Authentication Session Migration

Sanna Suoranta, Jani Heikkinen, and Pekka Silvekoski

Aalto University, School of Science and Technology, Konemiehentie 2, 02150 Espoo

Abstract. Consumers increasingly access services with different devices such
as desktop workstations, notepad computers and mobile phones. When they want
to switch to another device while using a service, they have to re-authenticate.
If several services and authenticated sessions are open, switching between the
devices becomes cumbersome. Single Sign-on (SSO) techniques help to log in
to several services but re-authentication is still necessary after changing the de-
vice. This clearly violates the goal of seamless mobility that is the target of much
recent research. In this paper, we propose and implement migration of authen-
tication session between a desktop computer and a mobile device. The solution
is based on transferring the authentication session cookies. We tested the ses-
sion migration with the OpenlD, Shibboleth and CAS single sign-on systems and
show that when the authentication cookies are transferred, the service sessions
continue seamlessly and do not require re-authentication. The migration requires
changes on the client web browsers but they can be implemented as web browser
extensions and only minimal configuration changes on server side are sometimes
required. The results of our study show that the client-to-client authentication ses-
sion migration enables easy switching between client devices in online services
where the service state is kept in the cloud and the web browser is acting as the
user interface.

1 Introduction

During the last ten years, there has been steady increase in the number of web-based
applications and cloud services have become widespread. Often, the services require
authentication. As the number of applications has increased, the burden of authenti-
cating to each one of these services has become unbearable to the user. Several single
sign-on (SSO) techniques have been developed to help users to cope with their accounts
in the various services. The problem, however, further aggravated by the fact that peo-
ple have many devices such as smart phones, laptops, and notepad computers, and they
alternate between these devices depending on the context. This context can be deter-
mined by several factors, namely the purpose of the use, time, and location. As a result,
the number of devices and accessed web-based applications can create a considerable
amount of work for a mobile user since there can be a number of sessions on differ-
ent devices, each of which require separate authentication. In particular, when the user
wants to switch to use another of her devices, for example, from a desktop workstation
to a notepad computer, she has to re-authenticate. In order to mitigate this problem and
to extend SSO to service access from multiple devices, we have developed techniques
for authentication session mobility between personal devices.

T. Aura, K. Jirvinen, and K. Nyberg (Eds.): NordSec 2010, LNCS 7127, pp. 17432] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

18 S. Suoranta, J. Heikkinen, and P. Silvekoski

Different mobility types include mobility of people, services, session state and ter-
minals [7]. All these are necessary for a ubiquitous computing environment. Many so-
lutions and techniques have been developed for terminal mobility, for example, Mobile
IP [33]] and Session Initiation Protocol (SIP) [40]. Service mobility means mainly con-
sistent network connection establishment — that devices can connect to different kinds
of networks seamlessly. In order to provide personal mobility, which means that a user
can use any device and switch devices during a task, session mobility or session mi-
gration becomes essential. Historically, session migration has meant the migration of
processes or virtual machines mainly in homogeneous server farms, and it has been dif-
ficult to implement anything similar in heterogeneous client systems. Fortunately, most
new services are accessed with web browsers and the session state information is stored
in the server or the cloud. Thus, session mobility in many modern services means sim-
ply moving the authentication session, which is the only part of the session that has a
state stored on the client device.

Web-based applications have the concept of a session for indicating an authenticated
user. The session information is typically stored on the server and the client only stores
a session identifier in a cookie. When a user returns to the service during the same ses-
sion, the web server gets the client identity information from the cookie that is delivered
together with the service request. Also, many SSO and federated identity management
(FIM) techniques, for example, OpenlD [35]] and Shibboleth [25]], use cookies to indi-
cate the authenticated user. In FIM, the service and authentication have been separated
to two distinct providers. The user contacts first the service provider, which then redi-
rects the user to a separate identity provider for authentication. When the user has suc-
cessfully authenticated herself, the identity provider informs the service provider, and
the service provider can then decide whether the user has rights to access the service.
In the process, an authentication session is created both between the user device and
the identity provider and between the user device and the service provider. The user
can reuse the authentication session for another service since she has a cookie from the
identity provider that shows who she is, or the identity provider remembers that she has
already authenticated herself.

In this paper, we implement client-side migration of the authentication sessions. Our
goal was to create a system that requires no changes to the identity provider or service
provider. In our prototype implementation, the user can continue using a service af-
ter transferring the authentication session cookies from one device to another one. We
tested our system using the Shibboleth, OpenID and CAS [26] single sign-on mecha-
nisms.

The paper is organized as follows. First, we describe session migration technologies
from the literature in Sec. 2. We introduce federated identity management systems and
explain how they use cookies in web browsers for sessions in Sec. 3. Then, Sec. 4 and
5 present the design of our solution for client-side migration of authentication session
and how we have implemented it on Firefox. In Sec. 6, we discuss how the implemen-
tation can be extended to work on other platforms. In Sec. 7, we evaluate the proposed
techniques by testing them. In Sec. 8, we discuss what should be done in order to make
the session migration work in all browsers and devices and, finally, Sec. 9 concludes
the paper.

