

Lecture Notes in Computer Science 7127
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Tuomas Aura Kimmo Järvinen
Kaisa Nyberg (Eds.)

Information Security
Technology
for Applications

15th Nordic Conference on Secure IT Systems,
NordSec 2010
Espoo, Finland, October 27-29, 2010
Revised Selected Papers

13

Volume Editors

Tuomas Aura
Kimmo Järvinen
Kaisa Nyberg
Aalto University
School of Science
Konemiehentie 2, 02150 Espoo, Finland
E-mail: {tuomas.aura, kimmo.jarvinen, kaisa.nyberg}@aalto.fi

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-27936-2 e-ISBN 978-3-642-27937-9
DOI 10.1007/978-3-642-27937-9
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011945062

CR Subject Classification (1998): D.4.6, K.6.5, D.2, H.2.7, K.4.2, K.4.4, E.3, C.2

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The Nordsec workshops started in 1996 with the aim of bringing together
computer security researchers and practitioners from the Nordic countries. The
event focuses on applied IT security and, from the beginning, its goal has been to
encourage interaction between academic and industrial research. Over the years,
Nordsec has developed into an international conference that takes place in the
Nordic countries on a round-robin basis. It has also become a key meeting venue
for Nordic university teachers and students with an interest in security research.

The 15th Nordic Conference in Secure IT Systems took place at Aalto Uni-
versity in Finland during October 27–29, 2010. The program of this year’s con-
ference was a cross-section of the security research at Nordic universities and
industrial research centers with some contributions from around Europe. The
themes ranged from the enforcement of security policies to security monitoring
and network security. There were also papers on privacy, cryptography, and secu-
rity protocol implementation. The conference received 37 submissions, of which
13 were accepted for presentation as full papers and three as short papers. In
the original workshop spirit, the authors were able to revise their papers based
on discussions at the conference.

The keynote talk at Nordsec was given by Erka Koivunen from CERT-FI
with the title “Why Wasn’t I Notified?”: Information Security Incident Handling
Demystified. An invited paper based on the talk is included in the proceedings.
Furthermore, a large number of students presented their work at a poster session
and competition.

The proceedings also include three selected papers from the OWASP AppSec
Research 2010 conference, which focuses on Web application security. These
papers were originally presented in Stockholm during June 21–24, 2010. The
authors of the selected papers were invited to submit revised papers for a joint
conference publication and to give talks at Nordsec.

We would like to thank the authors, members of the Program Committee,
reviewers, students presenting posters, the Organizing Committee, and all con-
ference attendees for coming together and making Nordsec 2010 a successful
scientific and social event for both security researchers and practitioners.

October 2011 Tuomas Aura
Kimmo Järvinen

Kaisa Nyberg

Organization

Nordsec 2010
October 27–29, 2010, Espoo, Finland

Program Chairs

Tuomas Aura Aalto University, Finland
Kaisa Nyberg Aalto University and Nokia Research Center,

Finland

Local Organizing Committee

Tuomas Aura Aalto University, Finland
Kimmo Järvinen Aalto University, Finland

Program Committee

N. Asokan Nokia Research Center, Finland
Tuomas Aura Aalto University, Finland
Catharina Candolin Finnish Defence Forces, Finland
Mads Dam Royal Institute of Technology, Sweden
Simone Fischer-Hübner Karlstad University, Sweden
Viiveke F̊ak Linköping University, Sweden
Dieter Gollmann Hamburg University of Technology, Germany
Christian Damsgaard Jensen Technical University of Denmark, Denmark
Erland Jonsson Chalmers University of Technology, Sweden
Svein Johan Knapskog Norwegian University of Science and

Technology, Norway
Audun Jøsang University of Oslo, Norway
Peeter Laud Cybernetica AS and University of Tartu,

Estonia
Helger Lipmaa Tallinn University, Estonia
Vaclav Matyas Masaryk University, Czech Republic
Chris Mitchell Royal Holloway, University of London, UK
Kaisa Nyberg Aalto University and Nokia Research Center,

Finland
Christian W. Probst Technical University of Denmark, Denmark
Hanne Riis Nielson Technical University of Denmark, Denmark

VIII Organization

Michael Roe University of Hertfordshire, UK
Nahid Shahmehri Linköping University, Sweden
Einar Snekkenes Norwegian Information Security Lab, Norway
Alf Zugenmaier Munich University of Applied Sciences,

Germany

Reviewers

Naveed Ahmed
Waleed Alrodhan
Musard Balliu
Stefan Berthold
Joo Yeon Cho
Nicola Dragoni
Olof Hagsand

Hans Hedbom
Aapo Kalliola
Atefeh Mashatan
Davide Papini
Emilia Käsper
Andrea Röck
Ge Zhang

Table of Contents

Network Security

BloomCasting: Security in Bloom Filter Based Multicast 1
Mikko Särelä, Christian Esteve Rothenberg, András Zahemszky,
Pekka Nikander, and Jörg Ott

Authentication Session Migration . 17
Sanna Suoranta, Jani Heikkinen, and Pekka Silvekoski

Mitigation of Unsolicited Traffic across Domains with Host Identities
and Puzzles . 33

Miika Komu, Sasu Tarkoma, and Andrey Lukyanenko

Experimental Analysis of the Femtocell Location Verification
Techniques (Short Paper) . 49

Ravishankar Borgaonkar, Kevin Redon, and Jean-Pierre Seifert

Invited Talk

“Why Wasn’t I Notified?”: Information Security Incident Reporting
Demystified . 55

Erka Koivunen

Monitoring and Reputation

Use of Ratings from Personalized Communities for Trustworthy
Application Installation . 71

Pern Hui Chia, Andreas P. Heiner, and N. Asokan

Practical Private Information Aggregation in Large Networks 89
Gunnar Kreitz, Mads Dam, and Douglas Wikström

Tracking Malicious Hosts on a 10Gbps Backbone Link 104
Magnus Almgren and Wolfgang John

Privacy

Service Users’ Requirements for Tools to Support Effective On-line
Privacy and Consent Practices . 121

Elahe Kani-Zabihi and Lizzie Coles-Kemp

X Table of Contents

Analyzing Characteristic Host Access Patterns for Re-identification of
Web User Sessions . 136

Dominik Herrmann, Christoph Gerber, Christian Banse, and
Hannes Federrath

Policy Enforcement

A Framework for the Modular Specification and Orchestration of
Authorization Policies . 155

Jason Crampton and Michael Huth

Credential Disabling from Trusted Execution Environments 171
Kari Kostiainen, N. Asokan, and Jan-Erik Ekberg

Java Card Architecture for Autonomous Yet Secure Evolution of Smart
Cards Applications (Short Paper) . 187

Olga Gadyatskaya, Fabio Massacci, Federica Paci, and
Sergey Stankevich

Implementing Erasure Policies Using Taint Analysis 193
Filippo Del Tedesco, Alejandro Russo, and David Sands

Selected OWASP AppSec Research 2010 Papers

A Taint Mode for Python via a Library . 210
Juan José Conti and Alejandro Russo

Security of Web Mashups: A Survey . 223
Philippe De Ryck, Maarten Decat, Lieven Desmet,
Frank Piessens, and Wouter Joosen

Safe Wrappers and Sane Policies for Self Protecting JavaScript 239
Jonas Magazinius, Phu H. Phung, and David Sands

Cryptography and Protocols

Protocol Implementation Generator . 256
Jose Quaresma and Christian W. Probst

Secure and Fast Implementations of Two Involution Ciphers 269
Billy Bob Brumley

The PASSERINE Public Key Encryption and Authentication
Mechanism (Short Paper) . 283

Markku-Juhani O. Saarinen

Author Index . 289

BloomCasting: Security

in Bloom Filter Based Multicast

Mikko Särelä, Christian Esteve Rothenberg,
András Zahemszky, Pekka Nikander, and Jörg Ott

{mikko.sarela,andras.zahemszky,pekka.nikander}@ericsson.com,
chesteve@dca.fee.unicamp.br, jo@netlab.tkk.fi

Abstract. Traditional multicasting techniques give senders and
receivers little control for who can receive or send to the group and
enable end hosts to attack the multicast infrastructure by creating large
amounts of group specific state. Bloom filter based multicast has been
proposed as a solution to scaling multicast to large number of groups.

In this paper, we study the security of multicast built on Bloom filter
based forwarding and propose a technique called BloomCasting, which
enables controlled multicast packet forwarding. Bloomcasting group man-
agement is handled at the source, which gives control over the receivers
to the source. Cryptographically computed edge-pair labels give receivers
control over from whom to receive. We evaluate a series of data plane
attack vectors based on exploiting the false positives in Bloom filters and
show that the security issues can be averted by (i) locally varying the
Bloom filter parameters, (ii) the use of keyed hash functions, and (iii) per
hop bit permutations on the Bloom filter carried in the packet header.

1 Introduction

Recently, a number of routing and forwarding proposals [25,16,32] are re-thinking
one of the most studied problems in computer networking – scalable multi-
cast [12,23]. The unifying theme of these proposals is to use Bloom filters in
packet headers for compact multicast source routing. This makes it possible for
the multicast architecture to scale to the billions, or even trillions, of groups
required, should the system need to support all one-to-many and many-to-many
communications, such as tele and video conferencing, chats, multiplayer online
games, and content distribution, etc.

While the Bloom filter is a space efficient data structure and amenable to
hardware implementations, it is also prone to false positives. With in-packet
Bloom filter based packet forwarding, a false positive results in a packet be-
ing erroneously multicasted to neighbors not part of the original delivery tree.
Consequently, false positives lead to reduced transport network efficiency due
to unnecessary packet duplications – a fair tradeoff given the potential benefits.
However, false positives have also security implications, especially for network
availability.

T. Aura, K. Järvinen, and K. Nyberg (Eds.): NordSec 2010, LNCS 7127, pp. 1–16, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 M. Särelä et al.

Earlier work [26] has identified three forwarding anomalies (packet storms,
forwarding loops, and flow duplication) and two solutions that provide fault
tolerance for such anomalies, namely, varying the Bloom filter parameters and
performing hop-specific bit permutations. Our contribution is to analyze the
anomaly related problems and solutions from security perspective. It has also
been shown [13] that Bloom filters can act simultaneously as capabilities, if the
hash values used for the Bloom filter matching are cryptographically secure and
depend on the packet flow.

In this paper, we concentrate on the security issues of Bloom filter based mul-
ticast forwarding plane. We analyze service and network infrastructure availabil-
ity. The contributions of this paper are a characterization and evaluation of the
security problems and solutions related to Bloom filter based forwarding. Other
security issues for multicast, such as key management, policy, long term secrecy,
ephemeral secrecy, forward secrecy, and non-repudiation are out of scope for this
paper.

Additionally, we propose BloomCasting, a source specific multicasting tech-
nique that integrates the provided security solutions together. In BloomCasting,
group membership protocol is carried from the receiver to the source. This pushes
both the costs and the control of the multicast group management to the source.
The Bloom filter used to forward the traffic is gathered hop-by-hop along the
unicast path to the group source.

The rest of the paper is organized as follows. In Section 2, we review the prin-
cipal aspects of Bloom filter based forwarding and scope the problem of secure
multicast for the purposes of this paper. We present BloomCasting, a secure
source-specific multicasting technique in Section 3 and in Section 4, we describe
the security solutions in more detail. We evaluate our approach In Section 5,
review the related work in Section 6, and conclude the paper in Section 7.

2 Security Issues in Bloom Filter Based Multicast

As with unicast, securing multicast communications requires considerations in
two orthogonal planes: the data plane (protecting multicast data forwarding)
and the control plane (securing multicast routing protocol messages), although
the problems are more difficult because of the large number of entities involved.
While secure multicast data handling involves the security-related packet treat-
ments (e.g., encryption, group/source authentication and data integrity) along
the network paths between the sender and the receivers, control plane security
aspects involve multicast security policies and group key management i.e., secure
distribution and refreshment of keying material (see e.g. [22,11,23,18,24]). Ulti-
mately, control plane security must be handled individually by each multicast
routing protocol to provide authentication mechanisms that allow only trusted
routers and users to join multicast trees (e.g., PIM-SM [3]).

Our focus in this paper, however, is elsewhere – on the availability of the mul-
ticast infrastructure in an open and general source specific multicast model [9]. A
source specific multicast group is defined by the source and group address taken

BloomCasting: Security in Bloom Filter Based Multicast 3

together. We assume that multicast groups can contain receivers anywhere in
the network. This means that hierarchical addressing [19] cannot be used to
scale up the system with sub-linear growth in routing table size in relation to
the number of groups. The number of potential source specific groups grows ex-
ponentially with the number of nodes in the network – compared to quadratic
growth in the number of potential unicast connections and logarithmic growth
in the size of routing table based on hierarchical addressing. State requirements
create a potential for denial-of-service (DoS) attacks as described in ‘stateless
connections’ [4].

Bloom filter based source routing has been proposed as a solution to scal-
ing multicast into large networks and number of groups [25,16,32,13]. Such an
approach places the state requirement at the source, instead of the routers alle-
viating the potential for DoS attacks against the network infrastructure.

2.1 Forwarding with in-Packet Bloom Filters

The Bloom filter [10] is a hash-based probabilistic data structure capable of
representing a set of elements S and answering set-membership questions of the
type “is x ∈ S?”. The insert operations consist of, given a bit array of size m,
for each element x in a set S of size n, k � m independent hash values are
computed H1(x), ..., Hk(x), where 1 ≤ Hi(x) ≤ m, ∀x and the corresponding bit
array locations are set to 1. Conversely, asking for the presence of an element
y in the approximate set represented by the Bloom filter involves applying the
same k hash functions and checking whether all bit positions are set to 1. In that
case, the Bloom filter returns a ‘true’, claiming that y is an element of S. The
Bloom filter always returns the right answer for each inserted elements, i.e., there
are no false negatives. However, due to hash collisions, there is some probability
p(m, n, k) for the Bloom filter returning a false positive response, claiming an
element being part of S even when it was not actually inserted.

In-packet Bloom filter based multicast [25,16,32,13] is based on the idea of
turning the forwarding operations into a set-membership problem. The basic idea
consists of encoding a multicast tree by inserting the appropriate link identifiers
into a Bloom filter carried in the packet header. Forwarding nodes along the path
process the packet and check whether neighboring link identifiers are present in
the Bloom filter. Then, a copy of the packet is forwarded along the matching
interface(s).

Inherited from Bloom filters, false positives cause packets to be unnecessarily
duplicated over some extra links. When a router receives a falsely forwarded
packet for which it does not find a matching forwarding directive, the packet
is simply discarded. Hence, Bloom filter forwarding guarantees packet delivery
to all intended destinations but introduces a degree of wasted resources due to
unnecessary packet duplications – a tradeoff worth to consider given the bene-
fits in terms of space efficiency (i.e., reduced state) and performance (i.e., fast
forwarding decisions).

4 M. Särelä et al.

2.2 Threat Model and Existing Attacks

We restrict the scope of this paper to security issues of the Bloom filter based
forwarding plane of one-to-many multicast, also referred to as source-specific
multicast (SSM) architectures. We assume an attacker who may control large
number of hosts (e.g. botnet) that wishes either to disrupt the network infrastruc-
ture, or deny service to target host or network links. We also evaluate available
possibilities for controlled multicast, i.e. ensuring that only authorized senders
and receivers are capable of sending to and receiving from a particular multicast
group.

Our adversary model assumes malicious end hosts and benign routers. Conse-
quently, packet drop attack or blackhole attack fall out of the scope. This assump-
tion is coherent with the wired networking scenario under consideration where
trust among routers and the management plane is provided by e.g. pair-wise
shared secret techniques. Moreover, we assume an end-to-end security mech-
anism to provide payload confidentiality, authentication, and integrity (e.g., as
discussed in [15]). Attacks related to these security mechanisms are not discussed
further in this paper.

While false positives represent a well-known limitation of Bloom filters, the
security implications of (random) false positives in packet forwarding are far
reaching and less understood. Our main security goal is to guarantee forward-
ing service availability of Bloom filter based data planes under malicious at-
tacks. Hence, we seek for data plane mechanisms that ensure that only packets
from authorized users are forwarded, i.e., providing resistance to (potentially
distributed) DoS attacks .

DoS can be divided into attacks on infrastructure availability and (end) ser-
vice availability. These can be disrupted by bandwidth, state, or computation
consumption attacks (cf.[7]). Any unauthorized sending of multicast data can be
construed as a DoS attack. For instance, flooding attacks would cause an escalat-
ing of packets filling the network links to an extend that legitimate packets end
up discarded due to massive link congestion. Such denial of service may affect a
greater proportion of the network due to the “multiplier effect” of false-positive-
prone multicast packet distribution.

Chain Reaction Attacks. False positives can cause forwarding anomalies that
greatly increase the amount of network traffic. These include packet storms,
forwarding loops, and flow duplication [26]. We review these anomalies that an
attacker could do here. We highlight the fact that if Bloom filters are assigned
per multicast tree or per flow, the anomalies will affect every packet in a given
multicast tree or flow.

Packets storms are caused when, for sizable part of the network, the average
number of false positives per router exceeds one. Should this be the case, then
on average each false positive causes more than one additional false positive,
creating an explosive chain reaction. The average number of false positives is
ρk · (d − b − 1), where ρ is the fill factor of the Bloom filter, k is the number of
hash functions used, d is the number of neighbors, and b is the number of actual

BloomCasting: Security in Bloom Filter Based Multicast 5

(a) false positive

flooded
subtree

(b)

duplicated
subtree

false positive

Fig. 1. (a) Forwarding loop and (b) flow duplication

(a)

flooded
subtree

1

3 3 8
8

2 2 5 5

131

1

1 2 3 5 8
1

(b)

flooded
subtree

1

4 8

16

2 4 8
161

2

1 2
1

1 2 4 4 88

Fig. 2. (a) Flow duplication with Fibonacci number growth in the number of packet
copies and (b) exponential growth in the number of packet copies

branches in the multicast tree at that node. After the first false positive b = 0.
As an example, considering k = 5 and ρ = 0.5, a nodes with degree d > 32 would
produce more than one false positive per node.

Forwarding loop happens, if a set of false positives cause the packet to return
to a router it has already visited. The router will then forward the packet again
to all the nodes downstream of it, including the false positive links that caused
the packet to loop. As a result, not only will the packet loop, but every loop
causes a copy of the packet to be sent to the full sub-tree below the router. A
forwarding loop is shown in Figure 1.

Flow duplication is another possible anomaly as shown in Figure 2. Fig-
ures 2(b)-(c) show that even flow duplication can cause the number of packet to
grow – according to Fibonacci sequence and as the powers of two.

The above attacks can also be combined. If link identifiers are common knowl-
edge, the attacker can form a Bloom filter that corresponds to the Figure 2(c)
which also includes one or more links back to the first router, causing the packet
load to explode both in network and in all receiver hosts.

Target Path Attack. An attacker controlling a large number of hosts can try
to coordinate as many packet flows as possible to a single link or a particular
path. If link identifiers are common knowledge (1), then this is simple. Each host
just computes a forwarding tree that goes through chosen link. If however, the
link identifiers are secret and static (2), then the attacker has a few potential
attacks available: injection attack – where she tries Bloom filters that get traffic
forwarded along a certain delivery tree, correlation attack – where she attempts
to infer workable link identifiers from a collection of legitimate Bloom filters,
and replay attack – where a valid Bloom filter is misused to send unauthorized
traffic (i.e., with different content or flow identifiers). [13]

6 M. Särelä et al.

Fig. 3. The left side shows multicast Join message using iBFs. The right side shows a
simplified Membership Table MT(S) that contains the Bloom filters for A, B, C, and
D. The separated bottom row shows how to combine the Bloom filters in to an iBF.

3 BloomCasting

BloomCasting is a secure source specific multicast technique, which transfers the
membership control and per group forwarding state from the multicast routers
to the source. Similar to [25,16,32], it uses in-packet Bloom filter (iBF) to encode
the forwarding tree. BloomCasting separates multicast group management and
multicast forwarding.

To join, a host sends a join request (BC JOIN) towards the source S. Inter-
mediate routers record forwarding information into the packet, thus when the
packet reaches S, it will contain a collecting iBF for the source-receiver path.
By combining together the iBFs for all the receivers, the source will have an
iBF encoding for the whole multicast tree. When a host does not wish to re-
ceive packets for the group anymore, it sends an authenticated leave message to
S. Upon processing this packet, the source will reconstruct the Bloom filter for
the group leaving out the recently pruned path. The operation is illustrated on
Figure 3.

Data packets are routed using the forwarding iBF placed in the BC FW header.
Each intermediate router takes its forwarding decision by querying it with the
question: which of my outgoing links are present in the iBF? It then forwards
the packet to the corresponding peers. Eventually, the packet reaches all the
receivers, following the sequence of routers the BC JOIN packets traversed, in
reverse order.

3.1 Group Membership Management

Group membership management includes the joining, leaving, and maintenance
of multicast groups, and this is the main task of the control plane. Along this
discussion, we show how multicast trees are encoded into iBFs.

Joining a Group: When a host joins a multicast group, it sends a (BC JOIN)
message towards the source. The packet contains the following information:
(S,G) specifying the multicast group and a collecting iBF. The latter is used for

BloomCasting: Security in Bloom Filter Based Multicast 7

Algorithm 1. Adding edge-pair labels (E) and permuting collect and forward
iBFs at transit routers.

Collect iBF (C):

E ← ZK(S,G,Rp, Rc, Rn);
C ← C ∨ E;
C ← Permutec(C);

Forward iBF (F):

foreach outgoing link i do
F ← Permute−1

c (F);
E ← ZK(S,G,Rn, Rc, Rp);
if E ∧ F = E then

Send F → i;
end

end

collecting the forwarding information between the source and the receiver.
Finally, it also contains a hash chain anchor for future signaling security.

In each router, the next hop for the BC JOIN message towards S is found from
routing information base.1 As the message travels upstream towards the source,
each router records forwarding information into the packet by inserting the edge
pair label E into the collector iBF. After this, for loop prevention and increased
security, it performs a bit permutation on the collector iBF. Finally, it selects the
next hop usptream towards S. The operation is shown on Algorithm 1. Unlike
traditional IP multicast approaches, where the forwarding information is installed
in routers on the delivery tree, transit routers do not keep any group-specific state.

Once the BC JOIN message reaches the source, it contains sufficient informa-
tion so that the source can send source-routing style packets to the recently
joined host. The source stores this information in the Membership Table (MT),
as shown in Figure 3. The source can now send packets to the multicast tree by
combining iBFs for the group, by bitwise ORing them together.

Leaving a Group: When a receiver wishes to leave the group, it sends a
BC LEAVE towards S, including the next element from the hash chain it used
when joining the group. On-path routers forward the packet to S. As no fur-
ther processing is needed in intermediate routers, unlike pruning packets in IP
multicast, BC LEAVE packets always routed to the source.

S verifies the hash and removes (or de-activates) the entry in the Membership
Table. Single message hash authentication, vulnerable to man-in-the-middle at-
tacks, is sufficient, since the hash is only used to verify that the host wishes
to leave the group. As a final step, it recomputes the forwarding iBF of the
delivery tree. An example of a forwarding iBF is shown in Figure 3 at the
separated bottom row of the table.

1 Just like in standardized IP multicast protocols, this forwarding decision can be taken
according to the RIB created by BGP or according to the Multicast RIB created by
MBGP [8].

8 M. Särelä et al.

Refreshing Membership State: The iBFs in the MT may become stale,
either because of changing the key to compute the edge-pair labels or due to
route failures. Keys are expected to change periodically (e.g., every few hours)
to increase security by excluding brute force attacks [13]. This means that the
iBF needs to be recomputed with a new BC JOIN packet. When making the
forwarding decision, during a transition period routers need to compute edge-
pair labels for both the old and the new key. If they find that an edge-pair label
computed with the old key is present in the iBF, they set a flag in the BC FW
header indicating that the receiver should send a BC JOIN again, as the iBF will
soon become invalid. When a packet is to be forwarded on a failed link, the
router sends an error message back to the source.

3.2 Multicast Forwarding

So far, we have discussed how hosts join and leave multicast groups. We now
show how data packets are forwarded between the source and the receiver.

As we saw previously, iBFs for each receiver border router are stored sepa-
rately in the Membership Table. We also saw the basic concept of deriving the
forwarding iBF from the MT information; now we extend that with new details.

For each group, the source stores one or more iBF for each next hop router
in its BloomCasting Forwarding Table (BFT).2 In practice, the capacity of a
packet-size iBF is limited in order to guarantee a certain false positive perfor-
mance (practical values suggest around 25 destinations in 800-bit iBFs [25]).
In case of large multicast groups, several iBFs are created, one for each partial
multicast tree, and duplicate packets are sent to each next hop.

The source creates one copy of the packet for each next hop for (S,G) in the
BFT. It creates a BC FW header, fills it with the corresponding iBF, and sends it
to the next hop router.

Each router makes a forwarding decision based on the iBF, as shown in Algo-
rithm 1. First, it applies the reverse permutation function to the iBF, replacing
the iBF with the result. Then, it checks for the presence of peer routers by com-
puting one edge-pair label for each potential next hop router Rn, based on the
previous and the current router on path Rp and Rc respectively,3 and on group
identity (S,G) found in the IP header as shown in Algorithm 1. In the final step,
the router checks whether the iBF contains the edge-pair label, by simple bitwise
AND and comparison operations.

The remaining problem is how to compute the dynamic edge-pair labels at core
routers at line speed. This can be done by taking the values (S, G, K, Rp, Rc, Rn)
and running them through a fast, spreading hash function (cf. e.g. [20,31]). The
spreading hash function yields the bit locations for the edge-pair labels. The
method can be applied locally at each router, having no impact on the protocol.

2 This improves forwarding performance, as the false positive probability increases
with the number of iBF inserted elements.

3 The router uses the same inputs as in the BC JOIN. hence the Rp and Rn switch
places due to direction change.

BloomCasting: Security in Bloom Filter Based Multicast 9

Fig. 4. Protocol messages when joining group (S,G): 1 - IGMP Membership Report or
MLD Multicast Listener Report; 2,10 - PIM-SSM JOIN(S,G); 3-9 - BC JOIN(S,G)

3.3 Connecting Intra-domain Multicast with BloomCasting

BloomCasting can be used to specify the operations between source and receiver
ASes.4 This section discusses how multicast forwarding state is set up inside the
domains containing the sender and/or receivers using IP multicast (PIM-SSM
deployments) Figure 4 illustrates the protocol messages when a multicast receiver
joins a multicast group (S,G).

When a receiver joins (S,G), it signals (1) its interest in its LAN with IGMPv3
or MLDv2 protocols. The Designated Router then sends a PIM-SSM JOIN(S,G)
message upstream (2), by looking up the reverse path to S. The message is
propagated upstream until a router is found that holds forwarding state for the
group or until a border router of the domain is reached (standard PIM-SSM
operations). The border routers implement both PIM-SSM and BloomCasting.
PIM signaling now terminates. If the border router was not yet a receiver for
the group, it creates a BC JOIN packet and sends it towards S (3-9).

The iBF collection process is otherwise as described in Section 3.1 except each
AS is considered to be a singe logical router.

At the other end, the source AS border router receives a BC JOIN for a group
that resides in the local domain and processes it as specified in Section 3.1. If it
is not yet a receiver for the group locally, it sends a join packet using PIM-SSM
standardized operations (10). The JOIN(S,G) is propagated further upstream
towards the source, with standard PIM operations. Eventually, as far as PIM
concerned, a domain-local multicast tree will be built with routers representing
local receivers and border routers representing subscribers in remote domains.

The data packets are forwarded using the domain-local multicast protocol to
the border routers in the source AS. The border router creates a single copy for
each entry in the BFT, adds the BloomCasting header, and forwards the packets.
When an ingress border router receives packet with the BC FW header, it checks
whether it has domain-local receivers and forwards a decapsulated copy using
the domain-local multicast protocol. The router also checks whether neighboring
domains are included in the iBF and forwards the packet to those domains (using
e.g. IP-in-IP, GRE encapsulation, or MPLS paths or trees).

4 An AS is an autonomous system, a network participating in the inter-domain routing
protocol (BGP). The source and receiver could also be an area consisting multiple
ASes that deploys a shared multicast architecture.

10 M. Särelä et al.

4 Security Techniques in Bloom Filter Based Forwarding

In Section 2, we introduced a threat model for in-packet Bloom filter based for-
warding by showing several attacks taking advantage of some forwarding anoma-
lies inherent to Bloom filter based forwarding. Now, we present techniques for
solving these forwarding anomalies; then, in Section 5, we evaluate them from
security perspective.

Basically, the solutions presented here include pre-processing verification of
Bloom filters, and some rules to be followed in the packet forwarding process
and during the Bloom filter creation phase.
Limiting the fill factor (ρmax) ensures that the attacker cannot set, e.g., all
bits in the Bloom filter to 1, which would equal to every link in the network
being included. Before any packet handling operation, routers need to verify the
Bloom filter [30], i.e. they need to check for ρmax compliance before attempting
to forward the packet. Typically, ρmax is set to ≈ 0.5, which corresponds to the
most efficient usage in terms of bits per element per false positive rate.
Cryptographic Bloom filters: Bloom filters for forwarding can be differentiated
based on the nature of the link identifiers: (1) link identifiers are common knowl-
edge [25], (2) link identifiers are secret, but static [16], and (3) link identifiers
are secret per flow and change periodically with key are computed per incom-
ing/outgoing edge pair instead of per link [13].

Bloom filters gain capabilities [2], when the edge pair label is computed using
cryptographically secure hash functions, secret key, and flow information from
the packet (e.g., IP 5-tuple, (S, G)). Each link identifier of size m and with
k bits set to one (i.e., a one element Bloom filter) can be computed as the
output of a function zF (In, Out, K(ti), I, p). The resulting identifiers become
dynamic and bound to the In and Out interfaces of each hop i, the time period
of a secret key K(ti), and additionally dependent of packet information like the
Flow ID I (e.g., source and group addresses) and an optimization parameter p
(cf.Z-formation [13]).
Varying the number of hash bits (kvar): This technique deals with the number of
ones (k) in the link identifiers set by different routers, and aims to decrease the
false positive rate. Assuming that there is a fixed maximum fill factor ρ for iBF,
e.g. ρ = 0.5+ε, the average number of false positive in a given router depends on
its degree d, the number of hash functions k it uses, and the number of outgoing
branches b such that the average number of false positives is ρk ·(d−b−1). Hence,
we proposed [26] that each router sets k locally such that ρk ·d < α, where α < 1
sets the routers preference for the average false positive rate. As routers compute
the hash functions for the collecting iBF themselves, the number k is purely a
local matter. In other words, the number of bits k set to 1 in the link identifiers
is not a global parameter, but can be defined per node.
Permutations Pi(iBF): We use per hop bit permutations to prevent loops and
flow duplications. A bit permutation is a (pseudo) random rearrangement of the
bit array. Each router can use the same bit permutation for all iBFs passing
through it making it easy to implement with programmable logic.

BloomCasting: Security in Bloom Filter Based Multicast 11

First, after passing through the intended path to a router R, the f orwarding
iBF has to match the k hash values that the router added when the collecting
iBF was forwarded through it. When the iBF is collected, the routers between
R and source S change some bits from 0 to 1 and permute the packet. S then
combines a set of collecting iBFs in to a forwarding iBF and the routers between
S and R (including R) perform reverse permutations on the iBF. Hence, once the
packet arrives in R, the bits that R set to 1 will be in exactly the same positions
as they were when the iBF was collected. Since no operation changes a value of
a bit from 1 to 0, the matching process works correctly.

Second, if the path taken is different from the one intended for the packet,
the iBF should not match the k hash values. Per hop bit permutations enable
the iBF itself to carry a “memory” of the path it has traversed [26]. As each
router modifies the iBF when forwarding the packet, after passing through two
different edges and entering back the initial node, i.e. after a loop, the iBF is
changed with a random bit permutation. Hence, it will likely not match the same
edge-pair labels again. Each router permutes Pi(iBF) when the iBF is initially
collected and then reverse permutes Pi(iBF)−1 the iBF when a packet is sent
using the iBF.

5 Security Evaluation

We now analyze how BloomCasting mitigates the security threats (described
in Section 2) against Bloom filter based multicast forwarding. As mentioned in
Section 2.2, we focus on malicious host-initiated attacks. Further architectural
considerations w.r.t scalability, bandwidth efficiency, state requirements, control
overhead, etc. are out of scope of this evaluation and left for future work.

Table 1 presents an overview of the mapping between the available techniques
(Section 4) and the attacks addressed. As can be seen, BloomCasting combines
four techniques to prevent the six security threats described in Section 2.2.

Packet storms are prevented with the combination of limiting the maximum
fill factor ρmax and the varying kvar technique. Globally enforced ρmax values
enable each router to compute kvar locally so that every Bloom filter with a
valid fill factor produces, on average, less than 1 false positives. Since the Bloom
filters are collected on path with the BC JOIN packet, it is easy to set kvar locally.
Additionally, this optimization of k reduces the actual false positive rate [26].

Loops are a serious threat to any network infrastructure. The combination
of maximum fill factor ρ and z-Formation makes it difficult for an attacker to
construct looping Bloom filters. The first removes the easy attack of just adding
bits into the Bloom until every link matches and the z-Formation ensures that
guessing the right Bloom filter is difficult (see [13] for details).

To prevent accidental loops, each router performs a bit permutation on the
Bloom filter before performing the outport matching – when using the Bloom
filter for forwarding (and after matching – when collecting a Bloom filter). If a
packet does go through a loop, either because of a false positive or a malicious
source, the Bloom filter has been modified with a random permutation (a product
of the permutations performed by the set of routers participating in the loop).

12 M. Särelä et al.

Table 1. Mapping of solutions to attacks

Attack - Technique ρmax kvar z-F P (iBF)

Packet storms + +

Loops + + +

Flow duplication + + +

Injection + +

Correlation + +

Replay +

Using permutations ensures a high probability that the packet will not con-
tinue looping and that it will not be forwarded to the downstream tree for a
second, or nth time. As an example, the chances of an infinite loop in a three
node loop configuration with ρ = 0.5, k = 6, and m = 256 are in the order of
O(10−12). The chances that a packet will be forwarded through the subtree once
are ρκ, where κ =

∑
ki is the sum of all hash functions used in the subtree.

Finally, while the security is not dependent on the secrecy of the permutations
performed in each router, it is dependent on the secrecy of the edge-pair labels.
Consider a known permutation attack, in which an attacker knows the network
topology and the permutations used by a set of routers. It can now compute
the cycle sets of the combined permutation and choose a combination that has
approximately the size of the maximum fill factor. However, it does not know
a combination of a Bloom filter and source and group address that will ensure
that the routers on path and in the loop will have edge-pair labels that match
the Bloom filter. The best it can do is vary the group address. In this case, the
probability of success is ρκ, where κ is the total number of bits that need to be
set on path to the point of loop and in the loop.

Flow duplication: Similarly to loops, flow duplication can be effectively pre-
vented with the combination of restricting fill factor ρ, edge-pair labels, and per
hop bit permutations. The result gives an attacker ρκ probability of creating a
specific subtree by accident.

Packet injection attacks, correlation attacks, and replay attacks can be effi-
ciently prevented using the z-Formation technique [13]. It uses cryptographically
secure edge-pair labels that are computed based on the flow, and time, and path.
This makes it impossible to share iBFs from different points of network, at dif-
ferent time instants, or to different destinations.

Consequently, the best strategy for a successful packet injection attack is re-
duced to a brute force attack consisting of generating random labels and hoping
that at least one of them reaches the target(s). An attacker needs malformed
iBFs to cause h consecutive false positives to get packets forwarded through a
valid iBF path of length h. The chances of success in one attempt can be ap-
proximated to p = ρmax

h·k, which is very low for typical configurations (e.g.,
p = 2−36 for h = 4, k = 8, ρ = 0.5, i.e., over 1010 attempts are required for
a 1/2 probability successful attack). Such brute force attacks can be easily de-
tected, rate limited and pushed back, for instance after the false positive rate

BloomCasting: Security in Bloom Filter Based Multicast 13

from a given source exceeds some threshold. Additionally, a forged iBF would
work through the target path attack as long as the distributed secret K(t) is not
renewed.
Source and receiver control: As the group management in BloomCasting is end-
to-end, it gives source control over the receivers it accepts. If it wishes to, it
can require receiver authentication before adding a receiver into the group. Sim-
ilarly, multicasting to a receiver requires knowing the iBF that forms the path
between source and destination. Since the iBF is cryptographically bound to
(S,G), each router’s secret key, and the path (via permutations and edge-pair
labels), guessing an iBF for a path is difficult, as shown above.

Resource consumption attacks against the memory and processing capacity of
routers do not become easier than they are in unicast forwarding. The routers
do not need to maintain multicast state and the iBF collection and forwarding
processing can be done in line speed in hardware and in parallel for each peer.
The multicast source needs to maintain state for receivers. This is a needed fea-
ture, since this makes it possible source control over who can and who cannot
join the multicast group. Simultaneously, it leaves the source vulnerable to at-
tacker who creates a storm of multicast join packets. A source can use a receiver
authentication protocol, which pushes the authentication protocol state to the
initiator (e.g., the base exchange of Host Identity Protocol [21] could be used for
that purpose) to limit the state requirements to authenticated receivers.

False positive forwarded packets may compromise the ephemeral secrecy of
the multicast data to non group-members, i.e., some packets may reach unin-
tended destinations. The time- and bit-varying iBFs contribute to spreading false
multicasted packets across different links over time, preventing thus a complete
reception of a multicast packet flow.5

Anonymity of source is not an option in source specific, since the group is
identified with combination (S,G) where S is the sender address and G the group
address. However, even though the protocol uses source routing, the actual paths,
or nodes on path are not revealed to the source and the source can only use the
related iBFs in combination with traffic destined to (S,G).

Receivers do not need to reveal their identifies or addresses to the network,
or the source – the receiver (IP) address is not necessary in the protocol. The
authentication, should the source require it, can be done end-to-end without
revealing the identities to the intermediate routers. As the keys used to compute
iBFs are changed periodically, correlation attacks between two or more Bloom
filters used at different times become impossible. Similarly, since the edge-pair
labels are tied to group identifier (S,G), an attacker cannot use a set of iBFs
with different group addresses to determine whether the set contains one or
more common receivers. These techniques effectively prevent traffic analysis and
related vulnerabilities such as clogging attacks (cf. [5]).

5 As assumed in Section 2, data authenticity is kept out of scope of the iBF forwarding
service and can be provided by orthogonal security policies and group key manage-
ment techniques (e.g., following the guidelines of [15]).

14 M. Särelä et al.

6 Related Work

Compared with unicast, multicast communication is at a substantially increased
risk from specific security threats due to the lack of effective group access control
and larger opportunities for link attacks. Over the last decade, much effort has
been put in the field of multicast security, see e.g. [6,18,11,15,27].

At the IETF, earlier work has provided a taxonomy of multicast security issues
[11] and a framework for secure IP multicast solutions [14] to address the three
broad core problem areas identified: (i) fast and efficient source authentication
(e.g. [6,17]), (ii) secure and scalable group key management techniques, and (iii)
methods to express and implement multicast-specific security policies. Our focus,
however, has been on DoS attacks against the network infrastructure.

Service availability attacks due to routing loops and blackholes were discussed
in [28]. The proposed solution was the keyed HIP (KHIP) protocol to allow
only trusted routers joining the multicast tree. Our aim is a general and open
SSM architecture that does not require group access restrictions provided by the
infrastructure.

Free Riding Multicast [25] proposes an open any source multicast service in
which each link is encoded as a set of hashes from the AS number pair. This leaves
the forwarding plane open to a variety of attacks. Odar [29] showed that Bloom
filters can be used for anonymous routing in adhoc networks. Limiting fill factor
as a security feature in Bloom filter based (unicast) capabilities was first proposed
in [30]. LIPSIN [16] uses Bloom filter forwarding plane for publish/subscribe
architecture with a separate topology management system that helps to keep
the link identifiers secret. However, an attacker can still use target path attacks.
Z-formation [13] prevents target path attacks by using edge-pair labels that
depend on flow identifier, but is still open to e.g. chain reaction attacks.

Si3 [1] proposed a secure overlay to solve problems related to secure multicast.
While distributed hash tables spread load efficiently across the system, they lack
e.g. policy compliant paths and control over who is responsible for particular
connection.

7 Conclusions

In this paper, we evaluated the security of Bloom filter based forwarding. False
positives inherent to Bloom filters enable a host of attacks on target service and
network infrastructure availability. These attacks include chain reaction attacks,
which use the Bloom filter properties (e.g. false positives) to ensure that the
network forwarding infrastructure multiplies every packet sent using the Bloom
filter and targeted attacks in which the attacker enables many nodes to target
the same path in the network.

We show that these problems can be solved by the combination of limiting
Bloom filter fill factor, both minimum and maximum, using cryptographically
computed edge-pair labels in the Bloom filters, varying the number of hash
functions locally based on the router degree, and using per hop bit permutations
on the Bloom filter.

BloomCasting: Security in Bloom Filter Based Multicast 15

We also proposed BloomCasting, a secure source-specific multicasting tech-
nique based on in-packet Bloom filters. The technique is based on end-to-end
signaling of group membership and hop-by-hop collection of the needed Bloom
filters. As future work, we intend to study the possibility of collecting multiple
paths in advance as a technique for increasing fault tolerance to route failures.

References

1. Adkins, D., Lakshminarayanan, K., Perrig, A., Stoica, I.: Towards a more functional
and secure network infrastructure (2003)

2. Anderson, T., Roscoe, T., Wetherall, D.: Preventing Internet denial-of-service with
capabilities. ACM SIGCOMM Computer Communication Review 34(1), 44 (2004)

3. Atwood, W., Islam, S., Siami, M.: Authentication and Confidentiality in Protocol
Independent Multicast Sparse Mode (PIM-SM) Link-Local Messages. RFC 5796
(Proposed Standard) (March 2010), http://www.ietf.org/rfc/rfc5796.txt

4. Aura, T., Nikander, P.: Stateless Connections. In: Han, Y., Quing, S. (eds.) ICICS
1997. LNCS, vol. 1334, pp. 87–97. Springer, Heidelberg (1997)

5. Back, A., Möller, U., Stiglic, A.: Traffic Analysis Attacks and Trade-Offs in
Anonymity Providing Systems. In: Moskowitz, I.S. (ed.) IH 2001. LNCS, vol. 2137,
pp. 245–257. Springer, Heidelberg (2001)

6. Ballardie, T., Crowcroft, J.: Multicast-specific security threats and counter-
measures. In: SNDSS 1995: Proceedings of the 1995 Symposium on Network and
Distributed System Security (SNDSS 1995), p. 2. IEEE Computer Society, Wash-
ington, DC (1995)

7. Barbir, A., Murphy, S., Yang, Y.: Generic Threats to Routing Protocols. RFC 4593
(Informational) (October 2006), http://www.ietf.org/rfc/rfc4593.txt

8. Bates, T., Chandra, R., Katz, D., Rekhter, Y.: Multiprotocol Extensions for BGP-
4. RFC 4760 (Draft Standard) (January 2007),
http://www.ietf.org/rfc/rfc4760.txt

9. Bhattacharyya, S.: An Overview of Source-Specific Multicast (SSM). RFC 3569
(Informational) (July 2003), http://www.ietf.org/rfc/rfc3569.txt

10. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

11. Canetti, R., Pinkas, B.: A taxonomy of multicast security issues. IRTF Internet-
Draft (draft-irtf-smug-taxonomy-01) (August 2000)

12. Diot, C., Dabbous, W., Crowcroft, J.: Multipoint communication: A survey of
protocols, functions, and mechanisms. IEEE Journal on Selected Areas in Com-
munications 15(3), 277–290 (1997)

13. Esteve, C., Jokela, P., Nikander, P., Särelä, M., Ylitalo, J.: Self-routing Denial-of-
Service Resistant Capabilities using In-packet Bloom Filters. In: Proceedings of
European Conference on Computer Network Defence, EC2ND (2009)

14. Hardjono, T., Canetti, R., Baugher, M., Dinsmore, P.: Secure ip multicast: Prob-
lem areas, framework, and building blocks. IRTF Internet-Draft (draft-irtf-smug-
framework-01) (September 2000)

15. Hardjono, T., Weis, B.: The Multicast Group Security Architecture. RFC 3740
(Informational) (March 2004), http://www.ietf.org/rfc/rfc3740.txt

16. Jokela, P., Zahemszky, A., Esteve, C., Arianfar, S., Nikander, P.: LIPSIN: Line
speed publish/subscribe inter-networking. In: SIGCOMM (2009)

http://www.ietf.org/rfc/rfc5796.txt
http://www.ietf.org/rfc/rfc4593.txt
http://www.ietf.org/rfc/rfc4760.txt
http://www.ietf.org/rfc/rfc3569.txt
http://www.ietf.org/rfc/rfc3740.txt

16 M. Särelä et al.

17. Judge, P., Ammar, M.: Gothic: a group access control architecture for secure mul-
ticast and anycast. In: INFOCOM 2002. Twenty-First Annual Joint Conference
of the IEEE Computer and Communications Societies. Proceedings. IEEE, vol. 3,
pp. 1547–1556 (2002)

18. Judge, P., Ammar, M.: Security issues and solutions in multicast content distribu-
tion: A survey. IEEE Network 17, 30–36 (2003)

19. Kleinrock, L., Kamoun, F.: Hierarchical routing for large networks Performance
evaluation and optimization. Computer Networks 1(3), 155 (1976/1977)

20. Krawczyk, H.: LFSR-Based Hashing and Authentication. In: Desmedt, Y.G. (ed.)
CRYPTO 1994. LNCS, vol. 839, pp. 129–139. Springer, Heidelberg (1994)

21. Moskowitz, R., Nikander, P.: Host Identity Protocol (HIP) Architecture. RFC 4423
(Informational) (May 2006), http://www.ietf.org/rfc/rfc4423.txt

22. Moyer, M., Rao, J., Rohatgi, P.: A survey of security issues in multicast commu-
nications. IEEE Network 13(6), 12–23 (1999)

23. Paul, P., Raghavan, S.V.: Survey of multicast routing algorithms and protocols.
In: ICCC 2002: Proceedings of the 15th International Conference on Computer
Communication, pp. 902–926. International Council for Computer Communication,
Washington, DC (2002)

24. Rafaeli, S., Hutchison, D.: A survey of key management for secure group commu-
nication. ACM Computing Surveys (CSUR) 35(3), 329 (2003)

25. Ratnasamy, S., Ermolinskiy, A., Shenker, S.: Revisiting IP multicast. ACM SIG-
COMM Computer Communication Review 36(4), 26 (2006)

26. Särelä, M., Rothenberg, C.E., Aura, T., Zahemszky, A., Nikander, P., Ott, J.: For-
warding Anomalies in Bloom Filter Based Multicast. Tech. rep., Aalto University
(October 2010)

27. Savola, P., Lehtonen, R., Meyer, D.: Protocol Independent Multicast - Sparse
Mode (PIM-SM) Multicast Routing Security Issues and Enhancements. RFC 4609
(Informational) (October 2006), http://www.ietf.org/rfc/rfc4609.txt

28. Shields, C., Garcia-Luna-Aceves, J.J.: Khip—a scalable protocol for secure mul-
ticast routing. In: SIGCOMM 1999: Proceedings of the Conference on Applica-
tions, Technologies, Architectures, and Protocols for Computer Communication,
pp. 53–64. ACM, New York (1999)

29. Sy, D., Chen, R., Bao, L.: Odar: On-demand anonymous routing in ad hoc networks.
In: Proc. of IEEE Mobile Adhoc and Sensor Systems (MASS), pp. 267–276 (2006)

30. Wolf, T.: A credential-based data path architecture for assurable global networking.
In: Proc. of IEEE MILCOM, Orlando, FL (October 2007)

31. Yuksel, K.: Universal hashing for ultra-low-power cryptographic hardware applica-
tions. Ph.D. thesis, Citeseer (2004)

32. Zahemszky, A., Jokela, P., Särelä, M., Ruponen, S., Kempf, J., Nikander, P.: MPSS:
Multiprotocol Stateless Switching. In: Global Internet Symposium 2010 (2010)

http://www.ietf.org/rfc/rfc4423.txt
http://www.ietf.org/rfc/rfc4609.txt

Authentication Session Migration

Sanna Suoranta, Jani Heikkinen, and Pekka Silvekoski

Aalto University, School of Science and Technology, Konemiehentie 2, 02150 Espoo

Abstract. Consumers increasingly access services with different devices such
as desktop workstations, notepad computers and mobile phones. When they want
to switch to another device while using a service, they have to re-authenticate.
If several services and authenticated sessions are open, switching between the
devices becomes cumbersome. Single Sign-on (SSO) techniques help to log in
to several services but re-authentication is still necessary after changing the de-
vice. This clearly violates the goal of seamless mobility that is the target of much
recent research. In this paper, we propose and implement migration of authen-
tication session between a desktop computer and a mobile device. The solution
is based on transferring the authentication session cookies. We tested the ses-
sion migration with the OpenID, Shibboleth and CAS single sign-on systems and
show that when the authentication cookies are transferred, the service sessions
continue seamlessly and do not require re-authentication. The migration requires
changes on the client web browsers but they can be implemented as web browser
extensions and only minimal configuration changes on server side are sometimes
required. The results of our study show that the client-to-client authentication ses-
sion migration enables easy switching between client devices in online services
where the service state is kept in the cloud and the web browser is acting as the
user interface.

1 Introduction

During the last ten years, there has been steady increase in the number of web-based
applications and cloud services have become widespread. Often, the services require
authentication. As the number of applications has increased, the burden of authenti-
cating to each one of these services has become unbearable to the user. Several single
sign-on (SSO) techniques have been developed to help users to cope with their accounts
in the various services. The problem, however, further aggravated by the fact that peo-
ple have many devices such as smart phones, laptops, and notepad computers, and they
alternate between these devices depending on the context. This context can be deter-
mined by several factors, namely the purpose of the use, time, and location. As a result,
the number of devices and accessed web-based applications can create a considerable
amount of work for a mobile user since there can be a number of sessions on differ-
ent devices, each of which require separate authentication. In particular, when the user
wants to switch to use another of her devices, for example, from a desktop workstation
to a notepad computer, she has to re-authenticate. In order to mitigate this problem and
to extend SSO to service access from multiple devices, we have developed techniques
for authentication session mobility between personal devices.

T. Aura, K. Järvinen, and K. Nyberg (Eds.): NordSec 2010, LNCS 7127, pp. 17–32, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

18 S. Suoranta, J. Heikkinen, and P. Silvekoski

Different mobility types include mobility of people, services, session state and ter-
minals [7]. All these are necessary for a ubiquitous computing environment. Many so-
lutions and techniques have been developed for terminal mobility, for example, Mobile
IP [33] and Session Initiation Protocol (SIP) [40]. Service mobility means mainly con-
sistent network connection establishment — that devices can connect to different kinds
of networks seamlessly. In order to provide personal mobility, which means that a user
can use any device and switch devices during a task, session mobility or session mi-
gration becomes essential. Historically, session migration has meant the migration of
processes or virtual machines mainly in homogeneous server farms, and it has been dif-
ficult to implement anything similar in heterogeneous client systems. Fortunately, most
new services are accessed with web browsers and the session state information is stored
in the server or the cloud. Thus, session mobility in many modern services means sim-
ply moving the authentication session, which is the only part of the session that has a
state stored on the client device.

Web-based applications have the concept of a session for indicating an authenticated
user. The session information is typically stored on the server and the client only stores
a session identifier in a cookie. When a user returns to the service during the same ses-
sion, the web server gets the client identity information from the cookie that is delivered
together with the service request. Also, many SSO and federated identity management
(FIM) techniques, for example, OpenID [35] and Shibboleth [25], use cookies to indi-
cate the authenticated user. In FIM, the service and authentication have been separated
to two distinct providers. The user contacts first the service provider, which then redi-
rects the user to a separate identity provider for authentication. When the user has suc-
cessfully authenticated herself, the identity provider informs the service provider, and
the service provider can then decide whether the user has rights to access the service.
In the process, an authentication session is created both between the user device and
the identity provider and between the user device and the service provider. The user
can reuse the authentication session for another service since she has a cookie from the
identity provider that shows who she is, or the identity provider remembers that she has
already authenticated herself.

In this paper, we implement client-side migration of the authentication sessions. Our
goal was to create a system that requires no changes to the identity provider or service
provider. In our prototype implementation, the user can continue using a service af-
ter transferring the authentication session cookies from one device to another one. We
tested our system using the Shibboleth, OpenID and CAS [26] single sign-on mecha-
nisms.

The paper is organized as follows. First, we describe session migration technologies
from the literature in Sec. 2. We introduce federated identity management systems and
explain how they use cookies in web browsers for sessions in Sec. 3. Then, Sec. 4 and
5 present the design of our solution for client-side migration of authentication session
and how we have implemented it on Firefox. In Sec. 6, we discuss how the implemen-
tation can be extended to work on other platforms. In Sec. 7, we evaluate the proposed
techniques by testing them. In Sec. 8, we discuss what should be done in order to make
the session migration work in all browsers and devices and, finally, Sec. 9 concludes
the paper.

Authentication Session Migration 19

2 Related Work on Session Migration

Virtual machine process migration was a widely studied subject already as early as in
the 1980s. Milojicic et al. [32] survey the most important process migration implemen-
tations before year 2000, for example MOSIX [4], Sprite [16], and Mach [1]. They list
reasons why these have not gained wide adoption: complexity, costs, non-transparency,
homogeneity, lack of applications and infrastructure, and that users did not need the mi-
gration. Later, virtual machine process migration has become essential on server side to
guarantee higher performance and shorter out-of-service time, to enable load-balancing
and to facilitate fault management [12]. For example, Clark et al. [12] describe how
to migrate an entire live virtual operating system and all of its applications in Xen
virtual machines. Also other virtualized operating systems provide migration. For ex-
ample, OpenVZ has an extension called CheckPoinTing (CPT) that allows OpenVZ
kernel to save a virtual environment and restore it later even on a different host [37],
and another Linux based solution, Kernel-based Virtual Machine (KVM) has similar
functionality [29]. Mostly virtual operating systems are used on server side for hosting
several services on one physical server and for load balancing. Nevertheless, also client
side solution exists: MobiDesk virtualizes the user’s whole computing session allowing
transparent migration of sessions from one computer to another [5].

A whole virtual operating system is easier to migrate than a single application be-
cause all memory and state dependencies are handled inside the kernel as one packet.
However, moving only application sessions takes less capacity on the communication
path and the participating devices may be able to use different operating systems. A
stand-alone application is of course easier to move than an application client that com-
municates with an external service and needs also connection and session state infor-
mation on the server side. In this paper, we are more interested in the communicating
applications. Communication service sessions can be migrated in many ways in differ-
ent layers of the protocol stack. Some techniques migrate the session directly between
two devices, others use proxies where the session is stored during the migration.

Allard et al. [3] have presented a solution for transferring IPsec context using Con-
text Transfer Protocol (CXTP) [31]. The solution is targeted for mobile nodes that move
between networks but it works also for switching between devices. The mobile node has
a secure connection using IPsec VPN tunnel through an access router with its Mobile
IPv6 home agent. In the context transfer, the access router end of the IPsec tunnel is
moved to another access router. The IPsec context consists of IP addresses, security
parameter indexes that identify the used security associations (SAs), and other SA in-
formation telling the used algorithms and modes etc.

On the transport layer, Secure Socket Layer (SSL) [36] and Transport Layer Secu-
rity (TLS) [14] allow caching of sessions since creation of cryptographic keys can be
heavy. Caching is not always enough on the server side where load-balancing is used
in addition. Hatsugai et al. [23] present a way for servers to migrate SSL sessions from
one server to another one dynamically when the servers form a cluster but their solution
is working on the server side and it is not for the client. Koponen et al. [28] extend the
TLS protocol so that sessions can survive changing IP addresses, which means that the
client can move in the network. Newer transport layer protocols, such as Stream Con-
trol Transmission Protocol (SCTP) [48], which is originally designed for transferring

20 S. Suoranta, J. Heikkinen, and P. Silvekoski

telephone signaling messages over IP networks, provides transport layer mobility by
multihoming: the connection can have multiple source and destination IP addresses [9].

Many studies present how multimedia sessions or browser based communication
sessions can be migrated. Hsieh et al. [24] introduce three approaches for the browser
session migration: client-based, server-based and proxy based. Several implementations
for these approaches exist. For example, Basto Diniz et al. [15] introduce session man-
agement for the ubiquitous medical environment where sessions can be migrated be-
tween devices or even suspended by storing them into a server. Cui et al. [13] have
developed a middleware solution for user mobility where the client host uses service
discovery to locate the services and store state information and handoff manager moves
the session when the user changes the device. Bolla et al. [6] approach the problem of
multimedia session migration from different starting point: they introduce a Personal
Address to identify users and their sessions instead of the network dependent IP ad-
dresses. Moreover, many web service solutions are based on SIP. For example, Shacham
et al. [42] have created a SIP based session migration for multimedia content. Their so-
lution has two security features: authentication of the device user with a secure token or
close proximity, and privacy features where the participants of a communication session
can deny session transfer to less trusted devices. Adeyeye et al. [2] present another SIP
based solution that allows transferring session data between two web browsers.

RFC3374 [27] lists Authentication, Authorization and Accounting (AAA) informa-
tion context transfer as one facilitator of seamless IP mobility. For example, Bournelle
et al. [8] extend the above mentioned CXTP protocol for transferring network access
authentication sessions that use the PANA protocol [19] from one device to another
one in order to speed up handover by avoiding re-authentication. Also, Georgiades et
al. [20] added AAA context information to Cellular-IP protocol messages in order to
improve handover performance.

Nevertheless, many of these above mentioned solutions, especially the AAA context
transfer mechanisms, are targeted mainly for device mobility and changing the access
network technology or improving server performance, not for application session mi-
gration between devices. Nowadays many applications and services works on top of the
HTTP protocol to form the communication channel with the client part that uses web
browser as user interface. Even though the basic HTTP is stateless, the service can have
session state in the server, and the client only has a session identifier in form of a cookie.
This means that there is no reason for complex application state transfer between the
client devices. Moreover, underlying communication sessions, e.g. TCP connections,
can fail and are re-established often. Thus, there is no reason to migrate communication
state either. Only authentication session remains to be migrated in the client side.

3 Federated Identity Systems and Web Session Cookies

Web browsers have become the widely used client platform for services on the Internet.
Many web services still have their own user account databases and use password-based
authentication but new means for identity management are now available. In Federated
Identity Management (FIM) systems, the user account management is separated to its
own provider: when a user want to authenticate herself to a service, the service provider

Authentication Session Migration 21

forwards the request to an identity provider that verifies the user’s identification. The
core idea of FIM is that the user needs to log in only once in order to use several
services and all the services do not need to maintain user account databases. Moreover,
some FIM systems allow the user to choose which identity provider they use.

Two common FIM technologies are OpenID [35] and Shibboleth [25]. OpenID is, as
its name says, open for anyone to establish their own identity provider, and the OpenID
community provides free implementations and instructions for both identity and ser-
vice providers. The identity verification methods of identity providers vary from strong
smart-card-based authentication of legal persons to weak methods where the proof of
identity is that the user can receive email using an address. Contrary to the original idea
of openness, OpenID allows service providers to choose which identity providers they
accept and many organizations that have several online services use OpenID for account
management but accept only their own OpenID identity provider.

The other technology mentioned above, Shibboleth, is based on SAML [39] that is
also a public standard and free implementations for it are available. Unlike OpenID,
SAML requires formal agreements between the participating organizations, which are
usually organized as federations. In Finland, the institutions of higher education have
formed a federation called HAKA [18] where the universities can provide common
services using their own user accounts for access management. The HAKA federation
provides schemas and instructions for both the identity and service providers. Fig. 1
depicts how a service authenticates a user with the help of an identity provider in Shib-
boleth. The user first opens the webpage of the service. Her connection is redirected to
the identity provider. If the service accepts several IdPs, a list is provided for the user
before the redirection. The IdP authenticates the user and redirects the connection back
to the service provider with information that the authentication was successful. Then,
the service can decide if the authenticated user has right to use the service or not.

User Desktop computer Identity Provider Service

type in a service URL
to web browser service request

auth?

identi ty & authenticat ion?
login?

password username & password

check ok

auth ok

serviceservice

redirect

redirect

Fig. 1. Shibboleth authentication

22 S. Suoranta, J. Heikkinen, and P. Silvekoski

In its basic form, an HTTP session is stateless and can consist of many short TCP
connections [17]. A web server handles the stateful sessions by sending cookies to the
client side web browsers. Samar [41] presents three approaches for cookie based SSO
systems: centralized cookie server, decentralized cookie server and centralized cookie
login server. In centralized SSO, for example, authentication is done by a centralized
entity that gives cookies to services telling the state of the user [10].

Both OpenID and Shibboleth use cookies for storing the authentication session with
the identity provider and also possibly for storing the session with service provider. In
OpenID, an authentication session is formed between the client and identity provider.
Service providers do not necessarily have a session with the client at all. The user must
always type in the OpenID identifier since the service providers do not even know if the
user is already authenticated to some identity provider. Shibboleth client, on the other
hand, creates sessions with both identity and service providers and both of them send
their own cookies to the client side. A third cookie maybe created when the user has
chosen an identity provider for a service. This means that the user does not need to
identify herself while re-authenticating to the service since the service provider knows,
based on the cookie, with which identity provider to check that the user still has an
active authentication session. The cookies are local to the browser at the client device
and neither OpenID nor Shibboleth has any support for sessions that involve multiple
client devices or browsers.

4 Design

In this paper, our goal is to design and implement a system that allows the user to switch
between devices while using a service that requires authentication and uses single sign-
on. Overall, the implementation of SSO migration consists of cookie extraction, cre-
ating cookie file, transfer between the devices, importing the cookie and opening the
web browser using the same webpage where the user was before the migration. In this
section, we describe in detail how all these parts were designed. Silvekoski [46] gives
an even more detailed description.

Fig. 2 depicts how a Shibboleth authentication session is migrated from a desktop
computer to an Internet tablet device in our implementation. First, the user starts the
migration by choosing it from the web browser menu. This starts a browser extension
that first extracts the Shibboleth IdP and service cookies and then transfers them to the
target device. The target device opens a web browser with the URL of the service that
the user was accessing. Since the authentication cookies have been transferred from the
other device, the user does not need to re-authenticate and can continue using the service
with the mobile device browser. The migration works similarly in the other direction,
when moving the session from the mobile device to the desktop computer.

In some cases, however, the service cookies cannot be transferred. If the transfer
at the service cookies fails or the service provider does not, for any reason, accept
them, the authentication session transfer still succeeds but another step is needed. When
a web browser is opened on the target device after the cookie migration, the service
redirects the connection to the identity provider. Since the user is already authenticated,
the identity provider does not ask her password again. It redirects the connection back
to the service provider with the user authentication information.

Authentication Session Migration 23

User
Desktop computer Mobile device

Identity Provider Service

service
service

browser browser

(a)

migrate
command

service request
cookie transfer

(b)

migrate
command

service request
cookie transfer

auth?

redirect

auth ok

serviceservice

auth ok

Fig. 2. Authentication session migration with (a) all cookies (b) only authentication cookies

As described above, many SSO systems use cookies to store information about ses-
sions in the client-side web browsers. The session information tells, for example, which
user has logged in to the service and how long the session is valid. Moving the cookie
from one device and web browser to another one should migrate the session since all
the client-side session information is stored in the cookie. Next, we present the design
of our cookie based session migration for single sign-on.

Migrating the SSO session requires three steps: extracting the cookies from the orig-
inal device and web browser, transferring the cookies from the original device to the
target device, and importing them into the target device browser. Fig. 3 depicts the SSO
cookie migration. When the user chooses to migrate the session, a browser extension
first extracts the cookies from the browser and writes them into a cookie file. Then the
browser extension starts a transfer module and gives it the location of the cookie file
and the URL of the current page on the browser that tells the service location. The
transfer module creates a connection to transfer module on the target device and sends
the cookie file and URL over to it. The transfer module on the target device imports the
cookie into the web browser and starts the browser with the given URL. The migration
works similarly both ways between the two devices.

The method for extracting and importing the cookies depends on how they are stored
on the original and target device and which web browsers are used. Either the browser
or the operating system handles the cookies, but usually an interface for cookie man-
agement is offered. The extraction application fetches the cookie information, stores it
into a file, and passes the file to the transfer module. Usually, SSO uses session cookies
which are stored in the memory rather than on the disk. For this reason, the cookies can-
not be simple read from a file and an API for accessing them is needed. If the browser
manages the cookies, the extraction is done with a browser extension. Otherwise, the

24 S. Suoranta, J. Heikkinen, and P. Silvekoski

web browser

cookie
storage

transfer
module

transfer
module

bluetooth connection or other transport

web browser

cookie
storage

desktop workstat ion mobile device

1. extract
 cookie

2. start
 migration

3. transfer

4. start web
 browser

5. import
 cookie

6. open URL

Fig. 3. Shibboleth authentication

operating system provides the cookie information but also a browser extension is needed
since that allows the user to start the migration and gives the URL of the current page.

The cookies are transferred between devices in files. If the cookies are stored in the
memory, the cookie extractor creates a file and stores the cookie information into it
in the format in which they were stored in the memory. SSO cookies are encrypted
and thus the exact byte values are essential so that the cookie data does not change.
However, it is not always necessary to transfer all cookie data, just the name, value,
domain and path must be transferred. The cookie domain and path tell the owner of
the cookie, namely the service, whereas name and value give the purpose of the cookie
and session data. The cookie information is stored in a file where each cookie is four
lines long with following content: name, value, domain and path. Several cookies can
be stored into one file.

The transfer module takes care of moving the cookie file from the original device to
the target device. It has two behaviors: a client that sends the cookie from the original
device and a server that receives the cookie on the target device. In our implementation,
when the user wants to migrate her session, she starts the transfer server on the target
device and clicks a start button in a menu of the web browser on the original device.
The target device shows a dialog that tells where the connection is coming from so that
the user can be sure the cookies are coming from the correct original device. In addition
to the cookie, also the URL of the current page on the web browser is sent. The transfer
client reads the cookie file, establish a connection with the transfer server that waits for
the connections on the target device, and transfers the cookie and URL over to it. After
successful copying the cookie to the target device, the transfer client removes it from
the original device. Otherwise, the session might remain open on the original device,
and this might confuse some services. Also, ending the session on the target device
does not remove the cookie on the original device but only on the target device and the
session might accidentally stay open even when the user thinks she has logged out and
closed the browser. On the target device, the corresponding transfer server receives the
cookie file, stores it, and starts the local web browser with the URL it received. After
the transfer, also the transfer server closes itself. In future implementations, the transfer
module could always run as a daemon process, which would slightly simplify the user
experience. Next, we describe the implementation in more detail.

Authentication Session Migration 25

5 Firefox Implementation

The SSO technologies chosen for the implementation were Shibboleth and OpenID.
Both of these are freely available open source systems and thus easy to take into use.
Shibboleth is used in Finnish universities and there are several services available. All
students and staff members have their own user accounts. OpenID has several identity
providers and services available on the Internet. We chose to use Mozilla Firefox on
the desktop computer running Windows XP operating system and Fennec on the Nokia
N810 Internet Tablet running Maemo OS. The Fennec browser was a beta, which caused
some problems that we describe later.

We used Bluetooth for transferring the cookies. It provides encrypted connections
between the devices and the devices are identified with their unique addresses. The
devices can be found using Bluetooth service discovery. If the connecting device is un-
known, the user is asked to approve the connection. The devices can also be paired to
remember each other. Bluetooth is designed for personal area connections and transfer-
ring data between one user’s devices, which means that the pairing usually needs to be
only once for new devices. Bluetooth has built-in encryption and its security is gener-
ally considered adequate [22]. We used the Python language to implement the transfer
module that receives the connection at the target device since the only Java edition, Java
micro edition (JME), that support Bluetooth, does not work on N810.

Both of the used web browsers save the session cookies in the memory of the device
but offer a possibility to fetch the cookies using scripting. Moreover, same extensions
such as the cookie handling extension work on both Firefox and Fennec since both
are Mozilla-based web browsers. The extensions are cross-platform component object
model (XPCOM) components than can use cross-platform libraries. Mozilla extensions
can be done with JavaScript. We used nsICookie [43], nsICookieManager [44], nsI-
File [34] and nsIProcess [45] interfaces and components. The first difference between
the browsers is that Fennec does not have drop down menus. Thus, the user starts the
migration by choosing it from Firefox drop-down menu on the desktop computer or by
clicking a button in the Fennec menubar on the mobile device.

First, in the authentication session migration, nsICookieManager is used to extract
the cookie data from the web browser memory. The cookies are in nsICookie format as
UTF-8 text, which consists of the cookie name, value, host and path, and additional in-
formation. In the extraction process, all cookies in the browser memory are enumerated
and the needed SSO cookies are chosen based on their name. Neither of our example
FIM systems, OpenID and Shibboleth, has strict instructions for naming the cookies.
OpenID uses usually a combination of the identity provider name and openid tags,
for example exampleidp openid. Shibboleth names usually the service session with
shibsession and application code and the authentication session with idp session but

both of these can be changed using system attributes. The cookie names also depend
on the used authentication method in Shibboleth. The recognized cookies are stored in
a file in the root directory of the browser extension using the nsIFile interface and the
UTF-8 encoding.

For transferring the cookies, nsIProcess starts the python application for Bluetooth
and gives it the location of the cookie file and the current URL of the web browser.
We used an external Python library called PyBluez [21] for the Bluetooth operations.

26 S. Suoranta, J. Heikkinen, and P. Silvekoski

It works both on Windows XP and Maemo, so that the same code can be used on both
devices. Since cookies are small text files, we used the Bluetooth RFCOMM serial port
profile (SPP) to transfer them. First, the Bluetooth client starts the device and service
discovery. Of course, the Bluetooth server on the target device must be already waiting
for the connections. The client asks the user if the correct target device is found by
showing a dialog that gives the device identifiers of discovered devices. The dialog
is done with native graphical library of N810, GTK+, since it was harder to find a
browser-integrated UI library that works on the internet tablet. When the target device
has been selected, the client opens the connection and transfers the cookie information
file as a string. Before client closes, it deletes the cookie from the original device using
nsICookieManager.

On the target device, the transfer server module receives the message. It stores the
URL and writes the cookie into a file. Then, it starts the web browser that uses nsIFile to
read the cookie and nsICookieManager to import it into the browser memory. When the
authentication session is migrated from a mobile device to the desktop computer, the
Firefox web browser is started on the desktop computer with the Python web browser
library. In the other direction, this could not be done since Fennec is a new browser
still under development. As an intermediate solution, we started the Fennec browser
with the subprocess command in Maemo by executing a shell script and the user must
browse to the right page herself. Next, we discuss how to extend the same process to
work in other web browsers and devices.

6 Porting to Other Browsers and Operating Systems

The way the cookies are stored depends on the device, operating system and web
browser. In addition, there are two kinds of cookies, session and persistent cookies,
whose storage differs. For example, both the identity and service cookies are session
cookies in Shibboleth but the “Where are you from” (WAYF) cookie that allows user to
store chosen identity provider into the web browser is a persistent cookie. Different web
browsers on different platform handle the cookies in their own way. Usually, persistent
cookies are stored in the file system while session cookies exist only in the browser
memory. Therefore, accessing the cookies differs between devices and browsers. In or-
der to migrate the authentication session, full access to session cookies is necessary
since the cookies must be extracted from the web browser on the original device and
entered to the web browser on the target device.

Table 1. The session cookie handling in different browsers

Web browser Accessing cookies in memory File for cookies Storage format
Internet Explorer not possible in separate files text
Mozilla Firefox user side scripting cookie.sqlite sqlite
Opera manually cookie4.dat Opera’s own format

Authentication Session Migration 27

Table 1 summarizes the handling of cookies on different browsers. In Windows en-
vironment, persistent cookies are stored in the file system and the session cookies in the
device memory in many popular web browsers, namely Internet Explorer (IE), Mozilla
Firefox, and Opera. The location and format of the stored persistent cookies differs
between browsers. IE stores the persistent cookies into separate files in its cookie di-
rectory but it does not give developers opportunities to manipulate the session cookies
in the device memory. Mozilla Firefox offers wide possibilities to extend the browser,
and one existing extension offers programmers full control of the stored cookies. Opera
offers an editor to the user for manipulating both session and persistent cookies man-
ually but only persistent cookies can be extracted. Thus, the user must first change a
session cookie into a persistent one before it can be transferred, and scripting cannot do
this. In Mac OS, cookies are handled differently: the operating system offers an HTTP
package that handles all the cookies and offers the possibility to add and manipulate
cookies freely.

Mobile devices are even more heterogeneous with respect to their operating systems
and browsers. A browser that works on all mobile operating systems does not exist,
and even all programming languages are not available on mobile devices. Many pop-
ular browsers have their own mobile version that has a lighter graphical user interface
than the desktop computer version. For example, of the Mozilla based browser, Mi-
croB works on the Nokia Maemo operating system and Fennec has a beta for Nokia
N810 and an alpha version for Window mobile. Most Firefox extensions should work
on Fennec. Opera Mini, on the other hand, has a completely different approach to mo-
bile browsing: it uses a proxy that compresses and preprocesses the web pages for the
device, and the proxy handles also the cookies. Moreover, the operating system handles
the cookies for the mobile version of Apple Safari that works on the IPhone. Similarly,
the Symbian OS handles the HTTP connections and cookies for Browser, which is the
mobile version of Safari on Symbian operating systems.

7 Experimental Evaluation

For testing the authentication session migration, we performed three experiments using
different SSO technologies. First, we tested OpenID authentication session migration
with Livejournal [30] as the service provider since it accepts other OpenID identity
providers than its own. We used claimID [11] as the OpenID identity provider since it al-
lows creating new accounts easily. Migrating the session cookie named claimid openid
migrates the authentication session into the target device where the user could continue
using the service. OpenID service provider differ in the ways the cookies are imple-
mented and, in order to migrate Livejournal SP, two cookies were needed: ljloggedin
and ljmastersession. We cannot be sure if we migrated also other information than
the authentication session with these two cookies. In Livejournal, the user can choose
whether the service provider will check that the client IP address for the session remains
constant. Insisting that the IP address does not change prevented the session migration
as was expected since the devices have the different IP addresses.

The second test was done using Shibboleth, which is used to authenticate users at
our university. Thus, we had one identity provider, the university, and we tried several
different services. Unfortunately, many of the services required that the connections are

28 S. Suoranta, J. Heikkinen, and P. Silvekoski

from the same IP address, which prevents the session migration. The address is stored
in the cookie and it cannot be changed. Since we did not have possibility to reconfigure
the services, we tested the migration only with those providers that allowed the client
to change its IP address. For them, the migration works fine with the Shibboleth SSO.

In addition to the two federated solutions, we tested another centralized authenti-
cation mechanism that is used in social media services in the OtaSizzle project [47]
at the university. These services use the Central Authentication Service (CAS) [26] to
authenticate users, and the experiments showed that transferring its cookies success-
fully migrates the authentication session. The service session could be continued after
migration without re-authentication.

Our main goal was to create system where authentication session can be migrated
from one device to another in a way that re-authentication is not necessary and no or
minimal modifications for the server side are required. Of course, the session migration
should be faster and require less input from the user than re-authentication. Moreover,
the user should be able to continue her browser session from the same URL and logical
state on the target platform.

From the session migration point of view, our prototype fulfills the requirements.
Transferring the authentication session cookies were enough and no additional informa-
tion was required for the session migration on the tested services. Migration of cookies
on the client side did not require changes on server side. OpenID worked directly with
its default settings. Shibboleth, which has replay attack prevention on by default, did not
work since it checks that also the authentication session cookies come from the same
IP address. This means that service providers should be configured not to check the IP
address in order to allow user to migrate the authentication between her devices. This
configuration enables also mobile computers to continue their sessions after moving
between access networks.

From the usability point of view, the migration is faster than typing the passwords
on the mobile device. However, the Bluetooth device discovery sometimes took a long
time. For example, Windows repeated the service discovery of PyBluez devices four
times in order to be sure that all devices were found. To speed up the discovery, the
searching for services can be restricted to already paired devices. The other require-
ment, that the user can continue from the same URL and state of the service, is usually
met since web browsers can be started with a command line or shell script with the
starting URL as a parameter. In our prototype implementation, the continuing on the
same location worked only when the session was migrated from mobile device to a
desktop computer, not vice versa, since the Fennec browser used on mobile device was
only a beta version and did not have the required feature of starting on the given URL.
This will be easily fixed when the browser becomes more complete.

Our main goal was to move only the authentication session, not the whole user ses-
sion, because the user session is maintained by the web server, and by the cloud services
in the future, and only the authentication session binds the user connection to the ser-
vices on the client side. From the server point of view, the migration is tantamount to
the client moving to a different IP address and the user pressing the refresh button on
the browser.

Authentication Session Migration 29

8 Discussion

In our tests, we showed that transferring the authentication session cookies migrates the
authentication session and, in most cases, the entire user session between devices. In
order to take the authentication session migration into wider use, following steps are
required:

– Standardization of the API for accessing authentication cookies in web browsers,
– Standardization of the naming of the authentication cookies in SSO systems,
– Recommendation not to bind the cookies to IP addresses but to use some other

replay attack protection technology,
– Defining standard ways to transmit the cookies over Bluetooth, IP and other chan-

nels, and
– Definition of a cookie file format for cookie transfer.

Technically these changes are fairly easy to do, as shown is this paper, but the hard
part is the interoperability between many devices and browsers. Thus, standardization
is needed.

The methods for accessing cookies differ between web browsers and devices as de-
scribed in Sec. 6. Nowadays, accessing the session cookies is not always possible at all
or requires actions from the user. In order to enable universal authentication session mi-
gration, the session cookies must be available through an API in all operating systems
and web browsers. Then, the migration extension can extract the cookies for transfer.

Naming cookies in a standard way in SSO specifications helps identifying them for
the migration. The FIM specifications should give stricter guidelines for naming the
cookies.

The IP address of the client is often stored in the cookies to prevent connections from
other client hosts than the original one. This is a historical feature to prevent sniffing of
the authentication cookies in services that do not use SSL/TLS to protect the cookies.
In such services, the cookies may be transferred as plain text. An attacker can record the
cookie and send it to a server pretending to be the original communication partner and
thus hijack the connection [38]. The service provider mitigated this threat by accepting
cookies only from the current IP address of the user. In OpenID, the administrator of
the identity provider must take the protection into use. Shibboleth, on the other hand,
checks by default that, when the connection is redirected from the service provider to
the identity provider and back, the IP address of the client remains the same, and that the
client sends the cookies always from the same IP address during the following session.
Session migration requires such controls to be disabled. Some other means to prevent
replay attacks with stolen cookies should be used. For example, SSL/TLS with client
certificates prevents the attack.

A secure connection for the cookie transfer between the user’s devices must be easy
to take into use. We used Bluetooth that provides easy way to securely pair the devices,
but the devices offer many other possibilities. For example, a mobile devices could use
a WLAN connection in peer-to-peer mode to connect to other devices without external
gateways, or the connection could be created through the Internet using an access point.
WLAN has its own security mechanism called Wi-Fi Protected Access (WPA). An
Internet proxy could also be used to deliver the cookies and the connections from the

30 S. Suoranta, J. Heikkinen, and P. Silvekoski

two devices to the proxy protected with TLS. For authentication session migration,
creating a secure connection must be easy and not to require active participation from
the user after the initial setup. The device discovery and verifying the connection parties
must happen transparently after the user initiates the session transfer. In this respect, our
current implementation needs to be developed further: the user should not need to start
the migration on both devices on every migration but only to pair the devices on the
first connection.

Cookie transfer file format is the last important part of the migration. The devices
may use different encoding for files and text but the cookie information must not change
during the transmission or when storing it to the target browser. Cookies often contain
special characters, and thus using the same encoding for the information on the original
device and on the target device is important.

9 Conclusion

In this paper, we have experimented with authentication session migration based on
the transfer of client-side cookies. Many web services use cookies for recognizing the
users and for storing information about the service state. Also, the Shibboleth, OpenID
and CAS SSO technologies use cookies to tell that a user has already authenticated
herself. Moving the cookies that the identity provider created for the user enables her
to continue using the service with another device without re-authentication.

The session transfer does not require any changes on server side if the authentication
session cookies can be identified by standard names on the client side and the server
is not configured to use IP-address-based replay attack protection. Our current imple-
mentation relies on Bluetooth device pairing for secure transfer of the session state and
shows a dialog to the user for choosing the target device before migrating the authenti-
cation session cookies. We had minor performance problems with the Bluetooth service
discovery when the devices were not continually connected but otherwise the migration
was fast enough to be used regularly.

Client-side session migration works well in a situation where the only party that
knows which services and which identity providers are in use is the client. A drawback
of the client side implementation is that all different browsers on different devices and
platforms need their own extensions since the cookies are handled very differently in
these. Solving this problem requires standardization of some SSO features that have
currently been left as configuration and implementation options. In the future, online
services increasingly are such that the service state is kept in the cloud and the web
browser is acting as the user interface, and only the authentication binds the service
session to a device or a operating system. Based on the results of this paper, we believe
that client-to-client session migration for such services is easy to implement and should
become a regular feature of web browsers and SSO services.

