valid signature on ci, cblockaddr and that ci = gxihyi ·gbx,ihby,i (=

gxi+bx,ihyi+by,i = gs′ihv′
i). This may fail for some i’s, in which case Pu sets

xi = yi = ⊥.
5. Pu broadcasts γi, δi, ci and (xi, yi), for i = 1, . . . , m to the players with the

implied claim that xi = s′i − bx,i and yi = v′
i − by,i.

6. Each player verifies for all i that (γi, δi) is a valid signature on ci, cblockaddr

and that ci = gxihyi · gbx,ihby,i . Let Su be the set of i for which this holds. If
Su is smaller than m − ts, disqualify Pu, set u = u + 1 and restart the read
protocol. Otherwise, the players compute [bx,i] + xi = [bx,i + xi] for i ∈ Su.
Note that unless the signature scheme or commitment scheme has been broken,
bx,i + xi = s′i = si.

7. For k = 1, . . . , �, the players compute locally

[x′
k] =

m∑
i=1

δ′ki [bx,i + xi]

and associates the results with the addresses in addrs. Here δ′ki is a set of
interpolation coefficients such that δ′ki = 0 if i is not in Su, and the rest is set
such that the correct value for x′

k is computed. This is possible because we set
the parameters such that there are enough honest servers to reconstruct only
from their data. This still allows ts to be in Θ(m).

Fig. 7. Scalable protocol for reading a block

our protocols usually do an amount of work that is much larger than in normal
operation, but since this can only happen tp times, it only incurs an additive
overhead that is independent of the size of the computation we do. Therefore it
does not affect the asymptotic complexity of our solution.

We assume that Pedersen commitments and Schnorr signatures are secure.
Pedersen commitments are perfectly hiding, and computationally binding as-
suming that computing the discrete log of h base g is hard. We assume Schnorr
signatures to be secure against existential forgery under chosen plaintext attacks,
which they are in the random oracle model as long as computing the discrete

290 I. Damgård, J. Kölker, and T. Toft

log of β base α is hard. If the sequence numbers are public knowledge (i.e.
known to the adversary and beyond his control), security only against known
plaintext attacks might be sufficient: in that case the messages are a combina-
tion of something uniformly random (a Pedersen commitment) and something
known in advance. This might require the computed algorithm (or at least its
I/O behavior) to be oblivious.

A more detailed argument for security of these protocols can be found in the
full paper [9]. The most important observation in the write protocol is that in
step 5, players effectively evaluate a polynomial with coefficients si −ui − τi in a
random point x. If there is an error, i.e., τi �= si−ui for some i, the polynomial is
not zero and can have at most m roots. Hence the check is OK with probability
at most m/|F| which is negligible. Note also that in the read protocol, an honest
Pu will always get good data from the honest servers and hence can make Su be
of size at least m − ts—this also means Pu must be corrupt if Su is too small.
On the other hand, even if Pu is corrupt, the commitments and signatures are
checked by everyone and hence the last step is always successful if Su is large
enough. The resulting protocols are shown in Figure 6 and Figure 7.

4.4 Implementation of FRand

To implement the Share command, we can use a protocol from [3], which is
based on so-called hyperinvertible matrices. A matrix is hyperinvertible if any
square submatrix is invertible.

We sketch the idea here and refer to [3] for details. Using an n by n hyper-
invertible matrix M , players can generate Θ(n) random shared values at cost
O(n) communication per value: each player Pi simply constructs [ri] for random
ri and sends shares to the other players. Now each player Pj collects a vector
(r1,j , r2,j , . . . , rn,j) of shares he received, multiplies the vector by M to obtain a
new vector (s1,j , s2,j , . . . , sn,j), and outputs (s1,j , s2,j , . . . , sn−tp,j). Clearly this
forms shares of the first n− tp entries in M · (r1, . . . , rn). By the hyperinvertible
property, these entries are in 1-1 correspondence with the n−tp values chosen by
honest players, and are therefore completely unknown to the adversary. We get
the required efficiency, as long as tp is any constant fraction of n, and [3] shows
how to add checks to get security also for tp < n/3 actively corrupted players.

In Figure 8 we show a protocol for the share+ command that produces Θ(nm)
values of form [r], αr where the r’s are randomly chosen and the only information
released to the adversary on r is αr. Figure 9 shows a subprotocol required to
compute the results in step 3 of share+ efficiently.

A protocol for the share++ command is obtained by a straightforward exten-
sion of the share+ protocol and can be found in the full paper[9].

As for security of the protocols, correctness of the checks in steps 2e and 3 of
share+ can be argued in a way similar to the check in the ScalableRobustRead
protocol. Security then follows from this and the hyper-invertible property of
M . See the full paper[9] for a simulation proof.

Secure Computation, I/O-Efficient Algorithms 291

Protocol share+:

1. Use the protocol from [3] to generate random shared values [ra
b] and [xa] for

a = 1..n, b = 0..m.
2. In parallel, for a = 1, . . . , n do:

(a) Players send their shares in [ra
b] to Pa, for b = 0 . . . m.

(b) Pa reconstructs the ra
b ’s, computes χa

b = αra
b and broadcasts these values,

for b = 0 . . . m.
(c) Now we want to verify that Pa has computed correctly, so we open xa by

broadcasting all its shares.
(d) Locally compute [ya] = [

∑m
b=0 xa

bra
b] = [ra

0]+ [
∑m

b=1 xa
bra

b] and open ya to
everyone.

(e) All players check that αya =
∏m

b=0(χ
a
b)(xa)b

. If this is not satisfied, Pa is
disqualified, open ra

b for b = 0, . . . , m, and all players compute the correct
values of αra

b . Hence, in any case, we can assume we continue with correct
values of χa

b = αra
b , for a = 1 . . . n, b = 0 . . . m.

3. We form column vectors Vb, b = 1 . . . m, with n entries, where entry a is of
form ([ra

b], χa
b). Players then compute a new column vector M · Vb, formed

as follows: let γ1, . . . , γn be the k’th row of M . The k’th entry of M · Vb is
([

∑
a γara

b],
∏

a(χa
b)γa = α

∑
a γara

b). To get the required efficiency, it is necessary
that the players share the work of doing the exponentiations. We do this using
subprotocol AmortizedExp described below.

4. Output the first n − tp entries of M · Vb, for b = 1 . . . m.

Fig. 8. Protocol for sharing random exponents

Protocol AmortizedExp:

1. Each player Pk computes a part of the result, namely βk
b =

∏n
a=1(χ

a
b)γa , for

b = 1 . . . m, where (γ1, . . . , γn) is the k’th row of M . Pk broadcasts his results.
2. Generate and open a random value x in the same way as in share+.
3. All players compute (δ1, . . . , δn) = (x0, . . . , xn−1) · M , i.e., we take a linear

combination of the rows of M . Players check that, for b = 1, . . . , m, we have:

n∏
k=1

(βk
b)xk−1

=
n∏

a=1

(χa
b)δa

If this does not hold, at least one player output incorrect results. All players
then compute all the βk

b , find the player(s) who cheated and disqualify them.
In any case, output the βk

b ’s.

Fig. 9. Protocol for exponentiating many values

292 I. Damgård, J. Kölker, and T. Toft

5 Running Oblivious Algorithms on F
So far we’ve discussed how to implement a “black box” functionality called F . In
this section, we show how to execute oblivious programs that use F as a library
of subroutines, and analyze the time and communication cost of doing so.

First, we need to define what a program for F is. We shall take it to mean
a finite sequence of instructions C, each of which is either one of F ’s commands
with suitable parameters, or a control command (goto, i) which is described
below.

These programs are executed on a machine with a memory M, the configu-
rations of which are ∈ ZM

q . The machine also has a program counter register,
pc ∈ Zq and a finite disk D with configurations in (Z

q)D where � is the block
size. All Zq-elements are initially set to 0. We assume that q ≥ M, D, (|C|+ 1)2.

To execute a program, repeat this main loop: Leak pc. If pc ≥ |C|, halt; else
if C[pc] = (goto, v), set pc ← M[v]; else act according to C[pc] as described by
F and subsequently increment pc. Then repeat.

With these instructions, a fixed-address jump instruction “goto p” can be
expressed as the sequence (const, 0, p), (goto, 0). A conditional jump “if M[v1]�
M[v2] goto x else goto y” where � is one of the two comparisons, can be expressed
as the sequence (�, 0, v1, v2), (const, 1, x−y), (∗, 0, 1, 0), (const, 1, y), (+, 0, 1, 0),
(goto, 0). Out of these, control structures like if-then-else, while and for can
be built.

A program P that makes random choices can be viewed as a function mapping
inputs to distributions of streams of leakage. A program is said to be perfectly
oblivious if the output reveals this distribution for each input that can produce
that output. Formally speaking, P is oblivious if there exists a polynomial time
randomized turing machine T such that

∀o∀i: (∃r:P(i, r) = o) ⇒ TP(o) ∼p traces(P , i).

That is to say, for each output o and for each input i that can make P produce o
as the output, the distribution of instructions executed by P (over P ’s coin flips
r) can be sampled by T using just the output. Computational and statistical
obliviousness is defined similarly, where T samples suitably indistinguishable
distributions. If a program is perfectly oblivious, we say it is oblivious.

A note about this definition: a more commonly used definition of obliviousness
is that the distribution of traces is computable knowing only the program and not
the output. Here, what we want to capture is really that the program is oblivious
from the adversary’s point of view; that is to say, given what the adversary is
allowed to know in the ideal world (the output), he could himself have computed
what he sees in the real world. Using this definition, we are now ready to state
the following theorem:

Theorem 3. Given an oblivious program P for F , we can implement using F
a UC-secure functionality FP that has only input and output commands, such
2 Otherwise, we could express things in terms of an implicit “bignum” library, but this

would be unwieldy.

Secure Computation, I/O-Efficient Algorithms 293

that if a set of inputs is given to P and the same inputs are given to FP , the
outputs produced by FP equal those produced by P when run on F .

Proof. To implement FP , simply run P on F as described above. This clearly
creates the desired relationship between inputs and outputs. A UC simulator
takes the output from running F on P and feeds it to the turing machine T that
exists because P is oblivious. This yields a simulated trace of P that is suitably
(i.e. perfectly, statistically or computationally) indistinguishable from the real
world.

In the full paper[9], we show a detailed analysis of the efficiency of the protocol
we obtain by using the above theorem for an i/o efficient program P together
with our scalable implementation of F . This analysis leads to the table found in
the introduction.

6 Example Applications

There are plenty of example applications for the previous theorem. Oblivious
algorithms have already been studied in literature; sorting networks are the
prime example. Another source of examples is MPC protocols for specific tasks.
Oblivious algorithms are often used as the basis for protocols, where two or more
parties wish to query or process some secret dataset. The present setting is very
suited for such examples: The data is often processed during one or more scans
of the entire dataset.

Secure Datamining. Secure datamining was introduced by Lindell and Pinkas
[17] and k-means clustering is one example. Given N points pj in a d-dimensional
space, group these points into k clusters, i.e., find trends in the data. The k-
means clustering protocol of Jagannathan and Wright [16] is easily generalized
to consider a secret shared database held by a number of disk-servers.

The overall idea is to start with a set of k initial cluster centers. These are
then updated: 1) assign each pj to the closest center, 2) replace each center
with the average of its points. The process is repeated until some (revealed)
termination condition is fulfilled, e.g., the clusters move sufficiently little. The
details are seen below; the d-dimensional points are stored as d secret shared
coordinates. To improve readability, we refer to shared points as a single secret
sharing, writing [pj] rather than ([pj,1] , . . . , [pj,d]).

– Init cluster centers, [ci]
– While Termination condition not reached do

• Init accumulators ([Ni]: number of points assigned to [ci]; [σi]: sum of
points assigned to [ci])

• For each point [pj]
∗ Determine index, [k], of closest cluster
∗ For each cluster center [ci]: Add

(
[k] =? i

)
to [Ni] and

(
[k] =? i

) · [pi]
to [σi]

• For each cluster center [ci]: [ci] ← [σi] ÷ [Ni]

294 I. Damgård, J. Kölker, and T. Toft

We ignore many details, notably computing distances and averages, and de-
termining the closest center. Our goal is not to provide a k-means clustering
protocol, but to demonstrate that the task can be performed with most of the
data residing “on disk.”. Access is oblivious and I/O-efficient: the parties hold the
[ci], [σi], and [Ni] in memory, while the dataset (the [pj]) is accessed by linear
scans.

Sorting. As a second example, consider a Shell sorting (SS) network, sorting N
elements: for each value δ = 2j3k < N in decreasing order, for i = 1, . . . , N − δ,
compare and exchange elements i and i + δ. Clearly that’s O(N log2 N log3 N)
comparisons, and they’re organised in O(log2 N) pairs of parallel forward scans.
So SS does IOSS(N) = N

 log2 N I/O, and CompSS is Θ(N log2 N): it falls in
the class of I/O-efficient oblivious programs we analyzed in the previous section.
For proof of correctness, see [19].

There are many alternatives to the SS network. The odd-even merge sort
[2] provides the same result, but better round complexity. Randomized SS [14]
seems to require many I/O operations as it (recursively) compares elements
in a randomized complete matching between the left and right halves of the
data. Using an I/O-efficient oblivious sorting algorithm (e.g., the odd-even merge
sort adaptation in [15]) appears to be a good strategy, but even if we can get
to O(N

 log M
�

N

) I/O ([15] gets to O(N

 log2
M
�

N

)), we still need Ω(N log N)

comparisons, each of which requires computation and communication.

A priority queue. Toft’s oblivious priority queue (PQ) [22] is an oblivious datas-
tructure allowing two operations: Insert ([x] , [p]) which adds element [x] with
priority [p]; and GetMin (), which removes and returns the element with minimal
priority. The solution keeps track of a list that is sorted lazily, through buffering.
Extraction of the minimal pair is trivial, except for occasional buffer flushing.

The construction is based entirely on oblivious merging as in Batcher’s odd-
even merge sort [2], which is I/O-efficient. Combining the techniques of this
paper with those of [22] implies a PQ with the bulk of the data held on disk.
This makes perfect sense: the bulk of the data is very rarely touched, hence
storing it in a compact fashion ensures a very low memory overhead with little
impact on efficiency.

References

1. Aggarwal, A., Vitter, S., Jeffrey: The input/output complexity of sorting and re-
lated problems. Commun. ACM 31, 1116–1127 (1988)

2. Batcher, K.E.: Sorting networks and their applications. In: Proceedings of the
Spring Joint Computer Conference, AFIPS 1968, April 30-May 2, pp. 307–314.
ACM, New York (1968)

3. Beerliová-Trubíniová, Z., Hirt, M.: Perfectly-Secure MPC with Linear Communi-
cation Complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 213–230.
Springer, Heidelberg (2008)

Secure Computation, I/O-Efficient Algorithms 295

4. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: Proceedings of the Twen-
tieth Annual ACM Symposium on Theory of Computing, STOC 1988, pp. 1–10.
ACM, New York (1988)

5. Blakley, G.R., Meadows, C.: Security of Ramp Schemes. In: Blakely, G.R., Chaum,
D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 242–268. Springer, Heidelberg (1985)

6. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067, (2000),
http://eprint.iacr.org/

7. Cramer, R., Damgård, I.B., de Haan, R.: Atomic Secure Multi-Party Multiplication
with Low Communication. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515,
pp. 329–346. Springer, Heidelberg (2007)

8. Damgård, I.B., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally Se-
cure Constant-Rounds Multi-Party Computation for Equality, Comparison, Bits
and Exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 285–304. Springer, Heidelberg (2006)

9. Damgård, I., Kölker, J., Toft, T.: Secure computation, i/o-efficient algorithms and
distributed signatures. Cryptology ePrint Archive (2011),
http://eprint.iacr.org/

10. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In:
FOCS, pp. 427–437 (1987)

11. Fitzi, M., Hirt, M.: Optimally efficient multi-valued byzantine agreement. In: Pro-
ceedings of the Twenty-Fifth Annual ACM Symposium on Principles of Distributed
Computing, PODC 2006, pp. 163–168. ACM, New York (2006)

12. Franklin, M., Yung, M.: Communication complexity of secure computation (ex-
tended abstract). In: Proceedings of the Twenty-Fourth Annual ACM Symposium
on Theory of Computing, STOC 1992, pp. 699–710. ACM, New York (1992)

13. Goldwasser, S., Lindell, Y.: Secure multi-party computation without agreement.
J. Cryptology 18(3), 247–287 (2005)

14. Goodrich, M.T.: Randomized shellsort: A simple oblivious sorting algorithm. In:
SODA, pp. 1262–1277 (2010)

15. Goodrich, M.T., Mitzenmacher, M.: Mapreduce parallel cuckoo hashing and obliv-
ious ram simulations. CoRR, abs/1007.1259 (2010)

16. Jagannathan, G., Wright, R.N.: Privacy-preserving distributed k-means clustering
over arbitrarily partitioned data. In: Proceedings of the Eleventh ACM SIGKDD
International Conference on Knowledge Discovery in Data Mining, KDD 2005,
pp. 593–599. ACM, New York (2005)

17. Lindell, Y., Pinkas, B.: Privacy Preserving Data Mining. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 36–54. Springer, Heidelberg (2000)

18. Pedersen, T.P.: Non-Interactive and Information-Theoretic Secure Verifiable Secret
Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

19. Pratt, V.R.: Shellsort and Sorting Networks. Outstanding Dissertations in the
Computer Sciences. Garland Publishing, New York (1972), http://www.inf.
fh-flensburg.de/lang/algorithmen/sortieren/shell/shellen.htm

20. Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptology 4(3),
161–174 (1991)

21. Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)
22. Toft, T.: Secure datastructures based on multiparty computation. Cryptology

ePrint Archive, Report 2011/081 (2011), http://eprint.iacr.org/

http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.inf.fh-flensburg.de/lang/algorithmen/sortieren/shell/shellen.htm
http://www.inf.fh-flensburg.de/lang/algorithmen/sortieren/shell/shellen.htm
http://eprint.iacr.org/

Delegatable Homomorphic Encryption
with Applications to Secure Outsourcing

of Computation

Manuel Barbosa1 and Pooya Farshim2

1 HASLab/INESC TEC, Universidade do Minho, Braga, Portugal
2 Department of Computer Science, Darmstadt University of Technology, Germany

mbb@di.uminho.pt, farshim@cased.de

Abstract. We propose a new cryptographic primitive called Delegat-
able Homomorphic Encryption (DHE). This allows a Trusted Authority
to control/delegate the evaluation of circuits over encrypted data to un-
trusted workers/evaluators by issuing tokens. This primitive can be both
seen as a public-key counterpart to Verifiable Computation, where input
generation and output verification are performed by different entities, or
as a generalisation of Fully Homomorphic Encryption enabling control
over computations on encrypted data. Our primitive comes with a series
of extra features: 1) there is a one-time setup procedure for all circuits;
2) senders do not need to be aware of the functions which will be evalu-
ated on the encrypted data, nor do they need to register keys; 3) tokens
are independent of senders and receiver; and 4) receivers are able to
verify the correctness of computation given short auxiliary information
on the input data and the function, independently of the complexity of
the computed circuit. We give a modular construction of such a DHE
scheme from three components: Fully Homomorphic Encryption (FHE),
Functional Encryption (FE), and a (customised) MAC. As a stepping
stone, we first define Verifiable Functional Encryption (VFE), and then
show how one can build a secure DHE scheme from a VFE and an FHE
scheme. We also show how to build the required VFE from a standard FE
together with a MAC scheme. All our results hold in the standard model.
Finally, we show how one can build a verifiable computation (VC) scheme
generically from a DHE. As a corollary, we get the first VC scheme which
remains verifiable even if the attacker can observe verification results.

Keywords: Homomorphism Delegation, Homomorphic Encryption,
Functional Encryption, Verifiable Computation.

1 Introduction

Consider a public-key encryption scenario where Alice (the sender) and Bob
(the receiver) are both resource-constrained. Alice holds message m and Bob is
supposed to receive f(m) – for some function f – but neither is able to perform
the associated computations. It could be the case that Alice is not even aware of
which function is supposed to be applied on m, and Bob might not want to know

O. Dunkelman (Ed.): CT-RSA 2012, LNCS 7178, pp. 296–312, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Delegatable Homomorphic Encryption 297

the details of how that function is implemented. Carol is an untrusted service
provider that wishes to sell computing power to Alice and/or Bob. Finally, TA
is a trusted authority that is willing to take on the responsibility of approving a
concrete circuit for f put forth by Carol. When function f is approved, the TA
issues to Carol a token1 TKf that enables her to compute f on behalf of Alice
and Bob, and publishes a short description hf of the functionality provided by f
to let Alice and Bob know that this is the case. When Alice encrypts a message
m to Bob, the following guarantees are expected:

– If Alice and Bob are honest, then no one else will learn anything about m, as
expected from a normal public-key encryption scheme (we call this property
input/output privacy). Note that this should be the case even if the TA is
honest-but-curious.

– If the TA is honest, then no one except Alice will learn anything about m,
except what is leaked by f (we call this property evaluation security). Note
that this should be the case even if Bob and Carol collude.

– Furthermore, if the TA is honest, then a successful decryption by Bob assures
him that the recovered value was indeed correctly computed as f(m) (we call
this property verifiability).

In all cases Carol is considered to be potentially dishonest and colluding with
other dishonest service providers.

For concreteness, we can picture Bob as managing the IT infrastructure in
a company, and wishing to outsource e-mail filtering services to Carol. Ideally,
Alice should be able to encrypt her messages to Bob, regardless of the e-mail
filtering operations that will take place. Furthermore, Carol should be able to
perform e-mail filtering without requiring any pre-processing assistance from
Bob: Alice could even pass encrypted messages directly to Carol. Here Bob is
not interested in the details of the e-mail filtering algorithm (which might not be
public) and need only specify it using a short and high-level description. Further-
more, Bob trusts the TA’s assurance that function f computed by Carol indeed
satisfies this specification. In a natural generalisation of this scenario, multi-
ple providers offer different e-mail filtering algorithms (or other data processing
functionalities) and are all competing for Bob’s preference.

In the example above, Alice could be completely oblivious of the functional-
ity computed over her encrypted data, but this may not always be the case. In
a different scenario, Bob could work for a research institute collecting health-
related statistical information. Alice, working in an hospital, would be willing to
collaborate with Bob and send him an encrypted database with patients’ health
records. However, she will only do so if she is assured that only the outputs of
certain statistical measures are provided to Bob. Since neither Alice nor Bob
possess the computational resources to carry out the necessary computations,
they need to resort to Carol. In this case, Alice will need to rely on the TA to
guarantee that tokens are only issued for functions that implement statistical
1 Our use of the term token in this paper aims to distinguish secret keys associated

with functions, from those associated with users.

298 M. Barbosa and P. Farshim

measures that do not leak sensitive information about patients. Obviously, in-
put/output confidentiality is an additional requirement of central importance in
this setting. Furthermore, Bob’s results will only be trustworthy if he can ver-
ify that Carol extracted relevant information correctly. This is also a necessary
condition to assure Bob that Carol is not cheating and that she is spending the
charged resources on evaluating real statistical data.

In this paper we propose and realise a new cryptographic primitive that we
call Delegatable Homomorphic Encryption (DHE). The DHE primitive targets
the scenarios described above, providing the required functionality and security
features that permit satisfying the trust relations between Alice, Bob and Carol.
This new primitive can be seen as extensions of a number of previously known
cryptographic primitives: a) as a public-key counterpart to Verifiable Compu-
tation [6,2]; b) as a generalisation of Fully Homomorphic Encryption [7] (FHE)
that enables control over the Evaluation operation; and c) as a delegatable (and
verifiable) variant of Functional Encryption [9,11] (FE) which achieves both in-
put and output privacy. Before presenting the DHE concept in more detail, we
will explain why none of these primitives (nor trivial combinations thereof) com-
pletely solves the problems raised by the scenarios described above.

Fully homomorphic encryption. Recent breakthroughs [7] in public-key
cryptography have made computing over encrypted data using homomorphic
encryption a real technologic possibility. In simplistic terms, FHE allows Alice
to encrypt data to Bob in such a way that Carol, knowing only the ciphertext and
Bob’s public key, is able to compute an arbitrary function over the encrypted
plaintext without learning anything about its actual value. Confidentiality is
guaranteed, and Alice does not need to be aware of the concrete functions that
will be computed. Unfortunately, FHE is not intended to guarantee that Carol
computes f(m) correctly, and also does not aim to protect Alice from a collusion
between Carol and Bob revealing more than f(m).

Verifiable computation. Verifiable Computation [6] is a cryptographic
primitive that takes advantage of FHE to address the important problem of com-
putation delegation to an untrusted worker. The goal is for the Client (Bob) to
delegate to the Worker (Carol) the non-interactive computation of a pre-specified
function f with both confidentiality and verifiability guarantees. Bob is resource-
constrained and yet should be able to: 1) prepare new inputs to the system; and
2) verify that f was correctly computed over them. This means that input prepa-
ration and output verification should involve a much lower computational cost
than that required required to compute f unilaterally. Also, the computational
load imposed on Carol should not be prohibitive when compared to that required
to compute f(m) in the clear. Finally, Bob should have guarantees that the data
over which the computation is performed remains secret. The major difference
to the DHE scenario above is that VC was designed as a symmetric primitive
where Bob acts as both sender and receiver of the encrypted data. Bob can rely
on a Trusted Authority to set-up the system on his behalf, but it is still assumed

Delegatable Homomorphic Encryption 299

that Bob must be aware of the function that is being computed by Carol when
he prepares new inputs to the system.

Functional encryption. The DHE scenario also shares similarities with func-
tional encryption [9]. This primitive is a generalisation of other cryptographic
notions, including Predicate Encryption [8,12] (PE) and Attribute-Based En-
cryption, where ciphertexts and secret keys are associated with extra informa-
tion in order to exert fine-grained control over who has access to encrypted data.
In the view of FE closest to the DHE scenario [3,10], Alice hides a message m in-
side the ciphertext. Decryption is then accessible only to Bob if he holds a token
TKf associated with an arbitrary function f of his choice (mapping bit-strings
to bit-strings) issued by a Trusted Authority. When invoked on a valid token
TKf , decryption returns f(m). Bob should learn nothing more about the hidden
message than that which is leaked by f(m). Unfortunately, FE also comes short
of solving the problems raised by the DHE scenario. The problem is that the
roles of Bob and Carol are combined into a single entity, which means that Carol
is essentially a trusted party if Bob is honest. Put differently, Bob is forced to
either evaluate f(m) through decryption, or he must delegate the decryption
operation to Carol himself.

The DHE architecture. The DHE architecture is similar to the (1-hop)
FHE scenario2, extending it with the ability to control which computations can
be carried out over encrypted data, and verifying their results:

– Receivers (Bob) publish public keys that can be used by senders (Alice) to
prepare encrypted system inputs.

– Many senders can independently encrypt inputs to the same receiver. En-
cryption is independent of concrete functions that may be computed over
encrypted data, and also of the evaluators (Carol) that may compute it.

– The TA is responsible for assigning computation abilities to evaluators. To
enable some evaluator (Carol) to carry out computation of a specific function
over encrypted data, the TA provides her with a token. This token depends
only on the function that originated it, and is independent of senders and
receivers.

– When running encryption, Alice computes some auxiliary information about
the input. If securely shared with Bob, this permits achieving verifiability
of the computed results (without leaking additional information about the
original input). We discuss verifiability in more detail below.

– Finally, it is assumed that Alice and Bob are constrained in terms of com-
putation resources, when compared to the TA and Carol. This means that
encryption and decryption should be much cheaper to compute than gener-
ating tokens and evaluating functions over encrypted inputs.

2 We consider only the case where functions computed over ciphertexts take a single
input. A scenario where multiple ciphertexts from different senders can be fed to
evaluation could be considered, although it is not clear what verifiability would
mean in this case.

300 M. Barbosa and P. Farshim

Verifiability of a decryption result must be considered in the context of a spe-
cific input and a specific function. In the DHE architecture this is captured by
providing two additional inputs to decryption that set-up this context:

– The first is a short description hf of the function f that was supposedly eval-
uated over the encrypted data. This is published by the Trusted Authority,
and essentially binds Carol to evaluating a function f that the TA approved.
In practice this description can be a hash or an identifier of a function that
the TA has delegated.

– The second is a short piece of information returned by encryption and trans-
ferred securely from Alice to Bob. This auxiliary information should not
reveal anything about the input data in addition to that which is revealed
by the output of the computation (this is another important distinction to
the VC scenario). For verifiability to be meaningful, this information must
be transferred authentically. In our work we further assume that the auxil-
iary information is also transferred confidentially (e.g. using a combination
of standard signature and encryption schemes), and leave the case where it
can be known to evaluators for future work3.

DHE construction and verifiable functional encryption. FE is a nat-
ural stepping stone towards realising our notion of a DHE. Indeed, FE already
provides a means to control the functions that can be computed over encrypted
data, as well as restricting the information that is leaked by decryption. However,
as we described above, the features offered by FE fall short of what we require
for DHE. To solve this problem, we need to consider the FE setting where de-
cryption is no longer performed by Bob (the receiver), but is carried out on a
separate module (Carol). Bob, however, must be able to efficiently check that
this decryption was carried out honestly, with some help from Alice. We call this
new primitive Verifiable Functional Encryption (VFE).

We construct a VFE from a standard FE scheme. The construction is intuitive
– we add redundancy to function inputs and outputs to enable verification –
but it is non-trivial in its realisation. Alice encrypts a MAC key k together
with the message m. The tokens for a function f are now issued for a new
function f	 which computes f(m) and attaches a MAC of the result under key k.
However, the security of the underlying FE scheme together with unforgeability
of the MAC does not seem to be enough to ensure verifiability. Indeed we need
special properties from the MAC scheme in order to prove that the FE scheme is
preserving its authentication properties in a meaningful way. Our notion of VFE
also allows for a clearer modular presentation of our results and, as we shall see,
it is helpful in building VC schemes where input/output privacy is not needed.

Verifiable FE provides only a limited form of input privacy and no output
privacy (with respect to Carol and the TA). To obtain a DHE scheme we there-
fore wrap the VFE scheme inside an FHE layer. This technique is similar to

3 Note that although we do not consider this aspect in this paper, the hint could be
anonymous in the sense that it reveals nothing about the sender. Our construction
actually achieves this.

Delegatable Homomorphic Encryption 301

those used in [6,4] where Yao’s garbled circuits and cut-and-choose protocols
(instead of functional encryption) are used in conjunction with FHE. Note that
although in this setting the FHE scheme must support the decryption circuit of
the verifiable functional encryption scheme, it is not essential in guaranteeing
verifiability. This is where the flexibility of our scheme resides.

Secure verifiable computation. A DHE scheme can be seen as a generali-
sation of VC where the Client functionality is now carried out by three different
parties: the TA carries out the pre-computation stage, Alice prepares the in-
puts and Bob recovers and verifies the outputs. Not surprisingly, DHE implies a
strong form of VC. In particular, the results in this paper solve two open prob-
lems identified in [6]. Firstly, any DHE scheme which is secure in the sense that
we propose in this paper can be easily converted into a VC scheme that remains
verifiable even if the worker (Carol) can observe the outputs of verification and
adaptively choose new inputs. Secondly, if one is willing to waive input/output
privacy, our construction of a VFE yields the first VC scheme that does not
require FHE to achieve verifiability.

Structure of the paper. We present three security models for DHEs in
Section 2. We introduce verifiable functional encryption in Section 3, and give a
generic construction from a standard FE scheme and a (customised) MAC. In
Section 4 we build a DHE scheme from a verifiable functional encryption scheme
and a fully homomorphic encryption scheme. Relation to verifiable computation
is discussed in Section 5. We conclude the paper in Section 6 by discussing the
instantiation/efficiency of our construction and providing directions for future
research.

2 Delegatable Homomorphic Encryption

We are now ready to formally present the syntax of a DHE scheme.

Syntax. A delegatable homomorphic encryption (DHE) scheme is specified by
six PPT algorithms as follows.

1. DHE.Setup(1λ): This is the setup algorithm and is run by the TA. On input
a security parameter, it generates a master secret key Msk and a master
public key Mpk. We assume Mpk also contains a pair of compatible message
and function spaces DHE.MsgSp(Mpk) and DHE.FunSp(Mpk).

2. DHE.Gen(Mpk): This is the key-generation algorithm and is run by the re-
ceiver. On input the master public key, it outputs a receiver key-pair (sk, pk).

3. DHE.TKGen(f, Msk): This is the token generation algorithm and is run by
the TA. On input a (description of a) circuit f and the master key Msk, it
generates a token TK for f and a short description of f denoted hf . For sim-
plicity, we restrict our attention to schemes for which hf is deterministically
generated from f and unique with overwhelming probability (e.g. using a
collision-resistant hash function).

302 M. Barbosa and P. Farshim

4. DHE.Enc(m, pk): This is the encryption algorithm and is run by the sender.
On input a message m, and a receiver’s public key pk it returns a ciphertext
c, and some auxiliary information aux.

5. DHE.Eval(c, TK, pk): This is the evaluation algorithm and is run by the eval-
uator. On input a ciphertext c, a token TK, and a public key pk, it returns
a ciphertext cevl.

6. DHE.Dec(cevl, aux, hf , sk): This is the deterministic decryption algorithm and
is run by the receiver. On input an evaluated ciphertext cevl, auxiliary in-
formation aux, a short description of a function hf , and a secret key sk, it
returns either a message m or a special failure symbol ⊥.

Recall that we assume that the TA publishes the short descriptions hf so that
they are publicly available, and that aux is supposed to be transferred securely
from Alice to Bob in order to ensure verifiability.

Correctness. A DHE scheme is correct if for any λ ∈ N, any key pair
(Msk, Mpk) ∈ [DHE.Setup(Mpk)], any (sk, pk) ∈ [DHE.Gen(Mpk)], any mes-
sage m ∈ DHE.MsgSp(1λ) and any f ∈ DHE.FunSp(Mpk) we always have
f(m) = DHE.Dec(cevl, aux, hf , sk), where (TK, hf) ←$ DHE.TKGen(f, Msk),
(c, aux) ←$ DHE.Enc(m, pk), and cevl ←$ DHE.Eval(c, TK, pk).

Compactness. In a compact DHE scheme the evaluation algorithm takes on
the computational load of evaluating circuits over the data. This requirement,
as in FHE, rules out trivial constructions where evaluation appends the circuit
to ciphertexts, and it is the decryption which bears the computational load.
More formally, a DHE scheme is compact if there is a fixed polynomial B(·)
such that for any (Msk, Mpk) ∈ [DHE.Setup(1λ)], any f ∈ DHE.FunSp(Mpk),
any (sk, pk) ∈ [DHE.Gen(Mpk)], any m ∈ DHE.MsgSp(Mpk), any (TK, hf) ∈
[DHE.TKGen(f, Msk)], any (c, aux) ∈ [DHE.Enc(m, pk)], and any evaluated ci-
phertext cevl ∈ [DHE.Eval(c, TK, pk)], the size of (cevl, aux, hf , sk) is at most
B(λ + |f(m)|) (independently of the size of f).

Outsourceability. Roughly speaking, this requirement rules out schemes
which pre-compute functions at the encryption stage. Formally, a DHE scheme
is outsourceable if for any c > 0 and sufficiently large λ, we have that for any
(Msk, Mpk) ∈ [DHE.Setup(1λ)], any (sk, pk) ∈ [DHE.Gen(Mpk)], and any message
m ∈ DHE.MsgSp(Mpk), and any f ∈ DHE.FunSp(Mpk), the time-complexity of
DHE.Enc(m, pk) is at most c times the time-complexity of f(m).

Input/output privacy. We formulate a notion of input/output privacy that
requires no party (including an honest-but-curious TA) except possibly the
sender or the receiver should learn anything about the data enclosed in DHE
ciphertexts. Formally, the TA-IND-CPA security of a DHE scheme requires the
advantage of any PPT adversary A defined by

Advta-ind-cpa
DHE,A (λ) := 2 · Pr

[
TA-IND-CPAA

DHE(λ) ⇒ T
]
− 1,

to be negligible, where game TA-IND-CPA is shown in Figure 1. Note that the
adversary receives Msk, which enables it to extract tokens for all functions. Also

Delegatable Homomorphic Encryption 303

note that the adversary is not given the auxiliary information aux that is used
to ensure verifiability. This is consistent with the assumption in this model that
the sender and the receiver are trusted.

proc. Initialize(λ):
b ←$ {0, 1}
(Msk, Mpk) ←$ DHE.Setup(1λ)
(sk, pk) ←$ DHE.Gen(Mpk)
Return (Msk, Mpk, pk)

proc. Left-Right(m0, m1):
(c, aux) ←$ DHE.Enc(mb, pk)
Return c

proc. Finalize(b′):
Return (b = b′)

Fig. 1. Game defining the TA-IND-CPA security of a DHE scheme. An adversary is
legitimate if it calls Left-Right exactly once on two messages of equal length.

Verifiability. Verifiability for DHEs essentially requires an evaluator to be
unable to convince the sender and the receiver (sharing a secret aux that con-
textualises a concrete input) that it has honestly computed an incorrect value.
We capture this by allowing the adversary to obtain a polynomial number of
tokens for functions of its choice. We also allow the attacker to obtain a poly-
nomial number of encrypted inputs for messages of her choice. The goal of the
adversary is then to produce a ciphertext that is accepted and decrypts to an
incorrect value. The model is strengthened by introducing a decryption oracle
that captures the possibility that the evaluator observes the results of decryp-
tions (verifications) executed by the receiver. More formally, VRF-CCAx security
for x ∈ {1, 2} requires the advantage of any PPT adversary A defined by

Advvrf-ccax
DHE,A (λ) := Pr

[
VRF-CCAxADHE(λ) ⇒ T

]

to be negligible, where game VRF-CCAx is shown in Figure 2.

proc. Initialize(λ):
List←{}; TKList←{}; i←0

(Msk, Mpk)←$ DHE.Setup(1λ)
(sk, pk) ←$ DHE.Gen(Mpk)
Return (Mpk, pk)

proc. Token(f):
(TK, hf) ←$ TKGen(f, Msk)
TKList ← TKList ∪ {(f, hf)}
Return (TK, hf)

proc. Decrypt(c, i, hf):
Set (m, aux) st (i, m, aux)∈List
m ← DHE.Dec(c, aux, hf , sk)
Return m

proc. Encrypt(m):
(c, aux) ←$ DHE.Enc(m, pk)
i ← i+1
List ← List ∪ {(i, m, aux)}
Return c

proc. Finalize(c�, i, hf):
If (i, 	,) �∈ List Return F
If (, hf) �∈ TKList Return F
Set (m, aux) st (i, m, aux)∈List
Set (f, hf) st (f, hf) ∈ TKList
m� ← DHE.Dec(c�, aux, hf , sk)
If m� =⊥ Return F
Return (m� �= f(m))

Fig. 2. Game defining the VRF-CCAx security of a DHE scheme. An adversary is
legitimate if: 1) it calls Decrypt with an i such that (i, �, �) ∈ List; and 2) it does not
call Token after calling Encrypt when x = 1.

A natural question that arises after introducing the previous models is how
does verifiability relate to IND-CPA security. We clarify this issue in [1] by

304 M. Barbosa and P. Farshim

introducing an IND-CCA security model for DHEs. In this model, where TA,
Alice and Bob are assumed to be honest, the decryption oracle mimics the actions
of Bob, knowing the correct secret aux for the challenge ciphertext and the set
of valid function descriptions published by the TA. We show that verifiability
and I/O privacy jointly imply IND-CCA security. Note that this does not mean
that the DHE retains its I/O privacy in the presence of a verification oracle: the
decryption oracle in the CCA security model does not allow the adversary to
infer the verification result from the oracle output.

Another important feature of DHE is that it provides a reduced level of secu-
rity to Alice even when Carol and Bob collude. We consider this next.

Evaluation security. Evaluation security aims to guarantee senders that no
information about encrypted messages beyond that which can be obtained from
evaluations and decryptions for authorised functions is leaked. This means that,
even if an evaluator and a receiver collude (note that the attacker gets to see
aux and the receiver’s secret key) they cannot obtain more information about
the original message than they should. In addition to a Left-Right oracle, the
adversary gets a token extraction oracle to which it can only query functions that
do not allow for trivial distinguishing attacks. Furthermore, the adversary may
observe evaluations under other functions for all ciphertexts except the challenge.
Under this notion of security, a collusion of evaluators and receivers cannot
misuse their resources to compute unauthorised functions. In other words the
scheme provides resource protection. Formally, IND-EVALx security for x ∈ {1, 2}
requires the advantage of any PPT adversary A defined by

Advind-evalx
DHE,A (λ) := 2 · Pr

[
IND-EVALxADHE(λ) ⇒ T

]− 1

to be negligible, where game IND-EVALx is shown in Figure 3.

proc. Initialize(λ):
b←$ {0, 1}; List←{}; TKList←{}
(Msk, Mpk) ←$ DHE.Setup(1λ)
(sk, pk) ←$ DHE.Gen(Mpk)
Return (Mpk, sk, pk)

proc. Token(f):
(TK, hf) ←$ DHE.TKGen(f, Msk)
TKList ← TKList ∪ {f}
Return (TK, hf)

proc. Evaluate(c, f):
(TK, hf)←$ DHE.TKGen(f, Msk)
cevl ←$ DHE.Eval(c, TK, pk)
Return cevl

proc. Left-Right(m0, m1):
(c, aux) ←$ DHE.Enc(mb, pk)
List ← List ∪ {(c, aux)}
Return (c, aux)

proc. Finalize(b′):
Return (b = b′)

Fig. 3. Game defining the IND-EVALx security of a DHE scheme. An adversary is
legitimate if: 1) it calls Left-Right exactly one on two messages of equal length; 2) it
never queries Token with an f such that f(m0) �= f(m1); 3) it never calls Evaluate
with a c such that (c, �) ∈ List; and 4) it does not call Evaluate or Token after calling
Left-Right when x = 1.

Delegatable Homomorphic Encryption 305

3 Verifiable Functional Encryption

As a stepping stone towards realising our DHE notion, we first introduce Veri-
fiable Functional Encryption (VFE). Our discussion is based on the definitions
of standard functional encryption [1].

Syntax. The syntax of a VFE scheme is similar to that of an FE scheme with
the caveat that additional parameters are returned by the encryption, decryption
and token generation algorithms that can be fed to a new verification algorithm.
The verification algorithm allows anyone who is given an output of decryption
to verify that it was honestly computed with the additional help of contextual
information that binds the check to a specific encryption operation and a specific
function that was supposedly computed over the encrypted data. Concretely, a
verifiable functional encryption (VFE) scheme is defined through the following
PPT algorithms.

1. VFE.Setup(1λ): This is the setup algorithm. On input a security parameter
1λ, it outputs a master public key Mpk, and a master secret key Msk. We
assume Mpk also contains a pair of compatible message and function spaces
VFE.MsgSp(Mpk) and VFE.FunSp(Mpk).

2. VFE.TKGen(f, Msk): This is the token generation algorithm. On input the
master secret key Msk and a function f , it outputs a token TK and a short
identifier hf for f . For simplicity, we restrict our attention to schemes for
which these identifiers are deterministically generated from f and unique
with overwhelming probability (e.g. via a collision-resistant hash function).

3. VFE.Enc(m, Mpk): This is the verifiable encryption algorithm. On input a
message m, it outputs a ciphertext c and a key k. The returned key will
allow a sender to verify an output of decryption using VFE.Ver.

4. VFE.Dec(c, TK, Mpk): This is the deterministic decryption algorithm. On
input a token TK, a ciphertext c, and a master key Mpk, it outputs a range
point/tag pair (y, t), or a special failure symbol ⊥.

5. VFE.Ver((y, t), hf , k, Mpk): This is the deterministic verification algorithm.
On input a range point/tag pair (y, t), a fingerprint value hf and keys k
and Mpk, it returns a decision value T or F. We also require the verification
algorithm to accept only one tag for each (y, hf , k) input.

Correctness. A VFE scheme is correct if for any λ ∈ N, any (Mpk, Msk) ∈
[VFE.Setup(1λ)], any f ∈ VFE.FunSp(Mpk), and any m ∈ VFE.MsgSp(Mpk), we
have with probability one that f(m) = y∧VFE.Ver((y, t), hf , k, Mpk) = T, where
(TK, hf) ←$ VFE.TKGen(f, Msk), (c, k) ←$ VFE.Enc(m, Mpk), and (y, t) ←$

VFE.Dec(c, TK, Mpk).

Outsourceability. A VFE scheme is outsourceable if for every c > 0 and suf-
ficiently large λ we have that for any (Msk, Mpk) ∈ [VFE.Setup(1λ)], any message
m ∈ VFE.MsgSp(Mpk), and any f ∈ VFE.FunSp(Mpk), the time-complexity of
VFE.Enc(m, Mpk) is at most c times the time-complexity of f(m). This rules out
trivial constructions which pre-compute f in encryption.

306 M. Barbosa and P. Farshim

Plaintext security. The IND-CCAx security of a VFE scheme for x ∈ {0, 1, 2}
is defined similarly to that of a standard FE scheme, with the difference that
the Left-Right procedure now returns (c, k). Note that this definition requires
the scheme to leak nothing about the challenge except f(mb) for all f for which
the receiver obtains a token, even if the attacker is given k. More formally, the
IND-CCAx security of a VFE scheme for x ∈ {0, 1, 2} requires the advantage of
any PPT adversary A defined by

Advind-ccax
VFE,A (λ) := 2 · Pr

[
IND-CCAxAVFE(λ) ⇒ T

]− 1,

to be negligible, where game IND-CCAx is shown in Figure 4.

proc. Initialize(λ):
b ←$ {0, 1}
List ← {}; TKList ← {}
(Msk, Mpk) ←$ VFE.Setup(1λ)
Return Mpk

proc. Decrypt(c, f):
TK ←$ VFE.TKGen(f, Msk)
m ← VFE.Dec(c, TK)
Return m

proc. Token(f):
TK ←$ VFE.TKGen(f, Msk)
TKList ← TKList ∪ {f}
Return TK

proc. Left-Right(m0, m1):
(c, k) ←$ VFE.Enc(mb, Mpk)
List ← List ∪ {c}
Return (c, k)

proc. Finalize(b′):
Return (b = b′)

Fig. 4. Game defining the IND-CCAx security of an VFE scheme. An adversary is
legitimate if: 1) it calls Left-Right exactly once on two messages of equal length; 2)
it never calls Decrypt with a c ∈ List; 3) It never calls Token with an f such that
f(m0) �= f(m1); 4) if x = 0 it does not call Decrypt; and 5) if x = 1 it does not call
Decrypt after calling Left-Right.

Verifiability. The intuition here is similar to that in the DHE scenario:
correctness of outsourced decryption should be checkable. More precisely, the
VRF-CCAx security of a VFE scheme for x ∈ {1, 2} requires the advantage of any
PPT adversary A to be negligible, when this is defined by

Advvrf-ccax
VFE,A (λ) := Pr

[
VRF-CCAxAVFE(λ) ⇒ T

]
,

Here, game VRF-CCAx is shown in Figure 5. We next discuss how we construct
a verifiable FE scheme.