Authentication Session Migration 19
2 Related Work on Session Migration

Virtual machine process migration was a widely studied subject already as early as in
the 1980s. Milojicic et al. [32] survey the most important process migration implemen-
tations before year 2000, for example MOSIX [4]], Sprite [[16], and Mach [[1]. They list
reasons why these have not gained wide adoption: complexity, costs, non-transparency,
homogeneity, lack of applications and infrastructure, and that users did not need the mi-
gration. Later, virtual machine process migration has become essential on server side to
guarantee higher performance and shorter out-of-service time, to enable load-balancing
and to facilitate fault management [12]. For example, Clark et al. [[12]] describe how
to migrate an entire live virtual operating system and all of its applications in Xen
virtual machines. Also other virtualized operating systems provide migration. For ex-
ample, OpenVZ has an extension called CheckPoinTing (CPT) that allows OpenVZ
kernel to save a virtual environment and restore it later even on a different host [37],
and another Linux based solution, Kernel-based Virtual Machine (KVM) has similar
functionality [29]. Mostly virtual operating systems are used on server side for hosting
several services on one physical server and for load balancing. Nevertheless, also client
side solution exists: MobiDesk virtualizes the user’s whole computing session allowing
transparent migration of sessions from one computer to another [5]].

A whole virtual operating system is easier to migrate than a single application be-
cause all memory and state dependencies are handled inside the kernel as one packet.
However, moving only application sessions takes less capacity on the communication
path and the participating devices may be able to use different operating systems. A
stand-alone application is of course easier to move than an application client that com-
municates with an external service and needs also connection and session state infor-
mation on the server side. In this paper, we are more interested in the communicating
applications. Communication service sessions can be migrated in many ways in differ-
ent layers of the protocol stack. Some techniques migrate the session directly between
two devices, others use proxies where the session is stored during the migration.

Allard et al. [3] have presented a solution for transferring IPsec context using Con-
text Transfer Protocol (CXTP) [31]. The solution is targeted for mobile nodes that move
between networks but it works also for switching between devices. The mobile node has
a secure connection using IPsec VPN tunnel through an access router with its Mobile
IPv6 home agent. In the context transfer, the access router end of the IPsec tunnel is
moved to another access router. The IPsec context consists of IP addresses, security
parameter indexes that identify the used security associations (SAs), and other SA in-
formation telling the used algorithms and modes etc.

On the transport layer, Secure Socket Layer (SSL) [36] and Transport Layer Secu-
rity (TLS) [14] allow caching of sessions since creation of cryptographic keys can be
heavy. Caching is not always enough on the server side where load-balancing is used
in addition. Hatsugai et al. [23] present a way for servers to migrate SSL sessions from
one server to another one dynamically when the servers form a cluster but their solution
is working on the server side and it is not for the client. Koponen et al. [28] extend the
TLS protocol so that sessions can survive changing IP addresses, which means that the
client can move in the network. Newer transport layer protocols, such as Stream Con-
trol Transmission Protocol (SCTP) [48]], which is originally designed for transferring

20 S. Suoranta, J. Heikkinen, and P. Silvekoski

telephone signaling messages over IP networks, provides transport layer mobility by
multihoming: the connection can have multiple source and destination IP addresses [9].

Many studies present how multimedia sessions or browser based communication
sessions can be migrated. Hsieh et al. [24] introduce three approaches for the browser
session migration: client-based, server-based and proxy based. Several implementations
for these approaches exist. For example, Basto Diniz et al. [15] introduce session man-
agement for the ubiquitous medical environment where sessions can be migrated be-
tween devices or even suspended by storing them into a server. Cui et al. [13] have
developed a middleware solution for user mobility where the client host uses service
discovery to locate the services and store state information and handoff manager moves
the session when the user changes the device. Bolla et al. [6] approach the problem of
multimedia session migration from different starting point: they introduce a Personal
Address to identify users and their sessions instead of the network dependent IP ad-
dresses. Moreover, many web service solutions are based on SIP. For example, Shacham
et al. [42] have created a SIP based session migration for multimedia content. Their so-
Iution has two security features: authentication of the device user with a secure token or
close proximity, and privacy features where the participants of a communication session
can deny session transfer to less trusted devices. Adeyeye et al. [2]] present another SIP
based solution that allows transferring session data between two web browsers.

RFC3374 [27] lists Authentication, Authorization and Accounting (AAA) informa-
tion context transfer as one facilitator of seamless IP mobility. For example, Bournelle
et al. [8] extend the above mentioned CXTP protocol for transferring network access
authentication sessions that use the PANA protocol [19] from one device to another
one in order to speed up handover by avoiding re-authentication. Also, Georgiades et
al. [20] added AAA context information to Cellular-IP protocol messages in order to
improve handover performance.

Nevertheless, many of these above mentioned solutions, especially the AAA context
transfer mechanisms, are targeted mainly for device mobility and changing the access
network technology or improving server performance, not for application session mi-
gration between devices. Nowadays many applications and services works on top of the
HTTP protocol to form the communication channel with the client part that uses web
browser as user interface. Even though the basic HTTP is stateless, the service can have
session state in the server, and the client only has a session identifier in form of a cookie.
This means that there is no reason for complex application state transfer between the
client devices. Moreover, underlying communication sessions, e.g. TCP connections,
can fail and are re-established often. Thus, there is no reason to migrate communication
state either. Only authentication session remains to be migrated in the client side.

3 Federated Identity Systems and Web Session Cookies

Web browsers have become the widely used client platform for services on the Internet.
Many web services still have their own user account databases and use password-based
authentication but new means for identity management are now available. In Federated
Identity Management (FIM) systems, the user account management is separated to its
own provider: when a user want to authenticate herself to a service, the service provider

Authentication Session Migration 21

forwards the request to an identity provider that verifies the user’s identification. The
core idea of FIM is that the user needs to log in only once in order to use several
services and all the services do not need to maintain user account databases. Moreover,
some FIM systems allow the user to choose which identity provider they use.

