
T. Aura, K. Järvinen, and K. Nyberg (Eds.): NordSec 2010, LNCS 7127, pp. 71–88, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Use of Ratings from Personalized Communities
for Trustworthy Application Installation

Pern Hui Chia1, Andreas P. Heiner2, and N. Asokan2

1 Q2S* NTNU, Trondheim, Norway
2 Nokia Research Centre, Helsinki, Finland

chia@q2s.ntnu.no, {andreas.heiner,n.asokan}@nokia.com

Abstract. The problem of identifying inappropriate software is a daunting one
for ordinary users. The two currently prevalent methods are intrinsically cen-
tralized: certification of “good” software by platform vendors and flagging of
“bad” software by antivirus vendors or other global entities. However, because
appropriateness has cultural and social dimensions, centralized means of signal-
ing appropriateness is ineffective and can lead to habituation (user clicking-
through warnings) or disputes (users discovering that certified software is
inappropriate).

In this work, we look at the possibility of relying on inputs from persona-
lized communities (consisting of friends and experts whom individual users
trust) to avoid installing inappropriate software. Drawing from theories, we de-
veloped a set of design guidelines for a trustworthy application installation
process. We had an initial validation of the guidelines through an online survey;
we verified the high relevance of information from a personalized community
and found strong user motivation to protect friends and family members when
know of digital risks. We designed and implemented a prototype system on the
Nokia N810 tablet. In addition to showing risk signals from personalized com-
munity prominently, our prototype installer deters unsafe actions by slowing the
user down with habituation-breaking mechanisms. We conducted also a hands-
on evaluation and verified the strength of opinion communicated through
friends over opinion by online community members.

Keywords: Usable security, User-centered design, Risk signaling.

1 Introduction

The versatility of mobile devices paves the way for a large array of novel applications;
mobile devices today contain ever more sensitive information such as medical data,
user location and financial credentials. As device manufacturers open up the mobile

* Centre of Quantifiable Quality of Service in Communication Systems (Q2S), Centre of Ex-

cellence appointed by the Research Council of Norway, is funded by the Research Council,
Norwegian Uni. of Science and Technology (NTNU) and UNINETT.

 http://www.q2s.ntnu.no

72 P.H. Chia, A.P. Heiner, and N. Asokan

platforms to encourage third party software development, applications from different
sources are becoming available. Some of these applications, although not malicious,
are inappropriate in the sense that they can cause harm (e.g., loss of privacy) or offense
(e.g., culturally or religiously-insensitive content) to some users. The appropriateness
of FlexiSpy – one of several commercial applications intended to spy on the activities
of the user of a mobile phone – has been contentious. Mobile applications with poten-
tially inappropriate content are becoming publicly available1.

The bar for developing “applications” is also being lowered drastically. One can
now develop simple applications for mobile devices by using only scripting languages
(e.g., using JavaScript+HTML+CSS for Palm webOS [27]), or even without much
programming experience using online tools (e.g., OviAppWizard [28] and AppWi-
zard [29]). These applications are unlikely to be malicious (as they don't do too much)
but we can expect a flood of applications from a larger variety of originators which
increases the chance of a given application offending a certain group of users.

1.1 What Is Inappropriate Software?

StopBadware.org [30] defines badware as software that fundamentally disregards a
user’s choice about how his or her computer or network connection will be used. In
addition to software with malicious intent, the definition covers bad practices, such as
installing additional unexpected software, hiding details from users, and incompre-
hensible End User License Agreement (EULA) that hinder an informed consent. Our
understanding of “inappropriate software” is close to this notion of badware. In addi-
tion to maliciousness and disregard of user-choice, we consider software appropriate-
ness to cover also the cultural and social dimensions.

1.2 Software Certification and Its Limitations

A dominant approach for reducing the risk of malicious software on mobile platforms
(e.g., Symbian, BlackBerry, J2ME and Android) is to rely on software certification
and platform security. Software certification (e.g., Java Verified Program [31] and
Symbian Signed [32]) is usually subject to software testing conducted by an autho-
rized third party using publicly available criteria. But testing typically focuses only on
technical compliance such as proper usage of system resources, proper application
start/stop behavior and support for complete un-installation. Platform security (e.g.,
Symbian OS Platform Security [10] and Java Security Architecture [8]) refers to the
isolation and access control features of the operating system or runtime. Ideally, soft-
ware certification and platform security are used in tandem: an application is granted
the privileges it requires if it is signed by a party trusted by the device platform. How-
ever, certification does not guarantee software security. It also does not consider the
social and cultural aspects of software appropriateness.

Uncertified Software: The Risk of Habituation. Many application installers (in
mobile or desktop environment) resort to displaying warning and disclaimer notices to

1 A search using the keyword ‘entertainment’ in the iTunes Appstore returns a number of

applications with potentially mature content.

Use of Ratings from Personalized Communities for Trustworthy Application Installation 73

signal risks when software to be installed is not certified. Visual difference when
installing certified and non-certified software is often low; the text is also typically
uninformative (see Figure 1). Providing system-generated notifications to which user
attends to maintain security is the practice of “security by admonition” [26]. Besides
degrading user experience, such notices lead to a high rate of false-positives causing
many users to habitually click-through them. Click-through behavior is further en-
trenched when warnings equating “uncertified software” as possibly “harmful” may
contradict other signals a user receives. An example of this is the installation of Gmail
application (Figure 2a); the installer warns that it is ‘untrusted’ and ‘maybe harmful’
since it is not certified. A user, who trusts Google and who has just downloaded the
application from Google’s website will ignore and click-through the warning.