References

1. Accetta, M., Baron, R., Bolosky, W., Golub, D., Rashid, R., Tevanian, A., Young, M.: Mach:
A new kernel foundation for UNIX development. In: Proceedings of the Summer USENIX
Conference (1986)

Authentication Session Migration 31

2. Adeyeye, M., Ventura, N.: A sip-based web client for http session mobility and multimedia
services. Computer Communications 33(8) (2010)

3. Allard, F., Bonnin, J.M.: An application of the context transfer protocol: IPsec in a IPv6
mobility environment. International Journal of Communication Networks and Distributed
Systems 1(1) (2008)

4. Barak, A., Laden, O., Yarom, Y.: The NOW MOSIX and its preemptive process migration
scheme. Bulletin of the IEEE Technical Committee on Operating Systems and Application
Environments 7(2), 5–11 (1995)

5. Baratto, R.A., Potter, S., Su, G., Nieh, J.: Mobidesk: mobile virtual desktop computing. In:
MobiCom 2004: Proceedings of the 10th Annual International Conference on Mobile Com-
puting and Networking (2004)

6. Bolla, R., Rapuzzi, R., Repetto, M., Barsocchi, P., Chessa, S., Lenzi, S.: Automatic multime-
dia session migration by means of a context-aware mobility framework. In: Mobility 2009,
The 6th International Conference on Mobile Technology, Application & Systems (2009)

7. Bolla, R., Rapuzzi, R., Repetto, M.: Handling mobility over the network. In: CFI 2009:
Proceedings of the 4th International Conference on Future Internet Technologies (2009)

8. Bournelle, J., Laurent-Maknavicius, M., Tschofenig, H., Mghazli, Y.E.: Handover-aware ac-
cess control mechanism: CTP for PANA. Universal Multiservice Networks (2004)

9. Budzisz, L., Ferrús, R., Brunstrom, A., Grinnemo, K.J., Fracchia, R., Galante, G., Casadevall,
F.: Towards transport-layer mobility: Evolution of SCTP multihoming. Computer Commu-
nications 31(5) (March 2008)

10. Chalandar, M.E., Darvish, P., Rahmani, A.M.: A centralized cookie-based single sign-on in
distributed systems. In: ITI 5th International Conference on Information and Communica-
tions Technology (ICICT 2007), pp. 163–165 (2007)

11. claimID.com, Inc: claimID (2010), http://claimid.com (referred 2.8.2010)
12. Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C., Pratt, I., Warfield, A.:

Live migration of virtual machines. In: NSDI 2005: 2nd Symposium on Networked Systems
Desgin and Implementation. USENIX Association (2005)

13. Cui, Y., Nahrstedt, K., Xu, D.: Seamless user-level handoff in ubiquitous multimedia service
delivery. Multimedia Tools and Applications 22(2) (February 2004)

14. Dierks, T., Rescorla, E.: The transport layer security (TLS) protocol version 1.1. RFC 4346,
IETF (April 2006)

15. Diniz, J.R.B., Ferraz, C.A.G., Melo, H.: An architecture of services for session management
and contents adaptation in ubiquitous medical environments. In: SAC 2008: Proceedings of
the 2008 ACM Symposium on Applied Computing (2008)

16. Douglis, F.: Process migration in the Sprite operating system. In: Proceedings of the 7th
International Conference on Distributed Computing Systems, pp. 18–25 (1987)

17. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T.:
Hypertext transfer protocol – http/1.1. RFC 2616, IETF (June 1999)

18. Finnish IT center for science (CSC): HAKA federation,
http://www.csc.fi/english/institutions/haka (referred 10.2.2010)

19. Forsberg, D., Ohba, Y., Patil, B., Tschofenig, H., Yesig, A.: Protocol for carrying authentica-
tion for network access (PANA). RFC 5191, IETF (May 2008)

20. Georgiades, M., Akhtar, N., Politis, C., Tafazolli, R.: Enhancing mobility management pro-
tocols to minimise AAA impact on handoff performance. Computer Communications 30,
608–628 (2007)

21. Google: Pybluez (bluetooth library for python), http//code.google.com/p/pybluez/
(referred 15.12.2009)

22. Hager, C., Midkiff, S.: An analysis of bluetooth security vulnerabilities. In: Proceedings of
IEEE Wireless Communications and Networking (WCNC 2003) (March 2003)

http://claimid.com
http://www.csc.fi/english/institutions/haka
http//code.google.com/p/pybluez/

32 S. Suoranta, J. Heikkinen, and P. Silvekoski

23. Hatsugai, R., Saito, T.: Load-balancing SSL cluster using session migration. In: AINA 2007:
Proceedings of the 21st International Conference on Advanced Networking and Applica-
tions. IEEE Computer Society (May 2007)

24. Hsieh, M., Wang, T., Sai, C., Tseng, C.: Stateful session handoff for mobile www. Informa-
tion Sciences 176(9), 1241–1265 (2006)

25. Internet2: Shibboleth (2006), http://shibboleth.internet2.edu/ (referred 5.9.2006)
26. Jasig: Central authentication service (CAS), http://www.jasig.org/cas (ref. 15.1.2009)
27. Kempf, J.: Problem description: Reasons for performing context transfers between nodes in

an IP access network. RFC 3374, IETF (September 2002)
28. Koponen, T., Eronen, P., Särelä, M.: Esilient connections for SSH and TLS. In: USENIX

Annual Technical Conference (2006)
29. KVM: Kvm migration, http://www.linux-kvm.org/page/Migration

(referred 27.7.2010)
30. Livejournal: Livejournal, http://www.livejournal.com (referred 16.1.2010)
31. Loughney, J., Nakhjiri, M., Perkins, C., Koodli, R.: Context transfer protocol (CXTP). RFC

4067, IETF (July 2005)
32. Milojicic, D.S., Douglis, F., Paindaveine, Y., Wheeler, R., Zhou, S.: Process migration. ACM

Compuring Surveys 32(3), 241–299 (2000)
33. Montenegro, G., Roberts, P., Patil, B.: IP routing for wireless/mobile hosts (mobileip)

(concluded ietf working group) (August 2001),
http://datatracker.ietf.org/wg/mobileip/charter/ (referred 26.7.2010)

34. Morgan, P.: nsIFile (mozilla extension reference),
http://developer.mozilla.org/en/nsIFile (referred 15.12.2009)

35. OpenID.net: Openid.net (2008), http://openid.net/
36. OpenSSL: Openssl project (2005), http://www.openssl.org/ (referred 17.10.2008)
37. OpenVZ: Checkpointing and live migration (September 6, 2007),

http://wiki.openvz.org/Checkpointing_and_live_migration (referred 27.7.2010)
38. Park, J.S., Sandhu, R.: Secure cookies on the web. IEEE Internet Computing 4(4), 36–44

(2000)
39. Ragouzis, N., Hughes, J., Philpott, R., Maler, E., Madsen, P., Scavo, T.: Security assertion

markup language (saml) v2.0 technical overview. Tech. rep., OASIS (February 2007)
40. Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Sparks, J.P.R., Handley, M.,

Schooler, E.: Sip: Session initiation protocol. RFC 3261, IETF (2002)
41. Samar, V.: Single sign-on using cookies for web applications. In: Proceedings of IEEE 8th In-

ternational Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises
(WET ICE 1999), pp. 158–163 (June 1999)

42. Shacham, R., Schulzrinne, H., Thakolsri, S., Kellerer, W.: Ubiquitous device personalization
and use: The next generation of IP multimedia communications. Transactions on Multimedia
Computing, Communications, and Applications (TOMCCAP) 3(2) (May 2007)

43. Shepherd, E.: nsICookie (mozilla extension reference),
http://developer.mozilla.org/en/nsICookie (referred 15.12.2009)

44. Shepherd, E.: nsICookieManager (mozilla extension reference),
http://developer.mozilla.org/en/nsICookieManager (referred 26.7.2010)

45. Shepherd, E., Smedberg, B.: nsIProcess (mozilla extension reference) (May 2009),
http://developer.mozilla.org/en/nsIProcess (referred 15.12.2009)

46. Silvekoski, P.: Client-side migration of authentication session. Master’s thesis, Aalto Univer-
sity School of Science and Technology (2010)

47. Sizzlelab.org: Otasizzle (April 2010), http://sizl.org/ (referred 28.7.2010)
48. Stewart, R.: Stream control transmission protocol. RFC 4960, IETF (September 2007)

http://shibboleth.internet2.edu/
http://www.jasig.org/cas
http://www.linux-kvm.org/page/Migration
http://www.livejournal.com
http://datatracker.ietf.org/wg/mobileip/charter/
http://developer.mozilla.org/en/nsIFile
http://openid.net/
http://www.openssl.org/
http://wiki.openvz.org/Checkpointing_and_live_migration
http://developer.mozilla.org/en/nsICookie
 http://developer.mozilla.org/en/nsICookieManager
http://developer.mozilla.org/en/nsIProcess
http://sizl.org/

Mitigation of Unsolicited Traffic across Domains

with Host Identities and Puzzles

Miika Komu1, Sasu Tarkoma2, and Andrey Lukyanenko1

1 Aalto University
2 University of Helsinki

Abstract. In this paper, we present a general host identity-based tech-
nique for mitigating unsolicited traffic across different domains. We pro-
pose to tackle unwanted traffic by using a cross-layer technique based
on the Host Identity Protocol (HIP). HIP authenticates traffic between
two communicating end-points and its computational puzzle introduces a
cost to misbehaving hosts. We present a theoretical framework for inves-
tigating scalability and effectiveness of the proposal, and also describe
practical experiences with a HIP implementation. We focus on email
spam prevention as our use case and how to integrate HIP into SMTP
server software. The analytical investigation indicates that this mecha-
nism may be used to effectively throttle spam by selecting a reasonably
complex puzzle.

1 Introduction

One challenge with the current Internet architecture is that it costs very little to
send packets. Indeed, many proposals attempt to introduce a cost to unwanted
messages and sessions in order to cripple spammers’ and malicious entities’ abil-
ity to send unsolicited traffic. From the network administration viewpoint, spam
and DoS traffic comes in two flavors, inbound and outbound traffic. Inbound
traffic originates from a foreign network and outbound traffic is sent to a for-
eign network. Typically, spam and packet floods originate from networks infested
with zombie machines. A zombie machine is a host that has been taken over by
spammers or persons working for spammers, e.g., using Trojans or viruses.

We address the problem of unsolicited network traffic. We use two properties
unique to the Host Identity Protocol (HIP) protocol: First, hosts are authen-
ticated with their public keys which can be used for identifying well-behaving
SMTP servers. Second, a computational puzzle introduces a cost to misbehav-
ing hosts. Our approach has a cross-layer nature because a lower-layer security
protocol is used to the benefit of higher-layer protocols.

2 Host Identity Protocol

The Host Identity Protocol (HIP) [9] addresses mobility, multi-homing, and se-
curity issues in the current Internet architecture. HIP requires a new layer in

T. Aura, K. Järvinen, and K. Nyberg (Eds.): NordSec 2010, LNCS 7127, pp. 33–48, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

34 M. Komu, S. Tarkoma, and A. Lukyanenko

the networking stack, logically located between the network and transport layers,
and provides a new, cryptographic namespace. HIP is based on identifier-locator
split which separates the identifier and locator of an Internet host. The identifier
uniquely names the host in a cryptographic namespace, and the locator defines
a topological location of the node. Communication end points are identified us-
ing public cryptographic keys instead of IP addresses. The public keys used for
HIP are called Host Identifiers (HIs) and each host generates at least one HI for
itself.

The HIs can be published as separate HIP-specific records in the DNS [11].
Legacy applications can use HIP transparently without any changes. Typically,
the application calls the system resolver to query the DNS to map the host
name to its corresponding address. If a HIP record for the host name does
not exist, the resolver returns a routable IPv4 or IPv6 address. Otherwise, the
resolver returns a Host Identifier fitted into an IPv4 or IPv6 address. Local-
Scope Identifier (LSI) is a virtual IPv4 address assigned locally by the host and
it refers to the corresponding HI. Host Identity Tag (HIT) is an IPv6 address
derived directly from the HI by hashing and concatenation. An LSI is valid only
in the local context of the host whereas a HIT is statistically globally unique.

When an application uses HIP-based identifiers for transport-layer communi-
cations, the underlying HIP layer is invoked to authenticate the communication
end-points. This process is called the base exchange, during which the end points
authenticate to each other using their public keys. The host starting the base
exchange, the initiator, is typically a client, and the other host, the responder, is
typically a server. During the base exchange, the initiator has to use a number
of CPU cycles to solve a computational puzzle. The responder can increase the
computational difficulty of the puzzle to throttle new incoming HIP sessions.
Upon successful completion, both end-hosts create a session state called HIP
association.

The base exchange negotiates an end-to-end tunnel to encapsulate the con-
secutive transport-layer traffic between the two communicating end-hosts. The
tunnel is required because routers would otherwise discard traffic using virtual,
non-routable identifiers. Optionally, the tunnel also protects transport-layer traf-
fic using a shared key generated during the base exchange. By default, the tunnel
is based on IPsec [7] but S-RTP [14] can be used as well. It should be noted that
a single tunnel can encompass multiple transport-layer connections.

With HIP, transport-layer connections become more resilient against IP ad-
dress changes because the application and transport layers are bound to the
location-independent virtual identifiers, HITs or LSIs. The HIP layer handles
IP-address changes transparently from the upper layer using the UPDATE pro-
cedure [10]. In the first step of the procedure, the end host sends all of its locators
to its connected peers. Then, the peers initiate so called return routability test
to protect against packet-replay attacks, i.e., to make sure that the peer locator
is correct. In the test, each node sends a nonce addressed to each of the received
peer locators. The peer completes the test by signing each nonce and echoing

Mitigation of Unsolicited Traffic across Domains 35

it back to the corresponding peer. Only after the routability test is successfully
completed, the peer can start using the locator for HIP-related communications.

HIP sessions can be closed using the CLOSE [9] mechanism. It is consist of
two packets, in which one of the peer sends a CLOSE message to the other,
which then acknowledges the operation using CLOSE-ACK. After this, all state
is removed and the tunnel is torn down on both sides.

HIP employs rendezvous servers [5] to address the double jump problem. This
occurs when two connected HIP hosts lose contact with each other when they are
relocated simultaneously to new networks. The rendezvous server has a stable IP
address and offers a stable contact point for the end hosts to reach each other.

The computational puzzles of HIP [1] play a major role in this paper and
have been investigated by others as well. Beal et al. [3] developed a mathemati-
cal model to evaluate the usefulness of the HIP puzzle under steady-state DDoS
attacks. They also stated that the difficulty of the DoS-protection puzzle should
not be too high because otherwise an attacker can just choose a cheaper method
such as simple flooding of the network. Tritilanunt et al. [13] explored HIP puz-
zles further with multiple adversary models and variable difficulties. They also
noticed that solving of HIP puzzles can be distributed and a non-distributable
puzzle algorithm would provide more resilience against DDoS. Our work differs
from Beal et al. and Tritilanunt et al. because our use case is spam rather than
DDoS and our approach is based on cross-layer integration.

3 System Model

The basic idea is to assign each node in the network with an identity based on a
public key. The hosts may generate their private keys by themselves, or a third
party can assign them. Computational puzzles are a well-known technique for
spam prevention [4,2,6] but are typically used on a per message basis. In our
case, puzzles are applied to each pair of Host Identifiers. The difficulty of the
puzzle is varied based on the amount of unwanted traffic encountered.

Our example use case for the technique is spam prevention. Typical spam
prevention techniques are applied in a sequence starting from black, white or gray
listing techniques and sender identification, and ending in content filtering. Our
approach involves a similar sequence of spam testing but relies on the identity
of the sender rather than its IP address.

3.1 Basic Architecture for Spam Mitigation

In the email systems deployed in the Internet, there are outbound email servers
which are used for sending email using SMTP. Typically, the users access them
either directly or indirectly with a web-based email client. Usually users are
authenticated to these services with user names and passwords. In many cases,
direct access to outbound SMTP servers is restricted to the local network as a
countermeasure against spam. However, spam is still a nuisance and there are
networks which still allow sending of spam. In this paper, we use the term spam

36 M. Komu, S. Tarkoma, and A. Lukyanenko

relay for a malign or compromised outbound email server that allows sending
spam, and the term legitimate relay for a well-behaving outbound email server.

Correspondingly, inbound email servers process incoming emails arriving from
outbound emails servers. Users access these servers either indirectly via web in-
terfaces or directly with protocols such as POP or IMAP. Typically, the inbound
email server tags or drops spam messages and also the email client of the user
filters spam messages.

Our idea in a nutshell is to require a HIP session with an SMTP server before
it will deliver any email. The sender has to solve a computational puzzle from
the server to establish the session. If the sender sends spam, the server ends the
HIP session after a certain spam threshold is met. To continue sending spam, the
sender has to create a new session, but this time it will receive a more difficult
puzzle from the server.

The proposed architecture follows the existing SMTP architecture but requires
some changes. First, the inbound and outbound SMTP servers have to be HIP
capable. Second, we assume the spam filter of the inbound server is modified
to control the puzzle difficulty. Third, we assume the inbound SMTP servers
publish their Host Identifiers in the DNS.

3.2 Deployment Considerations

A practical limitation in our approach is that HIP itself is not widely deployed.
Even though we compare the HIP-based approach to the current situation later
in this paper, the benefits of our design can be harnessed to their full extent only
when HIP, or a similar protocol, has been deployed more widely in the Internet.
Alternatively, our design could be applied to some other system with built-in
HIP support such as HIP-enabled P2P-SIP [8].

We assume that Host Identities are published in the DNS which requires some
additional configuration of the DNS and also SMTP servers. However, based on
our operational experience with HIP, this can be accomplished in a backward-
compatible way and also deployed incrementally. First, the DNS records do not
interfere with HIP-incapable legacy hosts because the records are new records
and thus not utilized by the legacy hosts at all. Second, bind, a popular DNS
server software, does not require any modifications to its sources in order to
support DNS records for HIP. Third, SMTP servers can utilize a local DNS
proxy [12] to support transparent lookup of HIP records from the DNS.

3.3 Pushing Puzzles to Spam Relays

We considered two implementation alternatives for pushing puzzle computation
cost to spam relays. In the first alternative, the UPDATE messages could be
used to request a solution to a new puzzle. However, this is unsupported by
the current HIP standards at the moment. In the second alternative, which
was chosen for the implementation, inbound servers emulate puzzle renewal by
terminating the underlying HIP session. The termination is necessary because

Mitigation of Unsolicited Traffic across Domains 37

current HIP specifications allow puzzles only in the initial handshake. When the
spam relay reconnects using HIP, a more difficult puzzle will be issued by the
server.

3.4 Re-generating a Host Identity

One obvious way to circumvent the proposed mechanism is to change to a new
Host Identity after the server closes the connection and increases the puzzle
difficulty. Fortunately, creating Host Identities is comparable in cost to solving
puzzles, which can discourage rapid identity changes. In addition, non-zero puz-
zle computation time in the initial session further discourages creation of new
identities.

3.5 Switching Identities

It is reasonable to expect that a server relaying spam is able to generate new host
identities. Let CK denote a key-pair generation time and CN the cost of making
the public key and the corresponding IP address available in a lookup service.
We expect a spam relay to reuse its current identity as long as the following
equation holds:

Cj < CK + CN + C0, (1)

where Cj is the puzzle computation time of the jth connection attempt. In other
words, the spam relay continuously evaluates whether or not to switch to a new
identity. If the next puzzle cost is greater than the initial cost, the spam relay
has motivation to switch the identity. We note that the spam relay may devise
an optimal strategy if the cost distribution is known.

When the puzzle cost is static, there is no incentive for the spam relay to
change its identity unless blacklisted because the cost would be greater due
to the CK and CN terms. For a dynamic cost, the spam relay is expected to
change identities when the cost of a new identity and a new connection is less
than maintaining the current identity and existing connection. For a DNS-based
solution, the CN term has a high value because DNS updates are slow to take
effect.

Our proposed approach addresses identity-switching attacks using three basic
mechanisms. First, a node must authenticate itself. This means that the node
must be able to verify its identity using the corresponding private key. This does
not prevent the node from using multiple identities or changing its identity, but
ensures that the key pair exists. Second, a node must solve a computational
puzzle before any messages are transported.

Third, a level of control is introduced by the logically centralized lookup
service. The DNS maps host names to identities and IP addresses. A node must
have a record in the lookup service. The limitation of this approach that control
is introduced after something bad (e.g. spam) has already happened. The bad
reputation of malicious nodes can be spread with, for example, DNSBL lookups
performed by SMTP servers.

38 M. Komu, S. Tarkoma, and A. Lukyanenko

Nevertheless, identity switching could used to reduce the proposed system
and, therefore, we have taken it into account in the cost model analysis of the
next section.

4 Cost Model

In this section, we present an analytical cost model for the proposed identity-
based unsolicited traffic prevention mechanism. We analyze the performance of
the proposed mechanism when a number of legitimate senders and spam relays
send email to an inbound SMTP server. It should be noted that our model
excludes puzzle delegation in the case of multiple consecutive relays because it
is not advocated by the HIP specifications.

4.1 Preliminaries

Let us consider a set of NL legitimate email relays and NS spam relays. Each
legitimate relay sends messages at the rate of λL messages per second and each
spam relay at λS . We assume that the inbound email server has a spam filtering
component. It has a false negative of probability α, which refers to undetected
spam. Thus, (1−α) gives the probability for detecting a spam message. The filter
has also a false positive of probability β, which denotes good emails classified
as spam. Even though the inbound server could reject or contain the spam, we
assume the server just tags the message as spam and passes it forward.

An inbound SMTP server has a spam threshold κ given as the number of
forwarded spam messages before it closes the corresponding HIP session. After
the session is closed, the outbound email relay has to reopen it. Let the number
of reopened sessions be ξ in case of spam relays, and η in case of legitimate
email relays. The base exchange has an associated processing cost for the SMTP
source, TBE , given in seconds. This processing cost includes also the time spent
in solving the puzzle. Let TM denote the forwarding cost of a message. The finite
time interval T , for which we inspect the system, is expressed in seconds.

4.2 Cost Model

To demonstrate scalability, we derive the equation for the load of the inbound
SMTP server with and without HIP. The server load is determined by the number
of HIP sessions at the server and the number of email messages forwarded.
Without HIP, the email processing cost in seconds at the server is

RN = T · TM · (NL · λL + NS · λS). (2)

In case of HIP, let us define the accumulated puzzle computation time function
G(ξ) =

∑ξ
i=0 Ci. First, we consider the case with constant puzzle computation

time that is independent of number of session resets, i.e. C1 = C2 = . . . CN =
TBE, and G(ξ) = ξ · TBE .

Mitigation of Unsolicited Traffic across Domains 39

C1 C C C2 3 40 T

1st puzzle 2 nd puzzle
computed

Mail sending time
until spam threshold

puzzle computation timeth4
comp. started

Fig. 1. Division of system inspection time (T) into puzzle re-computation and mail
delivery stages with different puzzle computation times ci, where i is the number of
session resets. All Ci = TBE if the puzzle computation time is constant.

Next, we derive the number of HIP sessions due to session resets caused by
spam under the condition of identical puzzle computation time. The following
equation presents the number of session resets for a single spam relay:

ξ =
(T − TBE · ξ)λS(1− α)

κ
(3)

From equation 3, we can deduce that

ξ =
T · λS · (1 − α)

κ + λS · (1 − α) · TBE
. (4)

The equation for the number of HIP sessions η needed by the legitimate SMTP
relays is similar to equation 4, but the false positive rate β is used instead of
(1−α), and correspondingly λL is used instead of λS . We assume that legitimate
relays do not send significant amount of spam so that only false positives need
to be considered. The cost to a paying customer is given by η, and ξ is the cost
to a spam relay. Given a small false positive probability, η is small. Therefore,
the mechanism is not harmful to paying customers.

Next, we derive the equation describing the HIP load of the inbound server
RH consisting of both legitimate and spam messages:

RH = NL · (η · TBE + T · λL · TM) + NS · (ξ · TBE + TS · λS · TM), (5)

The equation can be simplified by substituting the total time used for sending
spam messages TS with T − TBE · ξ and by applying equation 2:

RH = RN − TM · TBE · (λS ·NS · ξ) + TBE · (NL · η + NS · ξ) (6)

We assume β is small and, therefore, we used T instead of T − TBE · η (with
η denoting the number of session resets for a legitimate host). To evaluate the
effectiveness of the HIP-based solution against a solution without HIP, we define
ratio ϕ as:

ϕ =
RH

RN
. (7)

Now, consider the case when puzzle computation time is not constant, but rather
a function of the number of session attempts. This has to be reflected in equa-
tion 4, which becomes

κ · ξ + G(ξ)λS(1− α) − T · λS(1− α) = 0. (8)

The equation can be solved using numerical iteration.

40 M. Komu, S. Tarkoma, and A. Lukyanenko

4.3 A Comparison of HIP with Constant Puzzle Cost to the
Scenario without HIP

For numerical examples, we use HIP base exchange measurements obtained from
an experimental setup described further in Section 5. We plot the ratio of non-
HIP versus HIP approaches ϕ shown in equation 7. The HIP base exchange with
a 10-bit puzzle was measured to take 0.215 s of HIP responder’s time and 0.216
s for the initiator. We note that our analysis excludes the impact of parallel
network and host processing. The email forwarding overhead without HIP is set
to 0.01 seconds. We assume that the false negative probability of the server is 1/3
and the false positive probability is 1/104. In other words, 2/3 of spam messages
will be correctly detected as spam, and good messages are rarely classified as
spam. Let NL be 104, NS be 100, λL = 1/360, and λS = 10. The time-period T
for the analysis is 24 hours.

Figure 2 presents the ratio of HIP versus non-HIP computational cost as a
function of the puzzle computation time. Both x and y axes are logarithmic.
Ratio in the figures denotes ϕ, the ratio of the HIP and non-HIP capable mecha-
nisms. The point at which the HIP mechanism has less overhead is approximately
at 2 seconds. This means that the proposed HIP mechanism becomes superior
to the constant non-HIP benchmark case with an 2-second or greater puzzle
computation time. Naturally, this point depends on the selection of the values
for the parameters.

As the spam relay sending rate increases, the HIP spam prevention mechanism
becomes considerably better than the non-HIP benchmark case. With low spam
rates, HIP sessions are reset seldomly and spam flows mostly through. When the
spam rate increases, the spam relay spends more time on puzzle computation
and the spam forwarding rate decreases. Then, the performance of the proposed
HIP mechanism improves in comparison to the non-HIP benchmark case.

4.4 A Comparison of HIP with Exponential Puzzle Cost the
Scenario without HIP

We also analyze the scenario where the puzzle cost grows exponentially for each
new session. The parameters are the same as before, but the computation time of
the puzzle grows exponentially with the puzzle difficulty. Moreover, we introduce
a cut-off point after which the puzzle difficulty does not increase anymore. After
the number of sessions reaches the cut-off point, the computation time of the
puzzle (and the number of bits) remains at the current level. As an example,
given a cut-off point of 23 and an initial puzzle size of 20 bits for the first
throttled session, spam relays experience puzzle sizes {20, 21, 22, 23, 23, . . . } as
they reconnect.

Figure 3 presents the effect of the exponential base exchange time with a vary-
ing cut-off point. The y axis is logarithmic. The figure shows that the proposed
mechanism performs considerably better than the non-HIP benchmark with a
cut-off point of 22 or greater.

Mitigation of Unsolicited Traffic across Domains 41

 0.1

 1

 1 2 4 8 16 32 64

L
o
a
d
 r

a
ti
o
 (

H
IP

 /
 w

it
h
o
u
t
H

IP
)

Puzzle cost in seconds

Puzzle cost

Threshold of 1
Threshold of 2
Threshold of 4

Threshold of 8
Threshold of 16
Threshold of 32

Threshold of 64
Threshold of 128
Threshold of 256

Fig. 2. Fixed-cost puzzles with different spam threshold κ

Now, we have compared HIP with both constant and variable-sized puzzles
to the benchmark scenario without HIP. In the next sections, we focus on the
identity-switching attacks (without cut-off points) against the proposed HIP-
based architecture.

4.5 Optimal Strategies for a Spam Relay

Directly from equation 8, we know that

ξ · κ

λS · (1 − α)
+ G(ξ) = T. (9)

This means that, for the entire time during which a server relays spam, it splits its
performance into ξ steps (one step is one session reset). To contact the inbound
server, the spam relay spends G(ξ) time for all puzzle computations, and during
every step it sends exactly κ messages and each step consumes κ

λS(1−α) time.
The inbound server chooses the form of the function G, while a spam relay

selects the number of session resets to tolerate, ξ. Here, we consider first a naive
strategy for the spam relay. It chooses G based on the number of messages to
send and does not try to whitewash its own history at the inbound server (i.e.
by changing its identity according to equation 1). Under such an assumption,
the spam relay has to optimize (maximize) a function of the following form:

pZ · κ · ξ − cZ ·G(ξ), (10)

where pZ is the profit for one delivered message and cZ is the payment for the
puzzle computation time. The strategy for the spam relay is to select

42 M. Komu, S. Tarkoma, and A. Lukyanenko

 0.01

 0.1

 1

 10

 21 22 23 24 25 26 27 28

L
o
a
d
 r

a
ti
o
 (

H
IP

 /
 w

it
h
o
u
t
H

IP
)

Cutoff threshold

Puzzle cost

Threshold of 1
Threshold of 2
Threshold of 4

Threshold of 8
Threshold of 16
Threshold of 32

Threshold of 64
Threshold of 128
Threshold of 256

Fig. 3. Variable-sized puzzles with initial puzzle size of 20 and different cut-off points

the number of rounds for which it would like to send κ-sets of messages and the
number of rounds to recompute puzzles. Let this value be ξ.

Note that if puzzle difficulty is constant (i.e. G(ξ) = TBE · ξ), then solution is
one of the boundary cases

ξ =

{
0, if pZκ ≤ cZ · TBE ,

∞, if pZκ > cZ · TBE ,
(11)

More important is the case when the puzzle computation time is changing. Let
the puzzle complexity growth be exponential compared to the increase of puz-
zle difficulty. Consider that the puzzle computation time on every reset has an
exponential form of Ci = aqi + b, then by definition

G(ξ) =
ξ∑

i=0

(aqi + b) = a
qξ+1 − 1

q − 1
+ b =

aq

q − 1
qξ + b − a

q − 1
. (12)

Let us generalize this function as G(ξ) = kgξ + s, where g is an exponential
growth parameter, s is initial shift, and k is the coefficient.

Now, a spam relay has to maximize the function

pZ · ξ · κ− cZ · (k · gξ + s). (13)

Let us find the points where the derivative of this function with respect to ξ is
zero:

pZ · κ− cZ · k · ln g · gξ = 0. (14)

Mitigation of Unsolicited Traffic across Domains 43

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10 12P
u

z
z
le

 c
o

m
p

u
ta

ti
o

n
 p

ro
p

o
rt

io
n

Puzzle computation time base (g)

γC=0.5

γZ=0.98

g=5.5

Spam relay rate
Legitimate relay rate

Fig. 4. An example plot to illustrate the proportion of time used by a legitimate and
spam relay for puzzle computation

Thus, the maximum point is

ξ∗ = logg

pZ · κ
cZ · k · ln g

. (15)

4.6 Optimal Strategies for an Inbound Server

The previous section suggests an optimal strategy for a spam relay under the
assumption that there is a payment involved in sending of spam. Otherwise,
infinite number of messages would be the optimal strategy for the spam relay. In
this section, we have a look at the situation from the view point of an inbound
server.

First of all, the main goal for the inbound server is to slow down the flood of
spam. It may be formulated in terms of the portion of time which spam relays
spend for the puzzle computation time, compared to the overall time. Here, we
assume that the inbound relay knows the number of HIP session resets during
which spammer reuses its current identity according to equation 1. As previously,
let it be ξ. To process ξ resets, a spam relay has to waste G(ξ) of its own time
for puzzle computation. The overall time, which it may use for message delivery,
we also define as a function of ξ. Thus, the definition of the overall time follows
from equation 9

T (ξ) = ξ
κ

d
+ G(ξ), (16)

where d is equal to λZ(1 − α) in case of a spam relay, and is equal to λCβ in
case of a legitimate email relay. We assume that an inbound server classifies
(or receives classification) with relatively good accuracy and, hence, 1 − α is
considerably higher than β.

Then, the proportion of time used for puzzle computation by spam relays (on
left side) and legitimate email relays (on the right side) can be calculated as

G(ξ)
G(ξ) + κ·ξ

λZ ·(1−α)

,
G(ξ)

G(ξ) + κ·ξ
λC ·β

. (17)

44 M. Komu, S. Tarkoma, and A. Lukyanenko

The inbound server has control over variables k, g, s of function G(ξ) = kgξ+s.
For simplicity, let k and s be constants because the most relevant variable is the
growth base g for the puzzle computation time. The values grow as a function
of the parameter g. The function results in values ranging from 0 to 1, where
0 means that the time spent for the puzzle computation is negligible, while 1
means that the puzzle computation takes all of the time.

For the functions (17), the objective of the inbound server is to maximize the
time spam relays spend on computing puzzles. Correspondingly, the inbound
server should minimize this time for legitimate relays. These are somewhat con-
tradictory conditions because α < 1 and β > 0. Therefore, punishment for
possible spam relays affects also legitimate relays.

To overcome this dilemma, we introduce a new constant γ: 0 ≤ γ ≤ 1, which
we select as the maximum value for the possibly legitimate client computation
rate, i.e.

G(ξ)
G(ξ) + κ·ξ

λC ·β
≤ γ, (18)

where γ defines the portion of the overall time which a possibly legitimate client
spends for puzzle computations. From the inequality 18 it follows, that

g ≤
(

γ · (κ · ξ + s · λC · β)
k · λC · β · (1− γ)

) 1
ξ

. (19)

On the other hand, the inbound server should maximize puzzle computation
rate for possible spam relays (the left function in equation 17, which grows
exponentially towards 1 as a function of g). The optimal strategy for the server
is

g∗ =
(

γ · (κ · ξ + s · λC · β)
k · λC · β · (1− γ)

) 1
ξ

. (20)

The optimal strategy both for a spam relay, ξ∗(g), as shown in equation 15, and
for an inbound server, g∗(ξ), as shown in equation 20, results in an equilibrium
point (ξ∗, g∗) in terms of game theory.

The optimal strategies are illustrated in figure 4. For the legitimate relay, the
bound for the computation rate is fixed as γC = 0.5 The set of parameters is
assigned as α = 0.5, β = 0.01, κ = 100, λC = λZ = 10, and we assume that
the number of session resets is 5 (ξ = 5). Under such parameters, the legitimate
relay has g ≈ 5.5. The resulting puzzle computation for a possible spam relay
is γZ = 0.98. In other words, the spam relay spends 0.98 of its time for puzzle
computations whereas the legitimate relay spends half of its time. As g grows,
both parties are eventually spending all of their time for puzzle computation.
Thus, it is a local policy for the inbound server to decide a “good” value for g
in terms of how much legitimate servers can be throttled with puzzles. For low
spam rates, the value can be small but, with high spam rates, the server may
increase the value at the cost of throttling also legitimate relay servers.

Mitigation of Unsolicited Traffic across Domains 45

5 Experimental Evaluation

In this section, we describe how we integrated puzzle control to an inbound
SMTP server and its spam filtering system. We show some measurements with
variable-sized puzzles and compare this against identity-generation costs to give
some engineering guidance against identity-switching attacks. The source code
for HIP for Linux and the spam extensions are available as open source 1. It
should be noted that evaluation the mathematical models presented in section
4 e.g. with network simulators is future work.

5.1 Setup

The experimented environment consisted of two low-end commodity computers
with the Linux Debian distribution and HIP for Linux (HIPL) [12] implemen-
tation. One computer served as a sending SMTP relay (1.60GHz Pentium M)
and the other represented a receiving SMTP server (Pentium 4 CPU 3.00GHz).
The receiving server detects the spam messages and closes the HIP session when
a threshold is reached for the session. The inbound server was configured not
to reject any email. We were mostly interested in software changes required to
deploy HIP in SMTP servers and in the effects of increasing the puzzle size.

5.2 Results

We implemented the spam throttling mechanism successfully by using unmodi-
fied sendmail. We turned on the IPv6 option in the configuration of sendmail in
order to use HITs.

The receiving SMTP server was equipped with a modified version of Spa-
mAssassin Milter. The changes were straightforward to implement. The milter
increased the puzzle size by one for every κ spam message detected and closed
the HIP session to induce a new base exchange. The puzzle computation time
grew exponentially with the size of the puzzle and the spam sender was throttled,
as expected, by the mechanism.

We faced some implementation challenges during the experimentation. Firstly,
sendmail queues the email messages and this makes it difficult to provide mea-
surements from the spam filtering process itself. Secondly, if the session with the
SMTP server is lost temporary, for example, because the HIP association are is
closed, e-mails can accumulate in the queue for an extended time. Thirdly, when
sending excessive amounts of email, the built-in connection throttling mecha-
nism in sendmail takes over and queues the emails for long periods. However,
sendmail’s queuing process was robust and eventually emptied the queue suc-
cessfully.

One challenge with proof-of-work techniques is that there are many different
devices on the network and their computing capabilities vary. By default, the
puzzle difficulty is zero in HIPL. A puzzle with difficulty of 25 bits took 12.4 s on
1 https://launchpad.net/hipl/

https://launchpad.net/hipl/

46 M. Komu, S. Tarkoma, and A. Lukyanenko

average on the low-end machine used in the performance tests. The time was 4.4
seconds on a more recent CPU (Intel Core 2, 2.3 Mhz) on a single CPU core. The
puzzle algorithm used in HIP does not prevent parallel computation. Thus, the
computation time could be decreased by fully utilizing multi-core architectures.

For identity changing attacks, the strategy should also take into account the
public key algorithm. RSA keys can be created faster than DSA keys with a cor-
responding size. As a consequence, the responder should give initiators that use
RSA public keys more difficult puzzles than initiators with DSA keys. Further,
it should be noted that creation of insecure, albeit perfectly valid keys, can be
faster than creation of secure ones.

Figures 5(a) and 5(b) contrast secure key-pair generation time (horizontal
lines) with puzzle solving time (vertical lines). It should be noticed that the
y-axis is logarithmic. From the figures, it can be observed that the puzzling
solving time is, as expected, exponential with the number of bits used in the
puzzle difficulty. The standard deviation grows as puzzle difficulty is increased.
In addition, the time to generate DSA key-pairs is considerably higher than
RSA. On the average, the creation of a 2048-bit DSA key pair took 6.46 seconds
and this was equal to the solving time of a 24-bit puzzle. With RSA, creation
of a 2048-bit key pair took 0.72 seconds which corresponded to a 21-bit puzzle.
This indicates that the key-generation algorithm and key length need to be taken
into account when deciding the initial puzzle size to discourage identity-switching
attacks.

 69.81

 25.61

 6.46

 2.03
 0.79

 0.13

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

tim
e/

s

puzzle difficulty K

puzzle(K)
DSA 512

DSA 1024
DSA 1536
DSA 2048
DSA 3078
DSA 4096

(a) Puzzle solving vs. DSA key generation

 8.8

 2.51

 0.72
 0.3

 0.09

 0.03

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

tim
e/

s

puzzle difficulty K

puzzle(K)
RSA 512

RSA 1024
RSA 1536
RSA 2048
RSA 3078
RSA 4096

(b) Puzzle solving vs. RSA key generation

Fig. 5. Puzzle computation time results

6 Conclusions

In this paper, we proposed a cross-layer identity solution for mitigating unso-
licited traffic between administrative domains. The proposed architecture pri-
marily concentrates on inbound session control but is applicable also to the
outbound direction as well. As an example application of the system, we focused
on email spam prevention.

Mitigation of Unsolicited Traffic across Domains 47

The Host Identity Protocol introduces a public key for the hosts. They key
can be used for identifying well-behaving SMTP servers. The proposed ap-
proach introduces a cost to sending spam using the computational puzzles in
HIP. Large-scale changes to the SMTP architecture are not required because
HIP is backwards compatible. However, a practical limitation of the approach is
that it requires wide-scale adoption of HIP as a signaling protocol and requires
integration of HIP puzzle control to inbound email servers.

We presented a formal cost model that considered static and exponential base
exchange puzzle costs. The analytical investigation indicates that the proposed
spam prevention mechanism is able to mitigate unwanted traffic given a set of
reasonable parameters. We used parameter values based on experimental results
for server-side cost of HIP and the puzzle computation time. A spam mitigation
approach based on HIP puzzles caused less load at the email server than an
approach that was not using HIP.

The exponential cost of the puzzle introduces more work for email servers
relaying spam. However, it also results in an incentive for the spammer to switch
its identity when it is throttled with more difficult computational puzzles. We
identified this as a potential weakness of the proposed system and analyzed
this from the viewpoint of the spammer and the email server. As a theoretical
result, we provided a method for the server to choose an optimal strategy against
identity switching. When choosing a strategy, it should be noted that increasing
puzzle costs for spammers also increase costs for legitimate hosts.

We implemented a simple prototype of the system based on a popular email
server, sendmail. We integrated throttling support for HIP puzzles with mini-
mal changes to SpamAssassin, a popular spam filtering software. We reported the
practical experiences of running such a system and showed real-world
measurements with HIP puzzles.

While the simple prototype was a success, we observed that the use of compu-
tational puzzles with email relays is challenging. Malicious hosts can overwhelm
and exhaust the resources of a relay unless preventive measures are taken. Po-
tential solutions to this include refusal to solve large puzzles for hosts, mes-
sage rejection, and blacklisting. More work with simulation or larger test beds
is needed to establish the efficacy of the proposed cross-layer system and to
validate our mathematical models.

Acknowledgements. We would like to thank the following people for providing
valuable feedback for this paper: Jaakko Kangasharju, Teemu Koponen, Kristian
Slavov, Antti Järvinen, Oleg Ponomarev, Andrei Gurtov and Tuomas Aura. This
work was supported by Tekes InfraHIP project and the Academy of Finland,
grant numbers 135230, 122329 and 135230.

References

1. Aura, T., Nikander, P., Leiwo, J.: Dos-Resistant Authentication with Client Puz-
zles. In: Christianson, B., Crispo, B., Malcolm, J.A., Roe, M. (eds.) Security Pro-
tocols 2000. LNCS, vol. 2133, pp. 170–177. Springer, Heidelberg (2001)

48 M. Komu, S. Tarkoma, and A. Lukyanenko

2. Back, A.: Hashcash (May 1997), http://www.cypherspace.org/hashcash/
3. Beal, J., Shepard, T.: Deamplification of DoS Attacks via Puzzles (October 2004),

http://web.mit.edu/jakebeal/www/Unpublished/puzzle.pdf

4. Dwork, C., Naor, M.: Pricing via Processing or Combatting Junk Mail. In: Brick-
ell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg
(1993)

5. Eggert, L., Laganier, J.: Host Identity Protocol (HIP) Rendezvous Extension. IETF
(April 2008), Experimental RFC

6. Goodman, J., Rounthwaite, R.: SmartProof. Microsoft (2005),
http://research.microsoft.com/en-us/um/people/joshuago/smartproof.pdf

7. Jokela, P., Moskowitz, R., Nikander, P.: RFC5202: Using the Encapsulating Secu-
rity Payload (ESP) Transport Format with the Host Identity Protocol (HIP) Inter-
net Engineering Task Force (April 2008), http://www.ietf.org/rfc/rfc5202.txt

8. Keränen, A., Camarillo, G., Mäenpää, J.: Host Identity Protocol-Based Overlay
Networking Environment (HIP BONE) Instance Specification for REsource LO-
cation And Discovery (RELOAD). Internet Engineering Task Force (July 2010)
(internet draft, work in progress)

9. Moskowitz, R., Nikander, P., Jokela, P., Henderson, T.: RFC5201: Host Identity
Protocol. Internet Engineering Task Force (April 2008); Experimental RFC

10. Nikander, P., Henderson, T., Vogt, C., Arkko, J.: End-Host Mobility and Multi-
homing with the Host Identity Protocol. Internet Engineering Task Force (April
2008); Experimental RFC

11. Nikander, P., Laganier, J.: Host Identity Protocol (HIP) Domain Name System
(DNS) Extension. IETF (April 2008); Experimental RFC

12. Pathak, A., Komu, M., Gurtov, A.: Host Identity Protocol for Linux. Linux Journal
(November 2009), http://www.linuxjournal.com/article/9129

13. Tritilanunt, S., Boyd, C., Foo, E., Nieto, J.M.G.: Examining the DoS Resistance of
HIP. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2006 Workshops. LNCS,
vol. 4277, pp. 616–625. Springer, Heidelberg (2006)

14. Tschofenig, H., Shanmugam, M., Muenz, F.: Using SRTP transport format with
HIP. Internet Engineering Task Force (August 2006); expired Internet draft

http://www.cypherspace.org/hashcash/
http://web.mit.edu/jakebeal/www/Unpublished/puzzle.pdf
http://research.microsoft.com/en-us/um/people/joshuago/smartproof.pdf
http://www.ietf.org/rfc/rfc5202.txt
http://www.linuxjournal.com/article/9129

Experimental Analysis of the Femtocell Location

Verification Techniques

Ravishankar Borgaonkar, Kevin Redon, and Jean-Pierre Seifert

Security in Telecommunications
Technische Universität Berlin and Deutsche Telekom Laboratories

10587, Berlin, Germany
{ravii,kredon,jpseifert}@sec.t-labs.tu-berlin.de

Abstract. Mobile network operators are adapting femtocells in order
to simplify their network architecture for increased performance and
greater revenue opportunities. While emerging as a new low-cost technol-
ogy which assures best connectivity, it has also introduced a range of new
potential risks for the mobile network operators. Here we study the risks
associated with the location verification techniques of femtocells. First
we state the goals of location verification and describe techniques imple-
mented in the existing femtocells. We demonstrate how location locking
techniques can be defeated by using modern attack vectors against the
location verification methods. Our experimental result suggest that loca-
tion security methods are insufficient to avoid femtocell’s misuse. An at-
tacker can operates the femtocell from an unregistered location, thereby
creating problems for various important services such as for assisting
emergency call services, for following licensed spectrum rules, for Lawful
interception services, and for the commercial purposes.

Keywords: Femtocell, HNB, Security, Location.

1 Introduction

Femtocell is a emerging technology which enhances third generation (3G) cov-
erage and provides assurance of best connectivity in the 3G telecommunication
networks. It acts as an access point that securely connect standard mobile sta-
tions to the mobile network operator’s core network using an existing wired
broadband connection. For mobile service operators key benefits are increase in
network capacity, lowers capital cost and expands revenue opportunities. For
users it assures increase in indoor coverage, higher rate of data transfer, high
quality voice and higher multimedia experience. A femtocell can be deployed
in a licensed spectrum owned by a mobile network operator and in the users
premises, for example home, office and enterprise.

The femtocell security is divided into two parts: the device authentication
and the encryption of the calls and control information transferred across the
untrusted backhaul connection between the femtocell and the femtocell gateway.
Even though the femtocell supports the necessary security features that a base

T. Aura, K. Järvinen, and K. Nyberg (Eds.): NordSec 2010, LNCS 7127, pp. 49–54, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

50 R. Borgaonkar, K. Redon, and J.-P. Seifert

station provides; in particular which are mutual authentication, encryption and
integrity over the wireless link, there are still two issues. First is use of an ex-
isting wired broadband connection as backhaul is a challenge, as the provider of
the backhaul is not necessarily the same as the provider of femtocell. Secondly,
security of the femtocell device is vital and different from the standard base
station. Adversaries can get the physical access to a device due to its low cost
and easy availability in the market. These two issues suggest that the femtocells
may become an attractive target for the attackers.

Main aim of our study is to analyze the risk associated with the femtocell
security. Our study finds that the femtocells, which are currently deployed in
the market, are insecure and do not follow the security requirements mentioned
by the 3GPP standard. In this paper, we experimentally evaluate various security
aspects, in particular, the location verification techniques used in the device. We
examine and show that the location verification techniques are inadequate to
block the use of femtocell, if it is operating at an unregistered location and at
unlicensed frequency spectrum.

The rest of the paper is organized as follows. Section 2 describes security
architecture of femtocell. Section 3 explains goals of location locking methods of
the femtocell. Femtocell location tracking methods and various attacking vectors
are presented in Section 4. Conclusions and discussions are presented in Section
5. Note that the Home NodeB (HNB) is the 3GPP standard name of the femtocell
and we will use the HNB in the following sections.

2 HNB Security Architecture

The HNB is installed in the users’ premises and its traffic is tunneled via public
Internet (wired broadband) connection. Hence for the mobile network operator,
it is important to ensure that HNB protects the communication over the insecure
public Internet, and over the air-link between itself and the mobile device. Main
components of the HNB security architecture and their roles are described as
follows [3,1]:

HNB Device- The main function of the HNB is to act as a small base station. The
HNB connects the UE via its radio interface to the mobile service operator’s core
network. It transmits the UE data by establishing a secure IPsec [4] ESP tunnel
with the SeGW over an insecure backhaul link (broadband Internet connection).

SeGW - The SeGW acts as a border gateway of the operator’s core network.
First, it mutually authenticates and registers the HNB to establish a secure IPsec
tunnel, and then forwards all the signaling and the user data to the operator’s
core network. Mutual authentication can be performed using certificates. The
interface between the SeGW and the operator’s core network is considered to be
secured.

HNB Management System (HMS) - The HNB Management System is a man-
agement server, and responsible for the configuration and the provisioning of the
user data according to the operator’s policy. It can be functioned to provide the
required software updates on the HNB and can be located inside the operator’s
core network.

Experimental Analysis of the Femtocell Location Verification Techniques 51

AAA Server and HSS - The subscription data and authentication information
is stored in the HSS. The AAA server authenticates the hosting party (the HNB)
by accessing the authentication information from the HSS. Both the AAA server
and the HSS are deployed in the operator’s core network.

HNB GW - The HNB gateway performs the access control for the non-CSG
(Closed Subscriber Group) capable UE attempting to access a HNB. The SeGW
can be integrated with a HNB-GW, and if not integrated then, the interface be-
tween SeGW and HNB-GW may be protected using NDS/IP (Network Domain
Security/IP network layer security) [5] .

UE- The UE is a standard user equipment that supports the 3G (UMTS)
communication. It connects to the HNB over-the-air using a 3G AKA (Authen-
tication and Key Agreement) procedure.

3 Goals of the Location Locking Methods

It is important for the operator to ensure that the HNB operates at the given
location and satisfy various requirements such as security, regulatory, and oper-
ational requirements [2]. The HNB can only provide reliable and accurate home
address information if the users keep them in their assigned and registered loca-
tion. However, it is possible for users to move the HNB when traveling, intending
to continue using free roaming service anywhere they go. This could led to a ver-
ity of problems for the operator. Hence the operator has to lock the HNB to a
specific location for the following reasons: a) to provide the users location for
emergency calls, b) to ensure that the HNB is operating in a country in which it
has a network operation, c) to provide real-time lawful interception data to the
government agencies.

4 Location Locking Methods and Attacks

In this section, we describe location locking techniques implemented in the
HNBs. Then we present various attack vectors to beat these location locking
methods. Note that without opening the HNB box and with no physical tam-
pering, we were able to bypass the location locking methods. We performed
experimental analysis of the location locking techniques in a Faraday Cage. Dif-
ferent attacks on the location based techniques were performed in the cage only.
Though the attacks we described below are performed on the two HNB, it may
affect other HNBs which are deployed currently.

The HMS registers and verifies location information of the HNB. First the
operator registers and fix the HNB location information in the server called
Access point Home Register (AHR). After the initial registration process, the
operator obtains the location information of the HNB and compares it with the
corresponding information stored in the AHR. The main parameters used for
identifying the HNB location information are a) IP address of the broadband
access device, b) information of the surrounding macro-cells ,and c) information

52 R. Borgaonkar, K. Redon, and J.-P. Seifert

received from the GPS device attached to the HNB or the UE. In this section,
we explain these location locking mechanisms deployed in the HNB system ar-
chitecture [3]. They are as follows:

4.1 IP Address of the Broadband Access Device

The HNB gets an IP address when connected to the devices which provides
the broadband access such as a DSL modem or a home router. The operator
can locate the HNB by its assigned IP address and by the location information
related to IP address which is stored in the server (AHR). When the HNB is
placed behind NAT (Network Address Translator), STUN protocol is used to
determine its IP address. The HNB operator can request the geographic loca-
tion information based on the IP address to the interface defined by the NASS
(Network Attachment Subsystem) standard [6].

Attack Vectors

The virtual private network (VPN) can be used to impersonate the IP address
of the legitimate HNB. A VPN emulates a private IP network over the public
Internet infrastructure [7]. The VPN technology can be used to connect remotely
to the a LAN (Local Area Network) (where the HNB in installed and registered)
and thus the HNB can obtain a local IP address. Thus VPN can be used to
impersonate the IP address of the legitimate HNB and the use of IP address for
location authentication is not considered reliable.

There may be a situation in which the 3G or 2G signals are not be available
in the home In addition, not all the HNB devices are equipped with the GPS
receivers. In these circumstances, the operator has two parameters to authenti-
cate the HNB location: IP address and the information received from the UE.
However it is obvious that if there are no 2G or 3G signals in the area, the HNB
can not receive any information from the UE. For the attack, we use a VPN to
replay the HNB’s IP address. We placed the HNB to an unregistered location
and established a VPN tunnel to the LAN at the HNB’s registered location. We
were able connect the HNB to the SeGW with the registered IP address. We
were able to operate the HNB in a normal mode from an unregistered location.

4.2 Information of Neighboring Macro-cells

The HNB can receive neighboring macro-cells information such as PLMN ID
(Public Land Mobile Network Identity), LAI (Location Area Identity) or Cell ID.
It contains a hardware chip to scan PLMN ID and cell ID. In this method, first
,the HNB scans the neighboring macro-cells information in a receiver mode when
it powered on and sends this scanned information to the AHR (Home Register
of HNB). The AHR role is to store this information along with the registration
message requests to the appropriate HNB profiles. Most of the electronic devices
including the HNB use a 2G receiver hardware to scan the neighboring macro-cell
information because 3G signals are weak inside the house.

Experimental Analysis of the Femtocell Location Verification Techniques 53

Attack Vectors

In this scenario, the operator can fetch and use neighboring micro-cell informa-
tion to perform location authentication of the HNB device. As discussed earlier
in Section 4.1, the adversary can use a VPN connection to emulate the IP ad-
dress. However, in order to operate the HNB with the given regulations, the
attacker still needs to block or simulate neighboring micro-cell information. This
can be done in two ways. An attacker can use a 2G signal jammer device. The
2G jammer devices blocks any nearby 2G network signals without interrupting
other electronic devices. We analyzed a few HNB devices and found that most
of the devices use a 2G receiver hardware to record neighboring micro-cell in-
formation. Hence it is possible to block nearby 2G network signals using such
jammers without interrupting the 3G network signals of the HNB.

In other way, the attacker can use a nanoBTS [9] and openBSC package to
replay the neighboring micro-cell information. The nanoBTS picocells are small
2G (GSM) base-stations that use the A-bis interface. They can be connected to
the openBSC with A-bis over IP interface [10]. The adversary can configure the
nanoBTS to transmit the recorded (registered) micro-cell information. In this
way, the attacker can show that the HNB is operating at the given and registered
location by providing the legitimate micro-cell information. We examined this
attack using a nanoBTS and were able to provide required information to the
HNB for location authentication.

4.3 UE Information

The UE position can be useful to verify the HNB location, provided that it is
equipped with the GPS (Global Positioning System) feature. In addition, the
UE can send its location information using available micro-cells or GPS data to
the AHR via the HNB.

4.4 GPS Information

The location information can be obtained using an A-GPS receiver unit built
inside the HNB. A-GPS (Assisted GPS) is a system used to improve the start-
up performance of a GPS satellite-based positioning system [8]. The HNB can
receive the location information from the A-GPS unit and deliver it to the home
registration server for the verification. However, it is important to install the
HNB in a location where it can receive the GNSS (Global Navigation Satellite
Systems) satellites signals.

Attack Vectors

Use of GPS as a geolocation technology is ineffective since the HNBs are installed
in the home and GNSS signals are weak inside the house. However some mobile
network operators suggest to use an additional antenna to improve the signal
strength. The attacking vectors against this mechanism includes jammers, an

54 R. Borgaonkar, K. Redon, and J.-P. Seifert

attenuation methods, and GPS generators devices. An attacker can use of GPS
jammers. These low cost jammers are commercially available in the market and
could be positioned in the vicinity of HNB antenna. This attack could be ar-
guable due to legal issues in using the jammer. In an attenuation method, the
attacker can wrap the HNB in layers of aluminum foil to create a Faraday cage
like environment and blocks the GPS signals. The GPS generators are the devices
used by GPS manufactures for the research and development. It can transmit
the recorded timing signals and orbital data. The attacker can use such devices
to spoof the HNB. The method in which the HNB receive location information
from the UE is not reliable, since in the UE may not have inbuilt GPS feature
and not receive 3G or 2G signals.

5 Discussion and Conclusion

In this paper, we practically analyzed and showed that the location verification
techniques used in the femtocells that are built and deployed today are insuffi-
cient to avoid its misuse. Our results reveals that the femtocell location can be
spoofed by an adversary which could have impact on the emergency services, on
the lawful interception procedure, and on the operators regulations. An adver-
sary may move femtocells for avoiding expensive roaming calls while traveling
and for hiding his location from government agencies. Our study suggest that
most of the femtocells deployed today are vulnerable against the modern location
attack vectors. Hence new additional location locking mechanisms are needed to
improve the overall femtocell security architecture.

References

1. 3GPP, Security of Home Node B (HNB) / Home evolved Node B (HeNB), TS
33.320, V9.1.0 (April 2010), http://www.3gpp.org

2. 3GPP Technical Specification Group Service and System Aspect, Security of
H(e)NB, TR 33.820, V8.3.0 (December 2009)

3. 3GPP TR 33.820 V8.3.0: Technical Specification Group Service and System As-
pects; Security of H(e)NB; (Release 8)

4. Kent, S., Atkinson, R.: [RFC 2406]: IP Encapsulating Security Payload (ESP),
http://www.ietf.org/rfc/rfc2406.txt

5. 3GPP TS 33.210: Network Domain Security (NDS); IP network layer security (IP)
6. ETSI ES 282 004 V1.1.1 Telecommunications and Internet Converged Services

and Protocols for Advanced Networking (TISPAN); NGN functional architecture;
Network Attachment Sub-System(NASS) (2006)

7. Gleeson, A., Lin, A., Heinanen, J., Armitage, G., Malis, A.: [RFC 2685]: A frame-
work for IP Based Virtual Private Networks

8. Djuknic, G.M., Richton, R.E.: Geolocation and Assisted GPS. IEEE Computer 34,
123–125 (2001)

9. The nanoBTS: small GSM base stations, http://www.ipaccess.com
10. OpenBSC, http://openbsc.gnumonks.org/trac/wiki/nanoBTS

http://www.3gpp.org
http://www.ietf.org/rfc/rfc2406.txt
http://www.ipaccess.com
http://openbsc.gnumonks.org/trac/wiki/nanoBTS

T. Aura, K. Järvinen, and K. Nyberg (Eds.): NordSec 2010, LNCS 7127, pp. 55–70, 2012.
© Springer-Verlag Berlin Heidelberg 2012

“Why Wasn’t I Notified?”:
Information Security Incident Reporting Demystified

Erka Koivunen

Finnish Communications Regulatory Authority, CERT-FI, Itämerenkatu 3 A, FI-00180,
Helsinki, Finland

Erka.Koivunen@ficora.fi

Abstract. An information security incident, if successfully discovered and
reported, initiates a distributed response process that activates a diverse
collection of independent actors. Public officials, network service providers,
information security companies, research organisations, and volunteers from all
over the world can be involved; often without the participants realising whom
they are working with. The cooperation is based on mostly informal bilateral
arrangements and is aided by mutual trust accumulated over course of time.
Each participant wants to limit their involvement and typically only assumes
responsibility on their own actions. Information suggesting that third parties
would be affected may or may not be followed up. The result is an unplanned
mesh of bilateral information sharing and a formation of an ad-hoc network of
partial stakeholders. No single entity exercises total control over the process,
which makes it inherently uncontrollable and its results difficult to anticipate.
This contrasts with the information security standards, where the process is
expected to be well defined and under the control of a clearly stated leadership.
The study suggests that internet-connected organisations should adopt a rather
agnostic approach to information security incident reporting.

Keywords: Information security, network security, CSIRT, CERT, incident
reporting, IODEF, security breach, network attack, abuse, computer break-in,
event monitoring, intrusion detection, IDS, takedown notice, RFC, ISO/IEC.

1 Introduction

Network and security incidents are situations where effects harmful to security have
manifested or have had potential to manifest in the networks or networked
information systems. Each day, the home computers of thousands of private
individuals become infected with mass-spreading malware and business servers are
brought down to a halt by denial of service attacks initiated by criminals on the other
side of the world. Unfavourable conditions such as software errors open up
exploitable vulnerabilities, making the task of defending the information processing
systems a game of cat and mouse. The incidents deprive people of their right to
confidentiality, integrity, and availability of information processing services.

Most information security standards would agree that preventive security controls
should be reserved a central role in preventing the incidents from taking place in the

56 E. Koivunen

first place. The basic rationale being that controls employed to protect the intended
target or some other entity on the attack path would successfully repel the attack
attempts.

Merely applying preventive measures to protect information security is not
sufficient, however. The highly distributed and uncontrollable nature of the internet
makes it virtually impossible to anticipate the attacks beforehand, let alone to prevent
attacks from taking place altogether. While it is advisable to continue investing in
preventive measures, experience has shown that there is an ever-greater demand for
efficient after-the-fact handling of computer security incidents. It turns out that while
the art of incident handling suffers from many process deficiencies, it still somehow
yields excellent results. This study examines the incident reporting mechanisms and
incident handling cooperation of Computer Security Incident Response Teams
(CSIRT).

2 Methodology

In the study, an effort was made to outline the differences between the literate
approach and the practice as observed through real-life incidents. A preconceived
notion was that there already are well-defined processes in the literary, but that they
were not followed in the practice. The implications of the differences between the
theory and the practice are being discussed throughout this paper.

2.1 Outlining the Disconnect between the Theory and the Practice

For the theoretical foundations of this study, a selection of normative literature and
security standards was examined in search of guidance on how incidents should be
discovered and how information about the incidents should find their way to the
affected parties. Most notably, information security standards from Internet
Engineering Task Force (IETF) and International standardisation body ISO/IEC were
studied.

The literary view of incident discovery and reporting was then contrasted with
empirical evidence on how past incidents were being handled in the practice. The
real-life incidents were obtained from the archives of the Finnish national computer
security incident response team CERT-FI.

2.2 Linear Model of the Incident Reporting Process

To facilitate the comparison of theory and practice, a linear model of the incident
reporting and handling process was devised, as shown in Fig. 1, below. The first four
phases of the process were identified to be the most interesting to this study as they
involve information gathering and data exchange. They were assumed prerequisites to
a successful incident response in the latter stages of the process. The last three phases
deal with actions taken after the information about an incident has already reached the
subjects and are thus out of scope of this study.

 “Why Wasn’t I Notified?

The four phases of intere
contacts, exchange of incid
examined separately.

Fig. 1. Linear model of the in
are considered specific to the
to this study.

2.3 Cases of Real-Life I

The real-life incidents w
information about an incid
response process. The incid

Fig. 2. A data accumulation m
#295909]. Data in the green ce
FI archives or from other sour
whereas red cells indicate th
information by the author.

First, the cases were tra
journey the reports make
need to know. The repor
parties were identified w

?”: Information Security Incident Reporting Demystified

est – namely, incident discovery, identification of point
dent data, and means to validate the reports – were t

ncident reporting and handling process. The four leftmost pha
incident reporting and information exchange and thus of inte

Incidents

were selected to represent typical scenarios in wh
dent is passed between various participants of the incid
dents were analysed using a combination of three method

map of an incident with a CERT-FI issued identifier [FICO
ells indicate that material has been verified either from the CE
rces. Empty cells indicate that information has not been collec
at the value is not known. Cells in amber contain specula

anscribed to a narrative form. The focus was put in
while on their way from the discoverer to those wit
rting sources, various intermediaries, and the affec

where possible. The narratives were – besides be

57

s of
then

ases
erest

hich
dent
ds.

ORA
RT-

cted,
ative

the
th a
cted
eing

58 E. Koivunen

entertaining reading – vital to the understanding of the incidents and how they were
handled. The raw material obtained from CERT-FI was often unorganised and at
times hard to follow. Furthermore, the material in the CERT-FI archives mostly
focused on the actions taken by CERT-FI and gave a limited view on the actions
performed by others. To overcome this, the narratives were augmented with
external material where appropriate. However, a deliberate decision was made to
limit to public sources only.

Next, based on the narratives, a data accumulation map similar to one displayed in
Fig. 2, above, was populated, where the process participants were grouped with
respect to their role in the process, and the data in the reports was sorted in terms of
data accumulation and exchange. Participants were observed to receive data from
others, some of introduced new and lost some data and eventually passed a subset of
their data on to the next participants. This test was especially suited for examining
process deficiencies by identifying parties that were not being informed or were only
given partial information.

Lastly, an attempt to establish a graphical representation of the process flow was
made as depicted in Fig. 3, below. A tool of choice for the study was
GraphingWiki [19], mostly because CERT-FI is already conducting experiments in
using wiki in the daily analytical work. It was discovered that the graphs illustrate the
valuable role of report-handling intermediaries and helps to bring to light process
dead ends.

Fig. 3. A process flow graph of the incident [FICORA #295909]. The uppermost circles
represent the discoverers of the incidents. The reports are then passed to a set of intermediaries
until finally the affected victims are reached. In this case, three out of seven victims never
received a notification. Information indicating the identities of the victims has been withheld.

3 Theory and Practice of the Incident Reporting Process

We will now examine the four phases of the incident reporting process in more detail
and seek to contrast the theoretical foundations with the real-life incident handling
practices.

 “Why Wasn’t I Notified?”: Information Security Incident Reporting Demystified 59

3.1 Incident Discovery

A traditional source of incident discoveries in information and communications (ICT)
systems is local event monitoring. Albeit often neglected in practice, anomalous event
monitoring is well understood in the standards literature. Already over 20 years ago a
document called Orange Book [17] recognised event monitoring as an essential
feature of a secure information system. A similar requirement can be found in
practically all normative documents, ranging from functional auditing requirements
described in Common Criteria [12] to ISO/IEC information security
standards [28], [29] and the Finnish Act on the Protection of Privacy in Electronic
Communications [23]. As ISO/IEC 27002:2005 puts it:

“Systems should be monitored and information security events should be recorded.
Operator logs and fault logging should be used to ensure information system
problems are identified.” [29]

Naturally, an ICT system can only log events that take place within its own domain
of control. File system events are local to the computer attached to the data storage
and firewalls only register communications whose paths cross its network interfaces.
Local event logging completely misses incidents that take place in remote systems,
thus giving no early warning about impending attacks that may exploit similar
vulnerabilities existing in the local systems. Local event logging also loses track of
incidents once the focus of the attacker's actions has shifted to other systems. This is
especially true in cases where information stolen from one system is being spread or
exploited in other systems. This appears to be an important limitation of the event-
monitoring paradigm, further underlined by real life experiences.

A striking commonality between the incidents examined for this study is that none
of the victims of the security breaches seemed to have discovered the incidents on
their own. Clues from external reporters in one form or another were required either
to set the wheels of incident response in motion or at least to complement the victim's
limited view of the incident's true scope.

This is an important revelation; the notion that an external entity would be able to
detect incidents appears to be foreign to information security standards and
regulation. Yet, victims of many internet threats are among the last ones to learn
about the information security incidents affecting them.

During the study, three mechanisms were identified through which security breaches
in a networked system can be brought to the attention of the affected organisation. They
are illustrated in Fig. 4, below. The leftmost portion in the picture represents the local
event-monitoring paradigm endorsed by standards such as ISO/IEC 27002:2005.
However, there exist neither standards nor regulatory requirements that would encourage
organisations to take into account the remaining two scenarios in the Fig. 4. The middle
of the picture depicts a situation where signs of known attack patterns are searched in the
local ICT systems. The right side is about collaboration with external observers and
information exchange about incidents discovered elsewhere.

In the lack of standards, practical approaches have emerged. Most organisations
already employ anti-virus products, intrusion detection systems (IDS), security
information and event management systems (SIEM) and other content inspection

60 E. Koivunen

technologies to protect the
attempts. Arguably, signa
categorised under the middl

Fig. 4. Three routes via which
affected organisation. The entr

Even when not directly o
still be detectable through v
that all of the sudden slow
denial of service condition
incidents, the initial discov
with the system having an
While these weak signals co
problem, they may be the r
something the automated an
manifestations of systems
middle portion of Fig. 4.

The rightmost portion o
actionable information abo
include approaches manife
Over the years, both hav
incident reports. While m
analysing large volumes
submission channels, Shad
finding suitable recipients w
way, they help bridge the ga

eir ICT infrastructure from malicious software and att
ature-based and heuristic attack detection tools can
le portion of Fig. 4.

security breaches in a networked system can be discovered by
ry points for the incident response process are highlighted in re

observable by monitoring the event flow, some attacks
various side channels. For example, a networked IT syst

ws down or becomes unresponsive may be experiencin
caused by a resource exhaustion attack. In many pract

very can be attributed to observant administrators fami
n intangible feeling of “things not being as they shou
ontain little information that would help put a finger on
result of complex holistic analysis of a subconscious so
nomaly detection systems still cannot fully replicate. Th
administration prowess can also be categorised under

of Fig. 4, on the other hand, involves sharing specific
out on-going incidents with external parties. These wo
sted by The ShadowServer Foundation and Team Cym

ve evolved into globally significant clearing-houses
many security researchers limit themselves to mer
of incident reports obtained through a variety of

dowserver and Team Cymru rather tasks themselves i
with a means to help in solving the incidents. In a concr
ap between casual observers and the victims.

tack
be

y an
ed.

can
tem

ng a
tical
iliar
ld.”
the

ort –
hese

the

and
ould
mru.

for
rely
log

into
rete

 “Why Wasn’t I Notified?”: Information Security Incident Reporting Demystified 61

Automated reporting tools, such as CERT-FI Autoreporter [26] and Abuse
Helper [1], aim to automate the process further. Example would be an arrangement
where data related to Finnish networks is first acquired from the Shadowserver and
then redistributed to the Finnish network administrators through the Autoreporter by
CERT-FI. Lately, this has enabled CERT-FI to send hundreds of thousands of
incident reports annually as compared to number of cases counted in hundreds before
the adoption of the tool. Additionally, most reports are handled by automated means
by the ISPs, thus reducing the time between the attack discovery and successful
incident remediation. It turns out; a seemingly accidental chain of voluntary incident
reporters can after all be herded towards a common goal in an effort to better the
chances of matching the incident-related data with the victims.

3.2 Identifying Points of Contacts

As hinted in the previous section, the discoverer of the incident may have no practical
way to inform the victims. Probably one of the most straightforward – and probably
one of the most neglected – recommendations to overcome this problem comes from
the United States National Institute of Standards and Technology (NIST) whose
incident-handling manual [38] recommends:

“Organizations should publish a phone number and e-mail address that outside
parties can use to report such incidents.”

Some of the earlier attempts to solve the problem of identifying points of contacts
for incident response in the internet are to be found in Request for Comment (RFC)
series of documents. Starting from most recent published in the year 2000, the RFCs
most relevant for our purpose are 3013 Recommended Internet Service Provider
Security Services and Procedures [30], 2350 Expectations for Computer Security
Incident Response [5], 2196 Site Security Handbook [25], 2142 Mailbox Names for
Common Services, Roles and Functions [15] and 1281 Guidelines for the Secure
Operation of the Internet [34]. In practice, the recommendations are partly out-dated
and are not uniformly followed.

Regional internet registries (RIRs) oversee the allocation of IP addresses and
autonomous system numbers. There are five RIRs, each responsible for a certain
region of the world, namely RIPE NCC, ARIN, LACNIC, APNIC, and AfriNIC.
Currently, the RIRs are in the process of creating public registries of incident
response contacts within their allocated IP networks. [13], [2], [32], [31] Similar idea
was adopted by Finland in 2005 when a regulation issued by Finnish Communications
Regulatory Authority (FICORA) came into force. It requires the Finnish network
owners to document their abuse handling contacts in WHOIS. [22] However, these
only affect the IP and AS number allocations, not domain name holders.

Over the years, CSIRTs have grown to accept that it is not always possible for
them to find the ultimate report recipient on their own. Instead, the CSIRTs employ
various methods that help identify the next-in-line incident handlers that can be of
help by passing the report on to a next intermediary contact. It is hoped that after
repeated passes, the report will eventually reach recipients with means to resolve the

62 E. Koivunen

incident. The next-in-line handlers are identified by enumerating DNS names and
network addresses, analysing network topology, and utilising geolocation services.

A recent study conducted by the Finnish Communications Regulatory Authority
(FICORA) charted the services, organisation, and mandate among 11 European
national and governmental CERTs. [8] One of the major findings of the study is
summarised as follows:

“The CSIRT needs to have a clearly defined point of contact that interfaces the
team with the outside world.” [7]

The European Commission has identified national CSIRTs as key players in
incident response coordination and has set a goal to establish CSIRTs in every
European Union member state. [11]

CSIRTs themselves have long ago recognised the need for identifying and
maintaining a list of authoritative peer contacts. Several initiatives have been
introduced by organisations such as European Network and Information Security
Agency (ENISA) [21], CERT/CC [10], Forum of Incident Response and Security
Teams (FIRST) [24], Trusted Introducer (TI) [40], the European Government CERTs
Group (EGC) [20] and Asia Pacific Computer Emergency Response Team
(APCERT) [4].

Outside the standardisation and regulatory realms, the G8 countries have facilitated
an International CIIP Directory [9], a collection of government-appointed contact
points in the field of critical information infrastructure protection. The directory has
since evolved and nowadays includes official contact information on 16 different
topics from nearly 30 countries. The directory is compiled by the British Centre for
the Protection of National Infrastructure (CPNI) and is promoted by the Meridian
process. The document has not been made available to the public. Another somewhat
similarly titled publication, the CIIP Handbook [6] compiled by ETH of Switzerland,
however, is publicly available.

3.3 Information Exchange

The study found that RFCs of most relevance to incident data exchange are 5070 The
Incident Object Description Exchange Format [16] and its predecessor 3067 [3].

Somewhat surprisingly, RFCs prior to the 21st century – namely 2350 and 2196 –
were rather vague on the data formats. This suggests that automating the processing
of incident reporting is a relatively new idea. Up until recent years, it was expected
that communications would take place between human handlers. A machine-readable
data format was not formulated until the Trans-European Research and Education
Networking Association (TERENA) proposed an XML-based scheme:

“The Incident Object Description and Exchange Format (IODEF) is a format for
Computer Security Incident Response Teams (CSIRTs) to exchange operational and
statistical incident information among themselves, their constituency, and their
collaborators.” [14]

In a presentation [18] during the FIRST Conference in 2009, Till Dörges brought
together a comprehensive listing of data expression and exchange standards in the
technical information security field. According to Dörges' assessment, the key

 “Why Wasn’t I Notified?”: Information Security Incident Reporting Demystified 63

standards associated with incident handling are IODEF, Abuse Reporting
Format (ARF) [39], and – to a certain extent – Common Event Expression (CEE) by
MITRE [33]. Of these, however, only IODEF is of interest to this study. CEE defines
taxonomy of expressing events in logs, and ARF is limited to registering complaints
regarding unsolicited bulk e-mail. Both are relatively new and their adoption remains
to be seen. IODEF on the other hand appears to be mature and already has
applications in practical settings.

IODEF enjoys all the benefits and power of XML data formats. The data can be
parsed using standard libraries without having to go through pain of writing dedicated
software to interpret the incoming data. Human-readable presentation of the data can
be treated separate from the actual data contents. The data can be exchanged on
practically any type of transport such as e-mail or http. The schema can also be
tailored to suit the needs of individual applications without having to invent altogether
new data formats.

While the majority of incidents handled by CERT-FI are still being handled using
human-readable data formats, new tools are built to support IODEF from the
beginning. Autoreporter supports IODEF as an alternative form of representing the
data. Abuse Helper, whose development is still under way, sees IODEF as a key
component in inter-organisational data exchange. Understanding the current state of
play, the Abuse Helper project crew has acknowledged that in order for the tool to be
useful in practical settings, it has to provide support for legacy data formats, too. Also
worth remembering is that even the RFC authors remind that merely agreeing on data
formats is not sufficient to eliminate the human intervention. [16]

3.4 Report Validation

At this point, the incident has already been discovered, the recipients have been
identified, and information has been sent. Now, according to the documentation, we
only need to validate the data in the report or find a way to satisfy that the reporter is
known and trustworthy.

In order to validate the accuracy of the report, the recipient should be provided
either with enough information to reconstruct the incident or pointers to additional
information obtainable by the recipient. For instance, anti-virus vendors have a
convention where malware samples are packaged inside a zip archive with the word
“infected” as password. Due to CSIRTs having close relationship with anti-virus
research community, they have too adopted the convention.

The cases in Section 4.1 exhibit practical solutions to the problem of providing the
recipient with just the right amount of incident related information. For example, a
German incident-handling clearing-house CLEAN MX sends brief e-mail notifications
to the abuse helpdesks and instead of charging up the letter with technical evidence,
they provide pointers to a searchable database where additional material can be found.
Meanwhile, familiar and trusted reporters need to pass only minimal amount of
information. A case in point is the trust relationship between F-Secure and CERT-FI:
most of the time, the anti-virus analysts simply pass notifications no longer than single
line to the national incident response team for further processing.

64 E. Koivunen

On the standards front, IODEF defines an optional method of submitting incident
descriptions, impact assessments, and even event logs:

“The EventData class can be thought of as a container for the properties of an
event in an incident. These properties include: the hosts involved, impact of the
incident activity on the hosts, forensic logs, etc.” [16]

Situations are bound to surface, where it is not possible to provide proof along with
the report. If crucial incident details are left out, that leaves the receiving party with a
dilemma. The options are to either blindly follow the reporter’s request and risk
falling into hoax or to put the report aside until additional proof is presented. The
decision is made easier if the reporter has previously proven to be trustworthy. The
recipient may then decide to extend the trust to this new piece of information. This
kind of trust is easy to exploit for nefarious purposes, however, if the report's contents
cannot be verifiably linked to the trusted reporter.

One method of establishing the report's authenticity would be to sign the message
digitally with a method that lets the recipient validate the origins to a known –
possibly trusted – party. RFC 2350 [5] suggests that each incident response handler
employ at least Pretty Good Privacy (PGP) for encryption and message
authentication. Most CERTs follow this advice. For instance, FIRST requires that a
team aspiring to become a member must support PGP:

“To be a member in FIRST, a CSIRT must maintain and use PGP encryption.
Encryption keys must be distributed to all parties that will use it.” [36]

The Trusted Introducer program recognised PGP as a de-facto standard. [37] The
EGC and APCERT follow similar conduct in recommending the use of PGP in both
encrypting sensitive e-mail communication and signing content. Other methods for
authentication include S/MIME, extranet websites attributable to the reporter, and
out-of-band communications channels.

During the study, the reporter identification problem turned out to be more
multifaceted than first anticipated. It was originally assumed that the challenge was to
positively identify the reporter. Instead, examination of the cases showed there was
considerable demand for the incident discoverers to retain their anonymity. In
addition, according to CERT-FI’s experience, the ultimate recipients are sometimes
best being kept secret from the reporters. Recognising this, a special breed of
incident-reporting clearing-houses has emerged to solve the anonymising challenge.
The clearing-houses accept incident reports from a network of volunteers, repackage
them with the reporters’ identities masked and forward the material to the owners of
the affected networks. There are several advantages to this approach. It effectively
limits individual discoverer’s responsibility. The clearing-house utilises a large
number of discoverers instead of having to build a monitoring capability of its own.
The network owners only need to learn to trust a limited number of incident-reporting
clearing-houses. Finally, over the time, the clearing-houses accumulate a useful
database of historical incidents. Conversely, the ISPs and the CSIRTs are in a good
position to shield the recipients’ identities from being disclosed to the reporters.

Lastly, the reporter may want to be able to follow up with the reports and validate
that the information has been sent to the correct place. In the absence of normative

 “Why Wasn’t I Notified?”: Information Security Incident Reporting Demystified 65

references, a novel categorisation scheme was devised for the purpose of this study. In
According to the categorisation, the reporter may choose from three options to track
the subsequent progress of the incident.

Opportunistic reporters submit the material in blind and generally expect neither
acknowledgements nor additional information in return. The reporter regards the case
resolved and moves on to conduct other business as soon as the report has been sent.

Iterative reporters accept the fact that some of the recipients are interested in
learning additional details while some may never return a call. In the iterative
approach, the initial contact only serves as a trigger after which additional material
can be requested and exchanged.

Active reporters assume ownership of the incident for as long as they can find
other responsible handlers to take over. Should the case exhibit signs of stalling, an
active reporter can take corrective measures to escalate it or otherwise circumvent
obstacles.

The real-life incidents examined exhibited all three incident-reporting strategies.
Each appeared to produce results if used in favourable circumstances. The study was
not able to devise a methodological way to distinguish which approach would yield
the best results in given situation.

4 Case Summaries

For the purpose of this study, six real-life incidents were examined in detail using
material obtained under special permission from the CERT-FI incident archives. The
inherently non-public material was augmented with information found in public
sources.

Four of the cases involved compromised web servers that had subsequently been
turned into malware distribution platforms or phishing sites. To the knowledge of
CERT-FI, these were isolated incidents and were handled in routine fashion. The
remaining two incidents required more coordination and their handling lasted for an
extended period of time. One was a distributed denial of service attack directed to an
insurance company and the other involved a series of web server breaches that lead to
a disclosure of 78.000 user names and passwords. Remarkably, both were followed by
a successful law enforcement operation and the perpetrators were eventually tried in
court.

4.1 Compromised Web Servers

Incidents involving compromised web servers are almost a daily routine for CERT-FI.
Despite of that, each of the four cases examined was handled in a slightly different
manner. In each case, CERT-FI was involved in different role – this turned out to play
an important role in deciding the choice of actions to take. In addition, the route via
which reports passed through the contact network was not directly transferable from
case to case.

In each case, the initial incident discovery was not only attributable to source other
than the original attack target but also to a party with no apparent dealings with the

66 E. Koivunen

compromised party. Hence, one or more intermediaries were needed to deliver the
information within reach of parties with better means to resolve the issues.
Interestingly, in each case, not all affected parties were included in the information
sharing. Chances are that they never came to discover that they had been affected by
an information security incident.

Someone Else’s Problem. In the first case examined, a web server in Finland had
been broken into and a lookalike page portraying to be an online banking service had
been inserted onto the server. The compromised server belonged to a small Finnish
non-profit organisation. Over a hundred similar phishing cases were registered with
CERT-FI in 2009. This particular incident has been assigned an identifier [FICORA
#309474] by CERT-FI.

CERT-FI received the report from a commercial German incident clearing-house
CLEAN MX. The identity of the original discoverer was withheld by the clearing-
house. Instead, a compelling set of evidence supporting the incident report was
provided. Although the material received by CERT-FI was actionable, no action to
resolve the incident was taken. CERT-FI was able to satisfactorily verify that a copy
of the report had been delivered to the security team of the responsible network.

Interestingly, in the material examined, there was nothing to suggest that the
foreign bank was contacted or its affected customers identified.

Assuming Responsibility of Someone Else’s Problem. In a second case, identified
[FICORA #308909], a compromised server in Finland had been turned into malware
distribution platform. As with previous case, CLEAN MX was involved and CERT-FI
received an informational copy of the report. This time, however, action was needed
to inform the network provider about additional findings uncovered by CERT-FI.
CERT-FI sent the additional material to the upstream network connection provider.
Based on the material available, it is not clear why the actual hosting provider was not
contacted. This may have been either an oversight or – with the benefit of hindsight –
an effort to put pressure onto the hosting provider. In any case, shortly after escalating
the incident to the upstream operator, the material was removed from the server.

Enforcing the Chain of Trust. In this case, six servers in Finland had been
compromised and turned into malware distributing platforms. CERT-FI received
information from a clearing-house that has expressed a wish to remain unidentified.
The identities of the original discoverers were unknown to CERT-FI. Due to previous
engagements and mutual agreements, the reports were considered trustworthy and
CERT-FI proceeded to inform the ISPs about incidents. Only four ISPs out of six
acknowledged that they had responded to the report. The incident id was [FICORA
#295909].