Two common FIM technologies are OpenID [35]] and Shibboleth [25]]. OpenlID is, as
its name says, open for anyone to establish their own identity provider, and the OpenID
community provides free implementations and instructions for both identity and ser-
vice providers. The identity verification methods of identity providers vary from strong
smart-card-based authentication of legal persons to weak methods where the proof of
identity is that the user can receive email using an address. Contrary to the original idea
of openness, OpenlD allows service providers to choose which identity providers they
accept and many organizations that have several online services use OpenlD for account
management but accept only their own OpenlD identity provider.

The other technology mentioned above, Shibboleth, is based on SAML [39] that is
also a public standard and free implementations for it are available. Unlike OpenlD,
SAML requires formal agreements between the participating organizations, which are
usually organized as federations. In Finland, the institutions of higher education have
formed a federation called HAKA [[18]] where the universities can provide common
services using their own user accounts for access management. The HAKA federation
provides schemas and instructions for both the identity and service providers. Fig. []
depicts how a service authenticates a user with the help of an identity provider in Shib-
boleth. The user first opens the webpage of the service. Her connection is redirected to
the identity provider. If the service accepts several IdPs, a list is provided for the user
before the redirection. The IdP authenticates the user and redirects the connection back
to the service provider with information that the authentication was successful. Then,
the service can decide if the authenticated user has right to use the service or not.

User Desktop computer Identity Provider Service
itype in a servicel URL : :

ito web browser: service request

—_—]
: : auth? i
&
i redirect :
H ~
! identity & authentication?” ;
login? = t
i password { username & password
H H >:
redirect | check ok
< :
H auth ok H
i H H >
: service service i “i
H =
€

Fig. 1. Shibboleth authentication

22 S. Suoranta, J. Heikkinen, and P. Silvekoski

In its basic form, an HTTP session is stateless and can consist of many short TCP
connections [17]. A web server handles the stateful sessions by sending cookies to the
client side web browsers. Samar [41] presents three approaches for cookie based SSO
systems: centralized cookie server, decentralized cookie server and centralized cookie
login server. In centralized SSO, for example, authentication is done by a centralized
entity that gives cookies to services telling the state of the user [10].

Both OpenlD and Shibboleth use cookies for storing the authentication session with
the identity provider and also possibly for storing the session with service provider. In
OpenlD, an authentication session is formed between the client and identity provider.
Service providers do not necessarily have a session with the client at all. The user must
always type in the OpenlID identifier since the service providers do not even know if the
user is already authenticated to some identity provider. Shibboleth client, on the other
hand, creates sessions with both identity and service providers and both of them send
their own cookies to the client side. A third cookie maybe created when the user has
chosen an identity provider for a service. This means that the user does not need to
identify herself while re-authenticating to the service since the service provider knows,
based on the cookie, with which identity provider to check that the user still has an
active authentication session. The cookies are local to the browser at the client device
and neither OpenID nor Shibboleth has any support for sessions that involve multiple
client devices or browsers.

4 Design

In this paper, our goal is to design and implement a system that allows the user to switch
between devices while using a service that requires authentication and uses single sign-
on. Overall, the implementation of SSO migration consists of cookie extraction, cre-
ating cookie file, transfer between the devices, importing the cookie and opening the
web browser using the same webpage where the user was before the migration. In this
section, we describe in detail how all these parts were designed. Silvekoski [46] gives
an even more detailed description.

Fig. 2 depicts how a Shibboleth authentication session is migrated from a desktop
computer to an Internet tablet device in our implementation. First, the user starts the
migration by choosing it from the web browser menu. This starts a browser extension
that first extracts the Shibboleth IdP and service cookies and then transfers them to the
target device. The target device opens a web browser with the URL of the service that
the user was accessing. Since the authentication cookies have been transferred from the
other device, the user does not need to re-authenticate and can continue using the service
with the mobile device browser. The migration works similarly in the other direction,
when moving the session from the mobile device to the desktop computer.

In some cases, however, the service cookies cannot be transferred. If the transfer
at the service cookies fails or the service provider does not, for any reason, accept
them, the authentication session transfer still succeeds but another step is needed. When
a web browser is opened on the target device after the cookie migration, the service
redirects the connection to the identity provider. Since the user is already authenticated,
the identity provider does not ask her password again. It redirects the connection back
to the service provider with the user authentication information.

Authentication Session Migration 23

Desktop computer Mobile device

U_ser browser browser Identity Provider Ser_wce
i migrate : i
icommand ! g0 ie transfer :

(a) —— %:ﬁi serviceirequest :
H H . - N
: i : — >

: service: :
service & i
P :
:\
; migrate :

(b) comman(ié cookie transferi H
: > —> serviceirequest :
H H H H ~5

: auth? : i
‘e : :
P redirect :
auth ok :
: auth ok : :
: . N
H f i
i service i service :
1o H ~
I

Fig. 2. Authentication session migration with (a) all cookies (b) only authentication cookies

As described above, many SSO systems use cookies to store information about ses-
sions in the client-side web browsers. The session information tells, for example, which
user has logged in to the service and how long the session is valid. Moving the cookie
from one device and web browser to another one should migrate the session since all
the client-side session information is stored in the cookie. Next, we present the design
of our cookie based session migration for single sign-on.