Fig. 1. The Skype PC version has a list of ‘featured extras’ that include both Skype-certified
and non-certified plugins. The visual difference when installing the two types is only the color
of certification label (light-blue vs. soft-yellow).

Fig. 2a. Gmail is not certified Fig. 2b. FlexiSpy is certified [33]

Certified Software: The Risk of Centralized Judgment. On the other hand, soft-
ware certified by a central authority may be perceived as inappropriate by some
communities. An example of this is FlexiSpy – advertised as a tool to monitor the
work force and protect the children and is available on most mobile platforms. The
application has a number of characteristics that can be construed inappropriate: it
spies on user activities (call, SMS, email, location), is invisible in the application list,

74 P.H. Chia, A.P. Heiner, and N. Asokan

uses a deceptive name (RBackupPro) and allows the device to be controlled remotely.
F-Secure flagged it as spyware that may be used for malicious purposes illegally [33]
but as FlexiSpy fulfills the certification criteria, it is Symbian certified. In other
words, a user is given a warning (Figure 2a) when he tries to install Gmail although
he may likely trust it, whereas FlexiSpy can be installed without warnings (Figure 2b)
even though he may belong to the group of people who consider it inappropriate.

On iPhone, Apple decides which 3rd party applications can be distributed
through the iTunes Appstore; we regard this as a scheme of implicit certification.
Apple has also the means to activate a “kill-switch” to disable applications that may
have been “inadvertently” distributed and later deemed “inappropriate by Apple”.
Apple’s review criteria are, however, not publicly available. This has resulted in
outcomes that are contested by developers and the Electronic Frontiers Foundation
[34]. South Park, Eucalyptus and the Stern.de reader were among applications that
were deemed “inappropriate by Apple” but later approved after protests [34]. Such
contentions exemplify that centralized judgment can hardly cater for the value sys-
tems of different users.

1.3 Our Contribution

• We derived a set of design guidelines, grounded in cognitive and information flow
theories, for a trustworthy software installation process (Section 2). Although we
focus on mobile devices here in this paper, the guidelines are applicable to other
platforms (e.g., desktop, Facebook) where installation by end-users can take place.

• We surveyed for the behaviors during installation, and we found high relevance of
information from friends/family and user motivation to protect them. (Section 3)

• We built and evaluated a prototype system (Section 4 & 5). Although we could not
test the efficacy of our prototype against habituation, we verified that opinion by
friend is of higher impact than that of by online community through the user study.

2 Designing a Trustworthy Installation Process

We consider that a trustworthy installation process to be one that helps users to avoid
installing inappropriate application. Besides providing risk signals that are perceived
reliable and relevant, the installer should take into account of the risk of habituation,
which undermines the efficacy of many security mechanisms involving end-users.

2.1 Cognition during Application Installation

In the conventional installation task flow, as a user defines his expectation or desired
software functionality (for a task at hand), he starts by searching for an application in
the application market or on the web that meets his requirements. When such an ap-
plication is found (and downloaded), the user will have to perform some “post-
selection” actions such as accepting security-related conditions and configuration
options before he is able to use it (objective attained). These “post-selection” steps are

Use of Ratings from Personalized Communities for Trustworthy Application Installation 75

nearly always made without the user paying attention to what is asked. Habituation to
click-through this “post-selection” phase could be attributed to current design of in-
stallation that lacks understanding for user’s cognition.

To develop guidelines that take into account of user’s cognition, we draw on the
dual processing theory [12] in cognitive science, which identifies two main types of
cognitive processes: controlled and automated processes.

Controlled processes are goal-directed; a user defines an objective and plans a path
that (in his opinion) will lead to the objective. At certain points, the user will make an
appreciation of the current context in order to decide on the next best-move in achiev-
ing his end goal. This process is highly dynamic and requires logical thinking. For
these reasons, one can execute only one controlled process at a time. Appreciation of
the current context and decision for a course of action, over time, can be based on
superficial comparison of contexts. This leads to faster decision making [7,12]. De-
spite a potential high degree of automation in decision making, it remains a controlled
process as one will always have to compare between multiple contexts.

Automated processes such as habits, on the other hand, pose little to no cognitive
load. Habits develop from deliberate into thoughtless actions towards a goal. If the
context for an action is nearly identical over a series of performances, the action be-
comes mentally associated with the context; observing the context is enough to trigger
the action [1,17]. The simpler a task, the more frequently it is executed and the higher
similarity in context, the stronger a habit can become. New information that invali-
dates the initial conditions (which led to an action or habit) will go unnoticed.

The difference between habits (automated) and automation in decision making
(controlled) lies in the constancy of the context. Habits are developed if the context is
(nearly) always the same. With the latter, context varies between a number of states
with reasonable likelihood, thus requiring a controlled process of context comparison.

Fig. 3. (Left) A constant context results in habitual behavior. (Right) Using the attention cap-
ture process with the dominant context as reference prevents this.

The constant context (lack of context-sensitive information) during installation
makes the action of confirmation a habit. This is exemplified in Figure 3 (left); the

76 P.H. Chia, A.P. Heiner, and N. Asokan

context of a normal installation flow (C1) demands the decision of action A1 (install)
that results in R1. An abnormal context (C2) should lead to R2 (installation aborted).
But as context C1 occurs much more often (denoted with probability .99) than context
C2, user will over time expect context C1 and habitually selects action A1. This is
more likely if there is no clear visual difference between the contexts (e.g., Figure 1).
Furthermore, from a user perspective, the choice (install or abort) is asked after the
last conscious step of having decided to download and install a particular application.
Users also rarely face immediate consequence for installing inappropriate software.