Informing a Foreign Victim. As part of their routine job, analysts at an internet
security company F-Secure had been reverse-engineering malware samples.
Among other things, they had been able to extract addresses of the web sites
containing additional malware. These addresses were passed on to CERT-FI who
then opened an incident ticket [FICORA #307761] and proceeded to contact the

 “Why Wasn’t I Notified?”: Information Security Incident Reporting Demystified 67

ISP in the United States. Upon receiving acknowledgement from the reputable US
business, CERT-FI closed the case. Performing extra checks was not deemed
necessary.

4.2 Data Breach

In late 2007, a young Finnish male in his teens broke into at least ten web sites and
stole their user databases. He then proceeded to publish the credentials along with the
passwords – 78,000 altogether – with an apparent intention to create havoc among the
users. The incident with a ticket identifier [CERT-FI: 36789] was discovered by
several private citizens independently. Figuring out, which services the credentials
had been stolen from required some investigation and limiting collateral damage was
seen a priority by CERT-FI.

After some guesswork, the compromised systems were identified and their owners
contacted. Information acquired from their administrators helped establish the chain
of events and that all compromised systems had been identified. Within a week, the
police proceeded to successfully arrest the perpetrator. He was eventually tried in
court. [35]

CERT-FI never contacted the end users whose passwords had been leaked. Most
were informed in some way by their administrators or they found out about the
incident thanks to the widespread media coverage.

4.3 Denial of Service Attack

The websites of three Estonian companies began experiencing symptoms of denial of
service attacks in the summer of 2006. One of the targets was a subsidiary to a
company based in Finland, which automatically made the incident interesting to
CERT-FI. A ticket with an id of [CERT-FI: 19608] was issued. It was soon
discovered that the attack traffic came from thousands of compromised computers all
over the world.

During the investigation, it was discovered that several versions of a specialised
autonomously propagating malware had been issued by an unknown author. The
malware contained no command and control structure and would hence continue the
attack perpetually. In fact, the attack is still on going at the time of collecting
material for this study. The malware author was subsequently arrested and tried [27]
but even he is unable to cancel his creations. According to the telecommunications
provider, after four years, roughly 99 % of the incoming traffic to the web servers is
still considered generated by the attack and is filtered out before it reaches the
servers.

5 Conclusion

In this study, a review of normative literature was combined with an examination of
real-life incident cases. This was done in an effort to produce an informed opinion

68 E. Koivunen

about the state of play in the field of network and information security incident
reporting. The purpose was to find how far apart the two worlds are from each other.

5.1 Incidents Can Be Detected by Outside Parties

The cases examined for this study helped underline the fact that there is a
discontinuation in the way incidents are being discovered and whom they target. The
victims are often among the last ones to learn about incidents affecting them, while at
the same time perfect strangers can detect them without an effort. This underlines the
importance of an agnostic approach to the sources of incident reports. Refusal to
accept incident reports from the so-called outsiders causes an organisation to miss
important information about its own security weaknesses.

5.2 Finding Correct Incident Reporting Contacts Is Challenging

Internet registries have only recently discovered that they could have a role to play in
helping people determine who is responsible for handling information security
breaches in various parts of the internet. It is rather remarkable that this has not
happened earlier, as the delay has helped produce black spots in the internet where
malicious activities go often unnoticed for long periods of time. Incident-reporting
clearing-houses are invaluable as they perform the task that otherwise would belong
to nobody. That is, they help the incident discoverers in getting the message to the
victims.

5.3 Incident Reporting Not Fully Understood in Standards Literature

The standards have yet to discover the importance of complementing local event
monitoring with reports received from external sources. The notion of having to base
security procedures partly on data from unknown sources fits rather poorly with the
control-driven worldview of standardisation. The study found ISO/IEC 27002 and
IETF RFC 5070 to be the prime examples of standards with a say in incident response
and reporting. The ISO standard describes the management system-level requirements
and justification for incident response and the RFC provides a way to automate the
processing and exchange of incident-related data.

5.4 Automation Not Fully Exploited in Incident Reporting

The everyday business of incident reporting and handling takedown requests still
largely relies on human-to-human e-mail correspondence. The current automated
tools are reduced to producing human-readable reports in an automated fashion and
parsing incoming human-readable material. Existing standards for automating the
whole exchange of incident-related material are heavily underused. Due to the holistic
nature of the incident response process, there is continued need for human
supervision. The challenge is to support the iterative information exchange and ad-
hoc communications paths.

 “Why Wasn’t I Notified?”: Information Security Incident Reporting Demystified 69

References

1. AbuseHelper project pages, http://code.google.com/p/abusehelper/
2. American Registry for Internet Numbers ARIN: Introduction to ARIN’s database,

https://www.arin.net/knowledge/database.html#abusepoc
3. Arvidsson, J., Cormack, A., Demchenko, Y., Meijer, J.: TERENA’s Incident Object

Description and Exchange Format Requirements (RFC 3067). Internet Engineering Task
Force (2001)

4. Asia Pacific Computer Emergency Response Team, Member Teams,
http://www.apcert.org/about/structure/members.html

5. Brownlee, N., Guttman, E.: Expectations for Computer Security Incident Response (RFC
2350, BCP 21). Internet Engineering Task Force (1998)

6. Brunner, E., Suter, M.: International CIIP Handbook 2008/2009, An Inventory of 25
National and 7 International Critical Information Infrastructure Protection Policies. Center
for Security Studies, ETH Zurich, Switzerland (2008)

7. Bryk, H.: National and Government CSIRTs in Europe, Study Conducted by CERT-FI.
Finnish Communications Regulatory Authority, Helsinki, Finland (2009)

8. Bryk, H.: A study among certain European computer security incident response teams and
application of good practices in Finnish Communication Regulatory Authority. Helsinki
University of Technology, Espoo, Finland (2008)

9. Centre for the Protection of National Infrastructure, International CIIP Directory, Issue 21
(2009) (unpublished)

10. CERT Coordination Center, CSIRTs with National Responsibility,
http://www.cert.org/csirts/national/

11. Commission to the European Communities: Communication from the Commission to the
European Parliament, the Council, the European Economic and Social Committee and the
Committee of the Regions on Critical Information Infrastructure Protection - Protecting
Europe from large scale cyber-attacks and disruptions: enhancing preparedness, security
and resilience, COM (2009) 149 final. Brussels (2009)

12. Common Criteria for Information Technology Security Evaluation: Part 2: Security
functional components. Version 3.1, Revision 3, Final (2009)

13. Cormack, A., Stikvoort, D., Woeber, W., Robachevsky, A.: IRT Object in the RIPE
Database, ripe-254 (2002)

14. Cover, R. (ed.): Incident Object Description and Exchange Format (IODEF),
http://xml.coverpages.org/iodef.html

15. Crocker, S.: Mailbox Names for Common Services, Roles and Functions (RFC 2142).
Internet Engineering Task Force (1997)

16. Danyliw, R., Meijer, J., Demchenko, Y.: The Incident Object Description Exchange
Format (RFC 5070), Internet Engineering Task Force (2007)

17. DoD 5200.28-STD: Department of Defense Trusted Computer Security Evaluation
Criteria. National Computer Security Center (1985)

18. Dörges, T.: Information Security Exchange Formats and Standards. Slides for the
presentation held during FIRST 2009 Conference in Kyoto (2009)

19. Eronen, J., Röning, J.: Graphingwiki - a Semantic Wiki extension for visualising and
inferring protocol dependency. Paper presented in the First Workshop on Semantic Wikis
“SemWiki 2006 - From Wiki to Semantics,” co-Located with the 3rd Annual European
Semantic Web Conference (ESWC), Budva, Montenegro, June11-14 (2006)

20. European Government CERTs Group, EGC Emergency Contact Information (unpublished)

70 E. Koivunen

21. European Network and Information Security Agency: Inventory of CERT activities in
Europe,
http://www.enisa.europa.eu/act/cert/background/inv/files/
inventory-of-cert-activities-in-europe

22. Finnish Communications Regulatory Authority: On information security and functionality
of Internet access services, Regulation 13 A/2008 M. Finnish Communication Regulatory
authority, Helsinki, Finland (2008)

23. Finnish Parliament: Act on the Protection of Privacy in Electronic Communications
516/2004, Edita Publishing Oy, Helsinki, Finland (2004)

24. Forum of Incident Response and Security Teams, Alphabetical list of FIRST Members,
http://www.first.org/members/teams/

25. Fraser, B.: Site Security Handbook (RFC 2196). Internet Engineering Task Force (1997)
26. Grenman, T.: Autoreporter – Keeping the Finnish Network Space Secure. Finnish

Communications Regulatory Authority, CERT-FI, Helsinki, Finland (2009)
27. Harju Maakohus (Harju District Court): Court decision in criminal case 1-09-

3476(07221000080), judge Julia Vernikova, Tallinn (2010); (only available in Estonian)
28. ISO/IEC 27001:2005(E): Information technology. Security techniques. Information

security management systems. Requirements. International standard, First edition (2005)
29. ISO/IEC 27002:2005(E): Information technology — Security techniques — Code of

practice for information security management. International standard, First edition (2005)
30. Killalea, T.: Recommended Internet Service Provider Security Services and Procedures

(RFC 3013, BCP 46). Internet Engineering Task Force (2000)
31. Knecht, T.: Abuse contact information (prop-079-v003),

http://www.apnic.net/policy/proposals/prop-079
32. Latin American and Caribbean Internet Addresses Registry LACNIC: Allocation of

Autonomous System Numbers (ASN), LACNIC Policy Manual (v1.3 - 07/11/2009),
http://lacnic.net/en/politicas/manual4.html

33. MITRE Corporation, Common Event Expression, http://cee.mitre.org/
34. Pethia, R., Crocker, S., Fraser, B.: Guidelines for the Secure Operation of the Internet

(RFC 1281). Internet Engineering Task Force (1991)
35. Porvoo magistrate’s court: Decision 09/863 in criminal case R 09/446 (2009) (only

available in Finnish)
36. Ruefle, R., Rajnovic, D.: FIRST Site Visit Requirements and Assessment, version 1.0.

Forum of Incident Response and Security Teams (2006)
37. S-Cure: Trusted Introducer for CSIRTs in Europe, Appendix B: Information Template for

“accredited” CSIRTs, version 4.0. Trusted Introducer (2009)
38. Scarfone, K., Grance, T., Masone, K.: Computer Security Incident Handling Guide -

Recommendations of the National Institute of Standards and Technology, NIST Special
Publication 800-61, Revision 1. National Institute of Standards and Technology (2008)

39. Shafranovich, Y., Levine, J., Kucherawy, M.: An Extensible Format for Email Feedback
Reports, Internet-Draft version 4. MARF Working Group (2010)

40. Trusted Introducer, Team Info, Listed Teams by Name,
https://www.trusted-introducer.org/teams/alpha_LICSA.html

T. Aura, K. Järvinen, and K. Nyberg (Eds.): NordSec 2010, LNCS 7127, pp. 71–88, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Use of Ratings from Personalized Communities
for Trustworthy Application Installation

Pern Hui Chia1, Andreas P. Heiner2, and N. Asokan2

1 Q2S* NTNU, Trondheim, Norway
2 Nokia Research Centre, Helsinki, Finland

chia@q2s.ntnu.no, {andreas.heiner,n.asokan}@nokia.com

Abstract. The problem of identifying inappropriate software is a daunting one
for ordinary users. The two currently prevalent methods are intrinsically cen-
tralized: certification of “good” software by platform vendors and flagging of
“bad” software by antivirus vendors or other global entities. However, because
appropriateness has cultural and social dimensions, centralized means of signal-
ing appropriateness is ineffective and can lead to habituation (user clicking-
through warnings) or disputes (users discovering that certified software is
inappropriate).

In this work, we look at the possibility of relying on inputs from persona-
lized communities (consisting of friends and experts whom individual users
trust) to avoid installing inappropriate software. Drawing from theories, we de-
veloped a set of design guidelines for a trustworthy application installation
process. We had an initial validation of the guidelines through an online survey;
we verified the high relevance of information from a personalized community
and found strong user motivation to protect friends and family members when
know of digital risks. We designed and implemented a prototype system on the
Nokia N810 tablet. In addition to showing risk signals from personalized com-
munity prominently, our prototype installer deters unsafe actions by slowing the
user down with habituation-breaking mechanisms. We conducted also a hands-
on evaluation and verified the strength of opinion communicated through
friends over opinion by online community members.

Keywords: Usable security, User-centered design, Risk signaling.

1 Introduction

The versatility of mobile devices paves the way for a large array of novel applications;
mobile devices today contain ever more sensitive information such as medical data,
user location and financial credentials. As device manufacturers open up the mobile

* Centre of Quantifiable Quality of Service in Communication Systems (Q2S), Centre of Ex-

cellence appointed by the Research Council of Norway, is funded by the Research Council,
Norwegian Uni. of Science and Technology (NTNU) and UNINETT.

 http://www.q2s.ntnu.no

72 P.H. Chia, A.P. Heiner, and N. Asokan

platforms to encourage third party software development, applications from different
sources are becoming available. Some of these applications, although not malicious,
are inappropriate in the sense that they can cause harm (e.g., loss of privacy) or offense
(e.g., culturally or religiously-insensitive content) to some users. The appropriateness
of FlexiSpy – one of several commercial applications intended to spy on the activities
of the user of a mobile phone – has been contentious. Mobile applications with poten-
tially inappropriate content are becoming publicly available1.

The bar for developing “applications” is also being lowered drastically. One can
now develop simple applications for mobile devices by using only scripting languages
(e.g., using JavaScript+HTML+CSS for Palm webOS [27]), or even without much
programming experience using online tools (e.g., OviAppWizard [28] and AppWi-
zard [29]). These applications are unlikely to be malicious (as they don't do too much)
but we can expect a flood of applications from a larger variety of originators which
increases the chance of a given application offending a certain group of users.

1.1 What Is Inappropriate Software?

StopBadware.org [30] defines badware as software that fundamentally disregards a
user’s choice about how his or her computer or network connection will be used. In
addition to software with malicious intent, the definition covers bad practices, such as
installing additional unexpected software, hiding details from users, and incompre-
hensible End User License Agreement (EULA) that hinder an informed consent. Our
understanding of “inappropriate software” is close to this notion of badware. In addi-
tion to maliciousness and disregard of user-choice, we consider software appropriate-
ness to cover also the cultural and social dimensions.

1.2 Software Certification and Its Limitations

A dominant approach for reducing the risk of malicious software on mobile platforms
(e.g., Symbian, BlackBerry, J2ME and Android) is to rely on software certification
and platform security. Software certification (e.g., Java Verified Program [31] and
Symbian Signed [32]) is usually subject to software testing conducted by an autho-
rized third party using publicly available criteria. But testing typically focuses only on
technical compliance such as proper usage of system resources, proper application
start/stop behavior and support for complete un-installation. Platform security (e.g.,
Symbian OS Platform Security [10] and Java Security Architecture [8]) refers to the
isolation and access control features of the operating system or runtime. Ideally, soft-
ware certification and platform security are used in tandem: an application is granted
the privileges it requires if it is signed by a party trusted by the device platform. How-
ever, certification does not guarantee software security. It also does not consider the
social and cultural aspects of software appropriateness.

Uncertified Software: The Risk of Habituation. Many application installers (in
mobile or desktop environment) resort to displaying warning and disclaimer notices to

1 A search using the keyword ‘entertainment’ in the iTunes Appstore returns a number of

applications with potentially mature content.

Use of Ratings from Personalized Communities for Trustworthy Application Installation 73

signal risks when software to be installed is not certified. Visual difference when
installing certified and non-certified software is often low; the text is also typically
uninformative (see Figure 1). Providing system-generated notifications to which user
attends to maintain security is the practice of “security by admonition” [26]. Besides
degrading user experience, such notices lead to a high rate of false-positives causing
many users to habitually click-through them. Click-through behavior is further en-
trenched when warnings equating “uncertified software” as possibly “harmful” may
contradict other signals a user receives. An example of this is the installation of Gmail
application (Figure 2a); the installer warns that it is ‘untrusted’ and ‘maybe harmful’
since it is not certified. A user, who trusts Google and who has just downloaded the
application from Google’s website will ignore and click-through the warning.

Fig. 1. The Skype PC version has a list of ‘featured extras’ that include both Skype-certified
and non-certified plugins. The visual difference when installing the two types is only the color
of certification label (light-blue vs. soft-yellow).

Fig. 2a. Gmail is not certified Fig. 2b. FlexiSpy is certified [33]

Certified Software: The Risk of Centralized Judgment. On the other hand, soft-
ware certified by a central authority may be perceived as inappropriate by some
communities. An example of this is FlexiSpy – advertised as a tool to monitor the
work force and protect the children and is available on most mobile platforms. The
application has a number of characteristics that can be construed inappropriate: it
spies on user activities (call, SMS, email, location), is invisible in the application list,

74 P.H. Chia, A.P. Heiner, and N. Asokan

uses a deceptive name (RBackupPro) and allows the device to be controlled remotely.
F-Secure flagged it as spyware that may be used for malicious purposes illegally [33]
but as FlexiSpy fulfills the certification criteria, it is Symbian certified. In other
words, a user is given a warning (Figure 2a) when he tries to install Gmail although
he may likely trust it, whereas FlexiSpy can be installed without warnings (Figure 2b)
even though he may belong to the group of people who consider it inappropriate.

On iPhone, Apple decides which 3rd party applications can be distributed
through the iTunes Appstore; we regard this as a scheme of implicit certification.
Apple has also the means to activate a “kill-switch” to disable applications that may
have been “inadvertently” distributed and later deemed “inappropriate by Apple”.
Apple’s review criteria are, however, not publicly available. This has resulted in
outcomes that are contested by developers and the Electronic Frontiers Foundation
[34]. South Park, Eucalyptus and the Stern.de reader were among applications that
were deemed “inappropriate by Apple” but later approved after protests [34]. Such
contentions exemplify that centralized judgment can hardly cater for the value sys-
tems of different users.

1.3 Our Contribution

• We derived a set of design guidelines, grounded in cognitive and information flow
theories, for a trustworthy software installation process (Section 2). Although we
focus on mobile devices here in this paper, the guidelines are applicable to other
platforms (e.g., desktop, Facebook) where installation by end-users can take place.

• We surveyed for the behaviors during installation, and we found high relevance of
information from friends/family and user motivation to protect them. (Section 3)

• We built and evaluated a prototype system (Section 4 & 5). Although we could not
test the efficacy of our prototype against habituation, we verified that opinion by
friend is of higher impact than that of by online community through the user study.

2 Designing a Trustworthy Installation Process

We consider that a trustworthy installation process to be one that helps users to avoid
installing inappropriate application. Besides providing risk signals that are perceived
reliable and relevant, the installer should take into account of the risk of habituation,
which undermines the efficacy of many security mechanisms involving end-users.

2.1 Cognition during Application Installation

In the conventional installation task flow, as a user defines his expectation or desired
software functionality (for a task at hand), he starts by searching for an application in
the application market or on the web that meets his requirements. When such an ap-
plication is found (and downloaded), the user will have to perform some “post-
selection” actions such as accepting security-related conditions and configuration
options before he is able to use it (objective attained). These “post-selection” steps are

Use of Ratings from Personalized Communities for Trustworthy Application Installation 75

nearly always made without the user paying attention to what is asked. Habituation to
click-through this “post-selection” phase could be attributed to current design of in-
stallation that lacks understanding for user’s cognition.

To develop guidelines that take into account of user’s cognition, we draw on the
dual processing theory [12] in cognitive science, which identifies two main types of
cognitive processes: controlled and automated processes.

Controlled processes are goal-directed; a user defines an objective and plans a path
that (in his opinion) will lead to the objective. At certain points, the user will make an
appreciation of the current context in order to decide on the next best-move in achiev-
ing his end goal. This process is highly dynamic and requires logical thinking. For
these reasons, one can execute only one controlled process at a time. Appreciation of
the current context and decision for a course of action, over time, can be based on
superficial comparison of contexts. This leads to faster decision making [7,12]. De-
spite a potential high degree of automation in decision making, it remains a controlled
process as one will always have to compare between multiple contexts.

Automated processes such as habits, on the other hand, pose little to no cognitive
load. Habits develop from deliberate into thoughtless actions towards a goal. If the
context for an action is nearly identical over a series of performances, the action be-
comes mentally associated with the context; observing the context is enough to trigger
the action [1,17]. The simpler a task, the more frequently it is executed and the higher
similarity in context, the stronger a habit can become. New information that invali-
dates the initial conditions (which led to an action or habit) will go unnoticed.

The difference between habits (automated) and automation in decision making
(controlled) lies in the constancy of the context. Habits are developed if the context is
(nearly) always the same. With the latter, context varies between a number of states
with reasonable likelihood, thus requiring a controlled process of context comparison.

Fig. 3. (Left) A constant context results in habitual behavior. (Right) Using the attention cap-
ture process with the dominant context as reference prevents this.

The constant context (lack of context-sensitive information) during installation
makes the action of confirmation a habit. This is exemplified in Figure 3 (left); the

76 P.H. Chia, A.P. Heiner, and N. Asokan

context of a normal installation flow (C1) demands the decision of action A1 (install)
that results in R1. An abnormal context (C2) should lead to R2 (installation aborted).
But as context C1 occurs much more often (denoted with probability .99) than context
C2, user will over time expect context C1 and habitually selects action A1. This is
more likely if there is no clear visual difference between the contexts (e.g., Figure 1).
Furthermore, from a user perspective, the choice (install or abort) is asked after the
last conscious step of having decided to download and install a particular application.
Users also rarely face immediate consequence for installing inappropriate software.

We argue that habituation can be avoided by eliminating the need for user action in
the normal and frequent context (an easy target of habituation) altogether. Depicted in
Figure 3 (right), context C1 can be taken as reference context with an implied action
A1. User can then be made aware of the deviation from this reference context through
attention capture – the process of making a user aware of a change in environment
that (may) require the user to attend to a new task [15]. A predominant view is that
attention capture is an automated, stimulus-driven process modulated by the current
controlled task [18]. The cognitive load required for the current task, as well as the
strength and the relevance of the stimulus to the current task, affect the likelihood that
a person will act on the stimulus. Thus, in addition to visual salience, the relevance
and strength of a warning (risk signal) are paramount to ensure that users will take
note of and evaluate the warning, during the installation process.

2.2 Information Flow and Risk Signaling

Software warnings (risk signals) have conventionally been communicated to users in
a hypodermic-needle manner by expert entities (e.g., antivirus vendors). These risk
signals are designed against malware and do not cover for aspects such as the respect
for user choice and the social/cultural factors of software appropriateness.

In search of risk signals that are relevant and of high impact, we refer to the two-
step flow theory [13] – the founding work of innovation diffusion theory – which
describes how communication can be more effective through a network of people
(rather than through the hypodermic-needle fashion). Central to the theory are the
information brokers (originally known as opinion leaders in [13]) who are not neces-
sarily the most knowledgeable but are nevertheless skillful in interconnecting people
[3]. Information brokers guide the information flow from sources into separate groups
(first step) given incentives such as early information access and social capital [3].
When information gets into a particular group, competition among group members
can serve to encourage each other to improve own knowledge and exchange opinions,
which constitutes the second step of information flow [3]. Social media such as Twit-
ter and Facebook are successful examples that have harnessed the power of social
networks for effective communication. Use of social networks for provisioning or
relaying of risk signals is, however, still an early concept.

PhishTank [35] and Web of Trust (WOT) [35] are systems that employ “wisdom of
crowds” (using a global community, not personalized network) to improve web security.
PhishTank solicits reports and votes against phish-sites, while WOT collects public opi-
nions on the trustworthiness, vendor-reliability, child-safety and privacy-handling

Use of Ratings from Personalized Communities for Trustworthy Application Installation 77

of websites. Both systems aggregate user ratings into global (rather than personalized)
values. Such global values can, however, be susceptible to exploitation. Moore and Clay-
ton [16] argued that as participation in PhishTank follows a power-law distribution, its
results can be easily influenced by the few highly active users2.

Prior work has pointed to the advantages of using inputs from personalized net-
works instead of the global community. Against phishing, Camp advocated for the
use of social networks to generate risk signals that are trustworthy as the incentive to
cheat is low among members who share (long-term) social ties [4]. Inputs from social
networks can also be verified through offline relationship, allowing incompetent or
dishonest sources to be removed [4]. Personified risks are also perceived greater than
anonymous risks [22]; this may help to mitigate the psychological bias (known as
valence effect) in which people overestimate favorable events for themselves. Inputs
from social networks are also socially and culturally relevant.

2.3 Design Guidelines

To sum up, we consider that a trustworthy installation process should:

• Avoid requiring user actions that can be easily habituated. User actions in a
normal and frequent context could be made implicit and complemented with an at-
tention capture mechanism to signal any deviation from this context.

• Employ signals that are visually salient, relevant and of high impact. Signals
should cover both the objective and subjective factors of software appropriateness.

• Incorporate mechanisms to gather and utilize feedbacks from user’s persona-
lized community. In this work, we refer a personalized community to friends and
experts whom individual users trust in providing valuable inputs about software ap-
propriateness. Experts could be vendors or gurus who are knowledgeable in the
technical evaluation of software. A list of reputable experts can be set for all users
by default. Meanwhile, Friends refer to ones whom users have personal contacts
with and whom could help by sharing personal experience about applications or re-
laying information. Here, we hypothesize that risk signals from the personalized
community can be more effective (due to their relevance and trustworthiness) than
that of from global community. We verified the relevance and strength of inputs
from friends in our survey (Section 3) and user study (Section 5).

3 Web-Based Survey

We conducted an online survey to identify the installation behaviors and to evaluate
the potentials of a personalized community in providing relevant and helpful
signals.

2 We note that this may be not too serious as determining whether a website is a phishing site

(similar to whether an application is malicious) is usually objective. But judging if a website
is trustworthy (with WOT, similar to evaluating the subjective factors of software appro-
priateness) can be contentious and prone to dishonest behavior (e.g., Sybil attack [5]).

78 P.H. Chia, A.P. Heiner, and N. Asokan

Recruitment and Demographics. We recruited our participants mainly from univer-
sities. We put up posters around popular campus areas. Emails were also sent to col-
leagues in other universities with the request to take part and to the forward the invita-
tion to their contacts. Throughout the recruitment and responding process, we referred
our survey as a study on user behaviors during installation using the title: “A Survey
on Software Installation”. Considerations were taken to avoid priming of secure be-
haviors. The reward for participation was to receive a cinema ticket on a lucky draw
basis. Winners who do not reside in the Nordic region were rewarded with a souvenir-
book. The lucky draw was made a few weeks after the data collection.

The survey was open for participation for 3 weeks. In total, 120 participants took
part in the survey. Participants who did not complete all questions, or whose total
response time was unrealistically low (<10 minutes) were excluded. The final popula-
tion consists of 106 subjects (36% females). 12% have a PhD degree, 42% have a
Master degree while 28% have a Bachelor degree. 61% have a background in IT or
engineering (power, electrical, mechanical, etc.) while 39% have a non-technical
background (see Table 1). Subjects took 15 minutes on average to complete the sur-
vey, which was structured into 12 questions with 105 items in total. We mostly used a
4-point Likert scale on the perceived importance of an element and the likelihood or
frequency of performing an action.

 Table 1. Demographics of survey participants Table 2. When know of digital risks

Education/work background Age group
IT or Engineering 61% 18-24 15%
Business / Finance 12% 25-29 41%

Science / Math 8% 30-39 32%
Arts & Social Science 10% 40-49 11%

Others 9% 50+ 1%

User would always / often inform
 friends or family 62 %
 members of online community 15 %
 expert individuals 14 %
 expert organizations 8 %
 antivirus software company 6 %

Results. We present a few interesting findings that we obtained. Finding-1 concerns
the behaviors during installation while the others demonstrate the potentials of ratings
from a personalized community. The percentage values were computed after reducing
the responses from 4-point Likert scales into nominal levels of important/not, like-
ly/not, or usually/seldom.

i. Information during installation is mostly ignored. 83%, 90% and 75% of the
subjects reported that they seldom read the EULA, privacy policy and disclaimer
notices respectively during the installation process. Similarly, 78% of the subjects
seldom check for digital signatures (or software certificates), nor abort installation
when they are absent. Only 30% usually abort installation given warnings from the
installer. However, 69% usually abort installation if unnecessary personal ques-
tions were asked. 76% usually abort installation if warned by antivirus software,
while 53% usually abort installation in the presence of advertisement pop-ups.

ii. Security vendors, experts and friends are important sources for information
on digital risks. About 90% of the subjects reported that antivirus software is an

Use of Ratings from Personalized Communities for Trustworthy Application Installation 79

important source of information about digital risks (e.g., harmful or inappropriate
software/services). Expert organizations and individuals also scored high (75%).
Undeniably, security vendors and experts are the most important sources of infor-
mation on digital risks. The survey gave further interesting results. 65% of the
subjects regarded the first-hand experience by friends and family members as im-
portant. In comparison, fewer subjects (50%) considered the experience from
members of an online community to be important. This difference was statistically
significant (p<.01, Chi-square). This suggests that users regard inputs from friends
and family members to be more relevant than that of from an online community.

iii. When users know about digital risks, they are motivated to inform friends or
family rather than the online community. 60% reported that they could usually
find security-related information by themselves. However, only 34% have been
asked by friends or family members on whether software is trustworthy or appro-
priate. This could be due to the lack of existing system to share their opinions
about software with his friends or family members. Indeed, we find that motiva-
tion to inform friends or family members about digital risks is high. 62% of the
subjects would inform them about digital risks. Comparatively, only 15% were
motivated to inform the online community (see Table 2). The difference was sta-
tistically significant (p<.0001). This suggests that users have more motivation to
protect his friends than members of online community. This supports the feasibili-
ty of a rating system based on personalized communities over the global-
community compatriot.

iv. Users consider reviews from trusted sources to be helpful. With considerations
to the limited screen size of mobile devices, 80% regarded reviews from trusted
sources to be important/helpful information during software installation.

Limitation and Discussion. We note that the education level of the participants was
high, and 61% of the subjects have a background in IT or engineering. Yet, even though
we might expect the subjects to be more aware of digital risks, there is an evident ‘click-
through’ behavior. Excluding those with an IT/Engineering background, slightly fewer
subjects (51%) could usually find security-related information themselves. However, the
key results remain unchanged: 66% regarded friends as important source of risk informa-
tion; 60% would inform friends or family when know about digital risks (compared to
only 12% would inform such risks to an online community); 72% perceived reviews and
ratings from trusted sources to be important/helpful information during software
installation.

4 System Architecture and Prototype

Two important components in our architecture are: (i) software repository, which main-
tains a list of applications available for installation and a software catalog (containing
metadata such as price, author, description and keywords); (ii) rendezvous server, which
issues identity certificates and manages the user database, social graph and application
reviews. To use the prototype installer (developed on the Nokia N810 tablet), a user

80 P.H. Chia, A.P. Heiner, and N. Asokan

must first register and obtain his credentials at the rendezvous server. Thereafter, the user
can add friends and experts whom he trusts into his personalized community, and share
software reviews with them, using the prototype. Sharing is done through the rendezvous
server, Bluetooth or email. Software reviews are digitally signed and verified on the pro-
totype to ensure authenticity and integrity.

Fig. 4. System Architecture. The proto-
type was implemented on the Nokia
N810 tablet, while a rendezvous server
was setup on an Ubuntu desktop. The
prototype interacts with conventional
software repositories to obtain applica-
tion catalog and installation packages.

Fig. 5. Prototype. (Left) The front-page shows an application list with basic description on the
right panel. (Right) The experimental ‘bin-the-monster’ mechanism: user clicks on a monster to
read the negative review; he has to drag it into the bin if he chooses to disregard the review.
(Note that the reviews and ratings were artificially generated for evaluation purposes only)

The installation task flow was redesigned. When a user defines his requirements
and searches for suitable applications (using some keywords), our prototype displays
a list of related software (Figure 5, left). The right panel shows basic information of a
selected application, while detailed reviews from user’s personalized community can
be accessed by clicking on the “learn more” button. The “install” button will install an
application without further prompting (if it has not been ‘flagged’ as potentially inap-
propriate by the user’s personalized community). This removes user actions (in the
post-selection phase of conventional task flow) that are prone to habituation.

 Bob

Alice

prototype

prototype

1. Add as friend
2. Share review

 1. Register
 2. Add friend / expert
 3. Share review

application
checksum

community features

user interface

backend installer

identity
cert

signed
review

software
repository

catalog

installation
packages

rendezvous
server

identity
certificate signed

review

Use of Ratings from Personalized Communities for Trustworthy Application Installation 81

For an application that has received negative reviews (i.e. flagged by the persona-
lized community), a risk signal is shown prominently to catch the user’s attention. To
reflect the personal/social dimension of the warning, we chose a non-conventional
risk symbol: a Pacman-like monster. Warning triangles and stop signs may signal that
it is an “objective” opinion by some authorities.

The symbol is shown for flagged applications only; salience is increased by not
showing positive cues. It is placed at the same level as the application name, and is
enlarged when the application is highlighted. If the user decides to install an applica-
tion that has been flagged, he is redirected to the review-page (Figure 5, right) where
he has to read the detailed reviews. Textual review improves the relevance of a risk
signal as user can appreciate what is said better than numerical values [20]. Negative
reviews are framed in red (bottom-up salience). To mitigate a potential click-through
when attending to the negative reviews, we experimented with two habituation-
breaking tasks (to improve the efficacy of attention-capture):

• Delay: User has to read every negative review by clicking on each of the monsters
with some time interval. When clicked, a monster will disappear into an icon with
numerical rating only after a few seconds, before the next review can be read.

• Bin-the-monster: As before, but the monster only disappears when it is dragged
into the bin. User cannot install until all monsters have been binned (Figure 5).

5 User Evaluation

We conducted a hands-on evaluation and investigated the strength of opinion given
by friends compared to opinion given by online community members.

Recruitment and Demographics. Participants were mainly recruited from universi-
ties. We distributed recruitment notes around popular campus areas especially in the
social science and science/math faculties. A web-form was also created to allow sub-
jects to sign-up online. Participants of our survey were especially encouraged to take
part if they reside in the Nordics; they were directed to the signup form upon complet-
ing the survey. Each participant was rewarded with two cinema tickets. There were in
total 20 participants (7 females) consisting of students, researchers and a few working
adults. 6 participants came from an IT background. The remaining subjects comprised
of 6 mechanical, electrical or power engineering students, 4 science/math graduates, 3
art/design graduates, and 1 psychology undergraduate.

Experimental Setting. We specified 4 testing days and arranged with the participants
a suitable session of an hour each. Individual participants were invited to our premises
where the study took place. Each session was preceded with a brief interview. The
main task was structured into four evaluation scenarios. In the end, we asked for the
overall experience with our prototype before a final debrief.

In the brief interview, we asked if a subject has encountered situations where he
had difficulties or doubts in determining the appropriateness of certain software; all
subjects responded that they had been in such situations before. We then requested the

82 P.H. Chia, A.P. Heiner, and N. Asokan

subject to write down the names of two friends whose opinions could be useful in
these situations. We then keyed in these two names into our prototype system.

We gave the subject a script containing the description of the initial setting and the
four evaluation scenarios (denoted as S1, S2, S3 and S4). The initial setting depicts a
situation where there was a special offer on 4 applications which the subject would
have to decide if he would like to buy and install. The special offer was meant to pro-
vide motivation to buy/install the applications in the evaluation scenarios. Two
games, a browser and a media player (denoted as A1, A2, A3 and A4) were selected
such that the likelihood of subjects having prior experience with them was low.

Having understood the initial setting, the subject was required to decide if he
would buy/install a specific application in each evaluation scenario based on some
basic description (application name, file size, name of developer, a short text provided
by developer) and software reviews provided by online community members as well
as the two friends mentioned during the brief interview.

Four negative reviews were scripted to signal a mild level of inappropriateness.
They concerned advertisement pop-ups, pornographic content, program crashes (data
loss) and suspicious elements. A set of positive reviews were also scripted. Each ap-
plication was associated with a fixed pair of negative and positive reviews.

The evaluation scenarios were designed to present to the subject, positive and neg-
ative reviews from either friends or online community, as described in Table 3 (left).
We assigned the applications (A1, A2, A3 and A4) to the four scenarios in a rotating
manner. Specifically, subject-1 would decide whether to buy/install applications A1,
A2, A3 and A4, while subject-2 go through applications A2, A3, A4 and A1 in the
fixed order of scenarios (from S1 to S2, S3 and finally S4). Rotating the applications
in this manner avoided the potential bias due to the characteristics of individual appli-
cations and their fixed pair of positive/negative reviews.

Table 3. (Left) The 4 evaluation scenarios. (Right) Installation ratio in each scenario

 Install Didn’t Install
S1 No reviews from online community nor friends were provided 13 7
S2 Negative reviews were given by online community but friends

gave positive reviews
10 10

S3 Positive reviews were given by online community but friends
gave negative reviews

4 16

S4 Same as S3; the “bin-the-monster” mechanism was activated.
After noting down the installation decision, subject was re-
quired to try installing the application (regardless of his deci-
sion) to experience the habituation-breaking interaction.

7 13

The subject was required to write down his decision to whether buy/install in each

scenario and the reason on the evaluation script. In scenario S3, we asked for feed-
backs on the use a Pacman-like monster as risk symbol. In scenario S4, we asked for
experience with the “bin-the-monster” habituation-breaking mechanism. We used a 5-
point Likert scale in both tasks.

Use of Ratings from Personalized Communities for Trustworthy Application Installation 83

Upon completing the four evaluation scenarios, we asked the subject his overall
experience in using our prototype system in the form of descriptive feedback and a 5-
point Likert scale (from terrible to great-idea). In the debrief, we informed the subject
that all applications used were in reality good software available for the N810 tablet;
all ratings and reviews had been scripted for experimental purposes only.

Results. Installation count in each evaluation scenario is shown in Table 3 (right). In
S1, without any software reviews, 65% of the subjects went ahead to buy/install an
application. The installation ratio decreased slightly (from 65% to 50%) in scenario
S2 but dropped drastically (to 20%) in S3. Using the installation ratios, we evaluated
the T1, T2 and T3 tests with the respective null hypothesis NH3, NH4 and NH5:

 (T1) NH1: Negative community review does not overrule positive review by friend

 (T2) NH2: Negative review by friend does not overrule positive community review

 (T3) NH3: Overall strength of review by friend is not stronger than that of community review

Installation ratio in S1 served as the baseline of T1 and T2 tests (i.e. T1 compared the
ratio in S2 to S1, while T2 compared the ratio in S3 to S1). Meanwhile, T3 was per-
formed by comparing the ratio in S3 to S2. The hypothesis tests were evaluated using
(one-tailed) Chi-square (good-of-fit) and binomial exact test. We favor results from
binomial test as Chi-square statistics works better with a larger sample size.

Table 4. Results of hypothesis testing

 Chi-square Binomial Result
T1 p = .080 p = .122 NH1 cannot be rejected
T2 p < .001 p < .001 NH2 is strongly rejected
T3 p = .004 p = .006 NH3 is strongly rejected

We could not reject NH1 in T1. Although users reacted to negative reviews from

online community members (resulting in a slightly smaller installation ratio in S2),
the effect was not statistically significant. While we believe that users tend to react
more towards negative reviews; warnings by online community members do not over-
rule positive feedbacks given by friends.

With T2, it was evident that negative reviews provided by friends overruled posi-
tive reviews by online community members. This was significant at 0.1% level.

The large ratio difference (30%) between S3 and S2 suggested the higher impact of
information from friends. We evaluated this in T3. The overall strength of reviews by
friends is stronger than reviews by online community members (significant at 1%
level). The strength of (risk) signals communicated via friends should be exploited to
mitigate click-through and careless behaviors during software installation.

We observed that the installation ratio in S4 (35%) was higher than in S3 (20%).
We tested if the “bin-the-monster” mechanism had inadvertently reduced the effec-
tiveness of risk signaling, and found that the effect was significant at 10% level. With
our experimental “bin-the-monster” mechanism, a bin was shown after some delay

84 P.H. Chia, A.P. Heiner, and N. Asokan

when user clicked on a monster. However, the sudden appearance of the bin might
have that caused subjects to prioritize binning the monster over reading the review.
As it might not be obvious that the monster could be binned, we tried to assist the
users by showing a hint (Figure 5, bottom). The short hint (“read the review and bin
the monsters”) might have been also construed as an instruction (or suggestive that it
was ok to install) rather than to encourage a conscious decision. Our experimental
‘bin-the-monster’ mechanism was not a very successful one. An improved design
could be to display the bin constantly to avoid a sudden appearance. The hint would
need to be rephrased. A more direct association between the monster and review may
also be helpful. For example, when user drags a monster into the bin, the correspond-
ing review should be dragged together to signal that he is disregarding a review from
his personalized community.

Table 5. On using Pacman-like monster as risk symbol Table 6. Overall user experience

 μ σ2

Monster draws attention 4.3 .69

Monster gives clear message 2.8 1.3

Monster gives warning 3.8 1.1

Prefer monster over 3.2 1.1

Prefer monster over 3.4 1.1
1=strongly disagree, 5=strongly agree

 μ σ2
Experience with
habituation-breaking

 3.5 1.5

Experience with
social rating inte-
grated with software
installation

 4.4 .61

1=terrible, 5=great idea

The reactions to the use of the monster as risk symbol were mixed (Table 5). While

most subjects agreed that it drew attention (salient), a few noted that they did not get a
clear message of risk/warning. Subjects remained neutral on preferring the monster
over the conventional “stop” and “exclamation-mark” symbols. We interpret these as
using a new risk symbol would demand extra effort in educating the users.

Experience with the experimental “bin-the-monster” habituation-breaking mechan-
ism was diverse (Table 6). Some liked it and found it interesting, while a few found
such mechanism unnecessary. We note that habituation-breaking mechanisms are
designed to trade off some level of convenience for safer user actions, and may be
hard to satisfy all users. Feedback on social rating (for software appropriateness)
integrated with the installation process was, on the other hand, very positive. This
suggests that it could be a useful feature on mobile devices (or other computing envi-
ronments that involve installation of third party applications by ordinary users).

Limitation and Discussion. There are two weaknesses with regard to our user study.
We note that the T3 test might have an order-bias as subjects were always required to
complete scenario S2 before proceeding to S3. We should have mitigated this by ran-
domizing the order of test scenarios.

We note that also the initial setting of “software offer” to provide subjects with
motivation might not be very realistic. An alternative setting is to have the subjects to

Use of Ratings from Personalized Communities for Trustworthy Application Installation 85

decide whether to buy/install an application on behalf of someone whom they care.
However, we think that both settings have limitations that are hard to avoid in a la-
boratory testing. We could create a sense of realistic risks, for example by informing
the subjects that they would be required to login to his email/bank account using the
test device after the study. Yet, we thought that this was not too relevant as we did not
require the subjects to evaluate whether to install software that are potentially harm-
ful; our study concerned only applications that may be mildly inappropriate.

Summary of Findings

• Opinions by friends are stronger than that of by online community; warnings by
friends overruled positive feedbacks by online community, but not vice-versa

• The experimental “bin-the-monster” mechanism needs to be improved; designing
and evaluating an effective habituation-breaking mechanism remain as interesting
research problems

• The response towards habituation-breaking mechanisms and a new risk symbol was
mixed; yet, majority was very positive with the idea of integrated social rating

6 Related Work

It is well-known by now that improving only the visual salience of risk signals is not
enough to ensure secure user behaviors. Studies [23,24] have shown the inefficacy of
security toolbars and site-authentication images, which mainly rely on an improved
risk salience. Brustoloni and Villamarin-Salomon [2] suggested using polymorphic
dialogs (that will vary the order of decision options) to capture user attention and
break habituation. They advocated also the use of audited dialogs that would keep
track of user decisions to hold them accountable for irresponsible actions. However,
subjects regarded audit dialogs as intrusive; audited dialogs also did not assist users to
make better decisions. In addition to improving the visual salience (through a better
interface design), our work here increased the relevance of risk signals by employing
inputs from user’s personalized community.

Compared to FireFox’s approach of making potentially unsafe actions (e.g., brows-
ing a site with invalid certificate) more difficult to slow-down the users, our experi-
mental habituation-breaking mechanisms (albeit need further improvements) are
complemented with context-relevant information from personalized communities, that
is absent in FireFox.

Related to software installation is the study by Good et.al. [9] which found that
displaying a short summary (especially right-after the normal EULA notice) can
effectively reduce the installation of unwanted applications. Yan et.al. concluded
that visualizing the reputation and a personalized trust value for applications can
be a helpful feature on mobile devices [25]. These studies highlighted the impor-
tance of timely signals. Our work integrated risk signals from personalized com-
munities with the installation process. This integration was very well received in
our user study.

86 P.H. Chia, A.P. Heiner, and N. Asokan

Our idea of the personalized community is similar to NetTrust’s [4] which em-
ploys personalized rating against the threat of phishing. NetTrust employs implicit
inputs of browsing and bookmarking history of friends, as well as, explicit recom-
mendations from third parties like banks and Google. Continuing from the initial
work in [11,5], in this paper, we have provided supports for the use of inputs from
personalized communities, based on theories, a survey and a hands-on study on a
prototype system.

7 Discussion and Future Work

Use of inputs from personalized communities is not without several shortcomings.
We outline several challenges along with the potential mitigation strategies worth of
future investigation.

Reliability. Inputs provided by user’s personalized community may not be always
correct. Information from technical sources may also be misinterpreted when guided
through ordinary users. These issues can be mitigated by making the evaluation
process more structured. For example, an evaluation can be divided into several as-
pects of software appropriateness rather than a single overall rating.

Coverage. Although users are likely to encounter similar applications with (some of) his
friends in practice, undeniably ordinary users will have limited exposure and resources to
identity all possible inappropriate applications. This is why we have included the notion
of expert users (whom individual users trust) into the structure of a personalized commu-
nity. A list of experts can be set by default (for all users) to deliver critical risk informa-
tion. We could also extend our work to compute or infer recommendations for specific
applications when there is no direct input from the personalized community. We note that
there is much to learn from the field of recommender systems. However, this should be
done with care so that the high relevance and strength of risk signals, as perceived by
users, do not diminish.

Scalability. Software features such as usable contact and review sharing, re-usability
of reviews (across mobile platforms) as well as robust handling of software versions
would be helpful to scale our implementation. Rather than building a system of social
networks from scratch, we plan to merge the prototype with existing services (such as
Facebook) that are now seamlessly integrated with smart phones.

Incentives. Like any community-based systems, there are challenges in initiating
and sustaining user efforts. An important future work is thus to design an incentive
scheme that would encourage active user participation. Here, we note that in con-
trast to a “crowds” system (i.e. one that employs a global community, such as
PhishTank and WOT) where the success of the system is a public good, our work
can benefit from unselfish behaviors among members in the personalized commu-
nity. Indeed, we have seen strong motivation to protect friends and family mem-
bers in our survey.

Use of Ratings from Personalized Communities for Trustworthy Application Installation 87

8 Conclusions

We developed a set of design guidelines grounded on theories for a trustworthy soft-
ware installation process. Through a survey, we verified the high relevance of inputs
from a personalized community and user motivation to protect friends and family. We
implemented a prototype system with contact management and reviews sharing capa-
bilities as well as a redesigned installation task-flow. Our user evaluation confirmed
the strength of information communicated through friends, while the idea of inte-
grated ratings from a personalized community during application installation was very
well-received.

There may be some challenges that need to be addressed in future work; given the
high relevance and strength of inputs from known sources, we show in this paper, the
potentials of relying on personalized communities to evaluate software appropriate-
ness and to mitigate the problem of click-through habituation during installation.

References

1. Aarts, H., Dijksterhuis, A.: Habits as Knowledge structures: Automaticity in goal directed
behavior. Journal of Personality and Social Psychology 78(1), 53–63 (2000)

2. Brustoloni, J.C., Villamarin-Salomon, R.: Improving security decisions with polymorphic
and audited dialogs. In: Proc. SOUPS 2007 (2007)

3. Burt, R.S.: The social capital of opinion leaders. Annals of the American Academy of Po-
litical and Social Science: The Social Diffusion of Ideas and Things 566, 37–54 (1999)

4. Camp, J.L.: Reliable, usable signaling to defeat masquerade attacks. In: Proc. WEIS 2006
(2006)

5. Chia, P.H.: Secure software installation via social rating, Masters Thesis, Helsinki Univer-
sity of Technology (TKK) and Royal Institute of Technology (KTH)

6. Douceur, J.R.: The sybil attack. In: Proc. IPTPS 2001(2001)
7. Frederick, S.: Automated Choice Heuristics. In: Gilovich, T., Griffin, D., Kahneman, D.

(eds.) Heuristics and Biases. Cambridge University Press (2002)
8. Gong, L., Ellison, G., Dageforde, M.: Inside Java 2 Platform Security: Architecture, API

Design, and Implementation. Addison Wesley (2003)
9. Good, N.S., Grossklags, J., Mulligan, D.K., Konstan, J.A.: Noticing notice: a large-scale

experiment on the timing of software license agreements. In: Proc. CHI 2007 (2007)
10. Heath, C.: Symbian OS Platform Security. John Wiley & Sons (2006)
11. Heiner, A.P., Asokan, N.: Secure software installation in a mobile environment (poster).

In: Proc. SOUPS 2007 (2007)
12. Kahneman, D.: Maps of Bounded Rationality: Psychology for Behavioral Economics. The

American Economic Review 93(5), 1449–1475 (2003)
13. Lazarsfeld, P., Berelson, B., Gaudet, H.: The people’s choice (1944)
14. Lyn Bartram, L., Ware, C., Calvert, T.: Moving Icons: Moving icons: detection, distraction

and task. In: Hirose, M. (ed.) Proc. INTERACT 2001 (2001)
15. María Ruz, M., Lupiáñez, J.: A review of attentional capture: On its automaticity and sen-

sitivity to endogenous control. Psicológica 23, 283–309 (2002)
16. Moore, T., Clayton, R.C.: Evaluating the Wisdom of Crowds in Assessing Phishing Web-

sites. In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp. 16–30. Springer, Heidelberg
(2008)

88 P.H. Chia, A.P. Heiner, and N. Asokan

17. Neal, D.T., Wood, W., Quinn, J.M.: Habits: A repeat performance. Current Directions in
Psychological Science 15, 198–202 (2006)

18. Peters, R.J., Itti, L.: Beyond bottom-up: Incorporating task-dependent influences into a
computational model of spatial attention. In: Proc. CVPR 2007 (2007)

19. Rogers, E.: Diffusion of innovation, 5th edn. Free Press (2003) ISBN: 978-0743222099
20. Rubinstein, J.S., Meyer, D.E., Evans, J.E.: Executive Control of Cognitive Processes in

Task Switching. Journal of Experimental Psychology: Human Perception and Perfor-
mance 27(4), 763–797 (2001)

21. Schneider, W., Chein, J.M.: Controlled and automatic processing: behavior, theory, and
biological mechanisms. Cognitive Science 27, 525–559 (2003)

22. Schneier, B.: The psychology of security (2008),
http://www.schneier.com/essay-155.html

23. Schechter, S.E., Dhamija, R., Ozment, A., Fischer, I.: The emperor’s new security indica-
tors. In: Proc. S&P 2007 (2007)

24. Wu, M., Miller, R.C., Garfinkel, S.L.: Do security toolbars actually prevent phishing at-
tacks? In: Proc. CHI 2006 (2006)

25. Yan, Z., Liu, C., Niemi, V., Yu, G.: Trust Indication’s Influence on Mobile Application
Usage, NRC Technical Report (2009),
http://research.nokia.com/files/NRCTR2009004.pdf

26. Yee, K.-P.: Aligning security and usability. IEEE Security and Privacy 2(5), 48–55 (2004)
27. Developing applications for Palm webOS using HTML, CSS and JavaScript,

http://developer.palm.com/index.php?option=com
_content&view=article&id=1603&Itemid=43

28. OviAppWizard for Symbian, http://oviappwizard.com
29. AppWizard for iPhone, http://www.appwizard.com/
30. StopBadware, http://www.stopbadware.org/
31. Java Verified Program, http://javaverified.com/
32. Symbian Signed, https://www.symbiansigned.com/app/page
33. F-Secure identified FlexiSpy as a spyware,

http://www.f-secure.com/sw-desc/
spyware_symbos_flexispy_f.shtml

34. Objections towards iTunes Appstore approval process,
http://news.cnet.com/8301-13506_3-10317057-17.html,
http://www.eff.org/deeplinks/2009/06/oh-come-apple-reject,
http://www.eff.org/deeplinks/2009/05/apple-says-public-do,
http://www.eff.org/deeplinks/2009/02/
south-park-iphone-app-denied,
http://www.thelocal.de/society/20091125-23501.html

35. PhishTank, http://www.phishtank.com
36. Web of Trust, http://www.mywot.com

Practical Private Information Aggregation
in Large Networks

Gunnar Kreitz, Mads Dam, and Douglas Wikström

KTH—Royal Institute of Technology
Stockholm

Sweden

Abstract. Emerging approaches to network monitoring involve large
numbers of agents collaborating to produce performance or security
related statistics on huge, partial mesh networks. The aggregation pro-
cess often involves security or business-critical information which net-
work providers are generally unwilling to share without strong privacy
protection. We present efficient and scalable protocols for privately
computing a large range of aggregation functions based on addition, dis-
junction, and max/min. For addition, we give a protocol that is
information-theoretically secure against a passive adversary, and which
requires only one additional round compared to non-private protocols
for computing sums. For disjunctions, we present both a computation-
ally secure, and an information-theoretically secure solution. The latter
uses a general composition approach which executes the sum protocol
together with a standard multi-party protocol for a complete subgraph
of “trusted servers”. This can be used, for instance, when a large network
can be partitioned into a smaller number of provider domains.

Keywords: Multi-party computation, Private aggregation, Partial
mesh network.

1 Introduction

With the continuous increase of network complexity and attacker sophistication,
the subject of network and security monitoring becomes increasingly important.
Traditionally, organizations have performed network and security monitoring
based only on data they can collect themselves. One of the reasons for this is a
reluctance to share traffic data and security logs between organizations, as such
data is sensitive.

There is much to be gained from collaboration in security monitoring. Attacks
range from being targeted at specific individuals or organizations, to global scale
attacks such as botnets. Naturally, the response measures depend on the type of
attack. The same situation applies to network monitoring, where the complexity
of networks, and large amount of applications can make it difficult to distinguish
between local and global disruptions with access only to local data.

A natural path towards a solution is to use multi-party computation (MPC)
techniques, which have been long studied within the field of cryptography. The

T. Aura, K. Järvinen, and K. Nyberg (Eds.): NordSec 2010, LNCS 7127, pp. 89–103, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

90 G. Kreitz, M. Dam, and D. Wikström

goal of MPC is to allow a group of mutually distrusting parties to jointly eval-
uate a function of their private inputs, while leaking nothing but what can be
deduced from the output of the function. Furthermore, protocols built on MPC
techniques are generally secure, even if several parties (up to a fraction of the
parties involved in the computation) collude to break the privacy of the other
participants.

The traditional setting of MPC is one where the number of parties is relatively
small and the network is assumed to be full mesh. Sadly, this precludes the
immediate application of such techniques in the large, partial mesh networks
which are prevalent today.

Recent approaches to monitoring in large networks employ an in-network
paradigm [1] whereby monitoring is performed collaboratively by the network
nodes themselves, using algorithms based on spanning trees [26,11] or gossip-
ing [24,22]. For these applications, scalability is often taken to mean sub-linear
growth in resource consumption growth in the size of the network.

Towards a general solution to the problem of collaborative network and secu-
rity monitoring we present in this paper efficient protocols for computing sum,
max, disjunction, and thresholds in partial mesh networks. These operations are
sufficient to implement many of the aggregates of interest in monitoring. Our
protocols are efficient, both in terms of message and computational overhead.

We focus in this paper on passive, “honest-but-curious” adversaries whereby
attackers are bound to follow the protocol but may collude to learn informa-
tion about the honest parties’ inputs. This is much simpler than the active
attack model also considered in multi-party computation and often leads to
more efficient protocols. However, it is also a reasonable and attractive model
in many practical situations where e.g. side conditions related to traffic observa-
tions and arguments of utility can be appealed to to ensure protocol behavior is
adhered to.

The security of MPC protocols is commonly characterized by the size of col-
lusions they remain secure against. Such thresholds become less meaningful for
protocols, such as ours, which can be used on arbitrary networks. Thus, we an-
alyze security in terms of tolerable adversary structures in the sense of Hirt and
Maurer [20], and describe the tolerable structures in terms of graph theoretical
properties of the network on which the protocol is executed.

As the need for monitoring is common to many areas, and our protocols are
efficient, we believe there is a wide range of applications. We give a few examples
of possible applications to set some context for the work.

Example 1 (Collaborative Security Monitoring). The need to aggregate security
log information as part of general intelligence gathering is widely acknowledged,
cf. [29]. The importance of collaboration is further emphasized by services such
as Internet Storm Centre’s www.dshield.org, where firewall logs can be shared,
and aggregate statistics are collected.

Network providers and supervisors have strong interest in accurate security
log aggregates, as this will allow more precise estimations of the global secu-
rity situation, in order to take countermeasures and improve operations. There

www.dshield.org

Practical Private Information Aggregation in Large Networks 91

are, however, important privacy concerns, as log data, even in sanitized form,
can reveal significant amounts of critical information concerning internal busi-
ness and network operations. Previous work has explored techniques such as log
anonymization and randomized alert routing to deal with this problem [29,25].
We argue that private aggregation techniques can be used in this scenario to pro-
duce practical security aggregates with strong privacy guarantees in near real
time.

One application would be to collect aggregate packet- or flow counts to various
destination ports. Due to the computational efficiency of our protocols, they
could be run directly on network devices such as routers, and without the need
to trust a third party.

Example 2 (Anonymous and robust peer-to-peer networks). Consider a peer-to-
peer network for anonymous publication and retrieval of files where the network
acts as a distributed storage. In this scenario, it could be of interest to compute
the number of copies of a file to discover if further duplication of that file is
needed, something that could be done by a private computation of a sum. It
may also be useful to be able to query for availability of a file without learning
any other information than if the file exists in the network or not, which would
correspond to a private computation of disjunction.

Another application within the realm of peer-to-peer networking would be to
implement monitoring of the overlay to enhance quality and research. This could
be useful both for overlays with strict anonymity requirements, but also for more
traditional file-sharing applications where individual users may still be hesitant
to share information on e.g. the amount of data they’ve uploaded.

Example 3 (Joint control of SCADA systems). A research topic of growing im-
portance is the security of Supervisory Control and Data Acquisition (SCADA)
systems, e.g. systems controlling criticial infrastructure such as the electrical
grid. Many different entities are involved in running the electrical grid, and they
must co-operate to ensure production and consumption is balanced throughout
the grid. However, many of the entities are direct competitors, which can prevent
collaboration that would involve sharing of business-sensitive data.

Our protocols could be applied to monitor aggregate power flows over various
areas of the grid, which is a summation. They could also be applied to compute
the disjunction of alert statuses at operators. Then, if one operator has some
form of disruptions, other operators would automatically be put on alert and be
prepared in case the failure condition affects other parts of the grid. This would
decrease the risk of cascading failures by giving early warnings to other operators,
without sharing detailed information on the reliability of any individial operator.

We believe that in the scenarios presented above, the assumption of a passive ad-
versary could be reasonable. For network monitoring, there is little to be gained
for the participants in disrupting the computation of the aggregated informa-
tion. In the P2P scenario, attacking monitoring is likely to be uninteresting, but
searches and functions ensuring replication may be suitable candidates for pro-
tocols with stronger security properties, depending on the nature of the network.

92 G. Kreitz, M. Dam, and D. Wikström

In the SCADA scenario, in addition to the small gains from actively manipulat-
ing the computations, it’s possible that legislation would demand that data was
retained for auditing, thus increasing the risk involved in cheating.

1.1 Our Contributions

Firstly, we give a protocol for summation, where we perform a single round of
communication to achieve privacy, and then reduce the problem to non-private
summation. A single group element is sent in each direction over every link in this
extra round. The protocol is similar to a protocol by Chor and Kushilevitz [10],
but adapted to a partial mesh network, and with a precise characterization of
tolerable adversary structures. It is also similar to the dining cryptographers
networks proposed by Chaum [9] which is essentially the same protocol but
applied to provide sender untraceability.

Secondly, we present a computationally secure protocol for computing disjunc-
tion, based on homomorphic cryptosystem, such as El Gamal [15]. The protocol
requires two rounds of communication and then uses a non-private protocol for
summation. Computationally, it requires a small number of encryptions and de-
cryptions per neighbor.

We also give a composition structure where the information-theoretically se-
cure protocol for summation is composed with a standard protocol for comput-
ing some other function. We show that this can be used for several standard
functions in network management, such as disjunction, min/max, or threshold
detection. For this composition, there needs to be a complete subgraph K of the
network such that no union of two sets from the adversary structure contains
K. This is a reasonable assumption in many network monitoring applications
where the members of K represent trusted servers appointed by a disjoint col-
lection of network providers. This is similar to the use of trusted aggregation
servers in [5,13,7]. The composition essentially performs an efficient and secure
“aggregation” of all inputs to some smaller subset of parties who can then run a
more expensive protocol with stricter connectivity requirements.

1.2 Related Work

There are general results [18,3] showing that every computable function can be
privately evaluated in a multi-party setting, but the protocols involved require
a full mesh network between the parties and can be prohibitively expensive to
execute.

There are many specialized protocols for computing specific functions in the
literature, that are more efficient than the general constructions. Examples of
such protocols include an information-theoretically secure protocol for summa-
tion by Chor and Kushilevitz [10], and computationally secure protocols for dis-
junction and maximum by Brandt [6], which uses the homomorphic El Gamal
cryptosystem as a building block. While such protocols are more efficient than

Practical Private Information Aggregation in Large Networks 93

the general solutions, they are still not scalable in the sense of the previous
section. Just sending one message between every pair of parties forces each party
to process too many messages.

In most of the works on multi-party computation, the parties are connected in
a full mesh network. An article by Franklin and Yung [14] describes how to emu-
late the missing private channels between parties, and using their construction,
protocols built for full mesh networks may also be run on arbitrary networks.
However, this emulation can be very expensive, and may not always be possible,
depending on what parties an adversary can corrupt.

There has also been research exploring how the network connectivity affects
what functions can be computed with information-theoretical privacy. There are
results due to Bläser et al. [4] and Beimel [2] categorizing the functions that can
be computed on 1-connected networks.

The Dining Cryptographers problem, and its solution were discussed by
Chaum [9]. They study the problem of creating a channel such that the sender
of messages is untraceable and their suggested protocol is similar to our protocol
for summation.

A technique that can be applied to sidestep the connectivity and performance
issues of traditional MPC solutions is to aggregate data to a small set of semi-
trusted nodes, who can then perform the computation. As these servers are few,
it is more feasible to connect them with a full mesh network. Examples of such
schemes include Sharemind [5], SEPIA [7], and a system by Duan and Canny [13].
These are similar to the protocols we present in Section 5, with a difference
being that our protocols perform aggregation while collecting information from
the nodes, thus decreasing the load on the servers performing the computation,
but limiting what can be computed.

A number of authors propose additive secret sharing to secure information
aggregation in large networks or databases. Privacy schemes similar to the sum
protocol used here have been explored in the area of sensor networks and data
mining [28,19]. In fact, a very large range of algorithms used in data mining and
machine learning, including all algorithms in the statistical query framework
[23], can be expressed in a form compatible with additive secret sharing. Several
authors have investigated secure aggregation schemes for the case of a central-
ized aggregator node (cf. [21,27]). A solution with better scalability properties
is proposed by Chan et al. [8]. There, an additive tree-based aggregation frame-
work is augmented by hash signatures and authenticated broadcast to ensure
that, assuming the underlying aggregation tree is already secured, an attacker is
unable to induce an honest participant to accept an aggregate which could not
be obtained by direct injection of some private data value at the attacking node.
Other recent work with similar scope uses Flajolet-Martin sketches for secure
counting and random sampling [16].

1.3 Organization of This Paper

We begin by presenting the security and computational model and various def-
initions in Section 2. We then proceed to outline and prove properties of the

94 G. Kreitz, M. Dam, and D. Wikström

protocol for computing sums in Section 3. Then, we give a computationally
secure protocol for computing disjunctions in Section 4. We then show a com-
position structure where the protocol for summation is composed with standard
protocols to compute for instance disjunction in Section 5.

2 Model and Definitions

We consider multi-party computation (MPC) protocols for n parties, P1, . . . , Pn,
and denote the set of all parties by P . Each party Pi holds a private input, xi, and
the vector of all inputs is denoted x. The network is modeled as an undirected
graph G = (P , E) where messages can only be sent between adjacent parties.

For a graph G = (P , E), we say that G is disconnected if there exists a pair of
vertices such that there is no path between them. For a set of vertices X ⊆ P ,
we denote by G − X the subgraph of G induced by the set of vertices P\X . In
other words, G −X is the graph obtained by deleting all vertices in X and their
incident edges from G.

Definition 1 (Separator, set of vertices). Given a graph G = (P , E), a set
of vertices X ⊆ P is called a separator of G if the graph G −X is disconnected.

2.1 Adversary Structures

The most common adversary considered in the MPC literature is a threshold
adversary corrupting up to a threshold of the parties. More generally, we can
allow an adversary corrupting some subset of parties as specified by an adversary
structure [20].

An adversary structure Z over P is a subset of the power set of P , containing
all possible sets of parties which an adversary may corrupt. We require that an
adversary structure is monotone, i.e., it is closed under taking subsets.

Definition 2 (Separator, adversary structure). In a network G = (P , E),
an adversary structure Z is called a separator of G if some element in Z is a
separator of G.

From the monotonicity of Z, it follows that if Z is not a separator of G, then no
matter what subset in Z the adversary chooses to corrupt, every corrupted party
will have at least one honest neighbor. More precisely, for every set C ∈ Z it
must be the case that every party P ∈ C has at least one neighbor who is not in
C. This observation is important for the proof of security of the computationally
private protocol for disjunction given in Section 4.

2.2 Security Definition

The security definition of a multi-party computation says that the adversary
should not learn anything from the protocol execution except what it can deduce
from its inputs and the output of the function the protocol computes.

Practical Private Information Aggregation in Large Networks 95

In the security analysis of our protocols, we only consider passive (honest-
but-curious), static adversaries in a network with private and reliable channels.
The protocols in Sections 3 and 5 are information-theoretically private, and the
protocol in Section 4 is computationally private.

We consider information about the network the protocol is executed on to be
public knowledge. Our protocols do not depend on honest parties knowing the
network structure, but neither do anything to hide that information from the
adversary.

We refer to [3,17] for details on security definitions for information-theoretical
and computational security of multi-party computation.

2.3 Homomorphic Cryptosystems

A cryptosystem CS = (Gen, E, D) is said to be homomorphic if the following
holds.

– Each public key pk output by Gen defines groups of messages, randomness,
and ciphertexts, denoted Mpk , Rpk , Cpk respectively, for which the group
operations are efficiently computable.

– For every public key pk , every messages m1, m2 ∈ Mpk , and every r1, r2 ∈
Rpk : Epk(m1, r1)Epk(m2, r2) = Epk(m1 + m2, r1 + r2).

It is convenient in our applications to use additive notation for both the group
of messages and the group of randomness. However, we do not require that the
cryptosystem is “additively homomorphic”, e.g., that Mpk = Zm for some from
integer m. Thus, any homomorphic cryptosystem with sufficiently large message
space suffices, e.g., El Gamal. We remark that we do not use the fact that the
cryptosystem is homomorphic over the randomness.

3 Computing Sums

We present an information-theoretically secure protocol for computing sums
over a finite Abelian group. The protocol is similar to a protocol by Chor and
Kushilevitz [10], but adapted to arbitrary networks, and with a precise charac-
terization of tolerable adversary structures. It is also similar to a protocol by
Chaum [9], with the difference that we explicitly create shared random secrets
by a straightfoward technique and use the protocol for summation rather than
sender-untraceability.

When computing sums, privacy comes cheap. We can take any non-private
protocol for sums, NonPrivateSum(x1, . . . , xn), and augment it with a single
additional round to turn it into a private protocol. The protocol admits all
adversary structures Z which do not separate the network G. This require-
ment on the adversary structure is necessary in the information-theoretical
setting.

96 G. Kreitz, M. Dam, and D. Wikström

Protocol 1 (Sum). In the protocol for computing
∑n

i=1 xi over an Abelian
group M, on the network G = (P , E), Pi ∈ P proceeds as follows:

1. For each neighbor Pj , pick ri,j ∈M randomly and send it to Pj .
2. Wait for rj,i from each neighbor Pj .
3. Compute si = xi −

∑
(Pi,Pj)∈E ri,j +

∑
(Pi,Pj)∈E rj,i.

4. Output NonPrivateSum(s1, . . . , sn).

We begin by observing that the protocol correctly computes the sum of the
inputs xi. For every value ri,j sent in step 1 of the protocol, that value is added
to sj and subtracted from si, so all ri,j cancel when summing the si.

We now show that the protocol is information-theoretically private with re-
spect to passive, static adversaries. We do this by showing that for any non-
separating collusion, the remaining si values are uniformly random, conditioned
on

∑n
i=1 si =

∑n
i=1 xi.

Theorem 1. Protocol 1 is information-theoretically private to a passive and
static adversary if the adversary structure Z does not separate the network G =
(P , E).

To prove the theorem, we begin by stating a lemma from which the theorem
follows immediately.

Lemma 1. Consider executions of Protocol 1 on a network G = (P , E) where:
the output

∑n
i=1 xi, a non-separating collusion C, and the inputs xi and commu-

nication ri,j , rj,i, si for Pi ∈ C are fixed. For such executions the remaining values
si for Pi ∈ P\C are uniformly random, conditioned on

∑n
i=1 si =

∑n
i=1 xi.

Proof (Theorem 1). The values ri,j sent in the first round are independent of the
input. By Lemma 1, for any fixed input and random tapes of a non-separating
collusion, and fixed output of the protocol, the remaining messages have the
same distribution.
�
Proof (Lemma 1). Consider two vectors s = (s1, . . . , sn), s′ = (s′1, . . . , s′n), and
two vectors of inputs x = (x1, . . . , xn), x′ = (x′

1, . . . , x
′
n) such that

∑n
i=1 xi =∑n

i=1 x′
i =

∑n
i=1 si =

∑n
i=1 s′i, and si = s′i, xi = x′

i for all Pi ∈ C.
Let R denote an n × n matrix of ri,j , where ri,j = 0 if (Pi, Pj) is not an

edge in G. Define s(x, R) to be the vector of si values sent in the protocol when
executed on input x with random values R. The value at the ith position of
s(x, R) is denoted by si(x, R).

We show that the probability of s being sent on input x is equal to the
probability of s′ being sent on input x′. This is done by, for any tuple of vectors
s, s′, x, x′ constructing a bijective function f(R) such that if s = s(x, R) then
s′ = s(x′, f(R)). The function f(R) has the form f(R) = R + R′ for an n × n
matrix R′ = (r′i,j)i,j . Furthermore, r′i,j = 0 if Pi ∈ C or Pj ∈ C.

Practical Private Information Aggregation in Large Networks 97

We note that s = s(x, R) holds iff R is such that for each Pi we have si−xi =∑n
j=1 rj,i − ri,j . Thus, for R′ we need precisely that for each Pi we have

n∑
j=1

(r′j,i − r′i,j) = (s′i − x′
i)− (si − xi) . (1)

Since C is not a separator, there exists a directed spanning tree T that spans
the honest parties, P\C. Let r′i,j = 0 if (Pi, Pj) is not an edge in T . We can now
fill in R′ iteratively during a postorder traversal of T . When a non-root Pi is
visited, only r′j,i for its parent Pj is still undefined on the ith row and column of
R′, and its value is determined by Equation 1.

When the root is visited, R′ is completely filled in and we know that Equa-
tion 1 holds for all other parties. Consider the sum of Equation 1 over all parties.
The left hand side satisfies

∑n
i=1

∑n
j=1(r

′
j,i − r′i,j) = 0. The right hand side also

satisfies
∑n

i=1(s
′
i − x′

i) − (si − xi) = 0 since
∑n

i=1 xi =
∑n

i=1 x′
i =

∑n
i=1 si =∑n

i=1 s′i. Since Equation 1 holds for all parties except for the root, it must also
hold for the root.
�
We would like to remark that the proof of Lemma 1 does not make use of the
monotonicity of the adversary structure Z. Thus, if we allow non-monotone
adversary structures (for instance, if parties 1 and 2 must always be corrupted
jointly), the protocol is still private given that Z does not separate the
network G.

It is intuitively clear that sums cannot be privately computed if Z separates
the network, and this is indeed the case. In [2], Beimel gives a characterization
of the functions that can be privately computed in non-2-connected networks,
with an adversary structure consisting of all singleton sets, and shows that sums
cannot be computed in that setting. Any information-theoretically private pro-
tocol computing sums tolerating Z separating the network can be turned into
a protocol violating the bounds given in [2] by standard simulation techniques,
and cannot exist.

4 A Computationally Secure Protocol for Disjunction

We now consider the problem of computing the disjunction of all parties’ in-
puts, and present a computationally secure protocol, requiring two rounds of
communication and an execution of non-private protocol for summation.

As a building block, we need a cryptosystem CS = (Gen, E, D) that is homo-
morphic. We further need that the group of messages Mpk is the same group for
all keys generated with the same security parameter, κ. For notational conve-
nience, we denote this group M. We require the cryptosystem to have IND-CPA
security, i.e., resistance to chosen-plaintext attacks. We relax the correctness
requirements slightly, and allow our protocol to incorrectly output false with
negligible probability 2−κ.

98 G. Kreitz, M. Dam, and D. Wikström

In this protocol, we construct a linear secret sharing of a group element which
is zero if all the parties’ inputs are false, and a uniformly random group element
otherwise. The protocol then proceeds by opening the share, which is done by
(non-private) summation.

Conceptually, each party contributes either a zero or a random group element,
depending on its input. However, it is important that a party does not know the
group element representing its own input, as this would allow it to recognize
if it was the only party with input true. In order to achieve this, we apply
homomorphic encryption to allow its neighbors to jointly select how its input is
represented.

If the security requirements are relaxed slightly, and it is acceptable that the
adversary can learn if any other parties had input true, then Protocol 1 can
be used instead (with each party herself choosing 0 or a random element as her
input).

For ease of notation, we identify false with 0, and true with 1. In the de-
scription of the protocol, we abuse notation slightly and multiply a value by a
party’s input as a shorthand for including or excluding terms of a sum.

Protocol 2 (Disjunction). In the protocol for computing Or(x1, . . . , xn),
where xi ∈ {0, 1}, on the network G = (P , E), based on a homomorphic
cryptosystem CS = (Gen, E, D), Pi ∈ P proceeds as follows:

1. Generate a key-pair (pk i, sk i) ← Gen(1κ).
2. For each neighbor Pj , pick a random element ai,j ∈ M, and send

pk i, ci,j = Epki
(ai,j) to Pj .

3. Upon receiving pk j , cj,i from Pj , pick a random ri,j ∈M, and send c′i,j =
Epkj

(ri,j) + xicj,i to Pj .
4. Wait for c′j,i to be received from every neighbor Pj , and then compute

si =
∑

(Pi,Pj)∈E(Dsk i(c
′
j,i)− ri,j)

5. Compute NonPrivateSum(s1, . . . , sn) and output 0 if the sum is the iden-
tity, and 1 otherwise.

The protocol is efficient, both in terms of computational resources and com-
munication. Each party needs to perform two encryptions, one decryption and
one ciphertext multiplication per neighbor. The first encryption does not depend
on the input, and can be performed off-line. The communication overhead of the
protocol is two rounds, in addition to performing a (non-private) summation.

Theorem 2. Protocol 2 for computing the disjunction of n bits on a network
G = (P , E), gives the correct output if it is false, and gives an incorrect output
with probability 2−κ when the correct output is true.

Proof. Consider the sum
n∑

i=1

si =
n∑

i=1

∑
(Pi,Pj)∈E

(xjai,j + rj,i − ri,j) =
∑

(Pi,Pj)∈E
xjai,j .

Practical Private Information Aggregation in Large Networks 99

If all xj are 0, clearly the sum is 0. Otherwise, it is a sum of uniformly random
group elements, and thus has uniformly random distribution. In particular, with
probability 1− 2−κ it is non-zero.
�

4.1 Privacy

Theorem 3. If the cryptosystem CS is (t, ε)-IND-CPA secure, then no adver-
sary running in time t− t′, for a small t′, can violate the privacy of Protocol 2
with advantage more than n2

4 ε.

The proof of Theorem 3 begins like the proof of Theorem 1 with a combinatorial
lemma similar to Lemma 1, essentially saying that unless the adversary learns
something about the values ai,j from seeing them encrypted, it cannot violate
the privacy of Protocol 2. Given the lemma, we apply a hybrid argument to
prove the security of the protocol.

Lemma 2. Consider executions of Protocol 2 on a connected network G =
(P , E) with input x such that xi = true for at least one Pi, and where a col-
lusion C ∈ Z from a non-separating adversary structure Z, and communication
ai,j , ri,j , rj,i, si for Pi ∈ C is fixed. For such executions, the values si for Pi ∈ P\C
have a uniform and independent distribution.

Proof (Theorem 3). We begin with the observation that if all the parties have
input false, then the protocol behaves exactly as Protocol 1 with zeroes as
inputs and by Lemma 1, then the honest parties’ si will be uniformly random
conditioned on

∑n
i=1 si = 0.

First, consider the case where the inputs of all corrupted parties are false.
In this case, a simulator that independently samples the pk i, ci,j , ri,j and si

included in the adversary’s view, conditioned only on
∑n

i=1 si = 0 if the output
is false, or

∑n
i=1 si = 0 otherwise perfectly simulates the protocol to the adver-

sary, by the previous observation and Lemma 2. Thus, in this case, the adversary
cannot violate the privacy of the protocol.

Now, consider the case when at least one of the corrupted parties has input
true. We begin by constructing a simulator S0 that randomly selects inputs
and ai,j for all honest parties, conditioned on the output matching the output
it should simulate. It then follows the protocol to simulate the adversary’s view.

We now construct hybrid simulators, Sk, working like S0 but replacing the
first k ciphertexts ci,j in the adversary’s view by random ciphertexts. It follows
from the (t, ε)-IND-CPA security of Epki

(x) that no adversary running in time
t− t′, for some small t′ required to run the simulator Sk, can distinguish between
the views simulated by Sk and Sk−1.

Assume that the adversary’s view includes T ciphertexts ci,j , so the view
simulated by ST contains no information on the ai,j sent by honest nodes to
corrupted nodes. There can be at most (n/2)2 edges between honest and cor-
rupted nodes, so T ≤ n2/4. By Lemma 2, the distribution of simulated ri,j and
si values is exactly the same as in a real execution, so the view simulated by ST

contains no information on the honest parties inputs.
�

100 G. Kreitz, M. Dam, and D. Wikström

Proof (Lemma 2). Consider the following mental experiment, where we modify
an execution of the protocol in two steps.

Modification 1. For each neighbor Pj of Pi we subtract xicj,i from c′i,j in Step
3 of the protocol and add xiaj,i to si in Step 4 of the protocol. It is easy to
see that this does not change the distribution of either si or Dski

(c′i,j) for any
neighbor Pj .

Modification 2. Remove all encryptions and decryptions. This transforms
Steps 3-5 of the protocol into an execution of Protocol 1, where Pi holds the
input

∑n
j=1 xiaj,i.

From Lemma 1 we conclude that with the two modifications, the si are in-
dependently distributed conditioned on

∑n
i=1 si =

∑n
i=1

∑n
j=1 xiaj,i, but the

right side of this equation is randomly distributed when some xi = 1 and ai,j for
some neighbor Pj is randomly distributed. From the conditions of the lemma, we
know there is at least one Pi such that xi = 1, and from the monotonicity of Z
and that it is non-separating, we know that every party has an honest neighbor.
Thus, the si are uniformly and independently distributed. This concludes the
proof.
�

4.2 Computing the Maximum

In the setting with passive adversaries, it is easy to construct a protocol for
computing the maximum by repetition and parallel composition of a protocol
for disjunctions.

Assume the inputs are integers of � bits. We can then compute the disjunction
of the most significant bits of all parties’ inputs, which is also the most significant
bit of the maximum of the inputs. We then proceed to the next most significant
bit. When a party learns that its input is smaller than the maximum (its input
was 0 and the output was 1), it participates with input 0 in the remaining
protocol executions.

Several bits can be handled in parallel to reduce the number of rounds at
the cost of more protocol executions. To find the maximum of k bits, one can
run 2k − 1 parallel disjunction computations, where the parties set their inputs
based on if their k most significant bits represent an integer greater or equal to
2k−1, 2k−2, . . . , 1, respectively. Thus, to find the maximum of �-bit integers, one
can run ��/k� rounds of protocols for disjunction, with 2k−1 protocol executions
in each round.

5 General Composition

Many functions can be computed as a function of the sum of inputs of the parties.
Examples include disjunction, counting and threshold functions. In this context,
a threshold function is a function returning true if the sum of inputs exceeds
some threshold and false otherwise.

Practical Private Information Aggregation in Large Networks 101

We can combine our Protocol 1 with standard protocols (which assume full
mesh communications) to construct information-theoretically secure protocols
for computing such functions. The benefit of this approach is that information-
theoretical security is achieved in a partial mesh network while maintaining
efficiency. Another approach would have been to simulate the missing edges (e.g.,
with the techniques from [14]) and then immediately using standard protocol,
but this approach is generally more expensive in terms of communication.

By this composition, we essentially run a cheap protocol to “accumulate” the
inputs of most parties and then let some small subset of parties run a more
expensive protocol and jointly act as a trusted party. This can be useful when
performing computations with a large number of parties where some subset can
be trusted not to collude with each other. This can be compared to the trusted
servers in [5,13,7].

Executing the standard protocol requires a complete network, so this con-
struction is only applicable when G contains a subgraph K that is complete.
Furthermore, tolerable adversary structures Z are those that do not separate
the graph, and which, restricted to K, are tolerable by the standard protocol
being used. For most protocols, the requirement will be that no two subsets in
Z cover K, or using notation from [20], the predicate Q(2)(Z|K , K) must hold.

Protocol 1 constructs a secret sharing of the sum of the parties inputs and
then opens it. When we adapt the protocol for composition, we only construct
the secret sharing, and accumulate the sum (still shared) in the nodes in K.

As an example, we give an information-theoretically secure protocol for dis-
junction. Here, we let each party input 0 or 1 (for false and true) and then
use a protocol by Damgård et al. [12] for comparison.

Protocol 3 (Disjunction). In the protocol for computing Or(x1, . . . , xn)
where xi ∈ {0, 1} on the network G = (P , E) with a set K ⊆ P of designated
parties, Pi ∈ P proceeds as follows:

1. For each neighbor Pj , pick ri,j ∈ Zp randomly and send it to Pj .
2. Wait for rj,i from each neighbor Pj .
3. Compute si = xi −

∑
(Pi,Pj)∈E ri,j +

∑
(Pi,Pj)∈E rj,i.