Migrating the SSO session requires three steps: extracting the cookies from the orig-
inal device and web browser, transferring the cookies from the original device to the
target device, and importing them into the target device browser. Fig.Bldepicts the SSO
cookie migration. When the user chooses to migrate the session, a browser extension
first extracts the cookies from the browser and writes them into a cookie file. Then the
browser extension starts a transfer module and gives it the location of the cookie file
and the URL of the current page on the browser that tells the service location. The
transfer module creates a connection to transfer module on the target device and sends
the cookie file and URL over to it. The transfer module on the target device imports the
cookie into the web browser and starts the browser with the given URL. The migration
works similarly both ways between the two devices.

The method for extracting and importing the cookies depends on how they are stored
on the original and target device and which web browsers are used. Either the browser
or the operating system handles the cookies, but usually an interface for cookie man-
agement is offered. The extraction application fetches the cookie information, stores it
into a file, and passes the file to the transfer module. Usually, SSO uses session cookies
which are stored in the memory rather than on the disk. For this reason, the cookies can-
not be simple read from a file and an API for accessing them is needed. If the browser
manages the cookies, the extraction is done with a browser extension. Otherwise, the

24 S. Suoranta, J. Heikkinen, and P. Silvekoski

desktop workstation mobile device
web browser web browser
1. extract 6. open URL
cookie A
....... > f
cookie = . cookie
% 2. start 4. start web A !
storage 5)) : storage
. Mmigration browser
:‘q. t f 4
transfer rar;s Ier 5. import
module modute cookie
3. transfer A

bluetooth connection or other transport

Fig. 3. Shibboleth authentication

operating system provides the cookie information but also a browser extension is needed
since that allows the user to start the migration and gives the URL of the current page.

The cookies are transferred between devices in files. If the cookies are stored in the
memory, the cookie extractor creates a file and stores the cookie information into it
in the format in which they were stored in the memory. SSO cookies are encrypted
and thus the exact byte values are essential so that the cookie data does not change.
However, it is not always necessary to transfer all cookie data, just the name, value,
domain and path must be transferred. The cookie domain and path tell the owner of
the cookie, namely the service, whereas name and value give the purpose of the cookie
and session data. The cookie information is stored in a file where each cookie is four
lines long with following content: name, value, domain and path. Several cookies can
be stored into one file.

The transfer module takes care of moving the cookie file from the original device to
the target device. It has two behaviors: a client that sends the cookie from the original
device and a server that receives the cookie on the target device. In our implementation,
when the user wants to migrate her session, she starts the transfer server on the target
device and clicks a start button in a menu of the web browser on the original device.
The target device shows a dialog that tells where the connection is coming from so that
the user can be sure the cookies are coming from the correct original device. In addition
to the cookie, also the URL of the current page on the web browser is sent. The transfer
client reads the cookie file, establish a connection with the transfer server that waits for
the connections on the target device, and transfers the cookie and URL over to it. After
successful copying the cookie to the target device, the transfer client removes it from
the original device. Otherwise, the session might remain open on the original device,
and this might confuse some services. Also, ending the session on the target device
does not remove the cookie on the original device but only on the target device and the
session might accidentally stay open even when the user thinks she has logged out and
closed the browser. On the target device, the corresponding transfer server receives the
cookie file, stores it, and starts the local web browser with the URL it received. After
the transfer, also the transfer server closes itself. In future implementations, the transfer
module could always run as a daemon process, which would slightly simplify the user
experience. Next, we describe the implementation in more detail.

Authentication Session Migration 25
5 Firefox Implementation

The SSO technologies chosen for the implementation were Shibboleth and OpenID.
Both of these are freely available open source systems and thus easy to take into use.
Shibboleth is used in Finnish universities and there are several services available. All
students and staff members have their own user accounts. OpenID has several identity
providers and services available on the Internet. We chose to use Mozilla Firefox on
the desktop computer running Windows XP operating system and Fennec on the Nokia
N810 Internet Tablet running Maemo OS. The Fennec browser was a beta, which caused
some problems that we describe later.

We used Bluetooth for transferring the cookies. It provides encrypted connections
between the devices and the devices are identified with their unique addresses. The
devices can be found using Bluetooth service discovery. If the connecting device is un-
known, the user is asked to approve the connection. The devices can also be paired to
remember each other. Bluetooth is designed for personal area connections and transfer-
ring data between one user’s devices, which means that the pairing usually needs to be
only once for new devices. Bluetooth has built-in encryption and its security is gener-
ally considered adequate [22]. We used the Python language to implement the transfer
module that receives the connection at the target device since the only Java edition, Java
micro edition (JME), that support Bluetooth, does not work on N§10.

Both of the used web browsers save the session cookies in the memory of the device
but offer a possibility to fetch the cookies using scripting. Moreover, same extensions
such as the cookie handling extension work on both Firefox and Fennec since both
are Mozilla-based web browsers. The extensions are cross-platform component object
model (XPCOM) components than can use cross-platform libraries. Mozilla extensions
can be done with JavaScript. We used nsICookie [43], nsICookieManager [44], nsI-
File [34] and nsIProcess [43] interfaces and components. The first difference between
the browsers is that Fennec does not have drop down menus. Thus, the user starts the
migration by choosing it from Firefox drop-down menu on the desktop computer or by
clicking a button in the Fennec menubar on the mobile device.

First, in the authentication session migration, nsICookieManager is used to extract
the cookie data from the web browser memory. The cookies are in nsICookie format as
UTF-8 text, which consists of the cookie name, value, host and path, and additional in-
formation. In the extraction process, all cookies in the browser memory are enumerated
and the needed SSO cookies are chosen based on their name. Neither of our example
FIM systems, OpenID and Shibboleth, has strict instructions for naming the cookies.
OpenID uses usually a combination of the identity provider name and openid tags,
for example exampleidp openid. Shibboleth names usually the service session with

shibsession and application code and the authentication session with idp session but

both of these can be changed using system attributes. The cookie names also depend
on the used authentication method in Shibboleth. The recognized cookies are stored in
a file in the root directory of the browser extension using the nsIFile interface and the
UTF-8 encoding.