We argue that habituation can be avoided by eliminating the need for user action in
the normal and frequent context (an easy target of habituation) altogether. Depicted in
Figure 3 (right), context C1 can be taken as reference context with an implied action
A1. User can then be made aware of the deviation from this reference context through
attention capture – the process of making a user aware of a change in environment
that (may) require the user to attend to a new task [15]. A predominant view is that
attention capture is an automated, stimulus-driven process modulated by the current
controlled task [18]. The cognitive load required for the current task, as well as the
strength and the relevance of the stimulus to the current task, affect the likelihood that
a person will act on the stimulus. Thus, in addition to visual salience, the relevance
and strength of a warning (risk signal) are paramount to ensure that users will take
note of and evaluate the warning, during the installation process.

2.2 Information Flow and Risk Signaling

Software warnings (risk signals) have conventionally been communicated to users in
a hypodermic-needle manner by expert entities (e.g., antivirus vendors). These risk
signals are designed against malware and do not cover for aspects such as the respect
for user choice and the social/cultural factors of software appropriateness.

In search of risk signals that are relevant and of high impact, we refer to the two-
step flow theory [13] – the founding work of innovation diffusion theory – which
describes how communication can be more effective through a network of people
(rather than through the hypodermic-needle fashion). Central to the theory are the
information brokers (originally known as opinion leaders in [13]) who are not neces-
sarily the most knowledgeable but are nevertheless skillful in interconnecting people
[3]. Information brokers guide the information flow from sources into separate groups
(first step) given incentives such as early information access and social capital [3].
When information gets into a particular group, competition among group members
can serve to encourage each other to improve own knowledge and exchange opinions,
which constitutes the second step of information flow [3]. Social media such as Twit-
ter and Facebook are successful examples that have harnessed the power of social
networks for effective communication. Use of social networks for provisioning or
relaying of risk signals is, however, still an early concept.

PhishTank [35] and Web of Trust (WOT) [35] are systems that employ “wisdom of
crowds” (using a global community, not personalized network) to improve web security.
PhishTank solicits reports and votes against phish-sites, while WOT collects public opi-
nions on the trustworthiness, vendor-reliability, child-safety and privacy-handling

Use of Ratings from Personalized Communities for Trustworthy Application Installation 77

of websites. Both systems aggregate user ratings into global (rather than personalized)
values. Such global values can, however, be susceptible to exploitation. Moore and Clay-
ton [16] argued that as participation in PhishTank follows a power-law distribution, its
results can be easily influenced by the few highly active users2.

Prior work has pointed to the advantages of using inputs from personalized net-
works instead of the global community. Against phishing, Camp advocated for the
use of social networks to generate risk signals that are trustworthy as the incentive to
cheat is low among members who share (long-term) social ties [4]. Inputs from social
networks can also be verified through offline relationship, allowing incompetent or
dishonest sources to be removed [4]. Personified risks are also perceived greater than
anonymous risks [22]; this may help to mitigate the psychological bias (known as
valence effect) in which people overestimate favorable events for themselves. Inputs
from social networks are also socially and culturally relevant.

2.3 Design Guidelines

To sum up, we consider that a trustworthy installation process should:

• Avoid requiring user actions that can be easily habituated. User actions in a
normal and frequent context could be made implicit and complemented with an at-
tention capture mechanism to signal any deviation from this context.

• Employ signals that are visually salient, relevant and of high impact. Signals
should cover both the objective and subjective factors of software appropriateness.

• Incorporate mechanisms to gather and utilize feedbacks from user’s persona-
lized community. In this work, we refer a personalized community to friends and
experts whom individual users trust in providing valuable inputs about software ap-
propriateness. Experts could be vendors or gurus who are knowledgeable in the
technical evaluation of software. A list of reputable experts can be set for all users
by default. Meanwhile, Friends refer to ones whom users have personal contacts
with and whom could help by sharing personal experience about applications or re-
laying information. Here, we hypothesize that risk signals from the personalized
community can be more effective (due to their relevance and trustworthiness) than
that of from global community. We verified the relevance and strength of inputs
from friends in our survey (Section 3) and user study (Section 5).

3 Web-Based Survey

We conducted an online survey to identify the installation behaviors and to evaluate
the potentials of a personalized community in providing relevant and helpful
signals.

2 We note that this may be not too serious as determining whether a website is a phishing site

(similar to whether an application is malicious) is usually objective. But judging if a website
is trustworthy (with WOT, similar to evaluating the subjective factors of software appro-
priateness) can be contentious and prone to dishonest behavior (e.g., Sybil attack [5]).

78 P.H. Chia, A.P. Heiner, and N. Asokan

Recruitment and Demographics. We recruited our participants mainly from univer-
sities. We put up posters around popular campus areas. Emails were also sent to col-
leagues in other universities with the request to take part and to the forward the invita-
tion to their contacts. Throughout the recruitment and responding process, we referred
our survey as a study on user behaviors during installation using the title: “A Survey
on Software Installation”. Considerations were taken to avoid priming of secure be-
haviors. The reward for participation was to receive a cinema ticket on a lucky draw
basis. Winners who do not reside in the Nordic region were rewarded with a souvenir-
book. The lucky draw was made a few weeks after the data collection.

