


Lecture Notes in Computer Science 7148
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



Viktor Kuncak Andrey Rybalchenko (Eds.)

Verification,
Model Checking, and
Abstract Interpretation

13th International Conference, VMCAI 2012
Philadelphia, PA, USA, January 22-24, 2012
Proceedings

13



Volume Editors

Viktor Kuncak
Swiss Federal Institute of Technology Lausanne (EPFL)
IC IIF LARA INR 318, Station 14, 1015 Lausanne, Switzerland
E-mail: viktor.kuncak@epfl.ch

Andrey Rybalchenko
Technische Universität München, Institut für Informatik
Boltzmannstr. 3, 85748 Munich, Germany
E-mail: rybal@in.tum.de

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-27939-3 e-ISBN 978-3-642-27940-9
DOI 10.1007/978-3-642-27940-9
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011945036

CR Subject Classification (1998): F.3.1, F.3.2, D.2.4, F.4.1, D.1-3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

This volume contains the proceedings of the 13th International Conference on
Verification, Model Checking, and Abstract Interpretation (VMCAI 2012), held
in Philadelphia, Pennsylvania, USA, during January 22–24, 2012. VMCAI 2012
was the 13th in a series of meetings. Previous editions of the conference were
held in Port Jefferson 1997, Pisa 1998, Venice 2002, New York 2003, Venice
2004, Paris 2005, Charleston 2006, Nice 2007, San Francisco 2008, Savannah
2009, Madrid 2010, and Austin 2011.

VMCAI provides a forum for researchers from the communities of verifi-
cation, model checking, and abstract interpretation. The conference showcases
state-of-the-art research in each of those areas and facilitates interaction, cross-
fertilization, and advancement of hybrid methods that span multiple areas. The
topics covered in the conference include program verification, model checking,
abstract interpretation static analysis, deductive methods, program certifica-
tion, debugging techniques, abstract domains, type systems, optimization. Pa-
pers may address any programming paradigm, including concurrent, constraint,
functional, imperative, logic and object-oriented programming.

This year, 70 papers were submitted to VMCAI. Each submission was
reviewed by at least three Program Committee members, and on average each
paper was reviewed by 3.22 committee members. After carefully deliberating
over the relevance and quality of each paper, the Program Committee chose to
accept 26 papers for presentation at the conference.

This year’s edition continued the VMCAI tradition of inviting distinguished
speakers to give talks and tutorials. The program included talks by Alex Aiken,
Rajeev Alur, Ahmed Bouajjani, Ranjit Jhala, and Tobias Nipkow.

The quality of the conference crucially depends on the hard work the Program
Committee and subreviewers put into the paper selection process; we thank them
greatly for their efforts. Our thanks also go to the Steering Committee members
for helpful advice, in particular to David Schmidt and Lenore Zuck for their
invaluable efforts in the conference organization. VMCAI 2012 was co-located
with POPL 2012 and held in co-operation with ACM (Association for Comput-
ing Machinery). We thank Matthew Might, who served as our interface to the
POPL organizers, and ACM for help with the local arrangements. Finally, we
are grateful to Andrei Voronkov, whose EasyChair system eased the submis-
sion and paper selection process, and greatly simplified the compilation of the
proceedings.

January 2012 Viktor Kuncak
Andrey Rybalchenko
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Abstract Domains for Automated Reasoning about
List-Manipulating Programs with Infinite Data�

Ahmed Bouajjani1, Cezara Drăgoi2, Constantin Enea1, and Mihaela Sighireanu1

1 LIAFA, Univ Paris Diderot & CNRS
{abou,cenea,sighirea}@liafa.jussieu.fr

2 IST Austria
cezarad@ist.ac.at

Abstract. We describe a framework for reasoning about programs with lists car-
rying integer numerical data. We use abstract domains to describe and manipulate
complex constraints on configurations of these programs mixing constraints on
the shape of the heap, sizes of the lists, on the multisets of data stored in these
lists, and on the data at their different positions. Moreover, we provide power-
ful techniques for automatic validation of Hoare-triples and invariant checking,
as well as for automatic synthesis of invariants and procedure summaries using
modular inter-procedural analysis. The approach has been implemented in a tool
called CELIA and experimented successfully on a large benchmark of programs.

1 Introduction

Reasoning about heap-manipulating programs can be quite complex and its automatiza-
tion is a real challenge both from the theoretical and the practical point of view. Indeed,
the specification of such a program (consider for instance a sorting algorithm), includes
in general various types of constraints, for instance constraints on the structure of the
heap (i.e., being a list, acyclic, etc.), on the (unbounded) sizes of the different parts of
the heap (i.e., equality of the lengths of two lists), on the (muti)sets of elements stored
in different parts of the heap (i.e., equality between the multisets of data stored in two
different lists), as well as on the relations existing between the data (potentially ranging
over infinite domains) stored in the heap (i.e., sortedness of a list).

For example, the procedure quicksort given in Fig. 1 sorts the input list pointed
to by the variable a. The specification of quicksort includes (1) the sortedness of the
output list pointed to by res, expressed by the formula:

∀y1,y2. 0≤ y1 ≤ y2 < len(res)⇒ data(res,y1)≤ data(res,y2) (1)

where y1 and y2 are interpreted as integers and used to refer to positions in the list
pointed to by res, len(res) denotes the length of this list, and data(res,y1) denotes
the integer stored in the element of res at position y1, and (2) the preservation property
saying that input and output lists have the same (multisets of) elements. This property
is expressed by the equation

ms(a0) = ms(res) (2)

� This work was partly supported by the French National Research Agency (ANR) project
Veridyc (ANR-09-SEGI-016).

V. Kuncak and A. Rybalchenko (Eds.): VMCAI 2012, LNCS 7148, pp. 1–22, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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1 typedef struct list {
2 struct list *next;
3 int data;
4 } list;
5

6 void split(list *a, int v, list **sm, list **gr){
7 list *x=a;
8 while (x != NULL){
9 if (x->data <= v){

10 ...
11 /* adds the element pointed
12 to by x to sm */
13 }
14 else{
15 ...
16 /* adds the element pointed
17 to by x to gr */
18 }
19 x = x->next;
20 } }

21 list* quicksort(list* a){
22 list *left,*right,*pivot,*res,*start;
23 int d;
24 if (a == NULL || a->next == NULL)
25 copy(a,res);
26 else {
27 d = a->data;
28 alloc(&pivot,1);
29 pivot->data = d;
30 start = a->next;
31

32 split (start,d,&left,&right);
33

34 left = quicksort(left);
35 right = quicksort(right);
36

37 res = concat(left,pivot,right);
38 }
39 return res;
40 }

Fig. 1. The quicksort algorithm on singly-linked lists

where ms(a0) (resp. ms(res)) denotes the multiset of integers stored in the list pointed
to by a at the beginning of the procedure (resp. res at the end of the procedure).

Therefore, reasoning on the correctness of such programs requires designing formal
frameworks where such kind of constraints (and their combinations) can be manipu-
lated, i.e., expressed, proved valid, and synthesized.

From the expressiveness point of view, multi-sorted logics interpreted on labelled
graphs over infinite alphabets can be naturally considered in this context. As said above,
such a logic should allow expressing (1) structural properties on graphs using reacha-
bility predicates, as well as (2) constraints on (multi)sets of reachable elements: con-
straints on their sizes using some arithmetics like Presburger arithmetics for instance,
equality/inclusion constraints on the multisets of data they are carrying, etc., and also
(3) constraints on the data attached to the different nodes in the graph using some theory
on the considered type of data, for instance in the case of integers, it would be possible
to consider again Presburger arithmetics to express data constraints.

Given such an expressive specification language, the challenge then is to provide
algorithmic techniques allowing to carry out automatically correctness proofs of pro-
grams w.r.t. some specifications. (Here we consider partial correctness proofs, i.e.,
checking safety properties.) This task is not trivial since of course the considered prob-
lem is undecidable in general for the considered class of programs and specifications.
Nevertheless, our aim is to provide sound techniques that are powerful enough to handle
most of the cases that arise in practice.

A first objective is to provide automatic support for pre/post-condition reasoning,
assuming that we are given a program together with annotations specifying assump-
tions and requirements on the configurations at its different control points, including
loop invariants and procedure specifications. The aim is to automatize each step in the
correction proof using algorithms for checking the validity of Hoare triples, i.e., given a
program statement s, a pre-condition φ and a post-condition ψ, check that starting from
any configuration satisfying φ, executing s always leads to a configuration satisfying
ψ. Phrased in the logic-based framework mentioned above, this corresponds to check-
ing whether the formula post(φ,St)⇒ ψ is valid, where post(φ,St) is supposed to
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be a formula that characterizes the set of all immediate successors of φ after executing
St. Therefore, we need to have (1) procedures for computing effectively the formula
post(φ,St) for any given St and φ, and (2) algorithms for deciding entailments between
two formulas in order to check that post(φ,St)⇒ ψ holds.

Beyond that, a more ambitious objective is to provide algorithms for automatic syn-
thesis of invariants and procedure summaries (i.e., assertions specifying the relations
between the inputs and outputs of the procedures). This allows to augment the degree
of automation since the user would not need to provide all the necessary annotations
for the correctness proof, which is usually cumbersome and quite complex. Instead,
he would be able to rely on synthesis techniques that can discover automatically the
missing assertions (e.g., strong enough loop invariants) to complete the proof.

To achieve these goals, several problems must be faced. First, we must be able to
decide the validity of the manipulated formulas. The problem is that it is very hard to
define classes of formulas for which this is possible and that are expressive enough
to cover relevant program properties such as those mentioned above, mixing complex
constraints on the shape, sizes, and data. In fact, in many cases, the needed assertions
are expressed using formulas that are outside the known decidable logics.

As for assertion synthesis, the additional problem is that the space of assertions is
infinite, and it is hard to discover the relevant properties that hold for all possible con-
figurations at some point in the program. Especially, it is important to have clever tech-
niques for the generation of universally quantified formulas that capture such properties
that may involve in general quite intricate relations between elements of the heap. Naive
procedures would not be able to generate accurate enough assertions.

In this work, we propose an approach for addressing these issues based on the frame-
work of abstract interpretation [12]. We focus on the case of (sequential) programs ma-
nipulating dynamic linked lists carrying integer numerical data.

First, we consider that constraints are expressed as elements of abstract domains, the
latter being equipped with appropriate meet, join, and entailment operations. These op-
erations correspond to approximations of the logical operations of conjunction, disjunc-
tion, and logical implication in the sense that the meet (resp. join) under-approximates
conjunction (resp. over-approximates disjunction), and the entailment is a sound ap-
proximation of logical implication, i.e., if the entailment holds, then necessarily the
implication holds also. In addition to these operations, abstract transformers are intro-
duced allowing to define an over-approximation of post(φ,St), for every statement St
and constraint φ in the considered abstract domain. Therefore, validating Hoare triples
in this framework amounts to checking an entailment between two elements of some
abstract domain. Notice that entailment checking in this context does not need to be
complete in general. But then, the difficulty is of course in the design of the abstract
domains (and the associated operations mentioned above) so that they allow expressing
the kind of constraints that are needed for reasoning about significant classes of pro-
grams, and they offer powerful mechanisms for computing abstract post-images and for
checking entailment that are accurate enough to be successful and efficient in practice.

Furthermore, invariant synthesis and procedure summary generation can naturally
be done in this framework using intra/inter-procedural analyses. These analyses are de-
fined as fixpoint computations using the abstract domains mentioned above. However,
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an additional, and quite delicate, issue that must be addressed in this case is how to
guarantee termination while ensuring accuracy of the analyses. In particular, quite elab-
orate extrapolation (or widening) techniques are needed to generate universally quan-
tified formulas that combine ordering and data constraints. Another important issue to
address is scalability of the analyses. A natural approach for tackling this issue is to
design modular inter-procedural analyses where the analysis of each procedure call is
performed locally, by considering only the part of the heap that is accessible by the
variables of the procedure. Then, a delicate problem arises which is how to maintain
the relations that might exist between the elements of the local heap before and after
the procedure call and the rest of the elements in the heap.

We propose in this paper abstract domains allowing to reason about the various kind
of constraints that we have mentioned above, i.e., constraints on the shape of the heap,
on the lengths of the lists starting at some locations, on the multisets of the data in these
lists, and on the values of the data at different positions on these lists. We show that the
proposed domains allow to reason accurately about complex constraints, in particular,
our entailment checking techniques allow to establish the validity of formulas that are
beyond the capabilities of the existing tools, including the currently most advanced
SMT solvers such as CVC3 [2] and Z3 [15].

Moreover, we propose modular inter-procedural analysis techniques allowing to gen-
erate automatically invariants as well as procedure summaries. We show that in order
to be accurate, modular reasoning requires nontrivial combinations of abstract analyses
using different domains, in particular the domain of universally quantified formulas and
the domain of multiset constraints. We have implemented the abstract domains and the
techniques described in the paper in a tool called CELIA, and we have carried out a
large set of experimentations showing the strength and the efficiency of our approach.

2 Programs

We consider a class of strongly typed sequential programs which manipulate singly
linked lists. We suppose that all manipulated lists have the same type, i.e., pointer to
a record called list consisting of one pointer field next and one data field data of
integer type. The generalization to records with several data fields is straightforward.

Syntax: Let PVar be a set of variables of type pointer to list (PVar includes the con-
stant NULL) and DVar a set of variables interpreted as integers. A program is defined
by a set of procedures, each of them defined by a tuple P = (fpi, fpo, loc,G), where
loc⊆ PVar∪DVar is the vector of local variables, fpi⊆ loc and fpo⊆ loc are the vec-
tors of formal input, resp. output, parameters, and G is an intra-procedural control flow
graph (CFG, for short). The edges of the CFG are labeled by (1) statements of the form
p=new, p=q, p->next=q, p->data=dt, and y=Q(x), where p,q ∈ PVar, dt is a term
representing an integer, Q is a procedure name, and y,x ⊆ PVar∪DVar, (2) boolean
conditions on data built using predicates over Z, (3) boolean conditions on pointers of
the form p==q, where p,q ∈ PVar, or (4) statements assert ϕ and assume ϕ, where
ϕ is a formula in the logic SL3 defined in Section 3. The semantics assumes a garbage
collector and consequently, the statement free is useless. We assume a call-by-value
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semantics for the procedure input parameters and that each procedure has its own set of
local variables. We forbid pointers to procedures and pointer arithmetic.

4a 9 2 7 �

NULL,x

4sm 2

9gr 7

naa

4 9 2 7

�

NULL,x

nssm

4 2

nggr

9 7

∃n1,ns ,ng, �.(
ls(na, �)∗ls(ns, �)∗ls(ng, �)
∧a(na)∧ sm(ns)∧gr(ng)∧ x(�)

Universally quantified formula:

∧hd(ns)≤ v∧hd(ng)> v
∧len(na) = len(ns)+len(ng)
∧∀y. y ∈ tl(ns)⇒ ns [y]≤ v
∧∀y. y ∈ tl(ng)⇒ ng[y]> v

Multiset formula:

∧ms(na) = ms(ns)∪ms(ng)
)

(a) (b) (c)

Fig. 2. Heap (a), heap decomposition (b), and SL3 (c) representations of a program configuration
in the procedure split

Semantics: A program configuration consists of a valuation of the variables interpreted
as integers and a configuration of the allocated memory. The latter is represented by a
labeled directed graph where nodes represent list elements and edges represent values
of the field next (every node has exactly one successor). The constant NULL is rep-
resented by the distinguished node �. Nodes are labeled with values of the field data

and program pointer variables. Such a representation is called a heap. For example, the
valuation [v← 6] and the graph in Fig. 2(a) represents a program configuration of the
procedure split from Fig. 1.

Definition 1 (Heap). A heap over PVar and DVar is a tuple H = (N,S,V,L,D) where:
(1) N is a finite set of nodes which contains a distinguished node �, (2) S : N ⇀ N is
a successor partial function s.t. only S(�) is undefined, (3) V : PVar→ N is a function
associating nodes to pointer variables s.t. V (NULL) = �, (4) L : N ⇀ Z is a partial
function associating nodes to integers s.t. only L(�) is undefined, and (5) D : DVar→ Z
is a valuation for the data variables.

Definition 2 (Simple/Crucial node). A node labeled with a pointer variable or which
has at least 2 predecessors is called crucial. Otherwise, it’s called a simple node. �

For example, the circled nodes in Fig. 2(a) are crucial nodes. All the other nodes are
simple. Since the semantics we consider is based on garbage collection, the heaps do
not contain garbage, i.e., all the nodes of the graph are reachable from nodes labeled
with pointer variables.

The intra-procedural semantics is defined by a mapping δ which associates to each
control point c in the program a set of heaps over PVar and DVar, representing the set of
program configurations reachable at c. As usual, the mapping δ is obtained as the least
fixed point of a system of recursive equations. For any statement St and any set of heaps
H over PVar and DVar, postc(H ,St) denotes the concrete post-condition operator.

We consider an inter-procedural semantics based on relations between program con-
figurations. To have a compositional semantics, we follow the approach of local heap
semantics introduced in [29], where at each procedure call, the callee has access only to
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the part of the heap that is reachable from its actual parameters, called the local heap.
For example, in Fig. 3(a), the local heap for the procedure call quicksort(left) con-
tains only the nodes reachable from the node labeled by left. This approach simplifies
the semantics since it avoids the representation of the call stack in the program config-
urations. However, its use is delicate because the nodes in the local heap of the callee
may be shared with the local heaps of other procedures. If during the call these nodes
become locally unreachable or deleted, the local heaps of the other procedures must
also be updated accordingly. To solve this problem, [29] proposes to maintain for each
procedure call the nodes of the local heap from which the shared paths start, but which
are not pointed to by the procedure parameters. These nodes are called cut-points. No-
tice that, in general, the number of cut-points may be unbounded. However, there is a
significant class of programs for which cut-points are never generated during the execu-
tion. This class, called cut-point free programs [30], includes programs such as sorting
algorithms, traversal of lists, insertion, deletion, etc. In this paper, we consider cut-point
free programs and we focus on the problems induced by data manipulation.

For any procedure P = (fpi, fpo, loc,G) and any control point c in P, we consider
relations between a program configuration at the entry point of P and a program config-
uration at c. These relations are represented using a double vocabulary loc∪ loc0, where
loc0 = {v0 | v ∈ loc} denote the values of the variables in loc at the entry point of P.
A relation associated to P at c is represented by a heap over loc∪ loc0 consisting of a
valuation for the integer variables in (loc∩DVar)∪ (loc∩DVar)0 and a graph which is
the union of two sub-graphs: G0 represents the local heap at the entry point of P and
G represents the local heap at the control point c. For example, a relation associated
to quicksort at line 33 is represented by the valuation

[
d0← 0,d← 6

]
and the graph

in Figure 3(a) (we suppose that integer variables are initialized to 0). The subgraph
containing only the nodes reachable from the node labeled by a0 represents the input
configuration while the rest of the graph represents the configuration at line 33.

6

a0

4 9 2 7

6
a

4 9 2 7 �

NULL

4left 2

9right 7 6

pivot

n0
aa0

6 4 9 2 7

naa

6 4 9 2 7

� NULL

nlleft

4 2

nrright

9 7

np pivot

6

∃n0
a,na,nl ,nr ,np, �.(

ls(n0
a, �)∗ls(na, �)∗ls(nl , �)

∗ls(nr, �)∗ls(np, �)

∧a0(n0
a)∧a(na)∧left(nl)

∧right(nr)∧pivot(np)

Universally quantified formula:

∧hd(nl)≤ hd(np)∧hd(nr)> hd(np)
∧d = hd(np)∧len(np) = 1
∧len(na) = len(nl)+len(nr)+len(np)
∧∀y. y ∈ tl(nl)⇒ nl [y]≤ hd(np)
∧∀y. y ∈ tl(nr)⇒ nr [y]> hd(np)

∧eq∀(na,n0
a)

Multiset formula:

∧ms(na) = ms(nl)∪ms(nr)∪ms(np)

∧ms(n0
a) = ms(na)

)
(a) (b) (c)

Fig. 3. Heap (a), heap decomposition (b), and SL3 (c) representations of a relation between pro-
gram configurations in the procedure quicksort
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The inter-procedural semantics is defined by a mapping ρ which associates to each
control point c in the CFG of a procedure P a set of heaps over loc∪ loc0. The mapping
ρ is obtained as the least fixed point of a system of recursive equations [13,33]. The
extension of the postcondition operator postc over relations is also denoted by postc.

3 Specification Logic

We introduce hereafter Singly-Linked List Logic (SL3, for short) whose models are
heaps. Its definition is based on a decomposition of heaps obtained as follows. Given a
heap H, its decomposition H is defined by (1) keeping only some nodes from H but at
least all the crucial nodes, (2) adding an edge between any two nodes which are reach-
able in H, and (3) labeling every node n with a sequence, which contains the integers
on the path from H starting in n and ending in its successor in the new graph H. The
valuation for the program integer variables is unchanged. For example, Fig. 2(b), resp.
Fig. 3(b), gives a decomposition for the heap in Fig. 2(a), resp. Fig. 3(a).

Syntax of SL3: Formulas in SL3 describe heap decompositions. Let NVar be a set of
node variables interpreted as nodes of the decomposition. An SL3 formula is a disjunc-
tion of formulas of the form ∃N. ϕG∧ϕP∧ϕD, N ⊆ NVar, without free node variables:

– ϕG defines the edges of the decomposition; it contains a set of atomic formulas of
the form ls(n,m) denoting an edge between the nodes n and m, which are con-
nected using the ∗ operator (notation borrowed from separation logic [28]). The
operator ∗ states that there is no sharing between the list segments represented by
the edges of the decomposition;

– ϕP is a conjunction of formulas of the form x(n) with x ∈ PVar and n ∈ NVar,
expressing the fact that x labels the node n;

– ϕD, called a data formula, is a first-order formula that describes the integer variables
and the integer sequences labeling the nodes of the decomposition.

Syntax of Data Formulas: In the following, the sequence of integers labeling the node
n is denoted also by n. The formula ϕD has the following form:(

E ∧
∧

G(y)∈G

∀y. G(y)⇒U(y)
)
∧

(∧
i

t i
1 = ti

2

)
, where

– E is a Presburger formula, called existential constraint, which characterizes the
first elements of the sequences labeling the nodes of the decomposition (denoted
by hd(n)), the lengths of the integer sequences (denoted by len(n)), and the values
of the variables from DVar,

– y is a set of position variables interpreted as integers representing positions in the
sequences labeling the nodes of the decomposition,

– G is a set of guards G(y), which are conjunctions of (1) formulas that associate
vectors of position variables with sequences (y ∈ tl(n) means that the position
variables from the vector y are interpreted as positions in the tail of the sequence n)
and (2) a conjunction of linear constraints over the position variables that may use
terms of the form len(n),
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– U(y) is a Presburger formula over terms of the form y, n[y], denoting the integer at
position y in the sequence n, len(n), and hd(n). A term n[y] appears in U(y) only
if the guard G(y) contains a constraint y∈ tl(n) with y∈ y. This restriction is used
to avoid undefined terms. For instance, if n denotes a sequence of length 2 then the
term n[y] with y interpreted as 3 is undefined,

– ti
1, t

i
2 are multiset terms of the form u1∪ ·· · ∪ us (s ≥ 1 and ∪ is the union of mul-

tisets) where basic terms ui are of the form (1) mhd(n) (resp. d) representing the
singleton containing the first integer of the sequence labeling n (resp. the value of
d), or (2) mtl(n) representing the multiset containing all the integers of the se-
quence n except the first one. As a shorthand, mhd(n)∪mtl(n) is denoted by ms(n).

For example, the formula from Fig. 2(c) describes the decomposition from Fig. 2(b).
Analogously, the formula from Fig. 3(c) describes the decomposition from Fig. 3(b),
where the equality of sequences is described by:

eq∀(n,n
0) := hd(n) = hd(n0)∧len(n) = len(n0)∧

∀y1,y2. (y1 ∈ tl(n)∧ y2 ∈ tl(n0)∧ y1 = y2)⇒ n[y1] = n0[y2] (3)

Semantics of SL3: For simplicity, we assume that any two distinct node variables
represent two distinct nodes in the decomposition. Given a decomposition H and an
SL3 formula ϕ, H satisfies ϕ if there exists a disjunct ψ of ϕ, which is of the form
∃N. ϕG ∧ϕP ∧ϕD, and an interpretation I of the node variables in ψ as nodes in H
s.t. (1) (I (n),I (m)) is an edge in H iff ϕG contains the formula ls(n,m), (2) I (n) is
labeled with x ∈ PVar iff ϕP contains the atomic formula x(n), and (3) the integer data
in H satisfies the properties given by ϕD. Then, a heap H satisfies an SL3 formula ϕ if
there exists a decomposition H of H that satisfies ϕ. The set of heaps satisfying an SL3
formula ϕ is denoted by [ϕ].

Fragments of SL3: The fragment of SL3 which contains formulas without multiset
constraints is denoted by SL3U while the fragment of SL3 which describes the integer
data using only multiset constraints is denoted by SL3M. An SL3 formula is called
succinct if it describes heap decompositions that do not contain simple nodes.

4 Reasoning about Programs without Procedure Calls

In this section, we present solutions based on abstraction for checking and synthesizing
assertions for programs without procedure calls.

4.1 Pre/Post Condition Reasoning

We describe a framework for pre/post-condition reasoning when the annotations
are given in SL3. In general, the difficulty is to check entailments of the form
post(ϕpre,St)⇒ ϕpost , where post(ϕpre,St) is an SL3 formula that models exactly
(over-approximates) the set of heaps postc([ϕpre],St). In the following, we consider
only entailments where the heap decompositions described by ϕpost do not contain sim-
ple nodes, i.e., ϕpost is succinct. This implies that the invariants and the post-conditions
we can check must satisfy this restriction, which is usually the case in practice.
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As a running example, we consider the problem of checking an invariant for the
while loop in the procedure split from Fig. 1. This invariant, denoted by Inv, con-
tains several disjuncts. Two of them, denoted by ψ1 and ψ2, are pictured in Fig. 4(c)
and Fig. 4(d); the sub-formula that describes the edges and the labeling with pointer
variables of the heap decomposition is represented by a graph. The disjuncts of Inv
not represented in Fig. 4(c) are similar, i.e., they consider the cases where x, sm, or
gr point to NULL. Instead of checking the validity of post(Inv,St)⇒ Inv, where St
is the body of the loop, we consider the problem of checking the simpler entailment
(ψp

1 ∨ψp
2)⇒ (ψ1∨ψ2), where ψp

1 and ψp
2 are given in Fig. 4(a) and Fig. 4(b), respec-

tively (ψp
1 is a sub-formula of post(ψ1,St) while ψp

2 is a sub-formula of post(ψ2,St)).
Let ϕ and ϕ′ be two SL3 formulas and consider the problem of checking the validity

of the entailment ϕ⇒ ϕ′. To efficiently handle the disjunction, we check if for any
disjunct ψ of ϕ there exists a disjunct ψ′ of ϕ′ such that ψ⇒ ψ′. For example, (ψp

1 ∨
ψp

2)⇒ (ψ1 ∨ψ2) is valid if ψp
1 ⇒ ψ1 and ψp

2 ⇒ ψ2. This approach is complete only
if both SL3 formulae ϕ and ϕ′ are succinct and if any two disjuncts of ϕ′ describe
non-isomorphic heap decompositions (the isomorphism ignores the integer sequences).

Next, to check an entailment of the form ψ⇒ ψ′, where ψ is of the form ∃N. ϕG∧
ϕP∧ϕD and ψ′ is of the form ∃N′. ϕ′G ∧ϕ′P∧ϕ′D, a first approach is to check that the
labeled graphs described by ψ and ψ′ are isomorphic and that ϕD entails ϕ′D. This check
is complete only if both ψ and ψ′ are succinct. Then, the entailment between ϕD and
ϕ′D is valid if (1) the existential constraint of ϕD implies the existential constraint of ϕ′D,
(2) the right part of any universally quantified implication in ϕ′D is implied by the right
part of an universally quantified implication in ϕD having a similar guard, and (3) the
multiset constraints in ϕD imply the multiset constraints in ϕ′D. A sufficient condition
to test the validity of �M is: for every multiset equality in ϕ′D of the form t1 = t2,
ϕD contains the multiset equalities t1 = t1

1 ∪ t2
1 · · · ∪ t p

1 , t2 = t1
2 ∪ t2

2 · · · ∪ t p
2 , and for any

1 ≤ i ≤ p, ti
1 = ti

2. The approximation for the entailment that we obtain in this way is
denoted by �. For example, in Fig. 4, ψp

2 � ψ2 and consequently, ψp
2 ⇒ ψ2.

The operator fold#: To prove entailments of the form ψ⇒ ψ′, where ψ is not suc-
cinct, we define an operator fold#, which computes a succinct SL3 formula that over-
approximates ψ (i.e., it eliminates the existential node variables in ψ which represent
simple nodes). The extension of fold# to SL3 formulas is defined by fold#(

∨
i ψi) =∨

ifold
#(ψi). Clearly, if fold#(ψ)� ψ′ then ψ⇒ψ′. Such entailments arise naturally

when checking loop invariants. Even if we consider a succinct invariant Inv, the post-
condition operator post will unfold the structures and introduce simple nodes. Conse-
quently, Inv describes heap decompositions that are not isomorphic to heap decompo-
sitions in post(Inv,St) and post(Inv,St)� Inv does not hold. However, it may happen
that fold#(post(Inv,St))� Inv which is enough to prove post(Inv,St)⇒ Inv. In the
running example, we have that fold#(ψp

1)⇒ ψ1 which implies ψp
1 ⇒ ψ1.

Let ψ be the disjunct of some SL3 formula. In general, fold#(ψ) is defined such that
every maximal path n0,n1, . . . ,nk−1,nk in the graph described by ψ between two crucial
nodes n0 and nk is replaced by one edge between n0 and nk and the integer sequence
labeling n0 in the models of fold#(ψ) is the concatenation of the integer sequences
labeling n0, n1,. . .,nk−1 in ψ. For example, fold#(ψp

1) is defined such that the paths
na,n′x,nx and n′g,ng, � are replaced by an edge from na to nx and an edge from n′g to �,
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naa �

NULL,sm,x

nggr

len(na) = len(ng)∧hd(ng)> v

∧∀y. y ∈ tl(ng)⇒ ng[y]> v

∧ms(na) = ms(ng)

(b) The disjunct ψp
2

na

a

n′x nx

x

�

NULL,sm

n′ggr ng

len(n′x) = len(n′g) = 1∧hd(n′g) = hd(n′x)> v

∧hd(ng)> v∧len(na) = len(ng)

∧∀y. y ∈ tl(ng)⇒ ng[y]> v

∧mhd(n′x) = mhd(n′g)∧ms(na) = ms(ng)

(a) The disjunct ψp
1

na

a

nx

x

�

NULL,sm

nggr

hd(ng)> v∧len(na) = len(ng)

∧∀y. y ∈ tl(ng)⇒ ng[y]> v

∧ms(na) = ms(ng)

(c) The disjunct ψ1

naa �

NULL,sm,x

nggr

len(na) = len(ng)∧hd(ng)> v

∧∀y. y ∈ tl(ng)⇒ ng[y]> v

∧ms(na) = ms(ng)

(d) The disjunct ψ2

Fig. 4. Checking the invariant for the loop in the procedure split

respectively. Also, the sequences labeling na and n′g in fold#(ψp
1) are the concatena-

tion of the sequences labeling na, n′x and n′g, ng, respectively. The multiset constraints
are handled independently of the other constraints. Thus, fold#(ψp

1) contains the mul-
tiset constraint ms(na) = ms(n′g), which is obtained by (1) applying an inference rule in
ψp

1 that infers the constraint ms(n′x)∪ms(na) = ms(n′g)∪ms(ng) (the hypotheses of the
inference rule are mhd(n′x) = mhd(n′g), ms(na) = ms(ng), and len(n′x) = len(n′g) = 1)
and (2) substituting ms(n′x)∪ms(na) with ms(na) and ms(n′g)∪ms(ng) with ms(n′g).

The other type of constraints are computed as follows. The properties of the se-
quences labeling na in the models of fold#(ψp

1) are easy to obtain because there are
no universal formulas that describe the sequences labeling na and n′x in ψp

1 . We have
to update only the length constraints, i.e., substitute len(na) by len(na)−len(n′x) and
project out the term len(n′x). Then, the properties of the sequences labeling n′g in the
models of ψp

1 are obtained as follows:

– We update the length constraints as in the previous case, i.e., we substitute len(ng)
by len(ng)−len(n′g) and project out the term len(n′g).

– The universal formula that describes n′g in fold#(ψp
1) has the same guard as the one

describing ng in ψp
1 . It is obtained by taking into consideration that the tail of n′g in

fold#(ψp
1) is the concatenation between the head and the tail of ng in ψp

1 . Thus, we
obtain a formula of the form ∀y. y ∈ tl(n′g)⇒ (U1∨U2), where U1 is the property
of hd(ng) and U2 is the property of tl(ng). The formula U1 is E

[
hd(ng)← n′g[y]

]
,

where E is the existential constraint of ψp
1 , and U2 is obtained from the right part

of ∀y. y ∈ tl(ng)⇒ ng[y]> v by substituting ng[y] with n′g[y], i.e., U2 is n′g[y]> v.
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The relation Closure: In the example above, the input given to fold# contains only
universally-quantified implications over one position variable. When these implications
contain at least two position variables, the computation of the universally-quantified im-
plications describing the concatenations is more involved. Let us consider the following
formula expressing the fact that the sequences labeling n1 and n2 are sorted:

ψ3 := ∃n1,n2.
(
ls(n1,n2)∗ls(n2,�)∧x(n1)∧sorted(n1)∧less(n1)∧sorted(n2)∧less(n1)

)
sorted(n) := ∀y1,y2. ([y1,y2 ] ∈ tl(n)∧y1 ≤ y2)⇒ n[y1]≤ n[y2 ]

less(n) := ∀y. [y] ∈ tl(n)⇒ hd(n)≤ n[y].

In fold#(ψ3), the sequence labeling n1 should be the concatenation of the sequences
labeling n1 and n2 in ψ3 (n2 represents a simple node in ψ3). The universal formu-
las describing this sequence should have the same guards as the formulas in ψ3, i.e.,
G1(y1,y2) = [y1,y2] ∈ tl(n1)∧ y1 ≤ y2 and G2(y) = y ∈ tl(n1). In the following, we
focus on the first guard. An approach similar to the one used for guards of the form
y ∈ tl(n) could take the union of the properties expressed using the guard G1(y1,y2)
on each sequence (n1 and n2) and define it as a property of the concatenation. Unfortu-
nately, this definition is unsound. The formula ∀y1,y2. G1(y1,y2)⇒ n1[y1] ≤ n1[y2] is
not implied by ψ because the concatenation of two sorted words is not always sorted.

The definition of fold# is based on a relation between guards and sets of guards,
called Closure (see [1] for more details). If we go back to the formula ψ then
sorted(n1) ∧ less(n1) characterizes the data values in the first part of the con-
catenation and sorted(n2) ∧ less(n2) characterizes the data values in the second
part. But, out of two positions in the concatenation, one might be in n1 (differ-
ent from the first element of n1) and the other one in n2. Therefore, to define a
sound fold# operator, we need a universally-quantified implication having as guard
G3(y1,y2) = y1 ∈ tl(n1) ∧ y2 ∈ tl(n2). In fact, Closure(G1(y1,y2)) is the set of
guards {G1(y1,y2),G2(y),G3(y1,y2)}. The operator fold# combines universal formu-
las with guards from Closure(G1(y1,y2)) in order to compute the formula of the form
∀y1,y2. G1(y1,y2)⇒U (see [5,1] for more details). If these formulas are not present in
the input formula then fold# over-approximates it to true.

4.2 Invariant Synthesis

We consider a static analysis for programs with singly-linked lists based on abstract in-
terpretation [12]. We define in [5] a generic abstract domain whose elements represent
sets of heaps. Two important instances are AHS(k,AU) and AHS(k,AM) (the parameter
k may be omitted). The elements of AHS(k,AU) are SL3U formulas and the elements
of AHS(k,AM) are SL3M formulas. The conjunctions of universally-quantified implica-
tions from SL3U formulas are elements of an abstract domain denoted by AU and the
conjunctions of equalities between multiset terms from SL3M formulas are elements
of an abstract domain denoted by AM. The elements of AHS(k,AU) and AHS(k,AM)
are also called abstract heap sets. The abstract values satisfy the following restrictions:
(1) any two disjuncts describe non-isomorphic heap decompositions and (2) any dis-
junct describes a heap decomposition with at most k simple nodes. Also, AHS(k,AU)
has another two parameters which restrict the form of the universally-quantified for-
mula describing the integer sequences. The first parameter is a set of guards P, also
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called guard patterns, and the second one is a numerical abstract domain AZ (such as
the Octagons abstract domain [24], the Polyhedra abstract domain [14], etc.). Then, the
formulas belonging to AHS(k,AU) are disjunctions of formulas of the form:

∃N.
(

ϕG∧ϕP∧E ∧
∧

G(y)∈P(N)

∀y. G(y)⇒U(y)
)
,

where (1) P(N) is a set of guards obtained from P by substituting all node variables
with elements of N and (2) E and U(y) are elements of the numerical abstract domain
AZ. The order relation between elements of AHS(k,AU) (resp. AHS(k,AM)) is exactly
� restricted to SL3U (resp. SL3M) formulas. If we ignore integer data, the number of
heap decompositions without garbage and with at most k simple nodes is bounded.
Consequently, the lattice AHS(k,AM) is finite and there is no need to define a widening
operator. The lattice AHS(k,AU) is infinite due to the numerical abstract domain AZ. We
define a widening operator which is parametrized by the widening operator of AZ.

Unfolding/Folding: The analysis over these abstract domains iterates the following
two steps: (1) unfolding the structures in order to reveal the properties of some internal
nodes in the lists, which makes necessary to introduce some simple nodes and then,
(b) folding the structures, in order to keep the graphs finite, by eliminating the simple
nodes and in the same time collecting the informations on these nodes using a formula
that speaks about data sequences. To terminate, the widening operator is applied.

void initEven(list* head) {
list *headi = head;
int i = 0;
while(headi != NULL) {

headi->data = 2*i;
headi = headi->next;
i++;

}
}

Fig. 5.

We define sound abstract transformers for the state-
ments in the class of programs we consider. The
statements that dereference the next pointer field
(x=y->next and x->next=y) introduce simple nodes.
The folding step is applied every time the number of
simple nodes becomes greater than k. It consists in
applying the operator fold# described in Sec. 4.1. In
particular, this is the crucial step that allows to gener-
ate universally quantified properties from a number of
relations between a finite (bounded) number of nodes.
To make the operator fold# precise, we should con-

sider abstract domains AHS(k,AU) parametrized by sets of guard patterns P which are
closed under the relation Closure, i.e., they include Closure(G), for any G in P.

We illustrate the unfold/fold mechanism on the procedure initEven from Fig. 5. We
analyze this program using the abstract domain AHS(1,AU) parametrized by (1) a set
of guard patterns consisting of one element y ∈ tl(n) and (2) the Polyhedra abstract
domain. The analysis begins to unroll the loop of the procedure starting from the first
SL3 formula given in Fig. 6. This formula represents the set of all heaps that consist of
a path between a vertex labeled by head and headi, and the distinguished node �.

Every symbolic execution of the statement headi=headi->next in the loop gener-
ates a formula with two disjuncts: the first one corresponds to the case when headi

points to NULL (the list traversal ends) and the second one unfolds the structure, i.e.,
introduces a new node which is pointed to by headi. The formulas obtained after un-
rolling once and thrice the loop are given in Fig. 6. An edge starting in some node n and
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labeled by 1 means that the formula contains the constraint len(n) = 1. Also, a node n
labeled by some integer v means that the formula contains the constraint hd(n) = v.

Initial configuration:

n1

head, headi

�

NULL

1st unrolling:

n1

head

0

n2

headi

�

NULL

∨

n1

head

0

�

NULL,headi

1

1

3rd unrolling:

n1

head

0

n2

2

n3

4

n4

headi

�

NULL

∨

n1

head

0

n2

2

n3

4

�

NULL,headi

1 1 1

1 1 1

Folding:

n1

head

0

n2

headi

�

NULL

∀y. y ∈ tl(n1)⇒ n1[y] = 2∗ y∨

n1

head

0

�

NULL,headi

∀y. y ∈ tl(n1)⇒ n1[y] = 2∗ y

Fig. 6.

The size of the list pointed to by head is po-
tentially unbounded, so the size of the graphs
grows at each unrolling. In order to guaran-
tee termination, the analysis manipulates graphs
that contain at most one simple node (i.e., k= 1).
Notice that after the third unrolling of the loop,
the graphs contain two simple nodes. To keep
the size of the abstract heaps bounded, the anal-
ysis eliminates these nodes but, before that, it
collects the information that the unrolling of the
loop revealed about them. This step is called
folding the structure and consists in applying
fold#. We obtain a universal formula that de-
scribes the data properties of the nodes that
have been eliminated. Because the analysis is
parametrized by the pattern ∀y. y∈ tl(n), fold#

generates a universally quantified formula of the
form ∀y. y ∈ tl(n1)⇒U . To this, it searches for
all possible instantiations of the variable y that
satisfy the pattern, in this case the nodes labeled
by 2 and 4, and it applies the join in the numer-
ical abstract domain between the constraints on
these nodes, i.e., dt(y) = 2 and dt(y) = 4. The
resulting formula is given in Fig. 6.

The unfolding and folding steps are repeated
until the analysis reaches a fixed point. To en-
sure the convergence of the fixed point computa-
tion, apart from bounding the size of the graphs,
we use the widening operator of the numerical
abstract domain AZ. In the considered example,
widening makes the length constraints converge

to the fact that the list pointed to by head is greater than or equal to one. Consequently,
the universally quantified formula from Fig. 6 is generalized to the entire list.

4.3 A Sound Decision Procedure Based on Abstraction

In Sec. 4.1, we have shown that for any ϕ and ϕ′ two SL3U formulas, the entailment
ϕ⇒ ϕ′ is valid if for any disjunct ψ′ of ϕ′ there exists a disjunct ψ of ϕ such that
fold#(ψ) � ψ′. Notice that fold#(ψ) � ψ′ holds only if ψ′ contains universally-
quantified implications having the same guards as some universally-quantified impli-
cations in ψ. For example, the entailment ψ4 ⇒ ψ5 in Fig. 7 is valid but ψ4 �� ψ5

(because ψ4 is succinct there is no need to apply the operator fold#). This happens
because ψ4 does not contain an universally-quantified implication having as guard
[y1,y2] ∈ tl(n1)∧ y2 = y1 + 1.
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n1

head

0

�

NULL,headi

⇒

∀y. y ∈ tl(n1)⇒ n1[y] = 2∗y

n1

head

0

�

NULL,headi

∀y1,y2. ([y1,y2] ∈ tl(n1)∧ y2 = y1 +1)
⇒ n1[y2] = n1[y1]+2

Fig. 7. An entailment between two formulas denoted by ψ4 and ψ5

The operator convertP: In order to increase the precision of entailment checking
between SL3U formulas, we define an operator convertP [6], parametrized by a set of
guard patterns P. For any SL3U formula ϕ, convertP(ϕ) is an SL3U formula equivalent
to ϕ which contains universally-quantified implications having as guards constraints
from P. Therefore, for any ϕ and ϕ′ two SL3U formulas, if convertP(ϕ) � ϕ′ then
ϕ⇒ ϕ′. The operator convertP is defined as follows:

– We consider a program containing several while loops that traverse the list seg-
ments constrained by ϕ. For example, in the case of ψ4, we consider the program:

list *headi = head;
while (headi != NULL)

headi = headi->next;

– The program is analyzed using AHS(k,AU) parametrized by a set of guard patterns
P′ = P∪Pϕ ∪Closure(P∪Pϕ), where Pϕ are the patterns in ϕ. The precondition
is exactly ϕ. We denote by ϕP the postcondition (i.e., the formula describing the
configurations reachable at the end of the program) synthesized using this analysis.

– convertP(ϕ) is the conjunction of ϕ and ϕP.

The formula convertP(ϕ) is equivalent to ϕ because, by definition, ϕP is implied by
ϕ. For example, convertP1(ψ1), where P1 consists of y ∈ tl(n1), [y1,y2] ∈ tl(n1)∧
y2 = y1 + 1, and the closure of these two patterns, is a formula which contains both
universally quantified implications from Fig. 7 (see [6] for more details). The fact that
convertP1(ψ1)� ψ2 proves that ψ1⇒ ψ2 is valid.

5 Reasoning about Programs with Procedure Calls

In this section, we extend the pre/post condition reasoning framework and the static
analysis from the previous section to (recursive) programs with procedure calls.

5.1 Pre/Post Condition Reasoning

We assume that, besides loop invariants, each procedure is annotated by a precondition
and a postcondition. Following the local heap semantics, they describe only the part of
the heap relevant to the procedure. The precondition describes heaps where all nodes are
reachable from the input parameters and the postcondition describes relations between
the input and the output configurations, i.e., heaps over the double vocabulary loc∪ loc0.

The validity of Hoare triples corresponding to procedure calls can be checked as fol-
lows. Let P be a procedure annotated by a precondition ϕpre and a postcondition ϕpost
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and let {ϕ1}P(ai,ao){ϕ2}, be a Hoare triple, where ai, resp. ao, are the input, resp.
output, actual parameters (the validity of Hoare triples corresponding to q = P(ai,ao)
is checked in a similar manner). This Hoare triple is valid if (1) for any heap H mod-
eled by ϕ1, the sub-graph of H containing all the nodes reachable from the actual input
parameters ai satisfies ϕpre and (2) post(ϕ,P(ai,ao))⇒ ϕ2. The first condition holds
if the entailment local(ϕ1)⇒ ϕpre[γ] is valid, where local(ϕ1) is a sub-formula of ϕ1

describing only nodes reachable from the actual parameters in ai and γ is a substi-
tution that replaces formal parameters with actual parameters. For example, consider
the Hoare triple in Fig. 10 for the first recursive call of the procedure quicksort in
Fig. 1. The sub-formula local(ϕ1), where ϕ1 is the formula in the left of Fig. 10, is
ls(nl , �)∧ left(nl)∧ hd(nl) ≤ hd(np)∧∀y. y ∈ tl(nl)⇒ nl [y] ≤ hd(np). Clearly, it
implies the precondition of quicksort, which states that the input list is acyclic.

Then, post(ϕ1,P(ai,ao)) is a disjunction of formulas obtained by combining a dis-
junct ψ1 of ϕ1 and a disjunct ψpost of ϕpost s.t. the decomposition of the input heap in
ψpost is isomorphic to the decomposition of the local heap in ψ1 (the isomorphism is
denoted by h). Thus, (1) we replace in ψ1 the sub-formula that describes the local heap
(without integer data) with the sub-formula that describes the output heap in ψpost (with-
out integer data), (2) we redirect all edges ending in nodes labeled by actual parameters
(from ψ1) to the nodes labeled by the corresponding formal parameters (from ψpost),
and (3) integer data is described by a formula of the form σ = ∃N0. (ϕD ∧ϕD,post [h]),
where ϕD (resp. ϕD,post) is the sub-formula of ψ1 (resp. ψpost) that describes integer
data and N0 is the set of variables denoting nodes from the input heap in ψpost (the
isomorphism h is used as a substitution for node variables). Notice that the logic SL3 is
extended by allowing existential quantification over node variables in the part that de-
scribes the integer data. For example, given the postcondition of quicksort in Fig. 9(b)
and the formula ϕ1 in the left of Fig. 10, ϕ = post(ϕ1,left= quicksort(left)) is
the formula in Fig. 11 (ϕD,qst is given in Fig. 9).

caller heap

callee input non-local

callee output

ψsum(xin,xout)

ϕ(xin,xgl)

ϕ′(xout ,xgl)

Fig. 8. Relation between caller and callee
local heaps

The approach based on local heaps can be
too weak for proving the validity of Hoare
triples corresponding to procedure calls. Ele-
ments in the local heap of the callee are linked
at the call point to external elements by some
data relation, ϕ, and the procedure is anno-
tated by some postcondition ψsum that relates
the input heap with the output heap. This sit-
uation is depicted in Fig. 8. The problem is
how to recover the link ϕ′ between the ele-
ments in the callee output heap and the exter-
nal elements in the caller heap.

Annotations in SL3U for quicksort: For the procedure quicksort, annotations in
SL3U are not sufficient to prove that it outputs a sorted list. This procedure takes the
first element d of the input list a as the pivot, splits the tail of a into two lists left and
right, where all the elements of left, resp. right, are smaller, resp. greater, than d,
and then performs two recursive calls on the lists left and right, before composing
the results, together with d, into a sorted list.



16 A. Bouajjani et al.

n0
aa0

naa �

NULL

nssm

nggr

hd(ns)≤ v∧hd(ng)> v
∧len(na) = len(ns)+len(ng)

∧eq∀(na,n0
a)

∧∀y. y ∈ tl(ns)⇒ ns[y]≤ v
∧∀y. y ∈ tl(ng)⇒ ng[y]> v

∧ms(n0
a) = ms(na) = ms(ns)∪ms(ng)

(a) The postcondition of split

n0
a

a0

na

a

�

NULL

nres

res

len(na) = len(n0
a) = len(nres)≥ 1

∧eq∀(na,n0
a) ∧ sorted(nres)

∧ms(n0
a) = ms(na) = ms(nres)︸ ︷︷ ︸

ϕD,qst

(b) The postcondition of quicksort

Fig. 9. Postconditions for split and quicksort

Assume that the SL3U postcondition of split, resp. quicksort, is the formula in
Fig. 9(a), resp. Fig. 9(b), without the multiset constraints. We show that the approach
based on local heaps can not be used to prove the validity of the Hoare triple given
in Fig.10; for the moment, we ignore the multiset constraints in ϕD. When computing
ϕ′= post(ϕ′1,left= quicksort(left)), where ϕ′1 is the formula in the left of Fig.10
without the multiset equalities, the constraint that all the elements of left are less than
or equal to the pivot is lost. The only constraint over the list pointed to by left in ϕ′ is
that the list is sorted. The reason for this is twofold: (1) the annotations of quicksort
describe only the input and the output list and they don’t refer to other variables from
the context of the call (i.e., they don’t contain the property that all the elements of the
input list are less than or equal to the pivot) and (2) the postcondition of quicksort
contains no relation between the elements of the input and the output list because SL3U

cannot express the fact that a list is a permutation of another list.

{

n0
aa0

naa � NULL

nlleft

nrright np pivot

} left=quicksort(left) {

ϕD

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

hd(nl)≤ hd(np)∧hd(nr)> hd(np)

∧d = hd(np)∧len(np) = 1∧ eq∀(na,n0
a)

∧len(na) = len(nl)+len(nr)+len(np)

∧∀y. y ∈ tl(nl)⇒ nl [y]≤ hd(np)

∧∀y. y ∈ tl(nr)⇒ nr [y]> hd(np)

∧ms(na) = ms(nl)∪ms(nr)∪ms(np)

∧ms(n0
a) = ms(na)

{

n0
aa0

naa � NULL

nlleft

nrright np pivot

}

ϕD ∧ sorted(nl)

Fig. 10. A Hoare triple in SL3 for the first recursive call in quicksort

Combining Universal Formulas and Multiset Constraints: To be able to prove that
quicksort outputs a sorted list, we must consider annotations with formulas from the
full SL3. That is, the list segments are now described by universally-quantified formulas
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and multiset constraints. The new postcondition for split, resp. quicksort, is the one
in Fig. 9(a), resp. Fig. 9(b). Now, the difficulty is to reason in the combined theory.

With the new annotations, we have to check the validity of the Hoare triple from
Fig.10 (multiset constraints are now taken into consideration). The crucial point in prov-
ing the validity of post(ϕ1,left= quicksort(left))⇒ ϕ2, where ϕ2 is the formula
in the right of Fig.10, is to prove that the data constraints in Fig. 11 imply that all the
elements of the sequence nres (the new value of the list pointed to by left) are smaller
than or equal to hd(np), i.e.,

∃nl .
(
hd(nl)≤ hd(np)∧∀y. y ∈ tl(nl)⇒ nl [y]≤ hd(np)∧ms(nres) = ms(nl)

)
⇒
(
hd(nres)≤ hd(np)∧∀y. y ∈ tl(nres)⇒ nres[y]≤ hd(np)

)
.

(4)

In words, if the sequences nl and nres have the same multisets of elements and all ele-
ments of nl are less than the pivot then, the latter also holds about the elements of nres.
Notice that the operator� from Sec. 4.1 is not precise enough to prove this entailment.

n0
aa0

naa � NULL

nresleft

nrright np pivot

∃nl .
(
hd(nl)≤ hd(np)

∧∀y. y ∈ tl(nl)⇒ nl [y]≤ hd(np)

∧ms(nres) = ms(nl)
)

∧ . . .
)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
∃nl . (ϕD ∧ϕD,qst

[
n0

a← nl
]
)

Fig. 11. The formula ϕ = post(ϕ1,left = quicksort(left))

We define an operator called stregthen [6] which can be used to prove such im-
plications. It considers the same program as in convertP, consisting of a sequence
of loops that traverse the list segments. Then, it performs an analysis of this program
using a partially reduced product [11] between the domain of abstract heap sets with
universal formulas, AHS(AU), and the domain of abstract heap sets with multiset con-
straints, AHS(AM). The elements of this product are pairs from AHS(AU)×AHS(AM).
Almost all the abstract transformers are defined by F#(A1,A2) = (F#

U(A1),F#
M(A2)),

for any (A1,A2) ∈ AHS(AU)× AHS(AM), where F#
U is the abstract transformer in

AHS(AU) and F#
M is the abstract transformer in AHS(AM). The only exception is the

abstract transformer for p=q->next, denoted by G#, which is defined by G#(A1,A2) =
σ(G#

U(A1),G#
M(A2)), where σ is a partial reduction operator that transfers information

between the two abstract elements. To check the validity of ϕ⇒ ϕ2, the analysis starts
from a precondition defined as a pair (ϕU,ϕM), where ϕU is obtained from ϕ by re-
moving all multiset constraints and ϕM is obtained from ϕ by removing all universally-
quantified implications. The output of stregthen is the conjunction between the in-
put formula and the postcondition synthesized by the analysis. In this case, applying
stregthen on the formula ϕ, we obtain ϕ∧hd(nl)≤ hd(np)∧∀y. y∈ tl(nl)⇒ nl [y]≤
hd(np). Now, the fact that ϕ � ϕ2 holds proves the validity of ϕ⇒ ϕ2 which implies
the validity of the Hoare triple from Fig. 10.
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5.2 Synthesis of Procedure Summaries

For programs with procedure calls, we define a compositional analysis such that the
summary of a procedure is computed only once and then reused whenever the proce-
dure is called. Again, in order to solve the problems raised by the use of local heaps, we
strengthen the analysis in the domain of universally-quantified formulas with the anal-
ysis in the domain of multiset constraints. Thus, we define an abstract domain which
is a partial reduced product between AHS(AU) and AHS(AM). The partial reduction op-
erator is exactly strengthen and it is used in the abstract transformers for procedure
returns and assert statements. The analysis over this partial reduced product is able
for instance to synthesize the expected summary for the procedure quicksort.

Proc P
AHS(AU(P))

Proc Q1

AHS(AU(P1))

Proc Q2

AHS(AU(P2))

call

return

return

call

Fig. 12.

Another problem that we address for the design of
a compositional analysis is due to the use of patterns
for guards of universally-quantified implications. In-
deed, the analysis of different procedures may need
to use different sets of patterns and therefore, it is
important to be able to localize the choice of these
patterns to each procedure. Otherwise, it would be
necessary to use a set of patterns that includes the
union of all the sets that are used during the whole
analysis. This would obviously make the analysis in-
efficient.

Consequently, during the analysis, at procedure
calls and returns, we need to switch from an abstract domain of formulas parametrized
by some set of patterns, say P, to an abstract domain parametrized by another set of pat-
terns P1 or P2 as shown in Figure 12 (AHS(AU(P)) denotes the domain of abstract heap
sets with universally-quantified implications parametrized by the set of patternsP). This
transformation is defined using the operator convertP (see [6] for more details).

6 Experimental Results

We have implemented the inter-procedural analysis in a tool called CELIA [9]. CELIA

is a plugin of the FRAMA-C platform [8], thus taking as input annotated C programs.
CELIA instantiates the generic module FIXPOINT (http://gforge.inria.fr/) of fix-
point computation over control-flow graphs with the implementation of the abstract
domains AHS(AU) and AHS(AM) and their abstract transformers. The implementation
of the AHS(AU) domain considers the patterns y ∈ tl(w), (y1,y2) ∈ tl(w)∧ y1 ≤ y2,
(y1,y2)∈ tl(w)∧y2 = y1 +1, and y1 ∈ tl(w1)∧y2 ∈ tl(w2)∧y1 = y2 and it is generic
on the numerical domain AZ used to represent data and length constraints. For this, we
use the APRON platform [21] to access domains like octagons or polyhedra.

Benchmark: We have applied CELIA to a benchmark of C programs which is available
on the web site of CELIA. The benchmark includes the basic functions that are used
in usual libraries on singly-linked lists, for example the GTK gslist library which is
part of the Linux distribution. These functions belong to several classes: (1) (recursive)
functions performing elementary operations on list: adding/deleting the first/last ele-
ment, initializing a list of some length, (2) (recursive) functions performing a traversal
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of one resp. two lists, without modifying their structures, but modifying their data, (3)
functions computing from one resp. two input lists some output parameters of type list
or integer, and (4) sorting algorithms on lists. The benchmark also contains programs
which do several calls of the above functions on lists. For example, we handle some
programs manipulating chaining hash tables. For that, we use abstraction techniques
(slicing, unfolding fixed-size arrays) available through the Frama-C platform.

We have used CELIA for checking equivalence between sorting algorithms. The
strengthen operation plays an essential role. Let P1 and P2 be two sorting proce-
dures working on two input lists I1 and I2, and producing two outputs O1 and O2. The
equivalence of P1 and P2 is reduced to the validity of the implication(

equal(I1, I2)∧ sorted(O1)∧ms(I1) = ms(O1)
∧ sorted(O2)∧ms(I2) = ms(O2)

)
⇒ equal(O1,O2),

(5)

where equal and sorted are expressed by universally quantified implications as in SL3.
Our techniques are able to find that this formula is indeed valid. For instance, this
entailment and the one in (4) can not be proved using SMT solvers like CVC3 [2]
and Z3 [15] (the multiset equality of two sequences ms(n1) = ms(n2) is rewritten as
∃m. permutation(m)∧∀i. n1[m[i]] = n2[i], where permutation(m) expresses the fact that
the sequence m defines a permutation).

7 Conclusions and Related Work

The paper presents a logic-based framework the verification and the analysis of pro-
grams with lists and data. It introduces a family of abstract domains whose elements
are first-order formulas that describe the shape/size of the allocated memory and the
scalar data stored in the list cells. The latter is characterized using universal formulas or
multiset constraints. The elements of these abstract domains can be used as annotations
within pre/post-condition reasoning. In this context, we introduce sound procedures for
checking the validity of Hoare triples. Then, we define an accurate inter-procedural
analysis that is able to automatically synthesize invariants and procedure summaries.
This analysis is compositional and it is based on unfolding/folding the program data
structures. The precision is obtained using partial reduction operators, which allow to
combine analyses over different abstract domains. Overall, our framework allows to
combine smoothly pre-post condition reasoning with assertion synthesis.

Related Work: Assertion synthesis for programs with dynamic data structures has been
addressed using different approaches, like constraint solving, e.g. [3], abstract inter-
pretation, e.g., [7,13,20,16,17,18,19,25,32,30,31,34], Craig interpolants, e.g. [22], and
automata-theoretic techniques, e.g. [4].

Several works [20,16,25] consider invariant synthesis for programs with uni-
dimensional arrays of integers. The class of invariants they can generate is included in
the one handled by our approach using AHS(AU). These techniques are based on an au-
tomatically generated finite partitioning of the array indices. We consider a larger class
of programs for which these techniques can not be applied. The analysis introduced in
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[25] for programs with arrays can synthesize invariants on multisets of the elements in
array fragments. This technique differs from ours based on the domain AHS(AM) by the
fact that it can not be applied directly to programs with dynamic lists.

In [19], a synthesis technique for universally quantified formulas is presented. Our
technique differs from this one by the type of user guiding information. Indeed, the
quantified formulas in [19] are of the form ∀y. F1⇒ F2, where F2 must be given by the
user. In contrast, our approach fixes the formulas in left hand side of the implication
and synthesizes the right hand side. The two approaches are in principle incomparable.

Shape analysis [32] allows to synthesize invariants describing the allocated memory.
The invariants are expressed in a three-valued first-order logic, and they may com-
bine shape and data constraints. However, the basic (instrumentation) predicates used
in these invariants need to be defined by the user. More recent work [10,23] improve
on this approach by defining frameworks for combining abstract domains for shape and
data constraints. The approaches defined in these works still require that basic predi-
cates describing shape and data are provided by the user. In our approach, relevant parts
of the data constraints are discovered automatically by the analysis, the user must pro-
vide only some of the guard patterns. On the other hand, [32,23] can handle a more gen-
eral class of data structures than singly-linked lists. Boolean heap abstraction [26,27] is
a symbolic shape analysis sharing the concepts underlying three-valued shape analysis
[32]. It also allows to generate some kind of universally quantified invariants combin-
ing shape and data constraints. In addition, [27] defines a CEGAR technique allowing
to discover new predicates on the heap objects that are part of the invariant. However,
in order to generate accurate invariants, the approach proposed in [27] needs a suitable
initial set of predicates on the data in the heap, whereas in our approach such kind of
predicates are not required from the user.

Concerning the approaches based on abstract interpretation which can handle proce-
dure calls, most of them [7,13,18,30,31] focus on shape properties and do not consider
constraints on sizes or data. The approach in [30] can synthesize procedure summaries
that describe data if the instrumentation predicates which guide the abstraction speak
about data. Providing patterns is simpler than providing instrumentation predicates on
data because patterns contain only constraints between (universally-quantified) posi-
tions (in the left-hand-side of the implication) and no constraints on data. Actually,
patterns are in many cases simple (ordering/equality constraints) and can be discovered
using natural heuristics based on the program syntax or proposed by the user, whereas
constraints on data can be more complex. Our approach allows to discover (maybe un-
predictable) data constraints for given guard patterns. The analysis in [18] combines a
numerical abstract domain with a shape analysis. It is not restricted by the class of data
structures but the generated assertions describe only the shape and the size of the heap.
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20. Halbwachs, N., Péron, M.: Discovering properties about arrays in simple programs. In: PLDI,
pp. 339–348 (2008)

21. Jeannet, B., Miné, A.: APRON: A Library of Numerical Abstract Domains for Static Analysis.
In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–667. Springer,
Heidelberg (2009)

22. Jhala, R., McMillan, K.L.: Array Abstractions from Proofs. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590, pp. 193–206. Springer, Heidelberg (2007)

23. McCloskey, B., Reps, T., Sagiv, M.: Statically Inferring Complex Heap, Array, and Numeric
Invariants. In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 71–99. Springer,
Heidelberg (2010)
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Teaching Semantics with a Proof Assistant:

No More LSD Trip Proofs

Tobias Nipkow
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Abstract. We describe a course on the semantics of a simple imperative
programming language and on applications to compilers, type systems,
static analyses and Hoare logic. The course is entirely based on the proof
assistant Isabelle and includes a compact introduction to Isabelle. The
overall aim is to teach the students how to write correct and readable
proofs.

1 Introduction

A perennial challenge for both students and teachers of theoretical informatics
courses are proofs and how to teach them. Scott Aaronson [1] characterizes the
situation very well:

I still remember having to grade hundreds of exams where the stu-
dents started out by assuming what had to be proved, or filled page after
page with gibberish in the hope that, somewhere in the mess, they might
accidentally have said something correct.

. . . innumerable examples of “parrot proofs” — NP- completeness re-
ductions done in the wrong direction, arguments that look more like LSD
trips than coherent chains of logic . . .

One could call it the London underground phenomenon:

Students Proofs

I do not want to play the blame game but want to suggest a way to bridge this
gap with the help of a proof assistant. The underlying assumptions are that

– the above mentioned “LSD trip proofs” are the result of insufficient practice
and that

– proof assistants lead to abundant practice because they are addictive like
video games:
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Let me explain the analogy between proof assistants and video games. The main
advantage of a proof assistant is that it gives the students immediate feedback.
Incorrect proofs are rejected right away.1 Such rejections are an insult and chal-
lenge for motivated students. They will persist in their struggle to convince the
machine, chasing that elusive No subgoals, Isabelle’s equivalent of You have

reached the next level of World of Proofcraft. Of course many students
need the additional motivation that the homework they struggle with actually
counts towards their final grade.

This is in contrast to the usual system of homework that is graded by a
teaching assistant and returned a week later, long after the student struggled
with it, and at a time when the course has moved on. This delay significantly
reduces the impact that any feedback scribbled on the homework may have. Of
course, a proof assistant does not replace a teaching assistant, who can explain
why a proof is wrong and what to do about it. This is why lab sessions in the
presence of teaching assistants are still essential.

The rest of the paper describes a new programming language semantics course
based on the proof assistant Isabelle/HOL [14], where “semantics” really means
“semantics and applications”, for example compilers and program analyses. All
of the material of the course (Isabelle theories, slides, lecture notes) are freely
available at http://www.in.tum.de/~nipkow/semantics.

2 Course History and Format

Fifteen years ago I formalized parts of Winskel’s textbook [23], which I was teach-
ing from, in Isabelle/HOL. The longer term vision was a “Mechanized Semantics
Textbook” [11,12] as I called it. Although I used the growing collection of seman-
tics theories in Isabelle in my courses, I did not teach Isabelle in my semantics
courses and certainly did not require the students to write Isabelle proofs. I
felt that the proof language available at the time was not suitable for expressing
proofs at an abstract enough level for use in a semantics (as opposed to a proof as-
sistant) course. Predictably, the students’ ability to write proofs did not improve

1 And a fair number of (morally) correct ones, too, because they lack the details the
proof assistant unfortunately tends to require.

http://www.in.tum.de/~nipkow/semantics
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as a result. It was Christian Urban who first taught a semantics course at TUM
based on Isabelle/HOL. He focused on λ-calculus and employed Nominal Isa-
belle/HOL [18] to deal with variable binding. He in turn was inspired by the
Software Foundations course by Benjamin Pierce [17] who teaches Coq and se-
lected areas of both imperative languages and λ-calculus. At this point Isabelle
had acquired a readable proof language, which overcame my earlier reluctance
to teach Isabelle in a semantics course. I designed a new semantics course and
finally made the “Mechanized Semantics Textbook” (in the form of Isabelle the-
ories) the basis of the new course. It is this new course that I report on.

2.1 Format

It is a graduate level course in the theory section of the curriculum. There
are a number of alternative courses, for example Logic, Automata Theory, and
Algorithms. The Semantics course typically attracts 15–20 students, most of
them master students. There are 3 full lecture hours per week, and 1.5 hours
of lab sessions, over 15 weeks. In the lab sessions, led by teaching assistants,
the students are asked to solve exercises and the solutions are discussed at the
end. In addition, there is a homework sheet every one or two weeks. The course
is worth 8 ECTS points, with 30 ECTS points being the average workload per
semester.

The whole course is based on the proof assistant Isabelle. It is used in the
lectures, the lab sessions and in the homework. The homework is the heart and
soul of the course. Hence 40% of the final grade is based on the homework. The
exam, which contributes 60% to the final grade, is independent of Isabelle and
focuses on semantics and informal proofs.

2.2 Prerequisites

Because this is a graduate level course (although advanced undergraduates take
it, too), we expect that the students have some background in logical notation,
proofs, and functional programming.

Logic. We expect some basic familiarity with logical notation from introductory
mathematics courses, typically a discrete math course. We assume that the
students are able to read and understand simple formulas of predicate logic
involving functions, sets and relations. They should have been exposed to
mathematical proofs, including induction, but we do not expect that they
can write such proofs themselves (reliably).

Functional Programming. We assume that the students have had some ex-
posure to functional programming, to the extent that they know about ML-
style datatypes, recursive functions and pattern matching.2

2 At TUM, a functional programming course is mandatory for informatics undergrad-
uates.
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3 Aims and Principles

This section explains the general aims and principles underlying the course; to
a large extent they are generic and independent of the semantics content.

3.1 No More LSD Trip Proofs!

Next to semantics, this is the central aim of the course. Programming language
semantics and its applications deal with complex objects, for example compilers.
Analyzing such tools requires precise proofs. Graduate level informatics students
who specialize in this area must understand the underlying proof principles and
must be able to construct such proofs, both informally on paper and with the
help of a machine.

We believe we have largely reached this aim. The students obtained on average
88% of the homework points, an unprecedented percentage that is due to the
video game effect of a proof assistant described in the introduction together with
the 40% incentive. In fact, any system where students can immediately tell how
much of the homework they have solved successfully without having to hand it
in will create a strong incentive to maximize the number of points obtained.

3.2 Teach Semantics, Not Proof Assistants

More precisely:

Teach a Semantics course with the help of a proof assistant,
not a Proof Assistant course with semantics examples.

The Semantics dog should wag the proof assistant tail, not the other way around.
We believe we have reached that goal. Only approximately one quarter of the
semester is dedicated to the proof assistant, the remaining three quarters are
dedicated to semantics. Neither did we have to make any compromises on the
semantics front. The material is no simpler than what we had covered in the
past.

3.3 Teach Proofs, Not Proof Scripts

Most theorem provers provide a scripting language for writing proofs. Such
proofs are sequences of commands to the prover that, in their entirety, are hard
or impossible to read for the human, unless he executes them in the proof assis-
tant. In Isabelle they look like this, where . . . elides some basic proof methods:

apply(. . . )
apply(. . . )
...
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Such proofs are for machines, not for humans. They lack the information what is
being proved at each point, and they lack structure. They do not convey ideas.
They are like assembly language programs. Luckily, Isabelle has a higher-level
proof language Isar [21] that is inspired by the proof language of Mizar [8]
(see [22] for a comparison). Mizar has no low-level scripting language. Hence the
“Teach proofs, not proof scripts” principle is really due to Mizar.

As an example we show an Isar proof of Cantor’s theorem, where f is a
function from a type to its powerset and . . . are again suitable proof methods:

lemma ¬surj f
proof

assume surj f
hence ∃a. {x | x /∈ f x} = f a by . . .
hence False by . . .

qed

This is the proof language used for most of the course. It is close to the informal
language of mathematics and allows a smooth transition in the presentation style
during the course: from Isar proofs on the machine to more traditional proofs
on the blackboard (see Section 3.5).

3.4 Teach Proofs, Not Logic

Of course this is not a new idea, mathematicians have been doing this successfully
for a long time. To be provocative: proof systems like natural deduction belong
in logic courses, where the fine structure of logic is studied. But for students
who already have some exposure to logical notation and proof (see Section 2.2),
single step proofs in some proof system are a straightjacket. Application-oriented
courses—remember, we are trying to teach Semantics, not logic— should reason
modulo logic: if the student believes that A together with B implies C, he should
be able to just write

from A and B have C by hammer

where hammer is some suitable proof method of the underlying proof assistant.
Isar allows exactly that, and Isabelle offers a number of automatic hammers
for this purpose, in particular the connection to powerful external automatic
provers [4]. The motto is: Do not let logic dominate your thinking, let automatic
provers take care of logic.

If hammer fails, the user has to refine the proof. This is exactly the Mizar
approach. Of course there is a problem: how to figure out what intermediate
step might help the proof assistant to see reason, or how to figure out that the
claimed deduction is not valid? For the second alternative, Isabelle offers tools
for counterexample search [4]. For the first alternative (and also the second!),
we have to admit that proof scripts are an excellent way to home in on gaps in
a proof. Hence we actually teach apply-scripts, but only in small doses. We also
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teach a bit of natural deduction, but in disguise: not as inference rules but as
Isar text patterns. See Section 4.

3.5 Do Not Let the Proof Assistant Dominate Your Presentation

In the beginning of the course, when introducing the proof assistant, it is es-
sential to demonstrate the interaction with the proof assistant in class for long
periods. But even then, we intersperse these demos with slides that introduce
or summarize concepts and go beyond what the interaction with the system will
tell you. Moreover, displaying an Isabelle file with a video projector is never as
pleasing to the eye as a separate presentation of the same material, say some
function definitions, as LATEXed slides. Isabelle’s LATEX generation facility and
its “antiquotations” allow us to transfer material from Isabelle files to slides
automatically without having to type it in a second time.

During the second part of the course, the Semantics part, we gradually move
to conventional presentations based on slides and the blackboard, although we
never completely abandon Isabelle. We believe that slides (with animations)
and especially the blackboard are better suited to explain many concepts and
proofs than an Isabelle demo is. When moving to the blackboard for developing
proofs, we initially stick closely to Isar to phrase these proofs. As the students
become more comfortable with Isar, we begin taking more and more liberties on
the blackboard, moving towards informal proofs. The aim is to strengthen the
students’ ability to bridge the gap between formal and informal proofs.

3.6 Executability Matters

Most students’ intuition is greatly enhanced by executable models. As it turns
out, most of our formalizations are naturally executable. This is obvious for
recursive functions but less so for inductively defined predicates. In fact, students
at first do not think of inductive predicates as executable, unless they have a
Prolog background. It is an important insight that, for example, inductively
defined operational semantics is executable because of the dataflow from the
initial to the final state. It is exactly with this application in mind that we made
inductive predicates executable in Isabelle [3,2], subject to a mode analysis. This
unique feature of Isabelle permits us to execute most of the models in our course,
no matter whether they are recursive or inductive or mixtures thereof.

4 Teaching Isabelle

In this and the next section we describe the technical content of the course:
first the introduction to Isabelle and proofs, and then the actual semantics and
applications part.

Following our principle that the proof assistant should only be a means to
an end, namely teaching semantics, we introduce only as much of Isabelle as is
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necessary for the semantics material. This enables us to cover the material in
about 4 weeks, just over a quarter of the semester. The details of this approach
can be found elsewhere [13].

We follow the Isabelle tutorial [14] in making functional programming the
entry road to theorem proving. HOL includes a functional language, just like
other proof assistants do. We assume that the students have had some exposure
to functional programming (see Section 2.2) and introduce HOL as a combination
of programming and logic, starting with booleans, natural numbers and lists.
Students who lack a functional programming background usually manage to
pick up the principles from those examples. To start with, our only formulas are
equations. After week 1, students can write examples like this:

datatype tree = Node tree nat tree | Tip

fun mirror :: tree ⇒ tree where
mirror (Node l n r) = Node (mirror r) n (mirror l) |
mirror Tip = Tip

lemma mirror (mirror t) = t
apply(induct t)
apply auto
done

Contrary to our motto “Teach proofs, not proof scripts” we introduce proof
scripts after all. One reason is their succinctness: the syntax is minimal, which
is important at this early stage where students are easily confused by all the
new syntax. At the same time the students are taught what the corresponding
informal proofs look like.

Week 2 offers a first taste of semantics. Week 1 has been an uphill struggle for
the students. It is important show them that they can already model a number
of interesting notions on a simple level. We introduce arithmetic and boolean
expressions, their evaluation, constant folding optimization, and a compiler from
arithmetic expressions to a stack machine. Of course we also prove that optimizer
and compiler preserve the semantics.

Week 3 introduces logic beyond equality. We assume that the students are able
to read and understand simple formulas of predicate logic (recall Section 2.2)
and we merely explain how to write them in HOL. They are also introduced
to Isabelle’s array of automatic proof tools, in particular Sledgehammer [4],
Isabelle’s link to the automatic first-order provers E, SPASS, Vampire and Z3.
Sledgehammer soon becomes the students’ best friend in their battle with proofs.
Since not all proofs are automatic, we also explain a limited amount of single step
reasoning with apply-scripts, as motivated in Section 3.4. Inductive definitions
are introduced as the last important modeling tool.

Week 4 is dedicated to the structured proof language Isar (see Section 3.3).
In addition to Isar itself we also teach a number of useful proof patterns that
correspond to natural deduction rules, for example
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show ¬ P
proof

assume P
...
show False . . .

qed

Although Isabelle’s automation subsumes single natural deduction steps, such
patterns can improve readability of proofs if used selectively.

5 Semantics

The course concentrates on a single imperative language IMP as you can find
it in traditional textbooks by Winskel [23] and Nielson and Nielson [9,10]. In
fact, we cover material similar to that by the Nielsons. There are two choices
here. Concentrating on a single language permits us to cover many aspects and
applications of semantics such as compilers, type systems, Hoare logic, static
analyses and abstract interpretation. Concentrating on an imperative language
builds on standard background knowledge of the students and emphasizes the
relevance of semantics to mainstream computer science, thus facilitating the
motivation of the students. We give a sketchy overview of the material. It was
developed jointly with Gerwin Klein and more details can be found in the Isabelle
distribution and in print [6].

5.1 IMP

IMP is the de facto standard imperative language in semantics courses. It con-
tains arithmetic expressions (type aexp), boolean expressions (type bexp), and
commands (type com). Commands are defined as the following datatype:

datatype com = SKIP
| vname ::= aexp
| com; com
| IF bexp THEN com ELSE com
| WHILE bexp DO com

Variable names (type vname) are strings. The state of an IMP program is a
function from vname to int. Arithmetic and boolean expressions are evaluated
by recursively defined functions. The only arithmetic operator in aexp is + and
the only comparison operator in bexp is <. Commands are given both a big and
a small step semantics and their equivalence is proved:

(c,s) ⇒ t ←→ (c,s) →∗ (SKIP ,t)

where ⇒ is the big step and → the small step semantics.
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5.2 Compiler

We compile to a simple stack machine with the following instructions:

datatype instr = LOADI int | LOAD vname | STORE vname | ADD
| JMP int | JMPLESS int | JMPGE int

All jumps are relative. The compilation function ccomp is defined by recursion
over the syntax. We prove that it preserves the semantics:

ccomp c � (0 , s , stk) →∗ (isize (ccomp c), t , stk) ←→ (c, s) ⇒ t

The left-hand side describes the execution of the stack machine.
We have intentionally refrained from considering infinite executions as well.

Leroy’s elegant treatment [7] opens a whole new can of worms, coinductive def-
initions, which Isabelle knows about, but the students do not.

5.3 Typed IMP

We modify IMP by allowing both integer and real variables and values. There
are no coercions and the semantics gets stuck when trying to add an integer and
a real value. A type system for expressions is introduced and it is shown that the
type systems fits the small step semantics, i.e. that well typed programs enjoy
progress and preservation.

5.4 Static Analyses

We consider two iteration-free static analyses: definite assignment analysis as
in Java and live variable analysis. Iterative analyses are considered later in the
context of abstract interpretation.

Definite assignment analysis is defined as an inductive predicate D of type
vname set ⇒ com ⇒ vname set ⇒ bool that resembles a Hoare triple: the
two sets represent the set of variables definitely initialized before and after the
command. Soundness of the analysis w.r.t. a semantics that detects access of
uninitialized variables is proved.

Live variable analysis is performed by a recursive function L that computes
the set of variables live before a command given those that are live after the
command. As mentioned above, the analysis is not iterative, it trades precision
for efficiency:

L (WHILE b DO c) X = vars b ∪ X ∪ L c X

We also define a recursive optimization function bury that turns all assignments
to dead variables into SKIP. Here are two of the defining equations:

bury (x ::= a) X = (if x ∈ X then x ::= a else SKIP)
bury (c1; c2) X = bury c1 (L c2 X ); bury c2 X

We show that bury is sound: the big step transitions of c and bury c agree if the
states are compared w.r.t. live variables only.
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5.5 Security Type Systems

As a second and non-standard example of a type system we consider two versions
of the Volpano-Smith-Irvine [20] security type system. First an executable one
(following Section 3.6):

l � SKIP
sec-aexp a ≤ sec x l ≤ sec x

l � x ::= a

l � c1 l � c2

l � c1; c2

max (sec-bexp b) l � c1 max (sec-bexp b) l � c2

l � IF b THEN c1 ELSE c2

max (sec-bexp b) l � c

l � WHILE b DO c

And then the standard one based on a subsumption rule:

sec-bexp b ≤ l l � ′ c1 l � ′ c2

l � ′ IF b THEN c1 ELSE c2

sec-bexp b ≤ l l � ′ c

l � ′ WHILE b DO c

l � ′ c l ′ ≤ l

l ′ � ′ c

The first three rules for � ′ agree with the ones for � and have been omitted. We
prove non-interference and the equivalence of the two systems.

5.6 Hoare Logic

We consider the standard partial correctness system and model assertions se-
mantically as predicates on states. Soundness and completeness are proved. A
verification condition generator (assuming loop-annotated programs) is defined
and its soundness and completeness is proved. The details can already be found
in the “Mechanized Semantics Textbook” [11].

5.7 Abstract Interpretation

We develop a generic abstract interpreter for IMP commands annotated with ab-
stract states. Every command, except sequential composition, is annotated with
the abstract state P after the command. The syntax is SKIP {P}, x ::= a {P},
IF b THEN c1 ELSE c2 {P} and {I } WHILE b DO c {P}. The post-states
P refer to the very end of each command, not to the end of the ELSE branch
or the loop body. The I in {I } WHILE b DO c {P} is the loop invariant.
Starting from a program where all annotations are ⊥ (annotations are in fact
lifted abstract states, i.e. either Up S or ⊥), the abstract interpreter iterates a
step function that maps annotated commands to annotated commands, chang-
ing only the annotations. Each step corresponds to the synchronous execution
of one computation step at all points in the command. This corresponds to a
Jacobi iteration on the corresponding dataflow equations.

Rather than go into the technical details, we explain the abstract interpreter
by means of a worked example, interval analysis. An abstract state is a list of
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pairs (x ,ivl) of variable names x and intervals ivl. An interval is of the form
{i . . .j} where i and j are integers. Infinite lower or upper bounds are simply
dropped. For example, {1 . . .} is the set of all positive integers. We consider the
iterated application of the step function to this program:

′′x ′′ ::= N 7 {⊥};
{⊥}
WHILE Less (V ′′x ′′) (N 100 ) DO ′′x ′′ ::= Plus (V ′′x ′′) (N 1 ) {⊥}
{⊥}

The first iteration tells us that x has value 7 after the assignment:

′′x ′′ ::= N 7 {Up [( ′′x ′′, {7 . . .7})]};
{⊥}
WHILE Less (V ′′x ′′) (N 100 ) DO ′′x ′′ ::= Plus (V ′′x ′′) (N 1 ) {⊥}
{⊥}

The next step merely initializes the invariant:

′′x ′′ ::= N 7 {Up [( ′′x ′′, {7 . . .7})]};
{Up [( ′′x ′′, {7 . . .7})]}
WHILE Less (V ′′x ′′) (N 100 ) DO ′′x ′′ ::= Plus (V ′′x ′′) (N 1 ) {⊥}
{⊥}

One more step propagates the invariant to the end of the loop body:

′′x ′′ ::= N 7 {Up [( ′′x ′′, {7 . . .7})]};
{Up [( ′′x ′′, {7 . . .7})]}
WHILE Less (V ′′x ′′) (N 100 )
DO ′′x ′′ ::= Plus (V ′′x ′′) (N 1 ) {Up [( ′′x ′′, {8 . . .8})]}
{⊥}

In the next step, an ordinary join of {7 . . .7} and {8 . . .8} would result in the new
invariant {7 . . .8} and it would take many iterations until the actual invariant
{7 . . .100} is reached. Therefore we extend the abstract interpreter with widening
and obtain the new invariant {7 . . .} instead:

′′x ′′ ::= N 7 {Up [( ′′x ′′, {7 . . .7})]};
{Up [( ′′x ′′, {7 . . .})]}
WHILE Less (V ′′x ′′) (N 100 )
DO ′′x ′′ ::= Plus (V ′′x ′′) (N 1 ) {Up [( ′′x ′′, {8 . . .8})]}
{⊥}

For simplicity, widening is used at any point, not just for invariants. This means
that when {7 . . .} is pushed through the loop body it is first restricted to {7 ..99},
then incremented to {8 . . .100}) and then widened with the previous {8 . . .8} to
{8 . . .}. The post-state {100 . . .} is obtained by a backwards analysis of the loop
condition:
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′′x ′′ ::= N 7 {Up [( ′′x ′′, {7 . . .7})]};
{Up [( ′′x ′′, {7 . . .})]}
WHILE Less (V ′′x ′′) (N 100 )
DO ′′x ′′ ::= Plus (V ′′x ′′) (N 1 ) {Up [( ′′x ′′, {8 . . .})]}
{Up [( ′′x ′′, {100 . . .})]}

This is a post-fixed point and it is time to improve the result with narrowing.
This time the post-state of the loop body is the result of narrowing {8 ..100}
with the old {8 . . .}, which yields {8 . . .100}.

′′x ′′ ::= N 7 {Up [( ′′x ′′, {7 . . .7})]};
{Up [( ′′x ′′, {7 . . .})]}
WHILE Less (V ′′x ′′) (N 100 )
DO ′′x ′′ ::= Plus (V ′′x ′′) (N 1 ) {Up [( ′′x ′′, {8 . . .100})]}
{Up [( ′′x ′′, {100 . . .})]}

Next time {8 . . .100} narrows the invariant {7 . . .} to {7 . . .100}:
′′x ′′ ::= N 7 {Up [( ′′x ′′, {7 . . .7})]};
{Up [( ′′x ′′, {7 . . .100})]}
WHILE Less (V ′′x ′′) (N 100 )
DO ′′x ′′ ::= Plus (V ′′x ′′) (N 1 ) {Up [( ′′x ′′, {8 . . .100})]}
{Up [( ′′x ′′, {100 . . .})]}

Backwards analysis of the loop condition turns the invariant into the post-state
{100 . . .100}:

′′x ′′ ::= N 7 {Up [( ′′x ′′, {7 . . .7})]};
{Up [( ′′x ′′, {7 . . .100})]}
WHILE Less (V ′′x ′′) (N 100 )
DO ′′x ′′ ::= Plus (V ′′x ′′) (N 1 ) {Up [( ′′x ′′, {8 . . .100})]}
{Up [( ′′x ′′, {100 . . .100})]}

We have reached a fixed point and terminate.
The main advantage of this approach to abstract interpretation is its extreme

concreteness and intuitiveness: the above example snapshots are the direct re-
sults of running the iterated step function. The abstract interpretation process
is truly animated. In the presenece of widening/narrowing, the above iteration
strategy is not optimal as Cachera and Pichardie [5] point out. They formalize
a denotational abstract interpreter that is more precise (at least for the given
examples, and possibly in general). From a teaching perspective we prefer the
annotated commands approach because the student can see the results at inter-
mediate stages by iterating the step function; a denotational approach yields the
final result directly.

6 Conclusion

We have only taught the course 1 1/2 times so far. Hence it is difficult to draw
definitive conclusions. But the overall tendency is very positive:
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– The students earned 88% of the possible homework points, an unusually
high number, especially considering that much of the homework consisted of
proofs. We strongly conjecture that this is due to the use of a proof assis-
tant (see Section 3.1) combined with the fact that the homework accounted
for 40% of the final grade. One attempt at cheating was discovered. With
more students than the current 15–20, plagiarism would become more of an
issue.

– In the final exam, the results were significantly above average, both compared
to previous editions of the course and to other theory courses. However, a
comparison of the different exams is difficult because of differences like oral
versus written. The final exam complemented the homework in that the exam
concentrated on the semantics material, did not involve the proof assistant,
but required the students to give informal proof sketches.

– The overall written feedback from the course was positive. The only negative
comments concerned the amount of time the students spent on their home-
work (“too time consuming”). Looking at the overall departmental course
evaluation statistics, only the database course was more demanding in terms
of the amount of time the students invested (according to their own esti-
mate). Unfortunately, this reflects the state of the art of proof assistants.

In summary: there were no more LSD trip proofs, the students had mastered both
formal and informal proofs3 and had a better understanding of the semantics
material. Teaching Isabelle required the first quarter of the semester. We believe
that this initial investment did not just improve the students’ understanding of
the logical foundations, it also allowed us to cover the semantics material more
quickly than normally because of the solid and uniform foundations that could
be taken for granted.

I concur with Pierce’s assessment that this form of semantics course is the
way of the future. There are many other courses out there that use proof as-
sistants in some form or another (for example, Leroy’s summer school course
http://cristal.inria.fr/~xleroy/courses/Eugene-2011/), but there are
few published accounts. Exceptions are ACL2 and DrScheme based courses in
functional programming and software engineering [15,16,19] where automatic
program verification and refutation is the focus and less the interactive construc-
tion of proofs. It will be interesting to see how much proof assistants will have
an impact on teaching beyond the usual suspects of programming languages,
formal methods and logic.

Acknowledgments. Gerwin Klein has been a long term collaborator on this
project. Sascha Böhme, Alex Krauss, Brian Huffman and Peter Lammich helped
to run this course. All of them helped to debug this paper.

3 Of course we should not forget that many of the proofs in this area follow standard
patterns.

http://cristal.inria.fr/~xleroy/courses/Eugene-2011/


Teaching Semantics with a Proof Assistant: No More LSD Trip Proofs 37

References

1. Aaronson, S.: Teaching statement (2007),
http://www.scottaaronson.com/teaching.pdf

2. Berghofer, S., Bulwahn, L., Haftmann, F.: Turning Inductive into Equational Spec-
ifications. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs
2009. LNCS, vol. 5674, pp. 131–146. Springer, Heidelberg (2009)

3. Berghofer, S., Nipkow, T.: Executing Higher Order Logic. In: Callaghan, P., Luo,
Z., McKinna, J., Pollack, R. (eds.) TYPES 2000. LNCS, vol. 2277, pp. 24–40.
Springer, Heidelberg (2002)

4. Blanchette, J.C., Bulwahn, L., Nipkow, T.: Automatic Proof and Disproof in Isa-
belle/HOL. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCos 2011. LNCS,
vol. 6989, pp. 12–27. Springer, Heidelberg (2011)

5. Cachera, D., Pichardie, D.: A Certified Denotational Abstract Interpreter. In: Kauf-
mann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 9–24. Springer,
Heidelberg (2010)

6. Klein, G.: Interactive proof: Applications to semantics. In: Proc. Summer School
Marktoberdorf 2011 (to appear, 2012)

7. Leroy, X.: Coinductive Big-Step Operational Semantics. In: Sestoft, P. (ed.) ESOP
2006. LNCS, vol. 3924, pp. 54–68. Springer, Heidelberg (2006)

8. Naumowicz, A., Korni�lowicz, A.: A Brief Overview of Mizar. In: Berghofer, S.,
Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp.
67–72. Springer, Heidelberg (2009)

9. Nielson, H.R., Nielson, F.: Semantics with Applications. Wiley (1992)
10. Nielson, H.R., Nielson, F.: Semantics with Applications. An Appatizer. Springer,

Heidelberg (2007)
11. Nipkow, T.: Winskel is (Almost) Right: Towards a Mechanized Semantics Text-

book. In: Chandru, V., Vinay, V. (eds.) FSTTCS 1996. LNCS, vol. 1180, pp. 180–
192. Springer, Heidelberg (1996)

12. Nipkow, T.: Winskel is (almost) right: Towards a mechanized semantics textbook.
Formal Aspects of Computing 10, 171–186 (1998)

13. Nipkow, T.: Interactive proof: Introduction to Isabelle/HOL. In: Proc. Summer
School Marktoberdorf 2011 (to appear, 2012)

14. Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002)

15. Page, R.: Engineering software correctness. J. Functional Programming 17(6), 675–
686 (2007)

16. Page, R., Eastlund, C., Felleisen, M.: Functional programming and theorem proving
for undergraduates: A progress report. In: Proc. 2008 International Workshop on
Functional and Declarative Programming in Education, FDPE 2008, pp. 21–30.
ACM (2008)

17. Pierce, B.C.: Lambda, the ultimate TA: using a proof assistant to teach program-
ming language foundations. In: Proc. 14th ACM SIGPLAN International Confer-
ence on Functional Programming, ICFP 2009, pp. 121–122. ACM (2009)

18. Urban, C.: Nominal techniques in Isabelle/HOL. J. Automated Reasoning 40, 327–
356 (2008)

http://www.scottaaronson.com/teaching.pdf


38 T. Nipkow

19. Vaillancourt, D., Page, R., Felleisen, M.: ACL2 in DrScheme. In: Manolios, P.,
Wilding, M. (eds.) Proc. Sixth International Workshop on the ACL2 Theorem
Prover and its Applications, pp. 107–116. ACM (2006)

20. Volpano, D., Smith, G., Irvine, C.: A sound type system for secure flow analysis.
Journal of Computer Security 4(2-3), 167–187 (1996)

21. Wenzel, M.: Isabelle/Isar — A Versatile Environment for Human-Readable For-
mal Proof Documents. PhD thesis, Institut für Informatik, Technische Universität
München (2002)

22. Wenzel, M., Wiedijk, F.: A comparison of Mizar and Isar. J. Automated Reasoning,
389–411 (2002)

23. Winskel, G.: The Formal Semantics of Programming Languages. MIT Press (1993)



Whale: An Interpolation-Based Algorithm

for Inter-procedural Verification

Aws Albarghouthi1, Arie Gurfinkel2, and Marsha Chechik1

1 Department of Computer Science, University of Toronto, Canada
2 Software Engineering Institute, Carnegie Mellon University, USA

Abstract. In software verification, Craig interpolation has proven to
be a powerful technique for computing and refining abstractions. In this
paper, we propose an interpolation-based software verification algorithm
for checking safety properties of (possibly recursive) sequential programs.
Our algorithm, called Whale, produces inter-procedural proofs of safety
by exploiting interpolation for guessing function summaries by general-
izing under-approximations (i.e., finite traces) of functions. We imple-
mented our algorithm in LLVM and applied it to verifying properties of
low-level code written for the pacemaker challenge. We show that our
prototype implementation outperforms existing state-of-the-art tools.

1 Introduction

In the software verification arena, software model checking has emerged as a
powerful technique both for proving programs correct and for finding bugs. Given
a program P and a safety property ϕ to be verified, e.g., an assertion in the code,
a model checker either finds an execution of P that refutes ϕ or computes an
invariant that proves that P is correct w.r.t. ϕ.

Traditionally [3], software model checkers rely on computing a finite ab-
straction of the program, e.g., a Boolean program, and using classical model
checking algorithms [8] to explore the abstract state space. Due to the over-
approximating nature of these abstractions, the found counterexamples may be
spurious. Counterexample-guided abstraction refinement (CEGAR) techniques
[7] help detect these and refine the abstraction to eliminate them. This loop
continues until a real counterexample is found or a proof of correctness, in the
form of a program invariant, is computed.

More recently, a new class of software model checking algorithms has emerged.
They construct program invariants by generalizing from finite paths through the
control flow graph of the program. The most prominent of these are interpolation-
based algorithms [27,26,16], introduced by McMillan in [27] and inspired by the
success of Craig interpolants [9] for image-approximation in symbolic model
checking [25]. In general, interpolation-based software model checking techniques
extract interpolants from refutation proofs of infeasible program paths. The
interpolants form an inductive sequence of Hoare triples that prove safety of
a given program path, and potentially others.

V. Kuncak and A. Rybalchenko (Eds.): VMCAI 2012, LNCS 7148, pp. 39–55, 2012.
c© Carnegie Mellon University 2011



40 A. Albarghouthi, A. Gurfinkel, and M. Chechik

Interpolation-based techniques avoid the expensive abstraction step of their
traditional CEGAR-based counterparts and, due to their reliance on examining
program paths for deriving invariants, are better suited for bug finding [26].
Yet, so far, interpolation-based techniques have been limited to intra-procedural
analysis [27], restricted to non-recursive programs with bounded loops [26], or
not modular in terms of generated proofs [16].

In this paper, we present Whale: an inter-procedural interpolation-based
software model checking algorithm that produces modular safety proofs of (re-
cursive) sequential programs. Our key insight is to use interpolation to compute
a function summary by generalizing from an under-approximation of a function,
thus avoiding the need to fully expand the function and resulting in modular
proofs of correctness. The use of interpolants allows us to produce concise sum-
maries that eliminate facts irrelevant to the property in question. We also show
how the power of SMT solvers can be exploited in our setting by encoding a
path condition over multiple (or all) inter-procedural paths of a program in a
single formula. We have implemented a prototype of Whale using the LLVM
compiler infrastructure [23] and verified properties of low-level C code written
for the pacemaker grand challenge.

The rest of this paper is organized as follows: In Sec. 2, we illustrate Whale

on an example. In Sec. 3, we present background and notation used in the rest of
the paper. In Sec. 4, we introduce inter-procedural reachability graphs. In Sec. 5,
we present the algorithm. In Sec. 6, we discuss our implementation and present
our experimental results. Finally, in Sec. 7 and Sec. 8, we discuss related work,
sketch future research directions, and conclude the paper.

2 Motivating Example

In this section, we use Whale to prove that mc91 in Fig. 1, a variant of the
famous McCarthy 91 function [24], always returns a value ≥ 91, i.e., mc91(p) ≥
91 for all values of p.

Whale works by iteratively constructing a forest of Abstract Reachability
Graphs (ARGs) (we call it an iARG) with one ARG for the main function, and
one ARG for each function call inside each ARG. Each ARG Ai is associated
with some function Fk, an expression Gi over the arguments of Fk, called the
guard, and an expression Si over the arguments and the return variables of Fk,
called the summary. Intuitively, Whale uses ARG Ai to show that function Fk

behaves according to Si, assuming the arguments satisfy Gi and assuming all
other functions behave according to their corresponding ARGs in the iARG. A
node v in an ARG Ai corresponds to a control location �v and is labeled by an
expression ev over program variables. Whale maintains the invariant that ev is
an over-approximation of the states reachable from the states in Gi, at the entry
point of Fk, along the path to v. It is always sound to let ev be true. We now
apply Whale to mc91 in Fig. 1, producing ARGs A (starting with A1), with G

and S as their guards and summaries, respectively.
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A1, A2, A3 A′1 A′′1

Fig. 1. Applying Whale to mc91

Step 1. For each ARG in Fig. 1, the number inside a node v is the location �v
and the expression in braces is ev. For our property, mc91(p) ≥ 91, the guard
G1 is true, and the summary S1 is r ≥ 91. The single path of A1 is a potential
counterexample: it reaches the return statement (line 8), and node 8 is labeled
true (which does not imply the summary r ≥ 91). To check for feasibility of
the computed counterexample,Whale checks satisfiability of the corresponding
path formula π = true∧(p > 100)∧(r = p−10)∧(r < 91) obtained by conjoining
the guard, all of the conditions and assignments on the path, and the negation of
the summary. Here, π is unsatisfiable. Hence, the counterexample is infeasible,
and the ARG labeling can be strengthened to exclude it.

Step 2. Like [27], Whale uses interpolants to strengthen the labels. For a pair
of formulas (A,B) s.t. A ∧ B is unsatisfiable, an interpolant Â is a formula in
the common vocabulary of A and B s.t. A ⇒ Â and Â ⇒ ¬B. Intuitively, Â
is a weakening of A that is inconsistent with B. Each node v in the infeasible
counterexample is labeled by an interpolant obtained by letting A be the part
of the path formula for the path from root to v, and B be the rest of the path
formula. The new labeling is shown in Fig. 1 in ARG A′1.

Step 3. Next, the second path through mc91 is added to A′1 and has to be checked
for feasibility. This path has two recursive calls that need to be represented in
the path formula. For each call statement, Whale creates a new justifying ARG,
in order to keep track of the under-approximation of the callee used in the proof
of the caller and to construct the proof that the callee behaves according to a
given specification.

Let A2 and A3 be the ARGs justifying the first and the second calls, respec-
tively. For simplicity of presentation, assume that A2 and A3 have been unrolled
and are identical to A1 in Fig. 1. The path formula π for the path 2, 5, . . . ,
8a is constructed by under-approximating the callees by inlining them with the
justifying ARGs (shown by bold labels on the grey call edges in A′1). Specifically,
π = true ∧ (p ≤ 100) ∧ (p1 = p + 11) ∧ U1 ∧ U2 ∧ (r < 91), where U1 and U2
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represent the under-approximations of the called functions on edges (6,7) and
(7,8), respectively. This path formula is unsatisfiable and thus the counterex-
ample is infeasible. Again, interpolants are used to strengthen node labels, as
shown in ARG A′′1 . Furthermore, the interpolants are also used to generalize the
under-approximations of the callees by taking the interpolant of the pair (A,B),
where A is the path formula of the under-approximation and B is the rest of the
path formula. The resulting interpolant Â is a specification of the callee that is
weaker than its under-approximation, but strong enough to exclude the infeasi-
ble counterexample. For example, to generalize the under-approximation U1, we
set A to U1 and B to true ∧ (p ≤ 100) ∧ (p1 = p + 11) ∧ U2 ∧ (r < 91). The
resulting generalizations, which happen to be r ≥ 91 for both calls, are shown
on the call edges in ARG A′′1 with variables renamed to suit the call context.

Step 4. At this point, all intra-procedural paths of mc91 have been examined.
Hence, A′′1 is a proof that the body of mc91 returns r ≥ 91 assuming that the first
call returns r ≥ 91 and that the second one returns r ≥ 91 whenever p ≥ 91.
To discharge the assumptions, Whale sets guards and summaries for the ARGs
A2 and A3 as follows: G2 = true, S2 = r ≥ 91, G3 = p ≥ 91 and S3 = r ≥ 91,
and can continue to unroll them following steps 1-3 above. However, in this
example, the assumptions on recursive calls to mc91 are weaker than what was
established about the body of mc91. Thus, we conclude that the ARGs A2 and
A3 are covered by A′′1 and do not need to be expanded further, finishing the
analysis. Intuitively, the termination condition is based on the Hoare proof rule
for recursive functions [19] (see Sec. 3).

In practice,Whale only keeps track of guards, summaries, and labels at entry
and exit nodes. Other labels can be derived from those when needed.

To summarize, Whale explores the program by unwinding its control flow
graph. Each time a possible counterexample is found, it is checked for feasibility
and, if needed, the labels are strengthened using interpolants. If the counterex-
ample is inter-procedural, then an under-approximation of the callee is used for
the feasibility check, and interpolants are used to guess a summary of the called
function. Whale attempts to verify the summary in a similar manner, but if
the verification is unsuccessful, it generates a counterexample which is used to
refine the under-approximation used by the caller and to guess a new summary.

3 Preliminaries

In this section, we present the notation used in the rest of the paper.

Program Syntax. We divide program statements into simple statements and
function calls. A simple statement is either an assignment statement x = exp or a
conditional statement assume(Q), where x is a program variable, and exp and Q
are an expression and a Boolean expression over program variables, respectively.
We write �T � for the standard semantics of a simple statement T .
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P ′ ⇒ P {P}T{Q} Q⇒ Q′

{P ′}T{Q′}
(P ′ ∧ p = a) ⇒ P {P}BF {Q} (Q ∧ p, r = a, b) ⇒ Q′

{P ′}b = F (a){Q′}
{P}b = F (a){Q} � {P}BF {Q}

{P}b = F (a){Q}

Fig. 2. Three Rules of Hoare Logic

Functions are declared as func foo (p1, . . . , pn) : r1, . . . , rk Bfoo, defining
a function with name foo, n parameters P = {p1, . . . , pn}, k return variables
R = {r1, . . . , rk}, and body Bfoo. We assume that a function never modifies its
parameters. The return value of a function is the valuation of all return variables
at the time when the execution reaches the exit location. Functions are called
using syntax b1, . . . , bk = foo (a1, . . . , an), interpreted as a call to foo, passing
values of local variables a1, . . . , an as parameters p1, . . . , pn, respectively, and
storing the values of the return variables r1, . . . , rk in local variables b1, . . . , bk,
respectively. The variables {ai}ni=1 and {bi}ki=1 are assumed to be disjoint. More-
over, for all i, j ∈ [1, n], s.t. i �= j, ai �= aj . That is, there are no duplicate
elements in {ai}ni=1. The same holds for the set {bi}ki=1.

Program Model. A program P = (F1, F2, . . . , Fn) is a list of n functions. Each
function F = (L, Δ, en, ex,P ,R,Var) is a tuple where L is a finite set of control
locations, Δ is a finite set of actions, en, ex ∈ L are designated entry and exit
locations, respectively, and P , R and Var are sets of parameter, return and local
variables, respectively (we use no global variables). An action (�1, T, �2) ∈ Δ is
a tuple where �1, �2 ∈ L and T is a program statement over Var ∪ P ∪ R. We
assume that the control flow graph (CFG) represented by (L, Δ) is a directed
acyclic graph (DAG) (and loops are modeled by tail-recursion). Execution starts
in the first function in the program. For a function F = (L, Δ, en, ex,P ,R,Var),
we write L(F ) for L, Δ(F ) for Δ, etc. We write pi and ri to denote vectors of
parameter and return variables of Fi.

Floyd-Hoare Logic. A Hoare Triple [20] {P}T {Q} where T is a program
statement and P and Q are propositional formulas, indicates that if P is true of
program variables before executing T , and T terminates, then Q is true after T
completes. P and Q are called the pre- and the postcondition, respectively.

We make use of three proof rules shown in Fig. 2. The first is the rule of
consequence, indicating that a precondition of a statement can be strengthened
whereas its postcondition can be weakened. The second is the rule of function
instantiation where BF is a body of a function F with parameters p and returns
r. It explicates the conditions under which F can be called with actual parame-
ters a, returning b, and with P ′ and Q′ as pre- and postconditions, respectively.
For this rule, we assume that P is over the set of variables p and Q is over the
variables p and r. The third is the rule of recursion, indicating that a recursive
function F satisfies the pre-/postconditions (P , Q) if the body of F satisfies (P ,
Q) assuming that all recursive calls satisfy (P , Q). For two sets of triples X and
Y , X � Y indicates that Y can be proven from X (i.e., X is weaker than Y ).
We also say � X to mean that X is valid, i.e., that it follows from the axioms.
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4 Inter-procedural Reachability Graphs

In this section, we introduce Abstract Reachability Graphs (ARGs) that extend
the notion of an Abstract Reachability Tree (ART) [17] to DAGs. At a high level,
an ARG represents an exploration of the state space of a function, while making
assumptions about the behavior of other functions it calls. We then define a
forest of ARGs, called an Inter-procedural Abstract Reachability Graph (iARG),
to represent exploration of the state space of a program with multiple functions.

Abstract Reachability Graphs (ARGs). Let F = (L, Δ, en, ex,P ,R,Var)
be a function. A Reachability Graph (RG) of F is a tuple (V,E, ε, ν, τ) where

– (V,E, ε) is a DAG rooted at ε ∈ V ,
– ν : V → L is a node map, mapping nodes to control locations s.t. ν(ε) = en

and ν(v) = ex for every leaf node v,
– and τ : E → Δ is an edge map, mapping edges to program actions s.t. for

every edge (u, v) ∈ E there exists (ν(u), τ(u, v), ν(v)) ∈ Δ.

We write V e = {v ∈ V | ν(v) = ex} for all leaves (exit nodes) in V . We call an
edge e, where τ(e) is a call statement, a call-edge. We assume that call edges are
ordered in some linearization of a topological order of (V,E).

An Abstract Reachability Graph (ARG) A of F is a tuple (U,ψ,G, S), where

– U is reachability graph of F ,
– ψ is a node labelling that labels the root and leaves of U with formulas over

program variables,
– G is a formula over P called a guard,
– and S is a formula over P ∪R called a summary.

For example, ARG A1 is given in Fig. 1 with a guard G1 = true, a summary
S1 = r ≤ 91, and with ψ shown in braces.

An ARG A is complete iff for every path in F there is a corresponding path
in A. Specifically, A is complete iff every node v ∈ V has a successor for every
action (ν(v), T, �) ∈ Δ, i.e., there exists an edge (v, w) ∈ E s.t. ν(w) = � and
τ(v, w) = T . It is safe iff for every leaf v ∈ V , ψ(v)⇒ S. For example, in Fig. 2,
ARG A′′1 is safe and complete, ARG A′1 is complete but not safe, and other ARGs
are neither safe nor complete.

Inter-procedural ARGs. An Inter-procedural Abstract Reachabil-
ity Graph (iARG) A(P ) of a program P = (F1, . . . , Fn) is a tuple
(σ, {A1, . . . ,Ak}, RJ , RC), where

– σ : [1, k]→ [1, n] maps ARGs to corresponding functions, i.e., Ai is an ARG
of Fσ(i),

– {A1, . . . ,Ak} is a set of ARGs,
– RJ is an acyclic justification relation between ARGs s.t. ({A1, . . . ,Ak}, RJ )

is the justification tree of A(P ) rooted at A1,
– and RC is a covering relation between ARGs. Informally, if (Ai,Aj) ∈ RJ

then there is a call-edge in Ai that is justified (expanded) by Aj .
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Require: Ai is uncovered and incomplete
1: func ExpandARG (ARG Ai) :
2: replace Ui with a supergraph U ′

i ,
where Ui is the unwinding of Ai

3: Reset(Ai)

Require: Ai ��J Aj , σ(i) = σ(j),
Ai and Aj are uncovered,
{Gj}BFσ(i)

{Sj} � {Gi}BFσ(i)
{Si}

4: func CoverARG (ARGs Ai and Aj) :
5: RC ← RC \ {(Al,Ai) | (Al,Ai) ∈ RC}
6: RC ← RC ∪ {(Ai,Aj)}
7: func Reset (ARG Ai) :
8: ∀v · ψi(v) ← true
9: for all {Aj | ∃e ∈ Ei · J (e) = Aj} do
10: Gj ← true ; Sj ← true
11: Reset(Aj)

12: func Update (ARG Ai, g, s) :
13: Gi ← Gi ∧ g ; Si ← Si ∧ s
14: Reset(Ai)

Require: Ai is uncovered, ν(v) = ex(Fσ(i)), ψi(v) �⇒ Si

15: func RefineARG (vertex v in Ai) :
16: cond ← Gi ∧ iDAGCond(Ai, {v}) ∧ ¬Si

17: if cond is UNSAT then
18: g0, s0, g1, s1, . . . , sm, sm+1 ←STItp(cond)
19: ψi(v) ← ψi(v) ∧ Si ; ψi(εi) ← ψi(εi) ∧ g0
20: let e1, . . . , em be topologically ordered sequence

of all call-edges in Ai that can reach v
21: for all ek = (u,w) ∈ e1, . . . , em do
22: Update(J (ek),Guard(gk),Sum(sk))

23: else
24: if i = 1 then Terminate with “UNSAFE”
25: RC ← RC \ {(Al,Ai) | (Al,Ai) ∈ RC}
26: for all {Aj | (Aj ,Ai) ∈ RJ } do Reset(Aj)

Require: Ai is uncovered, safe, and complete
27: func UpdateGuard (ARG Ai) :
28: Gi ← ψ(εi)

Fig. 3. The Whale Algorithm. The function STItp is used to compute interpolants
and is defined later in this section.

The justification tree corresponds to a partially unrolled call-graph. We write
Ai �J Aj for the ancestor relation in the justification tree. Given two nodes
u, v ∈ Vi, an inter-procedural (u, v)-path in Ai is a (u, v)-path in Ai in which
every call-edge e is expanded, recursively, by a trace in an ARG Aj , where
(Ai,Aj) ∈ RJ . For convenience, we assume that σ(1) = 1, and use a subscript
to refer to components of an Ai in A(P ), e.g., ψi is the node labelling of Ai.

An ARG Ai is directly covered by Aj iff (Ai,Aj) ∈ RC . Ai is covered by Aj

iff Aj �J Ai and Aj is directly covered by another ARG. Ai is covered iff it is
covered by some Aj ; otherwise, it is uncovered. A covering relation RC is sound
iff for all (Ai,Aj) ∈ RC:

– Ai and Aj are mapped to the same function Fl, i.e., σ(i) = σ(j) = l;
– i �= j and Ai is not an ancestor of Aj , i.e., Ai ��J Aj ;
– the specification of Aj is stronger than that of Ai, i.e., {Gj}r = Fl(p){Sj} �
{Gi}r = Fl(p){Si};

– and Aj is uncovered.

For example, for ARGs in Fig. 1, (A3, A
′′
1 ) ∈ RC , and A′′1 is uncovered. A3 is left

incomplete, since the validity of its guard and summary follow from the validity
of the guard and summary of A′′1 : {true}Bmc91{r ≥ 91} � {p ≥ 91}Bmc91{r ≥ 91}
where (true, r ≥ 91) and (p ≥ 91, r ≥ 91) are the guard and summary pairs of
A′′1 and A3, respectively. An iARG A(P ) is safe iff A1 is safe. It is complete iff
every uncovered ARG Ai ∈ A(P ) is complete.

5 The Whale Algorithm

In this section, we provide a detailed exposition of Whale. We begin with an
overview of its basic building blocks.
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Overview. Given a program P = (F1, . . . Fn) and a pair of formulas (G,S), our
goal is to decide whether � {G}BF1{S}. Whale starts with an iARG A(P ) =
(σ, {A1}, RJ , RC) where σ(1) = 1, and RJ and RC are empty relations. A1 has
one vertex v and ν(v) = en(F1). The guard G1 and summary S1 are set to G
and S, respectively. In addition to the iARG, Whale maintains a map J from
call-edges to ARGs and an invariant that (Ai,Aj) ∈ RJ iff there exists e ∈ Ei

s.t. J (e) = Aj .
Whale is an extension of Impact [27] to inter-procedural programs. Its three

main operations (shown in Fig. 3), ExpandARG, CoverARG, and Refin-

eARG, correspond to their counterparts of Impact. ExpandARG adds new
paths to explore; CoverARG ensures that there is no unnecessary exploration,
and RefineARG checks for presence of counterexamples and guesses guards
and summaries. All operations maintain soundness of RC. Whale terminates
either when RefineARG finds a counterexample, or when none of the opera-
tions are applicable. In the latter case, the iARG is complete. We show at the
end of this section that this also establishes the desired result: � {G1}BF1{S1}.

ExpandARG adds new paths to an ARG Ai if it is incomplete, by replacing
an RG Ui with a supergraph U ′

i . Implicitly, new ARGs are created to justify
any new call edges, as needed, and are logged in the justification map J . A new
ARG Aj is initialized with a Gj = Sj = true and Vj = {v}, where v is an entry
node. The paths can be added one-at-a-time (as in Impact and in the example
in Sec. 2), all-at-once (by adding a complete CFG), or in other ways. Finally, all
affected labels are reset to true

CoverARG covers an ARG Ai by Aj . Its precondition maintains the sound-
ness of RC . Furthermore, we impose a total order, ≺, on ARGs s.t. Ai � Aj

implies Ai ≺ Aj , to ensure that CoverARG is not applicable indefinitely. Note
that once an ARG is covered, all ARGs it covers are uncovered (line 5).

RefineARG is the core of Whale. Given an exit node v of some unsafe ARG
Ai, it checks whether there exists an inter-procedural counterexample in A(P ),
i.e., an inter-procedural (εi, v)-path that satisfies the guard Gi and violates the
summary Si. This is done using iDAGCond to construct a condition cond that
is satisfiable iff there is a counterexample (line 16). If cond is SAT and i = 1, then
there is a counterexample to {G1}BF1 {S1}, and Whale terminates (line 24).
If cond is SAT and i �= 1, the guard and the summary of Ai are invalidated, all
ARGs covered by Ai are uncovered, and all ARGs used to justify call edges of Ai

are reset (lines 25-26). If cond is UNSAT, then there is no counterexample in the
current iARG. However, since the iARG represents only a partial unrolling of the
program, this does not imply that the program is safe. In this case, RefineARG

uses interpolants to guess guards and summaries of functions called from Ai

(lines 17-22) which can be used to replace their under-approximations without
introducing new counterexamples.

The two primary distinctions betweenWhale and Impact are in constructing
a set of formulas to represent an ARG and in using interpolants to guess function
summaries from these formulas. We describe these below.
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Inter-procedural DAG Condition. A DAG condition of an ARG A is a for-
mula ϕ s.t. every satisfying assignment to ϕ corresponds to an execution through
A, and vice versa. A naive way to construct it is to take a disjunction of all the
path conditions of the paths in the DAG. An inter-procedural DAG condition
of an ARG A in an iARG A(P ) (computed by the function iDAGCond) is a
formula ϕ whose every satisfying assignment corresponds to an inter-procedural
execution through Ai in A(P ) and vice versa.

We assume that Ai is in Static Single Assignment (SSA) form [10] (i.e., every
variable is assigned at most once on every path). iDAGCond uses the function
DAGCond to compute a DAG condition1:

DAGCond(Ai, X) � C ∧D, where

C = cεi ∧
∧

v∈V ′
i

{cv ⇒
∨
{cw | (v, w) ∈ Ei}}

D =
∧

(v,w)∈E′
i

{(cv ∧ cw)⇒ �τi(v, w)� | τi(v, w) is simple}, (1)

ci are Boolean variables for nodes of Ai s.t. a variable cv corresponds to node v,
and V ′

i ⊆ Vi and E
′
i ⊆ Ei are sets of nodes and edges, respectively, that can reach

a node in the set of exit nodes X . Intuitively, C and D encode all paths through
Ai and the corresponding path condition, respectively. DAGCond ignores call
statements which (in SSA) corresponds to replacing calls by non-deterministic
assignments.

Example 1. Consider computing DAGCond(A′1, {8, 8a}) for the ARG A′1 in
Fig. 1, where c8 and c8a represent the two exit nodes, on the left and on the
right, respectively. Then, C = c2∧(c2 ⇒ (c3∨c5))∧(c3 ⇒ c8)∧(c5 ⇒ c6)∧(c6 ⇒
c7)∧(c7 ⇒ c8a) and D = (c2∧c3 ⇒ p ≤ 100)∧(c3∧c8 ⇒ r = p−10)∧(c2∧c5 ⇒
p ≤ 100)∧(c5∧c6 ⇒ p1 = p+11). Any satisfying assignment to C∧D represents
an execution through 2,3,8 or 2,5,. . . ,8, where the call statements on edges (6,7)
and (7,8) set p2 and r non-deterministically.

The function iDAGCond(Ai, X) computes an inter-procedural DAG condition
for a given ARG and a set X of exit nodes of Ai by using DAGCond and
interpreting function calls. A naive encoding is to inline every call-edge e with
the justifying ARG J (e), but this results in a monolithic formula which hinders
interpolation in the next step of RefineARG. Instead, we define it as follows:

iDAGCond(Ai, X) � DAGCond(Ai, X) ∧
m∧

k=1

μk, where

μk � (cvk ∧ cwk
)⇒ ((pσ(j), rσ(j) = a, b) ∧ iDAGCond(Aj , V

e
j )), (2)

m is the number of call-edges in Ai, e = (vk, wk) is the kth call-edge2, Aj = J (e),
and τ(e) is b = Fσ(j)(a). Intuitively, μk is the under-approximation of the kth

1 In practice, we use a more efficient encoding described in [14].
2 Recall, call-edges are ordered in some linearization of a topological order of RG Ui.
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call-edge e in Ai by the traces in the justifying ARG Aj = J (e). Note that
iDAGCond always terminates since the justification relation is acyclic.

Example 2. Following Example 1, iDAGCond(A′1, {8, 8a}) is (C ∧ D) ∧ μ1 ∧
μ2, where C ∧ D are as previously defined, and μ1, μ2 represent constraints on
the edges (6, 7) and (7, 8). Here, μ1 = (c6 ∧ c7) ⇒ ((p′ = p1 ∧ p2 = r′) ∧
DAGCond(A2, {8})), i.e., if an execution goes through the edge (6,7), then it
has to go through the paths of A2 – the ARG justifying this edge. Using primed
variables avoids name clashes between the locals of the caller and the callee.

Lemma 1. Given an iARG A(P ), an ARG Ai ∈ A(P ), and a set of
exit nodes X, there exists a total onto map from satisfying assignments of
iDAGCond(Ai, X) to inter-procedural (εi, X)-executions in A(P ).3

A corollary to Lemma 1 is that for any pair of formulas G and S, G ∧
iDAGCond(Ai, X) ∧ S is UNSAT iff there does not exist an execution in Ai

that starts at εi in a state satisfying G and ends in a state v ∈ X satisfying S.

Guessing Guards and Summaries. Our goal now is to show how under-
approximations of callees in formulas produced by iDAGCond can be general-
ized. First, we define a function

SpecCond(Ai, X, I) � DAGCond(Ai, X) ∧
m∧

k=1

μk,

where I = {(qk, tk)}mk=1 is a sequence of formulas over program variables, μk =
(cvk ∧ cwk

) ⇒ ((pσ(j), rσ(j) = a, b) ∧ (qk ⇒ tk)), and the rest is as in the
definition of iDAGCond. SpecCond is similar to iDAGCond, except that
it takes a sequence of pairs of formulas (pre- and postconditions) that act as
specifications of the called functions on the call-edges {ek}mk=1 along the paths
to X in Ai. Every satisfying assignment of SpecCond(Ai, X, I) corresponds to
an execution through Ai ending in X , where each call-edge ek is interpreted as
assume(qk ⇒ tk).

Lemma 2. Given an iARG A(P ), an ARG Ai ∈ A(P ), a set of exit nodes X,
and a sequence of formulas I = {(qk, tk)}mk=1, there exists a total and onto map
from satisfying assignments of SpecCond(Ai, X, I) to (εi, X)-executions in Ai,
where each call-edge ek is interpreted as assume(qk ⇒ tk).

Given an UNSAT formula Φ = Gi∧ iDAGCond(Ai, X)∧¬Si, the goal is to find
a sequence of pairs of formulas I = {(qk, tk)}k s.t. Gi∧SpecCond(Ai, X, I)∧¬Si

is UNSAT, and for every tk, iDAGCond(Aj , V
e
j )⇒ tk, whereAj = J (ek). That

is, we want to weaken the under-approximations of callees in Φ, while keeping Φ
UNSAT. For this, we use interpolants.

We require a stronger notion of interpolants than usual: Let Π = ϕ0 ∧ · · · ∧
ϕn+1 be UNSAT. A sequence of formulas g0, s0, . . . , gn−1, sn−1, gn is a state/-
transition interpolant sequence of Π , written STItp(Π), iff:

3 Proofs are available at [1].
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1. ϕ0 ⇒ g0,
2. ∀i ∈ [0, n] · ϕi+1 ⇒ si,
3. ∀i ∈ [0, n] · (gi ∧ si)⇒ gi+1,
4. and gn ∧ ϕn+1 is UNSAT.

We call gi and si the state- and transition-interpolants, respectively. STItp(Π)
can be computed by a repeated application of current SMT-interpolation algo-
rithms [6] on the same resolution proof:

gi = Itp(

i∧
j=0

ϕj ,

n+1∧
j=i+1

ϕj , pf) si = Itp(ϕi,

i−1∧
j=0

ϕj ∧
n+1∧

j=i+1

ϕj , pf),

where pf is a fixed resolution proof and Itp(A,B, pf) is a Craig interpolant of
(A,B) from pf. The proof of correctness of the above computation is similar to
that of Theorem 6.6 of [6].

Recall that RefineARG (Fig. 3), on line 16, computes a formula cond =
Gi ∧ ϕ ∧

∧m
k=1 μk ∧ ¬Si using iDAGCond for ARG Ai and an exit node v,

where μk is an under-approximation representing the call-edge ek = (uk, wk). For
simplicity of presentation, let τ(ek) be bk = Fk(ak). Assume cond is UNSAT and
let g0, s0, . . . , sm, gm+1 be state/transition interpolants for cond. By definition,
each sk is an over-approximation of μk that keeps cond UNSAT. Similarly, g0 is
an over-approximation of Gi that keeps cond UNSAT, and gk, where k �= 0, is
an over-approximation of the executions of Ai assuming that all call statements
on edges ek, . . . , em are non-deterministic. This is due to the fact that (Gi ∧ϕ∧
μ1 ∧ · · · ∧ μj−1) ⇒ gj . Note that g0, s0, . . . , sm, gm+1 are also state/transition
interpolants for the formula Gi ∧ ϕ ∧ (g1 ⇒ s1) ∧ · · · ∧ (gm ⇒ sm) ∧ ¬Si. The
goal (lines 18–22) is to use the sequence {(gk, sk)}mk=1 to compute a sequence
I = {(qk, tk)}mk=1 s.t. Gi ∧SpecCond(Ai, {v}, I)∧¬Si is UNSAT. By definition
of an interpolant, sk is over the variables ak, bk, cuk

, and cwk
, whereas tk has

to be over pk and rk, to represent a summary of Fk. Similarly, gk is over ak, bk,
cuj , and cwj for all j ≥ k, whereas qk has to be over pk to represent a guard on
the calling contexts. This transformation is done using the following functions:

Sum(sk) � sk[cuk
, cwk

← �][ak, bk ← pk, rk]

Guard(gk) � ∃Q · gk[cu ← (uk � u) | u ∈ Vi][ak ← pk],

where the notation ϕ[x ← y] stands for a formula ϕ with all occurrences of x
replaced by y, w � u means that a node u is reachable from w in Ai, and Q is
the set of all variables in gk except for ak.

Given a transition interpolant sk, Sum(sk) is an over-approximation of the
set of reachable states by the paths in J (uk, wk). Guard(gk) sets all (and only)
successor nodes of uk to true, thus restricting gk to executions reaching the
call-edge (uk, wk); furthermore, all variables except for the arguments ak are ex-
istentially quantified, effectively over-approximating the set of parameter values
with which the call on (uk, wk) is made.

Lemma 3. Given an ARG Ai ∈ A(P ), and a set of exit nodes X, let Φ = Gi ∧
iDAGCond(Ai, X)∧¬Si be UNSAT and let g0, s0, . . . , sm, gm+1 be STItp(Φ).
Then, Gi ∧ SpecCond(Ai, X, {(Guard(gk),Sum(sk))}mk=1) ∧ ¬Si is UNSAT.
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Example 3. Let cond = true∧ϕ∧μ1 ∧μ2 ∧ (r < 91), where true is the guard of
A′1, ϕ is C ∧D from Example 1, μ1 and μ2 are as defined in Example 2, and (r <
91) is the negation of the summary of A′1. A possible sequence of state/transition
interpolants for cond is g0, s0, g1, s1, g2, s2, g3, where g1 = (r < 91 ⇒ (c6 ∧ c7 ∧
c8a)), s1 = ((c6 ∧ c7) ⇒ p2 ≥ 91), g2 = (r < 91 ⇒ (c7 ∧ c8a ∧ p2 ≥ 91)), and
s2 = ((c7 ∧ c8a)⇒ r ≥ 91). Hence, Guard(g1) = ∃r · r < 91 (since all cu, where
node u is reachable from node 6, are set to true), Sum(s1) = r ≥ 91 (since r is
the return variable of mc91), Guard(g2) = p ≥ 91, and Sum(s2) = r ≥ 91.

RefineARG uses (Guard(gk),Sum(sk)) of each edge ek to strengthen the
guard and summary of its justifying ARG J (ek). WhileGuard(gk) may have ex-
istential quantifiers, it is not a problem for iDAGCond since existentials can be
skolemized. However, its may be a problem for deciding the precondition of Cov-

erArg. In practice, we eliminate existentials using interpolants by observing
that for a complete ARG Ai, ψi(εi) is a quantifier-free safe over-approximation
of the guard. Once an ARG Ai is complete, UpdateGuard in Fig. 3 is used
to update Gi with its quantifier-free over-approximation. Hence, an expensive
quantifier elimination step is avoided.

Soundness and Completeness. By Lemma 1 and Lemma 2, Whale main-
tains an invariant that every complete, safe and uncovered ARG Ai means that
its corresponding function satisfies its guard and summary assuming that all
other functions satisfy the corresponding guards and summaries of all ARGs in
the current iARG. Formally, let Y and Z be two sets of triples defined as follows:

Y � {{Gj} b = Fσ(j) (a){Sj} | Aj ∈ A(P ) is uncovered or directly covered}
Z � {{Gi}BFσ(i)

{Si} | Ai ∈ A(P ) is safe, complete, and uncovered}

Whale maintains the invariant Y � Z. Furthermore, if the algorithm termi-
nates, every uncovered ARG is safe and complete, and every directly covered
ARG is justified by an uncovered one. This satisfies the premise of Hoare’s (gen-
eralized) proof rule for mutual recursion and establishes soundness of Whale.

Whale is complete for Boolean programs, under the restriction that the
three main operations are scheduled fairly (specifically, CoverARG is applied
infinitely often). The key is that Whale only uses interpolants over program
variables in a current scope. For Boolean programs, this bounds the number of
available interpolants. Therefore, all incomplete ARGs are eventually covered.

Theorem 1. Whale is sound. Under fair scheduling, it is also complete for
Boolean programs.

6 Implementation and Evaluation

We have built a prototype implementation of Whale using the LLVM compiler
infrastructure [23] as a front-end. For satisfiability checking and interpolant gen-
eration, we use the MathSAT4 SMT solver [5]. The implementation and exam-
ples reported here are available at [1].
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Whale Wolverine 0.5 Blast 2.5

Program #ARGs #Refine Time Time Time (B1) Time (B2) #Preds (B1) #Preds (B2)

ddd1.c 5 3 0.43 4.01 4.64 1.71 15 8

ddd2.c 5 3 0.59 5.71 5.29 2.65 16 10

ddd3.c 6 5 20.19 30.56 48 20.32 25 16

ddd1err.c 5 1 0.16 3.82 0.42 1.00 25 8

ddd2err.c 5 1 0.28 5.72 0.44 0.96 5 8

ddd3err.c 5 11 126.4 17.25 TO 43.11 TO 37

ddd4err.c 6 1 5.73 1.76 24.51 CR 19 CR

Fig. 4. A comparison between Whale, Blast, and Wolverine. Time is in seconds.

Our implementation of Whale is a particular heuristic determinization of
the three operations described in Sec. 5: A FIFO queue is used to schedule the
processing of ARGs. Initially, the queue contains only the main ARG A1. When
an ARG is picked up from the queue, we first try to cover it with another ARG,
using CoverARG. In case it is still uncovered, we apply UpdateARG and
RefineARG until they are no longer applicable, or until RefineARG returns
a counterexample. Every ARG created by UpdateARG or modified by Reset

is added to the processing queue. Furthermore, we use several optimizations
not reported here. In particular, we merge ARGs of same the function. The
figures reported in this section are for the number of combined ARGs and do
not represent the number of function calls considered by the analysis.

Our goal in evaluating Whale is two-fold: (1) to compare effectiveness of
our interpolation-based approach against traditional predicate abstraction tech-
niques, and (2) to compare our inter-procedural analysis against intra-procedural
interpolation-based algorithms. For (1), we compared Whale with Blast [4].
For (2), we compared Whale with Wolverine [22], a recent software model
checker that implements Impact algorithm [27] (it inlines functions and, thus,
does not handle recursion).

For both evaluations, we used non-recursive low-level C programs written for
the pacemaker grand challenge4. Pacemakers are devices implanted in a human’s
body to monitor heart rate and send electrical signals (paces) to the heart when
required. We wrote test harnesses to simulate the pacemaker’s interaction with
the heart on one of the most complex pacemaker operation modes (DDD). The
major actions of a pacemaker are sensing and pacing. Periodically, a pacemaker
suspends its sensing operation and then turns it back on. The properties we
checked involved verifying correct sequences of toggling sensing operations, e.g.,
that sensing is not suspended for more than two time steps, where we measured
time steps by the number of interrupts the pacemaker receives.

Fig. 4 summarizes the results of our experiments. Blast was run in two
configurations, B1 and B25. Wolverine was run in its default (optimal) con-
figuration. For Whale, we show the number of ARGs created and the number

4 Detailed information on the pacemaker challenge is available at
http://www.cas.mcmaster.ca/wiki/index.php/Pacemaker.

5 B1 is -dfs -craig 2 -predH 0 and B2 is -msvc -nofp -dfs -tproj -cldepth 1

-predH 6 -scope -nolattice.

http://www.cas.mcmaster.ca/wiki/index.php/Pacemaker
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of calls to RefineARG for each program. For Blast, we show the number of
predicates needed to prove or refute the property in question. ‘CR’ and ‘TO’
denote a crash and an execution taking longer than 180s, respectively. The pro-
grams named dddi.c are safe; dddierr.c have errors. While all programs are
small (∼300 LOC), their control structure is relatively complex.

For example, Fig. 4 shows that Whale created five ARGs while processing
ddd3.c, called RefineARG three times and proved the program’s correctness in
0.59 seconds. Blast’s configuration B1 tool 5.29 seconds and used 16 predicates,
whereas B2 took 2.65 seconds and used 10 predicates.Wolverine’s performance
was comparable to B1, verifying the program in 5.71 seconds.

For most properties and programs, we observe that Whale outperforms
Wolverine and Blast (in both configurations). Note that neither of the used
Blast configurations could handle the entire set of programs without crashing
or timing out. ddd3err.c contains a deep error, and to find it, Whale spends a
considerable amount of time in SMT solver calls, refining and finding counterex-
amples to a summary, until the under-approximation leading to the error state
is found. For this particular example, we believe Wolverine’s dominance is an
artifact of its search strategy. In the future, we want to experiment with heuris-
tics for picking initial under-approximations and heuristics for refining them, in
order to achieve faster convergence.

7 Related Work

The use of interpolants in verification was introduced in [25] in the context of
SAT-based bounded model checking (BMC). There, McMillan used interpola-
tion to over-approximate the set of states reachable at depth k in the model,
using refutation proofs of length k BMC queries. The process continues until a
counterexample is found or a fixed point is reached. At a high level, our sum-
marization technique is similar, as we use interpolants to over-approximate the
reachable states of a function by taking finite paths through it. In the context
of predicate abstraction, interpolation was used as a method for deriving predi-
cates from spurious counter-examples [18]. Interpolation was also used in [21] to
approximate a program’s transition relation, leading to more efficient but less
precise predicate abstraction queries.

As described earlier, Whale avoids the expensive step of computing abstrac-
tions, necessary in CEGAR-based software model checking tools (e.g., Blast

[17], Slam [2], and Yasm [15]). For inter-procedural verification, approaches
like Slam implement a BDD-based Sharir-Pnueli-style analysis [28] for Boolean
programs. It would be interesting to compare it with our SMT-based approach.

McMillan [27] proposes an intra-procedural interpolation-based softwaremodel
checking algorithm, Impact, that computes interpolants from infeasible paths to
an error location. Whale can be viewed as an extension of Impact to the inter-
procedural case. In fact, our notion ofARGcovering is analogous toMcMillan’s ver-
tex covering lifted to the ARG level. While Impact unrolls loops until all vertices
are covered or fully expanded (thus, an invariant is found), Whale unrolls recur-
sive calls until all ARGs are covered or fully expanded (completed). One advantage
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of Whale is that it encodes all intra-procedural paths by a single SMT formula.
Effectively, this results in delegating intra-procedural covering to the SMT solver.

In [26], interpolants are used as blocking conditions on infeasible symbolic
execution paths and as means of computing function summaries. This approach
differs from Whale in that the exploration is not property-driven and thus is
more suited for bug finding than verification. Also, handling unbounded loops
and recursion requires manual addition of auxiliary variables.

Heizmann et al. [16] propose a procedure that views a program as a nested
word automaton. Interpolants or predicate abstraction [12] are used to generalize
infeasible paths to error and remove them from the program’s automaton until
no errors are reachable. In contrast to Whale, this approach does not produce
modular proofs and does not compute function summaries.

Synergy [13] and its inter-procedural successor Smash [11] start with an
approximate partitioning of reachable states of a given program. Partition re-
finement is guided by the weakest precondition computations over infeasible
program paths. The main differences between Whale and [13,11] are: (a) in-
terpolants focus on relevant facts and can force faster convergence than weakest
preconditions [18,26]; (b) our use of interpolants does not require an expen-
sive quantifier elimination step employed by Smash to produce summaries; (c)
Smash [11] does not handle recursion – in fact, our ARG covering technique can
be easily adapted to the notion of queries used in [11] to extend it to recursive
programs; and finally, (d) Synergy and Smash use concrete test cases to guide
their choice of program paths to explore. Compared to Whale, this makes them
better suited for bug finding.

8 Conclusion and Future Work

In this paper, we presented Whale, an interpolation-based algorithm for inter-
procedural verification.Whale handles (recursive) sequential programs and pro-
duces modular safety proofs. Our key insight is the use of Craig interpolants
to compute function summaries from under-approximations of functions. We
showed that performance of Whale is comparable, and often better, than state-
of-the-art software model checkers from the literature.