Adding verifiability to functions. In our construction of a VFE we
use a transformation which given a pair of compatible spaces FunSp(1λ) and
MsgSp(1λ) constructs a new function family that enables verifiability without
loss of functionality – we will call this the verifiable function family. The in-
tuition behind this construction is simple: we extend any function f(m) to a
function f	(m, k) that takes also a secret key and computes (f(m), t) where t
authenticates f(m) under k. Formally, in order to establish a verification con-
text that is a binding both to a concrete function and a concrete input, we take
a collision resistant hash function family (CRH) and a MAC scheme (possibly

Delegatable Homomorphic Encryption 307

proc. Initialize(λ):
List ← {}; TKList ← {}; i ← 0

(Msk, Mpk) ←$ VFE.Setup(1λ)
Return Mpk

proc. Token(f):
(TK, hf)←$ VFE.TKGen(f, Msk)
TKList ← TKList ∪ {(f, hf)}
Return (TK, hf)

proc. Decrypt(c, f):
(TK, hf) ←$ TKGen(f, Msk)
(y, t)←VFE.Dec(c, TK, Mpk)
Return (y, t)

proc. Encrypt(m):
(c, k) ←$ VFE.Enc(m, Mpk)
i ← i + 1; List ← List ∪ {(i, m, k)}
Return c

proc. Finalize((y, t), i, f):
If (i, 	,) �∈ List Return F
If (f, hf) �∈ TKList Return F
Let (m, k) be s.t. (i, m, k) ∈ List
If ¬VFE.Ver((y, t), hf , k, Mpk)

Return F
Return (y �= f(m))

Fig. 5. Game defining the VRF-CCAx security of a VFE scheme. An adversary is legit-
imate it does not call Token or Decrypt after calling Encrypt when x = 1.

with a global set-up procedure and a trapdoor). We use CRH to derive function
fingerprints from function descriptions, and define

f	(m, k) := (f(m), MAC.Tag((f(m), hf), k, mk)),

where hf ← CRH.H(〈f〉, hk). We note that function identifiers (or fingerprints)
will be unique with overwhelming probability, and that one can verify that func-
tion f	 was correctly computed by checking that MAC.Tag((y, hf), k, mk) = t.
Also note that since MAC and CRH are deterministic the above transformation
enjoys the property that f	(m0, k) = f	(m1, k) if and only if f(m0) = f(m1).
Furthermore given f	(m, k) one can read off f(m) in time equal to |f(m)|.
The VFE construction. Our construction is simple but somewhat surpris-
ing in its capabilities. We start with any FE scheme accepting circuits for the
verifiable function family that we defined above. We then show that encrypting
a fresh secret key for the MAC along with the input to the function we want to
compute is enough to achieve verifiability. Although this technique is intuitive,
it has proven to be elusive to formalise and prove secure. Obviously, the MAC
scheme must be unforgeable for one to have any hope of proving this result.
However, it is not trivial to prove that including a MAC key inside a ciphertext,
and issuing tokens for arbitrary functions in the above verifiable function family,
does not enable the adversary to forge a MAC on the same key.

To better see where the problem arises, note that IND-CCA security of the
FE scheme guarantees that no information about the input (the message and
the MAC key) beyond that leaked through the extracted function(s) is leaked
to an adversary. Hence, before one can reduce the verifiability of the FE to
the unforgeability of the MAC one must first have a meaningful reduction to
the IND-CCA security of the FE, replacing the MAC key with a different one
that can be embedded in the challenge ciphertext provided to the verifiability
adversary (this is because the real MAC key will not be available in the reduction
to unforgeability). The trick is then to find a new key that gives rise to the same
MAC, which can be substituted inside the challenge ciphertext without this
being perceptible to the adversary. To achieve this result we need a MAC with
the following property: it is possible to find a key which leads to identical tags on
any n messages, and this key can be given to the adversary without hindering
unforgeability. We call a MAC with this property an n-key-chameleon MAC.

308 M. Barbosa and P. Farshim

Note that this proof-technique requires us to restrict ourselves to adversaries
that perform at most n token extraction queries, all before calling the challenge.
Fortunately, this is enough to ensure that our results imply a strongly secure VC
scheme, as we will see later in the paper. In the next subsections we formalise
this intuition, first by introducing the MACs with chameleon keys, and then
describing our VFE construction in detail.

3.1 MACs with Chameleon Keys

Syntax. An n-key-chameleon MAC scheme is specified by three PPT algorithms
as follows. The setup algorithm, MAC.Setup(1λ), takes the security parameter
and returns a pair (td, mk) consisting of a trapdoor td and public parameters
mk. The deterministic tagging algorithm, MAC.Tag(m, k), takes the global pa-
rameters mk, a message m, and a secret key k, and returns a tag t. Finally, the
collision-finding algorithm MAC.Col(td, m1, . . . , mn, k),on input a trapdoor td, n
messages, and a secret key k returns a new secret key k′.

Correctness. An n-key-chameleon MAC scheme is correct if for any λ ∈ N,
any (td, mk) ∈ [MAC.Setup(1λ)], any mi ∈ MAC.MsgSp(mk) for i = 1, . . . , n, any
k ∈ MAC.KeySp(mk), and any k′ ∈ [MAC.Col(td, m1, . . . , mn, k)] we have that
MAC.Tag(mi, k, mk) = MAC.Tag(mi, k

′, mk) for all i = 1, . . . , n.

Unforgeability. The UF-CMA security of an n-key-chameleon MAC requires
the advantage of any PPT adversary A defined by

Advuf-cma
MAC,A(λ) := Pr

[
UF-CMAA

MAC(λ) ⇒ T
]
,

to be negligible, where game UF-CMA is shown in Figure 6. Note that this is
essentially a slightly stronger version of a non-adaptive chosen message attack,
as k′ allows the adversary to compute a tag on the chosen messages.

proc. Initialize(λ):
(td, mk) ←$ MAC.Setup(1λ)
k ←$ MAC.KeySp(mk)
Return mk

proc. Collision(m1, . . . , mn):
k′ ← MAC.Col(td, m1, . . . , mn, k)
Return k′

proc. Finalize(m, t):
If m ∈ {m1, . . . , mn} Return F
Return

(MAC.Tag(m, k, mk) = t)

Fig. 6. Game defining the UF-CMA security of an n-key chameleon MAC. An adversary
is legitimate if it calls Collision exactly once.

Building an n-key chameleon MAC. One can build an n-key-chameleon
MAC from the n-time information-theoretically secure MAC with tagging algo-
rithm MAC.Tag(m, (an, . . . , a0), mk) :=

∑n
i=0 aim

i with ai, m ∈ Zp for a prime
p. There is no need for global parameters (except for the appropriate message
and key space definitions) and no need for a trapdoor. Key generation returns a
random n + 1 tuple (an, . . . , a0). To find a colliding key k′ = (a′

n, . . . , a′
0) given

n messages, as required by the correctness condition, one solves the system of n

Delegatable Homomorphic Encryption 309

equations in n + 1 unknowns. Since this system is under-defined, the new com-
puted key can be made to look completely random. Hence, providing this key to
the adversary leaks no information. A forgery as required by the game above thus
translates to an n-time forgery, which is infeasible in the information-theoretical
sense.

3.2 Details of the VFE Construction

Let FE be a (standard) functional encryption scheme such that for any λ ∈ N

and any given compatible spaces FunSp(1λ) and MsgSp(1λ), we have that
FE.FunSp(Mpk) includes f	 as defined in the equation above, for any f ∈
FunSp(1λ), any (Msk, Mpk) ∈ [FE.Setup(1λ)], any hk ∈ [CRH.KeySp(1λ)], and
any (td, mk) ∈ [MAC.Setup(1λ)]. We define our verifiable functional encryption
scheme VFE as shown in Figure 7. Note that our construction satisfies the unique-
ness requirement on tags accepted by the verification algorithm by recomputing
a deterministic MAC. Security properties of the scheme are stated next, and we
refer to [1] for the proofs.

Theorem 1 (Informal). The construction in Figure 7 is IND-CCA if the un-
derlying FE scheme is IND-CCA. It is also verifiable under non-adaptive bounded
attacks if the FE scheme is IND-CCA1 and the MAC is unforgeable.

– VFE.Setup(1λ)

1. (Msk, Mpk) ←$ FE.Setup(1λ)

2. (td, mk) ←$ MAC.Setup(1λ)

3. hk ←$ CRH.Gen(1λ)
4. Return ((Msk, mk, hk), (Mpk, mk, hk))

– VFE.TKGen(f, (Msk, mk, hk))
1. hf ← CRH.H(〈f〉, hk)
2. f�(x1, x2) :=

(f(x1),MAC.Tag((f(x1), hf),x2,mk))
3. TK ←$ FE.TKGen(f�, Msk)
4. Return (TK, hf)

– VFE.Enc(m, (Mpk, mk, hk))
1. k ←$ MAC.KeySp(mk)
2. c ←$ FE.Enc((m, k), Mpk)
3. Return (c, k)

– VFE.Dec(c, TK)
1. m ← FE.Dec(c, TK)
2. Parse (y, t) ← m
3. Return (y, t)

– VFE.Ver((y, t), 〈f〉, k, (Mpk, mk, hk))
1. Return MAC.Tag((y, hf),k,mk)= t

Fig. 7. A VFE scheme based on a standard FE scheme and an n-key-chameleon MAC

4 A Strongly Secure DHE Scheme

We now present a generic construction of a DHE for a given function space.
The construction uses the VFE scheme introduced in the previous section as a
building block. The other component in our construction is an FHE scheme. For
the definitions and security models of FHE we refer the reader to [1].

Let FHE be a compact homomorphic public-key encryption scheme (sup-
porting arity-1 functions), and let VFE be an outsourceable verifiable func-
tional encryption scheme for the function family constructed in the previous
section. Suppose also that for any λ ∈ N, any (sk, pk) ∈ [FHE.Gen(1λ)] and
any (Msk, Mpk) ∈ [VFE.Gen(1λ)], the following compatibility conditions hold:

310 M. Barbosa and P. Farshim

– DHE.Setup(1λ)

1. (Msk, Mpk) ←$ VFE.Setup(1λ)
2. Return (Msk, Mpk)

– DHE.Gen(Mpk)

1. (sk, pk) ←$ FHE.Gen(1λ)
2. Return (sk, (pk, Mpk))

– DHE.TKGen(f, Msk)
1. (TK, hf) ←$ VFE.TKGen(f�, Msk)
2. Return (TK, hf)

– DHE.Eval(chom, TK, (pk, Mpk))
1. c ←$ FHE.Eval(chom, VFE.Dec(·, TK), pk)
2. Return c

– DHE.Enc(m, (pk, Mpk))
1. (c, aux) ←$ VFE.Enc(m, Mpk)
2. chom ←$ FHE.Enc(c, pk)
3. Return (chom, aux)

– DHE.Dec(c, aux, hf , sk, Mpk)
1. m ← FHE.Dec(c, sk)
2. Parse (y, t) ← m
3. If VFE.Ver((y, t),hf ,aux,Mpk)=F

Return ⊥
4. Return y

Fig. 8. A DHE scheme based on an FHE and a VFE scheme

FHE.MsgSp(pk) = VFE.CphSp(Mpk) and VFE.Dec(·, ·) ∈ FHE.FunSp(pk). We
construct an outsourceable DHE scheme as shown in Figure 8. We define
DHE.MsgSp(Mpk) and DHE.FunSp(Mpk) as arbitrary spaces that may param-
eterise our function family construction.

The correctness of the above scheme follows from the correctness of the un-
derlying FHE and VFE schemes. The compactness of the construction follows
from the compactness of the underlying FHE scheme, whereas its outsource-
ability follows from the outsourceability of the VFE. The security guarantees of
the scheme are stated next. The precise statement and proof of the theorem is
presented in [1].

Theorem 2 (Informal). The DHE construction in Figure 8 provides in-
put/output privacy, verifiability, and evaluation security if the VFE scheme is
IND-CCA and verifiable, and the FHE is IND-CPA.

5 Secure Verifiable Computation from DHE

Converting a DHE scheme to a VC scheme is straightforward. Suppose DHE
is a delegatable homomorphic encryption scheme. For any λ ∈ N, and any
(Msk, Mpk) ∈ [DHE.Setup(1λ)] set VC.FunSp(1λ) := DHE.FunSp(Mpk) and
VC.FunSp(1λ) := DHE.MsgSp(Mpk) (we assume the spaces returned by DHE
depend only on λ). Our construction is given in Figure 9. The correctness of
the above scheme follows from the correctness of the underlying DHE scheme.
Outsourceability of the VC scheme follows form the compactness and outsource-
ability of the DHE scheme. The security properties of this scheme are given next.
The precise statements and proofs may be found in [1].

Theorem 3 (Informal). The VC scheme in Figure 9 is input/output private
and fully verifiable if the underlying DHE scheme is input/output private and
non-adaptively verifiable.

Delegatable Homomorphic Encryption 311

– VC.Gen(f, 1λ)

1. (Msk, Mpk) ←$ DHE.Setup(1λ)
2. (sk, pk) ←$ DHE.Gen(Mpk)
3. (TK, hf) ←$ DHE.TKGen(f, Msk)
4. Return ((hf , sk, pk), (TK, pk))

– VC.ProbGen(m, (hf , sk, pk))
1. (c, aux) ←$ DHE.Enc(m, pk)
2. Return (c, aux)

– VC.Compute(c, (TK, pk))
1. cevl ←$ DHE.Eval(c, TK, pk)
2. Return cevl

– VC.Verify(cevl, aux, (hf , sk, pk))
1. Return DHE.Dec(cevl, aux, hf , sk)

Fig. 9. A VC scheme based on a DHE scheme

It follows directly from this result that our DHE constructions implies the first
VC scheme that preserves verifiability even if the adversary can adaptively ob-
serve verification results. Furthermore, our scheme preserves verifiability even
if one removes the FHE layer. Hence, our results also answer an open question
in [6]: it is possible to obtain a VC scheme without the cost of an FHE scheme,
if one is willing to sacrifice I/O security.

Remark. As for DHEs, we note that the VC scheme above does not provide in-
put/output privacy in the presence of verification oracle. In scenarios where this
level of confidentiality is required, a DHE scheme which provides CPA security
in the presence of a verification oracle is needed. We leave this as a direction for
future work.

6 Concluding Remarks

Instantiating our DHE construction. Currently, no fully secure PE
scheme for general predicates exists, and hence our construction can still not
be realised in its full generality. The recent scheme of De Caro et al. [5], how-
ever, does allow for the instantiation of our construction for a restricted class of
functions. We refer the interested reader to [1] for the details.

Open problems. An interesting direction is to uncover solutions that go be-
yond the non-adaptive and/or bounded token-extraction level of security that
our DHE scheme achieves. Simulation-based notions of security, given the im-
possibility result of Boneh et al. [3], deserve further investigation. In terms of
functionality, the proposed DHE primitive is somewhat limiting in what it offers:
it is intrinsically 1-hop, and works only for functions of arity one; its delegation
capabilities are not hierarchical; and its encryption routine is public and cannot
offer function privacy for tokens. We leave such extensions for future work.

Acknowledgments. We would like to thank anonymous reviewers, and par-
ticularly an ASIACRYPT 2011 reviewer, for their valuable comments. Manuel
Barbosa was supported by project SMART, funded by ENIAC Joint Undertak-
ing (GA 120224). Pooya Farshim was supported in part by grant Fi 940/4-1 of
the German Research Foundation (DFG). While at Royal Holloway, Univeristy
of London, Pooya Farshim was also sponsored by US Army Research labora-
tory and the UK Ministry of Defence and was accomplished under Agreement
Number W911NF-06-3-0001.

312 M. Barbosa and P. Farshim

References

1. Barbosa, M., Farshim, P.: Delegatable Homomorphic Encryption with Applica-
tions to Secure Outsourcing of Computation. Cryptology ePrint Archive, Report
2011/215

2. Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable Delegation of Computation
over Large Datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841,
pp. 111–131. Springer, Heidelberg (2011)

3. Boneh, D., Sahai, A., Waters, B.: Functional Encryption: Definitions and Chal-
lenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer,
Heidelberg (2011)

4. Chung, K.-M., Kalai, Y., Vadhan, S.: Improved Delegation of Computation Us-
ing Fully Homomorphic Encryption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 483–501. Springer, Heidelberg (2010)

5. De Caro, A., Iovino, V., Persiano, G.: Efficient Fully Secure (Hierarchical) Predicate
Encryption for Conjunctions, Disjunctions and k-CNF/DNF Formulae. Cryptology
ePrint Archive, Report 2010/492 (2010)

6. Gennaro, R., Gentry, C., Parno, B.: Non-Interactive Verifiable Computing: Out-
sourcing Computation to Untrusted Workers. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)

7. Gentry, C.: Fully Homomorphic Encryption Using Ideal Lattices. In: 41st ACM
Symposium on Theory of Computing, STOC 2009, pp. 169–178 (2009)

8. Katz, J., Sahai, A., Waters, B.: redicate Encryption Supporting Disjunctions, Poly-
nomial Equations, and Inner Products. In: Smart, N.P. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

9. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully Secure Func-
tional Encryption: Attribute-Based Encryption and (Hierarchical) Inner Product
Encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91.
Springer, Heidelberg (2010)

10. O’Neill, A.: Definitional Issues in Functional Encryption. Cryptology ePrint
Archive, Report 2010/556 (2010)

11. Okamoto, T., Takashima, K.: Fully Secure Functional Encryption with General
Relations from the Decisional Linear Assumption. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010)

12. Shen, E., Shi, E., Waters, B.: Predicate Privacy in Encryption Systems. In: Rein-
gold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer, Heidelberg (2009)

Efficient RSA Key Generation and Threshold

Paillier in the Two-Party Setting�

Carmit Hazay1, Gert Læssøe Mikkelsen2,��, Tal Rabin3, and Tomas Toft1

1 Department of Computer Science, Aarhus University, Denmark
{carmit,ttoft}@cs.au.dk
2 The Alexandra Institute

gert.l.mikkelsen@alexandra.dk
3 IBM T.J.Watson Research Center

talr@us.ibm.com

Abstract. The problem of generating an RSA composite in a distributed
manner without leaking its factorization is particularly challenging and
useful in many cryptographic protocols. Our first contribution is the
first non-generic fully simulatable protocol for distributively generating
an RSA composite with security against malicious behavior in the two
party setting. Our second contribution is a complete Paillier [37] thresh-
old encryption scheme in the two-party setting with security against
malicious behavior. Our RSA key generation is comprised of the follow-
ing: (i) a distributed protocol for generation of an RSA composite, and
(ii) a biprimality test for verifying the validity of the generated compos-
ite. Our Paillier threshold encryption scheme uses the RSA composite as
public key and is comprised of: (i) a distributed generation of the cor-
responding secret-key shares and, (ii) a distributed decryption protocol
for decrypting according to Paillier.

1 Introduction

Generation of RSA Composite. Generating an RSA composite, N, (a prod-
uct of two primes, p and q), and secret keying material (values related to φ(N))
in a distributed manner is an important question in secure computation. Many
cryptographic protocols require such a composite for which none of the parties
know its factorization. A concrete example where such a protocol is very useful
is threshold cryptography where a number of parties exceeding a threshold is re-
quired to cooperate in order to carry out a cryptographic task; see [39,21,41,13]
for just a few particular examples. Another important application is using this
composite for securely evaluating any function in the common reference string
model (CRS) in a generic form [34], or functions of specific interests such as the
Fiat-Shamir authentication protocol [24,23], set-intersection [33] and oblivious
pseudorandom functions [33].

This computation has proven particularly challenging and most prior works
assumed that the composite is generated by a trusted dealer. In a breakthrough

� The full version of this paper can be found in [31].
�� This work was partially done at the Dept. of Computer Science, Aarhus University.

O. Dunkelman (Ed.): CT-RSA 2012, LNCS 7178, pp. 313–331, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

314 C. Hazay et al.

result, Boneh and Franklin [4] showed a mathematical method for choosing a
composite and verifying that it is of the proper form. Based on this method they
designed a secure protocol in the multiparty setting for an honest-but-curious
adversary with honest majority. Frankel et al. [26] strengthened this result to be
resistant to a fully malicious adversary. Additional solutions for testing primality
in the multiparty setting appear in [1,18].

The two party setting posed additional barriers even in the semi-honest model.
Cocks [10] initiated the study of the shared generation of the RSA composite in
the two-party semi-honest model. But the proposed protocol was later found to
be insecure [11,3]. The problem was finally solved by Gilboa [30] who presented a
protocol in the semi-honest model. In the malicious setting, Blackburn et al. [3]
described an active secure protocol, however, they do not provide a proof of
security for their protocol. Concurrently, Poupard and Stern [38] proposed a
solution that runs in time proportional to the size of the domain from which the
primes are sampled, which is exponential in the security parameter. Furthermore,
a second minor limitation is a requirement that one step has to be computed in
complete simultaneity. This can probably be fixed by using commitments. They
attempt to somewhat reduce the run time by introducing various modifications,
however, those are not proven, and as they leak some information presenting
a proof of security (if at all possible) will not be trivial. A detailed discussion
appear in the full version of this paper [31]. Thus, all these results do not offer
an efficient and provable solution for the two-party malicious case.

Our First Result. The first RSA key generation in the malicious setting which
is an efficient (non-generic) protocol with a full simulation based proof of security.

We define the appropriate functionalities and prove that our protocols realize
them. Our formalization takes into account a subtle issue in the RSA key gen-
eration, which was noticed by Boneh and Franklin [4]. Informally, they showed
that their protocol leaks certain amount of information about the product and
further proved that it does not pose any practical threat for the security. Nev-
ertheless, it does pose a problem when simulating, we therefore choose to work
with a slightly modified version of the natural definition for a key generation.
Our scheme is comprised of the following protocols:

1. A Distributed Generation of an RSA Composite.We present the first
fully simulatable protocol for securely computing a composite as a product of
two primes without leaking information about its factorization. Our protocol
follows the outlines of [4] and improves the construction suggested by [30] in
terms of security and efficiency. We introduce additional trial division which
significantly improves efficiency. [30] did not achieve trial division in the two
party setting, thus our solution is the first in the two-party setting.

2. A Distributed Biprimality Test. We adopt the biprimality test pro-
posed by [4] into the malicious two-party setting. This test essentially verifies
whether the generated composite is of the correct form. We provide a proof
of security for this protocol.

Efficient RSA Key Generation and Threshold Paillier 315

Our Second Result. The first threshold Paillier [37] encryption scheme in
the malicious setting which is an efficient, (non-generic) protocol with a full
simulation based proof of security.

Threshold Paillier. A threshold cryptosystem usually involves two related yet
separable components; (1) a distributed generation of the public keys and a shar-
ing of the secret key and, (2) a decryption/signature computation from a shared
representation of the secret key. Solutions for distributed discrete log based
system key generation [28], threshold encryption/decryption for RSA [29,41],
DSS [27] and Paillier [25,15,2] in the multiparty setting have been presented.
For some schemes the techniques from the multiparty setting can be adapted to
the two-party case in a more-or-less straightforward manner. However, the case
of malicious two-party Paillier has proven more complex and elusive.

More specifically, as the RSA and Paillier encryption schemes share the same
public key/secret key format of a composite N and its factorization, it may seem
at first glance that decryption according to Paillier should follow the outlines as
decryption according to RSA as e.g., in [8]. We observe that when decrypting
as in RSA (i.e., raising the ciphertext to the inverse of N modulo the unknown
order), the decrypter must extract first the randomness used for computing the
ciphertext in order to complete the decryption. This property may be problem-
atic in the context of simulation based secure computation because it forces
the simulator to present the randomness of the ciphertext instead of proving
correctness using ZK proofs. In addition we recall that by definition Paillier’s
scheme requires extra computation in order to complete the decryption (on top
of raising the ciphertext to the power of the secret value) since the outcome
from this computation is the plaintext multiplied with this secret value. In the
distributive setting this implies that the parties must keep two types of shares.
Our threshold scheme is comprised of the following protocols:

1. Distributed Generations of the Secret Key Shares. We present pro-
tocols for generating additive and multiplicative shares for φ(N). The gen-
eration of the initial additive shares follows from the key generation almost
immediately, whereas generating the multiplicative shares is more challeng-
ing.

2. A Distributed Decryption.Motivated by the discussion above, we present
a distributed protocol for decrypting according to Paillier. Our protocol takes
a different approach than traditionally proving computations using zero-
knowledge proofs.

Efficiency. We provide a detailed efficiency analysis for our subprotocols in Sec-
tion 5. Roughly speaking, all subprotocols have constant round complexity due
to parallelization of the generation of RSA composites, including the biprimality
tests and trial division, and the decryption of multiple instances. Moreover, all
our zero-knowledge proofs (except one that achieves constant complexity on the
average) run in constant rounds and require constant number of exponentiations.

316 C. Hazay et al.

In the full version [31] we further show how to extend our protocols to the
multiparty setting with dishonest majority, presenting the first actively secure
k-party RSA generation protocol, tolerating up to k − 1 corruptions.

2 Preliminaries

We denote the security parameter by 1n. We focus our attention on the fol-
lowing, widely used, variant of Paillier comprised of (Gen,Enc,Dec). The key
generation algorithm, Gen, chooses two equal length primes p and q and out-
puts a public key pk = N = pq, and a matching secret-key sk = φ(N). The
encryption procedure of a message m ∈ ZN , denoted Encpk(m), is performed
by choosing r ∈R Z∗

N (ZN in practice), and computing (1 +N)m · rN mod N2,

whereas decrypting, Decsk(c) =
[cφ(N) mod N2]−1

N · φ(N)−1 mod N . The security
of Paillier is implied by the Decisional Composite Residuosity Assumption (DCR).
Two additional building blocks used are: integer commitment schemes, an ex-
ample is the Paillier based commitment scheme of Damg̊ard and Nielsen [19,20];
and ElGamal encryption [22] secure under the DDH assumption. An additive
homomorphic version of ElGamal encryption is used, where gm and not m is en-
crypted, g being the generator of the group. Both a distributed key generation
protocol (πGEN), and a distributed decryption protocol (πDEC) exists, see [32].

3 A Distributed Generation of an RSA Composite

This section presents the protocol, DKeyGen for distributively generating an
RSA composite without disclosing information about its factorization and with
security against malicious activities. In DKeyGen the parties generate candidates
for the potential composite which they run through a biprimality test for check-
ing its validity. Our protocol is useful for designing distributive variants of the
RSA encryption and signature schemes, as well as other schemes that rely on
factoring related hardness assumptions. In this paper the protocol is used for
generating keys for our threshold Paillier encryption scheme. The starting point
for DKeyGen is the protocols of [4,30]. These protocols are designed to distribu-
tively generate an RSA composite N = pq with an unknown factorization. The
protocol by Boneh and Franklin [4] assumes honest majority, whereas the pro-
tocol by Gilboa [30] adopts ideas from [4] into the two-party setting; both are
secure in the semi-honest setting.

Recall that when coping with malicious adversaries it must be assured that
the parties follow the protocol specifications. In our context this means that the
parties’ shares must be of the appropriate length and that no party gains any
information about the factorization of N . This challenging task is typically ad-
dressed by adding commitments and zero-knowledge proofs to each step of the
protocol. Unfortunately, this is usually not very practical since the statements

Efficient RSA Key Generation and Threshold Paillier 317

that needed to be proven are complicated, and therefore leading to highly inef-
ficient protocols. Instead, we will be exploiting specific protocols for our tasks
(some new to this work), that are both efficient and fully secure. By proper anal-
ysis of where to use zero knowledge proofs, which proofs to use and moreover,
by a novel technique of utilizing two different encryption schemes with different
homomorphic properties, we achieve a highly efficient key generation protocol. It
should be noted that except for the setup step which is only executed once we can
avoid expensive zero knowledge proofs based on the cut and choose technique.
Additional optimizations can be found in Section 5.

For the sake of completeness we include a short description of [4] as adapted
by [30] for the two-party setting. These protocols consist of the following three
steps: 1) Each party Pi generates two random numbers pi and qi representing
shares of p and q, such that p =

∑
i pi, q =

∑
i qi and p ≡ q ≡ 3 (mod 4). We

note that [4] includes a distributed trial division of p and q for primes less than
a bound B, which greatly improves the efficiency of the protocol. Trial division
is not obtained by [30], making our solution the first two party protocol achiev-
ing the significant speedup from trial division. 2) After having created the two
candidates for being primes the parties execute a secure multiplication protocol
to compute N = (p0 + p1)(q0 + q1). In [4] this step is based on standard generic
solutions. Here we take a novel approach of utilizing both ElGamal and Paillier
encryption schemes, giving us active security at a very low cost. Generating the
RSA composite this way does not guarantee that the composite is made of uni-
formly random primes since the adversary can, in some limited way, influence
the distribution of the primes. This issue was observed in [4] and discussed fur-
ther below. 3) Finally, the candidate N for being an RSA composite is tested
by a distributed biprimality test, which requires p ≡ q ≡ 3 (mod 4). If the test
rejects N as being a proper RSA modulus, the protocol is restarted.

Typically, the definition for the key generation algorithm requires that the
RSA composite is a product of two randomly chosen equal length primes p and
q. However, due to the distributed biprimality test N must be a Blum integer
(N = pq, where p ≡ q ≡ 3 mod 4). This is a common requirement for distributed
(bi)primality tests and does not decrease the security, since about 1/4 of all RSA
modulus are Blum integers.

As observed by [4], the parties can slightly influence the distribution of each
prime, because p and q are generated by adding shares over the integers which
implies that they are not uniformly random. So each party has some (limited)
knowledge of the distribution based on its shares. We define the public key
generation algorithm, Gen′, capturing this deviation and generating N by the
same distribution as the protocol. This is obtained by Gen′ receiving additional
two inputs rp and rq, representing a potential adversary’s input shares. Gen

′ adds
rp and rq with randomly chosen shares and ensures that the sum is congruent to
3 mod 4. Formally, let Gen′(1n, rp, rq) denote a public key generation that takes
two additional inputs besides the security parameter 1n and works as follows:

318 C. Hazay et al.

1. If rp, rq ≥ 2n−2 output ⊥ and halt.

2. Otherwise, choose a uniform random sp ∈ {0, 1}n−2.

3. Calculate p = 4(rp + sp) + 3 and examine the outcome:

– if p is composite, then goto Step 2 and choose a new value for sp.

– if p is prime, then repeat the process to generate q.

4. Return N = pq, and generate the private key as in Gen.

As proved by Boneh and Franklin, using Gen′ instead of Gen does not give the
adversary the ability to factor N even if it can slightly influence its distribution.

Functionality FGEN

Key Generation: Upon receiving from party Pi message (Generate, 1n),
FGEN sends (RandInput) to the adversary and waits for the the
reply (GenInput, ra, rb) from the adversary . FGEN then invokes
(pk, sk)←Gen′(1n, ra, rb), records sk and sends pk to the adversary. If the
adversary replies allow, then FGEN sends pk to the parties, ignoring further
messages of this form. Otherwise, it sends ⊥ to the honest party.

Fig. 1. The RSA Modulus Generation Functionality

Protocol DKeyGen includes in addition to the previously mentioned three steps
a key-setup step used to generate keys for commitment and encryption schemes.
A shared key is generated for the distributed additively homomorphic ElGamal
encryption scheme and each party generates a key for standard non-distributive
Paillier encryption and integer commitments. We are using both ElGamal and
Paillier due to efficiency considerations, because most zero-knowledge proofs
used here can be implemented in an efficient manner when applied on ElGamal
(with a known group order), rather than on Paillier. Nevertheless, the plaintext
cannot be recovered efficiently and therefore we use Paillier in a non-distributive
fashion. In addition, the fact that a distributive ElGamal variant can be easily
obtained allows us to design a trial division test that is run on individual primes
and improves the numbers of trials. In order to cope with malicious adversaries,
our protocols employ zero-knowledge (ZK) proofs. Some of these are known,
others are new to this work and are interesting by themselves. We note that all
the proofs that participate in Protocol 1 require a strict constant overhead. In
Appendix A we specify these ZK proofs in detail.

Protocol 1. [DKeyGen] Distributed generation of RSA composite with active security:

– Inputs for parties P0, P1: 1
n and a threshold B for the trial division.

1. Key-Setup

(a) The parties run protocol πGEN for generating a public key pkEG = (g, h) and
secret key shares sk0

EG and sk1
EG for ElGamal.

Efficient RSA Key Generation and Threshold Paillier 319

(b) Each party Pi generates a Paillier key pair (pki
Pa, sk

i
Pa) with a modulus bit

length λ > 2n, and sends pki
Pa = N i

Pa to the other party. Each party proves
correctness of N i

Pa by πRSA (cf. Appendix A). The Paillier keys are used for
encryptions and commitments.

2. Generate Candidates

(a) Generate Shares of Candidate. Each party Pi picks a random (n − 2)-
bit value p̄i, encrypts it and sends c̄i = EncpkEG(p̄i) to the other party. The
parties prove knowledge of the plaintexts, via πENC, and prove that p̄i < 2n−2

via πBOUND.

In order to ensure that p0 ≡ 3 mod 4, the parties compute c0 ← (c̄0)
4 ·

EncpkEG (3). Similarly, the parties ensure that p1 ≡ 0 mod 4 by c1 ← (c̄1)
4.

(b) Trial division. For all primes α ≤ B, the parties run trial division on p =

p0 + p1. Each party Pi sends an encryption c
(α)
i = EncpkEG (pi mod α) to the

other party, and proves the correctness of the computation using πMOD.

The parties compute c(α) ← c
(α)
0 · c(α)

1 and c̃(α) ← c(α) · EncpkEG(−α). Clearly
α divides p if and only if p

(α)
0 + p

(α)
1 ∈ {0, α}, i.e. when either c(α) or c̃(α) is

an encryption of zero. This is checked by raising these to secret, non-zero ex-
ponents and decrypting. If no prime α < B divides the candidate it is accepted
by trial division.

(c) Repeat. Repeat Steps 2a- 2b until two candidates p and q survive trial division.

3. Compute Product (N = pq)

(a) Compute the product. P0 sends P1 encryptions of p̃0 = p0 and q̃0 = q0
under pk0

Pa and proves knowledge of plaintexts using πENC. (Note that a ma-
licious P0 may send encryptions of incorrect values). Next, P1 computes and
sends:

cÑ−p̃0 q̃0
← Encpk0

Pa
(p0)

q1 · Encpk0
Pa
(q0)

p1 · Encpk0
Pa
(p1q1)

= Encpk0
Pa
((p0 + p1)(q0 + q1)− p0q0)

Furthermore, P1 proves that cÑ−p̃0q̃0
has been computed as a known linear

combination based on Encpk0
Pa
(p̃0) and Encpk0

Pa
(q̃0) using πVERLIN. P0 decrypts,

thus obtaining the plaintext mÑ−p̃0 q̃0
; from this Ñ = mÑ−p̃0q̃0

+ p̃0q̃0 is com-
puted and sent to P1 along with an encryption cπ = Encpk0

Pa
(p̃0q̃0). Finally,

using πMULT and πZERO, P0 proves that cπ contains the product of the two
original ciphertexts and that Ñ is the plaintext of: cÑ−p̃0q̃0

cπ = Encpk0
Pa
((p̃0 +

p1)(q̃0 + q1)).

(b) Verify Multiplication. The parties use the homomorphic property of ElGa-
mal encryption to compute an encryption of N = (p0 + p1)(q0 + q1) from
the ciphertexts generated at Step 2a. The computation is analogous to that of
Step 3a, again using πMULT for proving correct multiplication of (pi · qi)
The parties use secure decryption of distributed ElGamal πDEC to obtain gN ,

and both verify that gÑ = gN , i.e. that N = Ñ and abort if gÑ �= gN .

4. Biprimality Test

Execute biprimality test (cf. Section 3.1) and accept N if the test has accepted,
otherwise the protocol is restarted from Step 2a.

Theorem 1. Assuming hardness of the DDH and DCR problems, Protocol 1
realizes FGEN in the presence of malicious adversaries.

320 C. Hazay et al.

Proof Overview. If both parties follow the protocol then a valid RSA modulus
N is generated with high probability. In the last iteration of the protocol two
elements are chosen randomly and independently of previous generated candi-
dates and are multiplied to produce N . By the correctness of the biprimality test
specified below, N is a product of two primes with overwhelming probability.

We assume the simulator S has knowledge of the distribution of the loops in
the protocol. S can simulate this by running the protocol “in its head”, emulating
the role of the honest party. Namely, denoting by Pi the corrupted party, then
upon extracting the adversary A’s shares pi, qi, S picks two shares p1−i, q1−i as
the honest party would do and checks whether NS = (pi + p1−i)(qi + q1−i) is a
valid RSA composite. If not, then this is not the final iteration of the protocol,
and S uses p1−i, q1−i to perfectly emulate the role of the honest P1−i. If this
is the final iteration, S asks the trusted party for FGEN to generate an RSA
composite with pi, qi being A’s input and completes the execution by emulating
the role of the honest party on arbitrary shares. The simulation is different for the
two corruption cases as the parties’ role is not symmetric. If P0 is corrupted, S
sends back in Step 3a the encryption of the composite returned from the trusted
party and makes the ElGamal decryption decrypt into this composite as well. If
P1 is corrupted S “decrypts” the Paillier ciphertext result into that composite
and then makes the ElGamal decryption return the same outcome. In Step 3a,
where the parties compute the product, it is insufficient to let P1 complete the
computation over the encrypted shares of P0 without verification of correctness.
The problem is that P1 may attempt to compute N in a different, potentially
failing way. Hence if it finds N , this may leak information. This issue might
not seem critical for practical considerations, however, it is for simulation based
security. This makes this corruption case a particular challenge, however, the
full proof show how an alternative computation in a successful execution implies
guessing the shares of the honest party before the RSA-modulus is revealed. The
complete proof, in the full version of this paper [31] is done by a series of games.

3.1 The Biprimality Test

The distributed biprimality test is based on a test by Boneh-Franklin [4] where
the parties agree on a random element γ ∈ Z∗

N with Jacobi symbol 1, and
raise γ to a power calculated from their shares. The test accepts a number
with more than two prime factors with probability at most 1/2. Therefore, the
parties repeat the test sufficiently many times in order to decrease the error. We
adopt this test for the malicious setting. The biprimality test by Damg̊ard and
Mikkelsen [18] has a better error estimate, however, it cannot be used directly in
the two-party setting with malicious adversaries. In the full version of this paper
we adapt their test into the two-party setting with semi-honest adversaries.

Protocol 2. [DPrim] A distributed biprimality test:

– Inputs: 1n, a statistical parameter 1� and a public key candidate N .
– The Protocol:

1. The parties jointly generate a random element γ ∈ Z
∗
N with Jacobi symbol

J (γ) = 1. By standard techniques this is made secure against active deviation.

Efficient RSA Key Generation and Threshold Paillier 321

2. The parties compute the encryption e0 = EncpkEG

(
N−(p0+q0)+1

4

)
using the

homomorphic property of ElGamal (P1 knows the encryptions of p0 and q0

from the earlier protocol). Furthermore, P0 sends γ0 = γ

(
N+1−(p0+q0)

4

)
mod N

and proves consistency between e0 and γ0 using πEQ.

3. P1 sends γ1 = γ

(−(p1+q1)
4

)
mod N to P0 and proves consistency using πEQ to

an encryption e1 of −(p1+q1)
4

, computed as above.
4. Finally, the parties reject N if and only if γ0 · γ1 mod N �= ±1. We further

note that the test by [4] includes an additional step were instead of using γ,
the parties randomly pick an element from the group (ZN [x]/(x2 + 1))∗/Z∗

N ;
we omit the details due to the similarity of the above test.

5. This test is repeated � times to achieve sufficiently small error.

Lemma 1. Assuming hardness of the DDH problem, Protocol 2 is a distributed
Monte Carlo algorithm such that on a statistical parameter 1� and a random γ,
it holds that: 1) Correctly formed RSA moduli N = pq, where p ≡ q ≡ 3 (mod 4)
are always accepted. 2) The average case probability of accept if either p or q is
a composite, is at most 2−�. 3) The protocol is simulatable without knowledge of
the factorization of N in the presence of malicious adversaries.

Correctness follows from [4]. Security follows as the simulator S is able to sim-
ulate by having knowledge of the adversary’s shares and thereby being able to
calculate γ0 or γ1. More specifically, observe that there are two possible outcomes
of DPrim. N being rejected is simulated by S choosing shares on behalf of the
honest player such that N is not a Blum integer and executing the real protocol.
In the case where N should be accepted it is a Blum integer. This implies enough
knowledge of Z∗

N for S to chose the simulated γ as a uniform random element
in Z∗

N with J (γ) = 1. A complete proof is found in the full version [31].

4 A Complete Threshold Paillier Cryptosystem

In the following section, we describe our threshold construction in the two-party
setting for the Paillier encryption scheme [37]. Our Threshold Paillier Scheme,
TPS, is comprised of the following subprotocols: (i) DKeyGen for distributed
generation of an RSA composite. (ii) Dsk for distributed generation of the cor-
responding secret-key shares. (iii) DDec for distributed decryption according to
Paillier’s specifications while maintaining the randomness of the ciphertext a
secret. These protocols rely on the following standard hardness assumptions:
(1) DDH due to employing the ElGamal scheme [22] and composite DDH due
to [17], and (2) DCR due to employing the Paillier scheme [37] and integer
commitments [19,20].

Our protocols form the first complete threshold scheme for Paillier in the
two-party setting with security in the presence of malicious adversaries under full
simulation based definitions, following the ideal/real model paradigm.We denote
by Π = (Gen′,Enc,Dec) the Paillier encryption scheme, with the modified key
generation algorithm Gen′ specified in Section 3, encryption algorithm Enc and
decryption algorithm Dec. The formal description of the threshold functionality,
FTHRES is found in Figure 2.

322 C. Hazay et al.

Theorem 2. Assuming hardness of the (composite) DDH and DCR problems,
the scheme TPS = (DKeyGen,Dsk,DDec) computes functionality FTHRES in the
presence of malicious adversaries.

The proof follows from the proofs for Lemma 1 and Theorems 1, 3 and 4.

Functionality FTHRES

Key Generation: Identical to Key Generation in FGEN.
Decryption: Upon receiving a (Decrypt, c,Both) message from party Pi, FTHRES

continues as follows:

1. If there exists a recorded secret key, then FTHRES forwards
(Decrypt, c,Both) to party P1−i.
(a) If P1−i replies with allow and Both = φ, FTHRES sends Decsk(c)

only to Pi. Otherwise, if Both �= φ, FTHRES sends Decsk(c) to both
parties.

(b) If P1−i replies with disallow, then FTHRES forwards disallow to Pi.
2. If there does not exist a recorded secret key, functionality FTHRES sends

disallow to Pi.

Fig. 2. The (Paillier) Threshold Functionality

4.1 A Distributed Decryption for Paillier

In this section we present a secure decryption protocol in the distributed set-
ting. At first glance it may seem that decryption according to Paillier should
follow the same outlines as decryption according to the RSA scheme, where the
decrypter raises the ciphertext to the power of the inverse of N modulo φ(N)
as e.g., in [8]. This is because for both schemes the public key is an RSA com-
posite N and the secret key is the factorization of N , and both schemes share
some similarities. Therefore, essentially one can apply for Paillier any distributed
decryption protocol used for RSA.

In some scenarios, however, this type of algorithm may be problematic. For
instance, when decrypting as in RSA (i.e., raising the ciphertext to the inverse
of N), the decrypter must extract first the randomness used for computing the
ciphertext in order to complete the decryption. As desirable as this property
may be, it is problematic in the context of simulation based secure computation
because the parties have to present the randomness of the ciphertext instead
of proving correctness using ZK proofs. This means that a potential simulator
cannot cheat in the decryption. Moreover, recall that Paillier’s scheme requires
extra computation in order to complete the decryption. This means that on top
of raising the ciphertext to the power of the secret value, the outcome must be
multiplied with the inverse of the secret key in order to extract the plaintext.
In the distributive setting this implies that the parties must keep two types of

Efficient RSA Key Generation and Threshold Paillier 323

shares. When coping with malicious behavior it is not immediately clear how to
efficiently verify the parties’ computations. Notably, the protocol of Damg̊ard
and Jurik [15] circumvents this technicality by having a trusted party picking a
secret d ≡ 1 mod N ≡ 0 mod φ(N).

Our protocol offers a distributive decryption for Paillier with simulation based
security against malicious adversaries without randomness extraction. It is com-
prised of the following two subprotocols: First, the parties produce multiplicative
shares of φ(N)−1 ∈ ZN . This protocol is executed only once. Next, the parties
run the distributed decryption algorithm using both the additive and multiplica-
tive shares of φ(N).

Computing Multiplicative Shares of the Secret Key. Note first that the
parties can, by local computations, calculate an additive sharing (skA0 ,sk

A
1) of the

private key using values calculated in DKeyGen (cf. Section 3). In the following,
they compute an additional set of multiplicative shares (skM0 ,skM1) for φ(N),
where multiplication is done in ZN . In order to do that, we use an additional
public key encryption scheme πDJ, due to Damg̊ard and Jurik [17], that operates
in Z∗

N2 , but has an ElGamal flavor. Specifically, a plaintext m ∈ ZN is encrypted
by (gr, (1 +N)m · hr mod N2) for public key: (N, g, h) such that g is a random
square in Z∗

N and h = gr for a random r. Note that given (1 + N)m, m can
be easily computed since discrete logarithm in the subgroup generated by (1 +
N) is easy. In the following we abuse notation and encrypt elements c ∈ Z∗

N2

by computing (gr, c · hr mod N2). Finally, we note that πDJ enjoys the same
advantages of the standard ElGamal scheme, e.g., generating the public key and
decrypting distributively.

Protocol 3. [Dsk] A distributed secret key generation:

– Inputs: A security parameter 1n, a public key N and secret shares: p0, q0 for P0

and p1, q1 for P1.

– The Protocol

1. The parties run a protocol πGEN for generating a public key pkDJ = (g, h), and
secret key shares for πDJ.

2. Party P0 sets skA
0 = N − p0− q0 +1, whereas party P1 sets skA

1 = −(p1 + q1).

3. Let N = pk, then P0 randomly picks δ ∈R Z
∗
N and encrypts δ to c = (ca, cb) =

(grc , (1 +N)δhrc), and sends c to P1 together with a proof of knowledge for δ
via πENC.

Moreover, P0 computes c′0 = (c
skA

0
a gr0 , c

skA
0

b hr0) and proves that this ciphertext
c′0 and γ4

0 are consistent using πEQ (where γ0 is as computed in the biprimality
test in Section 3.1). Finally, P0 records skM

0 = δ.

4. P1 verifies the proofs πENC and πEQ, and aborts if they are invalid. Otherwise,

P1 repeats the previous step similarly by computing c′1 = (c
skA

1
a gr1 , c

skA
1

b hr1)
sending it to P0 and proving consistency between c′1 and γ4

1 .

5. The parties run a distributed decryption to decrypt the multiplication c′0 ·c′1 for
P1. Let c̄ denote the result.

6. In case decryption is completed successfully, P1 records the value
skM

1 = ((c̄− 1)/N)−1 where the inverse is computed in ZN .

324 C. Hazay et al.

Correctness follows from the following:

(
c
skA

0
a · csk

A
1

b mod N2 − 1

N

)−1

=

(
(1 +N)(δ·φ(N)) − 1

N

)−1

= [δ · φ(N)]−1 mod N,

Where the last equality follows from the correctness of the decryption. This
implies that the parties multiplicatively share φ(N)−1 over ZN as required.

Theorem 3. Assuming hardness of the (composite) DDH and DCR problems,
Protocol 3 distributively generates multiplicative shares in the presence of mali-
cious adversaries.

The complete proof is found in the full version.

A Complete Protocol for Decryption. We assume that the parties are
holding additively shares, denoted by skA0 , sk

A
1 , as well as multiplicative shares

(modulo the newly generated public key N), denoted by skM0 , skM1 .

Protocol 4. [DDec] A distributed decryption:

– Joint Inputs: A security parameter 1n, a public key N and a ciphertext c to be
decrypted for P0.

– Private Inputs: A pair of additive shares skA
0 , sk

A
1 (as generated in Section 3.1),

and a pair of multiplicative shares skM
0 , sk

M
1 (as generated in Section 4.1) for P0

and P1, respectively.
– The Protocol:

1. Let pk = N , then P0 begins by randomly picking ω ∈R ZN and rω ∈R Z
∗
N ,

and sending P1, c′ = Encpk(ω; rω) together with a zero-knowledge proof of
knowledge for ω via πENC.