For transferring the cookies, nsIProcess starts the python application for Bluetooth
and gives it the location of the cookie file and the current URL of the web browser.
We used an external Python library called PyBluez [21]] for the Bluetooth operations.

26 S. Suoranta, J. Heikkinen, and P. Silvekoski

It works both on Windows XP and Maemo, so that the same code can be used on both
devices. Since cookies are small text files, we used the Bluetooth RFCOMM serial port
profile (SPP) to transfer them. First, the Bluetooth client starts the device and service
discovery. Of course, the Bluetooth server on the target device must be already waiting
for the connections. The client asks the user if the correct target device is found by
showing a dialog that gives the device identifiers of discovered devices. The dialog
is done with native graphical library of N810, GTK+, since it was harder to find a
browser-integrated U library that works on the internet tablet. When the target device
has been selected, the client opens the connection and transfers the cookie information
file as a string. Before client closes, it deletes the cookie from the original device using
nsICookieManager.

On the target device, the transfer server module receives the message. It stores the
URL and writes the cookie into a file. Then, it starts the web browser that uses nslIFile to
read the cookie and nsICookieManager to import it into the browser memory. When the
authentication session is migrated from a mobile device to the desktop computer, the
Firefox web browser is started on the desktop computer with the Python web browser
library. In the other direction, this could not be done since Fennec is a new browser
still under development. As an intermediate solution, we started the Fennec browser
with the subprocess command in Maemo by executing a shell script and the user must
browse to the right page herself. Next, we discuss how to extend the same process to
work in other web browsers and devices.

6 Porting to Other Browsers and Operating Systems

The way the cookies are stored depends on the device, operating system and web
browser. In addition, there are two kinds of cookies, session and persistent cookies,
whose storage differs. For example, both the identity and service cookies are session
cookies in Shibboleth but the “Where are you from” (WAYF) cookie that allows user to
store chosen identity provider into the web browser is a persistent cookie. Different web
browsers on different platform handle the cookies in their own way. Usually, persistent
cookies are stored in the file system while session cookies exist only in the browser
memory. Therefore, accessing the cookies differs between devices and browsers. In or-
der to migrate the authentication session, full access to session cookies is necessary
since the cookies must be extracted from the web browser on the original device and
entered to the web browser on the target device.

Table 1. The session cookie handling in different browsers

Web browser Accessing cookies in memory File for cookies Storage format
Internet Explorer not possible in separate files text

Mozilla Firefox user side scripting cookie.sqlite sqlite

Opera manually cookie4.dat Opera’s own format

Authentication Session Migration 27

Table 1 summarizes the handling of cookies on different browsers. In Windows en-
vironment, persistent cookies are stored in the file system and the session cookies in the
device memory in many popular web browsers, namely Internet Explorer (IE), Mozilla
Firefox, and Opera. The location and format of the stored persistent cookies differs
between browsers. IE stores the persistent cookies into separate files in its cookie di-
rectory but it does not give developers opportunities to manipulate the session cookies
in the device memory. Mozilla Firefox offers wide possibilities to extend the browser,
and one existing extension offers programmers full control of the stored cookies. Opera
offers an editor to the user for manipulating both session and persistent cookies man-
ually but only persistent cookies can be extracted. Thus, the user must first change a
session cookie into a persistent one before it can be transferred, and scripting cannot do
this. In Mac OS, cookies are handled differently: the operating system offers an HTTP
package that handles all the cookies and offers the possibility to add and manipulate
cookies freely.

Mobile devices are even more heterogeneous with respect to their operating systems
and browsers. A browser that works on all mobile operating systems does not exist,
and even all programming languages are not available on mobile devices. Many pop-
ular browsers have their own mobile version that has a lighter graphical user interface
than the desktop computer version. For example, of the Mozilla based browser, Mi-
croB works on the Nokia Maemo operating system and Fennec has a beta for Nokia
N810 and an alpha version for Window mobile. Most Firefox extensions should work
on Fennec. Opera Mini, on the other hand, has a completely different approach to mo-
bile browsing: it uses a proxy that compresses and preprocesses the web pages for the
device, and the proxy handles also the cookies. Moreover, the operating system handles
the cookies for the mobile version of Apple Safari that works on the IPhone. Similarly,
the Symbian OS handles the HTTP connections and cookies for Browser, which is the
mobile version of Safari on Symbian operating systems.

7 Experimental Evaluation

For testing the authentication session migration, we performed three experiments using
different SSO technologies. First, we tested OpenlID authentication session migration
with Livejournal [30] as the service provider since it accepts other OpenlD identity
providers than its own. We used claimID [[11]] as the OpenID identity provider since it al-
lows creating new accounts easily. Migrating the session cookie named claimid openid
migrates the authentication session into the target device where the user could continue
using the service. OpenlD service provider differ in the ways the cookies are imple-
mented and, in order to migrate Livejournal SP, two cookies were needed: ljloggedin
and ljmastersession. We cannot be sure if we migrated also other information than
the authentication session with these two cookies. In Livejournal, the user can choose
whether the service provider will check that the client IP address for the session remains
constant. Insisting that the IP address does not change prevented the session migration
as was expected since the devices have the different IP addresses.