This work opens many avenues for future research, both in terms of optimiza-
tions and extensions to other program models. For example, due to the range of
interpolants that can be generated for a formula, we would like to experiment
with different interpolation algorithms to test their effectiveness in this domain.
We are also interested in extending Whale to handle concurrent programs.
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Abstract. Message-based communication is an increasingly common in-
teraction mechanism used in concurrent and distributed systems where
components interact with each other by sending and receiving messages. It
is well-known that verification of systems that use asynchronous message-
based communication with unbounded FIFO queues is undecidable even
when the component behaviors are expressed using finite state machines.
In this paper we show that there is a sub-class of such systems, called syn-
chronizable systems, for which certain reachability properties (over send
actions and over states with no pending receives) remain unchanged when
asynchronous communication is replaced with synchronous communica-
tion. Hence, if a system is synchronizable, then the verification of these
reachability properties can be done on the synchronous version of the sys-
tem and the results hold for the asynchronous case.We present a technique
for deciding if a given system is synchronizable. Our results are applicable
to a variety of domains including verification and analysis of interactions
among processes at the OS level, coordination in service-oriented comput-
ing and interactions among distributed programs. In this paper we focus
on analysis of channel contracts in the Singularity OS. Our experimental
results show that almost all channel contracts in the Singularity OS are
synchronizable, and, hence, their properties can be analyzed using syn-
chronous communication semantics.

1 Introduction

The asynchronous message-based communication model has been receiving in-
creasing system support [17,21,2,20] and it is getting increasing attention in a
diverse set of areas for handling a variety of issues such as process isolation at the
OS level [8], coordination in service-oriented computing [6,27], and interactions
in distributed programs [1]. Unfortunately, in general verification problems are
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undecidable for such systems since a set of finite-state machines that communi-
cate with unbounded FIFO message queues can simulate Turing Machines [5].
We present a class of asynchronously communicating systems, called synchro-
nizable systems, for which certain reachability properties can be verified auto-
matically, and we show that we can automatically check if an asynchronously
communicating system is in this class.

Intuitively, an asynchronously communicating system is synchronizable if ex-
ecuting that system with synchronous communication instead of asynchronous
communication preserves its behaviors. We focus on two types of behaviors: 1)
the sequences of messages that are sent, and 2) the set of reachable configu-
rations where message queues are empty, i.e., configurations with no pending
receives. If a system is synchronizable, then we can check properties about its
message sequences or about the reachability of its global configurations with
empty message queues, using the synchronous version of the system. Since we
are focusing on systems where component behaviors are specified using finite
state machines, the synchronous version of the system has a finite state space
and its properties can be verified using well-known model checking techniques.

The important question is: is it possible to check synchronizability automat-
ically? In this paper we show the following: A system is synchronizable if and
only if the behaviors for the synchronous version of the system and the 1-
bounded-asynchronous version of the system are equivalent with respect to
sent messages and reachable configurations with empty message queues. The 1-
bounded-asynchronous version corresponds to the case where all message queues
are replaced with queues of size one (hence, if there is an unconsumed mes-
sage in a message queue any send action to that queue blocks until message
is consumed). Since both synchronous and 1-bounded asynchronous versions of
a system have finite state space, the equivalence check of their behavior, and
therefore, synchronizability check, can be done automatically.

In order to demonstrate the practical value of our results, we have developed
a prototype implementation leveraging CADP toolbox [12] and have applied
our approach to analyzing channel contracts in Singularity OS [8,16]. A channel
contract is a state machine that specifies the allowable ordering of messages
exchanged between processes in the Singularity OS. In this paper we show that
almost all of the channel contracts in Singularity OS are synchronizable, hence,
their reachability properties can be automatically verified.

2 Motivation: Singularity Channel Contracts

Singularity [23] is an experimental operating system developed by Microsoft
Research to explore new approaches to OS design in order to improve the de-
pendability of software systems. Process isolation is a chief design principle of
the Singularity OS, where processes are not allowed to share memory with each
other or the kernel. All inter-process communication occurs via asynchronous
message exchange in bidirectional channels. Communication through Singularity
channels corresponds to asynchronous communication via FIFO queues. When
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public contract IoStream {
...
state Start: {

O? -> {
OK! -> Open;
ERR! -> End;

}
}

state Open: {
R? -> D! -> Open;
W? -> Open;
C? -> End;

}

state End;
...

?C

Start

End

   s

   t

Open

?O

!OK !ERR

?R ?W

!D

!C

Start

End

   s

   t

Open

!O

?OK ?ERR

!R !W

?D

O: request to open
R: request to read
W: request to write
D: respond with data
C: request to close

Server Client

(a) (b)

Fig. 1. (a) An example channel contract; and (b) corresponding state machines for the
Client and the Server

a process sends a message through a channel, the message is appended to a mes-
sage queue. A message that is at the head of a message queue is removed from
the message queue when a receive action is executed by the receiving process at
the other end of the channel.

In Singularity, channel contracts (written in an extension of C#, called Sing#)
specify the allowable ordering of message exchanges between the processes [8,23].
Figure 1(a) shows a contract governing a channel used by Singularity for com-
municating between a process (client in this case) and the file server [18]. (The
full contract specification also includes the message declarations which are omit-
ted in the figure.) Singularity contracts are written from the perspective of the
server, where send actions by the server are appended with ! to denote com-
munication from the server to the client and receive actions by the server are
appended with ? to denote communication from the client to the server. The
contract states that the file server receives a request (O) for opening a file and
it responds with either OK or ERR; the destination states are Open or End. In the
Open state, the file server can either receive a read request (R), a write request
(W) or a close request (C). In the first case, the server responds with the data
from the opened file and the destination state of the contract remains Open; in
the second case, the destination state also remains Open; and in the final case,
the destination state becomes End. The behaviors of the client and the server
constructed on the basis of this contract are presented in Figure 1(b). Each lo-
cal configuration in the client and the server is annotated with the state of the
contract; note that there are two temporary/transient states s and t.

Verification Objectives: Properties of Interest. There are several questions that
are of interest in this setting. Does the system obtained from the asynchronously
communicating client and server (Figure 1(b)) produces exactly the same behav-
ior (in terms of send actions) as depicted in the channel contract (Figure 1(a))?
Does the system conform to some pre-specified desired properties expressed in
temporal logic? For instance, a property of interest can be: the C (close) send
action is eventually followed by a configuration where the client and the server
are both at state End and their message queues are empty (i.e., there are no



Synchronizability for Verification of Asynchronously Communicating Systems 59

pending receives). Another example property can be: every read send action (R)
is eventually followed by a configuration where the client and the server states
are both Open and their message queues are empty. These types of properties
can be suitably expressed in linear temporal logic.

Verification Challenge. Unfortunately, for finite state processes that communi-
cate asynchronously with unbounded message queues, verification of these types
of properties is undecidable in general. Observe that, the system obtained from
the asynchronously communicating client and server in Figure 1(b) exhibits be-
havior with infinite state-space due to existence of potentially unbounded num-
ber of !W actions from the client before the server consumes via ?W action.

Our Solution. In this paper, we show that we can automatically check if the
asynchronous system under consideration is synchronizable, and, if it is, we can
verify the above properties on the synchronized-version of the system using tra-
ditional model checking techniques. Verification of properties of asynchronously
communicating systems is decidable when the system is synchronizable and we
present here the necessary and sufficient condition for synchronizability, which
can be efficiently checked using existing equivalence checking techniques that
work for systems with finite state-space.

It should be noted that in order to statically determine the amount of memory
required for each message buffer, Singularity OS imposes a restriction on chan-
nel contracts that bounds the sizes of the message buffers. Such a restriction,
therefore, finitizes the behavior of the asynchronous system. Even with such a
restriction the results presented in this paper are useful since they allow us to
remove the message queues completely during verification. Since the state space
of an asynchronously communicating system with bounded queues can be expo-
nential in the size of the queues, our results can be used to avoid state space
explosion for such bounded systems. Our experiments show that in fact most of
the Singularity channel contracts are synchronizable.

3 Preliminaries

3.1 Behaviors as State Machines

We use finite state machines to describe the behaviors of components or peers
that asynchronously communicate via messages (sends and receives). The behav-
ior of a system resulting from such communicating peers is described by state
machines (with potentially infinite state-space).

Definition 1 (Peer Behavior). A peer behavior or simply a peer, denoted by
P, is a state machine (M,T, s0, δ) where M is the union of finite input (M in)
and finite output (Mout) message sets, T is the finite set of states, s0 ∈ T is the
initial state, and δ ⊆ T × (M ∪ {ε})× T is the transition relation.

A transition τ ∈ δ can be one of the following three types: (1) a send-transition
of the form (t1, !m1, t2) which sends out a message m1 ∈ Mout, (2) a receive-
transition of the form (t1, ?m2, t2) which consumes a message m2 ∈M in, and (3)

an ε-transition of the form (t1, ε, t2). We write t
a−→ t′ to denote that (t, a, t′) ∈ δ.
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Figures 2(a, b, c) present state machines representing three communicating
peers. The start states (s0, t0 and r0) are denoted by arrows with no source state.
Each transition is labeled with the action (send or receive) performed when the
peer moves from the source state to the destination state of the transition.

We will consider systems that consist of a finite set of peers, 〈P1, . . . ,Pn〉,
where Pi = (Mi, Ti, s0i, δi) andMi = M in

i ∪Mout
i , such that ∀i : M in

i ∩Mout
i = ∅,

∀i, j : i �= j ⇒M in
i ∩M in

j = Mout
i ∩Mout

j = ∅.

Definition 2 (System Behavior). A system behavior or simply a system over
a set of peers 〈P1, . . . ,Pn〉, where Pi = (Mi, Ti, s0i, δi) and Mi = M in

i ∪Mout
i ,

is denoted by a state machine (possibly infinite state) I = (M,C, c0, Δ) where

1. M = ∪iMi

2. C ⊆ Q1 × T1 ×Q2 × T2 . . .Qn × Tn such that ∀i ∈ [1..n] : Qi ⊆ (M in
i )∗

3. c0 ∈ C such that c0 = (ε, s01, ε, s02 . . . , ε, s0n)
4. Δ ⊆ C ×M × C, and for c = (Q1, t1, . . . Qn, tn) and c′ = (Q′

1, t
′
1, . . . Q

′
n, t

′
n)

(a) c
!m−→ c′ ∈ Δ if ∃i, j ∈ [1..n] : m ∈Mout

i ∩M in
j ,

(i) ti
!m−→ t′i ∈ δi, (ii) Q

′
j = Qjm, (iii) ∀k ∈ [1..n] : k �= j ⇒ Qk = Q′

k

and (iv) ∀k ∈ [1..n] : k �= i⇒ t′k = tk

(b) c
?m−→ c′ ∈ Δ if ∃i ∈ [1..n] : m ∈M in

i ,

(i) ti
?m−→ t′i ∈ δi, (ii) Qi = mQ′

i, (iii) ∀k ∈ [1..n] : k �= i ⇒ Qk = Q′
k

and (iv) ∀k ∈ [1..n] : k �= i⇒ t′k = tk
(c) c

ε−→ c′ ∈ Δ if ∃i ∈ [1..n] : (i) ti
ε−→ t′i ∈ δi, (ii) ∀k ∈ [1..n] : Qk = Q′

k

and (iii) ∀k ∈ [1..n] : k �= i⇒ t′k = tk
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0 s1!b
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?a 1t 0
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!b

[][][]

!a!b

?b

[][][]

s

Fig. 2. Peers (a, b, c); Synchronous Behavior (d);
(partial view of) Asynchronous Behavior (e)

In the above, Qs describe the
message queues associated with
each peer in the system. The
messages sent to a peer are ap-
pended to the tail of its message
queue. A peer can perform a re-
ceive action if the corresponding
message is present at the head of
its message queue. After the re-
ceive action is performed, the re-
ceived message is removed from
the head of the message queue.

Figure 2(e) presents a snap-
shot of the behavior of the
system realized from the asyn-
chronous composition of the
peers shown in Figures 2(a, b,
c). Each state is annotated with
the local states of the peers and
the contents of their message
queues. For instance, the state
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s1t0r0 has the associated message queues [][][b], denoting that the message queue
of the third peer has a pending receive b and the message queues of the other
peers are empty.

3.2 Verification Objective

We refer to the states where all peers have empty message queues as the synchro-
nized states (shown in bold in Figure 2(e)). Note that, start state of the system
is a synchronized state (e.g., s0t0r0 [][][] in Figure 2(e)). Verification of the above
systems may involve checking for properties describing certain desired temporal
ordering of send actions and reachability of synchronized states. In this paper,
we focus on the following types of global properties:

1. reachability of a synchronized state via a sequence of send actions.
2. existence of a sequence of send actions.

Note that, it is reasonable to ignore the ordering of the receive actions as they
are performed locally by the peers by consuming messages from their respective
message queues. Similarly, it is reasonable to ignore the temporal ordering of
states that are not synchronized since these states can be viewed as “transient”
states where one or more peers are yet to consume messages and, therefore, have
not reacted to the messages sent to them.

4 Synchronizability

We define the notion of send- and synchronized-traces described over the se-
quence of send actions and synchronized states. Formally,

Definition 3 (Send- & Synchronized-Trace). A send-trace of a system
I = (M,C, c0, Δ) is a sequence of send actions starting from c0. This is obtained
by projecting a trace of I starting from c0 to the send actions (by ignoring labels
of all the other transitions).

A synchronized-trace of a system, on the other hand, corresponds to a send-
trace that starts from c0 and ends in a synchronized state. A synchronized-trace
also includes the start state and the synchronized state reached at the end of the
trace (in addition to the sequence of send actions).

The union of the set of send-traces and the set of synchronized-traces of I is
denoted by L(I).

(s0t0r0[][][])aabc(s1t1r1[][][]) is a synchronized-trace of the system in Figure 2(e).

We will denote such a trace as follows: s0t0r0
aabc� s1t1r1 (as the message queues

of the peers in synchronized states are empty, we omit them). On the other hand,
the send-traces of the system include b, a, aa, aab, aabc, aabc . . ., etc. We will

denote the send-trace as follows · a
=⇒ · a

=⇒ · b
=⇒ · c

=⇒ . . ., where
m
=⇒ denotes

a transition-sequence containing zero or more receive actions and a single send
action !m.
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Next, we describe synchronizability in terms of a system and its synchronous
variant. In the synchronous variant, all peers communicate synchronously, that
is, all peers immediately consume the messages sent to them.

Definition 4 (Synchronous System Behavior). The synchronous system
behavior containing a set of peers 〈P1, . . . ,Pn〉, where Pi = (Mi, Ti, s0i, δi) and
Mi = M in

i ∪Mout
i , is denoted by a state machine I0 = (M,C, c0, Δ) where

1. M = ∪iMi 2. C ⊆ T1 × T2 . . .× Tn

3. c0 ∈ C such that c0 = (s01, s02 . . . , s0n)
4. Δ ⊆ C ×M × C and for c = (t1, t2, . . . , tn) and c′ = (t′1, t

′
2, . . . , t

′
n)

1. c
!m−→ c′ ∈ Δ if ∃i, j ∈ [1..n] : m ∈Mout

i ∩M in
j ,

(i) ti
!m−→ t′i ∈ δi, (ii) tj

?m−→ t′j ∈ δj, (iii) ∀k ∈ [1..n] : k �= i∧k �= j ⇒ t′k = tk

2. c
ε−→ c′ ∈ Δ if ∃i ∈ [1..n],

(i) ti
ε−→ t′i ∈ δi, (ii) ∀k ∈ [1..n] : k �= i⇒ t′k = tk

Figure 2(d) presents the behavior of the system realized from synchronous com-
position of peers in Figure 2(a, b, c). Each transition is annotated with the send
action; the corresponding receive action which happens synchronously is shown
in parenthesis. Note that, in synchronous behavior, there is no pending receives
and system states are represented by the tuples of the participating peers’ local
states. Finally, synchronizability is formally defined as:

Definition 5 (Trace Synchronizability). The system I over a set of peers
〈P1, . . . ,Pn〉 is said to be trace synchronizable if and only if L(I) = L(I0), where
I0 is the synchronous system over the same set of peers.

Verification of properties described in Section 3.2 is decidable for trace synchro-
nizable systems, where such verification can be performed using synchronous
version of the system (which does not have message queues and therefore has
a finite state-space) using standard model checking techniques. The system
in Figure 2(e) is not trace synchronizable as it contains a synchronized trace

s0t0r0
aabc� s1t1r1 which is not present in its synchronous variant in Figure 2(d).

5 Deciding Trace Synchronizability

We will show that the necessary and sufficient condition for synchronizability
involves the equivalence between the synchronous system behavior and the sys-
tem behavior using bounded asynchronous communication with message queues
of size 1 for each participating peer.

Definition 6 (k-bounded System). For any k ≥ 1, a k-bounded system (de-
noted by Ik) is a system where the length of message queue for any peer is at
most k. The description of k-bounded system behavior is, therefore, realized by
augmenting condition 4(a) in Definition 2 to include the condition |Qj| < k,
where |Qj | denotes the number of pending receives in the queue for peer j.
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Fig. 3. Peers (a, b, c); Synchronous (d); 1-bounded Asynchronous Behavior (e)

Figure 3(e) shows the 1-bounded system behavior obtained from
asynchronously communicating peers in Figures 3(a, b, c). Note that the peer
behavior in Figure 3(a) is identical to that in Figure 2(a), while the two peers
in Figures 3(b, c) are modified versions of the ones presented in Figures 2(b, c).

Recall that, the synchronous system behavior is denoted by I0 (Definition 4).
In the rest of the section, we will assume that I and Ik (∀k) are described over
the same set of peers.

Proposition 1. ∀k ≥ 0 : [L(Ik) ⊆ L(Ik+1)].

Proof. For any k ≥ 0, every move of Ik can be matched by Ik+1 by avoiding the
send actions that make the receiving peers’ pending receives to exceed k. �

Theorem 1. L(I0) = L(I1)⇒ ∀k ≥ 0 : L(Ik) = L(Ik+1).

We prove the theorem by contradiction. We assume that there exists k > 1 such
that L(Ik) �= L(I1). Therefore, there exists a finite trace (either a send-trace or
a synchronized-trace) in Ik (as L(I1) ⊆ L(Ik), by Proposition 1) distinguishing
Ik from I1. The following Lemmas 1 and 2 contradict the above assumption.

Lemma 1. L(I0) = L(I1) ⇒ all send-traces in Ik for all k > 1 are present in
I0 and I1.

Proof. This lemma follows directly from the result in [3], where we have proved
that I0 and I1 have the same set of send-traces if and only if the sets of send-
traces in I0 and I are identical. �
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Before proceeding with the proof of Lemma 2, we informally describe the con-
cepts that will be used in the proof. A synchronized-trace is realized by a system
that consists of a set of peers, if each peer follows a path in its behavioral state
machine that is consistent with the synchronized-trace and reaches a state where
its messages queue is empty. In such a path, we will consider the sequence of send
and receive actions leading to the local state of the peer with empty message
queue. We refer to such a sequence when we say that a peer moves along a trace
to realize the synchronized-trace. Similarly, we say that a set of peers move along
a trace to realize a synchronized-trace to refer to the sequence of send and receive
actions performed by the peers to reach their respective local states describing
the synchronized-state of the system. For instance, in Figure 3(e), consider the

synchronized trace s0t0r0
aabc� s1t1r1. We say that the synchronized trace is real-

ized when the first peer (Figure 3(a)) moves along the trace (!a!a!b)s1; while the
other peers (Figures 3(b, c)) move along the traces (?a?a?b)t1r1 or (?a?b?a)t1r1.

Lemma 2. L(I0) = L(I1) ⇒ all synchronized-traces in Ik for all k > 1 are
present in I0 and I1.

Proof. Let tk0
ω� tk1 . . . be a synchronized-trace belonging to Ik where tk0 is the

start state, tk1 is a synchronized state and ω is a sequence of send actions.
I0 and I1 contain the send-trace ω as they contain all send-traces present in

Ik, for any k > 1 (Lemma 1). As I0 reaches one or more synchronized states via
the send-trace ω, I1 also reaches the same set of synchronized states after ω (as
L(I0) = L(I1)). We denote this set of states by T 01. To prove by contradiction,
we assume that tk1 is different from all the synchronized states in T 01. We will
contradict this assumption by considering differences between tk1 and the states
in T 01 in terms of the local states of the peers.

Consider that in Ik, there exists a peer P1 that moves along a trace Ak and
other peers move along a trace Bk to realize the synchronized-trace tk0

ω� tk1 .
Further, consider that in I1, the peer P1 moves along the trace A1 (�= Ak) and
the other peers move along a trace B1 to realize a synchronized-trace with ω as
the sequence of send actions. Let the synchronized state reached in I1 in this
case be t011 ∈ T 01. Let B1 and Bk eventually lead to identical local states for all
peers other than P1. In short, we are considering the case where t011 and tk1 differ
only in terms of the states of P1. Figure 4 illustrates this situation.

We analyze the condition under which, in I1, the peer P1 cannot move along
Ak when other peers are moving along Bk to realize the send-trace ω. The
condition is that in Ak, the peer P1 has a full message queue (containing a
pending receive a) and is trying to send a message m to some other peer; while
in Bk, the other peers cannot move without sending a message b to P1; and
. . . abm . . . is present in ω. In other words, the peers cannot move without sending
each other messages in a specific order and such sending is not possible as the
buffer of P1 in I1 in the path Ak is full. That is,
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• in Ak, P1 sends !m when it has some pending receive action (say, a);

• in Bk, some peer sends !b to P1; and

• . . . abm . . . is present in ω.

For simplicity, we consider the above scenario with the following assumptions:

Assumption 1: P1’s message queue contains two pending receives at most once
when it moves along the trace Ak in Ik to realize the given
synchronized-trace, and

Assumption 2: tk1 differs from t011 in terms of local states of one peer (P1).

We will prove that the scenario is not possible with the above assumptions and
later proceed to prove the same without the assumptions.

As L(I0) = L(I1), the peer P1 in I0 moves along a trace A0 and the other
peers move along a trace B0 to reach t011 via ω = . . . abm . . .. Note that, A0 and
A1 end in identical local states for the peer P1, while B0, B1 and Bk end in
identical local states for peers other than P1 according to Assumption 2 above
(see Figure 4).

Furthermore, the peers moving along B0 immediately consume any message
sent to them (all sends are immediately received in I0). This implies that B0

contains the subsequence !a!b?m. Therefore, in I1, the peer P1 can move along
the trace Ak and other peers can move along B0 to realize a send sequence
. . . amb . . . and reach the synchronized state tk1 (see Figure 4). As L(I1) = L(I0),
this synchronized-trace is also present in I0. In other words, in I0, P1 can move
along a trace A′

0 and other peers can move along a trace B′
0 such that the

send sequence . . . amb . . . is realized and the synchronized state tk1 is reached.
Therefore, the destination states for P1 along the traces A′

0 and Ak are iden-
tical and the destination states for the peers other than P1 along the traces
B′

0, B0, B1 and Bk are identical (see Figure 4). Furthermore, there exists a
subsequence ?a!m?b in A′

0 as all sends are immediately consumed by P1 in I0.

...?a!m?b...

1 B 0A 1 A 0B’0A’0
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A′
0 B′

0 . . . amb . . . I0

A′
0 B0 . . . abm . . . I1

Fig. 4. Proof Schema 1 for Lemma 2

Proceeding further, in I1,
the peer P1 can move along the
trace A′

0 and the other peers
can move along the trace B0 to
realize the send sequence ω =
. . . abm . . . and reach the des-
tination synchronized state tk1
(see Figure 4). This is because,
in I1, each peer has a message
queue of size 1. This contra-
dicts the assumption that Ik
can reach a synchronized state
tk1 via ω that is not reachable by
I1 via the same send sequence.
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Addressing Assumption 1. Recall the two assumptions made for simplifying the
arguments of the proof. The arguments hold even when the first assumption is
not considered. This is because, if P1 considers n > 2 pending receives in Ak,
then we can construct a path for I1 where P1 consumes n− 1 pending receives
before the send action !m and reaches the same state as in trace Ak.

Similarly, if P1 considers n > 2 pending receives multiple times along the
trace Ak before sending m0, m1, etc., we can construct a trace for P1 in I1,
where P1 consumes n − 1 pending receives before performing the send actions
!m0, !m1, etc. and reaches the same destination state as in Ak.

Addressing Assumption 2. Next, we discard the second assumption that tk1 differ
from t011 (∈ T 01) due to only the local states of P1. Let the difference between tk1
and t011 be due to two peers P1 and P2. In Ik, P1 moves along the trace Ak1,
P2 moves along the trace Ak2, and peers other than P1 and P2 move along the
trace Bk. On the other hand, in I1, P1 moves along A1 (�= Ak1), P2 moves along
A2 (�= Ak2) and other peers move along B1 (destination states of these peers in
B1 and Bk are identical). Figure 5 illustrates this scenario.
Ik has a synchronized-trace with send sequence ω where P1 moves along Ak1,

P2 moves along A2 and the rest of the peers move along B1. This synchronized-
trace is possible because the size of the message queues of peers in Ik is greater
than those in I1. Therefore, Ik and I1 reach two different synchronized states via
send sequence ω, where the destination states differ only in terms of local states
of P1 (see Figure 5). We have already proved that this is not possible. Therefore,
there exists a path (with send sequence ω) in I1 such that P1 moves along A′

1,
P2 moves along A′

2 and other peers move along B′
1, where the destination states

in A′
1 and Ak1 are identical, the destination states in A′

2 and A2 are identical,
and the destination states in B′

1 and B1 are identical (see Figure 5).
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Ak1 Ak2 Bk ω Ik
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Fig. 5. Proof Schema 2 for Lemma 2

Next, consider this newly con-
structed synchronized-trace for I1
and the original synchronized-
trace for Ik (P1 moves along Ak1,
P2 moves along Ak2 and other
peers move along Bk). The syn-
chronized states reached via the
same send sequence (ω) differ only
in terms of local states of P2.
We have proved this is not pos-
sible. Therefore, there exists a
synchronized-trace (with send se-
quence ω) in I1 such that P1 moves
along A′′

1 , P2 moves along A′′
2 and

others move along B′′
1 where the

destination states of A′′
1 and Ak1

are identical, the destination states
of A′′

2 and Ak2 are identical, and the destination states ofB′′
1 and B1 are identical.

This contradicts our assumption.
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The above arguments also hold when differences in synchronized states are
due to local states of more than two peers participating in the system. �
The proof for Theorem 1 directly follows from Lemmas 1 and 2.

Theorem 2. L(I0) = L(I1) if and only if I is trace synchronizable.

Proof. Follows from Theorem 1, Definition 3 and Proposition 1. �

The system in Figure 2(e) is not synchronizable as its 1-bounded asynchronous
version is not trace equivalent to its synchronous counterpart (Figure 2(d)). The

1-bounded asynchronous system contains traces (e.g., send trace
a

=⇒ a
=⇒ and syn-

chronized trace s0t0r0
aabc� s1t1r1) which are absent in the synchronous version.

Figure 3(d) and (e) shows the synchronous and 1-bounded asynchronous system
realized from the peers in Figures 3(a, b, c). These two systems are trace equivalent
and as such the corresponding asynchronous system is trace synchronizable.

Note that, we have proved that synchronizability can be decided by check-
ing the equivalence between two finite-state systems, I0 and I1. This can be
performed automatically. Once an asynchronous system (with possibly infinite
state-state) has been classified as trace synchronizable, we can verify reachability
properties over its send actions and synchronized states using the synchronous
variant of the system.

6 Experiments with Singularity Channel Contracts

We automated our approach for analyzing Singularity channel contracts by im-
plementing a translator which takes a Singularity channel contract specification
as input and generates two LOTOS specifications that correspond to the syn-
chronous and 1-bounded-asynchronous versions of the input contract. Then we
use the CADP toolbox [12] to check the equivalence of the synchronous and
1-bounded-asynchronous versions.

Synchronous Model. Given a Singularity channel contract, the state machine of
the participating peers (a client and a server) is obtained as follows. For every
transition between a state s to a state t, in the contract with label m!, a send
transition labeled with m is added to the state machine of server peer from its
local state corresponding to s to its local state corresponding to t; a receive action
m is added to the state machine of client peer from its local state corresponding
to s to its local state corresponding to t. The dual strategy is used for actions of
the form m? in the contract (the server peer receives m sent by the client peer).

The state machines for the peers are encoded in LOTOS using process con-
structs which allows sequential (ordering), branching (choice) and loop speci-
fications. The synchronous system is constructed from the peer specifications
in LOTOS by using the composition operator in LOTOS, which specifies syn-
chronous communication between processes over pre-specified channels.

Asynchronous Model. The LOTOS language does not support asynchronous com-
munication directly. In order to generate the 1-bounded asynchronous model in
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LOTOS we create a bounded FIFO queue process (which can store at most
one message) for each message queue. The FIFO queue process representing the
message queue of a peer P synchronously receives messages from peers sending
messages to P , and it synchronously sends these messages to P . The messages
sent from the FIFO queue process of peer P are essentially receive actions by
P which are not considered in send- and synchronized-traces. These actions are,
therefore, hidden during the composition process and they become internal tran-
sitions (τ -transitions in LOTOS).

Equivalence Checking. After generating the LOTOS specifications for the syn-
chronous and 1-bounded asynchronous models, we generate the two correspond-
ing LTSs using the state space generation tools in the CADP toolbox. During
the equivalence check the only visible events are the message send events from
any peer since the receive events are hidden. To optimize the equivalence check
we reduce the resulting LTS modulo the hidden actions (using the τ -confluence
relation). This reduces the transition system without modifying the send- and
synchronized-traces of the system. Then we check the equivalence of the reduced
LTSs for the synchronous and 1-bounded asynchronous systems. If two LTSs are
equivalent, the system (i.e, the system obtained from the peers participating in
the given Singularity contract) is synchronizable; otherwise it is not.

The construction of LTSs from LOTOS specifications, the reduction of the
LTSs and their equivalence checking are performed automatically using SVL
scripts [11] and by using the Reductor and the Bisimulator tools that are part
of the CADP toolbox [12].

We applied our approach to 86 channel contracts that are available in the
Singularity code base. The size of the synchronous systems obtained from the
projected peers of these contracts ranges between 2 to 23 states and 1 to 60
transitions. The size of the 1-bounded asynchronous variant, on the other hand,
ranges between 3 to 99 states and 2 to 136 transitions. The time taken to reduce
the asynchronous model is on an average 10 secs and the equivalence checking
time is on an average 3 secs. We have found that all channel contracts in the
Singularity code base are synchronizable except two. The two contracts that
fail the synchronizability test are faulty (allow deadlocks, as was previously re-
ported and confirmed by the Singularity developers [24]). Hence, if we ignore
these two faulty contracts, all channel contracts in the Singularity code base are
synchronizable, i.e., their properties concerning the sequence of send actions and
reachability of synchronized states can be verified automatically.

7 Related Work

The synchronizability problem was first proposed in [9,10] in the context of an-
alyzing interactions among web services. Synchronizability definition in these
papers only considered sequence of send actions, i.e., send-traces. The synchro-
nizability conditions given in [9,10] are sufficient but not necessary conditions.
One of the synchronizability conditions used in [9,10] is called autonomous con-
dition, and this condition prevents a process from having a send and a receive
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transition from the same state. This condition sometimes fails for protocols that
are synchronizable. In [3] it is argued that synchronizability analysis can be used
for checking the conformance of a set of web services to a given global interaction
protocol (called a choreography specification in the web services domain). The
synchronizability analysis presented in [3] provides a necessary and sufficient
condition for synchronizability when only send-traces are considered. Recent re-
sults reported in [4] also build on the results from [3] to show the decidability of
the choreography realizability problem.

The synchronizability definitions used in these earlier papers do not corre-
spond to the synchronizability definition we use in this paper since they do not
take into account synchronized state reachability. In particular, the main result
presented in [3] corresponds to the Lemma 1 from this paper. In this paper we
present a non-trivial and important extension to this earlier result and introduce
the synchronized-state reachability by proving Lemma 2. This extension allows
for verification of reachability properties over send actions and configurations
where the message queues are empty. Moreover, the synchronizability analysis
presented in [3] is not implemented, whereas we implement the proposed syn-
chronizability analysis and apply it to the Singularity channel contracts.

The work on session types [14,15] focuses on conformance of an interaction
to a predefined protocol and formulates this as a typing problem. The idea is
to first define a global type for interaction behavior and then to check if each
local peer implementation is “typable” with respect to the global type. If that
is the case then the typing rules ensure that when the peers are executed, they
conform to the interaction protocol specification that corresponds to the global
type. Interestingly, the type system for session types contains an analogue of
the autonomous condition from [9,10] and therefore is more restrictive then the
synchronizability condition presented in this paper.

In [7], the authors presented various decidability results for half-duplex asyn-
chronous systems containing two peers, one where at any system state at most
one message queue is non-empty. The authors proved that half-duplex systems
have a recognizable reachability set which can be computed in polynomial time,
and which makes it possible to verify in polynomial time the reachability of sys-
tem states. The authors proved that determining whether an asynchronous sys-
tem with two peers is half-duplex is decidable. Finally, the authors showed that
systems with more than two peers and participating in pair-wise half-duplex com-
munication can simulate a Turing machines, and therefore, reachability analysis
of such systems is undecidable, in general. In this paper, we examined a different
subclass of asynchronous systems, namely synchronizable systems. Synchroniz-
ability does not require half-duplex communication and is applicable for systems
containing more than two peers.

In [25,13], the authors discuss the type of communication topologies (e.g.,
trees) that leads to decidability of reachability analysis in communicating sys-
tems, including communicating push-down systems. Our results hold for any
communication topology. We conjecture that our results also hold for well-
queuing push-down systems considered in [25]; a well-queuing push-down system
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is one where communications occur when the execution stack is empty. We plan
to investigate synchronizability of such communicating push-down systems.

In the context of parallel programming, where concurrently executing pro-
cesses communicate via message passing (MPI programs), several papers (e.g.,
[19,22,26]) discuss the impact of buffering on the behavior in terms of dead-
lock freedom and conformance to local sequence of actions. Specifically, these
works discuss how buffering can lead to deadlock when there are “wildcard”
receives (states in the peer behavior where any receive action of that peer is
possible), and address the problem of deadlock detection efficiently using partial
order reduction [22] or using “happens before” relation [26]. There is one main
difference between our work and these earlier results. We are concerned with
the global ordering of send actions and reachability of synchronized states as
opposed to local ordering of actions. As a result, deadlock-freedom in the syn-
chronous and asynchronous variants does not imply that these variants are trace
equivalent (Definition 3). Hence, the premise of the work on MPI programming
that deadlock-freedom ensures conformance to desired behavior does not hold in
our setting. Additionally, [22] imposes certain MPI domain-specific restrictions
regarding dependencies between sends and receives, whereas our approach does
not depend on such conditions.

8 Conclusion

In this paper we introduced a notion of synchronizability that identifies a class
of asynchronously communicating systems for which the sequences of sent mes-
sages and the set of reachable synchronized states (i.e., states with empty-
message queues) remain the same when asynchronous communication is replaced
with synchronous communication. We showed that synchronizability of a system
can be determined by checking the equivalence between its synchronous and 1-
bounded asynchronous models. We applied this approach to Singularity channel
contracts and our experimental results show that all Singularity channel con-
tracts that are not faulty are synchronizable. Hence, their properties can be
verified using the synchronous communication model.
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Abstract. In this paper we study the decidability of termination of sev-
eral variants of simple integer loops, without branching in the loop body
and with affine constraints as the loop guard (and possibly a precon-
dition). We show that termination of such loops is undecidable in some
cases, in particular, when the body of the loop is expressed by a set of lin-
ear inequalities where the coefficients are from Z∪{r} with r an arbitrary
irrational; or when the loop is a sequence of instructions, that compute
either linear expressions or the step function. The undecidability result
is proven by a reduction from counter programs, whose termination is
known to be undecidable. For the common case of integer constraints
loops with rational coefficients only we have not succeeded in proving
decidability nor undecidability of termination, however, this attempt led
to the result that a Petri net can be simulated with such a loop, which
implies some interesting lower bounds. For example, termination for a
given input is at least EXPSPACE-hard.

1 Introduction

Termination analysis has received a considerable attention and nowadays several
powerful tools for the automatic termination analysis of different programming
languages and computational models exist [15,12,1,25]. Two important aspects
of termination analysis tools are their scalability and ability to handle a large
class of programs, which are directly related to the theoretical limits, regarding
complexity and completeness, of the underlying techniques. Since termination
of general programs is undecidable, every attempt at solving it in practice will
have at its core certain restricted problems, or classes of programs, that the
algorithm designer targets. To understand the theoretical limits of an approach,
we are looking for the decidability and complexity properties of these restricted
problems. Note that understanding the boundaries set by inherent undecidability
or intractability of problems yields more profound information than evaluating
the performance of one particular algorithm.

Much of the recent development in termination analysis has benefited from
techniques that deal with one simple loop at a time, where a simple loop is
specified by (optionally) some initial conditions, a loop guard, and a “loop body”
of a very restricted form. Very often, the state of the program during the loop
is represented by a finite set of scalar variables (this simplification may be the
result of an abstraction, such as size abstraction of structured data [25,11]).
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Regarding the representation of the loop body, the most natural one is, per-
haps, a block of straight-line code, namely a sequence of assignment statements,
as in the following example:

while X > 0 do {X := X + Y ; Y := Y − 1; } (1)

To define a restricted problem for theoretical study, one just has to state the
types of loop conditions and assignments that are admitted.

By symbolically evaluating the sequence of assignments, a straight-line loop
body may be put into the simple form of a simultaneous deterministic update,
namely loops of the form

while C do 〈x1, . . . , xn〉 := f(〈x1, . . . , xn〉)

where f is a function of some restricted class. For function classes that are
sufficiently simple to analyze, one can hope that termination of such loops would
be decidable; in fact, the main motivation to this paper has been the remarkable
results by Tiwari [26] and Braverman [10] on the termination of linear loops, a
kind of loops where the update function f is linear. The loop conditions in these
works are conjunctions of linear inequalities. Specifically, Tiwari proved that the
termination problem is decidable for loops of the following form:

while (Bx > b) do x := Ax+ c (2)

where the arithmetic is done over the reals; thus the variable vector x has values
in Rn, and the constant matrices in the loop are B ∈ Rm×n, A ∈ Rn×n, b ∈ Rm

and c ∈ Rn.
Consequently, Braverman proved decidability of termination of loops of the

following form:

while (Bsx > bs) ∧ (Bwx ≥ bw) do x := Ax+ c (3)

where the constant matrices and vectors are rational, and the variables are of
either real or rational type; moreover, in the homogeneous case (bs, bw, c = 0)
he proved decidability when the variables range over Z. This is a significant and
non-trivial addition, since algorithmic methods that work for the reals often fail
to extend to the integers (a notorious example is finding the roots of polynomials;
while decidable over the reals, over the integers, it is the undecidable Hilbert 10th

problem1).
Going back to program analysis, we note that it is typical in this field to

assume that some degree of approximation is necessary in order to express the
effect of the loop body by linear arithmetics alone. Hence, rather than loops with
a linear update as above, one defines the representation of a loop body to be a
set of constraints (again, usually linear). The general form of such a loop is

while (Bx ≥ b) do A

(
x
x′

)
≤ c (4)

1 Over the rationals, the problem is still open, according to [18].
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where the loop body is interpreted as expressing a relation between the new
values x′ and the previous values x. Thus, in general, this representation is a
non-deterministic kind of program and may super-approximate the semantics
of the source program analyzed. But this is a form which lends itself naturally
to analysis methods based on linear programming techniques, and there has
been a series of publications on proving termination of such loops [24,19,22] —
all of which rely on the generation of linear ranking functions. For example, the
termination analysis tools Terminator [12], COSTA [1], and Julia [25], are based
on proving termination of such loops by means of a linear ranking function.

It is known that the linear-ranking approach cannot completely resolve the
problem [22,10], since there are terminating programs having no such ranking
function, e.g., the loop (1) above. Moreover, the linear-programming based ap-
proaches are not sensitive to the assumption that the data are integers. Thus,
the problem of decidability of termination for linear constraint loops (4) stays
open, in its different variants. We feel that the most intriguing problem is:

Is the termination of a single linear constraints loop decidable, when the
coefficients are rational (or integer) numbers and the variables range over
the integers?

The problem may be considered for a given initial state, for any initial state, or
for a (linearly) constrained initial state.

Our contribution. In this research, we focused on hardness proofs. Our basic
tool is a new simulation of counter programs (also known as counter machines)
by a simple integer loop. The termination of counter programs is a well-known
undecidable problem. While we have not been able to fully answer the major
problem above, this technique led to some interesting results which improve our
understanding of the simple-loop termination problem. We next summarize our
main results. All concern integer variables.

1. We prove undecidability of termination, either for all inputs or a given input,
for simple loops which iterate a straight-line sequence of simple assignment
instructions. The right-hand sides are integer linear expressions except for
one instruction type, which computes the step function

f(x) =

{
0 x ≤ 0
1 x > 0

At first sight it may seem like the inclusion of such an instruction is tan-
tamount to including a branch on zero, which would immediately allow for
implementing a counter program. This is not the case, because the result of
the function is put into a variable which can only be combined with other
variables in a very limited way. We complement this result by pointing out
other natural instructions that can be used to simulate the step function.
This include integer division by a constant (with truncation towards zero)
and truncated subtraction.
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2. Building upon the previous result, we prove undecidability of termination,
either for all inputs or for a given input, of linear constraint loops where
one irrational number may appear (more precisely, the coefficients are from
Z ∪ {r} for an arbitrary irrational number r).

3. Finally, we observe that while linear constraints with rational coefficients
seem to be insufficient for simulating all counter programs, it is possible
to simulate a subclass, namely Petri nets, leading to the conclusion that
termination for a given input is at least EXPSPACE-hard.

We would like to highlight the relation of our results to the discussion at the end
of [10]. Braverman notes that constraint loops are non-deterministic and asks:

How much non-determinism can be introduced in a linear loop with no
initial conditions before termination becomes undecidable?

It is interesting that our reduction to constraint loops, when using the irrational
coefficient, produces constraints that are deterministic. The role of the con-
straints is not to create non-determinism; it is to express complex relationships
among variables. We may also point out that some limited forms of linear con-
straint loops (that are very non-deterministic since they are weaker constraints)
have a decidable termination problem (see Section 6). Braverman also discusses
the difficulty of deciding termination for a given input, a problem that he left
open. Our results apply to this variant, providing a partial answer to this open
problem.

The rest of this paper is organized as follows. Section 2 presents some pre-
liminaries; Section 3 study the termination of straight-line while loops with a
“built-in” function that represents the step function; Section 4 attempts to apply
the technique of Section 3 to the case of integer constraints loops, and discusses
extensions of integer constraints loops for which termination is undecidable; Sec-
tion 5 describes how a Petri net can be simulated with linear constraint loops;
Section 6 discusses some related work; and Section 7 concludes.

2 Preliminaries

In this section we define the syntax of integer piecewise linear while loops, integer
linear constraints loops, and counter programs.

2.1 Integer Piecewise Linear Loops

An integer piecewise linear loop (IPL loop for short) with integer variables
X1, . . . , Xn is a while loop of the form

while b1 ∧ · · · ∧ bm do {c1; . . . ; cn}

where each condition bi is a linear inequality a0 + a1 ∗X1 + · · · + an ∗Xn ≥ 0
with ai ∈ Z, and each ci is one of the following instructions

Xi := Xj +Xk | Xi := a ∗Xj | Xi := a | Xi = isPositive(Xj)
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such that a ∈ Z and

isPositive(X) =

{
0 X ≤ 0
1 X > 0

We consider isPositive to be a primitive, but in the next section we will consider
alternatives. The semantics of an IPL loop is the obvious: starting from initial
values for the variables X1, . . . , Xn (the input), the instructions c1, . . . , cn are
executed sequentially as far as the condition b1 ∧ · · · ∧ bn holds. We say that
the loop terminates for a given input if the condition b1 ∧ · · · ∧ bn eventually
evaluates to false. For simplicity, sometime we use a composite expression, e.g,
X1 := 2 ∗X2 + 3 ∗X3 + 1, which should be taken to be a syntactic sugar for
a series of assignments, possibly using temporary variables. We will also make
use of a “macro” isZero(X) which should be understood as representing the
expression 1− isPositive(X)− isPositive(−X).

2.2 Integer Linear Constraints Loops

An integer linear constraints loop (ILC loop for short) over n variables x =
〈X1, . . . , Xn〉 has the form

while (Bx ≥ b) do A

(
x
x′

)
≤ c

where for some m, p > 0, B ∈ Rm×n, A ∈ Rp×2n, b ∈ Rm and c ∈ Rp. The case
we are most interested in is that in which the constant matrices and vectors are
composed of rational numbers; this is equivalent to assuming that they are all
integers (just multiply by a common denominator).

Semantically, a state of such a loop is an n-tuple 〈x1, . . . , xn〉 of integers, and
a transition to a new state x′ = 〈x′1, . . . , x′n〉 is possible if x,x′ satisfy all the
constraints in the loop guard and the loop body. We say that the loop terminates
for given initial state if all possible executions from that state are finite, and that
it universally terminates if it terminates for every initial state. We say that the
loop is deterministic if there is at most one successor state to any state.

2.3 Counter Programs

A (deterministic) counter program PC with n counters X1, · · · , Xn is a list of
labeled instructions 1:I1, . . . ,m:Im,m+1:stop where each instruction Ik is one
of the following:

incr(Xj) | decr(Xj) | if Xi > 0 then k1 else k2

with 1 ≤ k1, k2 ≤ m+1 and 1 ≤ j ≤ n. A state is of the form (i, 〈a1, . . . , an〉)
which indicates that Instruction i is to be executed next, and the current values
of the counters are X1 = a1, . . . , Xn = an. In a valid state, 1 ≤ i ≤ m+1 and all
ai ∈ N (it will sometimes be useful to also consider invalid states, and assume
that they cause a halt). Any state in which i = m+1 is a halting state. For any
other valid state (i, 〈a1, . . . , an〉), the successor state is defined as follows.
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– If Ii is decr(Xj) (resp. incr(Xj)), then Xj is increased (resp. decreased) by
1 and the execution moves to label i+ 1.

– If Ii is “if Xj > 0 then k1 else k2” then the execution moves to label k1 if
Xj is positive, and to k2 if it is 0. The values of the counters do not change.

For simplicity, we assume that a counter with value 0 is never decremented, this
can be guaranteed by adding a conditional statement before each decr(Xj). The
following are known facts about the halting problem for counter programs.

Theorem 1 ([21]). The halting problem for counter programs with n ≥ 2 coun-
ters and the initial state (1, 〈0, . . . , 0〉) is undecidable.

The universal halting problem is the problem of deciding whether a given pro-
gram halts for any initial state.

Theorem 2 ([7]). The universal halting problem for counter programs with
n ≥ 2 counters is undecidable.

3 Termination of IPL Loops

In this section, we investigate the decidability of the following problems: given
an IPL loop P

1. Does P terminate for a given input?
2. Does P terminate for all inputs?

We show that both problems are undecidable by reduction from the halting
problem for counter programs. To see where the challenge in this reduction lies,
note that the loops we iterate a fixed block of straight-line code, while a counter
program has a program counter that determines the next instruction to execute.
While one can easily keep the value of the PC in a variable (which is what we
do), it is not obvious how to make the computation depend on this variable, and
how to simulate branching.

3.1 The Reduction

Given a counter program PC ≡ 1:I1, . . . ,m:Im,m+1:stop with counters X1, . . .,
Xn, we generate a corresponding IPL loop T (PC) as follows:

while (PC ≥ 1 ∧ PC ≤ m ∧X1 ≥ 0 ∧ · · · ∧Xn ≥ 0) do {
T (1:I1)
...
T (m:Im)
PC := N1 + · · ·+Nm;

}
where T (k:Ik) is defined as follows
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– If Ik ≡ incr(Xj), then T (k:Ik) is
Ak := isZero(PC − k);
Xj := Xj +Ak;
Nk := (k + 1) ∗Ak;

– If Ik ≡ decr(Xj), then T (k:Ik) is
Ak := isZero(PC − k);
Xj := Xj −Ak;
Nk := (k + 1) ∗Ak;

– If Ik ≡ if Xj > 0 then k1 else k2, then T (k:Ik) is
Ak := isZero(PC − k);
Fk := isPositive(Xj);
Tk := isPositive(Ak + Fk − 1);
Nk := Tk ∗ (k1 − k2) +Ak ∗ k2;

In Section 3.2 we prove the following:

Lemma 1. A counter program PC with n ≥ 2 counters terminates for the initial
state (i, 〈a1, . . . , an〉) if and only if T (PC) terminates for the initial input PC =
i ∧X1 = a1 ∧ · · · ∧Xn = an.

Lemma 1, together with theorems 1 and 2, imply.

Theorem 3. The halting problem and universal halting problem for IPL loops
are undecidable.

3.2 Proof of Correctness

Let us first state, informally, the main ideas behind the reduction, and then
formally prove Lemma 1 which in turn implies Theorem 3.

1. Variable PC represents the program counter, i.e., the label of the instruction
to be executed next.

2. Variables A1, . . . , Am are flags: when PC = i, then Ak = 1 if k = i, and
Ak = 0 if k �= i. Thus, an operation Xj := Xj + Ak (resp. Xj := Xj − Ak)
will have effect only when Ak = 1, and otherwise it is a no-op. This is a way
of simulating only one instruction in every iteration.

3. Variables N1, . . . , Nm are used to compute the value of PC for the next
iteration. The idea is that when PC = k, Nk is set to the label of the next
instruction; while Ni, for i �= k, is set to 0. Thus, the new PC can be obtained
by summing these variables.

Note that point (3) guarantees that PC := N1 + · · · + Nm correctly computes
the label of the next instruction. Thus, the while loop simulates the execution
of the counter program. Now we move to the formal proof.
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Lemma 2. Let PC = i; then for all k, Ak is set to 1 when k = i, and to 0 when
k �= i.

Proof. Immediate from the semantics of isZero and the code that sets Ak.

Lemma 3. Let PC = i, then (1) for k �= i, it holds that Nk = 0; and (2) for
k = i, it holds that Nk = k+1 if Ik is decr(Xj) or incr(Xj), and Nk = k1 (resp.
Nk = k2) if Ik is “if Xj > 0 then k1 else k2” and Xj > 0 (resp. Xj = 0).

Proof. We consider the following two cases

1. Assume k �= i, then (a) for incr(Xj) and decr(Xj) it is obvious that Nk = 0
since by Lemma 2 we have Ak = 0; and (b) for “if Xj > 0 then k1 else k2”,
since Ak equals 0 by Lemma 2, then also Tk = 0 (regardless of the value of
Fk), and thus Nk = 0 ∗ (k1 − k2) + 0 ∗ k2 = 0;

2. Assume k = i, then (a) for incr(Xj) and decr(Xj) it is obvious thatNk = k+
1 since by Lemma 2 we have Ak = 1; and (b) for “if Xj > 0 then k1 else k2”,
by Lemma 2 we have Ak = 1, and by definition of isPositive we have Fk = 0
when Xj = 0 and Fk = 1 when Xj > 0. Thus

Xj Fk Tk Nk

> 0 1 1 1 ∗ (k1 − k2) + 1 ∗ k2 = k1
= 0 0 0 0 ∗ (k1 − k2) + 1 ∗ k2 = k2

In order to prove Lemma 1, it is enough to show that T (PC) simulates the
corresponding counter program PC .

Lemma 4. Let PC be a counter program, T (PC) its corresponding IPL loop,
C ≡ (�, 〈a1, . . . , an〉) a configuration for PC , and S a state of T (PC) where
PC = �,X1 = a1, . . . , Xn = an. Then C is a halting configuration of PC if and
only if S terminates T (PC); while if C has a successor state (�′, 〈a′1, . . . , a′n〉)
in PC , then the loop body of T (PC) is enabled at S and its execution leads to a
state in which PC = �′, X1 = a′1, . . . , Xn = a′n.

Proof. For invalid initial states both the counter programs and the correspond-
ing while loop terminate immediately. For valid states the proof follows from
Lemmata 2 and 3.

3.3 Examples of Piecewise-Linear Operations

The isPositive operation can be easily simulated by other natural instructions,
yielding different instruction sets that suffice for undecidability.

Example 1 (Integer division). Consider an instruction that divides an integer by
an integer constant and truncates the result towards zero (also if it is negative).
Using this kind of division, we have

isPositive(X) = X − 2 ∗X − 1

2

and thus, termination is undecidable for loops with linear assignments and inte-
ger division of this kind.
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Example 2 (truncated subtraction). Another common piecewise-linear function
is truncated subtraction, such that x−̇y is the same as x− y if it is positive, and
otherwise 0. This operation allows for implementing isPositive thus:

isPositive(X) = 1−̇(1−̇X)

4 Reduction to ILC Loops

In this section we turn to Integer Linear Constraint loops. We attempt to apply
the reduction described in Section 3, and explain where and why it fails. So
we do not obtain undecidability for ILC loops, but we show that if there is one
irrational number that we are allowed to use in the constraints (any irrational will
do) the reduction can be completed and undecidability of termination proved.

In Section 5 we describe another way of handling the failure of the reduc-
tion with rational coefficients only: reducing from a weaker model, and thereby
proving a lower bound which is weaker than undecidability (but still non-trivial).

Observe that the loop constructed in Section 3 uses non-linear expressions
only for setting the flags Ak, Fk and Tk, the rest is clearly linear. Assuming
that we can encode these flags with integer linear constraints, then adapting the
rest of the reduction to ILC loops is straightforward: it can be done by rewriting
T (PC) to avoid multiple updates of a variable (that is, to single static assignment
form) and then representing each assignment as an equation instead. Thus, in
what follows we concentrate on how to represent those flags using integer linear
constraints.

4.1 Encoding Tk with Integer Linear Constraints

In Section 3, we defined Tk as isPositive(Ak +Fk− 1). Since 0 ≤ Ak +Fk ≤ 2, it
is easy to verify that this is equivalent to imposing the constraint Fk +Ak− 1 ≤
2 · Tk ≤ Fk +Ak.

4.2 Encoding Ak with Integer Linear Constraints

The role of the flag Ak is to indicate if PC is equal to k. Expressing this relation
by linear constraints is possible thanks to the finite range of PC, as shown by
the following lemma.

Lemma 5. Let P1 and P2 be the following polyhedra

P1 =
∧
i

(Ai ≥ 0) ∧ (A1 + ....+Am = 1)

P2 = (PC = 1 · A1 + 2 ·A2 + · · ·+m ·Am)

Then P1 ∧ P2 ∧ (PC = k)→ (Ak = 1) and P1 ∧ P2 ∧ PC �= k → (Ak = 0).

Proof. It is easy to see that the only integer points in P1 are such that for a
single k, Ak = 1, while for all j �= k, Aj = 0. Then, P2 forces PC to equal k.
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4.3 Encoding Fk with Integer Linear Constraints

Now we discuss the difficulty of encoding the flag Fk using linear constraints. The
following lemma states that such encoding is not possible when using rational
coefficients.

Lemma 6. Given non-negative integer variables X and F , it is not possible to
define a system of integer linear constraints Ψ (with rational coefficients) over
X, F , and possibly other integer variables, such that Ψ ∧ (X = 0) → (F = 0)
and Ψ ∧ (X > 0)→ (F = 1).

Proof. The proof relies on a theorem in [20] which states that the following
piecewise linear function

f(x) =

{
0 x = 0
1 x > 0,

where x is a non-negative real variable, cannot be defined as a minimization
mixed integer programming (MIP for short) problem with rational coefficients
only. More precisely, it is not possible to define f(x) as

f(x) = minimize g w.r.t. Ψ

where Ψ is a system of linear constraints with rational coefficients over x and
other integer and real variables, and g is a linear function over vars(Ψ). Now
suppose that Lemma 6 is false, i.e., there exists Ψ such that Ψ ∧ (X = 0) →
(F = 0) and Ψ ∧ (X > 0)→ (F = 1), then the following MIP problem

f(x) = minimize F w.r.t. Ψ ∧ (x ≤ X)

defines the function f(x), which contradicts [20].

4.4 An Undecidable Extension of ILC Loops

There are certain extensions of the ILC model that allow our reduction to be
carried out. Basically, the extension should allow for encoding the flag Fk. The
extension which we find most interesting allows the use of a single, arbitrary
irrational number r (thus, we do not require the specific value of r to represent
any particular information). Thus, the coefficients are now over Z ∪ {r}. The
variables still hold integers.

Lemma 7. Let r be an arbitrary positive irrational number, and let

Ψ1 = (0 ≤ Fk ≤ 1) ∧ (Fk ≤ X)
Ψ2 = (rX ≤ B) ∧ (rY ≤ A) ∧ (−Y ≤ X) ∧ (A+B ≤ Fk)

then (Ψ1 ∧ Ψ2 ∧X = 0)→ Fk = 0 and (Ψ1 ∧ Ψ2 ∧X > 0)→ Fk = 1.
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Proof. The constraints Ψ1 force Fk to be 0 when X is 0, and when X is positive
Fk can be either 0 or 1. The role of Ψ2 is to eliminate the non-determinism for the
case X > 0, namely, for X > 0 it forces Fk to be 1. The property that makes Ψ2

work is that for a given non-integer number d, the condition −A ≤ d ≤ B implies
A + B ≥ 1, whereas for d = 0 the sum may be zero. The role of the irrational
coefficient is to translate any integer value X , except 0, to a non-integer number:
d = rX (similarly also for Y and rY ). The variable Y is introduced to avoid
using another irrational coefficient −r.

Example 3. Let us consider r =
√
2 in lemma 7. When X = 0, Ψ1 forces Fk to

be 0, and it is easy to verify that Ψ2 is satisfiable for X = Y = A = B = Fk = 0.
Now, for the positive case, let for example X = 5, then Ψ1 limits Fk to the values
0 or 1, and Ψ2 implies (

√
2 ·5 ≤ B)∧ (−

√
2 ·5 ≤ A) since Y ≥ −5. The minimum

values that A and B can take are respectively −7 and 8, thus it is not possible
to choose A and B such that A + B ≤ 0. This eliminates Fk = 0 as a solution.
However, for these minimum values we have A + B = 1 and thus A + B ≤ Fk

satisfiable for Fk = 1.

Theorem 4. The termination of ILC loops where the coefficients are from Z∪
{r}, for a single arbitrary irrational constant r, is undecidable.

We have mentioned, above, Meyer’s result that MIP problems with rational
coefficients cannot represent the step function over reals. Interestingly, he also
shows that it is possible using an irrational constant, in a manner similar to
our Lemma 7. Our technique construction differs in that we do not make use of
minimization or maximization to define the function.

5 Simulation of Petri Nets

Let us consider a counter machine as defined in Section 2, but with a weak
conditional statement “if Xj < a then k1 else k2” (where a is a positive integer)
which is interpreted as: if Xj is smaller than a then the execution must continue
at label k1, otherwise it may continue to label k1 or label k2. This computational
model is equivalent to a Petri net. From considerations as those presented in
Section 4, we arrived at the conclusion that the weak conditional, and therefore
Petri nets, can be simulated by an ILC loop.

A (place/transition) Petri net [23] is composed of a set of counters X1, . . . , Xn

(known as places) and a set of transitions t1, . . . , tm. A transition is essentially
a command to increment or decrement some places. This may be represented
formally by associating with transition t its set of decremented places •t and
its set of incremented places t•. A transition is said to be enabled if all its
decremented places are non-zero, and it can then be fired, causing the decrements
and increments associated with it to take place. Starting from an initial marking
(values for the places), the state of the net evaluates by repeatedly firing one of
the enabled transitions.
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Lemma 8. Given a Petri net P with initial marking M , a simulating ILC loop
with an initial condition ΨM can be constructed in polynomial time. In particu-
lar, the termination of the loop from an initial state in ΨM is equivalent to the
termination of P starting from M .

How this is done: The ILC loop will have variables X1, . . . , Xn that represent
the counters in a straight-forward way, and flags A1, . . . , Am that represent the
choice of the next transition much as we did for counter programs (except that
there is no PC variable). For each 1 ≤ i ≤ n we create the following constraints
in the body of the loop:

P1 =
∧
k

(A′
k ≥ 0) ∧ (A′

1 + ....+A′
m = 1)

Ψi =
∧
i

(Xi ≥
∑

k:i∈•tk

A′
k)

Φi = (X ′
i = Xi −

∑
k:i∈•tk

A′
k +

∑
k:i∈tk•

A′
k)

The loop guard is X1 ≥ 0∧· · ·∧Xn ≥ 0. The initial state ΨM simply forces each
Xi to have the value as stated by the initial marking M . Note that the initial
values of Ai are not important since they are not used (we only use A′

k). As
before, the constraint P1 ensures that one and only one of the A′

k will equal 1 at
every iteration. The constraints Ψi ensure that A′

k may receive the value 1 only
if transition k is enabled in the state. The constraints Φi (the update) clearly
simulate the chosen transition.

The importance of this result is that complexity results for Petri net are
lower bounds on the complexity of the corresponding problems in the context
of ILC loops, and in particular, from a known results about the termination
problem [14,17], we obtain the following.

Theorem 5. The halting problem for ILC loops, for a given input, is at least
EXPSPACE-hard.

Note that the reduction does not provide useful information on universal termi-
nation of ILC loops, since for Petri net it is PTIME-decidable [13].

6 Related Work

Termination of integer loops has received considerable attention recently, both
from theoretical (e.g., decidability, complexity), and practical (e.g, developing
tools) perspectives. Research has considered: straight-line while loops, and loops
in a constraint setting possibly with multiple-paths.

For straight-line while loops, the most remarkable results are those of Ti-
wari [26] and Braverman [10]. Tiwari proved that the problem is decidable for
linear deterministic updates when the domain of the variables is R. Braverman
proved that this holds also for Q, and for the homogeneous case it holds for Z
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(see discussion in Section 1). Both have considered universal termination, the
termination for a given input left open.

Decidability and complexity of termination of single and multiple-path inte-
ger linear constraints loops has been intensively studied for different classes of
constraints. Lee et al. [16] proved that termination of a multiple-path ILC loop,
when the constraints are restricted to size-change constraints (i.e., constraints
of the form Xi > X ′

j or Xi ≥ X ′
j over N), is PSPACE-complete [16]. Later,

Lee and Ben-Amram [6] identified sub-classes of such loops for which the ter-
mination can be decided in polynomial time. Ben-Amram [4] showed how to
extend and adapt some theory from the domain of size-change constraints to
general monotonicity constraints (i.e., constraints of the form Xi > Y , Xi ≥ Y ,
where Y can be primed or unprimed variable), he proved that termination for
such loops is PSPACE-complete. It is important to note that his results hold
for any well-founded domain, not necessarily N. In [5], Ben-Amram considered
loops with monotonicity constraints over Z, and prove that the termination
problem is PSPACE-complete. Recently, Bozzelli and Pinchinat [8] proved that
it is still PSPACE-complete also for gap-constraints, i.e., constraints of the form
X−Y ≥ c where c ∈ N. Ben-Amram [3] proved that when extending size-change
constraints with integer constants, i.e., allowing difference constraints of the form
Xi−X ′

j ≥ c where c ∈ Z, the termination problem become undecidable. However
for a subclass in which each source (i.e., unprimed) variable might be used only
once (in each path) the problem is PSPACE-complete.

All the above work concerns multiple-path loops. Petri nets and various ex-
tensions, such as Reset and Transfers nets, can also be seen as multiple-path
constraint loops. The termination of Petri net and several extensions is known
to be decidable [13,14,17].

Back to single-path loops, a topic that received much attention is the syn-
thesis of ranking functions for such loops, as a means of proving termination.
Sohn and Van Gelder [24] proposed a method for the synthesis of linear ranking
functions for ILC loops over N. Later, their method was extended by Mesnard
and Serebrenik [19] to Z and to multiple-path loops. Both rely on the duality
theorem of linear programming. Podelski and Rybalchenko [22] also proposed a
method for synthesizing linear ranking function for ILC loops. Their method is
based on Farkas’ lemma. It is important to note that [19,22] are complete when
the variables range over R or Q, but not Z. Recently, Bagnara et al. [2] proved
that [19,22] are actually equivalent, in the sense that they compute the same
set of ranking functions, and that the method of Podelski and Rybalchenko has
better worst-case complexity. Bradley et al. [9] presented an algorithm for com-
puting linear ranking functions for straight-line integer while loops with integer
division.

Piecewise affine functions have been long used to describe the step of a dis-
crete time dynamical system. Blondel el al. [7] considered systems of the form
x(t + 1) = f(x(t)) where f is a piecewise affine function over Rn (defined by
rational coefficients). They show that some problems are undecidable for n ≥ 2,
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in particular, whether all trajectories go through 0 (the moartality problem).
This can be seen as termination of the loop while x �= 0 do x := f(x).

7 Conclusion

Motivated by the increasing interest in the termination of integer loops, in this
research, we have studied the hardness of terminations proofs for several variants
of such loops. In particular, we have considered straight-line while loops, and
integer linear constraints loops. The later are very common in the context of
program analysis.

For straight-line while loops, we proved that if the underlying instructions
set allows the implementation of a simple piecewise linear function, namely the
step function, then the termination problem is undecidable. For integer linear
constraints loops, we have showed that allowing the constraints to include a
single arbitrary irrational number makes the termination problem undecidable.
For the case of integer constraints loops with rational coefficients only, which
is very common in program analysis, we could simulate a Petri net. This result
provide interesting lower bound on the complexity of the termination, and other
related problems, of ILC loops.

We have recently obtained additional results using techniques similar to those
described in this paper. Specifically, we have shown an EXPSPACE lower bound,
as in Section 5, that holds for ILC loops with a deterministic update. We have
also shown undecidability for a while loop having the body of the following form

if (x > 0) then (one deterministic update) else (another update)

and the guard as in IPL loops, where the updates are linear (and do not involve
the step function).

We hope that our results shed some light on the termination problem of simple
integer loops and perhaps will inspire further progress on the open problems.
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Abstract. We investigate verification problems for gap-order constraint systems
(GCS), an (infinitely-branching) abstract model of counter machines, in which
constraints (over Z) between the variables of the source state and the target state
of a transition are gap-order constraints (GC) [27]. GCS extend monotonicity
constraint systems [5], integral relation automata [12], and constraint automata in
[15]. First, we show that checking the existence of infinite runs in GCS satisfying
acceptance conditions à la Büchi (fairness problem) is decidable and PSPACE-
complete. Next, we consider a constrained branching-time logic, GCCTL∗, ob-
tained by enriching CTL∗ with GC, thus enabling expressive properties and
subsuming the setting of [12]. We establish that, while model-checking GCS
against the universal fragment of GCCTL∗ is undecidable, model-checking against
the existential fragment, and satisfiability of both the universal and existential frag-
ments are instead decidable and PSPACE-complete (note that the two fragments
are not dual since GC are not closed under negation). Moreover, our results imply
PSPACE-completeness of the verification problems investigated and shown to be
decidable in [12], but for which no elementary upper bounds are known.

1 Introduction

Abstractions of Counter systems. Counter systems are a widely investigated complete
computational model, used for instance to model broadcast protocols [19] and programs
with pointer variables [7]. Though simple problems like reachability are already unde-
cidable for 2-counter Minsky machines [24], interesting abstractions of counter systems
have been studied, for which interesting classes of verification problems have been
shown to be decidable. Many of these abstractions are in fact restrictions: examples
include Petri nets [25], reversal-bounded counter machines [21], and flat counter sys-
tems [6,13]. Genuine abstractions are obtained by approximating counting operations
by non-functional fragments of Presburger constraints between the variables of the cur-
rent state and the variables of the next state. Examples include the class of Monotonicity
Constraint Systems (MCS) [5] and its variants, like constraint automata in [15], and in-
tegral relation automata (IRA) [12], for which the (monotonicity) constraints (MC) are
boolean combinations of inequalities of the form u < v or u ≤ v, where u and v range
over variables or integer constants. MCS and their subclasses (namely, size-change
systems) have found important applications for automated termination proofs of func-
tional programs (see e.g. [5]). Richer classes of non-functional fragments of Presburger
constraints have been investigated, e.g. difference bound constraints [14], and their ex-
tension, namely octagon relations [9], where it is shown that the transitive closure of a
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single constraint is Presburger definable (these results are useful for the verification of
safety properties of flat counter systems). Note that difference bound constraints over
(real-valued or integer-valued) variables (clocks) are also used as guards of transitions
in timed automata [3]. Size-change systems extended with difference bound constraints
over the natural number domain have been investigated in [4]: there, the atomic differ-
ence constraints are of the form x−y′ ≥ c, where c is an integer constant, and y′ (resp.,
x) range over the variables of the target (resp., source) state. Termination for this class
of systems is shown to be undecidable. To regain decidability, the authors consider a
restriction, where at most one bound per target variable in each transition is allowed.

Temporal logics with Presburger constraints. An important classification of temporal
logics is based on the underlying nature of time. In the linear-time setting , formulas are
interpreted over linear sequences (corresponding to single computations of the system),
and temporal operators are provided for describing the ordering of events along a single
computation path. In the branching-time setting, formulas are instead interpreted over
computation trees, which describe all the possible computations of the system from a
designated initial state. Branching-time temporal logics are in general more expressive
than linear-time temporal logics since they provide both temporal operators for describ-
ing properties of a path in the computation tree, and path quantifiers for describing the
branching structure in computation trees.

In order to specify behavioral properties of counter systems, standard propositional
linear-time temporal logics (like LTL) and propositional branching-time temporal log-
ics (like CTL∗) can be extended by replacing atomic propositions with Presburger con-
straints, which usually refer to the values of the (counter) variables at two consecutive
states along a computation path (run). These enriched temporal logics allow to specify
properties of counter systems that go beyond simple reachability. Hence, basic deci-
sion problems are generally undecidable. However, decidability has been established
for various interesting fragments. We focus on fragments where the constraint language
includes MC. For the linear-time setting, many decidable fragments of full Presburger
LTL have been obtained either by restricting the underlying constraint language, see
e.g. [15,17], or by restricting the logical language, see e.g. [8,13]. In particular, satisfi-
ability and model checking (w.r.t. constraint automata) of standard LTL extended with
MC are decidable and PSPACE-complete [15] (which matches the complexity of LTL).
For the branching-time setting, to the best of our knowledge, very few decidability re-
sults are known. The extension of standard CTL∗ with MC, here denoted by MCCTL∗,
has been introduced in [12], where it is shown that model checking IRA against its
existential and universal fragments, E–MCCTL∗ and A–MCCTL∗, is decidable (by
contrast, model checking for full MCCTL∗ is undecidable, even for its CTL-like frag-
ment1). As done in [17], adding periodicity constraints and the ability for a fixed k ≥ 1,
to compare the variable values at states of a run at distance at most k, decidability of
the above problems is preserved [10]. However, no elementary upper bounds for these
problems are known [12,10]. Moreover, it is shown in [16] that model checking a sub-
class of flat counter machines w.r.t. full Presburger CTL∗ is decidable. In this subclass
of systems, counting acceleration over every cycle in the control graph is Presburger
definable. Thus, since the relation between the variables at the current and next state

1 Quantification over variables can be simulated by the path quantifiers of the logic.
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is functional and the control graph is flat, Presburger definability can be extended in a
natural way to the set of states satisfying a given formula.

Our contribution. We investigate verification problems for an (infinitely-branching)
abstract model of counter machines, we call gap-order constraint systems (GCS), in
which constraints (over Z) between the variables of the source state and the target state
of a transition are (transitional) gap-order constraints (GC) [27]. These constraints are
positive boolean combinations of inequalities of the form u − v ≥ k, where u, v range
over variables and integer constants and k is a natural number. Thus, GC can express
simple relations on variables such as lower and upper bounds on the values of individual
variables; and equality, and gaps (minimal differences) between values of pairs of vari-
ables. GC have been introduced in the field of constraint query languages (constraint
Datalog) for deductive databases [27], and also have found applications in the analysis
of safety properties for parameterized systems [1,2] and for determining state invariants
in counter systems [20]. As pointed out in [2], using GC for expressing the enabling
conditions of transitions allow to handle a large class of protocols, where the behavior
depends on the relative ordering of values among variables, rather than the actual values
of these variables.

GCS strictly extend IRA (and its variants, namely, MCS and the constraint automata
in [15]). This because GC extend MC and, differently from MC, are closed under ex-
istential quantification (but not under negation).2 Moreover, the parameterized systems
investigated in [1,2] correspond to the parameterized version of GCS, where a system
consists of an arbitrary number of processes which are instances of the same GCS (ad-
ditionally, transitions of a process can specify global conditions which check the current
local states and variables of all, or some of, other active processes). This framework is
useful to verify correctness regardless of the number of processes. However, basic deci-
sion problems like reachability for the parameterized version of GCS are undecidable
[1,2]. Decidability of reachability can be regained for a restricted class of parameterized
systems in which processes have at most one integer local variable [1,2].

Note that if we extend the constraint language of GCS by allowing either negation, or
constraints of the form u− v ≥ −k, with k ∈ N, then the resulting class of systems can
trivially emulate Minsky counter machines, leading to undecidable basic decision prob-
lems. Moreover, note that GC extended with constraints of the form u− v ≥ −k, with
k ∈ N, correspond to standard diagonal bound constraints [3,14]. As mentioned above,
these constraints are used as guards in timed automata [3], where (integer-valued or real-
valued) variables (clocks) record the elapsed time among events. However, guards in
timed automata express constraints only over the clocks of the source state, and clocks
are synchronized, i.e., they always advance at same speed. Hence, timed automata with
integer-valued clocks and GCS are incomparable formalisms.

Our results are as follows. First, we investigate the fairness problem for GCS (which
is crucial for the verification of liveness properties), that is checking the existence of in-
finite runs satisfying acceptance conditions à la Büchi. We show that this problem is
decidable and PSPACE-complete; moreover, for the given GCS, one can compute a GC
representation of the set of states from which there is a ‘fair’ infinite run. Next, we

2 Hence, GC are closed under composition which captures the reachability relation in GCS for
a fixed path in the control graph.
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address verification problems of GCS against a strict extension, denoted by GCCTL∗,
of the logic MCCTL∗ (given in complete positive normal form) [12] obtained by adding
transitional GC (we also allow existential quantification over variables in the underlying
constraint language). Note that while MCCTL∗ is closed under negation, its strict exten-
sion GCCTL∗ is not (if we allow negation, the resulting logic would be undecidable also
for small fragments). We show that while model-checking GCS against the universal
fragment A–GCCTL∗ of GCCTL∗ is undecidable, model checking GCS against the
existential fragment E–GCCTL∗ of GCCTL∗, and satisfiability of both A–GCCTL∗

and E–GCCTL∗ are instead decidable and PSPACE-complete (which matches the com-
plexity of model checking and satisfiability for the existential and universal fragments
of standard CTL∗ [23]). Note that E–GCCTL∗ and A–GCCTL∗ are not dual. More-
over, for a given GCS S and E–GCCTL∗ formula ϕ, the set of states in S satisfying ϕ
is effectively GC representable.

Since E–GCCTL∗ subsumes E–MCCTL∗, and E–MCCTL∗ and A–MCCTL∗ are
dual, our results imply PSPACE-completeness for model-checking (w.r.t. IRA or GCS)
of both E–MCCTL∗ and A–MCCTL∗. Hence, in particular, we solve complexity issues
left open in [12] (see also [10]). Due to space reasons, many proofs are omitted and can
be found in [11].

2 Preliminaries

Let Z (resp., N) be the set of integers (resp., natural numbers). We fix a finite set Var =
{x1, . . . , xr} of variables, a finite set of constants Const ⊆ Z such that 0 ∈ Const, and
a fresh copy of Var, Var′ = {x′1, . . . , x′r}. For an arbitrary finite set of variables V , an
(integer) valuation over V is a mapping of the form ν : V → Z, assigning to each
variable in V an integer value. For V ′ ⊆ V , νV ′ denotes the restriction of ν to V ′. For
a valuation ν, by convention, we define ν(c) = c for all c ∈ Z.

Definition 1. [27] A gap-order constraint (GC) over V and Const is a conjunction ξ
of inequalities of the form u− v ≥ k, where u, v ∈ V ∪ Const and k ∈ N. W.l.o.g. we
assume that for all u, v ∈ V ∪ Const, there is at most one conjunct in ξ of the form
u− v ≥ k for some k. A valuation ν : V → Z satisfies ξ if for each conjunct u− v ≥ k
of ξ, ν(u)− ν(v) ≥ k. We denote by Sat(ξ) the set of such valuations.

Definition 2. [12] A (gap-order) monotonicity graph (MG) over V and Const is a di-

rected weighted graphG with set of vertices V ∪Const and edges u
k→v labeled by natu-

ral numbers k, and s.t.: if u
k→v and u

k′
→v are edges ofG, then k = k′. The set Sat(G) of

solutions ofG is the set of valuations ν over V s.t. for each u
k→v in G, ν(u)−ν(v) ≥ k.

GC and MG are equivalent formalisms since there is a trivial linear-time computable
bijection assigning to each GC ξ an MG G(ξ) such that Sat(G(ξ)) = Sat(ξ).3

The notation G |= u < v means that there is an edge in G from v to u with weight k >
0. Moreover,G |= u ≤ v means that there is an edge of G from v to u, and G |= u = v

3 MG are called Positive Graphose Inequality Systems in [12]. A different constraint graph
representation of GC can be found in [27].
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means G |= u ≤ v and G |= v ≤ u. Also, we write G |= u1 �1 . . .�n−1 un to mean
that G |= ui �i ui+1 for each 1 ≤ i < n, where �i ∈ {<,≤,=}. A transitional GC
(resp., transitional MG) is a GC (resp., MG) over Var ∪ Var′ and Const. For valuations
ν, ν′ : Var→ Z, we denote by ν ⊕ ν′ the valuation over Var ∪ Var′ defined as follows:
(ν ⊕ ν′)(xi) = ν(xi) and (ν ⊕ ν′)(x′i) = ν′(xi) for i = 1, . . . , r.

Definition 3. A gap-order constraint system (GCS) over Var and Const is a finite di-
rected labeled graph S such that each edge is labeled by a transitional GC. Q(S) de-
notes the set of vertices in S, called control points, and E(S) the set of edges.

For a finite path ℘ of a GCS S, s(℘) and t(℘) denote the source and target control
points of ℘. For a finite path ℘ and a path ℘′ such that t(℘) = s(℘′), the composition
of ℘ and ℘′, written ℘℘′, is defined as usual.

The semantics of a GCS S is given by an infinite directed graph [[S]] defined as:

– The vertices of [[S]], called states of S, are the pairs of the form (q, ν), where q is a
control point of S and ν : Var→ Z is a valuation over Var;

– There is an edge in [[S]] from (q, ν) to (q′, ν′) iff there is a (labeled) edge in S of

the form q
ξ→q′ such that ν ⊕ ν′ ∈ Sat(ξ). We say that the edge of [[S]] from (q, ν)

to (q′, ν′) is an instance of the edge q
ξ→q′ of S.

A path of [[S]] is called a run of S. The length |℘| (resp., |π|) of a path ℘ (resp., run π) of
S is defined in the standard way. A non-null path of S is a path of S of non-null length.

Let ℘ = q0
ξ0→q1

ξ1→q2, . . . be a path of S. A run π of S is an instance of ℘ if π is of the
form π = (q0, ν0)→(q1, ν1)→(q2, ν2), . . . and for each i, (qi, νi)→(qi+1, νi+1) is an

instance of qi
ξi→qi+1. Given F ⊆ Q(S), an infinite run (q0, ν0)→(q1, ν1)→. . . of S is

fair w.r.t F if for infinitely many i ≥ 0, qi ∈ F .

Example 1. The figure depicts a GCS S consisting of a unique control point q and
two self-loops. Note that there is no infinite run since along any run, the pair (x1, x2)
decreases strictly w.r.t. the lexicographic order (overN×N). On the other hand, one can
easily check that for each state (q, ν)
with ν(x1) > 0 and ν(x2) ≥ 0, the
set of the lengths of the runs from
(q, ν) is unbounded.

��

��
�q

S

x′
1 < x1∧

x1 ≥ 0 ∧ x2 ≥ 0

x′
1 = x1 ∧ x′

2 < x2∧
x1 ≥ 0 ∧ x2 ≥ 0

� �

Convention: since we use MG representations to manipulate GC, we assume that the
edge-labels in GCS are transitional MG.

2.1 Properties of Monotonicity Graphs

We recall some basic operations on MG [12] which can be computed in polynomial
time. Furthermore, we define a sound and complete (w.r.t. satisfiability) approximation
scheme of MG and show that the basic operations preserve soundness and completeness
of this approximation. A different approximation scheme for GC can be found in [27].

A MG G is satisfiable if Sat(G) �= ∅. LetG be a MG over V and Const. For V ′ ⊆ V ,
the restriction of G to V ′, written GV ′ , is the MG given by the subgraph of G whose
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set of vertices is V ′ ∪ Const. For all vertices u, v of G, we denote by pG(u, v) the least
upper bound (possibly ∞) of the weight sums on all paths in G from u to v (we set
pG(u, v) = −∞ if there is no such a path). The MG G is normalized iff: (1) for all

vertices u, v of G, if pG(u, v) > −∞, then pG(u, v) �=∞ and u
pG(u,v)−→ v is an edge of

G, and (2) for all constants c1, c2 ∈ Const, pG(c1, c2) ≤ c1 − c2.

Proposition 1. [12] Let G be a MG over V and Const. Then:

1. If G is normalized and V ′ ⊆ V , then G is satisfiable and every solution of GV ′ can
be extended to a whole solution of G.

2. G is satisfiable⇔G contains no loop with positive weight sum and for all c1, c2 ∈
Const, pG(c1, c2) ≤ c1 − c2 (this can be checked in polynomial time).

3. If G is satisfiable, then one can build in polynomial time an equivalent normalized
MG G (i.e., Sat(G) = Sat(G)), called the closure of G.

According to Proposition 1, for a satisfiable MG G, we denote by G the closure of
G. Moreover, for all unsatisfiable MG G over V and Const, we use a unique closure
corresponding to some MG Gnil over V and Const such that (Gnil)∅ is unsatisfiable
(recall that (Gnil)∅ denotes the MG given by the subgraph ofGnil whose set of vertices
is Const). Now, we recall some effective operations on MG. Let Var′′ = {x′′1 , . . . , x′′r}
be an additional copy of Var = {x1 . . . , xr}.

Definition 4. [12] Let G be a MG on V and Const and G′ be a MG on V ′ and Const.
1. Projection: if V ′ ⊆ V , the projection of G over V ′ is the MG given by (G )V ′ .
2. Intersection: the intersection G

⊗
G′ of G and G′ is the MG over V ∪ V ′ and

Const defined as: u
k→v is an edge of G

⊗
G′ iff either (1) u

k→v is an edge of
G (resp., G′) and there is no edge from u to v in G′ (resp., G), or (2) k =

max({k′, k′′}), u k′
→v is an edge of G and u

k′′
→v is an edge of G′.

3. Composition: assume that G and G′ are two transitional MG. Let G′′ be obtained
fromG′ by renaming any variable x′i into x′′i and xi into x′i. The compositionG•G′

of G and G′ is the transitional MG obtained from the projection of G
⊗

G′′ over
Var ∪ Var′′ by renaming any variable x′′i into x′i.

By Definition 4 and Proposition 1, we easily obtain the following known result [12],
which essentially asserts that MG (or, equivalently, GC) are closed under intersection
and existential quantification.

Proposition 2. Let G be a MG over V and Const and G′ be a MG over V ′ and Const.
1. Projection: if G′ is the projection of G over V ′, then for ν′ : V ′ → Z, ν′ ∈ Sat(G′)

iff ν′ = ν|V ′ for some ν ∈ Sat(G).
2. Intersection: for ν : V ∪ V ′ → Z, ν ∈ Sat(G

⊗
G′) iff ν|V ∈ Sat(G) and

ν|V ′ ∈ Sat(G′). Hence, for V = V ′, Sat(G
⊗

G′) = Sat(G) ∩ Sat(G′).
3. Composition: assume that G and G′ are transitional MG. Then, for all ν, ν′ :

Var → Z. ν ⊕ ν′ ∈ Sat(G • G′) iff ν ⊕ ν′′ ∈ Sat(G) and ν′′ ⊕ ν′ ∈ Sat(G′) for
some ν′′ : Var→ Z. Moreover, the composition operator • is associative.

Approximation scheme: let K stand for max({|c1− c2|+1 | c1, c2 ∈ Const}). Note
that K > 0. For each h ∈ N, let !h"K = h if h ≤ K , and !h"K = K otherwise.
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Definition 5 (K-bounded MG). A MG is K-bounded iff for each of its edges u
k→v,

k ≤ K . For a MG G over V and Const, !G"K denotes the K-bounded MG over V and

Const obtained from G by replacing each edge u
k→v of G with the edge u

�k�K→ v.

The proofs of the following propositions are in [11].

Proposition 3. Let G be a MG over V and Const. Then, G is satisfiable iff !G"K is
satisfiable. Moreover, !G"K = ! !G"K "K .

Proposition 4. For transitional MG G1 and G2, !G1 •G2"K = !!G1"K • !G2"K"K .

2.2 Results on the Reachability Relation in GCS

In this subsection, we give constructive results on the reachability relation in GCS.

Definition 6. A transitional MG G is said to be complete if:

– for all u, v ∈ Var∪Var′∪Const, G |= u ≤ v⇒G |= u� v for some � ∈ {<,=};
– for all u, v ∈ Var ∪ Const, either G |= u ≤ v or G |= v ≤ u;
– for all u, v ∈ Var′ ∪ Const, either G |= u ≤ v or G |= v ≤ u.

A GCS S is complete iff each MG in S is complete. Fix a complete GCS S. For a finite
path ℘ of S, the reachability relation w.r.t. ℘, denoted by �℘, is the binary relation on
the set of valuations over Var defined as: for all ν, ν′ : Var→ Z, ν �℘ ν′ iff there is a
run of S from (s(℘), ν) to (t(℘), ν′) which is an instance of the path℘. For a transitional
MGG,G characterizes the reachability relation �℘ iff Sat(G) = {ν⊕ν′ | ν �℘ ν′}.
We associate to each non-null finite path ℘ of S a transitional MG G℘ and a transitional
K-bounded MG Gbd

℘ , defined by induction on ℘ as follows:

– ℘ = q
G→q′: G℘ = G and Gbd

℘ = ! G "K ;

– ℘ = ℘′℘′′, |℘′| > 0, and ℘′′ = q
G→q′: G℘ = G℘′ •G and Gbd

℘ = !Gbd
℘′ •!G "K"K .

Note that the composition operator preserves completeness, and for a transitional MG
G, G is complete iff !G"K is complete. Thus, by a straightforward induction on the
length of the path ℘ and by using Propositions 2 and 4, we obtain the following.

Proposition 5. For a non-null finite path ℘ of S, G℘ = G℘, and G℘ is complete and
characterizes the reachability relation �℘. Moreover, Gbd

℘ = !G℘"K and is complete.

Let GKS = {(!G℘"K , s(℘), t(℘)) | ℘ is a non-null finite path and G℘ is satisfiable}.
Note that GKS is finite since the set of transitional K-bounded MG is finite. By Propo-
sition 5, GKS is exactly the set {(Gbd

℘ , s(℘), t(℘)) | ℘ is a non-null finite path and Gbd
℘

is satisfiable}. It follows that we can compute the set GKS by a simple transitive closure
procedure. In particular, we obtain the following result.

Theorem 1. For a complete GCS S, each G ∈ GKS is complete, and the size of GKS is
bounded byO(|Q(S)|2 ·(K+2)(2|Var|+|Const|)2). Moreover, the set GKS can be computed
in time O(|E(S)| · |Q(S)|2 · (K + 2)(2|Var|+|Const|)2).
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Proof. An upper bound on the cardinality of the finite set of K-bounded transitional
MG is (K+2)(2|Var|+|Const|)2 , as each transitionalK-bounded MG has at most (2|Var|+
|Const|) vertices and for all vertices u and v, there is at most one edge from u to v, and

this edge has the form u
k→v, where k = 0, 1, . . . ,K . It follows that the cardinality of

GKS is bounded by |Q(S)|2 · (K+2)(2|Var|+|Const|)2 . By Proposition 5, GKS is exactly the
set {(Gbd

℘ , s(℘), t(℘)) | ℘ is a non-null finite path and Gbd
℘ is satisfiable}. It follows that

we can compute the set GKS by the following transitive closure procedure: initialize a

set B to {(!G "K , q, q′) | q G→q′ is an edge of S and !G"K is satisfiable} and repeat the
following step until no more elements can be added to B (at this point B = GKS ): for

each (Gbd, q, q′) ∈ B and edge q′
G→q′′ of S include in B also !Gbd • !G"K"K , unless

it is unsatisfiable. Hence, the result follows. #$

By [12] (see also [10]), for a GCS S, the reflexive transitive closure of the transition
relation of [[S]] is effectively GC definable (a similar result can be found in [27], where
it is shown that for Datalog queries with GC, there is a closed form evaluation). The GC
representation can be computed by a fixpoint iteration whose termination is guaranteed
by a suitable decidable well-quasi ordering defined over the set of transitional MG.
By an insight in the proof given in [12] (see also [10]), and applying the K-bounded
approximation scheme, we easily obtain the following. For details, see [11]. Note that
we are not able to give an upper bound on the cardinality of the set PS .

Theorem 2. One can compute a finite set PS of non-null finite paths of S such that:
for each non-null finite path ℘′ of S from q to q′, there is a path ℘ ∈ PS from q to q′ so
that !G℘′"K = !G℘"K , and �℘′ implies �℘.

3 Checking Fairness

For a GCS S and a set F of control points of S, we denote by InfS,F the set of states
of S from which there is an infinite run that is fair w.r.t. F . In this section, we show that
the problem of checking for a given GCS S and set F ⊆ Q(S), whether InfS,F �= ∅
(fairness problem) is decidable and PSPACE-complete.

First, we give additional definitions. Let S be a GCS. We denote by !S"K the GCS

obtained from S by replacing each edge q
G→q′ of S with the edge q

�G�K→ q′.
A set U of states of S is MG representable if there is a family {Gq}q∈Q(S) of finite

sets of MG over Var and Const such that
⋃

G∈Gq
Sat(G) = {ν | (q, ν) ∈ U} for each

q ∈ Q(S). For a set G of MG, !G"K denotes the set of K-bounded MG given by
{!G"K | G ∈ G}. We extend the previous set operation to families of sets of MG in the
obvious way. For F ⊆ Q(S) and q ∈ Q(S), InfqS,F denotes the set of states in InfS,F

of the form (q, ν) for some valuation ν. Moreover, InfS stands for InfS,Q(S).

A MGG is weakly normalized if for all verticesu, v, pG(u, v) ≥ 0 (resp., pG(u, v) >
0) implies G |= v ≤ u (resp., G |= v < u). Note that G is weakly normalized iff !G"K
is weakly normalized. A transitional MG G is (weakly) idempotent iff !G • G"K =
!G"K .
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3.1 Checking Fairness for Simple GCS

In this section, we solve the fairness problem for a restricted class of GCS.

Definition 7 (Simple GCS). A (satisfiable) simple GCS is a GCS consisting of just

two edges of the form q0
G0→q and q

G→q such that q0 �= q. Moreover, we require that
G0 •G is satisfiable, and G is complete, weakly normalized, and idempotent.

To present our results on simple GCS, we need additional definitions.

Definition 8 (Lower and upper variables). We denote by MAX (resp., MIN) the max-
imum (resp., minimum) of Const. For a transitional MG G and y ∈ V ar ∪ V ar′, y is a
lower (resp., upper) variable of G if G |= y < MIN (resp., G |= MAX < y). Moreover,
y is a bounded variable of G if G |= MIN ≤ y and G |= y ≤ MAX.

Definition 9. A transitional MG is balanced iff for all u, v ∈ Var ∪ Const and � ∈
{<,=}, G |= u� v iff G |= u′ � v′ (where for u ∈ Var∪ Const, we write u′ to denote
the corresponding variable in Var′ if u ∈ Var, and u itself otherwise).

Fix a simple GCS S with edges q0
G0→q and q

G→q. Since G is idempotent, by the
associativity of composition • and Proposition 4, we obtain that for each k ≥ 1,
!G0 • G • . . . •G︸ ︷︷ ︸

k times

"K = !G0 • G"K . Hence, G0 • G • . . . •G︸ ︷︷ ︸
k times

and G • . . . •G︸ ︷︷ ︸
k times

are

satisfiable for each k ≥ 1. Since G is complete, it follows that G is balanced as well.
Moreover, sinceG is satisfiable and complete, a variable y ∈ Var∪Var′ is either a lower
variable, or an upper variable, or a bounded variable of G, where the “or” is exclusive.
We denote by L1, . . . , LN (resp., U1, . . . , UM ) the lower (resp., the upper) variables of
G in Var, and by B1, . . . , BH the bounded variables of G in Var. Hence, we can assume
that

G |= L1 �2 . . .�N LN < B1 �′
2 . . .�′

H BH < U1 �′′
2 . . .�′′

M UM

where �2 . . .�N ,�′
2 . . .�′

H ,�′′
2 . . .�′′

M ∈ {<,=}. Since G is balanced it follows
that the lower variables (resp., upper variables) of G in Var′ are L′

1, . . . , L′
N (resp.,

U′
1, . . . , U′

M ), and the bounded variables of G in Var′ are B′
1, . . . , B′

H . Moreover,

G |= L′
1 �2 . . .�N L′

N < B′
1 �′

2 . . .�′
H B′

H < U′
1 �′′

2 . . .�′′
M U′

M

Now, we define a polynomial-time checkable condition on simple GCS.

Definition 10 (termination condition). We say that G satisfies the termination condi-
tion iff one of the following holds:

lower variables: either G |= Li < L′
i for some 1 ≤ i ≤ N ,

or G |= Li = L′
i and G |= L′

j < Lj for some 1 ≤ i < j ≤ N .
upper variables: either G |= U′

i < Ui for some 1 ≤ i ≤M ,
or G |= Uj = U′

j and G |= Ui < U′
i for some 1 ≤ i < j ≤M .

Intuitively, the above condition asserts that either there is a lower (resp., upper) variable
of GVar whose value strictly increases (resp., decreases) along each run of S, or there
are two lower (resp., upper) variables of GVar such that their distance strictly decreases
along each run of S. Let T C be the class of simple GCS satisfying the termination
condition. By Definition 10, we easily obtain the following.
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Proposition 6. If S ∈ T C, then InfS = ∅.

It remains to consider the case when S /∈ T C. We define two integers L and U as
follows: L is the smallest 1 ≤ i ≤ N such that G |= Li = L′

i (if such an i does not
exist, we set L = N + 1). Finally, U is the greatest 1 ≤ i ≤M such that G |= Ui = U′

i

(if such an i does not exist, we set U = 0). Note that 1 ≤ L ≤ N +1 and 0 ≤ U ≤M .
The set of unconstrained variables in V ar, written Unc, consists of the lower variables
Li such that 1 ≤ i < L and the upper variables Uj such that U < j ≤ M . We denote
by Unc′ the corresponding subset in Var′. Evidently, the following holds.

Lemma 1. For a valuation ν0 : Var → Z, the set of valuations {ν(Var\Unc) | (q, ν) is
reachable from (q, ν0) in [[S]]} is finite.

The proof of the following lemma is in [11]. Essentially, the result follows from
Lemma 1 and the following property (which is a consequence of the idempotence of
G): if S /∈ T C, then G �|= U′

i ≤ Uj and G �|= Lh ≤ L′
k for all upper variables U′

i, Uj and
lower variables Lh, L′

k in Unc∪Unc′. In other terms, along a run of S, the unconstrained
upper (resp., lower) variables can increase (resp., decrease) arbitrarily.

Lemma 2. Let S /∈ T C. Then, (q, ν0) ∈ InfS iff there is a finite run π of S from (q, ν0)
of the form π = (q, ν0) . . . (q, ν) . . . (q, ν

′)(q, ν′′) such that ν′′(Var\Unc) = ν(Var\Unc).

Now, we can prove the main result of this subsection.

Theorem 3. Let S /∈ T C. Then, InfS is MG representable and one can construct a
MG representation of InfS , written σ(S), such that: (1) !σ(S)"K can be computed in
polynomial time, and (2) !σ(S)"K = !σ(!S"K)"K (!S"K is simple and !S"K /∈ T C).

Proof. By Theorem 2, one can compute a finite set P of non-null finite paths of S
from q to q such that for each non-null finite path ℘′ of S from q to q, there is a path
℘ ∈ P so that �℘′ implies �℘. Note that given ℘ ∈ P , the transitional MG G℘ (which
characterizes the reachability relation �℘) has the form G • . . . •G︸ ︷︷ ︸

k times

for some k ≥ 1.

Let G= be the transitional MG corresponding to the GC given by
∧

x∈Var\Unc x
′ = x,

and G = {G℘ • (G℘′
⊗

G=) | ℘, ℘′ ∈ P} ∪ {G℘

⊗
G= | ℘ ∈ P}. Then, σ(S) =

{Gq,Gq0}, where Gq and Gq0 are defined as follows:
Gq = {G′ | G′ is the projection of G′′ over Var for some G′′ ∈ G}
Gq0 = {G′ | G′ is the projection of G0 •G′′ over Var for some G′′ ∈ G}

Correctness of the construction easily follows from Lemma 2. The second part of the
theorem follows from Propositions 3–4, and the fact that for each ℘ ∈ P , !G℘"K =
!G"K (G is idempotent) and !G℘

⊗
G="K = !!G℘"K

⊗
!G="K"K . For details,

see [11]. #$

3.2 Checking Fairness for Unrestricted GCS

Fix a GCS S. For a non-null finite path ℘ of S such that s(℘) = t(℘) (i.e., ℘ is cyclic),
(℘)ω denotes the infinite path ℘℘ . . .. A infinite path ℘ of S of the form ℘ = ℘′(℘′′)ω

is said to be ultimately periodic. By using Theorem 2 and Ramsey’s Theorem (in its
infinite version) [26], we show the following result.
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Theorem 4 (Characterization Theorem). Let S be a complete GCS, F ⊆ Q(S), and
PS be the finite set of non-null finite paths of S satisfying Theorem 2. Then, for each
state s, s ∈ InfS,F iff there is an infinite run of S starting from s which is an instance
of an ultimately periodic path ℘0 · (℘)ω such that ℘0, ℘ ∈ PS , s(℘) ∈ F , G℘0 •G℘ is
satisfiable, G℘ is idempotent, and G℘0 and G℘ are complete and normalized.

Proof. The left implication ⇐ is obvious. For the right implication ⇒, assume that
s ∈ InfS,F . Then, there is an infinite run π of S starting from s which visits infinitely
often states whose control points are in F . Moreover, there is an infinite path ℘∞ of S
such that π is an instance of ℘∞.

Let us consider the finite set PS of non-null finite paths of S satisfying the statement
of Theorem 2. For each ℘ ∈ PS from q to q′, we denote by [℘] the set of non-null finite
paths ℘′ of S from q to q′ such that �℘′ implies �℘, and !G℘′"K = !G℘"K . Let H
be the finite set given by H = {[℘] | ℘ ∈ PS}. For each non-null finite path ℘′ of S,
we associate to ℘′ a color given by some element [℘] ∈ H such that ℘′ ∈ [℘] (note that
such an element of H must exist). Let us consider the infinite path ℘∞. Then, there is
a control point q ∈ F such that ℘∞ is of the form ℘∞ = ℘0℘1℘2 . . ., where for each
i ≥ 1, ℘i is a non-null (cyclic) path from q to q. Let us consider the set of positive
natural numbers, and label each pair (i, j) of its elements with i < j with the color of
the subpath ℘i . . . ℘j of ℘∞. By Ramsey’s Theorem (in its infinite version)[26], there
is an infinite set I of positive natural numbers such that all the pairs (i, j) with i, j ∈ I
(and i < j) carry the same label in H , say [℘]. It follows that ℘∞ can be written
in the form ℘∞ = ℘′

0℘
′
1℘

′
2 . . . such that |℘′

0| > 0 and for all i ≥ 1, ℘′
i ∈ [℘] and

℘′
i℘

′
i+1 ∈ [℘]. Hence, in particular, !G℘′

i
"K = !G℘"K and !G℘′

i℘
′
i+1
"K = !G℘"K . By

Proposition 4 and associativity of •, we obtain that !G℘"K = !G℘ •G℘"K . Hence, G℘

is idempotent.
Let ℘′′

0 ∈ PS such that ℘′
0 ∈ [℘′′

0 ]. Since π is an instance of ℘∞ = ℘′
0℘

′
1 . . ., and

℘′
i ∈ [℘] for each i ≥ 1, it follows that there is an infinite run π′ starting from s

which is an instance of the ultimately periodic path ℘′′
0(℘)

ω . Moreover, s(℘) = q ∈ F ,
℘′′
0 , ℘ ∈ PS , G℘′′

0
·G℘ is satisfiable, G℘ is idempotent, and by Proposition 5, G℘′′

0
and

G℘ are complete and normalized, which concludes. #$

Theorem 5. Let S be a GCS and F ⊆ Q(S). Then, InfS,F is MG representable and
one can construct a MG representation of InfS,F , written σF (S), such that:

1. !σF (S)"K can be computed in time O(|E(S)| · |Q(S)|2 · (K + 2)(2|Var|+|Const|)2);
2. !σF (S)"K = !σF (!S"K)"K;
3. given q ∈ Q(S) and a K-bounded MG G over Var, checking whether G is in the

q-component of !σF (S)"K can be done in polynomial space.

Sketched proof. (A detailed proof is in [11]). We assume that S is complete (the general
case easily follows). Let PS be the computable finite set of non-null finite paths of
S satisfying the statement of Theorem 2, and let FS be the finite set of simple GCS
constructed as: S ′ ∈ FS iff S ′ �∈ T C and S ′ is a simple GCS consisting of two edges

of the form (�, s(℘0))
G℘0→ t(℘0) and s(℘)

G℘→t(℘) such that ℘0, ℘ ∈ PS and s(℘) =
t(℘) ∈ F . By Theorem 3, for each S ′ ∈ FS one can compute a MG representation

GS′,in(S′) (resp., G�S′�K ,in(S′)) of Inf (�,in(S′))
S′ (resp., Inf (�,in(S′))

�S′�K ), where (�, in(S ′))



Verification of Gap-Order Constraint Abstractions of Counter Systems 99

is the initial control point of S ′. Moreover, !GS′,in(S′)"K = !G�S′�K ,in(S′)"K . Then,
σF (S) is given by

σF (S) = {
⋃

{S′∈FS |in(S′)=q}
GS′,in(S′)}q∈Q(S).

By Theorems 2 and 4, and Proposition 6, σF (S) is a MG representation of InfS,F . Thus,
the first part of the theorem holds. Now, let us consider Properties 1–3. Here, we focus
on Property 1. Let FS,K be the set of simple GCS S ′ such that S ′ = !S ′′"K for some
S ′′ ∈ FS . Since !GS′,in(S′)"K = !G�S′�K ,in(S′)"K for each S ′ ∈ FS , we obtain

!σF (S)"K = {
⋃

{S′∈FS,K |in(S′)=q}
!GS′,in(S′)"K}q∈Q(S)

Since for each S ′ ∈ FS,K , !GS′,in(S′)"K can be computed in polynomial time in
the size of S ′ (Theorem 3), it suffices to show that FS,K can be computed in time
O(|E(S)| · |Q(S)|2 · (K + 2)(2|Var|+|Const|)2). This last condition holds since: (i) for
a GCS S ′, S ′ is simple iff !S ′"K is simple, (ii) for a simple GCS S ′′, S ′′ /∈ T C iff
!S ′′"K /∈ T C, (iii) by Theorem 2, the set {(!G℘"K , s(℘), t(℘)) | ℘ ∈ PS and !G℘"K
is satisfiable} coincides with the set GKS = {(!G℘"K , s(℘), t(℘)) | ℘ is a non-null finite
path of S and !G℘"K is satisfiable}, and (iv) by Theorem 1, the set GKS is computable
in time O(|E(S)| · |Q(S)|2 · (K + 2)(2|Var|+|Const|)2). Thus, Property 1 holds. #$

Corollary 1. The fairness problem is PSPACE-complete.

Proof. The upper bound easily follows from Property 3 in Theorem 5, and the fact
that for each set G of MG, G contains a satisfiable MG iff !G"K contains a satisfiable
MG. Moreover, PSPACE-hardness follows from PSPACE-hardness of non-termination
for Boolean Programs [22] and the fact that GCS subsume Boolean Programs. #$

4 The Constrained Branching–Time Temporal Logic (GCCTL∗)

We introduce the constrained branching–time temporal logic (GCCTL∗) and investi-
gate the related satisfiability and model checking problems. The logic GCCTL∗ is an
extension of standard logic CTL∗ [18], where the set of atomic propositions is replaced
with a subclass of Presburger constraints whose atomic formulas correspond to transi-
tional GC. Formally, for a set of variables V and a set of constants Const, the language
of constraints η, denoted by ∃GC, over V and Const is defined as follows:

η := u− v ≥ k | η ∨ η | η ∧ η | ∃x. η
where u, v ∈ V ∪ Const, k ∈ N, and x ∈ V . For a ∃GC constraint η and a valuation
ν : V → Z over V , the satisfaction relation v |= η is defined as follows (we omit the
standard clauses for conjunction and disjunction):

– ν |= u− v ≥ k
def⇔ ν(u)− ν(v) ≥ k;

– ν |= ∃x. η def⇔ there is c ∈ Z such that ν[x← c] |= η.
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where ν[x ← c](y) = ν(y) if y �= x, and ν[x ← c](y) = c otherwise. Note that ∃GC
constraints are not closed under negation. Moreover, by Proposition 1(3) and Proposi-
tion 2(1) (see also [27]), GC are closed under existential quantification and quantifica-
tion elimination can be done in polynomial time.

Syntax and semantics of GCCTL∗: for the fixed set of variables Var and set of con-
stants Const, the state formulas ϕ and path formulas ψ of GCCTL∗ are defined as:

ϕ := � | ϕ ∨ ϕ | ϕ ∧ ϕ | A ϕ | E ϕ
ψ := ϕ | η | ψ ∨ ψ | ψ ∧ ψ | Oψ | �ψ | ψUψ

where � denotes “true”, E (“for some path”) and A (“for all paths”) are path quanti-
fiers, η is a ∃GC constraint over Var∪ Var’ and Const, and O (“next”), U (“until”), and
� (“always”) are the usual linear temporal operators. Since ∃GC constraints are not
closed under negation, the logic is not closed under negation as well.4 The set of state
formulasϕ forms the language GCCTL∗. We also consider the existential and universal
fragments E–GCCTL∗ and A–GCCTL∗ of GCCTL∗, obtained by disallowing the uni-
versal and existential path quantifiers, respectively. GCCTL∗ formulas are interpreted
over directed graphs G = 〈S,→, μ〉 augmented with a mapping μ assigning to each ver-
tex (or state) a valuation over Var. For an infinite path π = s0, s1, . . . of G, we denote
the suffix si, si+1, . . . of π by πi, and the i-th state of π by π(i). Let s ∈ S and π be a
infinite path of G. For a state (resp., path) formula ϕ (resp. ψ), the satisfaction relation
(G, s) |= ϕ (resp., (G, π) |= ψ), meaning that ϕ (resp., ψ) holds at state s (resp., holds
along π) in G, is defined as (we omit the clauses for conjunction and disjunction):

– (G, s) |= A ψ
def⇔ for each infinite path π from s, (G, π) |= ψ;

– (G, s) |= E ψ
def⇔ there exists an infinite path π from s such that (G, π) |= ψ;

– (G, π) |= ϕ
def⇔ (G, π(0)) |= ϕ;

– (G, π) |= η
def⇔ μ(π(0))⊕ μ(π(1)) |= η;

– (G, π) |= Oψ
def⇔ (G, π1) |= ψ;

– (G, π) |= �ψ def⇔ for all i ≥ 0, (G, πi) |= ψ;
– (G, π) |= ψ1Uψ2

def⇔ there is i ≥ 0. (G, πi) |= ψ2 and for all j < i. (G, πj) |= ψ1.

Note that the dual until operator Ũ can be expressed in the logic since: ψ1Ũψ2 ≡ �ψ2∨(
ψ2U(ψ1 ∧ ψ2)

)
. A GCCTL∗ formula ξ is satisfiable if (G, s) |= ϕ for some labeled

graph G and G-state s. The model checking problem of GCS against GCCTL∗ is check-
ing for a given GCS S, state s of S, and GCCTL∗ formula ϕ, whether (G(S), s) |= ϕ,
where G(S) is obtained from [[S]] by adding the mapping which assigns to each state of
S the associated valuation over Var. We denote by [[ϕ]]S the set of states s of S such
that (G(S), s) |= ϕ.

Example 2. Let us consider the requirement: “there is an infinite run from the given
state such that variables x and y behave like clocks with rates at least k and k′, respec-
tively”. This can be expressed by the E–GCCTL∗ formula

E�[((x′ = 0) ∨ (x′ − x) ≥ k) ∧ ((y′ = 0) ∨ (y′ − y) ≥ k′)

4 If we allow negation, then the successor relation is definable and by [17], basic decision prob-
lems become undecidable.
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We can also use our framework to solve verification of non-local constraints (between
variables at states arbitrarily far away from each other), which are not directly express-
ible in GCCTL∗. As a relevant example, we consider unboundedness requirements on
the values of a given variable along an infinite run. For each x ∈ Var, let us denote by
ξx a special atomic formula (unboundedness constraint) that hold along an infinite run
π iff the set of x-values along π is unbounded. Let E–GCCTL∗

Unb be the extension of
E–GCCTL∗ with these constraints. By the following result (whose proof is in [11]), it
follows that model checking GCS against E–GCCTL∗

Unb can be reduced in polynomial
time to model checking GCS against E–GCCTL∗.

Theorem 6. Let S be a GCS over Var and ϕ be a E–GCCTL∗
Unb formula over Var.

Then, one can construct in polynomial-time an extension Varext of Var, a GCS Sext
over Varext, and a E–GCCTL∗ formula f(ϕ) over Varext such that: for each state s of
S, one can compute in linear-time a state sext of Sext so that

(G(S), s) |= ϕ if and only if (G(Sext), sext) |= f(ϕ)

Decision procedures. By [12], model checking GCS against GCCTL∗ is undecid-
able. It is straightforward to extend this negative result to model checking GCS against
A–GCCTL∗ (see [11]). In the following, we show that model checking GCS against
E–GCCTL∗, and satisfiability for E–GCCTL∗ and A–GCCTL∗ are instead decidable
and PSPACE-complete.

Theorem 7. Given a GCS S and a E–GCCTL∗ formula ϕ, [[ϕ]]S is MG representable
and one can construct a MG representation of [[ϕ]]S , written π(S, ϕ), such that: (1)
!π(S, ϕ)"K can be built in time O(|E(S)|·|Q(S)|2 ·2O(|ϕ|) ·(K+2)O((2|Var|+|Const|)2)),
and (2) for a K-bounded MG G on Var and q ∈ Q(S), checking whether G is in the
q-component of !π(S, ϕ)"K can be done in space polynomial in the sizes of S and ϕ.

Sketched proof. (A detailed proof is in [11]). Fix a GCS S. For a (state) E–GCCTL∗

formulaϕ, we construct π(S, ϕ) and prove Properties 1–2 by induction on the structure
of ϕ. Note that we can assume that each ∃GC constraint occurring in ϕ is a disjunction
of transitional GC. The non-trivial case is when ϕ = E ψ for some path formula ψ. Let
X be the set of state formulas θ such that there is an occurrence of θ in ψ which is not
in the scope ofE. By induction hypothesis, we can assume that the result holds for each
formula in X . By a generalization of the standard construction for LTL model-checking,
we show the following: one can build two GCS Sϕ and Sbdϕ with set of control points
Q(S) × Qϕ, where Qϕ = O(2|ϕ|), and two subsets Q0

ϕ ⊆ Qϕ and F ⊆ Q(Sϕ) such
that the following holds:

Claim 1: (q, ν) ∈ [[ϕ]]S iff ((q, q0), ν) ∈ InfSϕ,F for some q0 ∈ Q0
ϕ.

Claim 2: Sbdϕ can be built in timeO(|E(S)|·|Q(S)|2 ·2O(|ϕ|)·(K+2)O((2|Var|+|Const|)2))

starting from S and {!π(S, θ)"K | θ ∈ X}. Moreover,E(Sbdϕ ) has cardinality bounded

by |E(S)| · 2O(|ϕ|) · (K + 2)(2|Var|+|Const|)2 , and Sbdϕ = !Sϕ"K .

Let σF (Sϕ) be the computable MG representation of InfSϕ,F satisfying the statement
of Theorem 5. Then, for each q ∈ Q(S), the q-component of π(S, ϕ) is the union of the
(q, q0)-components of σF (Sϕ) such that q0 ∈ Q0

ϕ. By Claim 1, it follows that π(S, ϕ)
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is a computable MG representation of [[ϕ]]S . For the remaining part of the theorem,
here, we focus on Property 1. By Claim 2, Sbdϕ = !Sϕ"K , hence, by Property 2 of
Theorem 5, !σF (Sϕ)"K = !σF (Sbdϕ )"K . Thus, since Q(Sbdϕ ) has cardinality bounded
by |Q(S)| · 2O(|ϕ|), by Property 1 of Theorem 5, and Claim 2, Property 1 follows. #$

Theorem 8. The model checking problem of GCS against E–GCCTL∗ and satisfia-
bility of E–GCCTL∗ and A–GCCTL∗ are PSPACE-complete.

Sketched proof. By Theorem 7, checking for a GCS S, control point q, and E–GCCTL∗

formula ϕ, whether (G(S), (q, ν)) |= ϕ for some valuation ν, is in PSPACE. By an easy
linear-time reduction to this last problem, the upper bound for model checking GCS
against E–GCCTL∗ follows. The upper bounds for satisfiability of E–GCCTL∗ and
A–GCCTL∗ easily follow by a linear-time reduction to the considered model checking
problem. For details, see [11]. Finally, the lower bounds directly follow from PSPACE-
hardness of model checking and satisfiability for the existential and universal fragments
of standard CTL∗ (see, e.g., [23]). #$

5 Concluding Remarks

We focus on the logic GCCTL∗. An intriguing question left open is the decidability
status for satisfiability of full GCCTL∗. Moreover, it would be interesting to investigate
extensions of GCCTL∗ which allow to compare variables at states arbitrarily far away
from each other. A possibility would be to permit atomic formulas of the form x−♦y ≥
k, or ♦y − x ≥ k, or x − �y ≥ k, or �y − x ≥ k (k ∈ N), where ♦y means “for
some future value of y” and �y means “for each future value of y”. Thus, for example,
x−�y ≥ 1 asserts that the future values of y remain below the current value of x. We
conjecture that with this extension, Theorem 8 still holds.
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Abstract. In this paper we consider the applicability of multi-rooted
binary decision diagrams for the probabilistic model checking. The sym-
bolic probabilistic model checking involves manipulation of functions and
matrices with the values in [0, 1], and multi-terminal binary decision di-
agrams, sparse matrices, and combinations thereof are used to represent
these objects. We propose algorithms for representing these objects by
means of multi-rooted binary decision diagrams when a function with
the values in [0, 1] is approximated by a set of Boolean functions. Each
Boolean function is represented by a binary decision diagram and being
combined together these diagrams form a mutli-rooted binary decision di-
agram. Presented experimental results show that this approach allows for
the model checking for large problems with a smaller memory footprint,
compared to the use of the multi-terminal binary decision diagrams.

Keywords: probabilistic model checking, binary decision diagrams

Introduction1

Re-invention of the binary decision diagrams (BDD) by Bryant [2] created a
breakthrough in the area of model checking. Using these data structures many
researchers had presented algorithms and tools for symbolic model checking [7].
By allowing compact representation of the model in memory (by exploiting its
implicit regularity) and by offering efficient algorithms for operations with sets
BDDs have solved the state space explosion problem for many kinds of tasks.
Multiple open-source libraries — decision diagrams packages — were imple-
mented [11,6], which allowed researchers to utilize the power of the decision
diagrams in many areas, including the symbolic model checking.

Being an efficient tool for the representation of Boolean functions classical
BDDs do not handle arbitrary finite valued functions. In order to address that
multi-terminal binary decision diagrams (MTBDD) [5] are used. This modifica-
tion extends the set of terminal vertices for decision diagram from {0, 1} to any
finite set (e.g. a subset of integers or rationals). The main benefit of that exten-
sion is that all operations in the target domain can be applied to the MTBDD
using a uniform straightforward APPLY algorithm. However, MTBDD represen-
tation remains compact only while the set of terminals is small (function takes

1 Supported by the Russian Foundation for Basic Research project 09-01-00525-a.

V. Kuncak and A. Rybalchenko (Eds.): VMCAI 2012, LNCS 7148, pp. 104–118, 2012.
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only limited amount of values) and even for simplest functions with the full range
of values (e.g. identity function f(x) = x) the size of the MTBDD grows expo-
nentially with the number of BDD variables. A larger set of terminals increases
variability in the structure of the diagram and decreases probability of a node
being reused in a different context (while reuse of the nodes is the key aspect
of the decision diagrams allowing them to keep reasonable size). Furthermore,
the extension of the set of terminals introduces inconsistency — the arguments
of the decision diagram remain Booleans, but their values become more com-
plex. This inconsistency prevents efficient implementation of the composition of
functions.

Despite all the shortcomings MTBDD became popular, they were supported
by the decision diagrams packages [11] and were employed as the foundation for
symbolic probabilistic model checking [10], although in this area they compete
with other data structures (e.g. sparse matrices) and algorithms (e.g. simulation).
In [9] authors present a comparison of tools for probabilistic model checking
showing where MTBDD-based algorithms work well and where they don’t.

An alternative to the extension of the set of terminals vertices is the usage
of multiple classical BDD to represent a single finite valued function. Similarly
as we encode function arguments into bits, we can represent function result as
a bit vector which can be decoded into a value from an arbitrary finite set.
This way of modeling was mentioned in the early works on BDD, but then it
lost researchers’ attention2. The main challenge with this representation is that
implementation of an operation in the target domain requires a mapping to a
set of bit operations and this mapping can not be constructed automatically.
Furthermore, the computational complexity of the bitwise algorithms is in most
cases higher then the complexity of MTBDD APPLY procedure. However, the
size of the set of BDD can be significantly smaller comparing to the size of
the equivalent MTBDD (e.g. the size of representation of identity function and
additive functions grows linearly with the number of variables).

In this paper we name a set of BDD representing a single finite valued func-
tion — multi-rooted binary decision diagram. Below in the paper (section 1) we
propose a binary encoding for functions on the segment [0, 1] and a set of algo-
rithms for basic operations with these functions. Section 2 introduces MRBDD-
based model checking algorithms using the proposed encoding and operations.
Section 3 presents experimental results, comparing the performance of model
checking based on MTBDD (using PRISM model checker [10]) and on MRBDD.
And the final section concludes the paper and discusses possible further steps.

1 Multi-Rooted Binary Decision Diagrams Package

Formally, an ordered binary decision diagram is an oriented rooted acyclic graph
with vertex set V = N ∪ T , where N ∩ T = ∅. The vertices from the set N are
nonterminals ; for every such vertex v ∈ N , an order index(v) ∈ {1, . . . , n}
2 Recently similar approach has been mentioned again with respect to the modeling
and analysis of analog circuits [12].
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and precisely two child vertices low(v), high(v) ∈ V are defined. The vertices
from the set T are terminals and have no child vertices. For such vertices v ∈ T ,
value value(v) ∈ {0, 1} is defined. The following ordering condition holds: for any
nonterminal v ∈ N and its child vertex v′, either v′ ∈ T or index(v) < index(v′).
Each vertex v ∈ V represents the function fv : {0, 1}n → {0, 1} of n variables as
follows:

– If v ∈ T , then fv(x1, . . . , xn)
.
= value(v);

– If v ∈ N , and index(v) = i then

fv(x1, . . . , xn)
.
=

{
fhigh(v)(x1, . . . , xn), iff xi = 1
flow(v)(x1, . . . , xn), iff xi = 0

.

In practice reduced decision diagrams are used. In a reduced decision diagram
there can be no different vertices each representing the same function. Therefore,
reduced decision diagram reuses equivalent fragments keeping the overall size
reasonable. It is known that decision diagrams are very sensitive to the variables
ordering. The task of identifying the best ordering is NP-complete, but a good
heuristic can be proposed in many cases [1]. Further down we refer to ordered
reduced binary decision diagrams as decision diagrams.

As seen from the definition, decision diagrams are used for modeling Boolean
functions of multiple Boolean variables. In order to model a function taking
arguments from a finite set S binary encoding bin : S → {0, 1}n is required.
Similarly, in order to model a function returning values from a finite set S binary
decoding bin−1 : {0, 1}n → S is required. With both encoding and decoding in
place function f : S → S can be modeled with a set of Boolean functions
{fi : {0, 1}n → {0, 1}}n1 as follows: f(x) = bin−1(f1(bin(x)), . . . , fn(bin(x))).
Each of the functions fi can be represented with a decision diagram vi. The set
of decision diagrams {vi}n1 can be seen as a single graph with multiple entry
points3 which we call multi-rooted binary decision diagram (MRBDD).

However, it is not enough to construct a representation of a function. For
two functions f, g : S → S and an operation ⊕ in the set S there is a task of
computing function (f ⊕ g) such that ∀x ∈ S : (f ⊕ g)(x) = f(x)⊕ g(x).4. This
task can be re-formulated as follows: having multi-rooted decision diagrams for
the functions f and g construct multi-rooted decision diagram representing the
function f⊕g. It is not possible to construct a practical generic algorithm which
is capable of handling any operation in the target domain. However, for each
particular operation it is possible to construct an algorithm applying it.

In probabilistic model checking there is a need to operate with probability
distributions and stochastic matrices, which are functions with values from the
segment [0, 1]. Thus, further in this section we consider this set and operations
in it.

3 In practice all decision diagrams packages use the concept of shared decision diagrams
reusing nodes across diagrams constructed for different functions [8].

4 Assuming, for simplicity, that f , g and ⊕ are defined for all elements in S.
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1.1 Encoding

The segment [0, 1] is an infinite set, thus a finite approximation of this set is
required. There are two commonly used methods of approximation for real num-
bers: floating point and fixed point methods. In the floating point method a
real number x is approximated with two bounded integers m and e as follows:
x ≈ m · 2e. This method is the most commonly used. However, this kind of en-
coding is not well suited for MRBDD: bitwise algorithms in this model are rather
complex. Furthermore, certain commonly used operations (e.g. conditional bit
shift) reduce regularity of the result and cause fast growth of the MRBDD.

Therefore, for our purpose the fixed point approach is preferable. In this ap-
proach real number x is approximated with a single integer m ∈ {0, . . . , 2n − 1}
as follows: x ≈ m

2n . This gives an approximation of [0, 1] with precision up to 2−n.
It is important to note that this approximation has an element exactly equal to
0, but has no elements exactly equal to 1. This asymmetry introduces systematic
error when performing multiple operations with rounding. In order to remove
the asymmetry an extra n + 1 signaling bit is used to indicate the value which
is exactly equal 1. As a result, [0, 1] can be approximated with precision up to
2−n by {0, 1}n+1 using encoding bin : [0, 1]→ {0, 1}n+1 such that:

bini(x)
.
=

⎧⎨⎩1, iff x−
i−1∑
j=1

(
binj(x) · 2−j

)
>= 2−min(i,n)

0, otherwise

. (1)

This encoding calculates i-th bit using previously calculated bits. It subtracts al-
ready processed part of the number from x and compares result with the current
component 2−i. If the remainder is greater or equal to the current component,
the bit is set to 1. The component for the last n+ 1-th bit is 2n, therefore the
bit is set to 1 only if x exactly equals 1. The decoding for this representation
can be constructed as follows:

bin−1(x1, . . . , xn+1)
.
=

n∑
i=1

xi
2i

+
xn+1

2n
. (2)

An important benefit of this encoding is that most common operations (sum,
product and matrix product) can be implemented using algorithms for integer
functions presented in [4] with minor adjustments. Thus, here we consider only
algorithms specific to the interval [0, 1].

1.2 Rounding

Whenever the result of computation requires more bits of representation then
available (e.g. product of two functions requires twice as many bits), rounding is
required. Depending on the context, different rounding strategies can be used:
ceiling, flooring or rounding. The task of rounding can be formulated as follows:
having a function f : {0, 1}m → {0, 1}n+k, construct a function f ′ : {0, 1}m →
{0, 1}n which is the closest match to f for rounding, the closest lower bound for
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flooring and the closest upper bound for ceiling. All rounding operations should
keep the signaling bit unchanged, thus it is not considered explicitly.

The function f : {0, 1}m → {0, 1}n+k can be seen as a sum of two functions
f = fbase + fex · 2−n, where fbase : {0, 1}m → {0, 1}n represents first n bits and
fex : {0, 1}m → {0, 1}k represents the rest k bits. In this case flooring can be
done by omitting extra bits:

floor(f) = fbase. (3)

For ceiling extra bits are combined by “OR” and the base is increased by 2−n:

ceil(f) = fbase + 2−n ·
k∨

i=1

fex,i. (4)

Rounding is implemented by adding only the most significant extra bit:

round(f) = fbase + 2−n · fex,1. (5)

However, this algorithm always rounds boundary values up (e.g. 0.5 is always
rounded to 1). This introduces systematic error when applying rounding multiple
times. In order to compensate the error banker’s rounding is used: floor boundary
case if the last bit of base is 1 and ceil if it is 0. This could be calculated as follows:

roundb(f) = fbase + 2−n · fex,1 ∧
(
¬fbase,n ∨

k∨
i=2

fex,i

)
. (6)

1.3 Non-negative Integer Exponent

Having function f : S → [0, 1] and function k : S → Z+,0 there is a task of
calculating fk : S → [0, 1] such that fk(x) = f(x)k(x). MRBDD representation
of the exponentiation can be calculated using exponentiation by squaring:

fk =
m∏
i=1

(ITE(ki, f
2i−1

, 1)), (7)

where {ki}m1 is the binary encoding for integer functions taken from [4] (k(x) =∑n
i=1 ki(x) · 2i−1) and ITE stands for if-then-else. In this schema f2i can be

computed recursively as follows: f20 = f, f2i = f2i−1 · f2i−1

.
Each f2i requires twice as many bits as f2i−1

, thus calculating with the full
precision would require n ∗ 2m bits. On the over hand, applying rounding to n
bits for each intermediate result causes significant error, especially when ceiling
or flooring is used. In order to reduce the error, we use 4 · n bits for calculation
and round each intermediate result to 2 · n bits and only final result to n bits.

Signaling bit fn+1 is considered at the latest using the fact that 1 is 1 in any
power and any number in power 0 is 1:

(fk)n+1 = ITE

⎛⎝fn+1 ∨
m∧
j=1

¬kj , 1, 0

⎞⎠ . (8)
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1.4 Multiplicative Inverse of Positive Integer

Having a function k : S → Z+ there is a task of computing function 1
k : S → [0, 1]

such that 1
k (x) = 1

k(x) . In order to compute the inverse we use the Newton’s

iterations with following schema:(
1

k

)
n+1

= 2 ·
(
1

k

)
n

− k ·
(
1

k

)2

n

. (9)

For the first approximation
(
1
k

)
0
we use following heuristic:(

1

k

)
0,i

=

{
1, iff ki = 1 ∧ ∀j ∈ {1, . . . , i− 1} : kj = 0
0, otherwise

. (10)

The heuristic sets 2−i bit in the approximation to 1 if 2i bit in the original
number is the highest non-zero bit. The signaling bit is set to 1 only where k
equals 1. Note that the amount of bits in the representation of 1

k does not have
to be the same as the numbers of bits in k.

1.5 Composition

Having two functions f, g : S → S there is a task of computing function f(g) :
S → S such that f(g)(x) = f(g(x)). If the same encoding of size n is used for
the arguments and for the result, composition can be calculated using n BDD
compositions as follows:

f(g)i = fi(g1, . . . , gn). (11)

2 Model Checking with MRBDD

Having MRBDD support for the segment [0, 1] in order to implement probabilis-
tic model checking we define modeling approach and model checking algorithms.

2.1 Modeling Approach

Using the same approach as in [10] we define model M as a triple 〈P,M,L〉
where P is a set of parameters, M is a set of modules and L is a set of labels.
Each parameter p ∈ P has a type Sp and the set of model’s states is defined
as a combination of all parameters (S = ×p∈PSp). Each module m ∈ M is
defined as a pair 〈Pm, Rm〉 where Pm ⊆ P is a set of module’s parameters and
Rm is a set of rules. Each parameter p might belong to at most one module
(∀m1,m2 ∈ M : m1 �= m2 ⇒ Pm1 ∩ Pm2 = ∅). Parameters which do not belong
to any module are called global parameters (PG = {p ∈ P | �m ∈M : p ∈ Pm}).
Each rule r ∈ Rm is defined as a triple 〈lr, prer, Er〉 where lr ∈ L ∪ {∅} is an
optional label, prer ⊆ S is a precondition and Er is a set of effects. Each effect
e ∈ Er is defined as a pair 〈probe, Ae〉 where probe ∈ (0, 1] is the probability
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of the effect and Ae is a set of assignments. The sum of effects’ probabilities
for each rule must be equal 1 (∀m ∈ M, r ∈ Rm :

∑
e∈Er

probe = 1). Each
assignment a ∈ Ae is defined as a pair 〈pa, fa〉 where pa ∈ P is a target and
fa : S → Spa is a new value function. Assignments can not change values of
other modules’ parameters (∀m ∈ M, r ∈ Rm, e ∈ Er, a ∈ Ae : pa ∈ Pm ∪ PG).
If an effect does not include explicit assignments for any of the module’s or
global parameters, then those parameters remain unchanged (identity function
is used as fa). If rule has a non-empty label, then it can not modify global
parameters. For each label l ∈ L a set of participants Ml ⊆M can be defined as
Ml = {m ∈M | ∃r ∈ Rm : lr = l}.

In other words, the system is divided into modules each of those has its own
set of parameters and its own behavior. Module can read all parameters in
the model, but it can modify only its own parameters or global parameters.
Behavior is described as a set of rules with a precondition and a set of effects
with their probabilities. By default at most one module can make a transition at
a time, but labels can be used to define synchronous transitions when multiple
modules make transition simultaneously (and in this case non of those can modify
global variables). The model can be interpreted as a discrete time Markov chain
(DTMC).

An algorithm for constructing MTBDD representation of the transition prob-
ability matrix for the model is given in [10], but it can not be used “as is” to
construct MRBDD representation since it produces intermediate results with
the range wider then [0, 1]. This happens due to existence of multiple non-
deterministic choices. Model has two kind of the non-determinism: external (in
each state multiple modules or synchronous transitions might be executed) and
internal (module or synchronous transition can have multiple rules with match-
ing preconditions to execute). For each module m ∈ M amount of its choices
cm : S → Z0,+ is calculated as follows:

cm(s) =
∑

r∈Rm,lr=∅
ITE(s ∈ pre, 1, 0). (12)

Similarly, for label l ∈ L and its participant m ∈Ml we can count labeled rules:

cl,m(s) =
∑

r∈Rm,lr=l

ITE(s ∈ pre, 1, 0). (13)

These functions describes internal non-determinism of the model. External non-
determinism c : S → Z0,+ is then calculated as follows:

c(s) =
∑
m∈M

ITE(cm(s) > 0, 1, 0) +
∑
l∈L

∏
m∈Ml

ITE(cl,m(s) > 0, 1, 0). (14)

After that we can compute transition matrix in parts. For an effect e we calculate
transition matrix Πe : S × S → [0, 1] as:

Πe(s, s
′) = ITE(∀a ∈ Ae : s

′(pa) = fa(s), probe, 0), (15)
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where s′(pa) represents the value of pa in s′. The value Πe(s, s
′) represents

probability of transiting from s to s′ when the effect is applied. For a rule r we
calculate transition matrix Πr as follows:

Πr(s, s
′) = ITE

(
s ∈ prer,

∑
e∈Er

Πe(s, s
′), 0

)
. (16)

For a module m transition matrix Πm is calculated as follows:

Πm =
∑

r∈Rm,lr=∅

(
1

cm
·Πr

)
. (17)

Note that before summing transition matrices for individual rules their values
are reduced in order to compensate the internal non-determinism. In the same
way for a label l transition matrix Πl is calculated as follows:

Πl =
∏

m∈Ml

⎡⎣ ∑
r∈Rm,lr=l

(
1

cm,l
·Πr

)⎤⎦. (18)

For the entire model the representation of the transition probability matrix is
constructed as follows:

ΠM =
∑
m∈M

(
1

c
·Πm · IM\{m}

)
+
∑
l∈L

(
1

c
·Πl · IM\Ml

)
, (19)

where IM ′ : S × S → [0, 1] is the identity matrix calculated as follows:

IM ′ (s, s′) = ITE(∀m ∈M ′, p ∈ Pm : s′(p) = s(p), 1, 0). (20)

This matrix represents the fact that the state of all modules not involved in the
transition remains unchanged.

2.2 Model Checking Algorithms

We chose Probabilistic Computation Tree Logic (PCTL) as a tool for the spec-
ification of the model properties. The syntax of the logic is defined as follows:

ψ ::=©φ | φ U φ | φ U kφ;
φ ::= χ | ¬φ | φ ∧ φ | P [<=,>=]pψ.

(21)

Formulas of type φ are called state formulas. Model checking of the state for-
mulas calculates set [φ] ⊆ S such that ∀s ∈ [φ] : M, s � φ. State formulas are
constructed from atomic formulas χ using standard logical junctions. The atomic
formulas are defined using functions and predicates in the target domain. Model
checking of the state formulas is mainly the same for MTBDD and MRBDD.

Formulas of type ψ are path formulas which are interpreted for a sequence of
states (s1, s2, . . .) ∈ S∗. Path formulas are constructed using temporal operators



112 D. Bugaychenko

“next time”, “until” and “bounded until”. Model checking for the path formulas
calculates a function [ψ] : S → [0, 1] such that:

[ψ](s) =
∑

(s1,s2,...)∈S∗
ITE(M, (s, s1, s2, . . .) � ψ, probM(s, s1, s2, . . .), 0), (22)

where probM : S∗ → [0, 1] is the probability of the path in the model calculated
as follows: probM(s1, s2, . . .) =

∏∞
i=1ΠM(si, si+1). [ψ](s) denotes the probability

that the model execution started from the state s satisfies ψ. The path formulas
can be grounded to the state formulas using probability constraint quantifier
P [<=,>=]p ([P [<=,>=] pψ] = {s ∈ S | [ψ](s)[<=, >=] p}).

Model checking “next time” and “bounded until”. Temporal operator
©φ is interpreted as “next state satisfies φ” and φ1 U kφ2 is interpreted as “in
k steps system reaches state satisfying φ2 passing only through states satisfying
φ1”. Function [©φ] can be calculates as follows:

[©φ](s) =
∑
s′∈S

ΠM(s, s′) · ITE(s′ ∈ [φ], 1, 0). (23)

For each state s the probabilities of transitions leading to any state from [φ] is
summed. This calculation can also be done as a matrix-vector multiplication of
the matrix ΠM and the vector ITE(s ∈ [φ], 1, 0).

In order to calculate φ1 U kφ2 following recursive schema is used:

[φ1 U kφ2] =

⎧⎪⎨⎪⎩
1 s ∈ [φ2]∑
s′∈S

ΠM(s, s′) · [φ1 U k−1φ2](s
′) k > 0, s ∈ [φ1]

0 otherwise

. (24)

This schema can be calculated using k matrix-vector multiplications of the ma-
trix ITE(s ∈ [φ2], 1, ITE(s ∈ [φ1], ΠM, 0)) and the vector ITE(s ∈ [φ2], 1, 0).

Model checking “until”. Temporal operator φ1 U φ2 is interpreted as “even-
tually system reaches state satisfying φ2 passing only through states satisfying
φ1” and its model checking requires analysis of unbounded paths (although for
each path satisfying φ1 U φ2 there is a finite prefix satisfying it).