4. Compute s =
∑

Pj �∈K sj using NonPrivateSum.
5. If in K, execute comparison protocol from [12] to test if s+

∑
Pj∈K sj = 0.

Theorem 4. Protocol 3 is information-theoretically private to a passive and
static adversary if the adversary structure Z does not separate the network G =
(P , E) and there is a complete subgraph K ⊆ G such that no two sets in Z
cover K.

Proof. The values ri,j are independent of the input. By the restriction on Z there
must be at least one party in K not corrupted by the adversary. By Lemma 1 we
know that the si values input to NonPrivateSum are uniform and independent.
Thus, the adversary gains no information from these, and by the composition
theorem [17, Theorem 7.5.7], we conclude that the protocol is private.
�

102 G. Kreitz, M. Dam, and D. Wikström

6 Conclusion

In this paper we have given efficient protocols for privately evaluating summation
and disjunction on any network topology. The ability to privately evaluate these
two basic primitives have applications in several widely varying contexts. As
the most expensive part of our protocols is the task of non-private summation,
privacy comes very cheaply.

We believe that the question of which functions can be efficiently privately
evaluated in arbitrary network topologies is an interesting topic for further study.

References

1. The FP7 4WARD project, http://www.4ward-project.eu/
2. Beimel, A.: On private computation in incomplete networks. Distributed Comput-

ing 19(3), 237–252 (2007)
3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-

cryptographic fault-tolerant distributed computation (extended abstract). In:
STOC, pp. 1–10. ACM (1988)

4. Bläser, M., Jakoby, A., Liskiewicz, M., Manthey, B.: Private computation: k-
connected versus 1-connected networks. J. Cryptology 19(3), 341–357 (2006)

5. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: A Framework for Fast Privacy-
Preserving Computations. In: Jajodia, S., López, J. (eds.) ESORICS 2008. LNCS,
vol. 5283, pp. 192–206. Springer, Heidelberg (2008)

6. Brandt, F.: Efficient Cryptographic Protocol Design Based on Distributed El
Gamal Encryption. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935,
pp. 32–47. Springer, Heidelberg (2006)

7. Burkhart, M., Strasser, M., Many, D., Dimitropoulos, X.: SEPIA: Privacy-
preserving aggregation of multi-domain network events and statistics. In: 19th
USENIX Security Symposium, Washington, DC, USA (August 2010)

8. Chan, H., Perrig, A., Song, D.X.: Secure hierarchical in-network aggregation in
sensor networks. In: Juels, A., Wright, R.N., di Vimercati, S.D.C. (eds.) ACM
Conference on Computer and Communications Security, pp. 278–287. ACM (2006)

9. Chaum, D.: The dining cryptographers problem: Unconditional sender and recipi-
ent untraceability. J. Cryptology 1(1), 65–75 (1988)

10. Chor, B., Kushilevitz, E.: A communication-privacy tradeoff for modular addition.
Inf. Process. Lett. 45(4), 205–210 (1993)

11. Dam, M., Stadler, R.: A generic protocol for network state aggregation. In: Proc.
Radiovetenskap Och Kommunikation, RVK (2005)

12. Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally Secure
Constant-Rounds Multi-Party Computation for Equality, Comparison, Bits and
Exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp.
285–304. Springer, Heidelberg (2006)

13. Duan, Y., Canny, J.F.: Practical private computation and zero-knowledge tools for
privacy-preserving distributed data mining. In: SDM, pp. 265–276. SIAM (2008)

14. Franklin, M.K., Yung, M.: Secure hypergraphs: Privacy from partial broadcast.
SIAM J. Discrete Math. 18(3), 437–450 (2004)

15. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)

http://www.4ward-project.eu/

Practical Private Information Aggregation in Large Networks 103

16. Garofalakis, M.N., Hellerstein, J.M., Maniatis, P.: Proof sketches: Verifiable in-
network aggregation. In: ICDE, pp. 996–1005. IEEE (2007)

17. Oded, G.: Foundations of Cryptography. Basic Applications, vol. 2. Cambridge
University Press, New York (2004)

18. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: STOC, pp. 218–229. ACM
(1987)

19. He, W., Liu, X., Nguyen, H., Nahrstedt, K., Abdelzaher, T.F.: PDA: Privacy-
preserving data aggregation in wireless sensor networks. In: INFOCOM,
pp. 2045–2053. IEEE (2007)

20. Hirt, M., Maurer, U.M.: Player simulation and general adversary structures in
perfect multiparty computation. J. Cryptology 13(1), 31–60 (2000)

21. Hu, L., Evans, D.: Secure aggregation for wireless networks. In: Workshop on Se-
curity and Assurance in Ad hoc Networks, p. 384. IEEE Computer Society (2003)

22. Jelasity, M., Montresor, A., Babaoglu, Ö.: Gossip-based aggregation in large dy-
namic networks. ACM Trans. Comput. Syst. 23(3), 219–252 (2005)

23. Kearns, M.J.: Efficient noise-tolerant learning from statistical queries. In: STOC,
pp. 392–401 (1993)

24. Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate infor-
mation. In: FOCS, pp. 482–491. IEEE Computer Society (2003)

25. Lincoln, P., Porras, P.A., Shmatikov, V.: Privacy-preserving sharing and correlation
of security alerts. In: USENIX Security Symposium, pp. 239–254. USENIX (2004)

26. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: TAG: A tiny aggregation
service for ad-hoc sensor networks. In: OSDI (2002)

27. Przydatek, B., Song, D.X., Perrig, A.: SIA: secure information aggregation in sensor
networks. In: Akyildiz, I.F., Estrin, D., Culler, D.E., Srivastava, M.B. (eds.) SenSys,
pp. 255–265. ACM (2003)

28. Roughan, M., Zhang, Y.: Secure distributed data-mining and its application to
large-scale network measurements. SIGCOMM Comput. Commun. Rev. 36(1),
7–14 (2006)

29. Slagell, A.J., Yurcik, W.: Sharing computer network logs for security and privacy: A
motivation for new methodologies of anonymization. CoRR, cs.CR/0409005 (2004)

Tracking Malicious Hosts on a 10Gbps Backbone Link�

Magnus Almgren and Wolfgang John

Computer Science and Engineering
Chalmers University of Technology, Sweden
first.lastname@chalmers.se

Abstract. We use anonymized flow data collected from a 10Gbps backbone link
to discover and analyze malicious flow patterns. Even though such data may be
rather difficult to interpret, we show how to bootstrap our analysis with a set of
malicious hosts to discover more obscure patterns. Our analysis spans from sim-
ple attribute aggregates (such as top IP and port numbers) to advanced temporal
analysis of communication patterns between normal and malicious hosts. For ex-
ample, we found some complex communication patterns that possibly lasted for
over a week. Furthermore, several malicious hosts were active over the whole
data collection period, despite being blacklisted. We also discuss the problems
of working with anonymized data. Given that this type of privacy-sensitive back-
bone data would not be available for analysis without proper anonymization, we
show that it can still offer many novel insights, valuable for both network re-
searchers and practitioners.

Keywords: Network Security, Malicious Traffic, Internet Backbone.

1 Introduction

The amount of Internet malware in circulation has increased and is forecasted to in-
crease even further [1]. Also the types of attacks have changed over time and are today
very different from the ones seen a decade ago. From being a way to gain esoteric
prestige, the attacks nowadays are connected to organized crime [2]. It is important to
understand how prevalent malicious code is, how it spreads, how many “normal” users
are infected, and what happens when one is infected.

There are several orthogonal methods to find partial answers to these questions. For
example, companies or other large organizations can analyze the traffic in their net-
works. In these settings, especially given the fact that the organization has a budget for
security incident investigation, there often exists a security policy with enforcement.
That is, as certain security mechanisms are used the data from such organizations will
only show a subset of possible security incidents.

Antivirus companies [3,4], with their software ubiquitously deployed on many com-
puters around the world, can also collect certain data from their customers to analyze
larger trends. However, some information is sensitive to export from the client and the

� This work is supported by the Swedish Civil Contingencies Agency (MSB) and SUNET.
The research leading to these results has received funding from the European Union Seventh
Framework Programme (FP7/2007-2013) under grant agreement n◦ 257007.

T. Aura, K. Järvinen, and K. Nyberg (Eds.): NordSec 2010, LNCS 7127, pp. 104–120, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Tracking Malicious Hosts on a 10Gbps Backbone Link 105

data are again skewed; they come from computers where security mechanisms have
been installed and where the owners (presumably) are security conscious.

Large networks of honeypots [5,6] offer invaluable insights into malware behavior
but again the data are biased as these are not regular computers with regular users.
Given their specialized nature, it is also expected that other hosts on the network have a
higher-than-average security protection; the administrators that spend time to install and
monitor a honeypot usually also invest time into other (simpler) security mechanisms.
Similar reasoning goes for DShield/SANS’ aggregated data [7,8].

In our work, we analyze traffic from the backbone of the Swedish University Net-
work SUNET. This is a high-level cross-section of traffic from a very large domain,
giving us an aggregated view of a very large number of hosts containing both security-
conscious users (i.e., researchers in security) as well as less sophisticated users (students
using the computer as a means to an end). By analyzing such traffic, we hope to gain
a different, and potentially more general, view of current malware behavior than the
approaches described above. However, we acknowledge that our cross section of users
is also skewed, albeit in a different way than above. SUNET mainly provides high-
speed Internet access to academic institutions in Sweden, meaning that a majority of
the users are either students or other people connected to academic institutions or re-
search environments, but there are also other types of users such as museums and some
government agencies.

Our analysis of malicious behavior and the corresponding collection is focused on
anonymized flows (i.e. summaries of packet streams between communication endpoints)
and not full packet payload. The advantages include a more manageable amount of
data that are less privacy-invasive than a full packet payload capture. The disadvan-
tages include no ground truth and a limited ability to further refine or validate our
results. Even though anonymized flow data may stymie some type of analysis, we
show that such data can still be used to discover typical malicious flow patterns that
we then investigate in detail. We consider our results here as a survey with possibili-
ties of future extensions, both when it comes to the extent of the data analyzed and the
methods used.

The rest of the paper is organized as follows. In Section 2 we describe the collection
of traffic and explain the type of data available for analysis. In Section 3, we describe
the general characteristics of this data. We then outline the problem of finding mali-
cious behavior in Section 4 and formally describe the assumptions and requirements
we need for the analysis of malicious flows. In Section 5, we analyze the behavior
of malicious hosts. In Section 6, we describe related work. The paper is concluded in
Section 7.

2 Description of the Data Collection

2.1 Measurement Setup

We collected backbone traffic on an OC-192 (10Gbps) link in the core-backbone of
SUNET, the Swedish University Network. Its current version, OptoSUNET, is a star
structure over leased fiber, with a central exchange point in Stockholm. OptoSUNET
connects all SUNET customers redundantly to a core network in Stockholm, as depicted

106 M. Almgren and W. John

Fig. 1. OptoSUNET core topology. All SUNET customers are via access routers connected to two
core routers. The SUNET core routers have local peering with Swedish ISPs, and are connected
to the international commodity Internet via NORDUnet. SUNET is connected to NORDUnet via
three links: a 40Gbps link and two 10Gbps links. Our measurement equipment collects data on
the first of the two 10Gbps links (black) between SUNET and NORDUnet.

in Figure 1. Traffic routed to the international commodity Internet is carried on three
links between SUNET and NORDUnet, where NORDUnet peers with Tier-1 backbone
providers, large CDNs (Content Distribution Networks) and other academic networks.
We used an existing 10Gbps measurement infrastructure [9] to collect traffic on one of
the 10Gbps links between SUNET and NORDUnet, indicated in black color in Figure 1.

Our measurement hardware includes two measurement nodes on site and one ad-
ditional processing platform at our university. At the core network in Stockholm, we
apply optical splitters to tap the two OC-192 links, one for each direction. The splitters
are attached to the measurement nodes on-site, which also preprocess the traces, includ-
ing prefix-preserving IP address anonymization [10]. We always collected network data
simultaneously for both directions. For the final analysis, we transferred anonymized
network flows to the processing platform at Chalmers University.

2.2 Description of the Collected Data: Unidirectional Flows

We ran our data collection every week for 24 hours with crl flow of the CoralReef
Suite [11]. We define flows by the unidirectional sequence of packets sharing a 5-tuple
of {sourceIP,destinationIP,sPort,dPort,proto}. Flows are then fur-
ther discriminated by a 5-minute timeout interval, i.e., two packets sharing the same
tuple belong to the same flow if their timestamps are within the given interval. A sam-
ple flow summary of crl flow with anonymized IP addresses is shown in Table 1. Flow
summaries include the identifying 5-tuple, where the proto represents transport proto-
col numbers as assigned by IANA, such as 6 for TCP, 17 for UDP and 1 for ICMP. Note
that in the case of ICMP the port fields contain the type and code, respectively. Other

Tracking Malicious Hosts on a 10Gbps Backbone Link 107

meaningful fields are pkts and bytes, containing the number of packets and bytes seen
within the flow interval; and firstTS and latestTS, representing POSIX timestamps of
the first and last captured packet in a flow, respectively. Note that we do not normally
see any TCP/IP header information apart from the ports and timestamps described
above.

Table 1. Two lines describing the flow output from CoralReef (IP addresses anonymized)

sourceIP destinationIP proto ok sport dport pkts bytes flows firstTS latestTS
192.168.52.11 74.125.43.147 6 1 445 3995 3 120 1 t10 t1n
192.168.10.69 74.125.43.101 1 1 3 1 1 56 1 t20 t2n

2.3 Measurement Bias and Errors

According to SNMP statistics [12], the applied load-balancing mechanisms by SUNET
assigned about 30% of all inbound but only 15% of the outbound traffic volume to
the 10Gbps link measured, and the rest to the alternative links. This type of sampling
bias is hard to quantify, since the routing policies are outside our control and differ for
incoming and outgoing traffic. They may also change without our knowledge.

The routing of the outgoing traffic is decided by the organization the traffic is origi-
nating from, meaning that different rules govern different parts of the “inside” network.
We have observed that we are blind to outgoing traffic from some IPs, for some hosts
we only see a subset of their traffic and for yet others, we may detect all traffic.

The policy for incoming traffic is slightly more uniform, but still complex due to
the setup of different peering points and agreements, introducing e.g. hot potato routing
effects. In general, we see a subset of all traffic, depending on routing decisions based
on a three-tuple of {sourceIP, sPort, destinationIP} for TCP/UDP flows.
Traffic from some peering points are not visible at all at our measurement point.

There are also a few caveats of the experimental hardware setup. Even though we
normally had no traffic loss within collection periods, there were two exceptions. Firstly,
the measurement cards can sometimes loose synchronization with the OC-192 PoS
framing, so we proactively restarted the collection in 3h periods, leading to missing
packets in the second between such data collection periods. Secondly, there were four
short, but immense traffic surges, where traffic was increasing from the normal rate
of <200k to >400k packets per second. During these surges, our nodes could not
keep up with the speed and dropped packets, which was logged by the measurement
cards.

Finally, the measurements were done over an operational large network, meaning
that parameters change over the course of the data collection. For example, on April 22,
we saw a spike of traffic over the outgoing link we were monitoring, as one of the
alternative routes was down for a short period of time. It is important to understand the
limitations of the experiment setup for correct analysis of the data. We can reason about
data we captured, but we need to be careful when interpreting missing data; a flow may
be missing because it was never sent but it may also be missing because it was routed
around our measuring point.

108 M. Almgren and W. John

3 Overall Data Characteristics

In this section, we describe the overall data characteristics of the captured flows. Table 2
shows traffic statistics of the collection days used for this study.1 The first observation is
that we see many more incoming than outgoing flows, mainly due to the load-balancing
mechanisms we explained in Section 2.3.

For the incoming traffic, the transport protocol breakdown in terms of flow num-
bers was about 42% TCP, 56% UDP, and 2% ICMP, while the outgoing link showed a
slightly different protocol ratio with 28% TCP, 69% UDP, and 3% ICMP.2 The num-
ber of flows changed over the data collection period but the traffic mix was relatively
constant with two exceptions, April 8 and May 6. On these two days, we observed a
larger number of flows due to major events involving a single host inside SUNET. This
particular host was the target of a large number of connections from a widely scattered
IP range via known IRC port numbers within short time periods. We see many incom-
ing 1-pkt flows with 40 Bytes (probably RST packets), but also a substantial number of
established connections involving exchange of small data portions. We suspect that this
host was sending out Botnet Command & Control (C&C) traffic, where we see only the
return traffic of the botnet zombies all over the world. Thus, we observe that malicious
activity may even leave a footprint in large aggregates as the ones shown in Table 2.

Table 2. A summary over the collection days and the corresponding traffic characteristics. The
values in parenthesis in the columns for Flows and Bytes show the percentage of the traffic for
TCP, UDP and ICMP respectively. Data for all days are captured in 2010 with a duration of 24h.

Incoming Link Outgoing Link

Date # Pkts / 109 # Flows / 108 # Bytes / 1012 # Pkts / 109 # Flows / 108 # Bytes / 1012

April 01 8.38 2.33 (39/59/2) 5.74 (83/17/0) 3.95 1.20 (27/70/3) 3.21 (58/41/0)
April 08 11.4 3.11 (48/50/2) 8.42 (85/15/0) 5.44 1.54 (27/70/3) 3.93 (52/47/0)
April 15 10.4 2.79 (40/58/2) 7.80 (84/16/0) 3.89 0.96 (28/69/3) 2.98 (54/45/0)
April 22 11.7 2.91 (41/57/2) 9.41 (87/12/0) 3.95 1.09 (29/69/2) 3.31 (61/38/0)
April 29 10.4 2.73 (41/58/2) 7.76 (86/13/0) 3.38 0.95 (30/68/2) 2.77 (57/43/0)
May 06 9.46 3.14 (46/52/2) 6.75 (84/16/0) 4.23 1.16 (30/67/2) 3.62 (58/41/0)

Similarly, we can consider the protocol mix based on the number of bytes transferred.
As can be seen, there was much more traffic sent over TCP than over UDP even though
the number of flows of UDP exceeded the number of flows for TCP. Surprisingly, the
UDP traffic accounted for as much as 43% of the outgoing traffic.

In Table 3, we show how many unique IP addresses we saw on the links on the
first collection day. Note that the destination address space for the incoming link is
represented by the source address space on the outgoing link, due the opposing direc-
tions of the unidirectional links. Even though part of the difference between the address
spaces observed can be explained by routing differences, there is a factor of 41 between
the observed IPs inside SUNET between the two directions. We know from previous

1 Note that our data include a substantial portion of incoming flows on UDP port 53, due to a
RIPE DNS server located inside SUNET, serving over 400 zones. Traffic from and to port 53
on this server cannot be considered native SUNET traffic and we filtered it out for this study.

2 Other protocols in the order of 0.1% are excluded. The values are often rounded to the nearest
percent, and the sum is sometimes not exactly 100% (as in Table 2).

Tracking Malicious Hosts on a 10Gbps Backbone Link 109

Table 3. Unique hosts during the data collection 2010-04-01

Inside SUNET Outside SUNET
Incoming Link Destination IPs 970,149 Source IPs 24,587,096
Outgoing Link Source IPs 23,600 Destination IPs 18,780,894

measurements that scanning operations, even though often unanswered from hosts in-
side SUNET, inflate the number of incoming destinations [13], and for that reason we
have not done any closer analysis of such behavior on the data presented here.

Table 4. The number of unique source IP addresses found in the traffic on the outgoing link

Date April 1 April 8 April 15 April 22 April 29 May 6
Unique IP:s 23,600 26,398 12,223 76,143 12,218 12,603

In Table 4, we show the number of unique source IP addresses seen on the outgo-
ing link. There are two artifacts we would like to highlight. First, on April 22 we see
many more source hosts. During a short period this day, one of the alternative routing
links was down and more traffic was routed over the link we measure. By roughly ex-
cluding the 20 minutes the link was down, we have 16,823 unique sources, an estimate
more similar in size to the other collection days.The other artifact is that onward from
April 15 we see only about half of the sources, maybe because of a new routing pol-
icy. We briefly investigated how many of the sources on the outgoing link were also
present in the data collected on the incoming link. Given the asymmetry of Table 3,
one would expect a majority of the source IPs on the outgoing link also be present as
destinations on the incoming link. In the data of April 1, it is 97.24%, confirming our
expectations.

33%

37%

5%

5%

7%

13%

74%

16%

5%

2%
1%< 1%

1

2

3

4

5

6

d
a
y
s

Fig. 2. The figure shows how many days a particular host is active. The pie chart to the left shows
hosts inside SUNET (source IP addresses) while the pie chart to the right shows hosts outside
SUNET (destination addresses). The figure is based on data collected on the outgoing link.

We also investigated how long we could detect traffic from a particular IP address.
For example, an IP address may become unused with DHCP, a host may be removed
from the network, or the routing policy is changed. In Figure 2, we have included two
pie charts that show how many collection days a typical IP address was active. The

110 M. Almgren and W. John

chart on the left represents hosts inside SUNET while the one on the right represents
hosts outside SUNET. Note we use the estimate for April 22, where the 20 minutes of
exceptional traffic is excluded as described above.

Among hosts inside SUNET, we have found that a majority are only active on one
or two data collection days even though 13% seem to be reoccurring every single data
collection day. In our data, most hosts outside SUNET are also only visible a single day
and there are very few hosts that reoccur over time.

4 Finding Malicious Hosts

We are interested in finding and analyzing typical malicious flow patterns. However,
we face several problems when determining whether a host is malicious. First, its status
can mostly only be determined in relation to a local security policy of allowed behav-
ior. Transmission of data from a system, e.g., might be very permissible at some sites
(research centers sharing results) but very suspicious at other sites (government agency
analyzing pre-election numbers) where it could indicate exfiltration attacks. As we have
a bird’s view over the network, we cannot make subjective judgment calls. However,
certain behavior, such as spreading malware, is quite universally seen as malicious.

Second, as we only see flow information, it is difficult to verify our suspicions of a
host’s malicious status. Through statistical analysis of the anonymized flow data we can
determine whether a host is behaving strangely compared to the mean, but we cannot
directly verify its status. For example, Google’s servers are an example of beneficial
hosts that would stand out in such an analysis unless accounted for.

However, others have the ability to more closely analyze payload, through, for exam-
ple, the analysis of malware collected in a honeypot. Several organizations make a list
of known malicious hosts available to the community. For our purposes, we use the lists
published from DShield and SRI Malware Threat Center to create a large set of possible
malicious hosts. They provide non-obfuscated IP addresses, which we anonymized [10]
similarly to the IP addresses in our flow data (cf. Section 2). More specifically, we use
DShield’s recommended block list [14], with 20 subnets and the Most Aggressive Mal-
ware Attack Source and Filters [15] and Most Prolific BotNet Command and Control
Servers and Filters [16], 30 day lists, from SRI. The latter two contain about 400-500
hosts together.

We leverage these host classifications to create a set of known malicious hosts, MF .
We use the following definition for malicious hosts and flows.

Definition of a malicious host. A host, x, visible in our traffic capture, is defined as
being malicious, if x ∈MF . All such hosts are added to the malicious set, M.

Definition of a malicious flow. A flow, f , with endpoints fs and fd is defined as being
malicious, if either fs ∈M or fd ∈M.

We usually downloaded the external malicious host lists in conjunction to the general
data collection, and then aggregated them (MF). Note that we never reclassified these
hosts; if they have been deemed to be malicious at one point during the data collection
period, they were malicious the whole period. We chose this policy for its simplicity,
and given the relatively short time span of the collection period, we do not find this to

Tracking Malicious Hosts on a 10Gbps Backbone Link 111

be a problem. The original data may also lag slightly in time (a host is only discovered
as malicious after a series of activities), and by treating it as malicious the whole time
we do not miss any of its initial behavior.

The set MF contains 25,900 potential hosts, where we on average saw activity from
about 5.0% of these hosts in the outgoing traffic and 4.6% of these hosts in the incoming
traffic. The sets have about 30% overlap, i.e. of the malicious hosts seen on the outgoing
link only 30% of the same sources were also present on the incoming link the same
collection date. We would like to emphasize that no hosts inside SUNET belonged to
M. The hosts in this set were thus all outside SUNET.

The resulting list of malicious hosts allows us to find malicious flow patterns that in
turn can be used for a larger analysis on a wider set of hosts. Also, concentrating on
the hosts in the malicious group facilitates the analysis as it is easier to find patterns in
this smaller subset. Certain attack patterns, such as denial-of-service attacks, cause by
their very nature a very large footprint on the flow data and can easily be found (see for
example [17]). However, we are also interested in behavior that is not so large scale,
and that is part of the reason why we bootstrap our analysis with the malicious set M.

Finally, our set of malicious hosts is quite restrictive, e.g. a host needs to display quite
aberrant traffic to be on the block list from DShield. There are probably many other
hosts that are malicious but are not in our malicious set, as e.g. the IRC C&C server
described in Section 3. Thus, we expect that certain patterns found for the malicious
hosts will also be applicable to some, what might seem to be, normal hosts.

5 Analysis of Malicious Host Behavior

We use the set of Malicious Hosts, M, defined in Section 4, to discriminate normal
flows from malicious ones. We divide the analysis into two parts. First, we look at
overall characteristics of the malicious flows and discuss large malicious footprints. We
then describe two particular patterns found by analyzing the traffic flows to malicious
hosts on the outgoing link.

5.1 Characteristics of Malicious Flows

In Table 5, we show the average fraction of malicious flows, i.e. the number of malicious
flows divided by all flows averaged over the data collection period. We note that for in-
coming traffic, we seem to have more malicious flows over TCP while for outgoing
traffic, ICMP flows are dominating. We can explain this fact by previous observations
on data from an older generation of SUNET3 showing that the majority of anomalies
(including unsolicited network scanning) originates outside SUNET, i.e. on the main In-
ternet [13]. Table 5 once more confirms these earlier observations with higher numbers
of incoming TCP flows, many of them probably SYN probing attempts.

Since possible responses to such unsolicited probes are important to understand for
the following analysis, we briefly outline them here. Basically, we can differentiate
between four scenarios following incoming SYN probings or connection attempts: i)

3 GigaSUNET, a ring architecture, was in 2007 replaced by OptoSUNET, a star architecture.

112 M. Almgren and W. John

Table 5. Average fraction of malicious flows per protocol

Incoming Link Outgoing Link
TCP 0.35% 0.05%
ICMP 0.02% 0.16%
UDP 0.04% 0.01%

replied by SYN/ACK packets,4 i.e. connection establishment (which should be rather
rare for unsolicited scanning events); ii) unreplied, e.g. by firewalls; iii) replied with
a RST response from host sockets;5 and finally iv) replied with type 3 (net/host/port
unreachable) ICMP messages from network or end nodes.

Discussion: The larger number of outbound malicious ICMP flows is likely to be an
artifact of the unbalance caused by incoming unsolicited TCP probes. In fact, 75% of
the outgoing malicious ICMP flows are of type 3 – destination unreachable, which is an
overrepresentation compared to around 50% type 3 messages when analyzing all flows.

apr−01 apr−08 apr−15 apr−22 apr−29 may−06
0

5

10

15
x 10

5

collection date

m
a
lic

io
u
s
 f

lo
w

s

incoming

outgoing

Fig. 3. The figure shows the number of malicious flows detected each data collection day

Incoming Malicious Traffic: The High-Hitters

In Figure 3, we show the number of malicious flows for each data collection day. In
general, we observe more incoming than outgoing malicious traffic. We can also see
an inflation of incoming malicious flows by a factor of 15–25 on the last three days.
This increase stems from a very small number of IPs responsible for the majority of
malicious flows. In the following, we define high-hitters as source IPs outside SUNET
responsible for more than 4k malicious incoming flows during one day. Disregarding
the high-hitters further discussed below, we found a quite stable amount of incoming
malicious traffic during all days, consisting of between 25k–35k flows stemming from
between 1,108 and 1,349 malicious hosts per day.

4 SYN/ACK packets are typically larger than 40 Bytes, i.e. 20B IP header, 20B TCP header, up
to 20B TCP options header, no payload.

5 RST packets are normally exactly 40B, i.e. 20B IP header, 20B TCP header, no payload.

Tracking Malicious Hosts on a 10Gbps Backbone Link 113

On April 1, we observe one high-hitter, responsible for 83% of the incoming ma-
licious flows on this day. This host sent UDP packets to 132k different hosts inside
SUNET on port 1434 with 404-Byte-sized packets during a period of 21 hours. The port
number and packet size suggests that this host tried to spread the Sapphire worm [18].

In the data from April 8 and 15, we observe one high-hitter that was at both dates
responsible for about 33% of incoming malicious flows, a rather moderate traffic den-
sity compared to high-hitters found other days. Flows from this host (to 40 hosts inside
SUNET) were probably DNS responses, since they came from UDP port 53 with packet
sizes of typical DNS answers (around 120 Bytes) and there were corresponding DNS
queries (around 70 Bytes) from a few SUNET hosts found on the outgoing link. We sus-
pect that this host might have been involved in some sort of DNS poisoning attack [19].

On April 22, we observe as many as five high-hitters, responsible for 97% of incom-
ing malicious traffic. Three of these high-hitters (generating 44%, 10% and 10% of the
flows, respectively) attempted to connect and login at large IP address ranges of up to
300k hosts via either SSH (TCP port 22) or VNC (TCP port 5900) during a couple of
hours. The remaining two high-hitters (22% and 11%) also talked to large IP ranges
(around 60k hosts) without fixed destination port numbers, but rather with fixed TCP
source ports of 31414 and 1723, respectively. This would indicate that we actually ob-
serve return-traffic from SUNET to these hosts on these port numbers, but we have to
further investigate this behavior for its significance.

On April 29, there were three high-hitters, together responsible for 97% of the in-
coming malicious flows. The main host (59%) was active during the entire 24 hour
period and connected to 107k hosts on five different proxy port numbers (e.g. TCP
8080, 3128, 1080, 9415) from port 6000, which is a scanning behavior also observed
elsewhere [20]. The other two high-hitters (23% and 15%) showed similar behavior to
the two unexplained high-hitters on April 22, with random destination port numbers but
fixed source ports of 14700 and again 31414.

On May 6, there was only one high-hitter, responsible for 96% of all incoming ma-
licious flows. This host was scanning on TCP port 1433 (MSSQL), which is known for
many vulnerabilities. Interestingly, this scanner also used a single source port number
of 6000, and is from the same \24 network as the main high-hitter on April 29.

Discussion: The data basically include a quite constant level of background radiation,
as also observed elsewhere [21,22]. However, at the same time we observe transient
high-hitters with varying traffic density. These outstanding, special events complicate
determination of regular traffic patterns and highlight the importance of longitudinal
measurements spanning time, allowing us to differentiate between the transient high-
hitter traffic from the constant background radiation in our analysis.

5.2 The Ubiquitous Malicious Hosts

We also decided to investigate how long the malicious hosts were active and the be-
havior of the most active hosts. We used Mout, i.e. the set of all visible malicious
host found in the outgoing traffic. We then counted how many collection days these
malicious hosts could be found (see Figure 4). As can be seen, a majority of the hosts

114 M. Almgren and W. John

were only visible a single day during the collection period. A little more than 20% were
visible for two days, and only about 3% were visible all collection days. This should be
compared with the pie chart to the right in Figure 2.

Discussion: The behavior of the malicious hosts was different from the behavior of all
hosts (cf. Figure 2). For example, there were more malicious hosts active all six data
collection days, as compared to all hosts. However, we believe this may be an artifact
of using a predefined malicious set, i.e., for a host to be blacklisted it must exhibit
malicious behavior over a period of time.

56%

22%

11%

5%
3%3%

1

2

3

4

5

6

d
a
y
s

Fig. 4. The number of days the malicious hosts were active in the outgoing traffic

Below we further investigate the traffic flows for the malicious hosts that were
present all six data collection days. Even though they only made up 3% of all the ma-
licious hosts we detected, they still stand for 26% of the malicious traffic we found on
the outgoing link. We concentrate on the two most prolific hosts and their traffic pattern
over TCP, below referred to as host-A and host-B. As these flows are outgoing, the flows
originated at an internal host (marked as source in the packet). Either the traffic is in
response to earlier connection attempts by the malicious host or it is unsolicited traffic
sent directly to the malicious host. We believe the pattern for host-A described below is
of the former type, while the patterns seen concerning host-B is of the latter type.

Massive Connection Attempts: The Scanner

Host-A was the most active ubiquitous host in terms of number of flows over TCP,
being part of 3,593 flows over the whole collection period with 2,904 distinct hosts
inside SUNET. Many of these hosts inside SUNET were clustered into portions of \24
subnets, and there were usually only 1–2 flows between two distinct end points. Most
of the flows (94%) were directed towards destination port 6000 on host-A.

For example, from the subnet with the most TCP flows toward host-A, we found
flows from 123 distinct hosts. Looking in detail at the flows, there was exactly a single
packet from each host to host-A of the form:
srcSubNet.host:2967 host-A:6000 packets:1 Bytes:40

Clearly, this is a RST packet in response to a scan. This particular scanning technique,
using port 6000, has also been seen elsewhere [20] even though the tool behind it is not
completely understood. We also saw this kind of behavior among the high-hitters on the
incoming link (see Section 5.1).

Tracking Malicious Hosts on a 10Gbps Backbone Link 115

It is particularly interesting that host-A probed different services over the collection
period. A majority of the captured flows came from April 1 (69%), where host-A probed
port 2967 (from 6000). Similarly, on April 8, port 2967 was probed. On April 15, we
see the first sign of a new target; 51% of the captured flows were the result of a scan
to port 2967 but 39% also targeted port 135, 6% port 1617, and, finally, 4% port 3230.
On April 22 the shift was larger still; 21% targeted port 2967 while 79% targeted port
135. On April 29, we can only see a single connection: one RST flow from source
2967 to destination port 6000. On May 5, the malicious host was again more active.
At this particular day, only a single connection went from 2967 to destination port
6000, while 99% instead involved port 135. Thus, the potentially vulnerable target port
shifted over the collection period, where first port 2967 and in the end only port 135 was
probed.

Table 6. Pattern for a possible secondary return and infection

src dst sport dport pkts bytes date time
src1 host-A 2967 6000 1 60 2010-04-22 04:09:16
src1 host-A 2967 1143 927 48,212 2010-04-22 04:09:21

The second interesting observation of host-A’s behavior is the following; the ma-
licious host immediately tried to connect (and infect?) hosts that seemed to have the
appropriate service running. As we said above, most of the traffic was actually a single
packet with size 40, i.e. a RST packet. What is interesting is when the SUNET host
replied with other packet sizes. In Table 6, we list one such example taken from the
data captured on April 22. The first flow summarizes the probing attempt by host-A
but the response we see is not the typical RST packet, i.e. the connection seemed to
be accepted.6 Within 5s, host-A returned and opened a connection to the SUNET host
and then data were actually exchanged, possibly being malicious code. We see simi-
lar behavior on all days; if the first attempt did not elicit a RST packet, there was a
follow-up flow in almost all cases. For example, on April 1, there was a new flow, on
average within 12s, in 25 of the 27 cases where the SUNET host replied with a packet
of size 44.7 This tells us something about the scanning software. In the first pass, it tries
to connect from a standard port and it probably blasts out packets. If the service is not
refused, it returns within 10–12s and reconnects through other ports.

Discussion: Summarizing the behavior of host-A, we first see that the scanner remains
constant over the data collection period despite it being blacklisted. Apparently, the
owner did not feel it is worth changing the IP address (because few home users use
blacklists?). Second, host-A was actively monitored and supervised as we can see from
its shifting probing profile over the collection period. Third, the return after a success-
ful probe happened within seconds, either for further data collection or an infection
attempt. As future work, it would be interesting to monitor these possibly infected
SUNET hosts for their post-infection behavior.

6 Note that SYN/ACK responses are, due to TCP option headers, typically larger than 40 Bytes.
7 The missing two cases may be an effect of the routing bias explained in Section 2.3.

116 M. Almgren and W. John

Temporal Patterns: Connecting to the Malicious Server

Host-B was the second most active malicious host that was also present on all connec-
tion days. We found 972 flows involving this host coming from 27 distinct sources in
the outgoing data. These flows do not seem to be part of a scan; for many of these out-
going flows, a few packets were sent from a non-privileged port from the host inside
SUNET to a few very specific ports on the malicious host. We did not at all see similar
scanning behavior as with host-A. Interestingly enough though, these flows to host-B
sometimes seemed to follow temporal patterns.

We analyzed the traffic patterns based on their time properties from four of the hosts
inside SUNET communicating with host-B, shown in Figure 5. Each subgraph (with
one exception) shows all flows between a single host inside SUNET to a specific desti-
nation port on host-B. The connection index n in the graph represents flow n (ordered
chronologically), which is then plotted at (tn − tn−1, n). That is, the x axes represent
the time differences between two consecutive flows, while the y axes simply index the
flows ordered by time. Let us look at each of the subplots separately. We order them
from top to bottom, left to right, according to the number in parenthesis in the figure
text along the x axes.

0 1000 2000 3000
0

10

20

Time difference: t
n
−t

n−1
 /s (3)

C
o
n
n
e
c
ti
o
n
 i
n
d
e
x
 (

n
)

0 1000 2000 3000
0

50

100

Time difference: t
n
−t

n−1
 /s (1)

C
o
n
n
e
c
ti
o
n
 i
n
d
e
x
 (

n
)

0 1000 2000 3000
0

20

40

Time difference: t
n
−t

n−1
 /s (2)

C
o
n
n
e
c
ti
o
n
 i
n
d
e
x
 (

n
)

0 1000 2000 3000
0

50

100

Time difference: t
n
−t

n−1
 /s (4)

C
o
n
n
e
c
ti
o
n
 i
n
d
e
x
 (

n
)

Fig. 5. The figure shows temporal communication patterns to the malicious host-B

In Subplot 1 in Figure 5, we show one of the time patterns we found. Here, the
source host connected to host-B, port 6969, about once every 43min. Now and then,
such a connection was immediately followed by another flow (i.e. through a new source
port on the host inside SUNET), probably a reconnect after a failed first attempt. This
particular pattern existed over two collection dates, where the flows from the second
day is marked with unfilled markers.

Similarly, in Subplot 2, we found a consistent pattern but with a period of 30min
instead of 43min as in Subplot 1. In this graph, we have also added dotted lines between

Tracking Malicious Hosts on a 10Gbps Backbone Link 117

two consecutive connections to make the connection pattern more visible. The SUNET
host connected to host-B, port 8000, about every 30min with a few exceptions. Three
times, the “ordinary” connection was immediately followed by a new connection. Two
times8 the reconnections took more than 30min to establish. Again, the pattern lasted
over two collection dates spaced a week apart, and the flows from the second day are
marked with unfilled markers.

Discussion: The patterns seen for the hosts in Subplot 1 and 2 imply relatively simple
programming, i.e. a regular refresh or a keep-alive signal. The hosts inside SUNET may
contain malware, meaning that these patterns would indicate an attempt to “call home”
by the malware to the blacklisted host-B. However, sometimes other services are also
running on the malicious hosts and the seen pattern could be the result of a more regular
service. Especially interesting is the pattern length; interpolating, it would seem that the
keep-alive signal was present over a week.

In Subplot 3 we can see a complex back-off pattern with t1 = 111s, t2 = 222s,
t3 = 333s, t4 = 666s, t5 = 1, 332s, t6 = 2, 664s, i.e. tn =

∑n−1
i=1 ti for n > 2. The

vertical dotted lines are added at these anchor times for ease of reading the figure. The
source tried to connect to host-B with a total of about 16–17 distinct flows, with about
3–4 connections spaced 111s apart. The following connection then came after 222s
followed by one at 333s, 666s, 1, 332s, and finally about nine flows spaced 2, 664s
apart. What makes this particular pattern stand out, apart from its complexity, is that
the source connected to host-B on several distinct ports (6969, 8000, 8080), always
following the exact same pattern, seldom being off even a full second from the anchor
times described above. Moreover, this very same host also tried to connect to six other
hosts, using the exact same connection pattern but with different destination ports (80,
2710, 6997, 6969, 9999, 60500). Thus, in total the host exhibited the very same pattern
in twelve distinct cases and they have all been superimposed in Subplot 3. Even though
Subplot 3 in reality contains 12 graphs, we can see that the pattern in each of these
graphs is so similar to the others that each individual point is plotted on top of another
and it is easy to distinguish the overall structure. There are a few errant points in the
beginning but towards the end the sequence is stabilized. Most of the flows that make
up this pattern, contained three packets with a total of 152 Bytes. These 12 patterns
appeared within four minutes of each other, which might indicate a common event
triggering their initialization. They may also have contained more points than shown in
the graph, but any subsequent point is beyond our 24h data collection period.

Finally, in Subplot 4 we show a similar pattern to that found in Subplot 3. We could
only find the single host in Subplot 3 with a back-off pattern within a second of the
anchor times. However, we found a few other instances where the pattern is somewhat
similar. One such example is shown in Subplot 4, where we again show flows from
a subsequent collection day with unfilled markers. In contrast to Subplot 3 (where 12
similar patterns are superimposed), Subplot 4 contains a single pattern, i.e. one host that
used different source ports to connect to the same destination port (8080) on host-B. In
contrast to the patterns in Subplot 3, we can see that this host was repeating the pattern
over and over again, lasting over a week, i.e. two data collection dates.

8 In Subplot 2 we have one outlier at about 38,293s that is not shown (the dotted lines hint to its
existence). In Subplot 4, we have five outliers not visible in the graph.

118 M. Almgren and W. John

Discussion: The time properties for these two hosts represent a more complex program-
ming logic, implying that the programmer chose this particular algorithm for a reason.
As discussed above, these patterns could indicate an attempt to “call home” by the mal-
ware but it could also be part of a more regular service.9 The patterns were probably
triggered by some event, as all 12 occur within four minutes of each other. Given the
exact nature of the pattern displayed by the host in Subplot 3, we have described it at
several mailing lists but without conclusive responses as most people suggested a full
packet capture for further analysis – which is not possible for us due to privacy con-
cerns. We have also been unable to find other hosts within our data that follow such an
exact pattern as displayed by this host. This means that regardless of the pattern being
the result of a regular program or malware, it is not widespread.

6 Related Work

As already outlined, malicious traffic can be studied by several orthogonal methods,
such as distributed sensors, honeypot networks, network telescopes/darknets, and large-
scale passive measurements. The relation of the first two methods to our work has al-
ready been discussed in Section 1. They introduce a serious bias, as the users obviously
care about security, and they are not very suitable for analysis of real user responses.

Given that network telescopes monitor large, unused IP address spaces, they see
traffic that by its very nature should not exist [23]. Even though network telescopes have
been used for extensive studies of worm outbreaks [24] and for general characterization
of background radiation [25,26], they are only traffic sinks and do not respond genuinely
to incoming traffic.

Our approach, passive measurements on large-scale links, is generally viewed as
the best way to study Internet traffic, as it includes real behavioral responses from a
diverse user population. Others made use of observations of connection properties to
study general characteristics of scanning traffic both on campus links [21] and backbone
links [27]. Also one of the authors of this paper previously quantified unsolicited traffic
by simple heuristic methods utilizing connection patterns [17,22]. Malicious traffic (i.e.
scanning and DDoS attacks) was observed to be the main reason for short, unidirec-
tional one-way flows on both campus and backbone links [28]. Rehák et al. [29] uses
NetFlow data to fine-tune an Intrusion Detection System (IDS) by periodical insertion
of challenges (or fault injections).

In contrast, in this paper we have observed and analyzed traffic patterns of malicious
hosts, describing their changing behavior over the data collection period. Behavioral
analysis of malware is also possible by reverse engineering [30], and we consider such
approaches complementary to ours; reverse engineering requires a significant effort but
may yield an exact analysis of the malware in question but with our measurements
a wide range of behavioral patterns can directly be observed. Furthermore, reverse
engineering can never directly answer certain questions, such as how widespread a
certain malware is, but this is a property we can measure.

9 For example, one of the destination ports found (6969) may be associated with bittorrent.

Tracking Malicious Hosts on a 10Gbps Backbone Link 119

7 Discussions and Conclusions

We have shown that we can use anonymized flow data to discover and analyze mali-
cious flow patterns, a result useful for network researchers and practitioners interested
in security related topics such as intrusion detection. Some attacks leave such a big
footprint that they are visible even in summaries of large traffic aggregates, as the C&C
server described in Section 3. To detect more obscure patterns, though, we bootstrapped
our analysis with a predefined set of malicious hosts, and analyzed their behavior from
a large-scale perspective based on Internet backbone data. Each finding is discussed
in detail within the paper. For example, we showed the need for longer-time measure-
ments to be able to separate the transient high-hitters from the background traffic. De-
spite being blacklisted, we found some malicious hosts that stayed active over the whole
measurement period. One of these hosts seems to automatically scan and possibly infect
vulnerable hosts within seconds, but is most likely under active human supervision as its
scanning profile shifted over time. In contrast to many previous measurement methods,
we went beyond the analysis of simpler attribute aggregates (such as top source port,
etc.) to also include a temporal analysis of communication patterns, originating from
hosts within SUNET to a malicious host. We found both simple refresh logic and com-
plex back-off patterns, sometimes lasting over a week. The latter patterns are not easy
to discover because they do not leave large footprints in traditional traffic summaries.

Summarizing, there are disadvantages with using anonymized flow data in that it is
rather difficult to both interpret the data and to validate the result. However, such data
would otherwise not be available for analysis and they can still offer many valuable
insights, not possible with complementary methods. The findings in this paper are just
the first look at the data, which we are still expanding by regular weekly measurements
(ongoing since April 2010). By improving the selection of the malicious hosts, both by
using collected information from locally installed honeypots with access to full payload
and a more automatic classification of hosts and malicious traffic [31], we expect more
detailed and conclusive results in the future.

References

1. Corrons, L.: Computer Threat Trend Forecast for 2010,
http://pandalabs.pandasecurity.com/
computer-threat-trend-forecast-for-2010/ (December 2009)

2. Mueller III, R.S.: Major Executive Speeches, RSA Cyber Security Conference (2010),
http://www.fbi.gov/pressrel/speeches/mueller030410.htm

3. Symantec, AntiVirus, Anti-Spyware, Enpoint Security (2010),
http://www.symantec.com

4. McAfee, Antivirus, IPS, Firewall, Web Security (2010), http://www.mcafee.com
5. The Honeynet Project, Honeynet Project Blog (2010), http://www.honeynet.org
6. NoAH, European Network of Affined Honeypots (2010), http://www.fp6-noah.org
7. DShield, Cooperative Network Security Community - Internet Security (2010),

http://www.dshield.com
8. SANS, Internet Storm Center (2010), http://isc.sans.edu
9. John, W.: Characterization and Classification of Internet Backbone Traffic. Chalmers

University of Technology, Doctoral Thesis (2010) ISBN 978-91-7385-363-7

http://pandalabs.pandasecurity.com/computer-threat-trend-forecast-for-2010/
http://www.fbi.gov/pressrel/speeches/mueller030410.htm
http://www.symantec.com
http://www.mcafee.com
http://www.honeynet.org
http://www.fp6-noah.org
http://www.dshield.com
http://isc.sans.edu

120 M. Almgren and W. John

10. Fan, J., Xu, J., Ammar, M., Moon, S.: Prefix-Preserving IP Address Anonymization:
Measurement-Based Security Evaluation and a New Cryptography-Based Scheme. Com-
puter Networks 46(2) (2004)

11. Moore, D., Keys, K., Koga, R., Lagache, E., Claffy, K.: The CoralReef Software Suite as a
Tool for System and Network Administrators. In: USENIX LISA (2001)

12. OptoSUNET, Core Map,
http://stats.sunet.se/stat-q/load-map/
optosunet-core,,traffic,peak

13. John, W., Tafvelin, S.: Differences between in- and outbound Internet Backbone Traffic. In:
TERENA Networking Conference, TNC (2007)

14. DShield, Recommended block list (2010), http://www.dshield.org/block.txt
15. SRI International Malware Threat Center, Most aggressive malware attack source and filters

(2010), http://mtc.sri.com/live_data/attackers/
16. SRI International Malware Threat Center, Most prolific botnet command and control servers

and filters (2010), http://mtc.sri.com/live_data/cc_servers/
17. John, W., Tafvelin, S.: Heuristics to Classify Internet Backbone Traffic based on Connection

Patterns. In: Int. Conference on Information Networking, ICOIN (2008)
18. Moore, D., Paxson, V., Savage, S., Shannon, C., Staniford, S., Weaver, N.: The Spread of the

Sapphire/Slammer Worm. CAIDA, Tech.Rep. (2003)
19. Friedl, S.: An Illustrated Guide to the Kaminsky DNS Vulnerability (2008),

http://www.unixwiz.net/techtips/iguide-kaminsky-dns-vuln.html
20. White, G.N.: What’s up with all the port scanning using TCP/6000 as a source port? (2010),

http://isc.sans.edu/diary.html?storyid=7924
21. Allman, M., Paxson, V., Terrell, J.: A Brief History of Scanning. In: Internet Measurement

Conference, IMC (2007)
22. John, W., Tafvelin, S., Olovsson, T.: Trends and Differences in Connection-Behavior within

Classes of Internet Backbone Traffic. In: Claypool, M., Uhlig, S. (eds.) PAM 2008. LNCS,
vol. 4979, pp. 192–201. Springer, Heidelberg (2008)

23. Moore, D., Shannon, C., Voelker, G., Savage, S.: Network Telescopes. CAIDA, Tech.Rep.
(2004)

24. CAIDA, Research:Security (2010),
http://www.caida.org/research/security/#PreviousMalware

25. Pang, R., Yegneswaran, V., Barford, P., Paxson, V., Peterson, L.: Characteristics of Internet
Background Radiation. In: Internet Measurement Conference, IMC (2004)

26. Bailey, M., Cooke, E., Jahanian, F., Nazario, J., Watson, D., et al.: The Internet Motion Sen-
sor: A Distributed Blackhole Monitoring System. In: SNDSS (2005)

27. Sridharan, A., Ye, T., Bhattacharyya, S.: Connectionless Port Scan Detection on the Back-
bone. In: IPCCC (2006)

28. Lee, D., Brownlee, N.: Passive Measurement of One-way and Two-way Flow Lifetimes.
ACM SIGCOMM Comp. Comm. Rev. 37(3) (2007)

29. Rehák, M., Staab, E., Fusenig, V., Pěchouček, M., Grill, M., Stiborek, J., Bartoš, K., Engel,
T.: Runtime Monitoring and Dynamic Reconfiguration for Intrusion Detection Systems. In:
Balzarotti, D. (ed.) RAID 2009. LNCS, vol. 5758, pp. 61–80. Springer, Heidelberg (2009)

30. Porras, P., Saidi, H., Yegneswaran, V.: An Analysis of Conficker’s Logic and Rendezvous
Points. Computer Science Laboratory, SRI International, Tech.Rep. (2009)

31. Almgren, M., Jonsson, E.: Using Active Learning in Intrusion Detection. In: 17th IEEE
Computer Security Foundations Workshop, CSFW 2004 (2004)

http://stats.sunet.se/stat-q/load-map/optosunet-core,,traffic,peak
http://stats.sunet.se/stat-q/load-map/optosunet-core,,traffic,peak
http://www.dshield.org/block.txt
http://mtc.sri.com/live_data/attackers/
http://mtc.sri.com/live_data/cc_servers/
http://www.unixwiz.net/techtips/iguide-kaminsky-dns-vuln.html
http://isc.sans.edu/diary.html?storyid=7924
http://www.caida.org/research/security/#PreviousMalware

T. Aura, K. Järvinen, and K. Nyberg (Eds.): NordSec 2010, LNCS 7127, pp. 121–135, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Service Users’ Requirements for Tools to Support
Effective On-line Privacy and Consent Practices

Elahe Kani-Zabihi and Lizzie Coles-Kemp

Information Security Group, Royal Holloway University of London,
Egham, Surrey, TW20 0EX, UK

{Elahe.Kani,Lizzie.Coles-Kemp}@rhul.ac.uk

Abstract. The work presented in this paper explores how privacy dialogues
within an on-line service might be constructed by conducting field experiments
those identify privacy practices used when engaging with on-line services and
elicit service user requirements for privacy dialogues. The findings are
considered against the established design principles for general CRM dialogue
design such as: frequency, initiation, signalling, service provider disclosure and
richness [1] as well as privacy specific design principles including:
transparency, service user disclosure and the agreement of privacy norms and
rules [12].

Keywords: Service User, Service Provider, Privacy, Privacy Policy, User
agreements, Consent, Privacy and Consent Technology.

1 Introduction

The work presented in this paper is part of a project entitled Visualisation and Other
Methods of Expression (VOME) whose main objective is to develop methods of
expressing privacy that enable a wider range of privacy concerns to be articulated
and offer a broader variety of privacy protection responses. The original premise on
which the project is based stated as: “Many users cannot and do not engage
sufficiently with issues of privacy and consent in their interactions with ICT.
Consequently they are not able to adequately assess the risks they run and
organisations cannot develop services which adequately address users’ privacy and
consent needs”. In the first year of the project, three academic teams worked
together to produce a baseline of privacy concerns and practices when using on-line
services. As part of this work an on-line survey was carried out [7] which
incorporated Buchanan et al.’s scale for measuring privacy practices [8]. Buchanan
et al. developed and validated Internet-administered scales measuring privacy-related
attitudes and behaviours. In the case of privacy-related practices, they identified two
distinct groups of actions people may take to protect their on-line privacy. The first
group can be categorised as General Caution and contains common sense steps that
people take. The second group, known as Technical Protection of privacy, requires a
specific level of technical competency and involves sophisticated use of hardware

122 E. Kani-Zabihi and L. Coles-Kemp

and software as tools for safeguarding privacy. While everyone can engage to some
extent in General Caution to protect their on-line privacy, a higher level of technical
knowledge is necessary for Technical Protection.

In-line with Solove’s perspective [16] of privacy as a facet of relationships, one of
the conclusions of the baseline work was that privacy is enmeshed in the
relationships that are being developed and maintained on-line. The baseline work
also concluded that privacy is a collection of issues rather than a single issue or
problem and the type of relationship in which privacy is situated, influences the
foregrounding and back grounding of privacy issues. Research participants
demonstrated that they select privacy protection practices in line with the privacy
issues that are fore grounded.

The focus of the work presented in this paper is a closer exploration of the type of
privacy practices invoked by on-line service users and the contexts in which these
privacy practices are invoked. In the discussion section we evaluate how privacy and
consent dialogue services might be designed in order to enable a more effective
selection of privacy practices.

1.1 The Privacy Dialogue

At present, on-line service users are often obliged to reveal their personal information
to have access to on-line services. Service users have no control of how their
personal information is preserved and used. Privacy is regarded by on-line service
providers as both an aspect of governance [11, 12] and an aspect of customer
relationship management [9, 2]. One of the purposes of customer relationship
management (CRM) is to build trust between the service user and service provider
and one of the trust building mechanisms is the use of dialogue between service users
and service providers [10].

Best practice [9, 11, 12] encourages on-line service providers to use privacy
policies and statements. Privacy trust marks are used to communicate service provider
commitment to privacy. There is also strong encouragement to make privacy
enhancing technologies (PETs) available to provide service users with the means to
respond to any remaining privacy concerns. However, it is noticeable that there is
scant provision for dialogue on privacy issues within the on-line service. Our previous
research shows that service users often reach out for dialogue opportunities with the
service provider when deciding on the appropriate privacy practices when using on-
line services [2].

We have learnt that having better understanding of user behaviours and needs
would enable system designers to appreciate what end users feel about using their
systems and what changes would be needed to meet their needs [17]. The work
presented in this paper explores how privacy dialogues within an on-line service
might be constructed by conducting field experiments that identify privacy practices
used when engaging with on-line services and elicit service user requirements for
privacy dialogues.

 Service Users’ Requirements for Tools to Support Effective On-line Privacy 123

2 Positioning of Our Work

When positioning our work, we use the following types of literature as a basis for our
study: privacy protection practice literature and dialogue system literature

2.1 Privacy Protection Practice Literature

There is a substantial body of research [3] which considers privacy protection in terms
of accessing online services. Although we agree that users should be protected from
revealing unnecessary personal information, we argue that users must first be
informed of privacy risks and should be guided during online registration process.

Therefore, we undertook a user study to identify requirements for developing such
an information system. Our work is in-line with McDonald & Cranor [5] and
McDonald & Cranor [6]. McDonald & Cranor [5] conducted an online study of 212
participants to measure time taken to read online privacy policies. Participants were
presented with one of six different policies of varying lengths. They discovered it
takes 244 hours per year for each person to read privacy policies, which is an average
of 40 minutes a day. Hence, they estimated if all American Internet users were to
annually read the online privacy policies, they will spend about 54 billion hours
reading privacy policies. Moreover, McDonald & Cranor [6] performed a series of in-
depth interviews with 14 participants on one subject of Internet advertising. In this
study participants raised their privacy concerns without any prompting about privacy.
It was discovered that many of the participants had poor understanding of third party
cookies and believed that their actions online are anonymous unless they are logged
into a website. We enhance these works by asking users what are their concerns with
regards to online privacy statements and how they wish to be informed of them.

Tsai et al. [14] reported that providing accessible “privacy risk information”
reduces the information asymmetry gap between service users and service providers.
Such accessible information results in a consistent use of online services where
service users feel service providers protect their privacy. Therefore, in terms of
providing more information about online privacy, in our study we will question
service users of their expectations from service providers.

2.2 Dialogue System Literature

When considering the design of dialogue in a system, much can be drawn from the
socio-technical perspective. In order to resolve issues of mistrust, unfairness and
unjustness, socio-technical design looks to optimise community performance in the
system design. Community performance can be defined as the ability of a community
to reach its goals. Privacy could be considered as one of the community performance
characteristics. The belief of socio-technical designers is that by achieving an
acceptable balance of these community characteristics trust is augmented between the
different members of the community. In an on-line system, community performance
is negotiated using a variety of on and off-line techniques, all of which use dialogue
and communication. In today’s on-line systems, there is little provision for tools

124 E. Kani-Zabihi and L. Coles-Kemp

which support on-line dialogues and therefore, the more complex the relationship, the
more likely the negotiation is to take place off-line. This results in increased costs of
on-line service delivery [4].

When designing on-line tools to support privacy dialogues, it is important to
consider the established design principles dialogue in the CRM literature. These
principles include: frequency (the timing of dialogue communication, frequency of
messages), initiation (the manner of initiation and the method of initiation), signaling
(the type and method of signaling), service provider disclosure (the types of
disclosures that service providers need to make in order to establish credibility and
trustworthiness) and richness (the layers of communication necessary for customer
confidence where communication layers may be both on and off-line) [1]. When
considering the nature of richness, Whitworth [13] makes the point that, in addition
to layers of communication, richness also specifies how much meaning is
communicated at each layer, confidentiality controls, extendibility bounded by
security. Daft, R.L. et al [15] define richness as the “capacity of the media to
facilitate shared meaning.” In addition to these general dialogue requirements,
consideration also has to be given to the requirements specified in privacy guidance
literature. These include: transparency, service user disclosure and the agreement of
privacy norms and rules [12].

3 Research Method

We undertook a fieldwork to understand service users’ expectations and preferences
of privacy dialogues when interacting with on-line services. Unlike a survey
approach to privacy research, this method assesses service user expectations and
preferences at the point of service use, not as part of a reflective study. This “in
service use” approach was selected in order to try and more closely understand the
subtleties and nuances of privacy practice and the points at which service users reach
for a dialogue with service providers. For the purpose of our fieldwork, we situated
our study in the context of the service user-service provider relationship and we
focused on the service registration and purchasing aspects of on-line service
engagement.

There was a need to investigate the service users’ perceptions of having
dialogues about their privacy with service provider. Hence a pilot study was
deployed. Accordingly three participants (users), all women aged 32 to 41,
volunteered to take part in our study. In this study, service users were asked to
perform tasks using current online services. Since the objective was to find out
users’ views therefore both the following implicit and explicit methods for collecting
data were employed:

─ Observation – Users’ behaviour during their interaction with user interfaces were
observed and recorded. We needed to observe users’ reaction at the point of
registration.

─ Task based questionnaire – There was a need to elicit users’ opinions after
completing their tasks. Quantitative data (close-ended questions) was used to

 Service Users’ Requirements for Tools to Support Effective On-line Privacy 125

obtain an average of users’ overall perceptions of the current privacy and consent
dialogues. Qualitative data in terms of open ended questions were used so that
users could freely express their views.

─ Interview – Users were interviewed to expand our understanding of their
perceptions. Following the university’s policy, we asked each participant to read
and sign a consent form to give authorisation to researchers for audio recording
the interview session.

The emphasis in this approach is on situated research at the time of service use.
Therefore, in the first part of the research activity, participants were observed
completing the following tasks:

Task 1. Register with one of the following services which you have not been
registered with before.

Task 2. Search for your subject/product.
Task 3. Save it or Add to the Shopping Basket.
Task 4. Leave your comment and feedback about the product.

It was explained to service users that they would not be judged on how fast or
efficiently they performed the tasks, and the purpose of the exercise was to study the
service provider’s website. All participants were observed by the same single person,
who recorded their action and their achievement.

The second part of the study involved participants replying to a questionnaire
soliciting their views on privacy and consent. Accordingly, we administered a
questionnaire soliciting both qualitative and quantitative data, via the use of both
closed (Table 1) and open-ended questions (Table 2).

In the first part of the questionnaire, mainly focusing on privacy practices, we
asked users whether they have read the privacy policy page (Table 1, Q1) and also
whether they agreed with the ‘terms and conditions’ of the website (Table 1, Q2).

McDonald & Cranor [5] stated that “companies collect personally identifiable
information that website visitors are not always comfortable sharing”. Hence we
questioned our participants whether they revealed their personal information willingly
(Table 1, Q3). Moreover, in order to find out if participants are comfortable with
revealing their identity we asked if they register with the website with their real
personal information (Table 1, Q4).

Q5 contained a set of 14 statements (focusing on privacy practice and also dialogue)
on which the participant expressed their opinion on a five-point scale (strongly agree,
agree, neutral, disagree, and strongly disagree). The aim of these questions was to
understand whether users have privacy concerns when it comes to registering with online
service providers (the context of this study) and if they feel the need for dialogue.

In the second part of the questionnaire we used privacy perception and dialogue
questions to solicit users’ requirements for privacy and consent using online services
(Table 2). Therefore we asked participants to reply to open-ended questions.
Participants were free to give their comments on whether they trust a service provider
with their personal information (Q6); how can a service provider assure their privacy
(Q7 & Q8); how can a service provider communicate with them (Q9); and finally how

126 E. Kani-Zabihi and L. Coles-Kemp

should they be informed of privacy policies (Q10). One researcher was present to
make sure all participants understand terminologies used in the questionnaire and also
the purpose of each task given to them.

Table 1. Privacy and Consent questions – part 1

Q1. Did you read the privacy policy page?

Q2. Did you agree with the terms and conditions page?

Q3. Did you feel you were forced to give out your personal information in order to use the
service?
Q4. Did you register with the website with your real personal information?

Q5. Privacy and Consent statements:
1. I wish I could communicate with the service provider about giving my personal information to

them.

2. The service provider will not sell my information to a third party.

3. I feel confident in leaving comments on this website.

4. It was better if I could speak to someone on the phone about their services.

5. I can’t rely on this website to keep my information secure.

6. I know the service provider will use my information for advertising.

7. There was enough information on the website to make it trustworthy.

8. I will provide them with more personal information if it is necessary.

9. I feel confident to register with this service online rather than filling a paper form.

10. I don’t think the information they wanted was really private.

11. I don’t mind if my information is passed to another company for commercial purposes.

12. The service provider explained why they need my personal information.

13. The service provider must give me assurance that my information is safe and confidential.

14. If I don’t trust the service provider I will give fake personal information to use their services.

Table 2. Privacy and Consent questions – part 2

Q6. Did you trust the service provider with your personal information?
Q7. How can a service provider show you that they are trustworthy with keeping your
personal information?
Q8. What expectations do you have about the safety of your personal information?
Q9. How would you like to communicate with the service provider about your privacy?
Think of different ways which would have been helpful to support your interaction with
the service.
Q10. How do you think the service provider should have informed you of their privacy
policy?

The third part of the study involved a semi-structured interview with each

participant. The questions asked in the interview followed on from the questionnaire.
The aim of the interview questions was to further explore the participants’ views and

 Service Users’ Requ

obtain a deeper understand
on from Q5 (Table 1), to
personal information, we as

1. Do you think th
Furthermore, in line with
‘privacy dialogue’ by askin

2. How do you th
gain your trust?

3. Do you think th
the website? If n

The above interview ques
responses in the questionna
practices and the general nee
each participant indicated d
have liked further assurance
to raise concerns as well as
that there is a need for three
information b) raise querie
provider. We explored these

3.1 User Study – UK O

Following the approach tria
at a wider audience. We rec

All participants (all Intern
Each participant was offered
research. We were intereste

uirements for Tools to Support Effective On-line Privacy

ding of possible dialogue system requirements. Follow
find out whether users were comfortable revealing th

sked:

he service provider was reliable?
Q9 and Q10 (Table 1), we opened the discussion

ng the following questions:
hink the service provider should communicate with you
?
here was enough information for you to be confident us
not, why?

tions also helped the researcher to clarify and interp
aire. The pilot study helped us to better understand priv
ed for dialogues when selecting practices. In the pilot stu

different points in the registration process when they wo
es from the service provider and when they would have li
s gather further information. The feedback clearly indica
types of privacy dialogue where service users can a) requ

es and concerns c) contest the privacy stance of a serv
 findings further in the study presented in this section.

Online Centres

alled in the pilot study, we conducted a user study aim
cruited our participants through six UK online centres.

Fig. 1. Participants’ ethnicity

net users at the centre) were recruited by the Centre Man
d a shopping voucher as a reward for their contribution to
ed in a wide range of Internet users. Accordingly, 49 u

127

wing
heir

on

u to

sing

pret
vacy
udy,
ould
iked
ated
uest
vice

ming

nger.
o the
sers

128 E. Kani-Zabihi and L

(31 female and 18 male) a
background (Figure 1) par
followed, as described in se
consent negotiation and dial
determines how much inform
relationship building. There
service user and service prov

1. Do you think the service

Furthermore, in our pilot stu
understand if this is true for

2. Do you trust brand name
3. How do you think a serv

Following the findings from
obtaining consent is, we ask

4. What would make onlin
detail or to have it in a “v

Finally, as we described in
general CRM dialogue desi

5. Do you think it is impor
sort of relationship is app

6. How much frequency o
relationship with the serv

The result of these interview

4 Results

As explained in 3.1, in the
with current service provid
2 shows the registration br
online services but agreed t
participate in our interview.

Fig. 2.

L. Coles-Kemp

aged between 15 and 60 years old from a diverse eth
rticipated in our study. The same research process w
ection 3. In addition, we asked further questions on tr
ogue design. Trust is an important factor when a service u
mation to disclose to a service provider and is a key par
efore, much focus was given to the nature of trust betw
vider. In order to open our discussion on trust we asked:

e provider was trustworthy?

udy we learned that users trust brand names. We needed
r our wider audience. Hence, we also asked:

es? Why?
vice provider should build your trust?

m the pilot study, in order to learn what the best practice
ked:

ne consent easier? Do you prefer to be informed in m
visual” style?

n section 2.2, to learn more about participants’ views
ign principles, we asked:

tant to have a relationship with the service provider? W
propriate?

of interaction do you think is necessary to obtain a go
vice provider? Would that affect your trust in them?

ws is given in next section (4.3).

first part of our study, participants were asked to inter
ers with whom they have not previously registered. Fig
reak-down. One participant refused to register with
to complete the relevant questions in the questionnaire
.

Online services, registered by participants

hnic
was
rust,
user
rt of

ween

d to

e for

more

s on

What

ood

ract
gure
any
and

 Service Users’ Requ

4.1 Privacy Practice

The researcher noted that o
condition pages. As to b
statements?) 64% (n=31) o
and accepted them. This i
understood privacy stateme
interview, users commente
“...we are in a very fast m
flash...”. Moreover, users
letters” which is difficult to
they know the content and a

This is in-line with [6] t
how their data is collected a
disagreed (n = 15 ‘Disagree
feel I was forced to give ou
remained neutral (Figure 3
information without the k
service providers. Howeve
of users registered with fals
concerns in giving their ide

Fig. 3. Users’

In terms of privacy pra
indicate that a substantial
privacy risks but often choo
personal information.

Furthermore, in an open
service provider with their
and some users gave their r

• The service provid
• Their privacy polic
• They only asked fo
• Not many persona
• They have a privac

37% (n=18) of users stated
feedbacks given as why:

uirements for Tools to Support Effective On-line Privacy

only 2 out of 48 users read privacy policy/users’ terms
be expected when answering Q1 (Did you read priv
of users said “yes” and 91% (n=44) said they have agr
indicates that often users believe that they have read
ents when in fact they are unaware of the contents. In
ed privacy statements are “too long”. One user stat

modern world now and people want things to be done i
commented these statements are often displayed in “sm

o read; have too much “legal jargon”. Some users claim
avoid reading them.
the empirical study, which reported that users are unaw
and used. Furthermore, the majority (48%, n = 22) of us
e’ and n = 7 ‘Strongly disagree’) when responding to Q
ut my personal information?) whereas 35% (n=17) of us
3). Therefore, users have willingly revealed their perso
knowledge of how this information will be used by
r, not all users have given their real details as 31% (n =
se information (Q4) which clearly indicates that they h
ntity away.

’ opinion on revealing their personal information

actice in the context of service registration, these res
number of service users are not fully aware of on-l

ose to “circumvent” any lack of knowledge by withhold

n-ended question we asked whether participants trusted
personal information (Q6). Hence 62% (n=30) said y

eason as:

der is a well known organization;
cy assured us that our personal information is safe;
or users’ address;
l details where requested;
cy policy.

d that they distrust the service provider. Here are so

129

and
vacy
reed
and
our
ted:
in a
mall
med

ware
sers

Q3 (I
sers
onal
the
15)

have

ults
line

ding

the
yes,

ome

130 E. Kani-Zabihi and L. Coles-Kemp

• There is always a chance that they will give it away;
• It is not clear to me how they will use my information;
• I feel uncomfortable with them;
• It was easy to register on their site, so anyone can get access to their website;
• I have a bad experience from past that my information were sold to a third

party without my consent;
• The privacy statements given in small print so I had insufficient time to read

it.

The responses given from both groups of users indicate that privacy statements can
have a positive effect on users’ trust if this information is understandable for users.
This further strengthens the argument that it is necessary to explore not only what
messages are communicated but the richness and the frequency of the signalling. The
responses to “why service providers might be distrusted” show that different service
users have different communication requirements. This leads to the consideration of a
configurable dialogue system which has tuneable parameters not only for signal
content but also for signal format.

4.2 Privacy Dialogue

The majority of participants (68%, n=33) have agreed service providers must give
them assurance that their personal information is safe and confidential whereas 8
participants remained neutral (Table 1, Q5.13). This was also reflected in their
responses to Q5.1 (Table 1), when 48% (n=23) of users said that they would like to
have a dialogue with service providers with regards to their personal information and
31% (n=15) stayed neutral. In the interview we learned all participants believed when
it comes to privacy and giving their consent, communicating with service provider is
essential. One user commented: “I would only register myself with a website if there
is a contact telephone number and an address, so that I can call and speak to
someone”.

Furthermore, 70% (n=34) of users agreed with Q5.4 (it was better if they could
speak to someone on the phone about their services). This indicates that although
users feel the need to communicate with service providers, they prefer if this can be
done via an online channel. Moreover, only 31% of users agreed that the service
providers have explained to them why they need users’ details (Q5.12). In addition,
only 35% (n=17) of users believe there was enough information on the websites to
make them trustworthy (with keeping their personal information confidential). One
conclusion can be drawn here is that the lack of communication between service users
and service providers has caused an issue of trust where, only 37% (n=18) of
participants said they will trust the service provider and avoid using fake details at
registration process (Q5.14). Moreover, only 35% (n=17) of participants said they
can rely on service providers to keep their information secure (Q5.5).

In terms of dialogue design, these results indicate dissatisfaction with existing
communication methods. On the subject of privacy it suggests that signalling needs
to be clearer in privacy statements. Signaling also needs to clearer and more readily

 Service Users’ Requirements for Tools to Support Effective On-line Privacy 131

identifiable when communicating the degree to which personal data is protected by
service providers. Attention needs to be paid to the richness of the signalling, with a
significant proportion wanting a combination of on-line messaging and initial contact
by telephone. The importance of signalling and the need for a configurable dialogue
system is demonstrated by the comments given from users in answering Q7 (How can
a service provider show you that they are trustworthy with keeping your personal
information?) The following list is typical examples of what users (3 users skipped
the question) said with regards to trusting the service providers: 69% (n = 32) of
users said “I will trust a service provider if they:”

• promise they will not sell my personal information.
• give me some genuine information of who they are.
• give me some form of agreement.
• can prove my information is safe.
• have a clear privacy policy that my information is safe.
• show me that they are aware of Data Protection Act.
• show me that they are trustworthy.

The above feedbacks provided by users clearly suggest that users need some form of
communication to acknowledge them of their privacy e.g. policy on data
confidentiality. Moreover, common feedbacks given from 13% (n = 6) of users who
said “I never trust service providers because:”

• they will pass my information to a third party.
• several news reports that service providers sell our personal information.
• they ask for too much personal information.

The remaining of 19% (n = 9) of users said “I don’t really mind because:”

• I avoid giving personal information.
• they ask for basic information which I don’t mind.
• I never register with service providers who ask a lot.

Furthermore, on-line privacy was an important requirement for the participants and is
clearly a privacy practice of choice. Therefore, 35 participants (some participants
elected not to respond to the question) suggested various ways that they think service
provider should inform them of their privacy (Q10):

• Email (n = 10);
• Pop-up messages (n = 1);
• An screen displaying the privacy policy before registration (n = 19);
• Sending a hard copy of signed agreements for both sides (n = 3);
• Sending text messages (n = 1);
• Contacting users (n = 1).

Hence, to analyze the above request from users, we believe that all are feasible as an
approach to online privacy messaging. Consequently, in answering the above
question two participants commented:

132 E. Kani-Zabihi and L. Coles-Kemp

User 1: “I have never experienced web communication where one has the option to
revert to telephone or email (at the time). Clearly even now it would help if at the
registration process there were some explanations”.

User 2: “I think it's outrageous that the privacy policy is this lengthy document and
normally given to you at the end of an equally lengthy registration process - it's
obvious that nobody is going to read it. Also, it is written in a legal jargon that most
of the time leaves scope for varied interpretation. If service providers are serious
about building up trust with clients in this area, privacy policy should be explained at
the beginning of the registration process in a short and accessible form, and its
practical implications should be brought to clients' attention”.

In order to find out how signalling might be implemented, we asked the
participants: How would you like to communicate with the service provider about
your privacy? (Q9) In response to this 36 users stated:

• To chat with someone online (n = 6);
• Face to face (n = 2);
• Via a contact telephone number (n = 12);
• Email (n = 13);
• Confirmation letter (n = 3);

Therefore, we suggest further research is needed to see whether a pattern can be
identified in terms of the type of signalling that is required and whether combinations
of signals (richness) are more appropriate for some privacy issues than others.

4.3 User Preference for Online Privacy and Consent

Finally in the last part of the study we interviewed each participant. We have grouped
participant responses into five sections: frequency, initiation, service provider
disclosure, signalling and richness (Table 3). As mentioned earlier (section 2.2),
these are the established design principles for general CRM dialogue design which
should be considered when designing on-line tools to support privacy. Thus, as far as
frequency requirements are concerned, users indicated that, they are interested to
receive frequent useful information upon their request. This highlights that users
want to be in control of the frequency of interactions between them and service
providers. Users’ responses regarding signalling and richness were more about
receiving valuable information about the services and the presentation of information
about privacy on their websites. Therefore, they were concerned about seeing
feedback given by other users; receiving updated information on terms and
conditions; and also contact details for reaching service providers offline. All
participants in interviews confess that they avoid reading privacy policy and users’
terms and conditions pages for a common reason: it’s too long; fonts are small and not
easy to follow; it is full of legal jargon; and it was ambiguous on the webpage.
Hence, for service providers to be able to gain users’ trust, they should communicate
information on privacy openly and clearly. This more detailed feedback from the
interviews enables us to construct requirements for the content of privacy signals, the
format and the possible combinations of signals. In response to the question on: How

 Service Users’ Requirements for Tools to Support Effective On-line Privacy 133

do users think the service provider should build their trust; users indicated that, they
would trust a service provider who can show their openness and trustworthy to its
users; has a secure website only accessible to valid users; communicates with users on
a regular basis; avoids sending advertisement against users’ will; provides secure
transactions; easy to use services; and is registered with the data protection act.

Table 3. Users’ preferences

Users’ preferences: Online Service Provider should...

Frequency

• Provide frequent useful information requested by users.
• Allow users to make decision on the frequency of interactions.

Initiation
• Provide a secure online service accessible to valid users.
• Provide enough information about who they are.
• Provide enough information to users to establish the relationship in future.
• Avoid requesting personal information other than necessary.

Signaling
&
Richness

• Update users of new changes in their terms and conditions.
• Display comments and feedback given by their current users.
• Display easy to read information on their services.
• Provide contact details where they can be reached offline.
• Allow users to make decision on how they will maintain their relationship

with the service provider.
• Provide information about users’ privacy in an accessible form.
• Provide useful privacy policy/users’ terms and conditions page by presenting

in a:
• language understandable by all type of users;
• concise page;
• readable font size
• noticeable location

Service
Provider
disclosure

• Provide a hard copy privacy contract between them and their users.
• Specify the reason for requesting personal information.
• Provide feedback given by other organisation about them.
• Include Data Protection Act information.
• Provide information on their implemented security system.

Users start to indicate the importance of service provider disclosure when building

trust. In addition to trust in the service provider as an organization, participants also
emphasise the need for a trusted, secure platform. Therefore, honesty is an important
aspect of trust building in the relationship and security is an important aspect of trust
building in the architecture. Users’ responses with regards to their preference for

134 E. Kani-Zabihi and L. Coles-Kemp

giving their online consent were that, online consent forms should be displayed in
simple and clear language. They also indicated that service providers should make
sure users have understood the content. Hence, users indicate the importance of
dialogue and the need for service providers to check understanding or provide a
means for service users to check understanding.

5 Conclusion

This paper has explored users’ requirements and preferences for online privacy and
consent. These findings show that dialogues are needed in order to ensure more
effective privacy practice. Not only is it necessary to break down the information
contained in privacy agreements into shorter, clearer signals but consideration also
needs to be given to the frequency and richness of the signals. In addition to
communicating the privacy policy contents, privacy risks also need to be
communicated. As a service user’s privacy stance adjusts over time, the dialogue
system needs to be configurable. Service providers need to consider how they are
going to convey an honest position on privacy and service users need be able to
contest that position. Furthermore in our interview, users responded there should be a
frequency of interaction between them and service providers. This indicates that
closed questions should be used to further identify the role frequency plays in a
dialogue system. Lab experiments could also be constructed for this purpose. It can
be argued that the dialogue system as a whole contributes to transparency of a service
provider’s privacy practices. However, further work needs to be done to pinpoint
methods that accurately provide transparency of service provider privacy practices to
the service user. Further work is also needed to explore privacy practices and the
need for dialogue in other on-line relationships and in other contexts. This will help
develop a more complete requirement specification and a deeper understanding of the
types of privacy practices which need to be developed.

Acknowledgements. We are grateful to all 52 participants who took part in this
study. This work was supported by the Technology Strategy Board; the Engineering
and Physical Sciences Research Council and the Economic and Social Research
Council [grant number EP/G00255/X].

References

[1] Leuthesser, L., Kohli, A.K.: Relational Behaviour in Business Markets Implications for
Relationship Management. Journal of Business Research 34, 221–233 (1995)

[2] Coles-Kemp, L., Kani-Zabihi, E.: On-line Privacy and Consent: A Dialogue, Not a
Monologue. In: NSPW, Concord, MA (2010)

[3] Ardagna, C.A., Di Vimercati, S.D.C., Neven, G., Paraboschi, S., Preiss, F.S., Samarati,
P., Verdicchio, M.: Enabling Privacy-Preserving Credential-Based Access Control with
XACML and SAML. In: 10th IEEE International Conference on Computer and
Information Technology, p. 1090. IEEE Computer Society, Bradford (2010)

 Service Users’ Requirements for Tools to Support Effective On-line Privacy 135

[4] Bogdanovic, D., Crawford, C., Coles-Kemp, L.: The need for enhanced privacy and
consent dialogues. Information Security Technical Report 14(3), 167–172 (2009)

[5] McDonald, A.M., Cranor, L.F.: The cost of reading privacy policies. ISJLP 4, 543–897
(2009)

[6] McDonald, A.M., Cranor, L.F.: An Empirical Study of How People Perceive Online
Behavioral Advertising. CyLab, p. 2 (2009)

[7] Coles-Kemp, L., Lai, Y., Ford, M.: Privacy: Contemporary Developments in Users’
Attitudes and Behaviours (2009),
http://www.vome.org.uk/index.php/publications/

[8] Buchanan, T., Reips, U.-D., Paine, C., Joinson, A.N.: Development of measures of online
privacy concern and protection for use on the Internet. Journal of the American Society
for Information Science and Technology 58(2), 157–165 (2007)

[9] Horn, D., Feinberg, R., Salvendy, G.: Determinant Elements of Customer Relationshjp
Management in e-Business. Behaviour and Information Technology 24(2) (2005)

[10] Bruhn, M., Grund, M.: Theory, Development and Implementation of National Customer
Satisfaction Indices: The Swiss Index of Customer Satisfaction (SWICS). Total Quality
Management 11(7) (2000)

[11] A Joint Report of the Information and Privacy Commissioner of Ontario and the
Canadian Marketing Association (2004), Incorporating Privacy into Marketing and
Customer Relationship Management,
http://www.ipc.on.ca/images/Resources/priv-mkt.pdf
(last accessed August 5, 2010)

[12] Information Commissioner’s Office (2008) Privacy by Design,
http://www.ico.gov.uk/upload/documents/pdb_report_html/
index.html (last accessed August 5, 2010)

[13] Whitworth, B.: The Social Requirements of Technical Systems. In: Whitworth, B., de,
M. (eds.) Socio-Technical Design and Social Networking Systems, pp. 1–22 (2009)

[14] Tsai, J., Egelman, S., Cranor, L., Acquisti, A.: The effect of online privacy information
on purchasing behaviour: An experimental study. In: The 6th Workshop on the
Economics of Information Security (WEIS), Citeseer (2008)

[15] Daft, R.L., Lengel, R.H., Trevino, L.K.: Message Equivocality, Media Selection, and
Manager Performance: Implications for Information Systems. MIS Quarterly 11(3),
355–366 (1987)

[16] Solove, D.J.: Understanding Privacy. Harvard University Press (2008)
[17] Kani-Zabihi, E., Ghinea, G., Chen, S.: User perceptions of online public library

catalogues. International Journal of Information Management 28, 492–502 (2008)

Analyzing Characteristic Host Access Patterns
for Re-identification of Web User Sessions

Dominik Herrmann, Christoph Gerber, Christian Banse, and Hannes Federrath

Research Group Security in Distributed Systems
Department of Informatics

University of Hamburg, 22527 Hamburg, Germany
lastname@informatik.uni-hamburg.de

Abstract. An attacker, who is able to observe a web user over a long
period of time, learns a lot about his interests. It may be difficult to
track users with regularly changing IP addresses, though. We show how
patterns mined from web traffic can be used to re-identify a majority
of users, i. e. link multiple sessions of them. We implement the web user
re-identification attack using a Multinomial Naïve Bayes classifier and
evaluate it using a real-world dataset from 28 users. Our evaluation setup
complies with the limited knowledge of an attacker on a malicious web
proxy server, who is only able to observe the host names visited by its
users. The results suggest that consecutive sessions can be linked with
high probability for session durations from 5 minutes to 48 hours and
that user profiles degrade only slowly over time. We also propose basic
countermeasures and evaluate their efficacy.