2. The parties run a similar protocol to Protocol 3, where they decrypt c · c′. At
the end of execution, P0 records m = (τ · skM

0)− ω mod N for τ the output of
P1 from the decryption protocol.

3. The parties repeat Step 2 as follows. P0 picks random elements a, b, r ∈ ZN

and computes c′′ = (c · c′)a · Enc(b, r). Namely, P0 computes the encryption of
a · �+ b, denoting a one-time MAC for �, where � = Decsk(c · c′).
P0 then proves its computations using a zero-knowledge proof, πEXP−RERAND.
The parties repeat Step 2 using c′′ instead of c · c′. Denote by τ ′ the outcome
of P0.

4. In case τ ′ �= a · τ + b, P0 aborts the execution. Otherwise, it outputs τ − ω.
5. In case both parties should learn the decryption of c, they repeat this protocol

with reversed rolls.

Theorem 4. Assuming hardness of the DCR problem, Protocol 4 distributively
decrypt according to Paillier, i.e, realizes Decryption in FTHRES, with security
in the presence of malicious adversaries.

Intuitively, the security proof follows so that when P0 is corrupted a simulator S
uses the plaintext received from the trusted party to compute the message sent
to P0. The case that P1 is corrupted simulation follows easily since P1 does not
learn anything. The complete proof is found in the full version.

Efficient RSA Key Generation and Threshold Paillier 325

5 The Efficiency of Our Protocols

This discussion is split into two parts: a theoretical analysis and a more prac-
tical analysis. We remark that all of our zero-knowledge proofs run in constant
rounds and require constant number of exponentiations – the only exception
is πEQ, employed in our key generation and threshold decryption protocol, for
which there is an amortized constant analysis due to Cramer and Damg̊ard [12].
Preliminary results of implementing a protocol for distributively generating an
RSA composite in the honest-but-curious setting can be found in [36].

On the Number of Failed Attempts. The complexity of our protocol
depends heavily on the number of attempts. Without trial division the pro-
tocol has to restart with two freshly generated prime candidates after ev-
ery rejected composite and the expected number of tests is given by the
probability of choosing two random primes. Using the Prime Number The-

orem, the expected number of executions: 512 bit primes:
(
ln(2512)/2

)2 ≈
31000, 1024 bit primes:

(
ln(21024)/2

)2 ≈ 126000. This can be dramatically im-
proved by employing the trial division test. Following the analysis of [4] it can
be shown that the probability a number is a prime, given that it passes the trial
division, is computed due to [6] and is,

Pr[p is prime | p passes trial division with threshold B] = 2.57· lnB
n

(
1 + o

(
1

n

))

which for lnB = 9 (i.e., B = 8103) and n = 512 is approximately 1/22, and
for n = 1024 is 1/44. This means that our protocol needs to test an expected
number of 484 candidates when n = 512, and 1936 candidates if n = 1024. Our
protocol is the first to incorporate trial division test securely in the two-party
setting, and the above analysis shows how important this is for the efficiency.

Theoretic Efficiency

Key Generation. Ignoring the initial key-setup, the complexity of a single RSA-
composite-generation attempt (except the biprimality test) is dominated by the
trial divisions; the rest requires constant work and communication. Each trial
division requires only constantly many invocations of sub-protocols, including
πMOD (and hence of πBOUND) and all these sub-protocols require only a constant
number of exponentiations. Thus, the total costs incurred by the entire protocol
are linear in the number of trial divisions. Further, all sub-protocols at every step
of the full protocol may be run in parallel, hence round complexity is constant.

Biprimality Test. The main part of the biprimality test consists of the verifi-
cation of the secure exponentiation of the random γ. Further, in the test the
parties reach a negligible error probability by repeating the test � times, it must
be run e.g. 40 times in order to achieve an error of 2−40. The most expensive part
of the test is the execution of πEQ as it is a cut and choose protocol, i.e. we need
O(�) exponentiations overall for each run, where � is some statistical security

326 C. Hazay et al.

parameter. However, as noted above this may be brought down to amortized
constant overhead using the techniques of Cramer and Damg̊ard [12]. Further,
as the � tests may be run in parallel, round complexity is constant as well.

Secret-Key Shares. The generation of the multiplicative key shares requires an
invocation of πEQ, hence complexity is not constant due to the use of cut and
choose. However, this is a one-time execution, hence the cost can be amortized
over an arbitrary number of subsequent decryptions.

Threshold Decryption. This protocol is dominated by the invocation of πEQ. In
a real-world scenario we expect to decrypt a large number of cipher texts. The
amortized cost of this can be improved to constant using [12].

Practical Considerations. To ease the security proof, we have so far taken
the approach of applying ZK-proofs at all stages in order to catch cheaters
immediately. However, a more optimistic approach allows for a more efficient
protocol: All but one of our RSA-composite-generation attempts fail, and most
of the ZK-proofs are only needed for the successful modulus generation – hence
they may be postponed. In addition to this, further optimizations for distributed
RSA key generation are possible. We refer to Boneh and Franklin [4] for a list
of general optimizations some of which are also applicable in our setting.

For the failing RSA-composite-generation attempts, we utilize the fact that
the encryptions provided can be viewed as binding commitments. On failure,
the parties reveal all random choices, thereby allowing the other party to verify
their correct behavior by checking the correctness of the other party’s messages.
Thus, overall efficiency of the many failing attempts will not be much more
costly than twice that of failing attempts for the passively secure protocol. Once
an attempt succeeds, ZK-proofs are used to ensure that this was correct. Slightly
more formally, the key idea is that the simulator must know that the adversary
is cheating (and that an honest party would detect this later, i.e. that the invo-
cation should fail). We cannot simply postpone all proofs; care must be taken
to allow simulation and to not reveal information that would allow a malicious
party to, e.g., fake some zero-knowledge proof at a later point.

Generating the prime candidate. We may omit the invocations of πBOUND on pi
and qi, as this statement is implicitly shown by the invocations of πMOD in the
trial divisions. Further, verification may be postponed until we believe we have
successfully generated an RSA-modulus; we cannot ensure correctness underway,
but the encryption will be the same, thus, we still accept or reject as if we had
run πBOUND immediately.

Trial division. We may postpone the invocations of πMOD at the cost of a few
extra executions of simple proofs of knowledge, such as πENC. This ensures that
the party knows its input, and that the simulator knows whether a later invo-
cation of πMOD may be successful. If a trial division fails incorrectly, the honest
party learns this when the corrupt party reveals its random choice, including
its share of the random prime. If a trial division succeeds incorrectly, this can

Efficient RSA Key Generation and Threshold Paillier 327

be discovered easily by performing local trial-division on N , we may even use a
larger bound for the trial division as this can be performed very efficiently on
the public N . The only remaining possibility is the case where the test should
succeed, and did so despite one party providing an incorrect input. This case
is handled by executing πMOD for each trial division once the biprimality test
succeeds, at which point the honest party will detect the incorrect behavior.

Computing and verifying the product. For the Paillier computation, we may
postpone all checks except the proof that Ñ was the plaintext of the encryption
supplied by P1. Privacy of P0 follows from the semantic security of Paillier
encryption, while privacy for P1 follows from the fact the encryption sent back
by P1 only contains the desired result. Leakage from constructing a potentially
incorrect value is eliminated by the eventual execution of the full ZK-proofs.
Alternatively, we may avoid verifying the product altogether. This may leak a
single bit of information, namely whether some function on the shares of the
honest party equals the still hidden modulus, N . Depending on the setting, this
leakage may or may not be acceptable.

Biprimality test. The invocation of πEQ can be postponed. If the test fails, the
parties simply reveal their shares of the candidates, and check for honest behav-
ior. On the other hand, if the test succeeds, the parties have either determined an
RSA composite or one of them has cheated. They now execute πEQ to determine
which of the two is the case. Since the simulator knows the shares of the corrupt
party, it is straightforward for it to check if the value supplied is the correct one.

References

1. Algesheimer, J., Camenisch, J., Shoup, V.: Efficient Computation Modulo a Shared
Secret with Application to the Generation of Shared Safe-Prime Products. In:
Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 417–432. Springer, Heidelberg
(2002)

2. Baudron, O., Fouque, P.A., Pointcheval, D., Poupard, G., Stern, J.: Practical multi-
candidate election system. In: PODC, pp. 274–283. ACM Press (2001)

3. Blackburn, S., Blake-Wilson, S., Burmester, M., Galbraith, S.: Shared generation
of shared RSA keys,
http://cacr.math.uwaterloo.ca/techreports/1998/corr98-19.ps

4. Boneh, D., Franklin, M.K.: Efficient generation of shared RSA keys. J. ACM 48(4),
702–722 (2001)

5. Boudot, F.: Efficient Proofs that a Committed Number Lies in an Interval. In:
Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer,
Heidelberg (2000)

6. De Bruijn, N.: On the number of uncanceled elements in the sieve of eratosthenes.
Proc. Neder. Akad. Wetensh. 53, 803–812; Reviewed in LeVeque Reviews in Num-
ber Theory 4(28), 221

7. Camenisch, J., Kiayias, A., Yung, M.: On the Portability of Generalized Schnorr
Proofs. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 425–442.
Springer, Heidelberg (2009)

http://cacr.math.uwaterloo.ca/techreports/1998/corr98-19.ps

328 C. Hazay et al.

8. Catalano, D., Gennaro, R., Howgrave-Graham, N., Nguyen, P.Q.: Paillier’s cryp-
tosystem revisited. In: ACM Conference on Computer and Communications Secu-
rity, pp. 206–214 (2001)

9. Chaum, D., Pedersen, T.P.: Wallet Databases with Observers. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

10. Cocks, C.: Split Generation of RSA Parameters with Multiple Participants. In:
Darnell, M.J. (ed.) IMACC 1997. LNCS, vol. 1355, pp. 200–212. Springer, Heidel-
berg (1997)

11. Coppersmith, D.: Small Exponents to Polynomial Equations, and Low Exponent
RSA Vulnerabilities. Journal of Cryptology 10, 233–260 (1997)

12. Cramer, R., Damg̊ard, I.: On the Amortized Complexity of Zero-Knowledge Pro-
tocols. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 177–191. Springer,
Heidelberg (2009)

13. Cramer, R., Damg̊ard, I.B., Nielsen, J.B.: Multiparty Computation from Threshold
Homomorphic Encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 280–299. Springer, Heidelberg (2001)

14. Cramer, R., Gennaro, R., Schoenmakers, B.: A Secure and Optimally Efficient
Multi-Authority Election Scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 103–118. Springer, Heidelberg (1997)

15. Damg̊ard, I., Jurik, M.: A Generalisation, a Simplification and some Applications
of Paillier’s Probabilistic Public-Key System. In: Kim, K. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 119–136. Springer, Heidelberg (2001)

16. Damg̊ard, I., Jurik, M.: Client/Server Tradeoffs for Online Elections. In: Naccache,
D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 125–140. Springer, Heidelberg
(2002)

17. Damg̊ard, I., Jurik, M.: A Length-Flexible Threshold Cryptosystem with Appli-
cations. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp.
350–364. Springer, Heidelberg (2003)

18. Damg̊ard, I., Mikkelsen, G.L.: Efficient, Robust and Constant-Round Distributed
RSA Key Generation. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp.
183–200. Springer, Heidelberg (2010)

19. Damg̊ard, I., Nielsen, J.B.: Perfect Hiding and Perfect Binding Universally Com-
posable Commitment Schemes with Constant Expansion Factor. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 581–596. Springer, Heidelberg (2002)

20. Damg̊ard, I., Nielsen, J.B.: Universally Composable Efficient Multiparty Compu-
tation from Threshold Homomorphic Encryption. In: Boneh, D. (ed.) CRYPTO
2003. LNCS, vol. 2729, pp. 247–264. Springer, Heidelberg (2003)

21. Desmedt, Y.G.: Threshold cryptography. European Transactions on Telecommu-
nications 5(4), 449–457 (1994)

22. El Gamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on
Discrete Logarithms. IEEE Trans. Info. Theory IT 31, 469–472 (1985)

23. Feige, U., Fiat, A., Shamir, A.: Zero-knowledge proofs of identity. J. Cryptol-
ogy 1(2), 77–94 (1988)

24. Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

25. Fouque, P.A., Poupard, G., Stern, J.: Sharing Decryption in the Context of Voting
or Lotteries. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 90–104. Springer,
Heidelberg (2001)

26. Frankel, Y., Mackenzie, P.D., Yung, M.: Robust efficient distributed RSA-key gen-
eration. In: STOC 1998, pp. 663–672. ACM Press (1998)

Efficient RSA Key Generation and Threshold Paillier 329

27. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust Threshold DSS Signa-
tures. Information and Computation 164(1), 54–84 (2001)

28. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure Distributed Key Gener-
ation for Discrete-Log Based Cryptosystems. Journal of Cryptology 20(1), 51–83
(2007)

29. Gennaro, R., Krawczyk, H., Rabin, T.: Robust and Efficient Sharing of RSA Func-
tions. Journal of Cryptology 13(2), 273–300 (2000)

30. Gilboa, N.: Two Party RSA Key Generation. In: Wiener, M. (ed.) CRYPTO 1999.
LNCS, vol. 1666, pp. 116–129. Springer, Heidelberg (1999)

31. Hazay, C., Mikkelsen, G.L., Rabin, T., Toft, T.: Efficient RSA key generation
and threshold Paillier in the two-party setting. Cryptology ePrint Archive, Report
2011/494 (2011)

32. Hazay, C., Toft, T.: Computationally Secure Pattern Matching in the Presence of
Malicious Adversaries. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp.
195–212. Springer, Heidelberg (2010)

33. Jarecki, S., Liu, X.: Efficient Oblivious Pseudorandom Function with Applications
to Adaptive OT and Secure Computation of Set Intersection. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (2009)

34. Jarecki, S., Shmatikov, V.: Efficient Two-Party Secure Computation on Commit-
ted Inputs. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 97–114.
Springer, Heidelberg (2007)

35. Lipmaa, H.: On Diophantine Complexity and Statistical Zero-Knowledge Argu-
ments. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 398–415.
Springer, Heidelberg (2003)

36. Nicolosi, A.A.: Efficient RSA Key Generation Protocol in a Two-Party Setting and
its Application into the Secure Multiparty Computation Environment – Master
Thesis. Department of Computer Science Aarhus University, Denmark (2011)

37. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, p. 223. Springer,
Heidelberg (1999)

38. Poupard, G., Stern, J.: Generation of Shared RSA Keys by Two Parties. In: Ohta,
K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 11–24. Springer, Hei-
delberg (1998)

39. Rabin, T.: A Simplified Approach to Threshold and Proactive RSA. In: Krawczyk,
H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 89–104. Springer, Heidelberg (1998)

40. Schnorr, C.P.: Efficient signature generation by smart cards. Journal of Cryptol-
ogy 4, 161–174 (1991)

41. Shoup, V.: Practical Threshold Signatures. In: Preneel, B. (ed.) EUROCRYPT
2000. LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000)

A Building Blocks: Zero-Knowledge Proofs

The Zero-Knowledge Proofs are formally defined and described in detail in the
full version.

Discrete Logarithms

1. Protocol πDL which demonstrates knowledge of a discrete logarithm [40].
RDL = {((G, g, h) , w) | h = gw} .

2. Protocol πDH which demonstrates that a quadruple (g0, g1, h0, h1) [9].
RDH = {((G, g0, g1, h0, h1)w) | hi = gwi for i ∈ {0, 1}} .

330 C. Hazay et al.

Public Key Cryptosystems (and Commitment Schemes)

1. Protocol πENC demonstrates knowledge of the plaintext of an encryption.
RENC = {((c, pk), (α, r)) | c = Encpk(α; r)} .
Protocols due to Schnorr [40] (ElGamal) and Cramer et al. [13] (Paillier).

2. Protocol πZERO demonstrates that a ciphertext c is an encryption of zero.
LZERO = {((c, pk), r) | c = Encpk(0; r)} .
For ElGamal this is merely πDH. For Paillier encryption this is a proof of
N ’th power shown by [15].

3. The zero-knowledge proof of knowledge πMULT proves that the plaintext of
c2 is the product of the two plaintexts encrypted by c0, c1.
RMULT = {((c0, c1, c2, pk) , (α, rα, r0)) | c1 = Encpk(α; rα) ∧ c2 = cα0 · Encpk(0; r0)} ;
This proof due to Damg̊ard and Jurik [15] (for both Paillier and ElGamal).
A similar proof of knowledge is possible when the contents of all three
commitments are known, [19,20]; this is required in πBOUND below.

4. Protocol πBOUND demonstrates boundedness of an encrypted value, i.e. that
the plaintext is smaller than some public threshold B. Formally,
LBOUND = {((c, pk,B), (α, r)) | c = Encpk(α; r) ∧ α < B ∈ N} .
The “classic” solution is to provide encryptions to the individual bits and
prove in zero-knowledge that they are bits using the compound proof of
Cramer et al. [14]. The actual encryption is then constructed from these. An
alternative is to take a detour around integer commitments; this allows a
solution requiring only O(1) exponentiations [5,35,16].

5. The proof πEQ is of correct exponentiation in the group G′ with encrypted
exponent (where the encryption scheme does not utilize the description of
G′). Formally,
REQ = {((c, pk,G′, h, h′), (α, r)) | α ∈ N ∧ c = Encpk(α; r) ∧ h, h′ ∈ G

′ ∧ h′ = hα} .
The protocol uses a simple cut and choose approach, and originates from [7].

New Zero-Knowledge Proofs

1. We include the folklore protocol πRSA for proving that N and φ(N) are co-
prime for some integer N , i.e. the protocols demonstrate membership of the
language,
LRSA = {(N, (factorization of N)) | N ∈ N ∧GCD(N,φ(N)) = 1} .

2. We also require a zero-knowledge proof, πMOD, for proving consistency
between two ciphertexts in the sense that one plaintext is the other one
reduced modulo a public, fixed value (prime). This is required for proving
correctness within the trial division stage included in the key generation
protocol (cf. Section 3). Formally,
LMOD = {((c, c′, p, pk), (α, r, r′)) | c = Encpk(α; r) ∧ c′ = Encpk(α mod p; r′)} .

3. For public Paillier key N , we require Σ-protocol πEXP−RERAND that allows a
prover to demonstrate that ciphertext c′ is in the image of φ : ZN × Z∗

N2 �→
Z∗
N2 , defined by φ(a, r) = ca · rN mod N2 for a fixed ciphertext c ∈ Z∗

N2 .
Namely,
LEXP−RERAND =

{
((N, c, c′) , (α, r)) | c′ = cα · rN

}
.

Efficient RSA Key Generation and Threshold Paillier 331

A Zero-Knowledge Proof for πVERLIN. In this section we give the details of
ZK proof πVERLIN used in Step 3a of Protocol 1. Let NP be a public Paillier key,
with g = NP + 1 generating the plaintext ring. πVERLIN is a Σ-protocol allowing
a prover P to demonstrate to a verifier V that a Paillier ciphertext, cx has been
computed based on two other ciphertexts c and c′ as well as a known value,

i.e. that P knows a preimage of cx with respect to φ(c,c′) (x, x
′, x′′, rx) = cx ·c′x

′
·

Enc (x′′, rx) . This is done by first picking a, a′, a′′ uniformly at random from ZNP

and ra uniformly at random from Z∗
NP

, and sending ca = φ(c,c′) (a, a
′, a′′, ra) to

the verifier, V . V then picks a uniformly random t-bit challenge e, and sends this
to P , who replies with the tuple (z, z′, z′′, rz) = (xe + a, x′e+ a′, x′′e+ a′′, rexra) .
V accepts if and only if φ(c,c′) (z, z

′, z′′, rz) = cex · ca.

Plaintext-Checkable Encryption

Sébastien Canard1, Georg Fuchsbauer2,
Aline Gouget3, and Fabien Laguillaumie4

1 Orange Labs, Applied Crypto Group, Caen, France
2 University of Bristol, Dept. Computer Science, UK

3 Gemalto, Security Lab, Meudon, France
4 UCBN and CNRS/ENSL/INRIA/UCBL LIP, Lyon, France

Abstract. We study the problem of searching on encrypted data, where
the search is performed using a plaintext message or a keyword, rather
than a message-specific trapdoor as done by state-of-the-art schemes.
The use cases include delegation of key-word search e.g. to a cloud data
storage provider or to an email server, using a plaintext message. We de-
fine a new cryptographic primitive called plaintext-checkable encryption
(PCE), which extends public-key encryption by the following functional-
ity: given a plaintext, a ciphertext and a public key, it is universally possi-
ble to check whether the ciphertext encrypts the plaintext under the key.
We provide efficient generic random-oracle constructions for PCE based
on any probabilistic or deterministic encryption scheme; we also give a
practical construction in the standard model. As another application we
show how PCE can be used to improve the efficiency in group signatures
with verifier-local revocation (VLR) and backward unlinkability. These
group signatures provide efficient revocation of group members, which is
a key issue in practical applications.

Keywords: Deterministic/probabilistic encryption, unlinkability, group
signature with VLR and backward unlinkability.

1 Introduction

The problem of searching on data that is encrypted has been studied intensively
and in many different scenarios. For instance, the problem of delegation of key-
word search on private databases to a data storage provider concerns users who
upload their data to a provider they do not fully trust. When the user wants
to delegate keyword search on his own encrypted data to the provider, he usu-
ally has to transmit a corresponding message-dependent trapdoor (or encrypted
keyword) which enables the provider to perform the search. When the databases
are public, the user wishes to delegate the search on public data to a cloud data
storage provider without revealing the plaintext content of the search. Another
setting is the delegation of search to an email gateway [9], where data collected
by the mail server is from third parties (contrary to the private-key setting as
above) and the database is not public.

Most of the constructions proposed in the literature are based either on
symmetric-key cryptography to encrypt the plaintext message or keyword, or

O. Dunkelman (Ed.): CT-RSA 2012, LNCS 7178, pp. 332–348, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Plaintext-Checkable Encryption 333

on searchable encryption without the ability to decrypt the message as done
in [22]. The security of the search process in the state of the art of public-key
encryption constructions has always been studied assuming that the search pro-
cess uses a secret trapdoor and not a plaintext message. In this work we focus
on this latter case, which is naturally related to public-key cryptography. This
case can in practice be very useful when the database contains relations between
different words (a name and a status for example) and it is these relations that
have to be kept secret rather than the words themselves. Thus, when searching
e.g. the number of persons having the status “important illness”, the keyword
“important illness” is not secret and can be directly used to perform the search.
Many functionalities extending the basic setting of public-key encryption have
been considered, in particular related to data search. For example, decryptable
searchable encryption [13] allows someone having a trapdoor corresponding to
a message, to test whether a given ciphertext encrypts this message. Another
example is encryption with equality test, proposed in [23]. Using the equality
test, one can check whether two ciphertexts encrypt the same plaintext.

In this paper we propose and study a new cryptographic primitive we call
plaintext-checkable encryption (PCE). A plaintext-checkable encryption scheme
is a probabilistic public-key encryption scheme with the additional functionality
that anyone can test whether a ciphertext c is the encryption of a given plain-
text message m under a public encryption key pk. Despite this functionality,
we demand that the ciphertext leak as little information as possible about the
plaintext. Of course, a PCE scheme cannot achieve the standard notion of in-
distinguishability under chosen-plaintext attack, as an adversary choosing two
messages and receiving the encryption of one of them can simply test which
message was encrypted. The same holds when the encryption algorithm is deter-
ministic: an adversary can just re-encrypt candidate messages and thus break
classical indistinguishability.

As was done in the case of deterministic encryption [3], we assume that the
plaintexts are drawn from a space of large min-entropy; indistinguishability
means thus the impossibility of distinguishing ciphertexts of messages drawn
from different high min-entropy spaces. We show however that we can achieve
a strictly stronger security notion than indistinguishability for deterministic en-
cryption [3,4]: an adversary is not able to distinguish two encryptions of the same
message from encryptions of different messages. This notion cannot be achieved
by deterministic encryption, since there is only one possible ciphertext per mes-
sage, and encryption with equality check cannot achieve it either. We say that an
encryption scheme satisfies unlinkability if no polynomial-time adversary can win
the following game: a challenger draws two messages from a high min-entropy
space of the adversary’s choice and gives the adversary either encryptions of
the two messages or two encryptions of one message, and the adversary has to
decide which is the case. We relate this notion to the different types of indistin-
guishability, showing e.g. that it is strictly stronger than the indistinguishability
notion for deterministic encryption, and we argue that our notion is sufficient
for our applications. We provide efficient generic constructions of PCE schemes

334 S. Canard et al.

satisfying unlinkability based either on probabilistic or deterministic encryption
with a security proof in the random-oracle model (ROM).1 We also build a prac-
tical construction based on ElGamal encryption, secure in the standard model.

Apart from its immediate applications to searching on encrypted data, PCE
lends itself naturally to improve the efficiency of group signatures with verifier-
local revocation (VLR). Group signatures allow members of a group to sign on
behalf of the group without revealing their individual identity. Group signatures
with VLR were introduced by Boneh and Shacham [10] and allow efficient revo-
cation of group members, which is a key issue in practical applications. In VLR
group signatures the revocation messages only have to be sent to signature veri-
fiers, as opposed to both signers and verifiers in previous schemes. We note that
unlinkability of ciphertexts is precisely the property required by the encryptions
contained in group signatures [8,11]. We show that PCE can be used to encrypt
a user-specific revocation token, like a certificate, which will be part of a group
signature. A group member can then be revoked by publishing the token, as
every verifier can apply the plaintext check to the encrypted token in order to
determine whether it corresponds to a revoked user. Since tokens will be drawn
from a high min-entropy space, two group signatures containing the same token
are unlinkable by the security of the PCE. Our VLR group signature scheme
achieves backward unlinkability and is proven secure in the standard model.

The paper is organized as follows. In Sect. 2 we formally define plaintext-
checkable encryption and we give security definitions and compare them to ex-
isting security notions for public-key encryption. In Sect. 3 we provide generic
constructions of PCE in the random-oracle model based on either deterministic
or probabilistic encryption, while Sect. 4 gives the description of our practi-
cal construction in the standard model. We finally show in Sect. 5 how PCE
can be used to design very practical group signatures with VLR. Due to space
limitations, proofs are omitted but are available in the full version.

2 Plaintext-Checkable Encryption

We define here the notion of plaintext-checkable encryption and its security.

2.1 Definition of Plaintext-Checkable Encryption

Let k ∈ N be a security parameter. A plaintext-checkable encryption scheme
(PCE for short) is composed of the following algorithms (of which the first 3
constitute a public-key encryption scheme).

– KeyGen is a probabilistic algorithm which takes as input 1k and outputs a
key pair (pk, sk) of public and secret key, respectively.

– Encrypt is a probabilistic algorithm which takes as inputs 1k, a public key
pk and a plaintext m ∈ {0, 1}∗ and outputs a ciphertext c.

1 It may be possible to design PCE schemes from any decryptable searchable encryp-
tion scheme by simply publishing trapdoors (one trapdoor per message or, in some
cases, the master trapdoor). However, our constructions are more efficient.

Plaintext-Checkable Encryption 335

– Decrypt is a deterministic algorithm which takes as inputs 1k, a ciphertext
c and a secret key sk and outputs either a plaintext m or ⊥.

– PCheck is a deterministic algorithm which takes as inputs 1k, a ciphertext c,
a public key pk and a putative message m. It outputs 1 if c is an encryption
of m, and 0 otherwise.

These algorithms must verify the following properties of correctness.

Correctness of decryption: ∀k ∈ N and m ∈ {0, 1}∗,
Pr
[
(pk, sk)

$←− KeyGen(1k), c
$←− Encrypt(1k, pk,m) : Decrypt(1k, sk, c) = m

]
= 1.

Correctness of plaintext check (perfect consistency): ∀k ∈ N and m ∈ {0, 1}∗,

Pr
[
(pk, sk)

$←− KeyGen(1k), c
$←− Encrypt(1k, pk,m) :

PCheck(1k, c, pk,m) = 1
]
= 1.

The property of perfect consistency is implied by the correctness of decryp-
tion and the two following properties, which guarantee that PCheck behaves
as expected. The following two notions state that if a ciphertext decrypts to a
plaintext then PCheck matches them (completeness) and if PCheck matches a
ciphertext to a plaintext then the former encrypts the latter (soundness).

Checking completeness : no adversary is able to output a ciphertext c which
decrypts to a message that is refused by PCheck on input c. Formally, for every
k ∈ N and every probabilistic polynomial-time (p.p.t.) algorithm A that, on
inputs 1k and a public key pk, outputs a ciphertext c, the following probability
should be negligible:

Pr
[
(pk, sk)

$←− KeyGen(1k), c
$←− A(1k, pk),

m
$←− Decrypt(1k, c, sk) : PCheck(1k, pk, c,m) = 0

]
.

Checking soundness : this property states that no adversary should be able to
produce a plaintext and ciphertext such that the decryption and the check pro-
cedures do not agree on the plaintext related to c. More formally, for every k ∈ N
and every p.p.t. algorithm A that, on inputs 1k and a public key pk, outputs a
ciphertext c and a plaintext m̃, the following probability should be negligible:

Pr
[
(pk, sk)

$←− KeyGen(1k), (c, m̃)
$←− A(1k, pk),

m
$←− Decrypt(1k, c, sk) : m = m̃ ∧ PCheck(1k, pk, c, m̃) = 1

]
.

2.2 A Taxonomy of Indistinguishability

The classical property of indistinguishability (for public-key encryption schemes)
cannot be achieved by a PCE due to the ability to check the plaintext messages

336 S. Canard et al.

Expind-cpa
Π,A (k)

b
$←− {0, 1}

(pk, sk)← G(1k)
(m0,m1, st)← Af (1

k, pk)
c← E(1k, pk,mb)
b′ ← Ag(1

k, c, st)
Return (b′ = b)

Expunlink
Π,A (k)

b
$←− {0, 1}

(pk, sk)← G(1k)
m0 ← Af (1

k, pk)
m1 ← Af (1

k, pk)
c0 ← E(1k, pk,mb)
c1 ← E(1k, pk,m1)
b′ ← Ag(1

k, pk, c0, c1)
Return (b′ = b)

Expind-det
Π,A (k)

b
$←− {0, 1}

m← Af (1
k, b)

(pk, sk)← G(1k)
c← E(1k, pk,m)
b′ ← Ag(1

k, pk, c)
Return (b′ = b)

Fig. 1. Security experiments for indistinguishability of Π

(see below). We discuss in this section the properties of indistinguishability for
encryption schemes.

In the following, we denote by Π = (G, E ,D) a secure encryption scheme.
Depending on the context, Π can be either probabilistic (denoted Πp) or de-
terministic (denoted Πd). We first remark that a PCE can also be represented
as an encryption scheme (G, E ,D) = (KeyGen,Encrypt,Decrypt), in the notation
from Sect. 2.1.

An adversary A is defined by a pair of algorithms denoted by A = (Af ,Ag),
representing the find and guess stage of the experiment, respectively. The ad-
versary A is said to be polynomial if each constituent algorithm has a running
time polynomial in its input length. It is assumed that Af and Ag share neither
coins nor state. We study three security experiments for the indistinguishability
properties of an encryption scheme Π ; the three security experiments, denoted
by Expind-cpa

Π,A (k), Expunlink
Π,A (k) and Expind-det

Π,A (k), are described in Fig. 1. We first
define two classes of adversaries.

Definition 1 (High min-entropy). An adversary A = (Af ,Ag) is legitimate
if there exists a function �(·) s.t. for all c and all m ∈ [Af (1

k, c)] we have
|m| = �(k) (where c can be a bit, as for ind-det adversaries, or a public key, as
for ind-cpa and unlink adversaries).

Moreover, we say that an adversary A = (Af , Ag) has min-entropy μ if

∀k ∈ N ∀c ∀m : Pr
[
m′ ← Af (1

k, b) : m′ = m
]
≤ 2−μ(k) .

A is said to have high min-entropy if it has min-entropy μ with μ(k) ∈ ω(log k).

The first experiment Expind-cpa
Π,A (k) represents the standard indistinguishability

property for probabilistic encryption schemes.

Definition 2 (IND-CPA). Let k ∈ N, let Π = (G, E ,D) be an encryption

scheme, let Expind-cpa
Π,A be as defined in Fig. 1 and denote Advind-cpaΠ,A (k) := 2 ·

Pr
[
Expind-cpa

Π,A (k)→ true
]
− 1. We say that Π satisfies indistinguishability under

a chosen-plaintext attack if for every legitimate p.p.t. adversary A = (Af ,Ag),

the advantage Advind-detΠ,A (k) is negligible.

Plaintext-Checkable Encryption 337

The experiment Expind-det
Π,A (k) is a simplified definition of the indistinguishability

property for deterministic encryption introduced in [4], which has been shown
to be equivalent to the original definition considered in [3]. We simplify the orig-
inal definition by considering adversaries that produce distributions of messages
rather than distributions of message vectors2.

Definition 3 (IND-DET [4]). Let k ∈ N, let Π = (G, E ,D) be an encryp-
tion scheme, and let Expin-det

Π,A be as defined in Fig. 1. Let Advind-detΠ,A (k) :=

2 ·Pr
[
Expind-det

Π,A (k)→ true
]
−1. We say Π satisfies ind-det if for every legitimate

p.p.t. adversary A = (Af ,Ag) with high min-entropy, Advind-detΠ,A (k) is negligible.

We define the third security experiment as the infeasibility of deciding whether
two ciphertexts encrypt the same message. The definition shares with ind-det
that the messages have to be chosen from a high min-entropy space: otherwise
the notion is not satisfiable by a plaintext-checkable scheme, since the adversary
could simply check all messages. As we will show all along this paper, this se-
curity definition is achievable by plaintext-checkable schemes and sufficient for
our applications.

Definition 4 (UNLINK). Let k ∈ N and AdvunlinkΠ,A (k) := 2·Pr
[
Expunlink

Π,A (k)→
true
]
− 1, for an encryption scheme Π = (G, E ,D) with Expunlink

Π,A as defined in
Fig. 1. We say Π has unlinkable encryptions (or “satisfies unlink”) if for every
legitimate p.p.t. adversary A with high min-entropy, AdvunlinkΠ,A (k) is negligible.

We now give a complete taxonomy of all these security notions and we prove
(see the full version) that the unlink notion falls strictly between ind-cpa of prob-
abilistic encryption, and ind-det of deterministic encryption. More precisely, we
show the following relation:

IND-CPA � UNLINK � IND-DET.

This means that every scheme that achieves ind-cpa is unlink and every scheme
that achieves unlink is ind-det. On the other hand, there are schemes that are
unlink but not ind-cpa, and others satisfying ind-det but not unlink.

It is obvious that a PCE scheme cannot be ind-cpa since the adversary could
forward m0 and m1 as st from Af to Ag, which could then apply PCheck to
the challenge c and for example m0, and win the experiment with overwhelming
probability. As a consequence, the somewhat best we can hope for in the case
of PCE is unlinkability. We will thus show that our schemes satisfy this new
security notion.

Deterministic encryption schemes [3], though trivially plaintext-checkable,
cannot satisfy the property unlink since every two encryptions of a message are
equal, which allows a trivial check of plaintext equality. One may attempt to con-
struct plaintext-checkable encryption from an encryption scheme with equality

2 The original definition considers vectors of messages since (unlike for ind-cpa-secure
encryption) there is no reduction to the single-message case by a hybrid argument
for deterministic encryption.

338 S. Canard et al.

test as described in [23] by simply encrypting the message and then perform-
ing the test of equality. However, this scheme does not satisfy unlink either for
obvious reasons. Moreover, as noticed by the authors, their Test function only
works properly when the ciphertexts are two real encryptions of messages, as
this procedure does not check the validity of the ciphertexts.

It thus remains open to give a construction (practical or generic) with the
above features, namely providing a PCheck procedure, while maintaining un-
linkability. We give such constructions in the two following sections.

3 Generic Constructions for PCE in the ROM

We show how to obtain secure PCE schemes using a secure probabilistic or de-
terministic encryption scheme with security proofs in the random-oracle model.

3.1 A PCE Based on a Probabilistic Encryption Scheme

In this construction a message m is encrypted by first choosing a random string
r and computing a hash value ρ of the message and r. This value ρ is then
used as the random coins of the probabilistic encryption algorithm to encrypt
m, and r is added to the ciphertext. The algorithm PCheck consists essentially
in re-computing ρ and then re-encrypting the message with random coins ρ and
comparing it to the candidate ciphertext. Our solution is described in Fig. 2.
The triple Πp = (Gp, Ep,Dp) denotes a probabilistic encryption scheme satisfying
indistinguishability under chosen-message attack, and H : {0, 1}∗ → {0, 1}�(k)
denotes a hash function modeled as a random oracle.

The following theorem states the security of the construction of Fig. 2, i.e.
that it satisfies unlinkability. Essentially, the unlinkability of this construction

Algorithm KeyGen(1k)

(pk, sk)
$←− Πp.Gp(1k)

pk ← pk
sk← sk
return (pk, sk)

Algorithm Encrypt(1k, pk,m)

pk ← pk

r
$←− {0, 1}�(k)

ρ←H(m‖r)
c← Πp.Ep(1k, pk,m; ρ)
C ← (c, r)
return C

Algorithm Decrypt(1k, sk, C)

(c, r)← C
sk← sk
m← Πp.Dp(1

k, sk, c)
return m

Algorithm PCheck(1k, pk, C,m)

(c, r)← C
pk ← pk
ρ←H(m‖r)
c̃← Πp.Ep(1k, pk,m; ρ)
if c̃ = c then return 1
else return 0

Fig. 2. Unlinkable PCE from an ind-cpa encryption scheme Πp

Plaintext-Checkable Encryption 339

follows from the indistinguishability of the underlying encryption scheme. How-
ever, quite some care needs to be taken to ensure that the simulation in the
reduction is perfect, as the adversary against unlinkability may make queries to
the random oracle that the simulator cannot answer.

Theorem 1. If Πp satisfies ind-cpa then the PCE from Fig. 2 satisfies unlink.

Proof (sketch, see full version for the full proof). We show that a successful
adversary A against unlink of our PCE scheme can be used to construct an
adversary B against ind-cpa of Πp. A natural construction of B is the following:
Bf runs Af twice and outputs the obtained messagesm0 and m1. The challenger
then gives Bg a Πp-encryption c of mb. Now Bg must use Ag to determine b.
Playing the unlinkability game, Ag expects two PCE ciphertexts; one of mb and
one of m1. While the latter can be computed honestly, Bg could construct the
former as (c, r0), for some random r0.

However, this implicitly defines H(mb, r0) to be the randomness B’s challenger
used in constructing c; B can thus not answer this random-oracle query and the
simulation might fail. In a series of lemmas, we show that under ind-cpa of Πp,
the probability of Ag (who does not know m0 and m1) querying m0 or m1 to H
is negligible. We first show that this holds if B’s challenger’s bit b = 0:

Suppose in game unlink when b = 0, Ag queries (m0‖r) (for some r) to the
random oracleH. Then we construct B′ that breaks ind-cpa. It uses Af to sample
m0 and m1, gets an encryption c of md from its challenger and then runs Ag on
(c, r0) (for some random r0) and a PCE encryption of an independent message
m′. Since Ag does not have any information on m1−d (which was sampled from a
high min-entropy space), querying e.g. m0 must mean d = 0. Thus if Ag makes
a query to H containing md, B′

g outputs d as its guess. Note that the issue
of correctly simulating the random oracle does not arise here, as B′

g aborts as
soon as Ag makes a critical query. Analogously, we show that when b = 0, the
probability that Ag queries (m1‖·) is negligible.

It remains to prove that when b = 1 then Ag queries (m1‖·) with negligible
probability. Again, assuming Ag makes such a query, we construct B′′ breaking
ind-cpa. As before, B′′ uses Af to samplem0 andm1 and receives c. Now B′′

g picks
a random bit d and sendsAg the following: (c, r0), for some random r0 and a PCE
encryption of md. If Ag queries (md‖·) then B′′

g outputs d. (Note that up to this
point, the simulation is perfect.) We show that B′′ wins the indistinguishability
game. If d equals B′′’s challenger’s bit then Ag gets two encryptions of the same
message; A is thus playing the unlink game with b = 1, for which we assumed
Ag queries the encrypted message to H with non-negligible probability, in which
case B′′ wins. On the other hand, if d is different from the challenger’s bit (in
which case B′′ loses) then A gets encryptions of two different messages and it
is thus playing unlink with b = 0. For this case however, the previous result for
b = 1 asserts that A will not query an encrypted message to the random oracle.

340 S. Canard et al.

Algorithm KeyGen(1k)

(pk, sk)
$←− Πd.Gd(1k)

pk ← pk
sk← sk
return (pk, sk)

Algorithm Encrypt(1k, pk,m)

pk ← pk

r
$←− {0, 1}�(k)

ρ←H1(m‖r)
c1 ← Πd.Ed(1k, pk, ρ)
c2 ← m⊕H2(ρ)
C ← (c1, c2, r)
return C

Algorithm Decrypt(1k, sk, C)

(c1, c2, r)← C
sk← sk
ρ← Πd.Dd(1

k, sk, c1)
m← c2 ⊕H2(ρ)
if ρ = H1(m||r) then return m

Algorithm PCheck(1k, pk, C,m)

(c1, c2, r)← C
pk ← pk
ρ←H1(m‖r)
c̃← Πd.Ed(1k, pk, ρ)
if c̃ = c1 then return 1
else return 0

Fig. 3. Unlinkable PCE from a deterministic encryption scheme Πd

3.2 A PCE Based on a Deterministic Encryption Scheme

Let Πd = (Gd, Ed,Dd) be a secure deterministic encryption scheme, meaning that
it satisfies the ind-det property as defined in [4] and recalled in Sect. 2.2. Let
H1 : {0, 1}∗ → {0, 1}�(k) and H2 : {0, 1}∗ → {0, 1}�(k) be two hash functions
modeled as random oracles.

The idea behind this construction is to encrypt with the deterministic encryp-
tion algorithm a hash value ρ of the message m together with a random element
r and then to compute a one-time pad of the message and the hash value of
ρ. We include r in the ciphertext, so knowing m and r, one can recompute the
(deterministic) ciphertext and thus perform the plaintext check.

Our random-oracle based construction is detailed in Fig. 3, and Corollary 1
states its security. As we will see, this theorem is a consequence of Theorem 1.

Corollary 1 (sketch, see full version for the full proof). The PCE con-
struction given in Fig. 3 is unlinkable under the assumption that Πd is one-way,
in the random-oracle model.

Proof (sketch, see full version for the full proof). This proof is a direct ap-
plication of Theorem 1 combined with the result from [5] which states that
the encryption scheme which consists in computing c1 ← Πd.E(1k, pk, r) and

c2 ← m⊕H2(r), where r
$←− {0, 1}�(k), is ind-cpa if the underlying deterministic

encryption scheme Πd is one-way. ��

4 Practical Constructions in the Standard Model

A construction of a secure plaintext-checkable encryption can be proved in the
standard model using the technique from [4] for deterministic encryption (see

Plaintext-Checkable Encryption 341

Fig. 3 of [4]): one replaces the random oracle by a pseudo-random genera-
tor [7,24,15] based on a family of trapdoor permutations. As for the previous
construction, the idea is to use a secure encryption scheme whose randomness
is generated using a secure pseudo-random generator with a seed depending on
the message and the random value used to check the plaintext. We here give
another practical construction based on the ElGamal encryption scheme [14],
which we will then use for our standard-model VLR group signature scheme
given in Sect. 5.

4.1 An ElGamal-Based Construction

Our construction lies in an asymmetric bilinear group (p,G1,G2,GT , e, g, h)
where p is a large prime, G1, G2 and GT are cyclic groups of order p and
e : G1 × G2 → GT is a non-degenerate bilinear map. The elements g and h de-
note generators of G1 and G2, respectively. In our scheme, the idea is to encrypt
a message m under a public key y using randomness r as c1 = myr, c2 = gr.
If we gave c3 = hr as well, then using the pairing we can perform plaintext
checks since e(c1m

−1, g) = e(y, c3). However, this construction does not achieve
unlinkability, since we can check whether 2 ciphertexts encrypt the same mes-
sage by checking whether their quotient encrypts 1. To avoid this, instead of
using h as a base for the check element c3, we use a random base ha. Since this
base is different for every ciphertext, no two ciphertexts can be combined. Our
construction is described in Fig. 4 and allows to encrypt messages m ∈ G1.

Algorithm KeyGen(1k)

x
$←− Z

∗
p

y ← gx

(pk, sk)← (y, x)
return (pk, sk)

Algorithm Encrypt(1k, pk,m)

y ← pk

r, a
$←− Z

∗
p

C ← (myr, gr, ha, har)
return C

Algorithm Decrypt(1k, sk, C)

x← sk
(c1, c2, c3, c4)← C
if e(g, c4) �= e(c2, c3) then return ⊥
m← c1/c

x
2

return m

Algorithm PCheck(1k, pk, C,m)

y ← pk
(c1, c2, c3, c4)← C
if e(g, c4) �= e(c2, c3) then return 0
if e(c1/m, c3) = e(y, c4) then return 1
else return 0

Fig. 4. Unlinkable PCE in the standard model

4.2 Security Arguments

To prove unlinkability of the construction in Fig. 4, we introduce a new assump-
tion (whose security in the generic-group model is proved in the full version),
which combines features of the Decision Linear Assumption (DLIN) and the as-
sumption that DDH holds in both base groups of an asymmetric bilinear group
(known as “SXDH”).

342 S. Canard et al.

Assumption 1 Given an asymmetric bilinear group (p,G1,G2,GT , e) with gen-
erators g ∈ G1 and h ∈ G2, and the tuple (gx, grx, gsx, ha, har, hb, hbr, V) for
random x, r, s, a, b ∈ Zp, it is hard to decide if V = gr+s or V is random in G1.

Let us first analyze the G1 part of our assumption: (gx, grx, gsx) and gr+s. DLIN
states that given (gx, gy, grx, gsy) it is hard to distinguish gr+s from random.
The G1 components of our assumption can thus be seen as a DLIN instance
with y = x (note that whereas DLIN also holds in symmetric groups, this is
not the case when y = x). It is also immediate that this “partial” assumption
is a DDH instance where s = 0, and thus implied by DDH. However, since—as
opposed to DDH—we have two random combined exponents r and s for the
challenge, this allows us to add values depending on them in G2, which cannot
be used to verify the structure of gr+s, since the bases ha and hb for r and s are
different.

The following theorem holds against adversaries A = (Af ,Ag) where Af

outputs the uniform distribution. This restriction is similar to the results by
Bellare et al. [3] for their practical construction of a deterministic encryption
scheme. In fact, in real life applications, the uniform distribution is most of time
enough and easily obtained. In particular, this notion also suffices when applying
the scheme to VLR group signatures.

Theorem 2. Under Assumption 1, the construction from Fig. 4 is a PCE scheme
which is unlink against adversaries outputting the uniform distribution.

5 Application to VLR Group Signature

In this section we use our new primitive as a building block for group signatures
with verifier-local revocation (VLR) [10]. This is a group signature scheme [2,8]
which allows an efficient revocation of group members.

Our aim in this section is twofold. First, we present plaintext-checkable en-
cryption as a new building block for group signatures with VLR; thus any im-
provement to PCE is likely to lead to more efficient group signatures with VLR.
Second, we design in the following, to the best of our knowledge, the most efficient
group signature scheme with VLR and backward unlinkability in the standard
model. We first recall the concept of group signatures with VLR, and eventually
describe our new construction.

5.1 Definitions for Group Signatures with VLR

Let k, n and T be integers. A group signature scheme with VLR (VLR-GS for
short) is composed of the following algorithms (following [19]).

– KeyGen takes as input a security parameter 1k, the number n of group mem-
bers and the number T of time periods. It produces the group public key gpk,
an n-element vector of user keys sk = (sk1, . . . , skn) and an (n× T)-element
vector of user revocation tokens grt = (grt[1][1], . . . , grt[n][T]).