As the first step we calculate sets of states [φ1 U φ2]0 from which it is not
possible to reach a state from [φ2] passing only states from [φ1] (at these points
[φ1 U φ2] equals 0) and [φ1 U φ2]1 from which it is not possible to reach any of
the states from [φ1 U φ2]0 without passing a state from φ2 (the value of [φ1 U φ2]
equals 1). The algorithms for calculation of these sets are given in [10]. After
that in order to calculate [φ1 U φ2] the following schema is used:

[φ1 U φ2] =

⎧⎪⎨⎪⎩
1 s ∈ [φ1 U φ2]1∑
s′∈S

ΠM(s, s′) · [φ1 U φ2](s
′) s /∈ [φ1 U φ2]1 ∪ [φ1 U φ2]0

0 s ∈ [φ1 U φ2]0

. (25)
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This means that [φ1 U φ2] can be calculated as a solution of a linear equa-
tions system x = A · x where matrix A = ITE(s ∈ [φ1 U φ2]1, 1, ITE(s /∈
[φ1 U φ2]0, ΠM, 0)). [10] proposes multiple iterative methods which can be used
to solve the equations system, however for the MRBDD only power iteration can
be used (other approaches create intermediate result out of the range of [0, 1]
and use arithmetic operation which are not currently supported). The main idea
of the power iteration is to having an initial guess x0 calculate xi = A · xi−1

while difference between xi and xi−1 is significant.
The first guess x0 can be calculated differently depending on the kind of

probability constraint. If constraint is of type P<=p, then the model checking
must calculate an upper-bound for the [φ1 U φ2], and in case if P>=p is used,
then a lower-bound needs to be calculated. For the first case the roughest upper-
bound x0 = ITE(x /∈ [φ1 U φ2]0, 1, 0) is used and for the second case the roughest
lower-bound x0 = ITE(x ∈ [φ1 U φ2]1, 1, 0) is used.

For faster convergence, a modified version of the iteration can be used: xi =
Ai · xi−1, Ai = A2

i−1, where A0 = A. This requires significantly less iterations,
however the cost of a single iteration increases. Furthermore, it causes a more sig-
nificant precision loss when used with ceiling or flooring. Memory demand of this
schema is also higher. However, this approach still can be used in combination
with the original schema to reduce the amount of iterations.

Compositional approach. The model checking algorithms described above
are based on matrix-vector multiplication. The essential meaning of this multi-
plication is to calculate probabilistic predecessor. Having a set of states x ⊆ S
this operation calculates for each state in S the probability of getting into x in
one step. If x is not a plain set, but a vector of probabilities x : S → [0, 1], then
it can be seen as fuzzy set with the same meaning of the operation.

Probabilistic predecessor can also be calculated using functions composition.
For an effect e we can construct function fe : S → S such that for each state it
returns the next state in case if the effect is applied. Then, having a fuzzy set
x : S → [0, 1] we can calculate its predecessor in case if effect is applied as:

prede(x) = x(fe) · probe. (26)

For a rule r the predecessor of x is calculated as a sum of effects, with the respect
to the rule’s precondition:

predr(x) = ITE

(
s ∈ prer,

∑
e∈Er

prede(x), 0

)
. (27)

For a modulem it is calculated as sum of the rules’ predecessors, with the respect
to the internal non-determinism:

predm(x) =
∑

r∈Rm,lr=∅

(
1

cm
· predr(x)

)
. (28)

For synchronous transitions involving multiple modules this calculation is more
complicated. Modules can apply their rules and effects in different combinations.
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Having two rules r1 and r2 for modules m1 and m2 combined rule (r1, r2) is
constructed as follows:

(r1, r2) =< prer1 ∩ prer2 ,
⋃

e1∈Er1 ,e2∈Er2

{< probe1 · probe2 , Ae1 ∪Ae2 >} > . (29)

Then for a label l with participants {m1, . . . ,mn} = Ml predecessor predl is
calculated as follows:

predl(x) =
∑

(r1,...,rn)∈Rm1×...×Rmn ,lr=l

(
1

cl
· pred(r1,...,r2)(x)

)
, (30)

where 1
cl

=
∏

m∈Ml

1
cm

. Having that calculated predecessor for the entire model
can be calculated as follows:

predM(x) =
∑
m∈M

(
1

c
· predm(x)

)
+
∑
l∈L

(
1

c
· predl(x)

)
. (31)

Model checking©φ can then be done by calculating predM([φ]). Model checking
φ1 U kφ2 can be done iteratively using the following schema:

[φ1 U kφ2] =

⎧⎨⎩1 s ∈ [φ2]
predM([φ1 U k−1φ2]) k > 0, s ∈ [φ1]
0 otherwise

. (32)

Having calculated [φ1 U φ2]0 and [φ1 U φ2]1 in the same way as described above,
model checking of φ1 U φ2 can be done by applying the following schema until
stabilization:

[φ1 U φ2]
k =

⎧⎨⎩
1 s ∈ [φ1 U φ2]1
predM([φ1 U φ2]

k−1) k > 0, s /∈ [φ1 U φ2]0
0 otherwise

. (33)

Compositional approach consumes significantly less memory comparing with the
matrix multiplication approach. On the other hand, amount of computations
made in a single iteration of the compositional approach is higher. This is espe-
cially noticeable in synchronous transitions — amount of combinatorial effects
grows exponentially with amount of individual effects from each participant.

3 Experimental Results

In order to evaluate performance characteristics of the proposed approach we
chosen two well known examples of probabilistic model checking tasks: syn-
chronous leader election in a ring of processors and a birth-death process. As an
implementation of MRBDD operations we used package BddFunctions [3] and
as an example of MTBDD-based model checking — PRISM model checker [10].
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3.1 Synchronous Leader Election

In order to select a leader in a ring of N processors each processor selects a
random number from {1, . . . ,K} and passes it through the ring so that all pro-
cessors can see it. When all the processors know the numbers of each other, the
one with the highest unique number is elected as the leader. If the leader can
not be elected, then the processors repeat the elections. With this task following
properties are a matter of interest: “the leader is eventually elected” and “the
leader is elected in L iterations”.

Table 1. Synchronous leader election (memory in megabytes, time in seconds)

N K PRISM MRBDD N K PRISM MRBDD
Memory Time Memory Time Memory Time Memory Time

3 2 62,08 1 7,77 1 5 2 62,39 2 8,03 1

3 62,29 2 7,86 1 3 64,66 3 10,10 4

4 62,54 2 7,91 1 4 68,04 8 14,03 13

5 62,72 2 8,31 2 5 79,67 30 33,02 33

6 63,12 2 8,46 2 6 103,69 69 63,72 95

8 63,43 2 9,05 2 8 215,13 285 167,68 581

4 2 62,28 2 7,83 1 6 2 62,96 2 8,38 3

3 62,76 2 8,33 1 3 68,72 8 14,48 18

4 63,79 3 9,15 4 4 87,82 44 44,82 77

5 62,72 6 12,00 7 5 170,82 230 149,75 346

6 68,73 8 14,28 7 6 375,41 1065 300,80 1083

8 79,18 24 26,38 21 8 1193,38 25118 985,23 5785

Table 1 shows the computation time and the peak memory usage for the
model checking of these properties for different values of N and K with L = 7.
As the table shows, for small problems (N <= 4) MRBDD and MTBDD model
checking show similar performance. Larger memory consumption of PRISM is
due to the fact that the process runs in a Java virtual machine which requires a
constant extra amount of memory. For the average problems ((5, 6), (5, 8) and
(6, 5)) PRISM shows better running time up to 50% for N = 5 and K = 8.
However, for the largest considered problem (N = 6 and K = 8) PRISM’s
running time 5 times exceeded the time taken by the MRBDD approach: 7,5
hours against 1,5.

3.2 Birth-Death Process

The birth-death processes are used to describe a large number of physical, biolog-
ical, informational, economic and social stochastic processes. The mathematical
essence of the process is that for some population of objects the rules of birth (in-
clusion of a set of new objects) and death (exclusion of a set of existing objects)



116 D. Bugaychenko

are defined. These rules depend on the current population size. Acting simulta-
neously birth and death can affect the population in a hardly predictable way.
Of particular interest in this process are points of no return, such as 0 (complete
exhausting). From these points the population can never recover.

For the experiment we chosen the following law of births: for i ∈ {1, . . . , 10}
with probability 1

2i the number of births is equal to 1
211−i fraction of the current

population and with probability 1
210 the number of births is 0. Accordingly, the

most probable are small relative increase in the population. For the deaths the
law is the same. The birth and death are acting together at every turn. The main
parameter of the model in this case is the number N which limits the maximum
size of the population (population < 2N ).

For the model checking an interesting property is “eventually threshold x
of the population size is reached”(P>=ptrue U population >= x). Performance
results for the model checking of this property are listed in the table 2. For
small problems MRBDD approach shows better time, but with the growth of
N execution time for both tools “explodes”. As a result, model checking for
N = 9 (about 500 individuals in the population) takes ten hours. The reason
for that is a too slow convergence of the iterative methods (more then 100000
iterations), which makes model checking for a realistic problem size not feasible.
In this example for MRBDD approach the “fast” version of the iteration is used
(calculating A2 at each iteration), which caused a higher memory consumption.

Table 2. Birth-death process

N PRISM MRBDD
Memory Time Memory Time

3 62,00 3 7,84 1
4 66,05 6 9,89 3,8

5 62,75 65 17,71 28

6 68,03 392 46,84 130

7 65,52 1967 151,16 1275

8 97,41 9330 532,04 9360

9 197,45 37560 783,70 45936

While model checking of the unbounded version of the property is not feasible,
a bounded version is worth considering: “threshold x of the population size
is reached in L iterations”(P>=ptrue U Lpopulation >= x). The performance
results for the model checking of this property are listed in table 3. PRISM results
are almost unchanged — with N = 11 (population of about 2,000 individuals)
calculation takes more than 10 hours using more than 1 gigabyte of memory.
MRBDD approach shows much more attractive results: verification with N = 16
(population of 65,000 individuals) can be carried out in 5 hours using about 260
megabytes of memory.
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Table 3. Birth-death process (bounded property)

N PRISM MRBDD MRBDD (comp.)
Memory Time Memory Time Memory Time

3 61,72 1 7,74 1 7,49 1

4 61,63 1 7,93 1 7,5 2

5 61,95 2 11,56 2 7,97 4

6 63,24 3 11,62 12 8,19 7

7 65,22 11 18,36 22 8,59 18

8 92,98 75 30,70 30 8,71 31

9 197,17 628 46,29 114 9,58 64

10 357,88 3633 66,04 256 10,69 164

11 1222,36 39555 104,18 494 13,57 448

12 108,22 805 26,71 1158

13 112,64 1677 57,06 2739

14 124,13 3630 64 6404

15 180,22 6549 71,57 14239

16 261,55 19278 72,13 21115

Table 3 also shows performance characteristics for the compositional model
checking approach. Running time in this case is comparable to the traditional
matrix multiplication approach, but memory consumption is significantly less.
After N = 15 peak memory usage stabilizes around 73 megabytes and does not
exceed this limit even for N = 17 and N = 18. These results are very promising
since with a stable and small memory demand there is a potential for efficient
distributed calculations.

4 Conclusions and Further Work

We have shown that the multi-rooted binary decision diagrams can efficiently
be used as a foundation for probabilistic symbolic model checking. Compared
with multi-terminal binary decision diagrams multi-rooted diagrams use memory
more efficiently, which allows model checking for problems of larger size. Of
particular interest is the possibility of replacing the matrix multiplication by
the composition of functions during the model checking. This approach allows
further reduce of memory consumption.

A comparison with PRISM model checker shows that MRBDD-based model
checking has similar performance, but for large problems MRBDD-based ap-
proach can perform several times faster. In particular, model checking of the
birth and death process with MRBDD can handle much larger problems.

Although the idea of multi-rooted binary decision diagrams was formulated
long ago, invention of the multi-terminal binary decision diagrams shifted re-
searchers’ focus away from it. Results presented in the paper show that despite
of implementation complexity MRBDD are a promising tool for probabilistic
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model checking. Combinations of MRBDD with other data structures and com-
bination of compositional model checking with matrix multiplication are worth
considering. Techniques and tool for parallel and distributed calculations using
MRBDD can significantly reduce model checking time.
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Abstract. Regression verification is the problem of deciding whether two
similar programs are equivalent under an arbitrary yet equal context, given
some definition of equivalence. So far this problem has only been stud-
ied for the case of single-threaded deterministic programs. We present a
method for regression verification to establish partial equivalence (i.e.,
input/output equivalence of terminating executions) of multi-threaded
programs. Specifically, we develop two proof-rules that decompose the re-
gression verification between concurrent programs to that of regression
verification between sequential functions, a more tractable problem. This
ability to avoid composing threads altogether when discharging premises,
in a fully automatic way and for general programs, uniquely distinguishes
our proof rules from others used for classical verification of concurrent
programs.

1 Introduction

Regression verification [4,5] is the problem of deciding whether two similar
programs are equivalent under an arbitrary yet equal context. The problem is
parameterized by a notion of equivalence. In this paper, we focus on partial equiv-
alence [4], i.e., input/output equivalence of terminating executions. Regression
verification under partial equivalence – which we refer to simply as regression
verification – is undecidable in general. However, in practice it can be solved in
many cases fully automatically for deterministic single-threaded programs, even
in the presence of loops, recursion and dynamic memory allocation. For exam-
ple, the algorithm suggested in [5] progresses bottom-up on the call graphs of
the two programs, and attempts to prove equivalence of pairs of functions while
abstracting descendants that were already proved equivalent with uninterpreted
functions. This algorithm is implemented in two tools – RVT [5] and Microsoft’s
SymDiff [9] – both of which output a list of provably equivalent function pairs.

The ability to perform regression verification adds several elements to the
developer’s toolbox: checking that no change has propagated to the interface
after refactoring or performance optimization; checking backward compatibility;
performing impact analysis (checking which functions may possibly be affected
by a change, in order to know which tests should be repeated), and more.

Multithreaded (MT) programs are widely deployed, which makes the exten-
sion of regression verification to such programs an important problem. This task

V. Kuncak and A. Rybalchenko (Eds.): VMCAI 2012, LNCS 7148, pp. 119–135, 2012.
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is challenging for at least two reasons. First — since MT programs are inher-
ently nondeterministic due to the scheduler, we need an appropriate notion of
equivalence for nondeterministic programs. The standard definition of partial
equivalence mentioned above is inadequate, since it implies that a nondetermin-
istic program is not even equivalent to itself: given the same input, the program
may produce different outputs.1

Second — while regression verification of sequential programs is broken down
to proofs of I/O equivalence of pairs of functions, in the case of MT programs
the behavior of functions is affected by other threads, which makes a similar
decomposition to the level of functions much harder. Compositional verification
methodologies [11,7] and tools [6,2] for MT programs target reachability proper-
ties of a single program, and decompose only to the level of individual threads.
They are therefore not directly applicable to our problem.

In this paper we propose theoretical foundations for regression verification of
multi-threaded recursive programs and address the above two challenges. First,
we extend the definition of partial equivalence to non-deterministic programs.
Second, assuming a bijective correspondence mapping between the functions and
global variables of the two programs, we present two proof rules whose premises
only require verification of sequential programs, at the granularity of individual
functions. We prove that these rules are sound under our extended notion of
partial equivalence. For the first rule, each premise verifies that a pair of cor-
responding functions generate the same observable behavior under an arbitrary
yet equal environment. The second rule has premises that are weaker, but also
computationally harder to discharge. Specifically, each premise verifies that a
pair of corresponding functions generate the same observable behavior under an
arbitrary yet equal environment that is consistent with some overapproximation
of the other threads in the program. For both rules, each premise is discharged
by verifying a sequential program. A key feature of our proof rules therefore is
that they enable decomposition to the level of both threads and functions.

The rest of the article is structured as follows. In the next section we present
our extended notion of partial equivalence. In Sec. 3 we list our assumptions
about the input programs, and describe how they should be preprocessed for our
procedure to work. In Sec. 4 we describe our first rule and prove its soundness.
In Sec. 5 we present the second rule and prove its soundness. Finally, in Sec. 6,
we conclude and describe some directions for future work.

2 Equivalence of Multi-threaded Programs

Let P be a multi-threaded program. P defines a relation between inputs and
outputs, which we denote by R(P ). Let Π(P ) denote the set of terminating
computations of P . Then:

R(P ) = {(in,out) | ∃π ∈ Π(P )� π begins in in and ends in out} .
1 An indication of the difficulty of this problem is given by Lee’s statement in [10],
that “with threads, there is no useful theory of equivalence”.
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Definition 1 (Partial equivalence of nondeterministic programs). Two
nondeterministic programs P , P ′ are partially equivalent if R(P ) = R(P ′).

We denote by p.e.(P, P ′) the fact that P and P ′ are partially equivalent. Note
that the definition refers to whole programs, and that by this definition every
program is equivalent to itself. If loops and recursion are bounded this problem
is decidable, as we show in the full version of this article [1]. Recall, however,
that here we are concerned with the unbounded case, and with the question of
how to decompose the verification problem to the granularity of threads and
functions. This is the subject of this article.

3 Assumptions, Preprocessing and Mapping

We assume C as the input languages, with few restrictions that will be mentioned
throughout this section. We generally refrain in this paper from discussing in de-
tail issues that are also relevant to regression verification of sequential programs
(e.g., issues concerning the heap, aliasing etc), because these are covered in ear-
lier publications [4,9].

The input program P is assumed to consist of a finite and fixed set of threads,
i.e., no dynamic thread creation and deletion. A k-threaded program P is written
as f1 ‖ . . . ‖ fk where, for i ∈ [1..k], the i-th thread is rooted at fi. The call
graph of P is written as cg(P ). The call graph of a function f in P , denoted
cg(f), is the subgraph of P that can be reached from f . We assume that threads
have disjoint call graphs.

We denote by ReadParam(f) and WriteParam(f) the set of parameters
and global variables that are read and written-to, respectively, by functions in
cg(f). In general computing this information precisely is impossible, but over-
approximations are easy to compute, while sacrificing completeness. For sim-
plicity we will assume that these sets are given to us. Note that the intersection
of these sets is not necessarily empty. A global variable is called shared if it is
accessed by more than one thread. For simplicity, but without losing generality,
we consider all outputs of each function as if they were shared, even if in practice
they are local to a thread.

By convention x, x1, x2 etc. denote variables that are (really) shared (i.e., not
outputs), t, t1, t2 etc. denote local variables, and exp denotes an expression over
local variables. Primed symbols indicate that they refer to P ′. Function names
prefixed by UF denote uninterpreted functions. The signature and return type of
these functions are declared implicitly, by the actual parameters and the variable
at the left-hand side of the assignment, respectively. For example, if we use a
statement of the form t = UF x(t1, t2), where t,t1,t2 are integers, it means
that we also declare an uninterpreted function int UF x(int, int).

3.1 Global Preprocessing

We assume that all programs are preprocessed as follows:
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– Loops are outlined [3] to recursive functions.
– Mutually recursive functions are converted [8] to simple recursion.
– Non-recursive functions are inlined.
– Auxiliary local variables are introduced to load and store shared variables

explicitly such that: (i) a shared variable x only appears in statements of the
form t = x or x = exp, and (ii) every auxiliary variable is read once.

– If a function has a formal return value, it is replaced with an additional
parameter sent to it by reference.

3.2 Mapping

We assume that after preprocessing, the target programs P and P ′ have the same
number of threads and overall number of functions. Specifically, let P = f1 ‖ . . . ‖
fk and P ′ = f ′

1 ‖ . . . ‖ f ′
k, and let the set of overall functions of P and P ′ be

{g1, . . . , gn} and {g′1, . . . , g′n}, respectively.Weassume the following twomappings:

– A bijection φF : {g1, . . . , gn} (→ {g′1, . . . , g′n}, such that ∀i ∈ [1..k]� φF (fi) =
f ′
i and furthermore, if (g, g′) ∈ φF , then
• ∀i ∈ [1..k]� g ∈ cg(fi) ⇐⇒ g′ ∈ cg(f ′

i).
• g and g′ have the same prototype (list of formal parameter types).
• Let pi and p′i denote the i-th parameter of g and g′ respectively.
Then pi ∈ ReadParam(g) ⇐⇒ p′i ∈ ReadParam(g′) and pi ∈
WriteParam(f) ⇐⇒ p′i ∈ WriteParam(g′).

For convenience, we assume that ∀i ∈ [1..n]� φF (gi) = g′i.
– A bijection φG between the global variables of P and P ′, such that if (v, v′) ∈
φG, then
• v and v′ are of the same type,
• v is a shared variable iff v′ is a shared variable,
• ∀(g, g′) ∈ φF � v ∈ ReadParam(g) ⇐⇒ v′ ∈ ReadParam(g′) and
v ∈ WriteParam(g) ⇐⇒ v′ ∈ WriteParam(g′).

Failure in finding the above two mappings dooms the proof. Note that the ex-
istence of φG implies that after preprocessing, P and P ′ also have the same
number of global variables.

4 First Proof Rule

We now present our first proof rule for regression verification of P and P ′. We
begin with a specific transformation of a function f to a new function f̂ , which
we use subsequently in the premise of our proof rule.

4.1 Function Transformation: From f to f̂ .

Let ActualReadParam(f) be the actual parameters and global variables sent re-

spectively to the elements inReadParam(f).We construct f̂ from f via the trans-
formation described in Fig. 1. In the figure,⇒ indicates a specific transformation,
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– Introduce a global counter c initialized to 0, and a list out of tuples
〈Action, identifier, values . . .〉.

– Read : t := x; ⇒ t := UF x(c); out += (R, "x"); c++;

– Write: x := exp; ⇒ x := exp; out += (W, "x", exp); c++;

– Function call : foo(a1, . . . , am); ⇒
∀w ∈WriteParam(foo)� w = UFfoo w(ActualReadParam(foo));
out += (C, "foo", ActualReadParam(foo));

Fig. 1. Constructing f̂ from f , for a function f in P . The operator “+=” appends an
element to the end of out. Functions in P ′ are translated slightly differently (see text).

f(int t1) {
int t2, t3 = 1;

x = t1 + 1;

t2 = x;

foo(t3, &t1, &t2);

}

g(int i1,int *o1) {
int t;

if (i1 ≤ 0) {
*o1 = 1;

} else {
g(i1 - 1, &t);

*o1 = (*t) * i1;

} }

f̂(int t1) {
int t2, t3 = 1, c = 0;

x = t1 + 1;

out+=(W,"x", t1 + 1); c++;

t2 = UF_x(c);

out+=(R, "x"); c++;

t1 = UF_foo_t1(t3);

t2 = UF_foo_t2(t3);

out+=(C, foo, t3);

}

ĝ(int t1,int *o1) {
int t, c = 0;

if (i1 ≤ 0) {
out+=(W, "o1", 1); c++;

} else {
t = UF_g_t(i1 - 1);

out+=(C, g, i1 - 1);

out+=(W, "o1", (*t) * i1); c++;

} }

Fig. 2. Example conversions of functions f and g to f̂ and ĝ

with the left being the original code (in f) and the right being the new code (in f̂).
The transformation of a function f ′ in P ′ is the same except that the elements in
WriteParam(f ′) are renamed to their counterparts in f according to themap φG,
ensuring that f and φF (f) invoke the same uninterpreted function.

Example 1. Fig. 2 shows functions f and g and their translations to f̂ and ĝ.
Function foo called in f has three parameters, the first of which is only in
ReadParam(foo) and the other two only in WriteParam(foo). The update of
x in f̂ is not necessary in this case because it is not used, but it would have been
used had x was an element of ReadParam(foo). Shifting our attention to g, this
function computes the factorial of its input. It has two parameters, which are in
ReadParam(g) and WriteParam(g), respectively. #$
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Intuition. Intuitively, the environment in which each thread operates is a
stream of read and write (RW) instructions to shared variables. Let f and f ′ be
two functions and let E and E′ be environments generated by the other threads
in their respective programs (P and P ′). To prove the equivalence of f, f ′, we
assume that E and E′ are identical but only if f and f ′’s interaction with them
so far has been equivalent. This assumption is checked as part of the premise
of our rule as follows. Consider two shared variables x, x′ in f, f ′, respectively.
To emulate a possible preemption of f just before it reads x, it is sound to
let it read a nondeterministic value. But since we want to assume that f and
f ′ operate in the same environment, we want to ensure that if they are read
at equal locations in their own RW stream, then they are assigned the same
nondeterministic value. To this end, we replace each read of x and x′ with the
uninterpreted function call UFx(c). Since c is the current location in the RW
stream and we use the same uninterpreted function UFx() for both x and x′, we
achieve the desired effect.

We prove that f and f ′ are observationally equivalent via the list out. For
simplicity, we refer to the list out introduced during the construction of f̂ as
f̂ .out. In essence, the equality of f̂ .out and f̂ ′.out implies that f and f ′ read
(and write) the same values from (and to) the shared variables, and call the
same functions with the same actual parameters, and in the same order. We
now present our first proof rule formally.

4.2 The Proof Rule

We define the predicate δ(f) to be true if and only if the sequential program
V Cδ(f), given below in pseudo-code, is valid (i.e., the assertion in V Cδ(f) is not
violated) for all input vectors in:

V Cδ(f) : f̂(in); f̂ ′(in); rename(f̂ ′.out); assert(f̂ .out = f̂ ′.out);

The function rename renames identifiers of functions and shared variables to
their counterparts according to φF and φG, respectively. We omit some details
on the construction (e.g., how in is generated when the signatures of f, f ′ include
pointers), and verification of V Cδ(f). These details are available elsewhere [3],
where similar programs are constructed for single-threaded programs. It should
be clear, though, that validity of V Cδ(f) is decidable because there are no loops

and (interpreted) function calls in f̂ and f̂ ′. Our first proof rule for partial
equivalence of two MT programs P, P ′ is:

∀i ∈ [1..n]� δ(fi)
p.e.(P, P ′)

. (1)

Example 2. Consider the programs P in Fig. 3. For a fixed positive value of the
shared variable x, f1 computes recursively the GCD of x and the input argument
t, if t > 0. The second thread f2 changes the value of x to a nondeterminis-
tic value. f1() is assumed to be called from another function that first sets x
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void f1(int td, int *o) {
int t1, t2, t3;

if (td <= 0) t2 = x;

else {
t1 = x;

t3 = t1 % td;

x = td;

f1(t3, &t2);

}
*o = t2;

}

void f2() {
int t;

x = t;

}

P

void f1’(int td, int *o’) {
int t1, t2;

t2 = x’;

if (td > 0) {
t1 = x’;

x’ = td;

f1’(t1 % td, &t2);

}

*o’ = t2;

}

f2’() {
int t;

x’ = t;

}

P ′

Fig. 3. Two MT-programs for Example 2

to some initial value (not shown here for simplicity). The program P ′ on the
right does the same in a different way. We wish to check whether these two
programs are partially equivalent. We assume that φF = {(f1,f1’), (f2,f2’)},
φG = {(x,x’), (o,o’)}. Note that in the construction we refer to o,o’ as
shared, although they are not, because of our convention that output variables
are considered as shared. Also, we have ActualReadParam(f1) = {t3, x},
WriteParam(f1) = {o, x}, ActualReadParam(f1’) = {t1 % td, x’} and
WriteParam(f1’) = {o, x’}. Fig. 4 presents pseudo-code for δ(f1). Note that
the input in sent to f̂1 and f̂1’ is nondeterministic. δ(f2) is trivial and not
shown here. Both programs are valid, and hence by (1), p.e.(P, P ′) holds. #$

Note that when constructing f̂ , we record both reads and writes in f̂ .out. The
following example shows that ignoring the order of reads makes (1) unsound.

Example 3. Consider the 2-threaded programs P (left) and P ′ (right) shown in
Fig. 5. Assume that all variables are initialized to 0, and x3,x4 are the outputs.
P ′ is identical to P other than the fact that the first two lines in f1() are
swapped. Thus, if reads are not recorded in f̂ .out, then V Cδ(f1) and V Cδ(f2)
are both valid. Hence, our proof rule would imply that P and P ′ are partially
equivalent. But this is in fact wrong, as we now demonstrate.

If x4 = 1 at the end of P ’s execution, then the instruction t2 = x1 in f2()

must have happened after the instruction x1 = 1 in f1(). Therefore t1 reads
the value of x2 before it is updated by f2(), which means that t1, and hence
x3, are equal to 0. Hence, at the end of any execution of P , x4 = 1 ⇒ x3 = 0.

On the other hand, in P ′, after the computation x1 = 1; t2 = x1; x2 = 2;

t1 = x2; x3 = t1; x4 = t2; we have (x4 = 1, x3 = 2). Since this output is
impossible in P , then ¬p.e.(P, P ′). Hence, our proof rule would be unsound. #$
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void f̂1 (int td, int *o) {
int t1, t2, t3, c = 0;

if (td <= 0) {
//2 � t2 = x;

t2 = UF_x(c);

out1 += (R, "x"); c++;

} else {
//2 � t1 = x;

t1 = UF_x(c);

out1 += (R, "x"); c++;

//3 � x = td;

t3 = t1 % td;

x = td;

out1 += (W, "x", td); c++;

//3 � t2 = f1(t3, &t2);

t2 = UF_f1_o(t3, x);

x = UF_f1_x(t3, x);

out1 += (C, f1, t3, x);

}
//1 � *o = t2;

out1 += (W, "*o", t2); c++;

}

void f̂1′(int td, int *o’) {
int t1, t2, c = 0;

//2 � t2 = x’;

t2 = UF_x(c);

out2 += (R, "x’"); c++;

if (td > 0) {
//2 � t1 = x’;

t1 = UF_x(c);

out2 += (R, "x’"); c++;

//2 � x’ = td;

x’ = td;

out2 += (W, "x’", td); c++;

//3 � f1’(t1 % td, &t2);

t2 = UF_f1_o(t1 % td, x’);

x’ = UF_f1_x(t1 % td, x’);

out2 += (C, f1, t1 % td, x’);

}
//1 � *o’ = t2;

out2 += (W, "*o’", t2); c++;

}

main() {
int in;

f̂1(in); f̂1′(in);
rename(out2);

assert(out1 == out2);

}

Fig. 4. For Example 2: Pseudo-code for δ(f1), where n � X denotes that the next n
lines encode X

The above example also demonstrates that even minor alterations in the order
of reads and writes in a thread – alterations that do have any effect in a sequential
program – lead to loss of partial equivalence. This leads us to believe that there
is little hope for a rule with a significantly weaker premise than (1).

4.3 Definitions

In this section we present definitions used later to prove the soundness of (1).

Definition 2 (Finite Read-Write trace). A finite Read-Write trace (or RW-
trace for short) is a sequence (A, var, val)∗, where A ∈ {R,W}, var is a shared
variable identifier and val is the value corresponding to the action A on var.

By ‘trace’ we mean a finite RW trace, and RW is the set of all RW traces.

Definition 3 (Function semantics). The semantics of a function f under
input in is the set of traces possible in f(in) under an arbitrary program envi-
ronment and input.

We denote by [f(in)] the semantics of f under input in.
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f1() {
t1 = x2;

x1 = 1;

x3 = t1;

}

f2() {
t2 = x1;

x2 = 2;

x4 = t2;

}

f1’() {
x1 = 1;

t1 = x2;

x3 = t1;

}

f2’() {
t2 = x1;

x2 = 2;

x4 = t2;

}

Fig. 5. Example programs P (left) and P ′ (right). All variables are of integer type.

Definition 4 (Sequential consistency). An interleaving t of traces t1, . . . , tn
is sequentially consistent if when (W, var, v1) is the last write action to var
before a read action (R, var, v2) in t, then v1 = v2.

Let �� (t1, . . . , tn) denote the set of sequentially consistent interleavings of
t1, . . . , tn. The extension to sets of traces S1, . . . , Sn is given by:

�� (S1, . . . , Sn) =
⋃

t∈S1×···×Sn

�� (t) .

Definition 5 (Program semantics). Let P = f1 ‖ . . . ‖ fk be a program. The
semantics of P , denoted by [P ], is the set of terminating traces defined by:

[P ] =
⋃
in

�� ([f1(in)], . . . , [fk(in)]) .

Example 4. Consider the functions f1() and f2() from Fig. 5. Let Z be the set
of all integers. We have:

[f1] =
⋃
z∈Z

{〈(R, x2, z), (W, x1, 1), (W, x3, z)〉}

[f2] =
⋃
z∈Z

{〈(R, x1, z), (W, x2, 2), (W, x4, z)〉}

Now consider the program P = f1 ‖ f2. Assume that all global variables are
initialized to 0 Then, we have:

[P ] = { 〈(R, x2, 0), (W, x1, 1), (W, x3, 0), (R, x1, 1), (W, x2, 2), (W, x4, 1)〉,
〈(R, x1, 0), (W, x2, 2), (W, x4, 0), (R, x2, 2), (W, x1, 1), (W, x3, 2)〉,
〈(R, x2, 0), (R, x1, 0), (W, x1, 1), (W, x3, 0), (W, x2, 2), (W, x4, 0)〉, . . .} #$

Let [f̂(in)] denote the possible values of f̂ .out under input in. We now show

how [f(in)] is obtained from [f̂(in)], by recursively expanding all function calls.

For conciseness from hereon we frequently omit in from the notations [f̂(in)]

and [f(in)], i.e., we write [f̂ ] and [f ] instead.

Definition 6 (Finite Read-Write-Call trace). A finite Read-Write-Call
trace (or RWC trace for short) is a sequence {(A, var, val)∪ (C, f, a1, . . . , ak)}∗,
where A, var and val are the same as RW traces, f is a function, and a1, . . . , ak
are values passed as arguments to f .
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For an RWC trace t, we write CS(t) to mean the set of functions appearing
in t, i.e.,:

CS(t) = {f | (C, f, . . .) ∈ t} .
Expanding a function call requires to map it to the traces of the called function.
For this purpose we define a function μ : CS(t) (→ 2RW (recall that RW is
the set of all traces). Then, inline(t, μ) ⊆ RW is defined as follows: a trace t′

belongs to inline(t, μ) iff t′ is obtained by replacing each element (C, f, . . .) in t
with an element of μ(f).

Definition 7 (Bounded semantics of a function). The bounded semantics
of a function f is its RW traces up to a given recursion depth. Formally:

[f ]0 = [f̂ ] ∩RW

and for i > 0,

[f ]i =
⋃

w∈[f̂]

inline(w, μi
f ) ∩ [f ], where

μi
f (f) = [f ]i−1 and ∀g �= f called by f � μi

f (g) = [g] .

Less formally, at a recursive call (i.e., when g = f), μi
f inlines a trace of f that

involves fewer than i recursive calls of f , and at a nonrecursive function call (i.e.,
when g �= f) it inlines an arbitrary trace of g. Observe that the semantics of a
function can be defined as a union of its bounded semantics:

[f ] =
⋃
i≥0

[f ]i . (2)

Example 5. Recall the factorial function g from Fig. 2. Then we have:

[ĝ] = {〈(W, o1, 0!)〉} ∪
⋃

z∈Z∧z>0

〈(C, g, z − 1), (W, o1, z!)〉

∀i ≥ 0� [g]i =
⋃

0≤z≤i

{〈(W, o1, 0!), (W, o1, 1!), . . . , (W, o1, z!)〉}

[g] =
⋃
z≥0

{〈(W, o1, 0!), (W, o1, 1!), . . . , (W, o1, z!)〉}

#$

4.4 Soundness

We now prove the soundness of (1) in three stages:

1. In Theorem 1 we prove that for any function f , the following inference is
sound:

∀g ∈ cg(f)� δ(g)
∀in� [f(in)] = [f ′(in)]

.

This establishes the connection between the premise of (1) and the equal
semantics of mapped threads.
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2. Then, in Theorem 2 we prove that the following inference is sound:

∀i ∈ [1..k] ∀in� [fi(in)] = [f ′
i(in)]

[P ] = [P ′]
.

This establishes the connection between the equivalence of semantics of in-
dividual threads, and the equal semantics of their composition.

3. Finally, in Theorem 3 we prove that [P ] = [P ′] ⇒ p.e.(P, P ′), which is the
desired conclusion.

Theorem 1. For any function f , the following inference is sound:

∀g ∈ cg(f)� δ(g)(
∀i ≥ 0 ∀in� [f(in)]i = [f ′(in)]i

)
∧ ∀in� [f(in)] = [f ′(in)]

.

Proof. Note that, owing to (2), the left conjunct in the consequent implies the
right one. Hence it suffices to prove the former.

Let L(f) be the number of nodes in cg(f). The proof is by simultaneous
induction on i and L(f), for an arbitrary input in.

Base Case: Suppose i = 0 and L(f) = 1, which means that f and f ′ do
not have function calls. In this case the inference holds by construction of δ(f),

because the RW traces in f̂(in) are exactly those in [f(in)]0, and δ(f) implies

that f̂ and f̂ ′ generate the same RW trace given the same input.
Inductive step: Suppose i = n and L(f) = l and suppose that the theorem

holds for all i < n and for all L(f) < l. Consider any t ∈ [f(in)]i and let

t̂ ∈ [f̂(in)] such that t ∈ inline(t̂, μi
f ). Now define:

μi
f ′(f ′(in)) = [f ′(in)]i−1 and ∀g′ �= f ′called by f ′ � μi

f ′(g′(in)) = [g′(in)] .

By the inductive hypothesis, we know that ∀g ∈ cg(f)� μi
f (g(in)) = μi

f ′(g′(in)).

Therefore, t ∈ inline(t̂, μi
f ′). Using the same argument as in the base case, we

know that t̂ ∈ [f̂ ′(in)]. Therefore, from the definition of [f ′(in)]i, we know
that t ∈ [f ′(in)]i. Since t is an arbitrary element of [f(in)]i, we conclude that
[f(in)]i ⊆ [f ′(in)]i. The same argument applies if we swap f and f ′. Thus,
[f ′(in)]i ⊆ [f(in)]i and, therefore, [f(in)]i = [f ′(in)]i. This result holds for all
inputs, since we did not rely on any particular value of in. #$

Theorem 2. The following inference is sound:

∀i ∈ [1..k] ∀in� [fi(in)] = [f ′
i(in)]

[P ] = [P ′]
.

Proof. By definitions 3, 4, and 5, we know that:

[P ] =
⋃
in

�� ([f1(in)], . . . , [fk(in)]) =
⋃
in

⋃
t∈[f1(in)]×···×[fk(in)]

�� (t) and,
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[P ′] =
⋃
in

�� ([f ′
1(in)], . . . , [f

′
k(in)]) =

⋃
in

⋃
t′∈[f ′

1(in)]×···×[f ′
k(in)]

�� (t′) .

But since for i ∈ [1..k] and for all input in [fi(in)] = [f ′
i(in)], t and t′ range

over the same sets of trace vectors. Hence [P ] = [P ′]. #$

We now prove the soundness of the first rule.

Theorem 3. Proof rule (1) is sound.

Proof. Let P = f1 ‖ . . . ‖ fk and P ′ = f ′
1 ‖ . . . ‖ f ′

k. From the premise of the
proof rule, and Theorem 1, we know that:

∀i ∈ [1..k] ∀in� [fi(in)] = [f ′
i(in)] .

Therefore, by Theorem 2, we know that [P ] = [P ′]. Observe that for any input
in and output out, (in,out) ∈ R(P ) iff ∃t ∈ [P ] starting from in and ending
with out. Recall that all the outputs of P, P ′ are assumed to be through shared
variables. It is clear then, that if [P ] = [P ′] then for a given input they have the
same set of outputs. Hence, we reach the desired conclusion. #$

4.5 The Value of Partial Success

Since (1) requires δ(f) to hold for all functions, it is interesting to see if anything
is gained by proving that it holds for only some of the functions. Recall that
Definition 1 referred to whole programs. We now define a similar notion for a
function f with respect to the program P to which it belongs. By R(f) we denote
the I/O relation of f with respect to P . Formally, R(f) is the set of all pairs
(in,out) such that there exists a computation of P (including infinite ones) in
which there is a call to f that begins with ReadParam(f) = in and ends with
WriteParam(f) = out.

Definition 8 (Partial equivalence of functions in MT programs). Two
functions f and f ′ are partially equivalent in their respective nondeterministic
programs if R(f) = R(f ′).

Denote by p.e.(f, f ′) the fact that f and f ′ are partially equivalent according
to Definition 8. Now, suppose that for some function f , ∀g ∈ cg(f) � δ(g).
Then, Theorem 1 implies that ∀in � [f(in)] = [f ′(in)]. Considering the main
goal of regression verification – providing feedback about the impact of changes
to a program – this is valuable information. It implies that the observable be-
havior of f, f ′ can only be distinguished by running them in different environ-
ments. Note that this does not imply that f, f ′ are partially equivalent according
to Definition 8, since they may have different I/O relation under the environ-
ments provided by P and P ′ respectively. On the other hand it is stronger than
I/O equivalence of f, f ′ under arbitrary but equivalent environments, because it
makes a statement about the entire observable behavior and not just the outputs.

While partial results are useful, our first rule prevents us from proving
p.e.(P, P ′) if even for one function g, δ(g) is false. Our second rule is aimed
at improving this situation.
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void f1(int *o)

{
int t = x;

if (t < 0)

t = -t;

*o = t;

}

void f2(int i)

{
int t = i;

if (t < 0)

t = -t;

x = t;

}

void f1’(int *o’)

{
int t = x’;

*o’ = t;

}

void f2’(int i)

{
int t = i;

if (t < 0)

t = -t;

x’ = t;

}

Fig. 6. The programs f1 ‖ f2 and f1’ ‖ f2’ are partially equivalent, but since the
equivalence of f1 and f1’ depend on the values generated by f2 and f2’ (specifically,
it depends on the fact that these functions update the shared variable with a positive
value), δ(f1) is false, which falsifies the premise of (1). On the other hand rule (4)
proves their equivalence.

5 Second Proof Rule

The premise of our second rule, like the first one, is observable equivalence of
pairs of functions under equal environments. However, unlike the first rule, the
environments are not arbitrary, but rather consistent with the other threads in
the program. This enables us to prove equivalence of programs like the ones in
Fig. 6. Note that the functions f1 and f1’ are equivalent only if their respective
environments always write non-negative values to x and x’.

5.1 Recursion-Bounded Abstraction

As mentioned, for our second rule, when checking the equivalence of f and f ′,
we want to restrict their inputs from the environment to those that are actually
produced by the other threads. In general this is of course impossible, but we now
suggest an abstraction based on the observation that a bound on the number of
reads of shared variables in any execution of f̂ can be computed, since it does
not contain loops and interpreted function calls. Let B(f̂) denote this bound.

Given a thread rooted at fq, and a bound b, we construct its recursion-bounded
abstraction f b

q , which overapproximates that thread, by transforming each re-
cursive function g ∈ cg(fq) according to the scheme shown in Fig. 7. The key
idea is to bound the number of recursive calls, and make each of them start from
a nondeterministic state (this is achieved with havoc vars) . This emulates b
calls to g that are not necessarily consecutive in the call stack.

To understand what this construction guarantees, we define the following:
let W denote the set of all possible sequences of writes to shared variables
that can be observed in an execution of fq. A b-sequence is a sequence of b
or less elements from s ∈ W that is consistent with the order of s. For exam-
ple, if W = 〈(x, 1), (x1, 2), (x, 2), (x1, 1)〉 and b = 2, then some b-sequences are
〈(x, 1), (x1, 1)〉, 〈(x1, 2), (x, 2)〉, 〈(x, 1)〉 etc. We now claim without proof that:

Claim 1. Every b-sequence of fq can also be observed in some execution of f b
q .
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bool rec_flag_g = 0; int rec_count_g = 0;

gb() {
assume(rec_count_g < b); ++rec_count_g;

if (rec_flag_g) havoc_vars();

The rest is the same as ĝ , except that:
1. the RWC trace is recorded in a list out_q common to all g ∈ cg(fq).
2. a recursive call to g() is replaced by: rec_flag_g = 1; gb(); rec_flag_g = 0;

}

Fig. 7. To derive the recursion-bounded abstraction fb
q of a thread root-function fq,

we replace each g ∈ cg(fq) with gb as described here. Although gb is still recursive,
the assume statement in the beginning guarantees that only b calls are made, which
makes reachability decidable.

This fact guarantees that the recursion-based abstraction allows a function f̂ to
interact with f b

q in any way it can interact with fq, if b ≥ B(f̂).

5.2 The Proof Rule

Let f ∈ cg(fi) and b = B(f̂). Define the predicate Δ(f) as being true iff the
following sequential program, V CΔ(f), is valid for all input vectors in:

V CΔ(f) : f b
1(in); . . . ; f

b
i−1(in); f̂(in); f

b
i+1(in); . . . ; f

b
k(in);

check assumption(f̂ .out, i);

f̂ ′(in); assert(f.out == f ′.out);

(3)

Here f̂ is constructed from f as before (see Sec. 4.1). The implementation of
check assumption is shown in Fig. 8. The goal of this function is to constrain the
values of shared variables read by f̂ to the last value written by either f̂ or some
other thread. We assume that the array w used in lines 6 and 11 is initialized to 0,
emulating a case that the variable read in line 11 is the initial value (in C global
variables are initialized to 0 by default). Furthermore, it guarantees (through
lines 13–15) that the values are read in the same order that they are produced
by the environment, while allowing skips. The function last(var, tid, loc) that is
invoked in line 16 returns the index of the last write to var in thread tid at or
before location loc. More information is given in the comments and caption.

Our second proof rule for partial equivalence of two MT programs P, P ′ is:

∀i ∈ [1..n]� Δ(fi)

p.e.(P, P ′)
. (4)

Example 6. Rule (4) proves the equivalence of the programs in Fig. 6, whereas
rule (1) fails because δ(f1) is false. #$
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check_assumption(list out, thread-id i) {
int cf[k] = {0,..,0}; // location in ‘out j’ for j �= i
for(; q < |out|; ++q) { // recall that out is f.out

if(out[q] == (C,...)) continue; // skipping function calls
if(out[q] == (W,...)) { // suppose out[q] == (W, ”x”, v))

6: w[‘x’] = v; // storing the written value
} else { // suppose out[q] = (R, ”x”)

j = *; // j is the thread from which we will read x
assume (j ∈ {i | 1 <= i <= k, thread i already wrote to x});
if (j == i) // reading x from f itself

11: assume(UF_f_x(q) == w[‘x’]); // enforcing x = last written value
else { // reading x from another thread

13: oldcf = cf[j];

14: cf[j] = *; // nondet jump
15: assume(oldcf <= cf[j] < |out_j|);

16: ll = last("x", j, cf[j]); // last location ≤ cf[j] in out j
// in which x was written to

17: assume(UF_f_x(q) == out_j[ll]); // enforcing x to a value
// written-to by thread j

} } } }

Fig. 8. Pseudocode of check assumption(). This function enforces the value that was
read into a shared variable (through a call to an uninterpreted function) be equal to the
last value it wrote or to a value written to this variable by some other thread. Lines 13–
15 guarantee that the values are read in the same order that they are produced while
allowing skips. The lists out 1 . . . out k correspond to the lists mentioned in Fig. 7.

5.3 Soundness of the Proof Rule

Let f and g be functions such that g ∈ cg(f) and let t ∈ [f ] be a RW trace.
Consider all computations of f that run through g and whose observable behavior
is t. Their subcomputations in g have corresponding subcomputations in [ĝ]. Let
[ĝ]t denote this set of subcomputations. The following claim, which follows from
Claim 1, will be useful to prove the soundness of our proof rule.

Claim 2. Let f1, . . . , fk be functions and let t1, . . . , tk be traces such that ∀i ∈
[1..k]� ti ∈ [fi] and �� (t1, . . . , tk) �= ∅. Then, ∀i ∈ [1..k]� ∀g ∈ cg(fi)� ∀t̂ ∈ [ĝ]ti ,
there exists an execution of the program:

f b
1(in); . . . ; f

b
i−1(in); ĝ(in); f

b
i+1(in); . . . ; f

b
k(in);

check assumption(i);

such that at the end of the execution ĝ.out = t̂.

Theorem 4. Inference rule (4) is sound.

Proof. Falsely assume that P and P ′ are not partially equivalent despite the
validity of the premise. This means that ∃t ∈ [P ] \ [P ′], which in itself implies
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∃t ∈�� ([f1], . . . , [fk])\ �� ([f ′
1], . . . , [f

′
k]). Since t ∈�� ([f1], . . . , [fk]), we know that

∃t1, . . . , tk such that ∀i ∈ [1..k]. ti ∈ [fi] and t ∈�� (t1, . . . , tk).
Since t �∈�� ([f ′

1], . . . , [f
′
k]), there exists at least one index i ∈ [1..k] such that

ti �∈ [f ′
i ]. This implies that there must be at least one function g ∈ cg(fi) for

which ∃t̂ ∈ [ĝ]ti� t̂ �∈ [ĝ′]. By Claim 2 there exists an execution e of the program:

f b
1(in); . . . ; f

b
i−1(in); ĝ(in); f

b
i+1(in); . . . ; f

b
k(in);

check assumption(i);

such that at the end of the execution ĝ.out = t̂. But since Δ(g) is valid, then

ĝ.out = ĝ′.out, and hence t̂ ∈ [ĝ′] — a contradiction. #$

6 Conclusion and Future Work

We proposed theoretical foundations for extending regression verification to
multi-threaded programs. We defined a notion of equivalence of nondeterminis-
tic programs, and presented two proof rules for regression verification of general
multi-threaded programs against this notion of equivalence. The premises of the
rules are defined by a set of sequential programs (one for each function), whose
validity is decidable and expected to be relatively easy to check.

One of the main areas for further investigation is to improve completeness.
One direction is to use reachability invariants to strengthen the inference rules,
similar to those found by threader [6] for the case of property verification.
Also, note that we did not consider locks at all, and indeed without locks it
is very hard to change a program and keep it equivalent. We therefore expect
that integrating synchronization primitives into our framework will also assist in
making the rules more complete. Finally, adding support for reactive programs
and dynamic thread creation are also important avenues for further work.
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Abstract. We present Crowfoot, an automatic verification tool for im-
perative programs that manipulate procedures dynamically at runtime;
these programs use a heap that can store not only data but also code
(commands or procedures). Such heaps are often called higher-order
store, and allow for instance the creation of new recursions on the fly. One
can use higher-order store to model phenomena such as runtime loading
and unloading of code, runtime update of code and runtime code gener-
ation. Crowfoot’s assertion language, based on separation logic, features
nested Hoare triples which describe the behaviour of procedures stored
on the heap. The tool addresses complex issues like deep frame rules
and recursion through the store, and is the first verification tool based
on recent developments in the mathematical foundations of Hoare logics
with nested triples.

1 Introduction

Dynamic memory that can store not only data but also code is often called
higher-order store. Such memory allows program code to change during execution
with the manipulation performed by the program itself. For instance, one may be
able to write code onto a mutable heap, invoke it, manipulate it, and then invoke
it again later when needed. With higher-order store one can model phenomena
such as runtime loading and unloading of code — as performed in plugin systems,
operating system kernels and dynamic software update systems — and runtime
code generation.

Logics with nested triples [17,11], where assertions can contain Hoare triples
which describe the behaviour of code stored on the program’s heap, have been
proposed as a way to reason modularly about higher-order store programs. Re-
cent developments [17,18] have provided solid theoretical foundations for sep-
aration logics with nested triples. In this paper we present Crowfoot, the first
automatic verification system to apply these developments in practice. Crowfoot
has been inspired by previous tools for automated verification using (conven-
tional) separation logic, such as Smallfoot [3].
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The Crowfoot tool provides (semi-)automatic verification for imperative pro-
grams which make use of higher-order store. Crowfoot uses an extension of sepa-
ration logic for higher-order store, and performs its proofs by symbolic execution
[4]. The main distinctive features of the Crowfoot verifier are:

– availability of nested triples for reasoning about stored procedures
– built-in support for recursive specifications for recursion through the store
– built-in support of the “deep frame rule”, allowing correct and powerful

framing of invariants in the presence of stored procedures
– built-in support of partial application of stored procedures
– an automatic prover for entailments between triples (as well as the usual

entailments between assertions), supporting modular verification
– a sound theoretical underpinning of the implementation.

Running example. We demonstrate Crowfoot using the program in Fig. 1. Note
that grey shaded parts are annotations for the verifier and are not part of the
program code. They will be explained in Section 2.3. Our example concerns a
recursive implementation fib of the Fibonacci function, which makes its recursive
calls through the store. Since the “internal” recursive calls are made through
the store, we can “hook into” the recursion and provide a memoisation routine
mem which also caches these internal calls. This kind of memoisation cannot
be implemented for a conventional recursive implementation of the Fibonacci
function. This is more challenging than the factorial function which is typically
used [11,2,9] to illustrate recursion through the store.

We will use Crowfoot to prove that the fib code, with or without the memoiser,
is memory safe and correctly computes the Fibonacci function. In the process
we will demonstrate the features of Crowfoot which make this possible.

2 Programming and Assertion Languages

2.1 Programming Language Featuring Higher-Order Store

Crowfoot works with an imperative heap-manipulating language with recursive
procedures and, crucially, higher-order store operations. Fig. 2 includes a gram-
mar for program statements. Square brackets are used for dereferencing ad-
dresses, so x := [a] reads the content at address a into the variable x, whereas
[a] := x stores the value of x at address a in the heap1.

There are two statements for using the higher-order store. Statements like
[a] := proc F(x, ) write the code of fixed procedure F to the heap at address
a. Each argument is either a variable or the symbol; where variables are given
these are used to perform partial application of the procedure. Allowing pro-
cedures to be partially applied at the time they are stored on the heap is the
simplest way to enable programs to write non-constant procedures onto the heap.

1 In Fig. 2, where there is a danger of confusion, we write [] for square brackets that
are part of the programming language, and [] for “meta-brackets” that are used in
grammar definitions. We write | for choice and ? for optional elements.
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const res ;

proc fib(a, n) {
locals p, q, k;

if n ≤ 0 then {
[res] := 0;

ghost fold $Rel(n, 0)

} else {
if n = 1 then {
[res ] := 1;

ghost fold $Rel(?, ?)

} else {
k := n− 2;

eval [a](a, k); p := [res ];

k := n− 1;

eval [a](a, k); q := [res ];

[res ] := p+ q;

ghost fold $Rel(n, p+q)

}}}

proc mem(lookupL, addL, createL,

disposeL, al , f, a, n) {
locals found , b, v;

ghost unfold $S(?, ?, ?, ?, ?, ?, ?);

found := new 0;

eval [lookupL](al , n, found , res);

b := [found ]; dispose found ;

if b = 0 then {
ghost fold $S (?, ?, ?, ?, ?, ?, ?);

eval [f ](a, n);

ghost unfold $S(?, ?, ?, ?, ?, ?, ?);

v := [res ]; eval [addL](al , n, v)

} else { skip };
ghost fold $S(?, ?, ?, ?, ?, ?, ?) }

proc useFib(lookupL, addL, createL,

disposeL) {
locals al , a, f, n;

f := new 0;

al := new 0;

eval [createL](al);

[f ] := proc fib( , ) deepframe DeepInv ;

a := new 0;

[a] := proc mem(lookupL, addL, createL,

disposeL, al , f, , );

ghost fold $S(?, ?, ?, ?, ?, ?, ?);

n := 31337;

eval[a](a, n);

ghost unfold $S(?, ?, ?, ?, ?, ?, ?);

ghost unfold $ListLibWeak(?, ?, ?, ?);

eval [disposeL](al);

dispose a; dispose f ; dispose lookupL;

dispose addL; dispose createL;

dispose disposeL; dispose res

}

proc main() {
locals lookupL, addL, createL, disposeL;

lookupL := new 0; addL := new 0;

createL := new 0; disposeL := new 0;

call load list lib(lookupL, addL,

createL, disposeL);

ghost unfold $ListLibStrong(?, ?, ?, ?);

ghost fold $ListLibWeak(?, ?, ?, ?);

call useFib(lookupL, addL, createL, disposeL)

}

proc load list lib(lookupL,

addL, createL, disposeL) {. . .}

Fig. 1. Our running example program. (DeepInv is defined in Fig. 4.)
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integer variables x, fixed procedure names F , integer literals n, declared constants c

address expr eA ::= x | c | x+ n | x+ c

value expr eV ::= n | x | c | eV + eV | eV − eV | eV × eV

statement C ::= skip | At | C;C | if eV = eV then C else C

| while eV = eV do C | while eV �= eV do C

argument t ::= x | c
atomic statement At ::= x := eV | x := [eA] | [eA] := eV | [eA] := [eA]

| x := new eV
+ | dispose eA | call F(t∗)

| eval [eA](t∗) | [eA] := proc F([t| ]∗)

Fig. 2. Abstract syntax for program statements

As our syntax uses to represent arguments not yet “filled in”, we can supply
any subset of the arguments, not just initial segments. The statement eval[a](t)
runs the procedure stored on the heap at address a, with value parameters t,
faulting if address a does not contain a procedure of the appropriate arity.

2.2 Assertion Language

Fig. 3 gives the syntax for the assertion language. Based on [17], the language
allows nested triples to appear in assertions, such that we can reason about stored
procedures. The assertion x (→ ∀a. {a (→ }·(a) {a (→ }, for example, states that
the content at address x is a procedure which satisfies the given Hoare triple.2

Additions to the logic of [17] are the set and element expressions. In the formula
P(eV

∗; eS
∗), the ; separates integer arguments from set arguments. An assertion

is called pure if it is made up only of (in)equalities, set constraints and predicates
whose definitions are pure; pure formulae do not depend on the heap3.

When building formal verification tools there is a trade-off between expres-
siveness of the specifications that one considers, and the degree of automation
one can achieve. Rather than using the full assertion language, we restrict our-
selves to the fragment given in Fig. 3; in return for this sacrifice we are able to
program an effective automatic entailment prover in a fairly natural way.

2.3 Crowfoot Input Language

Crowfoot accepts annotated programs written using the programming and asser-
tion languages given in the previous subsections. Specifically, a Crowfoot input
program is a sequence of declarations, which can be of the following kinds:

2 During the proof process, constants may be substituted into the arguments of the
nested triple, which explains why the definition of B in Fig. 3 uses t.

3 Here for convenience we follow Smallfoot’s implementation and have only one kind
of conjunction � in our logic; we do not include ∧. The pure formulae such as x = y
are then given a non-standard interpretation, also requiring that the heap be empty.
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set variables α, predicate names P

element expressions eE ::= eV | (eE+)
set expressions eS ::= α | eS ∪ eS | {eE} | ∅
behavioural spec. B ::= ∀[x|α]∗. {P} · (t∗){Q}
content spec. C ::= eV | | B
atomic formula A ::= eA �→ C+ | P(eV ∗; eS∗) | eV = eV | eV �= eV

| eE ∈ eS | eE /∈ eS | eS ⊆ eS | eS = eS
spatial conjunction Φ,Θ, Υ ::= emp | A � Θ
assertion disjunct Ψ ::= ∃[x|α]∗.Θ
assertion P,Q ::= false | Ψ ∨ P

Fig. 3. Abstract syntax for Crowfoot’s assertion language

decl ::= const c | const c = n | forall P
| recdef P(x∗;α∗) := P | recdef P(x∗) := P(x∗) ◦ Ψ
| proc F(x∗) forall [x|α]∗. pre : P post : Q { locals x∗; C }
| proc abstract F(x∗) forall [x|α]∗. pre : P post : Q

The keyword const is used to declare named constants, optionally with a par-
ticular value. The keyword recdef is used to declare user-defined inductive or
recursive predicates, such as for linked data structures and for recursion through
the store. Examples, in Fig. 4, will be discussed in the next section. Declaration
forall P declares P to be an “abstract” or universally quantified predicate, i.e.
one that may be used in specifications but has no definition (and thus cannot
be folded or unfolded).

Finally, the keyword proc is used to declare procedures. Procedures have a
name, a formal parameter list, a pre- and post-condition, and a body. The forall
keyword is used to universally quantify variables over both the pre- and post-
condition. Procedures declared as abstract do not have a body, just a specifi-
cation; abstract procedures are typically used when we want to describe the
behaviour of some library routine without giving an implementation.

Statement annotations. In programs checked by Crowfoot, some of the state-
ments need to be annotated with extra information to help the verifier. These
annotations consist of the following changes to the statement grammar of Fig. 2:

statement C ::= . . . | while eV [=|�=] eV P do C

atomicst At ::= . . . | ghost ghoststmt | call F(t∗) deepfr-annot?

| [eA] := proc F([t| ]∗) deepfr-annot?

ghoststmt ::= fold P([eV |?]∗; [eS|?]∗) | unfold P([eV |?]∗; [eS |?]∗)
deepfr-annot ::= deepframe Ψ
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Loops are annotated with invariants (as in Smallfoot and VeriFast). Like Ver-
iFast, Crowfoot needs annotations to indicate at which locations it is necessary
to fold or unfold user-defined predicates4. These annotations take the form of
ghost fold and ghost unfold statements. For example, in order to reason about
code which disposes the head of a linked list, one needs to unfold the induc-
tively defined list predicate to expose the head node. Arguments to predicates
being folded and unfolded can be given, or they can be left blank using ‘?’ in
which case Crowfoot attempts to find appropriate instantiations. Crowfoot is
able to recognise predicate definitions which fit a general pattern for being “list-
segment-like”, and two further ghost statements split and join are available for
these; as they are not needed in our running example we will not describe them.

2.4 Deep Framing

The deep frame rule [5,17] allows one to infer {P}C {Q} ⊗ I from {P}C {Q},
where ⊗ is a deep framing operator. Intuitively this operator adds the invariant
I not just to the pre- and post-conditions of the triple {P}C {Q}, but also to
all triples nested inside P and Q, at all levels. For example,

∀a. {a (→ {emp} · () {emp}} · (a) {emp} ⊗ y (→
⇔ ∀a. {a (→ {y (→ } · () {y (→ } � y (→ } · (a) {y (→ }

as can be proved using the distribution laws for ⊗ found in [17]. This is useful for
modular reasoning as explained in [5] and as will be demonstrated by our running
example. The operator ◦ from [17], used in recdef definitions, is a convenient
shorthand: A ◦ I := (A⊗ I) � I.

The annotation deepframe I tells Crowfoot to add the invariant I deeply onto
the triple for a procedure; this can be done when a procedure is invoked with
call (but not with eval [8]), or when a procedure is first written to the heap.

Crowfoot implements deep framing using the ⊗ distribution laws from [17].
However there is no simple law for distributing ⊗ through recursively defined
predicates; instead, Crowfoot uses the following lemma.

Lemma 1. Given the following predicate definition

R(x) :=
n

	
i=1

vi (→ ∀ai. {R(e) � Fi} · (pi) {R(e) � Gi} � H

where: e may contain variables ai as well as x, each Fi, each Gi and H are all
left zeroes of ⊗ (i.e. informally they do not contain any nested triples), let us
define S(x,y) := R(x)◦T (y) where fv (T (y)) = y and y∩ai = ∅ (implicitly also
x∩y = ∅). Note that T may contain occurrences of S again. Then the following
equivalence holds:

S(x,y) ⇔
(

n

	
i=1

vi (→ ∀ai. {S(e,y) � Fi} · (pi) {S(e,y) � Gi}
)

� H � T (y)

4 Smallfoot [3] did not need fold/unfold ghost statements because only particular built-
in list and tree predicates were available. Crowfoot allows users to write their own
inductive definitions and thus, like VeriFast [13], requires extra annotations.
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recdef $Rel(n,m) := n ≤ 0 � m = 0 ∨ n = 1 � m = 1

∨ ∃a, b. 2 ≤ n � $Rel(n− 2, a) � $Rel(n− 1, b) � m = a+ b

recdef $RecFn(f) := f �→ ∀n, a.
{$RecFn(a) � res �→ } · (a, n) {∃v. $RecFn(a) � res �→ v ∗ $Rel(n, v)}

recdef $ListLibStrong(lookupL, addL, createL, disposeL) :=

lookupL �→ . . . � createL �→ . . . � disposeL �→ . . .

� addL �→ ∀al , key , value, κ.{
$AssocListH (al ;κ)
� $Rel(key , value)

}
·(al , key , value) {

$AssocListH (al ; {key} ∪ κ)}

recdef $ListLibWeak (lookupL, addL, createL, disposeL) :=

lookupL �→ . . . � createL �→ . . . � disposeL �→ . . .

� addL �→ ∀al , key , value.{∃κ. $AssocListH (al ; κ)
� $Rel(key , value)

}
·(al , key , value)

{∃κ.
$AssocListH (al ;κ)

}
recdef $S(a, f, al , lookupL, addL, createL, disposeL) := $RecFn(a) ◦DeepInv

where DeepInv abbreviates

∃κ.

⎛⎜⎜⎜⎜⎜⎜⎝

f �→ ∀n, a.{
$S(a, f, al , lookupL, addL, createL, disposeL) � res �→ }

·(a, n){∃v. $S (a, f, al , lookupL, addL, createL, disposeL) � res �→ v � $Rel(n, v)
}

� $AssocListH (al ;κ) � $ListLibWeak (lookupL, addL, createL, disposeL)

⎞⎟⎟⎟⎟⎟⎟⎠

recdef $AssocList(x; τ ) := x = 0 � τ = ∅
∨ ∃next , k, v, τ ′. x �→ k, v,next � $Rel(k, v) � $AssocList(next ; τ ′) � τ = {k} ∪ τ ′

recdef $AssocListH (x; τ ) := ∃y. x �→ y � $AssocList (y; τ )

Fig. 4. User-defined predicates used to specify and verify our running example

3 Specification of the Running Example

The specifications of the procedures in Fig. 1 can be found in Fig. 5. The auxiliary
predicate definitions are given in Fig. 4.

The fib implementation. Let us first examine how to specify the fib code.
Predicate $Rel(n,m) says that n andm are appropriately related for the function
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proc main()
pre : res �→ ;
post : emp;

proc fib(a,n)
pre : $RecFn(a) � res �→ ;
post : ∃v . $RecFn(a) � res �→ v � $Rel(n, v);

proc mem(lookupL, addL, createL, disposeL, al , f , a,n)
pre : $S(a, f , al , lookupL, addL, createL, disposeL) � res �→ ;
post : ∃m. $S (a, f , al , lookupL, addL, createL, disposeL) � res �→ m � $Rel(n,m);

proc useFib(lookupL, addL, createL, disposeL)
pre : res �→ � $ListLibWeak (lookupL, addL, createL, disposeL); post : emp;

proc load list lib(lookupL, addL, createL, disposeL)
pre : lookupL �→ � addL �→ � createL �→ � disposeL �→ ;
post : $ListLibStrong(lookupL, addL, createL, disposeL);

Fig. 5. Procedure specifications for the memoiser example

being computed; in this case we define $Rel(n,m) to mean that m is the nth
Fibonacci number. But this definition is only used inside the proof of fib, and
not when proving the generic components such as mem.

Suppose we try to write a precondition for the fib code. This precondition must
mention all the heap resources needed by fib. Firstly a cell res (→ is needed into
which we write the result. Secondly, since fib makes its recursive call through
the heap at the address given by parameter a, the precondition must include
a (→ B where B is a nested triple. In particular, B must state that the code
stored at a has the same kind of behaviour as we specify for the fib procedure.
But we don’t have fib’s specification yet, because we are still trying to formulate
its precondition! It appears that we need a specification which depends on itself.
Using the recdef keyword we can declare such a recursively defined specification,
namely the $RecFn predicate, which appears nested inside its own definition.

The memoiser. The memoiser implementation uses an association list data
structure, at address al , to cache the input-output pairs for the function being
memoised. An association list with a header cell, starting at address al and
containing values for a set κ of keys, is described by $AssocListH (al ;κ). Such
lists are manipulated via four library routines, pointers to which are passed in
the arguments lookupL, addL, createL, disposeL. Argument f to procedure mem
is a pointer to the code of the function being memoised; the memoiser must
call this code when the required data is not found in the cache. The arguments
lookupL, addL, createL, disposeL, al , f are fixed by partial application when the
memoiser is first loaded onto the heap. This leaves a two-argument procedure:
the first argument a is passed straight through to the function being memoised,
and the second argument n is the input at which to apply the function.

The memoiser is designed to be placed into mutual recursion with fib, or
similar code for computing other functions. During computations the fib code
and the memoiser then invoke each other in a “zig-zag” mutual recursion. The
“ensemble” of these two functions stored on the heap and able to invoke each
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other can be described by $S(a, f, al , lookupL, addL, createL, disposeL) which, by
Lemma 1, is equivalent to:

∃κ. a (→ RecFnMem(·) � f (→ RecFnMem(·)
� $AssocListH (al ;κ) � $ListLibWeak(lookupL, addL, createL, disposeL)

where RecFnMem(·) is shorthand for

∀a, n.

{
$S (a, f, al , lookupL, addL, createL, disposeL) � res (→

}
·(a, n){

∃v. $S (a, f, al , lookupL, addL, createL, disposeL) � res (→ v � $Rel(n, v)
}

Intuitively RecFnMem describes code which computes a function as specified by
$Rel , provided the heap contains the “ensemble” of function and memoiser code
as described above.

The main program. The main procedure first calls load list lib to load the
association list library routines onto the heap. Then, main invokes useFib which
loads the fib code and the memoiser, places them into mutual recursion, and
finally uses this to compute the 31337th Fibonacci number.

In useFib we see the crucial role of the deep frame rule. We have specified
(and Crowfoot will prove) fib for the case where it is placed in recursion only
with itself, using $RecFn. Hence, if the deepframe annotation were not used in
useFib, the symbolic heap after the statement [f ] := proc fib( , ) would contain

f (→ ∀a, n. {$RecFn(a) � res (→ }·(a, n) {∃v . $RecFn(a) � res (→ v � $Rel(n, v)}
However the annotation deepframe DeepInv tells Crowfoot to apply −⊗DeepInv
to the above triple, resulting in RecFnMem(·). In this way, we have used the
deep frame rule to derive another specification for the fib code, which describes
how that code works in mutual recursion with a memoiser. We did not need to
respecify or reprove fib.

The list library. The memoiser depends only on relatively weak properties
of the association list library; a library with these properties is specified by
$ListLibWeak . But the list library is specified with a stronger specification
$ListLibStrong so that it can also be used with other clients which need ad-
ditional guarantees. Specifications for three of the routines are omitted in Fig. 4,
but with the remaining “add” routine one can see a difference. In order to com-
pute the correct function, the memoiser does not care whether the (key , value)
pair is actually added to the list or not, as long as whatever pairs are in the list
afterwards are suitably related by $Rel . But other clients of the list library will
certainly care about this.

Our verification will go through because Crowfoot can prove the entailment

$ListLibStrong(lookupL, addL, createL, disposeL)
⇒ $ListLibWeak(lookupL, addL, createL, disposeL)

(1)

as we shall discuss in Section 5. Having such entailments proved automatically
facilitates reasoning when one is “plugging together” different pieces of code.
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4 Automation of Program Verification

4.1 Overview

The introduction of nested triples into the logic increases considerably the diffi-
culty of proving entailments automatically: because assertions can contain triples
and vice versa, we need provers for entailments between both assertions and
triples, and these provers need to invoke each other. In fact, at the heart of
Crowfoot are automated provers for five interrelated judgements:

– Symbolic execution: Π,Γ � {P}C{ Q }
– Entailment between assertion disjuncts: Φ � I ∃v. Υ � Θ
– Entailment between behavioural specifications (triples): B1 � B2

– Computing the postcondition for a call or eval: B �find-post {Φ} · (t){ Q }
– Finding specifications inside a symbolic state: Υ �find-tr e (→ B .

Here,Π is a predicate context mapping predicate names to their definitions (given
by recdef) and Γ is a procedure context mapping fixed procedure names to their
specifications (given by pre and post). C is a program statement. (As in Fig. 3)
P,Q are assertions, Ψ is used for assertion disjuncts, and Φ,Θ, Υ for spatial
conjunctions. Behavioural specifications are named B, and I is an instantiation
map mapping the existentially quantified variables v to appropriate witnesses.

Shaded variables (such as the frame Θ) are those whose value is not given as
an input to the prover, but rather is inferred by the proof rules. The meanings
of these judgements can be seen in the following soundness theorem, which for
now we simply state; we will discuss it later in Section 4.4.

Theorem 1. Soundness theorem. Our five proof systems are sound, that is:

– If Φ �I ∃v.Υ � Θ (where fv (Φ) ∩ v = ∅) then Φ ⇒ Υ [v\I(v)] � Θ where:
fv (Θ) ⊆ fv (Φ), dom(I) = v and fv(Im(I)) ⊆ fv (Φ).

– If B1 � B2 then B1 ⇒ B2.
– If B �find-post {Φ} · (t) {Q} then B ⇒ {Φ} · (t) {Q}.
– If Υ �find-tr e (→ B then Υ ⇔ e (→ B � Υ ′ for some Υ ′.
– Our symbolic execution rules are sound. #$

Verification of a program by Crowfoot proceeds as follows. First, Crowfoot’s ver-
ification condition (VC) generator reads in the annotated program and produces
a set of VCs, each of the form Π ;Γ � {P}C {Q}, such that if all the VCs hold
then the input program meets its specifications. There is one such VC for each
concrete procedure of the input program, with C being its body and P,Q the
pre- and post-conditions. Then the generated VCs are passed to the symbolic
execution engine which attempts to prove them. During symbolic execution, en-
tailment problems of various kinds arise: for instance when the end of a procedure
(resp. loop body) is reached, one must check an entailment between the current
symbolic state and the postcondition (resp. loop invariant). These entailments
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(between assertions) may give rise to entailments between triples because triples
can appear nested. When an eval statement is reached, �find-tr is employed to
find a triple to use for the invocation, and then �find-post is used to compute a
symbolic state holding after the invoked code returns.

4.2 Symbolic Execution Engine

Crowfoot’s symbolic execution engine is based on ideas put forward in [4] and
now well established. The symbolic execution rules, a few of which can be seen
in Fig. 7, depend on all four of the other judgements. One such rule is:

Lookup

purify(Υ ) �SMT E = G+ o
Π ;Γ �

{
x = (e[x\x′]) � (Υ � G �→ C0, . . . ,Co−1, e,Co+1, . . . ,Cn)[x\x′]

}
C {Q}

Π ;Γ � {Υ � G �→ C0, . . . ,Co−1, e,Co+1, . . . ,Cn}x := [E]; C {Q} x′ fresh

where purify(Υ ) extracts the pure parts of Υ , and �SMT represents sending a
pure goal to an SMT solver to be checked. The rules which are intrinsically new
in our work are those for the statements which make use of higher-order store,
namely eval [E](t) and [E] := proc F([t| ]∗). The rule for eval (where a ∈ [x|α]∗)
is:

Eval

Υ �find-tr E �→ ∀a.{P} · (t){Q}
∀a.{P} · (t){Q} �find-post {Υ} · (t′)

{
m∨
i=1

∃vi.Φi

}

Π ;Γ �

{
m∨
i=1

Φi[vi\v′
i]

}
C
{
Q′}

Π ;Γ � {Υ} eval [E](t′) ; C
{
Q′} v′

i fresh

This uses the �find-tr prover to find the specification ∀a.{P} · (t){Q} of the code
being invoked from the heap. Then the �find-post prover is used to compute all the
possible symbolic states ∃vi.Φi that may result from running that code. Finally,
symbolic execution is performed on the “continuation” statement C.

4.3 Entailment Provers

We sketch how our different entailment provers work. The selected rules we refer
to are listed in Fig. 6.

Entailments between assertion disjuncts. The main part of these proofs
involves successively cancelling spatial formulae from the left and right sides of
�. Sometimes these steps involve computing witnesses for existentially quantified
variables, which are added to the instantiation map I. For instance, the goal

Φ � x (→ 3 �I ∃u,v. Υ � x (→ u � Θ reduces to Φ �I′ ∃v. Υ [u\3] � Θ

by CancelPtInstContents, where we will take I := I ′[u := 3]. Note how the
rule CancelPtTriple for cancelling cells containing code invokes the prover for
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entailments between triples (specifications). The cancellation rules are designed
to reduce the goal to the form Υ �I Φ �Θ where Φ is pure. We finish by sending
the pure entailment problem purify(Υ ) �SMT Φ to an SMT solver, and we take
Υ as the inferred frame Θ.

Entailments between specifications.Most of the work of proving judgements
B1 � B2 is done by the TripleEnt rule, which breaks down the checking of an
entailment B � {Φ} · (t) {Q′} between specifications into two tasks. Intuitively,
we first use �find-post to try to compute a state Q we will end up in if we run
some code with specification B in a state satisfying Φ. We then check whether
Q implies the postcondition Q′.

Inferring postconditions for invocations. The main rule for �find-post is In-
ferSpecForCall. Underlying it is a combination of ∀-instantiation, the shal-
low frame axiom {P}C{Q} ⇒ {P � R}C{Q � R} and the consequence axiom.

Finding specifications inside a symbolic state. To be able to symbolically
execute an eval [e](t) statement, we need to first find in our symbolic heap a cell
e (→ B; we can then use the specification B to reason about the invocation. We
use �find-tr for finding such specifications. The most commonly used proof rule for
�find-tr is Find which covers the case when the required cell e (→ B is available in
the symbolic heap without performing any unfolding. Other proof rules, omitted
for space reasons, look inside occurrences of user-defined predicates to find the
appropriate specification.

4.4 Theoretical Basis

One distinctive feature of our tool is that we can prove its soundness, embodied
by Theorem 1. Due to lack of space we cannot go into detail, but we briefly
explain our soundness argument. Soundness is proved with respect to another
logic with nested triples, an extension of the logic of [17]5 which in turn has been
proved sound in loc. cit. via a model construction. It is relatively straightforward
to construct a step-indexed analogue which encompasses Crowfoot’s extra fea-
tures. It should be pointed out that soundness only holds for recursive predicates
that exist. For a predicate R such as $RecFn (Fig. 4), existence is guaranteed
because in its definition, R itself always occurs inside pre- and postconditions of
some triple. The corresponding semantic functional is contractive and thus the
predicate does exist via Banach’s fixpoint theorem. In general however, reasons
for existence may not be immediately clear, particularly for definitions that com-
bine the recursive uses of R (as in $RecFn) with inductive uses of R, as found
in definitions of linked list predicates. Our tool does not check for existence.

5 Excerpt from the Verification of the Running Example

During the symbolic execution of main, we see how the entailment prover for
assertions and the prover for specifications are mutually recursive. Before calling

5 Enriched by inductive and abstract predicates as well as recursively defined proce-
dures with explicit calls.
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InferSpecForCall

Φ �I ∃uk,a. Υk � Θ

∀a.
{

n∨
i=1

∃ui.Υi

}
· (t)

{
m∨
i=1

∃vi.Υ
′
i

}
�find-post {Φ} · (t)

{
m∨
i=1

(∃vi.Υ
′
i [a\I(a)] � Θ)

}

1. t ∩ a = ∅ 2. fv(Φ) ∩ uk = ∅ and fv(Φ) ∩ a = ∅
3. for each i ∈ {1, . . . ,m} we have vi ∩ a = ∅
4. for each i ∈ {1, . . . ,m}, no formula in I(a) contains a variable from vi

5. k ∈ {1, . . . , n} 6. uk ∩ a = ∅

TripleEnt

B �find-post {Φ} · (t)
{

m∨
i=1

∃vi.Υi

}
m∧
i=1

(
Υi[vi\ai] �Ii ∃bji .(Υ ′

ji
[wji\bji ]) � Θi

)

B � {Φ} · (t)
⎧⎨⎩

m′∨
i=1

∃wi.Υ
′
i

⎫⎬⎭
1. j1, . . . , jm ∈ {1, . . . ,m′}
2. a1, . . . ,am all chosen fresh
3. bj1 , . . . , bjm′ all chosen fresh
4. Θ1, . . . , Θm pure

CancelPtInstContents

Φ �I ∃v . Υ [v\E] � Θ

Φ � e �→ E �I[v:=E] ∃v, v . Υ � e′ �→ v � Θ

1. fv(e′) ∩ v = ∅ 2. v /∈ fv(e′)
3. purify(Φ) �SMT e = e′

CancelPtTriple

Φ �I ∃v . Υ � Θ B1 � B2

Φ � e �→ B1 �I ∃v . Υ � e′ �→ B2 � Θ

1. fv(e′, B2) ∩ v = ∅
2. purify(Φ) �SMT e = e′

Find

Φ � E �→ C0, . . . ,Co−1, B,Co+1, . . .Cn �find-tr e �→ B
purify(Φ) �SMT e = E + o

Fig. 6. Notable rules used in our automatic entailment provers

the useFib procedure, the $ListLibStrong predicate is unfolded, and folded up
into $ListLibWeak . This essentially means proving (1) on page 144, which is an
entailment between assertion disjuncts.

The proof proceeds by cancelling out the atomic formulae, which in this case
means using CancelPtTriple for each of the four library procedures. This is
where the entailment prover for specifications is needed: the premise of this rule
requires that each strong specification entails the respective weak variation.

This entailment is checked by the TripleEnt rule, which has two premises.
The first uses the judgement �find-post (with InferSpecForCall) which will
check that the weak pre-condition entails the strong pre-condition, with some in-
ferred frame left over (in this case the frame is trivial). For the second premise it is
required to prove that the strong postcondition (together with the frame) entails
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the weak one. Using again the entailment prover for assertion disjuncts, Crowfoot
proves: $AssocListH (al , {key} ∪ κ) �[κ′ →{key}∪κ] ∃κ′. $AssocListH (al , κ′).

6 Related and Future Work

Crowfoot can be considered as extending Smallfoot [4] (though Crowfoot was
written from scratch) by allowing (partially applicable) procedures to be stored
on the heap. Our assertion language uses nested triples to specify stored proce-
dures and recursively defined assertions to deal with recursion through the store.
Crowfoot uses an SMT solver to deal with pure assertions and therefore can be
used to prove more than just memory safety (see our example).

The system most closely related to Crowfoot is the VeriFast [13,12] tool, also
based on symbolic execution with separation logic. VeriFast supports a C-like
language (and also Java) and supports C-style function pointers. Functions in
the C-like language live in an immutable memory and can be pointed to but not
updated, whereas Crowfoot’s programming language stores procedures in dy-
namic, mutable memory. However these setups seem to have a similar character.

A key difference is that while Crowfoot uses nested triples to express require-
ments for procedure pointers, VeriFast expresses such requirements via function
types with which the C type system is extended. A function type declaration
associates a pre- and post-condition with the function type; the declared type
can have extra arguments to simulate nested triples which can contain free vari-
ables. These can be recursive since for every function type F there is a predicate
‘is F ( )’ which states that (the function pointed to by) its first argument satisfies
the “contract” for function type F (possibly with additional arguments).

Crowfoot offers some features which VeriFast does not, such as partial ap-
plication of which our example makes essential use in useFib when loading the
memoiser mem. Another important feature to support stored procedures is en-
tailment between Hoare triples which is automated in our verifier and needed in
our example, as explained in Section 5. VeriFast does not support such proofs
(which in that system would be proofs of entailments of shape is F ( )⇒ is G( )),
even manual ones, whereas Crowfoot finds them automatically. Crowfoot sup-
ports annotations for deep frame rule application (thus implementing the ⊗
operator) and allows extensions of predicates via ◦, thus allowing elegant use
of deep framing on recursively defined specifications (cf. definition of $S in our
example in Fig. 4). In VeriFast one can simulate the effect of the deep frame
rule by using (second order) function types which take as argument a predicate
representing the deeply framed invariant. However, this means one must write
all specifications that can appear for stored procedures a priori in that style.

On the other hand, VeriFast offers features that Crowfoot does not, such as
concurrency, termination checking and the use of more types (such as mathe-
matical lists and functions on them) in the assertions. VeriFast’s support for
second order logic is useful for specifying and reasoning about higher-order and
polymorphic functions.

Other related work includes four systems developed in Coq: XCAP [16],
Bedrock [10], GCAP [6] and Ynot [14]. XCAP allows reasoning about programs
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New

Π ;Γ �
{
Φ[x\x′] � x �→ (e0, . . . , en)[x\x′]

}
C {Q}

Π ;Γ � {Φ} x := new e0, . . . , en; C {Q} x′ fresh

Call

∀a. {P} · (t) {Q} ⊗ Ψ �find-post {Φ} · (t′)
{

m∨
i=1

∃vi.Υi

}

Π ;∀a. {P}F(t) {Q} , Γ �
{

m∨
i=1

Υi[vi\v′
i]

}
C
{
Q′}

Π ;∀a. {P}F(t) {Q} , Γ � {Φ} call F(t′) deepframe Ψ ; C
{
Q′} v′

i fresh

StoreCode

Γ = Γ ′,∀t,a. {P}F(t) {Q}
B = (∀t|U ,a. {P} · (t|U ) {Q}) [t|I\U\r|I\U ]

Π ;Γ � {Φ � G �→ C0, . . . ,Co−1, B ⊗ Ψ ,Co+1, . . . ,Cn}C
{
Q′}

Π ;Γ � {Φ � G �→ C0, . . . ,Cn} [E] := proc F(r) deepframe Ψ ; C
{
Q′}

1. r ∈ [x|c| ]∗ 2. a = fv(P,Q)− t 3. purify(Φ) �SMT E = G+ o
4. t = (ti)i∈I 5. U = {i ∈ I | ri = } 6. t|X = (ti)i∈I∩X

Fig. 7. Some of our symbolic execution rules

which use pointers to (immutable) functions, by introducing a special cptr pred-
icate which in proofs behaves much like nested triples, though its underlying se-
mantics is very different. GCAP is a related system supporting reasoning about
low-level runtime code modification. Ynot builds a type theory in which Hoare
triples (“Hoare types”) can be used as the types for side-effecting commands;
these Hoare types can be nested. To our knowledge, Ynot does not support
recursion through the store.

Previous work [7] briefly described one application of Crowfoot, namely the
verification of runtime code updates, but did not go into detail about Crowfoot,
its implementation or its theoretical basis. An interactive version of Crowfoot,
which includes the example of this paper and others, can be used online [1].

Future work. The following extensions would permit the verification of more
examples. As the antiframe rule is consistent with the logic used in Crowfoot
(as proved in [18]), annotations similar to those for the deep frame rule could be
implemented to allow hiding of invariants in “antiframe style”. Though we do not
need it for deep framing like VeriFast does, second order logic would support the
specification of parametric procedures. A minor but useful extension is to allow
proper functions with result values. We believe that Lemma 1 can be generalised
to support mutually recursive definitions and to allow deep framing onto abstract
(universally quantified) predicates. We plan to investigate extensions required to
support reasoning about reflective programs and, finally, it is likely that many
fold/unfold annotations can be discovered automatically, as done in [15].
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Abstract. We study the automatic synthesis of fair non-repudiation protocols,
a class of fair exchange protocols, used for digital contract signing. First, we
show how to specify the objectives of the participating agents, the trusted third
party (TTP) and the protocols as path formulas in Linear Temporal Logic (LTL)
and prove that the satisfaction of the objectives of the agents and the TTP imply
satisfaction of the protocol objectives. We then show that weak (co-operative)
co-synthesis and classical (strictly competitive) co-synthesis fail in synthesiz-
ing these protocols, whereas assume-guarantee synthesis (AGS) succeeds. We
demonstrate the success of assume-guarantee synthesis as follows: (a) any solu-
tion of assume-guarantee synthesis is attack-free; no subset of participants can
violate the objectives of the other participants without violating their own ob-
jectives; (b) the Asokan-Shoup-Waidner (ASW) certified mail protocol that has
known vulnerabilities is not a solution of AGS; and (c) the Kremer-Markowitch
(KM) non-repudiation protocol is a solution of AGS. To our knowledge this is
the first application of synthesis to fair non-repudiation protocols, and our results
show how synthesis can generate correct protocols and automatically discover
vulnerabilities. The solution to assume-guarantee synthesis can be computed ef-
ficiently as the secure equilibrium solution of three-player graph games.

1 Introduction

Digital contract signing. The traditional two party paper-based contract signing mech-
anism involves two participants with an intent to sign a piece of contractual text that
is in front of them. In this case, either they agree and sign the contract or they do not.
The mechanism is “fair” to both participants in that it does not afford either participant
an unfair “advantage” over the other. In digital contract signing an originator sends her
intent to sign a contractual text to a recipient. Over the course of a set of messages they
then proceed to exchange their actual signatures on the contract. In this case, it is in
general difficult to ensure fairness as one of the participants gains an advantage over the
other during the course of the exchange. If the participants do not trust each other, then
neither wants to sign the contract first as doing so does not guarantee a reciprocal sig-
nature from the other participant. Moreover, as these contracts are typically signed over
asynchronous networks, the communication channels may provide no guarantees on
message delivery. The same situation arises in other related areas such as fair exchange
and certified email.

Protocols for digital contract signing. Many protocols have been designed to fa-
cilitate the exchange of digital signatures. Even and Yacobi [9] first showed that no

V. Kuncak and A. Rybalchenko (Eds.): VMCAI 2012, LNCS 7148, pp. 152–168, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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deterministic contract signing protocol can be realized without the involvement of a
third party arbitrator who is trusted by all participants. This was formalized as an impos-
sibility result in [16], where the authors show that fair exchange is impossible without a
trusted third party (TTP) for non-repudiation protocols. A simple protocol with a TTP
has a TTP collect all signatures and then distribute them to the participants. But this is
very inefficient as it involves an online TTP to facilitate every exchange, easily creating
a bottleneck at the site of the TTP. This has lead to the development of optimistic pro-
tocols, where participants exchange signatures without involving a TTP, requesting the
TTP to adjudicate only when one of the participants is dishonest. These protocols are
called fair non-repudiation protocols with offline TTP.

Fair non-repudiation protocols. A fair non-repudiation protocol falls under the cate-
gory of fair exchange protocols and ensures that at the end of the exchange of signatures
over a network, neither participant can deny having participated in the protocol. A non-
repudiation protocol, upon successful termination, provides each participant evidence
of commitment to a contract that cannot be repudiated by the other participant. A non-
repudiation of origin (NRO) provides the recipient in an exchange, the ability to present
to an adjudicator, evidence of the senders commitment to a contract. Similarly, a non-
repudiation of receipt (NRR) provides the sender in an exchange, the ability to present
to an adjudicator, evidence of the recipient’s commitment to a contract.

Sources of attacks. There are two sources of attacks in fair exchange protocols. The
first is based on the content of the messages being exchanged. The second is based
on the interaction between various participants, producing a multitude of interleavings
of the messages that can be composed and sent, over the course of an exchange. The
former are typically fixed by including more information in vulnerable messages and
by the use of appropriate cryptographic primitives. This paper focusses on the latter.
We assume that the contents of the messages are invulnerable but their interleavings are
vulnerable. We address automatically deriving correct fair non-repudiation protocols
that prevent malicious participants from gaining an unfair advantage by modeling the
problem as an automated synthesis problem.

Existing protocols. Some of the existing fair non-repudiation protocols are the Zhou-
Gollmann (ZG) protocol [25], the Asokan-Shoup-Waidner (ASW) protocol [2], the
Garay-Jakobsson-MacKenzie (GJM) protocol [10] and the Kremer-Markowitch (KM)
protocol [15]. Non-repudiation protocols are difficult to design in general [22,14,12]
and much literature covers the design and verification of these protocols. While some
of the literature covers the discovery of vulnerabilities in these protocols based on the
content of the exchanged messages, others have tried to find attacks based on the se-
quences of messages that can be exchanged, as dictated by the rules of the protocols.
However, there is no work that focuses on automatically obtaining correct solutions of
these subtle and hard to design protocols.

Our contributions. We show that the classical synthesis formulations that are strictly
competitive are inadequate for synthesizing these protocols and that conditionally com-
petitive formulations are more appropriate. To our knowledge this is the first applica-
tion of game-theoretic controller synthesis to security protocols. Synthesis has many
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advantages over model checking. While model checking finds specific vulnerabilities
for a designed protocol, the counter-examples in synthesis are strategies (or refine-
ments) that exhibit vulnerabilities against a set of protocol realizations. Moreover, im-
possibility results such as failure to realize non-repudiation protocols without a TTP
cannot be deduced with model checking, whereas such results can be deduced in a
synthesis framework as we show in this paper. Our main contributions are as follows:

1. We formalize the objectives of the participants, the TTP and the protocols as path
formulas in Linear Temporal Logic (LTL) and prove that satisfaction of the objec-
tives of the participants, and the TTP, imply satisfaction of the protocol objectives.

2. We show that classical (strictly competitive) and weak (co-operative) co-synthesis
fail, whereas assume-guarantee (conditionally competitive) co-synthesis succeeds.

3. We show that all solutions in the set PAGS of assume-guarantee solutions are
attack-free; any solution in PAGS prevents malicious participants from gaining an
unfair advantage.

4. We show that the ASW certified mail protocol is not in PAGS , due to known vulner-
abilities that could have been automatically discovered. The GJM protocol, while
fair to the agents, is not in PAGS as it compromises our objective for the TTP.
The KM protocol is in PAGS and it follows that it could have been automatically
generated by formalizing the problem of protocol design as a synthesis problem.

It was shown in [5] that the solutions of assume-guarantee synthesis can be obtained
through the solution of secure equilibria [6] in graph games. Applying the results of [5],
given our objectives, we show that for fair non-repudiation protocols the solutions can
be obtained in quadratic time.

Related works. The formal verification of fair exchange protocols uses model checking
to verify a set of protocol objectives specified in a suitable temporal logic. The work of
Shmatikov and Mitchell [22] uses the finite state tool Murϕ to model the participants
in a protocol together with an intruder model, to check a set of safety properties by
state space exploration. They expose a number of vulnerabilities that may lead to re-
play attacks in both the ASW protocol and the GJM protocol. The works [11,12,3] use
game theoretic models and the logic ATL to formally specify fairness, abuse-freeness
and timeliness, that they verify using the tool MOCHA [1]. Independently, in [3] the au-
thors use a game-based approach, with a set-rewriting technique, to verify fair exchange
protocols. However, these works focus on verification and not on synthesis.

The notion of weak or co-operative co-synthesis was introduced in [8], classical
or strictly competitive co-synthesis was studied in [19,20] and assume-guarantee or
conditionally competitive co-synthesis was introduced in [5]. But none of these works
consider security protocols. The first effort at synthesizing security protocols is [17,23]
and is related to the automatic generation of mutual authentication protocols, where
the authors use iterative deepening with a cost function to generate correct protocols
that minimize cost; they do not address digital contract signing. In [21], the authors
describe a prototype synthesis tool that uses the BAN logic to describe protocol goals
with extensions to describe protocol rules that, when combined with a proof system,
can be used to generate protocols satisfying those goals. None of the above works use
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a conditionally competitive synthesis formulation, which we show is necessary for fair
non-repudiation protocols. Our technique is very different from these and all previous
works, as we use the rich body of research in controller synthesis to construct fair ex-
change protocols efficiently; in time that is quadratic in the size of the model. The finite
state models are typically small, so that the application of synthesis techniques as we
propose in this paper is both appealing and realizable in practice. Our emphasis in this
paper is in a synthesis technique that enables the automatic discovery of subtle errors in
these protocols and that holds promise for security protocol synthesis in general.

2 Fair Non-repudiation Protocols

In this section we introduce fair non-repudiation protocols. We first define a participant
model, a protocol model and an attack model. We then introduce the agents and the
trusted third party that participate in fair exchange protocols, the messages that they may
send and receive, and the channels over which they communicate. Finally, we introduce
a set of predicates that are set based on messages that are sent and received and that form
the basis for our protocol and participant objectives in the subsequent section.

A participant model. Our protocol model is different from the Strand Space model and
is closer to the model required for the synthesis of protocols as participant refinements.
We define our model as follows: Let V be a finite set of variables that take values in
some domain Dv. A valuation f over the variables V is a function f : V (→ Dv

that assigns to each variable v ∈ V , a value f(v) ∈ Dv; we take F [V ] as the set
of all valuations over the variables in V . LetM be a finite set of messages (terms in
the Strand Space model) that are exchanged between a set A = {Ai | 0 ≤ i ≤ n}
(roles in the Strand Space model) of participants. We define each participant as the
tuple Ai = (Li, Vi, Λi, δi), where Li is a finite set of control points or values taken
by a program counter, Vi ⊆ V is a set of variables, Λi : F [Vi] (→ 2M is a message
assignment, that given a valuation f ∈ F [Vi], returns the set of messages that can be
sent byAi at f ; this set includes all messages that can be composed byAi based on what
she knows in the valuation f . Valuations over variables represent what a participant
knows at a given control point. We take V =

⋃n
i=0 Vi and assume that the sets Vi form

a partition of V . An Ai transition function is δi : Li × F [Vi] ×M (→ Li × F [Vi],
that given a control point, a valuation over Vi and a message either sent or received by
Ai, returns the next control point of Ai and an updated valuation. The participants may
send messages simultaneously and independently, and can either receive a message or
send a message at every control point.

The most general participants. We interpret the elements of A as the most general
participants in an exchange; the participants in A can send any message that can be
composed at each control point, based on messages they have received up to that control
point and on their respective transition functions. We take the interaction between the
elements of A as the most general exchange program. Every participant in an exchange
has her own objective to satisfy. We take the objective of a participant as a set of desired
sequences of valuations of the protocol variables.
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A protocol model. A realization of an exchange protocol is a restriction of the most
general exchange program that consists of the set A′ = {A′

i | 0 ≤ i ≤ n} of
participants, with behaviors restricted by the rules of the protocol. We take A′

i =
(L′

i, Vi, Λ
′
i, δ

′
i), where L′

i ⊆ Li; Vi is the same set of variables as in Ai; for every
valuation f ∈ F [Vi] we have Λ′

i(f) ⊆ Λi(f); and δ′i : L
′
i ×F [Vi]×M (→ L′

i ×F [Vi]
is the transition function, that given a control point in L′

i, a valuation over Vi and a mes-
sage either sent or received by A′

i returns the next control point of A′
i and an updated

valuation. For l ∈ L′
i, v ∈ F [Vi] and m ∈ M, we have δ′i(l, v,m) = δi(l, v,m). We

define a protocol instance (or a protocol run) as any sequence of valuations generated
by the participants in A′ and take the set of all possible protocol runs as Runs(A′). We
refer to a message that can be sent by a participant as a move of that participant.

An attack model. We define an attack on a protocol as the behavior of a subset of
protocol participants such that the resulting sequence of messages is in their objective
but not in the objective of at least one of the other participants. Formally, let Y ⊆ A be
a subset of the most general participants with (A \ Y )′ = {A′

i|Ai ∈ (A \ Y )} being the
remaining participants that follow the rules of the protocol. A protocol has a Y -attack
if the most general participants in Y can generate a message sequence, given (A \ Y )′

follow the protocol, that is not in the objective of at least one participant in (A \Y )′ but
is in the objectives of all participants in Y . A protocol is attack-free, if there exists no
Y -attack for all Y ∈ 2A.

Agents. An agent in a two-party exchange protocol is one of the two participating
entities signing an online contract. Based on whether an agent proposes a contract or
accepts a contract originating from another agent, we get two roles that an agent can
play; that of an originator of a contract, designated by O or the recipient of a contract,
designated by R. Agents communicate with each other over channels.

Trusted third party (TTP). The trusted third party or TTP is a participant who is
trusted by the agents and adjudicates and resolves disputes. It is known that a fair ex-
change protocol cannot be realized without the TTP [9,16]. We model the TTP explicitly
as a participant, define her objective and using our formulation give a game-theoretic
justification that the TTP is necessary. Agents and the TTP communicate with each
other over channels.

Messages. A message is an encrypted stream of bytes; we treat each message as an
atomic unit. We assume each message contains a nonce that uniquely identifies a proto-
col instance; participants can simultaneously participate in multiple protocol instances.
We are not concerned with the exact contents of each message, but in what each mes-
sage conveys; this is in keeping with our objective of synthesizing protocols that are
attack-free with respect to message interleavings. From the definition of messages in
fair exchange protocols in [11,12,22] and other works, we define the set M of mes-
sages as follows:

– m1 is a message that may be sent by O to R. The intent of this message is to convey
O’s desire to sign a contract with a recipient R.
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– m2 is a message that may be sent by R to O and conveys R’s intent to sign the
contract from O.

– m3 is a message that may be sent by O to R and contains the actual signature of O.
– m4 is a message that contains the actual signature of R and may be sent by R to O.
– aO

1 is a message that may be sent by O to the TTP and conveys O’s desire to abort
the protocol.

– aO
2 (resp. aR

2 ) is a message that may be sent by the TTP to O (resp. R) that confirms
the abort by including an abort token for O (resp. R).

– rO
1 (resp. rR

1 ) is a message that may be sent by O (resp. R) to the TTP and conveys
O’s (resp. R’s) desire to get the TTP to resolve a protocol instance by explicitly
requesting the TTP to adjudicate. We do not specify the content of rO

1 or rR
1 but

make the assumption that the TTP needs m1 to resolve the protocol for R and
similarly needs m2 to resolve the protocol for O.

– rO
2 (resp. rR

2 ) is a message that may be sent by the TTP to O (resp. R) and contains
a universally verifiable signature in lieu of the signature of R (resp. O).

We impose an order on the messages m1,m2,m3 and m4 as it can be shown trivially
in our synthesis formulation that O sending m3 before receiving m2 and R sending
m4 before receiving m3 violates their respective objectives. In our formulations, we
consider a reasonable TTP that satisfies the following restrictions on behavior:

1. The TTP sends messages only in response to an abort or a resolve request and
processes messages in a first-in-first-out fashion.

2. If the first message received by the TTP is an abort request from O, then the TTP
will eventually send an abort token.

3. If the first message received by the TTP is a resolve request, then the TTP will
eventually send an agent signature.

Channels. A channel is used to deliver a message. There are three types of channels
that are typically modeled in the literature. We present them here in decreasing order
of reliability: (1) An operational channel delivers all messages within a known, finite
amount of time, (2) a resilient channel eventually delivers all messages, but there is no
fixed finite bound on the time to deliver a message, and (3) an unreliable channel may
not deliver messages. We model the channels between the agents as unreliable and those
between the agents and the TTP as resilient as in prevailing models; messages sent to
the TTP and by the TTP will be eventually delivered. Further, we assume that channels
cannot corrupt messages but can re-order them.

Scheduler. A scheduler is not explicitly part of any fair exchange protocol. The pro-
tocols need to provide all agents the ability to send messages asynchronously, which
implies agents can choose their actions simultaneously and independently. We model
this behavior by using a fair scheduler that assigns each participant a turn, infinitely
often, and we synthesize refinements against all possible behaviors of a fair scheduler.

Predicates. We introduce the following set of predicates.
– M1 is set by O, when she sends message m1 to R.
– EOO, referred to as the Evidence Of Origin, is set by R when either m1 or rR

2 is
received.
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– EOR, referred to as the Evidence of Receipt, is set by O when either m2 or rO
2 is

received.
– EOOO

k and EOOTTP
k are referred to as O’s signature. EOOO

k is set by R when R
receives m3 and EOOTTP

k is set by R when he receives rR
2 .

– EORR
k and EORTTP

k are referred to as R’s signature. EORR
k is set by O when O

receives m4 and EORTTP
k is set by O when she receives rO

2 .
– AO is set by O and indicates that aO

2 has been received.
– AR is set by R and indicates that aR

2 has been received.
– ABR is set by the TTP when an abort request, aO

1 is received.
– RES is set by the TTP when a resolve request, rO

1 or rR
1 , is received.

All predicates are monotonic in that once they are set, they remain set for the duration
of a protocol instance [22]. We distinguish between a signature sent by an agent and
the signature sent by the TTP as a replacement for an agent’s signature. Distinguishing
these signatures enables modeling TTP accountability [22]. The non-repudiation of ori-
gin for R, denoted by NRO, means that R has received both O’s intent to sign a contract
and O’s signature on the contract so that O cannot deny having signed the contract to
a third party. Formally, NRO is defined as: NRO = EOO ∧ (EOOO

k ∨ EOOTTP
k ). The

non-repudiation of receipt for O, denoted by NRR, means that O has received both the
intent and signature of R on a contract so that R cannot deny having signed the contract
to a third party. Formally, NRR is defined as: NRR = EOR ∧ (EORR

k ∨ EORTTP
k ).

3 LTL Objectives for the Protocols

The synthesis of programs requires a formal objective of their requirements. One of our
contributions in this paper is to present a precise and formal description of the protocol
requirement as a path formula in Linear Temporal Logic (LTL [18,13]), which then
becomes our synthesis objective. In this section, we define the objective for fair non-
repudiation protocols, objectives for the agents and the TTP and show that satisfaction
of the objectives of the agents and the TTP imply satisfaction of the objective of the
protocols. We use LTL, a logic that is used to specify properties of infinite paths in
finite-state transition systems.

Fairness. Informally, fairness for O can be stated as “For all protocol instances, if the
non-repudiation of origin (NRO) is ever true, then eventually the non-repudiation of
receipt (NRR) is also true” [12]. The fairness property for O is expressed by the LTL
formula ϕO

f = �(NRO ⇒ �NRR). Similarly, the fairness property for R is expressed
by the LTL formulaϕR

f = �(NRR⇒ �NRO). We say that a protocol is fair, if in all in-
stances of the protocol, fairness for both O and R holds. Hence the fairness requirement
for the protocol is expressed by the formula ϕf = ϕO

f ∧ ϕR
f .

Abuse-freeness. In [4], the authors prove that in any fair optimistic protocol, an op-
timistic participant yields an advantage to the other participant. In a given protocol
instance, once an agent has the other agent’s intent to sign a contract, he can use this
intent to negotiate a different contract with a third party, while ensuring that the original
protocol instance is aborted. The term aborted is used here to mean that neither agent
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can get a non-repudiation evidence in a given protocol instance, once that instance is
aborted. As noted by the authors of [4], the best that one can hope for is to prevent
either participant from proving to a third party that he has an advantage, or in other
words, that he has the other participant’s intent to sign the contract. This is defined
as abuse-freeness. As noted by the authors of [10,11], using PCS or Private Contract
Signatures, introduced by Garay et al., in [10], which provides the designated verifier
property, neither agent can prove the other agent’s intent to sign the contract to any-
one other than the TTP. Therefore, ensuring abuse-freeness requires the use of PCS.
Since PCS are requisite to ensure abuse-freeness, we do not model abuse-freeness, or
the stronger property balance [3], in our formalism.

Signature exchange. A protocol is an exchange protocol if it enables the exchange
of signatures. This is also referred to as Viability in the literature. For an exchange
protocol to be a non-repudiation protocol, at the end of every run of the protocol, either
the agents have their respective non-repudiation evidences, or, if they do not have their
non-repudiation evidences, they have the abort token. The property that evidences once
obtained are not repudiable is referred to as Non-repudiability. A fair non-repudiation
protocol must satisfy fairness, abuse-freeness, non-repudiability and viability.

We now present intuitive objectives for the agents and the TTP and show that satis-
faction of these objectives implies that the protocols we synthesize are fair.

Specification for O. The objective of the originator O is expressed as follows:

– In all protocol instances, she eventually sends the evidence of origin. This is ex-
pressed by the LTL formula ϕ1

O = �M1.
– In all protocol instances, one of the following statements should be true:

1. (a) The originator eventually gets the recipient’s signature EORR
k or, (b) she

eventually gets the recipient’s signature EORTTP
k and never gets the abort token

AO. This is expressed by the LTL formula ϕ2
O = (�EORR

k ∨ (�EORTTP
k ∧

�¬AO)).
2. (a) The originator eventually gets the abort token and (b) the recipient never

gets her signature EOOO
k and never gets her signature EOOTTP

k from the
TTP. This is expressed by the LTL formula ϕ3

O = �AO ∧ (�¬EOOO
k ∧

�¬EOOTTP
k ) = �AO ∧ �(¬EOOO

k ∧ ¬EOOTTP
k ).

The objective ϕO of O can therefore be expressed by the LTL formula ϕO = ϕ1
O ∧

�(ϕ2
O ∨ ϕ3

O). There are two interpretations of the abort token in the literature. On the
one hand the abort token was never intended to serve as a proof that a protocol instance
was not successfully completed; it was to guarantee that the TTP would never resolve a
protocol after it has been aborted. On the other hand, there is mention of the abort token
being used by the recipient to prove that the protocol was aborted. We take the position
that the abort token may be used to ensure TTP accountability as noted in [22] and
hence include it in the objective of O. If the TTP misbehaves and issues both EORTTP

k

and AO, we claim that the objective ϕO of the originator should be violated, but in this
case, she has the power to prove that the TTP misbehaved by presenting both EORTTP

k

and AO to demonstrate inconsistent behavior. While having both EORR
k and EORTTP

k

may be interpreted as O having inconsistent signatures, we do not consider this to be a
violation of O’s objective; given the nature of asynchronous networks it may well be the
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case that both these evidences arrive eventually, one from the TTP and the other from
R, as O did not wait long enough before sending rO

1 .

Specification for R. The objective of the recipient R can be expressed as follows:

– In all protocol instances, if he gets the evidence of origin EOO, then one of the
following statements should be true:

1. (a) The recipient eventually gets the originator’s signature EOOO
k or, (b) he

eventually gets the originator’s signature EOOTTP
k and never gets the abort to-

ken AR. This is expressed by the LTL formula ϕ1
R = (�EOOO

k ∨ (�EOOTTP
k ∧

�¬AR)).
2. (a) The recipient eventually gets the abort token and (b) the originator never

gets his signature EORR
k and never gets his signature EORTTP

k from the
TTP. This is expressed by the LTL formula ϕ2

R = �AR ∧ (�¬EORR
k ∧

�¬EORTTP
k ) = �AR ∧�(¬EORR

k ∧ ¬EORTTP
k ).

The objective ϕR can therefore be expressed by the LTL formula ϕR = �(EOO ⇒
(ϕ1

R ∨ ϕ2
R)). If the TTP misbehaves and issues both EOOTTP

k and AR, we claim that
the objective ϕR of the recipient should be violated, but in this case he has the power to
prove that the TTP misbehaved by presenting both EOOTTP

k and AR.

Specification for the TTP. Our objective for the TTP is expressed as follows:

– In all protocol instances, if the abort request aO
1 or a resolve request rO

1 or rR
1 is

received, then eventually the TTP sends the abort token AO or the abort token AR
or the originator’s signature EOOTTP

k or the recipient’s signature EORTTP
k . This can

be expressed by the LTL formula ϕ1
TTP = �((ABR ∨ RES) ⇒ (�AO ∨ �AR ∨

�EOOTTP
k ∨�EORTTP

k )).
– In all protocol instances, if the originator’s signature EOOTTP

k has been sent to the
recipient, then the originator should eventually get the recipient’s signature EORTTP

k

and the agents should never get the abort token. This can be expressed by the LTL
formula ϕ2

TTP = �(EOOTTP
k ⇒ (�EORTTP

k ∧�(¬AO ∧ ¬AR))).
– Symmetrically, in all protocol instances, if the recipient’s signature EORTTP

k has
been sent to the originator, then the recipient should eventually get the originator’s
signature EOOTTP

k and the agents should never get the abort token. This can be
expressed by the LTL formula ϕ3

TTP = �(EORTTP
k ⇒ (�EOOTTP

k ∧ �(¬AO ∧
¬AR))).

– In all protocol instances, if the originator gets the abort token AO, then the recipient
should eventually get the abort token AR and the originator should never get the
recipient’s signature EORTTP

k and the recipient should never get the originator’s
signature EOOTTP

k . This can be expressed by the LTL formula ϕ4
TTP = �(AO ⇒

(�AR ∧ �(¬EOOTTP
k ∧ ¬EORTTP

k ))).
– Symmetrically, in all protocol instances, if the recipient gets the abort token AR,

then the originator should eventually get the abort token AO and the originator
should never get the recipient’s signature EORTTP

k and the recipient should never
get the originator’s signature EOOTTP

k . This can be expressed by the LTL formula
ϕ5

TTP = �(AR⇒ (�AO ∧ �(¬EOOTTP
k ∧ ¬EORTTP

k ))).
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The objective ϕTTP of the TTP is then defined as, ϕTTP = ϕ1
TTP ∧ ϕ2

TTP ∧ ϕ3
TTP ∧

ϕ4
TTP ∧ ϕ5

TTP. Note that our objective for the TTP treats both agents symmetrically. In
this paper we present assume-guarantee synthesis for the above objective of the TTP.
But in general, the objective of the TTP can be weakened if desired, by treating the
agents asymmetrically, and the assume-guarantee synthesis technique can be applied
with this weakened objective.

We remark that the objectives of the participants in our protocol model are sequences
of messages. Using predicates that are set when messages are sent or received by the
agents or the TTP, we formalize those objectives using the predicates and LTL. The
following theorem shows that satisfaction of the objectives of the participants implies
fairness, the protocol objective. We use the fact that the predicates are monotonic and
show that when fairness is violated it must be the case that the objective of either O or
the TTP must also be violated.

Theorem 1 (Objectives imply fairness). We have, ϕO ∧ ϕR ∧ ϕTTP ⇒ ϕf .

4 Co-synthesis

In this section we first define processes, schedulers and objectives for synthesis along
the lines of [5]. Next we define traditional co-operative [8] and strictly competi-
tive [19,20] versions of the co-synthesis problem; we refer to them as weak co-synthesis
and classical co-synthesis, respectively. We then define a formulation of co-synthesis
introduced in [5] called assume-guarantee synthesis. We show later in the paper that the
protocol model of Section 2 reduces to the process model for synthesis that we present
in this section.

Variables, valuations, and traces. Let X be a finite set of variables such that each
variable x ∈ X has a finite domain Dx. A valuation f on X is a function f : X →⋃

x∈X Dx that assigns to each variable x ∈ X a value f(x) ∈ Dx. We write F [X ]
for the set of valuations on X . A trace on X is an infinite sequence (v0, v1, v2, . . .) ∈
F [X ]ω of valuations on X . Given a valuation f [X ] ∈ F [X ] and a subset Y ⊆ X of the
variables, we denote by f [X ] ↓ Y the restriction of the valuation f [X ] to the variables
in Y . Similarly, for a trace τ(X) = (v0, v1, v2, . . .) on X , we write τ(X) ↓ Y = (v0 ↓
Y, v1 ↓ Y, v2 ↓ Y, . . .) for the restriction of τ(X) to the variables in Y . The restriction
operator is lifted to sets of valuations, and to sets of traces.

Processes and refinement. Let Moves be a finite set of elements which are called
moves. For i ∈ {1, 2, 3}, a process is defined by the tuple Pi = (Xi, Γi, δi) where,

1. Xi is a finite set of variables of process Pi and X =
⋃3

i=1Xi is the set of all
variables,

2. Γi : F [Xi] → 2Moves \ ∅ is a move assignment that given a valuation in F [Xi],
returns a non-empty set of moves, where F [Xi] is the set of valuations on Xi, and

3. δi : F [Xi]×Moves→ 2F [Xi] \ ∅ is a non-deterministic transition function.

The set of process variables X may be shared between processes. The processes only
choose amongst available moves at every valuation of their variables as determined by
their move assignment. The transition function maps a present valuation and a process
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move to a nonempty set of possible successor valuations such that each successor valua-
tion has a unique pre-image. The uniqueness of the pre-image is a property of exchange
protocols; unique messages convey unique content and generate unique valuations.

A refinement of process Pi = (Xi, Γi, δi) is a process P ′
i = (X ′

i, Γ
′
i , δ

′
i) such that:

(1) Xi ⊆ X ′
i, (2) for all valuations f [X ′

i] on X ′
i , we have Γ ′

i (f [X
′
i]) ⊆ Γi(f [X

′
i] ↓ Xi),

and (3) for all valuations f [X ′
i] on X ′

i and for all moves a ∈ Γ ′
i (f [X

′
i]), we have

δ′i(f [X
′
i], a) ↓ Xi ⊆ δi(f [X

′
i] ↓ Xi, a). In other words, the refined process P ′

i has
possibly more variables than the original process Pi, at most the same moves as the
moves of Pi at every valuation, and every possible update of the variables in Xi given
Γ ′
i by P ′

i is a possible update by Pi. We write P ′
i , Pi to denote that P ′

i is a refinement
of Pi. Given refinements P ′

i , Pi, we write X ′ =
⋃3

i=1X
′
i for the set of variables of

all refinements, and we denote the set of valuations on X ′ by F [X ′].

Schedulers. Given processes Pi, where i ∈ {1, 2, 3}, a scheduler Sc for Pi chooses at
each computation step whether it is process P1’s turn, process P2’s turn or process P3’s
turn to update her variables. The scheduler Sc is fair if it assigns turns to P1, P2 and
P3 infinitely often; Given three processes P1 = (X1, Γ1, δ1), P2 = (X2, Γ2, δ2) and
P3 = (X3, Γ3, δ3), a scheduler Sc for P1, P2 and P3, and a start valuation v0 ∈ F [X ],
the set of possible traces is denoted by [[(P1 ‖ P2 ‖ P3 ‖ Sc)(v0)]]. The projection of
traces to moves is denoted by (v0, v1, v2, . . .) ↓ Moves; formal descriptions are in [7].

Objectives. An objective ϕi for process Pi is a set of traces on X ; that is, ϕi ⊆ F [X ]ω.
We consider only ω-regular objectives [24]. We define boolean operations on objectives
using logical operators such as ∧ (conjunction) and⇒ (implication).

The input to the co-synthesis problem is given as follows: for i ∈ {1, 2, 3}, processes
Pi = (Xi, Γi, δi), objectives ϕi for process i, and a start valuation v0 ∈ F [X ].

Weak co-synthesis. The weak co-synthesis problem is defined as follows: do there
exist refinements P ′

i = (X ′
i, Γ

′
i , δ

′
i) and a valuation v′0 ∈ F [X ′], such that, P ′

i , Pi

and v′0 ↓ X = v0, and for all fair schedulers Sc for P ′
i we have, [[(P ′

1 ‖ P ′
2 ‖ P ′

3 ‖
Sc)(v′0)]] ↓ X ⊆ (ϕ1 ∧ ϕ2 ∧ ϕ3). Intuitively, weak co-synthesis or co-operative co-
synthesis is a synthesis formulation that seeks refinements P ′

1, P ′
2 and P ′

3 where the
processes co-operate to satisfy their respective objectives.

Classical co-synthesis. The classical co-synthesis problem is defined as follows: do
there exist refinements P ′

i = (X ′
i, Γ

′
i , δ

′
i) and a valuation v′0 ∈ F [X ′], such that, P ′

i ,
Pi and v′0 ↓ X = v0, and for all fair schedulers Sc for P ′

i we have, (a) [[(P ′
1 ‖ P2 ‖ P3 ‖

Sc)(v′0)]] ↓ X ⊆ ϕ1; (b) [[(P1 ‖ P ′
2 ‖ P3 ‖ Sc)(v′0)]] ↓ X ⊆ ϕ2; (c) [[(P1 ‖ P2 ‖ P ′

3 ‖
Sc)(v′0)]] ↓ X ⊆ ϕ3. Classical or strictly competitive co-synthesis is a formulation that
seeks refinements P ′

1, P ′
2 and P ′

3 such that P ′
1 can satisfy ϕ1 against all possible, and

hence adversarial, behaviors of the other processes; similarly for P ′
2 and P ′

3.

Assume-guarantee synthesis [5]. The assume-guarantee synthesis problem is defined
as follows: do there exist refinements P ′

i = (X ′
i, Γ

′
i , δ

′
i) and a valuation v′0 ∈ F [X ′],

such that, P ′
i , Pi and v′0 ↓ X = v0, and for all fair schedulers Sc for P ′

i we have, (a)
[[(P ′

1 ‖ P2 ‖ P3 ‖ Sc)(v′0)]] ↓ X ⊆ (ϕ2 ∧ ϕ3)⇒ ϕ1; (b) [[(P1 ‖ P ′
2 ‖ P3 ‖ Sc)(v′0)]] ↓

X ⊆ (ϕ1 ∧ ϕ3) ⇒ ϕ2; (c) [[(P1 ‖ P2 ‖ P ′
3 ‖ Sc)(v′0)]] ↓ X ⊆ (ϕ1 ∧ ϕ2) ⇒ ϕ3;

(d) [[(P ′
1 ‖ P ′

2 ‖ P ′
3 ‖ Sc)(v′0)]] ↓ X ⊆ (ϕ1 ∧ ϕ2 ∧ ϕ3). Assume-guarantee synthesis

or conditionally competitive co-synthesis is a formulation that seeks refinements P ′
1,
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P ′
2 and P ′

3 such that P ′
1 can satisfy ϕ1 as long as processes P2 and P3 satisfy their

objectives; similarly for P ′
2 and P ′

3. This synthesis formulation is well suited for those
cases where processes are primarily concerned with satisfying their own objectives and
only secondarily concerned with violating the objectives of the other processes. We
want protocols to be correct under arbitrary behaviors of the participants, and the ar-
bitrary or worst case behavior of a participant without sabotaging her own objective,
is to first satisfy her own objective, and only then to falsify the objectives of the other
participants. We show that this synthesis formulation is the only one that works for
fair non-repudiation protocols. While classical co-synthesis can be solved as zero-sum
games, assume-guarantee synthesis can be solved using non zero-sum games with lexi-
cographic objectives [5]. For brevity, we drop the initial valuation v0 in the set of traces.

5 Protocol Co-synthesis

We now present our results on synthesizing fair non-repudiation protocols. We use the
process model in Section 4 to define agent and TTP processes, with objectives as de-
fined in Section 3. We show that, given these agent and TTP processes and their ob-
jectives, (a) classical co-synthesis fails, (b) weak co-synthesis generates unacceptable
solutions and (c) neither classical nor assume-guarantee synthesis can be used to syn-
thesize fair non-repudiation protocols without the TTP. We then define the set PAGS

of assume-guarantee refinements and prove that the refinements are attack-free. It is
straight forward to show the equivalence of the protocol model and the process model.
The details, including precise process models for O, R and the TTP, are in [7].

Theorem 2 (Trace equivalence of models). For all participant restrictions A′
i and

refinements O′ , O, R′ , R and TTP′ , TTP, such that i ∈ {0, 1, 2} with j = O when
i = 0, j = R when i = 1 and j = TTP when i = 2, for all valuations v ∈ F [Vi], if
Λ′
i(v) = Γj′(v), then we have, Runs({A′

0, A
′
1, A

′
2}) = [[O′ ‖ R′ ‖ TTP′ ‖ Sc]].

5.1 Failure of Classical and Weak Co-synthesis, and the Need for a TTP

In this subsection we show that classical co-synthesis fails while weak co-synthesis
generates solutions that are not attack-free and are hence unacceptable. We first tackle
classical co-synthesis. In order to show failure of classical co-synthesis we need to show
that one of the following conditions: (1) [[(O′ ‖ R ‖ TTP ‖ Sc)]] ⊆ ϕO; (2) [[(O ‖ R′ ‖
TTP ‖ Sc)]] ⊆ ϕR; (3) [[(O ‖ R ‖ TTP′ ‖ Sc)]] ⊆ ϕTTP, can be violated. The following
theorem states that for all refinements R′ of the recipient R, there exist behaviors of the
processes O, TTP and Sc such that ϕR is violated. The proof of Theorem 3 is in [7].

Theorem 3 (Classical co-synthesis fails for R). For all refinements R′ , R, we have
[[O ‖ R′ ‖ TTP ‖ Sc]] �⊆ ϕR.

In [7], we provide an example to illustrate that given our objectives, given a reasonable
TTP as defined in Section 2, weak co-synthesis yields solutions that are not attack-
free. The following theorem states that without the TTP, neither classical nor assume-
guarantee synthesis generate refinements that satisfy all participant objectives.
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Theorem 4 (Classical and assume-guarantee synthesis fail without the TTP). For
all refinements O′ , O, the following assertions hold:

1. Classical co-synthesis fails: [[O′ ‖ R ‖ Sc]] �⊆ ϕO.
2. Assume-guarantee synthesis fails: [[O′ ‖ R ‖ Sc]] �⊆ (ϕR ⇒ ϕO) or, (1) [[O′ ‖ R ‖

Sc]] ⊆ (ϕR ⇒ ϕO); (2) [[R′ ‖ O ‖ Sc]] ⊆ (ϕO ⇒ ϕR); and (3) [[O′ ‖ R′ ‖ Sc]] �⊆
(ϕO ∧ ϕR).

5.2 Assume-Guarantee Solutions Are Attack-Free

In this subsection we show that assume-guarantee solutions are attack free; no coali-
tion of participants can violate the objective of at least one of the other participants
while satisfying their own objectives. Let P ′ = (O′,R′,TTP′) be a tuple of refine-
ments of the agents and the TTP. For two refinements P ′ = (O′,R′,TTP′) and
P ′′ = (O′′,R′′,TTP′′), we write P ′ , P ′′ if O′ , O′′, R′ , R′′ and TTP′ , TTP′′.
Given P = (O,R,TTP), the most general behaviors of the agents and the TTP, let
PAGS be the set of all possible refinements P ′ , P that satisfy the conditions of
assume-guarantee synthesis. For a refinement P ′ = (O′,R′,TTP′) to be in PAGS , we
require that O′ , O, R′ , R and TTP′ , TTP satisfy the following conditions:

For all fair schedulers Sc, for all possible behaviors of the channels, (1) [[(O′ ‖ R ‖
TTP ‖ Sc)]] ⊆ (ϕR ∧ ϕTTP)⇒ ϕO; (2) [[(O ‖ R′ ‖ TTP ‖ Sc)]] ⊆ (ϕO ∧ ϕTTP)⇒ ϕR;
(3) [[(O ‖ R ‖ TTP′ ‖ Sc)]] ⊆ (ϕO ∧ ϕR) ⇒ ϕTTP; (4) [[(O′ ‖ R′ ‖ TTP′ ‖ Sc)]] ⊆
(ϕO ∧ ϕR ∧ ϕTTP). We now characterize the smallest restriction on the refinements
TTP′ , TTP that satisfy the condition,

[[(O ‖ R ‖ TTP′ ‖ Sc)]] ⊆ (ϕO ∧ ϕR)⇒ ϕTTP . (1)

In order to characterize the smallest restriction on TTP′ we first define the following
constraints on the TTP and prove that they are both necessary and sufficient to satisfy
(1) in [7].

AGS constraints on the TTP. We say that a refinement TTP′ , TTP satisfies the AGS
constraints on the TTP, if TTP′ satisfies the the following constraints:

1. Abort constraint. If the first request received by the TTP is an abort request, then
her response to that request should be [aO

2 , a
R
2 ];

2. Resolve constraint. If the first request received by the TTP is a resolve request, then
her response to that request should be [rO

2 , r
R
2 ];

3. Accountability constraint. If the first response from the TTP is [x, y], then
for all subsequent abort or resolve requests her response should be in the set
{ι, x, y, [x, y]}.

We assume a reasonable TTP, as defined in Section 2; in particular she only responds
to abort or resolve requests. In the following lemma, assertion 1 states that for all re-
finements TTP′ , TTP that satisfy the AGS constraints on the TTP, we have TTP′

is inviolable, i.e., neither agent can violate the objective ϕTTP, and hence satisfies the
implication condition (1); assertion (2) states that if TTP′ does not satisfy the AGS con-
straints on the TTP, the implication condition (1) is not satisfied. We prove Lemma 1,
and Theorem 5 that follows, in [7].
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Lemma 1 (TTP inviolability). For all refinements TTP′ , TTP, the following asser-
tions hold: (1) if TTP′ satisfies the AGS constraints on the TTP, then [[O ‖ R ‖ TTP′ ‖
Sc]] ⊆ ϕTTP ⊆ (ϕO ∧ ϕR)⇒ ϕTTP and (2) if TTP′ does not satisfy the AGS constraints
on the TTP, then [[O ‖ R ‖ TTP′ ‖ Sc]] �⊆ (ϕO ∧ ϕR)⇒ ϕTTP.

Theorem 5 (AGS is attack-free). All refinements P ′ ∈ PAGS are attack-free.

Corollary 1 establishes conditions for any refinement in PAGS to be an attack-free fair
non-repudiation protocol. Corollary 1 follows easily from Theorem 5.

Corollary 1 (Attack-free fair non-repudiation protocols). For all refinements P ′ ∈
PAGS , if [[O′ ‖ R′ ‖ TTP′ ‖ Sc]] ∩ (�NRO ∧�NRR) �= ∅, then P ′ is an attack-free fair
non-repudiation protocol.

6 Analysis of Existing Protocols

We now analyze existing fair non-repudiation protocols and check if they are solutions
to assume-guarantee synthesis. To facilitate the analysis, we first present an alternate
characterization of the set PAGS of assume-guarantee refinements. Towards an alter-
nate characterization of PAGS , we begin by defining constraints on O, similar to the
AGS constraints on the TTP, that ensure satisfaction of the implication condition for O.
We then present the most flexible refinements O′ , O and R′ , R and define maximal
and minimal refinements that satisfy all the implication conditions of assume-guarantee
synthesis. Finally, we introduce a bounded idle time requirement to ensure satisfaction
of weak co-synthesis. Our alternate characterization is then the space of refinements be-
tween the minimal and maximal refinements, subject to the satisfaction of the AGS con-
straints on the TTP, the AGS constraints on O and the bounded idle time requirement.
Using this alternate characterization, we show that the KM non-repudiation protocol is
in PAGS whereas the ASW protocol is not. We analyze the GJM protocol in [7].

AGS constraints on O. Given P = (O,R,TTP), the most general behaviors of
the agents and the TTP, we say a refinement P ′ , P satisfies the AGS con-
straints on O, if the following conditions hold: (1) aO

1 �∈ ΓO′(v0); (2) EOOO
k �∈

ΓO′({M1,EOR,ABRO}); and (3) aO
1 �∈ ΓO′({M1,EOR,M3}).

We show that satisfaction of the AGS constraints on O ensure satisfaction of the
implication condition [[(O′ ‖ R ‖ TTP ‖ Sc)]] ⊆ (ϕR ∧ ϕTTP)⇒ ϕO in [7].

The maximal refinement P∗. We define the maximal refinement P∗ = (O∗,R∗,TTP∗)
as follows: (1) O∗ , O satisfies the AGS constraints on O and for all O′ that satisfy the
constraints, we have O′ , O∗; (2) R∗ = R; and (3) TTP∗ , TTP satisfies the AGS
constraints on the TTP and for all TTP′ that satisfy the constraints, we have TTP′ ,
TTP∗. P∗ corresponds to the smallest restriction on the moves of O and the TTP to be a
witness to PAGS .

The minimal refinement P∗. We present the smallest refinement P∗ = (O∗,R∗,TTP∗)
in PAGS , as the largest restriction on the moves of O, R and the TTP as follows: (1)
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P∗ , P∗; (2) MovesO∗ = {m1, a
O
1 }; (3) MovesR∗ = {ι}; (4) O∗ satisfies the AGS

constraints on O; and (5) TTP∗ satisfies the AGS constraints on the TTP.

The bounded idle time requirement. We say that a refinement P ′ satisfies bounded
idle time if O and the TTP in P ′ choose the idle move ι, when scheduled by Sc, at most
b times for a finite b ∈ N. We show that satisfaction of the bounded idle time require-
ment ensures satisfaction of the weak co-synthesis requirement of assume-guarantee
synthesis in [7].

Alternate characterization. We now use P∗ and P∗ to provide an alternate characteri-
zation of the set PAGS . We first define the following set of refinements P:

P = {P ′ = (O′,R′,TTP′) | P ′ satisfies bounded idle time;

P∗ , P ′ , P∗;TTP′ satisfies AGS constraints on the TTP} .

The following lemma states that the set P and the set PAGS coincide.

Lemma 2 (Alternate characterization). We have P = PAGS .

Using the above alternate characterization, we now analyze the KM and the ASW pro-
tocols. The analysis of the GJM protocol together with a systematic method to search
through refinements in PAGS leading to PKM is in [7].

The KM non-repudiation protocol. The KM protocol, like the ASW and GJM pro-
tocols consists of a main protocol, an abort subprotocol and a resolve subprotocol.
Let PKM = (OKM ,RKM ,TTPKM ) correspond to the agent and TTP refinements
in the KM protocol. Since O does not abort the protocol in state v0 and in state
{M1,EOR,M3} in OKM , it follows that O∗ , OKM , O∗. It is easy to verify that
R∗ , RKM , R∗ and TTP∗ , TTPKM , TTP∗. Moreover, TTPKM satisfies the AGS
constraints on the TTP and PKM satisfies bounded idle time. Therefore PKM ∈ P and
hence by Lemma 2, PKM ∈ PAGS .

The ASW certified mail protocol. The ASW certified mail protocol differs from the
KM protocol in its abort and resolve sequences. To define the abort protocol, the TTP
needs a move reqO that can be used to request O to resolve a protocol instance if R has
already resolved it. Let PASW = (OASW ,RASW ,TTPASW ) correspond to the agent
and TTP refinements in the ASW certified mail protocol. Since TTPASW neither has
move [aO

2 , a
R
2 ] nor [rO

2 , r
R
2 ], TTPASW does not satisfy the AGS constraints on the TTP

and hence by Lemma 1 (assertion 2), we have PASW �∈ PAGS . Moreover, the ASW
certified mail protocol is not attack-free as shown by the following attacks [12]: Con-
sider a behavior of the channels that deliver all messages and the sequence of messages
〈m1, r

R
1 , r

R
2 , a

O
1 , req

O〉 in the ASW protocol. In this sequence a malicious R decides to
resolve the protocol after receiving m1 and thus succeeds in getting EOOTTP

k . When
OASW attempts to abort the protocol, TTPASW expects her to resolve the protocol as
R has already resolved it, but OASW cannot do so as she does not have m2. There-
fore, ϕO is violated; OASW cannot abort or resolve the protocol and cannot get R’s
signature. Consider the sequence of messages 〈m1,m2, r

O
1 , r

O
2 , a

O
1 , a

O
2 〉. This is an at-

tack that compromises fairness for R; in the words of [12] the protocol designers did not



Synthesizing Protocols for Digital Contract Signing 167

foresee that O could resolve the protocol and then abort it. This violates ϕR and TTP
accountability, violating ϕTTP, while satisfying ϕO.

Theorem 6 (AGS results on existing protocols). The refinement corresponding to
the KM non-repudiation protocol is in PAGS and the refinements corresponding to the
ASW certified mail protocol and the GJM protocol are not in PAGS .

7 Conclusion

In this work we introduce and demonstrate the effectiveness of assume-guarantee syn-
thesis in synthesizing fair exchange protocols. Our main goal is to introduce a general
assume-guarantee synthesis framework that can be used with a variety of objectives; we
considered a TTP objective that treats the agents symmetrically, but the framework can
be used with possibly weaker TTP objectives that treat agents asymmetrically. Using
assume-guarantee analysis we have obtained a new symmetric protocol that is attack-
free, given the channels to the TTP are operational. The details of the symmetric pro-
tocol are in the full version of the paper in [7]. For future work we will study the
application of assume-guarantee synthesis to other security protocols.
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Abstract. Most analysis methods for information flow properties do
not consider temporal restrictions. In practice, however, such properties
rarely occur statically, but have to consider constraints such as when
and under which conditions a variable has to be kept secret. In this pa-
per, we propose a natural integration of information flow properties into
linear-time temporal logics (LTL). We add a new modal operator, the
hide operator, expressing that the observable behavior of a system is in-
dependent of the valuations of a secret variable. We provide a complexity
analysis for the model checking problem of the resulting logic SecLTL
and we identify an expressive fragment for which this question is effi-
ciently decidable. We also show that the path based nature of the hide
operator allows for seamless integration into branching time logics.

1 Introduction

Temporal logics are well-suited for specifying classical requirements on the be-
havior of reactive systems. The key to the success of automated verification meth-
ods for temporal logics is the rich set of automata-theoretic techniques [1,2,3].
Based on these theoretical foundations, efficient model-checkers that are capable
of verifying intricate properties have emerged over the last two decades. Reac-
tive systems, however, often are not only safety-critical but also security-critical.
Examples of reactive systems handling confidential information include commu-
nication protocols, cell phone apps, and document servers.

Information flow properties are of great importance in the realm of security-
critical systems. Information flow summarizes properties that argue about the
transfer of information from a secret source towards an observer or attacker.
Notable examples of such properties are non-interference [4] and observational
determinism [5], which require that no information is leaked in a strict sense. For
many practical applications, however, requiring that information is kept secret
forever is too strong: often secrets may (or even must) be released under certain
conditions. The controlled release of information is called declassification [6,7].
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Fig. 1. Model of a conference management system. The variables submit, update, re-
view, accept, reject, close and release are input variables. An author can submit a paper
and later receive a notification of whether the paper was accepted or rejected via the
output variables congrat and sorry, which he or she can observe.

For reactive systems it is typical that secrecy requirements vary over time,
depending on the interaction of the system with its environment. For example
access rights are seldom static, and secret data may be released under certain
conditions. Therefore, it is imperative to consider information flow properties in
their temporal context and integrate them in the theory of temporal logics.