1 Introduction

With the continuing dissemination of the World Wide Web we are increasingly
living our lives online. The websites that are retrieved by an individual reflect – at
least to some degree – his or her interests, habits and social network. The URL
of some pages may even disclose the user’s identity. If one is able to observe
a substantial portion of the web traffic of a user over some period of time,
he will learn many private details about this user. Many users are willing to
trust their ISP, who can trivially intercept all traffic from a dial-up account and
attribute it to the respective customer. Malicious observers or other third-party
service providers are not supposed to be able to compile profiles that contain
users’ interests together with their identity, though. Third parties that can easily
obtain users’ web traffic include open proxy servers, free WiFi hotspots as well as
single-hop anonymisation services like Anonymizer.com or the recently launched
IPREDator.se. As web browsers usually issue a DNS query before the requested
page can be retrieved, the providers of public DNS servers such as OpenDNS or
the recently launched Google Public DNS1 are also part of this group.

1 See http://www.opendns.com/ and http://code.google.com/speed/public-dns/

T. Aura, K. Järvinen, and K. Nyberg (Eds.): NordSec 2010, LNCS 7127, pp. 136–154, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.opendns.com/
http://www.opendns.com/
http://code.google.com/speed/public-dns/
http://code.google.com/speed/public-dns/

Analyzing Characteristic Host Access Patterns 137

A malicious observer can group all requests originating from a single source
IP address and (assuming exactly one user per address) attribute all of them
to a (now pseudonymous) single user. Clearly, in this scenario the attacker’s
capability to track a user over time mainly depends on the lifetime of the user’s
IP address. While it is straightforward to track users with static IP addresss, re-
identifying users with dynamically assigned, frequently changing IP addresses is
more challenging. The web user re-identification attack addresses this challenge.

In this paper we examine to which extent a passive observer can link the
web sessions of a given user solely based on a record of his past activities on
the web. Recently, privacy concerns have raised interest in such re-identification
problems [25]. The first stepping stone for long-term tracking attacks of web
users is linking two or multiple surfing sessions of individuals, which we address
in this paper. In the long run we are interested in a realistic threat assessment
of such linkage attacks in real-world environments. Note that we do not examine
how to recover the true identity of a web user based on their browsing behaviour
in this paper, though. Previous work, e. g. an analysis of the AOL search logs,
has shown that at least some users tend to disclose their identity via entering
uniquely personally identifying information in web forms or search engines [3].
The more sessions of one user an attacker can link, the more he will learn about
his interests and personality – and thus the more likely he will be able to uncover
the real-world identity of the user.

For the purpose of our evaluation we model a surfing session to consist of the
access frequencies of all hosts a user visits in a certain time window. We will use
machine learning techniques to link multiple sessions and analyse how effective a
malicious observer (or a third party mentioned above) can re-identify web users.
Without loss of generality, we will describe the attack from the perspective of a
malicious web proxy server.

Contribution Firstly, we demonstrate that Internet users exhibit characteristic
web browsing behaviour that can be exploited for linkage attacks. Our evaluation
on a privacy-preservingly collected real-world dataset demonstrates that even an
attacker with limited power can exploit characteristic behaviour to re-identify a
majority of users on a session-to-session basis. Contrary to previous work, i. e.
re-identifying users in 802.11 networks [28], which relies on numerous properties
of network traffic, our attack solely utilises destination host access frequencies.
Another novelty of our work is the transformation of the raw access frequency
vectors to counter the effects of the power-law distribution on access frequencies
and a thorough evaluation taking into account the attacker’s viewpoint. While
previous work operated on monthly traffic aggregates [18] and destination IP
addresses, we evaluate our approach for shorter sessions (between 5 minutes and
48 hours) and only rely on host (DNS) names. Furthermore, we discuss and
evaluate countermeasures that degrade the effectivity of the attack.

This paper is structured as follows: After reviewing related work in Section 2,
we briefly present the data mining techniques used for our attack in Section 3. We
continue with our data acquisition methodology in Section 4 before we describe

138 D. Herrmann et al.

our evaluation methodology and results in Section 5. We present countermea-
sures in Section 6 and discuss the results in Section 7 before concluding the
paper in Section 8.

2 Related Work

Closely related to our work are Kumpost’s publications [16,17,18], which describe
a large-scale study on NetFlow traffic logs. His ultimate goal and approach is
quite similar to ours: finding out whether it is possible to pinpoint individual
users among others due to their characteristic behaviour in the past. He devises
a classifier that compares behavioral vectors of users with a similarity measure
based on cosine similarity and shows that inverse document frequencies (IDF)
can improve re-identification accuracy. His study differs from ours in several
ways, though: Kumpost operates on monthly aggregates of the access frequencies
of hosts; on the contrary, we adopt an attacker’s point of view and track users
on a smaller scale and for shorter timeframes. Furthermore, while Kumpost
operates on network traces, we work with a pseudonymized web proxy dataset
specifically collected for this purpose. Finally, Kumpost only describes the actual
attack, whereas we also discuss and evaluate countermeasures.

Yang’s publications [27,36] and especially [35] are also related to our study.
Yang studies to which extent samples of 2 to 100 web users can be re-identified
with profiling and classification methods from a dataset containing 50,000 users
in total. As Yang’s focus is the utility of web user profiles for fraud detection
and other applications in e-commerce, she does not tackle the problem from our
attacker’s view. To some degree her methodology is comparable to our simula-
tions, but there are some differences, which are of relevance for our purpose. For
instance, while we concentrate on training sets of size 1, her evaluation focuses
on the improvements obtained by the use of multiple labelled training instances
(up to 100), which are usually difficult to obtain for the type of attacker we
have in mind. Another difference stems from the selection of training and test
instances: while Yang selects training and test instances with an arbitrary tem-
poral offset, we explicitly evaluate the influence of the temporal offset between
them in order to analyse profile degradation over time.

Also related is the work of Pang et al., which studies an attacker who aims
to re-identify users in 802.11 wireless networks [28]. Pang considers a number of
properties of network traffic to link multiple sessions of users – even if ephemeral,
pseudonymous MAC addresses are used. While they do look at exploiting des-
tination addresses for their linkability attack, their focus lies on characteristics
of 802.11 devices such as SSID probes, the size of broadcast packets and MAC
protocol fields. Their methodology, which relies on the Jaccard index and a
Naïve Bayes classifier with Gaussian kernel density estimation, differs from ours
considerably, though.

Data mining techniques have been applied to attack users’ privacy in many
related user re-identification and de-anonymization studies ([31,15,20,5,23] and
most recently [11,34]) and for attacks on anonymized traffic logs [29,9,8]. Web
usage mining (cf. [30,6,14,24]) is also a related area of work.

Analyzing Characteristic Host Access Patterns 139

interests of user

all interests that can
be tracked online

session 1 session 2

session 3 interests of user that are expressed online

Fig. 1. Venn diagram representation of the web user re-identification problem

3 Re-identification Methodology

In the following sections we will present our methodology. We assume that most
users exhibit at least some part of their interests online, and that they are
reflected by the websites they access in a particular surfing session (cf. Fig. 1).
Our re-identification attack works on the intersection of two or more sessions of a
user. In an ideal world the intersections of one user will not substantially overlap
with the intersections of other users as they have a differing set of interests.

Both, term frequencies [37] and host access frequencies [1,4,10], have shown
to obey Zipf’s law: there is a small number of attributes (terms or hosts) that is
part of almost all instances (documents or sessions) and always occurs in large
frequencies. As a consequence we conjecture that text mining and web user
re-identification can be tackled with similar techniques. Therefore, we model
instances using the vector space model [2,21,33]. For our analysis, we apply the
Multinomial Naïve Bayes classifier, an off-the-shelf text mining technique, and
various transformations, which have proven effective for text mining problems,
to the input data.

3.1 Modelling the Web User Re-identification Problem

Our analysis relies on a basic model that captures users’ surfing habits. With
this model we can reduce the web user re-identification attack to a data mining
classification problem [33], which can be tackled with various supervised learn-
ing methods. We consider each surfing session of a user to be an instance of
a class ci ∈ C, i. e. each class represents all surfing sessions of a specific user.
Each instance consists of the web browsing requests sent by a user’s machine
during one surfing session. From each HTTP request we only use the destina-
tion host name (e. g. www.google.com).2 We disregard port, path, filename and
other features. Instead of a binary encoding of the fact whether some host (e. g.
www.google.com) has been accessed or not, we take into account the number of
2 Accesses to various sub-domains are not merged, i. e. www.site.com, site.com and

www1.site.com are treated as different hosts.

140 D. Herrmann et al.

requests to each host within a session to model usage intensity. The order of
requests as well as timing information is neglected in our basic model, as we
do not expect the behaviour of most users to show significant patterns in those
dimensions. There are certainly more sophisticated models conceivable, which
may take into account such characteristics.

Note that previous studies [16,17,18] have not relied on host names, but on
IP adddresses. While it is certainly possible to carry out the attack with IP
addresses only, we deem IP addresses not as suitable as host names: firstly, the
IP address of a web server may be subject to frequent changes, secondly, some
web sites may use multiple IPs for load distribution and thirdly, virtual hosts
may serve multiple different web sites from the same IP address. The instances
will reflect user interests more closely, if destination host names are used instead
of IP addresses. This is straightforward for the kind of attacker we have in mind,
i. e. the provider of a HTTP proxy.

Each instance consists of a multiset (xfx1
1 , x

fx2
2 , . . . , x

fxm
m) containing all the

hosts xj and their respective access frequencies fxj ∈ N0 for a given user and ses-
sion. From the multisets, we obtain attribute vectors x = f = (fx1 , fx2, . . . , fxm)
for all visited hosts m that are present in the dataset. Even for rather small
user groups, those vectors become very sparse as the number of distinct websites
increases rapidly.

The re-identification attack consists of two stages. Firstly, the attacker has
to obtain a set of k training instances Itrain = {(x1, c1) , . . . , (xk, cn)} ; ci ∈
C; k ≥ n; n ≤ |C| that he labels with class information.3 Afterwards, he will use
a classifier to predict the class, i. e. the user, of a number of test instances in
order to establish a mapping between the sessions contained in the test instances
and the sessions within the training instances.

3.2 Multinomial Naïve Bayes (MNB)

The Multinomial Naïve Bayes (MNB) classifier is a well known method for text
mining tasks [33]. The choice of the MNB classifier is motivated by the fact
that attributes in natural language models and in our model, which relies on
host access frequencies, both are distributed according to a power-law, i. e. their
frequency distribution is heavy-tailed.

Although Naïve Bayes and related probabilistic classifiers naïvely assume in-
dependence of attributes (which is often not the case for real-world problems),
they have been applied to many privacy-related classification attacks with great
success. Of particular interest for our analysis is the application to traffic analy-
sis problems (cf. [12,38,22,32]) and to website fingerprinting [19,13] in previous
3 The class labels may either be actual real names of the users, in case the attacker

already knows them for the training instances or can deduce them using context
information. Alternatively, the attacker can use arbitrarily chosen user IDs, i. e.
pseudonyms, in case he does not know the real identities of the respective users
during the training stage yet. Later on he can substitute the pseudonyms with real-
world identifiers, once users have revealed (parts of) their identity by their online
activities (which is not within the scope of this paper).

Analyzing Characteristic Host Access Patterns 141

works. We apply the MNB classifier to the host access frequencies within individ-
ual user sessions. Given m unique hosts, the classifier evaluates the probability
that a given instance f belongs to some class ci as:

P (f|ci) ∼
m∏

j=1

P (X = xj |ci)
fxj

The resulting probability is proportional to the product of P (X = xj |ci), which
is the probability that a certain host xj is drawn from the aggregated multiset of
all host accesses of the training instances of class ci. The individual probabilities
contribute fxj times to the result, where fxj is the number of accesses to host xj

in the test instance at hand. In other words: the more often the dominant hosts
of the test instance f appear in the training instances of class ci, the more likely
does instance f belong to class ci. The classifier will select the class ci for with
the highest value P (f |ci) is observed. For a more formal coverage of the MNB
classifier refer to a recent text book by Manning et al. [21].

3.3 Vector Transformations

There are several transformations that – if applied to the raw attribute vectors
– have shown to improve the accuracy of classifiers on text mining problems. We
will analyse to what extent web user re-identification attacks benefit from them.
TF Transformation. Extremely high frequencies of a small number of at-
tributes can overshadow the contribution of the remaining features, which makes
it difficult for the classifier to distinguish between instances of different classes.
A frequently mentioned solution is to apply a sublinear transformation to the
raw occurence frequencies: f∗xj

= log(1 + fxj), the so-called term frequency (TF)
transformation (cf. [33] for details).
IDF Transformation. Using raw vectors all attributes (host frequencies) con-
tribute equally to the resulting vector, regardless of their relevance. Popular hosts
that are part of a vast majority of instances do not confer much information about
a class, though. This problem can be alleviated using the inverse document fre-
quency (IDF) transformation: given n training instances the occurrence frequen-
cies fxj are transformed using the document frequency dfx, i. e. the number of
instances that contain term x: f∗

xj
= fxj · log n

dfxj
. The application of both of the

aforementioned transformations is referred to as TF-IDF transformation [33].
Cosine Normalisation (N). Results from empirical research have shown that
the accuracy of many classifiers and information retrieval algorithms can be
greatly improved by normalizing the lengths of all instance vectors [21, p. 128].
This is usually achieved by applying cosine normalisation, i. e. all frequencies are

divided by the Euclidean length of the raw vector: fnorm
xj

=
f∗

xj

‖(f∗
x1

,...,f∗
xm

)‖ . While

it stands to reason that cosine normalization is reasonable for text documents,
its utility for the web user re-identification problem may seem counterintuitive
at first sight: the total number of requests of a session seems to be a promising
feature for differentiation, after all.

142 D. Herrmann et al.

Table 1. Properties of our proxy user linkability dataset

Duration in days 57
Number of HTTP requests 2,684,736
Number of unique destination hosts 25,124
Transmitted data volume in GiB 110.74

4 Data Acquisition

In this section we will outline our data acquisition methodology and present the
dataset used for the evaluation of the user re-identification attack. To collect
web surfing data, we recorded the web traffic of 28 web users at the university
of Regensburg (cf. Table 1 for descriptive statistics of the dataset).

Our participants installed a proxy server (a slightly modified version of
Privoxy4), which recorded all of their HTTP traffic, on their local client machines.
We provided a convenient obfuscation and submission tool that enabled users to
anonymize log files on their machines before uploading them to a central server for
later collection. The tool labelled the logs with a static user-specific pseudonym
(e. g. RQFSPJ75) and obscured the requested URLs (see below). To conceal the
IP addresses of our participants, we made sure that the log files themselves did
not contain any source IP addresses and encouraged the participants to upload
their logs using an anonymization service like JonDonym or Tor.5

The requested URLs were split into multiple components (scheme, host, port,
path) before hostnames and paths were obfuscated using a salted hash-function.
The salt value was hard-wired in the obfuscation tool and ensured that there
would be a consistent mapping between host names and hash values for all users.
The hash function was repeatedly applied to discourage dictionary attacks during
the study. Once the study was completed we deleted all references to the salt in
order to reduce the risk of dictionary attacks in the future. Our participants were
satisfied with the basic level of protection offered by our URL pseudonymization
scheme. Even the technically savvy ones, who were familiar with signature and
fingerprinting attacks on such log files (cf. [7,15]), were willing to accept the
remaining risks.

While our user group is rather small and certainly biased to some degree, our
user profiles also have some advantage in comparison to profiles compiled from
passively collected flow traces of a large network segment like used by Kumpost
[17]: Firstly, the user group is quite homogeneous and shares common interests
(24 out of 28 participants are undergraduate or postgraduate students with high
affinity towards information technology); this may also be the case in reality for
users who share the same proxy server. Secondly, we know as a ground truth
that all HTTP requests submitted by a user (i. e. labelled with his pseudonym)

4 Available for download at http://www.privoxy.org/
5 Available for download at http://www.jondonym.com/ and
http://torproject.org/

http://www.privoxy.org/
http://www.privoxy.org/
http://www.jondonym.com/
http://www.jondonym.com/
http://torproject.org/
http://torproject.org/

Analyzing Characteristic Host Access Patterns 143

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60

n
u

m
b

e
r

o
f

a
c
ti
v
e

 u
s
e

rs

day of study

(a) User’s participation over time

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 5 10 15 20 25

s
h
a
re

 o
f
to

ta
l
re

q
u
e
s
ts

user number

(b) Share of total requests by user

Fig. 2. Overview of dataset used for evaluation

originate from exactly one individual6, while passively collected profiles may be
subject to unobservable influences such as multiple people sharing one IP address
or sudden changes in the IP address assignment of a user. Finally, our user
profiles are mostly comprised of requests issued via the user’s web browser: only
14 % of the participants chose to submit all HTTP requests of their machines.

Fig. 2 shows the participation of users over the course of the study as well as
the amount of HTTP requests contributed by the individual users. The number
of users contributing data on a given day varies between 3 and 22. 15 users or
more contributed on at least 50 % of the days, with contributions ranging from
10 to 57 days. The number of HTTP requests submitted by the individual users
varies considerably: the 50 % most active users contribute 80 % of the requests,
with the most active user contributing 14.6 % of the total number of requests.
Note that we will disregard any context information as well as timing information
and activity patterns regarding to specific weekdays in this paper. Instead, we
will only consider the access frequencies of the destination servers to assess the
effectiveness of our web user re-identification attack.

5 Evaluation Methodology and Results

In this section we evaluate the user re-identification attack using our dataset.
The evaluation consists of two parts, which allow us to analyse different aspects.
In the first part, which we call the attacker’s view, we merge all the log files of
our participants (maintaining the exact timing of the requests). This allows us to
evaluate the feasibility of the user re-identification attack if all participants had
used a malicious central proxy server for our study. The second part consists of
simulations which analyse the impact of various parameters on the effectiveness
of the attack using random samples of our dataset.
6 This claim is substantiated by the results of an anonymous questionnaire we re-

quested the participants to fill out.

144 D. Herrmann et al.

Table 2. Evaluation of predictions from an attacker’s point of view for user u (with
class cu) with training instances xt

· and test instances xt+1
· . TP/FP/TN/FN conditions

are shown for clarity; cases are sorted according to their evaluation: correct (1, 2),
wrong-detectable (3, 4) and wrong-undetectable (5, 6).

(1) TP:1 FP:0
TN:0 FN:0

u contributed on days t and t + 1; user’s instance xu was
correctly assigned to cu; attacker can track u

(2) TP:0 FP:0
TN:1 FN:0

u contributed on day t only; no instance was incorrectly
assigned to cu

(3) TP:0 FP>1
TN:0 FN:1

u contributed on both days, but xt+1
u was not assigned to

cu; multiple instances xv; v �= u were assigned to cu

(4) TP:1 FP>0
TN:0 FN:0

u contributed on both days; xt+1
u was assigned to cu; at

least one instance xv; v �= u was assigned to cu

(5) TP:0 FP:0
TN:0 FN:1

u contributed on both days; but no instance was assigned
to cu at all; attacker believes there is no xt+1

u and loses
track of u; attacker confuses this prediction with (2)

(6) TP:0 FP:1
TN:0 FN:0

u contributed on both days, but xt+1
u was not assigned to

cu; one instance xv; v �= u was assigned to cu; attacker
confuses v with u; attacker confuses this prediction with (1)

5.1 Attacker’s View

We start out with an attacker on a proxy server who exploits characteristic
surfing patterns to re-identify individual users on consecutive days, i. e. we con-
sider sessions with a duration of 24 hours (we study other session times and
non-consecutive sessions in Section 5.2).

Therefore, we assume that on one day t the attacker decides to track a specific
user ut from now on (e. g. due to a intriguing request of that user). The attacker
chooses u from the set of all users U t who are present on day t. For the attack he
sets up a classifier with |U t| classes c (one for each user), and trains the classifier
with the available instances xt

· of all users from U t (one instance per user). On
the next day, the attacker tries to find the instance xt+1

u , i. e. all the instances
that are predicted to belong to class cu are of interest. Ideally, only the correct
instance xt+1

u will be assigned to cu.
Due to the peculiarities of the attacker’s view there are more than the four

canonical evaluation results (true positives, false positives, true negatives and
false negatives) [33]. Table 2 contains an overview of our more differentiated
evaluation scheme. The prediction of the classifier can either be correct (1, 2),
wrong-detectable (3, 4) or wrong-undetectable (5, 6).

Evaluation Results. We iterate over all days and users and evaluate the pre-
diction of the MNB classifier for the transformations presented in Section 3.3.

Analyzing Characteristic Host Access Patterns 145

Table 3. Classification accuracy for attacker’s view (AV) and simulation (SIM), i. e.
the proportion of user sessions for which the classifier correctly and unambiguously
predicted the correct class (1) or correctly predicted that the user did not participate
on the second day (2).

none N IDF IDFN TF TFN TFIDF TFIDFN

(AV) 60.5 % 62.9 % 65.0 % 62.8 % 56.0 % 73.1 % 66.1 % 72.8 %
(SIM) 55.5 % 56.2 % 65.0 % 60.2 % 53.3 % 77.1 % 68.5 % 80.1 %

Each prediction is evaluated independently, i. e. the conceived attacker is state-
less and does not change his behaviour based on the predictions on previous
days. For each experiment we report the overall classification accuracy, i. e. the
proportion of correct predictions (1, 2). An overall comparison of the various
transformations is shown in the (AV) row in Table 3. Cosine normalisation (N)
increases the accuracy of the classifier significantly when applied in combination
with one of the other transformations. The TFN transformation leads to the
highest number of correct predictions: 73.1% of all day-to-day links were cor-
rectly established, i. e. user u was either re-identified unambiguously (1) or the
classifier correctly reported that u was not present on day t + 1 any more (2).
Note that the utility of the IDF transformation is rather limited in the attacker’s
view scenario. This counterintuitive finding can be explained by the relatively
small number of only 765 predictions in the attacker’s view scenario.

While already this basic attack achieves respectable results, there is certainly
room for improvements. We present only one of them here: learning. We have
found that the accuracy of the classifier can be increased considerably, if the
attacker is not stateless, but is allowed to “learn”, i. e. he can add already pre-
dicted instances xt+1

u to the set of training instances for user u, if the prediction
appears to be correct (1,6). In the case of the MNB classifier and the TFN trans-
formation, the proportion of correct decisions (accuracy) increased from 73.1 %
to 77.6 %, the proportion of detectable errors decreased from 14.5% to 12.5 %
and the proportion of undetectable errors decreased from 12.4 % to 9.8 %.

5.2 Simulations

The results obtained from the attacker’s view experiments indicate that a central
proxy can carry out the web user re-identification attack for small user groups
like ours. Due to its dynamic nature, i. e. not all users having participated on all
days (cf. Fig. 2a), the attacker’s view is not very suitable for analysing influence
factors that determine the effectiveness of the attack, though. Thus, we will
resort to simulations, in which we set up well-defined and balanced scenarios, to
gain further insights.

Each simulation experiment works on a random sample of training and test
instances drawn from the whole dataset. For each user 10 pairs of training and
testing sessions are drawn for each experiment (iterations). The properties of the

146 D. Herrmann et al.

pairs are controlled by a number of parameters. Only one parameter is varied in
each experiment to analyse its influence. The varied parameters are:

– session duration in minutes (default: 1440, i. e. 1 day),
– number of simultaneous users (default: 28),
– offset between the last training session and the test session

(default: the session duration, i. e. adjacent sessions) and
– number of consecutive training instances (default: 1).

The default setup simulates all 28 users concurrently surfing on 10 days (iter-
ations), i. e. for each iteration there are 28 training sessions (1 for each user),
each one capturing all requests of the user within one day. Training and test
sessions are not drawn independently, though: for each user the random ses-
sion selection process prefers training sessions, which have a (chronologically)
immediately succeeding session for the respective user. The succeeding session
will then be selected as the test session. This ensures that the parameter “offset
between the last training and the test session” equals the session duration for
all users. The classifier will be trained with the training sessions (which may in
fact come from different days in our real-world dataset) and will have to make
a prediction for each of the 28 test sessions. This training and prediction will be
repeated for the 10 randomly drawn session pairs (iterations).

The simulation results are obtained by repeating each experiment 25 times and
taking the average of the obtained accuracy. This approach incorporates a large
proportion of the dataset in each experiment: the classifier makes 25 · 10 · 28 =
7000 predictions per simulation experiment. The results for the application of the
various text mining transformations are shown in the (SIM) row of Table 3. The
TFIDFN transformation achieves slightly better results than the TFN transfor-
mation here. The results of all of the following simulations were obtained using
the TFN transformation, though, which has lower computational costs and still
offers comparable accuracy.

Evaluation Results. The results of the simulations are summarized in Fig. 3
for various session durations. Fig. 3a shows that the accuracy of the classifier
decreases once session durations become shorter than one day (1440 minutes),
which we found is due to the smaller amount of distinct sites and issued requests
visited within them. Thus, the information amount available to the classifier
decreases. The accuracy increases once again for short sessions below 30 minutes.
This is partly due to users’ activites spanning session boundaries, which increases
the linkability of two adjacent sessions. Furthermore, accuracy increases with
decreasing numbers of concurrent users (Fig. 3b), which explains the higher
accuracy of the classifier for the attacker’s view scenario.

Fig. 3c shows that the quality of the user profiles deteriorates only moderately
over time. The waveform patterns in the plot for session durations of 1 and 3
hours have a periodicity of 24 hours. Thus, it is easier to link two sessions of a
user if they are obtained at the same time of day on different days. Apparently,
our users exhibit different behaviour at different times during the day.

Analyzing Characteristic Host Access Patterns 147

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

(SIM)
(AV)

(a) Duration of a user’s session in minutes

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

24 hours
3 hours
1 hour
10 min

(b) Number of concurrent users

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160

24 hours
3 hours
1 hour
10 min

(c) Training/test instance offset (hours)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20

24 hours
3 hours
1 hour

1 hour (48 hours train/test offset)
10 min

(d) Number of training instances

Fig. 3. Simulation results: influence of various parameters on proportion of correctly
classified sessions (y-axis);

According to Fig. 3d the accuracy will increase if the attacker manages to
obtain not only 1 but multiple consecutive training sessions of a given user or
is able to correctly link multiple consecutive sessions of a user (cf. “learning” in
Section 5.1). While the gain in accuracy caused by an additional training in-
stance diminishes quite fast for immediately adjacent sessions, multiple training
instances can be very useful when it comes to test instances whose offset to the
training instance is larger. This becomes evident in Fig. 3d by comparing the
slopes of the two curves supplied for 1-hour sessions with training/test offsets of
1 hour and 48 hours. For the latter the accuracy increases more rapidly for up
to 5 additional training instances.

5.3 Linkability Metric

We analyzed the dataset for peculiarities that can explain the effectiveness of the
classifier. Therefore, we constructed a numerical host linkability metric L ∈ [0; 1]
that captures the degree of re-identifiability of a user u that is caused by accessing

148 D. Herrmann et al.

Fig. 4. Distinctive hosts and average linkability for various session durations

a specific host h. With this metric we can uncover hosts that almost immediately
identify users once they request a website from them (cf. also [17, p. 62] for a
different approach). Considering the multiset of website requests Ru of user u,
the multiset of website requests Rh involving host h, the set of sessions Su of
user u and the set of sessions Sh involving host h, we obtain the host linkability
as follows:

L(h, u) =
|Ru ∩Rh|
|Rh| · |S

u ∩ Sh|
|Su|

In words: A host h allows for immediate re-identification of a user u, if h is only
accessed by u and if u visits h in each of his sessions; this is expressed by a host
linkability value of L(h, u) = 1. If an attacker knew the hosts with L = 1 – we call
them distinctive hosts – he wouldn’t have to rely on our classification technique
but could directly re-identify the respective users. We found 17 distinctive hosts
in our dataset for nine users with a session time of 1440 minutes (cf. Fig 4). If a
host is distinctive for a user for a session duration da, it will also be distinctive
for this user for all session durations db > da. With decreasing session duration
the linkability values for all hosts are decreasing as well, i. e. it is less likely to
encounter a distinctive host in shorter sessions.

6 Countermeasures

A user can blur his behavioral profile by distributing his web requests over
multiple (non-colluding) proxy servers (similar to the ideas proposed by Olivier
[26]). A single server will then only see a subset of the requests of the user. There
are many conceivable variants of such a distribution scheme: e. g. based on time
(switching the server at regular intervals) or based on destination (all requests for
hosts (h1, h2, h3) are sent to server s1, requests for hosts (h4, h5, h6) are sent to a
different server s2. We leave the design and evaluation of various strategies open
for future work. Instead we only analyse a basic strategy, which may serve as a
baseline for benchmarking: randomly distributing all the requests of a user over
multiple proxies. According to the results for 1, 10, 20 and 50 servers (cf. Fig. 5a),
this strategy is effective, but not very efficient.

Analyzing Characteristic Host Access Patterns 149

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

pr
op

or
tio

n
of

 r
e-

id
en

tif
ie

d
se

ss
io

ns

number of proxy servers

1 day
3 hours

(a) Randomly distributed requests

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

pr
op

or
tio

n
of

 r
e-

id
en

tif
ie

d
se

ss
io

ns

proportion of most popular hosts kept

1 day
3 hours
1 hour

10 minutes

(b) Keeping only the most popular hosts

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1e-05 0.0001 0.001 0.01 0.1 1

c
u
m

u
la

ti
v
e
 s

h
a
re

 o
f
re

q
u
e
s
ts

relative rank of host

(c) Host ranking according to requests

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5pr
op

or
tio

ns
 o

f r
e-

id
en

tif
ie

d
se

ss
io

ns

proportion of most popular hosts skipped

1 day

(d) Skipping the most popular hosts

Fig. 5. Effectiveness of countermeasures

Removing Requests from Log Files. In principle the web user re-identification
attack is also applicable to log files of proxy servers that are shared or publicly
available. There is a number of obfuscation tools that help to protect the pri-
vacy of the users whose requests are contained in the logs. Some tools (such as
tcpmkpub, tcpdpriv or the Perl module NetAddr::IP::Obfuscate) rely on a con-
sistent hashing or obfuscating scheme of IP addresses, which ensure that a given
input address is always mapped to the same obfuscated output address. Thus,
our web user re-identification attack can be applied to track users with dynamic
IP addresses in such log files without modification. It could also be applied, if
the proxy operator changed the mapping scheme from time to time.

In order to counter the attack a proxy operator may come to the conclusion
to only share requests to the most popular hosts, which are not supposed to
convey any personally identifying information. To evaluate the validity of this
assumption we have repeated the simulation, restricting it to the most popular
1 %, 5 %, 10 %, 20 %, 40 % and 50 % of the hosts according to a descending
ranking of hosts, which is based on the total number of requests they attracted
(see Fig. 5c). The somewhat surprising results indicate that this approach cannot
prevent the user re-identification attack: the classifier can still link more than

150 D. Herrmann et al.

65 % of the 1-day sessions (cf. Fig. 5b) if instances are only based on the 1 % (=
251) most popular hosts. Due to the long-tailed distribution of access frequencies
the log files contain only 60 % of the total requests in this case (cf. Fig. 5c). The
utility of this countermeasure degrades fast: if 10 % or more of the most popular
hosts are kept in the log file, accuracy values will not be affected significantly any
more. Classification accuracy is also only moderately affected if the most popular
hosts are skipped (cf. Fig. 5d): training the classifier on 1-day sessions after having
removed the 50 % most popular hosts (which is equivalent to skipping 99.91 %
of all requests!) still results in an accuracy of 22.9 %. Whether log files that have
been stripped in such a way are of any practical use any more, certainly depends
on the particular application at hand.

Anonymization Services. Instead of distributing their requests over mul-
tiple proxy servers, users can also rely on anonymisation services like Tor or
JonDonym. These services prohibit eavesdropping by local adversaries and con-
sequently also protect against any re-identification attacks carried out by them.
The use of anonymisation services may also introduce new risks, though: in mix
networks the exit node learns the true destination hosts as requested by its users.
The Tor network uses circuits, which relay a user’s traffic over a single exit router.
After 10 minutes a circuit is abandoned and a new circuit with another exit node
is set up. If a Tor user relayed all web requests over a single exit node (which is
the default as of now), the exit node could apply our methodology to construct
user session and create a MNB classifier to re-identify users. Collaborating exit
nodes could share such profiles to track users across multiple exit nodes, which
would seriously degrade their privacy. The attack could be prevented, if the Tor
client routed web traffic over multiple exit nodes concurrently.

7 Discussion

Due to the limited scope of our study, we cannot precisely assess the real threat
of user re-identification on the web. The small number of users may limit the
generalisability of our results, but not of our methodology. We are already in the
process of applying it to large DNS log files with several thousand users. Even
for this different, more difficult problem our first results are promising: we are
able to re-identify up to 50 % of the users about 80 % of the time.

For the purpose of evaluation we modelled a user session as a rigid time
span (e. g. 10 minutes or 24 hours). As a matter of fact, our evaluation tools
will erroneously distribute contiguous requests across two sessions, if the true
user session crosses our session boundaries, which decreases the difficulty of the
classification problem – at least for immediately adjacent sessions. This bias
could be cured with a more realistic session splitting method, e. g. by taking into
account the results of [6,30], which empirically derive actual session boundaries.

The presented basic form of the attack can not only be carried out by proxy
servers or DNS servers, but by any eavesdropper in general. We are aware of the
fact that we disregard promising pieces of information, which may be available

Analyzing Characteristic Host Access Patterns 151

to some attackers, such as the whole URL or request timing. Web proxies could
also inspect the contents of the HTTP messages for identifying information,
e. g. usernames and street addresses. While our methodology can be extended
to support such attributes, we believe that in reality the biggest improvements
will stem from the inclusion of context knowledge: a user who just received his
driver’s license might visit many hosts like myfirstcar.com and firstcar.com over
a period of several days. Future work might take this into account by employing
a semantic model to group hosts according to activities or actual interests.

Finally, we want to point out that our scenario in mind, a closed user group
using a single proxy server, allows us to make a closed-world assumption, i. e. each
instance belongs to a user of that group. Consequently, our classifier will output
a prediction for each and every test instance no matter how likely it is. In some
real-world situations, e. g. tracking one user among thousands of unknown users,
this approach will cause a false alarm for the majority of instances. Adapting the
methodology to cope with such scenarios (e. g. by using a probability threshold
or reject class) is certainly an interesting area for future work.

8 Conclusion

Using a privacy-preservingly collected real-world dataset we have demonstrated
that an adversary can re-identify web users based on their past browsing be-
haviour. Thus, malicious providers of (small-scale) web proxies may be able to
track their users. Profile degradation over time is only moderate and it can be
alleviated using multiple training instances. According to our results, counter-
measures such as distributing web requests over multiple proxies can reduce the
accuracy of our attack, but they come at a considerable cost.

Our technique is based on the observed access frequencies of hosts. It does not
depend on any timing information or context knowledge, and it is totally agnostic
of the type of host or the actual contents retrieved. Instead, we exploit the
diversity on the World Wide Web: specific user interests (such as reading news
or social networking) can be satisfied at a large number of different sites, which
is reflected by the long-tailed distribution of access frequencies. Consequently,
web user re-identification may even succeed for users with very similar interests
– as long as they have a distinct preference regarding the websites where they
pursue them.

Acknowledgments. This work has been partially sponsored and supported by
the European Union EFRE project. The authors are grateful to the participants
of the study who contributed their web requests. This paper has benefitted
from fruitful discussions with Jacob Appelbaum, Karl-Peter Fuchs, Nico Görnitz,
Konrad Rieck, Florian Scheuer, Rolf Wendolsky, Benedikt Westermann and from
helpful comments by the anonymous reviewers.

152 D. Herrmann et al.

References

1. Adamic, L., Huberman, B.: Zipf’s Law and the Internet. Glottometrics 3(1),
143–150 (2002)

2. Baeza-Yates, R., Ribeiro-Neto, B.: Modern information retrieval. Addision Wesley,
New York (1999)

3. Barbaro, M., Zeller, T.: A Face is Exposed for AOL Searcher No. 4417749. The
New York Times, August 9 (2006)

4. Breslau, L., Cue, P., Cao, P., Fan, L., Phillips, G., Shenker, S.: Web Caching and
Zipf-like Distributions: Evidence and Implications. In: INFOCOM, pp. 126–134
(1999)

5. Brickell, J., Shmatikov, V.: The cost of privacy: destruction of data-mining utility in
anonymized data publishing. In: KDD 2008: Proceeding of the 14th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 70–78.
ACM, New York (2008)

6. Catledge, L.D., Pitkow, J.E.: Characterizing Browsing Behaviors on the World-
Wide Web. Georgia Institute of Technology (1995)

7. Coull, S.E., Collins, M.P., Wright, C.V., Monrose, F., Reiter, M.K.: On Web Brows-
ing Privacy in Anonymized NetFlows. In: Proceedings of the 16th USENIX Security
Symposium, Boston, MA (August 2007)

8. Coull, S.E., Wright, C.V., Keromytisz, A.D., Monrose, F., Reiter, M.K.: Taming
the devil: Techniques for evaluating anonymized network data. In: Proceedings of
the 15th Network and Distributed Systems Security Symposium (2008)

9. Coull, S.E., Wright, C.V., Monrose, F., Collins, M.P., Reiter, M.K.: Playing devil’s
advocate: Inferring sensitive information from anonymized network traces. In: Pro-
ceedings of the Network and Distributed System Security Symposium, pp. 35–47
(2007)

10. Crovella, M.E., Bestavros, A.: Self-similarity in World Wide Web traffic: evidence
and possible causes. IEEE/ACM Trans. Netw. 5(6), 835–846 (1997)

11. Eckersley, P.: How Unique Is Your Web Browser? Technical report, Electronig
Frontier Foundation (2009)

12. Erman, J., Mahanti, A., Arlitt, M.: Internet Traffic Identification using Ma-
chine Learning. In: Proceedings of IEEE Global Telecommunications Conference
(GLOBECOM), San Francisco, CA, USA, pp. 1–6 (November 2006)

13. Herrmann, D., Wendolsky, R., Federrath, H.: Website fingerprinting: attacking
popular privacy enhancing technologies with the multinomial naïve-bayes classifier.
In: CCSW 2009: Proceedings of the 2009 ACM Workshop on Cloud Computing
Security, pp. 31–42. ACM, New York (2009)

14. Kellar, M., Watters, C., Shepherd, M.: A field study characterizing Web-based
information-seeking tasks. Journal of the American Society for Information Science
and Technology 58(7), 999–1018 (2007)

15. Koukis, D., Antonatos, S., Anagnostakis, K.G.: On the Privacy Risks of Publishing
Anonymized IP Network Traces. In: Leitold, H., Markatos, E.P. (eds.) CMS 2006.
LNCS, vol. 4237, pp. 22–32. Springer, Heidelberg (2006)

16. Kumpošt, M.: Data Preparation for User Profiling from Traffic Log. In: The Inter-
national Conference on Emerging Security Information, Systems, and Technologies,
pp. 89–94 (2007)

Analyzing Characteristic Host Access Patterns 153

17. Kumpošt, M.: Context Information and user profiling. PhD thesis, Faculty of
Informatics, Masaryk University, Czech Republic (2009)

18. Kumpošt, M., Matyáš, V.: User Profiling and Re-identification: Case of University-
Wide Network Analysis. In: Fischer-Hübner, S., Lambrinoudakis, C., Pernul, G.
(eds.) TrustBus 2009. LNCS, vol. 5695, pp. 1–10. Springer, Heidelberg (2009)

19. Liberatore, M., Levine, B.N.: Inferring the Source of Encrypted HTTP Connec-
tions. In: CCS 2006: Proceedings of the 13th ACM Conference on Computer and
Communications Security, pp. 255–263. ACM Press, New York (2006)

20. Malin, B., Airoldi, E.: The Effects of Location Access Behavior on Re-identification
Risk in a Distributed Environment. In: Privacy Enhancing Technologies,
pp. 413–429 (2006)

21. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.
Cambridge University Press, Cambridge (2008)

22. Moore, A.W., Zuev, D.: Internet traffic classification using bayesian analysis tech-
niques. In: SIGMETRICS 2005: Proceedings of the 2005 ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer Systems,
pp. 50–60. ACM Press, New York (2005)

23. Narayanan, A., Shmatikov, V.: Robust de-anonymization of large sparse datasets.
In: IEEE Symposium on Security and Privacy, pp. 111–125 (2008)

24. Obendorf, H., Weinreich, H., Herder, E., Mayer, M.: Web Page Revisitation Revis-
ited: Implications of a Long-term Click-stream Study of Browser Usage. In: CHI
2007, pp. 597–606. ACM Press (May 2007)

25. Ohm, P.: Broken Promises of Privacy: Responding to the Surprising Failure of
Anonymization. In: Social Science Research Network Working Paper Series (August
2009)

26. Olivier, M.S.: Distributed Proxies for Browsing Privacy: a Simulation of Flocks. In:
SAICSIT ’05: Proceedings of the 2005 Annual Research Conference of the South
African Institute of Computer Scientists and Information Technologists on IT Re-
search in Developing Countries, pp. 104–112. South African Institute for Computer
Scientists and Information Technologists, Republic of South Africa (2005)

27. Padmanabhan, B., Yang, Y.: Clickprints on the Web: Are there signatures in Web
Browsing Data? Working Paper Series (October 2006)

28. Pang, J., Greenstein, B., Gummadi, R., Seshan, S., Wetherall, D.: 802.11 user
fingerprinting. In: MobiCom 2007: Proceedings of the 13th Annual ACM Interna-
tional Conference on Mobile Computing and Networking, pp. 99–110. ACM, New
York (2007)

29. Pang, R., Allman, M., Paxson, V., Lee, J.: The devil and packet trace anonymiza-
tion. SIGCOMM Comput. Commun. Rev. 36(1), 29–38 (2006)

30. Srivastava, J., Cooley, R., Deshpande, M., Tan, P.-N.: Web usage mining: discovery
and applications of usage patterns from Web data. SIGKDD Explor. Newsl. 1(2),
12–23 (2000)

31. Sweeney, L.: k-anonymity: A model for protecting privacy. International Journal
of Uncertainty Fuzziness and Knowledge Based Systems 10(5), 557–570 (2002)

32. Williams, N., Zander, S., Armitage, G.: A preliminary performance comparison of
five machine learning algorithms for practical IP traffic flow classification. SIG-
COMM Comput. Commun. Rev. 36(5), 5–16 (2006)

33. Witten, I.H., Frank, E.: Data Mining. Practical Machine Learning Tools and
Techniques. Elsevier, San Francisco (2005)

154 D. Herrmann et al.

34. Wondracek, G., Holz, T., Kirda, E., Kruegel, C.: A Practical Attack to De-
Anonymize Social Network Users, iseclab.org

35. Yang, Y.: Web user behavioral profiling for user identification. Decision Support
Systems 49, 261–271 (2010)

36. Yang, Y.C., Padmanabhan, B.: Toward user patterns for online security: Obser-
vation time and online user identification. Decision Support Systems 48, 548–558
(2008)

37. Zipf, G.K.: The psycho-biology of language. An introduction to dynamic philology,
2nd edn. M.I.T. Press, Cambridge (1968)

38. Zuev, D., Moore, A.W.: Traffic Classification using a Statistical Approach. In:
Dovrolis, C. (ed.) PAM 2005. LNCS, vol. 3431, pp. 321–324. Springer, Heidelberg
(2005)

iseclab.org

A Framework for the Modular Specification
and Orchestration of Authorization Policies

Jason Crampton1 and Michael Huth2

1 Information Security Group, Royal Holloway, University of London
jason.crampton@rhul.ac.uk

2 Department of Computing, Imperial College London, United Kingdom
M.Huth@imperial.ac.uk

Abstract. Many frameworks for defining authorization policies fail to make a
clear distinction between policy and state. We believe this distinction to be a
fundamental requirement for the construction of scalable, distributed authoriza-
tion services. In this paper, we introduce a formal framework for the definition
of authorization policies, which we use to construct the policy authoring lan-
guage APOL. This framework makes the required distinction between policy and
state, and APOL permits the specification of complex policy orchestration pat-
terns even in the presence of policy gaps and conflicts. A novel aspect of the lan-
guage is the use of a switch operator for policy orchestration, which can encode
the commonly used rule- and policy-combining algorithms of existing authoriza-
tion languages. We define denotational and operational semantics for APOL and
then extend our framework with statically typed methods for policy orchestra-
tion, develop tools for policy analysis, and show how that analysis can improve
the precision of static typing rules.

1 Introduction

One of the fundamental security services in computer systems is access control, a mech-
anism for constraining the interaction between (authenticated) users and protected re-
sources. Generally, access control is implemented by an authorization service, which
includes an authorization decision function (ADF) for deciding whether a user request
to access a resource (an access request, which we abbreviate by request henceforth)
should be permitted or not. The output of an authorization decision function is usually
determined by evaluating the request with respect to authorization state.

The protection matrix [14] is one of the earliest techniques for encoding authoriza-
tion state. It assumes the existence of a set of subjects S (those entities that generate
requests), a set of objects O (those entities to which access is requested), and a set of
actions A (the types of interactions with objects that subjects may request). Mathemat-
ically, the protection matrix M is a total function S × O → P(A) where M [s, o] is the
set of interactions that subject s is authorized to engage in with object o. A request is
modeled as a triple (s, o, a) and is authorized if and only if a ∈ M [s, o]. This explicit
enumeration of all authorized requests in the authorization state is appealing in its sim-
plicity. The authorization policy, which is implemented by the ADF, is to authorize a
request if it is listed in the authorization state.

T. Aura, K. Järvinen, and K. Nyberg (Eds.): NordSec 2010, LNCS 7127, pp. 155–170, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

156 J. Crampton and M. Huth

In recent years, this enumeration of authorized requests in authorization state has
been refined, with authorized requests being grouped together into “targets”. Autho-
rization state can then be seen as a set of targets {T1, . . . , Tn} where Ti ⊆ S ×O ×A.
Typically, a request (s, o, a) is authorized if and only if (s, o, a) ∈ Ti for some i. Access
control lists (ACL) are one obvious example of this approach, where each target Ti is
associated with a particular object oi.

We may also extend what we call “target-based” authorization state by associating
explicit deny and allow responses with targets, so that exceptions to requests authorized
elsewhere in the authorization state can be articulated. Given an extended set of targets
{(T1, allow), (T2, deny)}, e.g., a request (s, o, a) is authorized if and only if (s, o, a) ∈
T1 and (s, o, a) ∈ T2. Here we see that the authorization state may not be consistent:
T1 may allow a request, while T2 may deny it. Most authorization frameworks provide
a number of different ways of resolving such conflicts (such as “allow-overrides” or
“deny-overrides”). Conversely, the authorization state could contain gaps and neither
allows nor denies certain requests.

The literature includes many target-based specification languages for defining autho-
rization state (e.g. [5,10,15]) – notably XACML [18] – and target-based policy algebras
(e.g. [2,6,21]). In the case of XACML, we would define the authorization policy to be
the specification of the policy decision point (PDP) – the algorithm that processes what
the XACML standard refers to as “policies”. Different implementations of the PDP may
yield different authorized requests for the same “policies”.

Motivation. Much recent work on access control has blurred the distinction between
what we call authorization state and authorization policy. Consider the simple security
property pSS, defined in the Bell-LaPadula access control model [4], which says that
subject s is authorized to read object o only if λ(s) ≥ λ(o), where λ : S ∪ O → L is
a labeling function and L is a lattice of security labels. The policy is that a subject is
authorized to read an object only if its security classification is at least as high as that
of the requested object. The state is defined by L and λ. To reinforce this distinction,
suppose that λ(o) = l1 at time t1, and subsequently the contents of o are de-classified so
that λ(o) = l2 < l1 at time t2 > t1. Now, for a subject s with λ(s) = l2 at times t1 and
t2, a request to read o is denied at t1 and allowed at t2. Thus, the decision depends on the
request, the authorization state (λ is mutable), and the immutable policy (λ(s) ≥ λ(o)).

Target-based “policies”, however, do not make this distinction. The confusion arises
because the protection matrix policy is to test for membership of a request in a set
encoded by the protection matrix, and so the policy itself has become implicit. Al-
though it is clearly possible to express most authorization policies using a protection
matrix – by simply encoding all authorized triples in the matrix – such representations
are very inefficient and “brittle”: since state and policy are encoded in the matrix it will
be necessary to change the matrix to re-encode the policy every time there is a state
change. To encode the simple security property above, e.g., any change to λ(o) requires
adding action read into entry M [s′, o] for all subject s′ with l2 ≤ λ(s′) and l1 ≤ λ(s′).

The evaluation of authorization policies may also be strongly dependent on system
state. The Chinese wall policy [7], e.g., is a separation of duty policy designed to pre-
vent conflict of interest. The evaluation of this policy requires historical information
about which requests have previously been made and authorized. It is not clear how to

A Framework for the Modular Specification and Orchestration 157

represent or evaluate such policies using target-based policies. Similarly, stack-walking
algorithms for evaluating requests in a virtual machine environment require information
about the run-time state in order to determine whether a request is authorized [13].

Target-based “policies” encode authorization state and policy, so every instance of a
target-based “policy” has to re-encode the semantics of the policy it seeks to enforce.
In this sense, target-based policies are analogous to monolithic programs that neither
benefit from the reuse of already existing authorization decision functions, nor cleanly
separate authorization state from those policies. We thus believe that there is great value
in a framework that supports the modular specification and realization of authorization
policies, and that also provides for separation of state and policy.

The framework we propose has two types of policies: decision policies and orches-
tration policies. Decision policies are similar to Boolean functions, whereas orchestra-
tion policies are similar to policy combining algorithms in XACML [18] and operators
in policy algebras (e.g. [6,19]).

Decision policies take parts of the request or authorization state (or both) as input
and make either a Boolean decision or return a third value ⊥, indicating that the policy
is unable to provide a conclusive decision. A policy may return ⊥ because

– the request either does not have the expected form for successful processing (e.g.
the action is delete but needs to be read for pSS), or

– the request cannot be evaluated in the authorization state (e.g. there may not be an
ACL for the requested object).

Orchestration policies take other policies as input. We show that all possible orches-
tration requirements, even in the presence of inconsistency or lack of information, can
be programmed with a single 4-case switch operator. Use of this operator should ap-
peal to people familiar with such statements in mainstream programming languages.
Indeed, we develop a simple typed, modular programming language in which decision
and orchestration policies are distinguished by types and are declared and enforceable
as parameterized methods.

Contributions. We develop a formal framework for authorization policies in which
base policies encapsulate domain-specific aspects and offer an abstract interface for
orchestration; all possible orchestration patterns for base policies are supported in the
presence of conflict or lack of information; and authorization state and policy specifica-
tions are cleanly separated, facilitating maintenance and reuse. Policy orchestration is
achieved with a switch operator that is formally analyzable and functionally complete
for policy coordination (including conflict resolution). We add typed, parameterized
methods to that core policy language. This not only facilitates reuse and modular anal-
ysis of policies, but these types and their analysis can also certify important run-time
behavior of policy evaluation.

2 Authorization Using Trees

We first fix terminology and provide an overview of our approach. We then describe
policy orchestration before introducing policy trees as formal foundations for APOL.

158 J. Crampton and M. Huth

Overview. We assume the existence of three types of entities: policy enforcement
points, policy orchestration points and policy decision points.1 As in the XACML ar-
chitecture, a policy enforcement point (PEP) is responsible for ensuring that (i) every
request is evaluated to determine whether it is authorized and (ii) that the request is only
allowed to proceed (i.e. granted) if it is authorized.

Unlike in XACML, a policy decision point (PDP) in our architecture exists to deter-
mine whether a request is authorized by a base policy (defined below). We introduce
policy orchestration points (POP) to forward requests to PDPs or other POPs for evalua-
tion. The POP combines the decisions returned in response to those requests, according
to the orchestration pattern defined for that POP. The POP then returns a decision to the
PEP (or a higher level POP).

Each base policy has its own PDP. Complex authorization policies are constructed by
orchestrating base policies. Hence, the authorization architecture required to evaluate an
orchestrated policy will be dependent on the policy. In this respect, our architecture is
quite different from existing approaches, such as XACML, which assume a single PEP
and a single PDP – reflecting that the policy in target-based approaches is implicit (and
is based on membership of the request in one or more targets). Figure 1(a) illustrates
schematically an example of this policy evaluation architecture. Henceforth, we will
blur the distinction between a PDP and the base policy it enforces and use the two
terms interchangeably.

PEP

POP1

POP2

POP3

POP4

PDP1 PDP2

PDP3

(a) Generic tree

PEP

dbd

+

dov

+

pSS p∗

pACL

(b) BLP policy

Fig. 1. Examples of policy evaluation trees

We assume that base policies are invoked by a policy orchestration point. A base
policy returns an authorization decision based on the request and the current autho-
rization state of the system. Returning to the example of the simple security property
pSS introduced in Section 1, informally speaking and writing σi to denote the state at
time ti, we have pSS((s, o, read), σ1) = deny and pSS((s, o, read), σ2) = allow. We
model base policies as (partial) Boolean functions and authorization state is an input to
a policy. This separation of concern allows us to decouple policy semantics from the
specification of authorization state, in contrast to existing approaches such as XACML.

1 We prefer this terminology to authorization enforcement function etc., as it is widely used and
reflects the fact that access control in our setting is policy-based.

A Framework for the Modular Specification and Orchestration 159

A POP or a PDP does not necessarily take a request of the form (s, o, a), or similar,
as input. Consider, for example, an authorization service that implements a policy pACL

that decides requests on the basis of membership in an ACL. Then the PEP may well
receive a request of the form (s, o, a), but it actually passes s, a and the ACL for o to
the PDP.2 Hence, all requests of form (s, o, a) can be processed without error (assuming
that o is a valid object identifier) and are processed in the same way. In contrast, pSS

does not process requests in this uniform manner: it is “silent” on the evaluation of
write requests.

The ACL, however, is part of the authorization state, so policy pACL cannot be used
to evaluate request (s, o, a) if it is not possible to locate and retrieve the ACL for object
o. Indeed, the evaluation of all but the simplest policies (such as those that authorize all
requests) will require authorization state as input, and is therefore acutely sensitive to
the availability and consistency of such state. One cannot evaluate the simple security
property pSS if, e.g., λ(s) is not available or does not belong to the security lattice L.

In summary: there will be requests for which a policy does not return a conclusive
decision, simply because the policy is not designed to decide certain requests for partic-
ular authorization states; in addition, many policies cannot return a conclusive decision
if there is incomplete knowledge of authorization state.

Base Policies. Base policies have total functions of type Req× Σ → {0, 1,⊥} as se-
mantics, where Req is the set of requests and Σ the set of authorization states. Mathe-
matically, a base policy is (semantically) equivalent to a partial function b : Req×Σ →
{0, 1} that has been extended to a total function b̂ : Req × Σ → {⊥, 0, 1} in the
obvious way.

The intuition and assumption is that a base policy b returns a conclusive decision (0
for prohibitions or 1 for authorizations) for all well-formed requests as input that can
be properly evaluated in the current state. Base policy pACL, e.g., makes a conclusive
decision for requests (s, o, a) if object o has an ACL, and returns⊥ if o has no ACL. We
can express the simple security property and the *-property [4] as the following base
policies, where σ is understood to include an encoding of the security function λ.

pSS((s, o, a), σ) =

⎧⎪⎪⎨⎪⎪⎩
1 if λ(s) ≥ λ(o) and a is read

0 if λ(s) �≥ λ(o) and a is read

⊥ otherwise

p∗((s, o, a), σ) =

⎧⎪⎪⎨⎪⎪⎩
1 if λ(s) ≤ λ(o) and a is write

0 if λ(s) �≤ λ(o) and a is write

⊥ otherwise

We work with a set of base policies B that have the above type and from which more
complex policies are orchestrated. Actual members of B will depend on context and
requirements. We might have B = {pACL, pSS, p∗}, for example. Base policies also fit

2 The request received by the PEP may also be called an application request or native request,
and the one passed to the PDP by the PEP may be called a decision or authorization request.

160 J. Crampton and M. Huth

nicely with a view of authorization as a service, where the focus is on the orchestration
of base policies informed by the known and trusted behavior of these base policies.

Joining Policies. Policy orchestration may be useful where policies are developed in-
dependently and their respective results need to be combined before reaching an autho-
rization decision. Alternatively, we may simply need to construct authorization policies
out of simpler sub-policies. The BLP model, for example, “orchestrates” three poli-
cies: the simple security property, the *-property and the discretionary security property
(which requires that the request be authorized by a protection matrix M) [4].

Many existing languages, therefore, include the possibility of combining the deci-
sions returned by two policies, and our language is no exception. We write p1 + p2 to
denote the join of p1 and p2, and define

(p1 + p2)(r, σ) = p1(r, σ) ⊕ p2(r, σ),

where ⊕ is a binary relation on {⊥, 0, 1,�} defined by the following table.

⊕ ⊥ 0 1 �
⊥ ⊥ 0 1 �
0 0 0 � �
1 1 � 1 �
� � � � �

A similar join operator was proposed and used in the work of [8,9], but for policies of
different types. We write P for the set of policies orchestrated from base policies in B.

The orchestration of base policies means that policies in general have a richer type,
as total functions p : Req × Σ → {⊥, 0, 1,�}. By abuse of notation, we may write 0
and 1, respectively, for the constant policies (r, σ) �→ 0, and (r, σ) �→ 1. We also write
1T , where T ⊆ Req, to denote the base policy that returns 1 if r ∈ T and 0 otherwise.

The Switch Operator. Many policy algebras and policy languages define ways of
resolving gaps (⊥) and conflicts (�) in policies as they occur [6,21], thereby reducing
the range of all policies to some subset of {⊥, 0, 1,�}. Reducing the range to {⊥, 0, 1},
e.g., removes conflicts, and reducing the range to {0, 1,�} removes gaps. XACML,
e.g., uses rule-combining and policy-combining algorithms to remove conflicts [18].

We introduce the switch policy operator, which can be used inter alia to remove gaps
and conflicts. Informally, this operator is a total function of type P5 → P , where the
decision computed by evaluating the first policy determines which of the other four
policies should be evaluated to obtain the overall decision. More formally, we have:

Definition 1. Let p, q⊥, q0, q1 and q� be policies. Then the formal expression
(p : q⊥, q0, q1, q�) is a policy with switch policy p such that for all (r, σ) ∈ Req×Σ,

(p : q⊥, q0, q1, q�)(r, σ)
def
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
q⊥(r, σ) if p(r, σ) = ⊥,

q0(r, σ) if p(r, σ) = 0,

q1(r, σ) if p(r, σ) = 1,

q�(r, σ) if p(r, σ) = �.

(1)

A Framework for the Modular Specification and Orchestration 161

The switch operator is surprisingly versatile. We now describe some of its more imme-
diate applications. We can define a policy !p that reverses those decisions for which p is
conclusive, and a policy (p/F) where F filters policy p as follows:

!p
def
= (p : ⊥, 1, 0,�) (2)

(p/F)
def
= (1F : %,⊥, p,%) (3)

Since 1F cannot output ⊥ or �, we use the reserved symbol % to denote “dead code”,
policies that cannot be reached by the switch operator. In particular, we write % for q�
whenever the switch policy p is a base policy (and so cannot produce � as a decision).

Policy p/F models the if operator of [8,9] where base policy F models what is
called an “access predicate” in those papers. We may think of F as a filter and of p as
the filtered policy. Indeed, if p is the constant 0 or 1 policy, p/F models an XACML rule
with target F and effect p: policy expression (1F : %,⊥, 0, %), for example, encodes
an XACML rule with target F and effect deny.

We may also express the join operator p1 + p2 (introduced above) using the switch
operator:

(p1 + p2)
def
= (p1 : p2, q0, q1,�) (4)

where q0 = (p2 : 0, 0,�,�) and q1 = (p2 : 1,�, 1,�). Moreover, all the usual policy
modifiers can be expressed using the switch operator. We have, for example,

dov(p) = (p : ⊥, 0, 1, 0) aov(p) = (p : ⊥, 0, 1, 1) agr(p) = (p : ⊥, 0, 1,⊥)

dbd(p) = (p : 0, 0, 1,�) abd(p) = (p : 1, 0, 1,�)

where: dov denotes “deny-overrides; dbd denotes “deny-by-default”; aov denotes
“allow-overrides”; abd denotes “allow-by-default”; and policy agr(p) returns the same
decision as p if p returns a conclusive decision and returns ⊥ otherwise. Most of these
constructions are supported in XACML; agr, however, is not.

Clearly the switch operator provides a very economical and uniform way of speci-
fying a wide variety of orchestration patterns. For example, we can easily specify an
orchestration aed (“allow-overrides-else-deny”) that returns 1 whenever p does and re-
turns 0 otherwise: namely aed(p) = (p : 0, 0, 1, 1).

The switch statement (p : p′, 0, 1, p′) is the policy that returns whatever policy p
returns when p returns a conclusive decision, and returns whatever policy p′ returns
otherwise. In other words, (p : p′, 0, 1, p′) is a “first-applicable” binary policy operator,
commonly used to evaluate firewall rule-sets. Finally, one can also program “majority-
out-of-n” for any odd natural number n > 2 with nested switch operators.

The policy q� in (1) can be seen as a conflict handler for the switch policy p. The
choice of this handler depends on the context within which q� itself is orchestrated.
For example, if the switch statement for q� is the outermost policy, a conservative ap-
proach would make it always prohibit all requests. But q� may have negative polarity
(with respect to applications of ! above) as a sub-policy within an orchestration and so
prohibiting all requests may be unwise. Polarity issues aside, q� may be non-constant
since it could make its decision depend on further switch statements that try to differen-
tiate the source of conflict – a common idiom in programming with exceptions. In this

162 J. Crampton and M. Huth

context we note that the join operator distributes through all policies qv in (1), but not
through the switch policy p.

Example 1. We can orchestrate the full policy defined in the BLP model as

pBLP = dbd(dov(pSS + p∗) + pACL).
3

Figure 1(b) shows the policy’s evaluation architecture. An alternative, and perhaps more
natural, orchestration can be defined using the switch operator:

pBLP = (pSS + p∗ : ⊥, 0, pACL, 0)

Writing pIF = dov(pSS + p∗) to denote the information flow policy of the BLP model,
we have pBLP = dbd(pIF + pACL). We may then view pIF as a base policy since any
conflicts arising from the evaluation of pSS and p∗ are resolved by the dov operator.

Note that an organization may choose to construct a new base policy (e.g. pIF above)
from existing ones and “hide” the original base policies (e.g. pSS and p∗) from policy
orchestrators. A modular policy language should therefore support such encapsulation.

Note also that the type of policy composition described in Example 1 is not possible
in target-based policy languages, because the “policies” written in such languages en-
code state as well as policy and are therefore inextricably bound to the context in which
they were authored.

The following result establishes that our language is powerful enough to realize any
orchestration function.

Theorem 1. For each n > 0, all total functions of type {⊥, 0, 1,�}n → {⊥, 0, 1,�}
can be generated from the constants⊥, 0, 1, � and the switch operator.

Arieli and Avron [1] consider the expressive power of the language incorporating
the connectives {⊥, 0, 1,�,¬,∨,∧,⊕,⊗,⊃,→,↔}. They prove that the language us-
ing connectives from {¬,∧,⊃,⊥,�} is functionally complete and no proper subset of
these connectives has this property [1, Theorem 3.8]. We use this result as the basis for
the proof of Theorem 1.

Proof (Sketch). We show that the operators ¬, ⊃ and ∧ can be encoded using ⊥, �, 0,
1 and the switch operator. The definitions of ⊃ and ¬ given below in (5) are equivalent
to those given by Arieli and Avron (using connectives from {¬,∧,⊃,⊥,�}).

x ⊃ y
def
= (x : 1, 1, y, y) and ¬x

def
= (x : ⊥, 1, 0,�) (5)

We now consider the ∧ operator (which is analogous to conjunction in classical logic),
the “truth” table for which is shown below.

x y x ∧ y

⊥ ⊥ ⊥
⊥ 0 0

⊥ 1 ⊥
⊥ � 0

x y x ∧ y

0 ⊥ 0

0 0 0

0 1 0

0 � 0

x y x ∧ y

1 ⊥ ⊥
1 0 0

1 1 1

1 � �

x y x ∧ y

� ⊥ 0

� 0 0

� 1 �
� � �

3 We have chosen to implement the discretionary security property using the standard interpre-
tation of a protection matrix as a set of ACLs.

A Framework for the Modular Specification and Orchestration 163

p, q ::= (Policy Trees)

allow | deny | na | conflict Constant Policy

b Base Policy

(p : q⊥, q0, q1, q�) Policy Switch

(a) Grammar

[[allow]](r, σ)
def
= 1 [[deny]](r, σ)

def
= 0

[[na]](r, σ)
def
= ⊥ [[conflict]](r, σ)

def
= �

[[b]](r, σ) = ρ(b)(r,σ)

[[(p : q⊥, q0, q1, q�)]](r, σ)
def
= [[qv]](r, σ) where [[p]](r, σ) = v

(b) Denotational semantics

(allow, r, σ) � 1
C1

(deny, r, σ) � 0
C0

(conflict, r, σ) � � C�

(na, r, σ) � ⊥ C⊥
ρ(b)(r, σ) = v

(b, r, σ) � v
Base

(p, r, σ) � v (qv, r, σ) � v′

((p : q⊥, q0, q1, q�), r, σ) � v′ Switch

(c) Inference rules for operational semantics

Fig. 2. Grammar and semantics for policy trees

Noting that 0 ∧ y = 0 and 1 ∧ y = y for all y ∈ {⊥, 0, 1,�}, it is easily seen that we
can encode x ∧ y as (x : z, 0, y, z′), where

z = (y : ⊥, 0,⊥, 0) and z′ = (y : 0, 0,�,�).

Note that: (i) we cannot encode ⊃ without 1; (ii) we cannot encode ∧ without 0; and
(iii) we cannot encode ¬ without 0 and 1.

Grammar and Semantics for Policy Orchestration. We now summarize and formal-
ize the preceding discussion by giving a grammar and formal semantics for policy trees.
Figure 2(a) depicts the grammar for policies, which are built out of some set of base
policies, constant policies (of which all except conflict are base policies), and the switch
operator.

The denotational semantics for policy trees are shown in Figure 2(b), relative to an
environment ρ that gives semantics ρ(b) : Req × Σ → {⊥, 0, 1} to all base poli-
cies b. Figure 2(c) shows a “big-step” structural operational semantics of policy trees,
again relative to an environment ρ. An induction on the height of derivation trees for
judgments (p, r, σ) � v can be used to establish that the operational and denotational
semantics compute the same meaning:

164 J. Crampton and M. Huth

pol ::= (Policy)

allow | deny | na | conflict Constant Policy

% Dead Code

base Base Policy

switch {pol : pol; pol; pol; pol} Policy Switch

Fig. 3. Core policy-orchestration language APOL for some set of base policies

Theorem 2. For all policy trees p ∈ P and environments ρ, equation [[p]](r, σ) = v
holds if and only if (p, r, σ) � v can be derived using the inference rules in
Figure 2(c).

3 APOL: A Typed, Modular Policy Language

We now develop a treatment of policies as typed, modular programs. Modularity fa-
cilitates compositionality, maintainability, and reuse of policies. Types are conservative
mechanisms for preventing certain kinds of “run-time” errors during request evaluation.
For example, types can certify that the use of % to represent dead code is safe for the
evaluation of a policy for any request and authorization state.

The grammar of a core programming language APOL (“authorization policy orches-
tration language”) is shown in Figure 3: it is essentially the grammar for policy trees
shown in Figure 2(a), extended with a symbol % for dead code, and presented in a form
more amenable to programming. Below, we present a static type system where types are
inferred from the syntax of policies without evaluating them. We then also demonstrate
that deeper semantic analysis is useful for such static type inference.

Let p be an expression of APOL and let ρ(b) be defined for all base policies b
occurring in p. Then we point out that the operational semantics of p in Figure 2(c) is
well defined by matching clauses of the grammars in Figures 2(a) and 3. However, as
there is no rule for (%, r, σ) � . . . , dead code does not evaluate to any value, meaning
that its evaluation is stuck and constitutes an error.

Typed Methods for APOL. We extend our core policy language with typed, parame-
terized methods. The types τ in the extended language are base (for base policies, that
cannot output �), pol (for orchestrated policies), and prd (for base policies that cannot
output ⊥ and so represent Boolean predicates). Each method has τ ∈ {base, pol, prd}
as return type, specifying that method invocations in-lined with correctly typed input
policies render a policy of type τ . The following method, for example, explicitly im-
plements the deny-overrides orchestration pattern. Note the return type base and the
parameter type pol for its argument policy:

base deny-overrides(P:pol) { switch{P : na; deny; allow; deny} }

The type system for such methods is presented in Figure 4: judgments “expression e
has type τ in context Γ ” have the form Γ � e : τ , where τ ∈ {pol, base, prd} and Γ is
a context binding variables xi to types τi. Each rule specifies a possible inference: if all

A Framework for the Modular Specification and Orchestration 165

Γ na : base Γ deny : prd Γ allow : prd Γ conflict : pol

Xi : αi ∈ Γ

Γ Xi : αi

Γ e : rt Γ ⊆ Γ ′

Γ ′ e : rt

Γ e : prd

Γ e : base

Γ e : base

Γ e : pol

Γ e : pol Γ ev : rt (∀v ∈ {⊥, 0, 1,�})
Γ switch { e : e⊥; e0; e1; e�} : rt

Γ e : prd Γ ev : rt (∀v ∈ {0, 1})
Γ switch { e : %; e0; e1; %} : rt

Γ e : base Γ ev : rt (∀v ∈ {⊥, 0, 1})
Γ switch { e : e⊥; e0; e1; %} : rt

Γ ∪ {X : α} e : rt

Γ \ {X | α} rt mname(X : α){e} : α → rt

(∀i) Γ ∪ {X : α} ei : αi Γ rt mname(X : α){e} : α → rt

Γ mname(e) : rt

Fig. 4. Rules for type checking judgments Γ e : t for APOL expressions, where Γ is a type
context binding variables to types, rt ∈ {base, pol, prd}, and X : α is a list of typed parameters

judgments on top of the line of a rule have been inferred or are given, then the judgment
below the line of that rule can be inferred.

The first row in Figure 4 states the types of constant policies, reflecting that na is a
base policy, conflict a non-base policy, and that conclusive decisions are predicates.
These are axioms as their inferences do not depend on any judgments. The second row
uses standard structural and type casting rules for type inference in the presence of
subtyping and states that prd is a subtype of base and that the latter is a subtype of pol.
The third row handles type inference for the switch operator: the switch policy must
have type pol (through casting of subtypes, if needed), and all argument policies must
agree on the output type (again, through casting, if needed).

The next two rows depict two important patterns for reasoning about the safe use of
the dead code symbol %. The first one shows that r = switch{ e : %; e0; e1; %} has
return type rt by first showing that the switch policy e has type prd, and then showing
that both e0 and e1 have type rt. These type inference rules are safe: for no request
and for no authorization state does the operational semantics of r ever evaluate one of
the two occurrences of %. This rule can be used to certify that our definition of (p/F),
when written in APOL, is type safe. The second rule is very similar but – since it only
has a dead code symbol for the case when the switch policy outputs a conflict – it only
has to show that the switch policy has type base. Again, such type inference guarantees
that the symbol % will never be encountered in the operational semantics.

The final two rows show standard type inference rules for parameterized methods.
The first rule assumes the type bindings of the method head, uses those bindings to infer
a type for the method body, and that type is then the method return type (but in a type
context that no longer relies on these assumptions). The second rule captures that well
typed method invocations return the specified type.

166 J. Crampton and M. Huth

Example 2. We illustrate the type system on method deny-overrides specified
above. To show that this method has output type base, we assume that P has type pol as
declared in the method header (and so Γ records that binding) and show that the switch
statement has output type base under that assumption. But this follows easily from the
type inference rule for the switch statement, since all argument policies have subtypes
of base or have that type, and so all argument types can be cast into type base, if needed.

Note that variables occurring in a context Γ cannot be constants of APOL. In particular,
it is not possible to assign a type to %, and so one can also not give a type to a policy
switch with switch policy %.

Our type system can be fine-tuned to enable a richer semantic typing. For example,
consider the typed APOL method foo, declared by

prd foo(P:pol) { switch{P : deny; P; P; deny} }
Its argument has type pol and so we cannot assume that this policy is a base policy or
free of conflict. Our type system therefore forces that all four argument types of the
switch statement be cast into their least common supertype, which is pol. Therefore,
the type system can only infer pol as output type. But when P is executed as q0 we
know that its output is a deny. Similarly, when P is executed as q1 its output is an
allow. Therefore, it is intuitively safe to assume that all four arguments have type prd
and so prd is a safe output type for method foo. We now sketch a semantic analysis
that formalizes such intuitions. This analysis can then be used to extend our static type
inference.

Analysis of APOL Policies. For any policy r, let r ⇑ 1 be a propositional formula
whose atoms are expressions of the form b ⇑ 1 and b ⇑ 0 for base or constant policies
b occurring in policy r. Intuitively, r ⇑ 1 is true if policy r authorizes the (implicit)
request, and r ⇑ 0 is true if policy r denies it. The constraint r ⇑ 1 (respectively, r ⇑
0) therefore expresses the conditions on the base policy decisions for the orchestrated
policy r to either authorize (respectively, deny) the request or to report a conflict.

The definition of r ⇑ 1 and r ⇑ 0 is by induction over terms of APOL. For constant
policies, these conditions merely express the obvious meaning of these constants. For
example, conflict ⇑ 1 and conflict ⇑ 0 both are the truth constant true, whereas
na ⇑ 1 and na ⇑ 0 both are the truth constant false. For the other two logical constants,
we set deny ⇑ 1 = false, deny ⇑ 0 = true and allow ⇑ 1 = true, allow ⇑ 0 =
false. Assuming that dead code is type safe, we set % ⇑ 1 and % ⇑ 0 both to be false.

The meaning of b ⇑ 1 and b ⇑ 0 for base policies b will depend on the application
domain and concrete nature of those base policies. For example, base policies may
be written over equations of attributes and so these constraints may be propositional
formulas over such attribute conditions.

It remains to specify the conditions r ⇑ 1 and r ⇑ 0 when r is the switch statement
(p : q⊥, q0, q1, q�). Then we can define r ⇑ 1 in the following way:

r ⇑ 1 = (¬(p ⇑ 0) ∧ ¬(p ⇑ 1) ∧ (q⊥ ⇑ 1)) ∨ (6)

((p ⇑ 0) ∧ ¬(p ⇑ 1) ∧ (q0 ⇑ 1)) ∨
(¬(p ⇑ 0) ∧ (p ⇑ 1) ∧ (q1 ⇑ 1)) ∨
((p ⇑ 0) ∧ (p ⇑ 1) ∧ (q� ⇑ 1))

A Framework for the Modular Specification and Orchestration 167

The definition of r ⇑ 0 merely changes all qv ⇑ 1 in (6) to qv ⇑ 0. The intuition
of these constraints should be clear. Each disjunct specifies, in its first two conjuncts,
the intended continuation location of the switch statement, and captures the intended
condition for that continuation in its third conjunct. These constraints are therefore dis-
junctions of conjunctions of similar constraints for subpolicies.

Given such formulas, one can then build other constraints, e.g., ¬(r ⇑ 0) ∧ (r ⇑ 1),
which states the conditions for policy r to authorize a request (and so, in particular, not
to report a conflict). In order to determine whether a policy r has a conflict, for example,
is equivalent to determining whether (r ⇑ 1) ∧ (r ⇑ 0) ∧ ∧

b ¬((b ⇑ 1) ∧ (b ⇑ 0))
is satisfiable, where b ranges over all base policies occuring in r. Note that the third
conjunct rules out spurious witnesses since base policies cannot return �.

We can apply this analysis to infer the more informative type prd of method foo,
which our static type system could not do. For that, it suffices to show that the body r of
the method always returns 0 or 1, for any switch policy p of type pol; that is to say, that
r ⇑ 1 is equivalent to ¬(r ⇑ 0) if we interpret p ⇑ 0 and p ⇑ 1 as atomic propositions.

Applying (6) to that r, and noting that Deny ⇑ 1 = false, we compute

r ⇑ 1 = (¬(p ⇑ 0) ∧ ¬(p ⇑ 1) ∧ false) ∨ (7)

((p ⇑ 0) ∧ ¬(p ⇑ 1) ∧ (p ⇑ 1)) ∨
(¬(p ⇑ 0) ∧ (p ⇑ 1) ∧ (q1 ⇑ 1)) ∨
((p ⇑ 0) ∧ (p ⇑ 1) ∧ false))

= ¬(p ⇑ 0) ∧ (p ⇑ 1)

Noting that Deny ⇑ 0 = true, we similarly compute r ⇑ 0 = (p ⇑ 0) ∨ (¬(p ⇑
0) ∧ ¬(p ⇑ 1)). But it is easily seen that ¬(r ⇑ 0) and r ⇑ 1 are equivalent formulas.

4 Discussion

We now discuss our contributions and put them into perspective.

Separating State and Policies. We have argued that policy and state should be sepa-
rated, and have developed a framework that meets this criterion. In a practical setting,
enterprise security requirements must be encoded in authorization policies, which may
require complex orchestration patterns. However, the authorization state is independent
of these orchestrations, and different parts of the state would typically be maintained
by different local administrators who are responsible for correctly associating users and
resources with security-related attributes.

Informing Future Authorization Languages. We now consider how our work is re-
lated to target-based approaches to authorization and suggest how these connections
might usefully inform the development of authorization languages.

Recall that the protection matrix authorizes a request if that request is encoded in
the matrix. The policy is to allow if that request is encoded in the matrix and deny
otherwise – the simplest possible way of deciding whether a request is authorized. In
our view, the authorization state is the matrix M (or some other suitable data structure,
such as a collection of ACLs). Accordingly, we define the base policy pallow, where
pallow(r, M) = 1 if r ∈ M , and ⊥ otherwise.

168 J. Crampton and M. Huth

We can, of course, prohibit certain requests using the orchestration !pallow for an
appropriate choice of M . Complex policies can be built from authorization state com-
ponents M1, . . . , Mk and appropriate orchestrations using + and ! (or the switch op-
erator). Hence, policy authors can define orchestrations, while local administrators can
update Mi to reflect changes to personnel and resources.

Informing XACML. We now reflect on how the features of our framework might
usefully be applied in XACML. We focus our attention on XACML, because it is a
well known standard that provides a framework for the specification and evaluation
of target-based authorization policies. In conflating state and policy, target-based ap-
proaches such as XACML mean either that policy authors must be aware of authoriza-
tion state or that local administrators must be able to author XACML policies. This
makes it more difficult to author and maintain policies. In our framework, a component
of authorization state can be regarded as (just) another resource and can be protected
by an authorization policy like any other resource. In XACML, there is no structured
support for policy updates, which therefore continue to be a problematic issue.

We believe the switch operator could usefully be deployed in XACML (and other au-
thorization languages). Currently, the XACML standard requires that a number of rule-
and policy-combining algorithms be supported by the PDP. Moreover, XACML rules
and policies are indistinguishable in terms of semantics, so it is unnecessary to have
both rule- and policy-combining algorithms. It has also been observed that there are cer-
tain pathological cases in which the combination of rule- and policy-combination algo-
rithms (compliant with the XACML standard) leads to unexpected results [17]. Hence,
we make three suggestions: (i) XACML should remove the (artificial) distinction be-
tween rules and policies; (ii) a single algorithm based on the switch operator should be
supported (since we showed that it can encode the standard policy-combination algo-
rithms); and (iii) types and modularity (as sketched in this paper) should be supported
to provide safer policy orchestration for policy authors.

A feature of XACML and target-based policy languages and algebras is the immedi-
ate resolution of conflicts. As can be seen from our framework, there is no theoretical
necessity for doing this and there may be good practical reasons for postponing the
computation of a conclusive decision. A convincing case for decoupling policy compo-
sition from conflict resolution has been made in [8] already. In XACML terminology,
the rule- and policy-combining algorithms should not be required attributes of policy
and policy set elements, respectively, thereby enabling XACML policies and policy sets
to return conflicts.

Related Work. The work of Bruns et al. [8,9] is closest to that reported in this paper.
This work suggested the Belnap space {⊥, 0, 1,�} as carrier of meaning for authoriza-
tion policies, built atomic policies of the form e/T (in our notation) where T is a subset
of Req, employed policy combinators that act on policies in a pointwise manner, and
showed that the resulting policy language is as expressive as it can be (thinking of tar-
gets T as predicates) [8]. Subsequently, various policy analyses are reduced to checking
the satisfiability of formulae in an NP fragment of first-order logic, and such satisfia-
bility checks are extended to a limited form of assume-guarantee reasoning [9]. Our

A Framework for the Modular Specification and Orchestration 169

work creates policy languages that have equal expressiveness of orchestration. But our
framework separates requests from authorization state, supports types and modularity
for policy orchestration and enforcement, and has a very simple policy analysis in the
form of Boolean satisfiability checks (based on a sole policy operator switch).

There are a number of authorization frameworks in which policies are based on logic-
programming languages such as Datalog (see [3,11,12], for example). Although these
frameworks are not target-based and can easily express policies such as pSS, the orches-
tration patterns that are available are limited by the semantics of rule evaluation in the
underlying programming language.

5 Conclusions

Summary. The motivation of this paper was to overcome most of the shortcomings of
existing target-based authorization-policy languages such as XACML. We began with
a semantic view of a policy as a 4-valued function whose input comprises a request and
relevant authorization state. This resulted in a language of policy trees with {0, 1,⊥}-
valued base policies where ⊥ models that a request is not applicable for the policy
interface, or that it cannot be evaluated in the authorization state. We then transferred
these ideas into the programming language APOL, first within a core language of policy
trees and then for an extension of that core language to parameterized, typed methods.
We also gave equivalent denotational and operational semantics to the core language.
Finally, we discussed how our ideas and results could leverage policy analysis – for
example to reason about the type safe identification of dead code – and inform new
versions of the XACML standard and future authorization languages.