The second test was done using Shibboleth, which is used to authenticate users at
our university. Thus, we had one identity provider, the university, and we tried several
different services. Unfortunately, many of the services required that the connections are

28 S. Suoranta, J. Heikkinen, and P. Silvekoski

from the same IP address, which prevents the session migration. The address is stored
in the cookie and it cannot be changed. Since we did not have possibility to reconfigure
the services, we tested the migration only with those providers that allowed the client
to change its IP address. For them, the migration works fine with the Shibboleth SSO.

In addition to the two federated solutions, we tested another centralized authenti-
cation mechanism that is used in social media services in the OtaSizzle project [47]
at the university. These services use the Central Authentication Service (CAS) [26] to
authenticate users, and the experiments showed that transferring its cookies success-
fully migrates the authentication session. The service session could be continued after
migration without re-authentication.

Our main goal was to create system where authentication session can be migrated
from one device to another in a way that re-authentication is not necessary and no or
minimal modifications for the server side are required. Of course, the session migration
should be faster and require less input from the user than re-authentication. Moreover,
the user should be able to continue her browser session from the same URL and logical
state on the target platform.

From the session migration point of view, our prototype fulfills the requirements.
Transferring the authentication session cookies were enough and no additional informa-
tion was required for the session migration on the tested services. Migration of cookies
on the client side did not require changes on server side. OpenID worked directly with
its default settings. Shibboleth, which has replay attack prevention on by default, did not
work since it checks that also the authentication session cookies come from the same
IP address. This means that service providers should be configured not to check the IP
address in order to allow user to migrate the authentication between her devices. This
configuration enables also mobile computers to continue their sessions after moving
between access networks.

From the usability point of view, the migration is faster than typing the passwords
on the mobile device. However, the Bluetooth device discovery sometimes took a long
time. For example, Windows repeated the service discovery of PyBluez devices four
times in order to be sure that all devices were found. To speed up the discovery, the
searching for services can be restricted to already paired devices. The other require-
ment, that the user can continue from the same URL and state of the service, is usually
met since web browsers can be started with a command line or shell script with the
starting URL as a parameter. In our prototype implementation, the continuing on the
same location worked only when the session was migrated from mobile device to a
desktop computer, not vice versa, since the Fennec browser used on mobile device was
only a beta version and did not have the required feature of starting on the given URL.
This will be easily fixed when the browser becomes more complete.

Our main goal was to move only the authentication session, not the whole user ses-
sion, because the user session is maintained by the web server, and by the cloud services
in the future, and only the authentication session binds the user connection to the ser-
vices on the client side. From the server point of view, the migration is tantamount to
the client moving to a different IP address and the user pressing the refresh button on
the browser.

Authentication Session Migration 29

8 Discussion

In our tests, we showed that transferring the authentication session cookies migrates the
authentication session and, in most cases, the entire user session between devices. In
order to take the authentication session migration into wider use, following steps are
required:

— Standardization of the API for accessing authentication cookies in web browsers,

— Standardization of the naming of the authentication cookies in SSO systems,

— Recommendation not to bind the cookies to IP addresses but to use some other
replay attack protection technology,

— Defining standard ways to transmit the cookies over Bluetooth, IP and other chan-
nels, and

— Definition of a cookie file format for cookie transfer.

Technically these changes are fairly easy to do, as shown is this paper, but the hard
part is the interoperability between many devices and browsers. Thus, standardization
is needed.

The methods for accessing cookies differ between web browsers and devices as de-
scribed in Sec. |6l Nowadays, accessing the session cookies is not always possible at all
or requires actions from the user. In order to enable universal authentication session mi-
gration, the session cookies must be available through an API in all operating systems
and web browsers. Then, the migration extension can extract the cookies for transfer.

Naming cookies in a standard way in SSO specifications helps identifying them for
the migration. The FIM specifications should give stricter guidelines for naming the
cookies.

The IP address of the client is often stored in the cookies to prevent connections from
other client hosts than the original one. This is a historical feature to prevent sniffing of
the authentication cookies in services that do not use SSL/TLS to protect the cookies.
In such services, the cookies may be transferred as plain text. An attacker can record the
cookie and send it to a server pretending to be the original communication partner and
thus hijack the connection [38]. The service provider mitigated this threat by accepting
cookies only from the current IP address of the user. In OpenlD, the administrator of
the identity provider must take the protection into use. Shibboleth, on the other hand,
checks by default that, when the connection is redirected from the service provider to
the identity provider and back, the IP address of the client remains the same, and that the
client sends the cookies always from the same IP address during the following session.
Session migration requires such controls to be disabled. Some other means to prevent
replay attacks with stolen cookies should be used. For example, SSL/TLS with client
certificates prevents the attack.

A secure connection for the cookie transfer between the user’s devices must be easy
to take into use. We used Bluetooth that provides easy way to securely pair the devices,
but the devices offer many other possibilities. For example, a mobile devices could use
a WLAN connection in peer-to-peer mode to connect to other devices without external
gateways, or the connection could be created through the Internet using an access point.
WLAN has its own security mechanism called Wi-Fi Protected Access (WPA). An
Internet proxy could also be used to deliver the cookies and the connections from the

30 S. Suoranta, J. Heikkinen, and P. Silvekoski

two devices to the proxy protected with TLS. For authentication session migration,
creating a secure connection must be easy and not to require active participation from
the user after the initial setup. The device discovery and verifying the connection parties
must happen transparently after the user initiates the session transfer. In this respect, our
current implementation needs to be developed further: the user should not need to start
the migration on both devices on every migration but only to pair the devices on the
first connection.