A typical example for a security-critical reactive system is a conference man-
agement system. A minimalistic model of such a system is given in Fig. 1. Two
properties of interest for this system are: (1) “The final decision of the program
committee remains secret until the notification” and (2) “All intermediate de-
cisions of the program committee are never revealed to the author”. These two
information flow properties can be informally specified as follows:

(1) last accept/reject before close remains secret until release and
(2) all accept/reject except the last before close remain secret forever.

The above properties illustrate the two temporal aspects of information flow
properties. Firstly, they specify at which points in time a variable is consid-
ered secret, e.g., “last before” or “all except last before”. Secondly, they specify
for how long certain information should remain secret, e.g., “forever” or “until
release”. Despite their obvious temporal nature, these properties cannot be ex-
pressed in classical temporal logics like LTL (Linear-time Temporal Logic), CTL
(Computation Tree Logic), or even the μ-calculus [8].

The reason is that most information flow properties have structural differences
to classical temporal properties. While the latter are interpreted on a single
execution (in the linear-time case) or on the execution tree of a system (in
the branching-time case), information flow properties require the comparison of
multiple executions.

Contribution. In this paper we introduce a new modal operator H (hide), that
expresses the requirement that the observable behavior of a system is indepen-
dent of the choice of a secret. The novelty is the integration into the temporal
context—the operator itself is evaluated over a single path, but tracks the alter-
native paths the system could take for different valuations of the secret.
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Extending LTL with the operator H (Section 3) yields a powerful—yet
decidable—logic called SecLTL. We provide an automata-theoretic verification
technique for SecLTL that extends the standard approach for LTL. We establish
PSPACE-completeness of the model checking problem for SecLTL both in the
size of the specification and in the size of the system under scrutiny.

We identify a fragment, Restricted SecLTL, for which the model checking
problem is efficiently solvable: it is in NLOGSPACE with respect to the size of
the system (Section 4). What makes Restricted SecLTL of practical relevance is
the combination of efficiency and expressiveness. It is able to capture properties
like non-interference and observational determinism.

The path-based semantics of the hide operator enables seamless integration
in branching time logics (Section 5). We define the logics SecCTL and SecCTL*
and determine the complexity of the corresponding model checking problems.
Surprisingly, even for SecCTL the model checking problem is PSPACE-complete.

2 Preliminaries

In this section we introduce the system model we consider throughout the paper:
transition systems whose edges are labeled with valuations of their input and
output variables. The external behavior of such a system consists of the infinite
sequences of labels during the possible executions. The temporal properties we
specify are over such behavior paths and are consequently translated to automata
over infinite words over the same alphabet.

For a finite set V of binary variables, we denote with vals(V) the set of all
possible valuations of the variables in V , i.e., all total functions from V to B. For
a ∈ vals(V) and V ⊆ V we use a|V to note the projection of a on the set V .

For a set A, A∗ is the set of all finite sequences of elements of A and Aω is the
set of all infinite sequences of elements of A. For a finite or infinite sequence π
of elements of A and i ∈ N, π[i] is the (i+1)-th element of π, π[0, i) is the prefix
of π of up to (excluding) position i, π[0, i] is the prefix of π up to (including)
position i and, if π is infinite, π[i,∞) is its infinite suffix starting at position i.
For a finite sequence π ∈ A∗, we denote its length with |π|.

Definition 1 (Transition system). A transition system (Mealy machine)
M = (VI ,VO, S, s0, δ) consists of a finite set of states S, an initial state s0,
two disjoint finite sets of binary variables, the input variables VI and the output
variables VO, and a transition function that is a partial function δ : S×Σ → S,
where the alphabet Σ = vals(VI ∪ VO) is the set of valuations of the input and
output variables. We define the size of a transitions system as |M | = |S| + |Σ|.

We consider input enabled systems, that is, we require for every s ∈ S and
i ∈ vals(VI) that there exists an a ∈ Σ with a|VI = i such that δ(s, a) is defined.

Definition 2 (Transition function δ∗M). We extend the transition function
of a transition system M to partial labels: δ∗M : S × vals(V ) → 2Σ×S, where
V ⊆ VI ∪ VO, δ∗M (s, v) = {(a, s′) ∈ Σ × S | a|V = v and δ(s, a) = s′}.
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Definition 3 (Path, execution). Paths of a transition system M are infinite
sequences of labels: π = a0, a1, . . . , with ai ∈ Σ. Given a state s ∈ S, each path
π is associated with a unique finite or infinite sequence of states, s0, . . . , sn or
s0, s1, . . . , called execution of M from s on π and denoted ExecM (s, π), such
that s0 = s and si+1 = δ(si, ai) for all i ≥ 0. The execution is unique, since the
transition function is a function and might be finite since this function is partial.

Given a state s, we denote the set of possible infinite paths in M by Pathss,M .
Note that for every π ∈ Pathss,M , the execution ExecM (s, π) is infinite.

Definition 4 (Observational equivalence). Given a set of variables V ⊆
VI ∪ VO, we define two valuations a, a′ ∈ Σ, to be observationally equivalent
w.r.t. V , noted a =V a′, if the valuations’ projections to the variables in V is the
same: a|V = a′|V . Pairwise comparison immediately provides us with a notion
of observational equivalence on paths.

For a finite set Q, B+(Q) is the set of positive boolean formulas over Q. These
are formulas built from the formulas true, false and the elements of Q using ∧
and ∨. For θ ∈ B+(Q) and a set K ⊆ Q we write K |= θ if K satisfies θ.

A tree T is a subset of N∗
>0 such that for every node τ ∈ N∗

>0 and every
positive integer n ∈ N>0, if τ · n ∈ T then the following hold:

– τ ∈ T (i.e., T is prefix-closed) and there is an edge from τ to τ · n, and
– for every m ∈ N∗

>0 with m < n it holds that τ ·m ∈ T .

The root of T is the empty sequence ε and for a node τ ∈ T , |τ | is the distance
of τ from the root. A Q-labeled tree is a tuple (T, r), where T is a tree and the
function r : T → Q labels every node with an element of Q.

Definition 5 (Alternating Büchi automaton). An alternating Büchi au-
tomaton is a tuple A = (Q, q0, Σ, ρ, F ), where Q is a finite set of states, q0 ∈ Q
is the initial state, Σ is a finite alphabet, ρ : Q×Σ → B+(Q) is a transition func-
tion that maps a state and a letter to a positive boolean combination of states,
and F ⊆ Q is a set of accepting states.

A run of A on an infinite word π ∈ Σω is a Q-labeled tree (T, r) such that
r(ε) = q0 and for every node τ in T with children τ1, . . . , τk it holds that k ≤ |Q|
and {r(τ1), . . . , r(τk)} |= ρ(q, π[i]), where q = r(τ) and i = |τ |.

A run r of A on π ∈ Σω is accepting iff for every infinite path τ0τ1 . . . in T ,
r(τi) ∈ F for infinitely many i ∈ N. We denote with Lω(A) the set of infinite
words in Σω accepted by A, i.e., for which there exists an accepting run of A.
For a state q ∈ Q, we note Lω(A, q) = Lω(Aq), where Aq = (Q, q,Σ, ρ, F ).

Definition 6 (Nondeterministic Büchi automaton). A nondeterministic
Büchi automaton is an alternating Büchi automaton N = (Q, q0, Σ, ρ, F ) for
which the transition formula ρ(q, a) for each q ∈ Q and a ∈ Σ does not contain
∧. Thus, for a nondeterministic Büchi automaton we can represent the transition
function ρ as a function ρ : Q×Σ → 2Q.

A run of N on an infinite word π ∈ Σω is an infinite sequence τ ∈ Qω such
that τ [0] = q0 and for every i ∈ N, τ [i+ 1] ∈ ρ(τ [i], π[i]).
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3 The Temporal Logic SecLTL

The logic SecLTL extends LTL with the hide operator H . The SecLTL formu-
las over a set of variables V = VI∪̇VO are defined according to the following
grammar, where v ∈ V , ϕ and ψ are SecLTL formulas, H ⊆ VI and O ⊆ VO,

ϕ ::= v | ¬ϕ | ϕ ∨ ψ | © ϕ | ϕ U ψ | HH,Oϕ.

Additionally, we introduce the common abbreviations true = v ∨ ¬v, false =
¬true, ♦ϕ = true Uϕ, �ϕ = ¬♦¬ϕ, and ϕWψ = ϕ Uψ ∨ �ϕ.

Intuitively, the operator HH,Oϕ requires that the observable behavior of the
system does not depend on the initial values of the secret variables H before
the formula ϕ is satisfied. The operator also allows to specify the power of the
observer, by choosing an appropriate set O of observable variables or outputs.
That is, the hide operator specifies what is to be considered the secret, what we
consider to be observable, and when the secret may be released.

What may seem a little odd initially, that we only consider the first valuation
of the H-variables to be secret, is actually one of the strengths of SecLTL. It
allows us, to precisely characterize the secret by using the hide operator within
an appropriate temporal context. For example, we can express the temporal
information flow properties from our motivating example in the introduction, as
we demonstrate in Section 3.1.

Although SecLTL specifications are path properties, their semantics, more
precisely the semantics of the hide operator, is defined using a set of alternative
paths and involves comparison of each of these paths to the main path, i.e., the
path over which the SecLTL formula is interpreted.

Definition 7 (Alternative paths). The set of alternative paths for a given
path π ∈ Σω and a given state s ∈ S with respect to a set of variables H ⊆ V
is the set of paths starting in state s with a possibly different valuation of the
secret variables H in the first position but otherwise adhering to the same input
values.

AltPathsM (s, π,H) = { π′ ∈ Pathss,M | π[0] =VI\H π′[0], and
π[1,∞) =VI π

′[1,∞) }.

Definition 8 (Semantics of SecLTL). Let M = (VI ,VO, S, s0, δ) be a tran-
sition system and Σ = vals(VI ∪ VO). An infinite path π ∈ Pathss,M for some
state s ∈ S and the state s satisfy a SecLTL formula ϕ, denoted M, s, π |= ϕ
when the following conditions are satisfied:

– if ϕ = v for some v ∈ V, then M, s, π |= ϕ iff π[0]|v is true;
– if ϕ = ¬ϕ′, then M, s, π |= ϕ iff M, s, π �|= ϕ′;
– if ϕ = ϕ1 ∨ ϕ2, then M, s, π |= ϕ iff M, s, π |= ϕ1 or M, s, π |= ϕ2,
– if ϕ = ©ϕ′, then M, s, π |= ϕ iff M, s′, π[1,∞) |= ϕ′ where s′ = δ(s, π[0]),
– if ϕ = ϕ1Uϕ2, then M, s, π |= ϕ iff for some i ≥ 0, we have M,σ[i], π[i,∞) |=
ϕ2 and for all j with 0 ≤ j < i we have M,σ[j], π[j,∞) |= ϕ1, where
σ = ExecM (s, π).
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Fig. 2. Consider the formula ϕ = H{h},{o}b. This figure displays a computation tree
of a system and a path π with its (in this case single) alternative path π′. The formula
ϕ holds on π if π is observably equivalent (here, that is, equivalent with respect to
variable o) to π′ until b holds on π. Note that the occurrence of b in step 2 of path π′

does not affect the evaluation of ϕ on path π—thus π violates property ϕ. The other
path π′, however, satisfies the property, as the comparison stops after the first step.

– if ϕ = HH,Oψ, then M, s, π |= ϕ iff for every π′ ∈ AltPathsM (s, π,H) it
holds that π =O π′ or there exists i ∈ N such that M,σ[i], π[i,∞) |= ψ and
π[0, i) =O π′[0, i), where σ = ExecM (s, π).

We say that a transition system M satisfies a SecLTL formula ϕ, denoted M |=
ϕ, iff M, so, π |= ϕ for every π ∈ Pathss0,M .

Using the operator H we can specify secrecy requirements within a temporal
context. It generates a secret at a single point partitioning the input variables
into public and secret variables. Thus we can use the standard LTL operators to
capture the temporal aspect in that respect, i.e., when are secrets introduced. The
hide operator is a temporal operator with a “weak until flavor” that captures
requirements about for how long the secret should be kept.

The examples below demonstrate that these features enable the specification
of a rich set of temporal information flow properties for reactive systems.

3.1 Examples

Example 1 (Non-interference and Observational determinism). Classical non-
interference and related notions are fundamental security properties that any
logic designed as a specification language for information flow requirements
should be able to express. Classical non-interference as defined for (output)
deterministic systems by Gougen and Meseguer [4] requires that the system’s
observable behavior may not change if the high user’s actions would not have
been issued. Modeling the high actions hi and low actions li as input variables
that are true iff the action is performed and defining O as the set of observable
variables, we can translate [9] non-interference to our setting as follows:

NI (M) =
{
π ∈ Pathss0,M | ∀π′ ∈ Pathss0,M : π′ =H

�0 ∧ π =L π′ ⇒ π =O π′}
where H =

⋃
i hi and L =

⋃
i li. That is, we compare all paths with non-zero

high inputs to their counterpart having only zero high inputs. By symmetry and
transitivity this compares all paths having the same low inputs to each other.
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This property can be expressed in SecLTL with the following formula:

ϕNI (M) = � HH,O false.

While a single hide operator only hides the first valuation of the secret variable,
using it in combination with the globally operator (�) has the effect that for all
steps the valuations of the variables H are considered secret. In this case, the
subformula of the hide operator is false, which means that the comparison will
never stop—the secrets must be kept forever.

Zdancewic and Myers [5] generalize non-interference to systems that are not
output deterministic. The resulting property, observational determinism, states
that for all possible computations (paths) π and π′ the observations must be
indistinguishable: π =O π′. Note that the model in [5] does not allow for low
input, but we can easily extend it by such:

OD(M) =
{
π ∈ Pathss0,M | ∀π′ ∈ Pathss0,M : π =L π

′ =⇒ π =O π′}
As it is easy to see, this property is also captured by the formula ϕNI (M) above.

There are several other approaches, all with different semantics, that gener-
alize non-interference to not output deterministic systems. We decided to follow
the approach of Zdancewic and Myers as we consider it to be conservative.

Example 2 (Conference management system). Consider the model of a confer-
ence management system depicted on Fig. 1. The information flow properties
informally specified there can be specified as follows:

(1) �
(
(©close) ⇒ HH,O release

)
(2) �

(
(¬© close) ⇒ HH,O false

)
.

where H = {accept , reject} and O = {congrat , sorry}.
Here, the set H in the H subformulas specifies that the variables whose values

in the corresponding point of time constitute the secret are accept and reject , and
the set O = {congrat , sorry} means that the observer, in this case the author,
can observe all output variables of this system.

The subformula release of the H subformula in (1) specifies that the secret
may be released as soon as release is satisfied, while in (2) the false in the H
subformula requires that the secret is never released (as false is never satisfied).

Example 3 (Combination of path properties). Using combinations of path prop-
erties, we can rule out certain leaks in the analysis, which allows to analyze
different sources of secrets in separation. To rule out security violations other
than the obvious copy-operation from high to low variables, we can require that
the hide operator is only evaluated on paths that do not show such behavior:

(¬readhigh W writelow) ⇒ HH,Ofalse.

As side conditions we need to require that readhigh and writelow are not part of
the set of variablesH , as in this case the hide operator would explore alternatives
with different valuations for these variables.
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Example 4 (Auction). We consider the bounded creation of secrets as one of
the strengths of SecLTL. For example, we can express that all bids submitted
before closing an auction are kept secret until the winner is announced:

(Hbids,O winnerAnnounced) U closingAuction.

Example 5 (Key retrieval). SecLTL also enables specifications that argue about
more than one different secrets. The following property specifies that on every
path at most one of the two secrets can be compromised:

(H{k1},O false) ∨ (H{k2},O false).

This does not prevent the leakage of either secret for all paths but only prevents
per path that both secrets are leaked.

Example 6 (Nesting). Nesting can be used to express that a secret (e.g. a key)
may not be leaked until the generation of a second secret that is secure:

H{k1},O(H{k2},Ofalse).

3.2 Model Checking SecLTL

The model checking problem for SecLTL is, given a SecLTL formula ϕ and a
transition system M to determine whether M |= ϕ.

We now describe an automata-theoretic technique for model checking SecLTL.
To this end we show that given a SecLTL formula ϕ and a transition system
M , we can construct a nondeterministic Büchi word automaton that accepts
exactly those paths in Pathss0,M that satisfy ϕ. As an intermediate step of this
translation we construct an alternating Büchi word automaton from M and
ϕ with this property. This construction extends the standard translation for
LTL and thus inherits its intuitiveness. An important advantage of the use of
alternation is that it allows us to naturally follow the semantics of the operator
H employing the universal branching in the automaton transitions.

One of the differences between the automaton we construct for a SecLTL
formula and the one for an LTL formula obtained by the standard construction is
that each state of the automaton for SecLTL carries a state ofM as a component.
This allows the automaton to keep track of the executions ofM on the alternative
paths for a given input word when necessary. Note that this construction could
be slightly adapted in order to eliminate the need for a subsequent product
construction of the resulting automaton with M . We decided, however, not to
do that, in order to give a better intuition about the construction here and its
relation to the corresponding construction for Restricted SecLTL in Section 4.

Definition 9. The closure operator cl(ϕ) maps a SecLTL formula ϕ to a set of
SecLTL formulas that consists of all subformulas of ϕ and their negations. For
LTL operators we use the standard definition of subformulas and the subformulas
of a formula HH,Oϕ contain the formula itself and the subformulas of ϕ.
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Proposition 1. For a transition system M = (VI ,VO, S, s0, δ) and a SecLTL
formula ϕ we can construct an alternating Büchi word automaton AM,ϕ =
(Q, q0, Σ, ρ, F ) with Σ = vals(VI ∪ VO) such that |Q| is in O(|ϕ| · |S|2) and
for every path π ∈ Pathss0,M it holds that π ∈ Lω(AM,ϕ) iff M, s0, π |= ϕ.

Proof. We define the set of states Q = Qϕ × S⊥, where S⊥ = S ∪ {⊥} and

Qϕ = cl(ϕ)∪{(O,ψ,m, s) ∈ 2VO ×{ψ}×{∀, ∃}×S | ∃H ⊆ VI .HH,Oψ ∈ cl(ϕ)}.
The initial state of AM,ϕ is q0 = (ϕ, s0) and the set F of accepting states is
defined as F = {(¬(ψ Uψ′), s) ∈ Q} ∪ {((O,ψ, ∀, s′), s) ∈ Q}.

To define the transition function ρ : Q×Σ → B+(Q), we extend the transition
function δ ofM to a total function δ⊥ : S⊥×Σ → S⊥: for s ∈ S, δ⊥(s, a) = δ(s, a)
if δ(s, a) is defined and δ⊥(s, a) = ⊥ otherwise, and δ⊥(⊥, a) = ⊥.

For convenience, we define the dual q of states in q ∈ Q: (ψ, s) = (¬ψ, s),
((O,ψ, ∀, s′), s) = ((O,¬ψ, ∃, s′), s), and ((O,ψ, ∃, s′), s) = ((O,¬ψ, ∀, s′), s).

For (ψ,⊥) ∈ Q where ψ is not an LTL formula and a ∈ Σ we define
ρ((ψ,⊥), a) = false. For ((O,ψ,m, s′),⊥) ∈ Q where ψ is not an LTL formula
and a ∈ Σ, ρ(((O,ψ,m, s′),⊥), a) = false. For the remaining cases we define:

ρ((v, s), a) = true if a|v = 1 and false if a|v = 0,
ρ((¬ψ, s), a) = ρ((ψ, s), a),
ρ((ψ ∨ ψ′, s), a) = ρ((ψ, s), a) ∨ ρ((ψ′, s), a),
ρ((©ψ, s), a) = (ψ, δ⊥(s, a)),
ρ((ψ Uψ′, s), a) = ρ((ψ′, s), a) ∨ ρ((ψ, s), a) ∧ (ψ U ψ′, δ⊥(s, a)),
ρ((HH,Oψ, s), a) = ρ((ψ, s), a) ∨ check(O, a, δ∗M (s, a|VI\H))∧∧

(a′,s′)∈δ∗
M (s,a|VI\H)((O,ψ, ∀, s′), δ⊥(s, a)),

ρ(((O,ψ, ∀, s′), s), a) = ρ((ψ, s), a) ∨ check(O, a, δ∗M (s′, a|VI ))∧∧
(a′,s′′)∈δ∗

M (s′,a|VI )((O,ψ, ∀, s′′), δ⊥(s, a)),

ρ(((O,ψ, ∃, s′), s), a) = ρ(((O,¬ψ, ∀, s′), s), a)
= ρ((ψ, s), a) ∧ (check(O, a, δ∗M (s′, a|VI ))∨∨

(a′,s′′)∈δ∗
M (s′,a|VI )((O,ψ, ∃, s′′), δ⊥(s, a))

)
.

where check is defined as check(O, a,A) =
(∀(a′, s′) ∈ A : a′ =O a

)
. Note that

this function can be evaluated during the construction of AM,ϕ in time |M |.
Applied to a state of the form (HH,Oψ, s), the transition function follows the

semantics of H , which involves universal branching w.r.t. the alternative paths
that start at state s. For states of the form ((O,ψ, ∀, s′), s), the transition relation
is again defined according to the semantics of H , which in its temporal aspect
is similar to the LTL weak until operator. Here the transition relation verifies
ψ on the main path or branches universally according to the alternative paths
starting from s′. The function check has a similar effect to that of evaluating a
variable but it instead compares for O-equivalence.

States of the form ((O,ψ, ∀, s′), s) are accepting, as branches for alternative
paths that are forever equivalent to the main path should be accepting.
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Let π ∈ Σω and let τ be a path in some run tree of AM,ϕ on π. Let us consider
a state τ [i] ∈ Q for some i ≥ 0. The set Q of states of AM,ϕ contains two types of
states. If τ [i] is of the form (ψ, s) ∈ cl(ϕ) × S⊥ and s �= ⊥, then s = σ[i], where
σ = ExecM (s0, π). That is, s is a state on the execution of M on π starting from
s0 that corresponds to the prefix of π read so far. Similarly, if τ [i] is of the form
((O,ψ,m, s′), s) ∈ (2VO × cl(ϕ)×{∀, ∃}× S)× S⊥ and s �= ⊥, we have s = σ[i].
The state s′ ∈ S is a state on the execution ExecM (σ[j], π′), where 0 ≤ j < i
and π′ ∈ AltPathsM (σ[j], π[j,∞), H) for some H ⊆ VI . That is, the state s′ is a
state on the execution of M on some alternative path π′ that branches off form
π at some position prior to position i. We point out that:

Remark 1. For every (ψ, s) ∈ Q where ψ is an LTL formula, it holds that
Lω(AM,ϕ, (ψ, s)) = Lω(AM,ϕ, (ψ,⊥)). If the formula ϕ does not contain nested
H operators, then for every ((O,ψ,m, s′), s) it holds that ψ is an LTL for-
mula and, as a consequence of the above and the definition of ρ, we have that
Lω(AM,ϕ, ((O,ψ,m, s′), s)) = Lω(AM,ϕ, ((O,ψ,m, s′),⊥)). ��
Proposition 2. [10] For every alternating Büchi word automaton A with n
states there exists a nondeterministic Büchi word automaton N with 2O(n) states
such that Lω(N ) = Lω(A).

Proof. Let A = (Q, q0, Σ, ρ, F ) be an alternating Büchi word automaton. We
construct a nondeterministic Büchi word automaton N = (Qnd, qnd

0 , Σ, ρ
nd, F nd)

as follows: Qnd = 2Q × 2Q, qnd
0 = ({q0}, ∅), F nd = {(R, ∅) | R ⊆ Q} and

ρnd((R1, R2), a) =

⎧⎨⎩{(R′
1, R

′
1 \ F ) | R′

1 |= ∧
q∈R1

ρ(q, a)} if R2 = ∅,
{(R′

1, R
′
2 \ F ) | R′

2 ⊆ R′
1, R

′
1 |= ∧

q∈R1
ρ(q, a),

R′
2 |= ∧

q∈R2
ρ(q, a)} if R2 �= ∅.

Theorem 1. For a transition system M = (VI ,VO, S, s0, δ) and a SecLTL for-
mula ϕ we can check in time O(|M | · 2O(|ϕ|·|S|2)) or in space O((log |M | + |ϕ| ·
|S|2)2) whether M |= ϕ holds.

Proof. We can view M as a nondeterministic Büchi word automaton and con-
struct the product BM,¬ϕ of M and the nondeterministic automaton NM,¬ϕ for
the negation of ϕ. Then M |= ϕ iff Lω(BM,¬ϕ) = ∅ and the claim of the theorem
follows from the fact that the nonemptiness problem for nondeterministic Büchi
automata of size n is decidable in time O(n) or in space O(log2 n) [1]. ��

3.3 Complexity of the Model Checking Problem for SecLTL

A concurrent program is a parallel composition of a number of components using
the interleaving semantics and synchronizing over shared actions. We reduce
the model checking problem for concurrent programs (as defined in [2]) to the
SecLTL model checking problem for a monolithic transition system.

Theorem 2. [2] Model Checking CTL and CTL* for concurrent programs is
PSPACE-complete both in the size of the formula [2, Thm. 6.1] and in the size
of the transition systems [2, Thm. 6.2].
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Theorems 6.1 and 6.2 in [2] make use of a single CTL formula: EF (a1∨· · ·∨an),
for some atomic propositions ai and a number of processes n. As the negation of
that property can be expressed in LTL (�(¬a1∧· · ·∧¬an)), we can immediately
extend their result to LTL.

Lemma 1. Model Checking LTL for concurrent programs is PSPACE-complete
both in the size of the formula and in the size of the transition systems.

Theorem 3. The model checking problem for SecLTL is PSPACE-complete.

Proof sketch. We reduce the LTL model checking problem for concurrent pro-
grams to model checking a SecLTL formula on a single transition system, which
is the union of all individual programs together with a new initial state. For the
initial state the transition function allows to select a program whose transition
function is used subsequently. The program is then executed independently from
the others. We give a SecLTL formula that ensures that the original specification
is checked only on valid interleavings.

4 Restricted SecLTL

For some cases the nondeterministic automaton for a SecLTL formula does not
have to track a set of executions on alternative paths, but it suffices to track one
such execution. This raises hopes for more efficient fragments of SecLTL. In this
section, we identify one such fragment, which we call Restricted SecLTL, that
is characterized by a simple set of syntactic restrictions. We show that, indeed,
the model checking problem for Restricted SecLTL has a lower computational
complexity in terms of the size of the transition system.

Negation normal form (NNF). In order to elegantly state the restrictions, we
introduce negation normal form for (not necessarily restricted) SecLTL formulas.
As usual, the LTL operator R is the dual of U , i.e., ¬(ϕ U ψ) ≡ ¬ϕ R ¬ψ.
We define the SecLTL operator L , the leak operator, as the dual of the SecLTL
operator H : For a given transition system M = (VI ,VO, S, s0, δ), infinite word
π ∈ Σω, where Σ = vals(VI ∪ VO), and state s ∈ S, it holds that

M, s, π |= LH,Oϕ iff M, s, π |= ¬(HH,O¬ϕ).

For every SecLTL formula ϕ, we denote with NNF(ϕ) the NNF of ϕ. SecLTL
formulas in NNF are defined according to the following grammar, where v ∈ V ,
ϕ, ψ are SecLTL formulas in NNF, H ⊆ VI and O ⊆ VO,

ϕ ::= v | ¬v | ϕ ∨ ψ | ϕ ∧ ψ | © ϕ
ϕ U ψ | ϕ R ψ | HH,O ϕ | LH,O ϕ.

Restricted SecLTL. A Restricted SecLTL formula is a SecLTL formula ϕ in NNF
that does not contain the operatorL , does not contain nested H operators, and:

(U) for every subformula ϕ1 U ϕ2 of ϕ, the formula ϕ2 is an LTL formula,
(R) for every subformula ϕ1 R ϕ2 of ϕ, the formula ϕ1 is an LTL formula.
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Since we will build an alternating automaton for the negated formula, we also
formulate the restrictions on the negated version for reference: For a Restricted
SecLTL formula, the formula NNF(¬ϕ) does not contain the operator H , does
not contain nested L operators, and satisfies the dual versions of (U) and (R):

(U¬) for every subformula ϕ1 U ϕ2 of NNF(¬ϕ), ϕ1 is an LTL formula,
(R¬) for every subformula ϕ1 R ϕ2 of NNF(¬ϕ), ϕ2 is an LTL formula.

Expressive power. The above restrictions do not have a significant effect on the
expressive power. Examples 1 to 4 are still expressible in Restricted SecLTL.
Thus, the main assets of SecLTL, that is the bounded secret generation and the
use of hide operators in temporal contexts, are preserved.

Proposition 3. The system complexity of the model checking problem for Re-
stricted SecLTL is in NLOGSPACE.

Proof. We adapt the construction from Proposition 1 to the special case of for-
mulas of the form ¬ϕ where ϕ is a Restricted SecLTL formula. As in the formula
NNF(¬ϕ) negation occurs only in front of variables, instead of cl(¬ϕ) we can use
the set sf (NNF(¬ϕ)) that consists of all subformulas of NNF(¬ϕ). Furthermore,
since NNF(¬ϕ) does not contain H operators, states of the form ((O,ψ, ∀, s′), s)
are no longer needed. We define Q = Q′

¬ϕ × S⊥, where S⊥ = S∪̇{⊥} and

Q′
¬ϕ = sf (NNF(¬ϕ)) ∪ {(O,ψ, ∃, s) | ∃H : LH,Oψ ∈ sf (NNF(¬ϕ))}.

In the alternating Büchi word automaton AM,¬ϕ = (Q, q0, Σ, ρ, F ) the initial
state is q0 = (NNF(¬ϕ), s0) if ϕ is not an LTL formula and q0 = (NNF(¬ϕ),⊥)
otherwise, and the set of accepting states is F = {(ψ R ψ′, s) ∈ Q}.

According to Remark 1 we can replace in the definition of the function ρ
the function δ⊥ by the function δ′⊥ : sf (NNF(¬ϕ)) × S⊥ × Σ → S⊥ where
δ′⊥(ψ, s, a) = ⊥ if ψ is an LTL formula and δ′⊥(ψ, s, a) = δ⊥(s, a) otherwise.

As NNF(¬ϕ) does not contain nested L operators we ensure by the definition
of δ′⊥ that states of the form ((O,ψ, ∃, s′), s) where s �= ⊥ are not reachable.

The transition relation ρ is defined as follows:

ρ((v, s), a) = true if a|v = 1 and false if a|v = 0,
ρ((¬v, s), a) = true if a|v = 0 and false if a|v = 1,
ρ((ψ ∨ ψ′, s), a) = ρ((ψ, s), a) ∨ ρ((ψ′, s), a),
ρ((ψ ∧ ψ′, s), a) = ρ((ψ, s), a) ∧ ρ((ψ′, s), a),
ρ((©ψ, s), a) = (ψ, δ′⊥(ψ, s, a)),
ρ((ψ Uψ′, s), a) = ρ((ψ′, s), a) ∨ ρ((ψ, s), a) ∧ (ψ U ψ′, δ′⊥(ψ U ψ′, s, a)),
ρ((ψRψ′, s), a) = ρ((ψ′, s), a) ∧ (ρ((ψ, s), a) ∨ (ψRψ′, δ′⊥(ψRψ′, s, a))),
ρ((LH,Oψ, s), a) = ρ((ψ, s), a) ∧ (check(O, a, δ∗M (s, a|VI\H))∨∨

(a′,s′)∈δ∗
M (s,a|VI\H)((O,ψ, ∃, s′), δ′⊥(ψ, s, a))

)
,

ρ(((O,ψ, ∃, s′), s), a) = ρ((ψ, s), a) ∧ (check(O, a, δ∗M (s′, a|VI ))∨∨
(a′,s′′)∈δ∗

M (s′,a|VI )((O,ψ, ∃, s′′), δ′⊥(ψ, s, a))
)
.
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We see already that the restrictions eliminated universal branching over suc-
cessors. Disjunctive branching over successors does not lead to an exponential
blow up in the size of the system during the construction of the nondeterministic
Büchi automaton. In the following, we show that the number of executions that
we have to track is bounded by the number of leak operators in the formula.

Let k be the number of leak operators in NNF(¬ϕ). We construct a non-
deterministic Büchi word automaton N ′

M,¬ϕ = (Q′, q′0, Σ, ρ
′, F ′) with |Q′| in

O(2O(|ϕ|) · |S|k) and such that Lω(N ′
M,¬ϕ) = Lω(NM,¬ϕ), where NM,¬ϕ =

(Qnd, qnd
0 , Σ, ρ

nd, F nd) is the nondeterministic Büchi automaton for AM,¬ϕ con-
structed using the construction from Proposition 2.

For a set R ⊆ Q, we denote with ns(R) the sum of the number of states in
R of the form (ψ, s) with s �= ⊥ and the number of states in R of the form
((O,ψ, ∃, s′), s). We denote with nl(R) the sum of the number of occurrences of
L in formulas in R and the number of states in R of the form ((O,ψ, ∃, s′), s).
We define Q′ = {(R1, R2) ∈ Qnd | ns(R1) ≤ k, nl(R1) ≤ k and R2 ⊆ R1}.

Each state in (R1, R2) ∈ Q′ can be represented as a tuple (A1, A2, s), where
Ai is obtained from Ri by replacing each state of the form (ψ, s) where s �= ⊥
by (ψ, ?) and each state of the form ((O,ψ, ∃, s′), s) by (O,ψ, ∃, ?) and s is a
vector of states in S of size k that assigns states to the ?-elements in A1 and A2

according to some fixed order on the formulas in sf (NNF(¬ϕ)). This is possible
as the definition of Q′ guarantees that A1 contains at most k ?-elements and
A2 ⊆ A1. Thus, the number of states of N ′

M,¬ϕ is in O(2O(|ϕ|) · |S|k).
The initial state of N ′

M,¬ϕ is q′0 = qnd
0 and the accepting states and the tran-

sition relation are defined as in NM,¬ϕ: F ′ = {(R1, R2) ∈ Q′ | R2 = ∅} and

ρ′((R1, R2), a) =

⎧⎪⎨⎪⎩
{(R′

1, R
′
1 \ F ) ∈ Q′ | R′

1 |= ∧
q∈R1

ρ(q, a)} if R2 = ∅,
{(R′

1, R
′
2 \ F ) ∈ Q′ | R′

2 ⊆ R′
1, R

′
1 |= ∧

q∈R1
ρ(q, a),

R′
2 |= ∧

q∈R2
ρ(q, a)} if R2 �= ∅.

For every (R1, R2) ∈ Q′ and a ∈ Σ, ρ′((R1, R2), a) ⊆ ρnd((R1, R2), a). Therefore,
since q′0 = qnd

0 , it holds that Lω(N ′
M,¬ϕ) ⊆ Lω(NM,¬ϕ).

For R1, R2, S1, S2 ∈ 2Q, (R1, R2) ⊆ (S1, S2) iff R1 ⊆ S1 and R2 ⊆ S2.
We now show that for every (S1, S2) ∈ Qnd, (S′

1, S
′
2) ∈ ρnd((S1, S2), a)

and (R1, R2) ⊆ (S1, S2) there exists (R′
1, R

′
2) ∈ Q′ such that (R′

1, R
′
2) ∈

ρ′((R1, R2), a) and (R′
1, R

′
2) ⊆ (S′

1, S
′
2). To this end, we prove by induction on

the structure of Restricted SecLTL formulas and the definition of ρ that for
every i ∈ {1, 2}, q ∈ Ri there exists a set R′

i,q ⊆ S′
i such that R′

i,q |= ρ(q, a)
and nl(R′

i,q) ≤ nl({q}). If q = (ψ, s) where ψ is an LTL formula, we can clearly
choose R′

i,q such that nl(R′
i,q) = 0. For q = (LH,Oψ, s) or q = ((O,ψ, ∃, s′), s)

we have nl({q}) = 1 and, since ψ is an LTL formula, we can choose R′
i,q with

nl(R′
i,q) = 1. For the other cases the property follows from the induction hy-

pothesis and the fact that if q = (ψ U ψ′) then ψ is an LTL formula and if
q = (ψ R ψ′) then ψ′ is an LTL formula. Thus, we can choose (R′

1, R
′
2) ∈ Qnd

such that (R′
1, R

′
2) ∈ ρnd((R1, R2), a), (R′

1, R
′
2) ⊆ (S′

1, S
′
2) and nl(R′

i) ≤ k and
hence also ns(R′

i) ≤ k for i ∈ {1, 2}. Thus, (R′
1, R

′
2) ∈ ρ′((R1, R2), a).
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The property above implies that for every run τ of NM,¬ϕ on a word π ∈ Σω

there exists a run τ ′ of N ′
M,¬ϕ on π such that τ ′[i] ⊆ τ [i] for every i ≥ 0. If τ is

accepting, then τ ′ is also accepting. This implies that Lω(NM,¬ϕ) ⊆ Lω(N ′
M,¬ϕ),

which concludes the proof that Lω(NM,¬ϕ) = Lω(N ′
M,¬ϕ). ��

Theorem 4. Model Checking Restricted SecLTL is PSPACE-complete, and its
system complexity is NLOGSPACE-complete.

Proof. PSPACE-completeness follows from the fact that the model checking prob-
lem for LTL is PSPACE-hard and that we already showed that model checking
full SecLTL is in PSPACE. By Proposition 3, model checking SecLTL can be done
in space NLOGSPACE in the size of the system. Since the system complexity of
LTL model checking is NLOGSPACE-hard, the theorem follows. ��

5 Extension to Branching Time

To demonstrate that the hide operator allows for smooth extension of other
temporal logics, we integrate it in the well known branching time logics CTL
and CTL*. While for SecCTL* the complexity is straight-forward to determine,
the result for the extension of CTL might be surprising: it is PSPACE-complete.

We define the logic SecCTL* as a standard branching-time extension of Se-
cLTL. SecCTL* state formulas are defined as follows, where v ∈ V , ϕ and ϕ′ are
SecCTL* state formulas and ψ and ψ′ are SecCTL* path formulas:

ϕ ::= v | ¬ϕ | ϕ ∨ ϕ′ | Aψ | Eψ.
SecCTL* path formulas, defined below, can contain the temporal operator H :

ψ ::= ϕ | ¬ψ | ψ ∨ ψ′ | © ψ | ψ U ψ′ | HH,O ψ.

The path-based definition provides a simple and unique semantics for the hide
operator in SecCTL*.

Since SecCTL* is a standard branching-time extension of SecLTL, we can
employ the dynamic programming approach used for CTL* but use a SecLTL
model checker instead of an LTL model checker. Formulas are, as usual, evalu-
ated in a bottom-up manner. For a formula ψ, we evaluate all maximal proper
state subformulas of ψ and label the edges of the transition system accordingly
with values for fresh output variables. Then replace each maximal proper state
subformula in ψ by the corresponding fresh output variable and proceed. For
formulas of the form Eψ after the substitution in ψ we have that ψ is a SecLTL
formula and thus, we can compute the set of states that satisfy Eψ using a
SecLTL model checker.

Thus, for a SecCTL* formula ϕ and a transition system M = (VI ,VO, S, s0, δ)
we can check M |= ϕ by using O(|S| · |ϕ|) calls of a SecLTL model checker.

Theorem 5. The model checking problem for SecCTL* is PSPACE-complete.

Proof. Membership in PPSPACE, that is, in PSPACE, is implied by the algorithm
described above. PSPACE-hardness follows from Theorem 3. ��
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SecCTL. The subset SecCTL of SecCTL* is defined in the standard way by
restricting the path formulas to be of the form ©ϕ, ϕ U ϕ′ or HH,O ϕ, where ϕ
and ϕ′ are SecCTL state formulas.

Theorem 6. The model checking problem for SecCTL is PSPACE-complete.

Proof sketch. Similarly to the hardness proof for SecLTL, we provide a reduction
from the CTL model checking problem for concurrent systems to model checking
a SecCTL formula on a monolithic system of polynomial size.

6 Related Work

Recent works [9] provide a uniform framework for classification of properties that
refer to multiple paths at once, called hyperproperties. These works, however, do
not provide means to specify and verify hyperproperties. Such a formalism is,
of course, not even possible for the set of hyperproperties in its full generality.
Of particular interest is the class of k-safety hyperproperties which consists of
those hyperproperties that can be refuted by considering at most k finite paths.
The verification problem for such properties can be reduced to checking a safety
property on a system obtained by k-fold self-composition. Huisman et al. [11]
specify observational determinism in CTL* and in the polyadic modal μ-calculus
interpreted over the 2-fold self-composition of the system.

SecLTL, in contrast, can express properties that go beyond k-safety hyper-
properties; a counterexample for a SecLTL specification (e.g. for LH,O true)
might require an infinite number of paths, and are therefore out of the scope of
self-composition based approaches.

A different approach to analyze information flow properties in combination
with temporal properties, is that of epistemic logics [12,13,14]. Epistemic logics
introduce knowledge operators to temporal logics and allow for properties that
refer to the knowledge of an agent at a certain point in the system run—thus
they are able to express information flow properties like non-interference [15,16].

The fundamental difference between epistemic logics and SecLTL is, that a
knowledge operator expresses the knowledge of an agent, whereas the hide op-
erator specifies the secret. This allows us to argue in a forward-manner, starting
at the point at which the secret is introduced.

Alur et al. [17] extended CTL and μ-calculus by two modal operators, the
first of which, similarly to the knowledge operator in epistemic logics, allows for
quantifying over a set of equivalent states, and the second allows for referring to
non-equivalent states. The formulas in the resulting logics are interpreted over
computation trees augmented with edges representing observational equivalences
between path prefixes. The main advantage of SecLTL over these logics is the
path-based integration of observational determinism into the temporal context
that results into more intuitive specifications while still being able to express
many information flow properties of interest. Furthermore, we identified an ex-
pressive fragment of our logic for which the model checking problem has lower
complexity in terms of the system’s size than the logics proposed in [17].
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7 Conclusion

We proposed a new modal operator that allows for natural path-based integra-
tion of information flow properties in temporal logics. The rich set of examples
we considered demonstrates that the resulting linear time logic is expressive
enough to precisely specify many interesting information flow and secrecy prop-
erties. The operator allows for simple characterizations of sufficiently expressive
fragments with better computational complexity, like Restricted SecLTL, and
seamless integration into branching time logics like the presented SecCTL and
SecCTL*. Future work includes identifying fragments of the branching time log-
ics with reduced complexity and extensions to the alternating-time setting.
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Abstract. A common problem in software model checking is the au-
tomatic computation of accurate loop invariants. Loop invariants can
be derived from interpolants for every path leading through the corre-
sponding loop header. However, in practice, the consideration of single
paths often leads to very path specific interpolants. Inductive invariants
can only be derived after several iterations by also taking previous inter-
polants into account.

In this paper, we introduce a software model checking approach that
uses the concept of path insensitive interpolation to compute loop invari-
ants. In contrast to current approaches, path insensitive interpolation
summarizes several paths through a program location instead of one. As
a consequence, it takes the abstraction refinement considerably less effort
to obtain an adequate interpolant. First experiments show the potential
of our approach.

1 Introduction

In software model checking, abstraction refinement is used to prove properties
of a system on an abstract model without actually expanding this model to the
state level. The challenge when refining is to modify the abstract model in a way
that the desired property can be shown before the model becomes prohibitively
large. This can be achieved by extending the model with computed invariants.
The use of Craig interpolants is one promising approach for this purpose [15].
However, interpolation on single paths computes path specific interpolants. In
order to find an accurate invariant the desired interpolant must be inductive.
Current interpolation-based approaches find an interpolant for each infeasible
error path separately. These interpolants can be combined into a single inductive
invariant for all paths.

We introduce the concept of path insensitive interpolation as a technique to
derive inductive interpolants more directly. The idea is to put more information
into the interpolation process by considering several paths through the observed
location. Thus, we are more likely to obtain an inductive invariant for this loca-
tion. We present a novel software model checking approach that combines path
insensitive interpolation with splitting as abstraction refinement.

Splitting separates the states along an infeasible path to those reachable from
the initial location and those leading to the erroneous location. The refined model
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can contain several nodes representing the same location of the original program.
Each node carries an invariant that characterizes a set of states. Using splitting
as refinement step has the benefit, that the loop invariant does not have to be
derived as a single inductive interpolant. It can be constructed as a union of all
interpolants. The main task is to find useful interpolants.

Path insensitive interpolation returns an interpolant for a location � consid-
ering several paths through �. If in the extreme case all possible paths through �
are considered, the interpolant is guaranteed to be the right inductive invariant
for �. If loops are present this is not possible, but one can still merge loop-free
paths through � to get an interpolant that holds for all the considered paths.
This interpolant will be an inductive invariant for this location � for the loop-free
subprogram considered. In a first approach our algorithm collapses non-looping
subprograms into single transitions using large-block encoding (LBE) [4]. In the
resulting graph, each path corresponds to a set of original program paths. On this
compressed model we can compute path interpolants [16]. Thus, we can derive
interpolants from the refutation of sets of paths rather than single paths. This
approach allows to compute interpolants that are path insensitive modulo the
loop iterations of the program. E.g. programs with multiple outer loops cannot
be compressed by LBE to achieve path insensitive interpolation but our results
show that partial path insensitivity still works efficiently. It helps to reduce the
number of splits needed to an extent that our algorithm can efficiently handle
programs of a realistic size.

In the following, we illustrate our model checking approach using an example
in Section 2. In Section 3 we introduce the basic definitions for technical Sec-
tion 4. In Section 4 we present our interpolation-based model checking approach.
An experimental evaluation of the approach is given in Section 5.

2 Example

We will illustrate the approach by applying it to program main (Fig. 1). The
program has non-deterministic branches. The sum of x, y, and z is equal to the
initial value n in each iteration of the loop. Consequently, the assertion n = y+z
holds when the loop exits with x = 0. The program has the corresponding
program graph P (Fig. 2).

Our approach uses splitting as refinement step. The path interpolants [16]
derived from infeasible error paths are used as splitting criteria. An error path is
encoded as a FOL formula and passed to the interpolating SMT solver. Our ap-
proach compresses paths in the model by applying large block encoding (LBE).
LBE compresses loop-free subgraphs to single edges. Hence, checking one path
in the compressed model covers multiple paths in the original program graph.
The effect is that the obtained interpolants are at least partially path insensi-
tive. LBE iteratively (1) compresses sequential nodes to single edges by using
conjunctions and (2) merges multiple edges by using disjunctions. Via the intro-
duced disjunctions the decision of the branching is shifted to the interpolating
SMT solver. The edges of the compressed model represent contiguous loop-free
code segments.
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1 procedure main ( ) {
2 var x , y , z , n : int ;
3 assume (n == x && y == 0 && z == 0) ;
4 while ( x != 0) {
5 i f (∗ ) {
6 x := x + 1 ;
7 y := y − 1 ;
8 }
9 i f (∗ ) {

10 y := y + 1 ;
11 z := z − 1 ;
12 }
13 i f (∗ ) {
14 x := x − 1 ;
15 z := z + 1 ;
16 }
17 }
18 a s s e r t (n == y + z ) ;
19 }

Fig. 1. Code of program main. Non-deterministically increments one variable whilst
decrementing a second variable. The program is safe if the assertion (Line 18) holds on
every execution.

�init �0 �1 �2

�err

�4 �5

�6

�7 �8

�9

�10 �11

�12
n′ = x∧
y′ = 0∧
z′ = 0

x �= 0

x = 0 ∧ n �= y + z

x′ = x+ 1

y′ = y − 1

y′ = y + 1

z′ = z − 1

z′ = z + 1

x′ = x− 1

Fig. 2. Program graph P of main (Fig. 1). Edges without labeling carry the formula
�. �err ’s guard is the negated assertion (Fig. 1, Line 18). �1 represents the loop head
(Fig. 1, Line 4). �6, �9 and �12 are nodes that will have entering multiple edges because
of the preceding branches.

Sequential nodes. �i and �i+1 are compressed, if �i is the only predecessor of
�i+1 and they’re connected by a single transition (Dotted nodes (Fig. 2)). E. g.,
x′ = x + 1 ∧ y′ = y − 1 encodes the then-branch of the conditional branching
in line 5 (Fig. 1). If a variable is changed in both transition, we introduce new
auxiliary variable (e. g., y′′) for the intermediate value. An alternative would be
to use single static assignment (SSA).

Multiple edges. occur if the original program has conditional branchings. The
branchings are merged by joining the formulas with a disjunction. If the branches
disagree on the changed variable they have to be adapted to each other by
inserting frame conditions, e. g., the first else-branch from �2 to �6 is changed
to x′ = x ∧ y′ = y. In our example (Fig. 3) the disjunctions encode the three
conditional branchings at Line 5, 9, and 13 (Fig. 1). LBE provides a partially
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�init

�1 �err

n′ = x ∧ y′ = 0 ∧ z′ = 0

x = 0 ∧ n �= y + z

∃x′′, y′′, z′′ : ((x �= 0) ∧
((x′′ = x ∧ y′′ = y) ∨ (x′′ = x+ 1 ∧ y′′ = y − 1)) ∧
((y′ = y′′ ∧ z′′ = z) ∨ (y′ = y′′ + 1 ∧ z′′ = z − 1)) ∧
((z′ = z′′ ∧ x′ = x′′) ∨ (z′ = z′′ + 1 ∧ x′ = x′′ − 1)))

Fig. 3. The resulting model after compressing P (Fig. 2). The entire body of the loop
is encoded in a single edge. Only the loop header (Fig. 1, Line 4) cannot be reduced
any further.

path insensitive observation of locations and their interpolants. In Figure 3 the
shortest error path through �1 has the corresponding FOL formula

�init → �1 ∃x, y′′′, z′′′, n′ : ((n′ = x ∧ y′′′ = 0 ∧ z′′′ = 0)∧

�1 → �1

⎛⎜⎜⎝
∃x′′, y′′, z′′ : ((x �= 0) ∧

((x′′ = x ∧ y′′ = y′′′) ∨ (x′′ = x+ 1 ∧ y′′ = y′′′ − 1)) ∧
((y′ = y′′ ∧ z′′ = z′′′) ∨ (y′ = y′′ + 1 ∧ z′′ = z′′′ − 1)) ∧
((z′ = z′′ ∧ x′ = x′′) ∨ (z′ = z′′ + 1 ∧ x′ = x′′ − 1)))

⎞⎟⎟⎠∧
�1 → �err (x′ = 0 ∧ n′ �= y′ + z′))

The solver returns either a configuration that proves the feasibility of the error
path or an array of interpolants [16]. Each interpolant corresponds to a location
but is not bound to a single execution path. It rather summarizes a set of ex-
ecution paths through this location. This way we get partial path insensitivity.
It is partial because it summarizes all paths through �1 modulo the loop iter-
ations. If the path is feasible, the program is unsafe. If it is not feasible, the
interpolants are used to split the path (Fig. 4). The returned interpolant Ii (e.g.
(n = x) ∧ (y = 0) ∧ (z = 0), Fig. 4) is appended to the corresponding node
�i+1(�1, Fig. 4). Its negation is appended to the split node �′i+1. �

′
i+1 inherits

all incoming and outgoing edges of �i+1. Infeasible edges of �i+1 and �′i+1 are
removed from the model (dotted edges, Fig. 4).

In the next iteration we take the error path �init , �1, �
1
1, �err . The edge from

�1 to �11 is annotated with the disjunction from the edge �1 to �1 in the previous
graph. Due to this disjunction the interpolant generator has to find an interpolant
that works for all branches through the if statements. This will most probably
result in the interpolant n = x + y + z, which is then used to split �11 (Fig. 5).
Node �1 is not split, since its interpolants is true. The subsequent feasibility
check of the edges renders the subgraph, consisting of �21 and �err , unreachable
from �init . Hence after removing the infeasible edges, our model does not contain
any error paths. The algorithm stops and has proven the safety of the program
main by deriving the loop invariant.
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�init

�1:n = x ∧ y = 0 ∧ z = 0 �11:¬(n = x ∧ y = 0 ∧ z = 0)

�err

n′ = x ∧ y′ = 0 ∧ z′ = 0

n′ = x ∧ y′ = 0 ∧ z′ = 0

φloopφloop

φloop

x = 0 ∧ n �= y + z

x = 0 ∧ n �= y + z

φloop φloop

Fig. 4. Model after splitting the error path. The control flow is partitioned by append-
ing the interpolant n = x ∧ y = 0 ∧ z = 0 to �1 and its negation to �11. The label φloop

denotes the formula on the loop edge of Figure 3. Dotted edges are infeasible and will
be removed.

�init

�1:n = x ∧ y = 0 ∧ z = 0 �11:
¬(n = x ∧ y = 0 ∧ z = 0) ∧

(n = x+ y + z)

�21:
¬(n = x ∧ y = 0 ∧ z = 0) ∧

¬(n = x+ y + z)
�err

n′ = x ∧ y′ = 0 ∧ z′ = 0
φloop

φloop
φloopφloop

φloop φloop

φloop

x = 0 ∧ n �= y + z

x = 0 ∧ n �= y + z

Fig. 5. Final model that proves the safety of program main. The highlighted interpolant
is a loop invariant. The edges leading to subgraph (�21,�err ) are infeasible.

3 Preliminaries

A program is represented by a program graph P := (Loc, �init , �err , δ) where Loc
is a finite set of control locations, �init ∈ Loc is the initial location, �err ∈ Loc
is the error location. The relation δ describes how control passes from one lo-
cation to another and forms a directed graph. An edge (�, ϕ, �′) ∈ δ is labeled
with a transition formula ϕ. A transition formula is a formula over unprimed
and primed program variables V and V ′ (see e.g., [15]). We think of a transition
formula as representing a set of pairs of states (s, s′), s.t. (s, s′) |= ϕ. For brevity
of exposure, we assume that transition formulas are formulas over all unprimed
and primed program variables. This assumption is lifted in practice by introduc-
ing a frame condition like x = x′ only when necessary, i. e., when computing the
disjunction with a formula that changes x. A path in a program graph P from
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a location �0 to a location �n+1 is an alternating sequence of locations and tran-
sition formulas π = �0ϕ0�1ϕ1 . . . �nϕn�n+1 where (�i, ϕi, �i+1) ∈ δ for 0 ≤ i ≤ n.
A path from the initial location �init to the error location �err is called error
path. We extend the concept of transition formulas from edges to paths as fol-
lows: given a path π = �1ϕ1�2ϕ2�3, where both ϕ1 and ϕ2 are formulas over the
unprimed and primed variables V = {v0, . . . , vn} and V ′ = {v′0, . . . , v′n}. The
path formula ϕ(π) is the sequential composition ϕ1 ◦ ϕ2, such that

∃v′′1 , . . . , v′′n : ϕ1[v
′′
0 /v

′
0 . . . v

′′
n/v

′
n] ∧ ϕ2[v

′′
0 /v0 . . . v

′′
n/vn]

and ϕ(π) is a formula over the unprimed and primed program variables.

Infeasibility and Interpolants. An error path in the program graph must not nec-
essarily correspond to a real error. There may be no valuations for the program
variables for which the transition formula is satisfied. We call paths that have
an unsatisfiable transition formula infeasible.

Definition 1. A path π = �0ϕ0�1 . . . �nϕn�n+1 in a program P is infeasible if
and only if its path formula ϕ(π) := ϕ0 ◦ . . . ◦ ϕn is unsatisfiable.

That is, the path π is infeasible if, for any valuation of the unprimed variables
V , there is no valuation of V ′, s.t. ϕ(π) is satisfied. In particular, a location is
unreachable if any path from �init to this location is infeasible. The program
graph is safe if the error location �err is unreachable:

Definition 2. A program graph P is safe if and only if every error path is
infeasible.

For an infeasible error path we can compute Craig interpolants that separate
the states reachable from the initial location from the states that can reach the
error location on this path. We compute one interpolant for every location on
the error path, using the following definition of interpolants for a path formula.

Definition 3. Given an unsatisfiable formula ϕ0 ◦ · · · ◦ ϕn where ϕi is a tran-
sition formula over V and V ′, the sequence I1, . . . , In of formulas over V is an
inductive sequence of interpolants if the formulas

ϕ0 ◦ ¬I1, Ii ∧ ϕi ◦ ¬Ii+1 for 1 ≤ i < n, In ∧ ϕn

are all unsatisfiable.

The Ii can be computed step by step as the Craig interpolant of the formulas
(∃v1 . . . vn.Ii−1 ∧ϕi−1)[v1/v

′
1 . . . vn/v

′
n] and ϕi ◦ · · · ◦ ϕn (using I0 = true). Note

that the formulas contain only existential quantifiers provided that ϕi is quan-
tifier free. Hence, the quantifiers can be removed by skolemization and we can
use interpolation algorithms for quantifier-free logics.
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4 Splitting via Path Insensitive Interpolants

4.1 Underlying Splitting Algorithm

Our model checking algorithm given by Algorithm 1 takes a program graph P as
input and returns safe, if no error location can be reached, unsafe , if a feasible
error path is found.

Our algorithm is based on abstraction refinement. An abstract state of the
program is a tuple (�, Inv) where � is a program location and Inv a formula over
the program variables. It represents the concrete states of the program where the
program counter is in location � and program variables fulfill the formula Inv.
The initial abstraction is given by the program graph where each node is addi-
tionally labeled with the invariant true represents the initial abstraction. I. e.,
all program states that have the same location are combined into one abstract
state. A refinement step splits an abstract state by a formula into those states
that satisfy the formula and those that do not. The formulas are interpolants
computed from an infeasible error path. After each split, there is a slicing step
that removes all edges from the program graph that are no longer feasible.

Due to the splitting step, we will have several abstract states (we call them
nodes) representing the same location, each associated with a different formula
(invariant). In the abstract transition system, a path is feasible if there is a
sequence of program variable valuations that satisfies the transition constraints
and the invariants labeled to each state. Thus the path formula for a path π =
(�0, Inv0)ϕ0(�1, Inv1) . . . ϕn(�n+1, Invn+1) is augmented by the node invariants:

ϕ(π) := Inv0 ∧ ϕ0 ◦ Inv1 ∧ ϕ1 ◦ . . . ◦ ϕn ◦ Invn+1 .

We define correctness for a abstract transition systems exactly as for program
graphs, i. e., the labeled program graph is safe if for all error paths π the path
formula ϕ(π) is unsatisfiable. It is obvious that the program graph is safe if
and only if the initial abstract transition system is safe where each location � is
replaced with the node (�, true).

The outer loop of the algorithm repeatedly checks if there exists an error
path π in P . If not, the algorithm terminates and returns that P is safe. Oth-
erwise we check whether π is feasible using the procedure satisfiable. This
procedure checks the satisfiability of the path formula ϕ(π). The procedure is
implemented by an interpolating theorem prover. If the prover determines that
the formula is satisfiable, i. e., the error path π is feasible, our algorithm returns
unsafe because π is a counterexample that witnesses the reachability of the error
location in P . Otherwise the error path is infeasible and our algorithm computes
a sequence of interpolants I1, . . . , In for π using the procedure Interpolants

(e.g.,[16]). The procedure Interpolants returns one interpolant for each loca-
tion �i on the path π. We use I1, . . . , In to split the nodes into states that cannot
reach the error location following the path π and states that cannot be reached
from the initial location on π. The next step is called slicing and removes all
edges ((�, Inv), ϕ, (�′, Inv′)) that are not feasible in every path π because their
transition constraint ϕ is incompatible with Inv and Inv′.
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Algorithm 1. Model checker algorithm

Data: P = (Loc, �init , �err , δ);
Map Inv from Loc to formulas;
Result: Safe, Unsafe, or Unknown.

1 begin
2 foreach �i in P do
3 Replace �i with (�i, true)

4 while exists an error path π in P do
5 switch satisfiable(ϕ(π)) do
6 case sat: return unsafe;
7 case unsat:
8 I1, . . . , In := Interpolants(π);
9 foreach (�i, Invi) in π do

10 Split (�i, Invi) into (�i, Invi ∧ Ii), (�i, Invi ∧ ¬Ii);
11 Slice (P);

12 otherwise return unknown;

13 return safe;

· · ·

· · ·

(�, Inv)

· · ·

· · ·

ϕ1 ϕi

ϕ

ϕj ϕn

· · ·

(�, Inv ∧ ¬I)(�, Inv ∧ I)

· · ·

ϕ1 ϕi

ϕ

ϕj ϕn
ϕ

ϕ
ϕ1 ϕi

ϕ

ϕj ϕn

Fig. 6. Splitting the node � on the formula I in a labeled program graph. The node
and its incoming and outgoing edges are duplicated and one copy of the node is labeled
with I and the other with ¬I .

Splitting. The function Split in line 10 duplicates the node (�, Inv) and aug-
ments the labeling of one copy with I and the labeling of the other copy with
¬I, see Fig. 6. When the node is duplicated, all incoming and all outgoing edges
are duplicated as well. For the loop edge that is both incoming and outgoing we
create four new edges.

Lemma 1. Splitting a location does not change the set of feasible paths (except
for annotating a different invariant). The resulting abstract transition system is
correct if and only if the input system is correct and it has the same feasible
error paths.
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Proof. The second statement is a direct consequence of the first statement. To
prove the first statement, consider a feasible path of the original program graph
visiting location � once:

π = (�0, Inv0)ϕ0(�1, Inv1) . . . (�, Inv) . . . ϕn(�n+1, Invn+1).

Since π is feasible its path formula

π(φ) = Inv0 ∧ ϕ0 ◦ . . . Inv ∧ φi ◦ . . . ϕn ◦ Invn+1

is satisfiable. By definition of ◦, there exists a valuation of variables for location
� satisfying Inv. Obviously this valuation must satisfy either I or ¬I. Hence
either F = I or F = ¬I is satisfied and the path

π = (�0, Inv0)ϕ0(�1, Inv1) . . . (�, Inv ∧ F ) . . . ϕn(�n+1, Invn+1)

is feasible (with the same valuation). The argument can be inductively extended
to paths visiting the location more than once (each time a different (�, Inv ∧F )
may be visited). #$

Slicing. In the slicing step the labeled program graph is simplified by removing
infeasible edges. An edge ((�, Inv), ϕ, (�′, Inv′)) is infeasible if the formula Inv∧
ϕ ◦ Inv′ is unsatisfiable. Since this formula is a part of every path formula
containing the edge, every path containing an infeasible edge is infeasible. Thus,
removing the edge does not change the set of feasible paths. Removing edges may
render subgraphs of the program graph unreachable. All unreachable edges and
locations are also removed without affecting the feasible paths of the program.

Lemma 2. The slicing operation preserves all feasible error paths in the abstract
transition system and its correctness.

Proof. As sketched above, slicing does not change the feasible paths and hence
the feasible error paths.

Soundness and Progress. Using the above lemmas, we can immediately prove
soundness of our algorithm:

Theorem 1 (Soundness). The application of splitting and slicing on a pro-
gram graph P as performed by Algorithm 1 preserves all feasible error paths in
P. Hence, if the algorithm returns safe the original program graph has no feasible
error path and if the algorithm returns unsafe the feasible error path found by
the algorithm is also present in the original program graph.

Proof. By Lemma 1 and Lemma 2.

Provided that the transition formulas ϕ in the program graph are from a de-
cidable theory and that the interpolants are given in the same theory, the SMT
solver will always terminate and return either sat or unsat. There are several
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decidable theories for which interpolation is possible, e. g., quantifier free formu-
las over linear arithmetic and uninterpreted functions. For the theory of arrays
there exist decidable fragments, e. g., [7]. Recently there has also been work on
a decidable fragment closed under interpolation [9].

If we use a decidable and interpolating theory, our algorithm will never termi-
nate with unknown. Since the software model checking problem is undecidable
(even for simple integer programs using only linear arithmetic), it is clear that
our algorithm does not always terminate. However, we can show a progress prop-
erty:

Theorem 2 (Progress). In each loop iteration our algorithm will exclude one
infeasible error path from the program.

Proof. Let I1, . . . , In be the interpolants for the infeasible error path

π = (�init , Invinit)ϕ0(�1, Inv1) . . . ϕn(�err , Inverr).

By the definition of interpolants we know that the formulas

Invinit ∧ ϕ0 ◦ ¬I1, Ii ∧ Invi ∧ ϕi ◦ ¬Ii+1, In ∧ Invn ∧ ϕn ◦ Inverr

are unsatisfiable. After splitting, the edge ϕ0 from (�init , Invinit) to (�1, Inv1 ∧
¬I1), the edges ϕi from (�i, Invi ∧ Ii) to (�i+1, Invi+1 ∧ ¬Ii+1) (1 ≤ i < n), and
the edge ϕn from (�nInvn∧ In) to (�err , Inverr) are infeasible and thus removed
in the slicing step. Thus after slicing, the nodes (�i, Invi∧¬Ii) and (�err , Inverr)
are not reachable on the path π. This shows that error path π is not present in
the resulting program graph any more. #$

4.2 Path Insensitive Interpolation

In this section, we will present a first approach to apply path insensitive inter-
polation. Path insensitive interpolation finds an interpolant I for a location � that
holds for any infeasible error path π = (�init, Invinit) . . . (�, Inv) . . . (�err, Inverr).
Therefore the interpolant I is not just a summary in the context of a single path
but insensitively of any path.

Definition 4. Given a program graph P = (Loc, �init , �err , δ). For any location
� ∈ Loc \ {�init , �err , }, there exists a set Π� of all error paths

πi = (�init, Invinit) . . . (�
i
n−1, Inv

i
n−1), (�, Inv), (�

i
n+1, Inv

i
n+1) . . . (�err, Inverr).

If there exists an interpolant I , s.t.

ϕ((�init, Invinit) . . . (�
i
n−1, Inv

i
n−1))⇒ I

holds and
ϕ((�in+1, Inv

i
n+1) . . . (�err, Inverr)) ∧ I

is unsatisfiable for every πi ∈ Π� then I is a path insensitive interpolant of �
in P.
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To enforce path insensitive interpolants we use a method to simplify the program
graph without changing its correctness and without loosing information about
its structure. We will first sketch the method for loop free program graphs and
then generalize it. Given a program graph without loops, there are only finitely
many error paths whose infeasibility can be checked by a theorem prover call
for every path. However, the number of paths may be exponential in the num-
ber of program transitions. A better way to check correctness is to encode the
branching structure in the formula by using disjunction. Given a location � with
outgoing edges ((�, Inv), ϕ1, (�1, Inv1)), . . . , ((�, Inv), ϕn, (�n, Invn)) we can de-
fine its error transition formula describing all paths from � to �err by

err ↔ (ϕ1 ◦ err1) ∨ · · · ∨ (ϕn ◦ errn).

The symbols err i for the other locations are similarly defined. This is only well
defined for loop-free code; otherwise the definition would be cyclic. We can then
check the satisfiability of err init in conjunction using the above definition (the
symbols err i are boolean variables). This trick will move the burden of enumer-
ating the error paths to the theorem prover. Moreover, the theorem prover can
use its advanced techniques to avoid the exponential blow-up. Modern static
checkers are based on this method [3]. For program graphs containing loops,
one cannot encode the disjunction of the path formulas of all error path by a
single (quantifier-free) transition formula. However, at least the loop-free frag-
ments of the program graph can be transformed into a single transition formula.
One way to achieve this is by large-block encoding [4]. The resulting program
graph is much smaller and contains basically one location for every loop-header.
But LBE does not give us the desired full path insensitivity. It is rather a par-
tial path insensitivity. Partial path insensitivity does not consider all execution

Transformation 1: (�, Inv)

(�′, Inv′)

· · ·
(�1, Inv1) · · · (�n, Invn)

ϕ

ϕ1 ϕn

(�, Inv)

· · ·

(�1, Inv1) · · · (�n, Invn)

ϕ ◦ Inv′ ∧ ϕ1 ϕ ◦ Inv′ ∧ ϕn

Transformation 2: (�, Inv)

(�′, Inv′)

. . .ϕ1 ϕn

(�, Inv)

(�′, Inv′)

ϕ1 ∨ · · · ∨ ϕn

Fig. 7. The reduction rules for simplifying the program graph. Our implementation of
large-block encoding follows closely [4]. Transformation 1 uses sequential composition
to remove intermediate locations and Transformation 2 uses disjunction to remove
multiple edges resulting from branches in the original program graph.
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paths through a location but a sub set. Especially for loops, it is intuitively
clear that it is not possible to consider all execution paths through the loop
header since we cannot encode all iteration of the loop. Besides being smaller,
another advantage of large block encoding is that only the program states at
the beginning of a loop need to be considered in the model checking process.
Thus we concentrate on finding loop invariants instead of looking at every single
computation step of the program. Moreover, the interpolating theorem prover
looks at several parallel paths in the program at once. Thus it can output more
informed interpolants that are more likely to capture the inductive invariant of
the program, than if every path is considered separately. We fold each loop-free
subgraph in a program P to a single edge using the fix-point application of se-
quential and disjunctive composition of edges. We express this using the two
transformation rules given in Figure 7. The first rule compresses sequential code
into a single edge by sequentially composing the edge labels. It is applicable if
there is a location �′ with a single incoming edge. The transition formula of the
incoming edge is composed with every transition formula on all outgoing edges
to create new outgoing edges from the predecessor. The location �′ and all its
incoming and outgoing edges are then removed.

Transformation 1. Given a program graph P = (Loc, �init , �err , δ). For any
location �′ ∈ Loc\{�init , �err}, s.t. the edge ((�, Inv), ϕ, (�′, Inv′)) exists uniquely,
we reduce the program graph P as follows: 1) remove the location �′ from Loc,
and 2) replace all pairs of edges ((�, Inv), ϕ, (�′, Inv′)), ((�′, Inv′), ϕ′, (�′′, Inv′′))
by a new edge ((�, Inv), ϕ ◦ Inv′ ∧ ϕ′, (�′′, Inv′′)).

Note that the rule duplicates the formulas ϕ and Inv′ for every outgoing edge of
location �′. We can avoid exponential blow-up by replacing them by a boolean
variable which are defined as ϕ resp. Inv′, the same way we defined the variables
err above.

After applying Transformation 1, each location in the program graph P is
either a sink or has more than one outgoing edge. The compression of sequential
code by Transformation 1 can create multiple edges with the same source and
destination location. We can fold such a sequence of edges into one by using the
disjunctive composition.

Transformation 2. Given a program graph P = (Loc, �init , �err , δ) and two
nodes �, �′ ∈ Loc. For any two edges ((�, Inv), ϕ, (�′, Inv′)), ((�, Inv), ϕ′, (�′, Inv′))
∈ δ, we reduce the graph by replacing these edges by a new edge ((�, Inv), ϕ ∨
ϕ′, (�′, Inv′)).

In a graph P for which neither Transformation 1 nor Transformation 2 can be
applied, we know, that each location is either sink node or a loop header. Hence,
the application of Transformation 1 and Transformation 2 on a program P does
not change the satisfiability of the formula ϕ(P).

Theorem 3. The fix-point application of Transformation 1 and Transforma-
tion 2 on a program graph P = (Loc, �init , �err , δ) results in a program graph
P = (Loc′, �′init , �

′
err , δ

′), where Loc′ ⊆ Loc and any location � ∈ Loc′ is
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reachable in P if and only if � is reachable in P. We say that P is the reduced
graph of P.

A proof for Theorem 3 is given in [4].

5 Experimental Evaluation

Our implementation is called Ultimate. It is based on the Eclipse RCP Frame-
work. It allows to build tools as chains of plugins. For the purpose of experimental
comparison we have also reimplemented the IMPACT [1] software model checker
as a plugin in our framework. IMPACT is also an interpolation-based software
model checker. But IMPACT builds an unwinding instead of manipulating the
model itself. The framework allows us to compare the two approaches without
changing the peripherals, i.e. input file, parser, SMT solver etc. In both cases
we use Boogie PL [13] as input format and use SMTInterpol1 as SMT solver.
Subsequently, we denote our reimplementation of IMPACT as reIMPACT. As
base for the comparison we use a set of simple examples (Table 1). The programs
are all written in Boogie PL and have less than 100 lines of code. Their purpose
is to emphasis the differences between our approach and the underlying approach

Table 1. The table shows the results of both model checking approaches on our example
Boogie files. Splits shows how often nodes have been copied. TPC is number of theorem
prover calls. Time is measured in millisec. LBE shows the results for path insensitive
interpolation turned on(Yes) and off(No). Whereas, the symbols stand for �correct,

�incorrect, – time out. The values in column Splits, TPC and Time relate to the runs
with path insensitive interpolation turned on.

Ultimate reIMPACT

No. Nodes Loops Splits TPC Time LBE Splits TPC Time LBE
Yes No Yes No

01 14 1 0 3 34 � � 3 1 35 � �

02 5 1 3 33 288 � � 4 8 108 � �

03 7 2 13 156 2040 � – – – – – –

04 36 1 42 766 13827 � – 6 52 1246 � –

05 31 1 1 16 462 � – 5 10 133 � –

06 11 1 6 85 9611 � – – – – – –

07 26 1 0 3 66 � – 6 19 539 � –

08 50 1 0 3 79 � – 6 25 5447 � �

19 98 1 0 3 116 � – – – – – –

10 194 1 0 3 165 � – – – – – –

1 http://swt.informatik.uni-freiburg.de/research/tools/smtinterpol

http://swt.informatik.uni-freiburg.de/research/tools/smtinterpol
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of IMPACT. They also show the effect of path insensitive interpolation on both
approaches. The tests were run on an AMD Athlon 64x2 Dual Core Processor
with 2.50 Ghz and 4.00 GB of RAM. The operating system is an 64-bit Windows

Server 2008 R2 Standard. Both approaches profit from the path insensitive
interpolation. Without path insensitive interpolation, reIMPACT performs bet-
ter thanUltimate since it returns results for more of the example programs. But
with path insensitive interpolation, Ultimate returns more often a result than
reIMPACT. Example 01 is an 4-bit counter with nested conditional branchings.
And the final assertion states only about the highest bit. Therefore there are less
paths to be checked and the assertion is a direct effect of the loop condition. As
expected, both approaches perform similarly on this example. Example 02 has
a single loop and no nested branching. The ART is a simple unrolling of the
loop. But the splitting causes more nodes in the model and therefore also more
theorem prover calls. Therefore, reIMPACT performs slightly better than Ul-

timate. Examples 04 is a standard planning example, gripper. The single loop
can be considered as an event handler. Its nested conditional branchings are
actions that can be performed. In each iteration only one of the branches can be
taken. As in example 02, this reduces the number of paths. Due to the splitting,
Ultimate produces more edges as the unwinding of reIMPACT does. Hence,
we have more theorem prover calls. Example 05 is the same program as example
04 but with a bug insertion. reIMPACT is still faster but this time Ultimate

shows comparable performance. Example 03 and 06(Example Sec. 2) have more
complex branching structures. Additionally the necessary invariants are less ob-
vious. It takes reIMPACT considerably more time to derive an invariant to
proof the correctness of the programs. Examples 07 - 10 show the major advan-
tage of our approach. The examples are 4-, 8-, 16-, 32-bit counters with a single
loop that contain 4, 8, 16 and 32 If-Then-Else branchings, respectively. In con-
trast to examples 01-06, in examples 07-10 the control flow is not restricted by
the semantics but depends on the current state of the variables. In these kind
of programs our approach is much fast than reIMPACT. The manipulation of
the model itself, as done by our splitting refinement, has the effect that obtained
information of previous iterations is taken into account in the current iteration.
This avoids the examination of paths that can’t be taken by the branching any-
way. reIMPACT iterates through all permutations of the branching. In our
approach the number of iterations remains the same and the additional time is
only spend in the SMT solver. This also shows that the shifting of the branch-
ing into the formula is handled by the solver very well. Overall, the examples
show that the combination of splitting with path insensitive interpolation has
potential. On our experimental set of examples it terminates more often than
the IMPACT approach. The slower performance on some examples, results from
creation of unnecessary edges in the splitting. This can be optimized further.

6 Related Work

We compare our tool to modern software model checking tools like Blast [5],
CPAchecker [6], and IMPACT [16]. The most common approaches, e.g. Blast,
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SLAM [2], SATABS [10], use CEGAR algorithms with predicate abstraction.
In predicate abstraction the model is refined by newly obtained predicates e.g.
derived from interplants. In our approach we use the interpolants themselves in
order to refine the model. This technique has been introduced by Ken McMil-
lan [14]. In [16] he showed that his implementation of an interpolation-based
model checker, IMPACT, has a serious performance gain compared to tools using
predicate abstraction by avoiding the abstract image computation. As abstrac-
tion process IMPACT uses lazy abstraction as known from BLAST. The software
model checking procedure of IMPACT has also been implemented in other tools
e.g. Wolverine [12]. The main difference to our approach is the abstraction tech-
nique. In contrast to our approach, IMPACT uses an abstract reachability tree.
Our approach modifies the model itself. In this model the gathered information
is reused on every path examination. This approach is based on slicing abstrac-
tion [8]. Slicing abstraction was implemented in a tool called SLAB [11]. But in
contrast to our approach, SLAB uses predicate abstraction. In order to adapt
interpolation to slicing abstraction we use a technique called large block encod-
ing [4] which is implemented in CPAchecker. CPAchecker uses the same
software model checker procedure as Blast but compresses the model by joining
sequential code segments to single transitions.

7 Conclusion

We have introduced the concept of path insensitive interpolation. We also pre-
sented a first approach to use path insensitive interpolation in combination with
splitting refinement to derive loop invariants. We demonstrated with an exper-
imental implementation that it is in fact efficient to burden the SMT solver
the task to find useful interpolants by providing it more information about the
program. We did this by using large block encoding as a compression technique
and computing path interpolants on the compressed model. We showed that,
although just partially path insensitive, we obtain promising results with this
approach.

Applying LBE on the entire model allows us a partial path insensitivity. But
the future work will be to find techniques to improve the path insensitivity. This
can be done by computing interpolants not over the paths of the compressed
model but by focusing on single locations. If considering a single location, one
can summarize the entire prefixes of the paths leading from the initial location to
the observed location and also summarize all suffixes leading from the oberserved
location to the error location. But even this approach would not be fully path
insensitive since we can still not take all loop iteration into consideration. Addi-
tionally this appraoch might cause a lot of redundant computations in the SMT
solver. Instead of one SMT solver call per path, we would cause one per each lo-
cation. This would get too costly. For this purpose, the communication between
the SMT solver and the software model checker must be improved. A steering
by the software model checker could also effect the quality of the interpolants.
Further, an optimization of the splitting refinement would reduce the number of
theorem prover calls and increase the performance of the approach.
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Abstract. Access permissions are used in several program verification
approaches such as those based on separation logic or implicit dynamic
frames to simplify framing and to provide a basis for reasoning about
concurrent code. However, access permissions increase the annotation
overhead because programmers need to specify for each program compo-
nent which permissions it requires or provides. We present a new static
analysis based on abstract interpretation to infer access permissions au-
tomatically. Our analysis computes a symbolic approximation of the per-
missions owned for each heap location at each program point and infers a
constraint system over these symbolic permissions that reflects the per-
mission requirements of each heap access in the program. The constraint
system is solved using linear programming. Our analysis is parametric in
the permission system and supports, for instance, fractional and count-
ing permissions. Experimental results demonstrate that our analysis is
fast and is able to infer almost all access permissions for our case studies.

1 Introduction

Verification techniques based on access permissions associate a permission with
each heap location. A thread may access a location if and only if it has the access
permission for that location. This rule enables the verification of concurrent
programs since it guarantees the absence of data races (two threads cannot both
have the access permission for a memory location) and allows one to reason about
thread interleavings (if a thread has the permission for a location, no other thread
can modify it). Permissions can be transferred between threads when a thread is
forked or joined, or via synchronization primitives such as monitors. To support
procedure-modular verification, permissions are often associated with procedure
(or method) incarnations; permissions are then transferred not only between
different threads but also between callers and callees of the same thread. In
this case, permissions simplify framing because a method may modify at most
those locations for which it has permission; all other locations are guaranteed
to remain unchanged. Permissions are used for instance in separation logic [22]
and implicit dynamic frames [25].

Fractional permissions [2] and counting permissions [1] refine the permission
model by allowing a full permission to be split (repeatedly) into fractions or
into any number of units, which can be re-composed into a full permission. Both
fractional and counting permissions allow one to distinguish between read access
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class Coord {
var x: int ;
var y: int ;

invariant acc(x) && acc(y)

method client() {
acquire this ;
var oldX := x; var oldY := y;
this .FlipH();
assert x == −oldX;
assert y == oldY;
release this ;

}

method FlipH()
requires acc(x)
ensures acc(x)
ensures x == −old(x)
{ x := −x; }

}

Fig. 1. An example illustrating access permissions

(requiring any non-zero permission) and write access (requiring full permission)
and, thus, support parallel reads while still enforcing exclusive writes.

Fig. 1 illustrates the use of permissions in Chalice [14,15]. A full permission to
a location e.f is denoted by acc(e.f), which corresponds to e.f (→ in separation
logic. Chalice associates permissions with method incarnations and with moni-
tors. The precondition and postcondition of a method specify the permissions a
method expects from its caller and provides to its caller, respectively. A monitor
invariant specifies the permissions associated with a monitor. When a method
acquires a monitor, these permissions are transferred from the monitor to the
method, and returned to the monitor when it is released.

In Fig. 1, the monitor invariant of class Coord expresses that the monitor
holds the permission to this.x and this.y when the monitor is not currently held
by any thread. Method client obtains permissions to this.x and this.y by acquiring
the monitor of this. Method FlipH requires permission to location this.x via its
preconditions, and returns it via its postcondition. When client calls FlipH, the
permission to this.x is passed to FlipH; the permission is returned when FlipH
terminates. Method client can call FlipH passing and receiving back access per-
mission to this.x. Both assertions in client verify. The first assertion is established
by the call to FlipH; since the current thread holds the permission to x, no other
thread could invalidate the property between the call and the assertion. The sec-
ond assertion illustrates framing: since client does not pass its permission for y
to FlipH, we can conclude that FlipH cannot modify y. Both assertions would not
verify if they were placed after the release statement because then other threads
could obtain permissions to x and y and invalidate the asserted properties.

A drawback of all permission systems is that they require programmers to
annotate their programs with access permissions, which increases the annotation
overhead significantly. To address this issue, we present a new static analysis
based on abstract interpretation to infer access permissions automatically. In this
paper, we focus on the inference of access annotations for pre- and postconditions
as well as monitor invariants, but our analysis also supports loop invariants and
abstract predicates with fold and unfold statements [20]. Our paper makes four
technical contributions: (1) a representation of permissions with symbolic values,
(2) an inference of constraints over these symbolic values, (3) an inference of
annotations, which supports fractional and counting permissions, as well as the
combination of both, and (4) an implementation and experimental evaluation of
the analysis in Sample (Static Analyzer for Multiple Programming LanguagEs).
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The experimental results show that our analysis is practical and effective. It
infers permission annotations for all examples in the Chalice test suite in under
three seconds, and the necessary annotations in all examples except for four that
use recursive data structures, for which our heap abstraction is too coarse. We
expect that more precise heap analyses like TVLA [23] will solve this issue.

Approach. Our approach is based on abstract interpretation [6], a theory for
defining and soundly approximating the semantics of a program. The main com-
ponents of our analysis are: (1) an abstract domain that is a complete lattice,
(2) a widening operator to make the analysis convergent, and (3) an abstract
semantics defined as a transfer function that, given a statement and an initial
abstract state, defines the abstract state obtained after the statement.

We introduce a symbolic value for each location and each possible occurrence
of an access permission in a pre- or postcondition, or monitor invariant. For in-
stance, Pre(C, m, x.f) represents the permission specified in the precondition of
method m of class C for the location denoted by the path x.f. Using these sym-
bolic values, the analysis infers a sound approximation of the access permissions
that the current method incarnation has for any given heap location at any given
program point. These symbolic permissions have the form

∑
ai∗vi+c where ai is

an integer number, c is a real, and vi is a symbolic value. For instance, if method
m’s first statement acquires the monitor of this then its symbolic permission for
a location x.f is 1 ∗ Pre(C,m, x.f) + 1 ∗MI(C, x.f) + 0.

We then extract a set of constraints over the symbolic values, which reflect the
permission rules of the verification technique. For instance, for an assignment
to x.f, we introduce a constraint that the symbolic permission at this program
point is equal to the full (write) permission. Our constraints are parametric in the
permission system being used. We solve the constraints using linear programming
and obtain a numerical access permission for each symbolic value. For simplicity,
we assume here that the inference is run on un-annotated programs, but partial
annotations could be easily represented as additional constraints.

Outline. Sec. 2 introduces the language supported by our analysis and the
running example. Sec. 3 sketches our heap analysis. Sec. 4 defines the abstract
domain and semantics to approximate access permissions. Sec. 5 explains how
we infer permission annotations. Sec. 6 reports the experimental results. Sec. 7
discusses related work, and Sec. 8 concludes.

2 Language

We present our analysis for a class-based language with threads and monitors.

Programs. A program consists of a sequence of class declarations. Each class
declares fields, a monitor invariant, and methods. A method declaration con-
tains the method signature, pre- and postconditions, and a method body, which
is given as a control flow graph of basic blocks. Each basic block consists of a
sequence of statements. Different blocks are connected through edges that op-
tionally contain a boolean condition to represent conditional jumps.
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Table 1. Expressions and statements. We denote thread identifiers by t.

E ::= x | x.f
St :: = x := E | x := new T | acquire x | t := fork x.m() | share x

| x.f := E | x.m() | release x | join t

The expressions and statements of our language are summarized in Table 1.
We omit uninteresting expressions such as boolean and arithmetic operators
here. We adopt the share statement from Chalice; it associates a (non-reentrant)
monitor with a previously thread-local object to make it available for locking.
We omit Chalice’s unshare statement since it does not affect permissions.

Specifications and Permissions. Specifications are expressed using the ex-
pressions of the programming language, an old-expression to let postconditions
refer to prestate-values, and permission predicates. A permission predicate has
the form acc(x. f ,p), where p denotes a permission. With fractional permissions,
p is a fraction between 0 and 1, with counting permissions, p is an integer (neg-
ative numbers are interpreted as a full permission plus p counting permissions),
and in Chalice, p is an expression of the form q% + n · ε, where q is a natural
number between 0 and 100, n is an integer, and ε is a constant that denotes
an infinitesimal permission, that is, an arbitrarily small, positive number. The
percentage encodes fractional permissions, whereas the infinitesimal permission
is used as a unit of counting permissions. Independently of the permission sys-
tem, we abbreviate a full permission as acc(x. f). For sound verification, it is
important that specifications are self-framing, that is, a specification may re-
fer to x.f only if it has the permission to access x.f. So acc(x. f) && x.f > 0 is a
valid specification, but x. f > 0 is not. We enforce this requirement by generating
constraints not only for heap accesses in code but also in specifications.

Permission Transfer. Permissions can be transferred between two method
incarnations and between a method incarnation and a monitor. For modular
verification, we can describe these transfers from the perspective of the method
incarnation that is currently executing. We say that a method exhales a per-
mission if it transfers the permission to another method or a monitor, that is,
gives up the permission. It inhales a permission if the transfer happens in the
other direction, that is, when the method obtains the permission. For instance,
when a monitor is released, its invariant is exhaled, while the invariant is inhaled
when the monitor is acquired. Exhaling a permission entails a proof obligation
that the method actually has the permission to be transferred. We say that a
method exhales or inhales a specification, if it exhales or inhales all permissions
mentioned in the specification. The statements of our language transfer permis-
sions as follows. Assignments involve no permission transfer. When creating an
object, we inhale full permissions for all locations of the fresh object. When we
call a method, we first exhale the precondition of the callee and then inhale
its postcondition. When a method acquires a monitor, we inhale the monitor
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1 class W1 {
2 var c : Cell ;
3 method Inc()
4 ensures c.c1==old(c.c1)+1
5 {
6 acquire c;
7 c.x := c.x+1;
8 c.c1 := c.c1+1;
9 release c;

10 }
11 }

12 class Cell {
13 var x, c1, c2: int ;
14 invariant x==c1+c2;
15 }

16 class W2 {
17 var c : Cell ;
18 method Inc()
19 ensures c.c2==old(c.c2)+1
20 {
21 acquire c;
22 c.x := c.x+1;
23 c.c2 := c.c2+1;
24 release c;
25 }
26 }

27 class OwickiGries {
28 method main() {
29 var c := new Cell;
30 share c;
31 var w1 := new W1;
32 w1.c := c;
33 var w2 := new W2;
34 w2.c = c;
35 t1 := fork w1.Inc ();
36 t2 := fork w2.Inc ();
37 join t1 ;
38 join t2 ;
39 acquire c;
40 assert c.x==2;
41 }
42 }

Fig. 2. The Owicki-Gries example without permission annotations

invariant, and we exhale the invariant when the monitor is released and when
we first share the object. When forking a thread, we exhale the precondition of
the forked method, while we inhale the postcondition when joining.

Running Example.We illustrate our inference using Owicki and Gries’s classi-
cal example [19], see Fig. 2. Two worker threads, implemented in classes W1 and
W2 each increment a shared variable x (of class Cell) by 1. The client (method
main) asserts that the effect of running both workers is to increment x by 2. The
standard solution to proving this assertion requires ghost (that is, specification-
only) variables; the ghost fields c1 and c2 store the contribution of each worker to
the overall effect. These ghost variables are related to x in Cell’s monitor invari-
ant and also mentioned in the workers’ postconditions. Therefore, to enforce self-
framing specifications, the postconditions and the monitor invariant need some
access permission to the ghost variables. This can be achieved by using fractional
or counting permissions to split the permissions over the postconditions and the
monitor invariant. The example then verifies: From the postconditions, we know
that after the two join operations in main, c1 and c2 have each been increased by
1. From Cell’s monitor invariant, which we assume after the acquire statement,
we know that then x has been increased by 2; so since fields of new objects are
initialized to zero-equivalent values, the assertion verifies. We will show how our
analysis infers the permission annotation to enable this verification.

3 Heap Analysis

Since access permissions guard accesses to heap locations, our inference requires
information about the heap, for instance, to decide whether two expressions may
refer to the same heap location. The analysis that approximates properties of the
heap is crucial for the effectiveness of the permission inference. However, since
the heap analysis is not the main focus of this paper, we only sketch the main
ideas and notations of the implemented heap analysis here, which is an extension
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of our earlier work [10]. We expect that more sophisticated heap analyses such
as shape analysis [23] could be combined with our inference.

Our heap analysis abstracts objects in the concrete heap to abstract nodes
(set L) in an abstract heap. The abstraction identifies each object with the
program point where it is created. That is, it abstracts all concrete objects
created at the same program point (for instance, inside a loop) by the same
abstract summary node. The heap analysis works modularly, that is, analyzes
each method separately. The initial heap for a method contains one abstract node
for each method argument and abstract object reachable from an argument. If
some of these objects may be aliases (that is, their types do not exclude that
they refer to the same object), they are instead represented by one summary
node. The function isSummary : L → {true, false} yields whether a node is a
summary node, that is, whether it may represent more than one object.

Our permission inference uses type information for abstract nodes to deter-
mine which monitor invariant to inhale and exhale. The function class : L → C
yields the class of an abstract node (C is the set of class identifiers); for summary
nodes, it returns the smallest superclass of the classes of each concrete object
represented by the summary node.

The function fields : L→ ℘(F) yields the set of fields of an abstract node, and
the union of these sets for a summary node; F is the set of field identifiers. A path
in Path is a sequence starting with a variable and followed by field identifiers.
As usual, we denote by x.f the concatenation of variable x with field identifier f.

The heap analysis needs to define the semantics of expressions and statements
in order to describe their effects on the abstract heap. The function E : (H,E)→
L evaluates an expression in an abstract heap and yields the resulting abstract
node (H is the set of abstract heaps). We assume a semantics of statements that
tracks how each statement modifies the abstract heap. We do not present the
heap semantics here, and we leave the heap modifications implicit in the abstract
semantics for the permission inference.

4 Symbolic Permissions

In this section we present the symbolic values, which represent permission pred-
icates in specifications, the abstract domain, the abstract semantics, and an
unsound approximation that can improve the results of the inference.

4.1 Symbolic Values

Programs may contain permission predicates in pre- and postconditions and
monitor invariants (we ignore loop invariants here, but our analysis supports
them). We represent the permissions in these specifications by symbolic values
(set SV). The access permission for a path p.f specified (1) by the precondition
or postcondition of a method m in class C is represented by Pre(C, m, p.f)
or Post(C, m, p.f), respectively, and (2) by the monitor invariant of class C is
represented by MI (C, p.f). Since there could be many (possibly infinite) paths
to a location, our semantics always considers a shortest path.
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4.2 Abstract Domain

The symbolic access permission for a single abstract location, that is, field of an
abstract node, could combine several symbolic values, since it could be the result
of inhaling and exhaling different method specifications and monitor invariants.
Therefore we represent the symbolic permission as the summation of symbolic
values si multiplied by integer coefficients ai (to represent how many times we
have inhaled or exhaled a permission) and an integer constant c (to represent
the full permission that is inhaled when an object is created). Formally, AV =
{
∑

i ai ∗ si + c where ai, c ∈ R, si ∈ SV}.
On these summations we define a lattice structure. Fig. 3 formalizes the lattice

operators. To be sound, we compute at each program point the access permis-
sions the current method surely has, that is, it has in all possible executions. For
this reason, the upper bound—which is used in the abstract semantics for joins
in the control flow—of two symbolic permissions l1 and l2 is the minimum of l1
and l2. Since symbolic values represent non-negative values, a safe approximation
of the minimum of two symbolic permissions is computed using the minimum
of the corresponding coefficients ai and of the integer constant c. Conversely,
the lower bound is the maximum of l1 and l2, which is computed analogously.
In the lattice order, symbolic permission l1 is less or equal l2 iff l1 represents
greater or equal permissions than l2, that is, each coefficient and the constant
in l1 is greater or equal than the corresponding coefficient and the constant in
l2; this definition is in line with defining the upper bound as the minimum. We
assume that each concrete permission system defines two constants, zero and
full, to denote the zero-permission and full permission, respectively. The bot-
tom element is any value greater than full or less than zero, that is, any invalid
value for a permission. The top element is zero. Then the lattice can be defined
by 〈AV,≤AV, zero − 1, zero,$AV,#AV〉. Note that this domain does not track dis-
junctive information like b ⇒ acc(x.f), but it can be used inside other generic
domains to obtain precise disjunctive information [18].

In the above domain, we have a finite number of symbolic values, but the
integer coefficients could decrease indefinitely. Therefore, we need a widening
operator to ensure the termination of the analysis. Our widening abstracts the
symbolic access permission to zero if it is decreasing. This definition reflects that
if a loop exhales permissions in each iteration, we approximate it assuming that
no permission is left when the loop terminates because we do not know statically
how many times the loop body will be executed. However, none of the examples
we analyzed required widening because such loops are not common.

The abstract domain PL tracks the symbolic access permissions at a given
program point for each field of each abstract node. Therefore, its state is repre-

(
∑

j a1
j ∗ sj + c1) �AV (

∑
j a2

j ∗ sj + c2) = (
∑

j min(a1
j , a

2
j) ∗ sj + min(c1, c2))

(
∑

j a1
j ∗ sj + c1) �AV (

∑
j a2

j ∗ sj + c2) = (
∑

j max(a1
j , a

2
j ) ∗ sj + max(c1, c2))

(
∑

j a1
j ∗ sj + c1) ≤AV (

∑
j a2

j ∗ sj + c2) = true ⇔ c1 ≥ c2 ∧ ∀j : a1
j ≥ a2

j

Fig. 3. Lattice operators on AV
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sented by a function that maps abstract locations to symbolic access permissions:
PL : (L×F)→ AV. The lattice operators are defined as the functional extensions
of the lattice operators of AV.

4.3 Abstract Semantics

The abstract semantics formalizes the effects of statements on symbolic per-
missions. It uses the helper functions in Fig. 4. reach(r, h,R, p) yields the set of
abstract locations that can be reached from an abstract node r in a heap h, with-
out traversing the abstract nodes in R, and for each reachable abstract location
a path through which it can be reached; this path is an extension of path p,
through which node r is reachable from some starting point. The set R is used to
discard alternative paths to the same abstract location. Note that the definition
of reach is recursive. For each recursive application, we use function reach1 to
add all abstract locations that are reachable in one step, that is, by accessing a
field of r. The recursion is well-founded since the heap domain contains a finite
number of abstract nodes, and the set R grows in each recursive application.

Function reach is used to extract all the abstract locations for which we po-
tentially inhale or exhale permissions, together with a shortest path through
which these permissions could be inhaled or exhaled. Function rep uses these
abstract locations and paths to construct a symbolic value for each of them. Its
last argument determines what kind of symbolic value we want to obtain.

reach : (L× H × ℘(L) × Path) → ℘(L × F × Path)

reach(r, h,R, p) = {(r1, f, p) : (r1, f) ∈ reach1(h, p) ∧ r1 /∈ R}∪
∪{(r2, f1, p1) ∈ reach(r1, h,R∪ ↓1 (reach1(h, p)), p.f) : (r1, f) ∈ reach1(h, p)}

reach1 : (H × Path) → ℘(L × F)

reach1(h, p) = {(r, f) : E(h, p) = r ∧ f ∈ fields(r)}

rep : (℘(L × F × Path) × SV) → ℘(L × F × SV)
rep({(r1, f1, p1), · · · , (ri, fi, pi)}, s) = {(r1, f1, s1), · · · , (ri, fi, si)} : ∀j ∈ [1..i] :

sj =

⎧⎨
⎩

MI(c, pj.fj) if s = MI(c, p)
Pre(c,m, pj.fj) if s = Pre(c,m, p)
Post(c,m, pj.fj) if s = Post(c,m, p)

}

inhS : (PL × L × F × SV) → PL

inhS(σ, r, f, s) =

{
σ[(r, f) → σ(r, f) + 1 ∗ s] if isSummary(r) = false
σ otherwise

inh : (PL × ℘(L × F × SV)) → PL

inh(σ, {(r1, f1, s1), · · · , (ri, fi, si)}) = σi :

∃σ0, · · · , σi ∈ PL : σ0 = σ ∧ ∀j ∈ [1..i] : σj = inhS(σj−1, rj , fj, sj)

exhS : (PL × L× F × SV) → PL

exhS(σ, r, f, s) = σ[(r, f) → σ(r, f) − 1 ∗ s]

exh : (PL × ℘(L × F × SV)) → PL

exh(σ, {(r1, f1, s1), · · · , (ri, fi, si)}) = σi :

∃σ0, · · · , σi ∈ PL : σ0 = σ ∧ ∀j ∈ [1..i] : σj = exhS(σj−1, rj , fj, sj)

Fig. 4. Helper functions for the abstract semantics. The prefix operator ↓1 denotes the
projection of a pair on its first component; it is lifted to sets of pairs.
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Finally, we define two functions inhS and exhS to inhale and exhale permis-
sions, respectively. They map a state of the abstract domain to another state.
The permissions are determined by pairs of abstract locations and symbolic val-
ues. The functions inh and exh lift inhS and exhS to sets of pairs. In order
to be sound, we inhale a permission iff the abstract node is not summary. The
abstract semantics of statements (Fig. 5) maps a statement, a state of the ab-
stract domain, and a heap to another state. It reflects the permission transfer
described in Sec. 2. For instance, acquiring a monitor inhales all the symbolic
permissions that its invariant could potentially specify. These are permissions for
all abstract locations reachable from the object whose monitor is being acquired.
To determine these abstract locations, we apply rep to the result of reach.

Running Example. In method Inc of class W1, we obtain that between the
acquire and the release statements (lines 7 and 8), the current thread has the
symbolic access permission 1∗Pre(W1, Inc, this.c.f)+1*MI (Cell, this.f) for each
field f of Cell (that is, x, c1, and c2). At the end of the method, it has only
1∗Pre(W1, Inc, this.c.f) since we released the monitor of c. The permissions for
class W2 are analogous. Before the fork in method main of class OwickiGries, the
current thread has −1∗MI (Cell, c.f)+full for all fields f of class Cell. The negated
permissions from the monitor invariant stem from exhaling the monitor invariant
when sharing c; the constant full is inhaled when c is created. When forking the
two threads (lines 35 and 36), we exhale the preconditions of the forked methods,
obtaining −1∗MI (Cell, c.f)−1∗Pre(W1, Inc, c.f)−1∗Pre(W2, Inc, c.f)+full. When
joining the forked threads, we inhale the postconditions of the forked methods,
and when acquiring c’s monitor (line 39), we inhale the monitor invariant of class
Cell. Then at line 41, the current thread has −1∗Pre(W1, Inc, c.f)+1∗Post(W1,
Inc, c.f)−1∗Pre(W2, Inc, c.f)+1∗Post(W2, Inc, c.f)+full for each field f of Cell.

4.4 Unsound Approximations

The analysis we described so far is sound, but sometimes too coarse in its treat-
ment of summary nodes. Even with a more precise heap analysis, the inference
becomes more practical when it uses two unsound approximations.

S : (St,PL,H) → PL

S(x := E, σ, h) = σ

S(x.f := E, σ, h) = σ

S(x := new T, σ, h) = σ[r → full : (r, p) ∈ reach1(h′, x)]
where h′ is the abstract heap obtained after x := new T

S(x.m(), σ, h) = σ2 : σ1 = exh(σ, rep(reach(E(h, x), h, ∅, this),Pre(class(E(h, x)),m, ∅)))∧
σ2 = inh(σ1, rep(reach(E(h, x), h, ∅, this),Post(class(E(h, x)),m, ∅)))

S(acquire x, σ, h) = inh(σ, rep(reach(E(h, x), h, ∅, this),MI(class(E(h, x)), ∅)))
S(release x, σ, h) = exh(σ, rep(reach(E(h, x), h, ∅, this),MI(class(E(h, x)), ∅)))
S(t := fork x.m(), σ, h) = exh(σ, rep(reach(E(h, x), h, ∅, this),Pre(class(E(h, x)),m, ∅)))
S(join t, σ, h) = inh(σ, rep(reach(E(h, x), h, ∅, this),Post(C,m, ∅))) : TM (t) = C.m

S(share x, σ, h) = exh(σ, rep(reach(E(h, x), h, ∅, this),MI(class(h(x)), ∅)))

Fig. 5. The definition of the abstract semantics. The function TM yields the method
with which a given thread was forked.
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Table 2. Instances of permission systems

System zero full fractional infinitesimal ensureRead(p)

Fractional 0 1 true false p > 0
Counting 0 Integer.MAX VALUE false false p ≥ 1
Chalice 0 100 true true p ≥ ε

First, as we explained earlier, a sound analysis must not inhale permissions on
summary nodes because this might forge permissions. Removing this restriction
improves especially the treatment of recursive data structures, which are usu-
ally abstracted to summary nodes. Second, our analysis conservatively assumes
maximum aliasing in the input state of a method, that is, arguments or fields
whose types do not rule out aliasing are represented by summary nodes. Follow-
ing Clousot [17], we suggest to assume that aliasing does not occur in the input
state. This unsound assumption is useful when methods take several parameters
of the same type and when a parameter is a recursive data structure.

These unsound approximations may lead to permission annotations that cause
a subsequent verification attempt to fail. For instance, unsoundly inhaling on a
summary node representing x and y might provide permission to access x.f even
if in the concrete execution, there is only permission for y.f. However, in our
experiments (see Sec. 6), the unsound approximations helped inferring complete
annotations, without compromising their precision.

5 Annotation Inference

In this section, we explain how we infer permission annotations by generating
constraints on symbolic permissions and how we solve the constraint system.

5.1 Permission Systems

To support various permission systems, our analysis is parametric in the follow-
ing aspects: (1) the numerical values that represent permissions, (2) the value
that represents the absence of a permission, (3) the value that represents a full
permission, and (4) the condition that permits read access. Aspect (1) is ex-
pressed via two boolean flags fractional and infinitesimal, which express whether
fractional and infinitesimal (ε) permissions are supported. Aspects (2) and (3)
are expressed via the constants zero and full as presented in the previous sec-
tion. Aspect (4) is expressed by a function ensureRead : PL → Constr (where
Constr is the set of linear constraints over permissions in AV). These parame-
ters are aimed at soundly overapproximating different permission systems in a
finite way. Therefore they do not define the semantics of concrete systems, but
they propose a way of abstracting them. Table 2 presents the parameters for
fractional, counting, and Chalice permissions.
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Fractional permissions are represented by fractions between 0 and 1, infinites-
imal values are not supported, and reading is permitted by any non-zero per-
mission. Counting permissions are represented by integers between 0 and the
maximum integer value; again, infinitesimal values are not supported, and read-
ing is permitted by any non-zero permission. We interpret a value i between
0 and Integer.MAX VALUE/2 as i counting permissions and a value between
Integer.MAX VALUE/2 and Integer.MAX VALUE as a full permission minus i
counting permissions. Chalice permissions are represented by integers between
0 and 100, infinitesimal values are supported, and reading is permitted by per-
missions that are at least one infinitesimal permission (symbolic value ε).

5.2 Inferring Constraints

A permission-based verification technique prescribes rules that guard the access
of heap locations, for instance, that a full permission is required to update the
location. We reflect these rules in the analysis through the following constraints
on the symbolic permission l for an abstract location at a given program point:
(1) ensureRead(l) when the location is read, (2) l == full when the location is
written, (3) l ≤ full after a permission gets inhaled to encode that a method
cannot obtain more than a full permission, and (4) zero ≤ l after a permission
is exhaled to encode the check that a method must possess the permissions it
exhales. To ensure that specifications are self-framing (see Sec. 1), we generate
constraint (1) also for field accesses within preconditions, postconditions, and
monitor invariants. An additional constraint ensures that all symbolic values
represent valid permissions: ∀s ∈ SV : zero ≤ s ≤ full.

In systems that support infinitesimal permissions, we introduce the following
constraint on the concrete value of ε: 0 < n ∗ ε < 0.5, where n is the maximal
coefficient multiplied by infinitesimal permissions in all symbolic permissions.
We interpret permission values in the open interval (0; 0.5) as a positive number
of ε’s and values in (0.5; 1) as 1 plus a negative number of ε’s.

To infer strong postconditions, we introduce additional constraints for the exit
states of the analysis that ensure that each method returns as many permissions
to its caller as possible. For each field of a non-summary node reachable through
a path p, we determine the upper bound l of the symbolic permissions for all
possible exit states of a method m of class C and require Post(C,m, p) = l.

Running Example. Fig. 6 reports some of the constraints for the example
from Fig. 2. We have already discussed the results of its abstract semantics in
Sec. 4.3. For each constraint, we report the code line that induced the constraint.
As before, f stands for any field of class Cell (x, c1, or c2).

The first four constraints are introduced for method Inc of class W1. The
constraints for class W2 are analogous (with c2 instead of c1). The constraint
for line 4 is introduced because Inc’s postcondition reads c.c1; in the exit state of
the method, the only permission for c.c1 is the one specified in the precondition
since we already released the monitor of c. The identical constraint is introduced
for the field read old(c.c1), which reads c.c1’s pre-state value. The field writes
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Constraint Line

ensureRead(1*Post(W1, Inc, c.c1)) 4
1*Pre(W1, Inc, c.x) + 1*MI (Cell, x) = full 7
1*Pre(W1, Inc, c.c1) + 1*MI (Cell, c1) = full 8
1*Post(W1, Inc, c.f) = 1*Pre(W1, Inc, c.f) 10
ensureRead(1*MI (Cell, f)) 14

zero ≤ full− 1 ∗MI(Cell, f) − 1 ∗ Pre(W1, Inc, c.f)− 1 ∗ Pre(W2, Inc, c.f) 36

Fig. 6. Some constraints for the running example

to c.x and c.c1 (lines 7 and 8) require that the method has write permission
for the corresponding abstract locations. Therefore, we introduce a constraint
that for these locations, the sum of the permissions in Inc’s precondition and in
Cell’s monitor invariant must be a full permission. By the abstract semantics the
permissions in the exit state of Inc are exactly those specified in the precondition.
So we enforce that the precondition and the postcondition specify the same
permissions for each field f of c. The monitor invariant of class Cell (line 14)
reads all fields of the class and, thus, requires read permission for them.

Several constraints are produced for the main method of class OwickiGries. We
discuss the one for the second fork (line 36). By the heap analysis, we know that
c is fresh in method main. So the permission held after the second fork for any
field c.f is the full permission (from the creation of c) minus what is specified
in Cell’s monitor invariant (from sharing c) minus what is specified in W1.Inc’s
precondition (from the first fork) minus what is specified in W2.Inc’s precon-
dition (from the second fork). The constraint ensures that main has sufficient
permissions for the second fork, that is, that exhaling the precondition does not
lead to permissions smaller than zero.

5.3 Resolution of the Constraints

We solve the inferred constraint system using linear programming [8]. We define
an objective function that lets us infer the minimal permissions that satisfy the
constraints. Maximizing the permissions would often result in full permissions
for each reachable location, even if the location is never accessed. Such a solution
complicates subsequent verification, for instance, by providing weaker framing.

Through the objective function we also express priorities defining where to
put annotations when several solutions are possible, for instance, in the method
specification or in the monitor invariant. To do that, we multiply each symbolic
value in the objective function by a factor. A bigger factor expresses a lower
priority for that symbolic value, since we minimize the objective function.

Solving the linear programming system determines whether the system is fea-
sible, that is, whether there are numerical values (real numbers) for all symbolic
values that satisfy the constraints. An infeasible system may occur because of
approximation, for instance, if we soundly abstain from inhaling on summary
nodes, the constraint for a subsequent field access might not be satisfiable. If the
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system is feasible, we use the solution to compute the permission predicates for
pre- and postconditions as well as monitor invariants.

The constraints resolution provides a numerical value that has to be translated
to a permission predicate. This step is straightforward for fractional permissions.
For counting permissions, we translate a value differently, depending on whether
it is less or greater than Integer.MAX VALUE/2 (see Sec. 5.1). For Chalice per-
missions, the integer part of each numerical value is turned into a percentage,
whereas the mantissa is turned into a (positive or negative) number of counting
permissions by dividing it by the solution for the symbolic value ε.

Running Example. In the following, we present the annotations obtained by
solving the constraints in Fig. 6 for Chalice’s permission model. Fractional and
counting permissions lead to similar results. The constraint system is feasible,
and we obtain different solutions, depending on the priorities encoded in the
objective function. Here, we give priority to monitor invariants. Assume that
the numerical value for ε is 0.1. Then for W1’s Inc method we obtain 0.1 for c.c1
and 0 for all other fields, which are the smallest possible values that satisfy the
constraints (especially the first) in Fig. 6. This solution results in acc(c.c1, ε) for
the pre- and postcondition, and analogous results for W2.Inc.

By the second and third constraint, and by the analogous constraints for
W2.Inc, we obtain for Cell’s monitor invariant 99.9 (that is, 100−ε) permission for
c.c1 and c.c2, and 100 for c.x. This solution cannot be expressed in Chalice, which
does not have syntax for a negative number of ε’s. However, we could easily add
a constraint that for each symbolic value, the mantissa of the numerical value in
the solution must be in [0; 0.5) and, thus, translate into a non-negative number
of ε’s. With this additional constraint, we obtain the pre- and postcondition
acc(c.c1,1), and the monitor invariant acc(x) && acc(c1,99) && acc(c2,99).
This solution reflects the need to split the permissions as discussed in Sec. 2,
and allows one to verify the example in Chalice.

6 Experimental Results

We implemented our inference system in Sample, a generic compositional static
analyzer. We executed the analysis on an Intel Code 2 Quad CPU 2.83 GHz
with 4 GB of RAM, running Windows 7, and the Java SE Runtime Environment
1.6.0 16-b01. Table 3 summarizes the experimental results when we apply the
analysis to case studies taken from (i) the Chalice tutorial [15] and the Chalice
distribution, (ii) VeriCool [24], and (iii) VeriFast [12] libraries. Sample analyzes
Scala programs. Therefore all the examples have been written in Scala using a
custom library to represent statements that are not natively supported.

We performed the experiments applying the heap analysis with the unsound
entry state and unsound inhaling, giving higher priorities to monitor invariants.
Column Program reports the program we analyzed and LOC the lines of code;
columns Fractional, Counting, and Chalice report the time of the analysis
(in msec) when using fractional, counting, and Chalice permissions, respectively.
% Inferred Contracts reports the percentage of inferred contracts including
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Table 3. Experimental results

Program LOC Fractional Counting Chalice % Inferred Contracts Heap Analysis

Fig1 20 45 50 55 100% 22
Fig2 12 12 9 8 100% 11
Fig3 13 9 6 7 100% 8
Fig4 25 3 3 5 100% 8
Fig5 24 143 142 163 100% 80
Fig6 27 53 50 61 100% 20
Fig11 32 15 9 17 100% 20
Fig12 31 15 13 23 100% 25
Fig13 35 706 726 760 100% 223
OwickiGries 59 164 129 131 100% 39
cell − defaults 164 115 97 120 100% 55
linkedlist 77 78 82 86 100% 61
swap 15 10 9 10 100% 5
AssociationList 113 668 753 741 36% 305
HandOverHand 128 564 532 611 36% 478

Master 65 76 81 89 100% 57
CellLib 116 148 154 160 100% 79
CompositePattern 67 1217 1282 1279 71% 1009

Spouse 58 221 135 164 100% 33
Account 52 12 9 9 100% 16
Stack 54 76 74 78 67% 35
Iterator 57 46 55 53 100% 28

loop invariants w.r.t. the contracts that were in the original annotated program.
Column Heap Analysis contains the time of the heap analysis (in msec).

The analysis takes less than a second in all cases except CompositePattern,
and the times of execution are similar using different permission systems. We
were able to infer all contracts for most of the examples, obtaining the same
precision using different permission systems. On the other hand, we infer only one
third of the annotation for AssociationList and HandOverHand and two thirds for
Stack since these examples deal with recursive data structures, which are roughly
approximated by our heap analysis. Similarly, CompositePattern contains a set
of nodes that is roughly abstracted by the heap analysis, and so our approach
is able to infer annotations for the fields of the class but not for the elements
contained in such a set. The verification of programs with partial annotations
would fail, but the user could manually add the missing contracts.

7 Related Work

There is a large body of work on the inference of program annotations. Ernst
et al.’s Daikon system [9] uses a dynamic analysis to infer object invariants.
Flanagan and Leino’s Houdini tool [11] generates a large number of candidate
annotations and uses ESC/Java to verify or refute each of them. Leino and
Logozzo [13] integrate abstract interpretation and program verification to infer
loop invariants. However, none of these inferences supports access permissions.

The Chalice language [14] provides an option -autoMagic to infer certain
permission predicates. However, the inference does not find non-trivial splittings
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of permissions as required by our running example, and it cannot be applied to
other permission models.

Calcagno et al. [3] propose an inference system based on bi-abduction. Their
approach uses a compositional shape analysis to infer annotations over separa-
tion logic formulas. The approach has been extended to infer resource invariants
for concurrent programs [4], that is, the (full) access permissions that are asso-
ciated with a lock.

Yasuoka and Terauchi [27] propose a calculus to infer fractional permissions.
Like our approach, they represent constraints with linear inequalities, and they
solve them using linear programming. Their approach is focused on a simple re-
gion language, and it does not support object-oriented features and concurrency.

A major application of access permissions is to simplify framing, that is,
determining what is definitely not changed by a method execution. There are
several static analyses for frame information. Rakamarić and Hu [21] propose
a technique to infer frame information for functions and loops on C programs.
Spoto and Poll [26] introduce a static analysis based on abstract interpretation
for JML’s assignable clauses. However, their analysis only checks existing anno-
tations, rather than inferring annotations. Cataño and Huisman’s Chase tool [5]
performs similar checks. The practical effectiveness of their approach has been
demonstrated both in terms of precision and efficiency on industrial code. How-
ever, the approach is not sound, since it does not consider aliasing. In contrast
to these approaches, we infer access permissions, which can then be used to infer
framing information [25], and for other purposes like verifying concurrent code.

8 Conclusion

We presented an analysis to infer access permissions for various permission sys-
tems. Our approach infers pre- and postconditions and monitor invariants. It also
handles loop invariants and abstract predicates, but we omitted them in the pa-
per for brevity. The experimental results indicate that our analysis is efficient
and precise. As future work, we plan to increase the precision of our approach
adopting shape analysis [16] to obtain more precise heap abstractions, and to
mutually refine the heap abstraction and the permission inference through a re-
duced product [7]. We also plan to extend the analysis to permission predicates
where the permission is expressed by a program variable.
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Abstract. We present an automatic method for the synthesis of pro-
cesses in a reactive system from specifications in linear-time temporal
logic (LTL). The synthesis algorithm executes a loop consisting of three
phases: Solve, Check, and Refine. In the Solve phase, a candidate solu-
tion is obtained as a model of a Boolean constraint system; in the Check
phase, the candidate solution is checked for reachable error states; in
the Refine phase, the constraint system is refined to eliminate any errors
found in the Check phase. The algorithm terminates when an imple-
mentation without errors is found. We call our approach “lazy,” because
constraints on possible process implementations are only considered in-
crementally, as needed to rule out incorrect candidate solutions. This
contrasts with the standard “eager” approach, where the full specifica-
tion is considered right away. We report on experience in the arbiter
synthesis for the AMBA bus protocol, where lazy synthesis leads to sig-
nificantly smaller implementations than the previous eager approach.

1 Introduction

A major advantage of synthesis over verification is that manual programming
is no longer required: synthesis automatically derives an implementation that is
correct by construction. A major disadvantage is that synthesis requires a much
more detailed specification. While the specifications used for verification typi-
cally focus on a small set of safety-critical properties, specifications for synthesis
must describe all relevant properties of the process one wishes to synthesize as
well as of the cooperating processes in the remainder of the system. This results
in a state explosion problem similar to the infamous problem in verification, be-
cause the state space of the synthesized implementation is based on the product
of all these properties.

An interesting example for this phenomenon is the synthesis of the AMBA
bus protocol, which is currently the largest published case study carried out with
automatic synthesis methods. Bloem et al. [1,2] report that the automatically
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generated implementation is about 100 times larger than the manually written
code and, furthermore, grows exponentially with the number of bus masters,
even though the manually written code almost remains constant. The approach
used by Bloem et al. may in fact not even show the full scale of the problem,
because the simplifying assumption is made that the synthesized process has
access to the full system state. Under incomplete information, i.e., when some
state variables are hidden from the synthesized process, an additional subset
construction is required that causes a further exponential blowup [3].

In this paper, we address the explosion of the state space during synthesis with
a novel combination of synthesis and verification. Rather than running a synthe-
sis procedure based on a full specification, we use verification to lazily identify
and add constraints on the synthesized process that are actually needed to rule
out incorrect implementations. Our starting point is a partial design, which in-
cludes an implementation for the already implemented part of the system, which
we call the white-box process, and the interface to the part of the system that
is to be synthesized, which we call the black-box process. The implementation
of the white-box process is given as a labeled transition system; for the black-
box process, an implementation is to be synthesized such that the composition
of white-box and black-box implementation satisfies the specification, which is
given as a formula of linear-time temporal logic (LTL). Nondeterminism in the
white-box process is interpreted as hostile: the black-box process must ensure
the satisfaction of the specification for all possible behaviors. Disjunctions in
the LTL specification, by contrast, represent friendly nondeterminism, leaving
design choices open to the synthesis of the black-box process.

Starting with an initial (trivial) constraint on the black-box process, we use an
SMT-solver to generate a sequence of candidate implementations. Each candi-
date is combined with the white-box processes and checked for reachable errors.
As long as such errors exist, we extract new constraints on the black-box process
that exclude the error in future iterations. The algorithm terminates when an
implementation without errors is found.

The new synthesis technique, which we call lazy synthesis, thus alternates
between constraint solving, which produces new candidates, and model check-
ing, which identifies errors in the candidates that lead to a refinement of the
constraints. We refer to the individual phases of this process as Solve, Check,
and Refine. The Solve-Check-Refine loop of lazy synthesis can be under-
stood as an extension of the CEGAR (Counter-Example Guided Abstraction
Refinement) loop [4] commonly used in verification, with the difference that the
counterexamples that drive the refinement process are not found in abstractions
of the given implementation, but rather in the continuously changing candidate
solutions produced by the SMT-solver.

As described so far, lazy synthesis tends to find implementations that are
significantly smaller than those found by eager methods, because we avoid the
full construction of the product state space, but the implementations are not
necessarily minimal. To further reduce the size of the synthesized implementa-
tions, we have integrated the bounded synthesis technique [5] into lazy synthesis.
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Bounded synthesis searches for implementations up to a given bound on the
number of states. To ensure the minimality of the synthesized implementation,
we maintain a constraint that limits the number of states of the implementation.
Starting with an initial low value (such as a single state), we increase the bound
whenever the constraint system becomes unsatisfiable. In our experience, the
number of states that is actually needed for a correct implementation is usually
very small compared to the product state space constructed by eager methods.

To evaluate this observation experimentally, we have repeated the AMBA
case study with lazy synthesis. It turns out that a large part of the protocol
specification [6] is already deterministic. We modeled this part as the white-box
process and thus focused the synthesis effort on the arbitration policy, which is
left open in the protocol specification. Unlike Bloem et al., we do not assume
complete information, and were therefore able to minimize the number of signals
the arbitration policy depends on. For typical fairness properties such as “every
bus master that requests a grant, will eventually get one,” expressed in LTL, lazy
synthesis finds implementations with a linear number of states in the number of
bus masters. This is in contrast with the exponential growth of the size of the
implementations reported by Bloem et al. [1,2] using eager synthesis.

The remainder of the paper is structured as follows. Section 2 introduces the
AMBA protocol case study as a motivating example. In Section 3, we introduce
the basic notions needed to discuss the synthesis problem; these notions allow
us, in Section 4, to formalize the synthesis problem of the AMBA protocol case
study. In Section 5, we describe the lazy synthesis algorithm. Section 6 gives
some details on our current implementation of the approach, and in Section 7
we demonstrate how we used the approach and its implementation to synthesize
arbiters for the AMBA specification. We conclude in Section 8 with a summary
and some ideas for future research directions.

2 The AMBA Case Study

We will use the Advanced Microcontroller Bus Architecture (AMBA) specifica-
tion [6] as a motivating example. This specification describes a communication
bus for a number of masters and clients on a microchip. The bus controller keeps
track of requests, and assigns the bus to one master at a time. Additionally, mas-
ters can ask for different kinds of locked bursts, i.e., sequences of transfers during
which only this master is allowed to use the bus. We introduce briefly the signals
that are used to realize the controller of this bus.

Requests and grants. To request the bus, master i will raise a signal HBUS-

REQi. The controller decides who will be granted the bus by raising signal
HGRANTi. HMASTER[n:0] is an n+1-bit signal, where n is chosen such that
the number of masters fits into n + 1 bits. It always contains the identifier of
the master which is currently active. Whenever the client raises HREADY, it is
updated by letting HMASTER[n:0] = i, where HGRANTi is currently active.
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Locks and bursts. A master can request a locked access by raising HLOCKi
(in addition to HBUSREQi). If the locked access is granted, the master can set
HBURST[1:0] to either SINGLE (single cycle access), BURST4 (four cycle
burst) or INCR (unspecified length burst). For a BURST4 access, the bus will
remain locked until the client has accepted 4 inputs from the master (signaled
by raising HREADY 4 times). In case of an INCR access, the bus will remain
locked until HBUSREQi is lowered. The arbiter raises signal HMASTLOCK

if the bus is currently locked.

3 The Synthesis Problem

In this section we formalize the setting of our synthesis approach.

Partial designs. A partial design is a tuple D = (V, I, O, TW ), where V is
a set of boolean system variables, which also serve as the atomic propositions,
the disjoint subsets I, O ⊆ V , I ∩ O = ∅, are the input and output variables,
respectively, of the black-box process. Input variables of the white-box are all
variables from V , and outputs all variables from V \O. TW is the implementation
of the white-box process, given as a labeled transition system, which is defined
in the following.

Implementations. We represent implementations as labeled transition sys-
tems. For a given finite set Υ of directions and a finite set Σ of labels, a Σ-
labeled Υ -transition system is a tuple T = (T, t0, τ, o), consisting of a finite
set of states T , an initial state t0 ∈ T , a (nondeterministic) transition function
τ : T × Υ → 2T , and a labeling function o : T → Σ.

A path in a labeled transition system is a sequence μ : ω → T ×Υ of states and
directions that follows the successor relation, i.e., for all i ∈ ω if μ(i) = (ti, ei)
then μ(i + 1) = (ti+1, ei+1) where ti+1 ∈ τ(ti, ei+1). We call the path initial if it
starts with the initial state and initial environment input: μ(0) = (t0, e0).

A process with input variables I and output variables O is implemented as a
2O-labeled 2I-transition system. Let T1 = (T1, t0,1, τ1, o1) be a 2O1 -labeled 2I1-
transition system, representing a process with inputs I1 and outputs O2, and let,
likewise, T2 = (T2, t0,2, τ2, o2) be a 2O2-labeled 2I2 -transition system, represent-
ing a second process with inputs I2 and outputs O2. The parallel composition of
T1 and T2, denoted by T1‖T2, is the 2O1∪O2-labeled 2(I1∪I2)�(O1∪O2)-transition
system T = (T, t, τ, o), where the states consist of the product T = T1 × T2,
t0 = (t0,1, t0,2), the transition function matches inputs with outputs generated
in the previous step: τ((s1, s2), l) = τ1(s1, (l∪o2(s2))∩I1)×τ2(s2, (l∪o1(s1))∩I2),
and the labeling function is the union o(s1, s2) = o1(s1) ∪ o2(s2). We call the
parallel composition of the white-box implementation and the black-box imple-
mentation the system implementation.

Specifications. We use linear-time temporal logic (LTL) [7], with the usual
modalities Next , Until U , Eventually, and Globally , as the specification
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logic. If a sequence π ∈ ω → 2V satisfies an LTL formula ϕ, we say that π
is a model of ϕ, denoted by π |= ϕ. A 2V �Oenv -labeled 2Oenv -transition system
(T, t0, τ, o) satisfies an LTL formula ϕ if, for all initial paths μ : ω → T × 2Oenv

of the transition system, the sequence σμ : i 	→ õ(μ(i)) is a model of ϕ, where
õ(t, e) = o(t) ∪ e.

Realizability and synthesis. An LTL specification ϕ is (finite-state) realizable
in a partial design D = (V, I, O, TW ) iff there exists an implementation TB for
the black-box process, such that the system implementation TW ‖TB satisfies ϕ.
In this case, we say that the black-box implementation is correct.

Following the bounded synthesis approach [5], we introduce a bound n ∈ N on
the size of the black-box implementation. Given an architecture D = (V, I, O, T ),
a specification ϕ, and a bound n, we say that ϕ is n-realizable in D if there exists
a correct implementation TB of the black-box process, such that TB has no more
than n states.

The synthesis problem is to compute a correct black-box implementation if
the given LTL specification is realizable in the given partial design.

4 The Partial Design of the AMBA Protocol

The starting point of the AMBA case study is the informal specification [6]
available from the ARM website. In order to apply lazy synthesis, the informal
specification needs to be formalized into a partial design and an LTL specifica-
tion. In this section, we discuss these modeling decisions.

The white-box process. Upon inspection of the AMBA specification, one can
easily see that at any given time, the valuations of variables HMASTER[n:0]
and HMASTLOCK are completely determined by the history of the other
variables of the system: whenever HREADY holds, the specification requires
that in the next state HMASTER[n:0] will be equal to i, for every i such
that HGRANTi holds in the current state. In addition to determining HMAS-

TER[n:0] wrt. HREADY and the HGRANTi, this indirectly imposes a mutual
exclusion property on the HGRANTi, since the property cannot be satisfied for
multiple HGRANTi at the same time. In a similar fashion, HMASTLOCK is
determined: whenever a master i is granted an access, variable HLOCKi deter-
mines whether it will be a locked access. If this is the case, and HBURST[1:0]
is either BURST4 or INCR, then HMASTLOCK has to be set until the de-
sired burst access is over, i.e. either until the client accepted 4 transmissions
from the master (each signaled by HREADY being high), or until the master
lowers HBUSREQi. Using this deterministic specification, we can easily build a
white-box process that governs variables HMASTER[n:0] and HMASTLOCK

and satisfies this part of the specification.

The black-box process. The remaining variables controlled by the system are
the HGRANTi variables. Except for their valuation in the initial state, these
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are only indirectly specified by their influence on the other variables, and the
global requirements on the overall system. These variables are controlled by the
black-box process.

The interface of the white-box process. To keep the interface of the black-
box small, we add an auxiliary variable DECIDE to the white-box process,
which is set whenever the access of a master is finished. We will see that the
right definition of DECIDE allows the lazy synthesis algorithm to find a correct
black box process without knowing about the valuations of any other variables.

Figure 1 gives a slice of the resulting white-box process. In all of the depicted
states, HMASTER[n:0] has the same value. The overall white-box consists of
such a slice for every master, and transitions to states with a different valuation
of HMASTER[n:0] are only possible from state 0, or the corresponding state
in the given slice. HMASTLOCK is true in all states except 0 and 1, and
DECIDE is true in the states depicted as dashed circles. Transitions that do
not contain any conditions are taken unconditionally, and whenever none of the
outgoing transitions is possible, we remain in the state. From 0, transitions into
several different states of the other slices of the system are possible.

0 1

2 3

45

6 7

HREADY, 
(not HLOCKi or BURST = SINGLE)

HREADY, HLOCKi 
BURST = BURST4

HREADY,
HLOCKi,

BURST = INCR

HREADY

HREADY

HREADY

not HBUSREQi

HREADY,
not HGRANTi

Fig. 1. Slice for one master of the AMBA white-box process

LTL specification. The LTL specification consists of the formula A1 ∧ A2 ⇒
G1 ∧ G2 ∧ G3 ∧ G4 with the assumptions and guarantees shown in Figure 2.
Formula (A1) and (A2) are assumptions on the environment: neither are the
clients busy forever, nor is the bus locked forever. The second formula is an
indirect assumption on the environment, as the only way HMASTLOCK can be
true forever in our white-box process is if HBUSREQi holds forever after master
i acquires a lock on an INCR burst. (G1) and (G2) are guarantees that follow
from the requirement that whenever HREADY is high, the white-box process
must update HMASTER with any i s.t. HGRANTi is true. As HMASTER
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Assumptions :

 hready (A1)

 ¬hmastlock (A2)

Guarantees :

 (hready →
∨

i hgranti) (G1)

∀i � j :  (hready → ¬(hgranti ∧ hgrantj)) (G2)

∀i :  (hbusreqi → (¬hbusreqi ∨ hmaster = i)) (G3)

∀i :  (¬decide → (hgranti ↔ hgranti)) (G4)

Fig. 2. The LTL specification of the AMBA specification

can only hold exactly one value, this implies that always exactly one grant must
be true. (G3) is the fairness guarantee of the system: a HBUSREQi that is
not lowered again will eventually be answered by setting HMASTER[n:0] =
i. Finally, (G4) is an optional constraint on the auxiliary DECIDE variable.
Similar to the definition of auxiliary variables for verification, this property of
DECIDE will help guide the lazy synthesis algorithm.

5 Lazy Synthesis

We now describe the lazy synthesis algorithm, which solves the synthesis problem
for a given partial design and LTL specification. The first subsection gives an
overview of the Solve-Check-Refine loop, the individual building blocks of
the loop are described in more detail in the following subsections.

5.1 The Solve-Check-Refine Loop

Figure 3 shows the main loop of the lazy synthesis algorithm. Given a partial
design D and a specification ϕ, Procedure LazySynthesis(D, ϕ) computes the
least bound n ∈ N such that ϕ is n-realizable in D and returns a black-box
implementation with n states.

The algorithm incrementally increases the bound n on the number of states of
the black-box implementation until an implementation is found. For each bound,
we incrementally strengthen the constraint C, starting with init constraint, until
either the constraint becomes unsatisfiable and we try with higher bound n, or
a correct implementation is found, at which point the algorithm terminates.

The algorithm builds on the following subroutines, which will be explained in
the following subsections.

– Solve. The constraint C is a ground formula over booleans (representing in-
puts) and integers (representing states), with function symbols that represent
transitions and outputs of the black-box component. It is used to forbid cer-
tain input/output patterns of the black-box process. Given such a constraint
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LazySynthesis(D, ϕ)
1 n ← 1
2 correct ← false
3 C ← init constraint
4 while correct = false
5 do
6 (model-found, TB) = Solve(C, n)
7 if model-found = true
8 then
9 (correct , error-sequence) = Check(D, ϕ, model)

10 if correct = false
11 then C ← Refine(C, error-sequence)
12 else n ← n + 1
13 C ← init constraint
14 return TB

Fig. 3. Algorithm for lazy synthesis. Given a partial design D and a specification ϕ,
procedure LazySynthesis(D, ϕ) computes the least bound n such that ϕ is n-realizable
in D and returns a black-box implementation with n states.

C and a bound n, procedure Solve(C, n) checks if there exists a black-box
implementation with at most n states that satisfies the constraint C. The
result is a pair (model-found , TB), where the first component model-found is
a boolean flag indicating whether a solution has been found, and if this flag
is true, then the second component is a candidate implementation for the
black-box process.

– Check. Given a partial design D, a specification ϕ, and a black-box im-
plementation TB constructed by Solve, Check(D, ϕ, TB) verifies whether
the composition of white-box and black-box implementation satisfies ϕ. The
procedure returns a pair (correct, error-sequence), where the first compo-
nent is a boolean flag indicating whether the implementation is correct, and
the second component is a representation of the error paths found if the
implementation is not correct.

– Refine. Procedure Refine(C, error-sequence) organizes the error paths
found by procedure Check into a tree representation that starts with the
initial state. This error tree is then translated into a new conjunct in the
constraint that forbids all error paths collected by procedure Check.

5.2 Solve

The goal of procedure Solve is to find an implementation for the black-box
process that satisfies the constraints collected so far. For a black-box process
with at most n states, we assume, without loss of generality, that the states are
the natural numbers from 0 to n − 1 and that the initial state is 0. We can also
assume that the black-box implementation is deterministic, because any given
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nondeterministic implementation, for which the system implementation satisfies
the specification, can obviously safely be replaced by any of its deterministic re-
strictions. We represent the unknown transition function using an uninterpreted
function symbol trans of type B|I| × {0, . . . n − 1} → {0, . . . n − 1}. The unknown
labeling function is represented by an uninterpreted function symbol label of
type {0, . . . , n − 1} → 2O.

We denote with T(X) the set of terms over a set X of function symbols
and constants, and with C(X) the set of constraints over X . We use terms in
T({trans, label, 0}) to symbolically identify the states that are reached after a
certain sequence of inputs and outputs, and constraints in C({trans, label , 0}) to
describe conditions on such states. Any interpretation τ, o of the symbols trans
and label defines an implementation of the black-box process, the 2O-labeled 2I -
transition system TB = ({0, . . . n−1}, 0, τ, o). To improve readability, we will also
use, for a given interpretation o of label, directly the variable names to denote
functions from states to Boolean values. I.e., hgrant0(1)= true iff hgrant0 ∈
o(1). In the synthesis loop, procedure Solve(C, n) uses an SMT-solver to find
such interpretations. To enforce the limit on the size of the implementation, we
extend the constraint system that is passed to the solver with an appropriate
type constraint (i.e, ∀ b ∈ B|I|, t ∈ {0, . . . , n − 1}. 0 ≤ trans(b, t) ≤ n − 1).

Example 1. In the AMBA specification, the black-box process initially is only
constrained by an upper bound on the size of the implementation we are cur-
rently looking for and the valuations of its output variables in the initial state 0.
Suppose we want to synthesize an implementation for 2 masters, we are looking
for models of size up to 3, the only input to the black-box process is DECIDE,
and initially HGRANT0 should be high, and HGRANT1 low. Thus, we assert

hgrant0(0) ∧ ¬hgrant1(0) ∧ ∀ b ∈ B, n ∈ {0, . . . , n − 1}. 0 ≤ trans(b, n) ≤ 2

in the SMT solver. We may get the model

hgrant0 : 0 	→ true trans : (false, 0) 	→ 1
1 	→ false (true, 0) 	→ 1
2 	→ true (false, 1) 	→ 2

hgrant1 : 0 	→ false (true, 1) 	→ 0
1 	→ false (false, 2) 	→ 0
2 	→ true (true, 2) 	→ 0,

representing a candidate implementation of the black box.