The survey was open for participation for 3 weeks. In total, 120 participants took
part in the survey. Participants who did not complete all questions, or whose total
response time was unrealistically low (<10 minutes) were excluded. The final popula-
tion consists of 106 subjects (36% females). 12% have a PhD degree, 42% have a
Master degree while 28% have a Bachelor degree. 61% have a background in IT or
engineering (power, electrical, mechanical, etc.) while 39% have a non-technical
background (see Table 1). Subjects took 15 minutes on average to complete the sur-
vey, which was structured into 12 questions with 105 items in total. We mostly used a
4-point Likert scale on the perceived importance of an element and the likelihood or
frequency of performing an action.

 Table 1. Demographics of survey participants Table 2. When know of digital risks

Education/work background Age group
IT or Engineering 61% 18-24 15%
Business / Finance 12% 25-29 41%

Science / Math 8% 30-39 32%
Arts & Social Science 10% 40-49 11%

Others 9% 50+ 1%

User would always / often inform
 friends or family 62 %
 members of online community 15 %
 expert individuals 14 %
 expert organizations 8 %
 antivirus software company 6 %

Results. We present a few interesting findings that we obtained. Finding-1 concerns
the behaviors during installation while the others demonstrate the potentials of ratings
from a personalized community. The percentage values were computed after reducing
the responses from 4-point Likert scales into nominal levels of important/not, like-
ly/not, or usually/seldom.

i. Information during installation is mostly ignored. 83%, 90% and 75% of the
subjects reported that they seldom read the EULA, privacy policy and disclaimer
notices respectively during the installation process. Similarly, 78% of the subjects
seldom check for digital signatures (or software certificates), nor abort installation
when they are absent. Only 30% usually abort installation given warnings from the
installer. However, 69% usually abort installation if unnecessary personal ques-
tions were asked. 76% usually abort installation if warned by antivirus software,
while 53% usually abort installation in the presence of advertisement pop-ups.

ii. Security vendors, experts and friends are important sources for information
on digital risks. About 90% of the subjects reported that antivirus software is an

Use of Ratings from Personalized Communities for Trustworthy Application Installation 79

important source of information about digital risks (e.g., harmful or inappropriate
software/services). Expert organizations and individuals also scored high (75%).
Undeniably, security vendors and experts are the most important sources of infor-
mation on digital risks. The survey gave further interesting results. 65% of the
subjects regarded the first-hand experience by friends and family members as im-
portant. In comparison, fewer subjects (50%) considered the experience from
members of an online community to be important. This difference was statistically
significant (p<.01, Chi-square). This suggests that users regard inputs from friends
and family members to be more relevant than that of from an online community.

iii. When users know about digital risks, they are motivated to inform friends or
family rather than the online community. 60% reported that they could usually
find security-related information by themselves. However, only 34% have been
asked by friends or family members on whether software is trustworthy or appro-
priate. This could be due to the lack of existing system to share their opinions
about software with his friends or family members. Indeed, we find that motiva-
tion to inform friends or family members about digital risks is high. 62% of the
subjects would inform them about digital risks. Comparatively, only 15% were
motivated to inform the online community (see Table 2). The difference was sta-
tistically significant (p<.0001). This suggests that users have more motivation to
protect his friends than members of online community. This supports the feasibili-
ty of a rating system based on personalized communities over the global-
community compatriot.

iv. Users consider reviews from trusted sources to be helpful. With considerations
to the limited screen size of mobile devices, 80% regarded reviews from trusted
sources to be important/helpful information during software installation.

Limitation and Discussion. We note that the education level of the participants was
high, and 61% of the subjects have a background in IT or engineering. Yet, even though
we might expect the subjects to be more aware of digital risks, there is an evident ‘click-
through’ behavior. Excluding those with an IT/Engineering background, slightly fewer
subjects (51%) could usually find security-related information themselves. However, the
key results remain unchanged: 66% regarded friends as important source of risk informa-
tion; 60% would inform friends or family when know about digital risks (compared to
only 12% would inform such risks to an online community); 72% perceived reviews and
ratings from trusted sources to be important/helpful information during software
installation.

4 System Architecture and Prototype

Two important components in our architecture are: (i) software repository, which main-
tains a list of applications available for installation and a software catalog (containing
metadata such as price, author, description and keywords); (ii) rendezvous server, which
issues identity certificates and manages the user database, social graph and application
reviews. To use the prototype installer (developed on the Nokia N810 tablet), a user

80 P.H. Chia, A.P. Heiner, and N. Asokan

must first register and obtain his credentials at the rendezvous server. Thereafter, the user
can add friends and experts whom he trusts into his personalized community, and share
software reviews with them, using the prototype. Sharing is done through the rendezvous
server, Bluetooth or email. Software reviews are digitally signed and verified on the pro-
totype to ensure authenticity and integrity.

Fig. 4. System Architecture. The proto-
type was implemented on the Nokia
N810 tablet, while a rendezvous server
was setup on an Ubuntu desktop. The
prototype interacts with conventional
software repositories to obtain applica-
tion catalog and installation packages.

Fig. 5. Prototype. (Left) The front-page shows an application list with basic description on the
right panel. (Right) The experimental ‘bin-the-monster’ mechanism: user clicks on a monster to
read the negative review; he has to drag it into the bin if he chooses to disregard the review.
(Note that the reviews and ratings were artificially generated for evaluation purposes only)

The installation task flow was redesigned. When a user defines his requirements
and searches for suitable applications (using some keywords), our prototype displays
a list of related software (Figure 5, left). The right panel shows basic information of a
selected application, while detailed reviews from user’s personalized community can
be accessed by clicking on the “learn more” button. The “install” button will install an
application without further prompting (if it has not been ‘flagged’ as potentially inap-
propriate by the user’s personalized community). This removes user actions (in the
post-selection phase of conventional task flow) that are prone to habituation.