Cookie transfer file format is the last important part of the migration. The devices
may use different encoding for files and text but the cookie information must not change
during the transmission or when storing it to the target browser. Cookies often contain
special characters, and thus using the same encoding for the information on the original
device and on the target device is important.

9 Conclusion

In this paper, we have experimented with authentication session migration based on
the transfer of client-side cookies. Many web services use cookies for recognizing the
users and for storing information about the service state. Also, the Shibboleth, OpenID
and CAS SSO technologies use cookies to tell that a user has already authenticated
herself. Moving the cookies that the identity provider created for the user enables her
to continue using the service with another device without re-authentication.

The session transfer does not require any changes on server side if the authentication
session cookies can be identified by standard names on the client side and the server
is not configured to use IP-address-based replay attack protection. Our current imple-
mentation relies on Bluetooth device pairing for secure transfer of the session state and
shows a dialog to the user for choosing the target device before migrating the authenti-
cation session cookies. We had minor performance problems with the Bluetooth service
discovery when the devices were not continually connected but otherwise the migration
was fast enough to be used regularly.

Client-side session migration works well in a situation where the only party that
knows which services and which identity providers are in use is the client. A drawback
of the client side implementation is that all different browsers on different devices and
platforms need their own extensions since the cookies are handled very differently in
these. Solving this problem requires standardization of some SSO features that have
currently been left as configuration and implementation options. In the future, online
services increasingly are such that the service state is kept in the cloud and the web
browser is acting as the user interface, and only the authentication binds the service
session to a device or a operating system. Based on the results of this paper, we believe
that client-to-client session migration for such services is easy to implement and should
become a regular feature of web browsers and SSO services.

References

1. Accetta, M., Baron, R., Bolosky, W., Golub, D., Rashid, R., Tevanian, A., Young, M.: Mach:
A new kernel foundation for UNIX development. In: Proceedings of the Summer USENIX
Conference (1986)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Authentication Session Migration 31

. Adeyeye, M., Ventura, N.: A sip-based web client for http session mobility and multimedia

services. Computer Communications 33(8) (2010)

. Allard, F., Bonnin, J.M.: An application of the context transfer protocol: IPsec in a IPv6

mobility environment. International Journal of Communication Networks and Distributed
Systems 1(1) (2008)

. Barak, A., Laden, O., Yarom, Y.: The NOW MOSIX and its preemptive process migration

scheme. Bulletin of the IEEE Technical Committee on Operating Systems and Application
Environments 7(2), 5-11 (1995)

. Baratto, R.A., Potter, S., Su, G., Nieh, J.: Mobidesk: mobile virtual desktop computing. In:

MobiCom 2004: Proceedings of the 10th Annual International Conference on Mobile Com-
puting and Networking (2004)

. Bolla, R., Rapuzzi, R., Repetto, M., Barsocchi, P., Chessa, S., Lenzi, S.: Automatic multime-

dia session migration by means of a context-aware mobility framework. In: Mobility 2009,
The 6th International Conference on Mobile Technology, Application & Systems (2009)

. Bolla, R., Rapuzzi, R., Repetto, M.: Handling mobility over the network. In: CFI 2009:

Proceedings of the 4th International Conference on Future Internet Technologies (2009)

. Bournelle, J., Laurent-Maknavicius, M., Tschofenig, H., Mghazli, Y.E.: Handover-aware ac-

cess control mechanism: CTP for PANA. Universal Multiservice Networks (2004)

. Budzisz, L., Ferrus, R., Brunstrom, A., Grinnemo, K.J., Fracchia, R., Galante, G., Casadevall,

F.: Towards transport-layer mobility: Evolution of SCTP multihoming. Computer Commu-
nications 31(5) (March 2008)

Chalandar, M.E., Darvish, P., Rahmani, A.M.: A centralized cookie-based single sign-on in
distributed systems. In: ITI 5th International Conference on Information and Communica-
tions Technology (ICICT 2007), pp. 163-165 (2007)

claimID.com, Inc: claimID (2010), http://claimid. con|(referred 2.8.2010)

Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C., Pratt, I., Warfield, A.:
Live migration of virtual machines. In: NSDI 2005: 2nd Symposium on Networked Systems
Desgin and Implementation. USENIX Association (2005)

Cui, Y., Nahrstedt, K., Xu, D.: Seamless user-level handoff in ubiquitous multimedia service
delivery. Multimedia Tools and Applications 22(2) (February 2004)

Dierks, T., Rescorla, E.: The transport layer security (TLS) protocol version 1.1. RFC 4346,
IETF (April 2006)

Diniz, J.R.B., Ferraz, C.A.G., Melo, H.: An architecture of services for session management
and contents adaptation in ubiquitous medical environments. In: SAC 2008: Proceedings of
the 2008 ACM Symposium on Applied Computing (2008)

Douglis, F.: Process migration in the Sprite operating system. In: Proceedings of the 7th
International Conference on Distributed Computing Systems, pp. 18-25 (1987)

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T.:
Hypertext transfer protocol — http/1.1. RFC 2616, IETF (June 1999)

Finnish IT center for science (CSC): HAKA federation,
http://www.csc.fi/english/institutions/hakal(referred 10.2.2010)

Forsberg, D., Ohba, Y., Patil, B., Tschofenig, H., Yesig, A.: Protocol for carrying authentica-
tion for network access (PANA). RFC 5191, IETF (May 2008)

Georgiades, M., Akhtar, N., Politis, C., Tafazolli, R.: Enhancing mobility management pro-
tocols to minimise AAA impact on handoff performance. Computer Communications 30,
608-628 (2007)

Google: Pybluez (bluetooth library for python), http//code.google.com/p/pybluez/
(referred 15.12.2009)

Hager, C., Midkiff, S.: An analysis of bluetooth security vulnerabilities. In: Proceedings of
IEEE Wireless Communications and Networking (WCNC 2003) (March 2003)

http://claimid.com
http://www.csc.fi/english/institutions/haka
http//code.google.com/p/pybluez/

32

23.