5.3 Check

Procedure Check verifies whether the composition of the candidate black-box
implementation constructed by Solve with the white-box implementation satis-
fies the specification ϕ. If ϕ is violated, we extract a set of counterexamples. We
are interested in finite counterexamples, because they can easily be eliminated in
the subsequent Refine phase. Since counterexamples to LTL specifications are
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in general infinite, we first translate the LTL formula ϕ to a safety property, for
which all counterexamples are finite. As pointed out in [5], a reduction to safety
is possible whenever the size of the implementation is bounded. To construct
a monitor process for an LTL specification, we adapt a reduction given in [5],
Theorem 4 (there stated in terms of a translation from universal co-Büchi tree
automata to deterministic safety tree automata) to our setting.

Recall that a Büchi word automaton over alphabet Σ is a tuple A =
(Q, Q0, Δ, F ), where Q is a finite set of states, Q0 ⊆ Q a subset of initial states,
Δ ⊆ Q × Σ × Q a set of transitions, and F ⊆ Q a subset of accepting states. A
Büchi automaton accepts an infinite word w = w0w1w2 . . . ∈ Σω iff there exists
a run r of A on w, i.e., an infinite sequence r0r1r2 . . . ∈ Qω of states such that
r0 ∈ Q0 and (ri, wi, ri+1) ∈ Δ for all i ∈ N, such that rj ∈ F for infinitely many
j ∈ N. The set of sequences accepted by A is called the language L(A) of A. Let
A¬ϕ = (Q¬ϕ, Q0,¬ϕ, Δ¬ϕ, F¬ϕ) be a Büchi automaton that accepts all sequences
in (2V )ω that satisfy ¬ϕ, and therefore violate ϕ.

Proposition 1. For every LTL formula ϕ and every bound m ∈ N on the num-
ber of states of the system implementation, there exists a family of monitor
processes {T¬ϕ,m′ | m′ ∈ N} with error state err, such that

1. any system implementation T satisfies ϕ if err is unreachable in T ‖T¬ϕ,m′,
and

2. for m′ ≥ m · |Q¬ϕ| + 1, any system implementation T with at most m states
satisfies ϕ if and only if err is unreachable in T ‖T¬ϕ,m′ .

Proof. We construct a monitoring process T¬ϕ,m′ = (T, t0, τ, o) with designated
error state err :

– T = (Q → {0, . . . m′, }) ∪ {err};
– t0 is the function t0 : Q → {0, . . . , m′, } with t0(q) = 0 if q ∈ Q0 and

t0(q) = otherwise;
– τ(err , σ) = {err},

τ(f, σ) = {err} if there are two states q ∈ F, q′ ∈ Q such that f(q) = m′

and the transition (q, σ, q′) is in Δ, and
τ(f, σ) = {f ′}, otherwise, with f ′(q′) = max{f(q) + g(q) | f(q) �
, (q, σ, q′) ∈ Δ}, where g(q) = 1 if q ∈ F and g(q) = 0 if q � F , and

max ∅ = ;
– o(t) = ∅ for all t ∈ T .

Each state of the monitoring process thus maintains, for each state q of A¬ϕ,
two pieces of information: (1) whether or not q is, in the current position, visited
on some run (if not, q is assigned a blank symbol), and (2) the maximum
number of visits to accepting states on any run prefix of A¬ϕ ending in state q.
If the number of visits to accepting states is bounded by m′, the monitor does not
reach err and the system implementation satisfies ϕ. For system implementations
with up to m states, it suffices to use m′ = m · |Q¬ϕ| + 1. Consider the product
A′ = (Q × T, Q0 × {t0}, {(q, t), σ, (q′, t′)) | (q, σ, q′) ∈ Δ, o(t′) = σ}, F¬ϕ × T ) of
the system implementation and A¬ϕ. If, on some run of the product automaton,
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the accepting states of A¬ϕ have been visited more than m · |Q¬ϕ| times, some
product state consisting of some state of the implementation and some accepting
state of A¬ϕ must have been visited twice, and we can hence construct a path in
the implementation and an accepting run of A¬ϕ by repeating the cycle infinitely
often. ��

Let D = (V, I, O, TW ) be a partial design, ϕ an LTL specification, m′ ∈
N a natural number, and TW the states of TW . We call the pair E =(
(V, I, O, TW ‖T¬ϕ,m′), TW × {err}

)
, consisting of a partial design and a set of

error states, the extended partial design. The white-box process of E additionally
keeps track of the state of the monitor process T¬ϕ,m′ .

An error path of a system implementation T of an extended partial design is
a finite prefix μ(0)μ(1) . . . μ(k) of a path μ such that μ(k) is an error state. A
counterexample is an initial error path. If no counterexamples have been found,
the algorithm terminates and returns TB. Otherwise, the set of counterexamples
for m′ = m · |Q¬ϕ| is collected in the form of an error sequence E0, E1, . . . Ek ∈
(2T )∗, such that for each 0 ≤ i ≤ k, the states in Ei have a minimal error path
of length i.

Procedure Check assumes a fixed bound m′. While m′ = m · |Q¬ϕ| + 1 is
a safe choice, in practice it is more efficient to start with small bounds and
incrementally increase m′ if no implementation is found.

Example 2. The properties from Figure 2 are translated into a monitoring pro-
cess. For simplicity, assume we only have a monitor for (G2), with i=0 and j=1.
The monitor moves from its initial state 0 into the error state err whenever
HREADY, HGRANT0 and HGRANT1 are simultaneously true.

In the system implementation of the extended partial design, with the white-
box implementation from Fig. 1 and the black-box implementation from Ex-
ample 1, error states E0 are all tuples (a, b, err), where a is any state of the
black-box process and b is any state of the white-box process. We will denote
this set of states as (∗, ∗, err). The backwards reachable states from (∗, ∗, err)
are all states in which the black-box is in state 2, since this triggers the monitor
to move into err. The black-box process only moves into 2 when it is in 1 and
DECIDE is false, so in all pre-states the white-box needs to be in one of the
states in S1 = {0, 2, 3, 4, 5, 6}, or the corresponding states with HMASTER = 1.
Denoting these states by S′

1, the backwards reachable states from E1 = (2, ∗, ∗)
are E2 = (1, S1 ∪ S′

1, ∗). Finally, the black-box process can only reach state 1
from state 0, and does so without further conditions. Pre-states of S1 ∪ S′

1 in
the white-box are S2 = {0, 1, 2, 4, 5, 7} and the corresponding S′

2, so backwards
reachable states from (1, S1 ∪ S′

1, ∗) are E3 = (0, S2 ∪ S′
2, ∗). Since E3 contains

the initial state (0, 0, 0), the sequence E0, . . . , E3 is an error sequence.

5.4 Refine

Refine uses the error sequence found by Check to refine the constraint on the
black-box process. For this purpose, we first organize the error sequence into a
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tree that starts with the initial state and branches according to the values of
the variables visible to the black-box process. We denote a Σ-labeled finite tree
over a set Υ of directions as a pair (N, l), where N ⊆ Υ ∗ is a prefix-closed set
of finite words over Υ , identifying the nodes of the tree, and l : N → Σ is the
labeling function. The root of the tree is the empty word ε. A node w ∈ N is a
leaf if it has no children, i.e., {w · υ | υ ∈ Υ} ∩ N = ∅. Let VB = I ∪ O be the set
of variables visible to the black-box process.

A counterexample tree for a system implementation T = (T, t0, τ, o), an ex-
tended partial design E =

(
(V, I, O, TW ‖T¬ϕ,m′), TW × {err}

)
and an error se-

quence E0, E1, . . . Ek ∈ (2T )∗ is a finite 2T -labeled tree (N, l) with directions
Υ = 2I such that the following conditions hold:

– The root of the tree is labeled with the singleton set {t0} consisting of the
initial state.

– For each node w ∈ N and each direction υ ∈ Υ there is a child w · υ ∈ N iff
(1) the label of w does not contain an error state, i.e., l(w) ∩ E0 = ∅, and
(2) the set of states in Ek−|w|−1 that are υ-successors of states in the label
of the parent is non-empty. In this case, the child is labeled with this set:

w · υ ∈ N iff l(w) ∩ E0 = ∅ and {τ(q, υ) | q ∈ l(w)} ∩ Ek−|w|−1 � ∅, and
l(w · υ) = {τ(q, υ) | q ∈ l(w)} ∩ Ek−|w|−1.

To refine the constraint on the black-box process, we translate the counterex-
ample tree (N, l) into a constraint that ensures that, in future iterations, each
counterexample is prevented by the black-box process.

Proposition 2. Let (N, l) be a counterexample tree. There exists a constraint
C(N,l) that eliminates exactly those black-box implementations for which the sys-
tem implementation has one of the counterexamples in (N, l).

Proof. We set C(N,l) := constr(ε, 0), where the function constr : (N ×
T({trans, label, 0})) → C({trans, label, 0}) is defined inductively as follows:

– for a leaf node w ∈ N, l(w) ∩ E0 � ∅,
constr(w, t) = false;

– for a non-leaf node w ∈ N, l(w) ∩ E0 = ∅,

constr(w, t) =
∧

w·υ∈N,υ∈2I

(
label(t) � (υ ∩ O)

∨ constr(w · υ, trans(t, υ))

)
.

��

Example 3. We inspect the error sequence obtained during the Check phase
in Example 2. Forward reachable states from (0, 0, 0) are (1, S3 ∪ S′

3, 0), where
S3 = {0, 1, 2, 4}.

Construction of the counterexample tree can be seen as a branching model
checking procedure, which first partitions S3 into states S4 = {1} where
DECIDE holds, and S5 = {0, 2, 4} where it does not hold. Then, state sets
(1, S4 ∪ S′

4, 0) and (1, S5 ∪ S′
5, 0) are intersected with E2 from Example 2, re-

sulting in the empty set and (1, S5 ∪ S′
5, 0), respectively. Forward reachable from

(1, S5 ∪ S′
5, 0) are (2, S6 ∪ S′

6, 0), where S6 = {0, 1, 2, 3, 4, 5}.
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(0, 0, 0)

(1, {0, 2, 4, 0′, 2′, 4′}, 0)

¬decide

(2, {1, 3, 1′3′}, 0)

decide

(2, {0, 2, 4, 5, 0′, 2′, 4′, 5′}, 0)

¬decide

Fig. 4. Counterexample Tree

Partitioning states again wrt. DECIDE gives us (2, {1, 3, 1′3′}, 0), and
(2, {0, 2, 4, 5, 0′, 2′, 4′, 5′}, 0). Since we have reached state 2 of the black-box pro-
cess (which triggers the monitor to move into err), all successor states of these
will be error states. Figure 4 depicts the resulting counterexample tree (leaving
out the leaves labeled with false). The corresponding counterexample constraint
is

¬hgrant0(0) ∨ hgrant1(0)
∨ hgrant0(trans(false, 0)) ∨ hgrant1(trans(false, 0))
∨ ((¬hgrant0(trans(true, trans(false, 0)))

∨ ¬hgrant1(trans(true, trans(false, 0))))
∧ (¬hgrant0(trans(false, trans(false, 0)))

∨ ¬hgrant1(trans(false, trans(false, 0)))))).

6 Symbolic Implementation

We have implemented the algorithm described in Section 5 in OCaml, tightly
integrating the SMT solver Z3 [8] and the BDD package CUDD [9].

Initialization. The input to our tool contains the partial design D and specifi-
cation ϕ of the desired system in one file. White box and monitor automata are
translated into a BDD representation of their initial and error states, as well as
their respective transition relations. These will not change during the main loop
of the algorithm.1

Main Loop: Solve, Check, Refine

– Solve. The solve phase is handled by the SMT solver, which receives the
current set C of constraints on the black-box process, and either returns a
model or the result unsatisfiable. In the latter case, we increase the bound
and try again.

– Check. The model obtained from the SMT solver is translated into a BDD
representation, and we construct a BDD representation of the complete sys-
tem, including the candidate black box. We apply backward model checking,
storing BDD representations of the error sequence E0, . . . , Ek.

1 This means that monitor automata currently do not grow with the size bound, but
their size m′ must be chosen large enough from start.
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Table 1. Experimental Results

DEC w/o DEC

m′=10 m′=14 m′=18 m′=10 m′=14 m′=18
|I | = 1 |I | = 2 |I | = 3 |I | = 1 |I | = 1 |I | = 1 |I | = 2 |I | = 3 |I | = 1 |I | = 1

2 Masters 0.6 0.6 0.6 0.4 0.7 0.3 0.3 0.5 0.4 0.5
4 Masters 14.6 18.4 61.0 39.1 242.9 47.6 162.6 TO 332.6 923.9
6 Masters unsat unsat unsat 9952.0 TO unsat unsat unsat TO TO

– Refine. To obtain the counterexample tree, we start another model check-
ing run, this time going forward from the backwards reachable initial states
identified in the Check phase. In every iteration, we partition the reach-
able states according to the valuations of input variables of the black-box
process, resulting in a branching model checking process. To allow efficient
partitioning, we enforce an ordering on the BDD which always keeps input
variables on top. Furthermore, every element of this partition is intersected
with Ek−j , where j is the number of steps we have taken in the forward
model checking process. As a consequence, state sets that will not lead to
an error in the minimal number of steps become empty, and these branches
of the process are pruned.

During the branching model checking process, we store constraints on
input variables that correspond to the partitioning of the reachable states in
the counterexample tree. By construction, every branch of the process will
have reached the error states after k steps, and we obtain an error tree of
depth k. The constraints in this tree are combined as described in Section 5,
such that they exclude all minimal error paths from this model in the future
candidate models produced by Solve.

7 Experiments

Table 1 gives experimental results on the AMBA case study obtained with our
prototype implementation of the lazy synthesis approach. We synthesized ar-
biters for architectures with 2, 4 or 6 masters, using lazy synthesis with monitors
with a fixed valuation of m′ of 10, 14, or 18. For the interface of the black-box,
we tested the cases I = {DECIDE}, I = {DECIDE, HMASTLOCK}, and
I = {DECIDE, HMASTLOCK, HREADY}. DEC indicates that we used the
optional constraint (G4) from Figure 2 to guide the search.

Times are given in seconds, on an Intel Core i7 CPU @ 2.67GHz. TO marks
cases where a timeout of 5 hours has been reached, “unsat” cases where the
specification is unsatisfiable for the given monitor. The size of the synthesized
black-box is equal to the number of masters in the system. For 8 masters, the
tool timed out for all options mentioned above.

Comparison to Bloem et al. The AMBA case study has been carried out
with an eager synthesis method by Bloem et al. [1,2]. Similar to our auxiliary
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variable DECIDE, they defined several auxiliary variables and constraints that
help guide the synthesis process. However, in contrast to our approach, Bloem
et al. synthesized the complete controller, including the deterministic parts we
have included in our white box. The advantage of synthesizing the complete con-
troller is that it justifies the assumption of complete information, which results
in a simpler synthesis problem. However, focusing the synthesis on the black-box
process, which does not have access to the full state, allows us to obtain smaller
implementations. Using lazy synthesis, we can minimize both the interface be-
tween black and white box (and thus, find the signals on which the arbitration
policy depends) and minimize the number of states of the the black-box imple-
mentation. The size of the implementation synthesized using the lazy approach
is linear in the number of masters, while Bloem et al. report exponential growth.

8 Conclusions

We have presented lazy synthesis, a novel combination of synthesis and veri-
fication. Lazy synthesis focuses the synthesis effort on the relevant part of the
design, the black-box process and ensures that only constraints that are needed to
rule out incorrect implementations are considered. The main practical advantage
of lazy synthesis is that it produces dramatically smaller implementations than
eager methods. This has three main reasons. First, unnecessary constraints are
avoided. Second, the incomplete information of the black-box process is treated
accurately, and, hence, irrelevant dependencies are avoided. Third, lazy synthesis
integrates bounded synthesis, and thus ensures that the number of states in the
implementation is minimal.

A related method, called counter-example guided inductive synthesis (CEGIS),
has been proposed for functional synthesis of sequential and concurrent pro-
grams [10,11]. Like lazy synthesis, the approach is based on generating candidate
solutions to the synthesis problem, and refining them based on error traces, but
there are several differences. One of the main differences to lazy synthesis is that
program executions in CEGIS are finite, while we consider properties of reactive
systems on possibly infinite traces. Furthermore, synthesis in CEGIS is restricted
to specific constructs, like finding values for constants and regular expressions,
or reordering program statements given in the partial implementation. Finally,
in case the candidate implementation does not satisfy the specification, we pro-
duce a constraint that excludes all minimal error paths from subsequent models,
while the CEGIS approach only excludes one particular error per iteration.

Future Work. There are two major issues that deserve further investigation.
The first issue concerns the limitation of the presented approach to finite-state
white-box processes. This limitation could be avoided by integrating lazy syn-
thesis with automatic abstraction refinement (cf. [12]). The second issue is the
limitation to single black-box processes. In distributed systems, there are typi-
cally multiple processes that each have an incomplete view of the global state.
Even though the synthesis problem for distributed architectures is, in general,
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undecidable, lazy synthesis should, in principle, be applicable to distributed ar-
chitectures, because both the verification problem and the bounded synthesis
problem are decidable.

Acknowledgments. We thank Bertrand Jeannet for help with the OCaml
interface of CUDD.
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Abstract. Program analysis using abstract interpretation has been suc-
cessfully applied in practice to find runtime bugs or prove software cor-
rect. Most abstract domains that are used widely rely on convexity for
their scalability. However, the ability to express non-convex properties is
sometimes required in order to achieve a precise analysis of some numer-
ical properties. This work combines already known abstract domains in
a novel way in order to design new abstract domains that tackle some
non-convex invariants. The abstract objects of interest are encoded as a
pair of two convex abstract objects: the first abstract object defines an
over-approximation of the possible reached values, as is done customar-
ily. The second abstract object under-approximates the set of impossible
values within the state-space of the first abstract object. Therefore, the
geometrical concretization of our objects is defined by a convex set minus
another convex set (or hole). We thus call these domains donut domains.

1 Introduction

Efficient program analysis using abstract interpretation [12] typically uses con-
vex domains such as intervals, octagons, zonotopes or polyhedra [11,13,15,18,27].
However, certain properties of interest require reasoning about non-convex struc-
tures. One approach to non-convex reasoning is to utilize powerset domains of
elementary convex domains [3,5,21,22]. In general, it has proved to be difficult to
provide satisfactory improvements over elementary convex domains with pow-
erset domains while maintaining small enough performance degradation. Fur-
thermore, it would be difficult to maintain enough disjunctions in the powerset
depending on the particular non-convex shape being approximated. Note, how-
ever, that the recently proposed Boxes domain by Gurfinkel and Chaki [21]
can potentially represent exponentially many interval constraints compactly. It
utilizes a BDD-like extension to elementary range constraints called LDD [9].
However, we are interested in relational domains such as octagons, zonotopes or
polyhedra as well.

Additional non-convex domains based on congruence analysis (either lin-
ear [20] or trapezoid [26]) have been developed. Such domains capture a congru-
ence relation that variables satisfy and are suitable for the analysis of indexes of
arrays for instance. Recent work by Chen et al. considered a polyhedral abstract

V. Kuncak and A. Rybalchenko (Eds.): VMCAI 2012, LNCS 7148, pp. 235–250, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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domain with interval coefficients [10]. This abstract domain has the ability to
express certain non-convex invariants. For example, in this domain some mul-
tiplications can be evaluated precisely. Other interesting non-convex abstract
domains were introduced to capture specific invariants such as min-max invari-
ants [2] and quadratic templates [1].

We address a different type of non-convexity commonly occurring in software,
which relates to small sub-regions of instability within a normal operating (con-
vex) region of interest. The non-convex region of values that may cause the bug
is (under-)approximated using a convex inner region (or hole) that is subtracted
from a convex outer region. We call this representation donut domains. Our ap-
proach relies on the usual operations defined on (convex) sub-domains, except
for the need to compute under-approximations in the inner domain. The donut
domains give a convenient framework to reason about disequality constraints in
abstract domains such as in [29]. It can be considered as a generalization of the
work on signed types domain introduced in [28]. There, we start with a finite set
of types, and allow a set-minus operation only from the universal set.

Under-approximations of polyhedra. Under-approximations have been uti-
lized for applications such as test vector generation and counterexample gen-
eration, by providing must-reach sets. Bemporad et al. introduced the notion
of inner-approximations of polyhedra using intervals in [7]. In [24], polyhedra
are under-approximated for test vector generation of Simulink/Stateflow models
using a bounded vertex representation (BVR). Goubault and Putot describe a
method to compute an under-approximating zonotope [19] using modal inter-
vals [17] for non-linear operations.

In this work, we propose a novel technique to find under-approximations of
polyhedra based on a fixed template. We first re-formulate the problem by intro-
ducing an auxiliary matrix. This matrix represents the fact that we are looking
for an inner polyhedral object of a particular shape. Using this auxiliary matrix
re-formulation, we can then use standard convex analysis techniques to charac-
terize an under-approximations of polyhedra.

Motivating example. Figure 1 highlights a code snippet taken from XTide
1.

The XTide package provides accurate tide and current predictions in a number
of formats based on algorithms. Similar patterns may exist in controller-related
software to avoid regions of controller or numerical instability.

After the step marked initializations, (dx, dy) could be any point in R2

except the origin (0, 0). In our analysis, this particular point is kept and prop-
agated forward as a “hole”. After the if-statement, the set of reachable values
is: (dy > dx ∧ dy > −dx) ∨ (−dy > dx ∧ −dy > −dx). The above region is
non-convex; therefore, a classical abstract domain will end up at this control
point with � for both variables. Moreover, here, the interpretation of the strict
inequality of the test is required to prove that dx �= 0. The else case is even
harder: in addition to the non-convexity of the set of possible values, one needs

1 See www.flaterco.com/xtide

www.flaterco.com/xtide
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static void p_line16_primary (...) {

double dx , dy, x, y, slope;

... /* initializations */

if (dx == 0.0 && dy == 0.0) /* full -zero -test */

return ;

if (fabs(dy) > fabs(dx)) { /* fabs -based test */

slope = dx / dy; /* division -by-dy */

...

} else {

slope = dy / dx; /* division -by-dx */

...

}}

Fig. 1. Motivating example from XTide

to consider the full-zero-test together with the negation of |dy| > |dx|, to
prove that the division by dy is safe.

Contents. The rest of this paper is organized as follows. In section 2, we define
a new set of domains called donut domains. Section 3 proposes a novel method
to compute polyhedral under-approximations for arbitrary linear templates. Fi-
nally, in Section 4, first experiments and promising results are discussed.

2 Donut Abstract Domains

In this section we introduce donut domains, and define the operation on donut
domains based on operations in the component domains.

2.1 Lattice Structure

Let (A1,≤1,∪1,∩1,⊥1,�1, γ1) and (A2,≤2,∪2,∩2,⊥2,�2, γ2) denote two clas-
sical numerical abstract domains, where ≤, ∪,∩,⊥,�,γ denote the partial
order, the join and meet operations, the bottom and top elements and the con-
cretization function of the classical abstract domain for � ∈ {1, 2}, respectively.

In this work, we extend a given abstract domain with an under-approximation
operator ᾰ, such that for any concrete object X , we have γ ◦ ᾰ(X) ⊆ X . An

abstract object X�
1\2 of the domain A1 \ A2 is defined by a pair of objects

(X�
1, X

�
2), such that X�

1 ∈ A1 and X�
2 ∈ A2. The object X

�
1\2 abstracts the set of

possible values reached by the variables as follows:

– The object X�
1 ∈ A1 represents an over-approximation of the set of reachable

values.
– The object X�

2 ∈ A2 represents an under-approximation of the set of un-

reachable values (usually within γ1(X
�
1)).
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The concretization function is defined as follows.

γ1\2(X
�
1, X

�
2)

def
= γ1(X

�
1) \ γ2(X

�
2) .

Figure 2 depicts a concretization of a typical donut object where the domain A1

is the affine sets domain [16] and A2 is the octagons domain.

γ1(X
�
1)

x1

x2

(minus)

γ2(X
�
2)

x1

x2

=
x1

x2

Fig. 2. The concretization of a typical non-convex abstract object

One should keep in mind the implicit set of unreachable values implied by
γ1(X

�
1) – namely Rp \ γ1(X�

1) denoted in the sequel by γ̄1(X
�
1). Indeed, the set

of unreachable values is actually γ̄1(X
�
1) ∪ γ2(X

�
2). As said earlier, γ2(X

�
2) is a

(convex) under-approximation of the set of unreachable values. The fact that

the intersection γ1(X
�
1) ∩ γ2(X

�
2) is not empty permits to encode a hole inside

γ1(X
�
1) (see Figure 2).

Interval Concretization. The interval concretization of the variable xk, 1 ≤
k ≤ p, denoted by [xk], is defined by πk(γ1(X

�
1) \ γ2(X

�
2)), where πk denotes

the orthogonal projection of a given set onto dimension k. Note that [xk] ⊇
πk(γ1(X

�
1)) \ πk(γ2(X

�
2)). For instance in ([−2, 2]× [−2, 2], [−1, 1]× [−∞,+∞]),

we have [x2] = [−2, 2], whereas [−2, 2] \ [−∞,+∞] = ∅.
We embed A1 \ A2 with a binary relation and prove that it is a pre-order.

Definition 1. Given X�
1, Y

�
1 ∈ A1 and X�

2, Y
�
2 ∈ A2, we say that (X�

1, X
�
2) is

less than or equal to (Y �
1 , Y

�
2 ) denoted by (X�

1, X
�
2) ≤1\2 (Y �

1 , Y
�
2 ) if and only if

X�
1 ≤1 Y

�
1 and

γ̄1(X
�
1) ∪ γ2(X

�
2) ⊇ γ̄1(Y

�
1 ) ∪ γ2(Y

�
2 ) . (1)

Proposition 1. The binary relation ≤1\2 is a pre-order over A1 \A2. It defines

an equivalence relation ∼ defined by (X�
1, X

�
2) ≤1\2 (Y �

1 , Y
�
2 ) and (Y �

1 , Y
�
2 ) ≤1\2

(X�
1, X

�
2) and characterized by X�

1 = Y �
1 (X�

1 ≤1 Y
�
1 and Y �

1 ≤1 X
�
1), γ2(X

�
2) ⊆

γ2(Y
�
2 ) ∪ γ̄1(Y

�
1 ) and γ2(Y

�
2 ) ⊆ γ2(X

�
2) ∪ γ̄1(X

�
1). We reuse the symbol ≤1\2 to

also denote the partial order quotiented by the equivalence relation ∼.

With respect to ≤1\2, we have

(⊥1,⊥2) ∼ (⊥1,�2) ≤1\2 (�1,�2) ≤1\2 (�1,⊥2);
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therefore, we define the bottom and top elements of A1 \ A2 by

⊥1\2
def
= (⊥1,−) �1\2

def
= (�1,⊥2) .

2.2 Decidability of the Order

Despite the non-convexity of γ̄, the equivalence class introduced in Proposition 1
suggests particular representatives of objects (X�

1, X
�
2) which are easily compa-

rable. Indeed, γ̄ is no longer involved when the concretization of the hole X�
2

is included in the concretization of X�
1. Moreover, observe that the definition

of the order relation ≤1\2 allows comparing two abstract objects having their
holes in two different abstract domains, since only the concretization functions
are involved in (1).

Proposition 2. Let (X�
1, X

�
2) and (Y �

1 , Y
�
2 ) be two elements of A1 \A2 such that

γ2(X
�
2) ⊆ γ1(X

�
1), and γ2(Y

�
2 ) ⊆ γ1(Y

�
1 ). Therefore, (X�

1, X
�
2) ≤1\2 (Y �

1 , Y
�
2 ) if

and only if X�
1 ≤1 Y

�
1 and γ1(X

�
1) ∩ γ2(Y

�
2 ) ⊆ γ2(X

�
2).

The condition γ1(X
�
1) ∩ γ2(Y

�
2 ) ⊆ γ2(X

�
2), can be checked in the abstract world

rather than in the concrete domain up to the use of an expressive enough domain
for both A2 and A1: for instance a box and an octagon can be seen as special
polyhedra and the meet operation of the Polyhedra abstract domain can be used.

Let XP
1 denote the abstract representation in the Polyhedra domain of the

abstract object X�
1, that is αP(γ1(X

�
1)). To decide whether (X�

1, X
�
2) is less than

or equal to (Y �
1 , Y

�
2 ), we proceed as follows:

1. First, we “upgrade” X�
2 and Y �

2 to the Polyhedra domain. We denote by

(X�
1, X

P
2 ) and (Y �

1 , Y
P
2 ) the newly obtained abstract objects.

2. Then, we derive our particular representatives, namely (X�
1, X

P
1 ∩P XP

2 ) for

(X�
1, X

P
2 ) and (Y �

1 , Y
P
1 ∩P Y P

2 ) for (Y �
1 , Y

P
2 ) (∩P being the meet operation

in the Polyhedra domain).

3. Finally, we use Proposition 2 by checking for the inequalities X�
1 ≤1 Y

�
1 and

XP
1 ∩P Y P

1 ∩P Y P
2 ≤P XP

1 ∩P XP
2 .

2.3 Meet and Join Operations

We start with a simple example to clarify the intuition behind the formal defi-
nition given later.

Example 1. Consider a one-dimensional donut domain where A1 and A2 are
Intervals domains. Assume we are interested in computing

([0, 3], [1, 2]) ∪ ([1, 6], [2, 5]) .
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The above join yields the following union of four intervals: [0, 1)∪ (2, 3]∪ [1, 2)∪
(5, 6], which can be combined without loss of precision into [0, 2)∪ (2, 3]∪ (5, 6],
or equivalently

[0, 6] \ ([2] ∪ (3, 5]) .

What the example suggests is that when computing a join of two elements
(X�

1, X
�
2) and (Y �

1 , Y
�
2 ), we often end up with multiple (not necessarily convex nor

connex) holes defined by (γ2(X
�
2)∪ γ̄1(X

�
1))∩ (γ2(Y

�
2 )∪ γ̄1(Y

�
1 )). By distributing

the meet over the join, we obtain:

(γ2(X
�
2)∩ γ2(Y

�
2 ))∪ (γ2(X

�
2)∩ γ̄1(Y

�
1 ))∪ (γ2(Y

�
2 )∩ γ̄1(X

�
1))∪ (γ̄1(X

�
1)∩ γ̄1(Y

�
1 )) .

An under-approximation of the final element γ̄1(X
�
1) ∩ γ̄1(Y

�
1 ) is implicit since

the over-approximation of reachable values is given by X�
1 ∪1 Y

�
1 . Thus, only the

intersection of the first three sets will be considered (which is sound). In our
example, γ̄([1, 6]) = [−∞, 1) ∪ (6,+∞], and γ̄([0, 3]) = [−∞, 0) ∪ (3,+∞], this
gives [1, 2] ∩ [2, 5] = [2, 2] and

[1, 2] ∩ ([−∞, 1) ∪ (6,+∞]) = ∅
[2, 5] ∩ ([−∞, 0) ∪ (3,+∞]) = (3, 5] .

As said earlier, the intersection ([−∞, 1) ∪ (6,+∞]) ∩ ([−∞, 0) ∪ (3,+∞]) is
implicit since it is covered by γ̄1([0, 3] ∪ [1, 6]).

We now formalize the join operator:

(X�
1, X

�
2) ∪1\2 (Y

�
1 , Y

�
2 )

def
= (X�

1 ∪1 Y
�
1 , (X

�
1, X

�
2)∩̆(Y

�
1 , Y

�
2 )),

where ∩̆ is defined by:

(X�
1, X

�
2)∩̆(Y

�
1 , Y

�
2 )

def
=

ᾰ((γ2(X
�
2) ∩ γ2(Y

�
2 )) ∪ (γ2(X

�
2) ∩ γ̄1(Y

�
1 )) ∪ (γ2(Y

�
2 ) ∩ γ̄1(X

�
1))) .

We may perform heuristic checks to prioritize which hole (if many) to keep,
which may also depend on the under-approximation abstraction function ᾰ. For
instance we may choose an inner approximation (if working with closed domains)
of the hole (3, 5] instead of choosing the hole [2, 2].

Notice also that we have a straightforward fallback operator ∩̆fb, that involves
only X�

2 and Y �
2 :

X�
2∩̆fbY

�
2

def
= ᾰ(γ2(X

�
2) ∩ γ2(Y

�
2 )) .

The operator is sound with respect to under-approximation. It focuses only on a
particular hole, namely γ2(X

�
2) ∩ γ2(Y

�
2 ), instead of considering all possibilities.

In our current implementation, we use this fallback operator in a smart manner:
before computing the meet of both holes, we relax, whenever possible, in a convex
way, these holes. This relaxation is performed by removing all constraints that
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x

y

becomes
x

y

Fig. 3. Relaxing the hole (0, 0) (red circle in the left hand side figure) to x ≥ 0

could be removed while preserving γ1(X
�
1). For instance, if the hole is the point

(0, 0), and the abstraction of X�
1 is given by the conjunction y ≥ x ∧ −y ≥ x,

then the hole (0, 0) is relaxed to x ≥ 0 (see Figure 3).
For the meet operation, we proceed in a similar manner. If the domain A2 is

closed under the meet operation (almost all polyhedra-like abstract domains),
it is possible to replace ᾰ by α, and ∩̆fb by ∩2. In our example, the fallback
operator gives the box [2, 2].

The meet operator ∩1\2 is defined in a similar manner:

(X�
1, X

�
2) ∩1\2 (Y

�
1 , Y

�
2 )

def
= (X�

1 ∩1 Y
�
1 , X

�
2∪̆Y

�
2 )

where X�
2∪̆Y

�
2

def
= ᾰ2(γ2(X

�
2) ∪ γ2(Y

�
2 )) .

We deliberately omit γ̄1(X
�
1) ∪ γ̄1(Y

�
1 ) in the above definition of ∪̆ because it

is implicit from X�
1 ∩1 Y

�
1 . If the domain A2 is closed under the join operation,

then ∪̆ is exactly equal to ∪2. Very often, however, the join operation leads to
an over-approximation. Therefore the detection of an exact join as in [8,6] is

of particular interest. In our current implementation, if X�
2 and Y �

2 overlap, we
soundly extend, in a convex way, the non-empty intersection. For instance, if
X�

2 = [−2, 1]× [−1, 1] and Y �
2 = [−1, 2]× [−2, 0], the intersection gives the box

[−1, 1] × [−1, 0], and the extension we compute gives the box [−2, 2]× [−1, 0].
If, however, the holes are disjoint, we randomly pick up one of them.

Example 2. Consider 2-dim simple abstract objects. Figure 4 shows a graphical
representation of two overlapping objects. The remaining sub-figures highlight
some of the pertinent steps with respect to the computation of ∪1\2 and ∩1\2
for such overlapping objects.

2.4 Loop Widening

When processing loop elements in abstract interpretation, we may require widen-
ing to guarantee termination of the analysis. For donut domains, we extend the
widening operations defined on the component abstract domains. We use the
pair-wise definition of widening operators ∇. We thus define widening of donut
domains as:

(X�
1, X

�
2)∇1\2(Y

�
1 , Y

�
2 ) = (X�

1∇1Y
�
1 , X

�
2 ∩2 Y

�
2 ) .
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(a) (b) (c) (d) (e)

Fig. 4. Illustrating the join and meet operators using interval component domains.
The donut holes are highlighted using dashed lines. (a) Two initial abstract objects.
(b) The concrete union of the objects. (c) The abstract object representing ∪1\2. (d)
The concrete intersection of the objects. (e) The abstract object representing ∩1\2.

We use the standard widening operator ∇1 for abstract domain A1. Similarly,
we use the standard meet operator ∩2 of abstract domain A2 for the inner region,
which ensures the soundness of ∇1\2. The convergence of the first component is
guaranteed by the widening operator ∇1. The convergence of the second com-
ponent needs however more attention. Note that the simple use of narrowing
operator of A2 is unsound as it may give a donut object which is not an upper
bound. To ensure the termination we add a parameter k which will encode the
maximal number of allowed iterations. If the donut object does not converge
within those k iterations, the hole component is reduced to ⊥2. Note that the
use of the narrowing operator of A2 instead of ∩2 does not give in general an
upper bound of (X�

1, X
�
2) and (Y �

1 , Y
�
2 ).

2.5 Interpretation of Tests

The ability to express holes allows us to better handle a wide range of non-convex
tests such as the �= test or the strict inequality test. We start with classical tests.
For 0 ∈ {=,≤} :

�xk 0 0��(X�
1, X

�
2)

def
= (�xk 0 0��1(X�

1), �xk 0 0��1(X�
2)),

where �·��2 def
= ᾰ2 ◦ �·�2. Such under-approximation is required so that the newly

computed (exact) hole can be encoded in A2. Therefore, if the exact hole fits
naturally inA2 (say we have a linear constraint andA2 is the Polyhedra domain),

there is no need to under-approximate (�·��2 = �·��2). In Section 3, we detail how
we compute such an under-approximation, whenever needed. If no algorithm is
available for the under-approximation, we keep the object X�

2 unchanged, which
is sound.

The non-equality test �= is defined as follows:

�xk �= 0��(X�
1, X

�
2)

def
= (�xk �= 0��(X�

1), ᾰ(γ2(X
�
2) ∪ �xk = 0��2)) .

Although �xk �= 0��(X�
1) is interpreted as the identity function in standard im-

plementations, nothing prevents the use of any available enhancement proposed
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by the used analyzer. For the hole, we compute the join of the new hole im-
plied by the constraint xk �= 0 together with the already existing hole X�

2. If

holes γ2(X
�
2) and �xk = 0��2 do not overlap, we discard X�

2. In fact, very often
(as will be seen in experiments), the hole induced by the constraint xk �= 0 is
mandatory in order to prove the safety of subsequent computations.

Finally, our approach offers, for free, an interesting abstraction of the strict in-
equality tests. A comparison with Not Necessarily Closed domains [4] is planned
as future work.

�xk < 0��(X�
1, X

�
2)

def
= �xk �= 0�� ◦ �xk ≤ 0��(X�

1, X
�
2) .

2.6 Abstract Assignment

We define in this section the abstraction of the assignment transfer function
in A1 \ A2. We first give an abstraction of the forget transfer function (non-
deterministic assignment) :

�xk ←?��1\2(X�
1, X

�
2)

def
= (Y �

1 , Y
�
2 ),

where Y �
1

def
= �xk ←?��1(X�

1)

Y �
2

def
=

{ �xk ←?��2(X�
2) if γ1(X

�
1) ∩ γ2(�xk ←?��2(X�

2)) ⊆ γ2(X
�
2)

⊥2 otherwise .

For Y �
2 , we basically check whether applying the forget operator to X�

2 in-

tersects γ1\2(X
�
1, X

�
2), by checking if this newly computed hole is included in

the original hole, that is γ2(X
�
2). If yes, Y

�
2 is set to ⊥2. For instance, forget-

ting x2 in (X�
1, X

�
2)

def
= ([−2, 2] × [−2, 2], [−1, 1] × [−∞,+∞]) gives ([−2, 2] ×

[−∞,+∞], [−1, 1] × [−∞,+∞]): since �x2 ←?��2(X�
2) = [−1, 1] × [−∞,+∞],

γ1(X
�
1) ∩ γ2(�x2 ←?��2(X�

2)) = [−1, 1]× [−2, 2] which is included in γ2(X
�
2). For-

getting x1, however, makes Y �
2 = ⊥2.

The assignment could be seen as a sequence of multiple basic, already defined,
operations. We distinguish two kind of assignments x← e, where e is an arith-
metic expression: (ı) non-invertible assignments, where the old values of x are
lost, such as x ← c, c ∈ R, and (ıı) invertible assignments, such as x ← x + y.
For non-invertible assignment, we have:

�xk ← e��1\2
def
= �xk = e��1\2 ◦ �xk ←?��1\2 .

Invertible assignments are defined in a similar manner. It augments first the set
of variables by a new fresh variable, say v, then enforces the test v = e, and
finally forgets x and (syntactically) renames v to x. Notice that augmenting the
set of variables in A1 \ A2 makes the newly added variable, v, unconstrained in

both components, X�
1 and X�

2. We can suppose that such a variable v already
exists, and used whenever we have an invertible assignment; hence, we obtain:

�xk ← e��1\2
def
= swap(xk, v) in �xk ←?��1\2 ◦ �v = e��1\2 .
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3 Template-Based under-Approximations of Polyhedra

In this section we develop a new technique to under-approximate holes obtained
after linear tests. Holes obtained after non-linear tests are so far reduced to ⊥2,
which is sound. We plan to improve this as a future work. Consider for instance
the object ([−2, 3]× [−2, 2], [−1, 1]× [0, 1]). Figure 5 depicts the exact evaluation
of a linear assignment. If we use boxes to encode holes, we need to compute a box
inside the white polytope. In Figure 6, an under-approximation is needed for all
convex domains, whereas a non-convex domain such as Interval Polyhedra [10]
can express exactly this kind of pattern.

x1

x2

Fig. 5. Evaluation of a linear expression
�x2 ← x1 + x2�

�
1\2

x1

x2

Fig. 6. Evaluation of a non-linear expres-
sion �x2 ← x1 × x2�

�
1\2

The problem can be seen as follows: given a polyhedron P , we seek to compute
a maximal (in a sense to define) inner polyhedron T (could be boxes, zones,
octagons, linear-templates, etc. depending on A2), which obeys the template
pattern matrix T .

Let P = {x ∈ Rp|Ax ≤ b} be a non-empty polyhedron, where A is a known
m×pmatrix, b a known vector of Rm, and x a vector of Rp. The inner polyhedron
T is expressed in a similar manner: T = {x ∈ Rp|Tx ≤ c}, where T is a known
n× p matrix, and c and x are unknown vectors within Rn and Rp, respectively.
The inclusion T ⊆ P holds if and only if

∃c ∈ Rn, such that T is consistent, and ∀x ∈ Rp : Tx ≤ c =⇒ Ax ≤ b .

The consistency of T (that is the system admits a solution in Rp) discards the
trivial (and unwanted) cases where the polyhedron T is empty. For the non-
trivial cases, the existence of the vector c and the characterization of the set of
its possible values are given by Proposition 3.

Proposition 3. Let C be the set of c such that T is consistent. There exists a
vector c ∈ C such that T ⊆ P if and only if there exists an n ×m matrix Λ,
such that λi,j, the elements of the matrix Λ, are non-negative and ΛT = A. For
a given possible Λ, the set cΛ ⊆ C is characterized by

{c ∈ Rn | Λc ≤ b} .
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Proof. Let x denote a vector of Rp, and b denote a known vector of Rm. Let A
and T be two known matrices with p columns and m and n rows, respectively.
Suppose that c is such that T is consistent. Therefore, we can assume that

〈ti, x〉 ≤ ci, 1 ≤ i ≤ n,

where ti denotes the ith row of the matrix T , is consistent. For a fixed j, 1 ≤
j ≤ m, the inequality 〈aj , x〉 ≤ bj, is then a consequence of the system Tx ≤ c
if and only if there exist non-negative real numbers λi,j , 1 ≤ i ≤ n, such that

n∑
i=1

λi,jti = aj and

n∑
i=1

λi,jci ≤ bj .

The previous claim of the existence of the non-negative λi,j is a generalization
of the classical Farkas’ Lemma (see for instance [30, Section 22, Theorem 22.3]
for a detailed proof). The matrix Λ is then constructed column by column using
the elements λi,j , 1 ≤ i ≤ n for the jth column. Of course, by construction, such
a Λ has non-negative elements, and satisfies ΛT = A, and Λc ≤ b.

On the other hand, if such a matrix exists, and the set {c ∈ Rn | Λc ≤ b} is
not empty, we have by the fact that Λ has non-negative elements

Tx ≤ c =⇒ ΛTx ≤ Λc .

Therefore, ΛT = A and Λc ≤ b, gives Ax ≤ b. #$

On the Consistency of Tx ≤ c. It not obvious in general, given a matrix T , to
characterize the set of c such that T is consistent. However, given a vector c, we
can efficiently check whether the system is consistent or not using its dual form
and a LP solver. Indeed, the system Tx ≤ c is inconsistent if and only if there
exists a non-negative vector λ ∈ Rn such that T tλ = 0 and 〈λ, c〉 < 0, where T t

denotes the transpose of T . Therefore, given a vector c, if the objective value of
the following problem:

min 〈λ, c〉
s.t. T tλ = 0 .

(2)

is non-negative, the system is consistent. Observe that, for simple patterns such
as boxes, the characterization of the set of c that makes the system consistent is
immediate.

Computing Λ. The matrix Λ is built column by column. Let us denote by λ−,j ∈
Rn the jth column of Λ, by aj ∈ Rp, 1 ≤ j ≤ m, the jth row of A, by bj ∈ R the
jth component of b, and by ti ∈ Rp, 1 ≤ i ≤ m, the ith row of T . The vector
λ−,j satisfies

∑n
i=1 λi,jti = aj . To each feasible λ−,j corresponds a pattern

Pλ−,j

def
= {x ∈ Rp |

∧
λi,j>0

〈ti, x〉 ≤ 0},
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which is included in the affine subspace Pj
def
= {x ∈ Rp | 〈aj , x〉 ≤ 0}. The

maximal pattern (with respect to set inclusion) corresponds to λ̄ defined as the
solution of the following linear program.

min

n∑
i=1

λi,j‖ti‖

s.t.

∑n
i=1 λi,jti = aj

∀0 ≤ i ≤ n, λi,j ≥ 0
.

(3)

Therefore, computing Λ needs solving p instances of the LP (3).

Computing c. We have already established (Proposition 3) that the vector c
verifies Λc ≤ b. Since Λ is known, any feasible c (that is such that Λc ≤ b) that
makes the system Tx ≤ c consistent (the objective value of the LP (2) is non-
negative) gives an under-approximation of P that respects our initial template
T . Of course, it is immediate to see that the set of c that lies on the boundaries
of the feasible region (that is by making Λc = b) gives, in general, a “better”
under-approximation than the strict feasible solutions since the saturation makes
some of the facets of the inner pattern (T ) included in those of the under-
approximated polyhedron P . Moreover, in some cases, the saturation gives a
unique consistent solution for c. For instance, when we under-approximate a
shape P which respects already the pattern T , c is uniquely determined and
gives actually b using our technique. In other words, under-approximating an
octagon (for instance) with an octagonal pattern gives exactly the first octagon.

4 Implementation

We have implemented donut domains on top ofApron library [23]. The domains
A1 and A2 are parameters of the analysis and can be specified by the user
among already existing Apron domains. The current version uses an enhanced
implementation of the set-theoretic operators, mainly based on already existing
routines of the underlying abstract domains, as described earlier, and relies on
∪̆fb and ∩̆fb as fallback operators. This very simple approach allows to build
the donut domain without additional effort on top of already existing domains.
The analyzed examples2 (see Table 4) use mainly the absolute value function to
avoid the division by zero (widely used technique). The motiv example is the
motivating example with its two branches. The gpc code is extracted from the
Generic Polygon Clipper project. The examples xcor, goc and x2 are extracted
from a geometric object contact detection library. The WCfS column indicates
the weakest condition that we need to infer to prove the safety of the program.

2 www.nec-labs.com/research/system/systems_SAV-website/benchmarks.php.
The C files are the real source code, while the SPL files extracts the hard piece
of code that leads to false alarms, and with which we feed our proof of concept
implementation.

www.nec-labs.com/research/system/systems_SAV-website/benchmarks.php
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Table 1. Division-by-zero analysis results

WCfS boxes (hole) false alarms

motiv(if) dy �= 0 dy = 0 0
motiv(else) dx �= 0 dx = 0 0

gpc den �= 0 den ∈ [−0.1, 0.1] 0
goc d �= 0 d ∈ [−0.09, 0.09] 0
x2 Dx �= 0 Dx = 0 0
xcor usemax �= 0 usemax ∈ [1, 10] 1

Whenever the negation of this condition is verified by (included in) the donut
hole, the program is proved to be safe. The third column shows the inferred
donut holes when using a non-relational domain (boxes) to encode holes. As
Table 4 shows, our approach permits to catch almost all division-by-zero false
positives that classical domains (even non-convex) fail to prove. Here, the use of
boxes is sufficient to eliminate almost all false alarms here. In the last example,
among the two possible holes, namely usemax ∈ [1, 10] and usemax ∈ {0}, we
choose by default the one created immediately after the test (usemax > 10 or
usemax < 1). Here the safety property can not be proved with this hole and relies
on an earlier (disjoint) hole created by a former test, namely usemax ∈ {0}. We
could also choose systematically (as a heuristic) the hole that contains “zero”,
which is sufficient here to discard the remaining false alarm. Such a property-
driven hole behavior would be an interesting direction for future research.

The proof of the motivating example is really challenging as it requires to
handle both the hole that comes from the full-zero-test, together with strict
inequality tests and the over-approximation that comes from the join operation.
Our technique that consists of relaxing the hole in a convex way before using
the fallback operator works here and is able to prove that in both branches the
division is safe. In goc example, we can see one interesting ability of donuts
domain: when we compute a convex join of two non-overlapping objects, the
hole in between is directly captured which permits a better precision. Finally,
example x2 needs a precise interpretation of strict inequalities.

Under-approximation. We have implemented our technique of Section 3 using
the GLPK [25] solver. Some experiments, obtained for randomly generated poly-
hedra with octagonal template, are shown in Figure 7. Although all shown poly-
hedra are bounded, our technique works perfectly well for unbounded shapes.
The rate of volume, volT

volP , is used as a metric for the quality of the under-
approximation (shown near each pattern in Figure 7). All obtained octagons are
maximal with respect to set inclusion. It is not clear which choice among many
(see the left graph), is the best. Indeed, such a choice depends on the future
computations and the properties one would like to prove.
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Fig. 7. Under-approximation of randomly generated polyhedra with octagons

5 Conclusions and Future Work

The donut domains can be viewed as an effort to make some Boolean structure
in the underlying concrete space visible at the level of abstract domains as a
“set-minus” operator. This allows optimization of the related abstract opera-
tors (such as meet and join) to take full advantage of its semantics in terms of
excluded states. While powerset domains allow handling non-convex sets, this
comes at significant cost. In practice, the full expressiveness may not be needed.
We exploit the set-minus operator, which is quite versatile in capturing many
problems of interest - division by zero, instability regions in numeric computa-
tions, sets excluded by contracts in a modular setting, etc. In the future, we wish
to expand the experiments performed using donut domains. Furthermore, other
non-convexity issues may be addressed by trying to combine the work on LDDs
with insights gained here to allow handling many holes in an efficient manner.

Acknowledgments. The authors would like to thank Enea Zaffanella, Sriram
Sankaranarayanan, and anonymous reviewers for their valuable comments on an
earlier draft of this work.
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Abstract. In this paper, we present an extension of active automata
learning to register automata, an automaton model which is capable of
expressing the influence of data on control flow. Register automata oper-
ate on an infinite data domain, whose values can be assigned to registers
and compared for equality. Our active learning algorithm is unique in
that it directly infers the effect of data values on control flow as part
of the learning process. This effect is expressed by means of registers
and guarded transitions in the resulting register automata models. The
application of our algorithm to a small example indicates the impact
of learning register automata models: Not only are the inferred models
much more expressive than finite state machines, but the prototype im-
plementation also drastically outperforms the classic L∗ algorithm, even
when exploiting optimal data abstraction and symmetry reduction.

1 Introduction

The model-based approach to development, verification, and testing of software
systems (e.g., [7,5,11]) is a key path towards efficient development of reliable
software systems. However, its application is hampered by the current lack of
adequate specifications for most actual systems. The use of component libraries
with very partial specifications, and the problem of maintaining specifications
of evolving systems aggravate the situation. Automata learning techniques [9]
have been proposed to overcome this, by allowing to construct and later update
behavioral models automatically. This has been illustrated in a number of case
studies like, e.g., the concrete setting of Computer Telephony Integrated (CTI)
systems [9], and in protocol specification [18], analysis [22], and testing [24].

Black-box techniques for learning component models broadly fall into two
classes. One class generates finite-state models of control skeletons, modeling
the sequences of interactions of a component [9,12,2,22], or automata learning
techniques (e.g., [3,19]). Another class generates invariants over state variables [8]
or exchanged data values by generalizing from concrete observations. For many
applications in testing and verification, and also in commercial model-based
testing tools (e.g., ConformiQ Qtronic [11]), it is, however, important to generate

� This work is supported by the European FP 7 project CONNECT (IST 231167).

V. Kuncak and A. Rybalchenko (Eds.): VMCAI 2012, LNCS 7148, pp. 251–266, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



252 F. Howar et al.

models that capture combined behavior of control and data. Parameters such as
sequence numbers, identifiers, etc. have a significant impact on control flow in
typical protocols. For instance, a valid sequence number or session identifier has
a very different influence on continued behavior than an invalid one.

In this paper, we present an extension of active automata learning to regis-
ter automata, an automaton model which is capable of expressing the influence
of data on control flow. Register automata operate on an infinite data domain,
whose values can be assigned to registers and compared for equality by very nat-
ural mechanisms. This suffices to handle parameters like user names, passwords,
identifiers of connections, sessions, etc., in a fashion similar to, and slightly more
expressive than, the class of “data-independent” systems, which was the subject
of some of the first works on model checking of infinite-state systems [25,13].
Thus RA learning is particularly suited for the validation of protocols, connec-
tors or mediators, as we will discuss based on a small fragment of the XMPP
protocol (cf. Figure 1).

Our active learning algorithm is unique in that it directly infers the effect of
data values on control flow as part of the learning process. Conceptually, our new
learning algorithm is based on a generalized Myhill-Nerode theorem for register
automata, which, like in the classical regular case, identifies the required con-
trol locations [6]. Algorithmically, the L∗-typical partition refinement process [3]
needs to be elaborated to a three-dimensional maximum fixpoint computation
for simultaneously determining locations, register assignments, and guards of
transitions. Technically, working on sequences of interactions with data requires
additional care. It involves a “data-aware” way of composing prefixes and suf-
fixes, as well as an adequate way of analyzing counterexamples with data values.
We will show the impact of our approach by applying it to a small fragment of
the XMPP protocol. The prototype implementation of our new technology dras-
tically outperforms alternative approaches, even when they exploit optimizations
like data abstraction and symmetry reduction.

Related Work. We do not know of any other fully automatic learning algorithm
that seamlessly integrates the inference and exploitation of data dependencies.

One approach [16,17,15] first generates control skeletons with data-agnostic
control actions, which are then extended with data constraints in a post-process
using a tool like Daikon [8]. This allows one to infer constraints on data pa-
rameters that are exchanged after specific sequences of method invocations, but
not to analyze the influence of data parameter on subsequent control behavior.
The method presented in [1] achieves a deeper integration of control and data at
the price of user-supplied abstraction scheme (mapper), whereas [4] requires a
predefined fixed finite data domain. [21] constructs memory automata [14] from
sequences of learned deterministic finite automata for increasing finite data do-
mains. This approach could probably be generalized to infer register automata.
However, such a generalization would be some exponentials more complex than
our algorithm and yield automata of undetermined quality.

Technically, our involved three-dimensional treatment of counterexamples can
be regarded as an elaboration of an algorithmic pattern which was originally
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l0

l1

l2

(reg,〈p1,p2〉) | true
x1:=p1;x2:=p2

(in,〈p1,p2〉) | x1=p1∧x2=p2
−

(out,∅) | true
−

(del,∅) | true
−

(pw,〈p1〉) | true
x2:=p1

Fig. 1. Partial model for a fragment of XMPP

presented in [19] for learning regular languages. We elaborated this pattern ear-
lier to cover Mealy machine learning [23], and to support automated alphabet
abstraction refinement [10].

Organization. After introducing register automata in the next section, we de-
velop our main result in Section 3. This comprises in particular the setup for the
generalized Nerode congruence, the corresponding observation table (algorithmic
data structure), and the enhanced treatment of counterexamples. Subsequently,
we discuss an application example in Section 4 and conclude with Section 5.

2 Register Automata and Data Languages

We assume an unbounded domain D of data values and a set A of actions. Each
action has a certain arity which determines how many parameters it takes from
the domain D. A data action is a term of form (α, d̄), where α is an action with
arity n, and d̄ = 〈d1, . . . , dn〉 are data values in D. A data word is a sequence
of data actions. A data language is a set of data words, which is closed under
permutations on D. We have presented an automaton model that recognizes
data languages in [6].

Let a parameterized action be a term of form (α, p̄), consisting of an action
α and formal parameters p̄ = 〈p1, . . . , pn〉 respecting the arity of α. Let X =
〈x1, . . . , xm〉 be a finite set of registers. A guard is a conjunction of equalities
and negated equalities, e.g., pi �= xj , over formal parameters and registers. An
assignment is a partial mapping ρ : X → X∪P for a set P of formal parameters.

Definition 1. A Register Automaton (RA) is a tuple A = (A,L, l0, X, Γ, λ),
where

– A is a finite set of actions.
– L is a finite set of locations.
– l0 ∈ L is the initial location.
– X is a finite set of registers.
– Γ is a finite set of transitions, each of which is of form 〈l, (α, p̄), g, ρ, l′〉, where
l is the source location, l′ is the target location, (α, p̄) is a parameterized
action, g is a guard, and ρ is an assignment.

– λ : L (→ {+,−} maps each location to either + (accept) or − (reject). #$
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Let us define the semantics of an RAA = (A,L, l0, X, Γ, λ). A valuation, denoted
by ν, is a (partial) mapping from X to D. A state of A is a pair 〈l, ν〉 where
l ∈ L and ν is a valuation. The initial state is the pair of initial location and
empty valuation 〈l0, ν0〉.

A step of A, denoted by 〈l, ν〉 (α,d̄)−−−→ 〈l′, ν′〉, transfers A from 〈l, ν〉 to 〈l′, ν′〉
on input (α, d̄) if there is a transition 〈l, (α, p̄), g, ρ, l′〉 ∈ Γ such that (1) g is
modeled by d̄ and ν, i.e., if it becomes true when replacing all pi by di and all
xi by ν(xi), and such that (2) ν′ is the updated valuation, where ν′(xi) = ν(xj)
wherever ρ(xi) = xj , and ν′(xi) = dj wherever ρ(xi) = pj .

A run of A over a data word (α1, d̄1) . . . (αk, d̄k) is a sequence of steps

〈l0, ν0〉
(α1,d̄1)−−−−→ 〈l1, ν1〉 . . . 〈lk−1, νk−1〉

(αk,d̄k)−−−−−→ 〈lk, νk〉.

A run is accepting if λ(lk) = +, otherwise it is rejecting. The data language
recognized by A, denoted L(A) is the set of data words that it accepts.

For the remainder of this paper, we will work with RAs that are completely
specified, meaning for any reachable state 〈l, ν〉 and input (α, d̄), there is a tran-
sition with a guard modeled by d̄ and ν, and determinate, i.e., no data word has
both accepting and rejecting runs. We refer to such automata as DRAs. Data
languages that are accepted by a DRA are called regular. We will restrict our
attention to regular data languages.

Example 1. We model the behavior of a fragment of the XMPP protocol [20] as
an example (shown in Figure 1). XMPP is widely used in instant messaging. In
our fragment of XMPP, a user can register an account (providing a username
and a password), log in using this account, change the password, and delete the
account. For example, the user Bob could register his account with the action
reg(Bob, secret) (providing his username and password), and then log in with
the action in(Bob, secret). Once logged in, he could change his password to
boblovesalice with the action pw(boblovesalice). In the figure, accepting
locations are denoted by two concentric circles. Note that several transitions are
omitted for brevity. We will use the XMPP example in Section 4 to demonstrate
our learning algorithm. #$

As shown in [6], data languages can be represented concisely using a symbolic
representation of data words. Here, we provide a summary using different but
isomorphic representations of the concepts in [6] that allow a more amenable
presentation.

LetWD be the set of all data words over some set A of actions. For some data
word w = (α1, d̄1) . . . (αn, d̄n) from WD let Acts(w) be the ordered sequence of
actions in w, and V als(w) = d1 . . . dm the (ordered) sequence of data values in
w. Let V alSet(w) be the set of distinct data values in V als(w).

Let w � w′ denote that w′ can be obtained from w by a not necessarily
injective mapping on D, i.e., for two data words w,w′ with V als(w) = d1 . . . dm,
and V als(w′) = d′1 . . . d

′
m,

w � w′ ⇔ Acts(w) = Acts(w′) ∧ ∀1 ≤ i < j ≤ m . di = dj ⇒ d′i = d′j .
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For example, reg(Bob, test) � reg(Alice, Alice). Note that � is a preorder
on WD. The smallest elements wrt. � are data words where all data values are
pairwisely different. The greatest ones are data words where all data values are
equal. For data words w, w′, let w 1 w′ denote that w � w′ and w 2 w′.
The equivalence relation 1 induces a partitioning of data words into equivalence
classes.

Let V als(w)|k the prefix of length k of V als(w). For data words w, w′ with
Acts(w) = Acts(w′) let w < w′ denote that for some k > 0, (1) V als(w)|k−1 =
V als(w′)|k−1 and (2) the kth data value of V als(w) is different from any of the
k − 1 first data values, but (3) the kth data value of V als(w′) is equal to some
of the k−1 first data values. For example, reg(Bob, test)in(Bob, oth) is smaller
(wrt. <) than reg(Alice, test)in(Alice, test).

We assume an infinite ordered set DV = {1,2,3, . . .}, which is disjoint from
D. Let a suffix be a data word whose data values are in D ∪ DV . To allow
for comparing suffixes by equality, we require that data values from DV appear
in canonical order in a suffix v, i.e., such that for every prefix p of V als(v)
the set V alSet(p) \ D is of form {1,2, . . . ,k} for some k. For a data word
u, let an u-suffix be a suffix v where all data values from D in v are also in
V alSet(u). We concatenate u and an u-suffix v, denoted by u; v to the word
uπ(v), where π : DV → (D \ V alSet(u)) is an injective mapping, and π(v)
denotes the application of π to all data values from DV in v. For example,
in(Bob,1) is a reg(Bob, secret)-suffix. Concatenation will result in the unique
(up to equivalence wrt. 1) word reg(Bob, secret)in(Bob, new).

3 Active Learning of Canonical RAs

We present a novel active learning algorithm, which infers a canonical DRA for
an unknown data language L, of which it initially knows only the set of actions.
Active learning proceeds by asking two kinds of queries.

– A membership query consists in asking if a data word w is in L.
– An equivalence query consists in asking whether a hypothesized DRA H is

correct, i.e., whether L(H) = L. The query is answered by yes if H is correct,
otherwise by a counterexample, which is a data word from the symmetric
difference of L and L(H).

Key to (classic) L∗-like learning [3] is the well known Nerode congruence, which
allows to identify words that lead to the same location in a canonical acceptor
for some language L. The Nerode congruence is formulated in terms of residual
languages, i.e., languages after some prefix. Words with identical residuals will
lead to the same location in a canonical acceptor. Active learning algorithms ex-
ploit this by means of two sets of words: (1) a finite prefix-closed set of prefixes,
which is successively extended until it covers every transition of the canonical
acceptor for L, and (2) a finite set of suffixes, i.e., selected words from resid-
uals, that allows to approximate the Nerode congruence on the set of prefixes.
The necessary information is usually stored in an observation table. The rows
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and columns of this table are labeled with prefixes and suffixes, respectively.
The table cell for a row labeled by u, and a column labeled by v, contains the
information whether uv ∈ L, i.e., whether v is in the L-residual of u.

Active learning iterates two phases: hypothesis construction and hypothesis
validation. During hypothesis construction the two sets of prefixes and suffixes
are successively extended, using a sequence of membership queries, until the
table satisfies satisfies certain “closure conditions”, under which a hypothesis
automaton can be constructed in a consistent way. Hypothesis validation is per-
formed using equivalence queries, to check if the current hypothesis is correct.
From the returned counterexamples, new suffixes can be generated, that will
drive a new round of hypothesis construction [19,23]. During learning, hypoth-
esis automata will grow monotonically in size, until they have the size of the
canonical acceptor for L. Then, by definition an equivalence query will confirm
that the hypothesis is correct.

Our learning algorithm for regular data languages will strictly follow this
pattern, and construct the canonical DRA for some data language L. Theoretical
backbone will be the new succinct Nerode congruence for data languages that
we have presented in [6]. We will use sets of so-called L-essential data words
(cf. Section 3.1) and abstract suffixes (cf. Section 3.2) as prefixes and suffixes,
from which membership queries for data words can be immediately derived. Due
to the potentially complex patterns of relationship between data values in data
languages, however, residuals will be more complicated in our algorithm than in
the classic regular case, reflected in the more complex cells of our observation
table. In the remainder of this section we will show

1. how abstract suffixes can be used to approximate the Nerode congruence
(Section 3.1 and Section 3.2),

2. how an observation table can be realized and how at certain points well-
defined hypothesis automata can be constructed from the observation table
(Section 3.2), and

3. how counterexamples can be exploited to guarantee strictly monotone
progress as in the classic regular case [23] (Section 3.3).

Strictly monotone progress together with an invariant on the size of hypothesis
automata will deliver a correctness argument resembling the one from the classic
case (Section 3.4). The invariant, however, is more complicated than in the classic
case: We will show that for all hypothesis automata, the number of transitions,
the number of locations, and the sum of the number of register assignments
at some location will never exceed the corresponding numbers of the canonical
DRA for L. In essence, the overall pattern of learning DRA is a three-dimensional
maximum fix-point computation, determining (a) the locations, (b) the required
register assignments, and (c) the guarded transitions in a partition-refinement
fashion.

3.1 Residual Data Languages

In this section we will define residual data languages and present our Nerode
congruence for data languages from [6] in terms of these. The development of
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this section is relative to canonical DRAs for regular data languages, whose
existence has been proved in [6]. This allows us to avoid reciting the technically
involved constructions presented in [6] without sacrificing the precision required
to establish the correctness of our learning algorithm. The learning algorithm
itself, however, does not depend on any a priori knowledge about the canonical
DRA for an inferred data language.

Let A be the canonical DRA of some data language L. For a run of A on some
data word w of length n, i.e., with |Acts(w)| = n, let the trace of this run be the
sequence of transitions τ = t1, . . . , tn of the run in the order they are traversed,
and TracesA(w) the set of all traces of runs of A on w (due to determinacy there
may be more than one). For a trace τ , let [τ ] be the set of smallest data words
triggering this trace. These smallest words are important for the construction of
canonical DRAs. Let TracesA be the set of traces of A.

Definition 2 (L-essential words). Given a data language L and its canonical
DRA A, we define EL =

⋃
τ∈TracesA [τ ] to be the set of L-essential words. #$

Intuitively, the set of L-essential words is an infinite prefix-closed set of smallest
data words that trigger runs in the canonical DRA for L, i.e., which have just
enough equal data values to satisfy the guards of all traversed transitions.

When learning an unknown data language L, the canonical DRA for L is, of
course, unknown and cannot be used for the construction of EL. Our algorithm
will find a representation system of L-essential words by means of member-
ship queries (cf. Section 3.3). In the XMPP example in Figure 1, ε (the empty
word), reg(Bob, secret), and reg(Bob, secret)in(Alice, other) are examples
of L-essential words. They are smallest words triggering corresponding traces.
Also, reg(Bob, oth)in(Bob, oth) is L-essential, triggering the reg-transition from
l0 and the “correct login” from l1 to l2 The word reg(Bob, Bob)in(Bob, Bob), on
the other hand, is not L-essential. It, too, triggers the reg-transition and the
“correct login” but it is not the unique (up to 1) smallest word for its trace.

In [6] we showed how from EL the canonical DRA for L can be constructed.
To determine the locations of this canonical automaton, we compare L-essential
words by their residual languages. Let therefore λL : WD → {+,−} such that
λL(w) = + if w ∈ L and λL(v) = − otherwise. For an L-essential data word u
and a set S of u-suffixes, we want to characterize the set of words {u; v | v ∈ S}
wrt. L in a concise and canonical way. For a subset !S" of S, let rep�S� : S → 2�S�

be a mapping that maps every suffix in S to a set of suffixes in !S". We fix the
definition of rep�S� independent of u and S. Let

rep�S�(v) = max<{v′ ∈ !S" | v′ � v}.

We say that !S" characterizes S faithfully after u if λL(u; v) = λL(u; v
′) for

v′ ∈ rep�S�(v) and v ∈ S.

Definition 3 (Closures). For an L-essential word u and a set S of u-suffixes,
the u-closure CS

u : !S" → {+,−} is a mapping with unique minimal domain
!S" ⊆ S faithfully characterizing S after u, and CS

u (v) = λL(u; v). #$
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We denote the u-closure for the set of all u-suffixes by Cu. In [6], we have shown
that the unique minimal domain of Cu is the set of suffixes that extend u to
L-essential words.

For the L-essential word reg(Bob, oth), e.g., the reg(Bob, oth)-suffixes in(1,2)
and in(Bob, oth) are in the domain of Cu, extending reg(Bob, oth) to a word
equivalent to reg(Bob, oth)in(Alice, secret) and to reg(Bob, oth)in(Bob, oth).
These two words suffice to characterize faithfully the behavior of reg(Bob, oth)
for all suffixes v with only in as action: Cu(in(1,2)) maps to −, corresponding
to an unsuccessful login from l1 in the DRA in Figure 1. Cu(in(Bob, oth)) maps
to +, characterizing correct logins.

Since the suffixes in Dom(Cu) extend u to L-essential words, the data values
from D occurring in these suffixes are exactly the ones that are needed to satisfy
the guards in the canonical DRA for L. We refer to these data values as the
memorable data values of u, and denote them by memL(u). In the above exam-
ple, Bob and oth are in memL(reg(Bob, oth)). Note, however, that in general
memL(u) will only be a subset of V alSet(u).

Let π be a permutation on D. We apply π to closures, denoted by πCS
u , by

applying π to all data values from D in suffixes of Dom(CS
u ) simultaneously,

thereby exchanging values from D in the suffixes.

Definition 4 (Nerode congruence for essential words). Two L-essential
words u and u′ are equivalent w.r.t. L, denoted by u ≡L u′ if there exists a
permutation π on D such that πCu = Cu′ . #$
Note that ≡L is an equivalence relation. The bijection π used in Definition 4 need
only relate memorable data values, i.e., it is enough to define it as a bijection π :
memL(u) → memL(u

′). We say that two closures are incompatible, denoted by
Cu �1 Cu′ if there is no permutation onD under which the closures become equal.

In our example, reg(Alice, secret) and reg(Bob, oth)in(Bob, oth)out() are
equivalent wrt. ≡L since their closures become equal under a permutation π on
D, mapping Alice to Bob and secret to oth. In the canonical DRA in Figure 1
both words lead to l1. Intuitively, π exchanges the data values stored in registers
after processing the one word by data values stored in registers after processing
the other word.

3.2 Hypothesis Construction

Our learning algorithm will use an observation table as underlying data struc-
ture. In this section we will define this data structure and explain how hypothesis
automata can be generated from observation tables.

So far, we have defined suffixes only relative to fixed prefixes. We assume an
infinite set Z of placeholders, ranged over by z1, z2, . . ., which is disjoint from
D and DV . An abstract suffix is a data word with parameters in Z ∪ DV . One
abstract suffix yields a number of (concrete) u-suffixes for a particular prefix u.
For a set of abstract suffixes V , let V (u) be the set of u-suffixes that can be
generated from V via injective partial mappings σ : Z → V alSet(u). The ab-
stract suffix in(z1, z2) for example will yield the reg(bob, oth)-suffixes in(1,2),
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in(bob,1), in(oth,1), in(1, bob), in(1, oth), in(oth, bob), and in(bob, oth). The
abstract suffix in(z1,1), on the other hand, will result in in(1,2), in(bob,1), and
in(oth,1), only.

During learning, we will use membership queries for all words u; v with v ∈
V (u) to find the optimal, i.e., minimal, domain of C

V (u)
u (along the lines of

finding L-essential words [6]). For the u-closure CV (u)
u let memV (u) denote the

set of data values from V alSet(u) that occur in suffixes in the domain of C
V (u)
u .

Even though the u-closure of an L-essential word u for a set of abstract suffixes
V will in general not contain suffixes that extend u to L-essential words, the
following propositions hold.

1. For all sets V of abstract suffixes memV (u) ⊆ memL(u), i.e., we will never
wrongly identify data values as memorable. Intuitively, a data value that is
not memorable in u cannot influence behavior in any suffix.

2. If u ≡L u′ then C
V (u)
u 1 C

V (u′)
u′ for all sets of abstract suffixes V . This can

be shown by proving mutual inclusion of the domains.
3. If u �≡L u′ then there exists a finite set V of abstract suffixes such that

C
V (u)
u �1 C

V (u′)
u′ . Since ≡L has finite index k, in the worst case V has to

generate all suffixes up to length k (We will do better, actually).

We can thus use closures as basis for our observation table.

Definition 5 (Observation table). An observation table is a tuple (U, V, T ),
of a prefix-closed set of L-essential words U , a set of abstract suffixes V , and a

function T , mapping each prefix u ∈ U to the u-closure C
V (u)
u . #$

The set U consists of a prefixed-closed subset Sp(U) of short prefixes, and con-
tains for every prefix u ∈ Sp(U) at least the one-action extension ua where data
values in a do not equal one another or data values in u. The u-closure T (u) is
constructed by asking membership queries for all suffixes in V (u), following the
approach from [6]. Our algorithm will initialize Sp(U) = V = {ε}, and maintain
the invariants that u �1 u′ for u, u′ ∈ U and T (u) �1 T (u′) for u, u′ ∈ Sp(U).

In order to construct hypothesis automata from an observation table, we need
two conditions to hold on the table.

Definition 6 (Closedness). An observation table (U, V, T ) is closed if for every
prefix u ∈ U \ Sp(U) there is a prefix u′ ∈ Sp(U) and a permutation π on D
such that πT (u) = T (u′). #$

Please note that in general there can be multiple effective permutations. This
can be due to true symmetry of parameters, but also to the approximative nature
of intermediate results in learning. Since the existence of effective permutations
is transitive, there can never be two permutations proving the same word from
U \ Sp(U) equivalent to different words from Sp(U). The prefixes in Sp(U) will
become the locations of a hypothesis automaton. Closedness ensures that all
transitions of the hypothesis, defined by prefixes in U , have a defined destination.
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Definition 7 (Register-consistency). An observation table (U, V, T ) is
register-consistent if for every prefix ua ∈ U , where a is of length one,

memV (ua) ∩ V alSet(u) ⊆ memV (u). #$

When constructing a hypothesis from the table, we will store the parameters from
memV (u) in registers at the location corresponding to u. Register-consistency
ensures thatmemV (u) contains all parameters of u that are assumed to be stored
in registers in continuations of u. This will guarantee that the assignments along
transitions in the hypothesis are well-defined.

From a closed and register-consistent observation table we can construct a
hypothesis automaton H along the lines of the approach presented in [6]. We
will omit a detailed account of the automaton construction here, but simply give
the key idea. The automaton is obtained from the observation table, using the
set of prefixes and the permutations on D to determine locations and transitions.
Registers are determined using the sets memV (u) of closures T (u). Guards and
assignments can then be generated from the L-essential words in U directly, and
λ will be defined using values from the closures. We thus have:

Proposition 1. From a closed and register-consistent observation table (U, V, T )
a well-defined hypothesis automaton H can be constructed, for which λH(u) =
T (u)(ε) for u ∈ U . #$

3.3 Hypothesis Validation

Once we have generated a hypothesis automaton H, an equivalence query will
either signal success or return a counterexample, i.e., a data word wc from the
symmetric difference of L and L(H). We will process wc from left to right in
order to localize where precisely hypothesis and target system behave differently.

Starting with wc, we will iteratively generate derived counterexamples, to-
wards the word from Sp(U) that leads to the same location in H as wc. We refer
to this word as the access sequence of wc and denote it by !wc"H. Key idea is
that, since wc ∈ L ⇔ !wc"H /∈ L, words generated in the process will at some
point stop being counterexamples (cf. [19,23]).

Technically, we will construct “triplet constrained words” uav, where u ∈
Sp(U). We start with the triplet where u is the empty word ε, and av is wc. We
define the following three refinement steps, which will be iterated until we find
a concrete discrepancy between H and the (unknown) canonical acceptor for L.
An example illustrating all steps will be given in Section 4.

A: Finding new transitions. For ua of our triplet, let uā be a maximal (wrt.
<) word from U .1 Intuitively, uā corresponds to the trace of ua in H. As
shown (schematically) in Figure 2 a), we will try to transform the word
ua; v into a word uā; v′ still being a counterexample. The problem here is
deriving a suitable v′ from v. If we cannot find such a word, we will find an

1 Due to determinacy, there may be multiple such words of which we will pick one.
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Fig. 2. Counterexamples: a) new transition, b) new register, c) new permutation

L-essential word uā � ua′ � ua that we can use as a new prefix in U . In this
case we can continue with hypothesis construction. Otherwise, we continue
with uā; v′ and step B.

Technically, we will generate a sequence of counterexamples ua; v =
ua1; v1 > ua2; v2 > . . . > uak; vk, by removing equalities between data
values from uai that are not present in uā. Removing equalities in uai may
require refining the suffix vi, too. For di, dj , and dk as shown in the Figure 2,
we can try to make dk equal to di, equal to dj , or un-equal to both. For the
at most d = |V als(a; v)| equal data values in the suffix there are O(3d) re-
sulting candidate words uai+1; vi+1 in each of the k < |V als(a)| steps. We
continue until uai 1 uā or no word uai+1; vi+1 is a counterexample.

B: Finding new registers. As shown in Figure 2 b), it may be that v′ in
uā; v′ uses data values of uā not in memV (uā), and thus are not stored in
registers in H after processing uā. Either the word uā; v̄ that is supported by
the assignments in the hypothesis still is a counterexample and we continue
with step C, or we will find a suffix v′′ indicating a new register and continue
with hypothesis construction.

The smallest sensible v′′ results from a sequence of suffixes v′ = v′1 >
v′2 > . . . > v′k = v′′ still yielding counterexamples, where (V alSet(v′i+1) ∩
V alSet(a)) ⊂ (V alSet(v′i) ∩ V alSet(a)). In each of the k < |V als(a)| steps
we have to consider at most |V als(a)| candidate suffixes. A register will then
be introduced by adding the abstract suffix 〈v′′〉 to V , which we generate
from v′′ by replacing all data values from D by placeholders.

C: Finding new locations. Finally, let !uā"H be the access sequence of uā,
i.e., the word from Sp(U) for which πT (uā) 1 T (!uā"H) for some permu-
tation π on D (used during hypothesis construction). In this step we will
replace uā by its access sequence using π to replace data values in v̄.

If !uā"H;π(v̄) is not a counterexample, as shown in Figure 2 c), either π
is the wrong permutation from a set of potential ones, or both words are not
equivalent wrt. ≡L. In both cases, adding the abstract suffix 〈v̄〉 to the table
will make this explicit, and lead to a new permutation or, in case no effective
permutation is left, to unclosedness, i.e., a new location. If !uā"H;π(v̄) still
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is a counterexample, we will start over with step A, using !uā"H as u and
(misusing notation) π(v̄) as a; v.

Since wc is a counterexample, at some point one of the three steps will deliver
a new prefix or suffix. Denoting the maximal length (i.e., |Acts(wc)|) of a coun-
terexample by m and the arity of the action with most parameters by p, we can
estimate the number of membership queries we need to process a counterexample
by O(pm3pm). We thus have:

Proposition 2. Every counterexample delivers either a new transition, or an
abstract suffix leading to an increased number of locations or an increased sum of
the number of register assignments, or it leads to a reduced number of symmetries
between assigned registers at a particular location. #$

3.4 Correctness and Complexity

Inferring an unknown data language over the set of actions A, the learning
algorithm proceeds in rounds. In each round a well-defined hypothesis automaton
can be constructed from the closed and consistent observations (Proposition 1).
For initialization Sp(U) = {ε}, i.e., it contains the access sequence of the initial
location, while U \ Sp(U) contains a word with no equal data values for every
α ∈ A. The set of abstract suffixes is initialized as V = {ε}, distinguishing
accepting and rejecting locations.

As usual, we will estimate the number of necessary membership and equiva-
lence queries in terms of the size of the canonical DRA for the considered regular
data language. Let the number of registers be denoted by r, the number of lo-
cations by n, the number of transitions by t, the arity of the action with most
parameters by p, and the length of the longest counterexample by m.

Then, by construction, the number of prefixes in the final observation table
is t + 1, i.e., in O(t), and the number of suffixes lies in O(nr): less than n to
distinguish locations, less than nr to realize register-consistency, and less than
nr to reduce the number of possible permutations.2

Each processing of a counterexample, which may require O(pm3pm) mem-
bership queries, will lead to a refined observation table from which a new hy-
pothesis automaton can be constructed. This automaton will either have more
transitions, more locations, or more registers than the previous one, or it uses
a different permutation between prefixes reaching a location, where the number
of possible permutations decreases strictly monotonically (Proposition 2). Due
to the monotonicity of the refinement steps, chaotic fixpoint iteration is guar-
anteed to terminate after finitely many rounds with the greatest fixpoint, which
resembles the canonical DRA for L.

The number of membership queries needed to fill the observation table de-
pends on the number of membership queries needed to produce all closures. An

2 Reducing the number of permutations follows the same partition-refinement-pattern
as automata learning does in general: With every new suffix a group of symmetric
data values / registers is split (at a particular location).
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Table 1. Observation Table (only showing a subset of all prefixes)

ε in(z1, z2) out()in(z1, z2)

ε (l0) − in(1, 2) − out()in(1,2) −
reg(a, b) (l1) − in(1, 2) − out()in(1,2) −

in(a, b) + out()in(a, b) +

reg(a, b)in(a, b) (l2) + in(1, 2) +
out()in(1,2) −
out()in(a, b) +

reg(a, b)in(c, d) − in(1, 2) − out()in(1,2) −
in(a, b) + out()in(a, b) +

reg(a, b)in(a, b)pw(c) + in(1, 2) +
out()in(1,2) −
out()in(a, c) +

reg(a, b)in(a, b)out() − in(1, 2) − out()in(1,2) −
in(a, b) + out()in(a, b) +

abstract suffix can have at most r abstract parameters, which can be instantiated
by less than np parameters in the potential of a word in less than (np)r combi-
nations. The number of membership queries needed to construct all closures lies
therefore in O(tnr · (np)r).

Theorem 1. Regular data languages can be learned with O(t+nr) equivalence
queries and O(tnr · (np)r + (t+ nr) · pm3pm)) membership queries. #$

Two factors for the number of membership queries look critical. (1) the “concate-
nation” of prefixes and abstract suffixes, which is responsible for the exponential
term of the first summand, and (2) the transformation of arbitrary prefixes of
counterexamples into correspondingL-essential words, leading to the exponential
term of the second summand. It should be noted, however, that both exponents
are typically quite small in practice. In fact, p may well be considered a constant
in many contexts, and pm estimates the worst case in which all data values of
a counterexample are equal, which usually can be avoided when searching for
counterexamples. Finally, the number of required registers r will typically grow
much slower than the model size. This observation was also supported by our
experiments.

4 Example Application

In this section we give an example of a complete run of our algorithm, using
the XMPP example from Figure 1, and present some performance data for our
implementation of the algorithm.

The resulting (final) observation table for the example is shown (partly) in
Table 1. The left column contains prefixes. Prefixes from Sp(U) are shown in
the upper part of the table. The three other columns are labeled with abstract
suffixes. Table cells of a row labeled u contain suffixes from the domain of the u-
closure C

V (u)
u grouped per abstract suffix. The table was initialized as described

in Section 3.4. The algorithm starts by constructing closures for all prefixes in
U and the empty suffix. Since all prefixes are not in L, the table is immediately
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l0

(reg,〈p1,p2〉) | true
− , . . .

l0 l1
(reg,〈p1,p2〉) | true

x1:=p1;x2:=p2

. . . (in,〈p1,p2〉) | true
− , . . .

Fig. 3. First and second hypothesis

closed and consistent. In the constructed hypothesis, shown in the left of Figure 3,
all prefixes lead to one non-accepting state.

An equivalence query returns the counterexample reg(a, a)in(a, a) which is in
L but rejected by the hypothesis. Performing step A of handling counterexamples
results in a word reg(a, b)in(a, b), which still is a counterexample. When refining
the word to be supported by the (empty) assignment along the reg-transition
in the hypothesis (step B), the words reg(a, b)in(a, d) and reg(a, b)in(c, b) are
no longer counterexamples. In order to subsequently correct the yet empty as-
signment, we add the abstract suffix in(z1, z2) to the table.

When completing the table, the closure for the prefix reg(a, b) will be incom-
patible with the other closures, which can be seen in Table 1. In order to get a
closed observation table, reg(a, b) will be added to Sp(U), and U \Sp(U) will be
extended accordingly. From the closed table we construct the hypothesis that is
shown in the right of Figure 3.

We will get the same counterexample as in the first round. Analyzing it, we per-
form the refinement steps described in Section 3.3.We first perform the refinement
steps for the empty prefix. First we transform reg(a, a)in(a, a) to reg(a, b)in(a, b)
(step A). Steps B and C will not modify this counterexample since the equalities
are supported already by the hypothesis and since reg(a, b) is its own access se-
quence. The second round startswith reg(a, b) asu, in(a, b) as a, and an empty suf-
fix v. When refining in(a, b) to be supported by the corresponding guard of the in-
transition from l1 (step A), we discover that reg(a, b)in(a, d) and reg(a, b)in(c, b)
are no counterexamples. Hence, reg(a, b)in(a, b) must be L-essential.We add it to
U \ Sp(U) in order to represent the guarded in-transition in the table.

To close the table, we have to move the new prefix to Sp(U) as its closure is
incompatible with the other closures. We extend U \Sp(U) accordingly. Now the
resulting table is not register-consistent: It does not support any (re-)assignment
along the new prefix as its closure does not have memorable data values. The
closure of its continuation reg(a, b)in(a, b)out(), however, has two memorable
data values, namely a and b. We add out()in(z1, z2) to the set of suffixes. From
the closed and consistent observation table, shown in Table 1, we construct the
final model: the canonical DRA from Figure 1.

We have implemented the outlined algorithm on top of LearnLib [18], and
applied it to the discussed example. Counterexamples were found automatically
by comparing DFAs, generated from hypothesis and target model for a small,
concrete data domain. We compared our new learning algorithm for RAs with
algorithms for learning DFAs utilizing abstraction, which to our knowledge would
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Table 2. Experimental Results

Setup # Loc. # Trans. MQs EQs

RA learning algorithm 3 16 403 3
L∗, symmetry reduction, |D| = 6) 73 5,913 2,776 2
L∗, no optimization, |D| = 6) 73 5,913 415,333 72

be the state-of-the-art approach to learning a system like the XMPP protocol.
We have generated a DFA from the DRA in Figure 1 for the smallest sensible
data domain of size 6 (the longest membership query has 6 distinct data values).
This can be considered an optimal data abstraction. We have learned the model
twice: once with no optimization, and once with a symmetry filter. The key
figures of all experiments are shown in Table 2. The experiments show that
learning register automata not only delivers much more expressive models, but
(in this particular case) also is much more efficient than classic L∗-based learning.

5 Conclusions

In this paper, we have presented an active learning algorithm for register au-
tomata, which allows capturing the flow of parameter values taken from arbi-
trary domains. The application of our algorithm to a small example indicates the
impact of learning register automata models: Not only are the inferred models
much more expressive than finite state machines, but the prototype implementa-
tion also drastically outperforms the classic L∗ algorithm, even when exploiting
optimal data abstraction and symmetry reduction. Currently, we are investi-
gating the limits of our technology by considering generalizations, in particular
concerning the transition structure, and by exploring scalability and potential
optimizations.
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Abstract. Unresolved indirect branch instructions are a major obstacle for stat-
ically reconstructing a control flow graph (CFG) from machine code. If static
analysis cannot compute a precise set of possible targets for a branch, the nec-
essary conservative over-approximation introduces a large amount of spurious
edges, leading to even more imprecision and a degenerate CFG.

In this paper, we propose to leverage under-approximation to handle this prob-
lem. We provide an abstract interpretation framework for control flow recon-
struction that alternates between over- and under-approximation. Effectively, the
framework imposes additional preconditions on the program on demand, allow-
ing to avoid conservative over-approximation of indirect branches.

We give an example instantiation of our framework using dynamically ob-
served execution traces and constant propagation. We report preliminary experi-
mental results confirming that our alternating analysis yields CFGs closer to the
concrete CFG than pure over- or under-approximation.

1 Introduction

Binary machine code is an attractive analysis target for several reasons: when work-
ing with a fully compiled and linked binary, no interfacing with the build process is
required and all program parts are available. Inline assembly and differences between
programming languages or dialects are all eliminated by the translation to machine
code. Moreover, there is often no source code available for a program of interest, e.g.,
when analyzing proprietary code such as third party device drivers, plugins, or poten-
tially malicious software.

An important first step for applying static analysis to binaries is to recover an ac-
cessible program representation in the form of a control flow graph (CFG). The major
problem in computing a CFG for low-level machine code lies in the treatment of in-
direct branches, i.e., instructions such as jmp eax, whose targets are computed at
runtime. In earlier work [15,14], we showed how abstract interpretation [7] of machine
code coupled with on the fly disassembly can compute an over-approximation of the
concrete CFG: starting with an empty CFG, data flow information is propagated one in-
struction at a time. On encountering an indirect branch instruction, possible targets are
computed from the partial data flow information and added to the CFG as new edges.

In a purely static approach, the over-approximate analysis has to be precise enough
to compute accurate sets of target address values for each indirect branch. Because of
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imprecise reasoning or because parts of the runtime environment (libraries, operating
system behavior) have been abstracted away, however, the static analysis may have to
conservatively over-approximate the possible target addresses. In that case, the CFG
has to be extended with edges from the branch instruction to the entire program address
space (including the branch instruction itself). These mostly spurious edges introduce
additional imprecision into the analysis as abstract states propagate across them, in
the end yielding a degenerate CFG that is unusable for analysis. In practice, existing
tools [13] therefore either immediately report an error whenever they cannot resolve an
indirect branch or simply turn the indirect jump into a leaf without any successors.

In the context of dynamic instrumentation, Nanda et al. proposed to resolve indirect
branches at runtime, when the concrete jump target has already been computed [16]. In
this paper, we generalize this idea to combining over-approximate static analysis with
under-approximation and alternating between the two for resolving jump targets. We
provide a formalization of our approach in terms of abstract interpretation, which allows
us to be precise about the nature of the combined analysis and its results. The resulting
framework is parameterized by an over-approximate analysis, an under-approximate
analysis, and a predicate for influencing alternation between the two. We make the
following contributions:

– We give a new formalization of low-level control flow reconstruction as abstract
interpretation of a parameterized semantics (Section 3). In Section 4, we show how
this semantics can be instantiated to obtain (i) the concrete semantics of a low-level
language, (ii) our existing over-approximate control flow reconstruction [15], and
(iii) a purely under-approximate control flow reconstruction.

– Based on these definitions, we present a combined over- and under-approximation
as an instance of our framework (Section 5). We split the rule for branch instruc-
tions to implement alternation between the two approximations. This yields a well-
understood blueprint for using dynamic information in control flow reconstruction,
whereas previous approaches relied on ad-hoc solutions.

– We prove that the algorithm for alternating control flow reconstruction terminates
(i.e, the alternation semantics has a fixpoint) and computes an over-approximation
of the original program restricted by additional preconditions. Subsequent static
analysis on the reconstructed CFG is sound with respect to these preconditions.

– We present preliminary experimental results (Section 6) confirming that alternating
control flow reconstruction yields a clear quality improvement compared to pure
under- or over-approximation (in terms of false positives and negatives) and is es-
sential for obtaining CFGs of realistically-sized programs.

2 Overview

Let us first informally illustrate our approach using an example. Consider the program
fragment in Figure 1a. It starts at location 0 and contains two indirect branches at lo-
cations 6 and 22. For this example, we will use an over-approximating static analysis
that collects for each location and variable a set of explicit values up to size, say, five.
At the first indirect branch from location 6, control is transferred to the address stored
in a variable x. Assume that x can take the values 10, 15, or 20 at runtime, but that this
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0: x := hash(I)
3: y := choice(4, 6)
6: jmp x

10: . . .
15: . . .
20: x := x+ y
22: jmp x
24: . . .
26: . . .

0

3

6

10 15 20

22

24 26

1

2

. . .

x = hash(I)

y := choice(4, 6)

x = 10 x = 15

. . .

x = 20

x := x + y

x = 24 x = 26

x = 0

x = 3
x = 6

x = 22

x = 26

x = 24

x = 22

. . .

0

3

6

10 15 20

22

24 26

x = hash(I)

y := choice(4, 6)

x = 10 x = 15

. . .

x = 20

x := x + y

x = 24 x = 26

(a) (b) (c)

Fig. 1. Indirect jump example. (a) IL code, (b) CFG reconstructed by pure over-approximation,
with spurious edges and nodes dotted, (c) CFG reconstructed by alternation using a single trace,
with under-approximate edges in bold, over-approximate edges as regular lines, and missed edges
dashed (assume edges are shown without an explicit “assume” keyword).

cannot be determined by our static analysis because x depends on the output of a hash
function over some input value I . Assume further, that static analysis can determine the
possible values of 4 and 6 for y, which are selected by some function choice. Note that
our intermediate language used in the remainder of the paper does not contain an ex-
plicit function call but instead uses jumps. Here we use two calls for ease of exposition.
Over-approximate control flow reconstruction by abstract interpretation proceeds on the
program as follows. Starting from an empty CFG, the two edges (0, x := hash(I), 3)
and (3, y := choice(4, 6), 6) are created (as simple syntactic fall-through edges) and
interpreted, leading to the abstract state (x = �, y = {4, 6}).

Upon reaching the indirect jump at location 6, the static analysis computes the set of
concrete addresses corresponding to the current abstract value of x. This “downward”
concretization yields a superset of the actual, concrete target addresses. For each possi-
ble concrete value V , an edge (6, assume x = V , V ) is then added to the partial CFG.
In general, this algorithm always produces a correct over-approximation of the concrete
CFG, but its precision depends critically on whether the abstract value for x concretizes
to an accurate set of concrete target addresses.

In our example, however, x is unknown and its concretization ranges over all values
in the set L of program addresses. Thus, the control flow reconstruction algorithm has to
add |L| edges from 6, which renders the resulting CFG useless for all practical purposes.
Taking only the locations within the depicted program fragment into account, the CFG
already degenerates to the form shown in Figure 1b. In this CFG, control flow can even
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reach addresses such as 1 and 2, which lie between existing instructions.1 Moreover,
the imprecision of over-approximating the jump edges propagates: through the spurious
edge (6, assume (x = 22), 22), the second indirect jump can be reached, leading to a
self-loop at location 22.

To avoid such loss of precision, we propose alternating control flow reconstruc-
tion. As soon as a predefined condition χ is met, e.g., that the set of possible targets
is unconstrained, the abstract interpreter switches to an under-approximate semantics.
To this end, an under-approximation is maintained alongside the over-approximation.
Under-approximate states concretize “upward” to a subset of the concrete values.

We can under-approximate the program semantics by simply executing the program
with random input. Assume that, in our execution, we have in location 6 that x = 20 and
y = 6. Then x concretizes upward to the singleton set {20}, and a corresponding edge
(6, assume x = 20, 20) is created. The simultaneously over- and under-approximate
analysis then continues along this edge, which under-approximates the set of concrete
edges going out from location 6. From interpreting the edge, the over-approximation
can deduce that x = 20, leading to the abstract state (x = {20}, y = {4, 6}). The next
fall-through edge updates the state to (x = {24, 26}, y = {4, 6}), which allows the
over-approximation to precisely resolve all edges from the indirect jump at location 22.
The analysis thus explores the CFG by alternation, returning to over-approximation af-
ter passing over the unresolved first indirect jump using under-approximation. It missed
two outgoing edges from location 6, but reconstructed a CFG (Figure 1c) that differs
less from the concrete CFG than the over-approximation. The final CFG represents an
over-approximation of the program restricted to x = 20 at location 2. Subsequent anal-
yses on the CFG are then performed modulo the additional precondition hash(I) = 20.

To obtain a fully over-approximate CFG without additional preconditions, the miss-
ing two indirect branches could be covered using dynamic test generation [9,10,17].
Note that complete control flow reconstruction by dynamic test generation alone re-
quires full branch coverage, therefore it would need to create at least 5 tests. Together
with alternating control flow reconstruction, both branches of the indirect jump at loca-
tion 22 can be covered using just a single trace, requiring only 3 test cases for complete
reconstruction.

3 Parameterized Semantics for Low-Level Control Flow

Computing the control flow graph in the presence of indirect jumps reduces to a reach-
ability problem, since we want to find for each indirect jump all possible values that its
target expression can evaluate to. Defining an analysis that is able to deal with indirect
jumps is non-obvious, though, so in earlier work [15] we proposed a generic framework
for control flow reconstruction that is parameterized by an over-approximate data flow
analysis for a simplified language without indirect jumps. In the following, we pro-
vide a new and more flexible formalization of low-level control flow as a parameterized

1 Such spurious inter-instruction locations cannot be simply ruled out, as “overlapping instruc-
tions” are actually legal. They lead to an alternative decoding of the same code bytes and are a
popular anti-disassembly measure in hand-crafted assembly code.
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semantics that allows to define concrete, under-, and over-approximating semantics in
common terms.

3.1 Intermediate Language

To abstract from the details of assembly language while still capturing its nature, in par-
ticular the relevant low-level branching behavior, we define the intermediate language
IL. The set of statements is denoted by Stmt and consists of assignments m[e1] := e2,
conditional indirect jumps if e1 jmp e2, assume statements assume e1, and the halt state-
ment, where e1, e2 ∈ Exp denote expressions from a set Exp containing constants,
memory dereferences m[e], and the usual arithmetic, Boolean, and bitwise operators.
For simplicity, we do not explicitly introduce variables; when we use identifiers such as
x, these refer to fixed memory locations. The only IL data type are integers; Boolean
true and false are represented by 1 and 0, respectively. The finite set of program lo-
cations L ⊆ N denotes all addresses that are part of the program. Note that we could
also use bit-vectors as data type (and indeed do so in our implementation); we choose
to use integers in the exposition for greater generality. An IL program 〈�0, P 〉 consists
of a unique start location �0 and a finite mapping P :: L → (Stmt × L) from pro-
gram locations to statements and successor locations. Successor locations identify the
address of the syntactically next instruction and are used here to reflect variable length
instruction sets. We will use the notation [stmt ]��′ to refer to the statement stmt in P at
location � with successor location �′.

Furthermore, we define a reduced language IL− and its set of statements Stmt−,
which consists only of assignments and assume statements.

3.2 Parameter Semantics Template

Our approach to control flow reconstruction is a parameterized framework in the form
of an adapter semantics that lifts an existing semantics S for the simpler language IL−.
In a state that is about to execute an indirect jump next, the adapter semantics converts
the jump into a set of assume edges pointing out to the targets that are feasible given the
current state. ThereforeS has to be defined only for assignments and assume statements,
and a CFG is automatically created by collecting all the edges created by the adapter
semantics. The parameter semantics S = (A, ι, f, γ�·�,∪A) contains:

– A complete lattice A = (A,$,#,�,⊥,�).
– An initial lattice element ι.
– A transfer function f�C�(S) :: (Stmt−, A) → A for the statements in IL−, i.e.,

for assignments and assume statements.
– A concretizing evaluation function γ�e1, . . . , en�S :: Expn × A → P(Zn) that

abstractly evaluates and concretizes vectors of expressions e1, . . . , en to a set of
vectors of concrete values (P denotes the powerset). In principle, the concretizing
evaluation function could be synthesized from a regular concretization function γ
as γ�e1, . . . , en�S := {eval�e1�(S�), . . . , eval�en�(S�) | S� ∈ γ(S)}, where
eval denotes concrete expression evaluation, but is usually implemented directly.

– An operator ∪A :: A × A → A that is used by the adapter semantics to combine
elements of the domain A reaching the same location. ∪A may be identical to $ but
does not have to be.
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[m[A] := E]��′ f�m[A] := E�(S) = S′

〈�, S,G〉 −→ 〈�′, S′, G � (�, �′)〉 ASSIGNMENT

[if B jmp E]��′ (1, V ) ∈ γ�B,E�S f�assume (B ∧E = V )�(S) = S′

〈�, S,G〉 −→ 〈V, S′, G � (�, V )〉 JUMP-TRUE

[if B jmp E]��′ 0 ∈ γ�B�S f�assume (¬B)�(S) = S′

〈�, S,G〉 −→ 〈�′, S′, G � (�, �′)〉 JUMP-FALSE

[assume E]��′ f�assume E�(S) = S′

〈�, S, G〉 −→ 〈�′, S′, G � (�, �′)〉 ASSUME

[halt]��′

〈�, S,G〉 −→ 〈�, S,G〉 HALT

Fig. 2. Control flow resolving transition system for an IL program 〈�0, P 〉, parameterized by a
forward transfer function f for IL−

3.3 Control Flow Semantics

Using these parameters, we can define the full IL transition relation −→ shown in
Figure 2. It relates states from the set L × A × P(L × L) consisting of the value of
the program counter � ∈ L, the memory state S ∈ A, and the partial CFG G ⊆ L× L.

Depending on the statement pointed to by the current program counter value, the
rules invoke the transfer function f , update the program counter, and add the current
edge to the partial CFG. Assignments and assume statements simply fall through to the
syntactically next statement, and halt statements terminate execution. The rule JUMP-
TRUE fires if the jump condition is possibly true in the current state and determines
the next program counter value from the concretization of the target expression. The
rule invokes the transfer function to assume the evaluations of the condition and target
expressions, updates the program counter to the jump target, and adds the new edge.
The rule JUMP-FALSE fires if the condition of a jump is possibly false, and transfers
control to the fall-through successor, assuming the negative evaluation of the condition.
The reachability semantics for IL then is the least fixpoint of a function F defined as

F (D) := {〈�0, ι,∅〉} ∪
⊔̇{
〈�′, S′, G′〉 | ∃〈�, S,G〉 ∈ D : 〈�, S,G〉 −→ 〈�′, S′, G′〉

}
with

〈�, S,G〉 ∪̇ 〈�′, S′, G′〉 =
{
{〈�, S ∪A S′, G ∪G′〉} if � = �′

{〈�, S,G〉, 〈�′, S′, G′〉} otherwise

as the pointwise merge function that combines states reaching the same location. The
reconstructed CFG then results from

CFG =
⋃
{G | 〈�, S,G〉 ∈ lfp F}.
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4 Instantiating the Parameterized Semantics

Using the template from Section 3.2, we instantiate our semantics framework with se-
mantics for IL− to obtain concrete, over-approximate, and under-approximate control
flow semantics for IL.

4.1 Concrete Semantics

We can now instantiate our framework with a concrete reachability semantics for IL−

to define the concrete semantics of IL. The semantics of IL− is defined in terms of sets
of concrete memory states from P(N → Z), where each memory state maps positive
integers (representing memory addresses) to integers. The parameters required by our
adapter semantics are given by

– the powerset lattice of concrete memory states (P(N→ Z),∪,∩,⊆,∅,N→ Z),
– the initial state set ι = N→ Z,
– the concrete transfer function over sets of memory states

f ��m[A] := E�(S) = {s′ | ∃s ∈ S : s′ = s[eval�A�(s) (→ eval�E�(s)]}
f ��assume E�(S) = {s ∈ S | eval�E�(s) = 1},

– the concrete evaluation function γ��e1, . . . , en�S := {v1, . . . , vn | ∃s ∈ S : v1 =
eval�e�(s), . . . , vn = eval�en�(s)} (γ� is the identity function),

– and the merging operator ∪ for taking the union of two sets of memory states.

This fully instantiated concrete semantics for IL is the reference point for the following
over- and under-approximations. Defining the concrete semantics in terms of our frame-
work allows to simplify the correctness proofs for abstract semantics. If the framework
is shared by both semantics, it suffices to only establish a correctness relation between
the concrete and abstract transfer functions for IL−.

We define the concrete control flow graph of a program as the CFG constructed by
the concrete semantics. This definition is equivalent to the one in [15].

4.2 Over-Approximate Semantics

If instantiated with over-approximate IL− semantics, our adapter semantics computes
an over-approximation of the concrete CFG. The over-approximation f � of the concrete
transfer function f � has to satisfy γ� ◦ f �(S�) ⊇ f � ◦ γ�(S�) for a concretization func-
tion γ� from abstract states to concrete sets of states. Any over-approximate forward
analysis is suitable here; for useful results in control flow reconstruction, however, the
concretizing evaluation function should be able to produce reasonably precise address
values for jump targets, however.

The fixpoint of the fully instantiated over-approximate semantics can be computed
using chaotic iteration over the locations in the partial CFG, which yields the algo-
rithm for static control flow reconstruction [15]. The resulting CFG over-approximates
the concrete CFG, i.e., is a superset of its edges. In the present formalization of the
framework, the over-approximate domain must not contain infinite ascending chains
to ensure termination. It is straightforward to remove this requirement by including
widening (and possibly narrowing), but we omit this extension for simplicity.
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4.3 Under-Approximate Semantics

An under-approximate semantics is given using exactly the same parameters as an over-
approximate one is, but has dual requirements for correctness. The under-approximation
f � of the concrete transfer function f � has to satisfy γ� ◦ f �(S�) ⊆ f � ◦ γ�(S�) for the
concretization function γ� from under-approximate states to sets of concrete states.

We now define an under-approximate semantics (T , ι, f �, γ��·�,∪T ) that replays a
set of concrete execution traces. It is essentially equivalent to the concrete semantics
but also maintains a total instruction counter for timing out after executing a predefined
number N of instructions. The parameters instantiating our framework are

– the product lattice of (i) the chain of integer counters and (ii) the powerset lattice
of memory states, T = ([0;N ]× P(N→ Z),$T ,#T ,�T , (0,∅), (N,N→ Z)),

– the initial state ι = (0, S), which contains the zero counter and a finite set of mem-
ory configurations (e.g., command line parameters, file contents, . . . ) to initialize
the executions.

– the under-approximate transfer function f �(S�) =

{
(n+ 1, f �(S�)) n < N

(N,∅) otherwise

with S� = (n, S�), which satisfies γ� ◦ f �(S�) ⊆ f � ◦ γ�(S�).
– the concretizing evaluation function γ��e1, . . . , en�(n, S�) := {v1, . . . , vn | ∃s ∈
S� : v1 = eval�e�(s), . . . , vn = eval�en�(s)}.

– and the merging operator ∪T with (n1, S
�
1) ∪T (n2, S

�
2) = (max(n1, n2), S

�
1 ∪ S

�
2)

for taking the union of two sets of memory states and setting the counter to the
maximum of both individual counters.

Fixpoint computation for the under-approximate semantics is an algorithm for purely
dynamic control flow reconstruction. The resulting CFG under-approximates the con-
crete CFG, i.e., is a subset of its edges. Termination of the fixpoint computation is
ensured by the instruction counter.

5 Alternation in Control Flow Reconstruction

To leverage alternation in control flow reconstruction, we perform a simultaneous over-
and under-approximation that can be plugged into our parameterized framework in the
same way as the concrete and over-approximate semantics before.

5.1 Combined Semantics

We now define an intermediate semantics that allows to plug an over- and an under-
approximation into our framework simultaneously. It is itself parameterized by an over-
approximation (A, ι�, f �, γ��·�,∪�) and an under-approximation (U , ι�, f �, γ��·�,∪�),
with A = (A,$�,#�,��,⊥�,��) and U = (U,$�,#�,��,⊥�,��). The combined
intermediate semantics is defined as (C, ι�, f�, γ��·�,∪�) with:

– The complete lattice C = (A × U,$�,#�,��, (⊥�,⊥�), (��,��)) with pairwise
definitions of $�, #�, and ��, e.g., (a, u) �� (a′, u′)⇔ a �� a′ ∧ u �� u′.
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[if B jmp E]��′ χ(S,E) (1, V ) ∈ γ��B,E�S� f	�assume B ∧E = V �(S) = S′

〈�, S,G〉 −→ 〈V, S′, G � (�, V )〉 JT�

[if B jmp E]��′ ¬χ(S,E) (1, V ) ∈ γ��B,E�S� f	�assume B ∧E = V �(S) = S′

〈�, S,G〉 −→ 〈V, S′, G � (�, V )〉 JT�

Fig. 3. Split rules for alternating jump target resolution. χ(S,E) controls which rule is enabled,
with S = (S�, S�).

– The initial lattice element ι� = (ι�, ι�).
– A combined transfer function f��C�(S�, S�) := (f ��C�(S�), f ��C�(S�)). The

combined transfer function maps over- and under-approximate states to their re-
spective successors. If the under-approximate state has no successor for a particu-
lar state (i.e., the condition of an assume statement is false), the under-approximate
component is set to ⊥�.

– The concretizing evaluation function γ��·�(S�, S�) := γ��·�(S�), which ignores
the under-approximate part of the state.

– The merging operator ∪� such that (S�
1, S

�
1) ∪� (S

�
2, S

�
2) := (S�

1 ∪� S
�
2, S

�
1 ∪� S�

2).

This combined semantics can instantiate our control flow reconstruction framework,
but will yield the same CFG as the over-approximation alone, as the concretizing eval-
uation function will yield the same over-approximate branch targets when applying the
JUMP-TRUE rule. We need to adapt our framework to make use of the additional under-
approximate information.

5.2 Alternation Framework

To allow switching between over- and under-approximate information when resolving
indirect jumps, we split the JMP-TRUE rule of our framework into the two rules shown
in Figure 3. A definable predicate χ(S,E) for a state S and an expression E controls
which of the two rules is enabled. When χ(S,E) is true, the rule JT� resolves jumps
exactly as the original JMP-TRUE rule before. Otherwise, JT� is enabled and uses the
under-approximate portion of the state to evaluate the jump condition and the target
expression.

The definition of χ allows to fine-tune the alternation. For instance, it can be defined
as χ((S�, S�), E) := γ��E�S� ⊂ N, such that the over-approximation is used as long
as the concretizing evaluation function returns a finite set. We will use this definition
of χ for the experiments in Section 6. Another possibility is to use χ′((S�, S�), E) :=
S� 
� ⊥� ∨ γ��E�S� ⊂ N, which only falls back to under-approximation if the under-
approximation contains information at the location of the jump. By setting χ to always
true or false, the alternation framework falls back to pure over- or under-approximation,
respectively.

Note that the under-approximation can often default to the bottom element ⊥�. In
the trace replay semantics defined in Section 4.3, this happens when the executions do
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not cover a statically feasible control flow edge (e.g., the second branch of a conditional
jump). Then f � yields the empty set (the ⊥� element for the trace replay semantics),
which is paired with the over-approximate state for that location. During fixpoint com-
putation, this empty set propagates until it merges with under-approximate states from
a covered path.

5.3 Algorithm

As for the other semantics, the combined analysis is performed by computing the least
fixpoint by chaotic iteration. Even though our alternating semantics is a considerable
detour from regular abstract interpretation, the transfer relation is monotonic, and a
fixpoint exists for the full framework instance.

Theorem 1 (Termination). The alternating control flow reconstruction algorithm ter-
minates in finite time if the over- and under-approximate domains do not contain infinite
ascending chains.

Proof. As f � and f � are required to be monotonic, f� is monotonic, i.e., S1 �� S2 ⇔
f�(S1) �� f�(S2). The transfer relation −→ of the parameterized semantics is mono-
tonic in its original form [15], i.e., ∀S1, S

′
1, S2, S

′
2 : S1 � S2 ∧ S1 −→ S′

1 ∧ S2 −→
S′
2 ⇒ S′

1 � S′
2. It remains to prove that it stays monotonic when JUMP-TRUE is

replaced by the two new rules. The critical part is the situation when χ(S1, E) ∧
¬χ(S2, E) or ¬χ(S1, E) ∧ χ(S2, E) holds and −→ switches between the two rules.

The only difference between the rules, however, is the more restricted concretization
of jump targets in JT�, since |γ��B,E�S�| ≤ |γ��B,E�S�|. Therefore, JT� may fire
fewer times than JT�, but the individual applications remain monotonic. Obviously,
firing strictly more times does not affect the monotonicity of the semantic function F
(see Section 3.3). Neither does firing fewer times, because (i) all remaining state updates
are still guaranteed to be monotonic by virtue of f�’s monotonicity and (ii) no edges
already created are removed from the partial control flow graph G. #$

Again, the restriction to finite ascending chains in the over-approximate lattice can be
lifted by introducing widening. In under-approximations, infinite ascending chains are
easily avoided using counters (see Section 4.3).

5.4 Characterizing the Reconstructed CFG

Soundness. The transfer function of our alternating semantics neither over- nor under-
approximates the concrete semantics, i.e., it is not a sound abstraction. After chaotic
iteration reaches a fixpoint, the “over-approximate” part S� of the combined state S� =
(S�, S�) may not fully over-approximate the concrete reachability semantics. Conse-
quently, the final CFG is neither an over- nor an under-approximation of the concrete
CFG for the full program.

However, we can still characterize the kind of approximation that is performed: Al-
ternating control flow reconstruction computes an over-approximation of the concrete
CFG of a restricted version of its input program. The restriction asserts that at each
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indirect jump where the under-approximation was used, control flow follows only the
under-approximate set of branches. We define the restricted program as 〈�′0, P ′〉 with

P ′ = P [�′0 (→ [assume φ]
�′0
�0
] enforcing a precondition φ. Here, φ is the condition under

which ¬χ((S�, S�), E) =⇒ γ��B,E�S� = γ��B,E�S� at each state 〈�, (S�, S�), G〉
with [if B jmp E]��′ . Then, we can state the following theorem:

Theorem 2 (Relative Soundness). The CFG computed from the alternating semantics
for a program 〈�0, P 〉 soundly over-approximates the concrete CFG of the restricted
program version 〈�′0, P ′〉.

Proof. All rules except JT� over-approximateG. For all applications of JT�, φ enforces
that γ��B,E�S� = γ��B,E�S�, which is a (trivial) over-approximation. #$

If needed, the precondition φ could in principle be determined by backward symbolic
execution along the paths leading to the jumps. When using directed test generation,
φ is the disjunction of the input assignments of the test cases leading to each indirect
jump. Note that when an indirect jump is not covered by a test case, φ asserts that the
jump cannot be reached. A static analysis performed using the reconstructed CFG as
program representation will in fact be performed on 〈�′0, P ′〉, thus proofs obtained this
way hold for 〈�, P 〉 only under the assumption φ.

Precision. Note that the fixpoint of the alternating semantics computed by chaotic
iteration can depend on the iteration order. Even though the transfer relation “−→”
is monotonic, it does not distribute over the merge operator. That is, merging two
states 〈�, S1, G1〉 ∪̇ 〈�, S2, G2〉 = 〈�, S1,2, G1,2〉 and computing the set of successors
T′

1,2 = {〈�′, S′
1,2, G

′
1,2〉 | 〈�, S1,2, G1,2〉 −→ 〈�′, S′

1,2, G
′
1,2〉} can lead to a different

result than first computing only, say, the successors T′
1 of 〈�1, S1, G1〉 and then merg-

ing them with T′
1,2. This happens if χ(S1, E) but ¬χ(S1,2, E) holds for a jump at �,

i.e., rule JT� is applied for S1 but rule JT� for S1,2.
The least fixpoint of the alternating semantics can yield a CFG containing more

edges than the one obtainable by applying the JT� rule from the beginning wherever
it eventually becomes enabled, because this could avoid some over-approximate edges
that are added while still using JT�. In principle, this “optimal” CFG could be computed
by maintaining a list of locations at which to apply JT� and, each time a location is
added to the list, resetting the analysis to the point where that location was reached first.
In practice, however, precise target addresses initially resolved using JT� are likely to
be concrete. For instance, these addresses can be constants that were propagated along
a particular path before a� element from another path overwrote them. Such addresses
add concrete edges that could be missed by the under-approximation and can therefore
improve the precision with respect to the original program.

6 Evaluation

We now report some preliminary results for reconstructing the control flow graphs of
microbenchmarks and medium-sized compiled applications.
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6.1 Implementation and Setup

We evaluated the proposed approach on our static analysis platform for x86 binaries,
JAKSTAB [13].2 We extended JAKSTAB with a combined adapter analysis modeled after
the semantics described in Section 5.1 and implemented a new analysis module that
replays pre-recorded execution traces. With the combined analysis, JAKSTAB resorts to
under-approximation whenever the static analysis cannot produce a finite concretization
for the set of target addresses of an indirect jump.

As analysis targets we used our own microbenchmarks and several C and C++ pro-
grams from the SPEC CPU 2006 benchmark, compiled using Visual C++. The bench-
marks are single-threaded, so we only had to record and replay the main thread. Our
microbenchmarks are hand-written assembly language programs, so we were able to
manually construct the concrete CFG as the ground truth. For establishing a ground
truth for the C/C++ programs, we enabled debug symbols and disassembled them using
IDA PRO [11]. IDA PRO uses the debug symbols and several compiler-specific heuris-
tics to create an accurate assembly language representation. Note that this does not
necessarily reflect the concrete CFG, however. Due to its heuristic approach, IDA PRO

disassembles all identifiable code in an executable and not only that which is actually
reachable. This includes a large amount of library and error handling code. Therefore,
the number of instructions explored by a non-heuristic approach is expected to be sig-
nificantly lower.

We recorded concrete execution traces on a single-processor 32-bit Windows XP
guest system running in the BitBlaze [17] version of QEMU. As soon as the target
process is started, all user-mode instructions (including libraries) are recorded to a file.
The SPEC benchmark is designed for long running CPU time evaluations and can yield
instruction traces of hundreds of gigabytes. To obtain traces of tractable length while
still exercising the same code, we had to remove redundancy from the benchmarking
setup. We decreased the size of explicit input data, and if necessary, also reduced bounds
of loops that repeatedly invoke the same program functionality. We recorded a single
trace per executable.

6.2 Experimental Results

For determining the effectiveness of our approach, we measured the instruction
coverage achieved by JAKSTAB using under-approximate, over-approximate, and al-
ternating control flow reconstruction. In this setting, false positives refer to unreachable
instructions that are wrongly classified as reachable, and false negatives refer to reach-
able instructions that have not been covered. We replayed a single trace for the under-
approximation and used simple constant propagation for the over-approximation, as it
scales to large binaries. The preliminary results of our experiments are shown in Table 1.
For each program, we list its implementation language, the number of instructions we
accepted as ground truth, and the length of the trace we recorded.

The ' column contains the results from enabling only trace replay, i.e., the reached
instructions as an absolute number and as percentage of the ground truth, and the re-
quired execution time of the analysis. Since the analysis is under-approximate, there

2 Source code available at http://www.jakstab.org.

http://www.jakstab.org
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Table 1. Experimental results for control flow reconstruction. � denotes under-approximation, �
over-approximation, and  alternating control flow reconstruction. * denotes an out of memory
error. Under-approximations follow a single trace.

� only � only  
Program Src Inst Trace Inst Cvrg Time Inst FP Time Inst Cvrg FP Time
demo1 asm 9 49K 7 78% <1s 512 98% 1.5s 9 100% 0% <1s
demo2 asm 38 87K 29 76% <1s 512 93% 1.4s 35 92% 0% <1s
demo3 asm 35 87K 17 49% <1s 512 93% 2.2s 35 100% 0% <1s
astar C++ 29645 1.0M 10738 36% 7.2s * * 15377 52% 0% 18.3s
bzip C 29257 531K 9660 33% 5.3s * * 20453 70% 0.4% 33.2s
lbm C 5057 840K 2943 58% 2.2s * * 4603 91% 0% 3.5s
omnetpp C++ 171592 4.6M 30627 18% 27.1s * * 61461 36% 0.05% 153.9s
milc C 47382 12.0M 14085 30% 13.4s * * 24546 52% 0.3% 54.2s
specrand C 16937 413K 4720 28% 2.9s * * 9166 54% 0% 8.1s

are no false positives, only false negatives (i.e., uncovered instructions). The � column
contains the number of instructions reported by constant propagation when unresolved
indirect jumps are truly over-approximated. For all programs but the microbenchmarks,
the large number of spurious edges caused the analysis to run out of memory after
using 2 GB of heap space. In the microbenchmarks, the number of 512 instructions
results from padding in the code section. Since the analysis is over-approximate, there
are no false negatives. The “FP” column shows the fraction of false positives in the
total instructions discovered (i.e., unreachable instructions included in the CFG). The
0 column shows the number of instructions reported by alternating trace replay and
constant propagation. It is susceptible to both false positives and negatives. The “Cvrg”
column shows the coverage in percent, and the “FP” column shows the percentage of
false positives in the total instructions reported.

We can see that using alternation improves coverage over purely under-approximate
reconstruction in all cases, and that it drastically reduces the number of false posi-
tives compared to over-approximation. In fact, the number of false positives in over-
approximation is prohibitive for realistic programs, therefore alternation is essential
for applying control flow reconstruction in practice. We expect that these results can
be significantly improved by either using more precise static analyses or directed test
generation to generate additional traces.

6.3 Current Limitations and Future Work

Automated Trace Generation. Alternating control flow reconstruction could be effec-
tively interleaved with automated test case generation directed at the locations of stati-
cally unresolved indirect jumps that have not yet been covered by a trace. The method
for obtaining suitable test cases and thus traces is orthogonal to our approach. Indeed,
the framework presented here could be combined with random testing, whitebox fuzz
testing [10,17], or binary symbolic execution [6].
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Divergences. If the over-approximate semantics is a sound abstraction of the con-
crete semantics, under-approximate states will always concretize to a subset of the
concretization of the corresponding over-approximate states. In practice, however, un-
soundness can be introduced by abstracting library calls or not handling parts of the
instruction set. This can cause the over-approximation to diverge and not include the
under-approximation. In our implementation, we give precedence to the concretization
of the over-approximation in such cases to keep it consistent.

Concurrency. Our approach in its current form is limited to sequential programs. A
simple way to apply it to multithreaded programs is to treat each thread separately,
which can lead to unsoundness and possibly divergences from ignoring the actions of
the other threads. A better solution would be to allow context switches in the under-
approximation, e.g., by replaying one or more traces containing multiple threads ar-
ranged in a total order. To avoid state explosion, the over-approximation then only
considers the schedules present in the under-approximation. We leave the implemen-
tation of such a strategy for future work.

7 Related Work

Several approaches use runtime control flow information to improve the results of an-
alyzing binaries. Nanda et al. introduced hybrid disassembly in their tool BIRD [16].
They first use a heuristic disassembly algorithm to identify likely code regions in an
executable. The code is then instrumented to check whether control transfers to a pre-
viously unexplored region, in which case the disassembler is invoked again. They rely
on several heuristics for avoiding excessive instrumentation, and do not give a formal
justification for their approach. In general, the exploration of code areas not covered at
runtime suffers from the same limitations as regular heuristic disassembly strategies.

In recent work, Babic et al. [1] construct a CFG by folding a set of concrete traces
and exploring the unexecuted branches of conditional jumps. In our own framework,
this corresponds to using trace replay with a trivial static analysis that only knows a
single � state and thus always enables both branches of conditional jumps. They do
not provide a formal treatment of the reconstruction, only stating that the CFG “is,
necessarily, an under-approximation of the complete interprocedural CFG”. In fact, this
statement is incorrect with respect to our definition of the concrete CFG, since there can
be conditional jumps with only a single feasible branch.

Directed proof generation [4] combines over- and under-approximation in the form
of predicate abstraction and directed test generation. Thakur et al. [18] lift this approach
to binaries in their McVeto tool. As part of the analysis, the CFG is built through folding
traces and connecting not yet fully explored branching points to the target surrogate,
a special unknown node. The over-approximate data flow analysis is only performed
on the folded trace. Therefore, the CFG can only be expanded by generating new test
cases, which requires exhaustive exploration to achieve a complete CFG. In contrast,
our method is able to perform over-approximation reconstruction of CFG parts not cov-
ered by traces. Their method would lend itself to generating traces towards statically
unresolvable jumps in our framework, however.
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Most work addressing disassembly relies on the use of heuristics to identify likely
code regions [12,2,19]. Vigna [19] describes how to defeat anti-disassembly obfusca-
tions by starting disassembly from every possible program location. In our framework,
this amounts to performing purely over-approximate control flow reconstruction with
again a trivial analysis that knows only one single � state.

Systematic, purely static approaches to control flow reconstruction from binaries
have been scarce. De Sutter et al [8] described how to use data flow analysis in building
a CFG, using unknown nodes for indirect jumps. Chang et al. [5] connect abstract inter-
preters at different language levels to achieve a form of decompilation. Bardin et al. [3]
build on our own framework [15] to introduce iterative abstraction refinement.

8 Conclusion

This paper addresses a major weakness in static control flow reconstruction that arises
when the possible targets of an indirect jump cannot be resolved precisely. The new
reconstruction framework alternates between over- and under-approximation and skips
over unresolvable jumps by substituting targets detected by an under-approximation.

Our framework is formalized as an abstract interpretation of a parameterized adapter
semantics. It establishes a formal common ground for several approaches in control flow
reconstruction from binaries, an area which has traditionally been dominated by ad-hoc
solutions. By proving termination and relative soundness for the framework, we hope
that this paper contributes to better understanding of static and dynamic approaches to
the analysis of machine code.
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Abstract. We consider automatic synthesis from linear temporal logic
specifications for asynchronous systems. We aim the produced reactive
systems to be used as software in a multi-threaded environment. We ex-
tend previous reduction of asynchronous synthesis to synchronous syn-
thesis to the setting of multiple input and multiple output variables.
Much like synthesis for synchronous designs, this solution is not practical
as it requires determinization of automata on infinite words and solution
of complicated games. We follow advances in synthesis of synchronous
designs, which restrict the handled specifications but achieve scalabil-
ity and efficiency. We propose a heuristic that, in some cases, maintains
scalability for asynchronous synthesis. Our heuristic can prove that spec-
ifications are realizable and extract designs. This is done by a reduction
to synchronous synthesis that is inspired by the theoretical reduction.

1 Introduction

One of the most ambitious and challenging problems in reactive systems design is
the automatic synthesis of programs from logical specifications. It was suggested
by Church [3] and subsequently solved by two techniques [2,19]. In [15] the
problem was set in a modern context of synthesis of reactive systems from Linear
Temporal Logic (ltl) specifications. The synthesis algorithm converts a ltl
specification to a Büchi automaton, which is then determinized [15]. This double
translation may be doubly exponential in the size of ϕ. Once the deterministic
automaton is obtained, it is converted to a Rabin game that can be solved in time
nO(k), where n is the number of states of the automaton (double exponential in ϕ)
and k is a measure of topological complexity (exponential in ϕ). This algorithm
is tight as the problem is 2EXPTIME-hard [15].

This unfortunate situation led to extensive research on ways to bypass the
complexity of synthesis (e.g., [11,7,13]). The work in [13] is of particular interest
to us. It achieves scalability by restricting the type of handled specifications.
This led to many applications of synthesis in various fields [1,5,24,8,10,6]. So, in
some cases, synthesis of designs from their temporal specifications is feasible.

These results relate to the case of synchronous synthesis, where the synthe-
sized system is synchronized with its environment. At every step, the
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environment generates new inputs and the system senses all of them and com-
putes a response. This is the standard computational model for hardware designs.

Here, we are interested in synthesis of asynchronous systems. Namely, the
system may not sense all the changes in its inputs, and its responses may become
visible to the external world (including the environment) with an arbitrary delay.
Furthermore, the system accesses one variable at a time while in the synchronous
model all inputs are observed and all outputs are changed in a single step. The
asynchronous model is the most appropriate for representing reactive software
systems that communicate via shared variables on a multi-threaded platform.

In [16], Pnueli and Rosner reduce asynchronous synthesis to synchronous syn-
thesis. Their technique, which we call the Rosner reduction, converts a specifica-
tion ϕ(x; y) with single input x and single output y to a specification X (x, r; y).
The new specification relates to an additional input r. They show that ϕ is asyn-
chronously realizable iff X is synchronously realizable and how to translate a
synchronous implementation of X to an asynchronous implementation of ϕ.

Our first result is an extension of the Rosner reduction to specifications with
multiple input and output variables. Pnueli and Rosner assumed that the system
alternates between reading its input and writing its output. For multiple vari-
ables, we assume cyclic access to variables: first reading all inputs, then writing
all outputs (each in a fixed order). We show that this interaction mode is not
restrictive as it is equivalent (w.r.t. synthesis) to the model in which the system
chooses its next action (whether to read or to write and which variable).

Combined with [15], the reduction from asynchronous to synchronous synthe-
sis presents a complete solution to the multiple-variables asynchronous synthesis
problem. Unfortunately, much like in the synchronous case, it is not ‘effective’.
Furthermore, even if ϕ is relatively simple (for example, belongs to the class of
GR(1) formulae that is handled in [13]), the formula X is considerably more
complex and requires the full treatment of [15].

Consequently, we propose a method to bypass this full reduction. In the in-
vited paper [14] we outlined the principles of an approach to bypass the com-
plexity of asynchronous synthesis. Our approach applied to specifications that
relate to one input and one output, both Boolean. We presented heuristics that
can be used to prove unrealizability and to prove realizability. It called for the
construction of a weakening that could prove unrealizability through a simpler
reduction to synchronous synthesis. This result is naturally extended to mul-
tiple variables, based on the extended Rosner reduction presented here, and is
presented in an extended version [9]. In [14] we also outlined an approach to
strengthen specifications and an alternative reduction to synchronous synthe-
sis for such strengthened specifications. Here we substantiate these conjectured
ideas by completing and correcting the details of that approach and extending
it to multiple value variables and multiple outputs. We show that the ideas por-
trayed in [14] require to even further restrict the type of specifications and a
more elaborate reduction to synchronous synthesis (even for the Boolean one-
input one-output case of [14]). We show that when the system has access to the
‘entire state’ of the environment (this is like the environment having one multiple
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value variable) there are cases where a simpler reduction to synchronous synthe-
sis can be applied. We give a conversion from the synchronous implementation
to an asynchronous implementation realizing the original specification.

To our knowledge, this is the first ‘easy’ case of asynchronous synthesis iden-
tified. With connections to partial-information games and synthesis with nonde-
terministic environments, we find this to be a very important research direction.

Proofs, which are omitted due to lack of space, are available in [9].

2 Preliminaries

Temporal Logic. We describe an extension of Quantified Propositional Tem-
poral Logic (QPTL) [21] with stuttering quantification. We refer to this extended
logic as QPTL. Let X be a set of variables ranging over the same finite domain
D. The syntax of QPTL is defined according to the following grammar.

τ ::= x = d, where x ∈ X and d ∈ D
ϕ ::= τ ‖ ¬ϕ ‖ ϕ ∨ ϕ ‖ � ϕ ‖ � ϕ ‖ ϕUϕ ‖ ϕ S ϕ ‖ (∃x).ϕ ‖ (∃≈x).ϕ

where τ are atomic formulae and ϕ are QPTL formulae (formulae, for short).
We use the usual standard abbreviations as well as: (∀≈x).ψ for ¬(∃≈x).(¬ψ),

ψ1 B ψ2 for ψ1 S ψ2∨� ψ1, ψ1 =�ψ2 for � (ψ1 → ψ2). For a set X̂ = {x1, . . . , xk}
of variables, where X̂ ⊆ X , we write (∃X̂).ψ for (∃x1) · · · (∃xk).ψ and similarly
for (∀X̂).ψ. We sometimes list variables and sets, e.g., (∃X̂, y).ψ instead of (∃X̂∪
{y}).ψ. Also, for a Boolean variable r we write r for r = 1 and r for r = 0.

Ltl does not allow the ∃ and ∃≈ operators. We stress that a formula ϕ is writ-
ten over the variables in a set X by writing ϕ(X). If variables are partitioned to
inputs X and outputs Y , we write ϕ(X ;Y ). We call such formulae specifications.
We sometimes list the variables in X and Y , e.g., ϕ(x1, x2; y).

The semantics of QPTL is given with respect to computations and locations
in them. A computation σ is an infinite sequence a0, a1, . . ., where for every i ≥ 0
we have ai ∈ DX . That is, a computation is an infinite sequence of value assign-
ments to the variables in X . For an assignment a ∈ DX and a variable x ∈ X we
write a[x] for the value assigned to x by a. If X = {x1, . . . , xn}, we freely use the
notation (ai1 [x1], . . . , ain [xn]) for the assignment a such that a[xj ] = aij [xj ]. A
computation σ′ = a′0, a′1, . . . is an x-variant of computation σ = a0, a1, . . . if for
every i ≥ 0 and every y �= x we have ai[y] = a′i[y]. The computation squeeze(σ) is
obtained from σ as follows. If for all i ≥ 0 we have ai = a0, then squeeze(σ) = σ.
Otherwise, if a0 �= a1 then squeeze(σ) = a0, squeeze(a1, a2, . . .). Finally, if a0 =
a1 then squeeze(σ) = squeeze(a1, a2, . . .). That is, by removing repeating assign-
ments, squeeze returns a computation in which every two adjacent assignments
are different unless the computation ends in an infinite suffix of one assignment.
A computation σ′ is a stuttering variant of σ if squeeze(σ) = squeeze(σ′).

Satisfaction of a QPTL formula ϕ over computation σ in location i ≥ 0, de-
noted σ, i |= ϕ, is defined as usual. We define here only the case of quantification.

1. We have σ, i |= (∃x).ϕ iff σ′, i |= ϕ for some σ′ that is an x-variant of σ.
2. We have σ, i |= (∃≈x).ϕ iff σ′′, i |= ϕ for some σ′′ that is a x-variant of some

stuttering variant σ′ of σ.
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We say that the computation σ satisfies the formula ϕ, iff σ, 0 |= ϕ.

Realizability of Temporal Specifications. We define synchronous and asyn-
chronous programs. While the programs themselves are not very different the
definition of interaction of a program makes the distinction clear.

Let X and Y be the sets of inputs and outputs. We stress the different roles
of the system and the environment by specializing computations to interactions.
In an interaction we treat each assignment to X ∪ Y as different assignments to
X and Y . Thus, instead of using c ∈ DX∪Y , we use a pair (a, b), where a ∈ DX

and b ∈ DY . Formally, an interaction is σ = (a0, b0), (a1, b1), . . . ∈ (DX ×DY )ω .
A synchronous program Ps from X to Y is a function Ps : (DX)+ �→ DY . In

every step of the computation (including the initial one) the program reads its
inputs and updates the values of all outputs (based on the entire history). An
interaction σ is called synchronous interaction of P if, at each step of the interac-
tion i = 0, 1, . . ., the program outputs (assigns to Y ) the value Ps(a0, a1, . . . , ai),
i.e., bi = Ps(a0, . . . , ai). In such interactions both the environment, which up-
dates input values, and the system, which updates output values, ‘act’ at each
step (where the system responds in each step to an environment action).

A synchronous program is finite state if it can be induced by a Labeled Tran-
sition System (LTS). A LTS is T = 〈S, I,R,X, Y, L〉, where S is a finite set of
states, I ⊆ S is a set of initial states, R ⊆ S×S is a transition relation, X and Y
are disjoint sets of input and output variables, respectively, and L : S �→ DX∪Y

is a labeling function. For a state s ∈ S and for Z ⊆ X ∪ Y , we define L(s)|Z
to be the restriction of L(s) to the variables of Z. The LTS has to be recep-
tive, i.e., be able to accept all inputs. Formally, for every a ∈ DX there is
some s0 ∈ I such that L(s0)|X = a. For every a ∈ DX and s ∈ S there is
some sa ∈ S such that R(s, sa) and L(sa)|X = a. The LTS T is determin-
istic if for every a ∈ DX there is a unique s0 ∈ I such that L(s0)|X = a
and for every a ∈ DX and every s ∈ S there is a unique sa ∈ S such that
R(s, sa) and L(sa)|X = a. Otherwise, it is nondeterministic. A deterministic
LTS T induces the synchronous program PT : (DX)+ �→ DY as follows. For
every a ∈ DX let T (a) be the unique state s0 ∈ I such that L(s0)|X = a. For
every n > 1 and a1 . . . an ∈ (DX)+ let T (a1, . . . , an) be the unique s ∈ S such
that R(T (a1, . . . , an−1), s) and L(s)|X = an. For every a1 . . . an ∈ (DX)+ let
PT (a1, . . . , an) be the unique b ∈ DY such that b = L(T (a1, . . . , an))|Y . We note
that nondeterministic LTS do not induce programs. As nondeterministic LTS
can always be pruned to deterministic LTS, we find it acceptable to produce
nondeterministic LTS as a representation of a set of possible programs.

An asynchronous program Pa from X to Y is a function Pa : (DX)∗ �→ DY .
Note that the first value to outputs is set before seeing inputs. As before, the
program receives all inputs and updates all outputs. However, the definition of
an interaction takes into account that this may not happen instantaneously.