Plaintext-Checkable Encryption 343

– Sign takes as input the group public key gpk, the current time interval j, a
secret key ski for i ∈ [[1, n]] of a group member and a message m ∈ {0, 1}∗,
and outputs a signature σ.

– Verify takes as input the group public key gpk, the current time period j, the
public key of the revocation authority rpk, a set of revocation tokens RLj,
and a purported signature σ on a message m. It returns either valid if the
signature σ is valid or invalid if σ is not a valid signature or if the user who
generated it has been revoked.

The security requirements are traceability and backward unlinkability (BU)
anonymity. The corresponding formal definitions can be found in [19]. We only
recall the BU-anonymity since adding the VLR functionality to a group signature
scheme only concerns this security notion, whereas traceability is inherited from
the original scheme. A VLR-GS with backward unlinkability is BU-anonymous
if no p.p.t. adversary A has non-negligible advantage in the following game.

1. The challenger C executes (gpk, sk,grt)
$←− KeyGen(1k, n, T) and the adver-

sary is given gpk.
2. For each period, C increments the counter j and during this period, A can

access the Sign(·, ·) oracle, which gives a group signature on a message m by
a user i during time period j, the Corrupt(·) oracle, which permits to corrupt
the user i and the Revoke(·) oracle, which revokes the member i.

3. At some period j∗ ∈ [1, T], A outputs (m∗, i0, i1) such that i0 and i1 are not
corrupted and have not been revoked during or before the time period j∗.
The challenger C flips a coin b and generates σ∗ $←− Sign(gpk, j∗, skib ,m

∗),
which is sent to A.

4. A can again access the above oracles. A is not allowed to corrupt i0 nor i1
but it may revoke them after time period j∗.

5. Eventually, A outputs a bit b∗ and wins if b = b∗.

The advantage of A in breaking this anonymity is defined as Advbu-a
VLR-GS,A(k) :=

|Pr[b = b∗]− 1
2 |.

5.2 Using PCE for Group Signatures with VLR

Starting with a Group Signature Scheme. For concreteness, we base our
instantiation on the group signature scheme by Fuchsbauer and Abe et al.
in [12,1], which is itself based on Groth’s scheme [16], which makes use of the
non-interactive zero-knowledge (NIZK) proofs from Groth and Sahai [17].

In a nutshell, each user creates a key pair for an automorphic signature
scheme3 [12,1]. The group public key is a signature verification key, whose cor-
responding signing key is used by the group manager to sign a user’s verification

3 A signature scheme defined over a bilinear group is automorphic if the verification
keys lie in the message space, and if the messages and the signatures consist of
group elements. The first property enables certification of keys, whereas the second
makes it possible to give efficient NIZK proofs of knowledge of valid signatures and
messages using Groth-Sahai proofs.

344 S. Canard et al.

key when he joins the group. To make a group signature, the user first signs the
message using his personal signing key; the group signature is then a Groth-Sahai
proof of knowledge of the following: the user’s verification key, a valid certificate
on it by the group manager, and a signature on the message that is valid under
his verification key. Since the registration protocol consists of only one round,
the scheme is concurrently secure. Moreover, since the group members create
their own signing keys, the scheme achieves non-frameability [6].

Adding the VLR Property. When adding verifier-local revocability, to achieve
backward unlinkability, we use the system due to Nakanishi and Funabiki [20].
This consists in defining time periods and constructing one key (called the revo-
cation token) per group member and time period. This token is to be used by
the group member when making a group signature. When a member is revoked,
all the revocation tokens related to the revoked group member and future time
periods are published. These public revocation tokens are then used by the ver-
ifier to check whether the received group signature has been produced with a
published value, and thus by a revoked group member.

Making Use of a PCE. The group signature cannot contain the revocation
token in the clear, as this would compromise the member’s anonymity. Our
approach is to include in the group signature a plaintext-checkable encryption of
the revocation token, together with a proof of well-formedness. When a revoked
group member’s token gets published, the verifier can use PCheck of the PCE
scheme to check whether the group signature comes from a revoked member
or not. For our concrete scheme, we use the standard-model PCE scheme from
Sect. 4.1, since it complies with the Groth-Sahai methodology.

5.3 Our Concrete Instantiation

We will use the group signature scheme on which we base our construction as
a black box and simply add one PCE encryption and a proof of consistency to
make it a VLR scheme. We require that the group signature is a Groth-Sahai
proof of knowledge in an asymmetric bilinear group (p,G1,G2,GT , e, g, h) and
that the user verification key contains a component hvi , where vi is the i-th
user’s signing key. (This is the case e.g. in the construction from [12,1]).

In the setup phase of scheme (when the common reference string for Groth-
Sahai proofs is created), we now also create a key pair (y = gx, x) ∈ G1 × Zp

for our PCE scheme from Sect. 4.1 and add y to the public parameters. As
in [20,19], we introduce a vector (P1, . . . , PT) of G1 elements, where T is the
maximum number of time periods. The revocation token for user i (holding
secret key vi) for time interval j is defined as P vi

j .
When creating a group signature, the user must additionally encrypt his token

for the current time interval and prove that it is well-formed. The token is of
the form P v, so we need to prove that v is the same as in the user verification
key element w := hv (of which the group signature will prove knowledge). The
PCE encryption of the token is C = (C1, C2, C3, C4) = (P vyr, gr, ha, har). To

Plaintext-Checkable Encryption 345

prove well-formedness, we introduce an auxiliary variable z := hr, of which
we also prove knowledge in the group signature. Groth-Sahai proofs allow us to
prove knowledge of group elements that satisfy pairing-product equations (PPE).
Let v be such that P v is the plaintext of C. Then the following PPEs assert
that w = hv (the group elements of which we prove knowledge are underlined):
e(C1, h) = e(P,w) e(y, z) and e(C2, h) = e(g, z).

In addition to C, we include in the group signature a Groth-Sahai NIZK
proof that the above equations are satisfied. Our new verification procedure now
additionally checks this new proof component, and runs PCheck on C and the
elements of the revocation list to check if the user has been revoked.

We note that our techniques also work if the verification key contains gv rather
than hv: we can introduce a second encrypted auxiliary variable z′ := hv and
add a proof of e(gv, h) = e(g, z′). We have thus shown that adding to a Groth-
Sahai based group signature scheme (with user verification keys containing a
generator to the power of the signing key) a plaintext-checkable encryption of a
token, gives a group signature scheme with VLR and backward unlinkability.

5.4 Backward-Unlinkable Anonymity

We outline the proof that our scheme satisfies backward-unlinkable anonymity.
The proof proceeds by a series of games. The first game is the experiment defined
in Sect. 5.1. In the second game, instead of running KeyGen, we compute the com-
mon reference string for Groth-Sahai proofs in a way that will lead to perfectly
hiding proofs of knowledge, which can be simulated. By the zero-knowledge prop-
erty of Groth-Sahai proofs, the first two games are indistinguishable. In Game
3, the challenger picks 2 random users, hoping they will be the challenge users
i0 and i1 output by the adversary in Step 3 of the game. If the challenger did
not guess these users correctly, it aborts the game. This introduces a polynomial
loss in the security reduction.

In Game 4 the challenger simulates the NIZK proofs in the following signatures
it gives to the adversary: all signatures in signing queries for users i0 and i1
queried up to the challenge time period j∗; and the challenge signature σ∗. It
follows from the zero-knowledge property of Groth-Sahai proofs that Game 4 is
indistinguishable from Game 3.

We can now play with the plaintext-checkable encryptions C of tokens which
are given to the adversary as part of the simulated group signature (either in
a signing query for users i0 and i1 in time j < j∗ or the challenge signature).
Since the proof of consistency of these C’s is simulated, we can change the actual
values, which we will do in the following. Next, when computing the values Pj

during setup, the challenger sets them as Pj := gdj and stores dj . We now define a
series of games, in which, one by one, we replace tokens P

vi0
1 , . . . , P

vi0
j∗ and tokens

P
vi1
1 , . . . , P

vi1
j∗ by random values. This is reduced to the DDH assumption, which

implies that given values gd and gv, we can replace gdv by a random value. Note
that given a DDH challenge, the challenger can use the logarithms dj to compute
the values P vi

j it is not changing in that step.

346 S. Canard et al.

After this series of games, the only dependency of the challenge signature
on the bit b occurs when the adversary asks for a signature of user ib in time
interval j∗. Since the tokens are chosen uniformly at random, we can replace the
encryption of the token in the challenge signature by a random value. This is
implied by unlinkability of our PCE scheme (which states that two encryptions
of the same value are indistinguishable from two encryptions of two different
(random) values). After this final step the challenge signature is independent of
b and the adversary’s winning probability is thus exactly 1

2 .

5.5 Comparison with Related Work

Regarding related work on group signature schemes with VLR, there are typ-
ically 3 criteria to compare such schemes: random-oracle or standard model,
anonymity revocation or not and backward unlinkability or not. Table 1 com-
pares all existing solutions, to the best of our knowledge.

Table 1. Related work on group signatures with VLR

Papers Standard Anonymity Backward
model revocation unlinkability

[10] No No No

[20,21,25] No Yes Yes

[19] Yes (Yes) Yes

Ours Yes (Yes)4 Yes

Achieving CCA Security. An additional property not considered in the above
table is CCA-anonymity, meaning the scheme remains anonymous even if the
adversary has an oracle to open signatures of its choice, as considered e.g. in
the model by Bellare et al. [6]. This notion is achieved by variants of the group
signature schemes on which we base our VLR scheme, using one-time signatures
and a weakly CCA tag-based encryption scheme, as proposed by Groth in [16].

The tag-based encryption scheme used is Kiltz’s construction [18] is secure
under the DLIN assumption [8] and is defined over symmetric bilinear groups.
As DDH is easy in such groups, our PCE scheme would not be secure and can
thus not be added to these schemes. We believe however that starting from linear
encryption [8] rather than ElGamal, and adding elements enabling plaintext
checkability, one could define a PCE scheme over symmetric bilinear groups.

Efficiency Considerations. We can now compare the efficiency of standard
model group signatures with VLR and backward unlinkability, which amounts
to comparing us with the scheme by Libert and Vergnaud [19]. On one hand,
regarding [19], a group signature is composed of 46 elements in G and 1 element
in GT . The time complexity of a group-signature creation necessitates 2 mod-
ular exponentiations in G, 6 commitment generations, 2 quadratic GS proofs
and 4 linear GS proofs. The revocation checking requires the computation of

4 Not explicitly detailed but can be easily added by giving the trapdoor for the CRS
of Groth-Sahai proofs to the opener.

Plaintext-Checkable Encryption 347

one pairing per element in RLj. On the other hand, our signatures are com-
posed of 12 elements in G1, 18 elements in G2 and no element in GT . The signer
must perform 6 modular exponentiations, 1 quadratic GS proofs and 5 linear
GS proofs. The revocation checking requires the computation of 2 pairings per
element in RLj. Considering moreover that in asymmetric groups, representa-
tions of group elements are shorter and computation of pairings are much more
efficient, our scheme is more efficient in terms of signature computation and size
but necessitates slightly more work during the revocation check.

6 Conclusion

We proposed a new promising public-key encryption scheme with a special fea-
ture: this primitive allows anyone to verify whether a given ciphertext (together
with the public key used to encrypt) actually encrypts any potential message.
However, if the messages come from a space with enough entropy, one cannot
decide whether two ciphertexts encrypt the same message. Plaintext-checkable
encryption with unlinkable ciphertexts is perfectly adapted to design group sig-
natures with verifier-local revocation and backward unlinkability. The efficiency
of the constructions also enables its use in a context of cloud storage services.

Acknowledgements. This work has been supported by the French Agence
Nationale de la Recherche under the PACE 07 TCOM Project, the European
Commission under Contract ICT-2007-216676 ECRYPT II and EPSRC Grant
EP/H043454/1. We are grateful to Jacques Traoré for his suggestions of im-
provement, and to the anonymous referees for their valuable comments.

References

1. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
Preserving Signatures and Commitments to Group Elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)

2. Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A Practical and Provably Secure
Coalition-Resistant Group Signature Scheme. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)

3. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and Efficiently Searchable
Encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007)

4. Bellare, M., Fischlin, M., O’Neill, A., Ristenpart, T.: Deterministic Encryption:
Definitional Equivalences and Constructions without Random Oracles. In: Wagner,
D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 360–378. Springer, Heidelberg (2008)

5. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for design-
ing efficient protocols. In: ACM Conference on Computer and Communications
Security, pp. 62–73 (1993)

6. Bellare, M., Shi, H., Zhang, C.: Foundations of Group Signatures: The Case of
Dynamic Groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–
153. Springer, Heidelberg (2005)

7. Blum, M., Micali, S.: How to generate cryptographically strong sequences of
pseudo-random bits. SIAM J. Comput. 13(4), 850–864 (1984)

348 S. Canard et al.

8. Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

9. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public Key Encryption
with Keyword Search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

10. Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: ACM
Conference on Computer and Communications Security, pp. 168–177. ACM (2004)

11. Camenisch, J., Groth, J.: Group Signatures: Better Efficiency and New Theoretical
Aspects. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 120–133.
Springer, Heidelberg (2005)

12. Fuchsbauer, G.: Automorphic signatures in bilinear groups and an application
to round-optimal blind signatures. Cryptology ePrint Archive, Report 2009/320
(2009), http://eprint.iacr.org/

13. Fuhr, T., Paillier, P.: Decryptable Searchable Encryption. In: Susilo, W., Liu, J.K.,
Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784, pp. 228–236. Springer, Heidelberg
(2007)

14. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)

15. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In:
Proc. of STOC 1989, pp. 25–32. ACM (1989)

16. Groth, J.: Fully Anonymous Group Signatures without Random Oracles. In: Kuro-
sawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer, Hei-
delberg (2007)

17. Groth, J., Sahai, A.: Efficient Non-Interactive Proof Systems for Bilinear Groups.
In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

18. Kiltz, E.: Chosen-Ciphertext Security from Tag-Based Encryption. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg
(2006)

19. Libert, B., Vergnaud, D.: Group Signatures with Verifier-Local Revocation and
Backward Unlinkability in the Standard Model. In: Garay, J.A., Miyaji, A., Otsuka,
A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 498–517. Springer, Heidelberg (2009)

20. Nakanishi, T., Funabiki, N.: Verifier-Local Revocation Group Signature Schemes
with Backward Unlinkability from Bilinear Maps. In: Roy, B. (ed.) ASIACRYPT
2005. LNCS, vol. 3788, pp. 533–548. Springer, Heidelberg (2005)

21. Nakanishi, T., Funabiki, N.: A Short Verifier-Local Revocation Group Signature
Scheme with Backward Unlinkability. In: Yoshiura, H., Sakurai, K., Rannenberg,
K., Murayama, Y., Kawamura, S.-i. (eds.) IWSEC 2006. LNCS, vol. 4266, pp.
17–32. Springer, Heidelberg (2006)

22. Ostrovsky, R., Skeith III, W.E.: Private searching on streaming data. J. Cryptol-
ogy 20(4), 397–430 (2007)

23. Yang, G., Tan, C.H., Huang, Q., Wong, D.S.: Probabilistic Public Key Encryption
with Equality Test. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp.
119–131. Springer, Heidelberg (2010)

24. Yao, A.C.-C.: Theory and applications of trapdoor functions (extended abstract).
In: Proc. of FOCS 1982, pp. 80–91. IEEE (1982)

25. Zhou, S., Lin, D.: Shorter Verifier-Local Revocation Group Signatures from Bilinear
Maps. In: Pointcheval, D., Mu, Y., Chen, K. (eds.) CANS 2006. LNCS, vol. 4301,
pp. 126–143. Springer, Heidelberg (2006)

http://eprint.iacr.org/

Generic Construction of Chosen Ciphertext

Secure Proxy Re-Encryption

Goichiro Hanaoka1, Yutaka Kawai2, Noboru Kunihiro2, Takahiro Matsuda1,
Jian Weng3, Rui Zhang4, and Yunlei Zhao5

1 National Institute of Advance Industrial Science and Technology (AIST)
{hanaoka-goichiro,t-matsuda}@aist.go.jp

2 The University of Tokyo
kawai@it.k.u-tokyo.ac.jp, kunihiro@k.u-tokyo.ac.jp

3 Department of Computer Science, Jinan University
cryptjweng@gmail.com

4 SKLOIS, Institute of Software, Chinese Academy of Sciences
r-zhang@is.iscas.ac.cn

5 Software School, Fudan University
ylzhao@fudan.edu.cn

Abstract. In this paper, we present the first generic construction of
a chosen-ciphertext (CCA) secure uni-directional proxy re-encryption
(PRE) scheme. In particular, full CCA security (i.e., not relaxed CCA
security such as replayable CCA security) of our proposed scheme is
proven even against powerful adversaries that are given a more advanta-
geous attack environment than in all previous works, and furthermore,
random oracles are not required. To achieve such strong security, we es-
tablish a totally novel methodology for designing PRE based on a specific
class of threshold encryption. Via our generic construction, we present
the first construction that is CCA secure in the standard model.

1 Introduction

Proxy re-encryption (PRE) is an interesting extension to traditional public key
encryption (PKE). In addition to the normal operations of PKE, with a ded-
icated re-encryption key (generated by receiver A), a proxy can turn a class
of ciphertexts destined for user A into those for user B. A remarkable prop-
erty of PRE is that the proxy carrying out the transform is totally ignorant
of the plaintext. PRE was first formalized by Blaze et al. [5] and has received
much attention in recent years. There are many models as well as implemen-
tations; refer to [5,3,9,13,17,10,18,19] for some examples. However, as pointed
out in [21], the design of a chosen-ciphertext (CCA) secure uni-directional PRE
scheme without random oracles remains unsolved. In this paper, we present the
first uni-directional PRE scheme with CCA security in the standard model, in
the sense of [13], thus solving the above open problem. Moreover, our scheme
achieves the strongest security to date.

At first glance, it appears to be easy to extend the replayable-CCA (RCCA)
secure scheme to full CCA security in the same model [13], but this turns out to

O. Dunkelman (Ed.): CT-RSA 2012, LNCS 7178, pp. 349–364, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

350 G. Hanaoka et al.

be an extremely challenging problem. The reason is that in a PRE system, proxy
re-encryption uses a re-encryption key to transform a ciphertext for Receiver A
to one for another receiver B (and at this point, there is already some sort of mal-
leability within). However, CCA security explicitly requires that no meaningful
modifications can be made to any ciphertext, and therefore it is quite difficult
to achieve both requirements simultaneously. We note that in the RCCA model,
a challenger ignores all decryption queries decrypted to the challenge plaintext
pair; in other words, RCCA security permits malleability of the challenge plain-
text. As a result, it is quite difficult to upgrade RCCA secure PRE schemes to
CCA secure ones.

Main Difficulty. We identify two problems in a CCA secure construction of
PRE. The first stems from the contradictive requirements of the re-encryption
functionality of PRE and the tamper-proof property by CCA security. Usually,
good mathematical structures are demanded when efficiently transforming a
ciphertext for receiver A into another for receiver B. Consider a discrete-log
type PRE scheme, say the ElGamal-based scheme put forth by Blaze et al. [5].
It is easily seen that the scheme is not CCA secure, because a ciphertext c with
plaintext m can be modified to another ciphertext c′ with plaintext m. Querying
the decryption oracle with c′ enables the adversary to recover m.

The second difficulty comes from the fact that the proxy has no idea of the
decryption key, and it may not be able to determine whether a ciphertext is valid.
However, a simulator, which has to answer all re-encryption queries correctly,
may leak useful information to the adversary, thereby eventually causing the
simulation to fail.

Our Contributions. First, we give a CCA security definition for PRE, which
naturally extends the RCCA one given in [13]. While our definition is the
strongest to date, it is indeed quite natural, because we give an adversary all the
possible resources, except those that allow it to trivially win the game.

Second, we propose a new methodology for building secure PRE schemes
in our CCA-security model. There are three ingredients in our generic construc-
tion: resplittable TPKE, PKE, and digital signature. Though resplittable TPKE
sounds like a new primitive, we show that it is not a luxury one at all: many
known TPKE schemes already satisfy the requirements.

To summarize, our approach is based on the following. We observe that a
primitive TPKE [11,20,8,6], faces similar problems to those mentioned above.
In a TPKE scheme, the decryption power is split among n decryption servers.
Each decryption server holds only a part of the secret key and upon receipt
of a ciphertext carries out partial decryption and outputs a plaintext share.
Combining any set containing at least t different shares (t is called the threshold),
one can recover the plaintext; fewer than t shares does not provide sufficient
information to reconstruct it. To achieve threshold decryption, a TPKE scheme
usually has good mathematical structures; in fact, well-known TPKE schemes
based on the discrete-log problem [20,8,6] all utilize such good mathematical
structures. Secondly, since each decryption server does not hold the decryption

Generic Construction of Chosen Ciphertext Secure Proxy Re-Encryption 351

key, it may not be able to distinguish valid/invalid ciphertexts. Nevertheless, it
still has to answer partial decryption queries in the CCA sense.

Owing to their possible connections with respect to the above, we then con-
sidered that some of the design strategies of CCA-secure TPKE could be useful
in constructing CCA-secure PRE.

Related Works. Mambo and Okamoto introduced the concept of proxy de-
cryption [14]. Later, Ivan and Dodis [12] proposed a generic construction of
proxy cryptography based on sequential multiple encryption. Neither of these
works considered the re-encryption functionality.

Blaze, Bleumer and Strauss formulated the concept of PRE cryptosystems [5]
and proposed the first bidirectional PRE scheme based on ElGamal. Subse-
quently, Ateniese et al. [3], Canetti and Hohenberger [9], Libert and Vergnaud [13],
Chow et al. [10], and Shao et al. [18,19] proposed different PRE schemes with
various properties.

Shao and Cao [17] proposed a PRE scheme without pairings. Later, however,
Zhang et al. pointed out that it is not secure in the Libert-Vergnaud security
model [22]; that is, it does not provide master key security. Subsequently, Mat-
suda et al. proposed a PRE scheme without pairings [15], but recently Weng,
Zhao and Hanaoka [21] pointed out that their scheme is not chosen-ciphertext se-
cure. Thus prior to this work, the construction of CCA secure PRE has remained
unsolved.

2 Preliminaries

2.1 Public Key Encryption

Syntax. A public key encryption scheme (PKE) consists of three algorithms
(PKG, PEnc, PDec).

PKG takes a security parameter Λ as input, and outputs a decryption key dk and
a public key pk, denoted as (dk, pk)← PKG(Λ).

PEnc takes a public key pk and a plaintext m in a plaintext space defined by pk
as input, and outputs a ciphertext ψ, denoted as ψ ← PEnc(pk,m).

PDec takes a decryption key dk and a ciphertext ψ as input, and outputs a
decryption resultm (or a special symbol⊥meaning the ciphertext is invalid),
denoted as m← PDec(dk, ψ).

We require the standard correctness for a PKE scheme, namely, for any (dk, pk)
← PKG(Λ) and any plaintext m, we have m = PDec(dk, PEnc(pk,m)).

Chosen Ciphertext Security in the Multi-User Setting [4]. The widely
accepted security definition of PKE is indistinguishability against
chosen ciphertext attack (IND-CCA). We will use its multi-user version [4] which
is polynomially equivalent to the ordinary IND-CCA security. The multi-user
IND-CCA security is defined by the following game between a challenger and an
adversary A. First, the challenger picks the challenge bit b ∈ {0, 1}, computes

352 G. Hanaoka et al.

(dki, pki)← PKG(Λ) for i ∈ {1, . . . , n}, and gives {pki}ni=1 to A. A can adaptively
make decryption and LR queries. For a LR query (i,m0,m1) where i is an index
and (m0,m1) is a message pair, the challenger computes c← PEnc(pki,mb), and
then returns c to A. For a decryption query (i, c) where i is an index and c is a ci-
phertext, the challenger computes m← PDec(dki, c), and returns m to A, except
that if A has previously asked a LR query (i,m0,m1) and c was its answer, then
the challenger returns ⊥ to A. Finally, A outputs a guess bit b′ for b. A wins the
game if b = b′. We say a PKE scheme is IND-CCA secure, if any probabilistic
polynomial adversary A’s advantage AdvCCA−PKE

(A,n) (Λ) = |Pr[b = b′] − 1
2 | in the

above game is negligible. When n = 1, this security is the ordinary IND-CCA
security [16]. In this case, we describe the advantage as AdvCCA−PKE

A (Λ), simply.

2.2 Strongly Unforgeable Signature

Syntax. A digital signature scheme consists of three algorithms (SKG, Sign, SVer).

SKG takes a security parameter Λ as input, and outputs a signing key sk and a
verification key vk, denoted as (sk, vk)← SKG(Λ).

Sign takes a signing key sk and a message m as input, and outputs a signature
σ, denoted as σ ← Sign(sk,m).

SVer takes a verification key vk, a message m, and a signature σ as input, and
outputs valid (meaning that the signature σ is a valid signature on m under
vk) or invalid.

We require the standard correctness for a signature scheme, namely, for any
(sk, vk)← SKG(Λ) and any messagem, we have valid = SVer(vk,m, Sign(sk,m)).

Strong Unforseability [1]. The widely accepted security definition of digital
signature is strong unforgeability, which is defined by the following game between
a challenger and an adversary A. In the strong unforgeability game, A is given
vk where (sk, vk)← SKG(Λ), and can make signing queries. For the i-th signing
query on a message mi, the challenger computes σi ← Sign(sk,mi), returns
σi to A, and stores (mi, σi). Finally, A outputs a forgery (m∗, σ∗). A wins the
game if valid ← SVer(vk,m∗, σ∗) and (m∗, σ∗) = (mi, σi) for any i. We say a
digital signature scheme is strongly unforgeable, if any probabilistic polynomial
adversaryA’s advantage AdvSUF

A (Λ) = Pr[A wins] in the above game is negligible.
If the advantage is negligible for an adversary that makes only one signing query
in the above game, a signature scheme is called a one time signature.

3 Single Use Unidirectional Proxy Re-Encryption

In this section, we present the model and the security definition. We focus on
single-use unidirectional proxy re-encryption (SUPRE) schemes. First, we review
the syntax of SUPRE scheme. Second, we define first/second level CCA security
which is stronger than previous RCCA security [13]. Finally, we explain the
difference between our definitions and previous definitions.

Generic Construction of Chosen Ciphertext Secure Proxy Re-Encryption 353

Syntax. A single-use unidirectional proxy re-encryption scheme consists of the
following six algorithms (KG, RKG, Enc, REnc, Dec1, Dec2):

KG takes as input the security parameter Λ and generates a secret key sk and a
public key pk, denoted as (sk, pk)← KG(Λ).

RKG takes as input a secret key ski of user i and a public key pkj of user j,
and outputs a unidirectional re-encryption key rki→j , denoted as rki→j ←
RKG(ski, pkj).

Enc takes as input a public key pki of user i and a plaintext m, and outputs a
second level ciphertext c that can be re-encrypted for another party.

REnc takes as input a second level ciphertext ci to user i and a re-encryption key
rki→j and outputs a first level ciphertext ĉj for user j or a special symbol
⊥ if ci is invalid, denoted as ĉj ← REnc(rki→j , ci).

Dec1 takes as input a secret key ski of user i and a first level ciphertext ĉi as
input, and outputs a plaintext m or ⊥ (indicating “invalid ciphertext”),
denoted as m←Dec1(ski, ĉi).

Dec2 takes as input a secret key ski of user i and a second level ciphertext ci
and outputs a plaintext m or ⊥.

We require the correctnesses for a SUPRE scheme as follows: (1)For any plaintext
m and for any (sk, pk) ← KG(Λ), we have m =Dec2(sk, Enc(pk,m)). (2) For any
plaintext m and for any (ski, pki)← KG(Λ) and (skj , pkj)← KG(Λ), we have m =
Dec1(skj , REnc(RKG(ski, pkj), Enc(pki,m))).

Security Definition. Here, we give the formal definitions of CCA security of
SUPRE. We first describe our formal security definitions, and then explain their
features in detailed in Sec. 2.1.

First, we define the security for second level ciphertext. We define the secu-
rity of a SUPRE scheme using the following game between a challenger and an
adversary A.

Setup. The challenger generates honest users’ key pairs (ski, pki) ← KG(Λ) for
i = 1 to n and sets PK = {pki}ni=1. Next, the challenger generates a challenge
user’s key pair (ski∗ , pki∗) ← KG(Λ). Then, the challenger gives the security
parameter Λ and PK∗ = PK ∪ {pki∗} to A.

Re-Encryption Key Generation Query. For a re-encryption key generation
query (pki ∈ PK∗, pkj), where pkj is an arbitrary public key chosen by
A, the challenger responds as follows. If pki = pki∗ and pkj /∈ PK∗, then
the challenger returns the special symbol ⊥ to A Otherwise, the challenger
responds with RKG(ski, pkj).

Re-Encryption Query. For a re-encryption query (pki ∈ PK∗, pkj , ci), where
pkj is an arbitrary public key chosen by A, the challenger responds as follows.
If (pki, ci) = (pki∗ , ci∗) and pkj /∈ PK∗, then the challenger

354 G. Hanaoka et al.

returns the special symbol ⊥ to A. Otherwise, the challenger responds with
REnc(RKG(ski, pkj), ci).

1

Challenge Query. This query is asked only once. For a challenge query
(m0,m1), the challenger picks a random b ∈ {0, 1} and computes ci∗ ←
Enc(pki∗ ,mb). Then it gives ci∗ to A.

First Level Decryption Query. For a first level decryption query (pki ∈
PK∗, ĉi), the challenger responds as follows: If A has asked a re-encryption
query (pki∗ , pki ∈ PK, ci∗) and obtained ĉi previously, then the challenger
returns⊥ to A. Else if A has asked a re-encryption key query (pki∗ , pki ∈ PK)
previously and Dec1(ski, ĉi) ∈ {m0,m1}, then the challenger returns the spe-
cial symbol test to A. Otherwise, the challenger responds with Dec1(ski, ĉi).

Second Level Decryption Query. For a second level decryption query (pki ∈
PK∗, ci), the challenger responds with Dec2(ski, ci), except that if (pki, c) =
(pki∗ , ci∗), then the challenger returns a special symbol ⊥.

Finally, A outputs its guess b′ ∈ {0, 1} for b and wins the game if b = b′. We
define the advantage of A as Advsecond(A,n) (Λ) = |Pr[b = b′]− 1

2 |.

Definition 1 (Second Level CCA-SUPRE Security). We say a SUPRE
scheme is second level CCA-SUPRE secure, if for any probabilistic polynomial
adversary A and for all positive polynomials n, the advantage Advsecond(A,n) (Λ) is
negligible.

Next, we define the security for first level ciphertexts with the following game
between an adversary A and a challenger.

Setup. The challenger generates a challenge public/secret keys, (ski∗ , pki∗) ←
KG(Λ). The challenger gives security parameter Λ and pki∗ to A.

Re-Encryption Key Generation Query. For a re-encryption key generation
query pk, where pk is a public key of A’s choice (for which A is not required
to reveal the secret key), the challenger responds with RKG(ski∗ , pk).

Challenge Query. This query is asked only once. For a challenge query (skA, pkA,
m0,m1) where (skA, pkA) is required to be a valid key pair, the challenger
picks the challenge bit b ∈ {0, 1} randomly and computes c← Enc(pkA,mb)
and ĉi∗ ← REnc(RKG(skA, pki∗), c). It then returns ĉi∗ to A.

First Level Decryption Query. For a first level decryption query ĉ, the chal-
lenger responds with Dec1 (ski∗ , ĉ), except that if ĉ = ĉi∗ , then the challenger
returns a special symbol ⊥ to A.

Second Level Decryption Query. For a second level decryption query c, the
challenger responds with Dec2(ski∗ , c).

Finally, A outputs its guess b′ ∈ {0, 1} for b and wins the game if b = b′. We

define the advantage of A as AdvfirstA (Λ) = |Pr[b = b′]− 1
2 |.

1 Note that in the security model defined above a fresh re-encryption key will be used in
each re-encryption query. We can further strengthen this security model by allowing
the adversary to ask re-encryption queries under previously used re-encryption keys.
We will discuss the detail in the full version of this paper.

Generic Construction of Chosen Ciphertext Secure Proxy Re-Encryption 355

Definition 2 (First Level CCA-SUPRE Security). We say a SUPRE
scheme is first level CCA-SUPRE secure, if for any probabilistic polynomial ad-
versary A, the advantage AdvfirstA (Λ) is negligibleD

Definition 3 (CCA-SUPRE Security). We say that a SUPRE scheme is
CCA-SUPRE secure if the scheme is first level CCA-SUPRE secure and second
level CCA-SUPRE secure.

3.1 Difference from Previous Security Definitions

CCA Security. Note that as in the RCCA security definitions, a situation still
occurs in our second level security model whereby the adversary receives a special
symbol “test” as an answer to a first level decryption query, which means that
the decryption result of the (first level) ciphertext submitted to the first level
decryption oracle is one of the challenge plaintexts (submitted as the second level
challenge). As such, one might question whether this security model is stronger
than previous RCCA security models. The reason that our second level security
model still considers the special symbol “test” is because there is a trivial CCA
attack against an adversary who (1) first asks a re-encryption key generation
query from the challenge key pki∗ to a honest user’s key pkj and obtains rki∗→j ,
(2) re-encrypts the challenge ciphertext c∗ into a first level ciphertext ĉ using it,
and (3) asks a first level decryption query of ĉ with the honest user’s pkj . We
find it impossible to avoid this trivial attack, as long as we stick to the current
syntax for PRE schemes.

Note that if an adversary does not ask such a problematic re-encryption key
generation query, then from the adversary’s viewpoint our first level decryption
oracle works as an ordinary decryption oracle, and in particular, even if the de-
cryption result of some first level ciphertext is one of the challenge plaintexts,
our first level decryption oracle returns a correct decryption result to the adver-
sary. Hence, our CCA security definition is stronger than that of RCCA security
in [13].

Simplification of Security Definition. In conventional security definitions
(for both second and first level ciphertexts) of a PRE scheme, it is common to
let an adversary choose the challenge public key pki∗ from a set PK of hon-
est users’ public keys, given to the adversary at the beginning of the security
games. However, such a security definition for an encryption scheme is typically
(polynomially) equivalent to one in which the challenge key is chosen by the
challenger from the set PK. Although this is not always true depending on the
winning condition of the game (especially, in a security model where the winning
condition of an adversary is affected by the queries made by the adversary), it
is true for our second and first level security definitions. Moreover, note that
in our security game for a first level ciphertext, there is no restriction on the
re-encryption key generation query, and thus an adversary can freely request a
re-encryption key from the challenge key pki∗ to a corrupt key pk. It is actually
possible to consider a “conventional” security definition for a first level cipher-
text in which there is a set PK of honest users’ public keys and an adversary can

356 G. Hanaoka et al.

freely choose the challenge key from PK, and then to show that security in such
a conventional model is (polynomially) equivalent to security in our definition.

The obvious advantage of these “fixed challenge key” style security definitions
is that it makes the security analysis simpler, and therefore we adopt these
definitions.

Second Level Decryption Queries. Previous works have concluded that
since adversary A can easily convert a second level ciphertext into a first level
ciphertext by using the re-encryption keys given to him, it is not necessary to
consider second decryption queries. However, such an observation is incorrect.
Concretely, we can construct a PRE scheme Π ′, which is secure if adversary
A is not allowed to make second decryption queries, but which is insecure if A
is allowed to make these, using a secure PRE scheme Π (in the sense of our
definition) as a building block.

– The second level encryption algorithm for Π ′ first runs the second level en-
cryption algorithm forΠ , generating a second level ciphertext c̃, and outputs
c = (c̃||0) (i.e., 0 is attached).

– The second level decryption algorithm Dec2 for Π ′ ignores the last bit of
the second level ciphertext (c̃||0), and decrypts c̃ with the underlying second
level decryption algorithm Π .

– The re-encryption algorithm rejects a ciphertext c if it is of the form c =
(c̃||1), and otherwise ignores the last bit and re-encrypts c̃ with the under-
lying re-encryption algorithm.

– The other algorithms for Π ′ are the same as those for Π .

With a scheme constructed as above, it is clear that adversary A can break
second level CCA-SUPRE security by using the following second level decryption
query. After A has received the second level challenge ciphertext ci∗ = (c̃i∗ ||0),
A obtains c′i∗ = (c̃i∗ ||1) by inverting the least significant bit, and then makes
a second level decryption query (pki∗ , c

′
i∗) and receives mb. On the other hand,

if A is not allowed to make second level decryption queries, the security of the
underlying scheme Π guarantees that Π ′ is secure. Therefore, in order to define
CCA security as strongly as possible, we allow A to make both first and second
level decryption queries in the second level security game.

Omitting Direct First Level Encryption Algorithm. The other difference
between our security definition and [13] is that we do not include a first level
encryption algorithm to generate a first level ciphertext in the syntax of a SUPRE
scheme. This is simply because if we would like to have it in a SUPRE scheme,
it can be implemented with an independent IND-CCA secure PKE scheme. This
simplifies the syntax of the SUPRE scheme.

4 Resplittable Threshold Public Key Encryption

In this section, we introduce a new variation of a TPKE scheme, which we call
resplittable threshold public key encryption, which is used as the main building
block in our generic construction of SUPRE in the next section.

Generic Construction of Chosen Ciphertext Secure Proxy Re-Encryption 357

4.1 Resplittability in Threshold Public Key Encryption

TPKE [11] is an extension of PKE, where we consider a model with multiple-
decryption servers, each of which holds one “secret key share.” When a ciphertext
c needs to be decrypted, it is sent to all the decryption servers. After receiving a
partially decrypted ciphertext from each server, a combiner can then reconstruct
the message in c if at least t shares are valid. Here t is called the threshold of
the TPKE scheme. Our generic construction of a SUPRE scheme is based on a
variant of TPKE, which we call resplittable TPKE.

Informally speaking, a resplittable TPKE scheme is a threshold encryption
scheme with an additional randomized algorithm TSplit, which splits a secret
key tsk into shares tsk1, tsk2, . . . , in such a way that the TPKE scheme re-
mains secure as long as the number of corrupted secret key shares output by one
execution of the TSplit algorithm is less than the threshold t.

In fact, splittability of a secret key is an inherent functionality of an ordinary
TPKE scheme, since TPKE usually requires a distributed key generation proto-
col, or a trusted server generates random secret key shares for each decryption
server. The traditional TPKE scheme requires such splitting only once (in the
key generation), whereas in order to use a TPKE scheme in our construction
we require that a TPKE scheme be secure even after the polynomial number
splitting. Although the requirement might look strong, as we shall see, we have
a concrete efficient TPKE scheme that is resplittable.

Syntax. A resplittable TPKE scheme consists of the following six algorithms
(TKG, TEnc, TSplit, TShDec, TShVer, TCom).

TKG takes as input a security parameter Λ, n and t, and outputs a secret key
tsk and a public key tpk, denoted as (tsk, tpk)← TKG(Λ, n, t).

TEnc takes as input a public key tpk and a message m, and outputs a ciphertext
c, denoted as c← TEnc(tpk,m).

TSplit takes as input a secret key tsk of the TPKE, outputs n shares of tsk
and a verification key tvk, denoted as (tsk1, . . . , tskn, tvk)← TSplit(tsk).

TShDec takes as input a public key tpk, a secret key share tski (1 ≤ i ≤ n) output
by TSplit and a ciphertext c, and outputs a decryption share μi or a special
symbol “⊥”(μ is an invalid share), denoted as μi ← TShDec(tpk, tski, c).
Here, we assumed that TShDec is deterministic.

TShVer takes as input a public key tpk, a verification key tvk, a ciphertext c,
an index i and a decryption share μ and outputs valid if μ is valid, or invalid
if μ is invalid. When the output is vaild, we say that μ is a valid decryption
share of the ciphertext c.

TCom takes as input a public key tpk, a ciphertext c, and t decryption shares from
different decryption servers and outputs a plaintextm (or a special symbol ⊥
indicating “invalid ciphertext”), denoted as m← TCom(tpk, tvk, c, {μ1,
. . . , μt}).

Correctness. For any (tsk, tpk)← TKG(Λ, n, t) and any (tsk1, . . . , tskn, tvk)←
TSplit(tsk), we require the following two correctness properties: (1)For any

358 G. Hanaoka et al.

ciphertext c, if μ ← TShDec(tpk, tski, c), then TShVer(tpk, tvk, c, i, μ) outputs
valid. (2)If c is output from TEnc(tpk,m) and S = {μs1 , . . . , μst} is a set of
decryption shares μsi ← TShDec(tpk, tsksi , c) under t distinct secret key shares,
then we require that TCom(tpk, tvk, c, S) output m.

Chosen Ciphertext Security. A (t, n)-re-splittable TPKE scheme is one in
which the algorithm TSplit always outputs exactly n shares, and a ciphertext
c together with any subset, smaller than t, of decryption shares of c do not leak
essential information of the plaintext in c. We define chosen-ciphertext security of
re-splittable TPKE based on the definition of CCA security for ordinary TPKE
schemes [6,2]. Our definition is a natural extension of that in [6,2]. In particular,
we only add “Split&Corruption query” (which is formally described below) in
the attack model.

It is required that a polynomially-bounded adversary should not have any
knowledge of the plaintext even given a decryption oracle, as long as the number
of corrupt decryption servers is less than t under the same splitting of tsk.

Setup. First, the challenger runs (tsk, tpk)← TKG(Λ, n, t) and gives tpk to A.

Split&Corruption Query. For the j-th split&corruption query S = {s1, . . . ,
st−1}, the challenger computes (tskj.1, . . . , tskj.n, tvkj) ← TSplit(tsk) and
returns (tskj.s1 , . . . , tskj.st−1 , tvkj) to A. The challenger stores {tskj.i}i∈{1,...,n}
and tvkj for later share decryption queries from A.

Share Decryption Query. For a share decryption query (tvkj , i, c), where tvk
is required to be one of the answers to previously asked split&corruption
queries, i is an index of a decryption server, and c = c∗ is a ciphertext,
the challenger finds tskj,i that is previously generated, and returns a partial
decryption result μi ← TShDec(tpk, tskj.i, c) to A.

Challenge. This query is asked only once. For a challenge query (m0,m1), the
challenger picks the challenge bit b ∈ {0, 1} and returns c∗ ← TEnc(tpk,mb)
to A.

Finally, A outputs its guess b′ ∈ {0, 1} for b and wins the game if b = b′. We
define the advantage of A by AdvCCA−TPKE

(A,n,t) (Λ) = |Pr[b = b′]− 1
2 |.

Decryption Consistency. We define the decryption consistency of resplittable
TPKE based on [6]. Consistency of decryption is defined using the following
game: The game starts with the Setup and several queries as in the game
above, except the challenge query. The adversary then outputs a ciphertext c,
a verification key tvk, and two sets of decryption shares S = {μ1, . . . , μt} and
S′ = {μ′

1, . . . , μ
′
t} such that |S| = |S′| = t.

The adversary wins if

(a) tvk is one of verification keys returned as a response to the adversary A’s
split&corruption query.

(b) S and S′ are valid decryption shares for a ciphertext c under tvk;
(c) S and S′ contain decryption shares from t distinct servers; and
(d) TCom(tpk, tvk, c, S) = TCom(tpk, tvk, c, S′).

Generic Construction of Chosen Ciphertext Secure Proxy Re-Encryption 359

We let AdvDC
(A,n,t)(Λ) denote the adversary’s advantage in winning this game.

Definition 4. We say that a TPKE scheme is secure if for any polynomial
n and t where 0 < t ≤ n, and any probabilistic polynomial adversary A, the
functions AdvCCA−TPKE

(A,n,t) (Λ) and AdvDC
(A,n,t)(Λ) are negligible.

TKG(Λ):
x, y, z ← Zp

g1 = gx, g2 = gy, h1 = gz

Let tsk = x and
tpk = (p,G,G1, g, g1, g2, h1)
Return tsk, tpk

TEnc(tpk,m)
(sk, vk)← SKG(Λ)
r ← Zp

c′ = (C,D,E)
= (gr, (gvk1 h1)

r,m · e(g1, g2)r)
σ ← Sign(sk, c′)
Return c = (c′, vk, σ)

TSplit(tsk)
f ← Zp[X] such that
deg(f) = t− 1 and f(0) = x
Define tski = f(i) and

tvk = (gf(1), . . . , gf(n))
Return tsk1, . . . , tskn, tvk

TShDec(tpk, tski, c)
If invalid← SVer(vk, c′, σ), return ⊥
If e(C, gt1h1) �= e(D, g), return ⊥.
Otherwise, return μi = Ci = Cf(i).

TShVer(tpk, tvk, c, i, μ)
If invalid← SVer(vk, c′, σ), return invalid.

If e(Ci, g) �= e(C, gf(i)), return invalid
Otherwise, return valid.

TCom(tpk, tvk, c, S = {μs1 , . . . , μst})
If invalid← TShVer(tpk, tvk, c, i, μsi),
return ⊥.
Else, compute m = E/e(

∏t
i=1 C

λi
i , g2)

using Lagrange coefficients λi

satisfying f(0) = Σt
i=1λif(i)

Return m.

Fig. 1. Concrete Resplittable TPKE Scheme Based on [2]

4.2 Concrete Resplittable Threshold Public Key Encryption

In this paper, we give Arita and Tsurudome’s scheme [2], which is based on
Boyen et al.’s PKE scheme [7], as an example of a resplittable TPKE scheme.
Arita and Tsurudome proposed a conversion from any stag-CCA-secure thresh-
old tag-based encryption scheme to a CCA-secure TPKE scheme. Moreover, they
proposed two concrete stag-CCA-secure threshold tag-based encryption schemes,
one of which is based on the decisional bilinear Diffie-Hellman (DBDH) assump-
tion and the other one is based on the decisional linear assumption. In this sub-
section, we show that Arita and Tsurudome’s TPKE scheme under the DBDH
assumption supports key-resplittability.

Here, let G be a group of prime order p with generator g, G1 be a
group of prime order p, and e : G × G → G1 be a bilinear map. If a
bilinear Diffie-Hellman tuple (g, ga, gb, gc, e(g, g)abc) is indistinguishable from
(g, ga, gb, gc, e(g, g)d) where d is chosen from Zp randomly, we say that the DBDH

assumption holds. We define AdvdbdhA (Λ) = |Pr[1← A(g, ga, gb, gc, e(g, g)abc)]−
Pr[1 ← A(g, ga, gb, gc, e(g, g)d)]| where a, b, c, d ∈ Zp are chosen randomly.

360 G. Hanaoka et al.

Let (SKG, Sign, SVer) be a strong one-time signature scheme. Then, we con-
struct a concrete resplittable PKE scheme as in Fig. 1.

Theorem 1. If the DBDH assumption holds and the one-time signature is
strongly unforgeable, the TPKE scheme in Fig. 1 is a secure resplittable TPKE
scheme.

The proof is omitted due to lack of space, however it is easily inferred from the
proof given in [2]. We describe the full proof in the full version of this paper.

5 Generic Construction of SUPRE Based on TPKE

In this section, we propose a generic construction for a SUPRE scheme, and prove
its CCA security. Our construction of SUPRE is based on a (2, 2)-re-splittable
TPKE scheme (TKG, TEnc, TSplit, TShDec, TShVer, TCom), a PKE scheme (PKG,
PEnc, PDec), and a signature scheme (SKG, Sign, SVer). Using these building
blocks, we construct a SUPRE scheme as in Fig. 2.