 Bob

Alice

prototype

prototype

1. Add as friend
2. Share review

 1. Register
 2. Add friend / expert
 3. Share review

application
checksum

community features

user interface

backend installer

identity
cert

signed
review

software
repository

catalog

installation
packages

rendezvous
server

identity
certificate signed

review

Use of Ratings from Personalized Communities for Trustworthy Application Installation 81

For an application that has received negative reviews (i.e. flagged by the persona-
lized community), a risk signal is shown prominently to catch the user’s attention. To
reflect the personal/social dimension of the warning, we chose a non-conventional
risk symbol: a Pacman-like monster. Warning triangles and stop signs may signal that
it is an “objective” opinion by some authorities.

The symbol is shown for flagged applications only; salience is increased by not
showing positive cues. It is placed at the same level as the application name, and is
enlarged when the application is highlighted. If the user decides to install an applica-
tion that has been flagged, he is redirected to the review-page (Figure 5, right) where
he has to read the detailed reviews. Textual review improves the relevance of a risk
signal as user can appreciate what is said better than numerical values [20]. Negative
reviews are framed in red (bottom-up salience). To mitigate a potential click-through
when attending to the negative reviews, we experimented with two habituation-
breaking tasks (to improve the efficacy of attention-capture):

• Delay: User has to read every negative review by clicking on each of the monsters
with some time interval. When clicked, a monster will disappear into an icon with
numerical rating only after a few seconds, before the next review can be read.

• Bin-the-monster: As before, but the monster only disappears when it is dragged
into the bin. User cannot install until all monsters have been binned (Figure 5).

5 User Evaluation

We conducted a hands-on evaluation and investigated the strength of opinion given
by friends compared to opinion given by online community members.

Recruitment and Demographics. Participants were mainly recruited from universi-
ties. We distributed recruitment notes around popular campus areas especially in the
social science and science/math faculties. A web-form was also created to allow sub-
jects to sign-up online. Participants of our survey were especially encouraged to take
part if they reside in the Nordics; they were directed to the signup form upon complet-
ing the survey. Each participant was rewarded with two cinema tickets. There were in
total 20 participants (7 females) consisting of students, researchers and a few working
adults. 6 participants came from an IT background. The remaining subjects comprised
of 6 mechanical, electrical or power engineering students, 4 science/math graduates, 3
art/design graduates, and 1 psychology undergraduate.

Experimental Setting. We specified 4 testing days and arranged with the participants
a suitable session of an hour each. Individual participants were invited to our premises
where the study took place. Each session was preceded with a brief interview. The
main task was structured into four evaluation scenarios. In the end, we asked for the
overall experience with our prototype before a final debrief.

In the brief interview, we asked if a subject has encountered situations where he
had difficulties or doubts in determining the appropriateness of certain software; all
subjects responded that they had been in such situations before. We then requested the

82 P.H. Chia, A.P. Heiner, and N. Asokan

subject to write down the names of two friends whose opinions could be useful in
these situations. We then keyed in these two names into our prototype system.

We gave the subject a script containing the description of the initial setting and the
four evaluation scenarios (denoted as S1, S2, S3 and S4). The initial setting depicts a
situation where there was a special offer on 4 applications which the subject would
have to decide if he would like to buy and install. The special offer was meant to pro-
vide motivation to buy/install the applications in the evaluation scenarios. Two
games, a browser and a media player (denoted as A1, A2, A3 and A4) were selected
such that the likelihood of subjects having prior experience with them was low.

Having understood the initial setting, the subject was required to decide if he
would buy/install a specific application in each evaluation scenario based on some
basic description (application name, file size, name of developer, a short text provided
by developer) and software reviews provided by online community members as well
as the two friends mentioned during the brief interview.

Four negative reviews were scripted to signal a mild level of inappropriateness.
They concerned advertisement pop-ups, pornographic content, program crashes (data
loss) and suspicious elements. A set of positive reviews were also scripted. Each ap-
plication was associated with a fixed pair of negative and positive reviews.

The evaluation scenarios were designed to present to the subject, positive and neg-
ative reviews from either friends or online community, as described in Table 3 (left).
We assigned the applications (A1, A2, A3 and A4) to the four scenarios in a rotating
manner. Specifically, subject-1 would decide whether to buy/install applications A1,
A2, A3 and A4, while subject-2 go through applications A2, A3, A4 and A1 in the
fixed order of scenarios (from S1 to S2, S3 and finally S4). Rotating the applications
in this manner avoided the potential bias due to the characteristics of individual appli-
cations and their fixed pair of positive/negative reviews.

Table 3. (Left) The 4 evaluation scenarios. (Right) Installation ratio in each scenario

 Install Didn’t Install
S1 No reviews from online community nor friends were provided 13 7
S2 Negative reviews were given by online community but friends

gave positive reviews
10 10

S3 Positive reviews were given by online community but friends
gave negative reviews

4 16

S4 Same as S3; the “bin-the-monster” mechanism was activated.
After noting down the installation decision, subject was re-
quired to try installing the application (regardless of his deci-
sion) to experience the habituation-breaking interaction.

7 13

The subject was required to write down his decision to whether buy/install in each

scenario and the reason on the evaluation script. In scenario S3, we asked for feed-
backs on the use a Pacman-like monster as risk symbol. In scenario S4, we asked for
experience with the “bin-the-monster” habituation-breaking mechanism. We used a 5-
point Likert scale in both tasks.