A schedule is a pair (R,W ) of sequences R = r11 , . . . , r
n
1 , r

1
2 , . . . , r

n
2 , . . . and

W = w1
1 , . . . , w

m
1 , w

1
2 , . . . , w

m
2 , . . . of reading points and writing points such that

r11 > 0 and for every i > 0 we have r1i < r2i < · · · < rn
i < w1

i and w1
i <

w2
i < · · · < wm

i < r1i+1. It identifies the points where each of the input variables
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is read and the points where each of the output variables is written. The order
establishes that reading and writing points occur cyclically. When the distinction
is not important, we call reading points and writing points I\O-points.

An interaction is called asynchronous interaction of Pa for (R,W ) if b0 =
Pa(ε), and for every i > 0, every j ∈ {1, . . . ,m}, and every wj

i ≤ k < wj
i+1:

bk[j] = Pa((ar1
1
[1], . . . , arn

1
[n]), (ar1

2
[1], . . . , arn

2
[n]), . . . , (ar1

i
[1], . . . , arn

i
[n]))[j].

Also, for every j ∈ {1, . . . ,m} and every 0 < k < wj
1, we have that bk[j] = b0[j].

In asynchronous interactions, the environment may update the input values
at each step. However, the system is only aware of the values of inputs at reading
points and responds by outputting the appropriate variables at writing points.
In particular, the system is not even aware of the amount of time that passes
between the two adjacent time points (read-read, read-write, or write-read). That
is, output values depend only on the values of inputs in earlier reading points.

An asynchronous program is finite state if it can be asynchronously induced by
an Initialized LTS (ILTS). An ILTS is T = 〈Ts, i〉, where Ts = 〈S, I,R,X, Y, L〉
is a LTS, and i ∈ DY is an initial assignment. We sometimes abuse notations and
write T = 〈S, I,R,X, Y, L, i〉. Determinism is defined just as for LTS. Similarly,
given a1, . . . , an ∈ (DX)+ we define T (a1, . . . , an) as before. A deterministic
ILTS T asynchronously induces the program PT : (DX)∗ �→ DY as follows. Let
PT (ε) = i and for every a1 . . . an ∈ (DX)+ we have PT (a1, . . . , an) as before.
As i is a unique initial assignment, we force ILTS to induce only asynchronous
programs that deterministically assign a single initial value to outputs. All our
results work also with a definition that allows nondeterministic choice of initial
output values (that do not depend on the unavailable inputs).

Definition 1 (realizability). A ltl specification ϕ(X ;Y ) is synchronously
realizable if there exists a synchronous program Ps such that all synchronous
interactions of Ps satisfy ϕ(X ;Y ). Such a program Ps is said to synchronously
realize ϕ(X ;Y ). Synchronous realizability is often simply shortened to realiz-
ability. Asynchronous realizability is defined similarly with asynchronous
programs and all asynchronous interactions for all schedules.

Synthesis is the process of automatically constructing a program P that (syn-
chronously/asynchronously) realizes a specification ϕ(X ;Y ). We freely write that
a LTS realizes a specification in case that the induced program satisfies it.

Theorem 1 ([15]). Deciding whether a specification ϕ(X ;Y ) is synchronously
realizable is 2EXPTIME-complete. Furthermore, if ϕ(X ;Y ) is synchronously re-
alizable the same decision procedure can extract a LTS that realizes ϕ(X ;Y ).

Normal Form of Specifications. We give a normal form of specifications
describing an interplay between a system s and an environment e. Let X and Y
be disjoint sets of input and output variables, respectively. For α ∈ {e, s}, the
formula ϕα(X ;Y ), which defines the allowed actions of α, is a conjunction of:

1. Iα (initial condition) – a Boolean formula (equally, an assertion) over X∪Y ,
describing the initial state of α. The formula Is may refer to all variables
and Ie may refer only to the variables X .



288 U. Klein, N. Piterman, and A. Pnueli

2. � Sα (safety component) – a formula describing the transition relation of
α, where Sα describes the update of the locally controlled state variables
(identified by being primed , e.g., x′ for x ∈ X) as related to the current
state (unprimed, e.g., x), except that s can observe X ’s next values.

3. Lα (liveness component) – each Lα is a conjunction of � � p formulae
where p is a Boolean formula.

In the case that a specification includes temporal past formulae instead of the
Boolean formulae in any of the three conjuncts mentioned above, we assume
that a pre-processing of the specification was done to translate it into another
one that has the same structure but without the use of past formulae. This
can be always achieved through the introduction of fresh Boolean variables that
implement temporal testers for past formulae [18]. Therefore, without loss of
generality, we discuss in this work only such past-formulae-free specifications.

We abuse notations and write ϕα also as a triplet 〈Iα, Sα, Lα〉.
Consider a pair of formulae ϕα(X ;Y ), for α ∈ {e, s} as above. We define

the specification Imp(ϕe, ϕs) to be (Ie ∧ � Se ∧ Le) → (Is ∧ � Ss ∧ Ls). For
such specifications, the winning condition is the formula Le → Ls, which we call
GR(1). Synchronous synthesis of such specifications was considered in [13].

The Rosner Reduction. In [16], Pnueli and Rosner show how to use syn-
chronous realizability to solve asynchronous realizability. They define, what we
call, the Rosner reduction. It translates a specification ϕ(X ;Y ), where X = {x}
and Y = {y} are singletons, into a specification X (x, r; y) that has an additional
Boolean input variable r. The new variable r is called the Boolean scheduling
variable. Intuitively, the Boolean scheduling variable defines all possible sched-
ules for one-input one-output systems . When it changes from zero to one it
signals a reading point and when it changes from one to zero it signals a writing
point. Given specification ϕ(X ;Y ), we define the kernel formula X (x, r; y):

r ∧ � � r ∧ � � r︸ ︷︷ ︸
α(r)

→
⎛⎝ϕ(x; y) ∧

(r ∨ � r) =	(y = � y) ∧
(∀≈x̃).[(r ∧ � r)=	(x = x̃)] → ϕ(x̃; y)

⎞⎠
︸ ︷︷ ︸

β(x,r;y)

According to α(r), the first I\O-point, where r changes from zero to one, is a
reading point and there are infinitely many reading and writing points. Then,
β(x, r; y) includes three parts: (a) the original formula ϕ(x; y) must hold, (b)
outputs obey the scheduling variable, i.e., in all points that are not writing
points the value of y does not change, and (c) if we replace all the inputs except
in reading points, then the same output still satisfies the original formula.

Theorem 2 ([16]). The specification ϕ(x; y) is asynchronously realizable iff the
specification X (x, r; y) is synchronously realizable. Given a program that syn-
chronously realizes X (x, r; y) it can be converted in linear time to a program
asynchronously realizing ϕ(x; y).

Pnueli and Rosner also show how the standard techniques for realizability of ltl
[15] can handle stuttering quantification of the form appearing in X (x, r; y).
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3 Expanding the Rosner Reduction to Multiple Variables

In this section we describe an expansion of the Rosner reduction to handle spec-
ifications with multiple input and output variables. The reduction reduces asyn-
chronous synthesis to synchronous synthesis. Without loss of generality, fix a
ltl specification ϕ(X ;Y ), where X = {x1, . . . , xn} and Y = {y1, . . . , ym}.

We propose the generalized Rosner reduction, which translates ϕ(X ;Y ) into
Xn,m(X∪{r};Y ). The specification uses an additional input variable r, called the
scheduling variable, that ranges over {1, . . . , (n+m)}, which defines all reading
and writing points. Variable xi may be read by the system whenever r changes
its value to i. Variable yi may be modified whenever r changes to n+ i. Initially,
r = n+m and it is incremented cyclically by 1 (hence, in the first I\O-point x1

is read). Let i⊕k 1 denote (imod k) + 1.
We also denote [r = (n+ i)] ∧ � [r �= (n+ i)] by writen(i) to indicate a state

that is a writing point for yi, (r = i) ∧ � (r �= i) by read(i) to indicate a state
that is a reading point for xi,

∧
d∈D[(z = d) ↔ � (z = d)] by unchanged(z) to

indicate a state where z did not change its value, and ¬ � t by first to indicate
a state that is the first one in the computation.

The kernel formula Xn,m(X ∪{r};Y ) is αn,m(r) → βn,m(X ∪ {r};Y ), where

αn,m(r) =

⎛⎜⎝r = (n + m) ∧
n+m∧
i=1

[
(r = i)=	

[
(r = i)U [r = (i ⊕n+m 1)]

]] ⎞⎟⎠

βn,m(X ∪ {r}; Y ) =

⎛⎜⎜⎜⎜⎜⎝
ϕ(X; Y ) ∧
m∧

i=1

[
[¬writen(i) ∧ ¬first ] =	unchanged(yi)

]
∧

(∀≈X̃).
[ n∧

i=1

[read(i) =	(xi = x̃i)]
]
→ ϕ(X̃; Y )

⎞⎟⎟⎟⎟⎟⎠ .

There is a 1-1 correspondence between sequences of assignments to r and sched-
ules (R,W ). As r is an input variable, the program has to handle all possible
assignments to it. This implies that the program handles all possible schedules.

Theorem 3. The specification ϕ(X ;Y ) (|X | = n, and |Y | = m) is asyn-
chronously realizable iff Xn,m(X ∪ {r};Y ) is synchronously realizable. Further-
more, given a program synchronously realizing Xn,m(X ∪ {r};Y ) it can be
converted in linear time to a program asynchronously realizing ϕ(X ;Y ).

Proof (Sketch): Suppose we have a synchronous program realizing Xn,m(X∪
{r};Y ) and we want an asynchronous program realizing ϕ(X ;Y ). An input to
the asynchronous program is stretched in order to be fed to the synchronous pro-
gram. Essentially, every new input to the asynchronous program is stretched so
that one variable changes at a time and in addition the new valuation of all input
variables is repeated enough time to allow the synchronous program to update
all the output variables. This is forced to happen immediately by increasing
the scheduling variable r (cyclically) in every input for the synchronous pro-
gram. This forces the synchronous program to update all output variables and
this is the value we use for the asynchronous program. Then, the stuttering
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quantification over the synchronous interaction shows that an asynchronous in-
teraction that matches these outputs does in fact satisfy ϕ(X ;Y ).

In the other direction we have an asynchronous program realizing ϕ(X ;Y )
and have to construct a synchronous program realizing Xn,m(X ∪ {r};Y ). The
reply of the synchronous program to every input in which the scheduling vari-
ables behaves other than increasing (cyclically) is set to be arbitrary. For inputs
where the scheduling variable behaves properly, we can contract the inputs to
the reading points indicated by r and feed the resulting input sequence to the
asynchronous program. We then change the output variables one by one as indi-
cated by r according to the output of the asynchronous program. In order to see
that the resulting synchronous program satisfies X , we note that the stuttering
quantification relates precisely to the possible asynchronous interactions.

In principle, this theorem provides a complete solution to the problem of asyn-
chronous synthesis (with multiple inputs and outputs). This requires to construct
a deterministic automaton for Xn,m and to solve complex parity games. In par-
ticular, when combining determinization with the treatment of ∀≈ quantifica-
tion, even relatively simple specifications may lead to very complex deterministic
automata and (as a result) games that are complicated to solve.

Since the publication of the original Rosner reduction, several alternative
approaches to asynchronous synthesis have been suggested. Vardi suggests an
automata theoretic solution that shows how to embed the scheduling variable
directly in the tree automaton [22]. Schewe and Finkbeiner extend these ideas to
the case of branching time specifications [20]. Both approaches require the usage
of determinization and the solution of general parity games. Unlike the gener-
alized Rosner reduction they obfuscate the relation between the asynchronous
and synchronous synthesis problems. In particular, the simple cases identified
for asynchronous synthesis in the following sections rely on this relation between
the two types of synthesis. All three approaches do not offer a practical solution
to asynchronous synthesis as they have proven impossible to implement.

4 A More General Asynchronous Interaction Model

The reader may object to the model of asynchronous interaction as over sim-
plified. Here, we justify this model by showing that it is practically equivalent
(from a synthesis point of view) to a model that is more akin to software thread
implementation. Specifically, we introduce a model in which the environment
chooses the times the system can read or write and the system chooses whether
to read or write and which variable to access. We formally define this model
and show that the two asynchronous models are equivalent. We call our original
asynchronous interaction model round robin and this new model by demand.

For this section, without loss of generality, fix a ltl specification ϕ(X ;Y ),
where X = {x1, . . . , xn} and Y = {y1, . . . , ym}.

A by-demand program Pb from X to Y is a function Pb : D∗ �→ {1, . . . , n} ∪
(D × {n + 1, . . . , n + m}). We assume that for 0 ≤ i < m and for every
d1, . . . , dm−1 ∈ D, we have Pb(d1, . . . , di) = (d, (n + i + 1)) for some d ∈ D.
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That is, for a given history of values read\written by the program (and the pro-
gram should know which variables it read\wrote) the program decides on the
next variable to read\write. In case that the decision is to write in the next I\O
point, the program also chooses the value to write. Furthermore, the program
starts by writing all the output variables according to their order y1, y2, . . . , ym.

We define when an interaction matches a by-demand program. Recall that an
interaction over X and Y is σ = (a0, b0), (a1, b1), . . . ∈ (DX × DY ). An I\O-
sequence is C = c0, c1, . . . where 0 = c0 < c1 < c2, . . .. It identifies the points in
which the program reads or writes. For a sequence d1, . . . , dk ∈ D∗, we denote
by t(Pb(d1, . . . , dk)) the value j such that either Pb(d1, . . . , dk) ∈ {1, . . . , n} and
Pb(d1, . . . , dk) = j or Pb(d1, . . . , dk) ∈ D×{n+1, . . . , n+m} and Pb(d1, . . . , dk) =
(d, j). That is, t(Pb(d1, . . . , dk)) tells us which variable the program Pb is going
to access in the next I\O-point. Given an interaction σ, an I\O sequence C,
and an index i ≥ 0, we define the view of Pb, denoted v(Pb, σ, C, i), as follows.

v(Pb, σ, C, i) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
b0[1], . . . , b0[m] If i = 0
v(Pb, σ, C, i − 1), aci [t(Pb(v(Pb, σ, C, i − 1)))]

If i > 0 and t(Pb(v(Pb, σ, C, i − 1))) ≤ n
v(Pb, σ, C, i − 1), bci [t(Pb(v(Pb, σ, C, i − 1)))]

If i > 0 and t(Pb(v(Pb, σ, c, i − 1))) > n

That is, the view of the program is the part of the interaction that is observable
by the program. The view starts with the values of all outputs at time zero.
Then, the view at ci extends the view at ci−1 by adding the value of the variable
that the program decides to read\write based on its view at point ci−1.

The interaction σ is a by-demand asynchronous interaction of Pb for I\O
sequence C if for every 1 ≤ j ≤ m we have Pb(b0[1], . . . , b0[j−1]) = (b0[j], (n+j)),
and for every i > 1 and every k > 0 such that ci ≤ k < ci+1, we have
– If t(Pb(v(Pb, σ, C, i− 1))) ≤ n, forall j ∈ {1, . . . ,m} we have bk[j] = bk−1[j].
– If t(Pb(v(Pb, σ, C, i − 1))) > n, forall j �= t(Pb(v(Pb, σ, C, i − 1))) we have
bk[j] = bk−1[j] and for j = t(Pb(v(Pb, σ, C, i − 1))) we have Pb(v(Pb, σ, c, i−
1)) = (bk[j], j).

Also, for every j ∈ {1, . . . ,m} and every 0 < k < c1, we have bk[j] = b0[j]. That
is, the interaction matches a by-demand program if (a) the interaction starts
with the right values of all outputs (as the program starts by initializing them)
and (b) the outputs do not change in the interaction unless at I\O points where
the program chooses to update a specific output (based on the program’s view
of the intermediate state of the interaction).

Definition 2 (by-demand realizability). A ltl specification ϕ(X ;Y ) is by-
demand asynchronously realizable if there exists a by-demand program Pa

such that all by-demand asynchronous interactions of Pa (for all I\O-sequences)
satisfy ϕ(X ;Y ).

Theorem 4. A ltl specification ϕ(X ;Y ) is asynchronously realizable iff it is
by-demand asynchronously realizable. Furthermore, given a program that asyn-
chronously realizes ϕ(X ;Y ), it can be converted in linear time to a program that
by-demand asynchronously realizes ϕ(X ;Y ), and vice versa.
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

αn,m(r) ∧
Iψe ∧ � Sψe ∧
ψ(X, r; Y ) ∧
n∧

i=1

[read(i) =	(xi = x̃i)] ∧
m∧

i=1

[
[¬writen(i) ∧ ¬first ] =	unchanged (yi)

]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
→ ϕ(X̃ ; Y ).

Fig. 1. Logical implication of asynchronous strengthening

Proof (Sketch): A round-robin program is also a by-demand program.
Showing that if a specification is by-demand realizable then it is also round-

robin realizable is more complicated. Given a by-demand program, a round-robin
program can simulate it by waiting until it has access to the variable required
by the by-demand program. This means that the round-robin program may idle
when it has the opportunity to write outputs and ignore inputs that it has the
option to read. However, the resulting interactions are still interactions of the
by-demand program and as such must satisfy the specification.

5 Proving Realizability of a Specification, and Synthesis

As mentioned, the formula Xn,m does not lead to a practical solution for asyn-
chronous synthesis. Here we show that in some cases a simpler synchronous re-
alizability test can still imply the realizability of an asynchronous specification.
We show that when a certain strengthening can be found and certain condi-
tions hold with respect to the specification we can apply a simpler realizability
test maintaining the structure of the specification. In particular, this simpler
realizability test does not require stuttering quantification. When the original
formula’s winning condition is a GR(1) formula, the synthesis algorithm in [13]
can be applied, bypassing much of the complexity involved in synthesis.

We fix a specification ϕ(X ;Y ) = Imp(ϕe, ϕs) with aGR(1) winning condition,
where X = {x1, . . . , xn}, Y = {y1, . . . , ym}, and ϕe = 〈Iϕe , Sϕe , Lϕe〉. Let r be
a scheduling variable ranging over {1, . . . , (n + m)} and let X̃ = {x̃|x ∈ X}.
We define the set of declared output variables Ỹ = {ỹ|y ∈ Y }. We assume that
r /∈ X , X̃ ∩ Y = ∅, and that Ỹ ∩ X = ∅. We re-use the notations writen(i),
read(i), unchanged(x), and first .

We start by definition of a strengthening, which is a formula of the type
ψ(X, r;Y ). Intuitively, the strengthening refers explicitly to a scheduling variable
r and should imply the truth of the original specification and ignore the input
except in reading points so that the stuttering quantification can be removed.

Definition 3 (asynchronous strengthening). A specification ψ(X, r;Y ) =
Imp(ψe, ψs) with a GR(1) winning condition, where ψe = 〈Iψe , Sψe , Lψe〉, is an
asynchronous strengthening of ϕ(X ;Y ) if Iψe = Iϕe , Sψe = Sϕe , and the
implication in Fig. 1 is valid.
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Checking the conditions in Def. 3 requires to check identity of propositional
formulae and validity of a ltl formulae, which is supported, e.g., by jtlv [17].

The formula needs to satisfy two more conditions, which are needed to show
that the simpler synchronous realizability test (introduced below) is sufficient.
Stuttering robustness is very natural for asynchronous specifications as we expect
the system to be completely unaware of the passage of time. Memory-lessness
requires that the system knows the entire ‘state’ of the environment.

Definition 4 (stuttering robustness). A ltl specification ξ(X ;Y ) is stut-
teringly robust if for all computations σ and σ′ such that σ′ is a stuttering
variant of σ, σ, 0 |= ξ iff σ′, 0 |= ξ.

We can test stuttering robustness by converting a specification to a nondetermin-
istic Büchi automaton [23], adding to it transitions that capture all stuttering
options [16], and then checking that it does not intersect the automaton for the
negation of the specification. In our case, when handling formulae with GR(1)
winning conditions, in many cases, all parts of the specifications are relatively
simple and stuttering robustness can be easily checked.

Definition 5 (memory-lessness). A ltl specification ξ is memory-less if
for all computations C = c0, c1, . . . and C′ = c′0, c

′
1, . . . such that C, 0 |= ξ

and C′, 0 |= ξ, if for some i and j we have ci = c′j, then the computation
c0, c1, . . . , ci, c

′
j+1, c

′
j+2, . . . also satisfies ξ.

Specifications of the form ϕe = 〈Ie, Se, Le〉 are always memory-less. The syntac-
tic structure of Se forces a relation between possible current and next states that
does not depend on the past. Furthermore Le is a conjunction of properties of
the form � � p, where p is a Boolean formula. If the specification includes past
temporal operators, these are embedded into the variables of the environment
(c.f. [18]), and must be accessible by the system as well.

In the general case, memory-lessness of a specification ϕ(X ;Y ) can be checked
as follows. We convert both ξ and ¬ξ to nondeterministic Büchi automata N+

and N−. Then, we create a nondeterministic Büchi automaton A that runs two
copies of N+ and one copy of N− simultaneously. The two copies of N+ ‘guess’
two computations that satisfy ϕ(X ;Y ) and the copy of N− checks that the two
computations can be combined in a way that does not satisfy ϕ(X ;Y ). Thus,
the language of A would be empty iff ϕ(X ;Y ) is not memory-less.

Note that if ϕ(X ;Y ) has a memory-less environment then every asynchronous
strengthening of it has a memory-less environment. This follows from the two
sharing the initial and safety parts of the specification.

The kernel formula defined in Fig. 2 under-approximates the original. The
formula declaren,m ensures that the declared outputs are updated only at reading
points. Indeed, for every i, ỹi is allowed to change only when r changes to a value
in {1, . . . , n}. Furthermore, the outputs themselves copy the value of the declared
outputs (and only when they are allowed to change). Thus, the system ‘ignores’
inputs that are not at reading points in its next update of outputs.
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Theorem 5. Let ϕ(x;Y ) = Imp(ϕe, ϕs), where ϕe = 〈Iϕe , Sϕe , Lϕe〉, be a stut-
teringly robust specification with a GR(1) winning condition and with a memory-
less environment, where |Y | = {y1, . . . , ym} and where there is exactly one input
- x. Let r be a scheduling variable ranging over {1, . . . , (1 + m)}, and let Ỹ be
declared output variables.

If ψ(x, r;Y ) is a stutteringly robust asynchronous strengthening of ϕ(x;Y )
and X 1,m

ψ (x, r;Y ∪ Ỹ ) is synchronously realizable then ϕ(x;Y ) is asynchronously
realizable. Furthermore, given a program that synchronously realizes X 1,m

ψ it can
be converted in linear time to a program that asynchronously realizes ϕ.

Proof (Sketch): The algorithm takes a program Ts that realizes ψ and con-
verts it to a program Ta. The program Ta ‘jumps’ from reading point to reading
point in Ts. By using the declared outputs in Ỹ the asynchronous program does
not have to commit on which reading point in Ts it moves to until the next input
is actually read. By ψ being a strengthening of ϕ we get that the computation
on Ts satisfies ϕ. Then, we use the stuttering robustness to make sure that the
time that passes between reading points is not important for the satisfaction
of ϕ. Memoryless-ness and single input are used to justify that prefixes of the
computation on Ts can be extended with suffixes of other computations. Essen-
tially, allowing us to ‘copy-and-paste’ segments of computations of Ts in order
to construct one computation of Ta.

We note that restricting to one input is similar to allowing the system to read
multiple inputs simultaneously.

In the case that ϕ has a GR(1) winning condition then so does X 1,m
ψ . It

follows that in such cases we can use the algorithm of [13] to check whether Xψ

is synchronously realizable and to extract a program that realizes it. We show
how to convert a LTS realizing Xψ to an ILTS realizing ϕ.

For a LTS Ts = 〈Ss, Is, Rs, {x, r}, Y, Ls〉, state stes ∈ Ss is an eventual suc-
cessor of state st ∈ Ss if there exists m ≤ |Ss| and states {s1, . . . , sm} ⊆ Ss such
that the following hold: s1 = st and sn = stes; For all 0 < i < m, (si; si+1) ∈ Rs;

Xn,m
ψ (X ∪ {r}; Y ∪ Ỹ ) = αn,m(r) → βn,m

ψ (X ∪ {r}; Y ∪ Ỹ )

βn,m
ψ (X ∪ {r}; Y ∪ Ỹ ) =

⎛⎜⎜⎜⎝
declaren,m({r}; Y ∪ Ỹ ) ∧
ψ(X ∪ {r}; Y ) ∧
m∧

i=1

[
[¬writen(i) ∧ ¬first ] =	unchanged (yi)

]
⎞⎟⎟⎟⎠

declaren,m({r}; Y ∪ Ỹ ) =⎛⎜⎜⎜⎝
m∧

i=1

[writen(i)=	(yi = ỹi)] ∧[[
(r = � r) ∨

m∨
i=1

[r = (n + i)]
]
=	
[ m∧

i=1

(ỹi = � ỹi)
]]

⎞⎟⎟⎟⎠ .

Fig. 2. The under approximation Xn,m
ψ (X ∪ {r}; Y ∪ Ỹ )
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For all 0 < i < m, if L(s1)|{r} = r1 then L(si)|{r} = r1, but L(sm)|{r} �= r1. If
L(sm)|{r} = 1 we also call stes an eventual read successor, otherwise an eventual
write successor. Note that the way the scheduling variable r updates its values
is uniform across all eventual successors of a given state.

Given a LTS Ts = 〈Ss, Is, Rs, {x, r}, Y, Ls〉 such that Y = {y1, . . . , ym} the
algorithm in Fig. 3 extracts from it an ILTS Ta = 〈Sa, Ia, Ra, {x}, Y, La, ia〉.
In the first part of the algorithm that follows its initialization, between lines 5
and 15, all reading states reachable from Is are found, and used to build Ia (as
part of Sa). In the second part, between lines 16 and 43, the (m+1)-th eventual
successors of each reading state are added to Sa. This second part ensures that
all writing states are ‘skipped’ so that Ra transitions include only transitions
between consecutive reading states.

As Ts is receptive, so is Ta. In particular the algorithm transfers sink states
that handle violations of environment safety or initial conditions to Ta.

6 Applying the Realizability Test

We illustrate the application of the realizability test presented in Section 5. To
come up with an asynchronous strengthening we propose the following heuristic.

Heuristic 1. In order to derive an asynchronous strengthening ψ(X ∪ {r};Y )
for a specification ϕ(X ;Y ), replace one or more occurrences of atomic formulae
of inputs, e.g., xi = d, by (xi = d)∧ � (r �= i)∧(r = i), which means that xi = d
at a reading point.

The rationale here is to encode the essence of the stuttering quantification into
the strengthening. Since this quantification requires indifference towards input
values outside reading points, we state this explicitly.

In [14] we showed how to strengthen the specification � (x↔ y) to an asyn-
chronously realizable specification with the same idea: a Boolean output y copies
the value of an input x.

ϕ1(x; y) = [¬(x ↔ y)=	(x ↔ � x)] →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
x=	 � y ∧
x=	 � y ∧
y =	y S y S x ∧
� (y =	y B y S x)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
This specification has a GR(1) winning condition, it is stutteringly robust with
a memory-less environment, and therefore it is potentially a good candidate to
apply our heuristic. As suggested, we obtain the specification ψ1(x, r; y):

[¬(x ↔ y)=	(x ↔ � x)] →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
x=	 � y ∧
x=	 � y ∧
y =	y S y S [x ∧ � (r = 2) ∧ (r = 1)] ∧
� {y =	y B y S [x ∧ � (r = 2) ∧ (r = 1)]}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
We establish that ψ satisfies all our requirements. We then apply the synchronous
realizability test of [13] to the kernel formula Xψ1(x, r; y). This formula is real-
izable and we get a LTS S1 with 30 states and 90 transitions, which is then
minimized, using a variant of the Myhill-Nerode minimization, to a LTS S′

1 with
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Input: LTS Ts = 〈Ss, Is, Rs, {x, r}, Y, Ls〉 such that |Y | = m, and an initial outputs assignment Yinit.
Output: The elements ia, Ia, La, Sa and Ra of the extracted ILTS Ta = 〈Sa, Ia, Ra, {x}, Y, La, ia〉.
1: ia ← Yinit

2: Ia ← ∅, Sa ← ∅, Ra ← ∅
3: ST ← [EmptyStack] 	 a new states stack (for reachable unexplored ‘read’ states)
4: touched ← ∅ 	 a new states set (for states that were pushed to ST )
5: for all ini ∈ Is do 	 find all reachable initial ‘read’ states
6: for all succ ∈ Ss s.t. succ is an eventual (read) successor of ini do
7: if succ �∈ touched then 	 add a new state to Ia and Sa

8: push succ to ST
9: touched ← touched ∪ {succ}

10: Ia ← Ia ∪ {succ}
11: Sa ← Sa ∪ {succ}
12: La(succ)|{x} ← Ls(succ)|{x}, La(succ)|Y ← Ls(succ)|Ỹ
13: end if
14: end for
15: end for
16: while ST �= [EmptyStack] do 	 explore all reachable ‘read’ states
17: st ← pop ST
18: gen ← {st}
19: for i = 1, . . . , m do 	 find all m-th (last ‘write’) eventual successors of st
20: nextgen ← ∅ 	 a new states set
21: for all stgen ∈ gen do 	 find all i-th eventual successors of st
22: for all succ ∈ Ss s.t. succ is an eventual (write) successor of stgen do
23: nextgen ← nextgen ∪ {succ}
24: end for
25: end for
26: gen ← nextgen
27: end for
28: nextgen ← ∅ 	 a new states set
29: for all stgen ∈ gen do 	 find all ’eventual read successors’ of st
30: for all succ ∈ Ss s.t. succ is an eventual (read) successor of stgen do
31: nextgen ← nextgen ∪ {succ}
32: end for
33: end for
34: for all stng ∈ nextgen do
35: if stng �∈ touched then 	 add a new state to Sa

36: push stng to ST
37: touched ← touched ∪ {stng}
38: Sa ← Sa ∪ {stng}
39: La(stng)|{x} ← Ls(stng)|{x}, La(stng)|Y ← Ls(stng)|Ỹ
40: end if
41: Ra ← Ra ∪ {(st, stng)} 	 add a new transition to Ra

42: end for
43: end while
44: return ia, Ia, La, Sa, Ra

Fig. 3. Algorithm for extracting Ta from Ts

16 states and 54 transitions. The algorithm in Fig. 3 constructs an ILTS AS′
1

with 16 states and 54 transitions. Using model-checking [4] we ensure that all
asynchronous interactions of AS′

1
satisfy ϕ1(x; y).

We devise similar specifications that copy the value of a Boolean input to one
of several outputs according to the choice of the environment. Thus, we have a
multi-valued input variable encoding the value and the target output variable
and several outputs variables. The specification ϕ2(x; y0, y1) is given below.
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ϕ2,e(x; y0, y1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
((x = 0) ∧ y1) ∨
((x = 1) ∧ y1) ∨
((x = 2) ∧ y0) ∨
((x = 3) ∧ y0)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ =	 � unchanged (x)

ϕ2,s(x; y0, y1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x = 0)=	 � y1 ∧
(x = 1)=	 � y1 ∧
(x = 2)=	 � y0 ∧
(x = 3)=	 � y0 ∧
y0 =	y0 S y0 S (x = 3) ∧
y1 =	y1 S y1 S (x = 1) ∧
� [y0 =	y0 B y0 S (x = 2)] ∧
� [y1 =	y1 B y1 S (x = 0)]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Using the same idea, we strengthen ϕ2 to ψ2(x, r; y0, y1), which passes all the re-
quired tests. We then apply the synchronous realizability test in [13] to Xψ2(x, r;
y0, y1) and get a LTS S2 with 340 states and 1544 transitions, which is then
minimized to 196 states and 1056 transitions. Our algorithm extracts an ILTS
AS′

2
, which, as model checking confirms, asynchronously realizes ϕ2.

From ϕ3(x; y0, y1, y2) (similar to ϕ2, with 3 outputs), we get a LTS with 1184
states and 8680 transitions.

7 Conclusions and Future Work

In this paper we extended the reduction of asynchronous synthesis to syn-
chronous synthesis proposed in [16] to multiple input and output variables. We
identify cases in which asynchronous synthesis can be done efficiently by bypass-
ing the well known ‘problematic’ aspects of synthesis.

One of the drawbacks of this synthesis technique is the large size of resulting
designs. However, we note that the size of asynchronous designs is bounded from
above by synchronous designs. Thus, improvements to synchronous synthesis will
result also in smaller asynchronous designs. We did not attempt to minimize or
choose more effective synchronous programs, and we did not attempt to extract
deterministic subsets of the nondeterministic controllers we worked with.

We believe that there is still room to explore additional cases in which asyn-
chronous synthesis can be approximated. In particular, restrictions imposed by
our heuristic (namely, one input environment and memory-less behavior) seem
quite severe. Trying to remove some of these restrictions is left for future work.

Finally, asynchronous synthesis is related to solving games with partial in-
formation. There may be a connection between the cases in which synchronous
synthesis offers a solution to asynchronous synthesis and partial information
games that can be solved efficiently.

Acknowledgments. We are very grateful to L. Zuck for helping writing an
earlier version of this manuscript.
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Abstract. We present a sound method for clustering alarms from static
analyzers. Our method clusters alarms by discovering sound dependen-
cies between them such that if the dominant alarm of a cluster turns
out to be false (respectively true) then it is assured that all others in
the same cluster are also false (respectively true). We have implemented
our clustering algorithm on top of a realistic buffer-overflow analyzer
and proved that our method has the effect of reducing 54% of alarm re-
ports. Our framework is applicable to any abstract interpretation-based
static analysis and orthogonal to abstraction refinements and statistical
ranking schemes.

1 Introduction

1.1 Problem

Users of sound static analyzers frequently suffer from a large number of false
alarms. When we run a static analyzer for realistic software, false alarms often
outnumber real errors. For example, in a case of analyzing commercial software,
we have found only one error in 273 buffer-overflow alarms after a tedious alarm
investigation work [10].

Although statistical ranking schemes [10][13] help to find real errors quickly,
ranking schemes do not reduce alarm-investigation burdens. Statistical ranking
schemes alleviate the false alarm problem by showing alarms that are most likely
to be real errors over those that are least likely. However, the number of alarms
to investigate is not reduced with ranking. We should examine all the alarms in
order to find all the possible errors.

1.2 Our Solution

One way to reduce alarm-investigation burden is to cluster alarms according to
their sound dependence information. We say that alarm A has (sound) depen-
dence on alarm B if alarm B turns out to be false (true resp.), then so does
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gram of Korea Ministry of Education, Science and Technology(MEST) / National
Research Foundation of Korea(NRF) (Grant 2011-0000971), the Brain Korea 21
Project, School of Electrical Engineering and Computer Science, Seoul National
University in 2011, and a research grant from Samsung Electronics DMC R&D
Center.

V. Kuncak and A. Rybalchenko (Eds.): VMCAI 2012, LNCS 7148, pp. 299–314, 2012.
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alarm A as a logical consequence. When we find a set of alarms depending on
the same alarm, which we call a dominant alarm, we can cluster them together.
Once we find clusters of alarms, we only need to check whether their dominant
alarms are false (true resp.).

In this paper, we present a sound alarm clustering method for static ana-
lyzers. Our analysis automatically discovers sound dependencies among alarms.
Combining such dependencies, our analysis finds clusters of alarms which have
their own a single or multiple dominant alarms. If the dominant alarms turn out
to be false (true resp.), we can assure that all the others in the same cluster are
also false (true resp.).

Example 1 through 3 show examples of alarm dependencies and how they
reduce alarm-investigation efforts. These examples are discovered automatically
by our clustering algorithm.

Example 1 (Beginning Example). Our analyzer reports 5 buffer-overflow alarms
for the following code excerpted from NLKAIN 1.3 (Alarms are underlined).

1 void residual(SYSTEM *sys, double *upad, double *r) {
2 nx = 50;

3 u = &upad[nx+2];

4 ...

5 for (k = 0; k < ny; k++) {
6 u++;

7 for(j = 0; j < nx; j++) {
8 r[0] = ac[0]*u[0] - ax[0]*u[-1] - ax[1]*u[1] - ay[0]*u[-nx-2]

9 - ay[nx]*u[nx+2] - q[0];

10 r++; u++; q++; ac++; ax++; ay++;

11 }
12 u++; ax++;

13 }
14 }

Note the following two facts in this example:

1. If buffer access u[-nx-2] at line 8 overflows the buffer, so do the others since
-nx-2 is the lowest index among the indices of all the buffer accesses on u.

2. If buffer access u[nx+2] at line 9 does not overflow the buffer, neither do
the others since nx+2 is the highest index among the indices of all the buffer
accesses on u.

Using these two facts, we can cluster alarms in two different ways: we can find
a false alarm cluster which consists of all the alarms in the example and the
dominant alarm is the one of the buffer access u[nx+2] at line 9. We can also
find the true alarm cluster in the same way, except that the dominant alarm
is the one of the buffer access u[-nx-2] at line 8. Instead of inspecting all the
alarms, checking either the alarm of buffer access u[-nx-2] true or the alarm of
buffer access u[nx+2] false is sufficient for users. #$
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Example 2 (Inter-procedural alarm dependencies). The following code excerpted
from Appcontour 1.1.0 shows inter-procedural alarm dependencies. Our analyzer
reports three alarms at line 3, 4, and 10. In the example, array invmergerules

and invmergerulesnn have the same size 8.

1 int lookup_mergearcs(char *rule) {
2 ...

3 for (i = 1; invmergerules[i]; i++)

4 if (strcasecmp(rule, invmergerulesnn[i] == 0))

5 return (i);

6 ...

7 }
8 int rule_mergearcs(struct sketch *s, int rule, int rcount) {
9 if (debug)

10 printf("%s count %d", invmergerules[rule], rcount);

11 ...

12 }
13 int apply_rule(char *rule, struct sketch *sketch) {
14 ...

15 if ((code = lookup_mergearcs(rule)))

16 res = rule_mergearcs(sketch, code, rcount);

17 ...

18 }

Note the following two facts in this example:

1. If the alarm of the buffer access invmergerules[i] at line 3 is false, so are
the others.
– If alarm at line 3 is false, so is the one at line 4 because the buffer accesses

at line 3 and 4 use the same index variable i and there is no update on
the value between the two.

– If alarm at line 3 is false, so is the one at line 10 because the value of
index variable i at line 3 is passed to the index variable rule at line 10
without any change by function return and call (5→ 15→ 16→ 10).

2. If the buffer access invmergerules[rule] at line 10 overflows, so do the
others in a similar reason as the first fact.

We can find a false and true alarm cluster in the similar manner as in example 1.
Instead of inspecting all the alarms, checking either the alarm at line 10 true or
the alarm at line 3 false is sufficient. #$

Example 3 (Multiple dominant alarms). The following code excerpted from
GNU Chess 5.0.5 shows an example of a cluster with multiple dominant alarms.
Three alarms are reported at line 3, 4, and 9. Array cboard and ephash have
the same size 64.
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1 void MakeMove(int side, int *move) {
2 ...

3 fpiece = cboard[f];

4 tpiece = cboard[t];

5 ...

6 if (fpiece == pawn && abs(f-t) == 16) {
7 sq = (f + t) / 2;

8 ...

9 HashKey ^= ephash[sq];

10 }
11 }

Since sq is the average of f and t, if both buffer accesses at line 3 and 4 are
safe, buffer access at line 9 is also safe. In this example, we have a false cluster
whose dominant alarms are the ones at line 3 and 4. #$

Contributions

– We introduce a sound alarm clustering method for static analyzers that can
reduce the alarm-investigation cost. Our framework is general in that it is
applicable to any semantics-based static analysis. It is orthogonal to both
refining approaches and statistical ranking schemes.

– We prove the effectiveness of our clustering method for the benchmark of 16
open-source programs. By our clustering method, we reduce the number of
alarms to investigate by 54%.

Organization. Section 2 introduces our alarm clustering framework. Section 3
explains one practical algorithm which is a sound implementation of our alarm
clustering method. Section 4 discusses the experiment results. We implemented
our clustering algorithm on top of realistic buffer-overflow analyzer and apply
it to the benchmark of 16 open-source programs. Section 5 discusses the related
work and Section 6 concludes.

2 Alarm Clustering Framework

We describe our general framework of alarm clustering. In the rest of this section,
we suppose basic knowledge of the abstract interpretation framework [3] and
the trace partitioning abstract domain [16]. We begin by giving some definitions
excerpted from [16].

2.1 Definitions

Programs. We define a program P as a transition system (S,→, Sι) where S
is the set of states of the program, → is the transition of the possible execution
elementary steps and Sι denotes the set of initial states.
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Traces. We write S∗ for the set of all finite non-empty sequences of states. If
σ is a finite sequence of states, σi will denote the (i+1)th state of the sequence,
σ0 is the first state and σ� the last state. If τ is a prefix of σ, we write τ , σ.

A trace of program P is defined as a set [[P ]] � {σ ∈ S∗ | σ0 ∈ Sι ∧ ∀i.σi →
σi+1}. The set [[P ]] is prefix-closed least fixpoint of the semantic function; i.e.
[[P ]] = lfpFP where FP is the semantic function, defined as:

FP : 2S
∗ → 2S

∗

FP (E) = {〈sι〉 | sι ∈ Sι}
∪ {〈s0, · · · , sn+1〉 | 〈s0, · · · , sn〉 ∈ E ∧ sn → sn+1}.

Partitioned Reachable States. Using a well-chosen trace partitioning func-
tion δ : Φ→ 2S

∗
, where Φ is the set of partitioning indices, one can model indexed

collections of program states. Domain Φ → 2S is a partitioned reachable-state
domain. The involved abstraction is α0(Σ)(ϕ) � {σ� | σ ∈ Σ ∩ δ(ϕ)} and the
concretization is γ0(f) � {σ | ∀τ , σ.∀ϕ. τ ∈ δ(ϕ) ⇒ τ� ∈ f(ϕ)}. The pair

of functions (α0, γ0) forms a Galois connection: 2S
∗
−−−→←−−−

α0

γ0

Φ → 2S. We write

concrete semantics [[P ]] modulo partitioning function δ as [[P ]]/δ
.

Abstract Semantics. We think of a static analyzer which is designed over an
abstract domain D̂ = Φ→ Ŝ with the following Galois connections:

2S
∗
−−−→←−−−

α0

γ0

Φ→ 2S −−−→←−−−α
γ

Φ→ Ŝ.

The galois connection of (α, γ) is easily derived from the one of (αS , γS) between

domains 2S and Ŝ: 2S −−−−→←−−−−
αS

γS

Ŝ.

The abstract semantics of program P computed by the analyzer is a fixpoint
T̂ = lfp#F̂ where lfp# is a sound, abstract post-fixpoint operator and the func-
tion F̂ : D̂ → D̂ is a monotone or an extensive abstract transfer function such
that α ◦ α0 ◦ FP � F̂ ◦ α ◦ α0. The soundness of the static analysis follows from
the fixpoint transfer theorem [2].

Alarms. The static analyzer raises an alarm at trace partitioning index ϕ if
γS(T̂ (ϕ)) ∩ Ω(ϕ) �= ∅ where T̂ is the abstract semantics of a program P and
function Ω : Φ→ 2S specifies erroneous states at each partitioning index. In the
rest of the paper, we use partitioning index and alarm interchangeably; alarm ϕ
means the one at the trace partitioning index ϕ.

The alarm ϕ is false alarm (resp. true alarm) when the static analyzer raises
the alarm and [[P ]]/δ

(ϕ) ∩Ω(ϕ) = ∅ (resp. [[P ]]/δ
(ϕ) ∩Ω(ϕ) �= ∅).

Alarm Dependence. Our goal is to find concrete dependencies between alarms.
Given two alarms ϕ1 and ϕ2, if alarm ϕ2 is always false whenever alarm ϕ1 is
false; i.e.

[[P ]]/δ
(ϕ1) ∩Ω(ϕ1) = ∅ =⇒ [[P ]]/δ

(ϕ2) ∩Ω(ϕ2) = ∅,
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we say that alarm ϕ2 has a concrete dependence on alarm ϕ1. If we find this
concrete dependence of alarm ϕ2 on alarm ϕ1, we also have another dependence
as contraposition.

[[P ]]/δ
(ϕ2) ∩Ω(ϕ2) �= ∅ =⇒ [[P ]]/δ

(ϕ1) ∩Ω(ϕ1) �= ∅

Since concrete dependence is not computable in general, we use abstract depen-
dence which is sound with respect to concrete dependence. The idea is that if we
can kill the alarm ϕ2 from the abstract semantics refined under the assumption
that alarm ϕ1 is false, it also means that alarm ϕ2 has concrete dependence
on alarm ϕ1. It is easy to see that this is correct because, even though the re-
fined abstract semantics is smaller than the original fixpoint, it is still sound
abstraction of concrete semantics if the assumption of alarm ϕ1 false holds.

In the rest of the section, we define the notion of sound refinement by refuta-
tion and abstract dependence. We also prove the soundness of abstract depen-
dence.

Refinement by Refutation. Using the assumption of alarm ϕ being false, we
can get a sliced abstract semantics T̃ϕ. The definition of T̃ϕ is,

T̃ϕ = gfp#λZ.T̂¬ϕ # F̂ (Z)

where gfp# is a pre-fixpoint operator and T̂¬ϕ is the same as the original fixpoint

T̂ except the erroneous states at partitioning index ϕ sliced out:

T̂¬ϕ = T̂ [ϕ (→ T̂ (ϕ) 4̂ αS(Ω(ϕ))]

where F [a (→ b] is the same as F except it maps a to b. The 4̂ operator should be
a sound abstract slice operator such that αS ◦4 � 4̂ ◦αS×S where the operator
4 is a set difference and αS×S is an abstraction lifted for pairs. We assume that
the abstract domain Ŝ has meet operator and abstract slice operator.

We can extend this refinement to the case of refuting multiple alarms. Sup-
pose that we assume that set {ϕ1, · · · , ϕn} of alarms is false. The refinement
T̃{ϕ1,··· ,ϕn} of the fixpoint T̂ with respect to these assumptions is,

T̃−→ϕ = gfp#λZ.T̂¬{ϕ1,··· ,ϕn} # F̂ (Z)

where T̂¬{ϕ1,··· ,ϕn} =
�

ϕi∈{ϕ1,··· ,ϕn} T̂¬ϕi.

Abstract Alarm Dependence. We now define abstract alarm dependence.

Definition 1 (ϕ1 � ϕ2). Given two alarms ϕ1 and ϕ2, alarm ϕ2 has abstract
dependence on alarm ϕ1, iff the refinement T̃ϕ1 by refuting alarm ϕ1 kills alarm
ϕ2; i.e.

iff γS(T̃ϕ1(ϕ2)) ∩Ω(ϕ2) = ∅.
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We write ϕ1 � ϕ2 when an alarm ϕ2 has abstract dependence on alarm ϕ1. We
prove the soundness of abstract alarm dependence as the following lemma.

Lemma 1. Given two alarms ϕ1 and ϕ2, if ϕ1 � ϕ2, then alarm ϕ2 is false
whenever alarm ϕ1 is false.

As a contraposition of lemma 1, we also have a different sense of soundness of
abstract alarm dependence.

Lemma 2. Given two alarms ϕ1 and ϕ2, if ϕ1 � ϕ2, then alarm ϕ1 is true
whenever alarm ϕ2 is true.

We extend the notion of the abstract dependence for more than two alarms.

Definition 2 ({ϕ1, · · · , ϕn}� ϕ0). Given set {ϕ0, · · · , ϕn} of alarms, we write
{ϕ1, · · · , ϕn} � ϕ0, and say that alarm ϕ0 has abstract dependence on set
{ϕ1, · · · , ϕn} of alarms, iff the refinement T̃{ϕ1,··· ,ϕn} by refuting set {ϕ1, · · · , ϕn}
of alarms satisfies

γS(T̃{ϕ1,··· ,ϕn}(ϕ0)) ∩Ω(ϕ0) = ∅.

Lemma 3. Given set {ϕ0, · · · , ϕn} of alarms, if {ϕ1, · · · , ϕn}� ϕ0, then alarm
ϕ0 is false whenever all alarms ϕ1, · · · , ϕn are false.

The contraposition of lemma 3 is not quite useful since it specifies only some
alarms among set {ϕ1, · · · , ϕn} of alarms are true when {ϕ1, · · · , ϕn}� ϕ0 and
alarm ϕ0 is true.

In the rest of paper, we sometimes write −→ϕ to denote a set of alarms.

2.2 Alarm Clustering

Using abstract alarm dependencies, we can cluster alarms in two different ways.

Definition 3 (False Alarm Cluster). Let A be set of all alarms in program
P and � be the dependence relation. A false alarm cluster CF−→ϕ ⊆ A with its

dominant alarms −→ϕ is {ϕ ∈ A | −→ϕ � ϕ}.

Definition 4 (True Alarm Cluster). Let A be set of all alarms in program
P and � be the dependence relation. A true alarm cluster CTϕ ⊆ A with its

dominant alarms ϕ is {ϕ′ ∈ A | ϕ′ +� ϕ} (
+� is the transitive closure of �

between only singleton alarms).

Note that we cannot exploit dependencies like {ϕ1, · · · , ϕn}� ϕ0 to make true
alarm cluster. As we mentioned in 2.1, it does not tell us exactly which alarms
among set {ϕ1, · · · , ϕn} of alarms are true when alarm ϕ0 is true.

The soundness of true and false alarm clusters directly follow the soundness
of abstract alarm dependence.

Theorem 1. Every alarm in CF−→ϕ is false whenever all alarms −→ϕ are false.

Theorem 2. Every alarm in CTϕ is true whenever alarm ϕ is true.
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For two reasons, we only focus on false alarm clusters. First, both type of clusters
can be found from the same dependence relation �, so whether to make true
or false alarm is simply the matter of interpretation. Second, in our current
framework, true alarm clusters can exploit fewer dependencies than false alarm
cluster, thus they cluster less alarms. In the rest of the paper, a cluster C means
a false alarm cluster CF .

3 Alarm Clustering Algorithm

As we explain in section 2.2, we need to compute abstract dependence relation
among all the alarms for clustering. A naive way to do this is to enumerate
all possible subsets of all the alarms and find the others that are dominated
by them. This naive algorithm requires 2N times of re-computation where N is
number of alarms, which is far from practical.

We present one practical alarm clustering algorithm, shown in algorithm 1,
which clusters alarms based on a (not all) subset of possible dependencies. By one
fixpoint computation, our algorithm finds the subset of possible dependencies.
The idea is to slice the static analysis result as much as possible by refuting all
alarms and track which dominant alarm candidate possibly kills which alarm.
Then, we cluster the alarms which must be killed by the same dominant alarm
candidate.

Our algorithm works in the following way: we start by assuming that each
alarm is a dominant one of a cluster that clusters only itself. This can be ex-
pressed by slicing out the erroneous states at every alarm point but not propa-
gating refinement yet. Then from an alarm point, say ϕ1, we start building its
cluster. We propagate its sliced, non-erroneous abstract state to another alarm
point say ϕ2 and see if the propagation further refines the non-erroneous ab-
stract state at ϕ2. If the propagated state is smaller than that at ϕ2, it means
refuting ϕ1 will refute alarm ϕ2, hence dependence ϕ1 � ϕ2 and thus we add
ϕ2 to the ϕ1-dominating cluster. If the propagated state is larger than that at
ϕ2, then dependence ϕ1 � ϕ2 is not certain hence, instead of adding ϕ2 to the
ϕ1-dominating cluster, we start building the ϕ2-dominating cluster. If the propa-
gated state is incomparable to that at ϕ2, then we pick both alarms as dominant
ones and start building the ϕ1-and-ϕ2-dominating cluster by propagating the
slicing effect of simultaneously refuting (i.e., taking the meet of refuting) both
alarms.

In the algorithm, we assume that Φ is the set of program points and every
program point has several predecessors and successors specified by function pred
and succ (line 2). For brevity, we also assume that an alarm can be raised at
every program point; i.e. for all ϕ ∈ Φ, Ω̂(ϕ) �= ⊥ where Ω̂ is abstract erroneous
information (line 8).

From line 1 to 9, we give definitions used in the algorithm. Everything other
than function R at line 7 is trivially explained by the comment on the same line.
Function R keeps the information of dominant alarm candidate. As specified in
the comment, if R(ϕ) = Δ for some program point ϕ and set Δ of dominant
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Algorithm 1. Clustering algorithm

1: w ∈ Work = Φ W ∈ Worklist = 2Work

2: pred ∈ Predecessors = Φ → 2Φ succ ∈ Successors = Φ → 2Φ

3: f̂ ∈ Φ → Ŝ → Ŝ (* abstract transfer function for each program point *)

4: T ∈ Table = Φ → Ŝ (* abstract state indexed by program point *)

5: −→ϕ ∈ DomCand = 2Φ (* dominant alarm candidate. set of alarms. *)

6: Δ ∈ 2DomCand (* set of dominant alarm candidates *)

7: R ∈ RefinedBy = Φ → 2DomCand (* {ϕ → Δ} ∈ R : T(ϕ) is refined by −→ϕ in Δ *)
8: Ω̂ ∈ ErrorInfo = Φ → Ŝ (* abstract erroneous state information *)

9: C ∈ Clusters = DomCand → 2Partid(* alarm clusters indexed by dominant alarms *)

10: procedure FixpointIterate(W, T, R)
11: repeat
12: ϕ := choose(W ) (* pick a work from worklist *)

13: ŝ := T (ϕ) (* previous abstract state *)

14: ŝ′ := f̂(ϕ)(
⊔

ϕi∈pred(ϕ) T (ϕi))(* new abstract state *)

15: ŝnew := ŝ′ � ŝ
16:
17: Δ := R(ϕ) (* previous set of dominant alarm candidates *)

18: Δ′ :=
⋃

ϕi∈pred(ϕ) R(ϕi)
(* new set of dominant alarm candidates *)

19: if ŝ � ŝ′ then Δnew = Δ′

20: else if ŝ � ŝ′ then Δnew = Δ

21: else Δnew := Δ � Δ′

22: if ŝnew � ŝ then (* propagate the change to successors *)

23: W := W ∪ succ(ϕ); T (ϕ) := ŝnew; R(ϕ) := Δnew

24: until W = ∅
25: procedure ClusterAlarms(T,R)
26: for all ϕ ∈ Φ do
27: if T (ϕ) � Ω̂(ϕ) = ⊥ then
28: for all −→ϕ ∈ R(ϕ) do
29: C := C{−→ϕ → C(−→ϕ ) ∪ {ϕ}}
30: procedure main()

31: T := T̂¬Φ (* T̂ is the original fixpoint *)
32: R := {ϕ → {{ϕ}} | ϕ ∈ Φ}
33: FixpointIterate(Φ,T,R); ClusterAlarms(T,R)

alarms, it means that the abstract state at ϕ is refined by some dominant alarm
candidate −→ϕ in Δ, thus alarm ϕ can be a member of the −→ϕ -dominating cluster.
We keep the set of dominant alarm candidates, not a single dominant alarm
candidate, since there are branches where each branch takes different dominant
alarm candidate. Line 32 shows that function R initially maps each program
point ϕ to a set that only contains itself, which means that initially, alarm ϕ is
the only member of the ϕ-dominating cluster.

Without considering gray-boxed parts, procedure FixpointIterate in the
algorithm is a traditional fixpoint iteration to compute a pre-fixpoint of a de-
creasing chain. We pick a work from worklist (line 12), compute a new abstract
state (line 14 and 15), and propagate the change to successors if the newly com-
puted state is strictly less than the previous one (line 22). We repeat this until
no work remains. To guarantee the termination or to speed up, we can integrate
acceleration method (such as widening [4] in the decreasing direction). We start
the fixpoint computation from the fixpoint refined by refuting all alarms (line
32).
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Gray-boxed parts are to track which set of dominant alarm candidates refines
the abstract state at program point ϕ. As specified from line 19 to line 21, there
are three cases: 1) the new abstract state refines the previous one (line 19), 2)
the previous abstract state is smaller than or equal to the new one (line 20), and
3) both abstract states are incomparable (line 21). For the first case, we change
the set of dominant alarm candidates to the new one Δ′ (line 18). For the second
case, we do not change (line 19) since we cannot further refine the abstract state.
For the last case, we pick both dominant alarm candidates from set Δ and Δ′

(line 20). The new set of dominant alarm candidates is thus computed by the
following lifted union �:

Δ1 �Δ2 = {−→ϕ 1 ∪−→ϕ 2 | −→ϕ 1 ∈ Δ1 ∧ −→ϕ 2 ∈ Δ2}.

For each dominant alarm candidate −→ϕ 1 and −→ϕ 2 in set Δ1 and Δ2 of alarm
candidates, respectively, we union the two.

Finally, procedure ClusterAlarms validates the dominant alarm candidate
information R based on the refined fixpoint T and clusters alarms. For each
alarm at ϕ, we validate that the union of all dominant alarm candidates in R(ϕ)
really dominates alarm ϕ by checking that the refined abstract state T (ϕ) kills
the alarm (line 27). If the alarm is killed, we put alarm ϕ to the R(ϕ)-dominating
cluster (line 28 and 29).

4 Experiments

4.1 Implementation

We have implemented our alarm clustering method on top of Airac [9,10,19,20,21],
a realistic buffer-overflow analyzer for C programs. Our static analyzer is a sound,
inter-procedural abstract interpreter with interval domain. Because of limited
space, we do not explain our baseline analysis; See [20] for the details.

Three different alarm clustering analyses are implemented: 1) syntactic alarm
clustering, 2) inter-procedural semantic clustering with interval domain, 3) intra-
procedural semantic clustering with octagon domain. As we move from syntactic
clustering to semantic clustering with octagon domain, we can cluster more
alarms but need to pay more cost for the analysis. Thus, we initially use syntactic
clustering to group alarms as many as possible and then apply the semantic
clustering analyses to the rest of alarms that are not clustered yet.

In the rest of this section, we explain briefly about the implementation of each
clustering analysis.

Syntactic Alarm Clustering. Syntactic alarm clustering is based on syntac-
tically identifiable alarm dependencies. Two alarms are syntactically dependent
iff 1) the expressions that raise the alarms are syntactically equivalent and 2) the
variables inside the expressions have the same definition points in the definition-
use chain [18].

We implement syntactic alarm clustering as a post-analysis phase. The first
check for a syntactic dependence is trivial and the second check can exploit the
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definition-use chain already computed by our baseline analyzer. Once we find
dependencies, the alarm clustering part is the same as algorithm 1.

Note that the syntactic alarm clustering can be explained in our clustering
framework. Syntactic alarm dependence is a special type of abstract dependence
such that the abstract transfer function between two alarm points is identity
upto the alarm-related variables, thus the falsehood of one alarm makes the
other also false trivially.

Example 4. Our static analyzer reports four alarms in the following code snippet
excerpted from ftpd.c in Wu-ftpd 2.6.2:

1 /* extern char *optarg; */

2 while (*optarg && *optarg >= ’0’ && *optarg <= ’9’)

3 val = val * 8 + *optarg++ - ’0’;

We can easily find that three alarms at line 2 have syntactic dependencies on
each other. We also find that two alarms in line 2 and 3 are also syntactically
dependent; two expressions that raise the alarms are syntactically the same
(*optarg) and the definitions of optarg at line 2 and 3 are always the same
(either the one defined before the loop or newly defined at line 3). #$
From a practical point of view, syntactic alarm clustering is beneficial for two rea-
sons. First, syntactic alarm clustering is highly cost-effective. It requires only an
additional definition-use analysis which does not cost a lot. Especially, our static
analyzer has been performing definition-use analysis for its own use. Second, syn-
tactic alarm clustering is precise because it does not involve any abstraction.

Alarm Clustering with Interval and Octagon Domain. We implement
algorithm 1 for both interval and octagon domain. The algorithms work after
syntactic clustering algorithm find alarm clusters. The octagon domain enables
us to find dependencies that are visible only by relational analysis.

One difference between the implementation with interval domain and octagon
domain is that we use more fine-grained “refined-by” information (R in algo-
rithm 1) in the implementation with interval domain. We track set of dominant
alarm candidates not per each program point, but per each variable. By tracking
dominant alarm candidates in this way, we could find more dependencies.

For octagon domain-based analysis, which has not been supported by our
baseline analyzer, we integrate a prototype using Apron octagon domain li-
brary [8] into our clustering system. We only implement intra-procedural analysis
(for cost reduction) and paralleize it. For each function, we do dependence anal-
ysis [18] to find the set of alarm-related variables and pack only those variables
to make octagons. We use the straightforward translation between the baseline,
interval analysis results and their octagon representations.
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Table 1. Alarm clustering results
B : baseline analysis, S: syntactic alarm clustering, I : semantic alarm clustering with
interval domain, O : semantic clustering with octagon domain.

# Alarms % Reduction Time(s)Program LOC
B S S+I S+I+O S +I +O S+I+O B I O

nlkain-1.3 831 124 118 96 93 5% 18% 2% 25% 0.17 0.03 0.1
polymorph-0.4.0 1,357 25 19 13 13 24% 24% 0% 48% 0.12 0 0.06
ncompress-4.2.4 2,195 66 50 38 30 24% 18% 12% 55% 0.54 0.03 0.69
sbm-0.0.4 2,467 237 230 185 125 3% 19% 25% 47% 2.28 0.3 1.15
stripcc-0.2.0 2,555 194 165 143 127 15% 11% 8% 35% 2.76 0.07 25.44
barcode-0.96 4,460 435 386 329 302 11% 13% 6% 31% 3.23 0.1 2.59
129.compress 5,585 57 56 29 29 2% 47% 0% 49% 2.46 0.02 0.19
archimedes-0.7.0 7,569 711 342 215 132 52% 18% 12% 81% 6.48 0.27 16.11
man-1.5h1 7,232 276 226 189 165 18% 13% 9% 40% 11.65 0.28 1.86
gzip-1.2.4 11,213 385 341 278 263 11% 16% 4% 32% 10.03 0.3 2.92
combine-0.3.3 11,472 733 468 297 294 36% 23% 0% 60% 19.74 0.81 26.93
gnuchess-5.05 11,629 976 744 343 333 24% 41% 1% 66% 42.49 4.78 8.66
bc-1.06 12,830 593 330 320 198 44% 2% 21% 67% 33.75 7.04 27.23
grep-2.5.1 31,154 115 100 96 85 13% 3% 10% 26% 4.19 0.01 11
coan-4.2.2 22,414 461 350 332 291 24% 4% 9% 37% 126.66 1.91 6.14
lsh-2.0.4 110,898 616 387 319 264 37% 11% 9% 57% 115.13 2.12 204.12
TOTAL 245,861 6,004 4,312 3,222 2,744 28% 18% 8% 54% 381.68 15.94 335.19

4.2 Experiment Results

We apply our clustering analyzer on 16 packages from three different categories
(Bugbench [14], GNU softwares, and SourceForge open source projects). Table 1
shows our benchmark.

Effectiveness. To evaluate how much our clustering can reduce the alarm-
investigation effort, we measure the number of distinct dominant alarms of alarm
clusters and compare it to the number of reported alarms. In table 1, the columns
labeled “# Alarms” show the numbers of alarms reported by baseline analyzer
(B), reduced by syntactic clustering (S), reduced further by semantic clustering
with interval domain (S+I), and reduced further by semantic clustering with oc-
tagon domain (S+I+O), respectively. The next columns labeled “% Reduction”
show the reduction ratios of each additional alarm clustering analysis (S, +I,
and +O) and the total (S+I+O).

As shown in table 1, our alarm clustering reduces 54% of alarms on aver-
age. Note that even though the syntactic clustering reduces 28% of alarms, the
semantic clustering reduces 26% additionally (18% by clustering with interval
domain and 8% by the other). This means that semantic clustering analyses suc-
cessfully find intricate alarm dependencies which can never be found by syntactic
clustering.

We investigate the most effective and the least effective cases of the interval
domain-based alarm clustering. Our interval domain-based algorithm turned out
to be the most effective for gnuchess-5.05 and 129.compress (reduced by 41% and
47%) because of the following reasons. First, the sizes of almost all buffers in the
programs are fixed. In this case, we can slice out erroneous state accurately, which
is essential for refinement by refutation, even using interval domain. Second,
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there were many different buffers of the same size which are accessed using the
same index variable. On the other hand, our interval domain-based clustering
is least effective for grep-2.5.1 (reduced by 3%). It is because almost all buffers
in the program are dynamically allocated, thus the sizes of them were hard to
track accurately. Indeed, we found that the interval values of the sizes of buffers
were, in most cases, [0,∞] which means the buffer can have arbitrary size. In
this case, we cannot slice out the erroneous states at all.

For programs polymorph-0.4.0, 129.compress, combine-0.3.3, and gnuchess-
5.0.5, octagon domain-based clustering is not effective. The reason of
ineffectiveness for the first three programs is rather originated from our im-
plementation, which has been only doing intra-procedural analysis. Indeed, pro-
gram polymorph-0.4.0 has many library function calls between alarm points, so
that they ruin the refinement. In the case of gnuchess-5.0.5, many buffers were
accessed by indices with bit operations on them, which is beyond the reach of
octagon domain.

We also investigate the most effective case of the octagon domain-based alarm
clustering. The most effective case was program sbm-0.0.4. The program has
long consecutive buffer accesses with the indexes having relationship of form
±i± j = c. This type of relationship can be precisely expressed and handled by
octagon domain.

Clustering Overhead. We measure the analysis time to assess the overhead
of clustering analysis. All our experiments are performed on a PC with a 2.4
GHz Intel Core2 Quad processor and 8 GB of memory. In table 1, the columns
labeled “Time” present times for the baseline analysis (B) and the additional
alarm clustering with interval domain (I) and octagon domain (O). Note that we
do not measure the cost of syntactic clustering since it exploits the definition-use
chains already generated by the baseline analysis.

The overhead of interval domain-based alarm clustering is on average only 4%
of the baseline analysis time. On the other hand, we find that the overhead of
octagon domain-based clustering is almost close to, and even surpasses for some
cases, the baseline analysis time. This is because octagon domain-based static
analysis usually has higher cost than interval domain-based static analysis and
our octagon domain-based abstract interpreter is prototypical and far less opti-
mized than interval domain-based one which has been highly optimized [9,19,20].

5 Related Work

To our best knowledge, Le et al.’s work [23] is the first one that proposes non-
statistical clustering method. They reduce the number of faults (alarms) by
detecting correlations (dependencies) between them. By propagating the effects
of the error state along the program path, they detect the correlation of pairs
of alarms. They automatically construct a correlation graph which shows how
faults are correlated. Based on the graph, we can reduce the number of faults to
consider.
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However, Le et al.’s method is not sound, while our method is sound. Ac-
cording to their experiment results, the dependencies they use to construct the
correlation graph can be spurious (false positive), which means that it is not
always safe to rule out faults even though they are correlated to the others.

Statistical ranking schemes [7,10,12,13] may help to find real errors quickly,
but ranking schemes do not reduce alarm-investigation burdens as in our work.
Since our technique is orthogonal to statistical ranking schemes, we might com-
bine our technique with them for a more sophisticated alarm reporting interface.

Our work resembles to Rival’s work [22] in the sense that both work refines the
abstraction by exploiting the information about error state. In his work, Rival
refines the abstraction by slicing out non-error states and sees if the initial state
after refinement still insists that the erroneous states are reachable. If the initial
state becomes bottom after refinement, the alarm turns out to be false. On the
other hand, in our work, we refine the abstraction by slicing out erroneous states
at one point and see if erroneous states at other points become non-reachable,
which means that we found the dependence between alarms.

Our work is more general than error recovery technique that is used for re-
ducing false alarms in many commercial static analysis tools [1,15,17]. For each
alarm found, the commercial analyzers recover from those alarms; i.e. they as-
sume that an alarm is false when they passed the alarm point. Because error
recovery is done within the baseline analysis, possible refinements are bounded
by the expressiveness of the abstract domain of the baseline. As we show in Sec-
tion 4, we can use more expressive domain for clustering purpose than the one
used in the baseline, which can be more cost-effective than using expensive ab-
stract domain in the baseline. Additionally, our method can derive true clusters
for which cannot be done by the error recovery technique.

Our clustering method can be integrated with other refinement approaches
[5,6,11,22]. The goal of them is to remove false alarms by abstraction refinement,
while our work is to reduce the number of alarms to investigate. Our work can
reduce the number of targets to do the refinement.

6 Conclusion

We have presented a new, sound non-statistical alarm clustering method for
semantic-based static analyzers. We propose a general framework of alarm clus-
tering. Our technique is general enough to be applicable to any static analysis
based on abstract interpretation. By experiment results, we show that our tech-
nique can considerably reduce the number of alarms to investigate manually.

Acknowledgment. The authors would like to thank Youil Kim, Daejun Park,
Hakjoo Oh, Minsik Jin, and the anonymous referees for their comments in im-
proving this work.
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Abstract. Mechanical proof assistants have always had support for inductive
proofs. Sometimes an alternative to proof assistants, satisfiability modulo the-
ories (SMT) solvers bring the hope of a higher degree of automation. However,
SMT solvers do not natively support induction, so inductive proofs require some
encoding into the SMT solver’s input.

This paper shows a surprisingly simple tactic—a rewriting strategy and a
heuristic for when to apply it—that has shown to be useful in verifying simple
inductive theorems, like those that can occur during program verification.

The paper describes the tactic and its implementation in a program verifier,
and reports on the positive experience with using the tactic.

0 Introduction

Mathematical induction is an important element of just about any kind of formal proof.
This paper concerns the use of induction in an automatic program verifier. More specif-
ically, it is concerned with providing more automation for inductively proving some
properties in the kind of program verifier that uses a satisfiability modulo theories
(SMT) solver [10,22] as its reasoning engine.

Mechanical proof assistants have always provided support for inductive proofs, most
famously starting with the Boyer-Moore prover whose powerful heuristics tried to
determine which variables to use in induction schemes [5]. That work has been con-
tinued in proof assistants like PVS [23] and ACL2 [15]. Another technique for auto-
matically trying to discover how to construct an inductive proof for a given property
is rippling [6,14]. As is well known, it is frequently necessary to strengthen an in-
duction hypothesis in order to make a proof go through, and techniques like rippling
heuristically try to determine when it might be appropriate to strengthen or generalize
a property to be proven. Whereas rippling is goal directed, the technique employed by
Zeno [24] is more opportunistic in the way it proceeds.

Unsurprisingly, any system that reasons about infinitely many possible executions
of a software program also makes use of induction, either explicitly or implicitly. For
example, the KeY system [2] lets a user explicitly specify which induction scheme to
apply when reasoning about the executions of a loop. Program verification (and theo-
rem proving) in Coq [3] and VeriFun [25] also tend to make heavy use of induction.
Other program verifiers, like Dafny [19], VCC [8], and VeriFast [12], implicitly rely
on induction: the loop invariants used to reason about loop executions and the pre/-
post specifications used to reason about recursive calls essentially play the role of an
induction hypothesis.

V. Kuncak and A. Rybalchenko (Eds.): VMCAI 2012, LNCS 7148, pp. 315–331, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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The implicit support of induction lets a user write programs whose correctness im-
plies the validity of user-provided mathematical properties, essentially giving a manual
way to write proofs using a program verifier [15,17,26,13]. In this paper, I go one step
further, introducing a tactic that heuristically identifies programmer-supplied properties
whose proof may benefit from induction, then automatically sets up the induction hy-
pothesis, and finally passes the proof obligation to an SMT solver. I have implemented
the technique in the Dafny program verifier [19]0 and have used it, for example, to
automatically prove 45 of the first 47 problems in an evaluation corpus for automatic
induction. The tactic is not nearly as powerful as what is used in provers like ACL2 or
Zeno; indeed, it never strengthens or generalizes a property to be proved. Instead, the
strong appeal of the present tactic lies in its simplicity and surprising effectiveness.

1 Background on Dafny

Before getting to the induction tactic, let me review two properties about program veri-
fiers like Dafny. First, I will explain the verifier architecture, how to think about going
from source-language semantics to SMT-solver input. Second, I will show how lemmas
to be proved by induction arise in the context of a program verifier.

1.0 Verifier Architecture

A standard program-verifier architecture is to translate the source language of interest
into an intermediate verification language (IVL) and then to pass the resulting IVL pro-
grams to a verification engine for the IVL [21,1,11]. In other words, the semantics of a
given source-language program are encoded into an IVL program such that the correct-
ness of the IVL program implies the correctness of the source program. The verification
engine for the IVL attempts to establish the correctness of IVL programs by generating
verification conditions that it passes to a reasoning engine, typically an SMT solver.

In this paper, the source language used is Dafny [19], the IVL is Boogie 2 [20], and
the SMT solver is Z3 [9], but the tactic described is applicable to other program ver-
ifiers and reasoning engines as well. For the purpose of this paper, it is not necessary
to understand the details of the Dafny-to-Boogie translation [18], and even less so the
Boogie-to-Z3 translation [1,20]. It suffices to realize that the semantics of a given source-
language program sometimes provides certain guarantees and sometimes dictates some
proof obligations, and that the program verifier encodes these guarantees and proof obli-
gations by translation into the IVL. Next, I will explain the form of this encoding.

A program verifier explicates source-language proof obligations by encoding them as
assert statements in the IVL. Such proof obligations arise from the semantics of the ex-
ecutable constructs of the source language (for example, expressions used to index into
an array must evaluate to a value within the bounds of the array) and from programmer-
supplied specifications (for example, method postconditions). The program verifier also
explicates source-language guarantees by encoding them as assume statements in the
IVL.

0 Dafny is available as open source and can also be used without installation in a web browser,
see research.microsoft.com/dafny.
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For example, the Dafny verifier translates the allocation statement a := new int[E];

into the following Boogie code:

assert 0 � E ; . . . assume dtype(a) = array(type_int());

where the assert statement encodes the proof obligation that the requested array size not
be negative and the assume statement says that the dynamic type of a , after the assign-
ment, is an array of integers (where dtype , array , and type_int are some functions
defined elsewhere in the translation).

Semantically, assert P ; is equivalent to:

assert P ; assume P ; (0)

(see [0]). Intuitively, this says that after proving P , one is entitled to assume it. This
means that a proof obligation P arising in a source language can be translated into the
intermediate verification language as the two statements (0). More generally, it is sound
to translate a proof obligation P into:

assert Q ; assume R; (1)

where Q implies P and P implies R . This can be useful if, to the SMT solver, Q is
easier to prove and R is easier to use.

1.1 Inductive Lemmas in a Program Verifier

On the way to proving the correctness of a program, it happens that one needs to state
and prove lemmas about functions or data structures that are used by the program. When
such a lemma requires an inductive proof, the induction tactic described in this paper
can be useful.

Dafny is a programming language and a program verifier; it has no special constructs
for stating and proving lemmas. Instead, a lemma can be stated as an inline assertion
(via Dafny’s assert statement) or as a call to a method whose postcondition is the
statement of the lemma (cf. [13]). Such a method in Dafny is usually declared to be
a ghost method; the Dafny verifier treats ghost methods and other ghost constructs
like their non-ghost counterparts, but the Dafny compiler generates no code for ghost
constructs [19].

For example, the Fibonacci function can be defined in Dafny as follows:

function Fib(n : nat) : nat

{

if n < 2 then n else Fib(n-2) + Fib(n-1)

}

A function in Dafny is a mathematical function and it denotes an expression (given
in the body of the function). A method, on the other hand, denotes a behavior and is
implemented by statements with possible control flow and mutations. To state a lemma
about the Fib function, we introduce a (ghost) method with the desired lemma as the
postcondition; for example:
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ghost method FibLemma()

ensures ∀ n : nat • Fib(n+1) + Fib(n+2) ≤ Fib(n+3);

{ }

Dafny will attempt to verify that the method terminates and that it terminates in a state
where the postcondition holds. A successful verification thus implies that the property
stated in the postcondition is a valid lemma. To use this lemma in some code, one
simply invokes method FibLemma. Because the method is ghost, it is not included in
the executable code, and thus the lemma has no effect on the run-time behavior of the
program.

2 The Induction Tactic

The induction tactic builds on simple concepts working in concert. I will explain each
concept in a separate subsection and then combine them to describe the tactic.

2.0 Induction Principle

The Induction Principle says that the formula

∀n • P(n) (2)

where P(n) is any expression that may have free occurrences of n , is equivalent to the
formula

∀n • (∀k • k ≺ n =⇒ P(k)) =⇒ P(n) (3)

where ≺ is any well-founded order. The antecedent in (3) is known as the induction
hypothesis. Thus, by the Induction Principle, to prove the validity of the formula (2),
we may elect to proceed by proving the validity of the ostensibly weaker formula (3).

I feel compelled to make a remark, which for readers familiar with some mechanical
proof assistants may clear up a point about what I refer to as induction. The fact that
the induction hypothesis in (3) quantifies over all k smaller than n is known as strong
induction. Many times, a weaker induction hypothesis suffices, namely the one that
quantifies only over those k that are “one smaller” than n . For example, if n and k
range over natural numbers, the weaker induction hypothesis can be stated as:

∀k • k = n − 1 =⇒ P(k)

Furthermore, by distinguishing those n that have a value “one smaller” and those n
that do not, this condition is often formulated as:

n = 0 ∨ (0 < n ∧ P(n − 1))

Using this condition in place of the antecedent in (3) and simplifying, we get:

P(0) ∧ ∀n • 0 < n ∧ P(n − 1) =⇒ P(n)
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or equivalently:
P(0) ∧ ∀n • P(n) =⇒ P(n + 1) (4)

The two conjuncts in formula (4) are referred to as the base case and the induction step,
which is how induction is used in some proof assistants and is probably how most of
us learned about induction in our education. However, note that the formulation of the
Induction Principle above (that is, (2) = (3)) does not necessitate bringing in the concept
of a case distinction when defining induction. (This is somewhat analogous to the use
of recursion in programming, where a conditional statement and a call statement are
independent constructs that usefully come together in the body of a recursive procedure.)

2.1 Induction Translation

Here is why observation (1) in Sec. 1.0 is interesting for induction. If a proof obligation
in a given source program takes the form (2), then the program verifier has the option
to translate it into the IVL as:

assert (3); assume (2); (5)

This Induction Translation has the effect that the SMT solver will be asked to establish
the validity of (3), after which it is entitled to assume (2). Note that SMT solver does
not need to know anything about induction. Instead, the (source-to-IVL translation of
the) program verifier takes responsibility for the soundness of the translation into (5),
and that soundness is justified by the Induction Principle.

2.2 Induction Heuristic

A program verifier has the option of translating proof obligation like (2) into the IVL
statements (5), but when would that be a good idea? Always doing so can lead to bad
performance, and always requiring the source-language programmer explicitly to say
when to use the Induction Translation could be a nuisance. Better would be to use a
good heuristic, possibly with a way to manually override the outcome of the heuristic.

A heuristic that is both simple and seems to work well, and which I will refer to as
the Induction Heuristic, is to apply the Induction Translation if the bound variable n in
(2) is used in P(n) as part of an argument to a recursive function.

I tried and rejected a less discriminating heuristic, namely to apply the Induction
Translation also if n is used in P(n) as part of an index expression into an array or
sequence. The Dafny test suite contains hundreds of methods and mentions more than
700 quantifiers, but most of the quantifiers can be proved without induction. I tried the
less discriminating heuristic on the test suite. This resulted in out-of-memory failures
for 8 of the method verifications and ten-minute timeouts for 2 others. Evidently, the
additional induction hypotheses caused the SMT solver too much distraction.

The default heuristic used by Dafny is actually more discriminating than the Induc-
tion Heuristic, in two ways. First, n cannot be just any subexpression of an argument to
a recursive function; the argument must prominently feature n . An expression promi-
nently features n if the expression is n , or if the expression has the form E + F or
E − F where E or F prominently features n . For example, in the postcondition of
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method FibLemma in Sec. 1.1, all three calls to Fib prominently feature n as an argument.
Second, not all argument positions to recursive functions are considered; the formal
parameter corresponding to the argument must contribute to the variant (which is used
for proving termination) of the function. However, these two additional discriminating
factors have not made any appreciable difference in the experiments I have run.

2.3 Well-Founded Orders in Dafny

The Induction Principle holds for any well-founded order ≺ . Dafny fixes a well-founded
order for each of its types and for lexicographic tuples. These are used in Dafny when
reasoning about termination of loops and recursive calls [19]. The same ordering is used
for ≺ in the Induction Translation.

The types most frequently used with induction are integers and inductive datatypes.
For integers x and y , Dafny defines x ≺ y as:

x < y ∧ 0 � y

The lower bound 0 is somewhat arbitrary, and note that the order is not total when both
x and y are negative; however, this simple order is easy for a programmer to remember
and works well in practice.1

The ordering on inductive datatypes associates a rank with each datatype value and
defines the rank of a constructed value to be strictly above the rank of each of its argu-
ments. For example, given the definition:

datatype List = Nil | Cons(int, List);

Dafny defines xs ≺ Cons(x , xs) for any integer x and list xs .

2.4 Datatypes and Case Distinctions

The current version of Dafny does not use native SMT support for inductive datatypes.
Instead, it encodes constructors and destructors of datatype values using suitably ax-
iomatized functions. Every datatype value is generated by some constructor, but unre-
stricted use of this property can lead to expensive and unfruitful case distinctions in the
SMT solver, so Dafny encodes this property only in certain places [19]. The property
does tend to be useful when proving properties inductively, so Dafny makes the case
distinction available to the SMT solver when applying the Induction Translation.

For example, suppose n in (2) is of the type List defined in Sec. 2.3. Then Dafny
includes in the Induction Translation an additional antecedent:

n = Nil ∨ ∃x , xs • n = Cons(x , xs)

1 For reasoning about termination of loops and recursive calls, the lower bound can be adjusted,
because Dafny supports programmer-supplied variant expressions [19].
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Actually, Dafny distributes these cases and produces one assert statement for each con-
structor, because this allows Dafny to give more precise error messages. So, the Induc-
tion Translation will produce the following 3 statements:

assert ∀n • (∀k • k ≺ n =⇒ P(k)) ∧ n = Nil =⇒ P(n);
assert ∀n • (∀k • k ≺ n =⇒ P(k)) ∧ (∃x , xs • n = Cons(x , xs))

=⇒ P(n);
assume ∀n • P(n);

If the first assertion cannot be proved, Dafny reports that (2) might not hold for values
constructed by Nil; if the second assertion cannot be proved, Dafny reports that (2)
might not hold for values constructed by Cons.

2.5 Multiple Bound Variables

If a proof obligation has multiple bound variables, Dafny evaluates the Induction Heuris-
tic for each one. If the Induction Heuristic applies to any of the bound variables, then
Dafny applies the Induction Translation for all the bound variables to which the Induc-
tion Heuristic applies, combining these into a lexicographic tuple.

For example, consider a proof obligation:

∀x , y, z • Q(x , y, z )

and suppose the Induction Heuristic applies to x and z (that is, both x and z are
prominently featured in Q(x , y, z ) as arguments to recursive functions). Applying the
Induction Translation, Dafny thus produces:

∀x , y, z • (∀k ,m • (k ,m) ≺ (x , z ) =⇒ Q(k , y,m)) =⇒ Q(x , y, z )

where the definition of (k ,m) ≺ (x , z ) is the ≺ ordering on lexicographic pairs:

k ≺ x ∨ (k = x ∧ m ≺ z )

Dafny only applies the Induction Translation to quantifiers that appear as positive
top-level conjuncts of proof obligations. In particular, the Induction Translation is not
applied to nested quantifiers. For example, if the proof obligation above had been for-
mulated as:

∀x , y • ∀z • Q(x , y, z )

then the Induction Translation would be:

∀x , y • (∀k • k ≺ x =⇒ ∀z • Q(k , y, z )) =⇒ ∀z • Q(x , y, z )

2.6 Overriding the Induction Heuristic

As I report in Sec. 4, the Induction Heuristic seems to work well. However, there are
times when one may wish to force or suppress the Induction Translation. Dafny has a
general mechanism for hanging custom attributes in various places in the source code
(akin to custom attributes in .NET and annotations in Java). One of those places is in
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quantifiers, just after the declaration of the bound variables. While use of such custom
attributes is rare, it is sometimes a convenient feature to have.

Dafny supports an :induction attribute. Used with no arguments, this attribute says to
apply the Induction Translation to all of the quantifier’s bound variables. The :induction

attribute can also be used by listing those bound variables to which the Induction Trans-
lation should apply. Finally, :induction false says not to apply the Induction Transla-
tion to the quantifier.

For example, consider the following method declaration:

ghost method AdjacentImpliesTransitive(s : seq<int>)

requires ∀ i • 1 ≤ i < |s| =⇒ s[i-1] ≤ s[i];

ensures ∀ i,j { :induction j} • 0 ≤ i < j < |s| =⇒ s[i] ≤ s[j];

{ }

The postcondition (keyword ensures) follows from the precondition (keyword requires),
but proving that necessitates induction. Since this example does not involve any recur-
sive functions, the Induction Heuristic does not apply. However, the custom attribute
used in this example tells Dafny to apply the Induction Translation for bound variable j,
which leads to a successful verification of the postcondition. Alternatively, using the at-
tribute { :induction i,j} or simply { :induction} also leads to a successful proof. Note,
however, that { :induction i} does not, since even proving the property for i being 0

requires induction on j.

3 Examples

In this section, I show four applications of the induction tactic in the program verifier:
two are used to verify programs, one to verify a simple mathematical property, and one
to verify properties of functions over inductive datatypes. I also show an application
that exemplifies the operation of the SMT solver given the formula produced by the
program verifier.

3.0 A Simple Program

The program in Fig. 0 shows a Dafny method. It takes an array a as an in-parameter
and returns an integer r as an out-parameter. As specified by the postcondition, the
method returns an index where the array is 0, or returns -1 if the array does not contain
a 0. As specified by the precondition, the array has non-negative elements and has the
special property that an element a[i] is not much smaller than its preceding neighbor,
a[i-1]. In particular, if a[i] is smaller than a[i-1], then it is smaller only by 1. This
property allows the method implementation to do better than linear search, for if the
array element at the current position n is non-zero, then the next possible zero occurs
a[n] array elements later.

The correctness of the method implementation hinges on the fact that the update
n := n + a[n]; maintains the loop invariant, which in turn follows from the special
property of the array. However, the special property needs to be applied repeatedly
for the proof, which does not happen automatically. Instead, the programmer supplies
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method FindZero(a : array<int>) returns (r : int)

requires a �= null ∧ ∀ i • 0 ≤ i < a.Length =⇒ 0 ≤ a[i];

requires ∀ i • 0 ≤ i-1 ∧ i < a.Length =⇒ a[i-1]-1 ≤ a[i];

ensures 0 ≤ r =⇒ r < a.Length ∧ a[r] = 0;

ensures r < 0 =⇒ ∀ i • 0 ≤ i < a.Length =⇒ a[i] �= 0;

{

var n := 0;

while (n < a.Length)

invariant ∀ i • 0 ≤ i < n ∧ i < a.Length =⇒ a[i] �= 0;

{

if (a[n] = 0) { return n; }

assert ∀ m { :induction} •
n ≤ m < n + a[n] ∧ m < a.Length =⇒ n+a[n]-m ≤ a[m];

n := n + a[n];

}

return -1;

}

Fig. 0. A Dafny method that finds the index of a 0 in a given array a. Because the array has the
special property that successive array elements do not decrease quickly (as stated by the second
requires clause), the search is sub-linear (see the increase of n). The assert statement is proved
by induction and then used to show the correctness of the program.

a lemma, here phrased as a Dafny assert statement. Since no recursive function is
involved, the Induction Heuristic does not apply. Instead, the programmer uses the
{ :induction} attribute to indicate that the quantifier is to be proved using induction.

Feeding the program in Fig. 0 to the Dafny verifier proves the program (with no
further user interaction) instantly (in 0.04 seconds on a single thread on a modern laptop
with an Intel Core i7-M620 clocked at 2.67 GHz and running 64-bit Windows 7).

3.1 A Difficult Program

Floyd’s “tortoise and hare” algorithm is a simple method for detecting whether a given
linked-list node reaches a cycle or reaches null [16]. Its formal proof is not equally
simple. One Dafny program for the algorithm, its specification (here shown slightly
simplified)

method TortoiseAndHare() returns (reachesCycle : bool)

ensures reachesCycle ⇐⇒
∃ n • n �= null ∧ Reaches(n) ∧ n.next �= null ∧ n.next.Reaches(n);

and supporting definitions, and the lemmas needed for its verification is 233 (non white-
space) lines long, of which 16 lines get compiled.2 More than half of dozen of the
quantified formulas given as lemmas require the Induction Translation to be verified.
For example, one of them (slightly simplified) is:

2 See the FloydCycleDetect.dfy program in the Test/dafny2 folder of the
boogie.codeplex.com source repository.
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function Sum(n : nat) : nat { if n = 0 then 0 else Sum(n-1) + n }

function CubeSum(n : nat) : nat { if n = 0 then 0 else CubeSum(n-1) + n*n*n }

ghost method ArithmeticTheorem()

ensures ∀ n : nat • CubeSum(n) = Sum(n) * Sum(n) ∧ 2*Sum(n) = n*(n+1);

{ }

Fig. 1. A Dafny encoding of the arithmetic theorem
∑n

i=0 i
3 = (

∑n
i=0 i)

2 . Because of the
induction tactic, the theorem is proved automatically.

assert ∀ j • 0 ≤ j =⇒ Nexxxt(x).Nexxxt(j) = Nexxxt(x + j);

where Nexxxt(k) returns the node obtained after k applications of the .next field. The
program relies entirely on the Induction Heuristic and does not use any occurrence of
the { :induction} attribute. The verification of the entire program takes just under 60
seconds.

3.2 Integers

Figure 1 states a familiar theorem about arithmetic. Functions Sum and CubeSum are de-
fined recursively, and the theorem CubeSum(n) = Sum(n) * Sum(n) is stated as the post-
condition of a method. Proving this arithmetic equality requires an additional fact about
function Sum, which is also stated in the postcondition. Thus, the proof does what in
mathematics is known as simultaneous induction.

The program in Fig. 1 is verified as shown (and with no further user interaction) in
0.09 seconds.

Remark: Alternatively, the closed-form property of Sum could have been given as a
postcondition of function Sum:

function Sum(n : nat) : nat

ensures 2*Sum(n) = n*(n+1);

{ if n = 0 then 0 else Sum(n-1) + n }

The proof of this postcondition does not require the Induction Translation; the standard
rules for postconditions and reasoning about (recursive) calls suffice.

3.3 Inductive Datatypes

Inductive datatypes are common in functional languages and in interactive proof as-
sistants like Isabelle/HOL, Coq, PVS, and ACL2, which are based around functional
languages. When proving properties of functions over such datatypes, it is natural to
use induction. Dafny also supports inductive datatypes as well as user-defined recur-
sive functions. Figure 2 defines two simple datatypes and three functions, the structure
of whose definitions is representative of functions on inductive datatypes. Method P19

states a theorem about these functions. The theorem is proved automatically (in 0.025
seconds), thanks to the induction tactic.
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datatype Nat = Zero | Suc(Nat);

datatype List = Nil | Cons(Nat, List);

function minus(x : Nat, y : Nat) : Nat {

match x

case Zero ⇒ Zero

case Suc(a) ⇒ match y

case Zero ⇒ x

case Suc(b) ⇒ minus(a, b)

}

function len(xs : List) : Nat {

match xs case Nil ⇒ Zero case Cons(y, ys) ⇒ Suc(len(ys))

}

function drop(n : Nat, xs : List) : List {

match n

case Zero ⇒ xs

case Suc(m) ⇒ match xs

case Nil ⇒ Nil

case Cons(x, tail) ⇒ drop(m, tail)

}

ghost method P19()

ensures ∀ n, xs • len(drop(n, xs)) = minus(len(xs), n);

{ }

Fig. 2. Two user-defined inductive datatypes in Dafny along with three functions defined on those
datatypes. The postcondition of the method gives a theorem, which is proved automatically by
Dafny’s induction tactic.

3.4 Operation of the SMT Solver

As I have shown, the induction tactic is encoded in the translation from Dafny into
Boogie, that is, the translation from the source language to the intermediate verification
language. After that, Boogie and Z3 operate as usual. In other words, the induction
tactic does not require any change to Boogie or Z3. Let us take a look at an example
end to end, that is, from Dafny to Boogie to Z3 and let us also consider the operation of
Z3 on its given verification condition.

Suppose we start with the following recursive function in Dafny:

function Fac(n : int) : int { if n ≤ 1 then 1 else Fac(n-1) * n }

Dafny’s translation of this function sets up proof obligations that will check that the
function is well defined. Mimicking the Dafny function definition, the translation also
includes the following Boogie declarations:

function Fac(n: int) : int;
axiom (∀n: int • {Fac(n)}

Fac(n) = (if n � 1 then 1 else Fac(n − 1) ∗ n));

where the expression in curly braces specifies the matching trigger for the universal
quantifier. The matching trigger tells the SMT solver how to select instantiations for the
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quantifier [10]. This definition of Fac in Boogie is a bit of a simplification, because
Dafny also takes some measures that will reduce the chances of running into matching
loops, where the SMT solver would keep instantiating universal quantifiers forever.

Suppose further that the proof obligation is to show that Fac only returns positive
integers, as expressed in Dafny by the following lemma:

ghost method FacPos() ensures ∀ n • 1 ≤ Fac(n); { }

The Dafny verifier detects in this postcondition proof obligation that the bound variable
n in passed as an argument to a recursive function. So the Induction Heuristic applies
and Dafny applies the Induction Translation, obtaining the following Boogie statements
(in the Boogie procedure corresponding to the Dafny method FacPos):

assert (∀n: int • (∀k : int • 0 � k ∧ k < n =⇒ 1 � Fac(k))
=⇒ 1 � Fac(n));

assume (∀n: int • 1 � Fac(n));

Boogie then translates this into Z3 input, which essentially amounts to:

(∀n: int • {Fac(n)} Fac(n) = (if n � 1 then 1 else Fac(n − 1) ∗ n))
=⇒
(∀n: int • (∀k : int • 0 � k ∧ k < n =⇒ 1 � Fac(k)) =⇒ 1 � Fac(n))

When Z3 tries to prove that this formula is valid, it negates it and starts looking for
a satisfying assignment to the negation. The negation produces the following two con-
juncts:

(∀n: int • {Fac(n)} Fac(n) = (if n � 1 then 1 else Fac(n − 1) ∗ n))
(∃n: int • (∀k : int • 0 � k ∧ k < n =⇒ 1 � Fac(k)) ∧ ¬(1 � Fac(n)))

Z3 then Skolemizes the existential, calling it, say, Sk . Since no matching trigger was
indicated for the quantifier over k in the Z3 input, Z3 will at this time select a matching
trigger for it; here, I show that selected trigger explicitly:

(∀n: int • {Fac(n)} Fac(n) = (if n � 1 then 1 else Fac(n − 1) ∗ n))
(∀k : int • {Fac(k)} 0 � k ∧ k < Sk =⇒ 1 � Fac(k))
Fac(Sk) < 1

(6)

At this time, the presence of the term Fac(Sk) will cause both quantifiers to be instan-
tiated, with n := k and k := Sk , yielding:

conjuncts (6)
Fac(Sk) = (if Sk � 1 then 1 else Fac(Sk − 1) ∗ Sk)
0 � Sk ∧ Sk < Sk =⇒ 1 � Fac(Sk)

The last of these formulas will evaporate, since Z3 knows that Sk < Sk is unsatisfiable.
Z3 will now do a case distinction on the if expression.

For the then case, it gets:
conjuncts (6)
Sk � 1
Fac(Sk) = 1
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which (from Fac(Sk) < 1 and Fac(Sk) = 1 ) it will realize is unsatisfiable.
For the else case:

conjuncts (6)
1 < Sk
Fac(Sk) = Fac(Sk − 1) ∗ Sk

There is now a new term, Fac(Sk − 1) , which matches the given triggers, so Z3 will
produce two more instantiations, namely with n := Sk − 1 and k := Sk − 1 :

conjuncts (6)
1 < Sk
Fac(Sk) = Fac(Sk − 1) ∗ Sk
Fac(Sk − 1) = (if Sk − 1 � 1 then 1 else Fac(Sk − 1− 1) ∗ (Sk − 1))
0 � Sk − 1 ∧ Sk − 1 < Sk =⇒ 1 � Fac(Sk − 1)

By 1 < Sk , the antecedent 0 � Sk − 1 ∧ Sk − 1 < Sk simplifies to true , and thus
the consequent 1 � Fac(Sk − 1) emerges as a fact. Z3 now realizes that the conjuncts:

Fac(Sk) < 1
1 < Sk
Fac(Sk) = Fac(Sk − 1) ∗ Sk
1 � Fac(Sk − 1)

are unsatisfiable, since the product of two positive numbers is not non-positive.
And that completes the proof.

4 Evaluation on a Test Suite for Induction

Theorem P19 in Fig. 2 is part of a test suite for automatic induction, collected and used
by the authors of the IsaPlanner system to evaluate their technique [14]. The suite con-
tains 87 problems, of which IsaPlanner (which uses rippling [6] and an analysis of case
statements) automatically solves the first 47. Beyond problem 47, the problems require
various forms of abstraction, strengthenings, and new-lemma discovery. According to a
paper on Zeno [24], ACL2s [7] automatically proves 74 of the 87 problems (with man-
ually supplied type information) and the Zeno tool automatically proves 82 of them.
The report on Zeno provides a detailed comparison of these tools on the test suite and
some other problems [24].

Of the 47 problems that IsaPlanner can prove, Dafny can prove 45. For all the prob-
lems, the Induction Heuristic applies, so Dafny automatically uses the Induction Trans-
lation. For an induction tactic that is as simple as the one in Dafny, proving 45 of the 47
problems that IsaPlanner can solve seems surprisingly good.

Like the other tools, most of the proofs are instantaneous. Dafny spends 0.21 seconds
on problem 39, 0.17 seconds on problem 45, and less than 0.10 seconds for each of the
others.

Dafny cannot automatically prove problem 47 (and neither can ACL2s). However,
problem 47 is verified using problem 23 as a lemma:
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ghost method P47() ensures ∀ a • height(mirror(a)) = height(a); {

P23(); // invoke the statement of problem 23 as a lemma

}

(I am unsure whether each problem in the test suite is allowed to use the preceding
problems as lemmas. If so, Dafny also proves this one. Dafny proves each of the other
45 problems independently of each other.)

The other problem of the 47 that Dafny cannot automatically prove is problem 20. It
requires the use of the preceding problem 15 as a lemma, and also requires an additional
case distinction, which needs to be supplied manually:

ghost method P20()

ensures ∀ xs • len(sort(xs)) = len(xs);

{

P15(); // invoke the statement of problem 15 as a lemma

// and manually introduce a case distinction :
assert ∀ ys • sort(ys) = Nil ∨ ∃ z,zs • sort(ys) = Cons(z, zs);

}

The verification of this method requires 0.39 seconds.

5 Induction for Ghost Methods

The lemma expressed by the postcondition of method P19 in Fig. 2 says something
about all n and xs. Alternatively, the following method:

ghost method P19’(n : Nat, xs : List)

ensures len(drop(n, xs)) = minus(len(xs), n);

{ }

states the same property, but just for the particular (but arbitrary) parameters n and xs.
By universal generalization, the two methods express the same thing. Therefore, if the
program verifier can prove P19 automatically, we would expect it also to be able to prove
P19’ automatically.

Dafny’s translation of the method makes this possible: at the beginning of the body
of P19’, it effectively inserts recursive calls to P19’ for all values of the parameters that
satisfy the method’s precondition (here, just true) and are smaller than the given n,xs.
This induction translation for methods is analogous to the Induction Translation for
quantifiers, and the heuristic for when to apply this method translation is also analogous
to the Induction Heuristic for quantifiers. Two differences are noteworthy. One is that
the “smaller” ordering on parameter values is determined by the method’s (implicit or
explicit) variant expression (see [19]), as required for the recursive calls to terminate.
The other difference is that instead of inserting an induction-hypothesis antecedent, the
induction translation for methods inserts code. Inserting that many calls could severely
degrade the performance of a program, but Dafny performs this translation only for
result-less effect-free ghost methods, so there is no impact on the program’s run-time
performance.
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ghost method Lemma_RevConcat(xs : List, ys : List)

ensures reverse(concat(xs, ys)) = concat(reverse(ys), reverse(xs));

{

match (xs) {

case Nil ⇒ assert ∀ ws • concat(ws, Nil) = ws;

case Cons(t, rest) ⇒
assert ∀ a,b,c • concat(a, concat(b, c)) = concat(concat(a, b), c);

} }

Fig. 3. A lemma about the list reversal and concatenation operations (whose standard recursive
definitions are elided from the figure). Dafny automatically verifies the two assert statements and
the postcondition, which altogether require 3 appeals to induction.

Thanks to the induction translation for methods, P19’ verifies as given above (in 0.01
seconds). A more interesting example, which illustrates the induction translation for
both quantifiers and methods, is shown in Fig. 3. First, the proof of the postcondition
requires the properties that Nil is a right unit of concat (first assert) and that concat

is associative (second assert), both of which are handled by the Induction Translation.
Second, the proof of the postcondition requires induction on xs (in particular, it requires
knowing the postcondition for rest,ys in the Cons case), which is handled by the induc-
tion translation for methods. Method Lemma_RevConcat is verified as given in the figure
in 0.10 seconds.

6 Conclusion

In conclusion, the simple and straightforward (some may say brute force) approach of
inserting induction-hypothesis assumptions at heuristically chosen points in the verifi-
cation conditions passed to the SMT solver seems to be a win. Without unduly cluttering
up the source program, it automatically sets up the induction for the SMT solver, and
the SMT solver seems to do well at discharging the resulting proof obligations. The
soundness of the approach is justified by a simple appeal to the Induction Principle.

The tactic performs on par with one serious participant in the quest for automatic
induction, and yet is far simpler. The tactic introduces SMT solvers as a powerful
workhorse in the arena of induction solvers.

I have described the induction tactic as used in a program verifier. However, the
same tactic could be implemented in other settings, for example in a full-fledged proof
assistant, perhaps as part of Isabelle’s “sledgehammer” tactic [4].

Approaches to automatic induction are often accompanied by techniques for lemma
discovery. It would be interesting to investigate how they could be incorporated in the
context of an SMT solver or a program verifier like Dafny.
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Abstract. This paper presents a formal modeling paradigm that is
callable from C, the dominant language for embedded systems program-
ming, for message passing APIs that provides reasonable assurance that
the model correctly captures intended behavior. The model is a suitable
reference solution for the API, and it supports putative what-if queries
over API scenarios for behavior exploration, reproducibility for test and
debug, full exhaustive search, and other advanced model checking analy-
sis methods for C programs that use the API. This paper illustrates the
modeling paradigm on the MCAPI interface, a growing industry standard
message passing library, showing how the model exposes errors hidden
by the C reference solution provided by the Multicore Association.

Keywords: Model Checking, Concurrency, Test, Debug, Validation.

1 Introduction

Asynchronous message passing for C is important in writing applications for
embedded heterogeneous multicore systems. The Multicore Association (MCA),
an industry consortium promoting multicore technology, is working to standard-
ize message passing into a single API, MCAPI, for bare metal implementation
and portability across platforms [26]. The MCAPI specification is a 169 page
document in English. The inherent vagueness of such a description is valuable
because implementation details are not micro-managed by API designers. In
other words, high-level properties of the API such as “atomic”, “blocking”, or
“non-overtaking” are specified without detailed explanation of internal API state
nor how they should be provided. Correctness in implementing and using such
an API, however, is difficult to reason about manually.

It is not unusual to provide an initial API implementation (production or
otherwise) with a natural language description of the interface and MCAPI is
no different, providing a C implementation of the interface. Unfortunately, there
are two issues with it: i) it is implemented in a production language that is
semantically distant from the natural language description so it is not clear which
behaviors of the description it implements nor if it is correct; and ii) the reference
is non-deterministic due to concurrency in the reference itself making test and
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debug activities difficult. A reference implementation needs to be semantically
near the natural language description, while still being formal, and it needs to
be deterministic for test, debug, and exploration. Programmers must have have
a way to directly control API internals to expose or reproduce errors.

There are several formal modeling languages with mathematically defined op-
erational semantics. A few languages such as TLA also provide a general runtime
implementation of the operational semantics [14]; though most only provide tools
to verify properties of models expressed in the formal language [11,17,13,22].
Regardless, the implementation of the operational semantics for these general
languages is in a low-level language such as C introducing a significant gap be-
tween the mathematical expression of the semantics and the actual rendered
implementation that is difficult to reason about. Additionally, for those that do
implement a runtime for the formal language, there is no obvious way to con-
nect that runtime to C programs written against the API. As such, these formal
models are not suitable reference implementations for test and debug.

This paper presents a modeling language, 4M, for message passing APIs de-
fined by natural language descriptions. The modeling language is sufficiently
abstract to provide a reasonable assurance that the model correctly captures
the intent of the natural language description. Furthermore, since 4M formally
defines operational semantics, standard model checking or theorem proving tech-
niques can be applied to prove the model implements the API specification (as-
suming such a specification exists). Novel to the 4M modeling language is a
deterministic runtime, callable from C, derived from its operational semantics
that is suitable for test, debug, scenario exploration, model checking, or other
verification techniques. We demonstrate the methodology through a case study
on the MCAPI communication library. The contributions of this work are

– a modeling language, 4M, implemented as a term rewriting system that is
suited to natural language descriptions;

– a novel architecture to directly connect the C runtime to the 4M runtime
to use the model as an instance of the API that is explorable, testable, and
capable of model checking;

– an implementation of the rewriting system in Racket which a programming
language based on PLT Scheme; and

– an MCAPI 4M model with running time results to measure overhead and
bugs discovered from several C programs written against the MCAPI.

The result is that when an API is formally modeled in 4M, it is possible to use
that model to explore system-wide program behavior that existing models and
implementations cannot reason about.

Fig. 1 illustrates the methodology. 4M intuitively expresses the intent of the
natural language API description (Fig. 1(a)). The core calculus describing the
operational semantics of 4M is directly implemented by PLT Redex (Fig. 1(b)).1

Programs using the API are developed in the C language as intended by the

1 PLT Redex is a tool for creating and debugging language semantics defined as term
rewriting systems, and it is part of the Racket runtime [7,8].
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Fig. 1. Architecture for an API model callable from a native runtime

API (Fig. 1(c)). Such a program calls C function stubs that define the API
interface and communicate with the runtime implementation of the 4M semantics
through a pipe (Fig. 1(d)). Program execution proceeds in a normal fashion. As
each thread enters the API, the corresponding thread is blocked. When all of
the threads are blocked in the API, the API then communicates with a search
strategy to choose a next state, and returns to the C runtime. In the case study
on MCAPI presented in this paper, the search strategy is a random walk or an
exhaustive search. The user can make both of these deterministic for debug or
replay by setting the random seed to a known value (Fig. 1(e)).2

The following sections describe this process and our contributions in detail:
Sec. 2 informally presents 4M on a toy message passing library;3 Sec. 3 presents
the novel client-server architecture that bridges the C runtime to the 4M core
runtime; Sec. 4 presents our study on MCAPI; Sec. 5 addresses specific related
work to this research; And Sec. 6 concludes and presents future work.

2 Modeling with 4M

Fig. 2(a) is the English description of a connectionless message passing API
for multi-threaded applications. The specification defines four API functions to
create mailboxes, get mailboxes, and then send and receive messages between
mailboxes. The structure of the natural language specification defines transitions
with their input, effects, and error conditions, which are helpful properties in
understanding individual API behavior in isolation.

It is a challenge to explain intended behavior in simple scenarios consisting
of a handful of calls when dealing with APIs for concurrent programs. Such
scenarios are often created by adopters or implementers of the API to reason
about the expected API behavior relative to its documentation. Most often these

2 The random seed is provided as output from the tool and can be specified as part
of the run configuration for a test.

3 More details on the 4M language with its core operational semantics and program-
ming framework are in [1].
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mbox t mbox(int id, status t *s)

Description: Creates a mailbox for id, returns its reference, and sets *s to
1. If id already exists, *s is set to -1 and the return has no meaning.

mbox t get mbox(int id, status t *s)

Description: Returns the reference for mailbox id and sets *s to 1. The call
blocks if the mailbox has yet to be created.

void send(mbox t frm, msg t *msg, mbox t to)

Description: Sends the message msg from the mailbox frm to the mailbox
to. It is a blocking function and returns once the buffer msg can be reused by
the application.

void recv(mbox t to, msg t *msg)

Description: Receives a message into msg from the mailbox to. It is a
blocking function and returns once a message is available and the received
data filled in msg. Messages from a common mailbox are non-overtaking.

(a)

Thread 0 Thread 1 Thread 2

to0 = mbox(0,&s) to1 = mbox(1,&s) from2 = mbox(2,&s)

to0 = get mbox(0, &s) to0 = get mbox(0, &s)

from1 = mbox(3, &s) to1 = get mbox(1, &s)

recv(to0,&a) recv(to1,&c) send(from2,"Y",to0)

recv(to0,&b) send(from1,"X",to0) send(from2,"Z",to1)

(b)

Fig. 2. A simple message passing API. (a) The natural language description of the
API. (b) A scenario written over the API.

scenarios assist in understanding the API behavior and are used to convey that
understanding to the broader community. Consider the scenario in Fig. 2(b) that
includes three threads using the blocking send (send) and receive (recv) calls
from the API to communicate with each other. The declarations of the local
variables (e.g., to0 ) are omitted for space. Picking up just after the mailboxes
are defined, thread 0 receives two messages from the mailbox to0 in variables
a and b; thread 1 receives one message from the mailbox to1 in variable c and
then sends the message “X” to the mailbox to0 ; and finally, thread 2 sends
the messages “Y” and “Z” to the mailboxes to0 and to1 respectively. After the
scenario, we may ask: “Which messages may be in which variables?”

Intuitively, variable a should contain “Y” and variable b should contain “X”
since thread 2 must first send message “Y” to mailbox to0 before it can send
message “Z” to mailbox to1 ; consequently, thread 1 is then able to send message
“X” to mailbox to0. Such intuition is a correct program execution, but it is not
the only execution, since the specification allows an alternative scenario where
message “Y” is delayed in transit and arrives at mailbox to0 after message “X”.
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The natural language description in Fig. 2(a) states that the send operation
“returns once the buffer msg can be reused by the application.” As such, the
return of the send only implies a copy-out of the message buffer and not a
delivery to the intended mailbox; thus, an additional program execution places
the message “X” in variable a and the message “Y” in variable b.

Nuances like this are discovered in the process of concretizing internal API
details, leading the modeler to engage in an iterative process with API designers
which brings value to both by clarifying the semantics of the API. The speci-
fication in Fig. 2(a) is a simplified subset of a real communications API from
the MCA (MCAPI). Conversations with the MCAPI designers confirmed the
intended behavior of the API to include both program executions of the sce-
nario. To date, there have been three published verification and analysis tools
purpose-built for MCAPI and all of them omit the less intuitive program execu-
tion [23,6,5]. Naturally, our model does not omit it.

2.1 Formal Model of the API

There are several languages one might consider in modeling an API (see Sec. 5).
Recent attempts to model MPI in the formal logic of TLA have shown the logic to
be too low-level for practical application [14,20]. Alternatively, when considering
a direct implementation such as one in C, not only is the gap between the
natural language description and C extremely difficult to bridge, for example,
the MCAPI reference solution includes 11776 lines of code to consider, it is
not easy to test in the presence of concurrency because a user cannot readily
control execution schedules. Moreover, C is unusually susceptible to bugs as
evidenced by our experience with the MCAPI reference implementation which
non-deterministically deadlocks.

We propose 4M, which matches the natural language description, as opposed
to most existing modeling languages that do not. Furthermore, the intent of 4M
is not to embed verification assertions such as guaranteed message delivery into
the model. Rather, those types of correctness properties should be expressed in
an appropriate logic and used to verify the correctness of the model. The goal
is to capture the natural language description in an operational model. While
4M is yet another modeling language, it is domain specific, rather than general
purpose, making it more amenable to the task at hand.

4M is a formal modeling language designed to keep the best things from the
natural written style and remove the worst. To be specific, 4M keeps the structure
of the natural language specification that defines transitions with their input,
effects, and error conditions, but it replaces the statements such as “message
non-overtaking” with effects described in first-order logic over a predefined and
explicitly listed vocabulary of API state. Furthermore, all internal processing
implied by statements such as “it returns once the buffer can be reused by another
application” is made explicit by defining daemon transitions that operate on
internal API state that are concurrently enabled with pending API transitions.

The 4M description for our toy API is given in Fig. 3. This model is the input
in Fig. 1(a) of our proposed solution. The vocabulary for the API state is defined
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in lines 1–4 comprising mailboxes to track defined end points, modeled as a set
(indicated by the braces {}), and queues, initialized with the value 0, to track
outstanding message sends in the form of a list of tuples. The API interface is
defined as a series of transitions given in lines 5–42 with always enabled daemon
transitions in lines 43–53 to manage internal state.

Consider the mbox transition defined on lines 5–18. It takes three input param-
eters: a mailbox identifier id and references to result (resultAddr) and return
status (statusAddr) which are used to communicate with the caller. The tran-
sition itself is divided into two sections: rules (lines 7–13) and errors (lines
14–17). Each section contains a set of guarded transitions.

The 4M language has a first order treatment of errors in any given transition.
The language is designed for natural language description that presents a tran-
sition’s normal behavior followed by a set of possible errors. An error or rule
is enabled when its guard is true. The semantics of 4M block a transition until
a guard becomes true (rule or error), and give preference to error rules. Any
enabled error may be selected, and its corresponding transition is taken. In the
mbox transition, the guard on the error in line 15 uses existential quantification
(\E) over the set mailboxes to determine if the request duplicates an existing
mailbox. The dot notation in box.0 of the guard implies that mailboxes is a
set of tuples, and the notation is comparing the first member of each tuple to
id. The effect of the error (indicated by the text following the ==> on line 16)
is to set the memory referenced by statusAddr in the next state to the value
-1. 4M does not support unbounded non-determinism so integers range over a
bounded set using modular arithmetic. The ‘@’ symbol is the dereference and
the apostrophe indicates the next value. Evaluation of guards and application of
the effect is one atomic step.

The rules section of mbox defines a single behavior on lines 8–12. This tran-
sition is always enabled in the absence of an error, and its effect is to (i) create
an entry in the store and set the reference to be newAddr using the tmp com-
mand (line 9); (ii) set the next value of memory referenced by resultAddr to
be newAddr (the content of resultAddr is the return value from the transition);
(iii) update the set mailboxes with the tuple [id, newAddr] using the union
operator \U (line 11); and (iv) set the memory referenced by statusAddr in the
next state to 1 to indicate the successful completion of the transition as per the
API specification. All of this occurs as one atomic step.

The other transitions get mbox, send, and recv are defined like mbox. The
transition recv, which blocks in the absence of a message, is protected by the
guard on line 38 that is only satisfied if the memory referenced by variable to

is not empty (i.e., when a message is pending). In the rule body, the variable
to references a list (lines 39–40) where the first member is the message with the
content copied into msg and the second member is the list of remaining messages.

Internal API housekeeping is managed by daemon transitions as illustrated
by the pump transition defined on lines 43–53. Daemon transitions are invoked
infinitely often in the API, executed as often as the guards are enabled, and
represent a concurrent thread of execution. The pump daemon in the example
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1 state
2 mailboxes = {}
3 queues = 0
4 end
5 transition mbox
6 input id, statusAddr , resultAddr
7 rules
8 true ==>
9 tmp newAddr ;

10 @resultAddr ’ := newAddr ;
11 mailboxes ’ := mailboxes \U {[id, newAddr ]};
12 @statusAddr ’ := 1;
13 end
14 errors
15 (\E box in mailboxes: box.0 = id) ==>
16 @statusAddr ’ := -1;
17 end
18 end
19 transition get_mbox
20 input id, resultAddr
21 rules
22 (\E box in mailboxes: box.0 = id) ==>
23 let mailbox = (box in mailboxes: box.0 = id);
24 @resultAddr ’ := mailbox .1;
25 end
26 end
27 transition send
28 input from , msg, to
29 rules
30 true ==>
31 queues ’ := [from , queues];
32 @from ’ := [@msg, to, @from];
33 end
34 end
35 transition recv
36 input to, msg
37 rules
38 @to != 0 ==>
39 @msg ’ := (@to).0;
40 @to ’ := (@to).1;
41 end
42 end
43 daemon pump
44 rules
45 queues != 0 ==>
46 let from = queues.0;
47 let msg = (@from).0;
48 let to = (@from).1;
49 @to ’ := [msg, @to];
50 @from ’ := (@from).2;
51 queues ’ := queues.1;
52 end
53 end

Fig. 3. A simplified message-passing API in 4M

API is active anytime queues has a non-zero value, and its role is to transfer
messages from sending mailboxes to receiving mailboxes. It does this transfer by
(i) defining a local variable from holding the first element of the queues tuple
with the let expression (line 46); (ii) defining msg to hold the actual message
from the sender (line 47); (iii) defining to to hold the address of the destination
mailbox (line 48); (iv) adding the message to the receiver mailbox (line 49);
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(v) removing the message from the sender mailbox (line 50); and (vi) removing
the pending send from queues (line 51). All of this occurs as one atomic step.

2.2 Semantic Implementation of 4M

4M is intended for human consumption with a form and semantics that are non-
trivial to define. For example, 4M gives simultaneous update of all API state
variables affected in a transition and allows calls to other transitions within an
active transition. As such, it is possible to define a blocking send as a non-
blocking send followed by a call to wait that blocks until the send completes.
The nuances of this semantics are more easily realized by a simpler core calculus.

The operational semantics for the 4M core is given by a term rewriting system
employing small-step semantics through continuations. The 4M core is mathe-
matically defined in [1]. The novelty in the 4M semantics is the layering of
machines to isolate non-determinism in a single machine. The 4M language it-
self is not terribly unique and rather its contribution lies more in the technique
in creating a domain specific language to model a system.

The implementation of the semantics corresponds to Fig. 1(b) in our architec-
ture for API modeling. Questions regarding API behavior over concurrent calls
such as the scenario in Fig. 2(b) can be explored directly in the 4M core by
iteratively presenting to the calculus the current API call of each participating
thread and asking the calculus for all possible next states of the system. In such
a manner, it is possible to evolve the API state from a known initial state to one
of several possible end states allowed by the specification.

For example, consider the API state and the thread states shown in Fig. 4 for
our scenario at the point where threads 0 and 1 are blocking on their first calls
to recv, and thread 2 is blocking on its second call to send. The top portion of
the figure shows the state of each thread with its local variables and the current
program location indicated by the •-mark. The local variables hold references
into the API state for each of the mailboxes created in the scenario.

The API state in the bottom portion of the figure is: mailboxes, that as-
sociates an ID with a memory reference that is the actual mailbox; queues,
a list tracking undelivered messages; and the mailboxes themselves with their
contents. From Fig. 4, the scenario has created four mailboxes, and mailbox 2,
located at (addr 7), has the pending message “Y” to be delivered to (addr 5).
The zero entry in the tuple indicates the end of the list (i.e., there is only one
pending message). The queues variable indicates that the message from (addr
7) needs to be delivered (by the pump daemon in the 4M model of Fig. 3).

The semantics allows several next states from the state in Fig. 4 such as the
pump transition moving the message out of the from2 mailbox–(addr 7)–into the
to0 mailbox–(addr 5)–or adding the next send from thread 2 into the queue

and the from2 mailbox–(addr 7). A test is able to trace any possible execution
from the current API state by randomly picking a transition allowed by the
semantics.
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Thread 0 Thread 1 Thread 2

s: 0 s: 0 s: 0
to0: (addr 5) to0: (addr 5) to0: (addr 5)
a: to1: (addr 6) to1: (addr 6)
b: from1: (addr 8) from2: (addr 7)

c:

•recv(to0,&a) •recv(to1,&c) •send(from2,"Z",to1)
recv(to0,&b) send(from1,"X",to0)

API Global State

mailBoxes–[id,ref ] [0, (addr 5)] [1, (addr 6)]
[2, (addr 7)] [3, (addr 8)]

queues–[ref,queues] [(addr 7), 0]

(addr 5)–mailbox 0

(addr 6)–mailbox 1

(addr 7)–mailbox 2 (“Y”, (addr 5), 0)

(addr 8)–mailbox 3

Fig. 4. The state of the threads and API for Fig. 3 and Fig. 2(b) where the threads
have run until thread 0 and thread 1 are blocking (indicated by the •-mark) at the
receives and thread 2 is attempting its last send

3 4M Implementation

3.1 Reference Solution for Test, Debug, and Behavior Exploration

Manually writing the state of the API for the 4M core and manually stepping
through the semantics definition is not feasible. Suppose instead that there exists
an actual implementation of the 4M core that captures precisely the operational
semantics. Naturally, it would be ideal to take a C program using the API,
similar to the definition of thread 0 in Fig. 5(a), and connect it directly to the
4M core implementation to simulate the API behavior.

We provide such a connection. It is implemented by a role-based relationship
between the C runtime and the 4M core implementation runtime, which we call
the GEM (Golden Executable Model). Thin wrappers bridge the API calls to
the actual C code as shown in Fig. 5(b). These correspond to Fig. 1(d) of our
solution. The gem call is the entry to the model of the API. The GEM imple-
mentation itself blocks waiting for all threads to invoke the API at which point it
communicates with the 4M core implementation to send the states of the active
threads. The component representing the search strategy corresponds to Fig. 1(e)
of our solution. The search strategy determines priority in the search order of
possible next states and can be customized by the user. The 4M implementa-
tion, corresponding to Fig. 1(b) of our solution, returns a possible next state, and
the model releases the corresponding blocked gem call for the stopped thread.
The thread then continues until the next API entry occurs to repeat the process.
The model stores a random seed from the execution for reproducibility.

Our architecture for a model replacement of APIs in C programs is divided
into three different components: an implementation of 4M, a mechanism for
capturing C API calls, and a strategy for exploring the possible system states
(see Fig. 1). These components are connected as follows:
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1 void t0() { void send(mbox_t f,msg_t* b,mbox_t t) {
2 msg_t a, b; status_t s; gem_var bv;
3 mbox_t to0 = mbox(0, &s); bv=init_var (b,buf_len (b),GEM_STRING);
4 recv(to0 , &a); gem_call ("send�(%v�%v�%v)",f, bv ,t);
5 recv(to0 , &b); del_var (bv);
6 } }

(a) (b)

Fig. 5. An interface to connect the 4M core implementation to C programs. (a) The
C implementation of thread 0 in the scenario. (b) The wrapper for the send API call.

1. A driver process spawns the GEM server and GEM client processes and
creates their inter-process communication pipes.

2. As long as there are threads that are not terminated or blocked on API calls,
the GEM client runs the user program using a cooperative threading model,
executing threads one at a time.

3. As the GEM client makes API requests, the GEM server responds to each
one and synchronizes its API state with that of the GEM client.

4. The 4M API model generates a list of possible next states given the in-
formation it has received about the threads and the blocked API call for
each thread. A next state determines which blocking API call will finish.
The GEM server randomizes the list of possible states and designates the
first state as the one to be explored. To ensure deterministic behavior, the
random seed used for the random walk can be set by the user.

5. Once a next state has been selected, the state change is synchronized with
the GEM client and the corresponding threads are unblocked.

6. Steps 2 - 5 are repeated until program termination.

The underlying assumptions for correctness is that i) a thread eventually enters
the API, even if it enters through an explicit call to exit the thread, at which
point we can ignore it forever; and ii) there is no other non-determinism in the
system (i.e., no I/O etc.). The first point (i) is needed to return control to the
API model and indicate when it is time to compute a next state (i.e., all of the
threads have arrived); otherwise, the model does not know if it should continue
to wait for a thread to enter the API or compute a next state. The second point
(ii) is important for replay.

The steps described represent the execution of a single pathway of the user
program. In order to perform an exhaustive exploration, our tool implements
a rewind and replay mechanism. When API calls are made by the GEM client
on behalf of the user program, the responses returned by the GEM server and
API are recorded in a file. This logging enables a zero-calculation replay of the
user program up to the point where a new next state is to be explored. Again,
we currently restrict out all other sources of non-determinism in the program
in order for the replay to work correctly (i.e., I/O etc. must be deterministic
for replay). The GEM client merely reads logged responses from the pipe rather
than reading live responses. During the replay phase, the GEM server ignores any
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1 mbox_t mbox(int id, status_t * s) {
2 mbox_t res;
3 gem_var sv, rv;
4 sv = reg_var (s, sizeof(int));
5 rv = reg_var (&res, sizeof (mbox_t));
6 gem_call ("mbox�(%d�%v�%v)",id,sv,rv);
7 del_var (sv); del_var (rv);
8 return res;
9 }

Fig. 6. An example wrapper for the mbox function

requests sent by the GEM client. The user program is not rerun in its entirety.
It is instead run to a point decided by the GEM server (i.e., the point at which
is new or different next state is to be considered).

The immutable and recursive characteristics of functional programs afford the
GEM server some abilities not easily mirrored in the GEM client. In particular,
they enable the server to “rewind” itself to an earlier program state by simply
returning up the execution stack. We utilize this feature to exhaustively explore
execution paths. Picking up just after step 6 above:

1. The GEM server checks if all possible paths have been explored.
2. If unexplored paths exist, the GEM server rewinds to the point where it last

selected a next state from the list of next states given by the API model. If
all states in the list have already been explored, the server is instead rewound
to the latest point where there still exists unexplored next states.

3. The GEM client is told to replay the user program.
4. The GEM server waits for the GEM client to replay. The responses recorded

from the last execution are sent to the client so it may replay to the execution
point where the GEM server is waiting.

5. Normal execution continues, but this time the GEM server selects the first
unexplored next state from the list.

6. When all paths have been explored, the tool terminates.

Following are some of the finer details of the C Wrappers. Fig. 6 shows an
example wrapper that demonstrates the issues each wrapper must manage:

– The wrapper must match the API interface to be a suitable model. (Line 1)
– As the C runtime and 4M runtime communicate through a pipe, we must

use an external representation of values. (Lines 2 and 3)
– Some parameters may be pointers to C memory (such as s), so the wrapper

must allocate a 4M location (implemented by reg var) for it. (Line 4)
– Similarly, 4M transitions do not have “return values”—instead a return is

accomplished by passing a reference that gets updated. This encoding is
managed by the wrapper by allocating a 4M location. (Lines 2 and 5)

– Since the 4M runtime simply waits for API calls to execute, the wrapper must
marshal each call to 4M. This process entails encoding parameters as 4M
values. Line 3 prepares references, then lines 4 and 5 use the function reg var

to associate the C memory references with 4M store locations. The gem call



Modeling Message Passing for C 343

function (line 6) automatically expands its arguments to the correct 4M
encoding based on the placeholders in the format string. More complicated
data conversion may be necessary where C datatypes do not match the 4M
core datatypes: C distinguishes between integer and floating-point numbers
while 4M does not; C also allows arrays of bytes, while 4M has only strings.
The details are important, but trivial and tedious.

– Inside gem call, the 4M runtime takes over and can delay arbitrarily long
until the result of the API call is computed by 4M and the search strategy.

– Once gem call completes, the C memory locations associated with 4M store
locations (as established in lines 4 and 5) are updated with their new values,
and the result is returned (line 8).

In summary, the responsibility of the wrappers is to convert data types and
parameters as needed, register memory shared by the C program and API, then
communicate the call to the model where the state capture component takes
over. Once the next state has been computed and reified into the C program,
the model returns control to the wrappers.

Our 4M implementation is written in PLT Redex [7], a domain-specific lan-
guage that ships with Racket [8] for encoding operational semantics as rewriting
systems.4 We employed PLT Redex for its development environment which pro-
vides a richer set of test and debug tools than say Maude, another term rewriting
system. Further, PLT Redex is tightly integrated with Racket letting us embed
arbitrary Racket code into the term rewriting system. Such integration is useful
as some transformations over the machine state are more naturally expressed in
Racket than in PLT Redex. As 4M is defined in machine semantics as a term
rewriting system, the encoding in PLT Redex is obvious.

4 MCAPI Model Results

We validate our process on the connectionless message passing portion of the
MCAPI communications library [26]. There are 43 API calls in the library reg-
istry, and 18 of those are related to the connectionless message passing. We
implement the 12 most relevant calls that cover the bulk of the functionality.
The 4M model comprises 488 lines of code utilizing 3 daemon transitions for
internal processing which is quite small compared to the roughly 30 pertinent
pages of the 169 page English description. The API state itself only contains 4
unique variables. The 4M model compiles into 284 lines of the 4M core calculus.

As there is no “formalism” of the MCAPI API to which we can relate our 4M
model, we validate our model through empirical test. Specifically, we have devel-
oped a suite of API scenarios (i.e., regression tests) for which we have validated
with the API designers the possible outcomes. We run each of these scenarios

4 We use an unpublished compiler for PLT Redex that drastically improves perfor-
mance by specializing Redex to deterministic reduction semantics where at most
one reduction is applicable. With this new compiler, an exhaustive test that takes
12 minutes on the stock system completes in a few seconds.
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Table 1. Benchmark Runtimes

Benchmark Lines API Calls Paths Run Time

Self Send 42 6 1 3.969s

Topher Scenario 128 18 27 6.595s

Leader 168 24 42 13.487s

through our API model ensuring that our model captures all the allowed behav-
iors specified in the scenarios. In the end, we have no definitive test that proves
our model more correct than say the C reference implementation; however, as
our model is not so semantically apart from the documentation as say the C ref-
erence implementation, we subjectively have a greater assurance (or at least we
are more able to convince ourselves) that our model is correct. In other words, it
is much easier to argue through inspection that our model implements the API
than it is to argue similarly that the C reference solution implements the API.5

To quantify the overhead in the model, we report running times on several
examples as measured with the Unix time command on an Intel Core 2 Quad
2.66 GHz machine with 8 GB of memory running Fedora 14 as well as the number
of bytes sent through the pipes. Unfortunately, the tested examples are all in-
house as there is no MCAPI code in the wild, to the knowledge of the authors,
at the time of writing. Running the scenario in Fig. 2(b) directly in Racket (not
through the C runtime) in single execution mode takes 1.6 seconds. The same
single execution through the C runtime takes 3 seconds (2.6 of which is starting
the Racket server). This overhead in starting the server is mitigated in longer
running programs. In the C execution, ∼2KB are communicated between the
C runtime and the Racket server. The C runtime spends 403ms waiting for the
Racket runtime (22ms on an average call). An insignificant amount of time is
spent preparing, sending, and parsing IPC messages. Clearly this would grow
with the size of the scenario and the size of the API state.

As a reference point, the running time for the MCAPI dynamic verifier MCC
on a scenario with 3 threads, two performing parallel sends, and the third mak-
ing two sequential receives is under 1 second [23], whereas in our implementation
it takes 2.9 seconds total (2.6s to start the server and 0.3s to compute.) Recall
that the MCC tool relies critically on a reference implementation that, as dis-
cussed previously, is buggy and does not include all the behavior allowed in the
API. As a note, our 4M model can be a drop-in replacement for the reference
implementation in the tool as our model provides the exact interface.

We implemented Dijkstra’s self-stabilization algorithm [3] in C using MCAPI.
This algorithm runs in 8.2 seconds at n = 4. Of this 8.2s, 5.5 was spent in the 4M
implementation and 2.6 starting the Racket server. During the execution,∼14KB
of data is communicated to Racket and ∼3KB from Racket. This suggests that
real programs do incur significant overhead using 4M but can still run feasibly.
With n = 6, the algorithm completes in 35s. Table 1 summarizes the results
obtained from other MCAPI benchmark programs with our tool.

5 See [1] for the MCAPI 4M model and the 4M tool set.
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As expected, the exhaustive search using our 4M model found both executions
in the example scenario of Fig. 2(b) which is the Topher Scenario in the table.
The non-intuitive scenario triggers an assertion violation in the test harness. In
addition to these MCAPI benchmarks, we converted a control program for an
amusement park used in an operating system class to MCAPI. The program is
1,192 lines of C code, creates 45 distinct threads, and issues thousands of MCAPI
calls. The program has been run hundreds of times on the MCA reference solution
and has never failed. When using the 4M model, the program immediately failed.
Further inspection revealed three distinct race conditions latent in the code that
can only be realized by specific message orderings allowed by the specification
but not present in the MCA reference implementation.

5 Related Work

Verifying concurrent systems has long be a topic of active research. There are
several modeling and specification languages with complete frameworks for anal-
ysis and model checking. These include Promela, Murphi, TLA+, Z, Alloy, and
B, to name a few [11,4,14,25,12,2]. There are two differentiators as related to
the proposed approach in this paper: first, the connection in other solutions be-
tween the mathematical semantic definition of the language and the runtime is
not clear whereas the term rewriting systems expressed in PLT Redex are ex-
pressed naturally in mathematical notation; thus there is a reasonable assurance
that the model runtime corresponds directly to the mathematical expression of
the semantics. And second, the other solutions target analysis in the model’s
runtime whereas our work is intended as a model of the API that serves as
a replacement for the actual API implementation when testing and debugging
applications written against the API in the intended target language.

There have been attempts to model MPI in extant specification languages
including conversion from C programs using MPI to the specification lan-
guage [24,9,20,15]. Recent work takes CUDA and C to SMT languages [29,16,6,5].
Such implementations are only suitable to scenario evaluation and not drop-in
replacement. They must also prove a correct translation to the analysis language.

Recent work in dynamic verification uses the program directly with the
actual API implementation to perform model checking (i.e., the API imple-
mentation serves as the API model itself) [10,18,21,19,30,27,31,28]. Although
search through continuations rather than repeated program invocation is similar
to [18,21], the proposed work in this paper does not critically rely on an existing
runtime implementation; thus, it is able to elicit all behaviors captured in the
specification and directly control internal API behavior. Without such control,
verification results are dependent on the chosen implementation, and even then,
on just those implementation aspects that are controllable. For example, it is
not possible to affect arbitrary buffering in MPI or MCAPI runtime libraries and
as a result, behaviors such as those in our example scenario are omitted in the
analysis [23]. Some recent work can test threaded or distributed libraries written
against POSIX or Windows APIs, exploring all possible execution paths in the
implementation itself, but they depend on a specific implementation [31,28].
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6 Conclusion and Future Work

English specification of concurrent APIs catalog interfaces and list effects of
correct and incorrect calls to those interfaces. Unfortunately, they provide no
framework with which a programmer or designer might experiment to further
understand the API in the presence of many concurrent calls. The work in this
paper provides a replacement for concurrent APIs using a formal model by (i)
creating the 4M language to intuitively model natural language API descriptions;
(ii) defining a novel role-based architecture to directly connect the C runtime
to 4M to use the model as an instance of the API that is explorable, testable,
and capable of exhaustive search; (iii) building an implementation of 4M as a
rewriting system in Racket; and (iv) validating the process in a portion of the
MCAPI communication API. The result is that when an API is formally modeled
in 4M, it is possible to use the same model with native programs written against
the API to explore system-wide program behavior.

Future work includes (i) adapting reductions that leverage SMT technology
from model checking to mitigate state explosion in data and scheduling non-
determinism [29]; (ii) partial order reduction based on persistent sets; (iii) im-
proving the communication between the different runtimes using search order
and undo stacks; (iv) case study in other APIs and in particular the MCA API
for resource allocation as it deals with shared memory; and (v) an implementa-
tion of the 4M core in Maude to improve running time performance.