24.
25.
26.
27.
28.
29.

30.
31.

32.

33.

34.
35.
36.
37.
38.
39.
40.

41.

42.

43.

44.

45.

46.

47.
48.

S. Suoranta, J. Heikkinen, and P. Silvekoski

Hatsugai, R., Saito, T.: Load-balancing SSL cluster using session migration. In: AINA 2007:
Proceedings of the 21st International Conference on Advanced Networking and Applica-
tions. IEEE Computer Society (May 2007)

Hsieh, M., Wang, T., Sai, C., Tseng, C.: Stateful session handoff for mobile www. Informa-
tion Sciences 176(9), 1241-1265 (2006)

Internet2: Shibboleth (2006), http://shibboleth.internet2.edu/|(referred 5.9.2006)
Jasig: Central authentication service (CAS), http://www.Jjasig.org/cas|(ref. 15.1.2009)
Kempf, J.: Problem description: Reasons for performing context transfers between nodes in
an IP access network. RFC 3374, IETF (September 2002)

Koponen, T., Eronen, P., Sdreld, M.: Esilient connections for SSH and TLS. In: USENIX
Annual Technical Conference (2006)

KVM: Kvm migration, http: //www.linux-kvm.org/page/Migration

(referred 27.7.2010)

Livejournal: Livejournal, http: //www.livejournal.com (referred 16.1.2010)

Loughney, J., Nakhjiri, M., Perkins, C., Koodli, R.: Context transfer protocol (CXTP). RFC
4067, IETF (July 2005)

Milojicic, D.S., Douglis, F., Paindaveine, Y., Wheeler, R., Zhou, S.: Process migration. ACM
Compuring Surveys 32(3), 241-299 (2000)

Montenegro, G., Roberts, P., Patil, B.: IP routing for wireless/mobile hosts (mobileip)
(concluded ietf working group) (August 2001),
http://datatracker.ietf.org/wg/mobileip/charter/|(referred 26.7.2010)

Morgan, P.: nsIFile (mozilla extension reference),
http://developer.mozilla.org/en/nsIFilel(referred 15.12.2009)

OpenlD.net: Openid.net (2008), http://openid.net/

OpenSSL: Openssl project (2005), http://www.openssl.org/|(referred 17.10.2008)
OpenVZ: Checkpointing and live migration (September 6, 2007),
http://wiki.openvz.org/Checkpointing and_live_migration|(referred 27.7.2010)
Park, J.S., Sandhu, R.: Secure cookies on the web. IEEE Internet Computing 4(4), 36-44
(2000)

Ragouzis, N., Hughes, J., Philpott, R., Maler, E., Madsen, P., Scavo, T.: Security assertion
markup language (saml) v2.0 technical overview. Tech. rep., OASIS (February 2007)
Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Sparks, J.P.R., Handley, M.,
Schooler, E.: Sip: Session initiation protocol. RFC 3261, IETF (2002)

Samar, V.: Single sign-on using cookies for web applications. In: Proceedings of IEEE 8th In-
ternational Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises
(WET ICE 1999), pp. 158-163 (June 1999)

Shacham, R., Schulzrinne, H., Thakolsri, S., Kellerer, W.: Ubiquitous device personalization
and use: The next generation of IP multimedia communications. Transactions on Multimedia
Computing, Communications, and Applications (TOMCCAP) 3(2) (May 2007)

Shepherd, E.: nsICookie (mozilla extension reference),
http://developer.mozilla.org/en/nsICookie| (referred 15.12.2009)

Shepherd, E.: nsICookieManager (mozilla extension reference),
http://developer.mozilla.org/en/nsICookieManager (referred 26.7.2010)
Shepherd, E., Smedberg, B.: nsIProcess (mozilla extension reference) (May 2009),
http://developer.mozilla.org/en/nsIProcess|(referred 15.12.2009)

Silvekoski, P.: Client-side migration of authentication session. Master’s thesis, Aalto Univer-
sity School of Science and Technology (2010)

Sizzlelab.org: Otasizzle (April 2010), http://sizl.org/|(referred 28.7.2010)

Stewart, R.: Stream control transmission protocol. RFC 4960, IETF (September 2007)

http://shibboleth.internet2.edu/
http://www.jasig.org/cas
http://www.linux-kvm.org/page/Migration
http://www.livejournal.com
http://datatracker.ietf.org/wg/mobileip/charter/
http://developer.mozilla.org/en/nsIFile
http://openid.net/
http://www.openssl.org/
http://wiki.openvz.org/Checkpointing_and_live_migration
http://developer.mozilla.org/en/nsICookie
 http://developer.mozilla.org/en/nsICookieManager
http://developer.mozilla.org/en/nsIProcess
http://sizl.org/

	Authentication Session Migration
	Introduction
	Related Work on Session Migration
	Federated Identity Systems and Web Session Cookies
	Design
	Firefox Implementation
	Porting to Other Browsers and Operating Systems
	Experimental Evaluation
	Discussion
	Conclusion
	References