Use of Ratings from Personalized Communities for Trustworthy Application Installation 83

Upon completing the four evaluation scenarios, we asked the subject his overall
experience in using our prototype system in the form of descriptive feedback and a 5-
point Likert scale (from terrible to great-idea). In the debrief, we informed the subject
that all applications used were in reality good software available for the N810 tablet;
all ratings and reviews had been scripted for experimental purposes only.

Results. Installation count in each evaluation scenario is shown in Table 3 (right). In
S1, without any software reviews, 65% of the subjects went ahead to buy/install an
application. The installation ratio decreased slightly (from 65% to 50%) in scenario
S2 but dropped drastically (to 20%) in S3. Using the installation ratios, we evaluated
the T1, T2 and T3 tests with the respective null hypothesis NH3, NH4 and NH5:

 (T1) NH1: Negative community review does not overrule positive review by friend

 (T2) NH2: Negative review by friend does not overrule positive community review

 (T3) NH3: Overall strength of review by friend is not stronger than that of community review

Installation ratio in S1 served as the baseline of T1 and T2 tests (i.e. T1 compared the
ratio in S2 to S1, while T2 compared the ratio in S3 to S1). Meanwhile, T3 was per-
formed by comparing the ratio in S3 to S2. The hypothesis tests were evaluated using
(one-tailed) Chi-square (good-of-fit) and binomial exact test. We favor results from
binomial test as Chi-square statistics works better with a larger sample size.

Table 4. Results of hypothesis testing

 Chi-square Binomial Result
T1 p = .080 p = .122 NH1 cannot be rejected
T2 p < .001 p < .001 NH2 is strongly rejected
T3 p = .004 p = .006 NH3 is strongly rejected

We could not reject NH1 in T1. Although users reacted to negative reviews from

online community members (resulting in a slightly smaller installation ratio in S2),
the effect was not statistically significant. While we believe that users tend to react
more towards negative reviews; warnings by online community members do not over-
rule positive feedbacks given by friends.

With T2, it was evident that negative reviews provided by friends overruled posi-
tive reviews by online community members. This was significant at 0.1% level.

The large ratio difference (30%) between S3 and S2 suggested the higher impact of
information from friends. We evaluated this in T3. The overall strength of reviews by
friends is stronger than reviews by online community members (significant at 1%
level). The strength of (risk) signals communicated via friends should be exploited to
mitigate click-through and careless behaviors during software installation.

We observed that the installation ratio in S4 (35%) was higher than in S3 (20%).
We tested if the “bin-the-monster” mechanism had inadvertently reduced the effec-
tiveness of risk signaling, and found that the effect was significant at 10% level. With
our experimental “bin-the-monster” mechanism, a bin was shown after some delay

84 P.H. Chia, A.P. Heiner, and N. Asokan

when user clicked on a monster. However, the sudden appearance of the bin might
have that caused subjects to prioritize binning the monster over reading the review.
As it might not be obvious that the monster could be binned, we tried to assist the
users by showing a hint (Figure 5, bottom). The short hint (“read the review and bin
the monsters”) might have been also construed as an instruction (or suggestive that it
was ok to install) rather than to encourage a conscious decision. Our experimental
‘bin-the-monster’ mechanism was not a very successful one. An improved design
could be to display the bin constantly to avoid a sudden appearance. The hint would
need to be rephrased. A more direct association between the monster and review may
also be helpful. For example, when user drags a monster into the bin, the correspond-
ing review should be dragged together to signal that he is disregarding a review from
his personalized community.

Table 5. On using Pacman-like monster as risk symbol Table 6. Overall user experience

 μ σ2

Monster draws attention 4.3 .69

Monster gives clear message 2.8 1.3

Monster gives warning 3.8 1.1

Prefer monster over 3.2 1.1

Prefer monster over 3.4 1.1
1=strongly disagree, 5=strongly agree

 μ σ2
Experience with
habituation-breaking

 3.5 1.5

Experience with
social rating inte-
grated with software
installation

 4.4 .61

1=terrible, 5=great idea

The reactions to the use of the monster as risk symbol were mixed (Table 5). While

most subjects agreed that it drew attention (salient), a few noted that they did not get a
clear message of risk/warning. Subjects remained neutral on preferring the monster
over the conventional “stop” and “exclamation-mark” symbols. We interpret these as
using a new risk symbol would demand extra effort in educating the users.

Experience with the experimental “bin-the-monster” habituation-breaking mechan-
ism was diverse (Table 6). Some liked it and found it interesting, while a few found
such mechanism unnecessary. We note that habituation-breaking mechanisms are
designed to trade off some level of convenience for safer user actions, and may be
hard to satisfy all users. Feedback on social rating (for software appropriateness)
integrated with the installation process was, on the other hand, very positive. This
suggests that it could be a useful feature on mobile devices (or other computing envi-
ronments that involve installation of third party applications by ordinary users).

Limitation and Discussion. There are two weaknesses with regard to our user study.
We note that the T3 test might have an order-bias as subjects were always required to
complete scenario S2 before proceeding to S3. We should have mitigated this by ran-
domizing the order of test scenarios.

We note that also the initial setting of “software offer” to provide subjects with
motivation might not be very realistic. An alternative setting is to have the subjects to

Use of Ratings from Personalized Communities for Trustworthy Application Installation 85

decide whether to buy/install an application on behalf of someone whom they care.
However, we think that both settings have limitations that are hard to avoid in a la-
boratory testing. We could create a sense of realistic risks, for example by informing
the subjects that they would be required to login to his email/bank account using the
test device after the study. Yet, we thought that this was not too relevant as we did not
require the subjects to evaluate whether to install software that are potentially harm-
ful; our study concerned only applications that may be mildly inappropriate.