Future Work. Our most recent work shows that programs of type pol are repre-
sentable, and hence implementable, as ternary decision diagrams [20]; that the remote
evaluation of sub-programs can be accommodated by the use of decision diagrams that
have four kinds of edges and terminals; and that our policy analysis methods can be
used to enrich our type system with a notion of semantic (i.e. behavioral) types. We
intend to continue our preliminary work in this area.

In our current approach, the output value ⊥ is overloaded, as we use it to denote
both the inapplicability of a base policy to a request and the inability to evaluate a
request given current knowledge of the state. If we want to make a distinction between
these cases, we would require a 5-valued meaning space {0, 1, �, �,�}, where 0, 1,
and � retain their meaning and � and � denote problems with policy evaluation and
policy applicability (respectively). We also hope to develop an implementation of our
framework, perhaps making use of XACML-like syntax to define platform-independent
authorization state. Thirdly, we mean to devise a modular policy analysis for APOL
based on the familiar idea of programming by contracts [16].

Acknowledgements. The authors would like to thank the anonymous referees for their
helpful comments.

170 J. Crampton and M. Huth

References

1. Arieli, O., Avron, A.: The value of the four values. Artificial Intelligence 102(1), 97–141
(1998)

2. Backes, M., Dürmuth, M., Steinwandt, R.: An Algebra for Composing Enterprise Privacy
Policies. In: Samarati, P., Ryan, P.Y.A., Gollmann, D., Molva, R. (eds.) ESORICS 2004.
LNCS, vol. 3193, pp. 33–52. Springer, Heidelberg (2004)

3. Becker, M.Y., Sewell, P.: Cassandra: Distributed access control policies with tunable expres-
siveness. In: Proc. of 5th IEEE International Workshop on Policies for Distributed Systems
and Networks, pp. 159–168 (2004)

4. Bell, D.E., La Padula, L.: Secure computer systems: Unified exposition and Multics interpre-
tation. Technical Report MTR-2997, Mitre Corporation, Bedford, Massachusetts (1976)

5. Bertino, E., Castano, S., Ferrari, E.: Author-X : A comprehensive system for securing XML
documents. IEEE Internet Computing 5(3), 21–31 (2001)

6. Bonatti, P., de Capitani di Vimercati, S., Samarati, P.: An algebra for composing access con-
trol policies. ACM Transactions on Information and System Security 5(1), 1–35 (2002)

7. Brewer, D., Nash, M.: The Chinese Wall security policy. In: Proc. of the 1989 IEEE Symp.
on Security and Privacy, pp. 206–214 (1989)

8. Bruns, G., Dantas, D.S., Huth, M.: A simple and expressive semantic framework for policy
composition in access control. In: Gligor, V.D., Mantel, H. (eds.) Proc. of the Fifth Workshop
on Formal Methods in Security Engineering: From Specifications to Code, pp. 12–21 (2007)

9. Bruns, G., Huth, M.: Access control via Belnap logic: Effective and efficient composition
and analysis. In: Sabelfeld, A. (ed.) Proc. of the 21st IEEE Computer Security Foundations
Symp., pp. 163–176 (2008)

10. Damiani, E., di Vimercati, S.D.C., Paraboschi, S., Samarati, P.: A fine-grained access control
system for XML documents. ACM Transactions on Information and System Security 5(2),
169–202 (2002)

11. DeTreville, J.: Binder, a logic-based security language. In: Proc. of the 2002 IEEE Symp. on
Security and Privacy, pp. 105–113 (2002)

12. Dougherty, D.J., Fisler, K., Adsul, B.: Specifying and Reasoning about Dynamic Access-
Control Policies. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130,
pp. 632–646. Springer, Heidelberg (2006)

13. Gong, L.: Inside Java 2 Platform Security. Addison-Wesley (1999)
14. Harrison, M.A., Ruzzo, W.L., Ullman, J.D.: Protection in operating systems. Communica-

tions of the ACM 19(8), 461–471 (1976)
15. Jagadeesan, R., Marrero, W., Pitcher, C., Saraswat, V.: Timed constraint programming: A

declarative approach to usage control. In: Proc. of the 7th International ACM SIGPLAN
Conference on Principles and Practice of Declarative Programming, pp. 164–175 (2005)

16. Meyer, B.: Applying “Design by Contract”. IEEE Computer 25(10), 40–51 (1992)
17. Ni, Q., Bertino, E., Lobo, J.: D-Algebra for composing access control policy decisions. In:

Proc. of 4th ACM Symp. on Information, Computer and Communications Security, pp. 298–
309 (2009)

18. OASIS. Xtensible Access Control Markup Language (XACML) Version 2.0, OASIS Com-
mittee Specification (T. Moses, editor) (2005)

19. Ribeiro, C., Zuquete, A., Ferreira, P., Guedes, P.: SPL: An access control language for se-
curity policies and complex constraints. In: Proc. of the Network and Distributed System
Security Symp. (NDSS), pp. 89–107 (February 2001)

20. Sasao, T.: Ternary decision diagrams: Survey. In: Proc. of the 27th International Symp. on
Multiple-Valued Logic (ISMVL 1997), pp. 241–250 (1997)

21. Wijesekera, D., Jajodia, S.: A propositional policy algebra for access control. ACM Transac-
tions on Information and System Security 6(2), 286–325 (2003)

Credential Disabling

from Trusted Execution Environments

Kari Kostiainen, N. Asokan, and Jan-Erik Ekberg

Nokia Research Center, Helsinki
{kari.ti.kostiainen,n.asokan,jan-erik.ekberg}@nokia.com

Abstract. A generic credential platform realized using a hardware-
based trusted execution environment (TrEE) provides a usable and
inexpensive way to secure various applications and services. An impor-
tant requirement for any credential platform is the ability to disable and
restore credentials. In this paper, we raise the problem of temporary
credential disabling from embedded TrEEs and explain why straight-
forward solutions fall short. We present two novel credential disabling
approaches: one based on the presence check of a personal element, such
as SIM card, and another utilizing a semi-trusted server. We have imple-
mented the server-based credential disabling solution for mobile phones
with M-Shield TrEE.

1 Introduction

Credentials are needed to secure various applications and online services. Tra-
ditional credentials, like passwords, are vulnerable to many attacks including
phishing. Dedicated hardware tokens provide a higher level of security, but are
too expensive for most use cases, and having to carry a separate token for each
service is inconvenient for users. Credentials implemented using general-purpose
hardware-based trusted execution environments (TrEEs), such as Trusted Plat-
form Modules (TPM) [17], JavaCard [9], M-Shield [14] or ARM TrustZone [1],
can provide good security and usability at the same time. By utilizing already
deployed TrEEs, such credentials can also be cost-efficient; TPMs are already
available on many high-end personal computers while several existing mobile
phones are based on TrEEs like M-Shield and TrustZone. Examples of credential
platforms implemented on top of these TrEEs include On-board Credentials [10]
and Trusted Execution Module [4].

One important requirement for any credential platform is the ability to disable
and restore credentials from TrEEs. To get a concrete example of the problem
consider the following scenario: Alice has her on-line banking credential stored
in the TrEE of her mobile phone. Alice damages her phone and has to leave it to
a service point for repair. How can Alice (1) easily disable the banking credential
from her phone for the duration of the repair, so that the service point personnel
cannot use the credential, and (2) conveniently restore the credential once she
gets the phone back? Another use case is device lending: Alice might want to
disable important credentials from her phone before handing it over to a friend.

T. Aura, K. Järvinen, and K. Nyberg (Eds.): NordSec 2010, LNCS 7127, pp. 171–186, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

172 K. Kostiainen, N. Asokan, and J.-E. Ekberg

Trusted execution environments are either removable or embedded. When a
user’s credentials are stored in a removable TrEE, in the form of physically dis-
tinct secure element like a smartcard, temporary credential disabling is intuitive
and well-understood from the user’s point of view: the user can simply remove
the TrEE from the device, and the credentials can no longer be used in that
device until the TrEE is re-inserted.

Storing credentials in embedded TrEEs is attractive for multiple reasons. First,
embedded TrEEs, such as TPM, M-Shield and TrustZone, are available in a wide
range of already deployed devices from mobile phones to laptops. Second, remov-
able TrEEs are often controlled by the element issuer, e.g. in the case of SIM
card the mobile phone operator; and using them for third-party credentials is
not always possible. Third, embedded TrEEs are more cost-efficient, especially
for low-end, mass market devices. Fourth, embedded TrEEs can be tightly inte-
grated with the device OS so that a trusted path to the user can be realized.

When credentials are stored in an embedded TrEE credential disabling be-
comes more challenging. When the user e.g. leaves her device to a service point,
the credentials must be disabled or removed from the embedded TrEE so that
the new person in possession of the device, i.e. the attacker, cannot use the
credentials even though he has physical access to the device itself.

In this paper we address the problem of temporary credential disabling from
embedded TrEEs—a problem that has not been addressed before to the best of
our knowledge. The contributions of this paper are two-fold: First, we raise the
problem and explain why straightforward solutions are not adequate to solve this
seemingly simple problem. Second, we present two novel credential disabling ap-
proaches: we outline credential disabling based on a presence check of a personal
element, such as SIM card, and describe in more detail credential disabling that
utilizes a semi-trusted server. Both of these solutions can be realized using com-
modity devices widely available today. We have implemented the server-based
credential disabling solution for mobile phones with M-Shield TrEE.

2 Assumptions and Requirements

2.1 Assumptions

We make the following assumptions about the underlying hardware and software
platform that is available on the user’s device.

A1: Trusted execution environment. We assume that the device is
equipped with a hardware-based trusted execution environment (TrEE) that
provides: (1) isolated and integrity protected execution of trusted code (here
“trusted” can mean e.g. code signed by a trusted authority, such as the device
manufacturer), and (2) secure storage for a device-specific encryption key K.
Integrity of the TrEE itself may be protected with secure boot. M-Shield [14]
is an example of such TrEE.

A2: Operating system security framework. We also assume availability of
an operating system (OS) security framework that provides: (1) isolated code

Credential Disabling from Trusted Execution Environments 173

execution, and (2) secure storage for each OS-level process/application. Ad-
ditionally, (3) the OS security framework allows only trusted (e.g. signed)
applications/processes to communicate with TrEE. Integrity of the OS se-
curity framework may be protected with secure boot that utilizes TrEE.
Symbian OS is an example of such OS-level security framework [7].

2.2 Attacker Model

We make the following assumptions about the capabilities of the attacker.

C1: Network communication control. We assume that the attacker is able
to read, modify and replay any network traffic between the user’s device and
any external storage media.

C2: External media control. We assume that the attacker has access to any
data stored to insecure external storage media, such as removable memory
elements like MMC cards and users’ home PCs. This claim can be well
justified with the users’ careless handling of removable memory elements
and prevalence of malware on users’ PCs.

C3: TrEE control. We assume that the attacker cannot read or modify any
processing that takes place within the TrEE, or read or modify any secrets,
such as the device-specific encryption key K, stored within the TrEE. This
assumption implies that the attacker is not able to tamper with the TrEE
hardware or mount successful side-channel attacks.

C4: Operating system control. While in physical possession of the device,
the attacker can install and remove any OS-level applications to and from
the device. The attacker may also re-install the entire OS or reset the de-
vice back into factory state. We assume that the attacker cannot read or
modify processing of existing applications (installed before the attacker ac-
quired the possession of the device), or read or modify data stored to secure
storage of existing applications, as long as the attacker cannot compromise
the OS-level security framework. Due to the large size of modern operating
systems we do not generally assume that the OS-level security framework
remains uncompromised, and later in this paper we discuss the implications
OS compromise to our credential disabling approaches.

2.3 Requirements

A credential platform that allows the user to disable and restore her credentials
that are protected with an embedded TrEE should fulfill the following require-
ments.

R1: Automatic normal backup. Users are expected to (or at least allowed
to) make frequent “normal backups” of their credentials into external inse-
cure storage media, such as their home PC, MMC card or an on-line backup
server. Normal backups should be encrypted to protected them from eaves-
dropping (attacker has access to backups due to assumption C2) and restor-
ing them should be possible only to the same device. As long as the user is in

174 K. Kostiainen, N. Asokan, and J.-E. Ekberg

possession of her device, the normal backup operation should not require any
user interaction, so that the backup process can be automated for optimal
user experience.

R2: Easy disabling backup. Before lending her device, the user should be
able to trigger a so called “disabling backup” operation. This operation
should perform two tasks. First, it should create a new backup of the cre-
dentials that only the same user can restore into the same device. Second, it
should disable all the previously created normal backups, so that the attacker
in physical possession of the device cannot restore any of the normal backups
it may have access to (C2). Creating and restoring a disabling backup may
require some user interaction, since such an operation is performed consider-
ably less often compared to normal backups, but nonetheless disabling and
restoring credentials should be as easy as possible for the user.

In this paper we explicitly do not address device theft (many mobile devices
already today support “remote kill” functionality to prevent usage of stolen
device), but instead focus on use cases in which the device is voluntarily handed
to an untrusted person for a limited period of time.

3 Straightforward Solutions

In this section we explain why the seemingly simple problem of credential dis-
abling from embedded TrEEs cannot be solved with straightforward solutions.

3.1 Credential Disabling with Passwords

An obvious and simple approach would be to use a password for protecting the
recovery of disabling backups. In such a solution the normal credential backups
would be encrypted using the device-specific encryption key K (that is only
accessible within the TrEE) and the disabling backups would be additionally
bound to a password that the user defines either when the credential platform
is first taken into use or when the first backup is created. The user would have
to enter the same password into the device when a disabling backup is restored.
The credential platform would only allow recovery of disabling backup if the
password is correct.

This simple approach would have the typical usability and security issues of
password based approaches (user forget and re-use passwords, and pick pass-
words with low entropy). In addition, this approach would have the following
two problems. First, it would not meet our requirement R2: binding disabling
backups to a password would not prevent the attacker from restoring normal
backups that are not password protected (we assume that backups made to in-
secure storage media may leak to the attacker). Binding also normal backups to
a password would not meet our requirement R1. Second, implementing such a
scheme on existing devices would requite us to trust the entire operating system,
since passwords input to hardware-based TrEE without OS involvement is not
supported by majority of existing devices.

Credential Disabling from Trusted Execution Environments 175

3.2 Credential Disabling with Removable Element

A natural following approach would be to bind the recovery of (both normal
and disabling) backups to a key that is stored into a removable general-purpose
element (RGE), such as MMC card or USB stick, that most PCs and mobile
devices are equipped with or have interfaces for. During backup recovery the
credential platform would check that a RGE with correct password is present on
the device. As long as the RGE would remain present, normal backups could be
created and restored automatically.

The user would be instructed to remove the RGE from the device when lend-
ing the device and re-insert the RGE back to the device when she regains the
possession of the device. Such a straightforward approach would not meet our
requirements because we assume that the attacker has access to any data stored
to insecure external media, including RGEs. To be able to fulfill our requirements
with the use of RGEs, we have to relax our initial attacker capability C2.

RC2: Relaxed external media control. In the relaxed attacker model we
assume that the attacker has access to any data stored to insecure external
media, except the latest data stored to removable general-purpose elements
(RGE), such as MMC cards and USB sticks. In other words, we assume
that the user can—when instructed correctly—take care of the RGE during
device load period, but any data stored to RGE will eventually leak to the
attacker.

Even with this relaxed attacker model, credential disabling from embedded
TrEEs is not straightforward. By simply binding the recovery of backups to
a recovery key that is stored to a RGE does not prevent the attacker from
restoring old backups, since we assume that old recovery keys stored to RGE
will eventually leak to the attacker (RC2). Thus, a mechanism for preventing
recovery of old backups is needed.

3.3 Credential Disabling with Embedded Secure Counter

Preventing recovery of old backups is simple if the embedded TrEE supports
secure non-volatile memory using which secure monotonic counters can be im-
plemented. In such a solution, the current value of a secure counter would be
bound to each normal backup (that is encrypted using the device specific key
K). When the user in is possession of her device normal backups can be created
and restored automatically. When the user triggers a disabling backup opera-
tion, the counter within the embedded TrEE is incremented and the new counter
value and a recovery key (stored to RGE) are bound to the encrypted disabling
backup. Again, the user is instructed to remove the RGE from the device for
the duration of the device loan period. During backup recovery the credential
platform will verify that the counter value in the backup matches the counter
within the TrEE and that the user has inserted RGE with valid recovery key.

Assuming our relaxed attacker model (RC2) this mechanism would meet our
requirements. The scheme would prevent the attacker from restoring normal

176 K. Kostiainen, N. Asokan, and J.-E. Ekberg

backups when the device is disabled and prevent restoring of old disabling back-
ups with old keys that may have leaked from the RGE. However, many existing
and widely deployed TrEEs do not support secure non-volatile memory and
secure counters (see e.g. [13] for discussion). Thus, to implement secure tempo-
rary credential disabling using commodity devices available today, alternative
approaches are needed.

4 Credential Disabling with Personal Element Presence

As explained in the previous section, disabling credentials from existing em-
bedded TrEEs is not straightforward. Simple solutions based on passwords and
removable elements do not meet our requirements and many existing devices do
not support secure counter based credential disabling.

Conveniently, certain mobile devices are equipped with a removable element
that the user is accustomed to remove from the device before lending it and
taking good care of during the device loan period. We call such a storage ele-
ment “personal element” (PE). PE is typically dedicated for single use and has
monetary or other value so that the user has an incentive to remove it and not
to insert it into untrusted devices. In mobile phones such an element is typically
available in the form of a SIM card. We extend our attacker model to cover
personal elements.

C5: Personal element control. We assume that the attacker does not have
physical access to personal elements. This claim can be justified with (1) the
users’ existing habit and (2) monetary incentive to remove personal element
from the device before lending it and taking good care during the device
loan period.

An obvious approach would be to store all credentials to the personal element for
the duration of the device loan. However, this is typically not possible. First, the
storage space on many SIM cards is constrained (e.g. 128 kB on many existing
SIM cards) while the credentials database may be arbitrary large.1 Second, many
existing SIM cards do not provide application programming interfaces (API) for
using SIM cards as a generic, secure storage medium.2

Instead of using the personal element as storage for credentials during device
loan, the recovery of backups can be bound to the presence of the personal
element. The solution details are rather simple: A backup of the credentials
can be made by encrypting the credentials using the device specific key K and

1 Some credential platforms allow metadata, such as logo of credential issuer, to be
attached to credentials

2 Typically, SIM cards only provide an API for using the address book feature of the
SIM card. The address book cannot be used as generic secure storage, since the data
that can be stored into it is very limited and because the users are expected to (or
at least allowed to) make backups of address book contents to external, insecure
storage media.

Credential Disabling from Trusted Execution Environments 177

including the PE identifier (e.g. IMSI number of SIM card) to the encrypted
backup. When a backup is restored, the TrEE would simply check that PE with
the same identity is present in the device.

For optimal user experience a backup of the credentials could be made (to an
external storage medium) every time there is a change in one of the credentials,
e.g. when a new credential is added to the credential platform. At any time the
user may remove the personal element from the device. The credential platform
notices the disappearance of the element and deletes the local copy of credentials
from the device itself. The device may now be safely given to the attacker which
cannot restore a backup without the same SIM card. When the user regains the
possession of the device and re-inserts PE back to the device, the credentials
platform can fetch the latest backup from the external storage and recover it.

Unfortunately, the above outlined simple PE presence check mechanism could
be easily bypassed by the attacker. The attacker could e.g. insert a fake SIM
card into the SIM card slot of the mobile device. The fake SIM would claim the
required PE identity (IMSI) and restoring backups would be possible.

To prevent such attacks, the PE presence check should be based on a cryp-
tographic protocol (e.g. challenge-response protocol) between the TrEE and the
SIM card. The prerequisite of such a protocol is either the ability to setup a
security association between the TrEE and the SIM card, or possibility to use
an external and trusted server that has an established trust relationship with
the SIM card issuer. The first alternative requires the possibility of installing
new logic on the SIM card to support the setup and use of a security associa-
tion. There is no standardized means to do this. The second alternative requires
support from the operator who issued the SIM card. In Section 7.1 we discuss
the latter alternative further, but for now we focus on alternatives that can be
implemented without network operator involvement.

5 Credential Disabling with Semi-trusted Server

As discussed in the previous sections, credential disabling from embedded TrEEs
can be implemented securely if the embedded TrEE provides support for secure
counters, or a personal element is available and its presence can be checked in
cryptographic manner. In many cases neither of these conditions hold. In this
section we present a novel credential disabling solution that can be implemented
using existing, widely deployed TrEEs without dependencies to external parties,
such as network operators.

The basic idea of this approach is to bind disabling backups to a recovery
key that is stored into a removable general-purpose element (RGE) and to use
a semi-trusted server as a secure counter in order to prevent recovery of old
backups (we call the server “semi-trusted” since it is only trusted to maintain
integrity protected state information for each device and communicate this state
information in an authenticated manner to each device). The user is expected to
remove the RGE from the device before lending it and to take care of the RGE
during the device loan period.

178 K. Kostiainen, N. Asokan, and J.-E. Ekberg

Fig. 1. Server-assisted credential system initialization

5.1 Definitions

We assume that the TrEE is equipped with a device specific platform key K that
is only accessible inside the TrEE (assumption A1). The device and the server
share a symmetric key KS and the server is able to map a platform key identifier
I to KS shared between a particular device. KS and I are setup during a system
initialization phase.

On the device side we have two software components. Backup PA is a software
component (protected application) that is executed inside the TrEE. Credentials
Manager (CM) is a privileged operating system level component. The protocol
that is run between the device and the server is called credential disabling pro-
tocol.

5.2 Initialization

The system initialization phase is shown in Figure 1. In this process shared I and
KS are established between the TrEE and the server. This negotiation should
happen preferably at device manufacturing time. Another possibility is do the
credential platform initialization when the credential platform is first taken into
use. In such a case the exchange of I and KS must be a part of an authenticated
and encrypted protocol run between the server and the Backup PA to prevent
an attacker from reseting the device (attacker capability C3) and initializing the
system with an attacker chosen KS .

The Backup PA creates a random key called platform key instance Ki that is
used to seal individual credentials stored on device file system. The Backup PA
also sets a secure monotonic counter to zero, and creates a platform key token
T0. This token is an authenticated encryption over Ki, counter value and KS

using device specific platform key K as the key; T0 = AEK(Ki, 0, KS) where
AEk() denotes to authenticated encryption with k as the key.

CM saves T0 to its OS-level secure storage. This token must be loaded to TrEE
each time a new credential is created and sealed, or an existing sealed credential

Credential Disabling from Trusted Execution Environments 179

Backup
PA

Credentials
Manager

Backup
Server

h = H(sealed creds.)

result

Pick challenge c

Increment counter to n+1

Tn+1 = AEK(Ki, n+1, KS)

AC = AEKS(n+1, c, h)

Tn, h

Tn+1c, AC

I, sealed creds., Ac

AS

Check client counter

Increment server
counter to n+1

Update record for I

AS = AEKS(result, c, n+1)

Verify AS

Check challenge c Write Tn+1 to RGE

Remove Tn+1 and
credentials from device

AS

Device

Fig. 2. Server-assisted credential disabling

is accessed. When a token is saved on the secure storage of CM, the device is
considered “enabled”. Normal backups can be created and restored simply by
copying sealed credentials from the device to external, insecure storage media
and from the storage media back to the device.

5.3 Credential Disabling

The server-assisted credential disabling operation is illustrated in Figure 2. The
purpose of this operation is to create a new backup of the credentials to the
backup server and disable all previous backups.

The disabling operation is triggered by the user. CM calculates a hash of all the
sealed credentials that are stored on the device. The hash and current platform
key token Tn are loaded to TrEE. The Backup PA picks a random challenge c
for freshness of the credential disabling protocol, and saves it temporarily into
volatile secure memory inside TrEE. The Backup PA also recovers the current
counter value from Tn, increments the counter to n + 1, and creates a new
platform key token Tn+1 = AEK(Ki, n + 1, KS). Additionally, the Backup PA
creates a client authenticator AC which is an authenticated encryption over
counter value, challenge c and credentials hash h using KS as the key: AC =
AEKS (n + 1, c, h).

CM sends the sealed credentials and the authenticator AC to the backup
server together with a platform key identifier I. The server maintains a table

180 K. Kostiainen, N. Asokan, and J.-E. Ekberg

with entries of the form 〈 I, counter, sealed credentials, KS 〉.3 Upon receiving
the client request the server determines which KS to use based on identifier I,
verifies the client authenticator AC and recovers the client counter value and the
sealed credentials hash. The server checks that the hash matches the received
sealed credentials. If the client counter is larger than the one locally stored, the
server updates its local counter and the local copy of sealed credentials in the
database for this particular I.4

The server constructs a server authenticator AS that contains the challenge
c, the result of the backup operation and the incremented counter value: AS =
AEKS (result, c, n + 1). Server sends authenticator AS to CM which feeds it
to TrEE where the Backup PA verifies the authenticator and checks that the
challenge c matches the one it created and saved to the secure volatile memory
earlier. If the Backup PA returns positive result, CM copies Tn+1 to RGE, deletes
the local copy of the credentials and Tn+1 from the device and informs the user
to remove the RGE from the device.

CM considers the device “disabled” as long as there is no token on its local
storage. Restoring backups is possible only by running restore protocol with the
server.

5.4 Credential Recovery

The server-assisted credential recovery is shown in Figure 3. The purpose of this
operation is to restore previous disabling backup from the server provided that
the user has re-inserted RGE with valid (latest) token to the device.

The restore operation is triggered when the user inserts RGE into the de-
vice. CM loads Tn from RGE to TrEE. The Backup PA constructs a client
authenticator AC that contains the counter value n and random challenge c:
AC = AEKS (n, c). CM sends this authenticator AC together with I to the
server.

The server verifies authenticator AC using KS, and extracts the counter value.
If the counter is less than in the local database of the server (old token read from
RGE), the server returns an error. Otherwise, it increases its local counter and
returns the sealed credentials together with an authenticator AS that contains
the operation result, hash of the sealed credentials h, the challenge c and the
updated counter value: AS = AEKS (result, c, h, n + 1). CM hashes the received
credentials and the Backup PA verifies that the credentials hash matches the
one in the authenticator and that the challenge in the authenticator is valid.
The Backup PA also creates Tn+1 which CM stores on the device.

Now, CM considers the device “enabled” again and credentials can be used
by loading an encrypted credential together with the token to TrEE.

3 The server must protect the integrity of counter and confidentiality of KS .
4 Platform key identifier I can identify both the device and the currently used platform

key instance, and thus allow multiple parallel backup branches to be be maintained
for the same device, and thus multiple users using the same.

Credential Disabling from Trusted Execution Environments 181

Fig. 3. Server-assisted credential recovery

6 Implementation

We have implemented the server-assisted credential disabling scheme described
in the previous section for mobile phones with M-Shield secure environment.
Our target implementation device was Nokia N96 with Symbian OS v9.3 and
S60 platform.

M-Shield is a security architecture available for the OMAP platform used in
mobile devices. It has a secure environment consisting of a small amount of on-
chip ROM and RAM, as well as one-time programmable memory where unique
device key(s) can be maintained. All of these are only accessible in a secure execu-
tion environment implemented as a special “secure processor mode”. The secure
mode is isolated from ordinary software, including the device operating system. In
M-Shield architecture trusted (signed) code can be implemented as so called pro-
tected applications (PAs). For more detailed information on M-Shield see [15,14].

The Backup PA was implemented as an M-Shield protected application. The
Backup PA was written in C and it is 6 kB in size in compiled format. We re-
use the same the authenticated encryption operation (our own implementation
of AES-EAX mode [2]) for local data sealing and disabling protocol authen-
tication to minimize the Backup PA implementation footprint. The M-Shield
environment provides existing primitives for encryption (AES), random number
generation and hashing (SHA-1). The M-Shield TrEE provides small amount
of volatile secure memory that persists its state between subsequent protected
application executions (but not over device boots). We use this memory to store
the challenge that is used to guarantee the freshness of the disabling backup
protocol run.

182 K. Kostiainen, N. Asokan, and J.-E. Ekberg

The operating system level component Credentials Manager (CM) was imple-
mented using C++ for Symbian OS. The Symbian OS platform security model
provides two features that we utilize in our implementation [7]. First, each pro-
cess has its own private directory. CM uses this feature for storing the platform
key token. Second, the Symbian OS platform security provides capability model
in which access to certain APIs can be restricted to applications with required
capabilities (privileges). In our implementation, access to M-Shield TrEE is lim-
ited to CM using this model. The CM component itself is trusted due to signing
using Symbian Signed infrastructure [16].

The Backup server was implemented with standard Apache server running
on Linux. The credential disabling protocol was implemented with simple type-
length-value encoded binary messages that are Base64 encoded for TLS based
HTTP POST transport. We implemented the system initialization phase as a
server-authenticated on-line protocol using similar encoding and transport. The
trust root of the server authentication was fixed to our Backup PA implementa-
tion.

7 Analysis

7.1 Credential Disabling with Personal Element Presence

As already briefly discussed in Section 4 the PE presence check should be a
cryptographic protocol between the TrEE and the PE. In case of SIM cards, one
alternative to realize this would be to use Generic Bootstrapping Architecture
(GBA) [8]. In GBA an application specific network entity called Network Au-
thentication Function (NAF) and a software entity on the SIM-equipped device
can bootstrap a shared secret from the SIM-resident secret that is shared with
the network operator. The prerequisite is an established relationship between
the NAF and the network operator.

One possible way to implement SIM-based credential disabling would be to
fix the trust root of disabling specific NAF to the Backup PA. Then the check
for the presence of a SIM card would be a protocol between the Backup PA
and disabling NAF. If the valid SIM is present on the device, the device can
prove this fact to the disabling NAF by using the bootstrapped GBA session
key it shares with the NAF. The disabling NAF can sign a statement confirming
this verification that the Backup PA can verify using the trust root. We leave
working out the exact details of this protocol and implementation of this scheme
as future work.

Personal element presence based credential disabling can be automatically
triggered when the user removes the PE from the device. This significantly re-
duces the chance that the user would forget to disable her credentials before
lending the device compared to solutions based on counters in which the user
must explicitly trigger the disabling operation.

Credential Disabling from Trusted Execution Environments 183

7.2 Credential Disabling with Semi-Trusted Server

In the server-assisted solution the freshness of the token is checked against the
server to prevent recovery of backups using old tokens that the attacker may get
access to (RC2). After a successful credential recovery, the token is stored on
local storage of CM and loaded to TrEE every time a credential is used without
connecting to the server. The security of this solution relies on the assumption
that the attacker cannot replace a valid token on the local storage of CM with
an old token (C4). In our implementation, the Symbian OS platform security
model prevents an attacker from replacing data in CM private directory. The
attacker may reset the whole device (e.g. many mobile phones provide an easy
way to restore factory settings), but replacing a valid token with an old one is
not possible without compromising the OS.

If similar OS-level secure storage is not available, or if we assume that the
attacker is able to compromise the OS level security framework and thus replace
the valid token with an old token, the attacker can restore old backups. This
can be prevented by running an on-line protocol with the server either every
time the device is booted or before every credential usage. The usage of this
security mechanism could be based on credential specific policies. Freshness of
the token could be checked before every credential invocation for credentials with
high security level (e.g. online banking credentials), whereas for most credentials
checking the freshness only during device boot might be enough.

The security of the solution is also based on the assumption that the semi-
trusted server communicates correct counter values to the device. This means
that the server must maintain integrity protected storage of counter values and
secretly store keys that are used to authenticate the communication. In practice
this could be done using hardware-based security module on the server. The
sealed credential backups themselves are not confidential (i.e. they may leak to
the attacker) which makes implementation and deployment of the server easier
(the credential backups could be e.g. stored to external disks if needed).

If the server is malicious or gets compromised and send incorrect counter
values, the device may accept an old token during recovery protocol. In such a
case, the attacker can restore credentials from an old backup and use the old
credentials. However, neither the attacker or the server can recover the content
of the sealed credentials themselves.

The credential disabling protocol is not error-tolerant to network errors where
the connection breaks after the server has received client request, but before the
client has fully received server response. In such a case, the server has incre-
mented its counter which invalidates the current token, but the client has not
recovered credentials without a valid response from server. Two alternatives ex-
ist: (1) Allow multiple recovery attempts with the same token with the cost
of increased attacker opportunities. (2) Introduce an additional round-trip to
the protocol that would invalidate the current token, i.e. increment the server
counter, only after successful recovery in client end. The client should check
whether the server is reachable before performing a disabling backup. The cre-
dential disabling protocol provides freshness guarantee to the client device based

184 K. Kostiainen, N. Asokan, and J.-E. Ekberg

Table 1. Overview of different credential disabling solutions

Solution Credential use User failure NV memory Operator

1. PE presence on-line low no yes
2. Embedded counter local high yes no
3. Server-assisted on-line high no no

on the client nonce. The freshness guarantee to the server is based only on the
counter.

The security of the server-assisted credential disabling is dependent on correct
user behavior. First, the user may forget to trigger the explicit disabling oper-
ation. If this is the case, the credentials remain on the device and the attacker
can use them. The likelihood of this failure is considerable. The user may also
fail to remove the RGE that contains the platform key token from the device. If
this is case, the attacker can recover the latest credential backup. This problem
is less likely, since the credential platform can remind the user to remove the
RGE once the disabling operation is completed. Second, the user may lose the
RGE during the disabling period. In this case, she cannot recover the creden-
tial backup. To fully understand how likely these error cases are, users tests are
needed. We leave these as future work.

The dependency on an explicit disabling operation also limits the applicability
of the server-assisted solution. For example, the user cannot disable the device
before leaving it at a service point, if the device is broken or malfunctioning
in such a way that the disabling operation cannot be triggered from the de-
vice. To address such scenarios automatic credential backups are needed which
can be supported in personal element presence check based credential disabling
approach.

7.3 Comparison of Different Solutions

Table 1 presents an overview of the three primary credential disabling solutions
discussed in this paper.

1. PE presence check based credential disabling has low probability of user
failure (the user is likely to remove SIM before lending her device). If the
OS-level security framework cannot be trusted, network based PE presence
check should be performed before every credential invocation which requires
on-line connectivity. The drawback of this solution is the dependency on
network operators.

2. Credential disabling based on TrEEs with embedded secure counter has
higher probability of user failures (user may forget to trigger disabling),
but credential use without any server interaction is possible without having
to assume trustworthiness of OS-level security. The drawback is that many
existing and widely deployed TrEEs do not support non-volatile secure mem-
ory.

Credential Disabling from Trusted Execution Environments 185

3. The server-assisted credential disabling can be implemented with many ex-
isting TrEEs (also the ones without counters). The drawbacks of this solution
are higher probability of user failures (explicit user triggering) and the re-
quirement to interact with the server before each credential invocation if we
cannot rely on the trustworthiness of the OS-level security.

8 Related Work

To the best of our knowledge there is very little existing work addressing the
problem of temporary credential disabling from embedded trusted execution
environments. Most related work addresses either (1) credential transfer or mi-
gration from one TrEE to another, or (2) credential backup or storage to an
on-line server.

The Trusted Platform Module (TPM) specification define migration and main-
tenance commands [17]. The migration commands enable transfer of a single
credential from one TPM to another. The (optional) maintenance commands
enable transfer of all TPM protected credentials, or more precisely the transfer
of the storage root key that is used to protect TPM based credentials stored on
the device. Several researchers have proposed extensions to the TPM migration
and maintenance commands or built credential migration schemes and protocols
using these commands (see e.g. [11,3]). The TrEE based credential transfer has
also been studied in the context of digital right management (see e.g. [12]), and
there has been some attempts to standardize credential storage servers and pro-
tocols [6,5]. However, none of the existing papers or specifications address the
problem present in our scenario, i.e. how to prevent an attacker that has physical
access to the device from restoring a valid credential backup.

Using a server to provide secure counters for client devices is not a new idea.
van Dijk et al. show how an untrusted server that is equipped with a trusted
time stamping device (in practice, a TPM) can be used to provide secure virtual
monotonic counters for many client devices [18].

9 Conclusions

In this paper we have raised attention to a problem that has not been addressed
before—temporary disabling and recovery of credentials from embedded trusted
execution environments. We have explained why straightforwards solutions do
not solve this seemingly simple problem, and presented two novel solutions: one
using presence check of a personal element, such as SIM card, and another uti-
lizing semi-trusted server as a secure counter. We have implemented the server-
based solution for mobile phones with M-Shield secure environment.

Neither of the presented schemes is perfect: implementing SIM-based creden-
tial disabling securely requires network operator involvement and our server-
based approach is dependent on correct user behavior. Thus, more work on
temporary credential disabling is needed.

186 K. Kostiainen, N. Asokan, and J.-E. Ekberg

References

1. ARM. Trustzone,
http://www.arm.com/products/processors/technologies/trustzone.php

2. Bellare, M., Rogaway, P., Wagner, D.: EAX: A conventional authenticated-
encryption mode. Cryptology ePrint Archive: Re-port 2003/069 (September 2009),
http://eprint.iacr.org/2003/069

3. Berger, S., Caceres, R., Goldman, K., Perez, R., Sailer, R., van Doorn, L.: vTPM -
virtualizing the trusted platform module. In: Proceedings of 15th Usenix Security
Symposium, pp. 305–320 (2006)

4. Costan, V., Sarmenta, L.F.G., van Dijk, M., Devadas, S.: The Trusted Execu-
tion Module: Commodity General-purpose Trusted Computing. In: Grimaud, G.,
Standaert, F.-X. (eds.) CARDIS 2008. LNCS, vol. 5189, pp. 133–148. Springer,
Heidelberg (2008)

5. Fischl, J. (ed.): Certificate Management Service for The Session Initiation Protocol
(SIP) draft-ietf-sip-certs-09. Internet Engineering Task Force (September 2009)

6. Farrell, S. (ed.): Securely Available Credentials Protocol. Internet Engineering Task
Force, RFC 3767 (June 2004)

7. Heath, C.: Symbian OS Platform Security. Wiley (2006)
8. Holtmanns, S., Niemi, V., Ginzboorg, P., Laitinen, P., Asokan, N.: Cellular Au-

thentication for Mobile and Internet Services. Wiley (2008)
9. JavaCard Technology,

http://www.oracle.com/technetwork/java/javacard/overview/index.html

10. Kostiainen, K., Ekberg, J.-E., Asokan, N., Rantala, A.: On-board cre-dentials with
open provisioning. In: Proc. of ACM Symposium on Information,Computer & Com-
munications Security, ASIACCS 2009 (2009)

11. Kühn, U., Kursawe, K., Lucks, S., Sadeghi, A.-R., Stüble, C.: Secure Data Man-
agement in Trusted Computing. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS,
vol. 3659, pp. 324–338. Springer, Heidelberg (2005)

12. Nokia. Mobile Internet Technical Architecture - MITA. IT Press, Finland (2002)
13. Schellekens, D., Tuyls, P., Preneel, B.: Embedded Trusted Computing with Au-

thenticated Non-volatile Memory. In: Lipp, P., Sadeghi, A.-R., Koch, K.-M. (eds.)
TRUST 2008. LNCS, vol. 4968, pp. 60–74. Springer, Heidelberg (2008)

14. Srage, J., Azema, J.: M-Shield mobile security technology, TI White paper (2005),
http://focus.ti.com/pdfs/wtbu/ti_mshield_whitepaper.pdf

15. Sundaresan, H.: OMAP platform security features, TI White paper (July 2003),
http://focus.ti.com/pdfs/vf/wireless/platformsecuritywp.pdf

16. Symbian signed, https://www.symbiansigned.com
17. Trusted Platform Module (TPM) Specifications,

https://www.trustedcomputinggroup.org/specs/TPM/

18. van Dijk, M., Rhodes, J., Sarmenta, L., Devadas, S.: Offline untrusted storage with
immediate detection of forking and replay attacks. In: STC 2007: Proceedings of
the 2007 ACM Workshop on Scalable Trusted Computing, pp. 41–48. ACM, New
York (2007)

http://www.arm.com/products/processors/technologies/trustzone.php
http://eprint.iacr.org/2003/069
http://www.oracle.com/technetwork/java/javacard/overview/index.html
http://focus.ti.com/pdfs/wtbu/ti_mshield_whitepaper.pdf
http://focus.ti.com/pdfs/vf/wireless/platformsecuritywp.pdf
https://www.symbiansigned.com
https://www.trustedcomputinggroup.org/specs/TPM/

Java Card Architecture for Autonomous Yet

Secure Evolution of Smart Cards Applications�

Olga Gadyatskaya, Fabio Massacci, Federica Paci, and Sergey Stankevich

DISI, University of Trento, Italy
surname@disi.unitn.it

Abstract. Open multi-application smart cards that allow post-issuance
evolution (i.e. loading of new applets) are very attractive for both smart
card developers and card users. Since these applications contain sensi-
tive data and can exchange information, a major concern is the assurance
that these applications will not exchange data unless permitted by their
respective policies. We suggest an approach for load time application
certification on the card, that will enable the card to make autonomous
decisions on application and policy updates while ensuring the compli-
ance of every change of the platform with the security policy of each
application’s owner.

1 Introduction

Open multi-application environments such as PCs and mobile phones are
widespread. The main characteristics of such environments are co-existence of
several applications on one single platform and the possibility of these platforms
to evolve by adding new applications or updating of existing ones in a fully dis-
tributed and autonomous way. Such applications can exchange data locally or
remotely or access local APIs and in order to protect our security we regulate
their accesses by more or less stringent mechanisms of access control locally en-
forced by the platform. The problem of this approach is that we may end up
downloading something that turns out to be unusable. An alternative solution
could be to shift the security checks at loading time. This approach requires
applications to come with a manifest of their security-relevant actions and check
whether their behavior is acceptable before installing the code. The idea was
explored by Sekar et al. when the notion of model-carrying code was introduced
[13], has been demonstrated in the Security-by-Contract (S×C) approach [3], and
was adopted by W. Enck et al. for Android security [4].

Modern smart cards could be another example of an open multi-application
environment. But even examples of potentially multi-stakeholders applications
are de facto single one: a loyalty Miles& More Lufthansa credit card [9], could
include a Lufthansa application for collecting miles and a Bank application; in
fact it is just a credit card and mileage is calculated by the back-end system.
� Work partially supported by the EU under grant EU-FP7-FET-IP-SecureChange.

We thank B. Chetali, Q. Nguyen, and I. Symplot-Ryl for useful discussions.

T. Aura, K. Järvinen, and K. Nyberg (Eds.): NordSec 2010, LNCS 7127, pp. 187–192, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

188 O. Gadyatskaya et al.

(a) Smart Card Architecture (b) Security by Contract Architecture

Fig. 1. Architecture Evolution for Self-Certification

In order to support autonomous evolution on multi-application smart cards, we
need a way for the platform to verify that applications arriving on the platform
comply with the policy which is dynamically created by combining the poli-
cies of already installed applications. The task can be more complicated when
applications can also be removed and we want to avoid loss of functionalities.

In this paper we propose an addition to the Java Card security architecture
based on the Security-by-Contract approach that preserves security of the smart
card when the content of the card changes, so that the smart card itself can en-
sure security after an update, when new applications arrive, old ones are updated
or removed, or their security policies are changed.

2 Security-by-Contract Smart Card Architecture

Java Card architecture [10] consists of several layers as illustrated in Fig. 1(a):

– a device hardware,
– an embedded operating system (OS),
– a Java Card Runtime Environment (JCRE) on top of the embedded OS,
– the applications that are installed on the smart card, that are called applets.

Applets before being loaded on a smart card are converted into a CAP file, that
is a binary executable representation of the Java classes that compose the applet.
The JCRE is responsible for managing and executing applets. It is composed by
a Java Virtual Machine (JVM), native API, framework APIs, and an application
installer. The installer downloads and installs the applications on the card. To load
an application, the installer interacts with an off-card installation program which
transmits the CAP file. Once received the CAP file, the installer, first, checks the
signature of the file to ensure integrity and to prove the identity of the application
provider. Then, the installer saves the content of the file into the card’s persistent
memory, resolves the links with other applets already present on the card, creates
an instance of the applet and registers it to the JCRE. Then JVM, which consists
of a bytecode interpreter, executes the code contained in the CAP file.

Java Card Architecture for Autonomous Yet Secure Evolution 189

The applets installed on the smart card are isolated by the Java firewall.
The firewall allows only applets that belong to the same context to access the
respective methods. If an applet (server) wants to share data with another applet
(client) from a different context, it has to implement a shareable interface which
defines a set of methods that are available to other applets. These methods
(they are also called services) are the only methods of the server applet that
are accessible through the firewall. The JCRE will pass the call to the shareable
interface method from the client applet to the server applet. In the current Java
Card security model the server has an access control list of the applets that are
allowed to use this method, embedded into the server code. If the client is in the
list, the access is granted, otherwise the client gets null. If the client has been
updated, the server will still grant it an access, though now the server cannot
really be sure of the trustworthiness of the client.

We have identified the requirements for an extension of the security mecha-
nisms on Java Card in the presence of evolution from the requirements of the
GlobalPlatform (GP) specification [8]. GP is a middleware, that can run on top
of Java Card and provide more security mechanisms for applets management
(for inter-application communications GP relies on the JCRE). GP specifica-
tion provides explicit requirements for maintaining security (in terms of services
access control enforcement) and functionality of the applications on the card
during evolution.

The basic idea of our proposal is to add a contractual component to each
applet detailing its security policy and its claims on the usage of other resources
(services) on the platform (the latter can be also extracted from the CAP file).
The architecture we propose is provided on Fig. 1(b). It is based on the addition
of two components to the JCRE, the ClaimChecker and the PolicyChecker.

When a new applet has to be loaded on the card, the terminal sends the CAP
file of the applet to the installer. The CAP file contains the binary code of the
applet and its Contract. When the installer receives the CAP file of the new
applet the ClaimChecker verifies that the claims are compliant with the applet’s
code. If this is the case, the PolicyChecker checks the applet’s contract against
the platform policy P . If the PolicyChecker has returned True then the installer
finalizes the loading and creates an instance of the applet. Otherwise, the applet
is rejected. On the S×C-enhanced platform, when a method of the applet is
called by another applet, the Java Card firewall simply checks that the method
belongs to the shareable interface of the applet (this check is also a firewall’s
responsibility on the standard Java Card) and does not perform the run-time
checks of the applet’s privileges for an access to the services, since it was done
at the loading time.

The security model behind the concepts in the architecture assumes that the
card can be represented as a tuple 〈ΔA, ΔS ,A, shareable(), invoke(), sec.rules(),
func.rules()〉, where ΔA is a domain of applications; ΔS is a domain of services;
A ⊆ ΔA is a set of applications installed (deployed) on the platform. The func-
tion shareableA defines the actual shareable interfaces of applet A available on
the platform and the function invokeA the set of services called by A.

190 O. Gadyatskaya et al.

The functions sec.rules() and func.rules, define respectively the security pol-
icy and the functionality policy of each application. For every applet A ∈ A
sec.rulesA(s) defines for each service of applet A which other applets on the plat-
form are authorized to call it. The functional rules func.rulesA specify the set of
services on the platform that A needs in order to be functional (e.g. a transport
applet normally needs a payment applet in order to be useful).

The contract ContractA of an application A includes the following sets: ProvidesA
(a set of services that applet A has), CallsA (a set of services of other applets
that A calls), sec.rulesA (authorizations for A’s services access) and func.rulesA
(set of functionally necessary services for A).

The ClaimChecker for an application B with a contract ContractB will return
true if shareableB=ProvidesB and invokeB=CallsB. A PolicyChecker algorithm for
platform Θ and changed application B will allow the update if for all applications
A ∈ A and services s ∈ S
– Security on contract level: if service s of applet B is in CallsA then A is

authorized by B to call s ((s, A) ∈ sec.rulesB).
– Functionality on contract level: if service s of applet B is in func.rulesA

then s ∈ ProvidesB.

The main idea behind the security model is that if the ClaimChecker and the
PolicyChecker are sound and they returned true for ∀A ∈ A then the platform Θ
is secure.

3 Policy Checker Implementation

We have implemented the PolicyChecker for installation of a new application, as
the most interesting and representative case, using Sun’s Java Card simulator
for Java Card 2.2.2 specification [10]. Contracts are implemented as instances
of Contract Java class that are included in the CAP file of the applet. The
PolicyChecker has been implemented as Card Java Card applet. The Card class
has a field Card.Pool that stores the platform policy. Card.Pool is an instance
of Map Java class that associates with each applet on the platform its contract.
The applet is identified by a String that contains the AID while the contract is
an instance of the Contract class. The method validateContract(Contract) of
the class Card has as input parameter the Contract of a new applet and returns
the result of the evaluation of Contract against the platform policy stored in
field Card.Pool. If Contract is compliant with the platform policy, the new
applet is installed, otherwise it is rejected.

We have tested the feasibility of installing the PolicyChecker on the card as
an additional applet. In particular, we have evaluated the communication over-
head associated with the installation of the PolicyChecker in terms of number
of APDU commands exchanged between the terminal and the card to load the
CAP file. In fact, when the Java classes are converted into the CAP file, the
terminal converts them into data sequences (APDUs), which then are used to
upload the code and make it selectable. This is a good indication of the cross-
platform memory footprint of the applet as default APDUs are up to 255 bytes.

Java Card Architecture for Autonomous Yet Secure Evolution 191

The CAP file generated for the PolicyChecker applet contains 18 Java classes
and generates 118 APDUs commands to load the applet on the card. Thus, in-
stalling the PolicyChecker on the card does not require more APDUs than the
installation of a normal applet. We have also evaluated the overhead of installing
an applet along with its contract. We generated a Contract class for a sample
Transport applet (T for short). The ContractT contains 3 services in ProvidesT,
3 in CallsT, 4 authorized applets in sec.rulesT and 2 services in func.rulesT. The
ContractT is rather complicated comparing with a contract an average smart
card application can produce (usually applets have up to 2 services). The Java
Card representation of the ContractT is only 7 APDUs.

We do not show here how to construct a ClaimChecker. An example can be
found in Ghindici et al. [5]. The ClaimChecker they have built is working on more
complex information flow models and it can be restricted to our Contract model.

4 Related Works and Conclusions

Ghindici et al. [5] propose a domain specific language for security policies cap-
turing the information flow within small embedded systems. In the framework
they propose each application is certified at loading time, having a information
flow signature assigned to each method, describing the flow relations between
method variables. Huisman et al. [7] present a formal framework and a tool set
for compositional verification of application interactions on a multi-application
smart card. Their method is based on construction of maximal applets, w.r.t
structural safety properties, simulating all the applets respecting these proper-
ties. Model checking techniques can be then used to check whether a composition
of two applets A and B respects some behavioral safety property.

Girard in [6] suggests to associate security levels (clearances) to applica-
tion attributes and methods, using traditional Bell/La Padula model. Bieber
et al. adopt this approach in [2] and propose a technique based on model check-
ing for verification of actual information flows. The same approach is used by
Schellhorn et al. in [12] for their formal security model for operating systems
of multi-application smart cards. Avvenuti et al. in [1] propose a tool for off-
card verification of Java bytecode files, that could be later installed on the card,
their method explores the multi-level policy model and the theory of abstract
interpretation.

Outside of the smart cards domain, the techniques for policy enforcement
in multi-application environment are investigated also for mobile platforms and
operation systems. Ongtang et al. in [11] have proposed the Saint framework
for Android mobile platform applications to impose requirements on the usage
of their services on other applications during installation time and run-time.
Applications on a Saint-enabled Android platform can define permissions and
demand fulfillment of certain requirements by both their callers and callees. The
Kirin framework mentioned above was developed for Android by Enck et al.
[4], it can check permissions application requests at installation time in order to
capture possibly dangerous combinations of permissions and warn the user.

192 O. Gadyatskaya et al.

In this paper we have proposed an extension of the Java Card security mecha-
nisms for open multi-application smart cards that makes it possible to do verify
updates on the card. This extension adds two components to the JCRE, the
ClaimChecker and the PolicyChecker. In a nutshell, all applications are arriving
with specifications of their behavior and their requirements on other applications
on the platform. These requirements merged together create platform security
policy. The card can check autonomously whether they are acceptable and then
either reject or accept the change.

References

1. Avvenuti, M., Bernardeschi, C., De Francesco, N., Masci, P.: A tool for checking
secure interaction in Java Cards. In: Proc. of EWDC 2009 (2009)

2. Bieber, P., Cazin, J., Wiels, V., Zanon, G., Girard, P., Lanet, J.-L.: Checking secure
interactions of smart card applets: Extended version. J. of Comp. Sec. 10(4), 369–
398 (2002)

3. Dragoni, N., Massacci, F., Naliuka, K., Siahaan, I.: Security-by-Contract: Toward a
Semantics for Digital Signatures on Mobile Code. In: López, J., Samarati, P., Fer-
rer, J.L. (eds.) EuroPKI 2007. LNCS, vol. 4582, pp. 297–312. Springer, Heidelberg
(2007)

4. Enck, W., Ongtang, M., McDaniel, P.: On lightweight mobile phone application
certification. In: Proceedings of CCS 2009, pp. 235–245. ACM (2009)

5. Ghindici, D., Simplot-Ryl, I.: On Practical Information Flow Policies for Java-
Enabled Multiapplication Smart Cards. In: Grimaud, G., Standaert, F.-X. (eds.)
CARDIS 2008. LNCS, vol. 5189, pp. 32–47. Springer, Heidelberg (2008)

6. Girard, P.: Which security policy for multiplication smart cards? In: USENIX
Workshop on Smartcard Technology. USENIX Association (1999)

7. Huisman, M., Gurov, D., Sprenger, C., Chugunov, G.: Checking Absence of Illicit
Applet Interactions: A Case Study. In: Wermelinger, M., Margaria-Steffen, T. (eds.)
FASE 2004. LNCS, vol. 2984, pp. 84–98. Springer, Heidelberg (2004)

8. GlobalPlatform Inc. GlobalPlatform Card Specification. Specification 2.2 (2006)
9. Lufthansa. Miles&More credit cards, http://www.miles-and-more.com

10. Sun Microsystems. Runtime environment specification. Java CardTM platform, ver-
sion 2.2.2. Specification 2.2.2., Sun Microsystems (2006)

11. Ongtang, M., McLaughlin, S., Enck, W., McDaniel, P.: Semantically rich
application-centric security in Android. In: Proceedings of ACSAC 2009, pp. 340–
349 (2009)

12. Schellhorn, G., Reif, W., Schairer, A., Karger, P., Austel, V., Toll, D.: Verification
of a Formal Security Model for Multiapplicative Smart Cards. In: Cuppens, F.,
Deswarte, Y., Gollmann, D., Waidner, M. (eds.) ESORICS 2000. LNCS, vol. 1895,
pp. 17–36. Springer, Heidelberg (2000)

13. Sekar, R., Venkatakrishnan, V.N., Basu, S., Bhatkar, S., DuVarney, D.C.: Model-
carrying code: a practical approach for safe execution of untrusted applications.
In: Proc. of the 19th ACM Symp. on Operating Syst. Princ., pp. 15–28 (2003)

http://www.miles-and-more.com

Implementing Erasure Policies
Using Taint Analysis

Filippo Del Tedesco, Alejandro Russo, and David Sands

Chalmers University of Technology, Göteborg, Sweden
{tedesco,russo,dave}@chalmers.se

Abstract. Security or privacy-critical applications often require access to sensi-
tive information in order to function. But in accordance with the principle of least
privilege – or perhaps simply for legal compliance – such applications should
not retain said information once it has served its purpose. In such scenarios, the
timely disposal of data is known as an information erasure policy. This paper
studies software-level information erasure policies for the data manipulated by
programs. The paper presents a new approach to the enforcement of such policies.
We adapt ideas from dynamic taint analysis to track how sensitive data sources
propagate through a program and erase them on demand. The method is imple-
mented for Python as a library, with no modifications to the runtime system. The
library is easy to use, and allows programmers to indicate information-erasure
policies with only minor modifications to their code.

1 Introduction
Sensitive or personal information is routinely required by computer systems for various
legitimate tasks: online credit card transaction may handle a card number and related
verification data, or a biometric-based authentication system may process a fingerprint.
Such systems often operate under informal constraints concerning the handling of sen-
sitive data: once the data has served its purpose, it must not be retained by the system.

The notion of erasure studied here is higher-level than the system-level and physical
notions of data erasure which might involve, e.g. ensuring that caches are flushed and
that hard-drives are overwritten sufficiently often to eradicate magnetic traces of data.
The approach to program-based high-level erasure stems from the work of Chong and
Myers [3]. That work and its subsequent developments deal with a notion of erasure
which is relative to a multilevel security lattice [7]. For the purpose of this paper, we
will not consider this extra dimension – so we view data as either available or erased.

In this paper, we present a new approach to the enforcement of information-erasure
policies on programs which adapts concepts from dynamic taint analysis.

Language-Based Erasure. Our approach for information-erasure has several key fea-
tures: it is a purely dynamic mechanism, it is based on taint analysis, and it is realised
completely as a Python library. To see the benefits of these features, it is useful to con-
sider previous work on erasure in the context of a simple erasure scenario (one which
we will further elaborate upon in Section 3): a fingerprint-activated left-luggage locker
of the kind that is increasingly common at US airports and amusement parks. When
depositing a bag, a fingerprint scan is recorded. The locker can only be opened with the

T. Aura, K. Järvinen, and K. Nyberg (Eds.): NordSec 2010, LNCS 7127, pp. 193–209, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

194 F. Del Tedesco, A. Russo, and D. Sands

same fingerprint that locked it. From a privacy perspective, there is a clear motivation
for an erasure policy: the fingerprint (and any information derived from it) should be
erased once a locker has been reopened.

Hunt and Sands [12] described the first approach to the enforcement of Chong-
Myers-style erasure properties, reemphasizing two key features missing from [3]: the
ability to associate erasure policies with IO (clearly needed in our erasure scenario), and
a way to verify that a program correctly erases data by a purely static analysis (a type
system). There are two key limitations in Hunt and Sands’s approach. Firstly, in order to
obtain a clean semantic model, the authors consider a restricted form of erasure policy
which is specified in the code in the form: “the value received at this input statement
must be erased by the end of the code block which follows it”. This is suitable for the
simple locker scenario (which is problematic for other reasons) but unsuitable for more
complex conditional policies of the kind discussed by Chong and Myers. Secondly, the
idea is only elaborated for a toy language. Scaling up to a real language is a nontriv-
ial task for such a static analysis, and would require, among other things, a full alias
analysis.

Chong and Myers [5] independently considered the problem of enforcing erasure
policies and developed a hybrid static-dynamic approach. In their approach, data is
associated with conditional erasure properties which state that data must be erased at
the point when some (in principle arbitrary) condition becomes true. An implementation
extending the Jif system uses a simple form of condition variables for this purpose [4].
To support such rich policies, they assume a combination of a static analysis and a
runtime monitor. The static analysis ensures that all program variables are labeled with
consistent policies. For example, if variable x is copied to y and x’s policy says that
it should be erased at some condition c, then the policy for y should be at least as
demanding. It is then the job of the run-time system to detect when conditions become
true, and implement the erasure on the behalf of the programmer (by overwriting all
variables with a dummy value).

Neither of these approaches can satisfactorily handle the simple locker scenario (and
certainly not the more complex variants we will consider later in this paper). The ap-
proach described in [5,4] does not consider input at all, but only one-time erasure of
variables – although this is arguably not a fundamental limitation. More fundamentally,
both approaches use a semantic notion of erasure which is based on a strict information-
flow property. In the locker scenario described previously, there is a small amount of
information which is inevitably “retained” by the system, namely the fact that the finger-
print used to unlock the container matches the one used to lock it. This requirement can-
not be easily captured by [5,12] since no retention of information is allowed. Observe
that the retained information is not enough to recover the fingerprint which produced it,
and therefore we can consider the system as an erasing one. It is not difficult to imagine
more complex scenarios (e.g. billing services) that need to retain portions of sensitive
information to complete their task, but the amount of retained data is not enough to
consider their behavior as a violation of some required erasure policies. Chong-Myers
approach includes declassification, but what we need here is instead an erasure dual,
the ability to selectively ignore that some information is remembered by the system.

Implementing Erasure Policies Using Taint Analysis 195

This feature might be called delimited retention, as it resembles the delimited release
[21] property that some non-interferent system may exhibit.

Overview. In the remainder of this paper we outline our alternative approach. We adopt
the idea of dynamic taint tracking which is familiar from languages like Perl [1] and a
number of recent pragmatic information-flow analysis tools [10,13,14,8,22]: a specific
piece of data which is scheduled for erasure is labeled (“tainted”). As computation
proceeds, the labels are tracked through the system (“taint propagation”). When it is
time to erase the data, we can locate all the places to which the data has propagated and
thereby erase all of them.

By performing a dynamic analysis, we obtain a system that is able to deal with com-
plex conditional-erasure conditions. Taint analysis does not track all information flows;
in particular the information flows which result purely from control-flow are not cap-
tured. This makes the approach unsuitable for malicious code (the approach presented
in [16] could be integrated with our library in order to tackle such flows). However,
when implicit information flows [7] are ignored, then the need for yet-more-complex
delimited retention policies used at branching instructions seems to be unnecessary. In
principle, it could be possible to encode any delimited retention policy using implicit
flows at the price of writing complex and unnatural code, which supports the idea to
explicitly include mechanisms for delimited retention.

We are able to implement erasure enforcement for Python, an existing widely-used
programming language, simply by providing a library, with no modification of the lan-
guage runtime system and no special purpose compiler needed. Python’s dynamic dis-
patch mechanism is mainly responsible to facilitate the implementation of our approach
as a library. It could be then possible to implement our enforcement for other program-
ming languages with similar dynamic features as Python.

The programmer interface to the library does not require the program to be written
in a particular style or using particular data structures, so in principle, it can be applied
to existing code with minimal modifications.

The API for the library is particularly simple (Section 2) and its implementation
builds on two well-known techniques from object-oriented programming and security,
namely delegation [15] (Section 2.1) and taint analysis (Section 2.3). To use the library
the programmer must identify erasure sources – in the case of the simple locker exam-
ple, it is the input function which returns the fingerprint. Then, the programmer must
mark in the code the point at which a given value must be erased. This allows the library
to trace the origins of a given value and erase all its destination values (Section 2.4).

Section 3 illustrates the use of the library with an extended example based on the
locker scenario, but with more involved policies.

In addition, we explore a new lazy form of erasure (Section 4). This form of erasure
is triggered “just in time” at the points where data would otherwise escape the system
and observably break the intended erasure policy. The advantage of lazy erasure is that
it is able to easily express rich conditional-erasure policies, including those involving
time constraints (e.g. “erase credit card numbers more than one week old”). Additional
related work is described in Section 5.

196 F. Del Tedesco, A. Russo, and D. Sands

2 The Erasure Library
This section presents the library to introduce information erasure policies into pro-
grams. Both its source code and the examples we are using in this paper are publicly
available at http://www.cse.chalmers.se/˜russo/erasure.

The library API essentially consists of three functions:

erasure_source(f) is used to mark that values produced by function f might

be erased. Henceforth, we will say that such values are erasure-aware. In the locker
scenario, suppose that the function responsible to perform the scan of a fingerprint
and return its value is getFingerprint. Then, the programmer might declare (prior
to any computation):getFingerprint=erasure_source(getFingerprint). The
instruction above can be interpreted as t=erasure_source(getFingerprint);
getFingerprint=t, where t is a temporary variable. As an alternative, if the code
for the definition of getFingerprint() is available, Python’s decorator syntax can
be used to obtain the same effect:
@erasure_source
def getFingerprint() :

body of definition ...

erasure(v) erases all erasure-aware data which was directly used in the computa-

tion of value v. The effect is to overwrite the data with a default value. For example, if a
locker is locked with a fingerprint stored in a variable of the same name, then the code
for the locked state might be:
while locked

tryprint=getFingerprint() # get attempt
locked=not(match(tryprint,fingerprint)) # unlock?
erasure(tryprint) # erase attempt

erasure(fingerprint) # now unlock
A simple variant erasure() erases all erasure-aware data (strings and numbers), and
any data computed from them.

retain(f) provides an escape-hatch for erasure. It declares that the result of func-

tion f does not need to be erased. We say that f is a retainer. It corresponds to declaring
an escape hatch in delimited release, or a sanitisation function in a taint analysis. In the
example above, we might declare match as a retainer: match=retain(match).

Figure 1 contains two interactive sessions1. >>> is the interpreter prompt, while
raw_input is the built-in function that reads a line from the standard input. In the
left, line 1 gets the string ’A’ as an input and stores it in variable x. Then, variable x
is used in two elements of list y. Naturally, when printing the list, we can observe that
the second element is x and the third one is some data derived from x, i.e. x concate-
nated with itself. Now, let us consider a replay of this session in which the programmer
wants to delete the information related to the input x after list y is printed once, which
constitutes an information erasure policy. To achieve that, the programmer needs to im-
port our library, indicate that function raw_input returns erase-aware values, and call
function erasure before printing the list for the second time. This revised session is
illustrated on the right of Figure 1. Observe that erasure removes data related to x. It

1 We refer to Python 2.7 here, but our techniques can also be applied to previous releases.

http://www.cse.chalmers.se/~russo/erasure

Implementing Erasure Policies Using Taint Analysis 197

1 >>> x=raw_input()
2 A
3 >>> y=[’E’,x, x+x]
4 >>> y
5 [’E’,’A’,’AA’]

1 >>> from erasure import *
2 >>> raw_input=erasure_source(raw_input)
3 >>> x=raw_input()
4 A
5 >>> y=[’E’,x,x+x]
6 >>> y
7 [’E’,’A’,’AA’]
8 >>> erasure(x)
9 >>> y

10 [’E’,’’,’’]

Fig. 1. Examples of interactive sessions, without and with erasure

is worth noting that the core part of the program has not drastically changed in order
to introduce an information erasure policy. The next subsections provide some insights
into the implementation of the library.

2.1 Delegation

1 >>> x=Erasure(’A’)
2 >>> type(x)
3 <type ’instance’>
4 >>> x
5 ’A’
6 >>> y=x+x
7 >>> type(y)
8 <type ’instance’>
9 >>> y

10 ’AA’
11 >>> x.erase()
12 >>> y.erase()
13 >>> (x,y)
14 (’’, ’’)

Fig. 2. Mutable strings

Basic types are immutable in Python, which means
they cannot be changed in-place after their creation.
For instance, every string operation is defined to pro-
duce a new string as a result. Having immutable
strings goes against the nature of erasure, since re-
moving information stored in a string implies in-place
overwriting of its contents by, for instance, the empty
string. By using a coding pattern usually known as
delegation, the library carefully implements a mech-
anisms that allows the value of a string to be changed
as shown by lines 7 and 10 in Figure 1.

Delegation is a composite-based structure that man-
ages a wrapped object and propagates method calls
to it. In our library, it is implemented by the class
Erasure, which wraps an immutable object. Most
of the method calls on that class are forwarded to
the wrapped object. The forwarding mechanism as-

sures that the results of method calls are also wrapped by the class Erasure. By
doing so, the only reference to the wrapped immutable object is by a field on the
class Erasure. As a result, it is possible to encode mutable strings by simply us-
ing delegation. Let us consider the example in Figure 2. Line 1 creates an object
of the class Erasure that contains the immutable string ’A’, while line 3 states its
type is instance and not str2. Line 6 calls the concatenation method on the ob-
ject x, which is forwarded to the concatenation method of the string ’A’. The re-
sult of that, the immutable string ’AA’, is wrapped by a new object of the class

2 For semplicity Erasure was defined as an old-style class. For a new-style definition the
return value of the type operator would be <class ’erasure.Erasure’>

198 F. Del Tedesco, A. Russo, and D. Sands

Erasure and stored in y. Class Erasure provides the method erase to perform
the concrete action of overwriting, with a default value, the class field where the
immutable object is stored (see Lines 11–12). Consequently, the wrapped objects have
now become the empty strings. The previous immutable objects, ’A’ and ’AA’, are no
longer referenced and thus will be garbage collected on due course. Programmers are
not supposed to deal with the class Erasure directly (observe that it is not in the inter-
face of the library). Determining what data must be wrapped by the class Erasure is
tightly connected to what information must be erasure-aware. The next two subsections
describe the internal use of Erasure by the different mechanisms of the library.

2.2 The Primitive erasure_source

Erasure policies are expected to be only applied on a data source (i.e. an input) [12].
In fact, it does not make too much sense to erase information known at compile-time
(e.g. global constants, function declarations, etc). In this light, the library provides the
primitive erasure_source to indicate those sources of erase-aware values. More tech-
nically, the argument of erasure_source is a function, and the effect is to wrap, by
using the class Erasure, the immutable values returned by it. As an example, we have
the sequence of commands in Figure 3.

1 >>> from erasure import *
2 >>> raw_input=erasure_source(raw_input)
3 >>> x=raw_input()
4 A
5 >>> type(x)
6 <type ’instance’>

Fig. 3. Example of using erasure_source

Note that lines 1–3 are
the same as the ones in
Figure 1. In this case,
the string ’A’, returned
by calling raw_input, is
wrapped into an object
of the class Erasure. As
shown in Figure 1, users
might want to delete a
given input value as well

as information computed from it. Therefore, the library must be able to automatically
call the method erase on a given input as well as any piece of data computed from
it. In order to do that, the library keeps track of how erasure-aware values flow inside
programs by using taint analysis.

2.3 Taint Analysis

Taint analysis is an automatic approach to find vulnerabilities in applications. Intu-
itively, taint analysis keeps track how tainted (untrustworthy) data flow inside programs
in order to constrain data to be untainted (trustworthy), or sanitised, when reaching
sensitive sinks (i.e. security critical operations). Perl was the first scripting language to
provide taint analysis as a special mode of the interpreter called taint mode [2]. Similar
to Perl, some interpreters for Ruby [24], PHP [17], and Python [14] have been care-
fully modified to provide taint modes. Rather than modifying the interpreter, Conti and
Russo in [6] show how to provide a taint mode via a library in Python.

There is a clear connection between the use of taint analysis for finding vulnerabili-
ties and the problem of implementing an erasure policy. In taint analysis, data computed
from untrustworthy values is tainted. In our library, data that is computed from erasure-
aware values is erasure-aware. With this in mind, and inspired by Conti and Russo’s

Implementing Erasure Policies Using Taint Analysis 199

work, we implement a mechanism to perform taint propagation, i.e. how to mark as
erasure-aware data that is computed from other erasure-aware values. From now on, we
use taint and erasure-aware as interchangeable terms.

Let us consider tainting and taint propagation in the following example, which is an
extended version of the listing in Figure 1:

1 >>> raw_input=erasure_source(raw_input)
2 >>> x=raw_input()
3 A
4 >>> x.tstamps
5 set([datetime.datetime(2010, 7, 3, 14, 13, 49, 21585)])
6 >>> y=raw_input()
7 B
8 >>> y.tstamps
9 set([datetime.datetime(2010, 7, 3, 14, 13, 56, 324137)])

10 >>> z=x+y
11 >>> z.tstamps
12 set([datetime.datetime(2010, 7, 3, 14, 13, 49, 21585), datetime.

datetime(2010, 7, 3, 14, 13, 56, 324137)])

As mentioned previously, erasure policies intrinsically refer to some input in the
program. Consequently, to enforce erasure policies, it is necessary to identify specific
inputs. Our library associates a timestamp to each input, representing the date and time
at which the data was provided. Timestamps are stored in the attribute tstamps of the
class Erasure. Thus, the assignment f=erasure_source(f) makes the result of f
erasure aware, and in addition it ensures that each value produced by f is (uniquely)
timestamped. Line 5 shows the timestamps corresponding to the input that variable x

depends on. The content of x.tstamps is the date and time when the input in line 3
was provided (2010–7–3 at 14:13:49 and some microseconds).

When erasure-aware values are involved in computations, taint information
(i.e. timestamps) gets propagated. More specifically, newly created erasure-aware ob-
jects are associated to the set of timestamps obtained by merging the timestamps found
in the different objects involved in the computation. Taint propagation is implemented
inside the delegation mechanism of the class Erasure and it is performed after for-
warding method calls for a given object.

Line 10 combines two inputs (x and y) in order to create a new value, which is stored
in z. Lines 11–12 show effect of taint propagation, as timestamps associated to z are
those corresponding to the inputs x and y. At this point, the reader might wonder why
timestamps are used rather than a simple input-event counter. By using timestamps, we
will be able to program temporal erasure policies (Section 4).

Explicit and Implicit Flows. On most situations, taint analysis propagates taint in-
formation on assignments. Intuitively, when the right-hand side of an assignment uses
tainted values, the variable appearing on the left-hand side becomes tainted. In fact,
taint analysis is just a mechanism to track explicit flows, i.e. direct flows of information
from one variable to another. Taint analysis tends to ignore implicit flows [7], i.e. flows
through the control-flow constructs of the language.

200 F. Del Tedesco, A. Russo, and D. Sands

1 if x == ’A’: isA=True
2 else: isA=False
3 erasure(x)

Fig. 4. An implicit flow

Figure 4 presents an implicit flow where vari-
able x is erasure-aware. Observe that variable isA

is not erasure-aware. In fact, it is built from un-
tainted Boolean constants. Although the value of
x is erased (Line 3), information about x is still
present in the program, i.e. the program knows if x

referred to ’A’. It is not difficult to imagine programs that circumvent the taint analy-
sis by copying the content of erasure-aware strings into regular strings by using implicit
flows [19]. In scenarios where attackers have full control over the code (e.g. when the
code is potentially malicious), implicit flows present an effective way to circumvent the
taint analysis. There is a large body of literature on the area of language-based security
regarding how to track implicit flows [20]. In this work, we only track explicit flows,
and thus our method is only useful for code which is written without malice. Despite
the good intentions and experience of programmers, some pieces of code might not
perform erasure of information as expected. For example, a programmer might forget
to overwrite a variable that is used to temporarily store some sensitive information. In
this case, taint analysis certainly helps to repair such errors or omissions. How much
information are implicit flows able to retain in non-malicious code? As it has been ar-
gued for taint analysis [19], we argue that implicit flows are unlikely to account for a
large volume of unintended data retention. The reason is that data retention relies on the
non-malicious programmer writing more involved and rather unnatural code in order to,
for instance, copy tainted (erasure-aware) strings into untainted ones [19]. In contrast,
to produce explicit flows, programmers simply need to forget to remove the content of
a variable.

2.4 Erasing Data

The taint analysis described above allows the library to determine, given a value, which
erasure-aware inputs were used to create it. These inputs are identified by a set of time-
stamps. To perform erasure, however, the library must take these timestamps and track
down all primitive values which are built from those inputs (c.f. line 8 in Figure 1).
To track which erasure-aware values depend on which inputs, the library internally
maintains a dependency table. It is the interaction of taint analysis and this table what
determines one of the differences between our approach and [6]. The table maps each
timestamp to the set of (references to) erasure-aware values – i.e. objects of the class
Erasure. If timestamp t is mapped to objects a and b, it means that the only values
in the program created by the input value provided at time t are a and b. The de-
pendency table is extended each time an erasure-aware input value is generated. It is
updated when erasure-aware values are formed from already existing ones. Primitive
erasure_source and the taint propagation mechanism are responsible for properly
updating the dependency table. Primitive erasure(v), which performs the actual era-
sure of data, can be then easily implemented. More precisely, calling erasure(v)

triggers the method erase (recall Figure 2) on all the objects which depend on the
timestamps associated to v. As a result, erasure-aware values derived from the same
inputs as v are erased from the program. Similarly, calling erasure() triggers the
method erase on every object in the dependency table.

Implementing Erasure Policies Using Taint Analysis 201

1 def lockerSystem():
2 while(True):
3 print ’Welcome to the locker system’
4 fingerprint=getFingerprint()
5 ts=datetime.today()
6 if fingerprint in ADM:
7 log.add(’MEMORY DUMP -->’+fingerprint+’: ’+str(ts))
8 dump(log.getLog())
9 else:

10 suspect=local_police.check(fingerprint)
11 h = hash(fingerprint)
12 if locker.isFree():
13 key = h
14 locker.occupied()
15 print ’Please, do not forget to retrive your goods’
16 log.add(’LOCKED -->’+fingerprint+’: ’+str(ts))
17 else:
18 if key == h:
19 locker.free()
20 print ’Thanks for using the service’
21 log.add(’UNLOCKED -->’+fingerprint+’: ’+str(ts))
22 else:
23 print ’You are not the right owner’
24 log.add(’INVALID ACCESS -->’+fingerprint+’: ’+str(ts))

Fig. 5. Locker system

3 Extended Example

To give a fuller illustration of the capabilities of our approach, we add some extra func-
tionalities to the locker system described previously that are likely to be found in a
real implementation. Firstly, the system is able to keep track of events in a log that a
group of special users, called administrators, can fetch using their fingerprints. Sec-
ondly, since such lockers are typically found in security-critical public infrastructures,
we anticipate that there will be communication with some external authority in order
to cross-check the input fingerprints with the ones contained in special records (terror-
ist suspects, wanted criminals etc.). For simplicity, and without losing generality, we
consider a system connected to just a single locker rather than several ones.

The code in Figure 5 shows an implementation of the locker system. As before,
function getFingerprint reads a fingerprint. Function datetime.today returns a
timestamp representing the current date and time. Object log implements logging fa-
cilities. Method log.add inserts a line into the log and method log.getLog provides
the log back inside a container.

When the fingerprint matches one of the administrator’s fingerprints stored in the
container ADM, the dump function is executed using log.getLog as argument, and
the log is output (lines 7-8). Object local_police represents a connection to the ex-
ternal authority. Method local_police.check cross-checks the fingerprint given as
an argument against a database of suspects.

202 F. Del Tedesco, A. Russo, and D. Sands

In all other cases (i.e. for locking and opening purposes), the locker only needs a
hash of the fingerprint, which is assigned to h. locker represents the state of the
locker, which is initially “free” and could become “occupied” during the execution. If
the fingerprint does not belong to an administrator, the locker is tested with the isFree
method. If the answer is positive, the user can store luggage; the hash is then saved in
key and the locker state is set to occupied (lines 13-16). Otherwise, the locker is full
and it is released only if the current hash matches with the one used to lock it. In this
case the method free makes the locker available for the next user (lines 19-21).

When it comes to logging, it is crucial to define what we want and is allowed to
log. The program logs four different responses corresponding to the system usage:
’LOCKED’, ’UNLOCKED’, ’INVALID ACCESS’, and ’MEMORY DUMP’. Naturally, it is
important to register the actions performed by the system as well as the time when they
occur. Clearly, information erasure emerges as a desirable property when it comes to
handle fingerprints. On one hand, fingerprints corresponding to regular users must be
removed from the system (including from its log) after they are used for the intended pur-
pose, which constitutes the information erasure policy of the locker system (observe the
hash of the fingerprint is stored in the system for the authentication purpose, and for the
purposes of this example is considered to be OK to store). Fingerprints corresponding to
suspects, on the other hand, can be logged as evidence in case of a police investigation.
In order to give credit for his or her work, fingerprints from administrators can also be
logged. In other words, fingerprints from regular users must be erased after using them,
while fingerprints from suspects and administrators can remain in the system. The code
shown in Figure 5 does not fulfill the information erasure policy described before. It
actually logs the fingerprints of any user, which violates citizens privacy. Although it
is relatively simple to detect the violation of the information erasure policy in this ex-
ample, the same task could be very challenging in a more complex system where there
could be multiple sources of sensitive information in several thousands lines of codes.

Figure 6 shows how programmers can use the library to make the code fulfill the
erasure policy regarding fingerprints. Line 1 imports our library. Line 4 identifies that

1 from erasure import erasure_source, retain, erasure
2

3 # Erasure-aware sources
4 getFingerprint=erasure_source(getFingerprint)
5

6 # Retention statement
7 hash=retain(hash)
8

9 def lockerSystem():
10 ...
11 suspect=local_police.check(fingerprint)
12 h = hash(fingerprint)
13 if not(suspect):
14 erasure(fingerprint)
15 ...

Fig. 6. Locker system patched to fulfill the erasure policy regarding fingerprints

Implementing Erasure Policies Using Taint Analysis 203

fingerprints are subjected to erasure policies, i.e. they are erasure-aware values. Line 7
states that hash is properly written, namely its outputs cannot be related to its input,
and therefore they are not considered to violate any erasure policy. Then, the implemen-
tation of function lockerSystem is only changed to call erasure when the user of
the locker is not a suspect (lines 13-14). The rest of the code remains unchanged.

4 Lazy Erasure

The notion of erasure presented in the previous section is very intuitive. To remove all
erasure-aware inputs used to compute a given value v, it is enough to call erasure(v).
When calling erasure, the library immediately triggers the mechanism to perform
erasure over the current state of the program. Due to that fact, we call the mechanism
implemented by the API in Section 2 eager erasure3.

Eager erasure does not easily capture some classes of erasure policies without major
encoding overhead, which might drastically modify the code of the program. In par-
ticular, let us consider conditional policies that cannot be immediately decided, e.g. a
certain value can only remain in the system for a period of time, after which it has to be
erased. Clearly, it is not possible to trigger the erasure mechanism straight away, but the
need for erasure has to be remembered in the system and triggered at the right time. To
deal with such policies without any additional major runtime infrastructure, the library
provides lazy erasure as a mechanism to perform erasure at the latest possible moment,
i.e. when needed.

Lazy erasure deletes information “just in time” at the points where data would other-
wise escape the system and observably break the intended erasure policy. Programmers
only need to state what is supposed to be erased and the library triggers the erasure
mechanisms at certain output points, i.e. when information is leaving the system.

4.1 The Lazy Erasure API

Lazy erasure adds some additional functions to the API of the library. The other primi-
tives such as erasure_source have the same semantics as before.
erasure_escape(f) This function is used syntactically in the same manner as

erasure_source – i.e. as a function wrapper. It is used to identify the functions which
are to be considered as “outputs” for the system. These are the functions where an era-
sure policy could be observable violated – for example writing to a file or communicat-
ing with the outside world in some other manner. The lazy erasure policies are enforced
by inspecting the arguments to the functions which have been wrapped by the primitive
erasure_escape.
lazy_erasure(v,p) Primitive lazy_erasure introduces an erasure policy into

the program, but does not perform any actual erasure of information. It receives as ar-
guments a value v and a policy function p. The policy function (henceforth an erasure
policy) is a function from timestamps (i.e. timestamps of inputs) to Boolean values.
Internally, a policy can use any of the program state, together with the timestamp ar-

3 In functional languages, eager and lazy evaluation are commonly used terms to indicate when
evaluation is performed. We use the same terminology for erasure of data rather than evaluation
of terms.