References

1. The 4M modeling language, https://github.com/ericmercer/4M
2. Abrial, J.R.: The B-book: assigning programs to meanings. Cambridge University

Press (1996)
3. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communi-

cations of the ACM 17, 643–644 (1974)
4. Dill, D.L., Drexler, A.J., Hu, A.J., Yang, C.H.: Protocol verification as a hard-

ware design aid. In: IEEE International Conference on Computer Design: VLSI in
Computers and Processors, pp. 522–525 (1992)

5. Elwakil, M., Yang, Z.: CRI: Symbolic Debugger for MCAPI Applications. In: Boua-
jjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 353–358. Springer,
Heidelberg (2010)

6. Elwakil, M., Yang, Z.: Debugging support tool for MCAPI applications. In: Parallel
and Distributed Systems (2010)

7. Felleisen, M., Findler, R.B., Flatt, M.: Semantics Engineering with PLT Redex.
The MIT Press (2009)

8. Flatt, M.: PLT: Reference: Racket. Tech. Rep. PLT-TR-2010-1, PLT Inc. (2010),
http://racket-lang.org/tr1/

9. Georgelin, P., Pierre, L., Nguyen, T.: A formal specification of the MPI primitives
and communication mechanisms. Tech. rep., LIM (1999)

10. Godefroid, P.: Model checking for programming languages using Verisoft. In: Prin-
ciples of Programming Languages, pp. 174–186 (1997)

11. Holzmann, G.J.: The model checker SPIN. IEEE Transactions on Software Engi-
neering 23, 279–295 (1997)

https://github.com/ericmercer/4M
http://racket-lang.org/tr1/


Modeling Message Passing for C 347

12. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT Press
(April 2006)

13. Jongmans, S.-S.T.Q., Hindriks, K.V., van Riemsdijk, M.B.: Model Checking Agent
Programs by Using the Program Interpreter. In: Dix, J., Leite, J., Governatori, G.,
Jamroga, W. (eds.) CLIMA XI. LNCS, vol. 6245, pp. 219–237. Springer, Heidelberg
(2010)

14. Lamport, L.: TLA - the temporal logic of actions,
http://research.microsoft.com/users/lamport/tla/tla.html

15. Li, G., DeLisi, M., Gopalakrishnan, G., Kirby, R.M.: Formal specification of the
MPI-2.0 standard in TLA+. In: Principles and Practices of Parallel Programming,
pp. 283–284 (2008)

16. Li, G., Gopalakrishnan, G., Kirby, R.M., Quinlan, D.: A symbolic verifier for CUDA
programs. In: Principles and Practice of Parallel Programming, pp. 357–358 (2010)

17. McMillan, K.L.: Symbolic Model Checking: An approach to the state explosion
problem. Ph.D. thesis, Carnegie Mellon University (1992)

18. Mercer, E.G., Jones, M.: Model Checking Machine Code with the GNU Debug-
ger. In: Godefroid, P. (ed.) SPIN 2005. LNCS, vol. 3639, pp. 251–265. Springer,
Heidelberg (2005)

19. Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of mul-
tithreaded programs. In:Programming LanguageDesign and Implementation (2007)

20. Palmer, R., DeLisi, M., Gopalakrishnan, G., Kirby, R.M.: An Approach to Formal-
ization and Analysis of Message Passing Libraries. In: Leue, S., Merino, P. (eds.)
FMICS 2007. LNCS, vol. 4916, pp. 164–181. Springer, Heidelberg (2008)
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Abstract. This work considers concurrent programs formed of pro-
cesses connected by an underlying network. The symmetries of the net-
work may be used to reduce the state space of the program, by grouping
together similar global states. This can result in an exponential reduc-
tion for highly symmetric networks, but it is much less effective for many
networks, such as rings, which have limited global symmetry. We focus
instead on the local symmetries in a network and show that they can
be used to significantly reduce the complexity of compositional reason-
ing. Local symmetries are represented by a symmetry groupoid, a gen-
eralization of a symmetry group. Certain sub-groupoids induce quotient
networks which are equivalent to the original for the purposes of compo-
sitional reasoning. We formulate a compositional reasoning principle for
safety properties of process networks and define symmetry groupoids and
the quotient construction. Moreover, we show how symmetry and local
reasoning can be expoited to provide parameterized proofs of correctness.

“Whenever you have to do with a structure-endowed entity try to determine its group
of automorphisms”
Hermann Weyl, Symmetry , 1952

“... there are plenty of objects which exhibit what we clearly recognize as symmetry, but
which admit few or no nontrivial automorphisms. It turns out that the symmetry, and
hence much of the structure, of such objects can be characterized algebraically if we use
groupoids and not just groups.”

Alan Weinstein, Groupoids: Unifying Internal and External Symmetry – A

Tour through Some Examples, Notices of the AMS, 1996.

1 Introduction

State-space explosion is the main obstacle to the scalability of model checking.
In this work, we consider proofs of safety for programs structured as a network
of processes, executing concurrently and asynchronously. The network is used
to represent how state is shared between groups of processes. The model is
expressive, allowing refined statements of sharing relationships, such as read-
only, read-write and write-only. As an example, globally shared memory may
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be represented by a hub-and-spoke network, with the memory at the hub and
processes at the spokes; a dining philosophers network has processes arranged in
a ring, with adjacent philosophers given read-write access to their shared fork.

A natural question is whether network symmetries can be exploited to reduce
the complexity of model checking. Indeed, it is known that for networks which
are highly symmetric, reducing the global state space by collapsing together sym-
metric states results in exponential savings [18,6,14]. On the other hand, many
networks, such as rings, have limited global symmetry so this reduction is much
less effective for those networks. We consider instead the local symmetries of a
network and show that they can be used to significantly reduce the complexity
of compositional reasoning methods.

The essence of compositional methods lies in using local reasoning as a sub-
stitute for global reasoning: each process of a concurrent program is analyzed
separately along with an abstraction of its neighboring processes. The benefit
is that local methods work in time polynomial in the number of processes, in
contrast with the PSPACE-hardness of the model checking question. Efficiency
comes, however, at the cost of incompleteness. (It is possible to overcome in-
completeness by adding auxiliary state, at the cost of making the analysis less
compositional.)

The intuition behind our results is that compositional methods, being local
in their scope, benefit from purely local symmetries. Networks with little global
symmetry can have significant local symmetry: in a ring network, for instance,
any two nodes are locally similar, as they have identical left and right neighbors.

To illustrate these issues, consider a uniform ring network with N nodes. A
program on this network may have a state space whose size is exponential in N –
this is the case, for instance, of a simple token-based mutual exclusion protocol.
The global symmetry group of the ring has N elements (the rotations), so the
global state space can be reduced only by a factor of N . (The state space of a
program could exhibit more symmetry than that of its underlying network, but
that is not the case here.) We show that it is possible to automatically construct
a compositional invariant which is strong enough to prove mutual exclusion,
in time polynomial in N . Making use of the local symmetries of a ring, this
calculation can be reduced to one on a fixed set of representative nodes, making
the time complexity for computing the compositional invariant independent of
N ! Moreover, it is sometimes possible to pick the same set of representatives for
all networks in a family. In such a case, the compositional invariant computed
for a small instance forms a parameterized invariant which holds for all members
of the family.

Technically, local symmetries are described by a symmetry groupoid, a gener-
alization of a symmetry group (cf. the quotations at the start of this section).
The main question tackled in this work is to determine precisely how the local
symmetries of the network influence the symmetry of a compositional inductive
invariant which is computed to prove safety properties. In the following sketch
of the main results, a local invariant has the shape (∀i : θi), where the quantifi-
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cation in i is over the nodes of the network and θi is an assertion which depends
only on the neighborhood of node i.

1. Given an “balance” relation B on the network (a form of bisimulation defin-
ing local symmetries), if (i, j) ∈ B then θi and θj are similar. I.e., the local
symmetry of the network is reflected in the symmetry of the computed com-
positional invariant.

2. The orbit relation of the group of global automorphisms of a network forms
a balance relation. I.e., global symmetries induce local symmetries.

3. A groupoid balance relation induces a quotient network which is equivalent
to the original for the purpose of local reasoning.

4. If there is a single quotient for a family of networks, the compositional in-
variant computed for this quotient generalizes to a parameterized invariant
which holds for all networks in the family.

The results point to deep connections between local symmetry, compositional
methods and parameterized reasoning.

2 Networks and Their Symmetry Groupoids

A network is given by a pair (N,E) where N is a set of nodes and E is a
set of edges. Each node is assigned a color by a function ξ : N → C, with
C a set of colors. Associated with each edge is a color, given by a function
ξ : E → C (we use the same color set for simplicity); a set of input nodes, given
by ins : E → P(N); and a set of output nodes, given by outs : E → P(N),
where P(N) represents the power-set of N . The input and output sets of an
edge may overlap.

There are several derived notions. The incoming edges for a node are given by
a function In : N → P(E), defined by In(n) = {e | n ∈ outs(e)}. The outgoing
set of edges for a node is similarly defined by a function Out : N → P(E), given
by Out(n) = {e | n ∈ ins(e)}. The set of edges incident to a node is defined by
the function InOut : N → P(E), given by InOut(n) = In(n) ∪Out(n).

Definition 1 (Points-To). A node m points-to node n, denoted m ∈ pt(n), if
m �= n and Out(m) ∩ InOut(n) is non-empty.

Informally, two nodes are locally similar if their immediate neighborhoods are
identical up to a re-mapping.

Definition 2 (IO-Similarity). Nodes m and n are (locally) similar, written
m 1IO n, if (1) the nodes have the same color, i.e., ξ(m) = ξ(n), and (2) there
is a correspondence between respective sets of incident edges, which preserves
color and in/out status. I.e., there is a function β : InOut(m) → InOut(n)
which is a bijection between In(m) and In(n), a bijection between Out(m) and
Out(n) and for every e, ξ(e) = ξ(β(e)).
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Fig. 1. Trivial Global Symmetry, Non-trivial Local Symmetry

Figure 1(a) an example network, based on one from [16]. Colors are also
marked by shapes: node 5 has a different color from node 4. This network has only
the identity as a global automorphism; however, nodes 1 and 2 are locally similar,
as their neighborhoods – shown in Figure 1(b) – are related by the bijection β
which maps input edges e2 (→ e1; e5 (→ e6 and output edges e1 (→ e2; e3 (→ e4.
Nodes 3 and 2 point to node 1, while nodes 3 and 1 point to node 2.

2.1 Local Symmetry Groupoids

The set of tuples of the form (m,β, n) where β is a witnessing bijection for
m 1IO n forms a groupoid. Following [16], we call this the symmetry groupoid
of the network and denote it by GIO. A groupoid (cf. [3,26]) is (roughly) a group
with a partial composition operation. It is defined by specifying a set of elements,
E, a set of objects O, source and target functions src : E → O and tgt : E → O
and an identity function id : O → E. These must satisfy group-like conditions.

1. The composition ab of elements a, b is defined only if tgt(a) = src(b), with
src(ab) = src(a) and tgt(ab) = tgt(b)

2. Composition is associative. If one of a(bc) or (ab)c is defined, so is the other,
and they are equal

3. For every element a, the element λa = id(src(a)) is a left identity, i.e.,
λaa = a, and ρa = id(tgt(a)) is a right identity, i.e., aρa = a

4. Every element a has an inverse (a−1), such that aa−1 = λa and a−1a = ρa.

A groupoid can be pictured as a directed graph: the nodes are the objects, there
is a directed edge labeled by element e from its source to its target object.
Identities form self-loops. (A group is a groupoid with a single base object.)

In the network symmetry groupoid, the objects are the nodes of the net-
work and the elements are all triples (m,β, n) where β is a bijection defining
the similarity between nodes m and n. The identities are defined by id(n) =
(n, ι, n), where ι is the identity map. For an element (m,β, n), src(m,β, n) = m,
tgt(m,β, n) = n and its inverse is (n, β−1,m). The composition of (m,β, n) and
(n, γ, o) is (m, γβ, o).
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A groupoid induces an orbit relation: objects a, b are related if there is a
groupoid element e connecting them, i.e., if src(e) = a and tgt(e) = b. From the
groupoid properties, this is an equivalence relation. The orbit relation for the
symmetry groupoid is just 1IO.

3 Local Reasoning on a Process Network

In this section we develop an assume-guarantee rule for proving safety properties
of process networks. It is similar to the rules from [15,23] which apply to the
globally shared memory model. Each node in a network is assigned a process,
with locally similar nodes being assigned similar processes. The proof rule results
in an inductive invariant of the form (∀i : θi) where θi is an assertion on the
neighborhood of the process assigned to node i. We show that there is a strongest
invariant of this form and that it can be computed as a simultaneous fixpoint.

3.1 Assignment of Variables and Processes

Given a network (N,E), we associate a variable ln with each node n and a
variable ve with every edge e. The type of the variable is the color of the node
or edge. Let Xn = {ve | e ∈ In(n)} be the set of input variables for node n;
similarly, let Yn = {ve | e ∈ Out(n)} be the set of output variables for n and
let Ln = {ln}. Let Vn = Xn ∪ Yn ∪ Ln. Thus, Vn defines the variables in the
immediate neighborhood of node n. The set V is defined as (∪ n : Vn).

With each node n is associated a transition condition Tn(Vn, V
′
n) which is

constrained so that it leaves the variables in Xn\Yn unchanged. The network as
a whole has an initial condition, I. The variables assigned to nodes and edges,
the network initial condition and the transition conditions for each node define
an assignment of processes to the network. We denote the process for node n as
Pn. Let Ĩn = (∃V \Vn : I) be the projection of the initial condition on to Vn.

Definition 3 (Valid Assignment). An assignment is valid for B ⊆ GIO if it
respects the local symmetries in B: i.e., for every (m,β, n) ∈ B, it should hold
that [Tn ≡ β(Tm)] and [Ĩn ≡ β(Ĩm)].

In this definition, β(f) is a predicate which holds for a valuation b over V if f
holds for a valuation a over V where for every e ∈ InOut(m), a(ve) = b(vβ(e))
and a(v′e) = b(v′β(e)), and a(lm) = b(ln) and a(l′m) = b(l′n). Informally, β(f) is
the predicate obtained by substituting in f variables from the neighborhood of
m (i.e., those in Vm) with the variables which correspond to them by β.

The semantics of a valid program assignment is defined as the asynchronous,
interleaving composition of the processes associated with each node. The initial
condition is I. The interleaved transition relation, T , is defined as a choice
between local transitions, (∃n : T̃n), where T̃n is the transition relation which
extends Tn so that all variables of nodes other than n are unchanged. Formally,
T̃n ≡ Tn ∧ unch(V \Vn).
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3.2 Local Proof Rules

A rely-guarantee proof rule based on the Owicki-Gries method is given in [23] for
shared-memory programs. We generalize this formulation to networks. The rely-
guarantee conditions are expressed over vectors of the form θ = (θ1, θ2, . . . , θn),
where each component, θi, is a state assertion local to process Pi. The proof
conditions ensure that the conjunction (∀i : θi) is a global inductive invariant.

Let θn(Vn) be a predicate on the neighborhood variables of node n. For (∀n :
θn) to be a globally inductive invariant, θn must include the initial states of Pn, it
must be closed under transitions of Pn and it must be closed under interference
from the nodes which point to n. We next express these conditions precisely.
We use two convenient notational conventions, taken from the book by Dijkstra
and Scholten [12]. The notation [ϕ] expresses that ϕ is valid. The notation
(∃X : r : ϕ), where X = {x1, . . . , xk} is a finite set of variables, is a shorthand
for (∃x1, . . . , xk : r ∧ ϕ). The predicate r constrains the type or the range of
variables in X . If X is empty, the quantified expression is equivalent to false .

The first condition is expressed as

[Ĩn ⇒ θn] (1)

The second condition is expressed as follows, where SPn is the strongest post-
condition operator for node n. (SP(T, ψ) is the set of successors of states sat-
isfying ψ by transitions satisfying T . SPn(T, ψ) is the projection of states in
SP(T, ψ) on to Vn.)

[SPn(Tn, θn) ⇒ θn] (2)

Closure under interference is expressed as follows

[SPn(intf
θ
mn, θn) ⇒ θn] for every m ∈ pt(n) (3)

The transition term, intf θmn (read intf as “interference”) represents the effect of
transitions at a node m on the values of variables in the neighborhood of node
n. This is defined as

intf θmn ≡ (∃V \Vn, V ′\V ′
n : T̃m ∧ θm) (4)

The interference term is a function of (Vn, V
′
n), and is thus a general transition

term. The definition of T̃m implies, however, that the interference leaves all
variables not in Vn ∩ Ym unchanged.

The three implications can be gathered together to form a simultaneous sys-
tem of implications [Fn(θ) ⇒ θn], with Fn defined by

Fn(θ) ≡ Ĩn ∨ SPn(Tn, θn) ∨ ( ∨ m : m ∈ pt(n) : SPn(intf
θ
mn, θn)) (5)

This is in pre-fixpoint form as Fn(θ) is monotone in the vector θ, ordered
component-wise by implication. By the Knaster-Tarski theorem, this system
has a least fixpoint. For finite-state systems, the fixpoint can be computed as
the limit, say θ∗, of the iteration sequence given by θ0m = Ĩn; θ

k+1
m = θkm ∨

SPn(Tn, θ
k
n) ∨ ( ∨ m : m ∈ pt(n) : SPn(intf

θk

mn, θ
k
n)). For infinite-state systems,
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the limit may be trans-finite. Component θ∗n is defined over Vn, as can be seen
by its equivalence to Fn(θ

∗) and the definition of Fn.

Theorem 1. (Soundness) The proof rules (1)-(3) imply that θ = (∀n : θn) is a
globally inductive invariant.

Proof: The base case, that [I ⇒ θn], follows for all n by (1), as I is stronger
than Ĩn = (∃V \Vn : I). To show inductiveness, consider any state s satisfying
θ and a transition by process Pm from state s to state t. As θm holds of s, the
transition satisfies both Tm and intf θmn. By (2), θm holds of t. Now consider any
other node n. If m points to n, as θn holds of s by assumption, it follows by (3)
that θn holds of t. If m does not point to n, the transition does not change the
values of any variables in the neighborhood of n, so that θn continues to hold.
EndProof.

Complexity. Let L be the number of local states per process – i.e., the number
of valuations to Vn, assuming all Vn’s are identical. Let |N | be the number of
nodes in the network, which is also the number of components of the θ vector.
Then, (1) the number of fixpoint rounds is at most |N | ∗ L, as each round must
strictly increase the set of states in at least one component; (2) the number of
updates per round is |N |, as each component of θ is updated. The work for an
update to θn is typically dominated by the interference term. Consider round k.
For each m which points to n, this requires computing successors for all states in

θkn with respect to the transition relation intf θ
k

mn. For a state in θk, its successors

can be found by looking up its association list in a table storing intf θ
k

mn. The
cost of the successor computation is, therefore, bounded by L ∗L. The total cost
is bounded by (|N | ∗ L) ∗ |N | ∗ (L2 ∗ D) where D is the maximum over all n
of the size of pt(n). This simplifies to |N |2 ∗ L3 ∗D, which is polynomial in all
parameters, whereas global model-checking is PSPACE-complete in |N | which,
in practice, implies time-complexity exponential in |N |.

Completeness. Owicki-Gries [25] and Lamport [20] recognized that local as-
sertions may not always suffice to represent the global constraints needed for a
valid proof. The resolution is to expose local state through auxiliary or history
variables, a process which can be automated [8,9,17]. It was observed in [8] that
for many protocols, constructing (∀ij) local invariants – described below – is
a good alternative to adding auxiliary variables. We consider purely composi-
tional proofs: auxiliary variables modify network symmetries in ways that will
be explored in future work.

Pair-Indexed Properties. A similar simultaneous fixpoint scheme can be con-
structed for multi-indexed properties, such as (∀m,n : m �= n : θmn). The proof
rules for a pair (m,n) are as follows. The term Ĩmn is defined as (∃V \(Vn∪Vm) :
I) and SPmn is the projection of SP on to variables Vm ∪ Vn. We abbreviate
(∀m,n : m �= n : θmn) by θ.
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[Ĩmn ⇒ θmn] (6)

[SPmn(Tm ∧ unch(Vn\Vm), θ) ⇒ θmn] (7)

[SPmn(Tn ∧ unch(Vm\Vn), θ) ⇒ θmn] (8)

[SPmn(intf
θ
kmn, θ) ⇒ θmn], for k ∈ pt(m,n) where (9)

intf θkmn ≡ unch((Vn ∪ Vm)\Vk) ∧ (∃V ′
k\(V ′

m ∪ V ′
n) : Tk) and (10)

k ∈ pt(m,n) if k �∈ {m,n} and Out(k) ∩ (InOut(m) ∪ InOut(n)) is non-empty
(11)

For the rest of the paper we focus first on the simpler case of singly-indexed
properties, returning to pair-indexed properties at the end.

4 Symmetry and Quotients

The equivalence 1IO induced by the local symmetry groupoid GIO is not enough
in itself to obtain the symmetry reduction results. While it ensures that nodes
m,n related by 1IO have a similar neighborhood, it does not ensure that the
nodes which point into m and n correspond in any way. Some correspondence
is needed, as the processes on pt(m) affect θm and those on pt(n) affect θn.
We define a bisimulation-like relationship which builds on (strengthens) the ba-
sic local symmetry relation. We call relations satisfying the stronger conditions
“balance” relations, following [16], where a similar notion is defined.

Definition 4 (Balance). A balance relation B is a subset of GIO satisfying
the following properties. For any (m,β, n) in B: (1) (n, β−1,m) is in B, and (2)
for any j in pt(m), there must be k in pt(n) and δ such that (2a) (j, δ, k) is in
B and (2b) for every edge f in InOut(j) ∩ InOut(m), δ(f) = β(f).

Condition (2a) ensures that any node which points to m has an equivalent node
which points into n. Condition (2b) ensures that β and δ agree on edges that are
common to m, j. The theorem below summarizes properties of balance relations.

Theorem 2. (Balance Properties) For any network:

1. The union of two balance relations is a balance relation

2. The composition of two balance relations is a balance relation

3. There is a largest balance relation, which we denote by B∗

4. B∗ is a greatest fixpoint

5. B∗ is a sub-groupoid of 1IO.

The final balance property implies that the orbit relation for B∗ is an equivalence.
The fixpoint property induces a partition-refinement algorithm for computing
the orbit relation of B∗ which is polynomial in the size of the network.
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4.1 Automorphisms and Balance

Informally, an automorphism of a network is a permutation of the edge and
node set which leaves the network structure unchanged. Formally, for a network
(N,E), an automorphism is given by a function π which is a bijection from N
to N and a bijection from E to E such that

1. (Color Preservation) For any node n, ξ(n) = ξ(π(n)), and for any edge e,
ξ(e) = ξ(π(e))

2. (Link Preservation) For any node n and edge e, n ∈ ins(e) holds iff π(n) ∈
ins(π(e)) and n ∈ outs(e) holds iff π(n) ∈ outs(π(e)).

The global symmetry of the network is defined by its set of automorphisms, which
forms a group under function composition. Given an automorphism group, G,
of the network, define Local(G) as the set of triples (m,β, n) where, for some
π ∈ G, π(m) = n and β is π restricted to InOut(m). The following theorem
shows that global automorphisms induce balance relations.

Theorem 3. For any automorphism group G of a network, Local(G) is both a
sub-groupoid of GIO and a balance relation.

The network of Figure 1 has a balance relation connecting 1 and 2 through the
bijection β, even though the only automorphism is the identity.

4.2 Balance and Symmetry

The following theorem shows how a balance relation influences the symmetry of
the computed invariant. We say that a vector θ respects a balance relation B if
for all (m,β, n) in B, [θn ≡ β(θm)].

Lemma 1. Let B be a balance relation. Consider a program assignment which
is valid for B. For any (m,β, n) ∈ B and any transition condition t(Vm, V

′
m)

and any predicate p(V ), it is the case that [β(SPm(t, p)) ≡ SPn(β(t), β(p))].

Lemma 2. Let B be a balance relation. Consider a program assignment which
is valid for B. For all (m,β, n) ∈ B, any θ which respects B, and j ∈ pt(m), k ∈
pt(n) which correspond for (m,β, n) by B, [β(intf θjm) ≡ intf θkn] holds.

Theorem 4. (Symmetry Reduction) Let B be a balance relation. For a program
assignment which is valid for B, the computed local invariant θ∗ respects B.

Proof: The proof is by transfinite induction on the fixpoint stages. The inductive
assumption at stage λ is that θS respects B for all stages S which precede λ.

(Basis) The initial values θ0m = Ĩm and θ0n = Ĩn are related as claimed by the
validity of the assignment.

(Step ordinal) Suppose that the hypothesis is true at stage S. The definition

of θS+1
m is θSm ∨ SPm(Tm, θ

S
m) ∨ ( ∨ j : j ∈ pt(m) : SPm(intf θ

S

jm, θ
S
m)). Applying

β, which distributes over ∨ , we get

β(θSm) ∨ β(SPm(Tm, θ
S
m)) ∨ ( ∨ j : j ∈ pt(m) : β(SPm(intf θ

S

jm, θ
S
m))) (12)
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The SP terms satisfy the conditions of Lemma 1. By the inductive hypothesis
and Lemma 1, we get

θSn ∨ SPn(β(Tm), θSn) ∨ ( ∨ j : j ∈ pt(m) : SPn(β(intf
θS

jm), θSn )) (13)

By valid program assignment and Lemma 2, this is equivalent to

θSn ∨ SPn(Tn, θ
S
n) ∨ ( ∨ k : k ∈ pt(n) : SPn(intf

θS

kn, θ
S
n)) (14)

There is a slight subtlety in the last step. By the definition of B, every j has a
corresponding k ∈ pt(n). As B is closed under inverse, all k in pt(n) are related
to some j ∈ pt(m). Hence, the interference terms for m map exactly to the
interference terms of n. The final expression is just the definition of θS+1

n .
(Limit ordinal) Suppose that the hypothesis is true for all stages S below a

limit ordinal λ. As β distributes over arbitrary unions, we obtain the chain of
equivalences β(θλm) ≡ β( ∨ S : S ≺ λ : θSm) ≡ ( ∨ S : S ≺ λ : β(θSm)) ≡
( ∨ S : S ≺ λ : θSn) ≡ θλn. EndProof.

4.3 Symmetry-Reduced Local Invariant Computation

The main symmetry theorem gives rise to the following symmetry-reduced fix-
point computation for the local invariant.

1. Fix a balance relation B which is a sub-groupoid of GIO. (B∗ is one such
relation.) Let 1B be its orbit relation; this is an equivalence.

2. Pick a representative from each equivalence class of 1B. For a node n, let
rep(n) denote its representative.

3. For each non-representative node n fix a bijection βn such that (rep(n), βn, n)
is a triple in B. For a representative node r, fix βr to be the identity.

4. Compute the fixpoint over the set of representatives. The fixpoint vector
has a component θr for each representative r. To compute the update for
representative r, use the formula for Fr(θ), except that the term θn for a
node n which is not a representative node is replaced with βn(θrep(n)).

By induction on the fixpoint stages, we get the theorem below. The complexity
of the symmetry-reduced calculation is given by the formula derived previously,
with |N | replaced by the number of representatives.

Theorem 5. The symmetry-reduced computation computes the same least fix-
point as the original.

4.4 Equivalent Networks and the Quotient Construction

A balance relation which is a groupoid (for instance, B∗) induces an orbit rela-
tion, which is an equivalence on the nodes. This partitions nodes into equivalence
classes. We use the classes to define a quotient network, and show that it suffices
to compute the local invariant on the quotient.
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A quotient is an instance of the more general concept of an equivalent net-
work. For networks W1 and W2 with valid assignments, W2 is equivalent to W1

via the relation R ⊂ N1 × N2 if, for all (i, j) ∈ R, [θ∗1(i) ≡ θ∗2(j)]. Every net-
work is equivalent to itself through the identity relation. A quotient construction
produces a smaller assigned network which is equivalent to the original.

Given a network W = (N,E) and a groupoid balance relation B, a quotient
W is defined as follows.

1. The nodes ofW are the equivalence classes of 1B. Each class C has a defined
representative, denoted rep(C), chosen arbitrarily. We write the class for
node n as n. The color of a class is the (common) color of all nodes in it.

2. For a class C with representative r, there is an edge e for each edge e in
InOut(r). The edge e connects equivalence classes of nodes connected by e.
In more detail, m ∈ ins(e) iff m ∈ ins(e), and m ∈ outs(e) iff m ∈ outs(e).
The color of a quotient edge is the color of the edge which generates it.

3. A class C with representative r is assigned similarly to r; i.e., such that
[ĨC ≡ βr(Ĩr)] and [TC ≡ βr(Tr)], where β is the bijection which relates
each e in InOut(r) to its corresponding edge e.

The quotient is not unique, except under stronger conditions on the balance
groupoid. (Non-uniqueness arises as the balance definition allows representatives
x and y for a class C to have corresponding edges e and f such that e and
f have inequivalent outs sets. This does not, however, influence the invariant
computation, as only ins sets are relevant for the points-to definition.) The
theorem below shows that local invariant computed on a quotient is identical
to that on the original network for the representative nodes. Values for non-
representative nodes are obtained by the transformation given in Theorem 4.

Theorem 6. Any quotient W is equivalent to W via R = {(r, C) | r = rep(C)}.

5 Pairwise Symmetry and Balance Relations

In this section, we turn to symmetry reduction for invariants of the form (∀i, j :
i �= j : θij). The definitions of pairwise local symmetry and balance, given below,
are analogues of the previous definitions for singly-indexed invariants.

For a pair of nodes (i, j), let In(i, j) = In(i)∪In(j) and let Out(i, j) = Out(i)∪
Out(j). A node k is in pt(i, j) if k �∈ {m,n} andOut(k)∩InOut(i, j) is non-empty.
A pairwise local symmetry between (i, j) and (m,n) is possible if ξ(i) = ξ(m)
and ξ(j) = ξ(n), and there is a a function β such that (i, β,m) and (j, β, n) are
local symmetries. The set of all pairwise local symmetries ((i, j), β, (m,n)) forms
the pairwise symmetry groupoid of the network.

A pairwise balance relation B is a subset of the pairwise symmetry groupoid of
the network which is closed under inverse, and such that for all ((i, j), β, (m,n))
in B, and every k in pt(i, j), there is l in pt(m,n) such that

1. There is a function δ so that (k, δ, l) is a local symmetry, and
2. For all edges e in InOut(k) ∩ InOut(i, j), it is the case that β(e) = δ(e).
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A program assignment is valid for B if for any ((i, j), β, (m,n)) in B, [β(Ti) ≡
Tm], [β(Tj) ≡ Tn] and [β(Ĩij) ≡ Ĩmn]. With a proof strategy similar to that
for singly-indexed properties, we have the following analogue of Theorem 4.

Theorem 7. (Pairwise Symmetry Reduction) Let B be a pairwise balance rela-
tion. For any program assignment valid for B: for any ((i, j), β, (m,n)) in B, in
the computed local pairwise invariant, θ∗, it is the case that [θ∗mn ≡ β(θ∗ij)].

From a global automorphism group G, define Local2(G) as the set of triples
((i, j), β, (m,n)) such that for a permutation π in G, π(i) = m,π(j) = n and β
is π restricted to InOut(i, j).

Theorem 8. For any automorphism group G of a network, Local 2(G) is a pair-
wise groupoid balance relation.

6 Consequences

Consider a simple token-passing protocol on a unidirectional ring network. Each
process is in one of three states: thinking (T), hungry (H), and eating (E). It
moves from T to H on its own; from H to E by removing a token from its left
edge; and from E to T on its own, placing the token on its right edge. The
predicate ti expresses the presence of a token on the edge to the left of node i.

The singly-indexed local invariant for a ring is too weak to conclude safety
(mutual exclusion). However, the pairwise local invariant suffices. It is given by
(∀i, j : i �= j : (ti ⇒ ¬tj) ∧ (Ei ⇒ ¬Ej ∧ ¬ti ∧ ¬tj)).
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Fig. 2. Token-Ring Network and Neighborhood Views for (1, 3) and (2, 5)

By Theorem 8, Local2(G) is a pairwise balance relation. Pairs (i, j) and (m,n)
are related if the nodes in the pairs are the same distance apart (clockwise) on the
ring. Thus, (1, 2) is a representative for spacing 1, and (1, 3) is a representative
for spacing 2. It turns out that (1, 3) is also a representative for any larger
spacing, as the relation between (1, 3) and (m,n) with spacing at least 2 is a
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balance relation. Figure 2 shows, for example, the similar local neighborhoods
of (1, 3) and (2, 5) in a ring of size 6.

It suffices, therefore, to compute the pairwise invariant over the representative
pairs (1, 2) and (1, 3) for a fixed ring network of size at least 3. Moreover, for
a family of ring networks, each instance has the same pair of representatives.
The following theorem establishes conditions under which a pairwise invariant
generalizes to an invariant for any larger instance.

Theorem 9. For a uniform ring network family where the processes and node
and edge data types are independent of the size of the ring, the pairwise invariant
computed for a ring of size 3 holds (by extending the range of node indices) for
all larger ring sizes.

For a dining philosophers protocol, mutual exclusion is required only between
neighboring processes. For an abstract dining philosophers protocol, the singly-
indexed invariant (∀i : Ei ⇒ fork i−1 = R ∧ fork i = L) holds, where L,R
represent left and right directions. Thus, the symmetry-reduced structure is a
single node, which also proves that the invariant holds in a parameterized sense.

7 Related Work, Conclusions and Open Questions

There is a large body of work on compositional methods for verification of con-
current programs. Much of this work, the early examples of which are the Owicki-
Gries method [25] and proof rules used by Lamport [20] and Jones [19], applies
to a memory model where all processes share a common memory. The assume-
guarantee method of Misra and Chandy [4] is based on a network model with
processes communicating on unbounded queues. Compositional methods for CCS
and CSP are described in [11,21]. Proof rules based on CCS/CSP synchronization
have been automated using learning techniques [7]. In [24] and [1], for example,
compositional proof rules are given that are sound (and semantically complete)
for the full range of Linear Temporal Logic properties, thus including safety
properties, liveness properties and fairness properties. Local reasoning has also
been applied to synchronous computation [5,22].

Our network model is based on atomic actions and shared memory rather
than CCS/CSP style synchronization or message queues. Using it, it is possible
to represent, for instance, the sharing of forks among dining philosophers. The
proof rules are assertion-based. The key idea of reduction with local symmetries
should, we believe, carry over to other models of process communication.

Earlier work [23,10] on symmetry reduction for compositional reasoning ap-
plies to programs with a common shared memory. This paper significantly gen-
eralizes the scope of symmetry reduction to arbitrary networks of processes and
fine-grained sharing relationships.

These results have been strongly influenced by the work of Golubitsky and
Stewart on local symmetry in networks [16], but there are crucial differences
in both the problem domain and the questions being addressed. The networks
in [16] are clocked synchronous networks where the “program” at each node
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is given by an ordinary differential equation. The authors show that the local
symmetries of the network influence the emergence of computations in which
a group of nodes have completely synchronized (or phase-shifted) values. (In
temporal logic terms, the network satisfies properties such as EG(x1 = x2) or
EG(x′1 = x2).) They identify balance as a necessary (and, in a sense, sufficient)
condition for this behavior. Our results, on the other hand, are about interleaved
process execution and universal rather than existential safety properties. We do
make use of and adapt the groupoid formulation defined in their paper to describe
local symmetries.

The results on parameterized verification build on the idea of generalizing
from proofs of small instances that was explored in the work on “invisible invari-
ants” [2]. This method was connected to compositional reasoning in [23]. The
earlier papers used a globally shared memory model; the network model results
in a strengthening of the results, especially for ring networks. The token-ring
example from Section 6 falls into the decidable class from [13] but the result
here is both more general in that it applies also to non-token-passing proto-
cols and yet limited in that it applies only to inductive invariants. There is, of
course, a variety of other methods for parameterized verification; these are, in
general, incomparable. Our results do point to intriguing connections between
local symmetry, compositional invariants and parameterized verification.

This work shows that striking reductions can be obtained by considering the
combination of local symmetries with compositional reasoning. There are several
intriguing open questions: the proper treatment of auxiliary variables, deriving
similar results for CCS/CSP-style synchronization, extending the symmetry re-
duction theorems from safety to liveness properties and exploring the role of
local symmetries in proofs of parameterized properties of irregular networks.
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Abstract. This paper presents versat, a formally verified SAT solver incor-
porating the essential features of modern SAT solvers, including clause learning,
watched literals, optimized conflict analysis, non-chronological backtracking, and
decision heuristics. Unlike previous related work on SAT-solver verification, our
implementation uses efficient low-level data structures like mutable C arrays for
clauses and other solver state, and machine integers for literals. The implemen-
tation and proofs are written in GURU, a verified-programming language. We
compare versat to a state-of-the-art SAT solver that produces certified “un-
sat” answers. We also show through an empirical evaluation that versat can
solve SAT problems on the modern scale.

1 Introduction

Several important recent works have applied powerful verification methods based on
full-fledged inductive theorem proving to verify important systems artifacts. CompCert
is an optimizing compiler for a subset of the C programming language, for which se-
mantics preservation has been proved in the COQ proof assistant (see [12], and many
other papers at the project web page, compcert.inria.fr). The seL4 microkernel
verification effort uses the Isabelle theorem prover to prove that the microkernel imple-
mentation in C and assembly refines a high-level non-deterministic model expressing
the desired system properties [10]. These impressive verification efforts show that the
trustworthiness of practical systems artifacts can be raised to the highest levels currently
known, using interactive theorem proving.

In a similar spirit, this paper presents versat, an efficient SAT solver for which we
have verified correctness of “unsat” answers. SAT and SMT solvers are critical com-
ponents of automatic verification tools like bounded model-checkers and k-induction
provers [9,5], and are used for many other static analysis applications, such as symbolic
execution [11]. However, just as any complex piece of software, SAT solvers do have
bugs. Brummayer et al. reports crashes and incorrect answers from top-ranked solvers
at the SAT competition 2007 and 2009 [4]. This paper represents a first step towards
the development of verified high-performance analysis tools, by verifying correctness
of “unsat” answers from a modern performant SAT solver. Just as operating systems
and compilers are the foundations for computing systems generally, SAT and SMT
solvers are increasingly the foundation for analysis and automatic verification tools. So
we see SAT solvers as artifacts of fundamental interest, and hence natural targets for
verification.

Specification. We have proved statically that whenever versat reports a set of input
clauses unsatisfiable, then there exists a resolution proof of the empty clause from those

V. Kuncak and A. Rybalchenko (Eds.): VMCAI 2012, LNCS 7148, pp. 363–378, 2012.
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input clauses. This proof (as a data structure) is not constructed at run-time. Rather,
our verification confirms statically that it exists, for all formulas versat reports un-
satisfiable. As our verification is itself constructive, the resolution proof could in princi-
ple be generated at run-time. But run-time proof-production imposes undesirable time
and memory overhead on SAT solving. So it is preferable to have a static guarantee
of soundness for the solver, at least for applications that do not need the actual proof
artifact, but only require a trustworthy result.

Main Contribution. What makes our work distinctive is that it is, to the best of our
knowledge, the first to statically verify soundness of a SAT solver implemented us-
ing efficient low-level data structures. These include 32-bit machine integers for lit-
erals and mutable C arrays for many solver data structures (e.g., clauses and look-up
tables), which are manipulated using machine arithmetic/bitwise operations, and low-
level pointer managements. In GURU, machine integers and their operations are pre-
cisely modeled as bit vectors and vector operations, including overflow situations. This
does increase the burden of proof, but is necessary for performance. We demonstrate
(Section 5) that versat can solve large benchmarks, including some on the order of
those used in the SAT Competition. While further work would be required to achieve
levels of performance closer to the current state of the art in SAT solving, versat is
already valuable as being the first high-performance SAT solver that can deliver trust-
worthy results without the overhead of proof production (and subsequent proof check-
ing). Furthermore, as versat already includes verified implementations of many of
the standard modern solver data structures including those for watched literals and effi-
cient conflict analysis, we hypothesize that our approach will scale to additional solver
optimizations.

Verification Approach. This project also represents a major case study of a verifica-
tion approach which is gaining importance, particularly within the Programming Lan-
guages community. The versat code has been developed and verified in a so-called
dependently typed programming language called GURU [20]. The basic methodology of
dependently typed programming is to express rich specifications through types, and in-
clude proofs (when needed) only internally, inside program code. Such proofs establish
properties externally of functions used in expressing the specification. Such specifica-
tional functions are typically much smaller and more tractable than the programs they
specify, thus reducing the burden of proof. GURU implements this approach to program
verification, and also provides a static analysis for statically tracking memory. Thanks
to this analysis, GURU does not require a garbage collector for memory management at
runtime.

Paper Outline. We begin with a brief summary of dependent types for verified pro-
gramming in GURU (Section 2). We then describe in more detail the specification we
have statically verified for versat (Section 3). Next, we describe the actual imple-
mentation, and how we verify that it meets our specification (Section 4). We present
empirical results supporting our claim that versat’s performance is within the realm
of modern SAT solving (Section 5). We next cover important related work (Section 6),
and then reflect a little on the experience of implementing an efficient verified SAT
solver (Section 7), before concluding (Section 8).
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2 Verified Programming in Guru

By way of background for the sections on the specification and implementation of
versat below, we begin with a quick introduction to GURU. GURU is a functional
programming language with rich types, in which programs can be verified both exter-
nally (as in traditional theorem provers), and internally (cf [1]).1 For a standard example
of the difference, suppose we wish to prove that the result of appending two lists has
length equal to the sum of the input lengths.

External verification of this property may proceed like this. First, we define the type
of append function on lists. In GURU syntax, the typing for this append function is:

append : Fun(A:type)(l1 l2 : <list A>). <list A>

This says that append accepts a type A, and lists l1 and l2 holding elements of type
A, and produces another such list. To verify the desired property, we write a proof in
GURU’s proof syntax of the following formula:

Forall(A:type)(l1 l2:<list A>).
{ (length (append l1 l2)) = (plus (length l1) (length l2)) }

The equality listed expresses, in GURU’s semantics, that the term on the left-hand side
evaluates to the same value as the term on the right-hand side. So the formula states
that for all types A, for all lists l1 and l2 holding elements of that type, calling the
length function on the result of appending l1 and l2 gives the same result as adding
the lengths of l1 and l2. This is the external approach.

With internal verification, we first define an alternative indexed datatype for lists. A
type index is a program value occurring in the type, in this case the length of the list.
We define the type <vec A n> to be the type of lists storing elements of type A, and
having length n, where n is a Peano (i.e., unary) number:

Inductive vec : Fun(A:type)(n:nat).type :=
vecn : Fun(A:type).<vec A Z>

| vecc : Fun(A:type)(spec n:nat)(a:A)(l:<vec A n>).
<vec A (S n)>.

This states that vec is inductively defined with constructors vecn and vecc (for nil
and cons, respectively). The return type of vecc is <vec A (S n)>, where S is
the successor function. So the length of the list returned by the constructor vecc is one
greater than the length of the sublist l. Note that the argument n (of vecc) is labeled
“spec”, which means specificational. GURU will enforce that no run-time results will
depend on the value of this argument, thus enabling the compiler to erase all values for
that parameter in compiled code.

We can now define the type of vec append function on vectors:

vec_append : Fun(A:type)(spec n m:nat)
(l1:<vec A n>)(l2:<vec A m>).<vec A (plus n m)>

1 GURU is freely downloadable from http://www.guru-lang.org/.

http://www.guru-lang.org/
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This type states that append takes in a type A, two specificational natural numbers n
and m, and vectors l1 and l2 of the corresponding lengths, and returns a new vector
of length (plus n m). This is how internal verification expresses the relationship
between lengths which we proved externally above. Type-checking code like this may
require the programmer to prove that two types are equivalent. For example, a proof
of commutativity of addition is needed to prove <vec A (plus n m)> equivalent
to <vec A (plus m n)>. Currently, these proofs must mostly be written by the
programmer, using special proof syntax, including syntax for inductive proofs.

GURU supports memory-safe programming without garbage collection, using a com-
bination of techniques [19]. Immutable tree-like data structures are handled by reference
counting, with some optimizations to avoid unnecessary increments/decrements. Mu-
table data structures like arrays are handled by statically enforcing a readers/writers
discipline: either there is a unique reference available for reading and writing the array,
or else there may be multiple read-only references. The one-writer discipline ensures
that it is sound to implement array update destructively, while using a pure functional
model for formal reasoning. The connection between the efficient implementation and
the functional model is not formally verified, and must be trusted. This is reasonable,
as it concerns only a small amount of simple C code (less than 50 lines), for a few
primitive operations like indexing a C array and managing memory/pointers.

3 Specification

The main property of versat is the soundness of the solver on top of the basic re-
quirements of GURU, such as memory safety and array-bounds checking. We encoded
the underlying logic of SAT in GURU to reason about the behavior of the SAT solver.
That encoding includes the representation of formulas and the deduction rules. For a
“UNSAT” answer, our specification requires that there exists a derivation proof of the
empty clause from the input formula. Note that most solvers can generate a model with
a “SAT” answer and those models can be checked very efficiently. So, we do not think
there is a practical advantage for statically verifying the soundness of “SAT” answers.
Also, it is important to note that the specification is the only part we need to trust. So,
it should be clear and concise. The specification of versat is only 259 lines of GURU

code. The rest of versat is the actual implementation and the proof that the imple-
mentation follows the specification, which will be checked by the GURU type system.

3.1 Representation of CNF Formula

The formula type is defined using simple data structures: 32 bit unsigned integers
for literals and lists for clauses and formulas. The lower 31 bits of the literal represent
the variable number, and the most significant bit represents the polarity. The GURU

definitions of those types are listed below. The word type is defined in GURU’s standard
library, and represents 32 bit unsigned integers. We emphasize that these simple data
structures are only for specification. Section 4 describes how our verification relates
them to efficient data structures in the implementation.
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Define lit := word
Define clause := <list lit>
Define formula := <list clause>

3.2 Deduction Rules

There may be different ways to specify the unsatisfiability of formula. One could be a
model theoretic definition, saying no model evaluates a formula true or Φ � ⊥. Another
could be a proof theoretic one, saying the empty clause (False) can be deduced from the
formula or Φ � ⊥. In the propositional logic, the above two definitions are equivalent.
In versat, we have taken a weaker variant of the proof theoretic definition, Φ �res ⊥
where only the resolution rule is used to refute the formula. Because �res is strictly
weaker than �, Φ �res ⊥ still implies Φ � ⊥. So, even though our formalization is
proof theoretic, it should be possible to prove that our formalization satisfies a model
theoretic formalization.

The pf type encodes the deduction rules of the propositional logic and pf objects
represents proofs. Figure 1 shows the definition of pf type and its helper functions.
cl subsume is a predicate that means c1 subsumesc2, which is just a subset function
on lists defined in GURU’s standard library. And is resolvent is a predicate that
means r is a resolvent of c1 and c2 over the literal l. Additionally, cl has checks
that the clause contains the given literal, and cl erase removes all the occurrences
of the literal in the clause. Also, tt and ff are Boolean values defined in the library.
The <pf F C> type stands for the set of proofs that the formula F implies the clause
C. Members of this type are constructed as derivation trees for the clause. Because this
proof tree will not be generated and checked at run-time, the type requires the proper
preconditions at each constructor. GURU’s type system ensures that those proof objects
are valid by construction.

The pf asm constructor stands for the assumption rule, which proves any clause in
the input formula. The member function looks for the clause C in the formula, returning
tt if so. The pf sub constructor stands for the subsumption rule. This rule allows to
remove duplicated literals or change the order of literals in a proven clause. Note that the
constructor requires a proof d of C’ and a precondition u that C’ subsumes C. Finally,
pf res stands for the resolution rule. It requires two clauses (C1 and C2) along with
their proofs (d1 and d2) and the precondition u that C is a resolvent of C1 and C2 over
the literal l.

3.3 The answer Type

In order to enforce soundness, the implementation is required to have a particular return
type, called answer. So, if the implementation type checks, it is considered valid under
our specification. Figure 2 shows the definition of the answer type. The answer type
has two constructors (or values): sat and unsat. The unsat constructor holds two
subdata: the input formula F and a derivation proof of the empty clause, p. The formula
F is required to make sure the proof indeed proves the input formula. The term (nil
lit) means the empty list of literals, meaning the empty clause. By constructing a
value of the type <pf F (nil lit)>, we know that the empty clause is derivable
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Define cl_subsume := fun(c1:clause)(c2:clause).
(list_subset lit eq_lit c1 c2)

Define is_resolvent := fun(r:clause)(c1:clause)(c2:clause)(l:lit).
(and (and (cl_has c1 (negated l))

(cl_has c2 l))
(and (cl_subsume (cl_erase c1 (negated l)) r)

(cl_subsume (cl_erase c2 l) r)))

Inductive pf : Fun(F : formula)(C : clause).type :=
pf_asm : Fun(F : formula)(C:clause)

(u : { (member C F eq_clause) = tt }) .<pf F C>
| pf_sub : Fun(F : formula)(C C’ : clause)

(d : <pf F C’>)
(u : { (cl_subsume C’ C) = tt }) .<pf F C>

| pf_res : Fun(F : formula)(C C1 C2 : clause)(l : lit)
(d1 : <pf F C1>)(d2 : <pf F C2>)
(u : { (is_resolvent C C1 C2 l) = tt }) .<pf F C>

Fig. 1. The pf data type and helper functions

from the original formula. (Note that the proof p is marked as specificational using the
spec keyword) The type checker still requires the programmer to supply the spec
arguments. However, those arguments will be erased during compilation. We only care
about the existence of such data, not the actual value. By constructing proofs only from
the invariants of the solver, GURU’s type system confirms that such proofs could always
be constructed without fail. So, making them specificational, hence not computing them
at run-time, is sound.

Inductive answer : Fun(F:formula).type :=
sat : Fun(spec F:formula).<answer F>

| unsat : Fun(spec F:formula)(spec p:<pf F (nil lit)>).<answer F>

Fig. 2. The definition of the answer type

3.4 Parser and Entry Point

The formula type above is still in terms of integer and list data structures, not a stream
of characters as stored in a benchmark file. The benchmark file has to be translated to
GURU data structure before it can be reasoned about. So, we include a simple recursive
parser for the DIMACS standard benchmark format, which amounts to 145 lines of
GURU code, as a part of our specification. It might be possible to reduce this using a
verified parser generator, but we judge there to be more important targets of further
verification. Similarly, the main function is considered a part of the specification, as the
outcome of the solve function is an answer value, not the action of printing ”SAT”
or ”UNSAT”. The main function simply calls the parser, passes the output to the solve
function, and prints the answer as a string of characters.
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4 Implementation and Proof

The specification in Section 3 does not constrain the details of the implementation very
much. For a trivial example, a solver that just aborted immediately on every input
formula would satisfy the specification. So would a solver that used the naive data
structures for formulas, or a naive solving algorithm. Therefore, we have imposed an
additional informal constraint on versat, which is that it should use efficient low-
level data structures, and should implement a number of the essential features of mod-
ern SAT solvers. The features implemented in versat are conflict analysis, clause
learning, backjumping, watched literals, and basic decision heuristics. Also, each of
these features is implemented using the same efficient data structures that can be found
in a C-language implementation like tinisat or minisat. However, implementing
more features and optimizations make it more difficult to prove the soundness property.

Modern SAT solvers are driven by conflict analysis, during which a new clause is
deduced and recorded to guide the search. Thus, the critical component for soundness
is the conflict analysis module, which can be verified, to some extent, in isolation from
the rest of the solver. Verifying that every learned clause is a consequence of the input
clauses ensures the correctness of UNSAT answers from the solver, in the special case
of the empty clause. Using the internal-verification approach described in the previous
section, the conflict analysis module enforces soundness by requiring that with each
learned clause added to the clause database, there is an accompanying specificational
proof (the pf datatype described in Section 3). In this section, we explain some of
the run-time clause data structure along with the invariants, and the conflict analysis
implementation.

4.1 Array-Based Clauses and Invariants

In the specification, the data structure for clauses is (singly linked) list, which is easier
to reason about. However, accessing elements in a list is not as efficient as an array.
The elements of an array are more likely in the same cache line, which leads to a faster
sequential access, as elements in a linked list are not. Also arrays will use less mem-
ory than lists, which need extra storage for pointers. So, at the implementation level,
versat uses array-based clauses with invariants as defined in Figure 3. An <array
lit n> object stands for an array of literals of size n. The variable nv represents the
number of different variables in the formulaF. It is also the maximum possible value for
variable numbers as defined in the DIMACS file format (variables are named from 1 up
to nv). The predicate (array in bounds nv l) used in the invariant u1 means
every variable in the array l is less than or equal to nv and not equal to zero. The invari-
ant u1 is used to avoid run-time checks for bounds when accessing a number of look-
up tables indexed by the variable number, such as the current assignment, reference to
the antecedent clauses, and decision level for the variable. It also implicitly states that
the array l is null-terminated. In array-based clauses, the word value zero is used as
the termination marker, instead of keeping a separate run-time variable for the length of
the array. The second invariant u2 states that the clause c, which is proved by pf c, is
the same as the interpretation of l, where to cl is our interpretation of an array as a
list. Again, this interpretation is only specificational and not performed at run-time.
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Inductive aclause : Fun(nv:word)(F:formula).type :=
mk_aclause : Fun(spec n:word)(l:<array lit n>)

(spec nv:word)(spec F:formula)
(u1:{ (array_in_bounds nv l) = tt })
(spec c:clause)(spec pf_c:<pf F c>)
(u2:{ c = (to_cl l) })

.<aclause nv F>

Fig. 3. The aclause type for the array-based clauses and invariants

At the beginning of execution, versat converts all input clauses into <aclause
nv F> objects. In order to satisfy the invariants, the conversion function checks that
every variable is within bounds and internally proves that the interpretation of the output
array is exactly the same as the input list-based clause. Then, every time a new clause is
learned, a new <aclause nv F> object is created and stored in the clause database.
Remember the soundness of the whole solver requires a <pf F (nil lit)> ob-
ject, which is a proof of the list-based empty clause. Assume we derived the empty
array-based clause at run-time. From the invariant u2, we know that there exists an
interpretation of the array clause. And we proved a theorem which states that the only
possible interpretation of the empty array is the empty list, (nil lit). Now, we can
conclude that the interpretation is indeed the empty list-based clause, which is proven
valid according to another invariant pf c. Thus, it suffices to compute the empty array-
based clause to prove the empty list-based clause.

4.2 Conflict Analysis with Optimized Resolution

The conflict analysis is where a SAT solver deduces a new clause from the existing set
of clauses by resolution. Usually, a series of resolutions are applied until the first unique
implication point (UIP) clause is derived. In order to speed up the resolution step, ad-
vanced solvers like minisat use a number of related data structures to represent the
intermediate conflict clauses and perform resolutions efficiently. In versat, we im-
plemented this optimized resolution and proved the implementation is sound according
to the simple definition of is resolvent in the specification.

Figure 4 shows the data structure and invariants of intermediate conflict clauses,
ResState, which are maintained after each resolution step over the course of conflict
analysis. Those invariants are sufficient to prove the soundness of versat’s conflict
analysis. Figure 5 summarizes the variables used in the ResState type. The conflict
clause is split into the literals assigned at the previous decision levels (c1) and the lit-
erals assigned at the current level (c2) according to the invariant u5. So, the complete
conflict clause at the time is (append c1 c2). Notice that c2 is declared as a spec-
ificational data with the spec keyword. During conflict analysis, versat does not
build each intermediate conflict clause as a single complete clause. Instead, the whole
conflict clause is duplicated in a look-up table (vt), and it keeps track of the number of
literals assigned at the current level, which is the c2l, as stated by the invariants u1,
u2 and u3. The u2 and u3 ensure that the conflict clause and the table contain exactly
the same set of literals. The look-up table vt enables a constant time check whether a
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literal is in the conflict clause, which makes duplication removal and other operations
efficient. And it also enables a constant time removal of a literal assigned at the current
level, which can be done by unmarking the literal on the vt and decrementing the value
of c2l by one. That also requires all literals in the list c2 to be distinct (u4), so that
removing all occurrences of a literal (as in the specification) will decrease the length
only by one (in the implementation). Note that, although the type of c2l is nat (the
Peano number), incrementing/decrementing by one and zero testing are constant time
operations just like the machine integer operations. Also, note that, some invariants, i.e.
all variables are within bounds, are omitted in the figure for clarity.

Inductive ResState : Fun(nv:word)(dl:word).type :=
res_state : Fun
(spec nv:word)
(spec dl:word)
(dls:<array word nv>)
(vt:<array assignment nv>)
(c1:clause)
(spec c2:clause)
(c2l:nat)
(u1:{ c2l = (length c2) })
(u2:{ (all_lits_are_assigned vt (append c2 c1)) = tt })
(u3:{ (cl_has_all_vars (append c2 c1) vt) = tt })
(u4:{ (cl_unique c2) = tt })
(u5:{ (cl_set_at_prev_levels dl dls c1) = tt })
.<ResState nv dl>

Fig. 4. The datatype for conflict analysis state

For the resolution function, we have proved that the computation of the resolvent
between the previous conflict clause and the antecedent clause follows the specification
of is resolvent, so that a new pf object for the resolvent can be constructed. At
the end of the conflict analysis, versat will find the Unique Implication Point (UIP)
literal, say l, and the ResState value will have one as the value of c2l. Because the
UIP literal must be assigned at the current decision level, it should be in c2 and the
length of c2 is one due to the invariant u1. That means actually c2 is a singleton list
that consists of l. Thus, the complete conflict clause is (cons lit l c1). Then, an
array-base clause can be constructed and stored in the clause database, just as the input
list-based clauses are processed at the beginning of execution. Finally, versat clears
up the table vt by unmarking all the literals to recycle for the next analysis. Instead of
sweeping through the whole table, versat only unmarks those literals in the conflict
clause. It can be proved that after unmarking those literals, the table is clean as new
using the invariant u3 above. Correctness of this clean-up process is proved in around
400 lines of lemmas, culminating in the theorem in Figure 6, which states that the
efficient table-clearing code (clear_vars) returns a table which is indistinguishable
from a brand new array (created with array_new).
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Variable Description
nv the number of variables in the formula
dl the current decision level
dls a table of the decision levels at which each variable is assigned
vt a look-up table for the variables in the conflict clause
c1 the literals of the conflict clause assigned at the previous decision levels
c2 the literals of the conflict clause assigned at the current decision level
c2l the length of c2 (the number of literals assigned at the current decision level)
u1 the length of the list c2 is the same as the value of c2l
u2 all the literals in the conflict clause are marked on the table
u3 all the literals marked on the table are in the conflict clause
u4 all literals in the list c2 are unique
u5 all variables in c1 are assigned at the previous decision levels

Fig. 5. Summary of variables used in ResState

Define cl_has_all_vars_implies_clear_vars_like_new :
Forall (nv:word)

(vt:<array assignment nv>)
(c:clause)
(u:{ (cl_valid nv c) = tt })
(r:{ (cl_has_all_vars c vt) = tt })

.{ (clear_vars vt c) = (array_new nv UN) }

Fig. 6. The theorem stating correctness of table-clearing code

4.3 Summary of Implementation

The source code of versat totals 9884 lines, including proofs. It is hard to separate
proofs from code because they can be intermixed within a function. Roughly speak-
ing, auxiliary code (to formulate invariants) and proofs take up 80% of the entire pro-
gram. The generated C code weighs in at 12712 lines. The C code is self-contained
and includes the translations of GURU’s library functions being used. The source and
generated C code are available at http://cs.uiowa.edu/˜duoe/versat. All
lemmas used by versat have been machine-checked by the GURU compiler.

Properties Not Proved. First, we do not prove termination for versat. It could (a
priori) be the case that the solver diverges on some inputs, and it could also be the case
that certain run-time checks we perform (discussed in Section 7) fail. These termination
properties have not been formally verified. However, what users want is to solve prob-
lems in a reasonable amount of time. A guarantee of termination does not satisfy users’
expectations. It is more important to evaluate the performance over real problems as we
show in Section 5. Second, we have not verified completeness of versat. It is (again
a priori) possible that versat reports satisfiable, but the formula is actually unsatisfi-
able. In fact, we include a run-time check at the end of execution, to ensure that when
versat reports SAT, the formula does have a model. But it would take substantial
additional verification to ensure that this run-time check never fails.

http://cs.uiowa.edu/~duoe/versat
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5 Evaluation

We compared versat to picosat-9362 with proof generation and checking for
certified UNSAT answers. picosat is one of the best SAT solvers and can generate
proofs in the RUP and TraceCheck formats. The RUP proof format is the official format
for the certified track3 of the SAT competition, and checker3 is used as the trusted
proof checker. The TraceCheck format4 is picosat’s preferred proof format, and the
format and checker are made by the developers of picosat. We measured the runtime
of the whole workflow of solving, proof generation, and checking in both of the formats
over the benchmarks used for the certified track of the SAT competition 2007. The
certified track has not been updated since then.

Figure 7 shows the performance comparison. The “versat” column shows the solv-
ing times of versat. The “picosat(R)” and “picosat(T)” columns shows the solving
and proof generation times of picosat in the RUP format and TraceCheck format,
respectively. Since checker3 does not accept the RUP format directly, rupToRes
is used to convert RUP proofs into the RES format, which checker3 accepts. The
“rupToRes” column shows the conversion times, and the “checker3” column shows the
times for checking the converted proofs. The “tracecheck” column shows the checking
times for the proofs in the TraceCheck format. The “Total(R)” and “Total(T)” shows
the total times for solving, proof generation, conversion (if needed), and checking in
the RUP format and TraceCheck format, respectively. The unit of the values is in sec-
onds. “T” means a timeout and “E” means a runtime error before timeout. The machine
used for the test was equipped with an Intel Core2 Duo T8300 running at 2.40GHz and
3GB of memory. The time limits for solving, conversion, and checking were all 3600
seconds, individually.
versat solved 6 out of 16 benchmarks. Since UNSAT answers of versat are ver-

ified by construction, versat was able to certify the unsatisfiability of those 6 bench-
marks. picosat could solve 14 of them and generated proofs in both of the formats.
However, the RUP proof checking tool chain could only verify 4 of the RUP proofs
within additional 2 hour timeouts (1 hour for conversion and 1 hour for checking). So,
versat was able to certify the two more benchmarks that could not be certified using
picosat and the official RUP proof checking tools. On the other hand, tracecheck
could verify 12 of 14 TraceCheck proofs. Note that the maximum proof size was about
4GB and the disk space was enough to store the proofs.

When comparing the trusted base of those systems, versat’s trusted base is the
GURU compiler, some basic datatypes and functions in the GURU library, and 259 lines
of specification written in GURU. checker3 is 1538 lines of C code. tracecheck
is 2989 lines of C code along with 7857 lines of boolforce library written in C. Even
though tracecheck is the most efficient system, the trusted base is also very large.
One could argue that GURU compiler is also quite large (19175 lines of Java). However,

2 picosat is available at http://fmv.jku.at/picosat/
3 Information about the certified track, including the RUP/RES proof formats and
checker3/rupToRes, is available at
http://users.soe.ucsc.edu/˜avg/ProofChecker/

4 TraceCheck is available at http://fmv.jku.at/tracecheck/

http://fmv.jku.at/picosat/
http://users.soe.ucsc.edu/~avg/ProofChecker/
http://fmv.jku.at/tracecheck/
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Benchmarks versat picosat(R) rupToRes checker3 Total(R) picosat(T) tracecheck Total(T)
itox vc965 1.74 0.18 0.88 0.36 1.42 0.18 0 0.18
dspam dump vc973 3565 0.57 2.32 0.99 3.88 0.55 0.01 0.56
eq.atree.braun.7.unsat 15.43 2.63 42.13 2.78 47.54 2.92 1.1 4.02
eq.atree.braun.8.unsat 361.11 24.11 642.35 E E 26.47 9.11 35.58
eq.atree.braun.9.unsat T 406.94 T T 356.03 62.68 418.71
AProVE07-02 T T T T T
AProVE07-15 T 93.94 T T 103.95 20.44 124.39
AProVE07-20 T 262.05 T T 272.39 95.87 368.26
AProVE07-21 T 1437.64 T T 1505.24 E E
AProVE07-22 T 196.28 T T 239.59 116.8 356.39
dated-5-15-u T 2698.49 E E 2853.12 E E
dated-10-11-u T T T T T
dated-5-11-u T 255.06 E E 266.6 23.36 289.96
total-5-11-u 1777.26 91.27 E E 109.94 32.42 142.36
total-5-13-u T 560.96 E E 629.53 151.23 780.76
manol-pipe-c10nidw s 772.68 25.46 7.38 1.37 34.21 25.54 0.1 25.64

Fig. 7. Results for the certified track benchmarks of the SAT competition 2007

because the GURU compiler is a generic system, it is unlikely to generate an unsound
SAT solver from the code that it checked, and the verification cost of GURU compiler
itself, if needed, should be amortized across multiple applications.

General Performance. We measured the solving times ofversat,minisat-2.2.0,
picosat-936 and tinisat-0.22 over the SAT Race 2008 Test Set 1, which was
used for the qualification round for the SAT Race 2008. The machine used for the mea-
surement was equipped with an Intel Xeon X5650 running at 2.67GHz and 12GB of
memory. The time limit was 900 seconds. In summary, versat solved 19 out of 50
benchmarks in the set. minisat solved 47. picosat solved 46. tinisat solved 49.
versat is not quite comparable with those state-of-the-art solvers, yet. However, to our
best knowledge, versat is the only verified solver at the actual code level that could
solve those competition benchmarks.

6 Related Work

Verifying the correctness of each individual result of a solver is generally believed to
be easier than verifying the solver itself. For this reason, fields like SMT, where solvers
are typically on the order of several tens of thousands of lines of code, have usually
relied on result verification rather than solver verification. For example, there are many
recent works on producing proofs from SMT solvers, and several solvers, including
VERIT, Z3, and CVC3, can produce independently checkable proofs of the formulas
they claim are valid [3,17,15,16,8]. Challenges in this area are devising a common proof
format for SMT solvers, minimizing the overhead of proof production, and efficient
proof checking.

There have been a number of works aimed at verifying automated reasoning al-
gorithms. Lescuyer and Conchon verified a modern DPLL-based SAT solver in COQ
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and extraced OCAML code to compile into machine binary [13]. Also, Shankar and
Vaucher’s work verifying a modern SAT solver is a noteworthy example [18]. They
concede, though, that while their model in PVS can be extracted to executable code,
that code would not be as efficient as an implementation intended for high-performance
use.

More closely related work is Marić’s formal proof of correctness for a modern
SAT solver implementing some low-level optimizations like watched literals in IS-
ABELLE/HOL [14]. He proves soundness, completeness, and termination for a mod-
ern SAT solver written in ISABELLE’s pure functional programming language. This
is a major achievement, requiring around 25,000 lines of ISABELLE proof scripts.
Marić proves much more about the solver than we do. In particular, proving termi-
nation would require extensive additional work for versat (see Section 7 below). But
like Shankar and Vaucher, Marić verifies a functional model of a solver. This model
uses pure-functional lists to represent clauses, and Peano naturals for variables. In con-
trast, versat uses mutable C arrays to represent clauses, and 32-bit machine words
for literals. Also, Marić’s resolution code is not optimized using a look-up table like
versat and other modern solvers. Our work can thus be viewed as taking up Marić’s
concluding challenge to verify high-performance SAT solvers with efficient low-level
data structures. To our knowledge, our work is the first to verify a deep property of a
high-performance implementation of a modern solver.

Armand et al. extend COQ with support for more efficient data structures, including
imperative arrays. They use their extended language to implement and verify an effi-
cient checker for proofs produced by an external (to COQ) SAT solver [2]. In contrast,
we have verified soundness of the efficient SAT solver itself. Both approaches use an
inefficient functional model of arrays for formal reasoning, which is then replaced dur-
ing compilation with a more efficient implementation. In our case, thanks to GURU’s
resource typing, this implementation is simply C arrays. Our readers/writers analysis
ensures this is sound, even with destructive updates. Armand et al. use less efficient
persistent arrays to combine destructive updating with persistence of old versions of
the array [6]. Also, while GURU does not require run-time garbage collection, Armand
et al. rely on compilation to OCAML (a garbage-collected language). GC overhead can
be substantial in practice [21]. Also, it is noteworthy that Darbari et al. implemented an
efficient TraceCheck proof checker in COQ [7].

7 Discussion

The idea for the specification was clear, and the specification did not change much since
the beginning of the project. However, the hard part was formalizing invariants of the
conflict analysis all the way down to the data structures and machine words, let alone
actually proving them. Modern SAT solvers are usually small, but highly optimized as
several data structures are cleverly coupled with strong invariants. The source code of
minisat and tinisat does not tell what the invariants it assumes. As we discov-
ered new invariants, we had to change our verification strategy several times along the
development. Sometimes, we compromised and slightly modified our implementation.
For example, the look-up table vt, used for resolution to test the membership of vari-
able in the current conflict clause, could be an array of booleans. Instead, we used an
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array of assignment, which has three states of true, false, and unassigned. The other
solvers assume the current assignment table already contains the polarity of each vari-
able, which is an additional invariant. In versat, the table marks variables with the
polarity, which duplicates information in the assignment table, avoiding the invariant
above.

Unimplemented Features. Some features not implemented in versat includes con-
flict clause simplification and restart. Conflict clause simplification feature requires
to prove that there exists a certain sequence of resolutions that derives the simplified
clause. Although the sequence can be computed by topologically sorting the removed
literals at run-time, additional invariants would be required to prove it statically.

Run-Time Checks. Certain properties of versat’s state are checked at run-time, like
assert in C. We tried to keep a minimal set of invariants and it is simply not strong
enough to prove some properties. Run-time checks makes the solver incomplete, be-
cause it may abort. Also, it costs execution time to perform such a check. In principle,
all of these properties could be proved statically so that those run-time checks could
be avoided. However, stronger invariants are harder to prove. Some would require a
much longer development time and may not speed up the solver very much. Thus, the
priority is the tight loops in the unit propagation and resolution. However, one-time
procedures like initialization and the final conflict analysis are considered a lower pri-
ority. We did not measure how much those run-time checks cost, however, gprof time
profiler showed that they are not bottlenecking versat.

Verified Programming in GURU. GURU is a great tool to implement efficient verified
software, and the generated C code can be plugged into other programs. Optimizing
software always raises the question of correctness, where the source code can get com-
plicated as machine code. In those situations, GURU can be used to assure the correct-
ness. However, some automated proving features are desired for general usage. Because
versat heavily uses arrays, array-bounds checking proliferates, which requires a fair
amount of arithmetic reasoning. At the same time, when code changes over the course
of development, those arithmetic reasonings are the most affected and need to be up-
dated or proved again. So, automated reasoning of integer arithmetic would be one of
the most desired feature of GURU, allowing the programmer to focus on more higher
level reasonings.

8 Conclusion and Future Work

versat is the first modern SAT solver that is statically verified to be sound all the way
down to machine words and data structures. And the generated C code can be compiled
to binary code without modifications or incorporated into other software. This paper has
shown that the sophisticated invariants of the efficient data structures used in modern
SAT solvers can be formalized and proved in GURU. Future work includes proving
remaining lemmas and tuning the performance of versat. And we envision that the
code and lemmas in versat can be applied to other SAT-related applications.
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cock, J. (eds.) ICTAC 2010. LNCS, vol. 6255, pp. 260–274. Springer, Heidelberg (2010)

8. de Moura, L., Bjørner, N.: Proofs and Refutations, and Z3. In: Konev, B., Schmidt, R.,
Schulz, S. (eds.) 7th International Workshop on the Implementation of Logics, IWIL (2008)

9. Hagen, G., Tinelli, C.: Scaling up the formal verification of Lustre programs with SMT-based
techniques. In: Cimatti, A., Jones, R. (eds.) Proceedings of the 8th International Conference
on Formal Methods in Computer-Aided Design, Portland, Oregon, pp. 109–117. IEEE (2008)

10. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elkaduwe, D.,
Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood, S.: seL4: Formal
verification of an OS kernel. In: Matthews, J., Anderson, T. (eds.) Proc. 22nd ACM Sympo-
sium on Operating Systems Principles (SOSP), pp. 207–220. ACM (2009)

11. Kothari, N., Millstein, T., Govindan, R.: Deriving state machines from tinyos programs using
symbolic execution. In: Proceedings of the 7th International Conference on Information Pro-
cessing in Sensor Networks, IPSN 2008, pp. 271–282. IEEE Computer Society, Washington,
DC (2008)

12. Leroy, X.: Formal certification of a compiler back-end, or: programming a compiler with a
proof assistant. In: Morrisett, G., Peyton Jones, S. (eds.) 33rd ACM Symposium on Principles
of Programming Languages, pp. 42–54. ACM Press (2006)

13. Lescuyer, S., Conchon, S.: A Reflexive Formalization of a SAT Solver in Coq. In: Emerging
Trends of the 21st International Conference on Theorem Proving in Higher Order Logics,
TPHOLs (2008)
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Abstract. Region logic is Hoare logic for object-based programs. It features lo-
cal reasoning with frame conditions expressed in terms of sets of heap locations.
This paper studies tableau-based decision procedures for RL, the quantifier-free
fragment of the assertion language. This fragment combines sets and (functional)
images with the theories of arrays and partial orders. The procedures are of practi-
cal interest because they can be integrated efficiently into the satisfiability modulo
theories (SMT) framework. We provide a semi-decision procedure for RL and its
implementation as a theory plugin inside the SMT solver Z3. We also provide a
decision procedure for an expressive fragment of RL termed restricted-RL. We
prove that deciding satisfiability of restricted-RL formulas is NP-complete. Both
procedures are proven sound and complete. Preliminary performance results in-
dicate that the semi-decision procedure has the potential toscale to large input
formulas.

1 Introduction

Frame conditions are an important part of procedure specifications. For procedures act-
ing on shared mutable objects, frame conditions must designate the set of existing heap
locations that may be updated —the footprint, in the terminology of separation logic.
Following the lead of Kassios [12], the authors have developed a variant of Hoare logic,
dubbed region logic, to explore the use of ghost state to express frame conditions in
terms of explicit location sets [2]. We seek perspicuous specifications and effective lo-
cal reasoning in automated verification based on SMT provers, for programs at the Java
level of abstraction where heap locations are not integer addresses but rather are des-
ignated like p.f where p is an object reference and f a field name. In region logic,
frame conditions are designated in terms of image expressions1 like G‘f where G is
a set of references (a region) and G‘f is the set of f fields of objects in G . Verifica-
tion conditions typically involve operations on sets and predicates like containment and
disjointedness.

Object sets are ubiquitous in functional specifications for object based programs
(e.g., [28,19]). We are particularly interested in images, owing to their use in frame
conditions. For example, in a state where G1 #G2 holds (i.e., the regions are disjoint),
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1 A more conventional notation for images is f [G], but this collides with array notation.
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a procedure that writes G1‘f does not interfere with a formula that only depends on f
fields of objects in G2. Images are also useful to express closure conditions: if p ∈ G
and G‘f ⊆G then G contains the objects reachable from p via f . Using loop invariants
that entail reachability properties but are expressed in pure first order logic, our pro-
totype verifier performs well both for verifying data structure implementations and for
local reasoning about data structure clients [22,25]. In addition to closure and disjoint-
edness constraints, the assertion language of region logic features reference equality,
points-to assertions, and type/subtype constraints (for Java’s class types).

Previous experiments with automation of region logic [1,22] relied on axiomatiza-
tion of region assertions, wherein regions are represented by ref → bool functions and
the semantics is encoded by axioms using quantified formulas. However, automated
reasoning about quantifiers is necessarily incomplete and typically ad-hoc. State-of-
the-art SMT solvers perform E-matching [7] in order to limit the number of quanti-
fier instantiations. Essentially, quantified formulas are annotated with syntactic patterns
or triggers; typically the user supplies these annotations, otherwise default heuristics
are used. Finding “good” patterns can drastically improve the performance of certain
benchmarks. However, not all quantified formulas lend themselves to useful patterns.
Furthermore, SMT solvers are typically not refutationally-complete; e.g., if a region
assertion happens to be invalid, then its encoding using quantifiers may yield UNKNOWN
which means that the solver did not find an unsatisfiable conjunction, although one must
exist by Compactness of first-order logic.

Goal. Our ultimate goal in this work is to obtain an efficient decision procedure for
the quantifier-free fragment of the region assertion language. Implicit in “efficient” is
the requirement to integrate well within the SMT framework; i.e., decision procedures
for region assertions must perform reasoning modulo theories such as partial order (for
class types) and integers that arise in program verification conditions. In particular we
want to decide verification conditions involving region assertions and heap updates. The
latter requires reasoning modulo the theory of arrays.

Approach and contributions. There has been great progress in automated reasoning
about sets and related theories, notably [26,24], but as we discuss in Sect. 6 prior work
does not fully reach our goal.

Our approach is inspired by a tableau-based decision procedure for a simple language
of sets of elements [27]. In that procedure, reasoning about sets is performed by tableau
rules while reasoning about the elements of sets can be done entirely by an SMT solver.

We formalize a quantifier-free first-order language RL which is sufficiently expres-
sive to accomodate the quantifier-free fragment of the region assertion language. We
formalize a set of tableau-based rules collectively referred to as the RL-tableau calcu-
lus. Applying the rules has the effect of deriving a refutation proof in case the given
formula is valid. If the formula is invalid, then a tableau obtained by saturating (i.e., ex-
haustively applying the rules) denotes a counterexample. RL-tableau rules contain only
syntactic conditions, namely (subterm) occurence checks in their premises, so the rules
are simple to implement. To check for saturation it suffices to ensure that every possible
distinct rule instance has been applied.
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We prove that the RL-tableau calculus is refutationally-complete. In general, for
some invalid RL-formulas, the rules may be non-terminating. Thus, what we obtain
is a semi-decision procedure for RL. We have implemented this procedure as a theory
plugin inside Z3 [6]. Preliminary performance results are encouraging.

We conjecture that RL has a high complexity. If we consider only finite interpreta-
tions of RL, we can show that the resulting theory is NEXPTIME-hard (see [21]). This
leads us to investigate a syntactic restriction of RL, called restricted-RL. The restriction
amounts to disallowing assertions of the form H ⊆ G‘f but allowing assertions of the
form G‘f ⊆ H . We give a tableau calculus for restricted-RL and show that it provides
a nondeterministic polynomial time decision procedure. We also prove that deciding
conjunctions of restricted-RL literals is an NP-complete problem. Restricted-RL is suf-
ficiently expressive to capture what we have found to be the most useful idioms of
region logic, such as disjointedness and closure constraints.

Our main contributions can be summarized as follows.

– sound and complete tableau calculus for a theory RL which includes regions, refer-
ence subtyping, type-respecting functional images, arrays, etc.

– implementation of semi-decision procedure for RL as a theory plugin in Z3
– encouraging experimental results from synthetic benchmarks
– sound and complete calculus for an expressive fragment, restricted-RL
– NP-completeness of restricted-RL-tableau calculus

Full proofs and further details can be found in Rosenberg’s dissertation [21].

2 Preliminaries

Throughout, we work with quantifier-free, many-sorted first-order logic with equality.
We tacitly assume that each theory has the equality symbol always interpreted in the
standard way. There are countably many variables of each of a theory’s sorts.

Syntax. The language RL is boolean formulas over the signature ΣRL defined by:

– sorts: rgn, ref,arr, fname,cname
– constants:

• null, of sort ref (un-allocated reference), emp, of sort rgn (empty region)
• alloc, of sort rgn (universal region)

– function symbols:
• ∪,∩,−, of sort rgn× rgn→ rgn (union, intersection, difference)
• {·}, of sort ref → rgn (quasi singleton)
• img, of sort arr× rgn× fname→ rgn (image)
• read, of sort arr× ref× fname→ ref (field read)
• write, of sort arr× ref× fname× ref → arr (field write)
• type, of sort ref → cname (type of reference)
• dtype, of sort fname → cname (enclosing type of field)

– predicate symbols:
• ∈, of sort ref × rgn (membership), ≤, of sort cname× cname (subtype)
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We use metavariables r ,s , t for rgn-terms, u,v ,w for ref-terms, h for arr-terms, f ,g
for fname-terms, K for cname-terms.

In region logic the heap is implicit: expressions like x .f and G‘f are interpreted
with respect to a program state. In that setting, an update to the heap, e.g., x .f := y ,
yields a new program state. We aim to decide verification conditions containing re-
gion assertions, so we represent heap updates explicitly. We use two-dimensional ar-
rays to encode the heap. This representation is particularly useful for encoding frame
conditions [4] and is used in Verl [25]. The heap is made explicit in field read and
image expressions, read(h,u, f ) for u.f and img(h,r , f ) for r‘f . An update is en-
coded by a field write expression, e.g., write(h,u, f ,v) for u.f := v . Note that function
symbols are interpreted by total functions, yet field accesses are not defined every-
where.

To encode definedness of field accesses, we use type to encode the runtime class
type of a reference, ≤ to encode subtyping (i.e., the subclass relation), and dtype to
encode the class type enclosing a field (i.e., the class where a field is declared). For
example, the RL formula u ∈ alloc∧type(u)≤ dtype(f ) says that u.f is defined. (Here,
u denotes an allocated reference whose runtime type is a subclass of the class enclosing
f ’s declaration; this is consistent with the semantics of field access in Java.) Because
regions are untyped, i.e., may contain references of any class type, an image expression
must account for references where a field access would be undefined. The semantics of
RL reflects this constraint.

The syntax of RL is capable of expressing quantifier-free assertions of region logic
(cf. [2,3]) with the exception of: field access expression u.f in case f has type rgn,
image expression G‘f in case f has type rgn, and type predicate type(K ,x ) where
x has type rgn. See [21] for details on how to extend RL to handle these additional
constructs.

Example. Following [2] we consider a finite binary tree with method setLeftZero
whose body has a single command x .left .item := 0. The item field of parameter x ’s
left node is set to 0. (Each node has fields item, left and right .) Specifications of the
method, using region assertions, follow. The frame condition says that only the item
field of objects in r may be written.

requires x �= null∧ x .left ∈ r ∧ x .right ∈ s ∧ r # s
requires r‘left ⊆ r ∧ r‘right ⊆ r ∧ s‘left ⊆ s ∧ s‘right ⊆ s
requires ∀o : Node ∈ s · o.item > 0
ensures ∀o : Node ∈ s · o.item > 0
writable r‘item

Verl works by translation to the intermediate form Boogie2 and uses the latter’s VC
generator, which is designed for performance rather than readability. To illustrate how
the preceeding example is verified, we derived the following verification condition, for
the ensures clause, by hand. It is a predicate on variables x and H , where H is a two-
dimensional array that represents the current heap.
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(1) (∀h : arr,o : ref · type(o) ≤ Node ∧o ∈ alloc ⇒ read(h,o, left) = null
∨(read(h,o, left) ∈ alloc∧ type(read(h,o, left)) ≤ Node)) ∧

(2) . . . ditto, with right for left . . . ∧
(3) type(x ) ≤ Node ∧ (x = null∨ x ∈ alloc) ∧
(4) x �= null ∧ read(H ,x , left) ∈ r ∧ read(H ,x ,right) ∈ s ∧ r # s ∧
(5) img(H ,r , left) ⊆ r ∧ img(H ,r ,right) ⊆ r ∧
(6) img(H ,s , left) ⊆ s ∧ img(H ,s ,right) ⊆ s ∧
(7) (∀o : ref · type(o) ≤ Node ∧o ∈ s ⇒ read(H ,o, item) > 0)

⇒ (8) (∀o : ref · type(o) ≤ Node ∧o ∈ s ⇒ read(H ′,o, item) > 0)

where H ′ =̂ write(H , read(H ,x , left), item,0). Line (8) thus encodes the weakest pre-
condition for the assignment x .left .item := 0 to establish the specified postcondition.
Conjuncts (1)–(7) are essentially the translation of the requires clauses including addi-
tional assumptions. (The additional assumptions are conjuncts (1)–(3) which stem from
the semantics of the programming language, namely definedness of field dereferences,
type of x , whether x is allocated.) To prove the above VC is valid it suffices to prove
unsatisfiability of its negation. The VC can be automatically proven using Z3 to reason
about the quantifiers, types and arrays in conjunction with our (semi)decision procedure
for quantifier-free region assertions.

Semantics. The semantics of RL is given by Def. 2. Therein we make use of the theory
of arrays TA, the theory of partial orders T≤, and the theory of equality TE; the defini-
tions are standard and therefore omitted (see [21, Sect. 4.2.2]). It is convenient to refer
to the union of these theories as the background-theory.

Definition 1 (Background Theory)

– Let TA ∪TE ∪T≤ be called the background-theory with respect to RL.
– Let any literal from ΣA ∪ΣE ∪Σ≤ be called a background-literal.
– Let Φ be any conjunction of RL-literals. We say Φ is background-satisfiable iff all

background-literals of Φ are satisfiable modulo the background-theory.

Each of TA, TE, T≤ admits a decision procedure, each theory is infinitely stable,2

and no two signatures share any function or predicate symbol except the = symbol.
Thus, a decision procedure for the background-theory can be obtained by combining
the decision procedures for TA, TE, and T≤ à la Nelson-Oppen [20].

Definition 2 (RL-interpretation). An RL-interpretation is a ΣRL-interpretation, I ,
such that

– each sort τ ∈ {ref, rgn,arr,cname, fname} is mapped to a non-empty set Iτ
– Irgn = P(allocI ), allocI ∈ P(Iref \ {nullI }), and empI = ∅
– symbols ≤ and read,write, are interpreted according to T≤, TA, respectively
– symbols ∈,∪,∩,−, are interpreted in the standard (set-theoretic) way
– {a}I = {a}∩allocI , for every a ∈ Iref

2 A theory T is infinitely stable if every T -satisfiable formula has an infinite model.
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– For every h ∈ Iarr,r ∈ Irgn, f ∈ Ifname,

imgI (h,r , f ) = {readI (h,a, f ) | a ∈ r ∧ typeI (a) ≤I dtypeI (f )}∩allocI

The constant alloc is assigned any subset of the non-empty domain Iref which excludes
nullI . In region logic, alloc is implicitly updated following allocation so it contains
the references to currently allocated objects, which serves to reason about freshness.
The domain Irgn is interpreted to be the set of all subsets3 of allocI . Observe that Irgn

is non-empty since it contains at least the empty set. The quasi singleton is so named
because {u}I is empty if uI is not in allocI . Note that alloc is not required to be
finite; we return to this later.

The verification conditions generated by the Verl tool [25] impose additional con-
straints, in particular, heaps have no dangling references and object fields have values
compatible with their types. For these constraints, quantifiers work well (e.g., see [17]),
and they are not relevant in this paper.

The subset relation for regions can be expressed in more than one way; e.g., r ⊆ s
is equivalent to r ∪ s = s and to r ∩ s = r . In the sequel, let r ∪ s = s be synonymous
with r ⊆ s unless otherwise noted. The membership predicate can encoded using other
relations: u ∈ r is equivalent to {u} ⊆ r ∧{u} �= emp. We include ∈ in the core syntax
because membership is used directly by our decision procedure.

The image term img(h,r , f ) is so called because its denotation is a region obtained
by computing the (functional) image of r under f pointwise, for those points a where f
is “defined”, viz. the constraint typeI (a)≤ dtypeI (f ). To express it using the standard
notion of images, img(h,r , f ) is the image of r under F : Iref → Iref , where F is the
partial function obtained by restricting readI appropriately: ((h,a, f ),b) ∈ F iff a ∈ r
and readI (h,a, f ) = b and typeI (a) ≤I dtypeI (f ) and b ∈ allocI .

Definition 3 (RL-model). An RL-model of an RL formula Φ is an RL-interpretation
that makes the formula true. We say M |= Φ to denote that M is an RL-model for Φ .

Here and in the sequel, “satisfiable” typically denotes T -satisfiable. That is, Φ is satisfi-
able modulo theory T . We can say this concisely using the satisfaction relation: |=T Φ .
When the theory is clear from the context, it can be elided (as in Def. 3).

3 RL-Tableau Calculus

Our aim is to decide whether a given conjunction of RL-literals is satisfiable. (An
arbitrary formula is converted to CNF whence it suffices to guess a satisfiable con-
junction of literals.) Our solution is based on the (refutational) proof method of an-
alytic tableaux [23,8]. The tableau calculus we describe was inspired by the work of
Zarba [27].

Given an arbitrary RL-conjunction Φ , RL-tableau calculus lets us infer all member-
ship literals (literals of the form u ∈ r , u �∈ r ) as well as background-literals entailed

3 This reflects the semantics in [2] that regions contain only allocated references, also imple-
mented in Verl [25].
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by Φ . We apply inference rules until either inconsistency is detected or every (appli-
cable) rule has been applied. Some inference rules are conjunctive, meaning that they
infer a conjunction of literals, while others are disjunctive, meaning that they infer a
disjunction of (conjunctions of) literals —a case split.

A tableau is a rooted, finitely branching tree with literals as nodes. Following stan-
dard terminology, a branch is a path from the root that is maximal —i.e., it includes
a leaf or is infinite. A tableau rule is applied to a branch. If applicable, a conjunctive
rule adds one or more literals, extending the branch linearly. A disjunctive rule creates
a fork, so the branch becomes several branches.

In a nutshell, the proof method works as follows. For the formula Φ to be decided,
construct an initial tableau comprising a single branch whose nodes are the conjuncts
of Φ . Repeatedly, non-deterministically choose an inference rule which when applied
adds new nodes, possibly splitting the branch. The goal is to try to close each branch
by determining that some of its nodes are contradictory. If we succeed in closing every
branch then Φ is unsatisfiable. On the other hand, if there exists an open (i.e., not closed)
branch and every rule instance has been applied, then Φ is satisfiable.

RL-tableau calculus comprises the rules in Figure 1. The premise of each rule is
composed of a set of literals and possibly some subterm occurrence checks denoted by
occurs predicate; occurs(t) holds whenever term t occurs as a (sub)term in any of the
literals of a given branch. The conclusion of a conjunctive rule (such as the first of the
∩-rules and the second of the img-rules) is composed of a set of literals; for a disjunctive
rule (such as the third of the =-rules, the second of the {·}-rules, the ∈-rules, and the
first of the img-rules) each disjunct is associated with some set of literals.

Rules are applied within a branch. Thus for a given branch B, in order to apply a rule,
we must find an applicable rule instance for B. A rule instance assigns terms to the free
variables occurring in the corresponding rule. Subsequently, to check if the rule instance
is applicable we must verify that the instantiated premise holds. E.g., let σ denote a rule
instance in B for the first ∩-rule in Fig. 1 such that σ(u) = u , σ(r) = r , σ(s) = r ∪ s .
Then, σ is applicable iff u ∈ r ∩ (r ∪ s) occurs in B. As a result of applying σ , we
would add u ∈ r and u ∈ r ∩ (r ∪ s) to B.

The rules marked with (∗) create fresh variables denoted by w ; freshness is en-
forced by negative occurrence checks. (While other rules may yield fresh terms, e.g.,
read(h,u, f ) in the first img-rule in Fig. 1, these terms do not occur in antecedents;
hence, only a bounded number of such terms can be created.) We preclude “dumb” rule
applications—those rule applications which repeatedly apply the same rule instance—
by tracking rule instances which already have been applied (see [21, Sect. 4.3]). E.g.,
for a given literal r �= s we can apply the third =-rule in Fig. 1 exactly once; the instan-
tiation of w is irrelevant.

Definition 4 (Closed Branch). A branch B of an RL-tableau is closed iff it contains
any of the following contradictory sets of literals

– any conjunction of background-literals unsatisfiable modulo the background-theory
– any two complementary ∈-literals; i.e., literals of the form u ∈ r and u �∈ r
– any literal of the form u ∈ emp

A tableau is closed iff all of its branches are closed. A branch/tableau which is not
closed is open.
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=-rules

r = s
u ∈ r

u ∈ s

r = s
u ∈ s

u ∈ r

r �= s ¬occurs(w)
w ∈ r w ∈ s
w �∈ s w �∈ r

(∗)

∩-rules

u ∈ r ∩ s

u ∈ r u ∈ s

u ∈ r u ∈ s occurs(r ∩ s)
u ∈ r ∩ s

{·}-rules

u ∈ {v}
u = v

occurs({u})
u �∈ alloc | u ∈ {u}

∈-rules

u ∈ r v ∈ s occurs(r ∩ s)
u ∈ s | u �∈ s

u ∈ r occurs(r − s)
u ∈ s | u �∈ s

u ∈ r

u ∈ alloc

u ∈ r

u �= null

u ∈ r v �∈ r

u �= v

img-rules

u ∈ r occurs(img(h,r , f ))
type(u) �≤ dtype(f ) | read(h,u, f ) �∈ alloc | read(h,u, f ) ∈ img(h,r , f )

u ∈ img(h,r , f ) ¬occurs(w)
w ∈ r type(w) ≤ dtype(f ) read(h,w , f ) = u

(*)

Fig. 1. Selected RL-tableau rules. (Omitting set union and difference, see [21, Fig. 4.1]).

The first condition in Def. 4 uses a decision procedure for the background-theory (see
Sect. 2). The remaining conditions are purely syntactic. Intuitively, we need the first
condition because the following rules propagate background-literals: the first {·}-rule,
fourth and fifth ∈-rules and both img-rules.

A branch B of an RL-tableau is satisfiable iff there exists an RL-model for the con-
junction of all literals in B. A tableau is satisfiable iff at least one of its branches is
satisfiable.

If a branch is satisfiable, then by semantics (Def. 2) none of the conditions in Def. 4
can hold. Therfore, a satisfiable branch is open. The other direction—an open branch is
satisfiable, may not hold. E.g., the branch corresponding to u ∈ r ∩ s , u �∈ r , is open by
Def. 4. Yet, it is easily seen that an application of the first ∩-rule will yield a new branch,
with the literals u ∈ r and u ∈ s ; this branch is closed owing to the second condition in
Def. 4. Thus, a priori we cannot determine whether an open branch is satisfiable unless
all rules in the branch have been exhaustively applied.

A branch B of a RL-tableau is saturated iff whenever a rule instance applies, and is
not “dumb”, the literals in its conclusion already occur in B. A tableau is saturated iff
all of its branches are saturated.
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Intuitively, a saturated branch is closed under all possible inferences. The notion of
saturation plays a key role in establishing completeness (of the proof method). That
is, if an RL-tableau for Φ yields an open and saturated branch, then Φ is satisfiable.
Conversely, if the tableau is closed, then Φ is unsatisfiable.

A branch B of a RL-tableau is completed iff it is either saturated or closed. A tableau
is completed iff all of its branches are completed. A completed tableau can be obtained
by applying the rules until every branch either becomes closed or saturated.

Theorem 1 (Soundness). Let Φ be a conjunction of RL-literals. If there exists a closed
RL-tableau for Φ , then Φ is unsatisfiable.

Theorem 2 (Completeness). Let Φ be a conjunction of RL-literals. If Φ is unsatisfi-
able, then every completed RL-tableau for Φ is closed.

(1) r ∩ r‘f = r

(2) r‘f ∩ r �= r‘f

(3) w1 ∈ r‘f ∩ r

(4) w1 �∈ r‘f

(5) w1 ∈ r‘f

(6) w1 ∈ r

⊥

(7) w1 ∈ r‘f

(8) w1 �∈ r‘f ∩ r

(9) w2 ∈ r

(10) w2.f = w1

(11) type(w2) ≤ dtype(f )

(12) w2 ∈ r ∩ r‘f

(13) w2 ∈ r‘f

...

– (3), (4) and (7), (8) from
(2) by third of =-rules

– (5), (6) from (3) by first
of ∩-rules

– (9), (10), (11) from (7)
by second of img-rules

– (12) from (1), (9) by
second of =-rules

– (13) from (12) by first of
∩-rules

Boxed nodes are contradic-
tory; right branch is infinite.

Fig. 2. RL-tableau for r � r‘f , that is, r ∩ r‘f = r ∧ r‘f ∩ r �= r‘f

Example. Several illustrative examples of RL-tableau are given in [21, Sect. 4.4]. Here,
we describe one for which every completed RL-tableau must be infinite. Fig. 2 illus-
trates an RL-tableau for the conjunction r ∩ r‘f = r ∧ r‘f ∩ r �= r‘f which denotes:
r is a proper subset of r‘f . (For brevity we use region logic notation r‘f to stand for
img(h,r , f ) since the example only involves a single heap.) Observe that if the right
branch is to be completed, then the branch must be infinite; the second img-rule will
have been applied infinitely often. The tableau in Fig. 2 is not unique; e.g., we could
swap the right and the left branches to obtain another RL-tableau. However, it is not
difficult to see that every completed RL-tableau for the given conjunction is infinite.
Intuitively, r ⊆ r‘f expresses that there exists a function f : r → r ∪s , for some s , such
that f is surjective onto r , whereas r‘f �⊆ r expresses that the range of f extends beyond
r . No such function exists for any finite r .
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4 Implementation of Semi-decision Procedure

Using the RL-tableau calculus we can construct a completed tableau T for any given
RL-conjunction Φ . If T is closed, then owing to Theorem 1 Φ is unsatisfiable. If T
is open, then owing to Theorem 2 Φ is satisfiable; indeed T determines a model. As
witnessed by the previous example, some RL-conjunctions may yield completed RL-
tableaux which are infinite. However, we can obtain a semi-decision procedure by en-
suring that rules are applied in a systematic fashion.4 Essentially, img-rules are applied
in a lock-step fashion; i.e., apply exhaustively non-img-rules, apply img-rules for oc-
curring terms, repeat.

The semi-decision procedure for RL has been implemented as a theory plugin in Z3;
theory plugins are based on the DPLL(T) architecture [9]. In a nutshell, Z3 guesses a
conjunction of literals, say L, which must hold. The plugin is notified with each asserted
RL-literal l ∈ L at which point it asserts new theory lemmas into Z3’s context. (Z3’s
context represents the current tableau branch.)

The theory lemmas are nothing more than instances of the RL-tableau rules. Each
rule is potentially applied to ensure saturation.5 Reasoning modulo the background-
theory is peformed entirely within Z3. (New background-literals are propagated by in-
santiating rules, e.g., first {·}-rule.) Thus, to check if a branch is closed, we merely
check if the literals u ∈ r and u �∈ r have been asserted or the literal u ∈ emp has been
asserted; both checks are purely syntactic. E.g., if u ∈ emp is asserted, then we simply
assert u ∈ emp ⇒ false.

Our preliminary evaluation used synthetic benchmarks [21, Figs. 4.13, 4.14] to com-
pare the performance of the semi-decision procedure versus an axiomatization of RL
which relies on Z3’s quantifier reasoning. The looping phenomenon (cf. Fig. 2) is ob-
served in some cases, when the image rules are implemented directly as presented in
Fig. 1. Our implementation includes an option to switch on certain heuristics described
in [21, Sect. 4.4.1]. With that option all our benchmarks terminate, but there is no guar-
antee in general. The benchmarks include basic properties of boolean algebra and func-
tion images, as well as formulas, both valid and invalid, involving the full signature of
RL except array writes. These capture typical verification conditions except for exclud-
ing literals involving integers or array manipulation, our goal being to focus evaluation
on performance of the tableau procedure itself.

The procedure terminates fast (under 50ms) for valid formulas (i.e., UNSAT for their
negations). For invalid formulas, it terminates fast with UNKNOWN, due to (potential)
incomplete6 quantifier reasoning in the theory of partial orders; partial order is typically
axiomatized in Z3. For these benchmarks, however, it is sound to treat read, type, dtype,
and ≤ as uninterpreted; then all the invalid benchmarks terminate under 50ms. Our
results suggest that the semi-decision procedure has the potential to scale (see [21,
Sect. 4.12]). Even on small benchmarks, its performance is much more predictable
than the one that is reliant on quantifier instantiation. For example, out of 44 UNSAT

4 The same idea is used in Smullyan’s tableaux for first-order logic. For details see [21, Fig. 4.7].
5 We describe how to do this efficiently in [21, Sect. 4.11].
6 As of release 2.17, Z3 supports complete instantiation though it is not yet fully integrated with

theory plugins.
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benchmarks, Z3 timed out on 32 of them when using axioms for the region theory,
while the theory plugin returned UNSAT in under 50ms for each of the 44 benchmarks.
(Timeout was set to 100 seconds.) For the 8 UNSAT benchmarks on which Z3 terminated,
its performance exhibited high variance (due to quantifiers).

5 Restricted-RLE-Tableau Calculus

Unrestricted RL appears to be of high complexity. In [21, Prop. 4.33] we show that it
becomes NEXPTIME-hard if we change Def. 2 to require alloc to be interpreted as a
finite set. (The proof builds on ideas of [10,26].) By imposing simple syntactic restric-
tions we obtain a theory for which satisfiability is NP-complete, yet which is expressive
enough to encompass the verification conditions that arise from the specifications we
have used in case studies [1,22]. We retain Def. 2 unchanged.

Definition 5 (restricted-RLE, restricted-RL). A restricted-RLE literal is one such that

– there is no write symbol
– img symbol occurs only in the forms img(h,r , f ) ⊆ s and u �∈ img(h,r , f ) where

r ,s are any img-free rgn-terms and h, f ,u are any terms of the appropriate sort

A restricted-RL literal is one that satisfies the second of these restrictions.

The first restriction is only superficial since the theory of arrays can be reduced to the
theory of equality by eliminating write terms. (See [21, Sect. 4.6] or [11].) The second
restriction is key in establishing NP upper-bound; it essentially disallows literals of the
form s ⊆ img(h,r , f ) while allowing literals of the form img(h,r , f ) ⊆ s .

Our complexity result is the same for both restricted-RL and restricted-RLE. How-
ever, for technical 7 reasons our tableaux are formulated for restricted-RLE.

(R1)

u ∈ r occurs(img(h,r , f )) occurs(read(h,u, f ))
type(u) ≤ dtype(f )

type(u) �≤ dtype(f ) read(h,u, f ) �∈ alloc read(h,u, f ) ∈ img(h,r , f )

(R2)

u ∈ r occurs(img(h,r , f )) ¬occurs(read(h,u, f )) occurs(read(h ′,u ′, f ′))
|=TBG

h ′ = h |=TBG
u ′ = u |=TBG

f ′ = f

type(u ′) ≤ dtype(f ′)
type(u ′) �≤ dtype(f ′) read(h ′,u ′, f ′) �∈ alloc read(h ′,u ′, f ′) ∈ img(h,r , f )

Fig. 3. img rules for restricted-RLE tableau

7 The background theory of restricted-RLE is convex; not so for restricted-RL, due to arrays.
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New rules. The restricted-RLE tableau calculus has the img-rules in Fig. 3 which re-
place the img-rules in Fig. 1. The other rules are the same as in Fig. 1. The background-
theory, TBG, for restricted-RLE is the union of the theory of equality, TE, and the
theory of partial orders, T≤. The rules in Fig. 3 provide complete reasoning about
img literals for the restricted-RLE theory. (R1) is nearly the same as the first img-
rule in Fig. 1. The only difference is the addition of type(u) ≤ dtype(f ) to the right-
most disjunct. (R2), however, is an entirely new rule. (R2) deals with the case when
read(h,u, f ) does not occur in a branch (and hence not in the input conjunction). Intu-
itively, (R2) says that if some read(h ′,u ′, f ′) occurs in a branch, then we must guess if
read(h ′,u ′, f ′) ∈ img(h,r , f ); the entailment conditions express that read(h ′,u ′, f ′) has
the same denotation as read(h,u, f ). That is, the equalities h ′ = h, u ′ = u , f ′ = f are
implied by the current branch, modulo the background-theory.

Checking implied equalities. One way to fulfill the semantic checks in (R2) is to com-
pute all the implied equalities on all the background-terms in π(B). To check if an
equality u = v is implied by the current branch modulo the background-theory, it suf-
fices to check unsatisfiability of the conjunction π(B)∧u �= v modulo TBG. (Here π(B)
is the conjunction of all background-literals in the branch.)

Computing all implied equalities every time (R2) is considered would be inefficient.
We describe one possible optimization. The optimization relies on the observation that
fresh equality literals are added by the first {·}-rule in Fig. 1; remaining rules can add
background-literals of the form u �= v , u �= null and type(u) �≤ dtype(f ), none of which
could imply new equalities. Consequently, all implied equalities can be precomputed
and updated whenever the first {·}-rule is applied in the branch.

In practice, the implementation of (R2) may not need to query implied equalities.
SMT solvers typically implement Nelson-Oppen combination method [18]. Z3 uses
model-based theory combination [5]. In both frameworks, all implied equalities on mu-
tually shared variables are eventually propagated to all other theories.

Theorem 3 (Soundness). Let Φ be any conjunction of restricted-RLE-literals. If there
exists a closed restricted-RLE-tableau for Φ , then Φ is unsatisfiable.

Theorem 4 (Completeness). Let Φ be any conjunction of restricted-RLE literals. If Φ
is unsatisfiable, then every completed restricted-RLE tableau for Φ is closed.

Complexity. Observe that the img-rules in Fig. 3 can create fresh terms only of the form
type(u), dtype(f ), both of sort cname, where neither u nor f is fresh; the number of
such fresh terms is O(n2) where n is the size of the input. This is in stark contrast to
the img-rules in Fig. 1 which can create an unbounded number of fresh terms of sort ref
(e.g., Fig. 2). We can derive the following branch bound for restricted-RLE tableaux.

Lemma 1 (branch bound). Let Φ be any restricted-RLE conjunction. Let size(Φ) = n .
Let B be any branch of a restricted-RLE tableau for Φ . Then, size(B) is O(n3).

Conjunctions of resricted-RLE literals suffice to encode arbitrary boolean clauses. Intu-
itively, non-determinism due to disjunctions can be encoded by singleton sets. Thus we
have the following result ([21, Lemma 4.57]).
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Lemma 2. Deciding the satisfiability of a conjunction of restricted-RLE literals is NP-
hard.

Owing to Lemma 1 and the fact that the premises in (R1) and (R2) of Fig. 3 can be
checked in polynomial time,8 we can formulate a non-deterministic decision procedure
which runs in polynomial time. Given an arbitrary restricted-RLE formula, Φ , we first
transform it into CNF using Tseitsin’s encoding, e.g., [13]. (The equisatisfiable CNF
formula is linear in the size of Φ .) Next, we guess a conjunction of disjuncts and use it
as the input to the tableau procedure; the tableau procedure merely applies all possible
tableau rules in a non-deterministic fashion until each branch is complete.

Lemma 3. Deciding the satisfiability of a restricted-RLE formula is in NP.

Theorem 5. The satisfiability problem for restricted-RLE is NP-complete.

Recall that restricted-RLE is obtained from restricted-RL by eliminating all array lit-
erals, i.e., literals containing write-terms. The reduction introduces only polynomially
many fresh literals (see [21, Lemma 4.62]). Consequently, we can apply the reduction
and appeal to Theorem 5 to obtain

Theorem 6. The satisfiability problem for restricted-RL is NP-complete.

6 Related Work

Our decision procedure extends the tableau-based decision procedure for the quantifier-
free language 2LST—two-level syllogistic modulo T [27]. 2LST is an extension of
2LS—a two-sorted language of sets of elements where the element sort is uninter-
preted. Additionally, 2LST has any number of constant, function and predicate symbols
over the elem sort in some theory T , provided as a parameter. The function and predi-
cate symbols are of the form: F : elem× ·· ·× elem → elem, P : elem× ·· ·× elem, of
any arity. The interpretation of these symbols is dictated according to T . The decision
problem is NP-complete assuming the decision problem for T is in NP. A tableau-
based decision procedure for 2LST was presented in [27]. It corresponds essentially to
our Fig. 1, excluding the second {·}, and the third and fourth ∈-rules; in our setting,
the background-theory plays the role of T . Note, if we keep the third ∈-rule, we es-
sentially obtain a decision procedure for 2LST with a universal set, denoted by alloc.
Consequently, RL can be seen as an extension of 2LST with a universal set and images.

The tableau-based decision procedure is a combination method different from that
of Nelson-Oppen. Notably, it does not perform the equality propagation between T
and 2LS in the sense of Nelson-Oppen. (Although, equalities amongst T -terms are
propagated by tableau rules.) Furthermore, T need not be stably infinite. Intuitively, a
decision procedure for T serves as a black box. After a rule is applied, a tableau simply
asks the black box to determine if the new branch(es) remains open, i.e., whether a
conjunction of elem-literals is T -satisfiable.

8 This stems from the fact that TE,T≤ are convex and can be decided in polynomial time.
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Kuncak, et al. give a decision procedure for a quantified language of sets of uninter-
preted elements with cardinality constraints [14]. The language is known as BAPA—
boolean algebra with Presburger arithmetic. It permits quantification over sets and inte-
gers; quantification over elements is expressible in terms of set quantification. The de-
cision procedure for BAPA admits quantifier-elimination. The restriction to quantifier-
free formulas is called QFBAPA. This language has no separate syntax for element
terms; elements are encoded by fresh set-variables whose cardinality is constrained
to be 1. Remarkably, QFBAPA’s decision problem was shown to be NP-complete by
Kuncak and Rinard [16].

Yessenov, et al. introduce a decidable language QFBAPA-Rel with image expres-
sions under unary function symbols and predicate symbols of any arity [26]. As in
QFBAPA, the element sort is un-interpreted. This language is very expressive and
suited to verification of object based programs. It comes close to subsuming RL, indeed
one of their examples is based on our specification for setLeftZero. Their functions are
total whereas our images are not: region r in r‘f may contain some objects that lack
field f . Perhaps this can be patched by introducing types.

For a function f : A → A and set X ⊆ A, the decision procedure of [26] eliminates
terms of the form f [X ] by first rewriting X as a union of (disjoint) Venn regions, i.e.,
X =

⋃
vi and f [X ] =

⋃
f [vi ]. Subsequently, each f [vi ] is replaced by a fresh variable ti

with the cardinality constraints: |ti | ≤ |vi | and |ti |= 0⇔|vi |= 0. The resulting formula
is in QFBAPA which is NP-complete, thus the decision problem is in NEXPTIME.
However, because the translation (to Venn regions) yields a QFBAPA formula of expo-
nential size, the decision procedure does not seem practical.

Recently Suter et al. [24] have shown that it is possible to obtain an SMT-based de-
cision procedure for QFBAPA. Their decision procedure has been implemented as a
plugin in Z3. To reason about interpreted elements of sets, axiomatized predicate sym-
bols singleton and element are added to QFBAPA subject to axioms |singleton(e)|= 1
(for singleton set) and element(singleton(e)) = e. The crux of the decision procedure
is an algorithm that decomposes a formula such that the number of considered Venn
regions is significantly reduced. Several experiments show that in practice the decom-
position algorithm can handle formulas with a large number of set variables, despite
exponential worst-case complexity. Suter et al. conjecture that their approach can be
extended to QFBAPA-Rel.

7 Discussion

We conjecture that it is possible to devise a terminating tableau procedure to decide
full RL, with respect to interpretations where alloc is finite; but this is unlikely to
be of practical value because of its NEXPTIME-time complexity. (Our procedure is
incomplete for finite alloc, as illustrated by the example in Fig. 2.) We conjecture
that NEXPTIME-time complexity also holds for RL without the restriction to finite
alloc. For typical verification condition generators, there is no need to explicitly re-
quire the heap domain to be finite. However, if alloc is fixed to be finite, then one can
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express cardinality constraints of the form |r | ≤ |s |, for any rgn-terms r ,s . Observe
that under a finite interpretation of regions, r ⊆ img(h,s , f ) implies the cardinality
constraint |r | ≤ |s |. (By cardinality, r ⊆ img(h,s , f ) implies |r | ≤ |img(h,s , f )|; by
image semantics and finiteness of regions, |img(h,s , f )| ≤ |s |, whence |r | ≤ |s | by
transitivity.) The case of restricted-RL is simpler since every satisfiable formula has a
finite model owing to Lemma 1 and Theorem 4.

In previous work we used a translation to the BSR fragment9 inspired by [15]. For
example a restricted-RL literal r‘f ⊆ s where r ,s are variables, can be roughly encoded
by a BSR formula ∀u,v · v �= null ⇒ (r(u)∧ f (u,v) ⇒ s(v)), where r ,s , f are pred-
icate symbols. While the translation is possible for a language akin to restricted-RL, it
breaks down when we encounter RL literals of the form s ⊆ r‘f ; such a literal would
result in a formula with the quantifier prefix ∀∃ which does not belong to BSR.

Although the procedures presented here seem promising, much more thorough per-
formance evaluation is needed. The semi-decision procedure is not currently integrated
with the Verl tool, but we have already instrumented Verl with the necessary hooks.
We plan to complete that integration and also to implement the decision procedure for
restricted RL. This will enable comparison between performance of the (semi)-decision
procedures and the axiomatic implementation of RL already present in Verl. (And with
QFBAPA-Rel, if an SMT-based implementation becomes available.) Ordinary use of
Verl will assess performance on full VCs for a range of correct and incorrect pro-
grams, i.e., involving integers and other theories besides RL. From those VCs we may
also extract benchmark formulas in the RL and restricted RL fragments, for more direct
comparative evaluation of the procedures.

As presented here, RL reflects the semantics in the original paper on region logic [2].
Subsequently we streamlined the assertion language by allowing regions to contain
null [3]; this validates a slightly different set of formulas (e.g., x ∈ {x} becomes valid,
whereas only x �= null ⇒ x ∈ {x} is valid according to Def. 2). It should be straight-
forward to adapt the tableau procedures to this semantics.

Acknowledgements. Thanks to Nikolaj Bjørner and Leonardo de Moura for help with
Z3 integration and feedback on the implementation. Thanks to Clark Barrett for study-
ing proofs of soundness and completeness of tableaux. Thanks to the anonymous refer-
ees for their comments.
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Abstract. Recently, a general framework on characteristic formulae was pro-
posed by Aceto et al. It offers a simple theory that allows one to easily obtain
characteristic formulae of many non-probabilistic behavioral relations. Our paper
studies their techniques in a probabilistic setting. We provide a general method
for determining characteristic formulae of behavioral relations for probabilistic
automata using fixed-point probability logics. We consider such behavioral rela-
tions as simulations and bisimulations, probabilistic bisimulations, probabilistic
weak simulations, and probabilistic forward simulations. This paper shows how
their constructions and proofs can follow from a single common technique.

1 Introduction

Probabilistic automata have been extensively used in systems involving both stochastic
and nondeterministic choice. To combat the state space explosion problem, various re-
duction techniques have been introduced and applied to probabilistic automata. These
techniques include bisimulation and simulation relations [21,20], partial order reduc-
tions [3,12], symbolic data structures [13], and game-based abstractions [15].

Bisimulation and simulation relations are particularly useful, because they enable us
to use compositional minimization [21]. Briefly, each of the constituting components
can be minimized first before being composed with other interacting components. This
idea is extended to a probabilistic setting in [6]. Various logics have been considered to
reason about probabilistic automata. In [5], a model checking algorithm is presented for
probabilistic automata with respect to the logic PCTL, and in [9,14], Hennessy-Milner
logics are used to characterize behavioral relations.

A characteristic formula for a behavioral relation is associated with each state in a
model; the formula for a given state characterizes the set of states that the given state is
related to according to the behavioral relation. In the case that the behavioral relation is
simulation, one state is related to another if the first can be simulated by the other, that
is, can be mimicked by the other. In effect, a characteristic formula allows us to reduce
the problem of determining whether one state is simulated by another to the problem of
model checking. Instead of directly checking whether the first state is simulated by the
other, we check if the other state satisfies the characteristic formula of the first. In a more
theoretical setting, some modal completeness and decidability theorems can be proved
by constructing a finite satisfying model whose elements are normal forms, which are
characteristic formulae for bisimulation or approximations to such formulae [18].
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This paper focuses on behavioral relations over probabilistic automata and their char-
acteristic formulae. The semantics of our languages involve fixed-points, which provide
us with a natural facility for expressing various kinds of infinite behavior, such as those
that are infinite or have loops. We present a single method, adapted from [1], that allows
one to easily obtain characteristic formulae of many behavioral relations, including sim-
ulations and bisimulations, probabilistic bisimulations, probabilistic weak simulations,
and probabilistic forward simulations. The strength of this technique is its generality:
we can construct a variety of characteristic formulae and prove their correctness using
a single simple method.

Relation to Related Work: Our theory builds on a recent paper by Aceto et al. [1],
where a general framework is introduced for constructing non-probabilistic character-
istic formulae over transition systems. It allows one to directly obtain the characteristic
formulae for many behavioral relations, which have traditionally involved technical –
even if not difficult – proofs. Their main result (an earlier version of Theorem 1 in this
paper), in its generality, can be used for all the behavioral relations we consider, except
for probabilistic forward simulation. We thus provide a modest generalization of this
theorem to address forward simulation.

A more universally relevant extension to the overall setting of [1] is to involve
in its applications (previously developed) liftings of relations. Liftings are discussed
in [10,23], and employed in [14] for fixed-point characterizations of (bi)simulations
and probabilistic (bi)simulations. As they are central to probabilistic behavioral rela-
tions, liftings play a key role in adapting the framework of [1] to a probabilistic setting.

Another difference between our work and [1] is with the language used. The lan-
guages in [1] are fixed-point variants of Hennessy-Milner logic. For all our behavioral
relations except the probabilistic forward simulation, we use a fixed-point variant of a
two-sorted probability logic given in [16]. This allows us to interpret the characteristic
formulae over states, as in [1], but to also have formulae over distributions that better
fit with the setting of probabilistic automata. For probabilistic forward simulation, we
involve a language, as in [19], only interpreted over distributions rather than states.

In [7], Deng and van Glabbeek study characteristic formulae for all the behavioral re-
lations over probabilistic automata that we consider, though they restrict their automata
to being finite. For all their behavioral relations, their characteristic formulae use a
more complex one-sorted language over distributions than the one we use for proba-
bilistic forward simulation, and the form of their formulae are different (reflecting their
different but equivalent approach to lifting) and somewhat simpler (our characteristic
formula for probabilistic bisimulation involve an infinitary disjunction). But the differ-
ence that we emphasize is that they use a separate technique for proving correctness
of characteristic formulae for each preorder considered, while our framework provides
characteristic formulae which are correct by construction.

Organization of the paper: In Section 2, we provide definitions to be used later in
the paper. In Section 3, we present a slight adaptation of the framework developed
in [1]. In Section 4, we recall the definition of probabilistic automata, the fixed-point
characterization of bisimulation and simulation relations, and the weak bisimulations,
and then we clarify the relationship between liftings used in [7] and in [14]. In Section
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5, we present the language that we use for all our formulae except those from a language
introduced in Section 6 that is defined specifically to characterize forward simulations.
In Section 6, we illustrate how the characteristic formulae for all the behavioral relations
that we consider can be constructed by applying the general framework. In Section 7,
we describe some possible extensions of our work. Finally, Section 8 concludes the
paper.

2 Preliminaries

Distributions. Let S be a set. A distribution over S is a function μ : S → R≥0 such
that the support of μ, defined by supp(μ) := {s | μ(s) > 0}, is countable, and∑

s∈S μ(s) = 1. We let μ(A) denote the sum
∑

s∈A μ(s), for all A ⊆ S. We denote
by Dist(S) the set of discrete probability distributions over S and, given an element
s ∈ S, we denote by δs the Dirac distribution on s that assigns probability 1 to {s}.

Given a countable set of distributions {μi}i∈I and a set {pi}i∈I of real numbers in
[0, 1] such that

∑
i∈I pi = 1, we define the convex combination

∑
i∈I piμi of {μi}i∈I

as the probability distribution μ such that, for each s ∈ S, μ(s) =
∑

i∈I piμi(s).
Given a distribution over distributions (μ ∈ Dist(Dist(S))), define the flattening of

μ by the function flatten , that maps μ to a distribution ν, defined by

ν(s) =
∑

ν′∈supp(μ)

μ(ν′)ν′(s). (1)

Complete lattices. A partially ordered set (poset) is a set A together with a relation�A

that is reflexive (a �A a for every a ∈ A), anti-symmetric (a �A b and b �A a implies
a = b), and transitive (a �A b and b �A c implies a �A c). We omit the subscript
A when it should be clear from context. A complete lattice is a partially ordered set
(A,�), such that every subset B ⊆ A has a least upper bound in A, written $B, and
consequently a greatest lower bound #B in A as well.

A function f : A → B between lattices is monotone if a �A a′ implies f(a) �B

f(a′) for each a, a′ ∈ A. A function f : A → B is an isomorphism if it is bijective,
monotone, and f−1 is monotone, and consequently maps least upper bounds to least
upper bounds. We call a function f from A to itself an endofunction. We call a point
a ∈ A a post-fixpoint of f if f(a) ≥ a, and a fixed-point of f if f(a) = a. By Tarski’s
fixed-point theorem [22], every monotone endofunction f on a complete lattice A has
a least upper bound gfp f given by ${a | a � f(a)}.

3 General Framework

In this section we present some background behind our technique for finding charac-
teristic formulae for behavioral relations. We involve languages L consisting of a set of
formulae with variables. We often use I for the index set of the variables. The formulae
will be interpreted over a set P , such as a set of states or distributions. In [1], I = P . We
find that in order to apply this general framework to forward simulations (Section 6.4),
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it is helpful to distinguishing the index set I from the set P over which formulas will be
interpreted, in particular setting I to be the set of states and P the set of distributions.

Variables are interpreted by a function σ : I → P(P ), called a variable interpreta-
tion. Here σ(i) is viewed as the set of elements of P where the variable is considered to
be true. This is similar to a valuation of atomic propositions in modal logic. The vari-
able interpretation can be extended to a full fledged semantics σ∗ : L → P(P ), using
rules such as σ∗(ϕ∧ψ) = σ∗(ϕ)∩σ∗(ψ). For all formulae ϕ and p ∈ P , we generally
write p ∈ [[ϕ]]σ or (σ, p) |= ϕ for p ∈ σ∗(ϕ).

We call a function E : I → L a declaration. Such a function characterizes an
equational system of formulae, equating the variable Xi with the formula E(i). As
formulae can contain variables, a declaration is effectively recursive. Involving recur-
sive features of a language allows us to characterize some infinite or looping behavior
without the need for infinitary formulae. Lanugages with recursion generally involve
fixed-points of an endofunction.1 Hence we extend a declaration E to an endofunction
[[E]] : P(P )I → P(P )I on variable intepretations (here we write P(P )I for the set of
functions that map I to P(P )), given by

([[E]]σ)(i) = [[E(i)]]σ.

The endofunction [[E]] has a greatest fixed point if the language is monotone.2 A lan-
guage is monotone if whenever σ1 � σ2 (pointwise set inclusion), then for all formulae
ϕ and elements p, it holds that (σ1, p) |= ϕ⇒ (σ2, p) |= ϕ.

Behavioral relations, such as bisimulation, are often defined as the greatest fixed-
point of a monotone endofunction F on P(I × P ), where I and P are typically set to
be the set of states. The following definition clarifies our formulation of a characteristic
formula, which in our setting is really a declaration.3

Definition 1 (Declaration characterizing a relation). A declaration E : I → L char-
acterizes the greatest fixed-point of an endofunction F : P(I × P )→ P(I × P ) if for
all i ∈ I and p ∈ P ,

gfp[[E]], p |= E(i) iff (i, p) ∈ gfpF .

1 Although we do not involve fixed-points operators directly in the language, we make use of
fixed-points of a function induced by the declaration. A fixed-point sematics based on this
equational system is equivalent to a fragment of the μ-calculi. The equational system provides
us with a more intuitive way of handling what is equivalent to multiple nestings of fixed-point
operators.

2 This is because variable interpretations form a complete lattice, ordered under pointwise set
inclusion, and the function [[E]] is monotone if the language is. Hence we can apply Tarski’s
fixed-point theorem.

3 As we do not involve fixed-point operators directly in the formulae of the language, our recur-
sive features come from the equational system given by the declaration. A formula together
with a declaration contains the information we would normally obtain from a formula in the
sufficiently expressive fragment of μ-calculus. Given a declaration E and i ∈ I , we always set
the formula component to E(i) when providing a characteristic formula-with-declaration for
i. With this convension, the declaration is all we need to specify.
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We link variable interpretations with subsets of I × P , using the function ϕ : P(I ×
P )→ P(P )I given by

ϕ(R) = (i (→ R(i)) (2)

where i (→ R(i) is the function mapping element i ∈ I to the set {p | iRp}.
Definition 2 (Declaration expressing an endofunction). A declarationE expresses a
monotone endofunction F : P(I × P )→ P(I × P ) if

ϕ(R), p |= E(i) iff (i, p) ∈ F (R)

for every relation R ⊆ I × P .

More formally, the theorem from [1] is as follows.

Theorem 1. If a declaration E expresses a monotone endofunction F , then E charac-
terizes its greatest fixed-point gfpF .

This theorem and the prior two definitions differ from the one in [1] in that they set
I = P . Our generalization of distinguishing I from P does not affect the proof in [1]
of the main theorem.

4 Probabilistic Automata, Simulations, and Bisimulations

We first discuss lifting of relations, followed by the definition of probabilistic automata
and simulation relations.

4.1 Lifting of Relations

A relation lifting transforms a relation between two sets into a relation between two
sets related to the first two. Having two levels of relations is central to definitions of
probabilistic behavioral relations. Liftings of relations from S ×Dist(S) to Dist(S)×
Dist(S) were introduced by Jonssen & Larsen [17] using weight functions to define
simulations for Markov chains. Later, Desharnais [8] gave a definition of liftings that did
not involve weight functions. We prove (Theorem 2 below) that these characterizations
of liftings are equivalent, by using recent key insights (Lemma 1 below) from [10,23].

First we present the following characterization [10,23] of the lifting of a relation
R ⊆ S × P (with S and P both arbitrary sets) to a relation R̂ ⊆ Dist(S)×Dist(P ):

μR̂ν ⇔ ∀(A ⊆ suppμ). μ(A) ≤ ν(R(A)). (3)

When P = Dist(S), we can define from R ⊆ Dist(S) × Dist(P ) a relation R ⊆
Dist(S) × Dist(S) by flattening the elements (see Eq. (1)) of Dist(P ): for μ, ν ∈
Dist(S),

μRν ⇔ ∃ν′ ∈ Dist(P ). ν = flatten(ν′) & μRν′. (4)

We next present the following characterization, based on weight functions, of a lifting
from R ⊆ S ×Dist(S) to R̃ ⊆ Dist(S)×Dist(S), given by

μR̃ν ⇔ ∃{si}i∈N ∈ S. ∃{νi}i∈N ∈ Dist(S) such that
μ =

∑∞
i=1 piδsi and ν =

∑∞
i=1 piνi, for

some pi ≥ 0,
∑∞

i=1 pi = 1, and siRνi.
(5)
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Note that δx
a→ μ if and only if x

a� μ. We will, as in [14], use the lifting (3) in
our formulations of behavioral relations. The form (5) was used in [7] to define weak
transitions, and will be used by us in the corresponding section (Definition 6). The two
characterizations of relation liftings are equivalent in the following sense.

Theorem 2. Given a relation R ⊆ S ×Dist(S), R̃ = R̂.

Before proving this, we define weight functions [17] and networks, which will be useful
in the proof.

Definition 3 (Weight function). Let S and P be arbitrary sets. Let μ ∈ Dist(S), ν ∈
Dist(P ) and R ⊆ S × P . A weight function for (μ, ν) with respect to R is a function
Δ : S × P → [0, 1], such that

1. Δ(s, p) > 0 implies s R p,
2. μ(s) =

∑
p∈P Δ(s, p), for s ∈ S and

3. ν(p) =
∑

s∈S Δ(s, p), for p ∈ P .

We only make sense of sums that have countably many non-zero terms. The conditions
of Definition 3 ensure that Δ(s, p) = 0 whenever either s �∈ suppμ or p �∈ supp ν.
Thus as an uncountable sum, only countably many terms would be non-zero, and hence
it is safe to formulate this as an uncountable sum.

Definition 4 (The network for μ, ν and R). Let R ⊆ S×P , and let μ ∈ Dist(S), ν ∈
Dist(P ) be distributions. A networkN (μ, ν,R) is a tuple (V,E, c), where

1. V = {�,�} ∪ supp(S) ∪ supp(P ), with �,� �∈ S, P ,
2. E = {(s, p) | (s, p) ∈ R} ∪ {(�, s) | s ∈ supp(μ)} ∪ {(p,�) | p ∈ supp(ν)},
3. c, the capacity function, is defined by:

(a) c(�, s) = μ(s) for all s ∈ suppμ,
(b) c(p,�) = ν(p) for all p ∈ supp(ν), and
(c) c(s, p) =∞ for all other (s, p) ∈ E.

Lemma 1. Let R ⊆ S × P , and let μ1 ∈ Dist(S), μ2 ∈ Dist(P ). The following
statements are equivalent:

1. There exists a weight function for (μ1, μ2) with respect to R.
2. The maximum flow of the networkN (μ1, μ2, R) is 1.
3. μ1(A) ≤ μ2(R(A)) for all A ⊆ S.
4. μ1(A) ≤ μ2(R(A)) for all A ⊆ supp(μ1).

The above lemma has been proposed in [10,23], and used in [14]. The formal proof for
countable systems makes use of a recent result in [2]. Thus, for completeness, the proof
of this lemma for countable systems is given below.

Proof. The equivalence between 1 and 2 is from Lemma 5.1 in [4]. The equivalence
between 3 and 4 is straight forward. We will show that 1 implies 3 and that 4 implies 2.

(1 =⇒ 3): Let Δ denote the corresponding weight function for (μ1, μ2) with respect
to R. Now we want to prove that for every A ⊆ S: μ1(A) ≤ μ2(R(A)). First, letting
Dom(R) represent the set of first coordinates of the relation R, we have

μ1(A) =
∑
u∈A

∑
v∈P

Δ(u, v) =
∑
u∈A

∑
v∈R(A)

Δ(u, v) =
∑

u∈A∩Dom(R)

∑
v∈R(A)

Δ(u, v),



402 J. Sack and L. Zhang

which follows from the properties of a weight function (Definition 3), especially that
Δ(u, v) = 0 if u �∈ Dom(R) or v �∈ R(u). Similarly, from the first and third conditions
of a weight function, we have that μ2(R(A)) =

∑
u∈R−1(R(A))

∑
v∈R(A)Δ(u, v).

From basic set theory, we see that A ∩ Dom(R) ⊆ R−1(R(A)). Thus by comparing
μ1(A) and μ2(R(A)), we have our desired result: μ1(A) ≤ μ2(R(A)).

(4 =⇒ 2): Assume that the fourth clause is true. We show that the maximum flow of
the network N (μ1, μ2, R) has value 1. To construct such a maximum flow, we borrow
the proof idea of Theorem 7.3.4 from Desharnais [8]. According to the Maximum Flow
Minimum Cut Theorem [2], the maximum flow equals the capacity of a minimal cut.
Therefore, it suffices to show that there exists a minimal cut of capacity 1. Cut {�} has
capacity 1, but we still have to show that it is minimal. Let C be some minimal cut (not
necessarily {�}). We let B = C ∩S. The capacity of C is the sum: c(C) =

∑
{c(i, j) |

i ∈ C, j /∈ C}. Cut C has to fulfill s ∈ B =⇒ R(s) ⊆ C because otherwise it would
have infinite capacity. Hence the capacity of C is: c(C) = μ1(S \B) + μ2(R(B)). By
construction of the networkN , it holds thatB ⊆ supp(μ1). Since μ1(B) ≤ μ2(R(B)),
we have: c(C) ≥ μ1(S \B)+μ1(B) = μ1(S) = 1. Hence, the capacity of C is greater
than or equal to 1, implying that the minimum cut has value 1. �

Proof. (Proof of Theorem 2)
Suppose that μR̃ν. Then μ =

∑∞
i=1 piδsi and ν =

∑∞
i=1 piνi, where pi ≥ 0,∑∞

i=1 pi = 1, and siRνi. Define ν′ ∈ Dist(Dist(S)), such that ν′(νi) = pi. Then
the pi are the weights Δ(si, νi) in the weight function for μ and ν′ (Definition 3). By

Lemma 1, μ(A) ≤ ν′(R(A)), for all A ∈ supp(μ). Thus μR̂ν′, and hence μR̂ν.

Suppose that μR̂ν. Then there is a ν′ ∈ Dist(Dist(S)), such that ν = flatten(ν′)

and μR̂ν′, i.e., for all A ∈ suppμ, μ(A) ≤ ν′(R(A)). By Lemma 1, there is a weight
function Δ for μ and ν′ with respect to R. Enumerate the pairs (s, ν), using a bijective
function f : (supp(μ)× supp(ν′))→ N (replace N with {1, 2, . . . , N} if | supp(μ)×
supp(ν′)| = N < ∞). Let g = f−1, pi = Δ(g(i)), si = π1(g(i)) (where π1 is the
projection onto the first coordinate), and let νi = π2(g(i)). We then obtain the desired
condition of (5) from the conditions of the weight function by plugging in an arbitrary
s into the right hand side of the equation for μ in (5), and applying second condition of
the weight function to see that we indeed get μ(s); and then note that the third condition
of the weight function collapses the right hand side of the equation for ν in (5) into the
right hand side of the equation for flattening of ν′ into ν (recall that we used equation
(4) to obtain ν′). �

4.2 Probabilistic Automata

Now recall the definition of probabilistic automaton [21], or PA for short.

Definition 5. A probabilistic automaton is a triple M = (S,Act , Steps), where S is
a countable set of states, Act is a countable set of actions, and the relation Steps ⊆
S ×Act ×Dist(S) is the transition relation.

Obviously, PAs comprise labeled transition systems (LTS) for the special case that for
all (s, a, μ) ∈ Steps , μ is a Dirac distribution. Denote a transition (s, a, μ) ∈ Steps by
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s
a→ μ, which is also referred to as an a-transition of s. We denote the set of distributions

leaving a state s by action a by Stepsa(s) = {μ | s
a→ μ}.

Given a probabilistic automaton (S,Act,Steps), we can augment the transition rela-
tion Steps (which maps states via actions to distributions) to another transition relation
Comb (which also maps states via actions to distributions), such that each transition in
Comb for any action corresponds to a convex combination of transitions in Steps for
that action. Precisely, if {s a→ μi}i∈I is a set of transitions, then

s
a� μ iff μ =

∑
i∈I

piμi for some pi where
∑
i∈I

pi = 1. (6)

The a transitions in Step are denoted by
a→ and those in Comb are denoted by

a�. Note
that as

a→ may represent a finite relation over states,
a� typically represents a relation

that is uncountable.

4.3 Simulations and Bisimulations

In the following exposition, we fix some PAM = (S,Act , Steps) and observe that the
set of relations over S, denoted by 2S×S , is a complete lattice with set inclusion as the
partial order. We review in this section how some notions of simulation and bisimulation
can be presented in terms of suitable monotone functions over this lattice [14].

Simulation. Consider the function F� : 2S×S → 2S×S defined as follows:

R (→ {(s, t) ∈ S × S | ∀s a→ μ. ∃t a→ μ′ : μR̂μ′} (7)

We say that a relation R ∈ 2S×S is a simulation relation if R is a post-fixpoint of F�,
i.e.R ⊆ F�(R). Note that the functionF� is monotone. Recall that Tarski’s fixed-point
theorem [22] says that the fixed-points of a monotone function form a complete lattice
and that the greatest fixed-point is the union of all post-fixpoints. Similarity, denoted
, is defined as the greatest fixed point of F�, and hence must be the union of all
simulation relations, the greatest simulation relation.

Example 1. LetM be such that for every (s, a, μ) ∈ Steps , μ is a Dirac distribution.
Then

F� : R (→ {(s, t) ∈ S × S | ∀s a→ δs′ . ∃t a→ δt′ : δs′R̂δt′}
= {(s, t) ∈ S × S | ∀s a→ δs′ . ∃t a→ δt′ : δs′({s′}) ≤ δt′(R({s′}))}
= {(s, t) ∈ S × S | ∀s a→ δs′ . ∃t a→ δt′ : s

′Rt′}.

By replacing the Dirac distributions δs by states s in the definition of F� over the LTS
M, we obtain the same definition that is given in [1] for an endofunction, whose post-
fixpoints are simulations.

A coarser relation, called probabilistic simulation, is defined in the same way by replac-
ing transitions with combined transitions so that the greatest probabilistic simulation is
the greatest fixed-point of the function F�p : 2S×S → 2S×S defined by:

R (→ {(s, s′) ∈ S × S | ∀s a→ μ. ∃s′ a� μ′ : μR̂μ′} . (8)
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A relation R ⊆ S × S is a probabilistic simulation if it is a post-fixpoint of F�p . The
greatest probabilistic simulation preorder p is defined as the greatest fixed-point of
F�p .

Bisimulation. The function corresponding to bisimulation is a symmetric variation of
the function for simulation, such that F∼ : 2S×S → 2S×S is defined by:

R (→
{
(s, t) ∈ S × S

∣∣∣∣∣∀s a→ μ. ∃t a→ μ′ : μR̂μ′

∀t a→ μ′. ∃s a→ μ : μR̂μ′

}

We say that a relation R ∈ 2S×S is a bisimulation relation if R is a post-fixpoint of
F∼, i.e. R ⊆ F∼(R). The greatest bisimulation∼ is defined as the greatest fixed-point
gfp F∼.

Similarly, we introduce probabilistic bisimulation. The function F∼p : 2S×S →
2S×S for probabilistic bisimulation is defined analogously, however using combined
transitions:

R (→
{
(s, t) ∈ S × S

∣∣∣∣∣∀s a→ μ. ∃t a� μ′ : μR̂μ′

∀t a→ μ′. ∃s a� μ : μR̂μ′

}
A relation R ⊆ S × S is a probabilistic bisimulation if it is a post-fixpoint of F∼p . The
greatest bisimulation ∼p is defined as the greatest fixed-point gfp F∼p .