Summary of Findings

• Opinions by friends are stronger than that of by online community; warnings by
friends overruled positive feedbacks by online community, but not vice-versa

• The experimental “bin-the-monster” mechanism needs to be improved; designing
and evaluating an effective habituation-breaking mechanism remain as interesting
research problems

• The response towards habituation-breaking mechanisms and a new risk symbol was
mixed; yet, majority was very positive with the idea of integrated social rating

6 Related Work

It is well-known by now that improving only the visual salience of risk signals is not
enough to ensure secure user behaviors. Studies [23,24] have shown the inefficacy of
security toolbars and site-authentication images, which mainly rely on an improved
risk salience. Brustoloni and Villamarin-Salomon [2] suggested using polymorphic
dialogs (that will vary the order of decision options) to capture user attention and
break habituation. They advocated also the use of audited dialogs that would keep
track of user decisions to hold them accountable for irresponsible actions. However,
subjects regarded audit dialogs as intrusive; audited dialogs also did not assist users to
make better decisions. In addition to improving the visual salience (through a better
interface design), our work here increased the relevance of risk signals by employing
inputs from user’s personalized community.

Compared to FireFox’s approach of making potentially unsafe actions (e.g., brows-
ing a site with invalid certificate) more difficult to slow-down the users, our experi-
mental habituation-breaking mechanisms (albeit need further improvements) are
complemented with context-relevant information from personalized communities, that
is absent in FireFox.

Related to software installation is the study by Good et.al. [9] which found that
displaying a short summary (especially right-after the normal EULA notice) can
effectively reduce the installation of unwanted applications. Yan et.al. concluded
that visualizing the reputation and a personalized trust value for applications can
be a helpful feature on mobile devices [25]. These studies highlighted the impor-
tance of timely signals. Our work integrated risk signals from personalized com-
munities with the installation process. This integration was very well received in
our user study.

86 P.H. Chia, A.P. Heiner, and N. Asokan

Our idea of the personalized community is similar to NetTrust’s [4] which em-
ploys personalized rating against the threat of phishing. NetTrust employs implicit
inputs of browsing and bookmarking history of friends, as well as, explicit recom-
mendations from third parties like banks and Google. Continuing from the initial
work in [11,5], in this paper, we have provided supports for the use of inputs from
personalized communities, based on theories, a survey and a hands-on study on a
prototype system.

7 Discussion and Future Work

Use of inputs from personalized communities is not without several shortcomings.
We outline several challenges along with the potential mitigation strategies worth of
future investigation.

Reliability. Inputs provided by user’s personalized community may not be always
correct. Information from technical sources may also be misinterpreted when guided
through ordinary users. These issues can be mitigated by making the evaluation
process more structured. For example, an evaluation can be divided into several as-
pects of software appropriateness rather than a single overall rating.

Coverage. Although users are likely to encounter similar applications with (some of) his
friends in practice, undeniably ordinary users will have limited exposure and resources to
identity all possible inappropriate applications. This is why we have included the notion
of expert users (whom individual users trust) into the structure of a personalized commu-
nity. A list of experts can be set by default (for all users) to deliver critical risk informa-
tion. We could also extend our work to compute or infer recommendations for specific
applications when there is no direct input from the personalized community. We note that
there is much to learn from the field of recommender systems. However, this should be
done with care so that the high relevance and strength of risk signals, as perceived by
users, do not diminish.

Scalability. Software features such as usable contact and review sharing, re-usability
of reviews (across mobile platforms) as well as robust handling of software versions
would be helpful to scale our implementation. Rather than building a system of social
networks from scratch, we plan to merge the prototype with existing services (such as
Facebook) that are now seamlessly integrated with smart phones.

Incentives. Like any community-based systems, there are challenges in initiating
and sustaining user efforts. An important future work is thus to design an incentive
scheme that would encourage active user participation. Here, we note that in con-
trast to a “crowds” system (i.e. one that employs a global community, such as
PhishTank and WOT) where the success of the system is a public good, our work
can benefit from unselfish behaviors among members in the personalized commu-
nity. Indeed, we have seen strong motivation to protect friends and family mem-
bers in our survey.

Use of Ratings from Personalized Communities for Trustworthy Application Installation 87

8 Conclusions

We developed a set of design guidelines grounded on theories for a trustworthy soft-
ware installation process. Through a survey, we verified the high relevance of inputs
from a personalized community and user motivation to protect friends and family. We
implemented a prototype system with contact management and reviews sharing capa-
bilities as well as a redesigned installation task-flow. Our user evaluation confirmed
the strength of information communicated through friends, while the idea of inte-
grated ratings from a personalized community during application installation was very
well-received.

There may be some challenges that need to be addressed in future work; given the
high relevance and strength of inputs from known sources, we show in this paper, the
potentials of relying on personalized communities to evaluate software appropriate-
ness and to mitigate the problem of click-through habituation during installation.