Construction Ideas. The re-splittability of the building block (2,2)-re-
splittable TPKE scheme plays a central role in the main functionality of a
SUPRE scheme, that is, re-encryption key generation and re-encryption. The
main components of a re-encryption key rki→j from user i with key-pair (pki, ski)
to user j with key pair (pkj , skj) are tski.2 and ψ, where ψ is an encryption of
tski.1 under the PKE public key pkj contained in pkj , and tski.1 and tski.2 are
secret key shares that are (re-)split using the TPKE secret key tski contained
in ski. When a proxy with rki→j re-encrypts a second level (TPKE) ciphertext
ci, it first calculates a share-decryption μ2 of c using tski.2, which is directly
contained in rki→j , and rejects the ciphertext ci if μ2 = ⊥. (Note that since
we are using a (2,2)-TPKE scheme, if one of the decryption shares of cipher-
text c is ⊥, it must mean that c is an invalid ciphertext.) Otherwise, the proxy
“wraps” (ci, μ2, ψ) using the building PKE scheme. That is, the proxy generates
a re-encrypted (first level) ciphertext ĉj by encrypting (ci, μ2, ψ) under the PKE

public key p̂kj contained in pkj . Then, user j who owns the PKE decryption

keys d̂kj and dkj corresponding to p̂kj and pkj , respectively, can decrypt ĉj and
ψ. Since ĉj contains (ci, μ2, ψ), and ψ contains tski.1, after decrypting ĉj using

d̂kj , user j can share-decrypt c using tski.1 to obtain μ1, and then recover the
plaintext m from the shares (μ1, μ2) by using the combination algorithm of the
TPKE scheme.

Intuitively, CCA security of the building block PKE scheme prevents a ma-
licious proxy with rki→j from learning tski.1 from ψ or modifying ψ in any
meaningful way. Moreover, security of the (2,2)-re-splittable TPKE scheme guar-
antees that despite having one decryption share tski.2, it can essentially learn
nothing about the contents of a second level ciphertext. Furthermore, owing to
the “wrapping” in the re-encryption process, CCA security of the building block
PKE scheme also guarantees that a correctly re-encrypted ciphertext ĉ leaks no

Generic Construction of Chosen Ciphertext Secure Proxy Re-Encryption 361

information and has non-malleability, leading directly to CCA security for first
level ciphertexts.

However, there are several other subtle technical points that need to be taken
into account to make our scheme CCA secure (especially, second level CCA-
SUPRE secure).

– We include the public keys (pki, pkj) of the “source” user i and the “destina-
tion” user j in rki→j . These keys are then included in a first level ciphertext
ĉ re-encrypted using rki→j , and the equality of the keys is checked in the first
level decryption algorithm. This ensures that rki→j and ĉ are only valid un-
der a particular pair of source user i and destination user j, and prevents the
proposed scheme from being vulnerable to “key substitution”-like attacks.

– We also include the verification key tvki (of the TPKE scheme) correspond-
ing to the secret key shares (tski.1, tski.2) in rki→j , and it is also included in
a first level ciphertext re-encrypted using rki→j . This allows the destination
user j to be convinced (in the first level decryption algorithm) that the proxy
has actually made a valid decryption share μ2. Decryption consistency, to-
gether with correctness of the re-splittable TPKE scheme, guarantees that
the plaintext m recovered in the first level decryption algorithm is actually
the same as that of the original second level ciphertext.

– We “wrap” every component other than tski.2 in a re-encryption key rki→j

using a signature with signing key ski, which is contained in user i’s secret
key ski. (tski.2 is not signed since it does not appear in the plaintext of re-
encrypted ciphertext ĉ.) This signature ensures that the re-encryption key
rki→j is “non-malleable”, so that the destination user j can be convinced
that the first level ciphertext ĉ received has actually been calculated using a
correctly generated re-encryption key rki→j .

These ideas make it possible to prove that our scheme is CCA secure.

Security. The security of our generic construction of SUPRE is guaranteed by
the following theorems.

Theorem 2. If the PKE scheme is IND-CCA secure in the multi-user setting,
the signature scheme is strongly unforgeable, and the resplittable TPKE scheme
is secure, then our proposed PRE scheme is second level CCA-SUPRE secure.

We will describe the full proof of the above theorem in the full version of this
paper.

Theorem 3. If the PKE scheme is IND-CCA secure, our generic construction
is first level CCA-SUPRE secure.

Proof. Assume towards a contradiction that there exists a first level SUPRE-
CCA adversary A such that AdvfirstA (Λ) is not negligible. Then we show that
we can use A to construct another adversary B that has non-negligible IND-
CCA advantage regarding the building block PKE scheme. The construction of

B is as follows. First, B is given p̂ki∗ . B generates the challenge public/secret

362 G. Hanaoka et al.

KG(Λ):
(tsk, tpk)← TKG(Λ, 2, 2)

(d̂k, p̂k)← PKG(Λ), (dk, pk)← PKG(Λ), (sk, vk)← SKG(Λ)

Let sk = (tsk, d̂k, dk, sk),pk = (tpk, p̂k, pk, vk)
Return sk, pk

RKG(ski, pkj)

Parse ski = (tski, d̂ki, dki, ski). Parse pkj = (tpkj , p̂kj , pkj , vki)
(tski.1, tski.2, tvki)← TSplit(tski)
ψ ← PEnc(pkj , tski.1)
σ ← Sign(ski, 〈ψ||tvki||pki||pkj〉)
Return rki→j = (pki, pkj , tski.2, ψ, tvki, σ)

Enc(pki,m)

Parse pki = (tpki, p̂ki, pki, vki)
Return c← TEnc(tpki, m)

REnc(rki→j , ci)
Parse rki→j = (pki, pkj , tski.2, ψ, tvki, σ)
If SVer(vki, 〈ψ||tvki||pki||pkj〉, σ) = invalid, return ⊥.
μ2 ← TShDec(tpki, tski.2, ci)
If μ2 = ⊥, return ⊥.
Return ĉj ← PEnc(p̂kj , 〈pki||pkj ||ci||μ2||ψ||tvki||σ〉)

Dec1(skj , ĉj)

Parse pkj = (tpkj, p̂kj , pkj , vki). Parse skj = (tskj, d̂kj , dkj , ski)

〈pk′i||pk′j ||ci||μ2||ψ||tvki||σ〉 ← PDec(d̂kj , ĉj)
If the result is ⊥ or pk′j �= pkj , return ⊥.
If SVer(vki, 〈ψ||tvki||pk′i||pk′j〉, σ) = invalid, return ⊥.
tski.1 ← PDec(dkj , ψ)
If tski.1 = ⊥, return ⊥.
μ1 ← TShDec(tpki, tski.1, ci)
If μ1 = ⊥, return ⊥.
If TShVer(tpki, tvki, ci, 2, μ2) = invalid, return ⊥.
Return m← TCom(tpki, tvki, ci, {μ1, μ2})

Dec2(ski, c)

Parse pki = (tpki, p̂ki, pki, vki). Parse ski = (tski, d̂ki, dki, ski)
(tski.1, tski.2, tvki)← TSplit(tski)
μ1 ← TShDec(tpki, tski.1, c)
If μ1 = ⊥, return ⊥.
μ2 ← TShDec(tpki, tski.2, c)
If μ2 = ⊥, return ⊥.
Return m← TCom(tpki, tvki, c, {μ1, μ2})

Fig. 2. Our Generic Construction of SUPRE

key except d̂ki∗ , and then gives the challenge public key pki∗ to A. Now, since
B knows tski∗ , dki∗ and ski∗ , B can simulate re-encryption key generation, re-
encryption, and second level decryption queries perfectly. Also, B can simulate

first decryption queries using decryption queries on p̂ki∗ and (tski∗ , dki∗ , ski∗)
that B knows. When A submits two plaintexts (m0,m1) of equal length and a key

Generic Construction of Chosen Ciphertext Secure Proxy Re-Encryption 363

pair (skA, pkA), B proceeds as follows: (1) Parse skA as (tskA, d̂kA, dkA, skA) and

pkA as (tpkA, p̂kA, pkA, vkA). (2) Execute cγ ← TEnc(tpkA,mγ) for γ ∈ {0, 1}. (3)
Execute (tskA.1, tskA.2, tvkA)← TSplit(tskA), ψ ← PEnc(pki∗ , tskA.1), and
σ ← Sign(ski∗ , 〈ψ||tvkA|pkA||pki∗〉). (4) Execute μ2.γ ← TShDec(tpkA, tskA.2, c0)
for γ ∈ {0, 1}. (5) Set Mγ = 〈pkA||pki∗ ||cγ ||μ2,γ ||ψ||tvkA||σ〉 for γ ∈ {0, 1},
submit (M0,M1) to the challenger, and receive (B’s) challenge ciphertext ĉi∗ .
(6) Return ĉi∗ to A as A’s challenge ciphertext. Finally, when A terminates with
a guess bit b′, B outputs this b′ and terminates. Since B perfectly simulates
the first level CCA-SUPRE game for A, B’s advantage is exactly AdvfirstA (Λ),
which is not negligible. This contradicts our assumption that the PKE scheme
is IND-CCA secure, and thus the theorem follows. �

Acknowledgements. We would like to thank the anonymous CT-RSA re-
viewers for their helpful comments. Yutaka Kawai and Takahiro Matsuda are
supported by Research Fellowships of the Japan Society for the Promotion of
Science for Young Scientists. Jian Weng was supported by the National Science
Foundation of China under Grant Nos. 60903178 and 61133014, the Fundamen-
tal Research Funds for the Central Universities under Grant No. 21610204, and
the Guangdong Provincial Science and Technology Project under Grand No.
2010A032000002. Yunlei Zhao is partly supported by a grant from the Major
State Basic Research Development (973) Program of China (No. 2007CB807901)
and a grant from the National Natural Science Foundation of China NSFC (No.
61070248).

References

1. An, J.H., Dodis, Y., Rabin, T.: On the Security of Joint Signature and Encryp-
tion. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107.
Springer, Heidelberg (2002)

2. Arita, S., Tsurudome, K.: Construction of Threshold Public-Key Encryptions
through Tag-Based Encryptions. In: Abdalla, M., Pointcheval, D., Fouque, P.-A.,
Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 186–200. Springer, Heidel-
berg (2009)

3. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved Proxy Re-encryption
Schemes with Applications to Secure Distributed Storage. ACM Trans. Inf. Syst.
Secur. 9(1), 1–30 (2006)

4. Bellare, M., Boldyreva, A., Micali, S.: Public-Key Encryption in a Multi-user Set-
ting: Security Proofs and Improvements. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 259–274. Springer, Heidelberg (2000)

5. Blaze, M., Bleumer, G., Strauss, M.: Divertible Protocols and Atomic Proxy Cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998)

6. Boneh, D., Boyen, X., Halevi, S.: Chosen Ciphertext Secure Public Key Threshold
Encryption Without Random Oracles. In: Pointcheval, D. (ed.) CT-RSA 2006.
LNCS, vol. 3860, pp. 226–243. Springer, Heidelberg (2006)

7. Boyen, X., Mei, Q., Waters, B.: Direct Chosen Ciphertext Security From Identity-
Based Techniques. In: Proceedings of the 12th ACM Conference on Computer and
Communications Security, pp. 320–329 (2005)

364 G. Hanaoka et al.

8. Canetti, R., Goldwasser, S.: An Efficient {\it Threshold} Public Key Cryptosys-
tem Secure against Adaptive Chosen Ciphertext Attack. In: Stern, J. (ed.) EURO-
CRYPT 1999. LNCS, vol. 1592, pp. 90–106. Springer, Heidelberg (1999)

9. Canetti, R., Hohenberger, S.: Chosen-Ciphertext Secure Proxy Re-encryption. In:
Proceedings of the 14th ACM Conference on Computer and Communications Se-
curity, pp. 185–194 (2007)

10. Chow, S.S.M., Weng, J., Yang, Y., Deng, R.H.: Efficient Unidirectional Proxy Re-
Encryption. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS,
vol. 6055, pp. 316–332. Springer, Heidelberg (2010)

11. Desmedt, Y., Frankel, Y.: Threshold Cryptosystems. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, Heidelberg (1990)

12. Ivan, A.-A., Dodis, Y.: Proxy Cryptography Revisited. In: NDSS (2003)
13. Libert, B., Vergnaud, D.: Unidirectional Chosen-Ciphertext Secure Proxy Re-

encryption. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 360–379. Springer,
Heidelberg (2008)

14. Mambo, M., Okamoto, E.: Proxy Cryptosystems: Delegation of the Power to De-
crypt Ciphertexts. IEICE Trans. on Fundamentals of Electronics, Communications
and Computer Sciences E80-A(1), 54–63 (1997)

15. Matsuda, T., Nishimaki, R., Tanaka, K.: CCA Proxy Re-Encryption without Bi-
linear Maps in the Standard Model. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC
2010. LNCS, vol. 6056, pp. 261–278. Springer, Heidelberg (2010)

16. Rackoff, C., Simon, D.: Non-Interactive Zero-Knowledge Proof of Knowledge
and Chosen Ciphertext Attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS,
vol. 576, pp. 433–444. Springer, Heidelberg (1992)

17. Shao, J., Cao, Z.: CCA-Secure Proxy Re-encryption without Pairings. In: Jarecki,
S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 357–376. Springer, Heidelberg
(2009)

18. Shao, J., Cao, Z., Liu, P.: CCA-Secure PRE Scheme without Random Oracles.
Cryptology ePrint Archive, Report 2010/112 (2010), http://eprint.iacr.org/

19. Shao, J., Liu, P.: CCA-Secure PRE Scheme without Public Verifiability. Cryptology
ePrint Archive, Report 2010/357 (2010), http://eprint.iacr.org/

20. Shoup, V., Gennaro, R.: Securing Threshold Cryptosystems against Chosen Ci-
phertext Attack. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp.
1–16. Springer, Heidelberg (1998)

21. Weng, J., Zhao, Y., Hanaoka, G.: On the Security of a Bidirectional Proxy Re-
encryption Scheme from PKC 2010. In: Catalano, D., Fazio, N., Gennaro, R.,
Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 284–295. Springer, Heidelberg
(2011)

22. Zhang, X., Chen, M., Li, X.: Comments on Shao-Cao’s Unidirectional Proxy Re-
Encryption Scheme from PKC 2009. Cryptology ePrint Archive, Report 2009/344
(2009)

http://eprint.iacr.org/
 http://eprint.iacr.org/

A New Difference Method for Side-Channel

Analysis with High-Dimensional Leakage Models

Annelie Heuser1,4, Michael Kasper2,4,
Werner Schindler3,4, and Marc Stöttinger1,4

1 Darmstadt University of Technology, Germany
{Heuser,Stoettinger}@iss.tu-darmstadt.de

2 Fraunhofer Institute for Secure Information Technology (SIT), Germany
Michael.Kasper@sit.fraunhofer.de

3 Bundesamt für Sicherheit in der Informationstechnik (BSI), Germany
Werner.Schindler@bsi.bund.de

4 Center for Advanced Security Research Darmstadt (CASED), Germany

Abstract. The goal of the DPA contest v2 (2009 – 2010) was to find the
most efficient side-channel attack against a particular unprotected AES-
128 hardware implementation. In this paper we discuss two problems of
general importance that affect the success rate of profiling based attacks,
and we provide effective solutions. First, we consider the impact of tem-
perature variations on the power consumption, which causes a so-called
drifting offset. To cope with this problem we introduce a new method
called Offset Tolerant Method (OTM) and adjust OTM to the stochastic
approach (SA-OTM). The second important issue of this paper concerns
the choice of an appropriate leakage model as this determines the success
rate of SA and SA-OTM. Experiments with high-dimensional leakage
models show that the overall leakage is not only caused by independent
transitions of bit lines. Compared to the formely best submitted attack of
the DPA contest v2 the combination of SA-OTM with high-dimensional
leakage models reduces the required number of power traces to 50%.

Keywords: Side-Channel Analysis, Stochastic Approach, Environmen-
tal Influences, Drifting Offset, High-dimensional Leakage Models.

1 Introduction

For more than a decade side-channel analysis has been an important field of
research in both academia and industry. Usually these attacks apply mathemat-
ical techniques, e.g., statistical methods, to exploit compromising side-channel
leakage (e.g., runtime behavior, power consumption or electromagnetic emana-
tion), which is emitted during the regular execution of a cryptographic algorithm.
Power attacks can be divided into non-profiled and profiled methods. Prominent
representatives of non-profiled side-channel attacks are Differential Power Anal-
ysis [11], Correlation Power Analysis [2], and Mutual Information Analysis [6].
These attacks try to recover the secret information without a preceding profiling

O. Dunkelman (Ed.): CT-RSA 2012, LNCS 7178, pp. 365–382, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

366 A. Heuser et al.

phase. Profiled side-channel attacks, such as template attacks [3] or the stochas-
tic approach [17], have the potential to be much more powerful and efficient.
In a profiling based attack an adversary (attacker, designer, evaluator) uses a
training device to characterize the leakage of a cryptographic implementation by
creating templates or by developing a well-fitted leakage model. Then he tries to
recover the key from the target device, using the knowledge from the profiling
phase.

Generally speaking, measurements performed by different laboratories are of-
ten difficult to compare due to different acquisition platform sensitivities, differ-
ent implementations of cryptographic algorithms, noise and other environmental
influences. The organizers of the DPA contest v2 [4] provided measurement traces
that allow a fair comparison of several side-channel attacks. We decided to apply
the stochastic approach.

In this contribution we deal with the two important problems that may affect
the success rate of profiling based attacks. First, we highlight difficulties that
arise from environmental influences during the acquisition phase. Motivated by
the DPA contest v2 measurements we investigate the impact of temperature
variations. In fact, variations of the environmental temperature as well as tem-
perature variations inside the device may change the (average) level of power
consumption and thus the level of electrical current and voltage consumption.
We denote this unexpected phenomenon as drifting offset. The origin of tem-
perature variations, their impact on the power and current consumption, and
possible preventive measures are discussed in Sect. 2. In Sect. 4 we introduce
a new algorithmic method, which we denote as Offset Tolerant Method (OTM)
and integrate it into the stochastic approach, abbreviated by SA-OTM.

Second, we consider the precise representation of the compromising side-
channel leakage by suitable leakage models. Profiling-based attacks are very
powerful and effective tools but their efficiency strongly depends on the suit-
ability of the applied leakage model. As stated in [13] several formal works as-
sume that independent transitions of bit lines imply independent contributions
of side-channel leakage. If this assumption is valid a leakage model that only
considers the input/output bits of the SBox separately will be sufficient. How-
ever, Renauld et al. [13] uses Mutual Information Analysis as an information
theoretic metric [18] to show that this assumption may not always be valid in
practice. With regard to this observation we apply different high-dimensional
leakage models, which represent the individual leakage of each bit line as well as
the leakage caused by the combination of several bit lines. Referred to the DPA
contest v2 the combination of SA-OTM with high-dimensional leakage models
results in the best success rates.

2 Extrinsic and Environmental Influences on
Side-Channel Evaluation Process

It is well-known that extrinsic and environmental influences as temperature, cos-
mic radiation and terrestrial radiation have an impact on the design in terms of

A New Difference Method for Side-Channel Analysis 367

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−5500

−5450

−5400

−5350

−5300

−5250

−5200

−5150

Fixed average of the starting point

P
o

w
e

r
co

n
su

m
p

tio
n

Fixed average (window size=100)

Fig. 1. Fixed average of the start-
ing point; points in time: solid line
04:05 pm (starting time + 24h), dot-
ted line 0:00 (midnight + 24h)

0 2000 4000 6000 8000 10000
−5500

−5450

−5400

−5350

−5300

−5250

−5200

−5150
data−independent point

Fixed average (window size=100)

P
ow

er
 c

on
su

m
pt

io
n

0 2000 4000 6000 8000 10000
−5150

−5100

−5050

−5000

−4950

−4900

−4850

−4800
data−independent point

Fixed average (window size=100)

P
ow

er
 c

on
su

m
pt

io
n

0 2000 4000 6000 8000 10000
4000

4100

4200

4300

4400

4500
data−dependent point

Fixed average (window size=100)

P
ow

er
 c

on
su

m
pt

io
n

0 2000 4000 6000 8000 10000
5200

5300

5400

5500

5600
data−dependent point

Fixed average (window size=100)

P
ow

er
 c

on
su

m
pt

io
n

Fig. 2. Drifting offset at data-
dependent and data-independent
time points

the reliability and dependability of the integrated circuits functionality. However,
the relevance of these phenomena in security analysis and, in particular in the
side-channel analysis, have not been subject of public discussions yet. Usually,
it is tacitly assumed that the power traces are recorded under constant environ-
mental conditions. Neither temperature changes nor explicit influences caused
by variations in the temperature of a system state are considered. We found out
that the power curves of the DPA contest v2 [4] show a drifting offset, which
might result from temperature variations. The template base of the DPA contest
v2 consists of 1.000.000 traces, which were recorded during approximately 3 days
and 19 hours. To give evidence for the drifting offset we selected particular time
instants for all power traces and calculated the mean value over non-overlapping
sets of 100 subsequent traces, which gave 10.000 mean values. Figure. 1 shows
the mean power values at the starting point of the power traces. The dotted line
corresponds to the beginning of a new day, and the solid line marks a 24 hour
cycle. Figure. 1 illustrates the correspondence of the mean power consumption
to the diurnal rhythm. Figure 2 shows the drifting offset for data-independent
time points where no encryption is performed (gray) and for data-dependent
points (black). Obviously, the drifting offset is larger than (average) effects that
stem from data-dependent computations.

In order to confirm that the environmental temperature is the true reason
for the existence of drifting offsets we performed own measurements on the
SASEBO-GII platform. We simulated environmental temperature variations by
mounting a peltier element and a cooling / heating system on the surface of the
target FPGA. Figure 3 shows the voltage drop over a measurement shunt VM for
a single time instant. This reveals the direct relation between the environmental
temperature and the power consumption of a device, which is proportionally
bounded to the measured voltage drop of the shunt in the ground line. Note
that the voltage drop at trace ≈ 7500 results from the activation of the peltier

368 A. Heuser et al.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

15

20

25

30

35

40

45

 [°
C

]

Trace
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0.985

0.99

0.995

1

1.005

1.01

1.015

V
M

ea
su

re
 [V

]

Fig. 3. Dependency between environmental temperature and power consumption. The
thin red line represents the temperature while the thick blue line stands for the mea-
sured voltage drop.

element. Physical coherencies and possible preventive measures are discussed in
the following.

3 Impact of Environmental Conditions

In the present section we analyze the impact of environmental conditions on the
power consumption. We focus on the material specific temperature coefficient,
denoted by αθ0 , and on the impact to the characteristic ohmic resistance ϑ(θ0) of
a target circuit. Eq. (1) provides a (linearized) formula that expresses the impact
of the difference between the actual temperature θ and a reference temperature
θ0 on an ohmic resistor

R(θ) = ϑ(θ0) · (1 + αθ0 · (θ − θ0)) . (1)

A measurement circuit usually consists of a target circuit (e.g., an FPGA con-
figured with the cryptographic ’target’ implementation) and a set of further
electronic board components. The measurement circuit is usually realized by an
ohmic shunt, which is chained between the target and a stable power supply.
The voltage drop over this shunt VM is used to calculate the power consumption
of the target. The voltage divider (2) provides a simplified model for the relation
between the supply voltage Vcc of the target device and VM ,

VM =
Rboard

Rboard +Rtarget
· Vcc , (2)

where Rtarget denotes the ohmic resistance of target under attack and Rboard

denotes the overall resistance of all ohmic components of the above mentioned
measurement circuit. Substituting Eq. (1) into the voltage divider for VM gives
Eq. (3)

VM =
Vcc

1 +
(

ϑtarget(θ0,target)
ϑboard(θ0,board)

)
·
(

1+αθ0,target
·(θtarget−θ0,target)

1+αθ0,board
·(θboard−θ0,board)

) . (3)

A New Difference Method for Side-Channel Analysis 369

Further experiments with the SASEBO-G II FPGA evaluation board verified
that the impact of αθ0,board

is much smaller than the impact of αθ0,target . Con-
sequently, the power consumption is more affected by temperature variations
on the FPGA than by the temperature variations of the shunt and other board
components. Hence Eq. (3) may be simplified to

VM =
Vcc

1 +
(ϑtarget(θ0,target)

ϑboard(θ0,S)

)
·
(
1 + αθ0,target · (θtarget − θ0,target)︸ ︷︷ ︸

heating>0,
cooling<0

) . (4)

For the SASEBO-G II FPGA evaluation board (as for similar evaluation boards)
VM increases significantly if the target FPGA is cooled down and decreases
significantly if the FPGA is heated, which coincides with the expositions in
Sect. 2.

Preventing drifting offsets by providing constant environmental conditions. An
intuitive and natural method to prevent drifting offsets is to keep the tempera-
ture of both the device and the environment constant. The environmental tem-
perature can be controlled when using a heating cabinet or a climatic chamber.
The device may be preheated or cooled during the measurements in order to
stabilize the temperature of the device.

However, these measures reduce the thermal effects only to a certain level.
Since the thermal processes are very slow and the response time is very long it is
yet difficult to control them precisely. Thus, the temperature gradient between
the device and the environment should to be stable for a certain time interval.
This time interval is certainly shorter than the full profiling measurement period.
Moreover, the adversary may not have unlimited access to the target device so
that these measures may not always be possible. This raises several questions
for further research: If an attacker is able to learn on a training device of the
same type under stable environmental conditions, can he also ensure constant
conditions during the attack? Is it possible to enforce identical conditions in dif-
ferent situations? If not: how can unstable environmental conditions be handled
efficiently?

4 A Novel Method for Effective Offset Elimination

Like for other attacks that (maybe implicitly) consider the average power con-
sumption, e.g., template attacks, the efficiency of the stochastic approach may
decrease significantly in presence of drifting offsets (Figs. 1 and 2). In the light
of Sects. 2 and 3 we may assume that the offset drifts slowly. An intuitive ap-
proach to eliminate drifting offsets is to consider differences of consecutive power
traces in place of the power traces themselves. This is an Offset Tolerant Method
(OTM), and we adjust this method to the stochastic approach (SA), abbreviated
by SA-OTM. This may sound simple, however, it will turn out later that several
mathematical difficulties have to be overcome.

370 A. Heuser et al.

4.1 The ’Normal’ Stochastic Approach: A Brief Summary

The ’normal’ stochastic approach is an established, effective method in profiled
power analysis, which combines engineer’s knowledge and expertise with ad-
vanced stochastic methods [17, 7, 16, 10, 8]. In this subsection we summarize its
central steps. In Subsection 4.2 we will refer to this description, and we work out
the differences to SA-OTM. Principal component analysis (PCA) is well-known
in the context of template attacks [1]. Below we adjust PCA to the stochastic
approach. We begin with some notations.

Notation 1. We denote subkeys by k ∈ {0, 1}s while x ∈ {0, 1}p stands for
(the relevant part of) the plaintext or ciphertext, respectively (typically, 8 or 16
bits). Random variables are denoted by capital letters, realizations thereof, i.e.
values taken on by these random variables, by the corresponding small letters.
Vectors are written in bold, e.g., t stands for (t1, . . . , tm), and Rt denotes the
random vector (Rt1 , . . . , Rtm). Accordingly, It(x, k), it(x, k), h

∗
t;k(x, k) etc. while

∼ indicates estimates. We write diagn(b1, . . . , bn) for a diagonal n × n square
matrix with diagonal elements b1, . . . , bn, andNn(μ, F) denotes an n-dimensional
normal distribution with mean vector μ and covariance matrix F . Finally, fF (·)
denotes the density of N(0, F).

The stochastic approach refers to the mathematical model

It(x, k) = ht(x, k) +Rt (5)

where t denotes a time instant. The power consumption it(x, k) is interpreted as
a realization of a random variable It(x, k) whose (unknown) distribution depends
on the pair (x, k). The leakage function ht;k(x, k) quantifies its deterministic part,
which depends on x and k, while Rt denotes the noise. W.l.o.g. we may assume
E(Rt) = 0. Note that both the leakage function ht(·, ·) and the distribution of
the noise are unknown and thus have to be estimated.

Profiling Phase. Let t ∈ {t1, . . . , tm} and k ∈ {0, 1}s be fixed for the moment.
We view the restricted function ht;k : {0, 1}p × {k} → IR, ht;k(x, k) := ht(x, k)
as an element of the 2p-dimensional real vector space Fk := {h′ : {0, 1}p →
IR}. Basis functions g0,j;k(·, k) = 1 (constant function), . . . , gu−1,t;k(·, k) shall
be selected under consideration of the concrete implementation, since they shall
capture the relevant source of side-channel leakage (cf. e.g., [8] and Sect. 5). The
SA does not aim at the exact function ht;k(·, k) itself but at its best approximator
h∗
t;k(·, k) in Fu,t;k, the subspace which is spanned by g0,j;k(·, k), . . . , gu−1,t;k(·, k).

Using the power measurements it(x1, k), . . . , it(xN1 , k) ∈ IR the least square

estimate h̃∗
t;k(·, k) of ht;k(·, k) is determined. Let

A :=

⎛
⎜⎝

g0,t;k(x1, k) . . . gu−1,t;k(x1, k)
...

. . .
...

g0,t;k(xN1 , k) . . . gu−1,t;k(xN1 , k)

⎞
⎟⎠ . (6)

A New Difference Method for Side-Channel Analysis 371

If ATA is regular (usual case) the normal equation ATAb = AT it has unique
solution

b̃ ∗ = (ATA)−1AT it, with b̃ ∗ := (β̃ ∗
0 , ..., β̃ ∗

u−1), and (7)

h̃∗
t;k(·, k) =

u−1∑
j=0

β̃∗
j,t;kgj,t;k(·, k) (least square estimate of h∗

t;k(·, k)) . (8)

The coefficients β̃∗
0,t;k, . . . , β̃

∗
u−1,t;k are called β-characteristic.

In the second profiling step the covariance matrix C of the noise vector Rt

is estimated, finally yielding a density for the random vector It(x, k). From an
information theoretic point of view it seems to be advisable to consider as many
time instants t1 < · · · < tm as possible. Unfortunately, then the covariance ma-
trix C is often ’almost’ singular so that even moderate estimation errors in C̃
may amplify drastically in C̃−1 (needed to calculate fC(·)), and matrix inversion

becomes an ill-posed numerical problem. Since C and its estimate C̃ are sym-
metric positive semi-definite matrices an orthogonal matrix P ∈ O(m) exists,

for which PT C̃P = D̃m with D̃m = diagm(λ̃1, . . . , λ̃m). The diagonal elements

λ̃1 ≥ · · · ≥ λ̃m ≥ 0 (eigenvalues of C̃), and the jth column vj of P is an eigen-

vector of C̃ to eigenvalue λ̃j (main axis transformation). If the first s eigenvalues

are considerably larger than the others, i.e. λ̃s+1 ' λ̃s, we concentrate on that
subspace of IRm, which is spanned by the eigenvectors v1, . . . , vs. More precisely,
if Ps denotes the (m× s)-matrix with columns v1, . . . , vs then

PT
s C̃Ps = D̃s with D̃s = diags(λ̃1, . . . , λ̃s) (PCA). (9)

If the random vector Y is Nm(0, C)-distributed then PT
s Y is Ns(0, P

T
s CPs)-

distributed ([9]), i.e. has the s-dimensional normal density fDs . For large m it is

not advisable to calculate Ps and D̃s via main axis transformation of C̃. Instead,
one should apply the singular value decomposition [9] as it is numerically more
stable.

Attack Phase. In the attack phase the adversary performs N3 measurements
at the target device and obtains power vectors it(x1, k

†), . . . , it(xN3 , k
†) with

the unknown subkey k†. The adversary decides for that subkey candidate k∗ ∈
{0, 1}s that maximizes

N3∏
l=1

fD̃s

(
PT
s

(
it(xl, k

†)− h̃∗
t;k(xl, k

∗)
))

. (10)

4.2 SA-OTM: A New Variant of SA

In the following we assume that the power traces are labelled in the same order
as they have been recorded, and that the data-independent offset drifts slowly.
We denote the offsets at time t by τt;1, τt;2, . . . where the second index indicates

372 A. Heuser et al.

the number of the power trace. In particular, τt;l − τt;l+1 ≈ 0 for all l ≥ 1.

For ’normal’ SA β̃∗
0,t,k estimates the average power consumption in the profiling

phase. Note that this average might differ from the corresponding value within
the attack phase. Moreover, regarding the measurements of the DPA contest v2
the ratio |β̃∗

0,t,k|/
∑8

j=1 |β̃∗
j,t,k| ≈ 70, and hence even moderate relative differences

in β̃∗
0,t,k might have considerable impact on the attack efficiency. We refine (5)

and get
It(xl, k) = ht(xl, k) + τt;l + Rt . (11)

In particular, It(xl, k) ∼ N(ht(xl, k)+τt;l, σ
2). Of course, if τt;l = 0 for all power

traces (11) reduces to (5). SA-OTM applies to the enhanced mathematical model
(11).

SA-OTM: Profiling Phase

Estimation of h∗◦
t,k and of the β-characteristic Since the drifting offset τt;l only

affects the coefficient β0,t;k in contrast to ’normal’ SA we do not aim at h∗
t,k(·, k)

but at h∗◦
t,k(·, k) :=

∑u−1
j=1 β∗

j,t;kgj,t;k(·, k). In place of Fu,t;k we consider the sub-
space

F◦
u,t;k := {h′ : {0, 1}p × {k} → IR | h′ =

u−1∑
j=1

β′
j,t,kgj,t;k with β′

j,t,k ∈ IR}, (12)

i.e., we neglect the first basis vector g0,t;k = 1. The straight-forward approach is
to proceed as in ’normal’ SA, by simply cancelling the first column of matrix A
(Eq. (6)).

Alternatively, one may consider differences of consecutive power measure-
ments. More precisely, for l = 1, . . . , N1− 1 let dj,t,k(xl, xl+1, k) := gj,t;k(xl, k)−
gj,t;k(xl+1, k) and dit(xl, xl+1, k) := it(xl, k)− it(xl+1, k). Further, we define the
(N1 − 1)-dimensional vector Δit := (dit(xl, x2, k), . . . , dit(xN1−1, xN1 , k)) and

A◦ :=

⎛
⎜⎝

d1,t;k(x1, x2, k) . . . du−1,t;k(x1, x2, k)
...

. . .
...

d1,t;k(xN1−1, xN1 , k) . . . du−1,t;k(xN1−1, xN1 , k)

⎞
⎟⎠ . (13)

If the (u − 1 × u − 1) dimensional matrix product (A◦TA◦) is regular then in
analogy to (7) and (8) we obtain

b̃ ∗◦ = (A◦TA◦)−1A◦TΔit with b̃ ∗◦ := (β̃ ∗
1 , ..., β̃ ∗

u−1), and (14)

h̃∗ ◦
t;k(·, k) =

u−1∑
j=1

β̃∗
j,t,kgj,t;k(·, k) (least square estimate of h ∗◦

t;k (·, k)) . (15)

For infinite sample sizeN1 the estimates β̃∗
1,t;k, . . . , β̃

∗
u−1,t;k from both estimation

methods (’straight-forward’, ’difference method’) converge to the exact parame-
ter values β∗

1,t;k, . . . , β
∗
u−1,t;k. For the power traces from the DPA contest v2 the

A New Difference Method for Side-Channel Analysis 373

difference method turned out to be more efficient (higher rate of convergence),
which should be due to the fact that β∗

0,t;k clearly dominates the other coef-
ficients. Note that in the first profiling step it is a (reasonable) option to use
differences of power traces while it is unavoidable in the second profiling step
and in the attack phase.

Estimation of the Distribution of Rt and PCA. Since the offsets τt;l are un-
known, we apply OTM. In fact, since τt;l − τt;l+1 ≈ 0 and

(It(xl, k)− It(xl+1, k))− (h∗◦
t (xl, k)− h∗◦

t (xl+1, k)) ≈ (16)

It(xl, k)− ht(xl, k)− τt;l − (It(xl+1, k)− ht(xl+1, k)− τt;l+1) ∼ N (0, 2C).

Consequently, we go for an estimate of 2C instead of C. Now let wt,l;k :=

it(xl, k)− h̃∗◦
t (xl, k). Then

2̃C :=
1

N2 − 1
M̃◦T M̃◦ with the (m× (N2 − 1))-matrix

M̃◦T := (wt,1;k −wt,2;k, . . . ,wt,N2−1;k −wt,N2;k) (17)

provides an estimate for 2C. We point out that the columns of M◦ are not
independent. However, let M◦

ev and M◦
odd denote the submatrices of M◦, which

consist of the columns with even indices or of the columns with odd indices,
respectively. For odd N2

1

N2 − 1
M̃◦T M̃◦ =

1

2

(
2

N2 − 1
M̃◦T

ev M̃
◦
ev +

2

N2 − 1
M̃◦T

oddM̃
◦
odd

)
. (18)

Both submatrices have independent columns, which yield estimates for 2C (anal-

ogously to the SA case). We point out that M̃◦
ev and M̃◦

odd are only weakly

correlated since the lth row of M̃◦ is only correlated to rows (l − 1) and l. The
matrices C and 2C have the same eigenspaces and thus the same transformation
matrix Ps (cf. Eq. (9)). Applying the singular value decomposition to M̃◦ yields

Ps as well as estimates 2̃Ds = 2D̃s and D̃s for 2Ds and Ds, respectively.

SA-OTM: Attack Phase. We assume that the attacker has recorded N3 mea-
surement vectors it(x1, k

†), . . . , it(xN3 , k
†) from a target device with a secret

(unknown) subkey k†. As for SA the attacker applies a maximum likelihood
estimation rule but for SA-OTM the situation becomes more complicated (The-
orem 1).

Notation 2. If F1, . . . , Fr are matrices with the same number of columns then
RV (F1, . . . , Fr) denotes the block matrix whose first rows are given by F1, the
next rows by F2 etc.

374 A. Heuser et al.

Theorem 1. For l = 1, . . . , N3 let Wt,l;k := It(xl, k)− h∗◦
t,k(xl, k).

Then the s(N3 − 1)-dimensional random vector

Wt;k :=RV
(
PT
s (Wt,1;k−Wt,2;k),P

T
s (Wt,2;k−Wt,3;k),. . .,P

T
s (Wt,N3−1;k−Wt,N3;k)

)
∼ N(RV (PT

s (τt;1 − τt;2), P
T
s (τt;2 − τt;3), . . . , P

T
s (τt;N3−1 − τt;N3)), G(Ds))

≈ N(0, G(Ds)) (19)

with the (s(N3 − 1)× s(N3 − 1))-dimensional block tridiagonal matrix

G(Ds) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2Ds −Ds

0−Ds 2Ds −Ds

−Ds 2Ds −Ds

0

. . .
. . .

. . .

−Ds 2Ds −Ds

−Ds 2Ds

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Proof. Since the random vectors Wt,1;k, . . . ,Wt,N3;k are independent the ran-
dom vector

V := RV (PT
s (Wt,1;k), P

T
s (Wt,2;k), . . . , P

T
s (Wt,N3;k))

is N
(
RV (PT

s (τt;1), P
T
s (τt;2), . . . , P

T
s (τt;N3)), D̂

)
-distributed where D̂ stands for

the (sN3 × sN3)-dimensional block diagonal matrix whose N3 diagonal blocks
equal Ds. We conclude Wt;k = L(V) where L : IRsN3 → IRs(N3−1) denotes the
linear mapping

L(RV (z1, . . . , zN3)) := RV (z1 − z2, z2 − z3, . . . , zN3−1 − zN3).

By [9] (3.31) we have

L(V) ∼ N (RV (PT
s (τt;j − τt;2), P

T
s (τt;2 − τt;3), . . . , P

T
s (τt;N3−1 − τt;N3), LD̂LT).

A careful computation verifies LD̂LT = G(Ds), which proves the first assertion
of Theorem 1. Since L is linear the second assertion follows from the assumption
that the differences τt;1 − τt;2, τt;2 − τt;3, . . . , τt;N3−1 − τt;N3 ≈ 0. ��

If the vector space F◦
u,t;k catches the relevant parts of the leakage then h∗◦

t;k(xl, k)−
h∗◦
t;k(xl+1, k) ≈ h∗

t;k(xl, k)− τt;l −h∗
t;k(xl+1, k) + τt;l+1, which motivates the fol-

lowing maximum likelihood decision rule. The adversary decides for the subkey
k ∈ {0, 1}s, which maximizes fG(D̃s)

, or equivalently minimizes

(w′
t;k

T
G(D̃s)

−1w′
t;k) with (20)

w′
t;k :=RV

(
P T
s (w′

t,1;k −w′
t,2;k), P

T
s (w′

t,2;k −w′
t,3;k), . . . , P

T
s (w′

t,N3−1;k −w′
t,N3;k)

)
and w′

t,l;k := it(xl, k
†)− h̃∗◦

t,k(xl, k) while G(D̃s) is the estimate of G(Ds).

A New Difference Method for Side-Channel Analysis 375

Remark 1. Eq. (20) can be evaluated without inverting G(D̃s)
−1. Instead, one

first solves the matrix-vector equation G(D̃s)v = w′
t;k first, for which efficient

numerical algorithms exist (e.g., iterative Krylov Methods [20]). Finally, one

computes w′T
t;kv. We point out that also these calculations could be saved by

cancelling every second component in w′
t;k (at cost of doubling the number of

attack traces!). As a compromise between efficiency and computational workload
one might cancel every αth component of w′

t;k, which results a block diagonal

matrix with N3

α matrices Gl for 1 ≤ l ≤ N3

α and dim(Gl) ≤ s · (α − 1) '
dimG(D̃s) in its diagonal. Here one ’wastes’ N3

α power traces for the sake of
faster calculation. This method is of particular interest in context of the DPA
contest v2 since the contest rules demand the continued evaluation of an attack
for increasing sets of power traces. In our experiments (Sect. 6) we used α = 200,
without claiming that the choice of α is optimal.

5 On the Selection of Stochastic Leakage Models

The approximator of the leakage function ht;k (i.e., h∗
t;k or h ∗◦

t;k) is close only
for an appropriate subspace Fu,t;k. The appropriateness depends on the leakage
model and thus on the concrete subspace. In this section we consider different
subspaces that may be used for attacks on the last round of an AES-128 hard-
ware implementation. In [10] a 9-dimensional subspace F9,t;k was investigated in
detail (SA). The selection of F9,t;k is reasonable if (one assumes that) the side-
channel leakage is only caused by the sum of the individual transitions on all bit
lines. High-dimensional subspaces also capture effects that arise from interac-
tions between the transitions on two or more bit lines. Such effects occur due to
properties of internal circuit structures, e.g., propagation glitches or cross-talk
phenomena during the metastable phase of the registers, which is a well-known
problem in CMOS VLSI Circuit Design [12, 5]. In Sect. 6 we consider F◦

u,t;k for
u ∈ {9, 37, 93, 163, 219, 247, 255, 256}. Recall that dimF◦

u,t;k = u− 1. Of course,
also high-dimensional subspaces keep the regression linear.

The possibility of applying high-dimensional subspaces was already pointed
out in [17,16]. In [13], Renauld et al. analyzed the information theoretic impact
of high-dimensional leakage models on the mutual information. To the best of the
authors’ knowledge very high-dimensional subspaces have not been evaluated in
concrete attacks yet.

5.1 High-Dimensional Subspaces for SA-OTM

With regard to an ordinary hamming distance model we first consider the 8-
dimensional subspace F◦

9,t;k which exploits the corresponding intermediate value

of the 9th round XORed with the 10th round key. More precisely, we select the
following basis vectors

376 A. Heuser et al.

gj,t;k(y)
((x(z), x(y)), k(y)) = ((x(z) ⊕ S−1(x(y) ⊕ k(y)))j︸ ︷︷ ︸

:=(φ(x(z),x(y),k(y)))j :=ĝj,t;k

−2−1) (21)

for j = 1, . . . , 8.

The subtrahend 2−1 ensures EX(gj,t,k(y)(X, k(y))) = 0 for independent and uni-
formly distributed random variables X(y) and X(z), a reasonable model for two
ciphertext bytes. The indices y and z are chosen according to the distance model
of the AES design (cf. [10, 8]).

Moreover, we consider high-dimensional subspaces. To simplify we introduce
new notation. First, B1 := {g1,t;k(y)

, . . . , g8,t;k(y)
} collects all basis vectors from

Eq. (21), which capture the contribution of the individual bit lines. Moreover,
for 2 ≤ i ≤ 8 the set

Bi := {ĝj1,t;k(y)
· · · ĝji,t;k(y)

− 2−i | 1 ≤ j1 < . . . < ji ≤ 8} (22)

contains all unordered i-fold products of elements in B1 minus 2−i. (A typical
element in B2 is ĝ4,t;k(y)

· ĝ7,t;k(y)
− 2−2.) The subtrahend 2−i ensures the zero-

mean property for all elements of Bi. Table 1 provides the basis vectors for all
relevant subspaces (the elements of the sets in the second column).

Table 1. Set of basis functions for each subspace

dim(F◦
u,t;k) (= u− 1) Set of basis functions

8 B1
36 B1 ∪ B2
92 B1 ∪ B2 ∪ B3
162 B1 ∪ B2 ∪ B3 ∪ B4
218 B1 ∪ B2 ∪ B3 ∪ B4 ∪ B5
246 B1 ∪ B2 ∪ B3 ∪ B4 ∪ B5 ∪ B6
254 B1 ∪ B2 ∪ B3 ∪ B4 ∪ B5 ∪ B6 ∪ B7
255 B1 ∪ B2 ∪ B3 ∪ B4 ∪ B5 ∪ B6 ∪ B7 ∪ B8

5.2 Leakage Models for the Stochastic Approach

As pointed out in Subsect. 4.2 the subspaces for SA-OTM are similar to the
subspaces for SA, just the first basis vector g0,t;k(y)

is omitted. In particular, the
subspace F9,t;k is spanned by

g0,t;k(y)
((x(z), x(y)), k(y)) = 1 (23)

gj,t;k(y)
((x(z), x(y)), k(y)) = ((x(z) ⊕ S−1(x(y) ⊕ k(y)))j − 2−1) for j = 1, . . . , 8 .

We define B0 := {g0,t;k(y)
}, and the construction of high-dimensional subspaces

follows analogously to Tab. 1 with additional basis vector B0.

A New Difference Method for Side-Channel Analysis 377

5.3 Symmetry

References [10,16] consider leakage models with symmetries (for SA). In fact, the
basis vectors gj;t;k(y)

from Subsect. 5.1 and 5.2 can be expressed by a composition

of a key-independent function gj,t : {0, 1}8 → IR with the mapping φ : {0, 1}8 ×
{0, 1}8 × {0, 1}8 → {0, 1}8, given by

φ(x(z), x(y), k(y)) := (x(z) ⊕ S−1(x(y) ⊕ k(y))) .

This essentially reduces the argument of gj;t;k(y)
from 24 to 8 bits. If the

leakage function ht,k(y)
((x(z), x(y)), k(y)) also depends on its arguments only

through φ(x(z), x(y), k(y)) one can compute h∗
t,k′

(y)
((·, ·), k′(y)) for each k′(y) if

h∗
t,k(y)

((·, ·), k(y)) is known for arbitrary subkey k(y). In particular, for uniformly

distributed (X(y), X(z)) for each j < u

βj,t;k′
(y)
≡ βj,t for all k′(y) ∈ {0, 1}8. (24)

Reference [8] explains how to verify, resp. to falsify, whether symmetry assump-
tions are indeed valid, and a symmetry metric is introduced. Eq. (24) says that
the coefficients βj,t,· are identical for all admissible subkeys. This property al-
lows to use all 1000.000 power traces of the template base (though belonging to
different (sub)keys) jointly in a single least square estimation process. This gives
more stable results, and (for each key byte) profiling step 1 has to be carried out
only once.