204 F. Del Tedesco, A. Russo, and D. Sands

gument (representing the timestamp of the value to be erased) to make judgment on
whether the value should be erased or not. Thus, declaring lazy_erasure(v,p) in-
dicates that any input values (and values computed from them) which were used in the
creation of v should be erased if policy p holds for their timestamps. Erasure is then
enforced at the output functions indicated by erasure_escape.

Two abbreviations are supported: lazy_erasure(v), which is equivalent to
lazy_erasure(v,(lambda t:True)) and thus unconditionally enforces erasure at
the erasure-escape points, and lazy_erasure(p), which is an abbreviation for calling
lazy_erasure with the policy p applied to every erasure-aware value in the system.

4.2 Lazy Erasure Examples

To illustrate how lazy erasure works, we start by encoding a temporal erasure policy that
allows to only keep fingerprints (administrators and suspects’ ones) for a limited time
of five days. The following piece of code implements the condition for such a policy:

1 def fivedays_policy(time):
2 return (datetime.today()-time)>timedelta(days=5)

Policy fivedays_policy takes a timestamp as input and returns whether the times-
tamp is more than five days old. In Figure 7, we show how to apply the policy in our
locker system. Line 8 indicates that before extracting the log from the system, erasure
must be performed. Line 10 introduces the erasure policy fivedays_policy into the
system. As a result, dumping the log triggers erasure on each of its entries which are
older than 5 days.

1 from datetime import datetime, timedelta
2 from erasure import *
3

4 getFingerprint=erasure_source(getFingerprint)
5

6 hash=retain(hash)
7

8 dump=erasure_escape(dump)
9

10 lazy_erasure(fivedays_policy)
11

12 def lockerSystem():
13 ...

Fig. 7. Locker system with a lazy erasure policy

Lazy erasure is particularly useful to express policies that cannot be immediately de-
cided when input data enters the system. To illustrate this, we extend the locker scenario
a bit further.

A common experience with network connections is the loss of connectivity. To han-
dle this situation properly, we introduce the constant ’no_connection’ to be returned

Implementing Erasure Policies Using Taint Analysis 205

by method local_police.check when the connection with the police department
cannot be established. Enforcing an erasure policy that depends on the connection to the
police department is not as simple as the policies considered previously. On one hand,
we would like to have in the log the fingerprints which got the ’no_connection’
answer since they could belong to suspects. On the other hand, fingerprints that got the
’no_connection’ answer and do not belong to suspects must be erased in order to
avoid violating users privacy when administrators dump the log.

As a trade-off between preserving fingerprints of suspects and privacy of regular
citizens is represented by the enforcement of an erasure policy which depends on the
person doing the dumping of the log. If a police agent is included in the set of ad-
ministrators, then he or she can dump the log if necessary. Since a police agent rep-
resents the public authority, the agent has full access to the fingerprints stored in the
log. Therefore, all the entries are included in the log, including those ones with the
’no_connection’ answer. In contrast, if the dumper is a regular administrator, the
entries with ’no_connection’ are removed from the log. In this way, suspect-related
data may get lost but privacy is not compromised. Clearly, the erasure policy is more
involved than the ones that we have been considered so far. However, we show that it
can be easily encoded by our library.

We start by introducing the Boolean global variable police_mode to represent when
a police agent is dumping the log. Then, the function lockerSystem has to signal
whether the person dumping the log is the police agent. Figure 8 shows an extension to
lockerSystem. In line 3, police_mode is initially set to False. Immediately before
dumping the log (line 9), the administrator identity is checked. If it is a police agent,
police_mode is set to True (line 8). The state is then reset at line 10. If the person

1 def lockerSystem():
2 global police_mode
3 police_mode=False
4 ...
5 if fingerprint in ADM:
6 log.add(’MEMORY DUMP -->’+fingerprint+’: ’+str(ts))
7 if fingerprint==’police’:
8 police_mode=True
9 dump(log.getLog())

10 police_mode=False
11 else:
12 suspect=local_police.check(fingerprint)
13 h = hash(fingerprint)
14 if suspect==False:
15 lazy_erasure(fingerprint)
16 elif r==’no_connection’:
17 lazy_erasure(fingerprint,role_policy)
18 else:
19 pass
20 ...

Fig. 8. lockerSystem reimplemented for lazy erasure

206 F. Del Tedesco, A. Russo, and D. Sands

1 def role_policy(time):
2 global police_mode
3 return not(police_mode)

Fig. 9. Example of a lazy policy based on roles

dumping the log is a regular adminis-
trator, the value of police_mode does
not change. Observe that line 17 asso-
ciates the erasure policy role_policy

to those fingerprints received when the
connection to the policy department can-
not be established. Consequently, the era-

sure of the fingerprint depends on the value returned by the policy at the time of dumping
the log. Figure 9 defines role_policy. This policy only returns true when the dump-
ing is done by a regular administrator (line 3). As a consequence, those fingerprints
associated with ’no_connection’ are erased immediately before dumping the log
provided that police_mode is false.

5 Related Work

As we have already explained in the introduction, application level erasure has been
studied in [3] and [12]. A simpler form of erasure for Java bytecode is discussed in
[11]. In [23], the counterpart of erasing systems (according to the definition given in
[12]) has been explored, providing some insights into the obligations of a user who
interacts with a system which promises erasure. These works all deal with an attacker
model where an attacker can in the worst case inject arbitrary code into the system
at a point in time at which erasure is supposed to have occurred. At lower levels of
abstraction, for example [9], conditions and techniques to guarantee physical erasure
on storage devices are considered. The need for physical erasure comes from a much
stronger attacker model where the attacker is not hindered by any abstraction layers.
An end-to-end view linking the high-level application level and the low level physical
views should be possible, but it has not been previously considered.

To the best of our knowledge, JifE [4] is the only system currently implementing
application-level erasure. This is based on the Jif compiler which deals with a subset
of Java extended with security labels. Unlike the very general model on which it is
based [5], the only conditions allowed in JifE’s conditional erasure policies are a special
class of Boolean condition variables. The implementation ensures that whenever such a
condition variable changes, any necessary erasures are triggered. It would be simple to
mimic this style of implementation (modulo implicit flows) using our primitives.

Erasure can be also related to usage control, since it is based on the idea of chang-
ing the way data is handled in the system after a certain moment. In [18], the authors
present a model to reason on usage control, based on obligations the data receiver has
to enforce through some mechanisms. The model is very general, and erasure can be
described as an obligation (actually it is explicitly mentioned as a data owner require-
ment), but its purpose does not correspond to our approach, which deals with techniques
to implement that obligation. The work in [26] extends access control with temporal and
times-consuming features, leading to what they call TUCON (Times-based Usage Con-
trol) model. This approach allows to reason with policies that deal with the period of
time in which a given object is available. Although it would not be very natural (policies
here seem to be more user-oriented), it should be also possible to reason about erasure in

Implementing Erasure Policies Using Taint Analysis 207

this framework as well; similar considerations about implementation holds in this case
as well. However, concepts from the usage control literature could provide inspiration
for a study of the enforcement of a wider class of usage policies at code level.

6 Conclusions and Future Work

We have presented a library-approach to enforce erasure policies. The library transpar-
ently adds taint tracking to data sources, making it easy to use and permitting program-
mers to indicate information-erasure policies with only minor modifications to their
code. To the best of our knowledge, this is the first implementation of a library that con-
nects taint analysis and information-erasure policies. From our limited experience, the
imperfections of taint analysis (the inability to track implicit flows) serve to keep the
policy specifications simple, and enable us to handle examples for which existing ap-
proaches would not be sufficiently expressive. We have also introduced the concept of
lazy erasure – an observational form of erasure which supports richer erasure policies,
including temporal policies, with a simple implementation.

There are a number of directions for further work. One challenge ahead is how to deal
with permanent storage like databases or file systems when specifying erasure policies.
Policies like “user information must be erased when his or her account is closed” are
out of scope in the existing approaches [3,12], where erasure is performed on internal
data structures. User information, on the other hand, is usually placed in databases (e.g.
web application) or file systems (e.g. Unix-like operating systems). We believe that it is
possible to extend the interfaces for accessing files and databases in order to store data
as well as erasure information (timestamps). Those interfaces usually involve handling
objects and thus the library needs to be extended to consider them. To achieve that,
we could threat objects as just mere containers and apply similar tainting techniques as
the ones used for dictionaries. Another important aspect is the evaluation of the over-
heads caused by the library – in particular, how taint propagation and updates in the
dependency table impact on performance. It would also be interesting to evaluate how
precise tainting [17,8] could be exploited to obtain more precision when erasing data.
Precise tainting associates taint information to characters rather than to whole strings.
In our library, if an small part of an string contains some information that should be
erased, then the whole string is deleted. By using precise tainting, it would be possible,
in principle, to only delete those pieces of the string containing the information to erase.
Precise tainting usually requires to fully understand the semantics of each function that
manipulates erasure-aware values. As for most approaches to dynamic taint analysis,
our approach ignores implicit flows. As a consequence programs might retain informa-
tion indirectly via their control constructs. Rather than fixing this problem, a reasonable
alternative might be to bound it. Inspired by preserving confidentiality, the work in [16]
develops a mechanism to obtain bounds on the information leaked by implicit-flows.
We believe that it is feasible to adapt such mechanism to obtain bounds on the infor-
mation retained by control constructs. On the theoretical side, it could be important to
describe precisely the security condition that taint analysis is enforcing in the presence
of delimited retention policies. In fact, to the best of our knowledge, the work by [25] is
the only one that presents a security condition for taint analysis using formal semantics.

208 F. Del Tedesco, A. Russo, and D. Sands

Acknowledgements. Thanks are due to Juan José Conti for his contributions during the
library development, to Aslan Askarov for suggesting the luggage-locker example and
to our colleagues of the Prosec group, who shared with us their impressions on the topic.
This work was partially supported by VR (vr.se), SSF (stratresearch.com)
and the EU FP7 WebSand project.

References
1. The Perl programming language, http://www.perl.org/
2. Bekman, S., Cholet, E.: Practical mod perl. O’Reilly and Associates (2003)
3. Chong, S., Myers, A.C.: Language-based information erasure. In: Proc. IEEE Computer Se-

curity Foundations Workshop, pp. 241–254 (June 2005)
4. Chong, S.: Expressive and Enforceable Information Security Policies. Ph.D. thesis, Cornell

University (August 2008)
5. Chong, S., Myers, A.C.: End-to-end enforcement of erasure and declassification. In: CSF

2008: Proceedings of the 2008 21st IEEE Computer Security Foundations Symposium,
pp. 98–111. IEEE Computer Society, Washington, DC (2008)

6. Conti, J.J., Russo, A.: A taint mode for python via a library. OWASP AppSec Research
(2010)

7. Denning, D.E., Denning, P.J.: Certification of programs for secure information flow. Comm.
of the ACM 20(7), 504–513 (1977)

8. Futoransky, A., Gutesman, E., Waissbein, A.: A dynamic technique for enhancing the secu-
rity and privacy of web applications. In: Black Hat USA Briefings (August 2007)

9. Gutmann, P.: Data remanence in semiconductor devices. In: SSYM 2001: Proceedings of the
10th Conference on USENIX Security Symposium, pp. 4–4. USENIX Association, Berkeley
(2001)

10. Haldar, V., Chandra, D., Franz, M.: Dynamic Taint Propagation for Java. In: Proceedings of
the 21st Annual Computer Security Applications Conference, pp. 303–311 (2005)

11. Hansen, R.R., Probst, C.W.: Non-interference and erasure policies for java card bytecode. In:
6th International Workshop on Issues in the Theory of Security, WITS 2006 (2006)

12. Hunt, S., Sands, D.: Just Forget it – The Semantics and Enforcement of Information Era-
sure. In: Gairing, M. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 239–253. Springer, Heidelberg
(2008)

13. Jovanovic, N., Kruegel, C., Kirda, E.: Pixy: A Static Analysis Tool for Detecting Web Ap-
plication Vulnerabilities (Short Paper). In: 2006 IEEE Symposium on Security and Privacy,
pp. 258–263. IEEE Computer Society (2006)

14. Kozlov, D., Petukhov, A.: Implementation of Tainted Mode approach to finding security vul-
nerabilities for Python technology. In: Proc. of Young Researchers’ Colloquium on Software
Engineering (SYRCoSE) (June 2007)

15. Lutz, M.: Learning Python. O’Reilly & Associates, Inc., Sebastopol (2003)
16. Newsome, J., McCamant, S., Song, D.: Measuring channel capacity to distinguish undue

influence. In: PLAS 2009: Proceedings of the ACM SIGPLAN Fourth Workshop on Pro-
gramming Languages and Analysis for Security, pp. 73–85. ACM (2009)

17. Nguyen-Tuong, A., Guarnieri, S., Greene, D., Shirley, J., Evans, D.: Automatically Harden-
ing Web Applications Using Precise Tainting. In: 20th IFIP International Information Secu-
rity Conference, pp. 372–382 (2005)

18. Pretschner, A., Hilty, M., Basin, D., Schaefer, C., Walter, T.: Mechanisms for usage control.
In: ASIACCS 2008: Proceedings of the 2008 ACM Symposium on Information, Computer
and Communications Security, pp. 240–244. ACM, New York (2008)

19. Russo, A., Sabelfeld, A., Li, K.: Implicit flows in malicious and nonmalicious code. Markto-
berdorf Summer School. IOS Press (2009)

http://www.perl.org/

Implementing Erasure Policies Using Taint Analysis 209

20. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Selected
Areas in Communications 21(1), 5–19 (2003)

21. Sabelfeld, A., Myers, A.C.: A Model for Delimited Information Release. In: Futatsugi, K.,
Mizoguchi, F., Yonezaki, N. (eds.) ISSS 2003. LNCS, vol. 3233, pp. 174–191. Springer,
Heidelberg (2004)

22. Seo, J., Lam, M.S.: InvisiType: Object-Oriented Security Policies. In: 17th Annual Network
and Distributed System Security Symposium, Internet Society, ISOC (February 2010)

23. Del Tedesco, F., Sands, D.: A user model for information erasure. In: 7th International Work-
shop on Security Issues in Concurrency, SecCo 2009. Electronic Proceedings in Theoretical
Computer Science (2009)

24. Thomas, D., Fowler, C., Hunt, A.: Programming Ruby. The Pragmatic Programmer’s Guide.
Pragmatic Programmers (2004)

25. Volpano, D.: Safety Versus Secrecy. In: Cortesi, A., Filé, G. (eds.) SAS 1999. LNCS,
vol. 1694, pp. 303–311. Springer, Heidelberg (1999)

26. Zhao, B., Sandhu, R., Zhang, X., Qin, X.: Towards a Times-Based Usage Control Model.
In: Barker, S., Ahn, G.-J. (eds.) Data and Applications Security 2007. LNCS, vol. 4602,
pp. 227–242. Springer, Heidelberg (2007)

A Taint Mode for Python via a Library

Juan José Conti1 and Alejandro Russo2

1 Universidad Tecnológica Nacional, Facultad Regional Santa Fe, Argentina
2 Chalmers University of Technology, Sweden

Abstract. Vulnerabilities in web applications present threats to on-line systems.
SQL injection and cross-site scripting attacks are among the most common threats
found nowadays. These attacks are often result of improper or none input valida-
tion. To help discover such vulnerabilities, popular web scripting languages like
Perl, Ruby, PHP, and Python perform taint analysis. Such analysis is often im-
plemented as an execution monitor, where the interpreter needs to be adapted to
provide a taint mode. However, modifying interpreters might be a major task in its
own right. In fact, it is very probably that new releases of interpreters require to be
adapted to provide a taint mode. Differently from previous approaches, we show
how to provide taint analysis for Python via a library written entirely in Python,
and thus avoiding modifications in the interpreter. The concepts of classes, dec-
orators and dynamic dispatch makes our solution lightweight, easy to use, and
particularly neat. With minimal or none effort, the library can be adapted to work
with different Python interpreters.

1 Introduction

Over the past years, there has been a significant increase on the number of activities
performed on-line. Users can do almost everything using a web browser (e.g. watching
videos, listening to music, banking, booking flights, planing trips, etc). Considering the
size of Internet and its number of users, web applications are probably among the most
used pieces of software nowadays. Despite its wide use, web applications suffer from
vulnerabilities that permit attackers to steal confidential data, break integrity of systems,
and affect availability of services. When development of web applications is done with
little or no security in mind, the presence of security holes increases dramatically. Web-
based vulnerabilities have already outplaced those of all other platforms [4] and there
are no reasons to think that this tendency has changed [12].

According to OWASP [32], cross-site scripting (XSS) and SQL injection (SQLI) at-
tacks are among the most common vulnerabilities on web applications. Although these
attacks are classified differently, they are produced by the same reason: user supplied
data is sent to sensitive sinks without a proper sanitation. For example, when a SQL
query is constructed using an unsanitize string provided by a user, SQL injection at-
tacks are likely to occur. To harden applications against these attacks, the implemen-
tations of some popular web scripting languages perform taint analysis in a form of
execution monitors [23, 2]. In that manner, not only run interpreters code, but they also
perform security checks. Taint analysis can also be provided through static analysis
[15, 16]. Nevertheless, execution monitors usually produce less false alarms than tradi-
tional static techniques [28]. In particular, static techniques cannot deal with dynamic

T. Aura, K. Järvinen, and K. Nyberg (Eds.): NordSec 2010, LNCS 7127, pp. 210–222, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Taint Mode for Python via a Library 211

code evaluation without being too conservative. Most of the modern web scripting lan-
guages are capable to dynamically execute code. In this paper, we focus on dynamic
techniques.

Taint analysis is an automatic approach to find vulnerabilities. Intuitively, taint anal-
ysis restricts how tainted or untrustworthy data flow inside programs. Specifically, it
constrains data to be untainted (trustworthy) or previously sanitized when reaching sen-
sitive sinks. Perl was the first scripting language to provide taint analysis as an special
mode of the interpreter called taint mode [6]. Similar to Perl, some interpreters for
Ruby [30], PHP [22], and recently Python [17] have been carefully modified to provide
taint modes. Adapting interpreters to incorporate taint analysis present two major draw-
backs that directly impact on the adoption of this technology. Firstly, incorporating taint
analysis into an interpreter might be a major task in its own right. Secondly, it is very
probably that it is necessary to repeatedly adapt an interpreter at every new version or
release of it.

1import s y s
2import os
3

4u s e r m a i l = s y s . a rgv [1]
5f i l e = s y s . a rgv [2]
6

7cmd = ’mail -s "Requested file" ’
8+ u s e r m a i l + ’ < ’ + f i l e
9os . sys t em (cmd)

Fig. 1. Code for email.py

Rather than modifying interpreters,
we present how to provide a taint
mode for Python via a library writ-
ten entirely in Python. Python is
spreading fast inside web develop-
ment [1]. Besides its successful use,
Python presents some programming
languages abstractions that makes
possible to provide a taint mode via a
library. For example, Python decora-
tors [20] are a non-invasive and simple
manner to declare sources of tainted
data, sensitive sinks, and sanitation functions. Python’s object-oriented and dynamic
typing mechanisms allows the execution of the taint analysis with almost no modifica-
tions in the source code.

The library provides a general method to enhance Python’s built-in classes with
tainted values. In general, taint analysis tends to only consider strings or characters
[23, 22, 14, 17, 13, 29]. In contrast, our library can be easily adapted to consider differ-
ent built-in classes and thus providing a taint analysis for a wider set of data types. By
only considering tainted strings, the library provides a similar analysis than in [17], but
without modifying the Python interpreter. To the best of our knowledge, a library for
taint analysis has not been considered before.

1.1 A Motivating Example

We present an example to motivate the use of taint analysis in order to discover and
repair vulnerabilities. The example considers an scenario of a web application where
users can send their remotely stored files by email. Figure 1 shows the simple mod-
ule email.py that is responsible to perform such task. For simplicity, the code takes
the user input from the command line (lines 4 and 5) rather than from the web server.
Figure 2 shows some invocations to the module from the shell prompt. Line 1 shows a

212 J.J. Conti and A. Russo

1 py thon e m a i l . py al ice@domain . se . / r e p o r t J a n u a r y . x l s
2 py thon e m a i l . py d e v i l @ e v i l . com ’/etc/passwd’
3 py thon e m a i l . py d e v i l @ e v i l . com ’/etc/passwd ; rm -rf / ’

Fig. 2. Different invocations for email.py

request from Alice to send her own file reportJanuary.xls to her email address
alice@domain.se. In this case, Alice’s input produces a behavior which matches
the intention of the module. In contrast, lines 2 and 3 show how attackers can provide
particular inputs to exploit unintended or unforeseen behaviors of email.py. Line 2
exploits the fact that email.pywas written assuming that users only request their own
files. Observe how devil@evil.com gets information regarding users accounts by
receiving the file /etc/passwd. Line 3 goes an step further and injects the command
rm -rf / after sending the email. These attacks demonstrate how, what was intended
to be a simple email client, can become a web-based file browser or a terminal. To avoid
these vulnerabilities, applications need to rigorously check for malicious data provided
by users or any other untrustworthy source. Taint analysis helps to detect when data is
not sanitize before it is used on security critical operations. In Section 2.2, we show
how to harden email.py in order to reject the vulnerabilities shown in Figure 1.

The paper is organized as follows. Section 2 outlines the library API. Section 3 de-
scribes the most important implementation details of our approach. Section 4 covers
related work. Section 5 provides some concluding remarks.

2 A Library for Taint Analysis

<<<<<<< i m p l i c i t . py
i f t == ’a’ :

u = ’a’
e l s e :

u = ’’
=======
i f t == ’a’ : u = ’a’
e l s e : u = ’’

>>>>>>> 1 . 2

Fig. 3. An implicit flow

On most situations, taint analysis propagates taint
information on assignments. Intuitively, when the
right-hand side of an assignment uses a tainted value,
the variable appearing on the left-hand side becomes
tainted. Taint analysis can be seen as an information-
flow tracking mechanism for integrity [27]. In fact,
taint analysis is just a mechanism to track explicit
flows, i.e. direct flows of information from one vari-
able to another. Taint analysis tends to ignore im-
plicit flows [11], i.e. flows through the control-flow
constructs of the language. Figure 3 presents an im-
plicit flow. Variables t and u are tainted and untainted, respectively. Observe that vari-
able u is untainted after the execution of the branch since an untainted value (’a’ or
’’) is assigned to it. Yet, the value of the tainted variable t is copied into the untainted
variable u when t == ’a’. It is not difficult to imagine programs that circumvent
the taint analysis by copying the content of tainted strings into untainted ones by using
implicit flows[26].

In scenarios where attackers has full control over the code (e.g. when the code is
potentially malicious), implicit flows present an effective way to circumvent the taint

A Taint Mode for Python via a Library 213

1 v = t a i n t (d)
2

3 web . i n p u t = u n t r u s t e d (web . i n p u t)
4

5 @unt rus t ed
6 d ef f (. . .) :
7 . . .
8

9 c l a s s MyProtocol (L i n e O n l y R e c e i v e r) :
10 @ u n t r u s t e d a r g s ([1])
11 d ef l i n e R e c e i v e d (s e l f , l i n e) :
12 . . .

13 e v a l = s s i n k (T) (e v a l)
14

15 @ssink (T)
16 d ef f (. . .) :
17 . . .
18

19 w = c l e a n e r (T) (wash)
20

21 @cleaner (T)
22 d ef f (. . .) :
23 . . .

Fig. 4. API for taint analysis

analysis. In this case, the attackers’ goal is to craft the code and input data in order
to circumvent security mechanisms. There is a large body of literature on the area of
language-based security regarding how to track implicit flows [27].

There exists scenarios where the code is non-malicious, i.e. written without malice.
Despite the good intentions and experience of programmers, the code might still contain
vulnerabilities as the ones described in Section 1.1. The attackers’ goal consists on craft
input data in order to exploit vulnerabilities and/or corrupt data. In this scenario, taint
analysis certainly helps to discover vulnerabilities. How dangerous are implicit flows
in non-malicious code? We argue that they are frequently harmless [26]. The reason
for that relies on that non-malicious programmers need to write a more involved, and
rather unnatural, code in order to, for instance, copy tainted strings into untainted ones.
In contrast, to produce explicit flows, programmers simply need to forget a call to some
sanitization function. For the rest of the paper, we consider scenarios where the analyzed
code is non-malicious.

2.1 Using the Library

The library is essentially a series of functions to mark what are the sources of untrust-
worthy data, sensitive sinks, and sanitation functions. Figure 4 illustrates how the API
works. Symbol ... is a place holder for code that is not relevant to explain the pur-
pose of the API. We assume that v is a variable, d is an string or integer, and f is a
user-defined function. Symbol T represents a tag. By default, tags can take values XSS,
SQLI, OSI (Operating System Injection), and II (Interpreter Injection). These val-
ues are used to indicate specific vulnerabilities that could be exploited by tainted data.
For instance, tainted data associated with tag SQLI is likely to exploit SQL injection
vulnerabilities. Function taint is used to taint values. For example, line 1 taints vari-
able d. The call to untrusted(web.input) establishes that the results produced
by web.input are tainted. Line 5 shows how untrusted can be used to mark the
values returned by function f as untrustworthy. Observe the use of the decorator syntax
(@untrusted). Function untrusted args is used to indicate which functions’
arguments must be tainted. This primitive is particularly useful when programming

214 J.J. Conti and A. Russo

frameworks require to redefine some methods in order to get information from external
sources. As an example, Twisted[3], a framework to develop network applications, calls
method lineReceived from the class LineOnlyReceiver every time that an
string is received from the network. Lines 9–12 extend the class LineOnlyReceiver
and implement the method lineReceived. Line 10 taints the data that Twisted takes
from the network. Functions taint, untrusted, and untrusted args associate
all the tags to the tainted values. After all, untrustworthy data might exploit any kind of
vulnerability. Line 13 markseval as a sensitive sink. If eval receives a tainted data with
the tag T, a possible vulnerability T is reported. Line 15 shows how to use ssink with
the decorator syntax. Line 19 shows how cleaner establishes that functionwash san-
itizes data with tag T. As a result of that, function w removes tag T from tainted values.
Line 21 shows the use of cleaner with the decorator syntax. Sensitive sinks and san-
itization functions can be associated with more than one kind of vulnerabilities by just
nesting decorators, i.e. ssink(OSI)(ssink(II)(critical operation)).

2.2 Hardening email.py

1import s y s
2import os
3from t a i n t m o d e import ∗
4from s a n i t i z e import ∗
5

6os . sys t em = s s i n k (OSI) (os . sys t em)
7s u s e r m a i l = c l e a n e r (OSI) (s u s e r m a i l)
8s f i l e = c l e a n e r (OSI) (s f i l e)
9

10u s e r m a i l = t a i n t (s y s . a rgv [1])
11f i l e = t a i n t (s y s . a rgv [2])
12# u s e r m a i l = s u s e r m a i l (u s e r m a i l)
13# f i l e = s f i l e (f i l e)
14cmd = ’mail -s "Requested file" ’
15+ u s e r m a i l + ’ < ’ + f i l e
16os . sys t em (cmd)

Fig. 5. Secure version of module email.py

We revise the example in Sec-
tion 1.1. Figure 5 shows the
secure version of the code
given in Figure 1. Line 3 im-
ports the library API. Line
4 imports some sanitization
functions. Line 6 marks com-
mand os.system (capable
to run arbitrary shell instruc-
tions) as a sensitive sink to
OSI attacks. Tainted values
reaching that sink must not
contain the tag OSI. Lines 7
and 8 establish that functions
s usermail and s file
sanitize data in order to avoid
OSI attacks. Lines 10 and 11
mark user input as untrustworthy. When executing the program, the taint analysis raises
an alarm on line 16. The reason for that is that variable cmd is tainted with the tag OSI.
Indeed, cmd is constructed from the untrustworthy values usermail and file. If
we uncomment the lines where sanitization takes place (lines 12 and 13), the program
runs normally, i.e. no alarms are reported. Observe that the main part of the code (lines
14–16) are the same than in Figure 1.

3 Implementation

In this section we present the details of our implementation. Due to lack of space,
we show the most interesting parts. The full implementation of the library is publicly
available at [10].

A Taint Mode for Python via a Library 215

1 def t a i n t c l a s s (k l a s s , methods) :
2 c l a s s t k l a s s (k l a s s) :
3 def n e w (c l s , ∗ a rgs , ∗∗ kwargs) :
4 s e l f = s u p e r (t k l a s s , c l s) . n e w (c l s , ∗ a rgs , ∗∗ kwargs)
5 s e l f . t a i n t s = s e t ()
6 return s e l f
7 d = k l a s s . d i c t
8 for name , a t t r i n [(m, d [m]) for m i n methods] :
9 i f i n s p e c t . i sm e t hod (a t t r) or

10 i n s p e c t . i s m e t h o d d e s c r i p t o r (a t t r) :
11 s e t a t t r (t k l a s s , name , p r o p a g a t e m e t h o d (a t t r))
12 i f ’__add__’ i n methods and ’__radd__’ not i n methods :
13 s e t a t t r (t k l a s s , ’__radd__’ ,
14 lambda s e l f , o t h e r : t k l a s s . a d d (t k l a s s (o t h e r) ,
15 s e l f))
16 return t k l a s s

Fig. 6. Function to generate taint-aware classes

One of the core part of the library deals with how to keep track of taint information
for built-in classes. The library defines subclasses of built-in classes in order to indicate
if values are tainted or not. An object of these subclasses posses an attribute to indicate
a set of tags associated to it. Objects are considered untainted when the set of tags is
empty. We refer to these subclasses as taint-aware classes. In addition, the methods
inherited from the built-in classes are redefined in order to propagate taint information.
More specifically, methods that belong to taint-aware classes return objects with the
union of tags found in their arguments and the object calling the method. In Python,
the dynamic dispatch mechanism guarantees that, for instance, the concatenations of
untainted and tainted strings is performed with calls to methods of taint-aware classes,
which properly propagates taint information.

3.1 Generating Taint-aware Classes

1d ef p r o p a g a t e m e t h o d (method) :
2d ef i n n e r (s e l f , ∗ a rgs , ∗∗ kwargs) :
3r = method (s e l f , ∗ a rgs , ∗∗ kwargs)
4t = s e t ()
5f o r a in a r g s :
6c o l l e c t t a g s (a , t)
7f o r v in kwargs . v a l u e s () :
8c o l l e c t t a g s (v , t)
9t . u p d a t e (s e l f . t a i n t s)
10re tu rn t a i n t a w a r e (r , t)
11re tu rn i n n e r

Fig. 7. Propagation of taint information

Figure 6 presents a func-
tion to generate taint-aware
classes. The function takes
a built-in class (klass)
and a list of its meth-
ods (methods) where taint
propagation must be per-
formed. Line 2 defines the
name of the taint-aware
class tklass. Objects of
tklass are associated to
the empty set of tags when
created (lines 3–6). At-
tribute taints is introduced to indicate the tags related to tainted values. Using
Python’s introspection features, variable d contains, among other things, the list of
methods for the built-in class (line 7). For each method in the built-in class and in
methods (lines 8–10), the code adds to tklass a method that has the same name

216 J.J. Conti and A. Russo

and computes the same results but also propagates taint information (line 11). Func-
tion propagate method is explained below. Lines 12–15 set method radd
to taint-aware classes when built-in classes do not include that method but add .
Method radd is called to implement the binary operations with reflected (swapped)
operands1. For instance, to evaluate the expression x+y, where x is a built-in string
and y is a taint-aware string, Python calls radd from y and thus executing
y. radd (x). In that manner, the taint information of y is propagated to the ex-
pression. Otherwise, the method x. add (y) is called instead, which results in an
untainted string. Finally, the taint-aware class is returned (line 16).

The implementation of propagate method is shown in Figure 7. The function
takes a method and returns another method that computes the same results but prop-
agates taint information. Line 3 calls the method received as argument and stores the
results in r. Lines 4–9 collect the tags from the current object and the method’s argu-
ments into t. Variable r might refer to an object of a built-in class and therefore not
include the attribute taints. For that reason, function taint aware is designed to
transform objects from built-in classes into taint-aware ones. For example, if r refers
to a list of objects of the class str, function taint aware returns a list of objects of
the taint-aware class derived from str. Function taint aware is essentially imple-
mented as a structural mapping on list, tuples, sets, and dictionaries. The library does
not taint built-in containers, but rather their elements. This is a design decision based
on the assumption that non-malicious code does not exploit containers to circumvent
the taint analysis (e.g. by encoding the value of tainted integers into the length of lists).

STR = t a i n t c l a s s (s t r , s t r m e t h o d s)
INT = t a i n t c l a s s (i n t , i n t m e t h o d s)

Fig. 8. Taint-aware classes for strings and integers

Otherwise, the implementation of the
library can be easily adapted. Line 11
returns the taint-aware version of r
with the tags collected in t.

To illustrate how to use function
taint class, Figure 8 produces
taint-aware classes for strings and integers, where str methods and int methods
are lists of methods for the classes str and int, respectively. Observe how the code
presented in Figures 6 and 7 is general enough to be applied to several built-in classes.

3.2 Decorators

1d ef u n t r u s t e d (f) :
2d ef i n n e r (∗ a rgs , ∗∗ kwargs) :
3r = f (∗ a rgs , ∗∗ kwargs)
4re tu rn t a i n t a w a r e (r , TAGS)
5re tu rn i n n e r

Fig. 9. Code for untrusted

Except for taint, the rest of
the API is implemented as dec-
orators. In our library, decora-
tors are high order functions
[7], i.e. functions that take
functions as arguments and re-
turn functions. Figure 9 shows
the code for untrusted. Function f, given as an argument, is the function that
returns untrustworthy results (line 1). Intuitively, function untrusted returns a

1 The built-in class for strings implements all the reflected versions of its operators but add .

A Taint Mode for Python via a Library 217

function (inner) that calls function f (line 3) and taints the values returned by it (line
4). Symbol TAGS is the set of all the tags used by the library. Readers should refer to
[10] for the implementation details about the rest of the API.

3.3 Taint-aware Functions

1d ef p r o p a g a t e f u n c (o r i g i n a l) :
2d ef i n n e r (∗ a rgs , ∗∗ kwargs) :
3t = s e t ()
4f o r a in a r g s :
5c o l l e c t t a g s (a , t)
6f o r v in kwargs . v a l u e s () :
7c o l l e c t t a g s (v , t)
8r = o r i g i n a l (∗ a rgs ,∗∗ kwargs)
9i f t == s e t ([]) :
10re tu rn r
11re tu rn t a i n t a w a r e (r , t)
12re tu rn i n n e r

Fig. 10. Propagation of taint information among possibly
different taint-aware objects

Several dynamic taint analy-
sis [23, 22, 16, 17, 13, 29] do
not propagate taint information
when results different from
strings are computed from
tainted values. (e.g. the length
of a tainted string is usually an
untainted integer). This design
decision might affect the abil-
ities of taint analysis to detect
vulnerabilities. For instance,
taint analysis might miss dan-
gerous patterns when programs
encode strings as lists of num-
bers. A common workaround
to this problem is to mark functions that perform encodings of strings as sensitive sinks.
In that manner, sanitization must occur before strings are represented in another format.
Nevertheless, this approach is unsatisfactory: the intrinsic meaning of sensitive sinks
may be lost. Sensitive sinks are security critical operations rather than functions that
perform encodings of strings. Our library provides means to start breaching this gap.

l e n = p r o p a g a t e f u n c (l e n)
ord = p r o p a g a t e f u n c (ord)
c h r = p r o p a g a t e f u n c (c h r)

Fig. 11. Taint-aware functions for strings and integers

Figure 10 presents a general
function that allows to define
operations that return tainted
values when their arguments
involve taint-aware objects. As
a result, it is possible to define
functions that, for instance, take tainted strings and return tainted integers. We classify
this kind of functions as taint-aware.

Similar to the code shown in Figure 7, propagate func is a high order function.
It takes function f and returns another function (inner) able to propagate taint infor-
mation from the arguments to the results. Lines 3–7 collect tags from the arguments.
If the set of collected tags is empty, there are no tainted values involved and therefore
no taint propagation is performed (lines 9–10). Otherwise, a taint-aware version of the
results is returned with the tags collected in the arguments (line 11).

To illustrate the use of propagate func, Figure 11 shows some taint-aware func-
tions for strings and integers. We redefine the standard functions to compute lengths of
lists (len), the ASCII code of a character (chr), and its inverse (ord). As a result,
len(taint(’string’)) returns the tainted integer 6. It is up to the users of the

218 J.J. Conti and A. Russo

library to decide which functions must be taint-aware depending on the scenario. The li-
brary only provides redefinition of standard functions like the ones shown in
Figure 11.

3.4 Scope of the Library

In Figure 6, the method to automatically produce taint-aware classes does not work with
booleans. The reason for that is that class bool cannot be subclassed in Python2. Con-
sequently, our library cannot handle tainted boolean values. We argue that this short-
coming does not restrict the usability of the library for two reasons. Firstly, different
from previous approaches [23, 22, 16, 17, 13, 29], the library can provide taint analysis
for several built-in types rather than just strings. Secondly, we consider that booleans are
typically used on guards. Since the library already ignores implicit flows, the possibili-
ties to find vulnerabilities are not drastically reduced by disregarding taint information
on booleans.

When generating the taint-aware class STR (Figure 8), we found some problems
when dealing with some methods from the class str. Python interpreter raises excep-
tions when methods nonzero , reduce , and reduce ex are redefined.
Moreover, when methods new , init , getattribute , and repr are
redefined by function taint class, an infinite recursion is produced when calling
any of them. As for STR, the generation of the taint-aware class INT exposes the same
behavior, i.e. the methods mentioned before produce the same problems. We argue that
this restriction does not drastically impact on the capabilities to detect vulnerabilities.
Methods new is called when creating objects. In Figure 6, taint-aware classes de-
fine this method on line 3. Method init is called when initializing objects. Python
invokes this method after an object is created and programs do not usually called it ex-
plicitly. Method getattribute is used to access any attribute on a class. This
method is automatically inherited from klass and it works as expected for taint-
aware classes. Method nonzero is called when objects need to be converted into a
boolean value. As mentioned before, the analysis ignores taint information of data that
is typically used on guards. Method repr pretty prints objects on the screen. In
principle, developers should be careful to not use calls to repr in order to convert
tainted objects into untainted ones. However, this method is typically used for debug-
ging 3. Methods reduce and reduce ex are used by Pickle 4 to serialize
strings. Given these facts, the argument method in function taint class estab-
lishes the methods to be redefined on taint-aware classes (Figure 6). This argument is
also useful when the built-in classes might vary among different Python interpreters.
It is future work to automatically determine the lists of methods to be redefined for
different built-in classes and different versions of Python.

It is up to the users of the library to decide which built-in classes and functions must
be taint-aware. This attitude comes from the need of being flexible and not affecting
performance unless it is necessary. Why users interested on taint analysis for strings
should accept run-time overheads due to tainted integers?

2 http://docs.python.org/library/functions.html#bool
3 http://docs.python.org/reference/datamodel.html
4 An special Python module.

http://docs.python.org/library/functions.html#bool
http://docs.python.org/reference/datamodel.html

A Taint Mode for Python via a Library 219

It is important to remark that the library only tracks taint information in the source
code being developed. As a consequence, taint information could be lost if, for example,
taint values are given to external libraries (or libraries written in other languages) that
are not taint-aware. One way to tackle this problem is to augment the library functions
to be taint-aware by applying propagate func to them.

As a future work, we will explore if it is possible to automatically define taint-
aware functions based on the built-in functions (found in the interpreter) and taint-aware
classes in order to increase the number of taint-aware functions provided by the library.
At the moment, the library provides taint-aware classes for strings, integers, floats, and
unicode as well as some taint-aware functions (e.g. len, chr, and ord).

4 Related Work

A considerable amount of literature has been published on taint analysis. Readers can
refer to [8] for a description of how this technique has been applied on different re-
search areas. In this section, we focus on analyses developed for popular web scripting
languages.

Perl [23] was the first scripting language to include taint analysis as a native feature
of the interpreter. Perl taint mode marks strings originated from outside a program as
tainted (i.e. inputs from users, environment variables, and files). Sanitization is done by
using regular expressions. Writing to files, executing shell commands, and sending in-
formation over the network are considered sensitive sinks. Differently, our library gives
freedom to developers to classify the sources of tainted data, sanitization functions, and
sensitive sinks. Similar to Perl, Ruby [30] provides support for taint analysis. Ruby’s
taint mode, however, performs analysis at the level of objects rather than only strings.
Both, Perl and Ruby, utilize dynamic techniques for their analyses.

Several taint analysis have been developed for the popular scripting language PHP.
Aiming to avoid any user intervention, authors in [15] combine static and dynamic
techniques to automatically repair vulnerabilities in PHP code. They propose to use
static analysis (type-system) in order to insert some predetermined sanitization func-
tions when tainted values reach sensitive sinks. Observe that the semantic of programs
might be changed when inserting calls to sanitization functions, which constitutes the
dynamic part of the analysis in [15]. Our approach, on the other hand, does not im-
plement a type-system and only reports vulnerabilities, i.e. it is up to developers to
decide where, and how, sanitization procedures must be called. In [22], Nguyen-Toung
et al. adapt the PHP interpreter to provide a dynamic taint analysis at the level of char-
acters, which the authors call precise tainting. They argue that precise tainting gains
precision over traditional taint analyses for strings. Authors need to manually exploit,
when feasible, semantics definitions of functions in order to accurately keep track of
tainted characters. Our approach, on the other hand, uses the same mechanism to han-
dle tainted values independently of the nature of a given function. Consequently, we are
able to automatically extend our analysis to different set of data types but without being
as precise as Nguyen-Toung et al.’ work. It is worth seeing studies indicating how much
precision (i.e. less false alarms) it is obtained with precise tainting in practice. Similarly

220 J.J. Conti and A. Russo

to Nguyen-Toung et al.’s work, Futoransky [13] et al. provide a precise dynamic taint
analysis for PHP. Pietraszek and Berghe [24] modify the PHP runtime environment to
assign metadata to user-provided input as well as to provide metadata-preserving string
operations. Security critical operations are also instrumented to evaluate, when taken
strings as input, the risk of executing such operations based on the assigned metadata.
Jovanovic et al. [16] propose to combine a traditional data flow and alias analysis to
increase the precision of their static taint analysis for PHP. They observe a 50% rate of
false alarms (i.e. one false alarm for each vulnerability). The works in [5, 21] combine
static and dynamic techniques. The static techniques are used to reduce the number of
program variables where taint information must be tracked at run-time.

A taint analysis for Java [14] instruments the class java.lang.String as well
as classes that present untrustworthy sources and sensitive sinks. The instrumentation
of java.lang.String is done offline, while other classes are instrumented online.
The authors mention that a custom class loader in the JVM is needed in order to per-
form online instrumentation. Another taint analysis for Java [31], called TAJ, focus
on scalability and performance requirements for industry-level applications. To achieve
industrial demands, TAJ uses static tecniques for pointer analysis, call-graph construc-
tion, and slicing. Similarly, the authors in [19] propose an static analysis for Java that
focus on achieving precision and scalability.

A series of work [18, 9, 25] propose to provide information-flow security via a library
in Haskell. These libraries handle explicit and implicit flows and programmers need to
write programs with an special-purpose API. Similar to other taint analysis, our library
does not contemplate implicit flows and programs do not need to be written with an
special-purpose API.

Among the closest related work, we can mention [17] and [29]. In [17], authors
modify the Python interpreter to provide a dynamic taint analysis. More specifically,
the representation of the class str is extended to include a boolean flag to indicate
if a string is tainted. We provide a similar analysis but without modifying the inter-
preter. The work by Seo and Lam [29], called InvisiType, aims to enforce safety checks
without modifying the analyzed code. Similar to our assumptions, their approach is
designed to work with non-malicious code. InvisiType is more general than our ap-
proach. In fact, authors show how InvisiType can provide taint analysis and access
control checks for Python programs. However, InvisiType relies on several modifi-
cations in the Python interpreter in order to perform the security checks at the right
places. For example, when native methods are called, the run-time environment firstly
calls the special purpose method nativecall . As a manner to specifying poli-
cies, the approach provides the class InvisiType that defines special purposes meth-
ods to get support from the run-time system (e.g. nativecall is one of those
methods). Subclasses of this class represent security policies. The approach relies on
multiple inheritance to extend existing classes with security checks. To include or re-
move security checks from objects, programs need to explicitly call functions pro-
mote and demote. Being less invasive, our library uses decorators instead of explicit
function calls to taint and untaint data. Our approach does not require multiple
inheritance.

A Taint Mode for Python via a Library 221

5 Conclusions

We propose a taint mode for Python via a library entirely written in Python. We show
that no modifications in the interpreter are needed. Different from traditional taint anal-
ysis, our library is able to keep track of tainted values for several built-in classes. Addi-
tionally, the library provide means to define functions that propagate taint information
(e.g. the length of a tainted string produces a tainted integer). The library consists on
around 300 LOC. To apply taint analysis in programs, it is only needed to indicate
the sources of untrustworthy data, sensitive sinks, and sanitization functions. The li-
brary uses decorators as a noninvasive approach to mark source code. Python’s object
classes and dynamic dispatch mechanism allow the analysis to be executed with almost
no modifications in the code. As a future work, we plan to use the library to harden
frameworks for web development and evaluate the capabilities of our library to detect
vulnerabilities in popular web applications.

Acknowledgments. Thanks are due to Arnar Birgisson for interesting discussions. This
work was funded by the Swedish research agencies VR and SSF, and the scholarship
program for graduated students from the Universidad Tecnológica Nacional, Facultad
Regional Santa Fe.

References

[1] List of Python software,
http://en.wikipedia.org/wiki/List_of_Python_software

[2] The Ruby programming language, http://www.ruby-lang.org
[3] The Twisted programming framework, http://twistedmatrix.com
[4] Andrews, M.: Guest Editor’s Introduction: The State of Web Security. IEEE Security and

Privacy 4(4), 14–15 (2006)
[5] Balzarotti, D., Cova, M., Felmetsger, V., Jovanovic, N., Kirda, E., Kruegel, C., Vigna, G.:

Saner: Composing static and dynamic analysis to validate sanitization in web applications.
In: Proceedings of the 2008 IEEE Symposium on Security and Privacy. IEEE Computer
Society, Washington, DC (2008)

[6] Bekman, S., Cholet, E.: Practical mod perl. O’Reilly and Associates (2003)
[7] Bird, R., Wadler, P.: An introduction to functional programming. Prentice Hall International

(UK) Ltd. (1988)
[8] Chang, W., Streiff, B., Lin, C.: Efficient and extensible security enforcement using dynamic

data flow analysis. In: Proceedings of the 15th ACM Conference on Computer and Com-
munications Security. ACM, New York (2008)

[9] Tsai, T.C., Russo, A., Hughes, J.: A library for secure multi-threaded information flow in
Haskell. In: IEEE Computer Security Foundations Symposium, pp. 187–202 (2007)

[10] Conti, J.J., Russo, A.: A Taint Mode for Python via a Library. Software release (April 2010),
http://www.cse.chalmers.se/˜russo/juanjo.htm

[11] Denning, D.E., Denning, P.J.: Certification of programs for secure information flow. Comm.
of the ACM 20(7), 504–513 (1977)

[12] Federal Aviation Administration (US). Review of Web Applications Security and Intrusion
Detection in Air Traffic Control Systems (June 2009),
http://www.oig.dot.gov/sites/dot/files/
pdfdocs/ATC Web Report.pdf Note: thousands of vulnerabilities were discovered.

http://en.wikipedia.org/wiki/List_of_Python_software
http://www.ruby-lang.org
http://twistedmatrix.com
http://www.cse.chalmers.se/~russo/juanjo.htm
http://www.oig.dot.gov/sites/dot/files/pdfdocs/ATC_Web_Report.pdf
http://www.oig.dot.gov/sites/dot/files/pdfdocs/ATC_Web_Report.pdf

222 J.J. Conti and A. Russo

[13] Futoransky, A., Gutesman, E., Waissbein, A.: A dynamic technique for enhancing the secu-
rity and privacy of web applications. In: Black Hat USA Briefings (August 2007)

[14] Haldar, V., Chandra, D., Franz, M.: Dynamic Taint Propagation for Java. In: Proceedings of
the 21st Annual Computer Security Applications Conference, pp. 303–311 (2005)

[15] Huang, Y., Yu, F., Hang, C., Tsai, C., Lee, D., Kuo, S.: Securing web application code by
static analysis and runtime protection. In: Proceedings of the 13th International Conference
on World Wide Web, pp. 40–52. ACM (2004)

[16] Jovanovic, N., Kruegel, C., Kirda, E.: Pixy: A Static Analysis Tool for Detecting Web Ap-
plication Vulnerabilities (Short Paper). In: 2006 IEEE Symposium on Security and Privacy,
pp. 258–263. IEEE Computer Society (2006)

[17] Kozlov, D., Petukhov, A.: Implementation of Tainted Mode approach to finding security
vulnerabilities for Python technology. In: Proc. of Young Researchers’ Colloquium on Soft-
ware Engineering (SYRCoSE) (June 2007)

[18] Li, P., Zdancewic, S.: Encoding information flow in Haskell. In: Computer Security Foun-
dations Workshop, IEEE, p. 16 (2006)

[19] Livshits, V.B., Lam, M.S.: Finding security vulnerabilities in Java applications with static
analysis. In: Proceedings of the 14th Conference on USENIX Security Symposium.
USENIX Association, Berkeley (2005)

[20] Lutz, M., Ascher, D.: Learning Python. O’Reilly & Associates, Inc. (1999)
[21] Monga, M., Paleari, R., Passerini, E.: A hybrid analysis framework for detecting web ap-

plication vulnerabilities. In: IWSESS 2009: Proceedings of the 2009 ICSE Workshop on
Software Engineering for Secure Systems, pp. 25–32. IEEE Computer Society, Washing-
ton, DC (2009)

[22] Nguyen-Tuong, A., Guarnieri, S., Greene, D., Shirley, J., Evans, D.: Automatically Hard-
ening Web Applications Using Precise Tainting. In: 20th IFIP International Information
Security Conference, pp. 372–382 (2005)

[23] Perl. The Perl programming language, http://www.perl.org/
[24] Pietraszek, T., Berghe, C.V.: Defending Against Injection Attacks Through Context-

Sensitive String Evaluation. In: Valdes, A., Zamboni, D. (eds.) RAID 2005. LNCS,
vol. 3858, pp. 124–145. Springer, Heidelberg (2006)

[25] Russo, A., Claessen, K., Hughes, J.: A library for light-weight information-flow security in
Haskell. In: Proceedings of the First ACM SIGPLAN Symposium on Haskell, pp. 13–24.
ACM (2008)

[26] Russo, A., Sabelfeld, A., Li, K.: Implicit flows in malicious and nonmalicious code. Mark-
toberdorf Summer School. IOS Press (2009)

[27] Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Selected
Areas in Communications 21(1), 5–19 (2003)

[28] Sabelfeld, A., Russo, A.: From Dynamic to Static and Back: Riding the Roller Coaster of
Information-Flow Control Research. In: Pnueli, A., Virbitskaite, I., Voronkov, A. (eds.) PSI
2009. LNCS, vol. 5947, pp. 352–365. Springer, Heidelberg (2010)

[29] Seo, J., Lam, M.S.: InvisiType: Object-Oriented Security Policies. In: 17th Annual Network
and Distributed System Security Symposium, Internet Society, ISOC (February 2010)

[30] Thomas, D., Fowler, C., Hunt, A.: Programming Ruby. The Pragmatic Programmer’s Guide.
Pragmatic Programmers (2004)

[31] Tripp, O., Pistoia, M., Fink, S.J., Sridharan, M., Weisman, O.: TAJ: effective taint analysis
of web applications. In: Hind, M., Diwan, A. (eds.) Proc. ACM SIGPLAN Conference on
Programming language Design and Implementation, pp. 87–97. ACM Press (2009)

[32] van der Stock, A., Williams, J., Wichers, D.: OWASP Top 10 2007 (2007),
http://www.owasp.org/index.php/Top_10_2007

http://www.perl.org/
http://www.owasp.org/index.php/Top_10_2007

Security of Web Mashups: A Survey

Philippe De Ryck, Maarten Decat, Lieven Desmet,
Frank Piessens, and Wouter Joosen

IBBT-DistriNet
Katholieke Universiteit Leuven

3001 Leuven, Belgium
firstname.lastname@cs.kuleuven.be

Abstract. Web mashups, a new web application development para-
digm, combine content and services from multiple origins into a new ser-
vice. Web mashups heavily depend on interaction between content from
multiple origins and communication with different origins. Contradic-
tory, mashup security relies on separation for protecting code and data.
Traditional HTML techniques fail to address both the interaction/com-
munication needs and the separation needs. This paper proposes concrete
requirements for building secure mashups, divided in four categories: se-
paration, interaction, communication and advanced behavior control. For
the first three categories, all currently available techniques are discussed
in light of the proposed requirements. For the last category, we present
three relevant academic research results with high potential. We conclude
the paper by highlighting the most applicable techniques for building
secure mashups, because of functionality and standardization. We also
discuss opportunities for future improvements and developments.

1 Introduction

The evolution within web 2.0 has led to a new application type, called a web
mashup – simply mashup from now on. A mashup is a composed application,
using elements from different sources. The most simple form of mashups are web
pages incorporating advertisements, which come from an external origin. More
complex examples combine content from multiple sources into a new service.
The classical example case is HousingMaps, which collects listings of real estate
from Craigslist and visualizes their location on Google Maps. There are numerous
mainstream mashup examples, of which iGoogle and Facebook are widely known.
Mashups have also found their way into enterprise scenarios, where they can
be used to create quick views on data coming from multiple sources within
and outside the enterprise. Development tools for mashup scenarios have been
included in the portfolio of IT application and service providers [12,16,17,18].

A mashup can be defined as “a web application that combines content or ser-
vices from more than one origin to create a new service”. By combining multiple
separate services into a new application, a mashup generates added value, which
is one of the most important incentives behind building mashups. Mashups also
succeed in maximizing content reuse, even from services that never intended to

T. Aura, K. Järvinen, and K. Nyberg (Eds.): NordSec 2010, LNCS 7127, pp. 223–238, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

224 P. De Ryck et al.

produce reusable data. Additionally, mashups are flexible and lightweight ap-
plications, since they merely gather and combine information, thus do not need
complex application logic. These three advantages have driven the growth of
mashups, which has led to the need of support for strong security requirements.

The discussion of the security requirements will become more concrete if ap-
plied to an example application: a financial mashup, which provides integrated
access to your financial and stock information. The mashup contains a com-
ponent from your bank, an advising component from a brokerage firm and an
advertising component. The bank and brokerage component need to interact, to
provide relevant advice regarding your stock portfolio and interests; the broke-
rage and banking component provide the advertising component with keywords
about your financial habits, so that you receive targeted advertisements. The
bank component and brokerage component need to communicate with the ser-
vers of their firm, to retrieve the most recent information. The advertising com-
ponent needs to communicate with servers from multiple advertising firms, to
retrieve relevant advertisements.

A first contribution of this paper is the concrete definition of the security
requirements for mashup applications, which can be used to examine existing
security mechanisms. Second, we contribute a detailed overview of the current
state-of-practice and adopted state-of-the-art concerning mashup security tech-
niques. Third, we highlight a few important academic results, as well as discuss
potential future improvements and developments to enhance support for the
mashup security requirements.

In the remainder of this paper, we will specify the security requirements for
mashups (Section 2), followed by a detailed overview of the currently available
techniques (Section 3, 4 and 5). We also discuss a few promising state-of-the-art
techniques, which can contribute to the future of mashup security (Section 6).
We conclude the paper in Section 7 with an overview of the presented tech-
niques and their capabilities, as well as a detailed discussion of potential future
improvements or evolutions of mashup security mechanisms.

2 Problems with Mashup Security

Examining the security requirements for mashups has led to the specification
of four specific categories, of which the security-specific requirements have been
determined. The following overview discusses these categories and requirements,
which will be used to discuss existing security mechanisms.

C1. Separation Components need to be separated from each other, to ensure
the following security properties:
a. DOM: ensures that the component’s part of the DOM tree is separated

from other components.
b. Script: ensures that the component’s scripts can not be influenced by

other components.
c. Applicable in same domain: ensures that the separation techniques

can also be applied to different components belonging to the same do-
main.

Security of Web Mashups: A Survey 225

C2. Interaction Regardless of their separation, a component requires interac-
tion with other components and the host page. This interaction is subject
to the following requirements:
a. Confidentiality: ensures that sensitive information can not be stolen

from interactions between components.
b. Integrity: ensures that the contents of an interaction can not be modified

without the knowledge of the interacting components.
c. Mutual authentication: ensures that the interacting components can

establish who they are interacting with.
C3. Communication Components need to be able to communicate with the

mashup provider, as well as with other parties. This requires the following
properties:
a. Cross-domain: components should be able to communicate with other

origins than the origin to which they belong.
b. Authentication: a service receiving messages should be able to identify

the origin of the message.
C4. Behavior Control Control over specific behavior of components is nee-

ded to selectively allow or disallow specific functionality. This category is
currently state-of-the-art and too broad to grasp in a few categories.

Currently, mashup security is based on the de facto security policy of the web:
the Same Origin Policy (SOP) [34]. The SOP states that scripts from one origin
should not be able to access content from other origins. This prevents scripts
from stealing data, cookies or login credentials from other sites. Additionally
to the SOP, browsers also apply a frame navigation policy, which restricts the
navigation of frames to its descendants [3].

The security provided by the traditional mechanisms for building mashups
relies on the application of these browser security policies. Loading components
from different origins in Iframes causes them to be separated by the SOP. Using
script inclusion causes the script to be loaded in the protection domain of the
including page, which is a straightforward way to achieve interaction between
components. Communication with the origin of the page containing the script
can be achieved using the XHR object of the JavaScript language.

These traditional mechanisms have led to two different approaches for buil-
ding mashups: server-side composition and client-side composition (Figure 1).
The former combines the entire mashup at the server side and serves it as a
whole to the client, while the latter provides a template to the client, which re-
trieves all pieces separately and composes the mashup at the client side, conform
to the provided template. The difference between both approaches is fading as
hybrid models are being used, where separate components and pre-composed
content are combined. In either model, there are no significant technical chal-
lenges. The responsibility for security always lies with the mashup integrator,
taking into account the security requirements of the different components and
their stakeholders.

Examining the traditional techniques in the light of the previously proposed
security requirements yields some interesting results. Iframes offer full separa-
tion between different origins, but not within the same origin, and provide no

226 P. De Ryck et al.

Fig. 1. Server-side mashup (left) and client-side mashup (right)

interaction between components. Script inclusion offers no separation at all, but
provides full interaction. This interaction is not authenticated, nor can confiden-
tiality or integrity be ensured. As far as communication is concerned, XHR does
not offer any cross-domain communication. These results show the pressing need
for secure techniques to enable separation while still allowing secure interaction,
as well as secure communication. Additionally, providing behavior control for
components will only strengthen the security of mashups.

In the following sections, we provide a detailed discussion of both state-of-
practice and state-of-the-art in mashup security. Section 3 focuses on specific
techniques enabling separation and providing interaction. Section 4 presents
techniques that enable the isolation of JavaScript modules within the same exe-
cution environment. Section 5 discusses techniques which help to achieve commu-
nication with remote parties. In Section 6, we discuss state-of-the-art academic
research that supports fine-grained control over specific security-related aspects.

3 Separation and Interaction

The security requirements demand stronger separation guarantees, but also re-
quire the possibility of interaction between separated components. In this section
we discuss several techniques which approach this problem on a document basis.
Script-based solutions are discussed in the next section.

The solutions proposed here use three different points of view to address
the needed security requirements: (i) leverage existing separation mechanisms
and provide controlled interaction (Subspace, Fragment Identifier Messaging and
postMessage), (ii) strengthen the existing separation mechanisms, while preser-
ving interaction (module tag and sandbox attribute), and (iii) start from scratch,
while honoring the already existing legacy by ensuring some form of backwards
compatibility (MashupOS and OMash).

3.1 Subspace

Subspace [19] enables interaction across the boundaries of an iframe, using
a shared JavaScript object and relying on domain relaxation. In a nutshell
(Figure 2), a JavaScript object is created by frame A and shared with a nes-
ted intermediate iframe of the same domain (B). This intermediate iframe has a

Security of Web Mashups: A Survey 227

nested frame belonging to the component (C), which needs to obtain the JavaS-
cript object to enable interaction. This is achieved by having both frames B and
C relax their domain, so the JavaScript object can be shared. Interaction is now
possible using the shared JavaScript object. More complex scenarios, involving
multiple components and origins, are also supported.

Fig. 2. Subspace: initial setup (left) and after domain relaxation (right) (Source: [19])

Subspace effectively enables interaction between frames, even with the res-
trictions imposed by the SOP. albeit with a few disadvantages. Apart from the
fairly expensive setup phase, the burden of subdomain management for each
component is another disadvantage of Subspace.

The security requirements for separation are addressed by the use of iframes.
As for the security requirements regarding interaction, Subspace achieves confi-
dentiality and integrity, as long as the shared objects are protected. Mutual
authentication is inherent to the owners of the shared object, which are deter-
mined during the setup phase.

3.2 Fragment Identifier Messaging

Fragment Identifier Messaging (FIM) [3], also known as Iframe Cross-Domain
Communication [10,31], builds a communication channel based on frame navi-
gation. If the URL of a frame is set, but only the fragment1 changes, the page is
not reloaded. This allows JavaScript within the page to read this fragment, thus
providing a one-way channel. Two-way interaction can be achieved using nested
frames.

Even though FIM enables interaction without violating the browser’s security
policies, it is not a designed interaction channel. This brings a few disadvantages,
such as a restricted message length, the lack of a notification system for new
messages or the fact that messages can easily be overwritten.

Compared to the proposed security requirements, FIM is dependent on the use
of iframes for separation. In terms of the security requirements for interaction,
FIM does achieve confidentiality, since the browser’s security policies prevent
the frame location to be read by other origins. Integrity is also preserved, since
the frame’s location can only be overwritten as a whole, so no fragment can be
partially modified. Mutual authentication is not available, since the sender of a
message is not known, but an authentication mechanism can be implemented.

1 The part of a URL after the # symbol, used to navigate to an anchor within the
page.

228 P. De Ryck et al.

The issues with FIM can be addressed, as is shown by component framework
SMash [7], the OpenAjax Hub [28], OMOS [35] and the Microsoft API for using
FIM [31].

3.3 PostMessage

PostMessage is an extension of the browser API, providing a designed interaction
channel between frames [14]. The specification introduces a new DOM event,
message, which is fired if messages are received, as well as an API function
that can be used to send messages to a frame, postMessage(). When sending
a message, the destination origin has to be specified, which is validated by the
browser upon message delivery [3]. For received messages, the browser provides
the origin of the sender as part of the message object.

PostMessage is an improved version of FIM and addresses specific issues.
Similar to FIM, the separation requirements are met by the underlying use of
iframes. When compared to the security requirements for enabling interaction,
postMessage does achieve confidentiality and integrity. Mutual authentication is
also supported on the level of domains: the browser checks the destination when
sending a message and the receiver can check the origin of a message.

PostMessage is part of the HTML5 standard, which is currently still a draft
[13]. Nonetheless, postMessage is already supported by major browsers. It can
also be used to replace FIM, as will be done in SMash [7] and the OpenAjax
Hub [28].

3.4 Module Tag

The module tag allows content separation in modules, which are only accessible
through a message-passing interface for sending and receiving messages [5]. This
message-passing interface is restricted to the JSON format, to prevent security
issues through the leaking of JavaScript objects. Additionally, the module tag
assigns a unique origin to each module, thus effectively enabling separation bet-
ween multiple components from the same origin.

Compared to the security requirements for separation and interaction, the mo-
dule tag effectively separates components from each other. Separation is enforced
within the same domain, both for scripts as DOM elements. As for interaction
between modules, confidentiality and integrity are achieved by the separation of
internal state. Mutual authentication is not achieved, since there is no authen-
tication of the sender, but can be implemented.

The module tag is not implemented by major browser vendors and is, as far
as we know, not used in practice. It does however provide valuable insights and
inspiration for the design of other standardized solutions, such as the sandbox
attribute, discussed next.

3.5 Sandbox Attribute

The sandbox attribute [15] is an extension of the iframe tag and augments
the origin-based separation of iframes. The sandbox attribute imposes a set of

Security of Web Mashups: A Survey 229

restrictions, such as assigning a unique origin to the content, preventing scripts
or browser plugins to run or preventing forms from being submitted. These res-
trictions, except for running plugins, can be relaxed by specifically allowing them
when specifying the attribute.

Within the separation category, the sandbox attribute achieves all three secu-
rity requirements. The interaction requirements are achieved by the chosen in-
teraction technique. This can be any interaction technique available for iframes,
but the standardized postMessage is a favorite, with one caveat: if a component
is assigned a unique origin, the postMessage-origin is set to a globally unique
identifier for outgoing messages. This may be problematic to achieve mutual
authentication with sandboxed components.

The sandbox attribute is part of HTML5, which is currently a draft [13].
Major browsers are starting to support the sandbox attribute though, with
Chromium/Chrome taking the lead.

3.6 MashupOS

MashupOS [33] arguments the need for additional trust levels within a mashup.
Next to the “no trust” provided by iframes, known as isolated content, and “full
trust” provided by script inclusion, known as open content, they propose access-
controlled content, which provides separation with the possibility of message-
passing across domains, and unauthorized content, which can not assume any
privileges associated with a domain, such as authentication credentials or origins.

Technically, these levels of trust are achieved by introducing new HTML tags.
These tags do not only provide separation and interaction, but also enable the
separation of physical resources, which is out of scope here. MashupOS also
provides a way for modules to expose a specific API.

Mapping MashupOS to the proposed security requirements is not easy, be-
cause there are multiple levels of trust. Using the different levels of trust, Mashup-
OS is able to provide strong separation for both DOM elements and scripts. Sepa-
ration within the same origin is dependent on the technique used (e.g. unautho-
rized content is not associated with a domain). As for interaction, confidentiality
and integrity can be ensured using the provided API specification mechanism,
but no support for mutual authentication is provided. This can however be im-
plemented on top of the provided interaction mechanism.

MashupOS is not implemented in a major browser, but the four trust levels can
be simulated using iframes and postMessage. MashupOS also serves a valuable
role in the research on mashups.

3.7 OMash

A totally different approach is taken by OMash [4], where web pages are repre-
sented as objects, which have public interfaces for interaction. Such an object
encapsulates the internal state of a web page, including associated resources
such as cookies or authentication credentials. By separating pages, using an

230 P. De Ryck et al.

object representation, OMash eliminates the need for the SOP. Resource sharing
is done by passing the needed resources between objects, but only if they can
be safely shared (e.g. session cookies are shared when a link within a site is
followed).

OMash satisfies the separation requirements, since DOM objects and scripts
belong to an object’s private data. Since all objects are separated, OMash also
supports separation within the same origin. Interaction is possible using the
exposed interfaces, which provide confidentiality and integrity. Mutual authen-
tication is not inherently present, but can be implemented using shared secrets.

OMash is not adopted by any major browser vendor, but is available as a
prototype implementation.

4 Script Isolation

Script isolation techniques leverage the interaction possibilities present in a script
environment, and try to introduce separation between different components.
The general approach is restricting JavaScript to a subset, which adheres to the
object-capability security model. This security model is based on the fact that
separated objects have no capabilities and can only achieve capabilities on an
object if they are handed a reference to that object. For example, if an object
in the language has no reference to the Image object, it can not construct new
images. By giving it a reference to the Image object, it obtains the capability to
create images.

The three techniques presented here, i.e. ADsafe, Facebook JavaScript and
Caja, follow this object-capability security model, thus achieving component se-
paration, regardless of domain. Separation for DOM elements and built-in script
objects is achieved using subset restrictions and run-time control over speci-
fic operations, such as DOM access. The isolated modules can interact using
explicitly shared objects, which offer confidentiality and integrity. Mutual au-
thentication can be implemented if desired.

4.1 ADsafe

The ADsafe subset [6] is aimed at putting guest code, such as advertisements, in a
web page, without suffering security consequences. This is achieved by restricting
scripts to a safe subset of JavaScript. Safe interaction with their environment,
such as the DOM tree, is possible using a provided ADSAFE object.

ADsafe is not an active protection mechanism, but is enforced using a static
code verification tool. This tool can determine whether a script adheres to the
ADsafe subset or not, but will not actively rewrite code. Next to preventing
access to the global object or well-known insecure language features, such as
eval or with, ADsafe also prohibits the use of this, since it has subtle properties
that can be used to obtain a reference to the global object.

In recent research on the security of JavaScript subsets, specific issues with
ADsafe have been discovered [23]. These issues are minor design oversights,

Security of Web Mashups: A Survey 231

which do not break the fundamental model of the language. Continued formal
verification is needed to prove that the ADsafe language fully adheres to the
object-capability security model.

4.2 Facebook JavaScript

Facebook, the social networking site, supports an extension model based on
applications, which are developed by external parties. To ensure the safe in-
corporation, Facebook provides Facebook JavaScript (FBJS) [11], which is a
secure JavaSript subset. FBJS is an active protection mechanism, which applies
a rewriting process to normal JavaScript. This rewriting process includes rewri-
ting variable and function names to a unique namespace, as well as defining
Facebook-specific DOM objects, which do not implement insecure features. Re-
mote communication is available through an Ajax object, which uses a server-side
proxy to retrieve cross-domain content. More importantly, this retrieved content
is rewritten to FBJS, to ensure continuous protection.

The major advantage of the approach taken by Facebook is the active pro-
tection mechanism, which allows the dynamic addition of content. This is par-
ticularly useful in mashup applications. The disadvantage however is that every
request needs to go through the Facebook servers, which might not be feasible
for each integrator.

Recent research on the security of JavaScript subsets has also identified issues
with FBJS [23]. These issues do not have an impact on the fundamental model
of the language, and can be further eliminated using strong formal models.

4.3 Caja

Caja [27], a safe JavaScript subset designed by Google, takes a similar approach
to FBJS. It analyzes JavaScript to detect subset violations and it rewrites the
code to create isolated modules, as well as to mediate DOM access. Caja is a
fairly flexible subset, since it allows the use of this, albeit in a limited way. Caja
does more than subsetting JavaScript, it also introduces a new feature: frozen
objects. Frozen objects can not be changed, which makes them ideal for infor-
mation sharing between components. Objects in the default global environment
are automatically frozen.

An advantage of the way Caja is introduced is that it is aimed at supporting
existing scripts, with some exceptions such as eval or with. This allows a gradual
transition towards the Caja subset. Underneath, a second subset is defined,
named Cajita. Cajita can be considered “Caja without this”, since this is
considered a dangerous and unnecessary language feature. Cajita is meant to be
the subset for writing new applications, while Caja is meant to be backwards
compatible with current applications. Similar to FBJS, a server-side rewrite
process ensures continuous protection of dynamic code.

Recent research on the security of JavaScript subsets has been able to prove
that a subset based on Caja is capability safe [22]. This important result shows

232 P. De Ryck et al.

that a JavaScript subset can adhere to an object-capability security model, and
can thus be used to achieve the proposed security requirements.

Caja is currently used by several OpenSocial gadget integrators, such as
Yahoo! Application Platform, Shindig, iGoogle, Code Wiki and Orkut.

5 Communication

In this section, we discuss several techniques to achieve cross-domain commu-
nication. These techniques are mostly workarounds, to enable communication
under the restrictions of the SOP. The last technique, i.e. cross-origin resource
sharing, is designed to extend the SOP to allow safe, controlled cross-domain
communication.

5.1 XMLHttpRequest Proxies

XHR does not allow cross-domain requests, a restriction that can be circumven-
ted by providing a server-side proxy within the origin of the page initiating the
request. The proxy receives a request for some content, retrieves it and sends it
back to the requesting page. This solution is elegant in the sense that it allows
the client-side implementation to use XHR, the standardized communication
mechanism. The solution lacks elegance however in the fine details, such as the
difficulty in handling authentication credentials of the remote site, where the
information needs to be retrieved from. Another disadvantage is the fact that
every component provider needs to provide a proxy. Furthermore, this proxy
has to be fully trusted by the client, since it can manipulate both request and
response.

When compared against the proposed security requirements, this solution does
offer cross-domain communication, but offers no authentication. Even when an
authentication mechanism is implemented on top of this communication channel,
the proxy effectively acts as a man in the middle, which makes the authentication
process untrustworthy.

This technique is currently used by Facebook JavaScript and iGoogle.

5.2 Script Communication

Scripts can be included from any origin, but their content is included in the
protection domain of the page that includes it. Furthermore, the page does not
get access to the contents of the received script file, which is executed imme-
diately. This does not prevent the use of script inclusion as a communication
channel: outgoing information is embedded using GET parameters and incoming
information is encoded as JavaScript code. This code can be anything, but will
most likely be JSON data.

This technique achieves cross-domain communication, but can not guarantee
any authentication. Depending on the degree of separation between the compo-
nents, an authentication mechanism may be implemented on top of this channel.

Security of Web Mashups: A Survey 233

A major issue with this technique however is the fact that the response has
full privileges within the requesting page. This means that if an attacker can
manipulate the response, the whole requesting page is vulnerable to attack.

This technique is used in practice, for instance in Google’s mail service, Gmail.

5.3 Using Browser Plugins

By interacting with browser plugins, such as Flash or Java, cross-domain com-
munication can be achieved. These plugins are not bound to the SOP of the
browser and are free to implement their own policy. The implemented policies
resemble the SOP of the browser, with some exceptions [34]. The origin to which
the plugin is bound is typically the origin where it was downloaded from, not
the origin of the including document. One noteworthy extension to the SOP of
the browser is that Flash and Java, among others, use a cross-domain policy file
(called crossdomain.xml) [1], which is used to selectively allow cross-domain re-
quests. This policy file is created and served by the destination of a cross-domain
request and identifies the origins where the request can come from. The plugin
checks this policy file before executing a cross-domain request.

The use of browser plugins enables cross-domain communication and offers
more fine-grained controls that other techniques do. Authentication can be achie-
ved using cookies or HTTP authentication headers, but the browser plugin,
which acts as a client-side proxy component, is still responsible for identifying
the component behind the request. Disadvantageous to this technique is the
need for browser plugin support, which can have an impact on the security of
the browser platform, as shown by numerous vulnerabilities in both the Flash
and Java plugin environment. Additional disadvantages are the potential lack of
plugin support on mobile devices and the elevated resource consumption caused
by the loaded browser plugin objects.

This technique is currently in use by Facebook JavaScript.

5.4 Cross-Origin Resource Sharing

Cross-Origin Resource Sharing (CORS) is an extension of the HTTP protocol
to support cross-domain requests [32]. CORS allows a remote server to indicate
whether the given origin has access to its resources or not, a decision which
is enforced by the browser. The server can formulate fine-grained decisions for
particular resources, such as the HTTP methods that can be used or whether
credentials (cookies, HTTP authentication) are allowed.

Technically, CORS adds request headers to provide the server additional infor-
mation, such as the origin or the need for credentials, to which the server responds
with response headers specifying the fine-grained decision that the browser needs
to enforce. The specification preserves the protection of legacy operations, which
have no knowledge about CORS, using a deny-by-default approach.

This solution is a durable, long-term approach to enabling cross-domain com-
munication. It even offers support for authentication, using cookies or HTTP

234 P. De Ryck et al.

authentication. A disadvantage with the specification is the domain-based
identification of origins, which makes it hard for a remote server to distinguish
requests coming from two different components from within the same origin. As
experiments have shown, using CORS in conjunction with the unique origin of the
sandbox attribute leads to a null-origin being associated with the request. This
behavior can be attributed to the sandbox being a “privacy-sensitive” context [2].

The CORS specification is still a W3C working draft, but is already supported
in major browsers. Since CORS only specifies an algorithm, browser vendors are
free to implement it how they see fit. Firefox and Chrome have extended the
traditional XHR communication mechanism with this additional functionality.
Internet Explorer has implemented it as the new XDomainRequest API, due to
previous security issues with the implementation of XHR [9].

6 Advanced Fine-Grained Control

In this section, we present three approaches which are aimed at providing fine-
grained control over component behavior in a mashup. The first approach fo-
cuses on enforcing a policy on JavaScript code, either with or without specific
browser-side support. A second approach mediates access to specific objects,
thus enabling the enforcement of a security policy. A third approach is aimed at
enabling information flow control for JavaScript.

6.1 Policy Enforcement Techniques for JavaScript

ConScript enables the specification and enforcement of fine-grained security po-
licies for JavaScript in the browser [21]. Such policies can be used to control the
script behavior, such as disallowing calls to certain functions (e.g. eval), or pre-
venting the script from accessing cookies. To ease the task of writing policies,
ConScript supports automatic policy generation trough static analysis of server-
side code or run-time analysis of client-side code. Technically, ConScript supports
the enforcement of security advice within the JavaScript engine. The advantage
of this approach is its effectivity, since all indirections and ambiguities, such as
different paths to the same function, are eliminated inside the JavaScript engine.

Self-protecting JavaScript [29] provides similar security features, but does not
require specific support within the browser. Policy enforcement is achieved by
wrapping security-sensitive JavaScript operations before normal script execu-
tion. As a consequence of not depending on browser-support, this technique
faces several challenges, such as covering all access paths to a specific function
or preventing wrapped operations to be restored by the malicious script. Several
of these issues have been addressed in a follow-up paper [25], while others will
be resolved in future research.

6.2 Mediating Access to Objects

Object views offer a fine grained control over shared objects in a JavaScript
environment [26]. By creating and sharing a view of an object, instead of the

Security of Web Mashups: A Survey 235

full object, all calls to the object pass through the view, where a security policy
can be enforced. An example application scenario is a document sharing policy,
where the HTML document is a shared object. A view of this document can
enforce the security policy, where a component can have read-only access to the
entire DOM tree, and only gets write access to within its boundaries.

AdJail [30] offers a technique to mediate access to advertisements, which are
embedded as a DOM object. Advertisements are executed separately in a sand-
boxed environment, where they can cause no harm. In order to preserve the
user experience and to enable ad-specific services, such as compatibility with ad
network targeting algorithms or billing operations, a mediation technique selec-
tively forwards specific operations, such as visualizing content and forwarding of
user interface events, between the sandbox and hosting page.

6.3 Information Flow Control for JavaScript

Applying information flow control (IFC) to mashup components on the client-
side can prevent the leaking of sensitive data. A lattice-based approach to ma-
shup composition [24] prevents unauthorized leaking between origins. Authorized
sharing can be enabled by so-called escape hatches, which allow the declassifi-
cation of specific content items. Related work is Mash-IF [20], which presents a
client-side solution for enabling information flow control by means of a browser
extension. The extension supports the identification of sensitive data and uses a
reference monitor to prevent unauthorized disclosure within the mashup.

Additionally, secure multi-execution achieves non-interference between
different levels in the security lattice, by executing a script for each security
level, which results in only a limited run-time overhead on multi-core client
machines [8].

7 Discussion

The overview in Figure 3 shows the compliance of the discussed solutions with
the security requirements for separation and interaction. The table also indi-
cates whether a technique is currently supported by mainstream browsers or
not. From this table – and the earlier discussion – it can be concluded that the
use of iframes combined with postMessage offers separation and interaction in a
standardized way, without much overhead. Stronger separation can be achieved
by using sandboxed iframes. For script separation within the same execution en-
vironment, Caja is most widely used and has the strongest formal background.
The techniques to enable communication have not been summarized in a table,
because there are too many differences between different techniques. The conclu-
sion for this category is that the use of CORS is the recommended solution, since
it is a soon-to-be-standardized approach, with very limited overhead.

If we revisit the running example from the beginning of the paper, we can
use the following techniques to meet the security requirements: a client-side
mashup composes the application by separating the components using iframes

236 P. De Ryck et al.

Separation Interaction

DOM Script Confidentiality Integrity

yes yes no N/A N/A N/A yes

script no no no no no no yes

yes yes no yes yes yes yes

yes yes yes yes yes yes yes

subspace yes yes no yes yes yes yes

smash yes yes no yes yes yes yes

module yes yes yes yes yes possible no

yes yes yes yes yes possible no

yes yes yes yes yes possible no

yes yes yes yes yes possible yes

yes yes yes yes yes possible yes

yes yes yes yes yes possible yes

Applicable in
same domain

Mutual
Authentication

Standardized/
Supported

iframe

iframe + postmessage

sandbox + postmessage

mashupOS

Omash

Adsafe

Facebook JavaScript

Caja

Fig. 3. Overview: Separation/Isolation and Interaction. Note: mutual authentication
is most of the time not available, but can be implemented (indicated by “possible”).

(all different domains, so no need to use sandboxes). Interaction between ban-
king an brokerage component is enabled using postMessage, with access-control
to ensure that the advertising component does not try to request private infor-
mation. Both banking an brokerage component also expose an API to retrieve
relevant keywords, which is publicly available, and can be used by the advertising
component. The banking and brokerage component can communicate with their
servers using traditional XHR. The advertising component can retrieve specific
advertisements using CORS, where the remote server allows requests coming
from the domain of the advertising component.

Opportunities for future work and developments for building secure mashups
are available both within the currently existing techniques as in the evolution
of mashups. One way currently existing techniques can be improved is by sol-
ving the remaining issues, such as the authentication problems with the use of
unique-origin sandboxes [2]. Another important improvement is the support for
web developers. The proposed security mechanisms, such as the postMessage
API and CORS specification serve their purpose, but expose too many low level
details to the developers. An abstraction on top of the postMessage API could
allow developers to define a public interface in some form of interface definition
language, which is then translated to the corresponding, low level message hand-
ler. Similarly, the CORS specification enables cross-domain communication, but
the header injection at the server-side needs to be encapsulated by frameworks
and management tools, to relieve the implementation and management burden.

A growing mashup popularity will lead to changing requirements, especially
the need for fine-grained control techniques. The selective restrictions introduced
by the sandbox attribute are a step in the right direction, but more fine-grained
control will be needed in the future, an evolution started by the techniques pre-
sented in Section 6. Providing secure, fine-grained policy enforcement techniques
will enable developers and integrators to compose mashups, which respect speci-
fied policies. This is especially important for complex enterprise mashups, where
regulations, service level agreements or contracts may need to be respected.

Security of Web Mashups: A Survey 237

Acknowledgements. This research is partially funded by the Interuniversity
Attraction Poles Programme Belgian State, Belgian Science Policy, IBBT, the
Research Fund K.U. Leuven and the EU-funded FP7-projects WebSand and
NESSoS.