It is easy to see that ∼ and ∼p are equivalence relations. It is not difficult to see that,
restricting to LTSs, (bi-)simulation and probabilistic (bi-)simulation coincide.

Weak simulation. We say that an automaton (S,Actτ , Steps) is divergent if there is
an infinite sequence (si, μi), such that si

τ→ μi and si+1 is in the support of μi. An
automaton that is not divergent is convergent.

Let Act be a non-empty set of actions, and let Actτ = Act∪{τ}, where τ is an element
not appearing in Act and is regarded as an internal step. We define weak transitions
similarly to those in [7,20]:

Definition 6 (Weak transitions). Given a convergent countable probabilistic automa-
ton (S,Actτ , Steps), we define the following relations:

– define x
τ̂→ μ iff x

τ→ μ or μ = δx, and define x
â→ μ iff x

a→ μ.

– define
τ̂� and

â� from respectively
τ̂→ and

â→ according to (5).

– for all a ∈ Actτ , define μ
â⇒ ν iff there are μ′ and ν′, such that μ

τ̂�
∗
μ′, μ′ â� ν′,

ν′
τ̂�

∗
ν, where

τ̂�
∗

is the reflexive transitve closure of
τ̂�.

A weak simulation relation is defined as a post-fixpoint of the endofunction F� :

2S×S → 2S×S defined by:

R (→ {(s, t) ∈ S × S | ∀a ∈ Actτ . ∀s a→ μ. ∃t. δt â⇒ μ′ : μR̂μ′} .

Weak similarity, denoted �, is defined is the greatest fixed-point of F�.
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5 Hennessy-Milner Logic for Probabilistic Automata

Here we present our basic languageLbas, a two-sorted language, similar to one in [16],
consisting of state formulae (interpreted over the states S of the automaton) and dis-
tribution formulae (to be interpreted over Dist(S)). It is suggested in [14] that such a
two-sorted language could be useful for a coalgebraic approach, but we leave coalge-
braic characteristic formulae for future work.

Of the two sorts, we are ultimately interested in the formulae over states, as the sim-
ulation and bisimulation relations we have seen so far are defined over states. Formally,
given a set Actτ of actions augmented with a silent action τ , we define the language
Lbas(Actτ ) by the following two-sorted syntax. State formulae are given by:

ϕ ::= Xz | � | ⊥ |
∧
k∈K

ϕk |
∨
k∈K

ϕk | 〈T 〉ψ | [T ]ψ

where T ∈ { a→,
a�,

a⇒| a ∈ Actτ}, k ∈ K for some cardinal K , and z ∈ I for some
index set I , which we will typically set equal to the set S of states; distribution formulae
are given by:

ψ ::= � | ⊥ |
∧
k∈K

ψk |
∨
k∈K

ψk | Lpϕ

where p ∈ [0, 1] and k ∈ K for some cardinal K .4

Semantics. LetM = (S,Act , Steps) be a PA. The formula ϕ is interpreted on states
and ψ on distributions over. Both will make use of a variable interpretation σ : I →
P(P ), where P is the set of states S. Select components of the semantics are
given by:

σ, s |= Xz iff s ∈ σ(z)
σ, s |= 〈T 〉ψ iff σ, μ |= ψ for some μ such that sTμ
σ, s |= [T ]ψ iff σ, μ |= ψ for all μ such that sTμ
σ, μ |= Lpϕ iff μ({s | σ, s |= ϕ}) ≥ p

where T ∈ { a→,
a�,

a⇒| a ∈ Actτ}. To be clear, we take
a→ to be the primitive relation

component in the probabilistic automaton,
a� to be derived from

a→ according to (6),
and

a⇒ to be defined according to Definition 6.
We observe that this language is monotone:

Proposition 1. if σ1 � σ2 (pointwise set inclusion), then for all state formulae ϕ and
states s, we have σ1, s |= ϕ ⇒ σ2, s |= ϕ and for all distribution formulae ψ and
distributions μ, we have σ1, μ |= ψ ⇒ σ2, μ |= ψ.5

4 It may be desirable to restrict p to rational numbers so as to have a countable language, but
doing so would require we add a countable conjunction to many of our characteristic formulae.

5 Note that this formulation of a monotone language is slightly stronger than the definition of a
monotone language given in Section 3.
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Proof. This is by induction on the structure of formulae:

IH suppose for every subformula ψ of ϕ, we have that whenever σ1 � σ2, if ψ were
a state formula, we have for each state s, σ1, s |= ϕ ⇒ σ2, s |= ϕ and if ψ were a
distribution formula, we have for each distribution σ1, μ |= ψ ⇒ σ2, μ |= ψ.

base case ϕ = Xz immediate from definition.
Case booleans: these may be either state or distribution formulae, but the proof is

straight forward.
Case ϕ = 〈T 〉ψ, suppose that σ1, s |= 〈T 〉ψ. Then there is a μ such that sTμ and

σ1, μ |= ψ. Then by the IH, σ2, μ |= ψ, and hence σ2, s |= 〈T 〉ψ.
Case ϕ = [T ]ψ, this is almost identical to the 〈T 〉ψ case.
Case ϕ = Lpψ. Suppose that σ1, μ |= Lpψ. Then μ({s | σ1, s |= ψ}) ≥ p. But then

by the IH, μ({s | σ2, s |= ψ}) ≥ μ({s | σ1, s |= ψ}) ≥ p. Thus σ2, μ |= Lpψ. �

6 Characteristic Formulae

In this section, we illustrate how the characteristic formulae for all the behavioral rela-
tions that we consider can be constructed by using our adaptation of the general frame-
work of [1].6

6.1 Simulations

We express in Lbas the endofunction F� with the endodeclaration

E� : s (→
∧

a∈Act

∧
μ:s

a→μ

〈 a→〉
∧

A⊆suppμ

Lμ(A)

∨
z∈A

Xz.

Recall that [[E�]] is an endofunction on variable interpretations, and is monotone since
the language is. Had we restricted our language to only allowing rational subscripts p
in Lp, then we could replace Lμ(A) by

∧
p∈Q∩[0,μ(A)] Lp.

We see that E� expresses F� as follows:

1. (s, t) ∈ F�(R)

2. ∀a ∈ Act, ∀s a→ μ, ∃t a→ μ′, μR̂μ′

3. ∀a ∈ Act, ∀s a→ μ, ∃t a→ μ′, ∀A ⊆ supp(A), μ(A) ≤ μ′(R(A)).
4. ϕ(R), t |=

∧
a∈Act

∧
μ:s

a→μ
〈 a→〉

∧
A⊆suppμ Lμ(A)

∨
z∈AXz.

5. ϕ(R), t |= E�(s)

To see the relationship between Items (3) and (4), note that [[
∨

z∈AXz ]]ϕ(R) = R(A),
and hence the formula Lμ(A)

∨
z∈AXz holds whenever μ(A) ≤ μ′(R(A)).

Then by Theorem 1, E� characterizes gfpF�.

6 The general framework in [1] should apply to most of the behavioral relations as presented in
that paper; our adaptation is only needed for forward simulation.
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Opsim: Toward investigating the opposite of simulation (which we abbreviate opsim or
o), we express the endofunction

F�o : R (→ {(s, t) ∈ S × S | ∀a ∈ Act. ∀t a→ μ′. ∃s a→ μ : μR̂μ′}

with the endodeclaration

E�o : s (→
∧

a∈Act

[
a→]

∨
μ:s

a→μ

∧
A⊆suppμ

Lμ(A)

∨
z∈A

Xz.

We see that E�o expresses F�o as follows:

1. (s, t) ∈ F�o(R)

2. ∀a ∈ Act, ∀t a→ μ′, ∃s a→ μ, μR̂μ′

3. ∀a ∈ Act, ∀t a→ μ′, ∃s a→ μ, ∀A ⊆ supp(A), μ(A) ≤ μ′(R(A)).
4. ϕ(R), t |=

∧
a∈Act[

a→]
∨

μ:s
a→μ

∧
A⊆suppμ Lμ(A)

∨
z∈AXz.

5. ϕ(R), t |= E�o(s)

Then by Theorem 1, E�o characterizes gfpF�o . Note that E� ∧ E�o is the character-
istic formula for bisimulation ∼.

6.2 Probabilistic Simulations and Probabilistic Bisimulation

Using the same argument as for simulation and opsimulation, we see that the endofunc-
tion

E�p : s (→
∧

a∈Act

∧
μ:s

a→μ

〈 a�〉
∧

A⊆suppμ

Lμ(A)

∨
z∈A

Xz.

expresses F�p , and that the endofunction

F�po : R (→ {(s, t) ∈ S × S | ∀a ∈ Act. ∀t a→ μ′. ∃s a� μ : μR̂μ′}

is expressed by the endodeclaration

E�po : s (→
∧

a∈Act

[
a→]

∨
μ:s

a�μ

∧
A⊆suppμ

Lμ(A)

∨
z∈A

Xz.

HenceE�p andE�po

characterize gfpF�p and gfpF�po respectively. Note thatE�po is
typically infinitary, since the disjunction may be over an uncountable set. Similar to the
case for ordinary bisimulation, E� ∧E�o is the characteristic formula for probabilistic
bisimulation ∼p.

6.3 Weak Simulations

A weak simulation is defined as the greatest fixed-point of the endofunction F� :

2S×S → 2S×S defined by

R (→ {(s, t) ∈ S × S | ∀a ∈ Actτ . ∀s a→ μ. ∃t. δt â⇒ μ′ : μR̂μ′} .
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Letting s
â

⇒ μ be defined by δs
â⇒ μ, we express this endofunction with the endodec-

laration

E� : s (→
∧

a∈Actτ

∧
μ:s

a→μ

〈
â

⇒〉
∧

A⊆suppμ

Lμ(A)

∨
z∈A

Xz.

Note that this is the same as for simulation, but with
a→ replaced by

a

⇒. The proof that
E� expresses F� is essentially the same as the proof for simulation. Thus by Theorem
1, E� characterizes gfpF�.

6.4 Probabilistic Forward Simulation for Probabilistic Automata

Given a distribution μ ∈ Dist(S), we define μ̆ ∈ Dist(Dist(S)) by

μ̆(ν) =

{
μ(s) ν = δs
0 otherwise

.

Note that flatten(μ̆) = μ. In this section we consider the probabilistic forward simula-
tion, defined by:

F�f : R (→ {(s, μ) ∈ S ×Dist(S) | ∀a ∈ Actτ . ∀s a→ ν. ∃μ′.μ
â⇒ μ′ : νR̂μ̆′}

Note also that F�f is monotone, as increasing the size of R will in turn increase the

size of R̂, and hence F�f (R) will not shrink.
As before, we want to express the endofunction F�f . We employ a “distribution”

language Ldst, define as follows. Given a set Act of actions, the language Ldst(Actτ ) is
given by:

ϕ ::= Xz | � | ⊥ |
∧
k∈K

ϕk |
∨
k∈K

ϕk | 〈
â⇒〉ϕ | [ â⇒]ϕ | Lpϕ

where a ∈ Actτ , k ∈ K for some cardinal K , and z ∈ I for some index set I , (which
we will typically, or maybe always, make the set of distributions), p ∈ [0, 1].

We interpret all formulae ϕ on distributions, and will use a variable interpretation
σ : I → P(P ), where P = Dist(S). Select components of the semantics are:

σ, μ |= Xz iff μ ∈ σ(z)
σ, μ |= 〈 â⇒〉ψ iff σ, ν |= ψ for some ν where μ

â⇒ ν

σ, μ |= [
â⇒]ψ iff σ, ν |= ψ for all ν where μ

â⇒ ν
σ, μ |= Lpϕ iff μ̆({ν | σ, ν |= ϕ}) ≥ p

Note that Lpϕ is defined differently here as it was in Lbas: in Ldst, we take the prob-
abilities to be over sets of distributions, while in Lbas we take them to be over sets
of states. Also, although the variables are indexed by states in both languages, their
interpretations are also different. One can check that Ldst is monotone.

Then the endofunction

E�f : s (→
∧

a∈Actτ

∧
ν:s

a→ν

〈 a⇒〉
∧

A⊆supp ν

Lν(A)

∨
z∈A

Xz.
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expresses F�f , which can be seen as follows:

1. (s, μ) ∈ F�f (R)

2. ∀a ∈ Actτ , ∀s a→ ν, ∃μ â⇒ μ′, νR̂μ̆′

3. ∀a ∈ Actτ , ∀s a→ ν, ∃μ â⇒ μ′, ∀A ⊆ supp(ν), ν(A) ≤ μ̆′(R(A)).

4. ϕ(R), μ |=
∧

a∈Actτ

∧
ν:s

a→ν
〈 â⇒〉

∧
A⊆supp ν Lν(A)

∨
z∈AXz.

5. ϕ(R), μ |= E�f (s)

Thus by Theorem 1, E�f characterizes gfpF�f .

7 Extensions

For simplicity of presentation, we have chosen probabilistic automata, as they are one of
the most important types of stochastic models studied in the literature. We want to note,
however, that the general framework can be easily extended to other types of stochastic
models.

Let us briefly discuss the model called continuous-time Markov chains (CTMC). In
CTMCs, we do not have nondeterministic choices, whereas transitions are governed by
a negative exponential distribution. Briefly, from each state s we have a unique tran-

sition of the form s
λ→ μ, where λ is a positive constant characterizing the negative

exponential distribution, and μ is the distribution (as in probabilistic automata). Then,
starting from s, the probability of triggering the transition within time t > 0 is given by
1− e−λt, and once the transition is triggered, t is reached with probability μ(s′).

As for probabilistic automata, the important preparation steps are to (i) provide a
fixed-point based definition of bisimulation and simulation relations, and (ii) define
appropriate logic and semantics, such as those in the Hennessy-Milner style. Indeed,
both can be done for CTMCs in a straightforward way. The fixed-point based definition
of simulation is based on the function: R (→ {(s, t) | E(s) ≤ E(t) ∧ μR̂μ′}where

E(s) is such that s
E(s)→ μ (which is unique as we mentioned), and similarly for E(t).

The only additional information is that the exit rate E(t) from t is larger than that
of s, meaning that t is faster than s. The logic is also simple because of the lack of
nondeterministic choices: the only modal operator for state formulae is of the form
〈λ〉ψ, and the distribution formulae are the same as for PAs. The semantics for the
modal operator is: s satisfies 〈λ〉ψ if and only if E(s) ≥ λ and μ satisfies ψ with

s
E(s)→ μ (as for probabilistic automata). In this way, characteristic formulae can be

obtained for CTMCs, with respect to simulations, and also bisimulations. Moreover,
further extensions to Markov automata [11], an orthogonal extension of CTMCs and
PAs, can also be obtained along the same line.

8 Conclusion

This paper shows how the general theory in [1] for finding characteristic formulae can
be adapted and applied to forward simulation and other behavioral relations in a setting
for probabilistic automata. Although the characteristic formulae constructed using this
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method may differ from ones developed using other methods (such as those in [7]), it is
helpful to see how a single method can be used to find characteristic formulae for these
probabilistic behavioral relations in general, and that this technique can likely be used
for far more probabilistic behavioral relations. Thus the main thrust of this paper is not
in the results themselves, but in highlighting a method the research community should
be aware of.

In [10], Desharnais et al. have considered a relaxation of (bi)-simulations in which
the weight functions may differ by as much as ε. The case ε = 0 reduces to the tradi-
tional bisimulation relations considered in this paper, whereas the case ε > 0 is partic-
ularly useful for reasoning about systems that nearly match each other. Extending our
results to such ε-bisimulations would be an interesting line of future work.
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Abstract. Techniques for verifying program assertions using symbolic
execution exhibit a significant limitation: they typically require that
(small) bounds be imposed on the number of loop iterations. For se-
quential programs, there is a way to overcome this limitation using loop
invariants. The basic idea is to assign new symbolic constants to the
variables modified in the loop body, add the invariant to the path condi-
tion, and then explore two paths: one which executes the loop body and
checks that the given invariant is inductive, the other which jumps to the
location just after the loop. For parallel programs, the situation is more
complicated: the invariant may relate the state of multiple processes,
these processes may enter and exit the loop at different times, and they
may be at different iteration counts at the same time. In this paper, we
show how to overcome these obstacles. Specifically, we introduce the no-
tion of collective loop invariant and a symbolic execution technique that
uses it to verify assertions in message-passing parallel programs with
unbounded loops, generalizing the sequential technique.

1 Introduction

1.1 Loop Invariant Symbolic Execution for Sequential Programs

Symbolic execution can be used to verify that assertions hold for all possible
executions of a (sequential or parallel) program [9, 10]. The basic technique in-
volves the exploration of a state-transition system in which symbolic constants
X1, X2, . . . are used as inputs and/or initial values of variables. In each symbolic
state, variables hold symbolic expressions in the Xi. A boolean-valued path con-
dition variable pc is also included in the state. Control follows the usual program
semantics, though at a branch on condition c, a nondeterministic choice is made,
and pc is updated according to pc← pc ∧ c or pc← pc ∧ ¬c, depending on the
choice. The search is pruned whenever pc is seen to be unsatisfiable; automated
theorem proving techniques are used for this purpose. When control reaches an
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assertion on expression e, the expression pc⇒ e is evaluated to yield a boolean-
valued symbolic expression, the validity of which is checked using the theorem
prover. If all reachable states are explored and all claims have been established,
one has proved that the assertions can never be violated. We will refer to this
technique as standard symbolic execution.

Unfortunately, because of loops, there are usually an infinite number of reach-
able states. This is true even for programs in which all loops terminate after a
finite number of iterations for any input—e.g., a program which takes as input
an integer n and has a loop that iterates from 1 to n. One way to deal with
this is to place bounds on the number of loop iterations and/or the values of
variables (such as n) which determine loop iterations (see, e.g., [2,13,15]). In this
approach, one sacrifices soundness for tractability: if the technique concludes no
violations are possible for executions in which each loop iterates no more than
B times, it is still possible that an assertion may be violated for some execution
where a loop iterates B + 1 times. Clearly, this is not satisfactory. Moreover,
the number of states tends to blow up as the iteration bound increases, and in
general there is no way to know how large the bound must be before one can
conclude that the assertions hold for arbitrary numbers of iterations.

For sequential programs, one solution to this problem is a technique we call
loop invariant symbolic execution (LISE) [1, 8, 14]. In this approach, we assume
we are given a boolean expression el for each loop l. We also assume we are
given a set of variables Wl which contains all variables that could be modified
in the loop body. Additional symbolic constants are used to represent the values
held by variables after an arbitrary number of loop iterations: call these Yl,v,
where v ∈ Wl. LISE explores a state-transition system which is similar to the
system used in the standard technique, but modified in specific ways. When
control reaches a loop location l, the validity of el is checked in the usual way.
This establishes the base case for an inductive proof. Then, for each v ∈ Wl, v is
assigned Yl,v, discarding the old value for v. The expression el is then evaluated
in this new environment and the result is added to the path condition, thereby
encoding in the state the assumption that the invariant holds after an arbitrary
number of executions of the loop body. Next, a nondeterministic choice is made
between the true and false branches, as usual. For the true branch, control passes
into the loop body and symbolic execution proceeds normally, except that the
“back edges” which return control to the loop location are removed. In place of
these is an assertion that again checks the validity of the invariant, establishing
that el is inductive. Choosing the false branch moves control to the point just
after the loop, from which the search proceeds normally.

Assuming there are a finite number of initial states, LISE, if applied to every
loop in the sequential program, results in a transition system with a finite number
of reachable states. (In the worst case, the number of such states is exponential
in the size of the program.) The procedure is sound: if all of these states are
explored and along the way each claim is proved, the result is a proof that the
assertions (including the loop invariants) can never be violated on any execution
of the program.
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The limitations of the LISE approach are well-known. First, finding appro-
priate invariants is hard. Second, LISE can raise a “false alarm” for a number
of reasons: (1) the theorem prover fails to prove a valid claim, (2) a claim is not
valid because a previous loop invariant was too weak, and (3) a claim is not valid
because the user-supplied expression is not actually a loop invariant, i.e., it does
not hold upon reaching the loop or is not inductive. Finally, the technique only
establishes partial correctness—it does not show that each loop will iterate only
a finite number of times. On the other hand, there has been significant progress
in finding loop invariants automatically (e.g., [5,14]). Automated theorem prov-
ing technology is also advancing steadily, and other techniques can be used to
establish termination. All in all, LISE appears to be a promising approach for a
very difficult problem.

1.2 Extending LISE to Parallel Programs: Challenges

The goal of this paper is to extend LISE to parallel programs. The main challenge
concerns loops that span multiple processes, such as the while loop in Figure 1.
The code is in C and is written in the typical “SPMD” style using the Message
Passing Interface (MPI). Conceptually, each of the n = nprocs processes executes
its own copy of this code in its ownaddress space, i.e., with no sharedmemory.Each
process has a unique integer rank between 0 and n−1 (inclusive) and initializes its
copies of s and t ton(n−1)/2. In each iteration of the loop, each process of positive
rank sends its rank to the process of rank 0. Process 0 receives these messages in
any order (using the wildcard MPI_ANY_SOURCE)and sums them, storing the result
in s. The claimed invariant s = t holds trivially on all processes of positive rank
(since neither variable ismodified) and it seemingly holds onprocess 0, as

∑n−1
i=1 i =

n(n−1)/2. However, the code contains a defect which can lead to a violation of the
invariant on process 0: process 1, for example, could send its first message, race
ahead to the next iteration and send its second message, and both messages could
be received by process 0 in its first iteration. Hence any sound generalization of

int s = t = nprocs*(nprocs-1)/2;
#pragma TASS collective invariant I s == t;
while (true) {
if (myrank == 0) {
s = 0;
for (j=1; j<nprocs; j++) {
MPI_Recv(&x, 1, MPI_INT, MPI_ANY_SOURCE, 0, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);
s+=x;

}
} else MPI_Send(&myrank, 1, MPI_INT, 0, 0, MPI_COMM_WORLD);

}

Fig. 1. race.c: the invariant may be violated when messages cross iteration boundaries.
The pagma tells TASS to use LISE with the specified collective invariant when verifying
that loop.
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1 int n; /* input variable; assume n >= 0 */
2 int i = 0, x = 0;
3 #pragma TASS collective invariant I i==PROC[1-myrank]@main.i && \

x==2*((i+1-myrank)/2);
4 while(i < 2*n) {
5 if (myrank == 0 && i%2 == 0) {
6 MPI_Recv(&x, 1, MPI_INT, 1, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
7 } else if (myrank == 1 && i%2 == 1) {
8 x = i+1;
9 MPI_Send(&x, 1, MPI_INT, 0, 0, MPI_COMM_WORLD);
10 }
11 i++;
12 }
13 assert(x==2*n);

Fig. 2. stagger.c: a 2-process program in which messages sent on odd iterations are
received in even iterations. The program is correct: the invariant and assertion hold
on all executions. A synchronization at the loop location would cause deadlock. The
notation PROC[1-myrank]@main.i references the variable i in the function main of
process with rank 1-myrank.

LISE to the parallel context must return a negative result (or at least, not return
a positive result) on race.c.

If processes were required to synchronize at loop locations, a straightforward
generalization of LISE might be possible. But as the example above shows, this is
not the case: processes may enter or exit the loop at very different times and may
be at different iterations at the same time. A loop-synchronizing technique—one
which considers only the subset of executions in which processes synchronize at
loop locations—cannot be sound: in race.c, for example, the invariant holds on
all such executions, but, as we have seen, fails on other executions.

Figure 2 is an example of the dual problem: the code is correct, but imposing
synchronization at the loop location would cause deadlock. This 2-process pro-
gram takes as input a nonnegative integer n and iterates from 0 to 2n− 1. On
odd iterations, process 1 sends a message to process 0, and on even iterations,
process 0 receives. Note that the message is received in the iteration immediately
preceding the one in which it is sent. This is not paradoxical; it simply requires
process 1 to keep an iteration ahead of process 0. Again, a useful generalization
of LISE should be able to verify the final assertion in this code.

In this paper, we present a sound generalization of LISE to parallel message-
passing programs with a given, fixed number of processes (i.e., we are not dealing
with the much harder problem of parametrized verification, which entails veri-
fying correctness for all values of nprocs). Our approach builds on the notion
of collective assertions [19]. A collective assertion is associated to locations in
several processes and may refer to variables in all these processes. As control
in a process passes through one of these locations, a snapshot of the process
state is taken and inserted into a queue. Once there is a snapshot from ev-
ery process, one snapshot from each process is dequeued and these snapshots
are composed to form a global state at which the assertion is evaluated and
checked. Violations are reported if an assertion fails, if any queue is nonempty at
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termination, or if assertions are not encountered in the same order in every pro-
cess. Our generalization of LISE uses collective loop invariants, special collective
assertions that play the role of ordinary loop invariants in sequential LISE. We
have implemented the technique in the Toolkit for Accurate Scientific Software
(TASS, [21, 22]), a symbolic execution-based verification framework for C/MPI
programs. In addition to verifying assertions in a single program, TASS can ver-
ify the functional equivalence of two programs, and the LISE technique enables
the equivalence verification to work with unbounded loops too.

2 Multiprocess Loop Invariant Symbolic Execution

2.1 Notation and Formal Framework

We use the notation and framework of [21]. For sets X and Y , let Func(X,Y )
denote the set of all functions from X to Y . If f ∈ Func(X,Y ), x0 ∈ X and
y0 ∈ Y , then f [x0 : y0] denotes the function which maps x0 to y0 and otherwise
agrees with f . X∗ denotes the set of all finite sequences of elements of X . For
ξ ∈ X∗ and x ∈ X , enqueue(x, ξ) ∈ X∗ denotes the sequence resulting from
appending x to the end of ξ. For non-empty ξ, first(ξ) ∈ X denotes the first
element of ξ and dequeue(ξ) ∈ X∗ denotes the result of removing that element
from ξ. Similarly, push(x, ξ) ∈ X∗ denotes the result of appending x to ξ, top(ξ)
denotes the last element, and pop(ξ) ∈ X∗ denotes the result of removing the
last element.

We may give names n1, . . . , nr to the components of a Cartesian product of
sets X = X1× · · · ×Xr. Given x ∈ X , x.ni denotes the i

th component of x, and
x[ni : v] is the element of X identical to x except at the component named ni,
where the value is v.

Let B def
= {true, false}, Val ⊇ B be a set of values, V a set of program vari-

ables, and Eval(V ) = Func(V,Val). Let Expr(V ) denote the set of expressions
over V . The semantics of expressions are defined by a function evalV : Expr(V )×
Eval(V )→ Val. Let BoolExpr(V ) be the subset of Expr(V ) consisting of all expres-
sions of boolean type: for any g ∈ BoolExpr(V ) and η ∈ Eval(V ), evalV (g, η) ∈ B.

A program graph over V is a tuple (Loc,Act, effect,Tran, Loc0, g0) where

1. Loc is a set of locations and Act is a set of actions,
2. effect : Act× Eval(V )→ Eval(V ) is the effect function,
3. Tran ⊆ Loc× BoolExpr(V )× Act× Loc is the conditional transition relation,
4. Loc0 ⊆ Loc is a set of initial locations,
5. g0 ∈ BoolExpr(V ) is the initial condition.

Let SExpr denote the set of all symbolic expressions and SBoolExpr the set of
boolean-valued symbolic expressions. A symbolic state includes the path con-
dition (an element of SBoolExpr), a location, and a function assigning a sym-
bolic expression to each variable. Let valid : SBoolExpr → B be a function with
the property that for any φ, if valid(φ) = true then φ is valid, i.e., any as-
signment of concrete values to the symbolic constants occurring in φ causes
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φ to evaluate to true. This function models a conservative theorem prover.
Let seval : Expr(V ) × Func(V, SExpr) → SExpr denote the symbolic evaluation
function.

A parallel program has a fixed number n ≥ 1 of processes and is modeled as
follows. The processes are identified with the set Proc = {0, . . . , n − 1}. Each
process p has a set of local variables Vp. In addition there is a set of shared
variables Vsh. Shared variables may be used to represent the channels (buffered
messages) when modeling a message-passing program. Process p is modeled as
a program graph over Vp ∪ Vsh. We assume the location sets from two different
processes are disjoint, as are the action sets.

The global program graph PG is the program graph over V = Vsh ∪
⋃n−1

p=0 Vp
defined as follows: the (initial) global location set is the Cartesian product of the
local (initial) location sets; the initial condition is the conjunction of the local ini-
tial conditions; the global action set is the union of the local action sets; the effect
function on an action in process p is extended to act trivially on variables that
are not in Vp or Vsh; and each local transition 〈lp, g, α, l′p〉 in process p introduces
the set of all global transitions 〈(l0, . . . , lp, . . . , ln−1), g, α, (l0, . . . , l

′
p, . . . , ln−1)〉

where lj is any location in process j, for j ∈ Proc \ {p}. Given any global transi-
tion t, define proc(t) to be the unique p ∈ Proc such that the action component
of t is in Actp. This is the standard interleaving model for a multiprocess pro-
gram: each execution step consists of a single step in one process, while all other
processes remain put.

2.2 Collective Assertions and Loop Invariants

We assume the program is annotated with collective assertions, which are iden-
tified with symbols in a set Id. Each id ∈ Id determines (1) a nonempty set of
processes procs(id) ⊆ Proc, (2) a set of locations dom(id) ⊆

⋃
p∈procs(id) Locp,

and (3) a function assertionid : dom(id)→ BoolExpr(
⋃

p∈procs(id) Vp). Note that the
expression associated to a location in process p may refer to variables in other
processes, but not to shared variables. Without loss of generality, assume that
every location is involved in at most one collective assertion. (No-ops may be
inserted as necessary to meet this requirement.)

LISE requires some additional structure in the program graph for a process
p. Specifically, we assume that certain locations in the program graph are desig-
nated as LISE loop locations. These have exactly two outgoing transitions: the
true and false branches. Each acts as a no-op, i.e., the action associated to each
is trivial. If the guard for the true branch is g, the guard for the false branch
is ¬g. We further assume that g does not involve any shared variables. The set
of LISE loop locations is denoted LoopLocp, and the set of transitions emanat-
ing from them LTranp. The function isTrue : LTranp → B tells whether a loop
transition corresponds to the true or false branch.

The soundness of the multiprocess LISE technique does not require any fur-
ther structural assumptions: if the technique reports that a property holds then
the property must hold on every concrete execution of PG. However, it is un-
likely to be effective (i.e., to converge and not return a spurious violation) unless
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PG is generated from a program written in a language with structured “while”
loops, without any jumps into or out of the loop bodies, and the loop locations
correspond in the usual way to those loop statements. In a program graph gener-
ated in this way, there are certain restrictions on the sequence of loop operations
that can occur along a control path through a process. Consider, for example, a
process with two LISE loop locations, where ti indicates the true branch for loop
i and fi the false branch. The sequence t1, t1, t2, f2, f1 is possible: it can arise if
the second loop is nested inside the first, and on some execution path the first
loop is entered and then re-entered (without executing the second loop), while
on the second iteration the second loop is executed once. A sequence such as
t1, t2, f1, on the other hand, cannot occur: the second loop would have to exit
before the first could exit.

A collective loop invariant is a collective assertion id for which the elements
of dom(id) are LISE loop locations. We assume every LISE loop location lp
participates in exactly one collective loop invariant id(lp). This does not mean
every loop in the program is required to participate in a collective invariant
since there is no requirement that every node arising from a source-code loop be
included in LoopLocp.

2.3 Multiprocess LISE State

For p ∈ Proc, let ProcStatep
def
= Locp × Func(Vp,Val). Call the first component

location and the second eval. A LISE record is a structure used to record infor-
mation about the state of a collective action. The components of a LISE record
are as follows:

1. id ∈ Id, a symbol uniquely identifying a collective action,
2. snapshots, a function which associates to each p ∈ procs(id) either the symbol

null or an element of ProcStatep, the snapshot of the process state,
3. writeset, a function which associates to each p ∈ procs(id) a subset of Vp, the

current estimate of the set of local variables modified in the loop body,
4. isTrue ∈ B, is this record for the execution of the true branch of a loop?,
5. ppc ∈ SBoolExpr, assumptions made during this loop iteration, and
6. relation ∈ SBoolExpr, a predicate relating new symbolic constants to values

from the previous iteration.

The set of LISE records is denoted LRecord. Components 1 and 2 are used for
all collective actions. Components 3–6 are relevant only for loop actions; for
non-loop actions, components 5 and 6 are true.

A LISE state is a structure with the following components:

1. pc0 ∈ SBoolExpr, the permanent component of the path condition, used to
record assumptions made when control is not inside a loop,

2. location ∈ Loc = Loc0 × · · · × Locn−1,
3. eval ∈ Func(V, SExpr), a function giving the symbolic value of each variable,
4. queue ∈ LRecord∗, a FIFO queue of incomplete LISE records, and
5. stack ∈ LRecord∗, a stack of complete, true-branch, loop records.
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The set of all LISE states is denoted LState. In initial LISE states, the queue
and stack are empty. For s ∈ LState, the path condition associated to s is

pc(s)
def
= s.pc0 ∧

∧
r∈s.stack∪s.queue

r.ppc ∧ r.relation.

This plays the same role as the path condition in standard symbolic execution:
the search is pruned whenever pc(s) is determined to be unsatisfiable, and pc(s)
is used as the assumption when checking assertions.

The writeset is used to determine the set of variables modified in the loop
body. This is done dynamically, during exploration of the state space. The set
is empty when control first reaches the loop, and a variable is only added to
the set when it is actually modified. This allows a precise estimate of the set,
especially in the presence of dynamically allocated memory and pointers. The
set can grow with each loop iteration, but in most cases will converge after two
or three iterations.

The queue stores information on incomplete collective actions: those for which
at least one process involved in the action has reached that point, but at least one
process has not. The stack is used for completed collective loop entry actions
only. These are records for which all processes have entered the loop, but at
least one has not yet exited the loop. If we think of the current location of the
collective program as the location of the slowest process, the stack represents
the loop nest the collective program is currently in.

A record is created when a process reaches a location for a collective assertion
and is the first process to do so. The new record is enqueued at the end of the
FIFO queue. It is dequeued once every process has reached the assertion. If it is
a record for entering a collective loop, once the record is dequeued it is pushed
onto the stack. It is eventually popped from the stack once every process has
exited that loop. Hence at any time, the record for the oldest collective action is
at the bottom of the stack, the actions become more recent as one moves up the
stack, then to the beginning of the queue, and through to the end of the queue,
which contains the most recent record.

The queue may have to record multiple consecutive iterations of the loop, due
to the possible iteration lag between processes. The relation predicate is used to
maintain a coherent relation between these successive iterations. It is discarded
as soon as the record is complete and moved to the stack. This issue does not
arise in sequential LISE, since no lag is possible.

It will be necessary to locate the records for the nest of loops a process p
is inside in a given state s. This is computed using a stack T , initially empty.
The algorithm iterates over the records r occurring in s.stack and s.queue from
oldest to newest. For each such r, if r.id is a collective loop invariant and
r.snapshots(p) �= null, the following two steps are taken in order: (1) if T is
nonempty and the top entry of T is a record for r.id, pop T ; (2) if r.isTrue
is true, push r onto T . The resulting loop nest stack will contain the desired
records, with the innermost loop at the top. We define currentLoopRecord(p, s)
to be the top entry in this stack, or null if the stack is empty.
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2.4 The Multiprocess LISE Next-State Function

We now describe the next-state function on LState. Let s ∈ LState and t ∈ Tran
be a transition in process p. If t �∈ LTran, the update to the state proceeds as
in standard symbolic execution, with the following exceptions: (1) a predicate
that is to be added to the path condition is added instead to the ppc field for
currentLoopRecord(p, s) (or to s.pc0 if that record is null), and (2) any variable
modified is added to the sets r.writeset(p) for each r in the loop nest stack for p.

If the new location is annotated by a non-loop collective assertion, the usual
collective assertion verification actions are taken: a snapshot of the local state
is stored in the queue, and if the snapshot completes a record, the record is
dequeued and the assertion checked. As these actions are a subset of those taken
when executing a loop transition, we now turn to the more general situation.

So assume t ∈ LTran. The next-state function is defined in Figure 3. The first
task is to determine whether t represents an initial entry into the loop (from
outside the loop body) or a re-entry, i.e., a return to the loop location after
executing the loop body one or more times. This is determined by examining
the current loop record r0 for p: if r0 is non-null and its identifier is the same
as that of t, this is a re-entry, in which case W is assigned the writeset from the
previous iteration; otherwise, W is assigned the empty set.

Next, we determine whether a record for this collective action already exists
by checking if there is any record in the queue with a null snapshot for p. If
there is, the oldest such record r1 is selected and we check that the identifier of
that record agrees with that of t. (If it does not agree, then p has encountered
the collective assertions in a different order than another process, and an error
is reported.) We further check that the isTrue flag of t agrees with that of r1;
if this fails then one process has exited the loop while another entered the loop
on corresponding iterations, and an error is reported. If instead, p is the first to
reach this collective action, a new record is instantiated with all snapshots null,
writesets empty, and the ppc and relation predicates true.

The next step is the assignment of fresh symbolic constants to variables in W .
The state is scanned to find the leastm such that no Yi occurs in the state for i >
m. The new valuation eval′ is equivalent to the old one, except that each variable
in W has been assigned one of the Yi. The guard for t is then re-evaluated using
eval′ and added to r1.ppc to form the new ppc φ. The expression equating each
new symbolic constant to the old value of the corresponding variable is added to
the relational predicate to form the new relational predicate ψ. These predicates
are used to create a new record r2, which also incorporates the snapshot of the
state of p. This new record either replaces the old one in the queue, or is inserted
at the end of the queue. The new state s′ is the same as s, except with the new
location, valuation eval′, and the modified queue.

We next deal with the case when the previous action completed the record r3
at the front of the queue. If there is any snapshot still null in r3, the record re-
mains incomplete, and s′ is returned. Otherwise, the snapshot valuations
are united to form a single valuation which is used to evaluate the invariant



Loop Invariant Symbolic Execution for Parallel Programs 421

1 procedure execLoop(s : LState, t : LTran) : LState is
2 let t = 〈l, guard, α0, l

′〉; p← proc(t); r0 ← currentLoopRecord(p, s);
3 if r0 �= null ∧ r0.id = id(lp) then W ← r0.writeset; else W ← ∅;
4 if ∃i : s.queue[i].snapshots(p) = null then
5 let i1 be the least such i; r1 ← s.queue[i1]; isNew ← false;
6 if r1.id �= id(lp) then error(“out of order”);
7 if r1.isTrue �= isTrue(t) then error(“conflicting loop exit”);

8 else isNew ← true; r1 ← 〈id(lp), λq.null, λq.∅, isTrue(t), true, true〉;
9 let W = {v1, . . . , vk};

10 if ∃i : Yi occurs in s then m← the maximum such i; else m← 0;
11 eval′ ← s.eval[v1 : Ym+1] · · · [vk : Ym+k];
12 φ← r1.ppc ∧ seval(guard, eval′);
13 ψ ← r1.relation ∧ s.eval(v1) = Ym+1 ∧ · · · ∧ s.eval(vk) = Ym+k;
14 r2 ← 〈id(lp), r1.snapshots[p : 〈lp, eval′|Vp 〉], r1.writeset[p :W ], isTrue(t), φ, ψ〉;
15 if isNew then queue′ ← enqueue(s.queue, r2); else queue′ ← s.queue[i1 : r2];
16 s′ ← 〈s.pc0, l′, eval′, queue′, s.stack〉;
17 r3 ← first(queue′);
18 if ∃q ∈ procs(r3.id) : r3.snapshots(q) = null then return s′;
19 ξ ← ⋃

q∈procs(r3.id)
r3.snapshots(q).eval;

20 claim ← seval(
∧

q∈procs(r3.id)
assertionr3.id(r3.snapshots(q).location), ξ);

21 if ¬valid(pc(s′) ⇒ claim) then error(“Possible invariant violation”);
22 r4 ← r3[ppc : r3.ppc ∧ claim][relation ← true];
23 queue′ ← dequeue(queue′);
24 stack′ ← s.stack;
25 if ¬empty(stack′) ∧ top(stack′).id = r4.id then stack′ ← pop(stack′);
26 φ← s.pc0;
27 if r4.isTrue then stack′ ← push(stack′, r4);
28 else if empty(stack′) then φ← φ ∧ r4.ppc;
29 else
30 r5 ← top(stack′);
31 stack′ ← push(pop(stack′), r5[ppc : r5.ppc ∧ r4.ppc]);
32 return canonic(〈φ, l′, eval′, queue′, stack′〉);

Fig. 3. The next-state function for loop transitions in a multiprocess program

expressions and form the claim. The validity of claim (under the assumption of
the path condition) is then checked using the theorem prover.

A new record r4 is now formed from r3 by adding claim to the ppc field and
erasing the relational predicate. (The claim is no longer necessarily implied by
the path condition, since the relational predicate has been removed.) The first
record is now removed from the queue.

If the top entry on the stack is for a collective loop that matches the one
in the record just dequeued, the stack is popped, “forgetting” all information
from the previous iteration. There are now two cases: either r4 represents a loop
exit (false branch), or (re-)entry (true branch). If an entry, r4 is pushed onto
the stack. If an exit, r4 is not inserted into the state, but the ppc field of r4 is
recorded by adding it to the record r5 now on the top of the stack (or to pc0
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if the stack is empty). As r4 represents a false branch, r4.ppc does not record
any assumptions other than those arising from (1) the guards for the false loop
branches from each process, and (2) the collective invariant claim. Hence, these
are the only facts that are “remembered” when all processes exit the loop.

The function canonic, invoked before returning the new state, renames the Yi
involved in the state so that there are no gaps in the indexes. For example, if
only Y2, Y3, and Y7 are involved in s, then canonic might replace Y2 with Y1, Y3
with Y2, and Y7 with Y3, everywhere those symbols occur. The Yi are also placed
in a canonical order, determined by placing a total order on the variables, and
on the traversal of all symbolic expressions. The process is analogous to “heap
canonicalization” performed by many model checkers for transforming equivalent
heap configurations into a single representative form. It is done for the same
reason: to help determine that a new state is equivalent to one that has been
seen before. This step is crucial for convergence in many cases.

2.5 Example

Consider the execution prefix of stagger.c (Figure 2) in which process 0 runs
until it blocks at the receive, then process 1 runs until completing the send,
then process 0 receives the message and proceeds to the top of the loop. Let x0
denote the copy of variable x in process 0, etc., use line numbers for locations,
and ordered pairs for the values of a function at process 0 and 1. Then the state
s arrived at has the form

s = 〈X1 ≥ 0, 〈4, 11〉, {n:X1, i0: 1, x0:Y1 + 1, i1:Y1, x1:Y1 + 1}, r1, r0〉
r1 = [I, (null, 〈4, {i1:Y1, x1: 0}〉), (∅, {i1, x1}), true, Y1 < 2X1, Y1 = 1]

r0 = [I, . . . , ({i0, x0}, {i1, x1}), true, 0 < 2X1, true].

Let us see what happens when process 0 executes the true loop branch from this
state. The current loop record for process 0 is r0, so W = {i0, x0}. We have
m = 1, so i0 is assigned Y2 and x0 Y3, and

r2 = r3 = [I, (〈4, {i0:Y2, x0:Y3}〉, 〈4, {i1:Y1, x1: 0}〉), ({i0, x0}, {i1, x1}), true,
Y1 < 2X1 ∧ Y2 < 2X1, Y1 = 1 ∧ Y2 = 1 ∧ Y3 = Y1 + 1].

As this results in completing the first entry in the queue, we proceed to check that
the path condition implies i0 = i1∧x0 = 2((i0+1)÷ 2)∧x1 = 2(i1÷ 2) (where
÷ denotes integer division), which reduces to checking 1 = 1 ∧ 2 = 2 ∧ 0 = 0.
The new record is

r4 = [I, (〈4, {i0:Y2, x0:Y3}〉, 〈4, {i1:Y1, x1: 0}〉), ({i0, x0}, {i1, x1}), true,
Y1 < 2X1 ∧ Y2 < 2X1 ∧ Y1 = Y2 ∧ Y3 = 2((Y2 + 1)÷ 2) ∧ 0 = 2(Y1 ÷ 2), true]

and the new state is 〈X1 ≥ 0, 〈5, 11〉, {n:X1, i0:Y2, x0:Y3, i1:Y1, x1:Y1+1}, ε, r4〉,
where ε is the empty sequence. Note how the original state s was still tied to the
initial iteration of the loop, but those ties have been dropped in the new state.
In two more iterations the essential inductive step will take place and the path
will return to a state seen before.
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2.6 Soundness

Multiprocess LISE is sound for very general reasons. A more formal proof is
given in [20], but the ideas are simple. The LISE transition system is related to
that of standard symbolic execution via the projection map ρ : LState→ SState,
defined by ρ(s) = 〈pc(s), s.location, s.eval〉. One must show that for any transi-
tion and s ∈ LState, the projection of the image of s under the LISE next-state
function subsumes the image of ρ(s) under the standard next-state function. The
soundness of LISE then follows from that of the standard technique.

While the LISE next-state function is complicated, its image under ρ is easy
to understand. Control flow is exactly the same as in the standard technique
(unlike sequential LISE, no back edges are removed). The differences are due
to three types of transformations on SState: (1) replace every occurrence of
symbolic constant X by symbolic constant Y , where Y does not occur in the
original state; (2) if v holds value f , assign a new symbolic constant Y to v
and add the constraint Y = f to the path condition, and (3) weaken the path
condition (by dropping some clauses from the conjunction). The first two result
in equivalent states, the third in a state which subsumes the original.

3 Implementation and Experiments

We implemented multiprocess LISE by extending the TASS collective assertion
facility. The invariants are encoded as pragmas immediately preceding a while
or for loop. The syntax is the same as that for collective assertions (described
in [19]) except that the keyword invariant is used in place of assert.

TASS supports various MPI-specific partial order reduction (POR) schemes.
Used in conjunction with LISE, these are often key to obtaining convergence.
Note that a necessary condition for convergence is that the maximum difference
in iteration count between any two processes be bounded. In the full state space
for stagger.c (Figure 2), this condition does not hold, since it is possible for
all the messages from process 1 to be buffered. In the reduced space considered
by the default POR, however, the send and receive always occur synchronously,
and the two processes can get at most 2 iterations apart. (The POR theory
guarantees that if an assertion violation occurs in the full space then a violation
also occurs in the reduced space, so the reduction is sound.) By applying LISE
to the reduced space, TASS reduces the problem to a finite number of states.

TASS uses comparative symbolic execution [18] to verify the functional equiv-
alence of two programs. In its original form, this entails forming the sequential
composition of the two programs and adding an assertion that the outputs from
the two programs agree. We have modified this technique to use the parallel,
instead of sequential, composition. If the first program has n processes, and the
second m, the composite has n + m processes and the two sets of processes
just happen to never interact. With this modification, multiprocess LISE can
be applied to the composite program. This is effective when the two programs
have corresponding loops that can be related with a collective invariant, such
as the programs of Figure 4. (Note “joint” is used for a collective invariant
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#pragma TASS joint invariant LOOP true;
while (err>=tol) {
i=j; j=k; k=i+j; tmp = k/j;
if (tmp>=p) err=tmp-p; else err=p-tmp;
p = tmp;

}

#pragma TASS joint invariant LOOP \
err==spec.err && p==spec.p && j>0 \
&& j==spec.j && k==spec.k && k>0;

while (err>=tol) {
k=j+k; j=k-j; err=k/j-p; p=err+p;
if (err < 0) err=-err;

}

Fig. 4. Fibonacci. Two functionally equivalent programs to compute φ. The program
on the left is the specification. The notation spec.k indicates the variable k in the
specification program.

spanning multiple programs). In such cases, the POR will effectively keep the
two programs as close together as possible in their iteration counts, enabling
convergence in many cases.

We applied multiprocess LISE to 9 examples. All (except race) take an inte-
ger input N and the goal is to verify a property for all N . The first two examples
are discussed in Section 1; the others are (3) matrix, a sequential program for
adding two N×N matrices in which we assert functional correctness, (4) count,
a multiprocess program where each process loops from 1 to N and we check the
loop variable equals N at termination, (5) ring, an MPI program where pro-
cesses send right and receive left N times and we verify deadlock-freedom, (6)
mean, two sequential programs computing the mean of an array of doubles, (7)
fib (Figure 4), two sequential programs computing the limiting ratio of two con-
secutive terms in the Fibonacci sequence to within a given tolerance, (8) nested,

two sequential programs, one computing
∑n

i=1

∑i2

j=1 ij, the other
∑n

i=1 i
∑i2

j=1 j,
(9) diffusion, two programs solving the 1d-diffusion equation, one sequential,
one using MPI. In the last four, functional equivalence was verified.

In all cases except race (which contains a defect), we were able to formulate
invariants enabling verification for all N . Performance data is given Fig. 5; all
experimental artifacts can be obtained from [22]. For the most challenging ex-
ample, diffusion, we also compare the performance of LISE with the standard

name nprocs trans proofs time

race∗ 10 823 1 0.9
stagger 2 201 51 2.1
matrix 1 30 103 5.2
count 10 138 55 3.7
ring 10 1521 70 4.3
mean 1+1 28 18 0.5
fib 1+1 60 29 1.4
nested 1+1 79 44 1.1
diffusion 1+10 3580 82 34.4
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Fig. 5. Experimental results. Left: work required to verify (*=refute, stopping at first
violation) using multiprocess LISE: number of processes (two numbers for equivalence
verification), transitions, calls to theorem prover CVC3, and time (seconds). Right:
verifying diffusion equivalence using upper bounds vs. using LISE to verify for all N .
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technique using various upper bounds on N . Two facts stands out: (1) the num-
ber of transitions explored by LISE is usually comparable to that number for
a very small bound, but (2) the time consumed per transition in LISE is very
large. Inspection reveals that most of this time is due to the increased number
and complexity of the theorem prover calls.

4 Conclusion

Related work. Related symbolic execution-based approaches, in addition to those
discussed in Section 1, include [16], which presents a technique in which multi-
ple control paths are combined and symbolically executed simultaneously. This
eliminates the problem of loops in certain circumstances by combining multiple
iterations into a single execution. However, some types of cyclic dependencies
still require bounding the number of loop iterations, and it is not clear how to
generalize the technique to parallel programs.

There have been other approaches to functional equivalence verification, but
they tend to come with strong restrictions. For example, [24] presents a technique
for verifying functional equivalence of affine programs with static control flow. It
is fully automatic, requiring no invariants or other hints from the user, but does
not apply when a loop condition is non-affine (e.g., j<i*i) or to programs with
non-static branch conditions, or to multiprocess programs. Peggy [23] represents
functions as program expression graphs and attempts to show two sequential
functions are equivalent by transforming the graph of one into another using a
library of axioms. Translation validation tools, such as TVOC [6], check that
certain compiler transformations, including complex loop transformations, pre-
serve equivalence. But this approach typically requires additional information
from the compiler when dealing with loop transformations, and it is not clear if
it could be extended to verify the equivalence of, say, a parallel program con-
structed by hand from a very different sequential version, such as our diffusion
example.

Another family of verification approaches that can handle unbounded loops
works by generating verification conditions to be discharged by a theorem prover.
VCC [4] allows users to annotate loops with invariants, and supports multi-
threaded programs. It includes a notion of one- and two-state object invariants
that cut across threads, but there does not appear to be a straightforward way
to extend this notion to relate loop executions across different threads.

CBMC [3] is a bounded model checker for C programs. It handles loops by
unrolling them a finite number of times, and so cannot verify the correctness of
programs with unbounded loops (but may find bugs in them).

Loop-extended symbolic execution [17] reasons about all possible executions
of a loop by introducing auxiliary variables to represent the number of times
the loop has been executed. The loop body is then analyzed to find any linear
relationships between program variables and the auxiliary variables. To the best
of our knowledge, this approach has not been applied to concurrent programs.

Poirot [11] uses Corral [12] to analyze concurrent C and .NET programs by
converting them to sequential programs. The conversion involves bounding the
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number of possible context switches. Loops are then replaced with recursive
procedure calls. Corral checks for bugs by iteratively increasing the maximum
recursion depth. At a given recursion bound, if a bug is found it will be reported
and the process terminates. Otherwise, the recursion bound is incremented and
the process repeats until a timeout is reached.

Future work. The main challenges now are to find ways to discover collective loop
invariants automatically and to reduce the number and cost of theorem-prover
invocations. Another limitation is that in the current framework, the collective
invariants cannot reference the shared part of the state, so there is no way to
express, for example, that the number of buffered messages is invariant. It will
be interesting to see if the technique can be extended to express such properties.

Acknowledgment. We are grateful to the reviewers of CAV 2011 and VMCAI
2012 for their comments and suggestions.
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9. Khurshid, S., Păsăreanu, C.S., Visser, W.: Generalized Symbolic Execution for
Model Checking and Testing. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003.
LNCS, vol. 2619, pp. 553–568. Springer, Heidelberg (2003)

10. King, J.C.: Symbolic execution and program testing. Comm. ACM 19(7), 385–394
(1976)

11. Lahiri, S., et al.: Poirot: The concurrency sleuth (2011),
http://research.microsoft.com/en-us/projects/poirot

12. Lal, A., Qadeer, S., Lahiri, S.: Corral: A whole-program analyzer for Boogie. Tech.
Rep. MSR-TR-2011-60, Microsoft Research (May 2011)

http://research.microsoft.com/en-us/projects/poirot


Loop Invariant Symbolic Execution for Parallel Programs 427
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Abstract. In many situations, we are interested in controllers that im-
plement a good trade-off between conflicting objectives, e.g., the speed
of a car versus its fuel consumption, or the transmission rate of a wire-
less device versus its energy consumption. In both cases, we aim for a
system that efficiently uses its resources. In this paper we show how to
automatically construct efficient controllers. We provide a specification
framework for controllers in probabilistic environments and show how
to synthesize implementations from them. We achieve this by reduction
to Markov Decision Processes with a novel objective function. We com-
pute optimal strategies for them using three different solutions (linear
programming, fractional linear programming, policy iteration). We im-
plemented and compared the three algorithms and integrated the fastest
algorithm into the model checker PRISM.

1 Introduction

Synthesis aims to automatically generate a system from a specification. We fo-
cus on synthesizing reactive systems [17] from specifications given in temporal
logics [12]. In this setting, specifications are usually given in a qualitative sense,
i.e., they classify a system either as good (meaning the system satisfies the spec-
ification) or as bad (meaning the system violates the specification). Quantitative
specifications assign to each system a value that provides additional information
about the system. Traditionally, quantitative techniques are used to analyze
properties like response time, throughput, or reliability (cf. [7, 9, 1, 10]).

Recently, quantitative reasoning has been used to state preference relations
between systems satisfying the same qualitative specification [2]. E.g., we can
compare systems with respect to robustness, i.e., how reasonable they behave
under unexpected behaviors of their environments [3]. A preference relation be-
tween systems is particularly useful in synthesis, because it allows the user to
guide the synthesizer and ask for “the best” system. In many settings a better
system comes with a higher price. E.g., consider an assembly line that can be
operated in several modes that indicate the speed of the line, i.e., the number
of units produced per step. We would prefer a controller that produces as many
units as possible. However, running the line in a faster mode increases the power
consumption and the probability to fail, resulting in higher repair costs. We are
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interested in an “efficient” controller, i.e., a system that minimizes the power and
repair costs per produced unit. The efficiency of a system is a natural question
to ask; it has also been observed by others, e.g, Yue et al. [16] used simulation
to analyze energy-efficiency in a MAC (Media Access Control) Protocol.

In this paper we show how to automatically synthesize a system that has an
efficient average-case behavior in a given environment. We define efficiency as
ratio between a given cost model and a given reward model. To further motivate
this choice, consider the following example: assume we want to implement an
automatic gear-shifting unit (ACTS) that optimizes its behavior for a given
driver profile. The goal of our implementation is to optimize the fuel consumption
per kilometer (l/km), a commonly used unit to advertise efficiency. In order to
be most efficient, our system has to maximize the speed (given in km/h) while
minimizing the fuel consumption (measured in liters per hour, i.e., l/h) for the
given driver profile. If we take the ratio between the fuel consumption (the
“costs”) and the speed (the “reward”), we obtain l/km, the desired measure.

Given an efficiency measure, we ask for a system with an optimal average-case
behavior. The average-case behavior with respect to a quantitative specification
is the expected value of the specification over all possible behaviors of the systems
in a given probabilistic environment [5]. We describe the probabilistic environ-
ment using Markov Decision Processes (MDPs), which is a more general model
than the one considered in [5]. It allows us to describe environments that react
to the behavior of the system (like the driver profile).

In the following we summarize our contributions1 and outline the paper.

1. We present a framework to automatically construct a system with an effi-
cient average-case behavior with respect to a reward and a cost model in a
probabilistic environment. To the best of our knowledge, this is the first ap-
proach that allows synthesizing efficient systems automatically. After giving
the necessary preliminaries in Section 2, we introduce our framework using
a simple example in Section 3. In our framework, finding an optimal system
corresponds to finding an optimal strategy in an MDP with ratio objective.

2. We introduce and study MDPs with ratio objectives (in Section 4). We
present several algorithms to compute optimal strategies in MDPs under
ratio objectives. All algorithms are based on decomposing the MDP into end-
components [7]. The algorithms differ in the way they compute an optimal
strategy for a single end-component. One algorithm uses fractional linear
programming. The second one, a simple adaption of an algorithm presented
in [7], is based on a reduction to linear programming. The third algorithm is
based on policy iteration and a sequence of reductions to MDPs with long-
run average-reward objective. This novel algorithm based on policy iteration
is particularly interesting, since it can readily be applied to symbolically
encoded MDPs and to large structures [15]. In Section 5, we compare our

1 We presented preliminary results for ergodic MDPs in a workshop [14]. We refer to it
to provide omitted details. The current paper presents, in addition, (i) the solution
for the general case, (ii) a novel algorithm based on policy iteration, and (iii) an
implementation.
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framework based on MDPs with ratio objectives to related work and discuss
the need for separating the cost and reward model.

3. We have implemented all algorithms in a stand-alone tool and compare them
on our examples (see Section 6). In order to increase the scope of our ap-
proach, we also integrated the best-performing algorithm into the explicit-
state version of PRISM [10], a well-known probabilistic model checker.

2 Preliminaries

Words, Quantitative Languages, and Specifications. Given a finite al-
phabet Σ, a word w = w0w1 . . . is a finite or infinite sequence of letters in
Σ. We use wi to denote the (i+1)-th letter. The empty word is denoted by ε.
We use Σ∗ (Σω) to denote the set of finite (infinite) words. Given two words
w ∈ Σ∗ and v ∈ Σ∗ ∪Σω, we write wv for their concatenation. A (quantitative)
language [4] is a function ψ : Σω → R+ ∪ {∞} associating to each infinite word
a value from the extended non-negative reals. A qualitative language is a special
case mapping words to 1 or 0. We use qualitative and quantitative languages as
specifications to describe the desired behavior of a system.

Labeled Transition Systems, Quantitative Automata and the Ratio
Objective. A Labeled transition systems (LTS) is a tuple A = (Q, q0, Σ, δ)
where Q is a finite or infinite set of states, q0 ∈ Q is the start state, Σ is a
finite alphabet and δ : Q × Σ → Q is the transition function. We call an LTS
finite if and only if Q is finite. We define δ∗ as the usual extension of δ to finite
words. The run of A on an infinite word w = w0w1w2 . . . is the sequence of
tuples (q0, w0), (q1, w1), (q2, w2) . . . where qi+1 = δ(qi, wi). Given finite LTS A,
a cost or reward function c, r : Q × Σ → N maps every transition of A to a
natural number. We call a finite LTS with one or more cost/reward functions a
quantitative automaton.

An objective function maps runs of a quantitative automaton to elements of
R+∪{∞}. Given a quantitative automaton A = (Q, q0, Σ, δ) with cost function c
and reward function r, we define the ratio objective function [3] for each run
ρ = (q0, w0), (q1, w1), (q2, w2) . . . of A as

RA
c
r
(ρ) := lim

m→∞
lim inf
l→∞

∑l
i=m c(qi, wi)

1 +
∑l

i=m r(qi, wi)
. (1)

We write R(ρ), if A, c, and r are clear from the context. Intuitively, R(ρ) is the
long-run ratio between the costs and rewards accumulated along a run. The first
(left-most) limit allows us to ignore a finite prefix of the run, which ensures that
we only consider the long-run behavior. The 1 in the denominator avoids division
by 0 if the accumulated rewards are 0 and has no effect otherwise. We need the
limit inferior here because the sequence of ratios might not converge. E.g., a run
q1p2q4p8 . . . with c(q)=0 and r(q)=c(p)=r(p)=1. Its value alternates between
1/6 and 1/3 and does not converge. The limit inferior of this run is 1/3. The ratio
objective generalizes the long-run average objective (also known as mean-payoff
objective, cf. [18]).
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(Finite-)State Systems. A (finite-)state system is a tuple S=(S, s0, L,A, δ,τ),
where (S, s0, L, δ) is a (finite) LTS, A is an output alphabet, and τ : S → A is
an output function mapping states to letters from A. The alphabet L is called
the input alphabet of S. We use OS to denote the function mapping input words
w ∈ Lω to the joint input/output word by applying τ to the run of S on w.

Given a quantitative language ψ over (L×A)ω , the value of the system S for
a given input word w ∈ Lω under ψ is the value of the joint input/output word
under ψ. We obtain the value by composing the functions ψ and OS and apply
the composed function to w, i.e., (ψ · OS)(w).

Given a probability distribution μ over the input words Lω, the (average-case)
value of a system S with respect to a specificationψ and the probability distribution μ
is the expected value Eμ[ψ · OS ]. A system S is optimal with respect to ψ and μ if
for every system S ′ the value of S ′ is smaller than or equal to the value of S.

Markov Chains and Markov Decision Processes. Let D(S) := {p : S →
[0, 1] |

∑
s∈S p(s) = 1} be the set of probability distributions over a finite set

S. A Markov decision process (MDP) is a tuple M = (S, s0, A, Ã, p), where S
is a finite set of states, s0 ∈ S is an initial state, A is a finite set of actions,
Ã : S → 2A is the enabled action function defining for each state s the set of
enabled actions in s, and p : S×A→ D(S) is a probabilistic transition function.
For technical convenience we assume that every state has at least one enabled
action. If |Ã(s)| = 1 for all states s ∈ S, thenM is called a Markov chain (MC).
In this case, we omit A and Ã from the definition ofM.

An L-labeled MDP is a tuple M = (S, s0, A, Ã, p, λ), where (S, s0, A, Ã, p) is
an MDP and λ : S → L is a labeling function such thatM is deterministic with
respect to λ, i.e, ∀s, a, s′, s′′ if p(s, a)(s′) > 0, p(s, a)(s′′) > 0, and s′ �= s′′, then
λ(s′) �= λ(s′′). In Section 3, we use L-labeled MDPs to represent probabilistic
environments that react to the actions chosen by the system. Since the envi-
ronment does not know which action a system might choose, we require that in
every state of an L-labeled MDP all actions are enabled, i.e., ∀s∈S : Ã(s)=A.

Sample Runs, Strategies, and Objective Functions. A (sample) run ρ of
M is an infinite sequence of tuples (s0, a0)(s1, a1) · · · ∈ (S × A)ω of states and
actions such that for all i ≥ 0, (i) ai ∈ Ã(si) and (ii) p(si, ai)(si+1) > 0. We
write Ω for the set of all runs, and Ωs for the set of runs starting at state s.

A strategy (or policy) is a function d : (S × A)∗S → D(A) that assigns a
probability distribution to all finite sequences in (S × A)∗S. A strategy must
refer only to enabled actions. An MDP together with a state s and a strategy d
defines a probability space Pd

M,s that uniquely defines the probability of every
measurable set of runs starting in s.

Given a measurable function f : Ω → R+ ∪{∞} that maps runs of M to
values in R+∪{∞}, we use Ed

M,s[f ] to denote the expected value of f under the

probability measure of Pd
M,s and call it the value of s under strategy d wrt f .

Given an MDPM and a state s, a strategy d is called optimal for objective f and
state s if Ed

M,s[f ] = mind′ Ed′
M,s[f ], where d

′ ranges over all possible strategies.

Given an optimal strategy d for function f and state s, Ed
M,s[f ] is called the
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value of state s wrt f . The value ofM wrt f is the value of its initial state. If f
is the ratio objective from Eqn. 1, then we callM with f a Ratio-MDP. If the
domain of c is {1}, then the objective is equal to the classical average-reward or
mean-payoff objective ([13]), and we callM with f an Average-MDP.

3 Specifying Efficient Controllers

We use a simple example to introduce our quantitative synthesis framework.
Each part of the example is used to highlight one part of the framework.

Example. Assume we aim to synthesize an efficient controller for a reactor
cooling system that controls the activation and maintenance of three pumps.
The task of the pumps is to keep the reactor cool. If no pump is running, then
the reactor cannot work. If all pumps are working, then the reactor can work
at maximum effectivness. A pump that is working can break down, and a pump
that is broken must be repaired. If a broken pump is not repaired immediately,
then the cost of repairing increases. If two or more pumps are repaired at the
same time, then there is a discount on repairing them. We aim for a system that
is most efficient, i.e., it minimizes the maintenance costs per water-flow unit.

Modeling the Environment. We model the environment (i.e., the pumps)
and its reaction to actions taken by the system using labeled MDPs. The model
of a single pump is shown in Figure 1(a). A pump has two states: broken (�)
and ok (�). In each of these states, the system can either turn a pump on to
a slow mode with action slow, turn it on to a fast mode with action fast,
switch it off with action off, or repair it with action rep. The failure of a pump
is controlled by the environment. We assume a failure probability of 1% when
the pump is running slowly and 2% when the pump is running fast. If it is
turned off, then a failure cannot happen. Transitions in Figure 1(a) are labeled
with actions and probabilities, e.g., the transition from state � to � labeled
“slow 0.99” means that we go from state � with action slow with probability
0.99 to state �. Note that the labels of the states (� and �) of this MDP
correspond to decisions the environment can make. The actions of the MDP are
the decisions the system can use to control the environment. The specification
for n pumps is the synchronous product of n copies of the model in Figure 1(a),
i.e., the state space of the resulting MDP is the Cartesian product, and the
transition probabilities are the product of the probabilities; e.g., for two pumps,
the probability to move from (�, �) to (�, �) on action (slow, slow) is 0.992.

System. Our systems are state machines that read the state of the environment
and return actions to perform. The action affects the probability of the next
state of the pump. A system S also represents a strategy dS mapping finite
sequences of environment states to actions. For example, a system that repairs
the pump when it is broken would map the sequence � � � to action rep. The
strategy dS together with the description of the environment (an MDP) induces
a probability space over sequences of pairs of states and actions. E.g., if the
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�start �

off 1
rep 1
slow 0.99
fast 0.98 slow 0.01

fast 0.02

slow 1
fast 1
off 1
rep 0.1

rep 0.9

(a) A pump

s0start s1

¬� /0
(�, rep) /10

(�,¬rep)/0

slow/0
fast/0
off/0

rep/20

(b) Quantifying a pump

Fig. 1. Environment model and quantitative specification of the pumps example

system chooses action slow as long as the pump is � and action rep as soon as
the pump breaks down, then the sequence (�, slow) (�, slow) (�, rep), which
corresponds to transitions � slow→ � and � slow→ �, has probability 0.99 · 0.01.

Specification. We use a quantitative specification, given by an automaton with
a reward and a cost function, to evaluate a system with respect to a desired
property. The automaton reads words over the joint input/output alphabet and
assigns a value to them. For example, the specification automaton for the pump
controlling system reads pairs consisting of (i) a state of a pump (input of the
system) and (ii) an action (output of the system). We obtain this automaton by
composing automata with a single cost function in various ways. In our example,
we use for each pump two automata with a single cost function to express the
repair costs and the water flow due to this pump. The automaton for the repair
costs is shown in Figure 1(b). It assigns repair costs of 10 for repairing a broken
pump immediately and costs 20 for a delayed repair. If we sum the numbers
that the automaton outputs, we obtain the repair costs of a run. For example,
sequence (�, slow) (�, rep) (�, rep) has cost 0 + 10 + 10 = 20. The water flow
depends on the speed of the pump. The automaton describing the water flow
assigns value 2 if a pump is running on slow speed, 4 if it is running on fast
speed, and 0 if the pump is turned off or broken.

We extend the specification to multiple pumps by building the synchronous
product of copies of the automata described above and compose the cost and
reward functions in the following ways: we sum the rewards for the water flow and
we take the maximum of repair costs of different pumps to express a discount for
simultaneous repairs of more than one pump. The final specification automaton
is the product of the water flow automaton and the repair cost automaton with
(i) the repair cost as cost function and (ii) the water flow as reward function. We
prefer behaviors with a small ratio between the accumulated repair costs and the
accumulated water flow rewards and so we take Eqn. 1 as objective function R.

We lift the specification from a single behavior to a system S (a set of behav-
iors) by computing the expected value of R under the probability distribution
given by the environment model (an MDP) and the strategy dS representing
the system. This corresponds to averaging over all behaviors weighted by their
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probability. Our goal is to find a system that minimizes the maintenance costs
and maximizes the water flow, i.e., a system that minimizes this expected value.

In the current specification a system that keeps all the pumps turned off
has the (smallest possible) value zero, because pumps that are turned off do
not break down and there is no need to repair them. Therefore, we require
that at least one of the pumps is working. We can specify this requirement by
using a qualitative specification described by a safety2 automaton. This safety
requirement can then be ensured by adapting the cost functions of the ratio
objective [5, 14]. For simplicity, we say here that any action in which not at least
one pump is working has an additional cost of 10.

Synthesis Using MDPs. We build an MDP from the environment descriptions
and the quantitative specifications by taking their product. The intuition is to
run the environment MDP and the specification automaton in parallel. We get
states of the form (s, q), where s is a state in the environment MDP and q is a
state of the automaton. The set of actions enabled in this state is equal to the
set of actions available in state s. The probability of moving from state (s, q)
to state (s′, q′) when choosing action a is zero if there is no transition in the
automaton from q to q′ with input (s, a). Otherwise, the probability is equal to
the probability of moving from s to s′ in the MDP when choosing a.

The cost of an action is derived from the corresponding costs in the automa-
ton. E.g., the probability of moving from ((�,�), (s0, s0)) to ((�,�), (s0, s0))
when choosing action (slow, slow) is 0.012, while the probability of moving to
((�,�), (s1, s1)) is 0 because we cannot move from s0 to s1 with this action. The
repair costs of choosing action (slow, slow) in state ((�,�), (s0, s0)) is 0, while
the water flow is 4 (2 for each pump).

The product of an MDP and an automaton with two cost functions is a
Ratio-MDP. As we will show in Lemma 1, there is always a pure and memoryless
optimal strategy for a Ratio-MDP. Such a strategy d corresponds to the following
finite-state system with optimal behavior. The states of the system are the states
of the MDP. The output function for state s is the action chosen by the strategy
d for state s, i.e., τ(s) = d(s). The transition function of the system refers to
the states of the MDP (or more precisely to their labeling function). The system
moves from state s to s′ with input label l, if s′ is (labeled) l and the probability
to reach state s′ from state s under the action d(s) given by the strategy d is
strictly positive. In this way, the environment determines the next state of the
system. The expected value of the system is equal to the expected value of the
strategy it was constructed from.

Theorem 1. Given an MDPM describing an environment and an automaton
with ratio objective describing a quantitative specification, we can automatically
synthesize an optimal finite-state system.

2 Our approach can also handle liveness specifications resulting in a Ratio-MDP with
parity objective, which is then reduced to solving a sequence of MDP with mean-
payoff parity objectives [5].
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4 Solving MDPs with Ratio-Objectives

In this section we first recall well-known notions for MDPs and their strategies,
then we prove some useful properties of Ratio-MDPs. Finally, we present three
algorithms to compute the optimal value and an optimal strategy of a Ratio-
MDP. We assume that an optimal strategy minimizes the ratio objective, the
algorithms for maximizing the objective are analogous.

End-components [6, 7]. Given an MDP M = (S, s0, A, Ã, p), a set C ⊆ S
of states is an end-component if (i) C is p-closed (i.e., for all s ∈ C exists
a ∈ A(s) such that ∀s′ ∈ S \ C : p(s, a)(s′) = 0) and (ii) the MDP obtained
by restrictingM to the states in C is strongly connected. An end-component is
maximal, if it is not included in a strictly larger end-component.

Classification of MDPs and Strategies. Given an Markov chain M =
(S, s0, p), a state s ∈ S is called recurrent3 if the expected number of visits
to s in the random walk starting from s0 is infinite; otherwise s is called tran-
sient. A minimal set of recurrent states that is closed under p is called recurrence
class. M is unichain if it consists of a single recurrence class and a (possibly
empty) set of transient states; otherwise,M is called multichain.

A probability distribution π over S is a stationary distribution if all its en-
tries satisfy π(s) =

∑
s′∈S π(s

′)p(s, s′). IfM is unichain, thenM has a unique
stationary distribution. A strategy d is pure if for all sequences w ∈ (S × A)∗

and for all states s ∈ S, there is an action a ∈ A such that d(ws)(a) = 1.
A memoryless strategy is independent of the history of the run, i.e., for all
w,w′ ∈ (S × A)∗ and for all s ∈ S, d(ws) = d(w′s) holds. If a strategy is
pure and memoryless, we represent it by a function d : S → A. An MDP
M = (S, s0, A, Ã, p) together with a pure and memoryless strategy d : S → A
defines an MC Md = (S, s0, A, Ãd, p), in which only the actions prescribed in
the strategy d are enabled, i.e., Ãd(s) = {d(s)}. We call a pure and memory-
less strategy d unichain (multichain) if the MC Md is unichain (multichain,
respectively). If M is associated with a cost function c, then we denote by cd
the corresponding cost-vector function4, i.e., cd(s) = c(s, d(s)) for all s ∈ S.

In the following, we discuss properties of Ratio-MDPs that are necessary for
the correctness of the algorithms. Lemma 1 tells us that we need to consider only
pure and memoryless strategies to compute the optimal value (see [14] for the
proof). Lemma 2 strengthens this result to unichain strategies for MDPs that
have a single end-component.

Lemma 1. [14] Ratio-MDPs have optimal pure and memoryless strategies.

Lemma 2. Given a Ratio-MDP M = (S, s0, A, Ã, p) such that S is an end-
component ofM and let d be a pure and memoryless strategy with value λ, then
there exists a unichain strategy d′ with value λ′ ≤ λ.

3 We do not distinguish null and positive recurrent states because we only consider
finite MCs.

4 We use vector and function notation interchangeably.It is well-known that every
finite function can be represented by a vector and vice versa, given a total order on
the domain elements.
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Proof. This follows from prefix-independence of the ratio objective and the fact
that for every pair of states s and s′ in an end-component, there exists a strategy
such that s can reach s′ with probability 1. This allows us to construct from an
arbitrary pure and memoryless strategy a unichain strategy with the same or a
better value: d′ fixes the recurrent class C with the minimal value induced by d;
for states outside of C, d′ plays a strategy to reach C with probability 1.

Next, we show how to compute the ratio value of an MDP with respect to a
unichain strategy. Since the ratio objective is prefix-independent, the value of
a state depends only on the rewards obtained in the (single) recurrence class
induced by the unichain strategy. All states in a recurrence class have the same
value, because they can reach each other with probability 1. Recall that the
value of a state is the expected payoff over all runs starting in this state, and
that the expected payoff is the Lebesgue integral over all runs. Every recurrence
class has a stationary distribution π, in which the sth-entry π(s) corresponds
to the expected fraction of time spent in state s. We call a run well-behaved if,
for each state s, the number of visits to the state s up to position n of the run
divided by n converges with n → ∞ to π(s). The set of well-behaved runs has
probability 1 (see [14] for more details). Every measurable set that is disjoint
from the set of well-behaved runs has probability 0 and does not contribute to the
value of a state. All well-behaved runs have the same value, which corresponds
to the expected average reward with respect to the cost function divided by the
expected average reward with respect to the reward function (if the corner cases
of value zero and infinity are neglected). A classical result for MDPs with a cost
function c and a unichain strategy d says that the expected average reward,
i.e., EM

d [limn→∞
1
n

∑n−1
i=0 c(sn)], is equal to π · cd, where π is the stationary

distribution under strategy d. This gives the following lemma.

Lemma 3. For a Ratio-MDP M and a unichain strategy d, let π be the sta-
tionary distribution induced by d and let cd and rd be the reward vectors under
strategy d of the cost and the reward function, respectively, then we have

Ed
M[R] = lim

l→∞

π · cd
1/l+ π · rd

The limit in Lemma 3 takes care of the case in which π · rd = 0. Lemma 4
addresses this and another corner case.

Lemma 4. For every Ratio-MDP M = (S, s0, A, Ã, p) such that S is an end-
component of M, we can check efficiently if the value of M is zero or infinity
and construct corresponding strategies.

Proof. M has value zero if there exists a strategy such that the expected average
reward w.r.t. the cost function c is zero. We check this by removing all actions
from states inM that have c > 0 and then recursively removing all actions that
lead to a state without an enabled action. If the resulting MDPM′ is non-empty,
then there is a strategy with value 0 for the original end-component. It can be
computed by building a strategy that moves to and stays inM′.
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M has value infinity iff (i) for every strategy the expected average reward
w.r.t. cost function c is not zero, i.e., M has not value zero, and (ii) for all
strategies the expected average reward w.r.t. the reward function r is zero. This
can only be the case if for all actions in the end-component the value of cost
function r is zero. In this case, any arbitrary strategy will give value infinity.

Since the ratio objective is prefix-independent and every run in a finite MDP
reaches and stays in an end-component with probability 1, regardless of the
strategy, we can compute the optimal value and a corresponding strategy for an
arbitrary Ratio-MDP by decomposing it into end-components.

Lemma 5. Given a Ratio-MDPM and an optimal pure and memoryless strat-
egy di for every maximal end-component Ci in M, we can compute the optimal
value and construct an optimal strategy for M.

Proof. Let λi be the value obtained with di in the Ratio-MDP induced by Ci.
Wlog we assume that every action is enabled in exactly one state. Let M be
the quotient MDP ofM with respect to the equivalence relation induced by the
partitioning into maximal end-components (i.e., s ≡ s′ iff (s = s′)∨∃i, s, s′ ∈ Ci).
Note that inM the probability of moving from some state s (representative of an
equivalence class) with action a to another state t is

∑
t∈t p(s, a)(t). The actions

enabled in s are all the actions enabled in any state equivalent to s. We modifyM
to obtain an Average-MDPM′ by removing all actions for which there is a state
s such that p(s, a)(s) = 1. Furthermore, for all states s that represent an end-
component Ci with value λi < ∞ we add a new action ai with p(s, ai)(s) = 1
and costs λi; all other actions have cost 0. We now recursively remove states
without an enabled action and actions leading to removed states. If the initial
state s0 is removed, the Ratio-MDP has value infinity, because we cannot avoid
to reach and stay in an end-component with value infinity. Otherwise, let d′ be
an optimal strategy forM′. We define d by d(s) = d′(s) for all states s �∈

⋃
Ci.

For s ∈ Ci, if d
′(s) = ai, we set d(s) = di(s). Otherwise, let a be the action

chosen in state s, and let s′ be the state in which a is enabled. Then, we set
d(s′) = a and forall other states in Ci we choose d such that we reach s′ with
probability 1. We can choose the strategy arbitrarily in states that were removed
fromM′, because these states will never be reached by construction of d.

4.1 General Shape

The general shape of the algorithms is shown in Algorithm 1. In Line 1 we
decompose the Ratio-MDP into maximal end-components [7]. Then, we analyse
each end-component separately: the predicates isZero and isInfty (Line 4
and 5, resp.) check if an end-component has has value zero or infinity using
Lemma 4. If both checks fail, we use the function solveEC (Line 6), which
implements one of the three algorithms presented in Section 4.2, 4.3, and 4.4
to compute the optimal value and an optimal strategy for this end-component.
Finally, function compose (Line 9) takes these values and strategies from all the
end-components and computes an optimal strategy forM using Lemma 5.
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Input: Ratio-MDP M, start state s0
Output: Value λ and optimal strategy d
ecSet← decompose(M);1

foreach i← [0 . . . |ecSet| − 1] do2

switch ecSeti do3

case isZero : λi ← 0; di ← zero-cost strategy;4

case isInfty : λi ← ∞; di ← arbitrary; ;5

otherwise : di ← solveEC(ecSeti);6

endsw7

end8

d ← compose(M, λ0, . . . , λ|ecSet|−1, d0, . . . , d|ecSet|−1);9

Algorithm 1. Finding optimal strategies for Ratio-MDPs

4.2 Policy Iteration

In this section we present a policy iteration algorithm for Ratio-MDPs and prove
that it terminates and converges. Due to Lemma 5 we consider only Ratio-MDPs
that are end-components and Lemma 4 allows us to assume that the value of the
Ratio-MDP is neither zero nor infinity. The key idea is to construct a sequence
of Average-MDPsMi from the Ratio-MDP and a decreasing sequence of values
λi. In every step, we search for an improved strategy in Mi, which is mapped
to an improved strategy in the Ratio-MDP leading to the next value λi+1.

Induced Average-MDP. Given a Ratio-MDP M and a value λ, we call an
Average-MDP with the same structure asM and the cost function c′ = c− λr
the Average-MDP induced by M and λ and denote it byMλ.

Improvement. Given a Ratio-MDPM and a unichain strategy d with value λ
and stationary distribution π, we use the Average-MDPMλ induced by a value
λ to improve strategy d. According to Lemma 3, d has ratio value λ = πcd/πrd,
which is equivalent to 0 = π(cd − λrd) = πc′d, showing that the average value g
of d in Mλ is zero. Assume there exists a unichain strategy d′ with an average
value g′ smaller than zero inMλ, then d′ is also a better strategy in the original
Ratio-MDP. To prove this, let π′ be the stationary distribution of d′. Then,
0 > g′ = π′c′d′ = π′(cd′ − λrd′) by the definition of value in an Average-MDP.
This is equivalent to 0 > π′cd′ −π′λrd′ and λ > π′cd′/π′rd′ = λ′ (the ratio value
of d′) and leads to the following lemma.

Lemma 6. Given an MDP M, let d and d′ be two unichain strategies with
values λ and λ′, respectively. Then (1) λ = λ′ if and only if the value of d′ in
Mλ is 0 and (2) λ′ < λ if and only if the value of d′ in Mλ is smaller than 0.

Lemma 6 shows that we can use policy iteration on Average-MDPs to find
an improved strategy for the original Ratio-MDP, provided we get a unichain
strategy from the improvement. Since Average-MDPs are a special case of Ratio-
MDPs, we can use Lemma 2 to convert a multichain strategy to a unichain
strategy with a smaller or equal gain in the Average-MDP.
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Input: End-component M, unichain strategy d0 (with 0 < λ0 <∞)
Output: Optimal unichain strategy dn
n← 0;1

repeat2

λn ← E
d
M[R];3

dn+1 ← improved unichain strategy for Mλn ;4

n← n+ 1;5

until dn−1 = dn ;6

Algorithm 2. Policy iteration using Average-MDPs

Algorithm 2 searches for an improved strategy d of Mλ before updating λ
and computing a new induced Average-MDP. Instead of asking for an improved
strategy in Line 4, we can also ask for a strategy that is optimal with respect to
the induced Average-MDP. In Section 6 we show a comparison of these options.

In order to use Algorithm 2 we need an initial unichain strategy d0 with finite
and non-zero value. Due to the case analysis in Algorithm 1, we know that the
value of the analyzed end-component C is neither zero nor infinity. Therefore,
(i) there is no strategy in C that has value zero and (ii) there exists at least one
strategy with value λ < ∞. Strategy d0 can be constructed as follows: (i) pick
state s and action a such that r(s, a) > 0, (ii) set d0(s)(a) = 1 and for all other
states s′ �= s pick a pure and memoryless strategy to reach s with probability 1
(such a strategy exists because we consider only end-components).

Termination and Convergence. In Line 4 we search for an improved strategy.
According to Lemma 6 if such a strategy is found, then λn will decrease in
the next step. There are only finitely many strategies and hence the algorithm
terminates. It remains to show that we always find such a strategy if possible.
Assume some non-optimal unichain strategy dn with value λn, and assume that
d∗ is optimal and has value λ∗. We now show that d∗ has value smaller zero in
the MDP induced by λn. Let π be the stationary distribution of d∗. Let v∗ =
πcd∗−λ∗πrd∗ be the value of d∗ in Average-MDPMλ∗ and let v = πcd∗−λnπrd∗

be the value of d∗ in the Average-MDPMλn . From λ∗ < λn it follows that v∗ > v
and from v∗ = 0 it follows that v < 0. Hence, for each Average-MDP induced by
a non-optimal strategy, there exists a strategy with a value smaller than zero.

4.3 Fractional Linear Program

The following fractional linear program also allows us to find an optimal solution
for a Ratio-MDP that is an end-component with a finite ratio value. In [14], we
provide a detailed explanation of the program in the case of recurrent Ratio-
MDP, which can be extended to end-components with a finite ratio value by
adapting the strategy construction. The fractional linear program minimizes∑

s∈S

∑
a∈Ã(s) x(s, a)c(s, a)∑

s∈S

∑
a∈Ã(s) x(s, a)r(s, a)
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subject to the constrains
∑

a∈Ã(s) x(s, a) =
∑

s′∈s

∑
a∈Ã(s′) x(s

′, a)p(s′, a)(s) for

all states s ∈ S and
∑

s∈S

∑
a∈Ã(S) x(s, a) = 1.

We construct a strategy from a solution for x(s, a) as suggested by e.g. [13] for
communicating Average-MDPs: we set d(s) = a iff x(s, a) > 0. Using Lemma 2
we can construct unichain strategy from d with the same value.

4.4 Linear Program

We can also use the following linear program proposed in [7] to calculate an
optimal strategy. We are presenting it here because we compare it to the other
solutions in Section 6. The goal is to maximize λ subject to hs ≤ cs − λrs +∑

s′∈S p(s, a)(s
′)hs′ for all states s ∈ S and all actions a ∈ Ã(s). To calculate a

strategy from a solution hs to the LP we choose the actions for the states such
that the constraints are fulfilled when we interpret them as equations.

5 Related Work

In this section with discuss related work and give an example showing the dif-
ference between average and ratio objective. Our synthesis and experimental
results are summerized in the next Section.

The related work can be divided into two categories: (1) work using MDPs
for quantitative synthesis and (2) work on MDP reward structures. From the
first category we first consider the work of Chatterjee et al. [5]. We generalize
this work in two directions: (i) we consider ratio objectives, a generalization
of average-reward objectives and (ii) we introduce a more general environment
model based on MDPs that allows the environment to change its behavior based
on actions the system has taken. In the same category there is the work of Parr
and Russell [11], who use MDPs with weights to present partially specified ma-
chines in Reinforcement Learning. Our approach differs from this approach, as
we allow the user to provide the environment, the specification, and the objec-
tive function separately and consider the expected ratio reward, instead of the
expected discounted total reward, which allows us to ask for efficient systems.

Semi-MDPs [13] fall into the second category. Unlike work based on Semi-
MDPs, we allow a reward of value 0. Furthermore, we provide an efficient policy
iteration algorithm that works on our Ratio-MDPs as well as on Semi-MDPs.
Approaches using the discounted reward payoff (cf. [13]) are also related but
focus on immediate rewards instead of long-run rewards. Similarly related is
the work of Cyrus Derman [8], who considered the payoff function obtained by
dividing the expected costs by expected rewards. As shown later, we believe that
our payoff function is more natural. Note that these two objective functions are
in general not the same. Closest to our work is the work of de Alfaro [7]. In this
work the author also allows rewards with value 0, and he defines the expected
payoff over all runs that visit a reward with value greater than zero infinitely
often. In our framework the payoff is defined for all runs. De Alfaro also provides
a linear programming solution, which can be used to find the ratio value in an
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end-component (see Section 4.4). We provide two alternative solutions for end-
components including an efficient policy iteration algorithm. Finally, we are the
first to implement and compare these algorithms and use them to synthesize
efficient controllers.

Average versus Ratio Objective. There are well-known techniques for find-
ing optimal strategies for MDPs with average objective. A natural question to
ask is, if the average objective would not suffice to describe our problem.

Recall the ACTS unit from Section 1. We want to optimize the relation of two
measures: speed (km/h) and fuel consumption (l). In order to use the average
objective, we have to combine these two measures. Two methods seem possible.
First, we can subtract speed from consumption and minimize the average. When
subtracting kilometers per hour from liters, the value of the optimal controller
has no intuitive meaning. Furthermore, it can lead to non-optimal strategies as
we will show in the next paragraph. Alternatively, we can divide consumption
by speed in each step (leading to a measure limn→∞(c1/r1 + c2/r2 . . . )/n). By
this we obtain the correct unit but in general a different value for which the
interpretation is not obvious. The same holds for the pumps example discussed
in Section 3. We have two different measures: water flow and repair costs, with
two different units: liter and dollar. With the ratio objective we can model the
problem and its optimization criterion (efficiency) directly, and we can easily
interpret the result (expected maintenance cost by liter).

We give a small example to show that simple reduction to subtraction can lead
to strategies that differ from the optimal strategy of the ratio objective. Consider
an MDP with 2 states, s0 and s1. There is one action enabled in s1. It has cost 1
and reward 100 and leads with probability 1 to s0. There are two actions in s0:
Action a0 has cost 5 and reward 1 and leads with probability 1/9 to s1 and with
8/9 back to s0. Action a1 has cost 10 and reward 1 and leads with probability 1/2
to s1 and with 1/2 to s0. The steady state distribution of the strategy choosing a0
is (9/10, 1/10), and so its ratio value is (9/10 ·5+1/10 ·1)/(9/10 ·1+1/10 ·100)≈
0.42. For the strategy choosing a1, the steady state distribution is (2/3, 1/3) and
the ratio value is (2/3 · 10+ 1/3 · 1)/(2/3 · 1+ 1/3 · 100) ≈ 0.634, which is larger
than the value for a1. Hence choosing a0 is the better strategy for the ratio
objective. If we now subtract the reward from the cost and interpret the result
as an Average-MDP, then we get rewards 4, 9, and −99 respectively. Choosing
strategy a0 gives us 9/10 · 4− 1/10 · 99 = −6.3, while choosing strategy a1 gives
us 2/3 · 9− 1/3 · 99 = −27. So, choosing a1 is the better strategy for the average
objective.

6 Synthesis and Experimental Results

Synthesis Results. We synthesized optimal controllers for systems with 2 to
5 pumps. They behave as follows: For a system with two pumps, the controller
plays it safe. It turns one pump on in fast mode and leaves the other one turned
off. If the pump breaks, then the other pump is turned on in slow mode and the
first pump is repaired immediately. For three pumps, all three pumps are turned
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on in fast mode. As soon as one pump breaks, only one pump is turned on in
fast mode, the other one is turned off. Using this strategy, the controller avoids
the penalty of having no working pump with high probability. If two pumps are
broken, then the last one is turned on in fast mode and the other two pumps are
been repaired. In the case of four pumps, all pumps are turned on in fast mode
if they are all working. If one pump breaks, then two pumps are turned on and
the third working pump is turned off. The controller has one pump in reserve for
the case that both used pumps break. If two pumps are broken, then only one
pump is turned on, and the other one is kept in reserve. Only if three pumps
are broken, the controller starts repairing the pumps. Using this strategy, the
controller maximizes the discount for repairing multiple pumps simultaneously.

We also modeled the ACTS described in Section 1 using PRISM. The model
has two parts: a motor and a driver profile. The state of the motor consists
of revolutions per minute (RPM) and a gear. The RPM range from 1000 to
6000, modeled as a number in the interval (10, 60), and we have three gears.
The driver is meant to be a city driver, i.e., she changes between acceleration
and deceleration frequently. The fuel consumption is calculated as polynomial
function of degree three with the saddle point at 1800 rpm. The final model has
384 states and it takes less than a second to build the MDP. Finding the optimal
strategy takes less than a second. The resulting expected fuel consumption is 0.15
l/km. The optimal strategy is as expected: the shifts occur as early as possible.

Experiments. We have implemented the algorithms presented in this paper.
Our first implementation is written in Haskell5 and consists of 1500 lines of
code. We use the Haskell package hmatrix6 to solve the linear equation system
and glpk-hs7 to solve the linear programming problems. In order to make our
work publicly available in a widely used tool and to have access to more case
studies, we have implemented the best-performing algorithm within the explicit-
state version of PRISM. It is an implementation of the strategy improvement
algorithm and uses numeric approximations instead of solving the linear equation
systems.

First, we will give mean running times of our Haskell implementation on the
pump example, where we scale the number of pumps. The tests were done on
a Quad-Xeon with 2.67GHz and 3GB of heap space. Table 1 shows our results.
Column n denotes the number of pumps we use, |S| and |A| denote the number
of states and actions the final MDP has. Note that |S| = 3n and |A| = 12n.
The next columns contain the time (in seconds) and the amount of memory
(in MB) the different algorithms used. LP denotes the linear program, FLP the
fractional linear program.We have two versions of the policy iteration algorithm:
one in which we improve the induced MDP to optimality (Column Opt.), and
one where we only look for any improved strategy (Column Imp.). The policy
iteration algorithms perform best, and Imp. is slightly faster than Opt but uses a
little more memory. For n = 5, the results start to differ drastically. FLP ran out

5 http://www.haskell.org
6 http://code.haskell.org/hmatrix/
7 http://hackage.haskell.org/package/glpk-hs
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Table 1. Experimental results table

n |S| |A| LP FLP Opt Imp.

2 9 144 0.002 13 0.015 14 0.003 13 0.003 14
3 27 1728 0.043 14 0.642 20 0.027 13 0.009 14
4 81 20736 1.836 41 14.73 332 0.122 21 0.122 24
5 243 248832 67.77 505 n/a n/a 1.647 162 1.377 166

of memory, LP needed about a minute to solve the problem, and both Imp. and
Opt. stay below two seconds.

Using our second implementation, we also tried our algorithm on some of
the case studies presented on the PRISM website. For example, we used the
IPv4 zeroconf protocol model. We asked for the minimal expected number of
occurrences of action send divided by occurrences of action time. If we choose
K = 5 and reset = true, then the resulting model has 1097 states and finding
the optimal strategy takes 5 seconds. For K = 2 and reset = false, the model
has about 90000 states and finding the best strategy takes 4 minutes on a 2.4GHz
Core2Duo P8600 laptop.

7 Conclusion

We have presented a framework for synthesizing efficient controllers. The frame-
work is based finding optimal strategies in Ratio-MDPs. To compute optimal
strategies we presented three algorithms based on strategy improvement, frac-
tional linear programming, and linear programming, respectively. We have com-
pared performance characteristics of these algorithms and integrated the best
algorithm into the probabilistic model checker PRISM. As future work, we are
planing to extend our implementation in PRISM to work with symbolically en-
coded MDPs. Developing a policy iteration algorithm was an important step in
this direction, because it allows us to use semi-symbolic (known as symblicit)
techniques, which can handle more than 1012 states for the long-run average
case [15]. We expect that the ratio-case will scale to systems of similar size.

Acknowledgments. The authors would like to thank David Parker for his help
with PRISM, and Hugo Gimbert and Luca de Alfaro for answering questions
about their work.
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Abstract. Many infinite state systems can be seen as well-structured transition
systems (WSTS), i.e., systems equipped with a well-quasi-ordering on states that
is also a simulation relation. WSTS are an attractive target for formal analysis be-
cause there exist generic algorithms that decide interesting verification problems
for this class. Among the most popular algorithms are acceleration-based for-
ward analyses for computing the covering set. Termination of these algorithms
can only be guaranteed for flattable WSTS. Yet, many WSTS of practical interest
are not flattable and the question whether any given WSTS is flattable is itself un-
decidable. We therefore propose an analysis that computes the covering set and
captures the essence of acceleration-based algorithms, but sacrifices precision for
guaranteed termination. Our analysis is an abstract interpretation whose abstract
domain builds on the ideal completion of the well-quasi-ordered state space, and
a widening operator that mimics acceleration and controls the loss of precision of
the analysis. We present instances of our framework for various classes of WSTS.
Our experience with a prototype implementation indicates that, despite the inher-
ent precision loss, our analysis often computes the precise covering set of the
analyzed system.

1 Introduction

One of the great successes in applying model checking techniques to the analysis of in-
finite state systems has been achieved by studying the class of well-structured transition
systems (WSTS) [1, 12–16, 19, 20]. A WSTS is a transition system equipped with a well-
quasi-ordering≤ on its states that satisfies the following monotonicity property: for all
states s, s′, and t if s ≤ t and s → s′ then there exists a state t′ such that t → t′ and
s′ ≤ t′. In other words, ≤ is a simulation relation for the system. Interesting classes of
WSTS include Petri nets [25] and their monotonic extensions [10], lossy channel sys-
tems [3], and dynamic process networks such as depth-bounded processes [22, 28].

Many interesting verification problems are decidable for WSTS. In particular, the
verification of a large class of safety properties can be reduced to the coverability
problem, which is decidable for WSTS that satisfy only a few additional mild assump-
tions [1]. The coverability problem asks whether, given a bad state s, there exists a
reachable state s′ of the system that covers the bad state, i.e., s0 →∗ s′ and s ≤ s′

� This research was supported in part by the European Research Council (ERC) Advanced In-
vestigator Grant QUAREM and by the Austrian Science Fund (FWF) project S11402-N23.

V. Kuncak and A. Rybalchenko (Eds.): VMCAI 2012, LNCS 7148, pp. 445–460, 2012.
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where s0 is an initial state s0 ∈ S0. In this paper, we are not just interested in solving
the coverability problem, but in the more general problem of computing the covering
set of a WSTS T . The covering set Cover (T ) is defined as the downward-closure of the
reachable states of the system Cover (T ) = ↓post∗(↓S0). With the help of the covering
set one can decide the coverability problem, but also answer other questions of inter-
est such as boundedness (which asks whether Cover (T ) is finite) and U -boundedness
(which asks whether Cover (T )∩U is finite for some upward-closed set U ). While cov-
erability is decidable for most WSTS, boundedness is not [10], i.e., the covering set is
not always computable. Therefore, our goal is to compute precise over-approximations
of the covering set, instead of computing this set exactly. In this paper, we present a
new analysis based on abstract interpretation [7, 8] that accomplishes this goal.

One might question the rational of using an approximate analysis for solving decid-
able problems such as coverability. However, in practice one often uses coverability to
give approximate answers to verification problems that are undecidable even for WSTS
(such as general reachability). Thus, completeness is not always a primary concern.
Also, one should bear in mind that even though coverability is decidable, its complex-
ity is non-primitive recursive for many classes of WSTS [27], i.e., from a practical
point of view the problem might as well be undecidable. Nevertheless, the techniques
that have been developed for solving the coverability problem provide important algo-
rithmic insights for the design of good approximate analyses.

Among the best understood algorithms for computing the exact covering set of a
WSTS are acceleration-based algorithms such as the Karp-Miller tree construction for
Petri nets [20] or the more general clover algorithm [13]. These algorithms exploit the
fact that every downward-closed subset of a well-quasi-ordering can be effectively rep-
resented as a finite union of order ideals [12, 17]. The covering set is then computed
by identifying sequences of transitions in the system that correspond to loops leading
from smaller to larger states in the ordering, and then computing the exact set of ideals
covering the states reachable by arbitrary many iterations of these loops. This process is
referred to as ω- or lub-acceleration. Since acceleration is exact, these algorithm com-
pute the exact covering set of a WSTS, whenever they terminate. Since the covering
set is not always computable, termination is only guaranteed for so-called flattable sys-
tems [13]. In a flattable WSTS the covering set can be obtained by a finite sequence of
lub-accelerations of finite sequences of transitions. In particular, this means that every
nested loop of transitions can be decomposed into a finite sequence of simple loops.
Many WSTS of practical interest do not satisfy this property. We provide an example
of such a system in the next section.

Contributions. We are the first to propose an abstract interpretation framework that
computes precise approximation of covering sets for WSTS, captures the key insights
of acceleration-based algorithms, yet is guaranteed to terminate even on non-flattable
WSTS. The abstract domain of our analysis is based on the ideal completion of the
well-quasi-ordering of the analyzed WSTS and an accompanying widening operator.
The widening operator mimics the effect of acceleration, but loses enough precision
to guarantee termination. Instead of accelerating loops that lead from sets of smaller
to sets of larger states, our widening operator only accelerates the difference between
these sets of states, independently of the actual sequence of transitions that produced



Ideal Abstractions for WSTS 447

Equations:
client(C, S) = C().client(C, S)⊕ (S(C).0 | client(C, S))
server(S) = S(C).(C().0 | server(S))

env(S) = env(S) | (ν C)client(C, S)

Initial state: (ν S)(server(S) | env(S))

Fig. 1. A π-calculus process implementing a client-server protocol

them. We present instances of our framework for the WSTS classes of Petri nets, lossy
channel systems, and depth-bounded process networks. Our experience with a prototype
implementation indicates that, despite its inherent incompleteness, our analysis often
computes the precise covering set of the analyzed system.

Further Related Work. We have already explained, in detail, the connection of our
work with acceleration-based algorithms for computing the covering set. We discuss
further connections with algorithms for solving the related coverability problem. The
simplest algorithm for this problem is a backward analysis described in [1]. In practice,
backward algorithms tend to be less efficient than forward algorithms, especially for dy-
namic process networks where the pre operator is expensive to compute [28]. Therefore,
many attempts have been made at deriving complete forward algorithms for this prob-
lem. The most general solutions are described in [16] and [15]. The expand, enlarge, and
check algorithm [16] decides the covering problem using a combination of an under-
approximating and an over-approximating forward analysis. The over-approximating
analysis relies on a so-called adequate domain of limits for the representation of down-
ward-closed sets, which is actually the ideal completion of the underlying well-quasi
ordering [12]. Ganty et al. propose an alternative algorithm [15] based on abstract in-
terpretation. Unlike our approach, this algorithm uses a finite abstract domain that rep-
resents downward-closed sets by complements of upward-closed sets. The algorithm
then relies on a complete refinement scheme to refine the abstraction for a specific cov-
erability goal. Both algorithms [12, 15] compute an over-approximation of the covering
set as a byproduct of the analysis, namely an invariant whose complement contains the
coverability goal. To ensure completeness, the precision of this computed invariant is
geared towards proving the specific instance of the coverability problem. Instead, our
analysis computes a precise approximation of the covering set that is independent of
any specific coverability instance.

An extended version of this paper with additional material (including proofs) is avail-
able as a technical report [30].

2 Motivating Example

We start with an example of a non-flattable system and illustrate how our analysis com-
putes its covering set. Our example is given by the π-calculus process shown in Figure 1.
The process models a concurrent system that implements a client-server protocol using
asynchronous message passing. The process consists of one single server thread, an en-
vironment thread, and an unbounded number of client threads. Each type of threads is
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Fig. 2. Communication graph of the system in Figure 1 and the symbolic representation of the
covering set of this system

defined by a recursive π-calculus equation. In each loop iteration of a client, the client
non-deterministically chooses to either wait for a response from the server on its own
dedicated channel C, or to send a new request to the server. Requests are sent asyn-
chronously and modeled as threads that wait for the server to receive the client’s chan-
nel name over the server’s dedicated channel S and then terminate immediately. In each
iteration of the server loop, the server waits for incoming requests on its own channel
S and then asynchronously sends a response back to the client using the client’s chan-
nel name C received in the request. The environment thread models the fact that new
clients can enter the system at anytime. In each iteration of the environment thread, it
spawns a new client thread with its own dedicated fresh channel name. The initial state
of the system consists only of the server and the environment thread.

The states of a π-calculus process can be represented as a communication graph
with nodes corresponding to threads (labeled by their id) and edges corresponding to
channels (labeled by channel names). The left hand side of Figure 2 shows the commu-
nication graph representing the process:

server(S) | client(C1, S) | S(C1).0 | client(C2, S) | env(S)

The transition relation on processes is monotone with respect to the ordering on pro-
cesses that is induced by subgraph isomorphism between their communication graphs,
i.e., a process represented by a communication graph G can take all transitions of pro-
cesses represented by the subgraphs of G. We call a set of graphs depth-bounded, if
there exists a bound on the length of all simple paths in all graphs in the set. A depth-
bounded process [22] is a process whose set of reachable communication graphs is
depth-bounded. The subgraph isomorphism ordering is a well-quasi-ordering on sets of
depth-bounded graphs, i.e., depth-bounded processes are WSTS. The process defined
in Figure 1 is depth-bounded because the longest simple path in any of its reachable
communication graphs has length at most 2. We now explain our analysis through this
example.

Our analysis computes an over-approximation of the covering set of the analyzed
WSTS, i.e., the downward-closure (with respect to the well-quasi-ordering) of its
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reachable set of states. The elements of the abstract domain of the analysis are the
downward-closed sets. In our example, these are sets of communication graphs that are
downward-closed with respect to the subgraph ordering. A finite downward-closed set
of graphs can be represented by the maximal graphs in the set. The downward-closure of
a single graph is an ideal of the subgraph ordering. Thus, any finite downward-closed set
is a finite union of ideals. For well-quasi-orderings this is true for arbitrary downward-
closed sets, including infinite ones. We symbolically represent the infinite ideals of
the subgraph ordering by graphs where some subgraphs are marked with the symbol
‘*’. These markings of subgraphs can be nested. Such a symbolic graph represents
the downward-closure of all graphs that result from (recursively) unfolding the marked
subgraphs arbitrarily often. The right hand side of Figure 2 shows such a symbolic
graph. It represents a downward-closed set of communication graphs of our example
system that is also the covering set of the system. The covering set consists of all graphs
that contain one server thread, one environment thread, and arbitrarily many clients with
arbitrarily many unprocessed request and response messages each.

Our analysis works as follows: it starts with a set of symbolic communication graphs
that represents the downward-closure of the initial states of the system. Then it iterates
a fixed point functional that is composed of the following two steps: (1) compute the
set of symbolic communication graphs that represent the downward-closure of the post
states of the states represented by the current set of symbolic graphs, and (2) widen
the resulting set of symbolic graphs with respect to the sequence of iterates that have
been computed in the previous steps. The widening step compares the symbolic graphs
in the new iterate pairwise to the symbolic graphs obtained in the previous iterates. If
a symbolic graph in the new iterate is larger than some symbolic graph in a previous
iterate then the larger graph must contain a subgraph that is not contained in the smaller
one. This subgraph in the larger graph is then marked with a ‘*’. The intuition behind
the widening is that, because of monotonicity of the transition relation, the sequence of
transitions that lead from the smaller to the larger graph can be repeated arbitrarily of-
ten, which results in graphs with arbitrarily many copies of the new subgraph. Figure 3
shows a sequence of symbolic graphs obtained during the analysis of the client-server
example. The final symbolic graph in the sequence represents the covering set of the
system. This symbolic graph is also the fixed point obtained by our analysis, i.e., in this
example the analysis does not lose precision.

Note that the covering set of our example system cannot be computed by a finite
number of accelerations of finite sequences of transitions, i.e., the system is not flat-
table. This is reflected by the nesting of marked subgraphs in the symbolic graph that
represents the covering set. To obtain this covering set via acceleration, one would need
to compute the set of states reachable by a transfinite sequence of transitions resulting
from ω-acceleration of a sequence of transition that is already infinite. The infinite se-
quence of transition that is to be accelerated corresponds to the creation of a client by
the environment thread, followed by infinitely many exchanges of request and response
messages between this client and the server. Since acceleration-based algorithms such
as the clover algorithm [13] cannot accelerate infinite sequences of transitions, they do
not terminate on our example system.
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Fig. 3. Sequence of symbolic communication graphs produced by the analysis of the system in
Figure 1

3 Preliminaries

Posets, lattices, wqos, and bqos. A quasi-ordering ≤ is a reflexive and transitive rela-
tion ≤ on a set X . In the following X(≤) is a quasi-ordered set. The upward closure
↑ Y of a set Y ⊆ X is ↑ Y = { x ∈ X | ∃y ∈ Y. y ≤ x }. The downward closure ↓Y
of Y is ↓Y = {x ∈ X | ∃y ∈ Y. x ≤ y }. A set Y ⊆ X is upward-closed if Y =↑ Y
and downward-closed if Y = ↓Y . An upper bound x ∈ X of a set Y ⊆ X is such
that for all y ∈ Y , y ≤ x. The notion of lower bound is defined dually. A nonempty
set D ⊆ X is called directed if any two elements in D have a common upper bound in
D. A set I ⊆ X is an ideal of X if I is downward-closed and directed. We denote by
Idl(X) the set of all ideals of X and call Idl(X) the ideal completion of X .

If a quasi-ordering ≤ on a set X is antisymmetric it is called a partial ordering and
X(≤) a poset. A poset L(≤) is called a complete lattice if every subset X ⊆ L has
a least upper bound $X and a greatest lower bound #X in L. In particular, L has a
least element ⊥ = #L and a greatest element � = $L. This lattice will be denoted
by L(≤,�,⊥,$,#). For a function f : X → Y and X ′ ⊆ X we denote by f(X ′)
the set { f(x) | x ∈ X ′ }. A monotone function f : L → L on a complete lattice L(≤
,�,⊥,$,#) is called continuous if for every directed subsetD ofL, $f(D) = f($D).
Recall Kleene’s fixed point theorem which states that if f : L → L is continuous then
its least fixed point lfp≤(f) ∈ L exists and is given by $

{
f i(⊥) | i ∈ N

}
.

LetL1(≤1) andL2(≤2) be posets. A Galois connection betweenL1(≤1) andL2(≤2

) is a pair of functions α : L1 → L2 and γ : L2 → L1 that satisfy for all x ∈ L1, y ∈
L2, α(x) ≤2 y iff x ≤1 γ(y). If γ is also injective then (α, γ) is called Galois insertion.

A quasi-ordering ≤ on a set X is called well-quasi-ordering (wqo) if any infinite
sequence x0, x1, x2, . . . of elements from X contains an increasing pair xi ≤ xj with
i < j. We extend the ordering ≤ to an ordering ≤ on subsets of X as expected: for
Y1, Y2 ⊆ X , we have Y1 ≤ Y2 iff for all y1 ∈ Y1 there exists y2 ∈ Y2 such that y1 ≤ y2.
We will also refer to the notion of better-quasi-ordering. For all intents and purposes in
this paper, it suffices to know that better-quasi-orderings are well-quasi-orderings that
are closed under powerset construction, i.e., if X(≤) is a bqo then P(X)(≤) is also a
bqo. We refer to [23] for the precise (but rather technical) definition of bqos.
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Well-structured transition system. A transition system is a tuple T = (S, S0,→) where
S is a set of states, S0 ⊆ S a set of initial states, and → ⊆ S × S is a transition
relation. We denote by post : P(S) → P(S) the post operator of T defined by
post(X) = {x′ ∈ S | ∃x ∈ X. x→ x′ }. Note that post is continuous on the complete
lattice P(S)(⊆, S, ∅,∪,∩).

A well-structured transition system (WSTS) is a tuple T = (S, S0,→,≤) where
(S, S0,→) is a transition system and ≤ ⊆ S×S a wqo that is upward-compatible with
respect to→, i.e., for all s1, s2, t1 such that s1 ≤ t1 and s1 → s2, there exists t2 such
that t1 → t2 and s2 ≤ t2. The covering set of a well-structured transition system T ,
denoted Cover (T ), is defined by Cover (T ) = ↓lfp⊆(λX.↓S0 ∪ post(X)).

4 Ideal Abstraction

We next describe our abstract interpretation framework for computing over-approxi-
mations of the covering sets of WSTS. For this purpose we fix a WSTS T = (S, S0,→
,≤) throughout the rest of this section.

4.1 Concrete and Abstract Domain

Following the framework of abstract interpretation [7, 8], a static analysis is defined by
lattice-theoretic domains and by fixed point iteration over the domains. The concrete
domain D of our analysis is the powerset domain over the states S of WSTS T :

D def
= P(S)(⊆, ∅, S,∪,∩)

Since our analysis is to compute an over-approximation of the covering set of T , which
is a downward-closed set, we define the abstract domainD↓ as the set of all downward-
closed subsets of S, again ordered by subset inclusion:

D↓
def
= { ↓X | X ⊆ S } (⊆, ∅, S,∪,∩)

One can easily verify that D↓ is a complete lattice. This choice of the abstract domain
suggests the following abstraction function α↓ : D → D↓ and concretization function
γ↓ : D↓ → D defined as α↓(X)

def
= ↓X and γ↓(Y )

def
= Y .

Proposition 1. The pair (α↓, γ↓) forms a Galois insertion between domainsD andD↓.

According to [8], the Galois insertion (α↓, γ↓) defines the best abstract post operator
post↓ on the abstract domain D↓:

post↓
def
= α↓ ◦ post ◦ γ↓

We next show that we can effectively represent the elements ofD↓ and, for all practical
purposes, effectively compute post↓ on this representation. To obtain this representa-
tion, we exploit the fact that any downward-closed subset of a wqo-set S(≤) is a finite
union of ideals of S(≤).



452 D. Zufferey, T. Wies, and T.A. Henzinger

Denote byPfin(Idl (S)) the finite sets of ideals of S(≤) and define the quasi-ordering
� on Pfin(Idl (S)) as the point-wise extension of ⊆ from the ideal completion Idl(S)
of S(≤) to Pfin(Idl (S)):

L1 � L2
def⇐⇒ ∀I1 ∈ L1. ∃I2 ∈ L2. I1 ⊆ I2

Let DIdl be the quotient of Pfin(Idl (S)) with respect to the equivalence relation �
∩ �−1. For notational convenience we use the same symbol � for the quasi-ordering
on Pfin(Idl (S)) and the partial ordering that it defines on the quotientDIdl . We further
identify the elements ofDIdl with the finite sets of maximal ideals, i.e., for all L ∈ DIdl

and I1, I2 ∈ L, if I1 ⊆ I2 then I1 = I2.
Now, define the function γIdl : DIdl → D↓ as γIdl (L)

def
=
⋃
L.

Proposition 2. The function γIdl is an order-isomorphism.

Let $ and # be the least upper bound and greatest lower bound operators on the poset
DIdl (�). These operators exist because D↓ is a complete lattice and D↓ and DIdl are
order-isomorphic according to Proposition 2. The following proposition then follows
immediately.

Proposition 3. DIdl (�, ∅, {S} ,$,#) is a complete lattice.

Let αIdl : D↓ → DIdl be the inverse of γIdl . Since γIdl is an order-isomorphism, the
pair (αIdl , γIdl ) forms a Galois insertion between D↓ and DIdl .

Let α = αIdl ◦ α↓ and γ = γ↓ ◦ γIdl . Then (α, γ) forms a Galois insertion between
concrete domainD and abstract domainDIdl . Let postIdl = α◦post◦γ be the induced
best abstract post operator on DIdl and let FIdl be the function FIdl = λL. α(S0) $
postIdl (L). The following proposition is then a simple consequence of Proposition 2.

Proposition 4. The least fixed point of FIdl on DIdl is the covering set of T :

γ(lfp�(FIdl )) = Cover (T ) .

Can we compute lfp�(FIdl )? In general the answer is “no” for various reasons. First,
we may not be able to compute the iterates of the abstract functional FIdl , respectively,
decide the fixed point test on the abstract domain. However, for the classes of WSTS
that are of practical interest, this is not a problem: We say that the ideal completion
Idl(S) of a WSTS T = (S, S0,→,≤) is effective if (i) for all I1, I2 ∈ Idl (S), checking
I1 ⊆ I2 is decidable, and (ii) for all I ∈ Idl(S), postIdl ({I}) is computable. It follows
from [12, Theorem 3.4] that all WSTS with a so called effective adequate domain of
limits [16] also have an effective ideal completion. Classes of WSTS with this property
include, e.g., Petri nets and their monotone extensions [16], lossy channel systems [12],
and depth-bounded processes [28].

Thus, assume that T has an effective ideal completion. Then, for any L ∈ DIdl we
can compute FIdl (L) and decide FIdl (L) � L. However, this is not yet sufficient for
guaranteeing termination. In general, the covering set of a WSTS is not computable,
i.e., we cannot expect that the sequence of iterates (

⊔
i≤n F

i
Idl (∅))n∈N stabilizes. In

fact, even if the exact covering set Cover (T ) is computable for a particular WSTS, the
sequence of fixed point iterates might not stabilize because the abstract domain DIdl

has (typically) infinite height. To ensure termination of our analysis, we next define an
appropriate widening operator for the abstract domainDIdl .
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4.2 Widening

Let us first recall the notion of set-widening operators [9]. A set-widening operator for
a poset X(≤) is a partial function ∇ : P(X) ⇀ X that satisfies the following two
conditions:

– Covering: For all Y ⊆ X , if∇(Y ) is defined then for all y ∈ Y , y ≤ ∇(Y ).
– Termination: For every ascending chain {xi}i∈N in X(≤), the sequence y0 = x0,
yi = ∇({x0, . . . , xi}), for all i > 0, is well-defined and an ascending stabilizing
chain.

In the following, we define a general set-widening operator for the abstract domain
DIdl . The reason for using a set-widening operator instead of the more popular pair
widening operator is that we want to enable the widening operator to take into account
the whole history of the previous iterates of the fixed point computation. This allows us
to use widening to mimic the effect of acceleration for computing the exact covering
set of flattable WSTS.

The set-widening operator on the abstract domainDIdl is obtained by lifting a given
set-widening operator for the ideal completion Idl(S). This underlying widening op-
erator on ideals is a parameter of the analysis because it is domain-specific for each
class of WSTS. In the next section, we will describe several such widening operators
for common classes of WSTS.

In general, extending a widening operator from a base domain to its finite powerset
is non-trivial [5]. We can simplify this task by making a stronger assumption about
the ordering ≤ on the base set S: we assume that S(≤) is not just a wqo, but a bqo.
This ensures that the ideal completion Idl(S) is itself a bqo with respect to the subset
inclusion ordering. Using this fact we can then lift the set-widening operator on ideals
to sets of ideals. From a practical point of view, requiring a bqo is not a real restriction,
since all wqos of WSTS occurring in practice are actually bqos.

Assume that∇S is a set-widening operator on the poset Idl(S)(⊆). Then define the
operator∇ : P(DIdl ) ⇀ DIdl as follows: forC ⊆ DIdl , if C is a finite ascending chain
C = {Li}0≤i≤n in DIdl (�) let ∇(C) be defined recursively by

∇({L0}) = L0

∇({L0, . . . , Li}) = ∇({L0, . . . , Li−1}) $
{∇S(I) | I maximal ascending chain in∇({L0, . . . , Li−1}) }

for all 0 < i ≤ n. In all other cases let ∇(C) be undefined.

Proposition 5. If S(≤) is a bqo then∇ is a set-widening operator for DIdl (�).

We now define our analysis in terms of the widening sequence {Wi}i∈N as follows:

W0 = ∅ and Wi+1 = ∇({W0, . . . ,Wi, FIdl (Wi) $Wi})

Note that for computing the image of ∇ in step i + 1 we can reuse Wi. The properties
of set-widening operators, Proposition 4, and Proposition 5 imply the soundness and
termination of the analysis.
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Theorem 6. If S(≤) is a bqo then the sequence {Wi}i∈N stabilizes and its least upper
bound approximates the covering set of T , i.e., Cover(T ) ⊆ γ(

⋃
{Wi}i∈N).

Trace Partitioning. Note that, unlike acceleration, the widening operator ∇ does not
take into account whether each widened chain of ideals is actually correlated by some
sequence of transition in the system. This incurs an additional loss of precision that is
not needed to ensure termination of the analysis. To avoid this loss of precision, we
can refine the above analysis via combination with an appropriate trace partitioning do-
main [26]. The resulting analysis is a generalized Karp-Miller tree construction where
acceleration has been replaced by widening.

5 Set-Widening Operators for Ideal Completions

We now discuss several instantiations of our analysis for different classes of WSTS by
presenting the corresponding ideal completions and set-widening operators on ideals.
We discuss, in turn, Petri nets, lossy channel systems, and depth-bounded processes.

5.1 Petri Nets

A Petri net is a tuple (S, T,W ) where S is a finite set of places, T is a finite set of
transitions, and W : (S, T ) ∪ (T, S) → N is a (multi)set of arcs. A marking M is a
map: S → N. We denote byM(S) the set of all markings over S. A transition t ∈ T
is fireable at M iff for all s ∈ S, M(s) ≥ W (s, t). Firing t at M gives M ′ defined as
M ′(s) = M(s)−W (s, t)+W (t, s). The point-wise ordering of markings is a bqo [23].
The ideal completion Idl(M(S)) of the markings of a Petri net can be represented by
extended markings, which are functions S → N ∪ {ω} [17]. The ordering on extended
markings is given by M ≤ M ′ iff for all s ∈ S, M ′(s) = ω or M(s) ∈ N and
M(s) ≤M ′(s).

Widening for Petri Nets. The set-widening operator ∇PN for a Petri Net corresponds
to the usual acceleration used in the Karp-Miller tree construction for Petri nets. For a
finite ascending chain {Mi}0≤i≤n we define ∇PN({Mi}0≤i≤n) = M where M(s) =
ω if Mn(s) > M0(s) and Mn(s) otherwise. Clearly this set-widening operator satisfies
the covering condition. It also satisfies termination, since the set of places S is finite.

Precision of the Widening and Monotonic Extensions of Petri Nets. For standard Petri
nets the above widening operator corresponds to the acceleration used in the Karp-
Miller tree construction. In fact, for this class of WSTS our analysis does not lose pre-
cision. The reason is that in Petri nets sequences of firing transitions σ that increase the
value of a marking M by some δ, σ(M) = M + δ, do the same for all larger markings
M ′ ≥M , i.e., σ(M ′) = M ′ + δ.

For monotonic extensions of Petri nets, such as transfer nets and reset nets, the situ-
ation is more complicated. In a transfer net a transition can transfer all the tokens from
one place to another place in a single step. In both cases we can use the same widening
as for standard Petri nets, but the analysis may lose precision because neither trans-
fer nets nor reset nets are flattable, in general. However, for a concrete net the loss of
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precision does not depend on the flattability of the net in consideration, i.e., there are
non-flattable nets where the result of the analysis is exact and flat nets were the analysis
over-approximates the actual covering set.

5.2 Lossy Channel Systems

A lossy channel system (LCS) [3] is a tuple (S, s0, C,M, δ) where S is a finite set
of control locations, s0 is the initial location, C is a finite set of channels, M is a
finite set of messages, and δ is a set of transitions. A state of an LCS is a tuple (s, w)
where s ∈ S and w is a mapping C → M∗ denoting the content of the channels.
A transition t is a tuple (s1, Op, s2) where s1, s2 ∈ S and Op is of the form c !/?m
(c ∈ C,m ∈M ). The system can go from state (s1, w1) to (s2, w2) by firing transition
t iff Op = c!m ∧ w2(c) ≤ w1(c)m or Op = c?m ∧ mw2(c) ≤ w1(c), the remaining
channels are unchanged. The systems are called lossy because messages can be dropped
from channels before and after performing a send or receive operation. The ordering on
states≤ is defined as (s, w) ≤ (s′, w′) iff s = s′ and for all c ∈ C,w(c) is a subword of
w′(c). The subword ordering is a bqo [23] and thus so is the ordering≤ on states. In the
following we describe a widening on the content of individual channels. Its extension
to states is defined as expected.

The downward-closed sets of the subword ordering are exactly the languages of sim-
ple regular expressions (SRE) [2], which are defined by the following grammar:

atom ::= (m+ ε) | (m1 + . . .+mn)
∗

product ::= ε | atom product

SRE ::= product [ + SRE ]

The ideals of the subword ordering are the languages denoted by the products in SRE.
The ordering on the ideals is language inclusion.

Widening for LCS. The first step in defining the widening operator on channel contents
is to define a notion of difference on the corresponding ideals. For a product pwe denote
by |p| the number of atoms appearing in p and for 1 ≤ i ≤ |p| we denote by p[i] the ith
atom of p.

Let p, q be products. If p ≤ q then we can find a mapping ι : [1, |p|] → [1, |q|] such
that (i) ι is monotone, i.e., for all i, j ∈ [1, |p|] if i ≤ j then ι(i) ≤ ι(j), (ii) for all
i ∈ [1, |p|] the language of p[i] is included in the language of q[ι(i)], and (iii) for all
i, j ∈ [1, |p|] if ι(i) = ι(j) and q[ι(i)] is of the form (a + ε) then i = j. We call ι
an inclusion mapping for p ≤ q. Note that we consider an interval [l, r] to be empty if
l > r, i.e., if p = ε then the inclusion mapping exists trivially.

Let p and q be atoms such that p ≤ q and let ι be an inclusion mapping for p ≤ q.
We define an extrapolation operator χLCS for p, q and ι as follows. If p = ε then
χLCS(p, q, ι) = (

∑
i q[i])

∗. Otherwise, let i1, . . . , in be the increasing sequence of in-
dices in the range of ι. For each j ∈ [1, n−1] define the interval dj = [ij+1, ij+1−1].
Furthermore, define d0 = [1, i1 − 1] and dn = [in, |q|]. For all j ∈ [0, n], define
sj =

(∑
i∈dj

q[i]
)∗

. Note that sj is equivalent to ε if dj is empty and, otherwise, sj is

equivalent to an atom of the form
(∑

kmk

)∗
where the mk are the messages appearing

in the atoms q[i] for i ∈ dj . Then define χLCS(p, q, ι) = s0 q[i1] . . . sk−1 q[ik] sk.
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Inclusion mappings are not necessarily unique. We therefore fix for each ascending
sequence of products p1 ≤ p2 . . . a corresponding sequence ι1, ι2, . . . such that (1) for
all i, ιi is an inclusion mapping for pi ≤ pi+1, and (2) for every two ascending chains
of products that share a common prefix, the corresponding sequences of inclusion map-
pings agree on this prefix.

Let π = {pi}0≤i≤n be an ascending chain of products with n > 0. The set-widening
of π is then defined as ∇LCS(π) = χLCS(p0, pn, ι0,n) where ι0,n is the composition of
the fixed sequence of inclusion mappings for π, ι0,n = ιn−1 ◦ · · · ◦ ι0.

Note that one cannot use the operator χLCS to define a standard pair widening opera-
tor∇ on ideals of the subword ordering:∇(p, q) = χLCS(p, q, ι) where ι is an inclusion
mapping for p ≤ q. As a counterexample for termination of this operator consider the
following sequence of ideals: x0 = ε, x1 = (a+ ε), x2 = a∗(b+ ε), x3 = a∗b∗(a+ ε),
etc. Applying∇ pairwise on consecutive elements of the sequence leads to the follow-
ing diverging sequence: y0 = x0 = ε, y1 = ∇(y0, x1) = a∗, y2 = ∇(y1, x2) = a∗b∗,
y3 = ∇(a∗b∗, x3) = a∗b∗a∗, etc. On the other hand, the set-widening operator ∇LCS

produces the stabilizing sequence: y0 = x0 = ε, y1 = ∇LCS({x0, x1}) = a∗, y2 =
∇LCS({x0, x1, x2}) = (a+ b)∗, y3 = ∇LCS({x0, x1, x2, x3}) = (a+ b)∗, etc. For ter-
mination, it is crucial that the maximal length of the products provided as first argument
of χLCS is bounded throughout all widening steps. This is for instance ensured by fixing
the first argument of χLCS to one particular element of the widened sequence (e.g., the
first element as in the definition of∇LCS). For a more detailed discussion and the proof
of termination for the operator∇LCS we refer to the technical report [30].

5.3 Depth-Bounded Processes

Depth bounded processes (DBP) [22] form the largest known fragment of the π-calculus
for which non-trivial verification problems are still decidable. In particular, we proved
in [28] that the covering problem is decidable for this class. As for many other classes
of WSTS, the coverability problem has non-primitive recursive complexity. This makes
DBP a particularly interesting target for approximate analysis. We have already infor-
mally introduced DBP in Section 2 and explained how our analysis works for this class
of WSTS. In the following, we explain the analysis of DBP in more detail. We outline
an analysis that operates directly on process terms, instead of communication graphs.

We assume basic knowledge of the syntax and semantics of the π-calculus and refer
the reader to [24] for a detailed introduction. We consider π-calculus processes that are
described by finite systems of recursive π-calculus equations together with a process
term denoting the initial state. We denote by ≡ the usual syntactic congruence relation
on π-calculus process terms.

The nesting of restrictions nestν of a process term is measured recursively as fol-
lows nestν(0) = nestν(A(x)) = 0, nestν((νx)P ) = 1 + nestν(P ), and nestν(P1 |
P2) = max {nestν(P1), nestν(P2)}. The depth of a process term P is the minimal
nesting of restrictions of process terms in the congruence class of P : depth(P ) =
min {nestν(Q) | Q ≡ P }. A set of process terms P is called depth-bounded if there
is kD ∈ N such that depth(P ) ≤ kD for all P ∈ P . A process is called depth-bounded
if its set of reachable process terms is depth-bounded. As shown in [22], this definition
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is equivalent to the definition of depth-bounded processes that is given in Section 2 and
refers to communication graphs.

We define the following natural quasi-ordering≤ on process terms: let P ≡ (νx)P ′

and Q be process terms then P ≤ Q if and only if Q ≡ (νx)(P ′ | F ) for some process
term F . The ordering ≤ defines a bqo on sets of depth-bounded process terms. We
have shown in [28] that the ideals of this bqo can be represented by extending process
terms with a replication operator ! to encode that certain subprocesses may be repeated
arbitrarily often. We call these terms limit process terms. For instance the covering set
of the example discussed in Section 2 is denoted by the following limit process term:

(νS)(server(S) | env(S) | !(νC)(client(C, S) | !(S(C).0) | !(C().0)))

The ordering≤ is extended to limit process terms by extending the congruence relation
≡ with additional axioms for replication. The resulting congruence relation (which we
also denote by ≡) corresponds to the extended congruence relation studied in [11],
where it is also shown to be decidable.

Widening for Depth-Bounded Processes. We first describe an extrapolation operator
χDBP on pairs of limit process terms, which is then lifted to a set-widening operator
∇DBP. The extrapolation operator relies on a set of inference rules for checking validity
of clauses of the formP ≤ QwhereP,Q are limit process terms. The inference rules do
not just proveP ≤ Q but do a bit more: givenP andQ, the rules derive judgments of the
form x, R, F � P ≤ Q. The semantics of these judgments is that if x, R, F � P ‖ Q ≡
can be derived then (νx)R ≡ P and (νx)(R | F ) ≡ Q. We call F an anti-frame1 of
P ≤ Q. The anti-frame captures the difference between process terms P and Q. The
basic idea of extrapolation is that if x, R, F � P ≤ Q can be derived then χDBP(P,Q)
is given by (νx)(R | !F ). The set-widening operator ∇DBP then applies extrapolation
recursively on the input chain. A detailed description of the operators χDBP and ∇DBP

can be found in the technical report [30].
The intuition behind the termination argument for the operator ∇DBP is that for an

infinite ascending chain of limit processes, ∇DBP gradually saturates the finitely many
nesting levels of restrictions in the elements of the chain. It is important to realize that
the extrapolation operator χDBP is not a pair-widening operator for limit process terms.
The recursion built into the set-widening operator∇DBP ensures that a sufficiently high
nesting depth of the replication operator is achieved. Intuitively, this recursion approx-
imates the acceleration of infinite traces that correspond to unfoldings of inner loops
within nested loops of the analyzed system. This is crucial for the termination of the
analysis on non-flattable WSTS, such as the example presented in Section 2.

6 Implementation and Evaluation

We have implemented a prototype tool called PICASSO and applied it to a set of example
programs. PICASSO combines our ideal abstraction domain with a trace partitioning
domain [26]. The resulting analysis is a generalized Karp-Miller tree construction with
widening instead of acceleration. The implementation is parameterized by the concrete

1 The term “anti-frame” refers to abduction in entailment provers for separation logic [6].



458 D. Zufferey, T. Wies, and T.A. Henzinger

ideal completion and the widening operator on ideals that are used in the analysis. The
tool PICASSO and the example programs are available on-line [29].

For the analysis of our examples we have implemented a generalization of the ideal
abstraction domain and widening operator for depth-bounded processes that we de-
scribed in Sec. 5.3. The representation of ideals used in the implementation more closely
resembles the communication graphs with nested repeated substructures described in
Sec. 2. This representation admits process nodes in communication graphs with arbi-
trarily many outgoing edges. Such nodes correspond to process identifiers in π-calculus
process terms with unbounded (but unordered) parameter lists. To represent the limit el-
ements we annotate the nodes in the graph with natural numbers indicating the nesting
depth of the nodes. Testing the ordering on states is done by computing morphisms be-
tween the corresponding graphs. The morphisms take into account the nesting structure
by allowing mappings to nodes of higher nesting depth to be non-injective. The actual
test is encoded into a set of Boolean constraints and passed to a SAT solver. The mor-
phisms are then reconstructed from the obtained satisfying assignments. The algorithm
constructs a Karp-Miller tree using a depth-first search. When the tree is extended with
a new node, widening is applied to the chains on the path to the root of the tree that
contain the new node. Among the smaller ancestors of a node, not all are used for the
widening. Instead, nodes are selected using an exponential back-off strategy. When the
depth of the constructed tree becomes too large, the algorithm tends to slow down sig-
nificantly. For such cases, we have implemented a restart policy. When a restart occurs,
the leaves of the current tree are used as roots to construct new trees. The restart policy
ensures that, for larger examples, the analysis terminates within reasonable time. The
current implementation uses restart intervals of 5 minutes. The implementation exploits
parallelism and makes use of multiple cores when possible.

We ran our experiments on a machine with two AMD Opteron 2431 processors and a
total of 12 cores. We found that memory consumption was not an issue for the analysis
of our examples. The examples that we have considered are depth-bounded processes,
which are inspired by Scala programs. These Scala programs use the Scala actor li-
brary [18] for the implementation of dynamic process networks. Table 1 summarizes
the results of our experiments. The ping-pong example is the “Hello World” of actor
programming and is taken from the tutorial for the Scala actor library. All remaining
examples follow a client-server type of communication with an unbounded number of
clients. These examples cover common patterns that arise in message passing programs.
The second and third program are variations of the example presented in Section 2. In
the third program, we added a timeout to the receive operations of clients. We model the
timeout by letting the clients send Timeoutmessages to themselves. This pattern is of-
ten used in programs based on the Scala actor library. ThegenericComputeServer
example is the message passing skeleton of a tutorial for remote actors [4]. The exam-
ple implements a compute server that accepts computation tasks from clients and then
executes them. The second version uses actors to model the closures that are sent to the
server. This model is obtained using the usual reduction of high-order π-calculus to the
standard π-calculus. The liftChatLike example is the message-passing skeleton
extracted from a chat application based on the lift web framework [21]. Since our im-
plementation does not yet support collections, the broadcast pattern that is used in the
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Table 1. Experimental results: the columns indicate the number of nodes in the Karp-Miller tree,
the number of ideals in the covering set, and the running time

Name tree size cov. set size time

ping-pong 17 14 0.6 s
client-server 25 2 1.9 s
client-server-with-TO 184 5 12.8 s
genericComputeServer 57 4 4.6 s
genericComputeServer-fctAsActor 98 8 14.8 s
liftChatLike 1846 21 1830.9 s
round robin 2 830 63 48.8 s
round robin 3 3775 259 737.8 s

original implementation has been changed into a polling pattern. The round robin k
example is a load balancer that routes requests to a pool of k workers. Increasing the
value of k greatly increase the number of interleavings that the analysis has to consider.
With added support for collections, we can analyze a generic round robin k, which
should also reduce the symmetry in the model.

Our experiments indicate that our analysis produces sufficiently precise approxima-
tions of the covering set to be useful for program verification and program understand-
ing. The main bottle neck of our analysis is the explosion caused by interleavings of the
transitions of individual processes. We did not yet explore techniques such as partial
order reduction to tackle this problem.

7 Conclusion

We proposed a novel abstract interpretation framework to compute precise approxima-
tions of the covering set of WSTS. Our analysis captures the essence of acceleration-
based algorithms that compute the exact covering set but only terminate on flattable
systems. By replacing acceleration with widening we ensure that our analysis always
terminates. We discussed several concrete instances of our framework including the
application to depth-bounded process networks, which are typically non-flattable. Our
experience with a prototype implementation shows that the analysis is often precise,
which makes it a useful tool for verification and program analysis.
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