6 Experimental Analysis

In this section we compare the efficiency of SA-OTM and of SA on basis of the
DPA contest v2 power traces. We apply the leakage models from Sect. 5. The
DPA contest v2 provides two data bases: A template base with 1.000.000 power
traces (to develop an attack), and a public base, which contains power traces
for 32 fixed keys, 20.000 traces for each key (to test the attack). The organizers
of the contest evaluated the submitted attacks on a (non-public) private base to
avoid ”biased” attacks. The measurements were recorded on the SASEBO-G II
FPGA-evaluation board [14] using a Virtex 5 FPGA [19]. Each encryption (AES
with 128 bit keys) takes 10 clock cycles, and the SBOX realization is based on a
composite field [15]. In analogy to the DPA contest v2 we calculate the partial
success rate (PSR) and the global success rate (GSR) to compare the efficiency
of the particular attacks. The PSR is the probability that the correct subkey
is ranked first among all possible subkeys, while GSR denotes the probability
that the complete key is ranked first. We are mainly interested in the minimum
number of power traces for which the PSR is stable above 80% (i.e. the ’worst’
byte is stable in > 80% of the experiments), and in the minimum number of
power traces for which the GSR is stable above 80% (→ evaluation criteria for
the DPA contest v2).

378 A. Heuser et al.

As already mentioned the template base consists of 1.000.000 traces, i.e. for
each subkey ≈ 4.000 traces. This number is too small for a sufficiently precise
estimation of the β-characteristic for each key. However, due to the symmetry
properties of the attacked implementation (cf. Subsect. 5.3) we could circumvent

this problem. Accordingly, we computed the coefficients β̃∗
j,t (cf. Eq. (24)) on

basis of all 1.000.000 power traces.
The application of PCA to the Covariance matrices C̃ and 2C̃ showed that

the first eigenvalue λ̃1 is at least 20 times larger than the other eigenvalues
λ̃2, . . . , λ̃m. Consequently, we selected s = 1, and hence Ps is an (m× 1) matrix
(cf. Eq. (9)). For the evaluation of the PSR and the GSR we used the power

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Partial Success Rate

Number of Traces

P
ar

tia
l S

uc
ce

ss
 R

at
e

Fig. 4. Partial success rate: SA
with a 9-dim. model

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Partial Success Rate

Number of Traces

P
ar

tia
l S

uc
ce

ss
 R

at
e

Fig. 5. Partial success rate: SA-
OTM with a 8-dim. model

traces from the public base. Figure 4 depicts the PSR for the SA with the 9-
dimensional leakage model from Eq. (23). Each curve corresponds to one of the
16 subkeys. Figure 5 shows the PSR for SA-OTM with the 8-dimensional leakage
model (e.g., Eq. (21)). All bytes achieve the 80% threshold, and except for one
subkey, even the 100% threshold. Figure 6 and 7 depict the PSR for SA and

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Partial Success Rate

Number of Traces

P
ar

tia
l S

uc
ce

ss
 R

at
e

Fig. 6. Partial success rate: SA
with a 37-dim. model

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Partial Success Rate

Number of Traces

P
ar

tia
l S

uc
ce

ss
 R

at
e

Fig. 7. Partial success rate: SA-
OTM with a 36-dim. model

A New Difference Method for Side-Channel Analysis 379

SA-OTM using the 37-dimensional and 36-dimensional model, which capture
the individual leakage of each bit line and the leakage caused by the interaction
between two arbitrary bit lines. Evidently, these leakage models describe the
existing leakage more precisely. However, for SA the PSR criterion fails due to
the same 4 bytes. Compared to the 8-dimensional leakage model for SA-OTM
the minimum number of traces with stable PSR > 80% drops down from 8781
to 5876. The 93- and the 92-dimensional leakage model additionally capture the

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Partial Success Rate

Number of Traces

P
ar

tia
l S

uc
ce

ss
 R

at
e

Fig. 8. Partial success rate: SA
with a 93-dim. model

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Partial Success Rate

Number of Traces

P
ar

tia
l S

uc
ce

ss
 R

at
e

Fig. 9. Partial success rate: SA-
OTM with a 92-dim. model

leakage that arises from the combinations of three bit lines. Experimental results
are depicted in Figure 8 and Figure 9. The 93-dimensional model (SA) improves
the PSR, but 3 bytes still do not reach 80% PSR. SA-OTM reaches the PSR
stable above 80% after 5195 traces. The significant improvement of the PSR for
specific bytes does not necessarily imply that the drifting offset only influences
those bytes. It rather underlines that not all subkey bytes ’leak’ in the same way.
One might conjecture that those subkey bytes, which have less influence on the
overall leakage are more affected by the drifting offset than the others. Figure 10
shows the GSR. SA-OTM requires about 6734 traces to achieve a GSR stable
> 80%. A GSR of 100% is only archived for SA-OTM with the 92-dimensional
leakage model.

The best attack that was submitted during the contest achieves a PSR stable
above 80% for 5.890 traces and a stable GSR > 80% for 7.061 traces. SA-OTM
with the 92-dimensional model outperforms these benchmarks. Moreover, we
computed the success rates of SA-OTM for the 162-, 218, 246-, 254-, 255- di-
mensional model, which increased this success rate further. These results indicate
that the 218-dimensional subspace F◦

219,t;k, which is spanned by the basis vectors
in B1 ∪ B2 ∪ B3 ∪ B4 ∪ B5, seems to essentially capture the leakage. Tab. 2 con-
tains all results for the public base and the private base (as far as known). For
the private base a third contest criterion, the maximal partial guessing entropy
below 10 (max PGE below 10) [18], is listed.

380 A. Heuser et al.

Fig. 10. Global success rate of SA and SA-OTM for different models

Remark 2. Following the expositions in Sect. 2 one might simply try to combine
’normal’ SA with vertical trace alignment. However, as explained below also in
combination with vertical alignment SA-OTM remains more efficient than SA.

Vertical Trace Alignment. We combined SA and SA-OTM with vertical trace
alignment, a well-known method in power analysis. We ’normalized’ each
measurement trace to mean zero (over the whole trace), i.e. we computed
aligned it(xl, k) = it(xl, k)−mean(it(xl, k)), with t ranging over the complete
trace. However, even then SA with the 93-dimensional model did not exceed
PSR > 80% for all bytes.

Since SA-OTM itself solves the problem with the drifting offset our goal here
was to reduce the impact of outliers. Apart from the drifting offset, Figure 1
displays a few extreme values that might be caused by such outliers, which
result from measurement errors or any other interference during the acquisition.

Table 2. Success rate (PSR stable > 80% / GSR stable > 80%), and max PGE below
10 for the private base

Attack Public Base Private Base
1

SA-OTM: dim 8 (8781 / 13020) unknown
SA-OTM: dim 36 (5876 / 7533) unknown
SA-OTM: dim 92 (5195 / 6734) (4358 / 5571), 1.894
SA-OTM: dim 162 (4353 / 6144) unknown
SA-OTM: dim 218 (3552 / 4564) unknown
SA-OTM: dim 246 (3769 / 4691) unknown
SA-OTM: dim 254 (3720 / 4740) unknown
SA-OTM: dim 255 (3718 / 4748) unknown
SA-OTM: dim 255 incl. alignment (2682 / 3836) (2748 / 3589), 1.356
Best submitted attack during the first & second period unknown (5890 / 7061), 2.767

1 See http://www.dpacontest.org/v2/hall_of_fame.php for the results on the
private base.

http://www.dpacontest.org/v2/hall_of_fame.php

A New Difference Method for Side-Channel Analysis 381

Alternatively, one could also try to identify and omit the outliers. SA-OTM with
the 255-dimensional leakage model and vertical alignment SA-OTM achieves a
PSR stable > 80% within 2748 traces and a GSR stable above 80% within 3589
traces (private base). These results reduce the required number of traces to 50%
compared to the best submitted attack during the contest, cf. Tab. 2.

Further Work / Open Problems Our analysis raises several questions. Can the
drifting offset be effectively prevented in practice? What is the smallest sub-
space that captures all relevant parts of the compromising leakage? Do different
types of implementations demand different subspaces? Another ambitious topic
for future work could be an automatized search for optimal (high-dimensional)
subspaces, which finally might yield to appropriate basis vector selection
methods.

7 Conclusion

In this contribution we investigated two fundamental problems that may affect
the efficiency of profiling based attacks, and we developed efficient solutions.
Drifting offsets (caused by temperature variations) cause difficulties for attacks,
which consider (implicitly or explicitly) the average power consumption (typ-
ically profiling based attacks). We introduced a new method, denoted as the
Offset Tolerant Method (OTM), which considers differences of consecutive pairs
of power traces. We adjusted OTM to the stochastic approach (SA), abbreviated
by SA-OTM. In presence of a drifting offset SA-OTM turned out to be clearly
more efficient than SA, even in combination with vertical trace alignment.

We further addressed the problem of how to select suitable leakage models,
which shall represent the compromising leakage as precise as possible. Our re-
sults show that leakage may also arise from the interaction of several bit lines.
This effect can only be captured by high-dimensional leakage models. Combining
these two improvements we achieved the best results of all participants of the
DPA contest v2. Further research work might consider open problems formu-
lated at the end of Sect. 6 or concentrate on improvements of SA-OTM, maybe
in combination with alternative dimension reduction techniques.

Acknowledgment. The work presented in this contribution was supported by
the German Federal Ministry of Education and Research (BMBF) in the project
Resist through grant number 01IS10027A. We thank Christian Brandt for the
heating cabinet framework.

References

1. Archambeau, C., Peeters, E., Standaert, F.X., Quisquater, J.J.: Template Attacks
in Principal Subspaces. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 1–14. Springer, Heidelberg (2006)

382 A. Heuser et al.

2. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model.
In: Joye, M., Quisquater, J.J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

3. Chari, S., Rao, J.R., Rohatgi, P.: Template Attacks. In: Kaliski Jr., B.S., Koç,
C., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003)

4. DPA contest v2, http://www.dpacontest.org/
5. Eo, Y., Eisenstadt, W., Jeong, J.Y., Kwon, O.K.: A new on-chip interconnect

crosstalk model and experimental verification for CMOS VLSI circuit design. IEEE
Transactions on Electron Devices 47(1), 129–140 (2000)

6. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,
Heidelberg (2008)

7. Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs. Stochastic methods. In:
Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 15–29. Springer,
Heidelberg (2006)

8. Heuser, A., Kasper, M., Schinder, W., Stöttinger, M.: How a Symmetry Metric
Assists Side-Channel Evaluation - A Novel Model Verification Method for Power
Analysis. In: 14th Euromicro Conference on Digital System Design Architectures,
Methods and Tools (DSD 2011). IEEE (2011)

9. Kardaun, O.: Classical Methods of Statistics. Springer, Heidelberg (2005)
10. Kasper, M., Schindler, W., Stöttinger, M.: A Stochastic Method for Security Evalu-

ation of Cryptographic FPGA Implementations. In: FPT 2010, pp. 146–154. IEEE
Press (2010)

11. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

12. Nieuwland, A.K., Katoch, A., Meijer, M.: Reducing Cross-Talk Induced Power
Consumption and Delay. In: Macii, E., Koufopavlou, O.G., Paliouras, V. (eds.)
PATMOS 2004. LNCS, vol. 3254, pp. 179–188. Springer, Heidelberg (2004)

13. Renauld, M., Standaert, F.X., Veyrat-Charvillion, N., Kamel, D., Flandre, D.: A
Formal Study of Power Variability Issues and Side-Channel Attacks for Nanoscale
Devices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 109–
128. Springer, Heidelberg (2011)

14. SASEBO GII,
http://www.rcis.aist.go.jp/special/SASEBO/SASEBO-GII-en.html

15. Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A Compact Rijndael Hardware
Architecture with S-Box Optimization. In: Boyd, C. (ed.) ASIACRYPT 2001.
LNCS, vol. 2248, pp. 239–254. Springer, Heidelberg (2001)

16. Schindler, W.: Advanced Stochastic Methods in Side Channel Analysis on Block
Ciphers in the Presence of Masking. Math. Crypt. 2, 291–310 (2008)

17. Schindler, W., Lemke, K., Paar, C.: A Stochastic Model for Differential Side Chan-
nel Cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659,
pp. 30–46. Springer, Heidelberg (2005)

18. Standaert, F.X., Malkin, T., Yung, M.: A Unified Framework for the Analysis of
Side-Channel Key Recovery Attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

19. Virtex-5 FPGA User Guide (2010)
20. Vorst, H.A.V.D.: Iterative Krylov Methods for Large Linear Systems. Cambridge

University Press, Cambridge (2003)

http://www.dpacontest.org/
http://www.rcis.aist.go.jp/special/SASEBO/SASEBO-GII-en.html

Getting More from PCA:
First Results of Using Principal Component

Analysis for Extensive Power Analysis

Lejla Batina1,2, Jip Hogenboom3,	, and Jasper G.J. van Woudenberg4

1 Radboud University Nijmegen, ICIS/Digital Security group
Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands

lejla@cs.ru.nl
2 K.U.Leuven ESAT/SCD-COSIC and IBBT

Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium
lejla.batina@esat.kuleuven.be

3 KPMG Advisory N.V.
Laan van Langerhuize 1, 1186 DS Amstelveen, The Netherlands

Hogenboom.Jip@kpmg.nl
4 Riscure BV

Delftechpark 49, 2628 XJ Delft, The Netherlands
vanwoudenberg@riscure.com

Abstract. Differential Power Analysis (DPA) is commonly used to ob-
tain information about the secret key used in cryptographic devices.
Countermeasures against DPA can cause power traces to be misaligned,
which reduces the effectiveness of DPA. Principal Component Analysis
(PCA) is a powerful tool, which is used in different research areas to
identify trends in a data set. Principal Components are introduced to
describe the relationships within the data. The largest principal compo-
nents capture the data with the largest variance. These Principal Com-
ponents can be used to reduce the noise in a data set or to transform
the data set in terms of these components. We propose the use of Prin-
cipal Component Analysis to improve the correlation for the correct key
guess for DPA attacks on software DES traces and show that it can also
be applied for other algorithms. We also introduce a new way of deter-
mining key candidates by calculating the absolute average value of the
correlation traces after a DPA attack on a PCA-transformed trace. We
conclude that Principal Component Analysis can successfully be used as
a preprocessing technique to reduce the noise in a trace set and improve
the correlation for the correct key guess using Differential Power Analysis
attacks.

Keywords: Side-channel cryptanalysis, DPA, countermeasures, PCA.

1 Introduction

Side-channel attacks are indirect methods which are used to find secret keys in
cryptographic devices. On these devices, cryptographic algorithms are
� This work was done when the author was with Radboud University Nijmegen.

O. Dunkelman (Ed.): CT-RSA 2012, LNCS 7178, pp. 383–397, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

384 L. Batina, J. Hogenboom, and J.G.J. van Woudenberg

implemented to ensure encrypted communication. Smart cards can sometimes
contain a software implementation of cryptographic algorithm but often they
also include a cryptographic co-processor, where the larger devices usually have
dedicated hardware implementations. The secret keys used for the algorithms
are usually well protected within these devices.

A widely used method to recover secret keys is by using side-channel infor-
mation. Side-channel attacks make use of leaked physical information, such as
power consumption, electromagnetic (EM) radiation etc. This information is
leaked because of weaknesses in the physical implementation of the algorithm.

An example of a widely used side-channel attack is Differential Power Anal-
ysis (DPA) [8]. The power consumption of a cryptographic device is dependent
on the data being processed and in particular on the secret key that is used for
encryption (decryption). This power consumption is measured while the secret
key is manipulated within a cryptographic device and the corresponding power
traces are collected. Performing DPA on the traces assumes doing some statis-
tics on the power measurements and modeled traces. In this way, the attacker
is using a side-channel distinguisher (e.g. DoM [8], Pearson correlation coeffi-
cient [3], Mutual Information [5] etc.) on the actual traces and the predictions
for the measurements in order to test the hypothesis about (the part of) the
used cryptographic key.

To defend against side-channel analysis, manufacturers of cryptographic de-
vices usually implement countermeasures on their devices to complicate DPA
substantially. Common methods include masking the sensitive values of data i.e.
the variables depending on known data (e.g. plaintext) and the hypothesized key,
and hiding of the dependency of power on data [9] in specific time moments. The
latter can be obtained by various means e.g. random process interrupts (RPI) [4],
random process order, unstable clocks etc. For example, when RPI are used as a
countermeasure the position of the leakage that is exploited by DPA can shift a
few clock cycles. In this way, locating the specific time points, where the key is
processed is further obfuscated. Due to all those countermeasures pre-processing
power traces has become an important step in side-channel analysis.

Principal Component Analysis (PCA) [7] is a technique which is widely used
to reduce the noise or the dimensionality in a data set, while retaining the most
variance. PCA results in a new ordered set of vectors that form an orthogonal
basis for a data set. Each basis vector, or Principal Component (PC), captures
the highest variance of all following PCs. PCA is used in many different domains
such as gene analysis and face recognition.

An interesting property of PCA in the context of trace set analysis is that
correlating samples in time are projected onto one or a few PCs. As time-domain
traces often have multiple samples where leakage is presented, we hypothesize
that these samples will be projected onto only a few PCs. This implies effective
filtering strategies that are possible when other PCs are filtered out, and addi-
tionally CPA could be performed on PCA transformed traces. In this paper we
explore these ideas. We show several directions for the PCA tools to improve
side-channel analysis in pre-processing as well as in the actual analysis.

First Results of Using Principal Component Analysis 385

We first use PCA to transform trace sets such that, even when leakage
of the key bits (through the sensitive variables) appears at different points in
time, the trace set can be still analyzed with DPA. As PCA transform can reduce
the dimension of the trace set, we also show how to transform the original data
to a new trace set in terms of the Principal Components. After applying this
transformation, the most variance within the data is included in the first part
(the first Principal Components) of the transformed trace set. This fact is also
used by [14], where the authors defined a new side-channel distinguisher based
on the first principal component.

There were several attempts to deploy PCA in side-channel cryptanalysis but
the full potentials of it are yet to be fully unleashed. First investigation was
performed by Bohy at al. [2]. They considered PCA as a method to improve
power attacks. However, their results cover the effects of PCA on SPA only,
while further studies extend to PCA on DPA and CPA.

Archambeau et al. [1] used PCA for template attacks. In this approach the
traces are first transformed by PCA in order to perform interest point selection.
Indeed, in the pre-processing phase the attacker builds templates in order to
complete the profiling phase by using a clone of the device under attacks. Then,
the templates are used to mount an attack on the real device. The top prin-
cipal components are used to capture the maximum variance between different
template classes.

In contrast to [1] Souissi et al. [14] used PCA not as pre-processing tool but as
a common side-channel distinguisher. The new distinguisher has the usual steps
of differential power analysis (DPA [8] or CPA [3]) that consists of computational
phase only and does not require an identical device for profiling.

Our Contribution. Our work is not considering the scenario of template at-
tacks (that are assumed to be the strongest side-channel attacks [15]) nor we
deploy PCA as yet another distinguisher. We introduce PCA as a suitable pre-
processing technique on the power traces to enhance the results of DPA. The
two benefits of PCA we observe are noise reduction and a PCA transformation
(leading to more efficient DPA). Both were analyzed and several experiments
are performed on unprotected and implementations with countermeasures. Ad-
ditionally, we investigate the suitability of PCA on misaligned traces where our
results show good results when compared to e.g. static alignment. We conclude
that PCA has many potentials in the field of side-channel cryptanalysis and we
expect more research to evolve.

The remainder of this paper is organized as follows. Section 2 describes some
background on PCA and its applications. Our experiments with PCA related to
DPA are described in Sect. 3. We compare our results to some previous work in
Sect. 4. In Sect. 5 we conclude this work and discuss our findings.

386 L. Batina, J. Hogenboom, and J.G.J. van Woudenberg

2 Principal Component Analysis

Principal Component Analysis (PCA) is a multivariate technique that is widely
used to reduce the noise or the dimensionality in a data set, while retaining the
most variance. The origin of PCA goes back more than 100 years ago to Pearson
[12] and also later a relevant formulation is due to Hotelling [6].

PCA computes a set of new orthogonal variables (by means of eigenvectors)
with the decreasing variances within the data set, producing Principal Compo-
nents (PC). The largest variance is captured by the highest component. PCA is
used in many different domains such as gene analysis and face recognition.

When we consider PCA in terms of power measurements, we have a data set
where the dimensionality is equal to the number of samples and the number of
observations is equal to the number of traces. This means that the number of
Principal Components which can be deduced from a power trace is (at most)
equal to the number of samples.

The main drawback of PCA is that a covariance matrix of n ∗ n (where n
is the number of samples) must be calculated. This means that the calculation
time increases quadratically relative to the number of samples.

2.1 Example

In order to illustrate the way PCA works, we give a small example for a two-
dimensional (x,y) data set with 50 observations [7]. In Fig. 1 (left) a plot of this
data set is given. The first principal component is required to have the largest
variance. The second component must be orthogonal to the first component
while capturing the largest variance within the data set in that direction. These
components are plotted in Fig. 1. This results in components which are sorted by
variance, where the first component captures the largest variance. If we transform
the data set using these principal components, the plot given in Fig. 1 (right)

Fig. 1. A plotted data set with both of its principal components (left) and plot of the
transformed data set with respect to the both principal components (right) [7]

First Results of Using Principal Component Analysis 387

will be obtained. This plot clearly shows that there is a larger variation in the
direction of the first principal component.

2.2 PCA Transformation

In general PCA is used when trying to extract the most interesting informa-
tion from data with large dimensions. More precisely, PCA attempts to find a
new representation of the original set by constructing a set of orthogonal vec-
tors spanning a subspace of the initial space. The new variables that are linear
combinations of the starting ones are called principal components.

Power traces usually have large dimensions, and one would like to find the
information of the key leakage within them.

In order to calculate PCA, the following few steps have to be performed [13].

– First, the mean is computed as the average over all n dimensions (samples).

Mn =

n∑
i=1

Ti,n

n

where Ti,n means all traces are considered as n-dimensional vectors.
This mean Mn is afterwards subtracted from each of the dimensions n for
each trace Ti.

Ti,n = Ti,n − Mn

– The covariance matrix Σ is constructed. A covariance matrix is a matrix
whose (i, j)th element is the covariance between the ith and jth dimension
of each trace. This matrix will be a n ∗ n matrix where n is equal to the
number of samples (dimension) of the power traces. This means that the
calculation time increases quadratically relative to the number of samples.
In general, the covariance for two n-dimensional vectors X and Y is defined
as follows:

Cov(X, Y) =
∑ n

i=1(Xi−X̄)(Yi−Ȳ)

n−1

Using the formula for the covariance, the covariance matrix is defined as
follows:

Σn∗n = (ci,j , ci,j = Cov(Dimi, Dimj))

Where Dimx is the xth dimension.
– Then the singular values decomposition (SVD) i.e. the eigenvectors of the

covariance matrix are calculated.

Σ = U ∗ Λ ∗ U−1

388 L. Batina, J. Hogenboom, and J.G.J. van Woudenberg

Here Λ is diagonal matrix (with the eigenvalues on the diagonal) and U is an
orthogonal matrix of eigenvectors of Σ. These eigenvectors and eigenvalues
already provide information about the patterns in the data.
The eigenvector corresponding to the largest eigenvalue is called the first
principal component, this component corresponds to the direction with the
most variance. Since n eigenvectors can be derived, there are n principal
components. They are ordered from high to low based on their eigenvalue.
In this way the most relevant principal component are sorted first.

In order to reduce the dimension, we can optionally choose (first) p components,
and form a matrix with these vectors in the columns. This matrix is called the
feature vector. In the literature, there are several tests known helping in deciding
on the number of components to keep.

With these p feature vectors we have two choices. The original data can be
transformed to retain only p dimensions, or the noise of the original data set can
be reduced using some components while keeping all n dimensions.

2.3 Assumptions and Properties of PCA-Transformed Data

When using this technique we are accepting some ground assumptions behind
PCA and correspondingly we have to carefully consider situations where the
assumptions are not (fully) valid.

Assumptions of PCA

– Linearity. This fact assumes that new vectors i.e. components are linear
combination of original ones, so we rely on the same concept for leakage.

– Components with large variances are the most interesting ones. We show in
Sect. 3 that this is not always valid.

– The reduction of the dimension of the original data set does not lead to the
loss of important information. On the contrary, this can lead to better results
e.g. when noise is removed to improve the key recovery.

As time-domain traces often have multiple samples where leakage is presented,
we hypothesize that these samples will be projected onto only a few PCs. This
implies that effective filtering strategies are possible when other PCs are filtered
out, and additionally CPA could be performed on PCA transformed traces. We
investigate this in more details in the remainder of this paper.

2.4 Multiple Leakage Points and PCA

As mentioned above PCA computes new variables i.e. principal components
which are derived as linear combinations of the original variables. As a conse-
quence, in the context of power analysis we have the following observation. An
interesting property of PCA in the context of trace set analysis is that corre-
lating samples in time are projected onto one or a few PCs. For instance, a PC
which has two positive peaks at time t0 and t1 implies that the original trace

First Results of Using Principal Component Analysis 389

set has positively correlating values at time t0 and t1. Also, the larger the PC
is, the larger the variance at these times is.

To show these properties, we analyze applying PCA transformations to some
simulated power traces. We first create a noisy trace set with three points of
leakage: a point A with leakage, a non-correlating point B with leakage, and a
point C with leakage negatively correlating with peak A. Each trace also has
some low noise added. Figure 2 shows twenty overlapped traces from this set.
We also create a similar set with misaligned peaks (Figure 3). For both trace
sets we calculate the principle components, as shown in Figure 4a and 4b.

First, it is clear that the first principle component captures the correlation
between the peaks A and C, and the second captures peak B. This also implies
that all samples in peak A and C (and similarly peak B) are accumulated into
one dimension after the PCA transformation. This can potentially increase DPA
leakage, which is calculated per dimension. It is interesting this holds for both
aligned and misaligned traces, which also shows that a transformation could
project misaligned peaks onto a few dimensions.

Second, in the aligned case, the first two principle components capture all
peak information. The other principle components all capture noise. For the
misaligned case, the other principle components represent different shifted peaks.

These experiments show that, even under misalignment, PCA transformations
can project multiple correlating points of leakage onto several PCs. As DPA on
a transformed traceset analyzes PCs separately, this may improve the signal-to-
noise ratio.

Fig. 2. Aligned traces with three leakage points

Fig. 3. Misaligned traces with three leakage points

390 L. Batina, J. Hogenboom, and J.G.J. van Woudenberg

(a) Aligned peaks. (b) Misaligned peaks.

Fig. 4. First four Principle Components of transformed trace sets

2.5 Noise Reduction

Due to various countermeasures that aim at making DPA more difficult by e.g.
adding a lot of noise, it is sometimes required to perform a lot of pre-processing
to remove the noise for successful key recovery. In particular, one can use chosen
Principal Components to retain only certain (sensitive) information. One of the
assumptions behind PCA (cf. Sect. 2) is that PC with larger variances represent
interesting data, while others with lower variances represent noise. Therefore,
the goal is to remove the components which contribute to the noise. The first
step is the same as in a transformation, the feature vector U is transposed and
multiplied with the transposed mean-adjusted data X .

Y = UT ∗ XT = (X ∗ U)T

Hence, when extraction the undesired i.e. noise-representing components is per-
formed, the procedure is as follows. The dimensionality of the data is reduced
to p by projecting each x in X into y = UT

p ∗ x where Up are the first p columns
of U , and y is a p-vector. The PCA approximation (of the input x) with only p
principal components is then;

x̃ =
p∑

j=1

(uT
j ∗ x) ∗ uj

and the (squared reconstruction) error can be shown to be equal to
∑n

i=p+1 λi

that is, the sum of the eigenvalues for the unused eigenvectors.

Choosing the Right Components to Keep. There are extensive discus-
sions in the literature about the choice of components to keep in order to get
the maximum from using PCA. The ideas and approaches depend heavily on
applications. Since this method is mostly used to find the most distinctive data

First Results of Using Principal Component Analysis 391

(which usually is the data with the most variance), most of the literature deals
with deciding about the amount of the “smaller” components that can be left
out.

For side-channel analysis, this is not the right route to take. Usually, power
traces contain a lot of noise and this noise typically has a large variation relative
to the DPA information we are looking to find. This means that, depending on
the process of collecting the power measurements to be analyzed, the noise can
also be captured by the largest principal components, especially for “real” trace
sets i.e. the one where countermeasures are deployed. Since we would like to
get rid of the noise, we need to find which principal components we can safely
remove without losing the data relating to the secret key. We address this issue
in our experiments.

3 Experiments

As described in Section 2, PCA can be used in two ways. We can perform a
transformation using PCA and do the analysis on Principal Components, or
we could use only a subset of Principal Components to reduce the noise in the
original trace set. In this section we address both aspects.

We performed our experiments by taking power measurements of a smartcard
which contains a software DES implementation. In order to test PCA against
countermeasures, we used an implementation that contains a configurable coun-
termeasure that introduces random delays. We used a Picoscope 5203 and a
modified smart card reader to obtain power measurements from the used smart-
card. In order to enhance the signal, we used an analog 48 MHz low-pass filter.
We performed all experiments also on a hardware DES implementation and on
implementations of other cryptographic algorithms i.e. AES and ECC. These
experiments showed the same results as described in Section 3, which means
that the method is not implementation or algorithm dependent.

3.1 Noise Reduction

We know that the process-related signal within the trace set has a large varia-
tion, so it should be captured by the largest Principal Components. Any noise
in the measurement is captured by smaller PCs. However, this general observa-
tion is not directly applicable to power consumption signals. More precisely, the
exact positions of key-related information differ for various implementations and
platforms.

Nevertheless, it is valuable to find out where the noise-related information
is located, either as a result of some countermeasures or due to measurement
set-ups that are used. If we remove these principal components and retain all
others (the ones which contain the key information), we might be able to reduce
the noise i.e. to improve the signal to noise ratio, and therefore enhance the DPA
analysis.

We tested this hypothesis on our set of power measurements of a software
DES implementation. We took 200 traces of 312 samples of the DES encryption.

392 L. Batina, J. Hogenboom, and J.G.J. van Woudenberg

All countermeasures were turned off, which meant that we already could find
the correct key using a CPA attack. Also, this meant that we knew in which
sample the key leakage was present.

We used this trace set for the rest of our experiments with noise reduction
using PCA. We plotted the principal components to see if they contained any
interesting properties. It appeared that different principal components captured
more or less information for the known key leakage samples. As an example, we
inspected the 15th principal component. It appeared to have a high peak for the
sample with the key leakage of S-Box 8 so it contained some information about
the data at that sample location. We tested this hypothesis by performing a
noise reduction retaining all principal components except this 15th. When we
performed a DPA attack on the resulting trace set, the correlation for the correct
key guess for S-box 8 dropped significantly.

Since we expect the largest amount of non-key information to be captured by
the largest principal components, we remove some of these largest components.
When we perform a DPA attack on the resulting noise-reduced trace set, we
can see an increase in the correlation value for the correct key guess. From this
observation, we can conclude that we removed more noise than signal.

We observed that different components capture the DPA information from
different S-boxes. This means that the best results are obtained if one knows
which component captures the most variation for the sample where the key
leakage is. Subsequently this means that for the best results, one needs to know
the sample with the key leakage. This implies that one should obtain a card of the
same type with a known key to find at which moment in time the information is
exploitable. In this way, a sort of profiling is performed i.e. templates are created
in order to speed-up the key recovery.

Another useful observation is on software versus hardware implementations.
Our findings prove hardware measurements obtained from a card with a co-
processor more “noisy” and best results were obtained by removing up to the
first 50 components. The exception was a set of measurements obtained from
SASEBO-R board where the highest key-dependent leakage was observed within
the 3rd principal component. As a conclusion, there is a lot of potential in PCA
for noise reduction, but the threshold for improving the leakage has to be decided
on the basis of a given implementation. Nevertheless, we were able to improve
the leakage in all observed cases.

3.2 PCA Transformation

Whereas during noise reduction we first transform the trace set, remove some
components and then transform the trace set back for further analysis, we could
also only perform the transformation. This will put the Principal Components
on the main axis, which means that all variance that is correlated at different
points in time will be projected onto a few PCs as elaborated above.

CPA Highest-Peak Distinguisher. We used the same trace set as before
containing 200 traces with 312 samples. To see which effect a transformation has

First Results of Using Principal Component Analysis 393

on the results of a DPA attack, we performed a DPA attack on this transformed
trace set. We found that the correct key guess did not contain the highest peak
in the correlation graph. This means that we are not able to find the correct key
after a PCA transformation.

CPA Abs-Avg Distinguisher. However, when we inspected the correlation
graphs for all key guesses, we found that the graph for the correct key guess was
different from the graphs for the wrong key guesses, see Fig. 5. The correlation
for the first samples (which correspond to the higher principal components)
was higher for the correct key guess compared to the wrong key guess. The
main difference is however that the correlation for the lower samples was much
lower for the correct key guess compared to the wrong key guesses. Actually, the
conclusion is that variances are not the same for all PCs, which we expect when
the right key is used. This is in line with the results of a normal DPA attack
where the correlation for unrelated samples can also be lower for the correct key
guess compared to the wrong key guess [10].

Fig. 5. Correlation trace for the wrong (upper) and the correct (lower) subkey guess

In order to quantify this, we add the absolute values of all samples for all
correlation traces x and divide this result by the total number of samples n in
order to create an average value avg.

avgx =

n∑
i=1

|xi|
n

Where xi denotes the value of the sample at index i in correlation trace x.
We use this method to calculate the absolute average value of each correlation

trace for all samples. A plot of these values is shown in Fig. 6. The x-axis shows
the key guesses for each S-box i.e. the first 64 values correspond to the 64 subkeys
of S-box 1 etc.

394 L. Batina, J. Hogenboom, and J.G.J. van Woudenberg

Fig. 6. Absolute average value of each correlation trace for software DES

The main thing we notice in this graph is the 8 outlying peaks at different
locations. A peak means that the absolute average value of one correlation trace
is lower than the value of the other correlation traces. So we can basically say
that the correlation for that key guess is lower than the correlation of the other
key guesses. Since DES has 8 subkeys we can easily distinguish these and derive
the used secret key. We have found similar results for a hardware DES and an
FPGA-implementation of AES-256.

3.3 PCA on Misaligned Traces

An effective countermeasure against DPA attacks is the introduction of random
delays during execution of the algorithm. This decreases the effectiveness of DPA
as compared to a normal execution since the S-boxes are processed at different
moments in time.

Performing DPA on PCA-transformed traces however, is not as sensitive to
timing. Misalignment creates, in essence, a correlation between different points
in time. This may result in these samples being projected onto a few PCs, and
thereby reduce the effect of the random delay countermeasure.

In order to test this hypothesis, we perform a PCA transformation on an
obtained trace set of 500 traces with 2081 samples of a smartcard performing
software DES with a random delay countermeasure.

We first perform a PCA transformation of the traces. In component 41–57 we
find patterns that are interesting; see Fig. 7.

To investigate this further, we perform a DPA attack on the PCA transformed
traces and obtain the correlation traces for each key guess. From this we find
some peaks at the right key candidate for PC 46, which is very similar to 41. It
thereby appears that these components encode and gather the misaligned key
information.

When we calculate the absolute average value for each of the obtained cor-
relation traces we get the graph as shown in Fig. 8 (Please note that due to
computational issues, we were only able to keep the DPA information for the
first five S-boxes.)

From this experiment we find that our hypothesis that misalignment causes a
correlation between the neighboring samples that have key leakage, and there-
fore they are projected onto a few components. After using the absolute-average
distinguisher, we are able to fully extract the key of the software DES imple-
mentation with random delays.

First Results of Using Principal Component Analysis 395

Fig. 7. The 40th and the 41 principal component of a PCA transformed traceset with
random delays

Fig. 8. Absolute average value of each correlation trace for software DES

4 Comparison to Other Alignment Techniques

There are several other algorithms proposed to handle the misalignment coun-
termeasure e.g. [9,16,11] and in this Section we compare PCA with one of them
i.e. with Static alignment.

Static alignment is the most natural method for the treatment of misaligned
traces and it is clearly described in [9] by Mangard et al. To apply the algorithm,
it is first required to choose a fragment in a so-called reference trace, which should
be ideally close to the attacking interval. Then the algorithm searches for the
same fragment in the other traces and shifts them accordingly. In this way the
alignment of the reference fragment is performed. The main disadvantages of
this method is in somewhat reduced efficiency, when compared to more recent
algorithms but it does improve on the number of traces required for a successful
DPA attack.

We compare static alignment with PCA on the height of the peak for the
correct key guess. For both methods, we compare the difference in the height
of the peak i.e. the correlation values for the correct key guess and for the first
wrong key guess. For PCA, we actually look at the difference in the height of the
average value of the correlation trace. To derive the values for static alignment,
we use the misaligned trace set from our sample card and statically align them
before doing a DPA attack. For PCA, we use the same (misaligned) trace set, to
which we first perform a PCA transformation, and afterwards we calculate the

396 L. Batina, J. Hogenboom, and J.G.J. van Woudenberg

Table 1. Comparison between Static alignment and PCA

Static alignment PCA
Correct key guess 0.4035 0.0450

First wrong key guess 0.2869 0.0393
Difference 28.9% 12.7%

absolute average value for 150 samples of the correlation traces. The results can
be found in Table 1.

We see that PCA does not outperform static alignment, at least for the chosen
trace set. However, the results should be considered less strictly as the method
used for PCA differs from the one for static alignment i.e. actual correlation val-
ues versus absolute average values. Nevertheless, it proves PCA a viable method
for alignment along with pre-processing. As future work, we plan to perform a
meaningful comparison with other, recently published alignment methods such
as Elastic alignment [16] and RAM [11].

5 Conclusions

In this work we introduce Principal Component Analysis as a suitable preprocess-
ing technique on the power traces to enhance the effectiveness of DPA attacks.
In particular, we advocate two separate cases to use PCA, for noise reduction
and a PCA transformation (before the actual DPA). Our results are verified in
practice by several experiments on both, protected and unprotected implemen-
tations. In the experiments we were able to improve the signal to noise ratio in
various occasions when the location of the key leakage is known. We were able
to de-noise a given trace set by retaining only the Principal Components which
capture the variance at the location of the key leakage. The effect of this noise
reduction was that the guessed, correct subkeys had a higher correlation when
a DPA attack was performed on the noise-reduced trace set as opposed to the
correlation on the original trace set. This method works for each of the trace
sets we used.

Acknowledgements. We would like to thank Riscure for providing an envi-
ronment for fruitful discussion during the research, and for providing the side-
channel analysis platform that was used for this work (Inspector). We also thank
Yang Li and Kazuo Sakiyama from University of Electro Communication, Tokyo
for providing us with suitable traces from a SASEBO board. We thank Elena
Marchiori from RU Nijmegen for her insightful comments.

This work was supported in part by the IAP Programme P6/26 BCRYPT of
the Belgian State and by the European Commission under contract number ICT-
2007-216676 ECRYPT NoE phase II and by the K.U.Leuven-BOF (OT/06/40).

First Results of Using Principal Component Analysis 397

References

1. Archambeau, C., Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Template At-
tacks in Principal Subspaces. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 1–14. Springer, Heidelberg (2006)

2. Bohy, L., Neve, M., Samyde, D., Quisquater, J.-J.: Principal and independent com-
ponent analysis for crypto-systems with hardware unmasked units. In: Proceedings
of e-Smart 2003 (2003)

3. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

4. Clavier, C., Coron, J.-S., Dabbous, N.: Differential Power Analysis in the Presence
of Hardware Countermeasures. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS,
vol. 1965, pp. 252–263. Springer, Heidelberg (2000)

5. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Analysis - A
Generic Side-Channel Distinguisher. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008.
LNCS, vol. 5154, pp. 426–442. Springer, Heidelberg (2008)

6. Hotelling, H.: Analysis of a complex of statistical variables into principal compo-
nents. The Journal of Educational Psychology, 417–441 (1933)

7. Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer Series in Statistics.
Springer, New York (2002)

8. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

9. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards (Advances in Information Security). Springer-Verlag New York,
Inc., Secaucus (2007)

10. Messerges, T.S.: Power analysis attacks and countermeasures for cryptographic
algorithms. PhD thesis, University of Illinois at Chicago, Chicago, IL, USA (2000)

11. Muijrers, R.A., van Woudenberg, J.G.J., Batina, L.: RAM: Rapid Alignment
Method. In: Prouff, E. (ed.) CARDIS 2011. LNCS, vol. 7079, pp. 266–282. Springer,
Heidelberg (2011)

12. Pearson, K.: On lines and planes of closest fit to systems of points in space. Philo-
sophical Magazine Series 2(6), 559–572 (1901)

13. Smith, L.I.: A tutorial on principal components analysis (February 2002), http://
www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf

14. Souissi, Y., Nassar, M., Guilley, S., Danger, J.-L., Flament, F.: First Principal
Components Analysis: A New Side Channel Distinguisher. In: Rhee, K.-H., Nyang,
D. (eds.) ICISC 2010. LNCS, vol. 6829, pp. 407–419. Springer, Heidelberg (2011)

15. Standaert, F.-X., Malkin, T.G., Yung, M.: A Unified Framework for the Analysis
of Side-Channel Key Recovery Attacks. In: Joux, A. (ed.) EUROCRYPT 2009.
LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

16. van Woudenberg, J.G.J., Witteman, M.F., Bakker, B.: Improving Differential
Power Analysis by Elastic Alignment. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS,
vol. 6558, pp. 104–119. Springer, Heidelberg (2011)

http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf
http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf

An Efficient Protocol for Oblivious DFA

Evaluation and Applications

Payman Mohassel1, Salman Niksefat2,�,
Saeed Sadeghian3, and Babak Sadeghiyan4

1 University of Calgary
pmohasse@cpsc.ucalgary.ca

2 Amirkabir University of Technology
niksefat@aut.ac.ir

3 University of Calgary
sadeghis@ucalgary.ca

4 Amirkabir University of Technology
basadegh@aut.ac.ir

Abstract. In this paper, we design an efficient protocol for oblivious
DFA evaluation between an input holder (client) and a DFA holder
(server). The protocol runs in a single round, and only requires a small
amount of computation by each party. The most efficient version of our
protocol only requires O(k) asymmetric operations by either party, where
k is the security parameter. Moreover, the client’s total computation is
only linear in his own input and independent of the size of the DFA.
We prove the protocol fully-secure against a malicious client and private
against a malicious server, using the standard simulation-based security
definitions for secure two-party computation.

We show how to transform our construction in order to solve multiple
variants of the secure pattern matching problem without any computa-
tional overhead. The more challenging variant is when parties want to
compute the number of occurrences of a pattern in a text (but nothing
else). We observe that, for this variant, we need a protocol for counting
the number of accepting states visited during the evaluation of a DFA on
an input. We then introduce a novel modification to our original protocol
in order to solve the counting variant, without any loss in efficiency or
security.

Finally, we fully implement our protocol and run a series of experi-
ments on a client/server network environment. Our experimental results
demonstrate the efficiency of our proposed protocol and, confirm the
particularly low computation overhead of the client.

1 Introduction

In the oblivious Deterministic Finite Automata (DFA) evaluation problem, the
first party (Server) holds a DFA Γ , while the second party (Client) holds an
input string X . Their goal is to collaboratively evaluate the DFA Γ on input

� Work done while visiting University of Calgary.

O. Dunkelman (Ed.): CT-RSA 2012, LNCS 7178, pp. 398–415, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

An Efficient Protocol for Oblivious DFA Evaluation and Applications 399

X , allowing one or both of the participants to learn the result Γ (X) without
learning any additional information about each other’s input. A number of appli-
cations with security and privacy concerns can be efficiently formulated as DFA
evaluation and be implemented using secure two-party protocols for oblivious
DFA evaluation.

One such example is the problem of secure pattern matching (or text pro-
cessing) and its variants which have been the focus of several recent works in
the literature [15,2,9,3,6]. In the most common variant of the problem, one is
interested in finding the locations of a specific pattern p in a text T . Pattern
matching has immediate applications in mining and processing DNA data and
is often used in practice, e.g. in the Combined DNA Index System (CODIS)1

run by the FBI for DNA identity testing. There are privacy concerns associated
with algorithms that process individual’s DNA data and, not surprisingly, pri-
vacy issues are the main motivation behind most of the above-mentioned works
on designing secure solutions.

One can formulate the basic variant of the pattern matching problem as the
evaluation of a pattern-specific automaton Γp on a text T [10]. In fact, several
of the papers mentioned above solve the secure pattern matching problem by
designing protocols for oblivious evaluation of Γp on T [3,15,2].

Depending on the application being considered, it can be the case that the
size of the input string to the DFA is large (e.g. the text T in secure pattern
matching), or the size of the DFA Γ itself (e.g. when many patterns are combined
into one DFA). Therefore, for an oblivious DFA evaluation protocol to be a viable
solution for practice, it needs to ensure efficiency and scalability when run on
large DFAs and/or input strings. Towards this goal, we focus on the following
three efficiency criteria:

– Small Number of Asymmetric Operations: Based on existing bench-
marks (e.g. http://bench.cr.yp.to) asymmetric operations (e.g. exponen-
tiation) require several thousand times more cpu cycles compared to their
symmetric-key counterparts. Hence, for an ODFA protocol to be scalable for
large input strings and large DFA sizes, it is essential to minimize the num-
ber of asymmetric operations and to ensure that their number does not grow
with the size of the DFA and/or its input. ODFA protocols of [15] and [3] do
not satisfy this property since the number of exponentiations they require is
linear in the size of the DFA and its input.

– Small Computation for the Input Holder (client): In practice, the
two involved parties do not always have the same computational resources,
and hence it is common to implement the protocols in a client/server model
where one party has to perform noticeably less work. Motivated by this
concern, we require that the input holder’s (client) total work be significantly
smaller, and in particular be independent of the size of the server’s DFA. All
previous solutions for ODFA, including a general solution based on Yao’s
garbled circuit protocol fail to achieve this goal.

1 http://www.fbi.gov/hq/lab/codis

http://bench.cr.yp.to
http://www.fbi.gov/hq/lab/codis

400 P. Mohassel et al.

– Small Number of Rounds of Interaction: we also require our protocols
to have a small number of rounds of interactions (ideally a single round).
A single round of interaction allows the protocol to be deployed in a non-
interactive setting where one party can communicate his message, go offline
and connect at a later time to retrieve the final message. Therefore, very
little online coordination and computation is necessary.

As mentioned above, the existing solutions for oblivious DFA evaluation do not
meet one or more of the above efficiency criteria.

1.1 Our Contributions

A New Protocol For Oblivious DFA Evaluation. Our main contribution
is a new and efficient protocol for oblivious DFA evaluation that meets all three
of the above-mentioned efficiency criteria. The most efficient variant of our con-
struction runs in one and a half rounds, and only requires O(k) asymmetric
operations by either party where k is the security parameter. Moreover, the in-
put holder’s total work is only linear in his input and is independent of the
DFA size.

We prove the protocol fully-secure against a malicious client and private
against a malicious server, using the standard simulation-based security defi-
nitions for secure two-party computation.

Our starting point is a single round protocol between a server who holds the
DFA Γ with |Q| states and a client who holds an n-bit input string X . The
basic idea is for the server to represent the evaluation of Γ on an arbitrary n-bit
string X via a n×|Q| DFA matrix MΓ . A DFA matrix is a simple data structure
used to efficiently evaluate the DFA on any input string of size n. The server
permutes and garbles this matrix into a garbled DFA matrix GMΓ and sends it
to the client.

After the garbling stage, the server and the client engage in a series of oblivious
transfer protocols where the client learns a vector of random keys corresponding
to his input X . These random keys allow the client to ungarble a unique path
that starts from the first row of the matrix and ends in the last row. This path
(referred to as the transit path) corresponds to the evaluation of input X using
the DFA matrix MΓ . The client can extract the final output of evaluation from
this ungarbled transit path but is not able to ungarble any of the remaining
elements in the matrix, or learn any additional information about the DFA.

The number of OTs can be made independent of the client’s input size (i.e., the
number of OTs remains the same, as the input size increases) via use of the OT
extension technique of [7]. More precisely, this extension reduces the number
of exponentiations necessary from O(n) to O(k), but increases the number of
rounds from a single round to one and a half round.