References

1. Aarts, H., Dijksterhuis, A.: Habits as Knowledge structures: Automaticity in goal directed
behavior. Journal of Personality and Social Psychology 78(1), 53–63 (2000)

2. Brustoloni, J.C., Villamarin-Salomon, R.: Improving security decisions with polymorphic
and audited dialogs. In: Proc. SOUPS 2007 (2007)

3. Burt, R.S.: The social capital of opinion leaders. Annals of the American Academy of Po-
litical and Social Science: The Social Diffusion of Ideas and Things 566, 37–54 (1999)

4. Camp, J.L.: Reliable, usable signaling to defeat masquerade attacks. In: Proc. WEIS 2006
(2006)

5. Chia, P.H.: Secure software installation via social rating, Masters Thesis, Helsinki Univer-
sity of Technology (TKK) and Royal Institute of Technology (KTH)

6. Douceur, J.R.: The sybil attack. In: Proc. IPTPS 2001(2001)
7. Frederick, S.: Automated Choice Heuristics. In: Gilovich, T., Griffin, D., Kahneman, D.

(eds.) Heuristics and Biases. Cambridge University Press (2002)
8. Gong, L., Ellison, G., Dageforde, M.: Inside Java 2 Platform Security: Architecture, API

Design, and Implementation. Addison Wesley (2003)
9. Good, N.S., Grossklags, J., Mulligan, D.K., Konstan, J.A.: Noticing notice: a large-scale

experiment on the timing of software license agreements. In: Proc. CHI 2007 (2007)
10. Heath, C.: Symbian OS Platform Security. John Wiley & Sons (2006)
11. Heiner, A.P., Asokan, N.: Secure software installation in a mobile environment (poster).

In: Proc. SOUPS 2007 (2007)
12. Kahneman, D.: Maps of Bounded Rationality: Psychology for Behavioral Economics. The

American Economic Review 93(5), 1449–1475 (2003)
13. Lazarsfeld, P., Berelson, B., Gaudet, H.: The people’s choice (1944)
14. Lyn Bartram, L., Ware, C., Calvert, T.: Moving Icons: Moving icons: detection, distraction

and task. In: Hirose, M. (ed.) Proc. INTERACT 2001 (2001)
15. María Ruz, M., Lupiáñez, J.: A review of attentional capture: On its automaticity and sen-

sitivity to endogenous control. Psicológica 23, 283–309 (2002)
16. Moore, T., Clayton, R.C.: Evaluating the Wisdom of Crowds in Assessing Phishing Web-

sites. In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp. 16–30. Springer, Heidelberg
(2008)

88 P.H. Chia, A.P. Heiner, and N. Asokan

17. Neal, D.T., Wood, W., Quinn, J.M.: Habits: A repeat performance. Current Directions in
Psychological Science 15, 198–202 (2006)

18. Peters, R.J., Itti, L.: Beyond bottom-up: Incorporating task-dependent influences into a
computational model of spatial attention. In: Proc. CVPR 2007 (2007)

19. Rogers, E.: Diffusion of innovation, 5th edn. Free Press (2003) ISBN: 978-0743222099
20. Rubinstein, J.S., Meyer, D.E., Evans, J.E.: Executive Control of Cognitive Processes in

Task Switching. Journal of Experimental Psychology: Human Perception and Perfor-
mance 27(4), 763–797 (2001)

21. Schneider, W., Chein, J.M.: Controlled and automatic processing: behavior, theory, and
biological mechanisms. Cognitive Science 27, 525–559 (2003)

22. Schneier, B.: The psychology of security (2008),
http://www.schneier.com/essay-155.html

23. Schechter, S.E., Dhamija, R., Ozment, A., Fischer, I.: The emperor’s new security indica-
tors. In: Proc. S&P 2007 (2007)

24. Wu, M., Miller, R.C., Garfinkel, S.L.: Do security toolbars actually prevent phishing at-
tacks? In: Proc. CHI 2006 (2006)

25. Yan, Z., Liu, C., Niemi, V., Yu, G.: Trust Indication’s Influence on Mobile Application
Usage, NRC Technical Report (2009),
http://research.nokia.com/files/NRCTR2009004.pdf

26. Yee, K.-P.: Aligning security and usability. IEEE Security and Privacy 2(5), 48–55 (2004)
27. Developing applications for Palm webOS using HTML, CSS and JavaScript,

http://developer.palm.com/index.php?option=com
_content&view=article&id=1603&Itemid=43

28. OviAppWizard for Symbian, http://oviappwizard.com
29. AppWizard for iPhone, http://www.appwizard.com/
30. StopBadware, http://www.stopbadware.org/
31. Java Verified Program, http://javaverified.com/
32. Symbian Signed, https://www.symbiansigned.com/app/page
33. F-Secure identified FlexiSpy as a spyware,

http://www.f-secure.com/sw-desc/
spyware_symbos_flexispy_f.shtml

34. Objections towards iTunes Appstore approval process,
http://news.cnet.com/8301-13506_3-10317057-17.html,
http://www.eff.org/deeplinks/2009/06/oh-come-apple-reject,
http://www.eff.org/deeplinks/2009/05/apple-says-public-do,
http://www.eff.org/deeplinks/2009/02/
south-park-iphone-app-denied,
http://www.thelocal.de/society/20091125-23501.html

35. PhishTank, http://www.phishtank.com
36. Web of Trust, http://www.mywot.com

	Use of Ratings from Personalized Communities
for Trustworthy Application Installation
	Introduction
	What Is Inappropriate Software?
	Software Certification and Its Limitations
	Our Contribution

	Designing a Trustworthy Installation Process
	Cognition during Application Installation
	Information Flow and Risk Signaling
	Design Guidelines

	Web-Based Survey
	System Architecture and Prototype
	User Evaluation
	Related Work
	Discussion and Future Work
	Conclusions
	References