Comparison with Yao’s protocol. We note that the above approach for DFA
evaluation is reminiscent of the Yao’s garbled circuit protocol [16,11], where
the circuit being evaluated is garbled and a set of random keys are used to
ungarble and evaluate the circuit on a specific input. In fact, it is possible to

An Efficient Protocol for Oblivious DFA Evaluation and Applications 401

use Yao’s garbled circuit protocol to implement oblivious DFA evaluation. One
party’s input to the circuit is his input string while the other party’s input is
the DFA itself. However, as discussed in [3], the resulting protocol would be
significantly less efficient compared to ours. Moreover, unlike our construction,
an implementation of ODFAs via a direct application of Yao’s garbled circuit
would yield a protocol wherein the amount of work the client has to perform is
linear in the size of the circuit and hence at least linear in the size of the DFA.
Such a protocol would not satisfy our second efficiency criteria.

However an alternative way of presenting our construction is to describe it
as a generalization of Yao’s garbled circuit protocol where the gates are allowed
to take non-boolean inputs and return non-boolean outputs. We discuss this
variant in more detail, in Section 4.52

We give a more detailed comparison of efficiency between our protocol and
the existing solutions in Section 4.6.

Applications to Secure Pattern Matching. We show how to use our Obliv-
ious DFA evaluation protocol to efficiently solve multiple variants of the Secure
Pattern Matching problem. In the three main variants we consider, one party
holds a text T while the other party holds a pattern p and the aim is for the
first party to learn one of the following but nothing else: (i) whether or not p
appears in T , (ii) all the locations (if any) where p occurs as a pattern in T , or
(iii) the number of occurrences of pattern p in T , while the text holder learns
nothing about the pattern.

The first two variants can be implemented in a relatively straightforward
manner, using appropriate pattern-specific DFAs. In the third variant, we need
to count the number of occurrences of a pattern p in a text T . As discussed
in [9], the number of occurrences of a pattern p is in fact what some applications
of pattern matching are interested in. It is not clear how to directly cast this
problem as a DFA evaluation problem and unlike the existing solutions for the
second variant, we need to hide the locations where the patterns occur from
both parties. It is not obvious how to modify any of the existing secure pattern
matching constructions to solve this variant of the problem without a noticeable
increase in complexity.

To design an efficient protocol for this task, we show how to modify our obliv-
ious DFA evaluation protocol so that it returns the total number of times that
accepting state(s) are visited during the evaluation of an input, instead of a sin-
gle bit indicating an accept/reject final state. In particular, we embed a series
of “random looking but correlated” values in the DFA matrix before garbling it
and show how to modify the original protocol to let the evaluator of the garbled
DFA matrix recover all the embedded strings on the transit path. The evaluator
then uses these values to compute the number of accepting states visited with-
out learning any additional information. The resulting protocol’s complexity is
similar to our original ODFA construction. When applied to the pattern-specific
DFA of [10], our construction automatically yields a secure protocol for counting

2 This was pointed out by one of the reviewers of our paper.

402 P. Mohassel et al.

the number of occurrences of a pattern p in a text T . This new variant of ODFA
maybe be of independent interest in other applications as well.

Implementation and Experimental Results. We fully implement our main
ODFA protocol in a client/server network environment and use the OT ex-
tension of [7] to implement the oblivious transfer component. We measure the
performance of our implementation for a wide range of input and DFA sizes.
Experiments are ran on two machines as the client and the server, each with an
Intel Core i7 processor with 4GB of RAM and connected via a Gigabit Ether-
net. Our experiments confirm our theoretical arguments on the scalability of our
protocol. For instance, on 20-bit inputs and for DFA sizes of as large as 15000
states, or for DFAs with 20 states and inputs as large as 10000-bits, our protocol
runs in less than 1 second. These numbers remain fairly low (under 12 seconds)
even when we increase the number of states or the input bits to 150000. Our
experiments show that the client’s computation is very low, such that for the
case of a DFA with 20 states and inputs of size 150000 bits, his computation
hardly reaches 1 second. For the case of 20-bit inputs and 150000 state DFAs,
client’s computation is even smaller (less than 32 milliseconds). This confirms
the suitability of our protocol for client/server settings, where the input holder
has limited computational resources.

We also note that since we use the OT extensions of [7], OTs are no longer the
computational bottleneck for the server. The main bottleneck for large inputs
and DFAs is the computation the server performs to garble the DFA matrix. A
more detailed discussion of the implementation and the results of experiments
are given in Section 6.

1.2 Related Work

To the best of our knowledge, the first scheme for oblivious DFA evaluation was
proposed in [15] (motivated by the problem of privacy preserving DNA pattern
matching). Their construction is not constant round and only provides security
against semi-honest adversaries. This work was later improved by Frikken [2]
who designed a protocol, with security against semi-honest adversaries, that
runs in a constant number of rounds (more than one) and has fewer asymmetric
computation (exponentiation).

[3] is the only work on oblivious DFA evaluation that considers malicious
adversaries but requires min(O(|Q|), O(n)) rounds of interaction and O(n|Q|)
asymmetric computations, where n is the input size and |Q| is the number of
states in the DFA. The security of our protocol against the input holder is similar
to that of [3], but we achieve a weaker notion of security against a malicious DFA
holder (see Section 4 for more detail). It is also possible to use Yao’s garbled
circuit protocol to implement oblivious DFA evaluation, but as discussed above,
the resulting protocol would not satisfy our efficiency criteria.

The problem of oblivious DFA evaluation can also be formulated as compu-
tation on encrypted data and be implemented using the construction of [8] for

An Efficient Protocol for Oblivious DFA Evaluation and Applications 403

branching programs or the recent fully homomorphic encryption schemes [4].
The problem with these schemes is their high computation cost as the number
of times the corresponding public-key encryption schemes are invoked is at least
linear in the DFA size and its input.

See Table 1 for a more detailed comparison of our protocol with the existing
solution for oblivious DFA evaluation.

We also briefly review the status of protocols for secure pattern matching
here. Let n be the text size and m be the pattern size. The protocol of [3] runs
in O(m) rounds and requires O(mn) exponentiations. The constructions of [5]
and [6] run in a constant number of rounds (more than one) and require O(n+m)
exponentiations. For long texts, where n is large, this renders the exponentiations
a major computational overhead. In contrast, an extended version of our protocol
(in random oracle model) only requires O(k) exponentiations where k is the
security parameter. This improves the efficiency significantly when n* k.

2 Preliminaries

In this section, we introduce the notations used in the rest of the paper. The
cryptographic primitives as well as the security definitions are omitted due to
lack of space. Readers are referred to the full version [12] for more detail.

2.1 Notations

Throughout the paper, we use k to denote the security parameter. We denote
an element at row i and column j of a matrix by M [i, j]. If the element itself
is a pair we use M [i, j, 0] to denote the first value of the pair and M [i, j, 1] to
denote the second value. Vectors are denoted by bold-face letters such as v. We
use a||b to denote the concatenation of the strings a and b. λ is used to denote
an empty string and ab denotes b consecutive concatenation of the string a by
itself.

We denote a random permutation function by Perm. v ← Perm(Q) takes as
input a set of integers Q = {1, . . . , |Q|}, permutes the set uniformly at random
and returns the permuted elements in a row vector v of dimension |Q|. We call
a matrix a permutation matrix if all of its rows are generated in this way. The
following simple algorithm (algorithm 1) can be used to generate a permutation
matrix PER with n rows from the set Q.

Algorithm 1. GenPerm(n,Q)

for 1 ≤ i ≤ n do
PER[i]← Perm(Q)

end for
return PER

404 P. Mohassel et al.

3 DFA and Its Matrix Representation

3.1 DFA

In this paper a deterministic finite automaton (DFA) [14] is denoted by a 5-
tuple Γ = (Q,Σ,Δ, s1, F), where Q is a finite set of states, Σ is a finite input
alphabet, s1 ∈ Q is the initial state, F ⊆ Q is the set of final states, Δ denotes
the transition function and |Q| denotes the total number of states. We represent
states by integers in Z|Q|. Δ(j, α) returns the next state when the DFA is in
state j ∈ Q and sees an input α ∈ Σ. A string X = x1x2 . . . xn ∈ Σn is said
to be accepted by Γ if the state sn = Δ(. . . Δ(Δ(s1, x1), x2) . . . , xn) is a final
state sn ∈ F . A binary DFA is a DFA with Σ = {0, 1}. From this point forward,
we restrict our attention to binary DFAs and the term DFA is used for binary
DFAs.

Our oblivious evaluation protocols take advantage of a matrix representation
of DFAs. Next we define the notions of a DFA matrix and a permuted DFA
matrix which we use throughout the paper.

3.2 DFA Matrix

Assume that the input string of a DFA Γ = (Q, {0, 1}, Δ, s1, F) is a bitstring
X = x1x2 . . . xn ∈ {0, 1}n. Then we can represent the evaluation of Γ on an
arbitrary input X of length n as a matrix MΓ of size n× |Q|. For 1 ≤ i ≤ n, the
ith row of MΓ represents the evaluation of xi.

In particular, the element MΓ [i, j] stores the pair (Δ(j, 0), Δ(j, 1)) which en-
codes the indices of the next two states to be visited (at row i + 1) for input
bits xi = 0 and xi = 1, respectively. At row n where the last bit xn is processed,
instead of storing the indices of the next states, we put a 1 if the next state is
an accepting one, and a 0 otherwise.

There is a simple algorithm for converting a DFA to its corresponding DFA
matrix representation. In the rest of the paper, we denote this algorithm with
DfaMat(Γ, n), which takes a DFA Γ , and an input string of size n as its input
and generates the DFA matrix MΓ .

Evaluation Using the DFA Matrix. One can use MΓ to efficiently evaluate
Γ on any n bit input X . We start at MΓ [1, 1]. If x1 = 0, the first index of the
pair MΓ [1, 1] is used to locate the next cell to visit at row 2. If x1 = 1, the
second index of MΓ [1, 1] is used instead. Then, by considering the chosen pair
in row 2 and the value of x2, one can find the next pair to visit in row 3. This
process is repeated until we reach row n and read either 0 or 1 which will be the
result of the evaluation of X on Γ .

When evaluating an input string X using a DFA matrix, we call the set of
pairs visited starting from row 1 upto row n a transit path for X . A transit path
either ends with 1 which shows that X is accepted by Γ or ends with 0 which
shows that X is not accepted by Γ .

An Efficient Protocol for Oblivious DFA Evaluation and Applications 405

3.3 Permuted DFA Matrix

A permuted DFA matrix PMΓ is generated by randomly permuting the elements
in each row i ofMΓ and updating the associated indices in row i−1 accordingly to
point to the new permuted indices of row i. In order to do this, we first generate
a permutation matrix PER of size n×|Q| using the GenPerm algorithm 1. There
is a simple algorithm that takes PER and MΓ and converts a DFA matrix MΓ

to an equivalent permuted DFA Matrix PMΓ (See [12] for details). In the rest
of the paper, we refer to this algorithm as PermDfaMat().

Evaluating an input using the permuted DFA matrix is almost identical
to the normal DFA matrix with the exception that the evaluation begins at
PMΓ [1, PER[1, 1]].

4 An Efficient Protocol for Oblivious DFA Evaluation

Let the server hold a private deterministic finite automata (DFA) Γ =
(Q, {0, 1}, Δ, s1, F) and the client hold a private string X = x1x2 . . . xn ∈
{0, 1}n. Our goal is to let the client discover whether his string X is accepted by
the server’s DFA Γ or not without revealing anything about X and Γ to server
and client, respectively. In this section we propose a new and efficient protocol
for oblivious DFA evaluation.

The main version of our protocol is a single-round construction that only
requires O(n) exponentiations for both the server and the client, which is in-
dependent of the size of DFA. In the random oracle model and using the OT
extension of [7], we can make this number independent of client’s input by further
reducing the number of exponentiations to O(k), where k is the security param-
eter (at the cost of adding an extra round). In situations where n * k which
is the case in many applications of DFAs in practice, this leads to a noticeable
improvement in efficiency.

We prove the security of our proposed protocol using the standard simulation-
based definitions of security for two-party computation.

4.1 A High Level Overview

Before describing our protocol in more detail we start with a high level overview.

Client Gets His Input Keys. For every bit of client’s input xi, server and
client engage in an oblivious transfer where server’s inputs are two random key
strings (K0

i , K
1
i) corresponding to input bit values 0 and 1. As a result client

learns one of the keys in each pair.

Server Computes a Garbled DFA Matrix. In this stage, server (the holder
of the DFA Γ) first computes a permuted DFA matrix PMΓ corresponding to
her DFA by calling DfaMat(), GenPerm() and PermDfaMat() algorithms (See
Section 3). The permutations are done for the purpose of hiding the structure
of the DFA from client.

406 P. Mohassel et al.

Server then garbles the permuted DFA matrix in a special way. To garble the
matrix server first generates a n× |Q| matrix PAD filled with random strings.
Consider a pair (a0, a1) stored in the cell PMΓ [i, j] of the permuted matrix.
Each value in the pair is encrypted using a one-time pad encryption where the
pad is a combination of PAD[i, j] and the input key strings K0

i , and K1
i . More

specifically, a0 is encrypted using K0
i while a1 is encrypted using K1

i . Then, the
resulting ciphertexts are concatenated and encrypted using PAD[i, j] as the seed
to the PRG G. All the encryptions are one-time pad encryptions.

Note that client can only decrypt ab if he knows both the correct input key
Kb

i and the random string PAD[i, j]. Client will learn one of the two input keys
through the oblivious transfer, but this is not sufficient for decrypting either value
in the pair. Client learns PAD[i, j] only if he is visiting from a legitimate previous
state in the DFA. In order to enforce the latter, PAD[i, j] is concatenated to
the appropriate value (i.e. index) already stored in PMΓ [i − 1, j′], where j′ is
the permuted index (at row i− 1) of a legitimate previous state. It is only after
this concatenations that the matrix is garbled using the one-time pads described
above.

Server sends the resulting garbled DFA matrix GMΓ plus the index and the
pad of starting cell in row 1 to the client. Note that the PAD matrix is not sent
to the client.

Client Evaluates the Garbled DFA Matrix. Client uses the input keys he
retrieves at the OT stage, to decrypt one of the two values in the starting pair.
As a result, he learns the index to a single pair in the next row in addition to
a random pad that he uses to partially decrypt the values in that pair. He then
decrypts exactly one of the values in the pair (completely) using the retrieved
key for his second input bit.

He repeats this process, moving along the transit path for input X until he
reaches the last row and recovers the final output. First, note that for all the
elements not on his transit path, client does not learn the corresponding random
string in the PAD matrix and hence those elements remain garbled to him. For
those pairs that appear on his path, he can only decrypt one of the two values
using the single input key he has retrieved at the OT stage. This rough intuition
behind the security against a malicious client is formalized in the security proof.

4.2 The Protocol 1

Server’s Input: A DFA Γ = (Q, {0, 1}, Δ, s1, F).
Client’s Input: A bitstring X = x1x2...xn ∈ {0, 1}n.
Common Input: The security parameter k, the OT security parameter κ and
the size of DFA |Q|. We let k′ = k+log |Q| throughout the protocol. Parties also
agree on a 1-out-of-2 OT protocol OT = (GOT,QOT,AOT,DOT) and a PRG
G : {0, 1}k → {0, 1}2k′

.

An Efficient Protocol for Oblivious DFA Evaluation and Applications 407

1. Client encrypts his inputs using OT queries, and sends them to
server.

Sending OT Queries to server

Client computes (pk, sk)← GOT(1
κ)

for 1 ≤ i ≤ n do
client computes qi ← QOT(pk, 1

2, 1k
′
, xi)

end for
Client sends pk and q = (q1, q2, . . . , qn) to server.

2. Server Computes a Garbled DFA matrix GMΓ .

Generating random pads and a permuted DFA matrix PMΓ

Server generates n random key pairs for the OTs:

for 1 ≤ i ≤ n do
(K0

i , K
1
i)

$←{0, 1}k
′

end for
Server generates a random pad matrix PADn×|Q|:
for i = 1 to n and j ∈ Q do

PAD[i, j]
$←{0, 1}k

end for
server generates a DFA matrix MΓ :

MΓ ← DfaMat(Γ, n)
server generates a random permutation matrix PERn×|Q|:
PER← GenPerm(n,Q)
server generates a permuted DFA permuted matrix PMΓ :

PMΓ ← PermDfaMat(MΓ , PER)

Computing the Garbled DFA Matrix GMΓ from PMΓ

for each row i = 1 to n do
for each j ∈ Q do

if 1 ≤ i ≤ n− 1 then
GMΓ [i, j, 0]← PMΓ [i, j, 0]||PAD[i + 1, PMΓ [i, j, 0]]
GMΓ [i, j, 1]← PMΓ [i, j, 1]||PAD[i + 1, PMΓ [i, j, 1]]

else if i = n then
GMΓ [n, j, 0]← (PMΓ [n, j, 0])

k′

GMΓ [n, j, 1]← (PMΓ [n, j, 1])
k′

end if
GMΓ [i, j, 0]← GMΓ [i, j, 0]⊕K0

i

GMΓ [i, j, 1]← GMΓ [i, j, 1]⊕K1
i

pad0||pad1 ← G(PAD[i, j])
GMΓ [i, j, 0]← GMΓ [i, j, 0]⊕ pad0
GMΓ [i, j, 1]← GMΓ [i, j, 1]⊕ pad1

end for
end for

408 P. Mohassel et al.

3. Server computes the OT answers a, and sends
(a, GMΓ , PER[1, 1], PAD[1, PER[1, 1]]) to client.

Sending OT Answers and the Garbled Matrix to client

for 1 ≤ i ≤ n do
ai ←AOT(pk, qi,K

0
i ,K

1
i)

end for
Server sends (a, GMΓ , PER[1, 1], PAD[1, PER[1, 1]]) to client where a =
(a1, a2, . . . , an).

4. Client retrieves the keys and computes the final result.

Computing the Final Output

state← PER[1, 1]
pad← PAD[1, PER[1, 1]]
for i = 1 to n− 1 do

Kxi
i ← DOT(sk, ai)

pad0||pad1 ← G(pad)
newstate||newpad← Kxi

i ⊕ padxi ⊕GMΓ [i, state, xi]
pad← newpad
state← newstate

end for
pad0||pad1 ← G(pad)
Client outputs GMΓ [n, state, xn]⊕ padxn ⊕Kxn

n as his final output.

It is easy to verify that if both parties behave honestly, the protocol correctly
evaluates server’s DFA Γ on client’s input X . In particular, client has the se-
cret information necessary to decrypt one of the two values in each pair on the
transition path for input X (in the garbled DFA matrix). Next, we focus on the
proof of security of the protocol and a careful analysis of its efficiency.

4.3 Security Proof

We show that as long the oblivious transfer protocol used is secure, so is our
protocol. Particularly, if the OT is secure against malicious (semi-honest) adver-
saries when executed in parallel, our oblivious DFA evaluation protocol described
above is also secure against malicious (semi-honest) adversaries. The following
Theorem formalizes this statement. See the full version of the paper [12] for the
proof.

Theorem 1. In the OT-hybrid model, and given a computationally secure PRG
G, the above protocol is fully-secure against a malicious client (see definition 1
of [12]) and is private against a malicious server (see definition 2 of [12]).

4.4 Using OT Extension

In our protocol, the main computational overhead for the client is the O(n)
exponentiations required for invoking n × OT 2

1 . However, using the extended

An Efficient Protocol for Oblivious DFA Evaluation and Applications 409

OT protocol of [7] we can reduce the number of exponentiations from O(n) to
O(k) at the expense of security in the random oracle model. This improvement is
significant in those applications of oblivious DFA evaluation where n* k. This
is particularly the case in the secure pattern matching applications where n
represents the size of the text being searched which is often rather large. Using
the OT extension also leads to a slight increase in the number of transferred
messages (from 2 to 3). In other words, the number of rounds increase from 1
to 1.5.

4.5 A Different Presentation of Our Protocol

An alternative presentation of our construction is to describe it as a generaliza-
tion of Yao’s garbled circuit protocol, where the gates to the circuit can take
non-boolean inputs, and return non-boolean outputs.3

More specifically, one can evaluate a DFAD withQ states on a (boolean) input
string x = x1...xn by repeatedly evaluating a ”gate” g that takes as input the
current state qi after reading the first i bits of x (so q0 is just the initial state) and
xi and outputs the next state qi+1. After n applications of the gate g, we obtain
the final state qn of the DFA (explicitly, qn = g(g(...g(q0, x1), ...), xn)), and then
we add one more gate to check whether qn is an accepting state or not. One can
generalize Yao’s garbled circuit construction to handle such non-boolean gates. In
particular, each gate is garbled by constructing 2Q ciphertexts, two for each row.
Similar to Yao’s protocol, each ciphertext is a “double-key” encryption where one
of the keys determines xi’s value and the other determines the input state qi (in
each gate g, a unique key is assigned to each state). Each ciphertext encrypts the
key for the next state which is determined using the transition function. Hence,
each garbled gate g contains O(|Q|) ciphertexts, and requires O(|Q|) symmetric-
key operations by the server to compute. Note that the ciphertexts also need to
embed the (after permutation) index of the next row of ciphertexts to consider in
the upcoming gate.With this approach, the circuit evaluator only needs to perform
O(1) symmetric-key operations per gate to decrypt the output key for each gate.

4.6 Efficiency

In this section we present the complexity analysis of our basic protocol.

Rounds of Communication: Our protocol runs in one round which consists
of a message from client to server and vice versa.

Asymmetric Computation: We have tried to minimize the number of re-
quired asymmetric computation in our protocol since asymmetric operations are
significantly more expensive. The only asymmetric computation we perform in
our protocol is for the OTs. Since each OT requires a constant number of ex-
ponentiations and there are n invocations of such OTs, the overall number of
exponentiation in our protocol is bounded by O(n) for both the server and the

3 This presentation was pointed out to us by one of the reviewers of our paper at
CT-RSA 2012.

410 P. Mohassel et al.

client. Using the amortized OT protocol of Naor and Pinkas [13], server and
client have to perform one and two exponentiations per OT, respectively. Our
use of OT extension further reduces this bound to O(k), where k is the security
parameter.

Symmetric Computation: The only symmetric computation in our protocol
is the PRG invocations. Server performs 2n|Q| PRG invocations to build GMΓ ,
so the symmetric computation for the server is O(n|Q|). Client performs n PRG
invocations for computing the final output and hence the number of symmetric
operations by the client is only O(n).

Communication Complexity: The communication complexity of the protocol
is dominated by the number of bits stored in the garbled DFA matrixGMΓ which
is bounded by O(n|Q|k) where k is the security parameter.

Comparison to Previous Work: Table 1 summarizes and compares the com-
putational and communication costs of our proposed protocol with the related
work. The complexity for a Yao’s-based construction is borrowed from the analy-
sis given in [3]. The complexity of the ODFA protocol based on the construction
of [8] is derived by considering a branching program corresponding to evaluation
of a input of size n on a DFA of size Q. Note that in all the existing construc-
tions except for the one base on Yao’s garbled circuit protocol, the number of
asymmetric operations (exponentiations) by the server is at least linear in both
the input size n and the DFA size Q. In our protocol, on the other hand, this
number is O(n) in the standard model and O(k) in the random oracle model.
This is a significant improvement in efficiency when dealing with large DFA
sizes. Another efficiency criteria we are interested in is small computation by the
input holder (client). In all the previous constructions except for the one based
on [8], the client’s work is at least linear in the DFA size which is undesirable in
applications with large DFAs.

Table 1. A Comparison of Complexities

Round client Computations server Computations Communication
Complexity Asymmetric Symmetric Asymmetric Symmetric Complexity

Troncoso [15] O(n) O(n|Q|) None O(n|Q|) O(n|Q|) O(n|Q|k)
Frikken [2] 2 O(n + |Q|) O(n|Q|) O(n + |Q|) O(n|Q|) O(n|Q|k)
Gennaro [3] min(O(|Q|), O(n)) O(n|Q|) None O(n|Q|) None O(n|Q|k)

Yao’s protocol [16] 1 O(n) O(n|Q| log |Q|) O(n) O(n|Q| log |Q|) O(n|Q|k)
Ishai [8] 1 O(n) None O(n|Q|) None O(kn2)

Protocol 1(PRG) 1 O(n) O(n) O(n) O(n|Q|) O(n|Q|k)
Protocol 1

1.5 O(k) O(n) O(k) O(n|Q|) O(n|Q|k)
(PRG+Extended OT)

5 Counting Accepting States and Secure Pattern
Matching

Modified versions of our proposed protocol for Oblivious DFA evaluation can
be used to efficiently solve multiple variants of the Secure Pattern Matching
problem. This problem has been the focus of several recent works (e.g. see [3,6,9]).
In this section we use the notion of Alice/Bob in which Alice has the role of the

An Efficient Protocol for Oblivious DFA Evaluation and Applications 411

server and Bob has the role of the client in our protocol. This notion helps us
to better explain the secure pattern matching application. In the three main
variants we consider here, one party (Bob) holds a text T while the other party
(Alice) holds a pattern p and the aim is for Alice to learn one of the following:
(i) whether or not p appears in T , (ii) all the locations (if any) where p occurs
as a pattern in T , or (iii) the number of occurrences of a pattern p in T , while
Bob learns nothing about the pattern.

The first two variants can be instantiated through a relatively straightforward
application of our ODFA protocol from Section 4. Nevertheless, a few small
modifications and considerations are necessary to make things work and we
discuss them in the full version of the paper [12].

The more interesting and challenging problem to tackle is the third
variant of secure pattern matching where parties are interested in counting the
number of occurrences of the pattern in a text but nothing else. Counting the
number of occurrences is a natural measure of how related or essential a pattern
is to a studied text. While solving the second variant of the problem would also
provide the number of occurrences of the pattern, it reveals significantly more
information than just the count. Hence, if the number of occurrences is all that
the parties are interested in, a solution for the second variant is not a suitable
solution.

It is not clear how to modify existing secure pattern matching protocols to
solve the third variant without a significant increase in their computation. It is
also not clear how to formulate this problem as an oblivious DFA evaluation
protocol and then apply our construction from Section 4 to it. We observe that
what is really needed to solve this variant of the secure pattern matching prob-
lem, is a modified oblivious DFA evaluation protocol that counts the number
of accepting states visited during an input evaluation and outputs this count as
the final result as opposed to a single bit indicating whether the final state was
an accepting or a rejecting one. This modified version of the ODFA protocol,
when applied to the pattern-specific DFA of KMP [10], yields exactly a secure
protocol for the third variant of the pattern matching problem. Our solution for
this variant uses a novel trick (see Section 5.1 for details) that allows Alice to
learn the number of occurrences of the pattern p without having to perform any
additional computation.

5.1 Third Variant: Number of Locations of p in T

Now consider the more challenging variant where the goal is to only reveal the
number of occurrences to Alice or Bob but nothing else. First consider the case
where Bob is to learn the number of matches while Alice learns nothing. The
pattern-specific DFA we need is again generated using the KMP algorithm [10].
The main observation is that for the KMP-transformed DFA, the number of
accepting states visited in one evaluation of a text T , is exactly the number
of times a pattern p occurs in a text T . Hence, all we need to do is to design
a protocol for counting the the number of accepting states visited during a

412 P. Mohassel et al.

DFA evaluation of the input. Such an oblivious DFA protocol might find other
applications in future.

Modifications. Alice generates n uniformly random values si ∈ F for 1 ≤ i ≤ n
where F is a finite field of size |F | > |T |. Alice then computes S =

∑n
i=0 si. When

generating the DFA matrix, for each row i of MΓ , Alice concatenates the values
in each cell by si except for the cells corresponding to accepting states for which
the value si+1 is concatenated instead. The DFA matrix is then garbled as usual.
Alice sends S along with the garbled DFA matrix to Bob. When computing the
final output, Bob collects all the values s′i ∈ F for 1 ≤ i ≤ n on his transit path.
Finally, Bob computes the sum of those values (S′ =

∑n
i=0 s

′
i), and outputs

S′ − S as the number of occurrences of p in T .
Now if we only want Alice to learn the result, we do not send the value S to

Bob. Instead, in the above protocol when Bob calculates S′, he sends it back to
Alice who computes S′− S on his own in order to learn the number of matches.

Correctness. The intuition behind the correctness of the algorithm is that for
each location i where p appears in T , the value si + 1 is retrieved by Bob and
for all other locations the value si. Hence, the number of additional 1s is exactly
equal to the number of locations of p in T .

Security. In order to prove the security of the scheme, we need to show that
Bob cannot distinguish between si and si+1 values he retrieves since they both
are uniformly random values in F . In other words, we need to show that his view
is simulatable given just the final output.

The proof of security in this case is slightly more subtle, since it does not
automatically follow from our original ODFA protocol. Hence, we outline the
intuition behind it next. Our main observation is that the following two distri-
butions (DV and D′

V) are identically distributed.
Let V be an arbitrary subset of size t of {1, . . . , n}. Here, V represents the

locations in T where matches occur. Consider the following two distributions:

1. (DV) Choose n uniformly random values {s1, ... sn} ∈ F . Compute S =∑
si. For every i in V , let s′i = si + 1. For the rest, let s′i = si. Output

(s′1, ..., s′n).
2. (D′

V) Choose a uniformly random value S in F . Let S′ = S + t. Generate

n− 1 random values s′1, ..., s
′
n−1. Let s

′
n = S′−

∑n−1
i=0 s′i. Output (s′1, ..., s

′
n).

It is relatively easy to show that the above two distributions DV and D′
V are

identical for any subset V ⊂ {1, . . . , n} of size t. Given this property, we can
modify the original proof of security for our oblivious DFA evaluation protocol
such that the simulator in the proof of Theorem 1 samples from the second
distribution (D′

V) while the first distribution (DV) represents the distribution
of the corrupted party’s view in the real world execution of the protocol. Since
sampling from D′

V only requires knowledge of t (i.e. the number of occurrences
of p in T), our simulator can simulate the real world adversaries’s view given
only the final output. A complete proof of security for the above protocol closely
follows the proof of Theorem 1, and hence is omitted.

An Efficient Protocol for Oblivious DFA Evaluation and Applications 413

6 Implementation and Experimental Results

To demonstrate that our proposed protocol as well as its variants are practical,
we have implemented and evaluated our protocol. Implementation is done using
C++ and the Crypto++ library v.5.61. The experiments were run on two ma-
chines one as the client (input holder) and the other as the server (DFA holder).
Each of these systems has an Intel Core i7 processor, with 4GBs of RAM. They
systems are connected using a 1 GB ethernet.

6.1 OT Implementation

For our OT protocol, we have implemented the Naor-Pinkas amortized OT (See
section 3.1 of [13]) which requires one exponentiation for each transfer. We im-
plemented their protocol over Elliptic Curves (EC) for better efficiency. The EC
curve we use is the NIST recommended curve P-192 (see Section D.1.2.1 of [1]).

We have also implemented the OT extensions of [7] for improved efficiency.
Two extensions are discussed in [7]. The first one is concerned with extending
the number of OTs efficiently (Section 3) while the second extension (Appendix
B [7]) reduces oblivious transfer for long strings to oblivious transfer of shorter
strings.

Both extensions mentioned above rely on the use of a hash function (in the
random oracle model). We have chosen SHA-256 for this implementation. When
the number of OT invocations is lower than k = 80, we make a direct call to our
base OT protocol, but otherwise employ the first extension to reduce the number
of OT invocations. When we encounter an OT with message sizes larger than
256 bits (equivalently 32 bytes) we reduce them to an OT with message size of
256 bits using the second extension. Note that since in this protocol the message
for each OT is XORed with the output of the random oracle (hash function), we
are able to handle varying message sizes for each OT by simply adjusting the
output size of the random oracle to the corresponding message size.

The PRG is also implemented using sufficient invocations of the random oracle
(i.e. SHA-256).

Table 2. Empirical Results: running times in (ms)

Client Client Server Server Comm.
n Ungarbling OT Garbling OT (MB)

100 0.13 67.10 6.85 127.60 0.06
500 0.61 69.65 34.04 130.01 0.28
1500 1.92 74.40 102.22 137.20 0.83
5000 6.32 92.05 340.10 159.89 2.72
10000 12.66 118.36 674.59 191.05 5.44
20000 25.43 166.50 1352.59 254.48 10.88
50000 64.35 323.48 3409.71 448.51 27.19
75000 96.44 451.53 5056.24 610.65 40.78
100000 128.89 576.53 6794.88 782.05 54.38
150000 194.66 837.6010244.401087.57 81.55

(a) Experiment 1

Client Client Server ServerComm.
Q Ungarbling OT Garbling OT (MB)
100 0.02 32.14 6.89 17.76 0.05
500 0.02 31.80 33.37 18.54 0.27
1500 0.02 31.90 99.74 18.26 0.80
5000 0.03 32.36 331.47 18.44 2.67
10000 0.03 31.86 666.18 18.51 5.34
20000 0.03 31.56 1332.67 18.39 10.68
50000 0.03 32.12 3373.53 17.92 26.71
75000 0.03 32.22 5169.60 18.88 42.92
100000 0.03 32.57 6949.88 18.56 57.22
150000 0.03 32.29 10640.30 18.44 85.83

(b) Experiment 2

414 P. Mohassel et al.

6.2 Experiments

We have designed two experiments to analyze the effect of the input size
and the DFA size on the performance of our protocol. In the first experiment we
fix the DFA size and increase the input size, while in the second experiment we
fix the input size and increase the DFA size. In what appears next, we refer to
the input holder as the client while referring to the DFA holder as the server.

Experiment 1. In the first experiment, an arbitrary DFA with 20 states is
considered. We have chosen a low number of states in order to draw a clear
conclusion on the effect of the input size. We then increase the input size starting
from 10 bits all the way up to 150000 bits. This experiment is of interest for
applications such as DNA matching where the input can be large while the
number of DFA states (related to the pattern size) is often low. It is noteworthy
to mention that by fixitng the state size, the DFA transitions does not have
any effect on computation or communication costs and hence we just selected a
DFA with arbitrary transitions. The results of this experiment are presented in
Table 2(a).

From Table 2(a), it can be observed that the client time is dominated by
the client’s OT time, and the client’s evaluation (ungarbling) time is almost
negligible for even large input sizes. This is due to the fact that the client’s
ungarbling is limited to only one PRG evaluation per input bit. On the other
hand, based on Table 2(a), for large input sizes, server time is dominated by
the server’s garbling time. The reason for this is partly due to our use of OT
extension, which prevents the number of exponentiations from increasing as the
input size grows. We also note that that for input size of 2000 bits or more,
OT time is no longer the bottleneck for the overall protocol. Furthermore, the
server’s garbling time is dependent on the size of the DFA matrix (unlike client’s
evaluation time which only depends on the number of rows of the matrix) and
hence grows as we increase the input size.

Experiment 2. In the second experiment, for a fixed input size of 20 bits, we
produce arbitrary DFAs with increasing number of states (10 to 150000 states).
The results of this experiment are presented in Table 2(b).

Based on Table 2(b) we note that the server time is dominated by the server
garbling time, since the number of OTs remain the same. The OT time for 20-
bit inputs is approximately 32 milliseconds for both the client and the server.
Client’s ungarbling time is negligible because it does not depend on the number
of states. When the input size is 20, for DFA sizes of over 200, the OT is no
longer the bottleneck. Again we have a negligible computation time for the client
and a total time (client + server) of under 1 second for DFAs with number of
states as large as 15000.

Finally, we note that the communication time only constituted a small por-
tion of the total time in our experiments and hence we only report the size of
communication in the tables.

An Efficient Protocol for Oblivious DFA Evaluation and Applications 415

References

1. FIPS, P.: 186-3. Digital signature standard (DSS) (2009)
2. Frikken, K.: Practical Private DNA String Searching and Matching through Effi-

cient Oblivious Automata Evaluation. In: Gudes, E., Vaidya, J. (eds.) Data and Ap-
plications Security 2009. LNCS, vol. 5645, pp. 81–94. Springer, Heidelberg (2009)

3. Gennaro, R., Hazay, C., Sorensen, J.: Text Search Protocols with Simulation Based
Security. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp.
332–350. Springer, Heidelberg (2010)

4. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
the 41st Annual ACM Symposium on Theory of Computing, pp. 169–178. ACM
(2009)

5. Hazay, C., Lindell, Y.: Efficient Protocols for Set Intersection and Pattern Matching
with Security against Malicious and Covert Adversaries. In: Canetti, R. (ed.) TCC
2008. LNCS, vol. 4948, pp. 155–175. Springer, Heidelberg (2008)

6. Hazay, C., Toft, T.: Computationally Secure Pattern Matching in the Presence of
Malicious Adversaries. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp.
195–212. Springer, Heidelberg (2010)

7. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending Oblivious Transfers Effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003)

8. Ishai, Y., Paskin, A.: Evaluating Branching Programs on Encrypted Data. In:
Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer, Heidelberg
(2007)

9. Katz, J., Malka, L.: Secure text processing with applications to private DNAmatch-
ing. In: Proceedings of the 17th ACM Conference on Computer and Communica-
tions Security, pp. 485–492. ACM (2010)

10. Knuth, D., Morris Jr, J., Pratt, V.: Fast pattern matching in strings. SIAM Journal
on Computing 6, 323 (1977)

11. Lindell, Y., Pinkas, B.: A proof of Yao’s protocol for secure two-party computation.
Journal of Cryptology 22(2), 161–188 (2009)

12. Mohassel, P., Niksefat, S., Sadeghian, S., Sadeghiyan, B.: An efficient protocol
for oblivious DFA evaluation and applications. Cryptology ePrint Archive, Report
2011/434 (2011), http://eprint.iacr.org/

13. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Proceedings of the
Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2001, pp.
448–457 (2001)

14. Sipser, M.: Introduction to the Theory of Computation. International Thomson
Publishing (1996)

15. Troncoso-Pastoriza, J., Katzenbeisser, S., Celik, M.: Privacy preserving error re-
silient dna searching through oblivious automata. In: Proceedings of the 14th ACM
Conference on Computer and Communications Security, pp. 519–528. ACM (2007)

16. Yao, A.: Protocols for secure computations. In: Proceedings of the 23rd Annual
Symposium on Foundations of Computer Science, pp. 160–164. Citeseer (1982)

http://eprint.iacr.org/

Secure Multi-Party Computation

of Boolean Circuits with Applications
to Privacy in On-Line Marketplaces

Seung Geol Choi1, Kyung-Wook Hwang2, Jonathan Katz1,
Tal Malkin2, and Dan Rubenstein2

1 University of Maryland
{sgchoi,jkatz}@cs.umd.edu

2 Columbia University
{kwhwang@ee,tal@cs,danr@cs}.columbia.edu

Abstract. Protocols for generic secure multi-party computation (MPC)
generally come in two forms: they either represent the function being
computed as a boolean circuit, or as an arithmetic circuit over a large
field. Either type of protocol can be used for any function, but the choice
of which protocol to use can have a significant impact on efficiency. The
magnitude of the effect, however, has never been quantified.

With this in mind, we implement the MPC protocol of Goldreich,
Micali, and Wigderson [13], which uses a boolean representation and is
secure against a semi-honest adversary corrupting any number of parties.
We then consider applications of secure MPC in on-line marketplaces,
where customers select resources advertised by providers and it is de-
sired to ensure privacy to the extent possible. Problems here are more
naturally formulated in terms of boolean circuits, and we study the per-
formance of our MPC implementation relative to existing ones that use
an arithmetic-circuit representation. Our protocol easily handles tens of
customers/providers and thousands of resources, and outperforms exist-
ing implementations including FairplayMP [3], VIFF [11], and SEPIA [7].

1 Introduction

Protocols for secure multi-party computation allow a set of parties P1, . . . , Pn

to compute some function of their inputs in a distributed fashion, while reveal-
ing nothing to a coalition of corrupted parties about any honest party’s input
(or any group of honest parties’ inputs), beyond what is implied by the output.
Seminal results in cryptography dating to the 1980s [30, 13, 12] show that any
polynomial-time function can be computed securely in the presence of coalitions
of up to n− 1 corrupted parties. For many years, the perception was that these
were to be viewed as purely theoretical results with little practical relevance. This
changed (to some extent) with the advent of Fairplay [24], an implementation of
Yao’s protocol for secure two-party computation that demonstrated for the first
time that generic protocols were within the realm of feasibility. Since then, sev-
eral implementations of generic secure two-party and multi-party computation

O. Dunkelman (Ed.): CT-RSA 2012, LNCS 7178, pp. 416–432, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Secure Multi-Party Computation of Boolean Circuits with Applications 417

protocols have been developed [3, 22, 5, 11, 26, 7, 15, 23], and this is currently an
active area of research.

In this work our focus is on generic protocols for secure multi-party computa-
tion (MPC) in the semi-honest setting. (In the semi-honest setting, parties are
assumed to follow the protocol but coalitions of malicious parties may attempt
to learn additional information from the joint transcript of their execution of
the protocol. By “generic” we mean protocols that can be used to securely com-
pute arbitrary functions.) There are, broadly speaking, two approaches taken by
protocols for secure MPC: they either represent the function being computed
as a boolean circuit, or as an arithmetic circuit over a (cryptographically) large
field1 F. Although any function f can be computed using either type of protocol,
the choice of representation affects the size of the circuit implementing f , and
hence the overall efficiency of a secure protocol for computing f . The magnitude
of the effect, however, has never been measured experimentally.

Most existing implementations of secure MPC rely on an arithmetic-circuit
representation, with ShareMind [4], VIFF [11], and SEPIA [7] serving as promi-
nent examples. We are aware of only one existing implementation of secure MPC
(namely, FairplayMP [3]) using boolean circuits. As we will see, for certain prob-
lems a boolean-circuit representation is more natural, and so it is important to
have protocols of both types available. Indeed, the motivation for our work came
from trying to apply secure MPC to privacy-preserving computation in on-line
marketplaces, where customers select resources advertised by providers and it
is desired to ensure privacy to the extent possible. (See the following section
for details.) In doing so, we found that existing implementations of secure MPC
were unsuitable or too inefficient for our purposes. Moreover, all the MPC imple-
mentations mentioned above assume an honest majority, even though resilience
against an arbitrary number of corruptions is known to be attainable.

1.1 Our Contributions

We implemented the classical MPC protocol of Goldreich, Micali, and Wigder-
son [13] (the GMW protocol), which uses a boolean-circuit representation for
the function being computed and is secure against a semi-honest adversary con-
trolling any number of corrupted parties. In our implementation, described in
Section 2, we employ several optimizations to improve efficiency. Our code is
publicly available2 and we expect that, as with other systems, it will be useful
in future work on privacy-preserving distributed computation.

With our system in place, any privacy-preserving multi-party computation can
be solved, in principle, by defining an appropriate circuit for the task at hand. We
designed circuits addressing three different (but related) problems in the context
of on-line marketplaces where, generally speaking, providers advertise resources
to be selected and subsequently utilized by customers, and the purpose of the

1 Of course, a boolean circuit can be viewed as a circuit over the field F = GF (2). The
distinction is that protocols using arithmetic circuits require 1/|F| to be negligible
in order for security and correctness to hold.

2 http://www.ee.columbia.edu/~kwhwang/projects/gmw.html

418 S.G. Choi et al.

marketplace is to match customers with providers in a way that optimizes some
value under a certain set of constraints. We look at the following examples:

– P2P Content-Distribution Services. [9,18] provide a marketplace where
content is the resource, and providers advertise availability of content at
peers. Here, a customer may want to determine which peer hosting the de-
sired content is the best choice (e.g., closest, or having minimal delay) for
retrieving that content.

– In Cloud Computing. providers are cloud platforms (e.g., Amazon EC2,
Microsoft Azure, etc.), resources are the services (e.g., storage, bandwidth,
or processing) offered by each provider, and customers want to find the
provider(s) offering services matching their needs at the cheapest price [1,8,
29, 27, 28, 20].

– A Mobile Social Network. can be viewed as a marketplace where users
are both customers and resources, and the provider helps users locate and
connect to other users who share similar interests.

Formal definitions of the problems in each of the above settings are given in
Section 3, and we describe optimized circuits solving each of them in the full
version of this paper [10]. For these problems, we find that it significantly helps
to be able to work with boolean circuits rather than arithmetic circuits.

In Section 4 we evaluate the performance of our MPC protocol as applied
to one of the above problems. (Since they have similar circuits, the other two
problems should display similar results.) Our results shows that our protocol can
be used to efficiently and securely implement a distributed marketplace with tens
of providers/customers and thousands of resources over a wide-area network. Our
implementation outperforms systems such as VIFF [11] and SEPIA [7], in part
because we use boolean circuits rather than arithmetic circuits as those systems
do.3 Another advantage of our protocol is that it provides security against any
number of corruptions, whereas the cited implementations [3,4,11,7] all require
an honest majority.

1.2 Other Related Work

There are several existing implementations of secure two-party computation [24,
22,26,14,15,23]. These are all specific to the two-party setting and do not yield
protocols for three or more parties. Interestingly, and in contrast to other multi-
party implementations [3,11,7] that only handle three or more parties, the GMW
protocol we implement can handle any number of parties n ≥ 2. For the two-
party case, however, we expect our implementation to be roughly a factor of two
slower than the best available system [15].

Other implementations of secure multi-party computation, besides those dis-
cussed above, include [6,4,17]. The code for SIMAP [6] is not publicly available,

3 FairplayMP [3] also uses boolean circuits, but did not support multiple input values
per party and crashed on the input sizes used. See Section 4 for further discussion. We
do not compare to ShareMind since that system only supports 3-party computation.

Secure Multi-Party Computation of Boolean Circuits with Applications 419

and anyway SIMAP appears to be superseded by VIFF. Sharemind [4] handles
only the three-party setting, assuming at most one semi-honest corruption. The
work of Jakobsen et al. [17] achieves resilience against an arbitrary number of
malicious corruptions. Their implementation is based on arithmetic circuits and
has worse performance than VIFF (though with better resilience).

2 MPC Implementation

We provide an overview of the GMW protocol and details of our implementation.
The GMW protocol provides security against a semi-honest adversary corrupt-
ing any number of parties. (We refer to [12] for formal definitions of security.)
Assuming semi-honest behavior is reasonable in settings where the codebase is
difficult to change without detection, where software attestation can be used to
convince other parties that correct software is being run, or where parties are
trusted but must ensure secrecy of data for policy reasons or because of concerns
about future break-ins.

2.1 Overview of the GMW Protocol

1-out-of-4 Oblivious Transfer. Oblivious transfer (OT) is a key building block
of the GMW protocol. A 1-out-of-4 OT protocol is a two-party protocol in which
there is a sender holding values (x0, x1, x2, x3) and a receiver holding an index
i ∈ {0, . . . , 3}; the receiver learns xi, but neither the sender nor the receiver
learn anything else; i.e., the receiver learns nothing about any other values held
by the sender, and the sender learns nothing about the receiver’s index.

Details of our OT implementation are given in Section 2.2.

The GMW Protocol. The GMW protocol assumes the function f to be com-
puted is represented as a boolean circuit consisting of XOR and AND gates or,
equivalently, gates for addition and multiplication modulo 2. Let n denote the
number of parties. In the GMW protocol the parties maintain random n-out-of-n
shares (sw1, . . . , swn) of the value sw on each wire w in the circuit; that is, party
Pi holds share swi and all shares are random subject to sw =

⊕
i swi. Setting up

such shares on the input wires is easy: party Pi with input sw on wire w chooses

random swj for j = i, sends swj to Pj , and locally sets swi = sw⊕
(⊕

j �=i swj

)
.

Shares on internal wires of the circuit are then computed inductively in the
following way:

XOR gates. Say w is the output wire of an XOR gate with input wires u and v,
and the parties have shares (su1, . . . , sun) and (sv1, . . . , svn) of su and sv, re-
spectively. Then each party Pi locally computes swi = sui ⊕ svi, and one can
observe that (sw1, . . . , swn) is a valid sharing of sw = su ⊕ sv.

420 S.G. Choi et al.

AND gates (cf. [12]). Say w is the output wire of an AND gate with input wires u
and v, and the parties have shares (su1, . . . , sun) and (sv1, . . . , svn) of su and sv,
respectively. Note that

sw = su · sv =

(
n∑

i=1

sui

)
·
(

n∑
i=1

svi

)
=

n∑
i=1

suisvi +
∑
i<j

(suisvj + sujsvi).

Each party Pi can compute suisvi locally. As for the remaining term, each pair
of parties Pi, Pj computes a random additive share of suisvj + sujsvi in the

following way. Pj chooses a random bit c
{i,j}
j , and computes four values

c
{i,j}
j , c

{i,j}
j ⊕ svj , c

{i,j}
j ⊕ suj , c

{i,j}
j ⊕ svj ⊕ suj

corresponding to the four possible values of Pi’s shares sui, svi. Party Pi then
acts as a receiver in 1-out-of-4 OT, with index determined by the actual values
of its shares sui, svi, to obtain the appropriate value from Pj that we denote by

c
{i,j}
i . Note that c

{i,j}
i +c

{i,j}
j = (suisvj+sujsvi). Finally, each party Pi computes

swi = suisvi +
∑
j �=i

c
{i,j}
i .

It can be verified that (sw1, . . . , swn) is a (random) sharing of sw = su · sv.
Evaluation of XOR gates is essentially free, whereas evaluating AND gates

requires
(
n
2

)
invocations of 1-out-of-4 oblivious transfer.

Once a sharing (sw1, . . . , swn) of an output wire w is obtained, the value sw
can be reconstructed by having each party privately send its share to all other
parties. It is also possible for only some specific party to learn a given output
value by sending shares to that party only. We note that this is the only step in
the protocol where private channels are needed, and then only if more than one
party is to learn a given output value.

2.2 Oblivious-Transfer Protocols

As noted in the previous section, oblivious transfer is a key building block of the
GMW protocol; it is also the most computationally expensive part of the proto-
col, since it is the only part of the protocol that relies on public-key techniques.
As described above, the GMW protocol requires one invocation of 1-out-of-4 OT
per pair of parties each time an evaluation of an AND gate is performed, and so
m executions of OT (per pair of parties) to evaluate a circuit containing m AND
gates. We can improve the overall efficiency, however, using two techniques:

– Using OT pre-processing [2], each pair of parties can perform m oblivious
transfers on random inputs at the outset of the protocol, and then (very
efficiently) use the pre-computed values thus obtained to achieve the func-
tionality of oblivious transfer on their actual inputs when evaluating an AND
gate. Thus, all the oblivious transfers that will be needed throughout the en-
tire protocol can be run in parallel at the beginning of the protocol.

Secure Multi-Party Computation of Boolean Circuits with Applications 421

k parallel invocations of 1-out-of-4 OT

Let g,G, and q be fixed, where G is a cyclic group of prime order q, and g is
a generator of G. Let H : {0, 1}∗→{0, 1}m be a hash function.

Inputs. S holds {(xj
0, x

j
1, x

j
2, x

j
3)}j∈[k] with xj

i ∈ {0, 1}
m. R holds (r1, . . . , rk)

where rj ∈ {0, . . . , 3}.
The protocol.

1. S chooses α← Zq and computes c0 = gα, and also chooses c1, c2, c3 ← G.
It sends c0, . . . , c3 to R.

For j ∈ [k] the parties do:
2. R chooses βj ← Zq. If rj = 0 then it sets dj = gβj ; else, it sets dj =

crj /g
βj . Finally, R sends dj to S.

3. S computes e0 = dαj and ei = (ci/dj)
α for i ∈ {1, 2, 3}. Then S sends

x̄j
i = H(ei, j, i)⊕xj

i to R for i ∈ {0, . . . , 3}.
4. R computes c

βj

0 = erj , and then outputs xj
rj = x̄j

rj⊕H(erj , j, rj).

Fig. 1. The Naor-Pinkas OT protocol

– Using OT extension [16, 21], it is possible to achieve the functionality of m
invocations of 1-out-of-4 OT at essentially the cost of k invocations of 1-out-
of-4 OT of m-bit strings, where k is a statistical security parameter. (More
precisely, the marginal cost for each additional OT is just a small number of
hash computations.) Security here is based on the assumption that the hash
function is correlation robust [16].

Combining these optimizations, each pair of parties needs only run k (parallel)
invocations of some “base” OT protocol (for m-bit strings) at the outset. These
can be converted to m * k OT executions (on bits) using OT extension; these
m “pre-processed” OTs can then be used, as needed, during the rest of the
protocol. It remains only to specify the “base” 1-out-of-4 OT protocol we use.
We take as our base OT protocol the one by Naor and Pinkas [25], secure under
the decisional Diffie-Hellman (DDH) assumption in the random-oracle model.
Their protocol (actually, a version implementing k parallel executions of their
protocol) is described in Figure 1 for completeness.

2.3 Implementation Details

We implemented the GMW protocol in C++. Our implementation takes as input
a file containing a description of a boolean circuit for the function f of interest.
(All parties are assumed to be running with identical copies of the circuit.)
See Section 2.4 for an example. Unlike FairplayMP [3], we do not provide a
mechanism for compiling a high-level language into a boolean circuit.

Parallelism. Nowadays, it is common for computers to have multiple cores.
We use multi-threaded programming so as to take advantage of the available
parallelism. In particular, each OT execution is performed by a separate thread.
In the OT extension protocol, we optimize execution time by having parties send
values as soon as they are computed, rather than waiting for the other party to

422 S.G. Choi et al.

finish sending. (This does not affect security, since this occurs at fixed times that
are independent of the parties’ inputs and we assume semi-honest behavior.)

Random Oracle. We use SHA-1 to implement a random oracle H with arbi-
trary output length by defining

H(M) = SHA-1(seed, 0)||SHA-1(seed, 1)|| · · · ,

where seed = SHA-1(M). Note that seed need only be computed once. We use
the SHA-1 implementation of PolarSSL (http://polarssl.org).

Oblivious Transfer. For our base OT protocol we use the Naor-Pinkas protocol
(see Figure 1) with group G ⊂ Zp of prime order q, and p = 2q + 1 with p
prime. In our default implementation, p is a 1024-bit integer. We modified the
modular-arithmetic module of NTL (http://www.shoup.net/ntl) to be thread-
safe, and used it to implement the base OT protocol. Recall we use OT extension
to improve efficiency. By default, we use statistical security parameter k = 80
in our implementation. Messages are transmitted in chunks of reasonable size to
obtain a balance between the idle time and the number of socket calls.

2.4 Circuit Example

⊕
7

�

5

P0

2

P1

4

⊕

6

0

0

P1

3

n 2

d 7 5 2

i 0 2 2

i 1 3 4

o 0 1 0

o 1 7 7

v 0 1

v 1 1

g 0 0 -1 -1 0

g 1 0 -1 -1 0

g 2 0 -1 -1 1 5

g 3 0 -1 -1 1 6

g 4 0 -1 -1 1 5

g 5 1 2 4 1 7

g 6 2 0 3 1 7

g 7 2 5 6 0

Fig. 2. Circuit Example

Our implementation of the GMW pro-
tocol takes as input (at each party
running the protocol) three files that
contain configuration information, the
input of the party in question, and a
description of a boolean circuit for the
function f of interest. (All parties are
assumed to be running with identical
copies of the circuit.) In Figure 2 we
show an example circuit along with its
description using our representation.
The circuit description uses the following format:

– The first line of the file has the form n X , where X denotes the number of
parties participating in the protocol.

– The second line of the file contains a d followed by the total number of wires
in the circuit, the number w of the first non-input wire (i.e., wires 0 to w− 1
are input wires), and the number of XOR gates in the circuit.

– For each party, there is a line containing an i followed by the party’s id, the
number of the first input wire belonging to that party, and the number of
the last input wire belonging to that party. (We assume wires are numbered
such that every party provides inputs on a consecutive set of wires.)

– For each party, there is a line in the file containing an o followed by the
party’s id, the number of the first output wire belonging to that party, and

Secure Multi-Party Computation of Boolean Circuits with Applications 423

the number of the last output wire belonging to that party. (We assume
wires are numbered such that every party receives outputs on a consecutive
set of wires.) If a party receives no output, the number of the last output
wire for that party is set to 0.

– For each party, there is a line in the file containing a v followed by the party’s
id and then an integer denoting the number of bits that should be used to
represent each item in that party’s input file. (E.g., if the input file of party 1
contains a ‘4’ then this value will be represented as the 3-bit integer ‘100’
if this line of the file is ‘v 1 3’, but will be represented as the 5-bit integer
‘00100’ if this line of the file is ‘v 1 5’.) Each bit in the ultimate representation
of the integer will correspond to one of the input wires of the party.

– The remaining lines of the file describe the gates in the circuit. For each gate,
we list (a) the number of the output wire of this gate (which also serves as
the gate id); (b) the gate type, which can be either input (0), AND (1), or
XOR (2); (c) the numbers of the left and right input wires (set to −1 if these
are input gates); and (d) the out-degree of the gate. If the out-degree is non-
zero, then the ids of the gates that receive the output of the current gate are
listed. Gate ids 0 and 1 are reserved for the constants 0 and 1, respectively.

3 Problem Definitions

We introduce three problems in the context of on-line marketplaces where, gen-
erally speaking, providers advertise resources to be selected and subsequently
utilized by customers, and the function of the marketplace is to match customers
with providers so as to optimize some value under a certain set of constraints.
As highlighted in the Introduction, we look at examples in the settings of P2P
content distribution, cloud computing, and mobile social networks.

As a toy example, consider a customer who wishes to buy a car (resource) from
one of several dealers (providers). The customer is interested in several different
models of cars (but not all models); the different providers offer a variety of
models (not all of which interest the customer); and each provider prices each
model independently. The customer wishes to find an acceptable car at the lowest
cost, without revealing the set of models he or she is interested in; the providers
do not want to reveal their prices. Secure MPC allows the customer to learn the
identity of a provider selling an acceptable model at the lowest price, with the
customer learning no other prices (or which models are sold by each provider),
and with the providers learning only of the customer’s willingness to buy some
particular model at the given price.

More formally, let R be some set of resources. The input of each provider Pi

is a collection of values for the resources in some subset Ri ⊆ R; i.e., Pi’s input
is of the form {vir}r∈Ri. (If desired, each Pi could just use some default value
vir =⊥ for r ∈ Ri; in that case, we may simply write Pi’s input as {vir}r∈R.) We
look at marketplaces where the computation can be broken into the following
two steps, which will be executed as a single secure computation (so only the
final output is revealed, not the intermediate results after the first step):

424 S.G. Choi et al.

1. For each provider Pi and resource r ∈ Ri, compute a scoring function scir =
Score(i, r, vir, xn), where xn denotes the private input of the customer. (In
the running toy example, each model is scored by its offered price if the
model is of interest to the customer, and by ∞ otherwise.)

2. Next, apply a best-match function B to the set of scir values to obtain a result
that is given to the customer. (In the toy example, B outputs (i, r, scir) with
minimum scir.)

We allow the scoring function to be arbitrary. For the best-match func-
tion we consider two possibilities: either B returns a single (i, r) maximiz-
ing/minimizing scir (with ties broken arbitrarily, and with or without including
scir as part of the output), or B returns the set of all (i, r) for which the score scir
is greater/lower than some threshold. In the following subsections we instantiate
this general framework in several specific scenarios.

3.1 P2P Content-Distribution Services

In our P2P content-distribution setting, content is replicated across various P2P
servers or source peers (such as seeders) whose pairwise communications are
measured (and perhaps even controlled) by network providers such as ISPs.
Before a peer starts downloading content, he or she would like to find out the best
source peer (with respect to network bandwidth, end-to-end delays, throughput,
and so on) from which to receive the content.

Here the providers are the ISPs and the resources are the source peers them-
selves (which for simplicity we identify with their indices). Let R be the set
of source peers, with |R| = k. We assume that the ISP to which each source
peer is bound is public knowledge, so ISP Pi is associated with some set of
peers Ri. The input of each ISP/provider Pi is the measured bandwidth vir for
each peer/resource r ∈ Ri. The customer knows which peers have a replica of
the item it wishes to retrieve, and holds as secret input a vector xn = (b1, . . . , bk)
where br = 1 iff peer/resource r has the desired content, and br = 0 otherwise.
The objective is for the customer to find the best (e.g., highest-bandwidth) peer
among those holding the desired content, without revealing which source peers
have the content; the ISPs do not want to reveal the bandwidth of their peers.

Here the scoring function can be defined as:

Score
(
i, r, vir, (b1, . . . , bk)

)
=

{
vir if br = 1
0 otherwise

,

and the best-match function B returns i, r maximizing scir. (In fact, it suffices
to return r here since the provider to which r is bound is irrelevant and anyway
known.)

3.2 Cloud Computing

In this setting, providers offer various service packages and the customer wants
to select the service package meeting its needs at the lowest available price. The
service packages offered by the providers are the resources here, and each such

Secure Multi-Party Computation of Boolean Circuits with Applications 425

resource r has a value vr = (qr, pr) that is composed of its service quality qr and
price pr. (For simplicity, we treat service quality as a one-dimensional quantity,
e.g., CPU cycles. Our treatment can easily be generalized.) The customer holds
input (q, p), where q represents a minimum acceptable service quality and p is a
maximum budget. Two scenarios can be considered: either the customer wants
to find the cheapest resource r with qr ≥ q, or the highest-quality resource r
with pr ≤ p; each of these cases is treated below. In either case, the customer
never reveals its budget or its service requirements to any of the providers, nor
do the providers reveal to the customer (or to each other) what service packages
they are offering.

Lowest-Price Selection. In this formulation, the customer seeks the package
that satisfies its requirements at the lowest price. Here we may define the scoring
function as:

Score
(
(i, r, qir, p

i
r), (q, p)

)
=

{
pir if qir ≥ q and pir ≤ p
∞ otherwise

.

The best-match function B returns an i, r minimizing scir.

Highest-Quality Selection. Here the customer seeks the package that meets
its budget while giving the highest quality service. Now we may define the scoring
function as:

Score
(
(i, r, qir, p

i
r), (q, p)

)
=

{
qir if qir ≥ q and pir ≤ p
−∞ otherwise

,

and the best-match function returns an i, r maximizing scir.

3.3 Mobile Social Networks

Here we consider a scenario where a user in a social network wants to identify
nearby users who share common interests. Now the resources and providers are
just the set R of all users (and the customer is one of the users as well), and the
value of each “resource” (i.e., user) is that user’s location and set of interests.

We assume that each user knows only about its own location and interests.
Thus for each r ∈ R we define vrr = (�r, Hr), where �r is the location of user r,
and Hr is the set of that user’s interests (perhaps represented as a bit-vector).
The customer’s input consists of (�,H, δ) where � is the location of the customer,
H is the set of interests she wants a potential match to share, and δ is the distance
radius in which she wants to search. We consider a few alternatives for what the
customer wants as output.

Find all Close Matches. In this formulation, the customer wants to find all
users within distance δ who share interests H . We may then define

Score
(
(r, �r, Hr), (�,H, δ)

)
=

{
1 if H ⊆ Hr and |�r − �| ≤ δ
0 otherwise

,

and the best-match function returns the set of all r such that scrr = 1.

426 S.G. Choi et al.

2 4 6 8 10 12 14
0

10

20

30

40

50

60

70

80

of nodes

R
un

ni
ng

 ti
m

e
(in

 s
ec

s)

GMW

5000 resources
1200 resources
400 resources
300 resources
200 resources
100 resources

3 4 5 6 7 8 9
5

10

15

20

25

30

35

of nodes

R
un

ni
ng

 ti
m

e
ra

tio

Comparison with VIFF

400 resources
300 resources
200 resources
100 resources

3 4 5 6 7 8 9
9

10

11

12

13

14

15

16

of nodes

R
un

ni
ng

 ti
m

e
ra

tio

Comparison with SEPIA

400 resources
300 resources
200 resources
100 resources

(a) GMW (b) VIFF
GMW

(c) SEPIA
GMW

Fig. 3. Running times in a LAN

Find Closest Match. Here the customer wants to find the closet user who
matches her interests. Now, define

Score
(
(r, �r, Hr), (�,H, δ)

)
=

{
|�r − �| if H ⊆ Hr and |�r − �| ≤ δ
∞ otherwise

The best-match function returns an r minimizing scrr.

Find Best Resource. Now the customer would like to obtain the resource
within radius δ that shares as many interests as possible. We thus define

Score
(
(�r, Hr), (�,H, δ)

)
=

{
|Hr ∩H | if |�r − �| ≤ δ;
−∞ otherwise

,

and the best-match function returns r maximizing scrr.

3.4 Boolean-Circuit Constructions

We construct appropriate boolean circuits solving each of the problems described
above. Since XOR gates are essentially “free” to evaluate in the GMW protocol,
whereas evaluating each AND gate requires cryptographic computations, we
aimed to minimize the number of AND gates in the circuits. Due to lack of
space, descriptions of our circuits are given in the full version [10].

4 Performance Evaluation

We evaluate the performance of our implementation in both a local-
area network (LAN) and a wide-area network (using PlanetLab, see
http://www.planet-lab.org/), and compare it to existing systems for secure
MPC. In our experiments we consider only the P2P content-distribution prob-
lem formulated in Section 3.1 with 16-bit integer representation (i.e., � = 16),
but since circuits for the other two problems are similar (in terms of both circuit
depth and the number of AND gates), we expect the results to be similar for those
problems as well. We let GMW refer to our implemented protocol for this problem,
obtained by applying our GMW implementation to the circuit (described in the
full version [10]). All reported measurements are based on averages over 10 runs
of the experiment in question.

Secure Multi-Party Computation of Boolean Circuits with Applications 427

2 4 6 8 10 12 14
0

100

200

300

400

500

of nodes

of

 b
yt

es
 e

xc
ha

ng
ed

 (
in

 M
B

yt
es

)

GMW

5000 resources
1200 resources
400 resources
300 resources
200 resources
100 resources

3 4 5 6 7 8 9
5

6

7

8

9

10

11

12

of nodes

B
yt

es
 r

at
io

Comparison with VIFF

400 resources
300 resources
200 resources
100 resources

3 4 5 6 7 8 9
3

4

5

6

7

8

9

10

11

of nodes

B
yt

es
 r

at
io

Comparison with SEPIA

400 resources
300 resources
200 resources
100 resources

(a) GMW (b) VIFF
GMW

(c) SEPIA
GMW

Fig. 4. Total bytes transferred among all nodes

4.1 Local-Area Network

Our first set of experiments is performed in a cluster consisting of multiple Linux
host nodes, each containing two Intel Xeon 2.80GHz CPUs and 4GB RAM. We
use one host per participant in the protocol, so an experiment with n providers
involves an (n+ 1)-party multi-party computation on n+ 1 host machines. We
set up our experiments so the customer chooses half the resources offered by
each provider to be “of interest”. Note that the client’s inputs do not affect
performance, since the same underlying circuit is evaluated regardless of the
customer’s input; indeed, if performance were affected by the customer’s input
then the protocol could not be secure.

We ran experiments using from 3 to 13 host nodes, and 100 to 5,000 resources.
(This represents the aggregate offered by all providers.) For this problem, the
number of AND gates being evaluated depends on the number of resources only
(it is independent of the number of nodes), and ranges from about 5,500 AND
gates (for 100 resources) to roughly 305,000 AND gates (for 5,000 resources).
The running time is plotted in Figure 3(a), and the total bandwidth (between
all parties) is shown in Figure 4(a).

For a fixed number of resources, the bandwidth grows quadratically with the
number of nodes; this is because each pair of parties communicates for every
AND gate being evaluated. The running time scales linearly with the number of
nodes since all nodes work in parallel, and the work per node increases in direct
proportion to the number of other nodes with which it communicates. Although
difficult to see from the plots, for a fixed number of parties the running time
and bandwidth increase roughly linearly in the number of resources k; this is
because the size of the circuit grows roughly linearly in k (actually, it grows as
k log k but the logarithmic term is difficult to detect).

We also measured the marginal time to evaluate a single AND gate (i.e.,
the time required to evaluate one additional AND gate, once the number of
AND gates is large). We use marginal time because there is a fixed cost for the
initial oblivious transfers performed by the parties, but then oblivious-transfer
extension is used to get additional OTs at much lower cost (see Section 2.2).
The marginal cost per AND gate ranged from 50 μs (for 3 parties) to 340 μs
(for 13 parties).

428 S.G. Choi et al.

Comparison to Existing Work.We applied other existing implementations of
secure MPC to the same problem. Unfortunately, despite contacting the authors
we were unable to get a working implementation using FairplayMP [3] since
we found that it did not support providing users with multiple inputs, and it
would crash (when parties were provided with a single input) on inputs more
than 16 bits long.4 We were able to compare our protocol with implementations
in (the semi-honest version of) VIFF [11] and SEPIA [7]. We ran both VIFF
and SEPIA over insecure (i.e., non-SSL-protected) channels even though private
channels would be needed to ensure security against an eavesdropping adversary
for those protocols. (In contrast, for GMW a secure channel is not needed if only one
party learns the output; when multiple parties learn the output, only the final-
round messages need to be encrypted.) In SEPIA, parties provide their inputs
to “privacy peers” that run a secure-computation protocol on their behalf; when
we refer to “nodes” in SEPIA we mean the number of privacy peers.

In contrast to GMW, VIFF and SEPIA utilize arithmetic circuits where each
wire carries an element of a large field F (with log |F| ≈ 64 in each case), and
gates perform addition or multiplication in F. (Similar to the GMW case, addition is
essentially “for free” whereas multiplication is “expensive”.) The boolean circuit
we used for GMW is easily adapted for VIFF/SEPIA as follows (see the full version
of this paper [10] for further details):

– Boolean values can be represented as elements of F. Boolean operations
can be performed as AND(a,b) = ab and XOR(a, b) = a + b − 2ab (where
computations are in F), so long as a, b ∈ {0, 1}. (Note, however, that both
operations involve a multiplication in F.)

– �-bit integers can be represented as elements of F, since |F| * 2� for the value
of � we use. Because of this, addition and subtraction gates are now trivial to
implement since they correspond exactly to addition and subtraction over F.

– VIFF and SEPIA already provide circuits for performing comparisons.

In Figures 3(b) and 3(c) (resp., Figures 4(b) and 4(c)) we compare GMW’s running
time (resp., bandwidth utilization) to that of VIFF and SEPIA. Since the run-
ning times of VIFF and SEPIA are comparatively long, we only ran experiments
with up to 400 resources and up to 9 nodes. In those ranges of the parameters,
GMW completes in under 20 seconds while VIFF and SEPIA take an order of
magnitude longer; the relative performance of GMW becomes even better as the
number of resources is increased. The results demonstrate that our implementa-
tion scales significantly better, and is more efficient, than prior implementations.
Recall also that GMW withstands a larger number of corruptions than either VIFF
or SEPIA.

4 We did compare the performance of GMW to FairplayMP for 5-party computation of
a “toy” circuit consisting of a depth-d full binary tree of AND gates. With d = 12,
GMW ran about 20 times faster than FairplayMP. FairplayMP crashes on circuits with
d > 12, whereas GMW ran on circuits up to d = 23 (about 8 million gates).

Secure Multi-Party Computation of Boolean Circuits with Applications 429

2 4 6 8 10 12 14
0

20

40

60

80

100

120

of nodes

R
un

ni
ng

 ti
m

e
(in

 s
ec

s)

GMW

5000 resources
1200 resources
400 resources
300 resources
200 resources
100 resources

3 4 5 6 7 8 9
5

10

15

20

25

30

35

40

45

of nodes

R
un

ni
ng

 ti
m

e
ra

tio

Comparison with VIFF (in PlanetLab)

400 resources
300 resources
200 resources
100 resources

3 4 5 6 7 8 9
7

8

9

10

11

12

13

14

15

of nodes

R
un

ni
ng

 ti
m

e
ra

tio

Comparison with SEPIA (in PlanetLab)

400 resources
300 resources
200 resources
100 resources

(a) GMW (b) VIFF
GMW

(c) SEPIA
GMW

Fig. 5. Running times in PlanetLab

4.2 Wide-Area Network

We explored the effects of communication latency by running our implemen-
tation of the GME protocol in a wide-area network (WAN) using PlanetLab
(http://www.planet-lab.org/). In the PlanetLab settings we explored, the
maximum round trip time (RTT) was more than 200 ms. The test nodes in
PlanetLab have various hardware specs; the least powerful node had two Intel
Core2Duo 2.33GHz CPUs and 2.0GB memory, while the most powerful node
had four Intel Xeon 2.83GHz CPUs and 3.7GB memory.

Figure 5 shows that GMW’s running time increases by 17–64% relative to the
time required on a LAN. (The bandwidth usage is identical whether running
over a LAN or a WAN.) We also observed more variability in the running time
over PlanetLab than in a LAN, which is not surprising. As we increase the
number of participating nodes, the running time increases linearly (as in the
LAN) even though nodes’ configurations are not homogeneous; this suggests
that performance is mostly affected by communication latency. GMW maintains
stable performance regardless of network conditions and heterogeneous hard-
ware configurations, consistently outperforming VIFF and SEPIA as shown in
Figures 5(b) and 5(c).

5 Conclusions

We have shown an implementation of the GMW protocol for secure multi-party
computation. Our implementation is distinguished from existing implementa-
tions of multi-party computation in two important ways: (1) Our implementa-
tion supports boolean circuits, rather than arithmetic circuits as in [11, 7], and
(2) it provides security against a semi-honest adversary corrupting any number
of parties, rather than requiring an honest majority as in [3,11,7]. We have also
shown that our implementation outperforms previous work [11, 7], at least for
certain classes of problems that are more amenable to being solved using boolean
circuits rather than arithmetic circuits. Finally, our work shows the feasibility
of applying generic secure multi-party computation to realistic networking prob-
lems where privacy is required.

430 S.G. Choi et al.

Acknowledgments. Research of Jonathan Katz and Seung Geol Choi was sup-
ported by DARPA, and by NSF awards #0447075, #0964541, and #1111599.
Research of Tal Malkin was supported by a Google research grant, NSF
awards #0831094 and #1116702, and IARPA via DoI/NBC contract num-
ber D11PC20194. Research of Dan Rubenstein and Kyung-Wook Hwang
was supported by NSF award #1017934 and DHS HSHQDC-10J00204. The
U.S. Government is authorized to reproduce and distribute reprints for govern-
mental purposes notwithstanding any copyright annotation herein. The views
and conclusions of this paper are those of the authors do not necessarily reflect
the position or the policy of the US Government, DARPA, IARPA, or DoI/NBS,
and no official endorsement should be inferred.

References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee,
G., Patterson, D.A., Rabkin, A., Stoica, I., Zaharia, M.: Above the clouds: A
Berkeley view of cloud computing. Technical Report UCB/EECS-2009-28, EECS
Department, UC Berkeley (2009)

2. Beaver, D.: Precomputing Oblivious Transfer. In: Coppersmith, D. (ed.) CRYPTO
1995. LNCS, vol. 963, pp. 97–109. Springer, Heidelberg (1995)

3. Ben-David, A., Nisan, N., Pinkas, B.: FairplayMP: A system for secure multi-party
computation. In: 15th ACM Conf. on Computer and Communications Security, pp.
257–266. ACM Press (2008)

4. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: A Framework for Fast Privacy-
Preserving Computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS,
vol. 5283, pp. 192–206. Springer, Heidelberg (2008)

5. Bogetoft, P., Christensen, D.L., Damg̊ard, I., Geisler, M., Jakobsen, T., Krøigaard,
M., Nielsen, J.D., Nielsen, J.B., Nielsen, K., Pagter, J., Schwartzbach, M., Toft,
T.: Secure Multiparty Computation Goes Live. In: Dingledine, R., Golle, P. (eds.)
FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg (2009)

6. Bogetoft, P., Damg̊ard, I., Jakobsen, T., Nielsen, K., Pagter, J., Toft, T.: A Practi-
cal Implementation of Secure Auctions Based on Multiparty Integer Computation.
In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 142–147.
Springer, Heidelberg (2006)

7. Burkhart, M., Strasser, M., Many, D., Dimitropoulos, X.: SEPIA:
Privacy-preserving aggregation of multi-domain network events and statis-
tics. In: 19th USENIX Security Symposium, pp. 223–240. USENIX Association
(2010)

8. Buyya, R., Abramson, D., Venugopal, S.: The grid economy. Proc. IEEE 93(3),
698–714 (2005)

9. Chen, Y., Katz, R.H., Katz, Y.H., Kubiatowicz, J.D.: Dynamic Replica Placement
for Scalable Content Delivery. In: Druschel, P., Kaashoek, M.F., Rowstron, A.
(eds.) IPTPS 2002. LNCS, vol. 2429, pp. 306–318. Springer, Heidelberg (2002)

10. Choi, S.G., Hwang, K., Katz, J., Malkin, T., Rubenstein, D.: Secure
multi-party computation of boolean circuits with applications to privacy in
on-line marketplaces. Cryptology ePrint Archive, Report 2011/257 (2011),
http://eprint.iacr.org/2011/257

http://eprint.iacr.org/2011/257

Secure Multi-Party Computation of Boolean Circuits with Applications 431

11. Damg̊ard, I., Geisler, M., Krøigaard, M., Nielsen, J.B.: Asynchronous Multiparty
Computation: Theory and Implementation. In: Jarecki, S., Tsudik, G. (eds.) PKC
2009. LNCS, vol. 5443, pp. 160–179. Springer, Heidelberg (2009)

12. Goldreich, O.: Foundations of Cryptography. Basic Applications, vol. 2. Cambridge
University Press, Cambridge (2004)

13. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game, or a
completeness theorem for protocols with honest majority. In: 19th ACM STOC
Annual ACM Symposium on Theory of Computing (STOC), pp. 218–229. ACM
Press (1987)

14. Henecka, W., Kögl, S., Sadeghi, A.-R., Schneider, T., Wehrenberg, I.: TASTY: Tool
for automating secure two-party computations. In: 17th ACM Conf. on Computer
and Communications Security (CCCS), pp. 451–462. ACM Press (2010)

15. Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation
using garbled circuits. In: 20th USENIX Security Symposium. USENIX Association
(2011)

16. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending Oblivious Transfers Effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003)

17. Jakobsen, T.P., Makkes, M.X., Nielsen, J.D.: Efficient Implementation of the Or-
landi Protocol. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp.
255–272. Springer, Heidelberg (2010)

18. Kangasharju, J., Roberts, J., Ross, K.W.: Object replication strategies in content
distribution networks. Computer Communications 25(4), 376–383 (2002)

19. Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Improved Garbled Circuit Building
Blocks and Applications to Auctions and Computing Minima. In: Garay, J.A.,
Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 1–20. Springer,
Heidelberg (2009)

20. Lewis, P.R., Marrow, P., Yao, X.: Evolutionary Market Agents for Resource Al-
location in Decentralised Systems. In: Rudolph, G., Jansen, T., Lucas, S., Poloni,
C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 1071–1080. Springer, Hei-
delberg (2008)

21. Li, B., Li, H., Xu, G., Xu, H.: Efficient reduction of 1-out-of-n oblivious transfers
in random oracle model. Cryptology ePrint Archive, Report 2005/279 (2005)

22. Lindell, Y., Pinkas, B., Smart, N.P.: Implementing Two-Party Computation Effi-
ciently with Security against Malicious Adversaries. In: Ostrovsky, R., De Prisco,
R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 2–20. Springer, Heidelberg
(2008)

23. Malka, L., Katz, J.: VMCrypt — modular software architecture for scalable secure
computation, http://eprint.iacr.org/2010/584

24. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay — a secure two-party com-
putation system. In: 13th USENIX Security Symposium, pp. 287–302. USENIX
Association (2004)

25. Naor, M., Pinkas, B.: Computationally secure oblivious transfer. J.
Cryptology 18(1), 1–35 (2005)

26. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure Two-Party Compu-
tation is Practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
250–267. Springer, Heidelberg (2009)

27. Schnizler, B., Neumann, D., Veit, D., Weinhardt, C.: Trading grid services — a
multi-attribute combinatorial approach. European J. Operational Research 187(3),
943–961 (2008)

http://eprint.iacr.org/2010/584

432 S.G. Choi et al.

28. Tan, Z., Gurd, J.R.: Market-based grid resource allocation using a stable continuous
double auction. In: Proc. 8th IEEE/ACM Intl. Conf. on Grid Computing, pp. 283–
290. IEEE (2007)

29. Wolski, R., Plank, J.S., Brevik, J., Bryan, T.: Analyzing market-based resource
allocation strategies for the computational grid. International Journal of High Per-
formance Computing Applications 15(3), 258–281 (2006)

30. Yao, A.C.-C.: How to generate and exchange secrets. In: 27th Annual Symp. on
Foundations of Computer Science (FOCS), pp. 162–167. IEEE (1986)

Author Index

Aranha, Diego F. 98

Balasch, Josep 19
Barbosa, Manuel 171, 296
Batina, Lejla 19, 383
Beuchat, Jean-Luc 98
Bhasin, Shivam 245
Boldyreva, Alexandra 187
Brumley, Billy B. 171

Camacho, Philippe 35
Canard, Sébastien 332
Choi, Seung Geol 416

Damg̊ard, Ivan 278
Danger, Jean-Luc 156, 245
Degabriele, Jean Paul 116
Detrey, Jérémie 98

Estibals, Nicolas 98

Farshim, Pooya 296
Fuchsbauer, Georg 332
Fujisaki, Eiichiro 136

Gierlichs, Benedikt 19
Gouget, Aline 332
Guilley, Sylvain 156, 245

Hanaoka, Goichiro 260, 349
Hazay, Carmit 313
Heinz, Benedikt 231
Herranz, Javier 51
Heuser, Annelie 365
Hevia, Alejandro 35
Heyszl, Johann 231
Hogenboom, Jip 383
Hwang, Kyung-Wook 416

Kasper, Markus 1
Kasper, Michael 365
Katz, Jonathan 416
Kawai, Yutaka 349
Kölker, Jonas 278

Kumar, Virendra 187
Kunihiro, Noboru 260, 349

Laguillaumie, Fabien 51, 332
Lehmann, Anja 116
Leurent, Gaëtan 215
Libert, Benôıt 51

Maghrebi, Houssem 156
Malkin, Tal 416
Mangard, Stefan 231
Matsuda, Takahiro 349
Mikkelsen, Gert Læssøe 313
Mohassel, Payman 398
Moradi, Amir 1

Nassar, Maxime 245
Niksefat, Salman 398

Paar, Christof 1
Page, Dan 171
Paterson, Kenneth G. 116
Prouff, Emmanuel 156

Rabin, Tal 313
Ràfols, Carla 51
Roy, Arnab 215
Rubenstein, Dan 416

Sadeghian, Saeed 398
Sadeghiyan, Babak 398
Sakurai, Kouichi 68
Schindler, Werner 365
Sigl, Georg 231
Smart, Nigel P. 116
Souissi, Youssef 245
Stöttinger, Marc 365
Strefler, Mario 116
Stumpf, Frederic 231

Takagi, Tsuyoshi 68
Toft, Tomas 278, 313

van Woudenberg, Jasper G.J. 383
Verbauwhede, Ingrid 19

434 Author Index

Vercauteren, Frederik 171

Verdult, Roel 19

Walter, Colin D. 84

Weng, Jian 349

Yamada, Shota 260
Yasuda, Kan 203
Yasuda, Takanori 68

Zhang, Rui 349
Zhao, Yunlei 349

	Title
	Preface
	Table of Contents
	Side Channel Attacks I
	Black-Box Side-Channel Attacks Highlight the Importance of Countermeasures: An Analysis of the Xilinx Virtex-4 and Virtex-5 Bitstream Encryption Mechanism
	Introduction
	Content of This Paper

	Introduction to FPGAs
	FPGA Security
	Bitstream Vulnerabilities
	IP Protection for FPGAs
	Real-World Attacks

	Side-Channel Analysis Attacks
	Introduction to Side-Channel Analysis Attacks
	Measurement Setup
	Introductory Experiments
	Implemented Attack
	Countermeasures

	Implementing the Attack
	Employing nVidia's CUDA
	Attack Results
	Differences to Virtex-5

	Conclusion
	References

	Power Analysis of Atmel CryptoMemory – Recovering Keys from Secure EEPROMs
	Introduction
	Background
	Developing an Attack Path
	Experimental Setup
	Initial Investigation of Power Traces
	Overcoming Authentication Attempt Counters

	Power Analysis Attack
	Implications and Countermeasures
	Conclusions
	References

	Digital Signatures I
	Short Transitive Signatures for Directed Trees
	Introduction
	Preliminaries
	Collision-Resistant Hashing with Common-Prefix Proofs
	Short Transitive Signatures for Directed Trees
	Basic Construction
	Full Construction

	Conclusion
	References

	Short Attribute-Based Signatures for Threshold Predicates
	Introduction
	Background
	Complexity Assumptions
	Groth-Sahai Proof Systems
	Syntax of Threshold Attribute-Based Signatures
	Security of Threshold Attribute-Based Signatures

	A First Short Attribute-Based Signature Scheme for Threshold Predicates
	A Second Short Attribute-Based Signature Scheme for Threshold Predicates
	More General Signing Predicates
	Extensions for the First Scheme
	Extensions for the Second Scheme

	References

	Public-Key Encryption I
	Reducing the Key Size of Rainbow Using Non-commutative Rings
	Introduction
	Related Works

	OriginalRainbow
	Scheme
	Rainbow Key Sizes

	Attacks against Rainbow
	Our Proposed Scheme
	Non-commutative Rings
	Our Construction
	Key Size in NC-Rainbow

	Security Analysis
	Reducing NC-Rainbow to Rainbow
	Security against Known Attacks

	Key Size in Our NC-Rainbow
	Reason for Secret Key Size Reduction
	Secure Parameters and Their Key Size
	Efficiency Comparison

	Concluding Remarks
	References

	A Duality in Space Usage between Left-to-Right and Right-to-Left Exponentiation
	Introduction
	Notation and Addition Chains
	The Dual of a Location-Aware Chain
	Example

	Preserving the Number of Multiplications
	Preserving the Chain Output under Duality
	Mixed Base Representations
	A New Compact Exponentiation Algorithm
	Miscellaneous Space Issues for Dual Chains
	Conclusion
	References

	Optimal Eta Pairing on Supersingular Genus-2 Binary Hyperelliptic Curves
	Introduction
	Background Material and Notations
	Reminder on Hyperelliptic Curves
	Hyperelliptic Tate Pairing

	Eta Pairing on Supersingular Genus-2 Binary Curves
	Curve Definition and Basic Properties
	Distortion Maps
	Modified Tate Pairing on Cd
	Choosing an Efficient Pairing
	Eta Pairing on Cd

	Optimal Eta Pairing on Cd
	Construction and Definition
	Computing [c0,c1]
	Evaluation of the Complexity

	Software Implementation
	FPGA Implementation
	Conclusion and Perspectives
	References

	Cryptographic Protocols I
	On the Joint Security of Encryption and Signature in EMV
	Introduction
	An Attack on Combined Signature and Encryption Schemes from EMV
	Application of the Attack to EMV
	Security Analysis of Combined Encryption and Signature for Elliptic Curve Algorithms
	Security Models for Joint Security
	ECIES, EC-Schnorr and EC-DSA in a Nutshell
	On the Joint Security of ECIES and EC-Schnorr
	On the Joint Security of ECIES and EC-DSA

	Conclusions
	References

	New Constructions of Efficient Simulation-Sound Commitments Using Encryption and Their Applications
	Introduction
	Simulation-Sound Commitments
	Our Results

	Preliminaries
	Simulation-Sound Trap-Door Commitment Scheme
	(Tag-Based) Key Encapsulation Mechanisms
	Sigma-Protocol

	Generic Construction of cMiM Secure IDs
	Weak Extractable Sigma-Protocol
	TheSSTC Schemes
	The 2-Round SSTC Scheme from Publicly Verifiable OW-ftCCA Tag-KEM
	The 5-Round SSTC Scheme from OW-ftCCA Tag-KEM

	Applications
	Instantiations
	2-Round, CDH-Based Implementation
	5-Round, Factoring-Based Implementation
	Comparison

	References

	Secure Implementation Methods
	A First-Order Leak-Free Masking Countermeasure
	Introduction
	Preliminaries
	Secure Computation against 1O-DPA Using ROMs
	Detailed Description of GLUT Method
	Leakage of the ROM-Based 1O-DPA Protection Implementation
	Towards a New Masking Function

	Study in the Idealized Model
	Our Proposal
	Security Evaluation
	Application to the Software Implementation Case

	Study in the Imperfect Model
	Conclusion and Perspectives
	References

	Practical Realisation and Elimination of an ECC-Related Software Bug Attack
	Introduction
	Background and Analysis
	OpenSSL Implementation of NIST Standard Curves
	ECC Cipher Suites for TLS
	OpenSSL Implementation of the ECC Cipher Suites

	An Attack on ECDH in OpenSSL
	Approaches to Formal Verification
	Conclusions
	References

	Symmetric Key Primitives
	A New Pseudorandom Generator from Collision-Resistant Hash Functions
	Introduction
	Related Work
	Our Result

	Preliminaries
	Hash Functions and Their Security
	Hardcore Predicate
	Pseudorandom Generator

	PRG from Iterates
	Our PRG Construction
	Proof of Theorem 5
	Relaxing the Regularity Assumption
	Conclusion
	References

	PMAC with Parity: Minimizing the Query-Length Influence
	Introduction
	Preliminaries
	Description of the New Mode
	Security Proofs
	Smaller-Rate Versions
	Concluding Remarks
	References

	Boomerang Attacks on Hash Function Using Auxiliary Differentials
	Introduction
	The Boomerang Attack
	Amplified Probabilities
	Related-Key Boomerang
	Application to the Known-Key Setting
	Application to Hash Function

	Boomerang Attack Using Auxiliary Differentials
	Application to Skein
	Round-Reduced Differential Trails in Skein-256
	Description of the Attack on Skein-256

	Extensions and Limitations
	Extension to More Rounds
	Application to Skein-512

	Conclusions
	References

	Side Channel Attacks II
	Localized Electromagnetic Analysis of Cryptographic Implementations
	Introduction
	Localized EM Analysis
	Attacking Binary Exponentiation Algorithms
	ECC Case Study - A Proof-of-Concept
	ECSM Implementation
	Measurement Setup
	Template Attack

	Countermeasures
	Conclusion
	References

	Towards Different Flavors of Combined Side Channel Attacks
	Introduction
	Power Analysis: General Background
	The Principle

	Combination of Distinguishers
	Mathematical Background
	Gini Correlation: A Mixture of Pearson and Spearman Coefficients
	Pearson-Spearman Combination: An Empirical Approach
	Experimental Results and Discussion

	Combination of Measurements
	Theoretical Background
	Practical Results

	Conclusion
	References

	Digital Signatures II
	Two-Dimensional Representation of Cover Free Families and Its Applications: Short Signatures and More
	Introduction
	Preliminaries
	Number Theoretic Assumptions
	Syntax and Security Notions
	Programmable Hash Functions (HK08)

	Our Basic Idea and Its Direct Applications
	Two-Dimensional Representation of Cover Free Family
	q-Resilient IBKEM
	IND-q-CCA Secure KEM with Shorter Public Keys
	Multiple-Time Signature with Shorter Public Key

	Short Signature with Smaller Public Key Size
	Construction
	Security
	Comparison with the Previous Scheme

	References

	Secure Computation, I/O-Efficient Algorithms and Distributed Signatures
	Introduction
	Preliminaries
	The Main Functionality
	The Protocols
	Passively Secure Implementation of F
	Implementation for Malicious Servers and Players
	A Scalable Method for Handling Malicious Players and Servers
	Implementation of FRand

	Running Oblivious Algorithms on F
	Example Applications
	References

	Cryptographic Protocols II
	Delegatable Homomorphic Encryption with Applications to Secure Outsourcing of Computation
	Introduction
	Delegatable Homomorphic Encryption
	Verifiable Functional Encryption
	MACs with Chameleon Keys
	Details of the VFE Construction

	A Strongly Secure DHE Scheme
	Secure Verifiable Computation from DHE
	Concluding Remarks
	References

	Efficient RSA Key Generation and Threshold Paillier in the Two-Party Setting
	Introduction
	Preliminaries
	A Distributed Generation of an RSA Composite
	The Biprimality Test

	A Complete Threshold Paillier Cryptosystem
	A Distributed Decryption for Paillier

	The Efficiency of Our Protocols
	References

	Public-Key Encryption II
	Plaintext-Checkable Encryption
	Introduction
	Plaintext-Checkable Encryption
	Definition of Plaintext-Checkable Encryption
	A Taxonomy of Indistinguishability

	Generic Constructions for PCE in the ROM
	A PCE Based on a Probabilistic Encryption Scheme
	A PCE Based on a Deterministic Encryption Scheme

	Practical Constructions in the Standard Model
	An ElGamal-Based Construction
	Security Arguments

	Application to VLR Group Signature
	Definitions for Group Signatures with VLR
	Using PCE for Group Signatures with VLR
	Our Concrete Instantiation
	Backward-Unlinkable Anonymity
	Comparison with Related Work

	Conclusion
	References

	Generic Construction of Chosen Ciphertext Secure Proxy Re-Encryption
	Introduction
	Preliminaries
	Public Key Encryption
	Strongly Unforgeable Signature

	Single Use Unidirectional Proxy Re-Encryption
	Difference from Previous Security Definitions

	Resplittable Threshold Public Key Encryption
	Resplittability in Threshold Public Key Encryption
	Concrete Resplittable Threshold Public Key Encryption

	Generic Construction of SUPRE Based on TPKE
	References

	Side Channel Attacks III
	A New Difference Method for Side-Channel Analysis with High-Dimensional Leakage Models
	Introduction
	Extrinsic and Environmental Influences on Side-Channel Evaluation Process
	Impact of Environmental Conditions
	A Novel Method for Effective Offset Elimination
	The 'Normal' Stochastic Approach: A Brief Summary
	SA-OTM: A New Variant of SA

	On the Selection of Stochastic Leakage Models
	High-Dimensional Subspaces for SA-OTM
	Leakage Models for the Stochastic Approach
	Symmetry

	Experimental Analysis
	Conclusion
	References

	Getting More from PCA: First Results of Using Principal Component Analysis for Extensive Power Analysis
	Introduction
	Principal Component Analysis
	Example
	PCA Transformation
	Assumptions and Properties of PCA-Transformed Data
	Multiple Leakage Points and PCA
	Noise Reduction

	Experiments
	Noise Reduction
	PCA Transformation
	PCA on Misaligned Traces

	Comparison to Other Alignment Techniques
	Conclusions
	References

	Secure Multiparty Computation
	An Efficient Protocol for Oblivious DFA Evaluation and Applications
	Introduction
	Our Contributions
	Related Work

	Preliminaries
	Notations

	DFA and Its Matrix Representation
	DFA
	DFA Matrix
	Permuted DFA Matrix

	An Efficient Protocol for Oblivious DFA Evaluation
	A High Level Overview
	The Protocol 1
	Security Proof
	Using OT Extension
	A Different Presentation of Our Protocol
	Efficiency

	Counting Accepting States and Secure Pattern Matching
	Third Variant: Number of Locations of p in T

	Implementation and Experimental Results
	OT Implementation
	Experiments

	References

	Secure Multi-Party Computation of Boolean Circuits with Applications to Privacy in On-Line Marketplaces
	Introduction
	Our Contributions
	Other Related Work

	MPC Implementation
	Overview of the GMW Protocol
	Oblivious-Transfer Protocols
	Implementation Details
	Circuit Example

	Problem Definitions
	P2P Content-Distribution Services
	Cloud Computing
	Mobile Social Networks
	Boolean-Circuit Constructions

	Performance Evaluation
	Local-Area Network
	Wide-Area Network

	Conclusions
	References

	Author Index