References

1. Adobe Systems Inc. Cross-domain policy file specification (January 2010),
http://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html

2. Barth, A., Jackson, C., Hickson, I.: The web origin concept (June 2010),
http://tools.ietf.org/html/draft-abarth-origin-07

3. Barth, A., Jackson, C., Mitchell, J.C.: Securing frame communication in browsers.
In: In Proceedings of the 17th USENIX Security Symposium (USENIX Security
2008) (2008)

4. Crites, S., Hsu, F., Chen, H.: Omash: Enabling secure web mashups via object
abstractions. In: Proceedings of the 15th ACM Conference on Computer and Com-
munications Security, pp. 99–108. ACM (2008)

5. Crockford, D.: The module tag (October 2006),
http://www.json.org/module.html

6. Crockford, D.: Adsafe (December 2009), http://www.adsafe.org/

7. De Keukelaere, F., Bhola, S., Steiner, M., Chari, S., Yoshihama, S.: Smash: Secure
component model for cross-domain mashups on unmodified browsers. In: Procee-
dings of the 17th International Conference on World Wide Web, pp. 535–544. ACM
(2008)

8. Devriese, D., Piessens, F.: Non-interference through secure multi-execution. In:
2010 IEEE Symposium on Security and Privacy Proceedings, pp. 109–124 (2010)

9. Dutta, S.: Client-side cross-domain security (June 2008),
http://msdn.microsoft.com/library/cc709423.aspx

10. Facebook Developer Wiki. Cross domain communication (January 2009),
http://wiki.developers.facebook.com/index.php/

Cross Domain Communication

11. Facebook Developer Wiki. FBJS (August 2010),
http://wiki.developers.facebook.com/index.php/FBJS

12. Harmonia, Inc. Liquidapps (2010), http://www.liquidappsworld.com/
13. Hickson, I., Hyatt, D.: Html 5 working draft (June 2010),

http://www.w3.org/TR/html5/

14. Hickson, I., Hyatt, D.: Html 5 working draft - cross-document messaging (June
2010), http://www.w3.org/TR/html5/comms.html#crossDocumentMessages

15. Hickson, I., Hyatt, D.: Html 5 working draft - the sandbox attribute (June 2010),
http://www.w3.org/TR/html5/the-iframe-element.html#attr-iframe-sandbox

16. IBM. IBM Mashup Center (2010),
http://www-01.ibm.com/software/info/mashup-center/

17. Intel Corporation. Mash Maker (2010), http://mashmaker.intel.com/web/
18. JackBe Corporation. Presto: Powering the enterprise app store (2010),

http://www.jackbe.com/products/

19. Jackson, C., Wang, H.J.: Subspace: secure cross-domain communication for web
mashups. In: Proceedings of the 16th International Conference on World Wide
Web, p. 620 (2007)

http://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html
http://tools.ietf.org/html/draft-abarth-origin-07
http://www.json.org/module.html
http://www.adsafe.org/
http://msdn.microsoft.com/library/cc709423.aspx
http://wiki.developers.facebook.com/index.php/Cross_Domain_Communication
http://wiki.developers.facebook.com/index.php/Cross_Domain_Communication
http://wiki.developers.facebook.com/index.php/FBJS
http://www.liquidappsworld.com/
http://www.w3.org/TR/html5/
http://www.w3.org/TR/html5/comms.html#crossDocumentMessages
http://www.w3.org/TR/html5/the-iframe-element.html#attr-iframe-sandbox
http://www-01.ibm.com/software/info/mashup-center/
http://mashmaker.intel.com/web/
http://www.jackbe.com/products/

238 P. De Ryck et al.

20. Li, Z., Zhang, K., Wang, X.F.: Mash-if: Practical information-flow control within
client-side mashups. In: 2010 IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pp. 251–260 (2010)

21. Livshits, B., Meyerovich, L.: Conscript: Specifying and enforcing fine-grained se-
curity policies for javascript in the browser. Technical report, Microsoft Research
(2009)

22. Maffeis, S., Mitchell, J.C., Taly, A.: Object capabilities and isolation of untrusted
web applications. In: Proceedings of IEEE Security and Privacy 2010. IEEE (2010)

23. Maffeis, S., Taly, A.: Language-based isolation of untrusted javascript. In: 22nd
IEEE Computer Security Foundations Symposium, pp. 77–91 (2009)

24. Magazinius, J., Askarov, A., Sabelfeld, A.: A lattice-based approach to mashup
security. In: Proceedings of the 5th ACM Symposium on Information, Computer
and Communications Security, pp. 15–23 (2010)

25. Magazinius, J., Phung, P., Sands, D.: Safe wrappers and sane policies for self
protecting javascript. In: 15th Nordic Conference on Secure IT Systems (2010)

26. Meyerovich, L.A., Felt, A.P., Miller, M.S.: Object views: Fine-grained sharing in
browsers. In: Proceedings of the 19th International Conference on World Wide
Web, pp. 721–730 (2010)

27. Miller, M.S., Samuel, M., Laurie, B., Awad, I., Stay, M.: Caja: Safe active content
in sanitized javascript (January 2008),
http://google-caja.googlecode.com/files/caja-spec-2008-01-15.pdf

28. OpenAjax Alliance. Openajax hub 2.0 specification (July 2009),
http://www.openajax.org/member/wiki/index.php?

title=OpenAjax Hub 2.0 Specification&oldid=12174

29. Phung, P.H., Sands, D., Chudnov, A.: Lightweight self-protecting javascript. In:
Proceedings of the 4th International Symposium on Information, Computer, and
Communications Security, pp. 47–60 (2009)

30. Ter Louw, M., Ganesh, K.T., Venkatakrishnan, V.N.: Adjail: Practical enforcement
of confidentiality and integrity policies on web advertisements. In: 19th USENIX
Security Symposium (2010)

31. Thorpe, D.: Secure cross-domain communication in the browser (July 2007),
http://msdn.microsoft.com/en-us/library/bb735305.aspx

32. van Kesteren, A.: Cross-origin resource sharing (2009)
33. Wang, H.J., Fan, X., Howell, J., Jackson, C.: Protection and communication abs-

tractions for web browsers in mashupos. ACM SIGOPS Operating Systems Re-
view 41(6), 16 (2007)

34. Zalewski, M.: Browser security handbook (2010),
http://code.google.com/p/browsersec/wiki/Main

35. Zarandioon, S., Yao, D.D., Ganapathy, V.: Omos: A framework for secure com-
munication in mashup applications. In: Annual Computer Security Applications
Conference, ACSAC 2008, pp. 355–364 (2008)

http://google-caja.googlecode.com/files/caja-spec-2008-01-15.pdf
http://www.openajax.org/member/wiki/index.php?title=OpenAjax_Hub_2.0_Specification\&oldid=12174
http://www.openajax.org/member/wiki/index.php?title=OpenAjax_Hub_2.0_Specification\&oldid=12174
http://msdn.microsoft.com/en-us/library/bb735305.aspx
http://code.google.com/p/browsersec/wiki/Main

Safe Wrappers and Sane Policies
for Self Protecting JavaScript

Jonas Magazinius, Phu H. Phung, and David Sands

Chalmers University of Technology, Sweden

Abstract. Phung et al (ASIACCS’09) describe a method for wrapping built-in
functions of JavaScript programs in order to enforce security policies. The me-
thod is appealing because it requires neither deep transformation of the code nor
browser modification. Unfortunately the implementation outlined suffers from a
range of vulnerabilities, and policy construction is restrictive and error prone.
In this paper we address these issues to provide a systematic way to avoid the
identified vulnerabilities, and make it easier for the policy writer to construct
declarative policies – i.e. policies upon which attacker code has no side effects.

1 Introduction

Even with the best of intentions, a web site might serve a page which contains mali-
cious JavaScript code. Preventing e.g. cross-site scripting (XSS) attacks in modern web
applications has proved to be a difficult task. One alternative to relying on careful use
of input validation is to focus on code behavior instead of code integrity. Even if we
cannot be sure of the origins (and hence functionality) of all the code in a given page,
it may be enough to guarantee that the page does not behave in an unintended manner,
such as abusing resources or redirecting sensitive data to untrusted origins.

One way to do this is to specify a policy which says under what conditions a page
may perform a certain action, and implement this by a reference monitor [2] which
grants, denies or modifies such action requests. In this paper we study this approach
in a JavaScript/browser context, where the policy is enforced by using software wrap-
pers. In the remainder of this introduction we review the background of policy enforce-
ment mechanism in protecting web pages from malicious JavaScript code. A number of
recent proposals implement policy enforcement by using wrappers to intercept security-
relevant events. Here we sample the various approaches to implementing wrappers –
each with their own advantages and disadvantages, before focusing in more detail on
the approach, self-protecting JavaScript, that forms the main focus of this article.

1.1 The Wrapper Landscape

One key dimension for comparing security wrapper and sandboxing approaches is
whether they require browser modification or not. Full browser integration offers some
clear advantages. For example, the wrapping mechanism has direct access to the scripts
as seen by the browser so there can be no inconsistency between the wrapper’s and the
browser’s view of the code. Such inconsistencies are the basis for attacks, as is well

T. Aura, K. Järvinen, and K. Nyberg (Eds.): NordSec 2010, LNCS 7127, pp. 239–255, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

240 J. Magazinius, P.H. Phung, and D. Sands

known from the evasion attacks on script filters. The wrapping mechanism also has
access to lower-level implementation details that would not be accessible at the Java-
Script level, and permits modifications and extensions, for the greater good, to Java-
Script’s semantics. The state-of-the-art in this approach is CONSCRIPT [21], which
modifies Internet Explorer 8 to provide aspect-oriented programming constructs for
JavaScript.

Avoiding browser modification, on the other hand, is an advantage in itself. For
example it could allow a server to protect its own code from XSS attacks using an
application-specific policy. The user would receive this protection without being proac-
tive. Within this area one can roughly divide the approaches into those which transform
the whole program (thus requiring the program to be parsed) and those which perform
wrapping without having to modify the code. Phung et al [25] refer to these styles as in-
vasive vs lightweight, respectively. The former approach is taken by the BrowserShield
tool [28] which performs a deep wrapping of code, requiring run-time parsing and trans-
formation of the code. In more recent work, Ofuonye and Miller [23] show that the high
runtime overheads witnessed in BrowserShield can be improved in practice by optimis-
ing the instrumentation technique. The lightweight approach refers to techniques which
do not require any aggressive code manipulation. There are many JavaScript program-
ming libraries which provide this kind of functionality; the lightweight self-protecting
JavaScript work of Phung et al [25] is the only one of these which is security specific.
More details of this approach are given below.

A number of approaches involve using well-behaved subsets of JavaScript. These
can be though of as a hybrid of an invasive pass (to check that the code is in the in-
tended sub-language), followed by wrapping. By syntactically filtering the language,
the wrapping problem becomes much simpler, since problematic language features can
be disallowed (these invariably must include, among other things, all dynamic code
creation features such as eval and document.write). This approach is exempli-
fied in FBJS [12], a JavaScript subset provided by Facebook to sandbox third-party
applications. A principled perspective on this approach is provided in the work of
Maffeis et al, e.g. [19].

Each approach has potential advantages and disadvantages, and each must both over-
come numerous technical problems to be practically applicable.

1.2 Self Protecting JavaScript

In this paper we focus on problems and improvements in the self protecting JavaScript
approach [25]. Here we outline the key ingredients of that approach.

Policies are defined in terms of security relevant events, which are the API calls – the
so-called built-in methods of JavaScript. These are the methods which have an intrinsic
meaning independent of the code itself. The attacker is assumed to have injected arbi-
trary JavaScript into the body of a web page. A policy is a piece of JavaScript which,
in an aspect-oriented programming (AOP) style, specifies which method calls are to be
intercepted (the pointcut in AOP-speak), and what action (advice) is to be taken.

The key to being “lightweight” is that the method does not need to parse or transform
the body of the page at all. This is achieved by assuming that the server, or some trusted

Safe Wrappers and Sane Policies for Self Protecting JavaScript 241

proxy, injects the policy code into the header of the web page. Integrity of this policy
code is assumed (so attacks to the page in transit are not considered). Injecting the
policy code into the header ensures that the policy code is executed first, so the policy
code gets to wrap the security critical methods before the attacker code can get a handle
on them. This is a strikingly simple idea that does not have any particular difficulty with
dynamic language features such as on-the-fly code generation. The price paid for this
is that it can only provide security policies for the built-in methods, and cannot patch
arbitrary “code patterns” as e.g. the BrowserShield approach.

Phung et al implemented this idea via an adaptation of a non security-oriented aspect-
oriented programming library. But in a security context the ability to ensure that the
code and policy are tamper-proof, and that the attacker cannot obtain pointers to the
unwrapped methods is crucial. In this paper we study and fix vulnerabilities of both
kinds in the implementation outlined by Phung et al, and propose a way to make it
easier to write sane policies which behave in a way which is not unduly influenced by
attacker code.

We divide the study into issues relating to the generic wrapper code (Section 2), and
issues relating to the construction of safe policies (Section 3). Before discussing this
work in more detail below, we summarize the attacks which motivate the present work,
most of which are either well-known or based on well-known mechanisms:

Prototype poisoning. Prototype poisoning is a well-known attack vector: trusted code
can be compromised because it inherits from a global prototype which is accessible
to the attacker. We address several flavours of poisoning attack:

– Built-in subversion Built-in methods used in the implementation of the generic
wrapper code can be subverted by modifying the prototype object.

– Global setter subversion Setters defined on prototype objects are executed
upon instantiation of new objects. This opens up for external code to access
information in a supposedly private scope. In the case of the wrapper imple-
mentation, inconsiderate use of temporary objects leads to compromise. This
issue has been discussed previously in the context of JSON Hijacking [24,8].

– Policy object subversion Any object implicitly or explicitly manipulated by the
policy code is vulnerable to subversion via its global prototype. Meyerovich
et al [20] provide a good example of this attack in the subversion of a URL
whitelist stored in a policy.

Aliasing issues. A specific built-in may have several aliases pointing to the same func-
tion in the browser. Knowing what to wrap given one of these aliases is imper-
ative for the monitor in order to control access to the built-in. Meyerovich et al
[20] call this incomplete mediation. Also, each window instance has its own set of
built-ins but can under some circumstances access and execute a built-in of another
instance. This sort of dynamic aliasing needs to be controlled so that one instance
with wrapped built-ins cannot not access the unprotected built-ins of another.

Abusing the caller-chain. When a function is called, the caller property of that
function is set to refer to the function calling it. The called function can thereby
get a handle on its caller and access to and modify part of the information which is

242 J. Magazinius, P.H. Phung, and D. Sands

supposed to be local to it e.g. the arguments property. This implies that if user
code in one way or another is called from either a built-in, the wrapper, or from
the policy, it could potentially bypass the monitor. This general attack vector is
described in the Caja end-user’s guide [13] (“Reflective call stack traversal leaks
references”).

Non declarative arguments. If a policy inspects a user-supplied parameter the param-
eter can masquerade as a “good” value at inspection time, and change to a “bad”
value a the time of use. This is because JavaScript performs an implicit type con-
version. This attack was already addressed in [25] where it is credited to Maffeis
(see also [19]). It is also the basis of a recently described attack on ADsafe [18].
(This paper significantly extends the defence mechanism of [25] for this class of
attack).

2 Breaking and Fixing the Wrapping Code

Upon analyzing the wrapper implementation by Phung et al. [25] (see Listing 1.1),
we found that it was vulnerable to a number of attacks. In this section we discuss the
attacks, potential solutions and how the attacks apply to other wrapping libraries.

1 var wrap = function(pointcut, Policy) {
2 ...
3 var aspect = function() {
4 var invocation = { object: this, args: arguments };
5 return Policy.apply(invocation.object,
6 [{ arguments: invocation.args,
7 method: pointcut.method,
8 proceed: function() {
9 return original.apply(...);

10 }}]);
11 } ...
12 }

Listing 1.1. The main wrapper function in Phung et al [25]

2.1 Function and Object Subversion

Since the header is executed before the page is processed, any malicious code in the
page will only have access to wrapped methods. But since wrapped methods are exe-
cuted in the attacker’s environment, the attacker can subvert functions that are used in
the wrapping function to bypass the policies or extract the original unwrapped meth-
ods. As an example, the wrapper in Listing 1.1 uses the apply-function to execute the
policy and the original method. The apply-function is inherited from the Function

-prototype, which is part of the environment accessible to the attacker. By modifying
the apply-function of Function-prototype an attacker can bypass the execution of

Safe Wrappers and Sane Policies for Self Protecting JavaScript 243

the policy or even extract the original built-in. Suppose that the wrapped built-in is
the function window.alert. The following code (Listing 1.2) illustrates this attack by
extracting the original window.alert and restoring it. If the monitor were to rely on
inherited properties of objects it could be influenced in a similar way.

1 var recover_builtin;
2 Function.prototype.apply = function(thisObj, args){
3 if (args[0].proceed) args[0].proceed();
4 else recover_builtin = this; };
5 //call the wrapped built-in, so that the wrapper will execute
6 window.alert(’XSS’);
7 //then recover the built-in
8 if (recover_builtin) window.alert = recover_builtin;

Listing 1.2. Illustration of subverting built-in to recover the wrapped method

To prevent attacker code from subverting objects we can try to ensure that each object
reference used in the policy is a local property of the object and not something inherited
from its low-integrity prototype. The built-in function hasOwnProperty can be used
for this purpose (of course the integrity of the function hasOwnProperty must be
maintained as well). But this approach requires all object accesses to be identified and
checked. This is potentially tricky for implicit accesses, e.g., the toString-function is
called implicitly when an object is converted to a string.

Since the monitor code is the first code to be executed it can store local references to
the original built-in methods used in the advice function. Our solution is to ensure that
the wrapper code only uses the locally stored copies of the original methods. As an ex-
ample, o.toString() would be rewritten as original_toString.apply(o,[]).
To prevent an attacker from subverting the apply function of the stored methods, it is
made local to each stored function by assignment, i.e. original_toString.apply=
original_apply. Now even if the prototype of the function is subverted, the apply

function local to the object remains untouched. Again, this is not entirely foolproof
since it could be hard to determine which functions are being called implicitly.

A simpler alternative approach (supported in e.g. Firefox, Chrome and Safari, but not
in e.g. IE8 or Opera) is to set an object’s __proto__ to null. This has the
effect of disconnecting the object from its prototype chain, thus preventing it from in-
heriting properties defined outside of the policy code. Since they are no longer inher-
ited, any required properties of the prototype must be reattached to the object from the
stored originals. This technique is used in the implementation of the function safe in
Section 3.1.

2.2 Global Setter Subversion

A special case of function subversion involves setters. A setter is a function for a
property of an object, that is executed whenever the property is assigned a new value.

244 J. Magazinius, P.H. Phung, and D. Sands

Defining a setter on a prototype object will affect all objects inheriting from that pro-
totype, which is our definition of a global setter. If a setter is defined for Object.
prototype, it will be inherited by all objects.

An issue that has been discussed recently [32,29] is that global setters will be ex-
ecuted upon object instantiation. This creates an unexpected behavior where external
code is able to extract values from a private scope. When considering the code in List-
ing 1.1, an attacker could define a global setter for the property proceed of all objects.
The below snippet illustrates this attack in the wrapper in Listing 1.1.

1 var recover_builtin;
2 Object.prototype.__defineSetter__(’proceed’,
3 function(o) { recover_builtin = o });

When the advice is executed, a temporary argument object for the policy is created.
Since this object contains a proceed-property, the setter will be executed and the func-
tion containing the original method will be passed as an argument. The attacker can now
bypass the policy by executing the function in the setter. Note also that the argument
object as a whole will be accessible to the setter through the this-keyword. The same
holds for any object created in the execution of the advice or in the policy itself. This
vulnerability also applies to arrays and functions.

While the correctness of this behaviour is debatable [32], it is implemented in most
browsers (at the time of writing). The exceptions are Internet Explorer (which only im-
plement setters for DOM-objects) and Firefox which have recently [29] changed this
behavior so that setters are not executed upon instantiation of objects and arrays (al-
though for functions the problem still remains). This issue has been discussed previ-
ously in the context of JSON Hijacking [24,8].

One possibility to protect against this problem would be to prevent the wrapping
code from creating any new objects, arrays or functions. This severely restricts how
the advice function could be implemented, in such a way that it might not be possible
to implement at all. Checking for the existence of setters for every property before
creating an object is another alternative, but it would be infeasible in general. The advice
code could define its own getters and setters on the object instead of just assigning the
property a value. The custom getters and setters would overshadow the inherited ones,
making the object safe to use. Again this might be a bit too cumbersome.

As mentioned in the previous section, the chain of inheritance can be broken by
setting the __proto__ property to null. This is our current solution. Developing a so-
lution which works for platforms not supporting this feature would require very careful
implementation and is left for future work.

2.3 Issues Concerning Aliases of Built-ins

Although policies are specified in terms of built-in function names, semantically speak-
ing they refer to the native code to which the function points. This gives rise to an
aliasing problem as there may be several aliases to the same built-in. This is a problem
since a crucial assumption of the approach is that wrappers hold the only references to

Safe Wrappers and Sane Policies for Self Protecting JavaScript 245

the security relevant original functions. This problem is highlighted in [21] (where it is
solved by pointer comparison – something that is not possible at the JavaScript level).

Static Aliases. Most functions have more than one alias within the window, and if one
is wrapped, then the others need to be wrapped as well. Otherwise, the original function
can be restored by using an alias. As an example, in Firefox the function alert can be
reached through at least the following aliases: window.alert, window.__proto__.
alert, window.constructor.prototype.alert, Window.prototype.alert.

Enumerating these different aliases for each method is browser specific and somewhat
tedious, but we conjecture that in most cases there is a “root” object at the top of the
prototype inheritance chain for which wrapping of the given method takes care of all
the aliases. For a given object and method this root object can be computed by:

1 while(!object.hasOwnProperty(method) && object.__proto__)
2 object = object.__proto__;

Any aliases not captured by this scheme must be handled on an ad hoc basis. But the
main point here is that this should be the job of the wrapping library and not the policy
writer. Thus we propose to extend the wrapping library with a means to compute aliases,
and ensure that a policy applied to one function is applied to all its static aliases.

Dynamic Aliases. Another class of aliases are those which can be obtained from other
window object (window, frame, iframe). In [25], several attempted solutions were in-
troduced to deal with the problem, including disabling the creation of new window,
frame/iframe or disable the access to contentWindow property of frame/iframe ob-
jects from where references to unwrapped methods can be retrieved. Unfortunately the
proposed approach seems both incomplete (does not provide full mediation) and overly
restrictive. In this work, we allow window objects to be created, but user code should
not be able to obtain a reference to one. If user code gets a reference to a foreign win-
dow object, even if it is enforced with the same policies, that window object could be
navigated to a new location which would reset all the built-ins. To implement this we
provide pre-defined policies which enforce methods that potentially return a window
object. This boils down to two cases: static frames that are defined as part of the HTML
code, and dynamic frames that are generated on the fly.

For static frames the problem is that they do not exist at the time the policy code in
the header is executed, and there is no way to intervene just after they have been created.
This means we have to proactively prevent access to an unspecified number of frames
that might be created. If we disable contentWindow for all frames, the only other
way for user code to obtain a reference to the window is through the window.frames
or window array. By defining getters for “enough” indices in this array we can fully
prevent inappropriate access. The remaining problem is determining how many indices
will be enough – here we must rely on some external approximation.

For dynamic iframes a similar approach is used. By wrapping all actions that may
result in the creation of an iframe, we can intervene and replace the contentWindow

property and the right number of indices in the window array.

246 J. Magazinius, P.H. Phung, and D. Sands

2.4 Abusing the Caller-Chain

Built-in Subversion. The following core assumption is formalised in [25]: we are ef-
fectively assuming that the built-in methods do not call any other methods, built-in or
otherwise. This assumption does not hold for all built-ins, and its failure has conse-
quences. Specifically, (i) some built-ins run arbitrary user functions by design, such
as filter, forEach, every, map, some, reduce, and reduceRight, and (ii) some
built-ins implicitly access object properties e.g. pop which sets the length property or
alert that implicitly calls toString on its argument. These property accesses can, in
turn, trigger arbitrary code execution via user-defined getters and setters.

Both of these cases are problematic because of a nonstandard but widely imple-
mented1 caller property of function objects. For a function f, f.caller returns a
pointer to the function which called f (assuming f is currently on the call stack). Thus
any user code which is called from within a built-in can obtain a pointer to that built-in
using caller.

As an example, suppose that the alert function has been wrapped. In Listing 1.3
the user defines an object with a toString which sets alert to the function calling
it. Now the user code calls alert(x), thus invoking the wrapped alert function.
Now suppose that the wrapper eventually calls the original alert built-in. The built-in
will internally make a call to x.toString. The modified toString can now obtain a
reference to the built-in from the caller chain and restore the original built-in.

1 var x ={toString:function(){ alert=arguments.callee.caller;}};
2 alert(x);

Listing 1.3. An example of the caller attack

Wrapper Subversion. The caller attack does not only apply to built-ins. In several
places the wrapper code must traverse user-supplied objects in order to inspect or assign
to properties. This might trigger the execution of getters or setters or other user supplied
code which can abuse the caller chain to influence the wrapper, extract information, or
dynamically change its behavior upon inspection.

Mitigating the Caller Attack. For type-(i) functions this is not a real problem – we
simply ban them from wrapping. From a policy perspective the built-ins are really just a
way to get a handle on behaviours. Functions like those listed are simply programming
utilities and have nothing to do with the extensional behaviour of the system at all, and
policies have no business trying to control them.

Type-(ii) functions, on the other hand, do indeed involve built-ins that may need to be
wrapped, e.g. document.appendChild. For each built-in, the wrapper needs to know
(an upper bound on) the properties that it might access directly. Before calling the orig-
inal built-in the wrapper must unset any user-defined getters or setters for the accessed
properties before calling the built-in; to preserve functionality these are restored after
the built-in returns.

1 Not part of any ECMA standard but implemented in all major browsers.

Safe Wrappers and Sane Policies for Self Protecting JavaScript 247

As for subversion of the wrapper, there is no upper bound on which properties might
be accessed. Therefore the wrapper must ensure that user code is not implicitly executed
when traversing the object. This could be achieved as for type-(ii) functions above, but
a simpler approach works in this case. If there is a recursive function on the stack then
the caller operation can never get past it. So by wrapping operations on untrusted data
in a dummy recursive function, the caller operation can be prevented from reaching the
sensitive context.

2.5 Browser Specific Issues

It seems unlikely that one can come up with a solution which works for all browsers.
One thorny problem that is specific to Firefox is the behavior of the delete operator
which when applied to the name of a built-in simply deletes any wrappers and restores
the original method. This problem is discussed in [25], and also plagues the Torbutton
anonymous browsing plug-in, which is unable to properly disable access to the Date

object for precisely this reason [30]. We are not optimistic that there is a workaround
for this in the current versions of Firefox, although future versions supporting object
attributes from the recent ECMAScript 262 standard [11] will certainly see an end to
this problem.

2.6 Other Lightweight AOP Libraries

As an experiment we tried to adjust the attacks to other AOP-wrapping libraries to see
if any of them were more suitable candidates for implementing a reference monitor.
The libraries used were jQuery AOP [15], dojo AOP [10], Ajaxpect [1], AspectJS [3],
Cerny.js [7], AspectES [4], PrototypeJS [27]. One thing to note is that none of these
libraries were designed for security purposes, but rather as general implementations of
AOP-functionality. The results were discouraging: all of the libraries were vulnerable
to all the attacks described above. In addition the way they are designed opens up for
new attacks which had been considered in the design of [25]. For example, since the
the wrapping code (the AOP library) is not in the same local scope as the policy code,
the library must export its wrapping functions, thus making them vulnerable to simple
redefinition from attacker code.

3 Declarative Policies

Let us suppose that the mechanism for enforcing policies provides full mediation of
security relevant events. Then all one needs to do is to write policies which enforce the
desired security properties. Unfortunately, due to the complexities of JavaScript, this is
not a simple task. It is all too easy to write policies which look reasonable, but whose
behavior can be controlled by the attacker (who controls the code outside of the policy).

In this section we describe this problem and propose a method to structure policy
code which makes them declarative, in the sense that code outside the policy and wrap-
per library cannot have side-effects on the policy.

As a running example consider a policy implementing a URL white-list which is used
to filter calls to e.g. window.open(url,..): calls to whitelisted URL’s are allowed,
other calls are dropped.

248 J. Magazinius, P.H. Phung, and D. Sands

3.1 Object and Function Subversion in Policies

In [20] an additional problem with policy subversion is noted. Let us consider the ex-
ample given there: suppose that the policy writer models a URL whitelist by an object:
var whitelist ={"good.com":true, "good2.org":true}. Then for a policy,
which also allows subdomains of the domains in the whitelist, the code would involve
a check similar to the one in Listing 1.4.

1 var l = url.lastIndexOf(’.’,url.length-5) + 1;
2 if (whitelist[url.substring(l)] === true) { ... }

Listing 1.4. Policy sample code

This looks like the desired policy, but unfortunately the attacker can easily bypass it
by assigning to Object.prototype["evil.com"]=true; this will add an "evil.
com" field to all objects including the whitelist. Alternatively the attacker could rede-

fine substring to always return a string that is in the whitelist. The url would then
pass the check regardless of its actual value.

The solution we adopt here is the same as for the wrapper code. For functions the
policy writer must use local copies of the originals, and for objects we can ensure that
they cannot access a poisoned prototype by simply removing it from its prototype chain.

Let us refer to such an object as a safe object. How can we make it easy for the policy
author to work only with safe objects? Our current approach is to provide a function
safe, which recursively traverses an object, detaching it and all sub-objects from the
prototype chain that can be modified by the user. As explained in Section 2.1 detaching
the object is done by setting its __proto__ property to null. Since detaching implies
that the object will no longer inherit any of the methods expected to be associated with
the type of the object, this functionality needs to be restored. Since determining the type
of an object is difficult the safe function takes an optional argument to specify the type.
Safe versions of the functions associated with this type are added to the object. The
safe versions of the functions are stored locally and are detached from the prototype
chain to prevent attacker influence. The format of the object type is similar to the types
described in Section 3.2. Programming with a whitelist would then be written as:

1 var whitelist = safe({"good.com":true,"good2.org":true});

The policy writer must, in general, ensure that any object which is accessed is made
safe. But objects are also constructed implicitly – for example a string might get im-
plicitly converted to a string object. When this happens the string object in question will
be unsafe. Because of this the policy author should apply the safe function to all types,
preemptively (and recursively) converting all values to (safe) objects.

The question of how to obtain complete and optimal insertion of the “safe” operation
in order to avoid all unsafe objects is left for further work. Note that it is not enough to
wrap safe around object literals (as we initially believed). Suppose e is some expression
which returns a value of primitive type. Now consider the expression e.toString
(). This is unsafe because in order to apply the toString method the primitive

Safe Wrappers and Sane Policies for Self Protecting JavaScript 249

type constructed by e is implicitly converted to an object (e.g. a Boolean object). This
object is unsafe and thus an attacker-defined toString method could return any value.
To fix this we could apply safe to e, but this would be redundant if e is already safe
(by virtue of having being built from safe objects).

3.2 Non Declarative Arguments

Phung et al [25] (following Maffeis et al [17]) note a problem with inspecting call
parameters. In the case of the whitelist example, note that the argument to such a call
might not actually be a string, but any object with a toString method. Since this
object comes from outside, it can be malicious. In the case of the whitelist example
it could be a stateful object which returns "goodurl.org" when inspected by the
policy, but in doing so it redefines its toString method to return "evil.com" when
subsequently passed to the original e.g. window.open(url,..) method. Phung et al
[25] suggested a solution to solve this problem by implementing call-by-primitive-value
for all policy parameters using appropriate helper functions to force each argument into
an expected primitive type. The idea is that the policy writer decides which arguments of
the wrapped call will be inspected, and at what type. These arguments are then forcibly
coerced to that type before being passed to the policy code, thus ensuring that what you
see (in the policy logic) is what you get (in any subsequent call to the wrapped built-in).

Types for Declarative Arguments. The approach of Phung et al has some shortcom-
ings: (i) it does not provide a clear declarative way for the policy writer to specify the
parameters and their intended types; (ii) it only only applies to primitive types and not
objects; (iii) it does not deal with the return value of the wrapped function (iv) it relies
on the policy writer not accessing unsanitized parameters; (v) it uses functions such as
toString for implementing coercion, but leaves this function open to subversion.

We provide a policy calling mechanism which addresses these shortcomings. Here
we provide a brief outline of the design. The idea is that the policy writer writes a policy
and an inspection type for the argument and the result. The policy code can assume
that the parameters are declarative and the wrapper library will ensure this using an
inspection type. An inspection type is a specification of the types of the call parameters
that will be inspected by the policy code.

As an example (listing 1.5) suppose we have a policy for the appendChild method
of the document.body object. The argument of the appendChild method should be
an HTML node object which has several properties and methods. The policy (function
ipolicy) intends to check whether the argument is an iframe by looking at the property
tagName of the argument; if so then it should only proceed if the src property of the
argument is an allowed URL. If the argument is not an iframe it should just proceed.
(It should be noted that tagName is not reliable enough for this policy, but it suffices
as an example.) Code to install this policy using our wrapper constructor is given in
listing 1.5 below.

The first two arguments of wrap specify the object and method to be wrapped (the
“pointcut”). The third parameter is the policy function (the “advice”) and the fourth
parameter is the argument inspection type – a specification of how the parameters will

250 J. Magazinius, P.H. Phung, and D. Sands

1 var ipolicy = function(args, proceed) {
2 var o = args[0];
3 if (o.tagName == ’iframe’) {
4 if (allowedUrls(o.src))
5 return proceed();
6 } else
7 return proceed();
8 }
9 wrap(document.body, ’appendChild’, // object and method

10 ipolicy, // policy function
11 [{src:’string’, tagName:’string’}]); // arg inspection type

Listing 1.5. Example of using the wrapper

be inspected by the policy. In the example call above we are specifying that only the
first argument to appendChild will be inspected by the policy code, and it will do so
assuming type {src:’string’, tagName:’string’}. Not shown in the example
is an optional return inspection type. This is needed if the policy will also inspect and
modify the return type of the wrapped builtin.

The parameter inspection type is an array of types. The following simple grammar
of JavaScript literals represents the types used in our current implementation:

type ::= ’string’ | ’number’ | ’boolean’ | ’*’ | undefined
| {field1 : type1, . . . , fieldn : typen}

The ’*’ type provides a reference to a value without providing access to the value itself.
We expect that experience will reveal the need for a more expressive type language, such
as sum-types and more flexible matching for parameter arrays – but these should not be
problematic to add.

Policies are enforced as follows: the inspection type is used as a pattern to create a
clone of the argument array. We will call this the inspection argument array. This is the
generalization of the idea of call-by-primitive-value, except that the cloned parameters
also remove any parts of the arguments which are not part of the type. The policy logic
can only access the inspection argument array. However, when passing the parameters
on to any built-in function, we permit the function access to the whole of the argument
array. To do this we combine the original argument array with the inspection argument
array. Figure 1 illustrates this process and Listing 1.6 outlines the code.

When cloning, the reference type ’*’ is replaced by a fresh dummy object. When
combining, each such object is replaced with original value that it represented. Note
that the type language does not include functions. This means that policy code cannot
inspect any function parameters. However, this does not mean that we cannot have
policies on built-in functions which e.g. have callbacks as arguments – it just means that
we cannot make policy decisions based on the behavior of the callbacks. This restriction
to “shallow” types does not seem to be a serious limitation, but more experience is
needed to determine if this is indeed the case.

Safe Wrappers and Sane Policies for Self Protecting JavaScript 251

combine with
original return value

argument array cloning by type:
policy.toString(b) === ’xyz’

a b c

? ‘string’

? ‘xyz’
original argument array

inspection type
inspection
argument array

Computation by policy code
leading to call to
invocation.proceed()

? ‘xy’ 42

policy’s modified
argument array

2

d

combine with
original argument

a ‘xy’ 42

Example policy computation for some built-in called with (a,b,c). In this example the policy inspects b at type string and
removes the last character, and sets the third parameter to 42 before calling proceed() in order to access the original built-in
function. The foo field of the return value is incremented before it is returned to the caller. In the diagram ? is an abbreviation
for undefined, and array objects are depicted as boxes.

pre-call policy code proceed function

original
builtin

return inspection typereturn inspection

{ foo: ‘num’ }

{ foo: 0, bar: 2 }{ foo: 0 }{ foo: 1 }{ foo

return {foo:1}

{ foo: 1, bar: 2 }

final value returned by
wrapper

inspection
result

post-call policy code

Result cloning by
type

Fig. 1. Illustration of policy parameter manipulation

1 var wrap = function(object, method, policy, inType, retType) {
2 // Find function corresponding to alias
3 while(!object.hasOwnProperty(method) && object.__proto__)
4 object = object.__proto__;
5 var original = object[method];
6

7 object[method] = function wrapper() {
8 var object = this;
9 var orgArgs = arguments, orgRet;

10 var polArgs = cloneByType(inType, arguments);
11 var proceed = function() {
12 orgRet = original.apply(object,
13 combine(polArgs, orgArgs));
14 return cloneByType(retType, orgRet);
15 }
16 var polRet = policy(polArgs, proceed);
17 return combine(polRet, orgRet);
18 };
19 }

Listing 1.6. Outline of the revised wrapper function supporting inspection types

The treatment of the return value of the method is analogous to the treatment of the
arguments: a return type specifies what the policy may inspect from the return value. If
this is not specified then a return type of * is assumed. The return value of the policy
function is combined with the return value produced by the actual built-in.

252 J. Magazinius, P.H. Phung, and D. Sands

4 Related Work

This work is based on the lightweight self-protecting JavaScript method [25], which
embeds the protection mechanism in terms of security policy into a web page to make
the web page self-protecting. Two recent papers [21,20] (concurrent with this present
work) also discuss a large subset of the attacks investigated here, but with the purpose
motivating a quite different part of the solution space.

Other recent work on JavaScript security includes static and runtime analysis e.g.
[5,6,22], code transformation e.g. [28,23,16], wrapping e.g. [21,20], and safe subsets
e.g. [19,14]. In this section, we compare our work to more recent related work on en-
forcing fine-grained security policies for JavaScript execution by wrapping.

Ofuonye and Miller [23] introduced an optimized transformation method to imple-
ment wrappers by rewriting objects identified as being vulnerable. Their approach can
be viewed as an optimization of the BrowserShield approach [28]. However, it appears
that the authors have not considered the vulnerabilities that we discussed in Section 2,
and it seems that these attacks can defeat their security mechanism. For example, their
transformation method does not protect against Function and Object subversion (cf.
Section 2.1). It seems that the solutions described in this paper can be applied directly
to their implementation – including not only solutions to function and object subver-
sion, but also e.g. the use of alias-sets to apply a policy consistently across all aliases of
a given built-in method.

A similar approach concurrent to our work is object views proposed by Meyerovich
et al [20] that provides wrappers as a library in JavaScript. Object views, however, focus
on the safe sharing of objects between two principals in the browser, e.g. between two
frames of different origins or privileged code and untrusted code, whereas we focus
on controlling the use of built-in methods to mitigate the extensional effects of cross-
site scripts. Because policies do not control built-in functions, they need to deal with the
flexibility of user defined objects and functions. In order to do so, they provide recursive
“deep” wrapping and use reference equality checking of user defined objects to ensure
the full mediation of each operation. Meyerovich et al also provide a policy system
where policy writers can specify policies in declarative rules which is later compiled
into wrapper functions.

CONSCRIPT [21] is more closely related to our work in the sense that it provides a
JavaScript aspect-oriented programming system for enforcing security policies includ-
ing those studied here. However, as mentioned in the introduction, the realisation of
CONSCRIPT is different from our work in the sense that it extends JavaScript language
with new primitive functions to support aspect-oriented programming and provides safe
methods replacing vulnerable native JavaScript prototype functions. In order to deploy
such extensions, the authors have to modify the JavaScript engine (i.e. the browser it-
self). CONSCRIPT also provides a type system that can be used to validate the defined
policies to ensure that the policies do not contain vulnerabilities. This feature is more
advanced than our declarative policies since we provide tools for the policy writer to
construct sensible policies, but our method does not guarantee the correctness of the
policies. A possible extension of our work to include a similar type system is left to
further work.

Safe Wrappers and Sane Policies for Self Protecting JavaScript 253

Typed interfaces in JavaScript The use of a typed interface to enable the safe inspection
and manipulation of user values is a direct generalisation of the earlier call-by-primitive
value idea. The use of JavaScript-encoded typed interfaces is not uncommon in Java li-
braries. For example the Cerny.js library [7] provides a similar type language to the one
used here in order to improve code quality and documentation. As mentioned above, the
policy language of the ConScript system has a type system that plays an essential role in
eliminating a number of security issues such as malicious user objects masquerading as
primitive types. But types are only used for type checking. Thus type coercions to prim-
itive types must be added manually to the code where needed in order for type checking
to succeed. Our approach is different in that the types themselves are interpreted as
coercion operations.

Aspect-oriented programming In the context of aspect-oriented programming for Java-
Script, besides the AOP libraries we analysed in Section 2.6 (i.e. jQuery AOP [15], dojo
AOP [10], Ajaxpect [1], AspectJS [3], Cerny.js [7], AspectES [4] and PrototypeJS [27]),
there have been several AOP frameworks for JavaScript in literature. AOJS [33] is a
framework supporting the separation between aspects and JavaScript code where as-
pects are defined in a XML-based language and then woven to JavaScript by a tool
(similar to the proxy-based approach like [28,23,16] reviewed in the introduction). Cur-
rent implementation of AOJS only support before and after advice, as the aspect system
cannot control the behavior of operations.

Similar to our work (and the self protecting JavaScript approach), AspectScript [31]
is another AOP library for JavaScript that supports richer set and pointcuts in Java-
Script. AspectScript also supports stateful pointcuts that is similar to security states in
Phung et al [25]. More interestingly, AspectScript provides a library as a weaver tool to
transform JavaScript code into aspect-based code and the weaving process is performed
at runtime. However, the mentioned libraries or frameworks have not paid attention to
securing their aspect systems (see e.g. [9]), thus they are subject to the vulnerabilities
that we have presented here.

5 Future Work

Most of the solutions and policy mechanisms presented here have been implemented
in JavaScript and a prototype library suitable for the Safari and/or Chrome browsers is
available on [26]. A number of more substantial extensions remain to be investigated.

Idiot-Proof Policies. The current policy language is intended to make it easy for the
policy writer to construct sensible policies, but it does not enforce this. A natural exten-
sion of this work would be to find ways to guarantee that the policy code does not, e.g.
create unsafe objects or use subverted built-in functions. We see two possible directions
to achieve this. One approach would be to provide a proper separation between policy
code and attacker code rather than trying to handle this on a per-method and per-object
basis as we do here. Another approach is to constrain the way that policies are written,
for example using JavaScript sub-languages which can be more easily constrained (see
e.g. the ConScript approach and [19]) or by designing a policy language which can be

254 J. Magazinius, P.H. Phung, and D. Sands

compiled to JavaScript, but for which we can construct a suitable static type system.
Recent work by Guha et al seems well suited for this purpose [14].

Session Policies. Policies should not be associated with pages but with a session and
an origin. One issue that we have not addressed in this paper is writing policies which
span multiple frames/iframes. This, in general, requires sharing and synchronization of
policy state information between frames in a tamper-proof manner.

Acknowledgments. This work was partly funded by the European Commission un-
der the WebSand project and the Swedish research agencies SSF and VR. This work
was originally presented at OWASP AppSec Research 2010; thanks to the anonymous
referees and Lieven Desmet for numerous helpful suggestions.

References

1. Ajaxpect: Aspect-Oriented Programming for Ajax (2008),
http://code.google.com/p/ajaxpect/

2. Anderson, J.P.: Computer security technology planning study. Technical Report ESD-TR-
73-51, US Air Force, Electronic Systems Division, Deputy for Command and Management
Systems, HQ Electronic Systems Division (AFSC), USA (1972)

3. AspectJS: A JavaScript MCI/AOP Component-Library. Version 1.1, commercial (2008),
http://www.aspectjs.com/

4. Balz, C.M.: The AspectES Framework: AOP for EcmaScript,
http://aspectes.tigris.org/ (accessed in January 2010)

5. Barth, A., Jackson, C., Mitchell, J.C.: Securing frame communication in browsers. Commun.
ACM 52(6), 83–91 (2009)

6. Barth, A., Weinberger, J., Song, D.: Cross-origin JavaScript capability leaks: Detection,
exploitation, and defense. In: Proc. of the 18th USENIX Security Symposium (USENIX
Security 2009) (2009)

7. Cerny, R.: Cerny.js: a JavaScript library. Version 2.0,
http://www.cerny-online.com/cerny.js/

8. Chess, B., O’Neil, Y.T., West, J.: JavaScript Hijacking, http://cli.gs/jshijack
(accessed in January 2010)

9. Dantas, D.S., Walker, D.: Harmless advice. In: POPL 2006: Conference Record of the 33rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 383–
396. ACM, New York (2006)

10. dojo AOP library (2008), http://cli.gs/dojoaop
11. Ecma International. Standard ECMA-262: ECMAScript Language Specification. 5th edn.,

(December 2009), http://cli.gs/ecma2625e
12. Facebook. FBJS, http://cli.gs/facebookjs
13. Google. Attackvectors,

http://code.google.com/p/google-caja/wiki/AttackVectors
(accessed January 2010)

14. Guha, A., Saftoiu, C., Krishnamurthi, S.: The Essence of JavaScript,
http://www.cs.brown.edu/research/plt/dl/CS-09-10/
(accessed in January 2010)

http://code.google.com/p/ajaxpect/
http://www.aspectjs.com/
http://aspectes.tigris.org/
http://www.cerny-online.com/cerny.js/
http://cli.gs/jshijack
http://cli.gs/dojoaop
http://cli.gs/ecma2625e
http://cli.gs/facebookjs
http://code.google.com/p/google-caja/wiki/AttackVectors
http://www.cs.brown.edu/research/plt/dl/CS-09-10/

Safe Wrappers and Sane Policies for Self Protecting JavaScript 255

15. jQuery AOP. Version 1.3 (October 17, 2009),
http://plugins.jquery.com/project/AOP

16. Kikuchi, H., Yu, D., Chander, A., Inamura, H., Serikov, I.: Javascript Instrumentation in
Practice. In: Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, pp. 326–341. Springer,
Heidelberg (2008)

17. Maffeis, S., Mitchell, J., Taly, A.: Run-Time Enforcement of Secure JavaScript Subsets. In:
Proc of W2SP 2009. IEEE (2009)

18. Maffeis, S., Mitchell, J., Taly, A.: Object capabilities and isolation of untrusted web applica-
tions. In: Proc of IEEE Security and Privacy 2010. IEEE (2010)

19. Maffeis, S., Mitchell, J.C., Taly, A.: Isolating JavaScript with Filters, Rewriting, and Wrap-
pers. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 505–522.
Springer, Heidelberg (2009)

20. Meyerovich, L., Felt, A.P., Miller, M.: Object Views: FineGrained Sharing in Browsers. In:
WWW2010: Proceedings of the 16th International Conference on World Wide Web. ACM
(2010)

21. Meyerovich, L., Livshits, B.: ConScript: Specifying and Enforcing Fine-Grained Security
Policies for JavaScript in the Browser. In: SP 2010: Proceedings of the 2010 IEEE Sympo-
sium on Security and Privacy. IEEE Computer Society (2010)

22. Nadji, Y., Saxena, P., Song, D.: Document Structure Integrity: A Robust Basis for Cross-site
Scripting Defense. In: Proc. of Network and Distributed System Security Symposium, NDSS
2009 (2009)

23. Ofuonye, E., Miller, J.: Resolving JavaScript Vulnerabilities in the Browser Runtime. In:
19th International Symposium on Software Reliability Engineering, ISSRE 2008, pp. 57–66
(November 2008)

24. Open Ajax Alliance. Ajax and Mashup Security, http://cli.gs/ajaxmashupsec
(accessed in January 2010)

25. Phung, P.H., Sands, D., Chudnov, A.: Lightweight Self-Protecting JavaScript. In: ASIACCS
2009: Proceedings of the 4th International Symposium on Information, Computer, and
Communications Security, pp. 47–60. ACM, New York (2009)

26. ProSec Security group, Chalmers. Self-Protecting JavaScript project,
http://www.cse.chalmers.se/˜phung/projects/jss

27. Prototype Core Team. Prototype - A JavaScript Framework,
http://www.prototypejs.org/ (accessed in January 2010)

28. Reis, C., Dunagan, J., Wang, H.J., Dubrovsky, O., Esmeir, S.: BrowserShield: Vulnerability-
driven filtering of dynamic HTML. ACM Trans. Web 1(3), 11 (2007)

29. The Mozilla Development Team. New in JavaScript 1.8.1, http://cli.gs/newjs181
(accessed in January 2010)

30. The Tor Project. Torbutton FAQ; Security Issues, http://cli.gs/torsec (accessed in
February 2010)

31. Toledo, R., Leger, P., Tanter, E.: AspectScript: Expressive Aspects for the Web. Technical
report, University of Chile Santiago, Chile (2009)

32. Walden, J.: Web Tech Blog - Object and Array initializers should not invoke setters when
evaluated, http://cli.gs/mozillasetters (accessed in January 2010)

33. Washizaki, H., Kubo, A., Mizumachi, T., Eguchi, K., Fukazawa, Y., Yoshioka, N., Kanuka,
H., Kodaka, T., Sugimoto, N., Nagai, Y., Yamamoto, R.: AOJS: Aspect-Oriented JavaScript
Programming Framework for Web Development. In: ACP4IS 2009: Proceedings of the 8th
Workshop on Aspects, Components, and Patterns for Infrastructure Software, pp. 31–36.
ACM, New York (2009)

http://plugins.jquery.com/project/AOP
http://cli.gs/ajaxmashupsec
http://www.cse.chalmers.se/~phung/projects/jss
http://www.prototypejs.org/
http://cli.gs/newjs181
http://cli.gs/torsec
http://cli.gs/mozillasetters

Protocol Implementation Generator

Jose Quaresma and Christian W. Probst

Technical University of Denmark
{jncq,probst}@imm.dtu.dk

Abstract. Users expect communication systems to guarantee, amongst
others, privacy and integrity of their data. These can be ensured by using
well-established protocols; the best protocol, however, is useless if not all
parties involved in a communication have a correct implementation of
the protocol and all necessary tools. In this paper, we present the Proto-
col Implementation Generator (PiG), a framework that can be used to
add protocol generation to protocol negotiation, or to easily share and
implement new protocols throughout a network. PiG enables the shar-
ing, verification, and translation of communication protocols. With it,
partners can suggest a new protocol by sending its specification. After
formally verifying the specification, each partner generates an implemen-
tation, which can then be used for establishing communication. We also
present a practical realisation of the Protocol Implementation Genera-
tor framework based on the LySatool and a translator from the LySa
language into C or Java.

1 Introduction

The Internet, and network technology in general, are increasingly used for provid-
ing central functionality for applications and systems, most notably through, e.g.,
infrastructure services such as the cloud or web services, or any kind of client-
server architecture. This seamless integration of network facilities into user ap-
plications has enabled development of new application domains, which in turn
resulted in increased integration of networks. While in the past data was mostly
stored locally, today, due to the wide availability of networks, data is often be-
ing communicated or accessed via local or wide-area networks. Most of the time,
users do not need to be aware of where their data is located, and how it is com-
municated. In fact, being able to access data from wherever one wants to is one
of the driving forces behind network integration.

Being able to access data via the network is only half the story, of course.
What is (often implicitly) expected is that data is secured by the application
and system, both when stored and in transit. Users expect communication sys-
tems to guarantee, amongst others, privacy and integrity of their data. When
storing data, this can be achieved, e.g., by (a combination of) access control and
cryptography. In communication, this can be ensured by using well-established
protocols.

Protocols are usually specified by means of protocol narrations, which de-
scribe in detail how the involved partners communicate with each other, and

T. Aura, K. Järvinen, and K. Nyberg (Eds.): NordSec 2010, LNCS 7127, pp. 256–268, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Protocol Implementation Generator 257

which messages they exchange. Protocol narrations serve two purposes: they
can be used for formally verifying the protocol, and for guiding the implementa-
tion of the protocol. Recently, researchers have looked into generating protocol
implementations from specifications [1–3] and extracting protocol specifications
from implementations [4], thereby narrowing the gap between the formal, verified
specification, and the usually unverified implementation.

The best protocol, however, is useless if not all parties involved in a com-
munication “speak it”, that is, have an implementation of the protocol and all
necessary tools. This is why protocols such as “Secure Socket Layer” (SSL) [5, 6]
start with a negotiation phase where the partners agree on a suite of algorithms
necessary for establishing a connection using the protocol. Whenever no such
common algorithms are found, the negotiation phase fails.

In this paper we present the Protocol Implementation Generator (PiG) [7], a
framework for adding protocol generation to protocol negotiation. In PiG, when
the negotiation phase fails, one of the partners can suggest a new protocol by
sending its specification. After formally verifying the specification against a set
of security properties, each partner generates an implementation, which then can
be used for establishing communication. We also present a practical realisation
of the Protocol Implementation Generator based on the LySatool and a LySa to
C and Java translator.

The rest of this paper is structured as follows. We start with a general overview
of the Protocol Implementation Generator in Section 2, followed by a presenta-
tion of a prototype realisation in Section 3. After discussing related work (Sec-
tion 4), Section 5 concludes the paper and gives an outlook on future work.

2 The Protocol Implementation Generator

In this section we describe the overall layout of the PiG framework, as well as
the individual components necessary to realise it. In the next section we will
present a concrete implementation of PiG based on the LySatool [8].

The idea behind the PiG framework is to allow communication partners to
establish a secure communication channel without previously sharing an im-
plementation for the protocol. Instead, one of the partners can suggest a new
protocol by sending its formal specification, e.g., as a protocol narration. This
formal specification can be verified by the other partner, and if the verifica-
tion succeeds, the specification can be used to automatically generate a protocol
implementation.

Deriving the protocol implementation directly from the specification is an
important aspect of our approach, closing the often found gap between the two
when protocols are implemented by hand.

Figure 1 shows the process implemented in the PiG framework. When proto-
col negotiation fails (steps 1,2), Alice sends a specification for a “new” protocol
(step 3). Bob checks the specification against the desirable security requirements
(step 4) and, if it is found to be safe, he generates the implementation for the
protocol (step 6), and Alice and Bob start communication using the new protocol
(step 7).

258 J. Quaresma and C.W. Probst

Alice

Bob

(4) Check
specification

(5) Generate
Code

(6) Compile

Secure?

Flaws
found

(1) Initi-
ate proto-
col negoti-
ation

(2) No
common
secure
protocol
found

(3) Send
protocol
specifica-
tion

(7) Start
execution
of new
protocol

Fig. 1. The process implemented in the Protocol Implementation Generator

The Protocol Implementation Generator is based on three core components:

– the protocol specification language,
– the protocol verifier, and
– the code generator.

The only requirement for a realisation is that all involved partners have these com-
ponents. While the components used in the framework can be freely chosen, they
must fulfil the requirement that the verifier and the code generator work on the
same formalism. Furthermore, the code generator must be complete with respect
to the elements of the specification formalism. This is essential, since the Protocol
Implementation Generator should be transparent to the user, and therefore code
generation should be automated, with no need for human interaction.

A possible extension is the use of proof-carrying code [9] techniques to avoid a
full re-analysis of the specification before code generation. Instead, the protocol
specification would be annotated with the proof for a verification condition that
guarantees the protocol to pass verification.

Another extension in the same direction targets a slightly different arrange-
ment of the steps described above. The overall process would be similar, but

Protocol Implementation Generator 259

in step 3 Alice would send to Bob an implementation of the “new” protocol and
Bob, in step 4, would need to extract the protocol specification from the received
implementation. Only then he would verify the correctness of the protocol. If
found to be correct, Alice and Bob could start the execution of the protocol.

This idea of extracting the protocol specification from its implementation
could also be useful in proving the correctness of the translation from the protocol
specification to the protocol implementation—after the translation one could
derive the specification from the generated implementation and verify it against
the original specification.

3 A Practical Realisation of PiG

Having presented the Protocol Implementation Generator framework in the pre-
vious section, we now discuss a specific instance of the framework. The used
configurable components are LySa [10] as protocol specification language, which
is analysed using the LySatool [8], and a code generator based on ANTLR [11].
These components are at the core of a prototype realisation of PiG [7].

In order to give an example of the functioning of the prototype, we use as a
running example the Otway-Rees protocol [12], which, while not in wide-spread
use, is simple enough to be covered in an article. The Otway-Rees protocol is
used in order to mutually authenticate two principals, Alice (A) and Bob (B)
via a mutually trusted third party (S), and to generate a secret shared key that
they can use to securely communicate.

1 . A−>B : M,A,B,{M,A,B,NA} :KA
2 . B−>S : M,A,B,{M,A,B,NA} :KA,{M,A,B,NB} :KB
3 . S−>B : M,{NA,KAB} :KA,{NB,KAB} :KB
4 . B−>A : M,{NA,KAB} :KA
5 . B−>A : {MSG} :KAB

Fig. 2. Pseudo-code specification of the Otway-Rees protocol

As seen in the protocol definition, in Figure 2, this is achieved with the ex-
change of four messages in total. A starts by sending B a message (line 1)
encrypted with a shared key between A and S, which contains a nonce NA
generated by A, a running serial M , and both principals’ identities.

B, after receiving this message — that he cannot decrypt — sends it to S,
together with another message encrypted with a key shared between B and S,
with similar content to the one A sent, but in this case with a nonce NB gen-
erated by B (line 2). After S has received those two encrypted elements from
B, it will verify the identities of the principals and the running serial M , and
generate a symmetric key KAB that A and B will use to securely communicate.

260 J. Quaresma and C.W. Probst

S then encrypts that key together with the nonce generated by A with the key
shared between S and A and, similarly, also encrypts that same key together
with the nonce generated by B with the key shared by S and B.

S then sends those two elements to B (line 3), which decrypts the one en-
crypted with the key it shares with S. If the nonce matches, it will be ready to
use the new key in future communications with A.

In the last step of the protocol (line 4), B sends to A the other element that
it received from S. A decrypts it with the key it shares with S and, if the nonce
matches, uses the new key for future communications with B.

In this example, an extra message MSG is sent in line 5 to illustrate the use
of the new key shared between Alice and Bob.

3.1 LySa and the LySatool

LySa [10] is a process algebra aimed at specifying communication protocols. A
LySa protocol specification consists of a standard protocol narration extended
with annotations in order to remove analysis ambiguity that could arise from
vague protocol narrations. This is especially beneficial in a setting like PiG,
where the analysis and code generation should be automatic and transparent.

LySa is based on the Spi Calculus [13], which extends the π Calculus with
cryptographic primitives that are used in the description and analysis of cryp-
tographic protocols. In Spi Calculus, protocols are represented as processes and
their security properties are stated by protocol equivalence.

The main difference between LySa and these calculi is that LySa assumes a
single, global communication medium, to which all processes have access. The
LySa approach seems, therefore, more natural when considering communication
scenarios on the Internet, where it is not difficult to eavesdrop a conversation.

In LySa, only the legitimate part of the protocol in question is described,
while the illegitimate, malicious part is implicitly modelled as a Dolev-Yao at-
tacker [14]. The attacker can be equipped with some initial knowledge, which
can be expanded by eavesdropping the network or by decrypting messages us-
ing known keys, it may encrypt messages using those keys, and is also able of
initiating new sessions.

Protocols specified in the LySa calculus can be analysed for security proper-
ties using the LySatool [8]. The checked properties include authenticity, secrecy,
and confidentiality and are fixed by the tool. The LySatool is implemented in
Standard ML and uses the Succinct Solver [15]. It receives a LySa specification
of a communication protocol as input, and performs a static analysis assuming
the presence of the strongest possible attacker previously mentioned. The anal-
ysis result either indicates that the protocol is found to be secure, or not. In
the latter case, further analyses have to be performed to distinguish between a
false negative and a real security problem. These false negatives can happen due
to the over-approximation analysis performed by LySa. This has to be taken
into account when designing or choosing a protocol specification for use in the
Protocol Implementation Generator .

Protocol Implementation Generator 261

In the initial phase of PiG, as described in the previous section, one of the
principals is waiting for another principal to connect. When that happens, the
latter will send a LySa protocol specification to the former. After receiving
the protocol specification, the principal checks the protocol’s security by ver-
ifying the specification with the LySatool. As mentioned above, in the current
version, those security properties are implicit in the tool. If the protocol specifica-
tion is found to be insecure, the tool reports that, and the process is terminated.
If the protocol analysis identifies the protocol specification to be secure (which
means that the security properties were guaranteed for the new protocol), the
principal will execute the next step, starting the translation process.

LySa Specification of the Otway-Rees Protocol. When converting from
pseudo-code, or Alice and Bob notation, to LySa notation there are several
steps that need to be performed. It is necessary to model the principals run-
ning in parallel —in this case there are 3 principals— and each message ex-
changed in the pseudo-code needs to be modelled as being sent by one principal
and being received by another. For example, line 1 of Figure 2 specifies that
Alice sends a message to Bob (A->B:M,A,B,{M,A,B,NA}:KA), and that same
message in the LySa specification consists of the sending on Alice’s specifica-
tion (<A,B,M,A,B,{M,A,B,NA}:KA>), and the receiving on Bob’s specification
((A,B,M,A,B;y1)).

Another detail that needs to be taken into account is the pattern matching
and the assignment of variables. This might not be trivial because, sometimes
what is supposed to be pattern matched and assigned is not explicitly shown in
the pseudo-code description of the protocol, and so it is necessary to interpret the
protocol in order to make those details explicit in the LySa specification. Using
the same first message as an example, when Bob receives it ((A,B,M,A,B;y1)),
it will check if A is Alice’s address, if B is its own address and if M is equal to the
session running serial. Furthermore, it will assign the last element of the message
sent by Alice, which is the encrypted block {M,A,B,NA}:KA, to the variable y1.
In fact, Bob cannot decrypt that block since he does not have the key that was
used for its encryption.

Another point to consider is that, regardless of what the elements of the
messages are, LySa requires that the address of the sender and the address of
the receiver are the first two elements of the sent and received messages. This
is easily solved by tagging the messages from the pseudo-code description with
these two elements in the LySa specification.

The full LySa specification of the Otway-Rees protocol can be seen in Figure 3.

3.2 ANTLR

ANTLR, which stands for “ANother Tool for Language Recognition”, is a frame-
work for generating recognisers, interpreters, compilers and translators based
on grammatical descriptions. Besides providing support for building lexers and
parsers, it also supports tree construction and tree walking. Parsers can generate

262 J. Quaresma and C.W. Probst

(new M)((new KA) ((new KB) (

/∗ I n i t i a t o r − A ∗/
((new NA)
<A,B,M,A,B,{M,A,B,NA} :KA>. // l i n e 1 , send wi th encr .
(B,A,M; x1) . // l i n e 4 , r e c e i v e
decrypt x1 as {NA; xk } :KA in // l i n e 4 , decryp t i on
(B,A; x2) . // l i n e 5 , r e c e i v e
decrypt x2 as { ; xmsg } : xk in // l i n e 5 , decryp t i on
0) // terminat ion
|

/∗ Responder − B ∗/
((new NB)
(A,B,M,A,B; y1) . // l i n e 1 , r e c e i v e
<B, S ,M,A,B, y1 ,{M,A,B,NB} :KB>. // l i n e 2 , send wi th encr .
(S ,B,M; y2 , y3) . // l i n e 3 , r e c e i v e
decrypt y3 as {NB; yk } :KB in // l i n e 3 , decryp t i on
<B,A,M, y2>. // l i n e 4 , send
(new MSG) // l i n e 5 , message c r ea t i on
<B,A,{MSG} : yk>. // l i n e 5 , send wi th encr .
0) // terminat ion
|

/∗ Server − S ∗/
((B, S ,M,A,B; z1 , z2) . // l i n e 2 , r e c e i v e
decrypt z1 as {M,A,B; zna } :KA in // l i n e 2 , decryp t i on
decrypt z2 as {M,A,B; znb } :KB in // l i n e 2 , decryp t i on
(new K) // l i n e 3 , new shared key
<S ,B,M,{ zna ,K} :KA,{ znb ,K} :KB>. // l i n e 3 , send wi th encr .
0) // terminat ion

)))

Fig. 3. LySa specification of the Otway-Rees protocol. The comments refer to the lines
on the specification.

Abstract Syntax Trees, which can be further analysed with Tree Parsers (also
called Tree Walkers). The framework has a tight integration with StringTem-
plate [16], which makes it ideal for translating from one language to another. It is
this feature that we use for generating C and Java code from LySa specifications.

After the protocol as been verified, the ANTLR-based code generator trans-
lates the specification to a programming language that can then be compiled and
executed. The presented prototype implementation translates the specification
to C code as well as to Java code. ANTLR to generates the Lexer, the Parser,
and the Tree Walker that performs the actual translation.

Protocol Implementation Generator 263

The first phase of the translator transforms the LySa specification into an
abstract syntax tree (AST), which is used as input for the code generation,
performed by the Tree Walker. A node in the AST represents an action in the
protocol, and one of its children represents the next action taken by the principal.

The Tree Walker traverses the AST and, using string templates, generates
the code that corresponds to the AST structure, and consequently to the origi-
nal LySa protocol specification. Using StringTemplate is not only of advantage
when extending the translation to support more target languages, but it is also
advantageous when generating code for the different actors in a protocol. Due
to supporting inheritance, StringTemplate enables the specification of generic
templates together with specific ones. The latter are used to define actor-specific
code — which depends on the role of the actor in the protocol — and can be
loaded individually when performing the translation.

Figure 4 shows a SEND block that belongs to the Otway-Rees AST generated
after parsing the initiator code. This block corresponds to the sending of the
first message of the protocol.

A B M A B SH_ENCRYPTION

SEND

NEXT

EL KEY

M A B NA
KA

Fig. 4. Part of the AST subtree showing the send block of the initiator of the (first
line of the) protocol specified in Figure 3

3.3 Retargeting the PiG

An important part regarding the implementation of the framework is the gen-
eration of the String Templates that will be used by the Tree Walker. For this
prototype, the LySa specification has to be analysed and its main components
identified, which need to have a direct correspondence to the main components
of the String Templates.

The full version of the LySa specification language [10] contains artefacts that
are not relevant for the actual protocol, but only help to increase the precision of
the analysis tool. Taking this into consideration, the following main components
can be identified:

– sending and receiving messages on the network,
– encryption and decryption (symmetric and asymmetric), and
– generation of fresh values (nonces, symmetric and asymmetric keys).

264 J. Quaresma and C.W. Probst

When implementing the translation from a specification language, identifying
its main components is the first step because the templates are a direct imple-
mentation of the main components of the specification language. It is important
to note that adding new languages as a target of the framework to an existing
realisation of the PiG is very simple. As said before, it is only necessary to
specify the StringTemplate for the main components.

An improvement on this part of the framework would be to make this trans-
lation provably correct, similar to the method presented by Pironti et al. [17].
They define a type-system and a translation function that allow to prove that the
generated code simulated the process represented by the protocol specification,
thus proving the correctness of the translation.

One of the main challenges when specifying template functions is that they
need to fit together in the generated code, e.g., how values are communicated
between different functions. This can be tricky, since the same value may be
used in different roles by different components, depending on the LySa specifi-
cation.This resembles building the small parts of a puzzle before ensuring that
the whole puzzle can be solved.

Another detail requiring special attention when specifying templates for a new
language are variables reused between different blocks that are generated from
the same template component. These cannot be be declared globally in each
of the individual blocks, and consequently must be declared before any of the
individual blocks and cleared before usage.

Last but not least, all the target languages must use the same format for
message exchange, to allow interoperability. In our current prototype we apply
the following straightforward format, which can be easily changed:

– firstly, the number of elements in the message;
– then, the size of each element in the message;
– finally, the payload: all the elements in the protocol message are concate-

nated without any separation between them.

As an illustrative example, if one wants to send a message with two elements,
the first being ”Hello” and the second being ”Reader”, the sent message would
have the following format:

“2, 5, 6, HelloReader”

4 Related Work

Recently, a lot of work has been done in the automatic verification of security
protocols as well as in the automatic translation from a protocol specification
into a real programming language such as C, Java or F#. The goal of this paper is
to present a framework that uses and implements both automatic processes—the
verification and the translation—so there is an automatic and secure way from
the writing of the specification protocol, over its verification, to its translation
and execution. This is done in a way that enables the sharing of the specification
(and consequently verification and translation) of protocols.

Protocol Implementation Generator 265

Possible Similar Tool Combinations. Several existing tools could be com-
bined in order to realise a Protocol Implementation Generator implementation,
providing the same functionality as described in the previous section.

The same high-level specification used in this paper could be used together
with other tools. A protocol can be described in the LySa language, verified
with LySatool and, with some extra annotations, can be translated using the
YALT [18] tool, which automatically translates a LySa specification into
Java code.

Another option would be to use Spi Calculus together with Spi2Java or S3A
and Spi2F#.

After using the Spi Calculus to describe a security protocol, one could use
Spi2Java [1] to verify and translate the description into a protocol implementa-
tion. Another option would be to use S3A [19] to verify the protocol specification
and Spi2F# [20] that specification into a protocol implementation.

Using F# together with FS2PV [4] and ProVerif [21, 22] one could achieve a
similar tool chain, although with a big difference. While our framework verifies
the protocol specification and then translates it to some implementation lan-
guage, this combination would translate the implementation of the protocol into
a verifiable specification and only then would verify it. This setup, as already
mentioned in Section 2, could also be seen as an extension/improvement to our
framework. In this combination, the functional language F# would be used for
protocol specification. Then, FS2PV would derive a formal model from that pro-
tocol code and symbolic libraries. FS2PV currently only supports a first-order
subset of F#, with simple formal semantics facilitating model extraction, and
primitives for communication and concurrency. The tool would translate the
protocol implementation into π Calculus, which can be verified by ProVerif, an
automatic cryptographic protocol verifier based on a simple representation of
the protocol using Prolog rules.

Existing Frameworks. Some frameworks aim at combining protocol specifi-
cation, verification, and implementation.

In the AGVI framework [23] the designer describes the security requirements
and the system specification. The toolkit will attempt to find a protocol ac-
cording to the demands. If found, it will translate it into Java. The SPEAR II
Framework [24, 25] is a GUI-based framework that enables secure and efficient
security protocol design and implementation, combining formal specification, se-
curity and performance analysis, meta-execution and automatic code generation.
ACG-C# [2] automatically generates a C# implementation of a security proto-
col verified in Casper and FDR. Casper translates from high level to CSP, which
can be verified using FDR, and translated by ACG-C#.

All these approaches differ significantly from the work presented in this paper.
For example, AGVI does not support a protocol specification, but only receives
the security requirements, and SPEAR II receives the protocol specification in
a GUI environment, which hinders automating the implementation generation.

266 J. Quaresma and C.W. Probst

Furthermore, none of these frameworks offer support for sharing the protocol
specification, making it impossible to rapidly enable two hosts to share the same
protocol and to spread new protocols.

Last but not least, Kiyomoto et al. [3] present a tool that translates a high-
level XML protocol specification into C, without any verification of the protocol
specification.

5 Conclusions and Future Work

In this work we present a new approach to securing the communication in scenar-
ios where partners do not initially share a protocol. This is especially important
for the kind of networked applications we are relying on today, where the location
of data is mostly hidden from users.

The Protocol Implementation Generator allows communication partners to
exchange protocol specifications that can be verified and implemented on the
fly; both the verification and the implementation, or code generation, are based
on the same formal specification of the protocol, resulting in a direct link between
the two.

We have implemented and presented a prototype realisation of PiG based
on the process calculus LySa, its verifier the LySatool, and a standard code
generation tool, ANTLR, which was set to generate C and Java code. The same
functionality can be achieved with other combinations, as long as they share the
protocol specification formalism.

We are currently investigating several extensions of the presented framework;
we are investigating how to use proof-carrying code techniques [26] or lightweight
verification [27] to avoid a full re-analysis of the specification before code gen-
eration. We are also interested in combining our approach with techniques that
extract protocol specifications from implementations. This would allow to per-
form sanity checks by comparing the specification extracted from the generated
implementation with the original specification.

Another thread of future work has to do with the security properties that are
used by the verification tool of our framework. In the current version of our im-
plementation, the security properties are implicit in the used tool (LySatool). A
way of extending this version would be to enable the principals of the framework
to negotiate security properties as part of the initial phase. Another possible way
of approaching this would be to automate the download of general security prop-
erties from a set of trusted servers. With this, the PiG principals would have
updated security properties that they would use for protocol verification.

The ideas behind PiG are being extended, and will be used to develop a frame-
work for Service Oriented Systems, composed of different levels of abstraction,
that includes verification (with different tools) and translation (into different
languages) of abstractly specified Service Oriented Systems.

Finally, a word of warning seems in place. Approaches like PiG allow to add
new protocols on the fly, and this might seem like a well-suited technique to
updating large parts of a network by feeding newly designed protocols using a

Protocol Implementation Generator 267

framework like ours. However, the underlying automatism also allows to exploit
shortcomings in the used tools to distribute a protocol that is known to pass
verification but to result in faulty implementations. How to mitigate this threat
remains a topic for future work.

References

1. Pozza, D., Sisto, R., Durante, L.: Spi2java: automatic cryptographic protocol java
code generation from spi calculus. In: 18th International Conference on Advanced
Information Networking and Applications, AINA 2004, vol. 1, pp. 400–405 (2004)

2. Jeon, C., Kim, I., Choi, J.: Automatic generation of the C# code for security
protocols verified with casper/FDR. In: Proc. IEEE Int. Conf. on Advanced Inf.
Networking and Applications (AINA), Taipei, Taiwan (2005)

3. Kiyomoto, S., Ota, H., Tanaka, T.: A security protocol compiler generating c source
codes. In: 2008 International Conference on Information Security and Assurance
(ISA 2008), pp. 20–25 (2008)

4. Bhargavan, K., Fournet, C., Gordon, A.D., Tse, S.: Verified interoperable imple-
mentations of security protocols. ACM Transactions on Programming Languages
and Systems (TOPLAS) 31(1), 5 (2008)

5. Hickman, K., Elgamal, T.: The SSL protocol. Netscape Communications Corp.
(1995)

6. Frier, A., Karlton, P., Kocher, P.: The SSL 3.0 protocol. Netscape Communications
Corp. 18 (1996)

7. Quaresma, J.: A protocol implementation generator. Master’s thesis, Kgs. Lyngby,
Denmark (2010)

8. Buchholtz, M.: User’s Guide for the LySatool version 2.01. DTU (April 2005)
9. Necula, G.C.: Proof-carrying code. In: POPL 1997: Proceedings of the 24th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp.
106–119. ACM, New York (1997)

10. Bodei, C., Buchholtz, M., Degano, P., Nielson, F., Nielson, H.: Static validation of
security protocols. Journal of Computer Security 13(3), 347–390 (2005)

11. Parr, T.: The Definitive ANTLR Reference: Building Domain-Specific Languages.
Pragmatic Bookshelf (2007)

12. Otway, D., Rees, O.: Efficient and timely mutual authentication. Operating Sys-
tems Review 21(1), 8–10 (1987)

13. Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: The spi calculus.
Information and Computation 148(1), 1–70 (1999)

14. Dolev, D., Yao, A.C.: On the security of public key protocols. In: Annual IEEE
Symposium on Foundations of Computer Science, pp. 350–357 (1981)

15. Nielson, F., Riis Nielson, H., Sun, H., Buchholtz, M., Rydhof Hansen, R., Pilegaard,
H., Seidl, H.: The Succinct Solver Suite. In: Jensen, K., Podelski, A. (eds.) TACAS
2004. LNCS, vol. 2988, pp. 251–265. Springer, Heidelberg (2004)

16. Parr, T.: Stringtemplate documentation (May 2009),
http://www.antlr.org/wiki/display/ST/StringTemplate+Documentation

17. Pironti, A., Sisto, R.: Provably correct java implementations of spi calculus security
protocols specifications. Computers & Security 29(3), 302–314 (2010); Special issue
on software engineering for secure systems

18. Vind, S., Vildhøj, H.W.: Secure protocol implementation with lysa. Bachelor’s
Thesis, DTU (2009)

http://www.antlr.org/wiki/display/ST/StringTemplate+Documentation

268 J. Quaresma and C.W. Probst

19. Durante, L., Sisto, R., Valenzano, A.: Automatic testing equivalence verification
of spi calculus specifications. ACM Trans. Softw. Eng. Methodol. 12(2), 222–284
(2003)

20. Tarrach, T.: Spi2f# – a prototype code generator for security protocols. Master’s
thesis, Saarland University (2008)

21. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules. In:
Proceedings of 14th IEEE Computer Security Foundations Workshop, pp. 82–96
(2001)

22. Abadi, M., Blanchet, B.: Analyzing security protocols with secrecy types and logic
programs. Journal of the ACM (JACM) 52(1), 102–146 (2005)

23. Song, D., Perrig, A., Phan, D.: Agvi - Automatic Generation, Verification, and
Implementation of Security Protocols. In: Berry, G., Comon, H., Finkel, A. (eds.)
CAV 2001. LNCS, vol. 2102, pp. 241–245. Springer, Heidelberg (2001)

24. Saul, E., Hutchison, A.: SPEAR II-The Security Protocol Engineering and Analysis
Resource (1999)

25. Lukell, S., Veldman, C., Hutchison, A.: Automated attack analysis and code gen-
eration in a unified, multi-dimensional security protocol engineering framework.
Comp. Science Hon (2002)

26. Necula, G.C.: Proof-carrying code. In: Conference Record of the Annual ACM
Symposium on Principles of Programming Languages, pp. 106–119 (1997)

27. Rose, E.: Lightweight bytecode verification. Journal of Automated Reasoning
31(3-4), 303–334 (2003)

Secure and Fast Implementations of

Two Involution Ciphers

Billy Bob Brumley�

Aalto University School of Science, Finland
billy.brumley@aalto.fi

Abstract. Anubis and Khazad are closely related involution block ci-
phers. Building on two recent AES software results, this work presents a
number of constant-time software implementations of Anubis and
Khazad for processors with a byte-vector shuffle instruction, such as
those that support SSSE3. For Anubis, the first is serial in the sense that
it employs only one cipher instance and is compatible with all standard
block cipher modes. Efficiency is largely due to the S-box construction
that is simple to realize using a byte shuffler. The equivalent for Khazad
runs two parallel instances in counter mode. The second for each cipher
is a parallel bit-slice implementation in counter mode.

Keywords: Anubis, Khazad, involution ciphers, block ciphers, software
implementation, timing attacks.

1 Introduction

Anubis and Khazad are two block ciphers by Barreto and Rijmen submitted
during the NESSIE project (see [12] for a summary). Anubis [2] works on 128-bit
blocks and is quite similar in many respects to AES. Khazad [3] is a “legacy-
level” cipher working on 64-bit blocks and is closely related to Anubis. These
are both involution ciphers: decryption differs from encryption only in the key
schedule.

The motivation for this work comes largely from cache-timing attacks, where
an attacker attempts to recover parts of the cryptosystem state by observing the
variance in timing measurements due to processor data caching effects. These
attacks can be time-driven and carried out remotely by measuring the latency
of a high level operation, or trace-driven and locally by exploiting the cache
structure to determine the sequence of lookups the cryptosystem performs. The
vulnerability exists when part of the state is used as an index into a memory-
resident table.

A high-speed table-based implementation of AES unrolls lower level opera-
tions such as SubBytes, ShiftRows, and MixColumns into four tables of size

� Supported in part by Helsinki Doctoral Programme in Computer Science - Advanced
Computing and Intelligent Systems (Hecse) and the European Commission through
the ICT program under contract ICT-2007-216499 CACE.

T. Aura, K. Järvinen, and K. Nyberg (Eds.): NordSec 2010, LNCS 7127, pp. 269–282, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

270 B.B. Brumley

256 containing 32-bit values. Lookups into these tables, indexed by state values,
are combined with XOR to carry out AES rounds in a more software-friendly
manner, relaxing the need to manipulate a large number of single byte values
and bits within those bytes. Similar versions of both Anubis and Khazad ex-
ist, in fact provided as the C reference implementations and discussed in both
specifications [2,3, Sect. 7.1].

Cache-timing attacks are a serious threat and can easily lead to leakage of key
material. Although there are numerous published attacks on such implementa-
tions, a practical noteworthy one is Bernstein’s AES time-driven attack [5]. Anu-
bis and Khazad are presumably susceptible to this and other timing attacks. In
light of these attacks, a reasonable security requirement for any cipher is that it
can be implemented to use a constant amount of time. In this context, Bernstein
defines constant as “independent of the AES key and input” [5, Sect. 8]. The
concept of security within this paper is with respect to timing attacks.

To this end, this work shows that constant-time and efficient implementations
of both Anubis and Khazad are possible. Four such implementations appear
herein, summarized as follows.

– The first Anubis implementation runs only one instance of the cipher, com-
patible with all standard block cipher modes. This is efficient due to a byte-
vector shuffle instruction, allowing elegant realization of the nonlinear layer
in constant-time. The Khazad implementation is otherwise analogous but
with a smaller state runs two parallel cipher instances, here in counter mode
under the same key.

– The second Anubis implementation bit-slices the state and runs eight parallel
instances, here in counter mode. Not surprisingly, this is faster but requires
a parallel block cipher mode. Analogously, the Khazad implementation runs
16 parallel instances.

This work builds upon two recent results on AES software implementations that
remarkably manage to achieve constant-time and exceptional performance at
one stroke.

– A common hardware technique to compute the AES S-box uses an isomor-
phism IF28 → IF2

24 and subsequently reduces the problem of inversion in the
latter field to that of one in in the ground field; [13,14,7] are good examples of
this. Using a similar technique in software when equipped with a byte-vector
shuffle instruction and using a novel field element representation, Hamburg
presents techniques for fast and constant-time software implementation of
AES [10]. Running only a single instance of the cipher, the implementation
is compatible with all standard block cipher modes.

– Käsper and Schwabe present AES bit-slice techniques, aligning individual
bits of state bytes in distinct registers [11]. The implementation runs eight
parallel streams in counter mode under the same key. Not only does this
provide a constant-time implementation, but also is currently the fastest
published AES counter mode implementation in software (not considering
newer Intel models equipped with AES instruction set extensions). Table-
based AES implementations on common platforms that can perform only

Secure and Fast Implementations of Two Involution Ciphers 271

one load instruction per cycle are inherently limited to ten cycles per byte;
there are ten rounds requiring sixteen lookups each. The authors show that
bit-slicing circumvents this limit.

2 Cipher Descriptions

This section gives a description of the Anubis and Khazad primitives, specifically
each component of the ciphers. The ciphers share some components verbatim and
others only differ slightly. The notation here follows style of the specifications;
see them for a more formal treatment [2,3].

2.1 The Anubis Cipher

Although Anubis supports variable length keys, this work only explicitly con-
siders 16-byte keys; generalizations are straightforward. Analogous to AES-128,
Anubis consists of a 16-byte state. The state is either viewed as a vector in IF16

28

or a 4×4 matrix with entries in IF28 depending on the context. The specification
denotes this by a map μ, but this work omits this formalization; flattening the
matrix row-wise (concatenating the rows) yields the vector representation.

The Nonlinear Layer γ. This layer is otherwise analogous to the AES Sub-
Bytes step, but with a different S-box. It applies an S-box S : IF28 → IF28 to each
byte of the input. To facilitate efficient hardware implementation, the designers
chose to build S using a three layer substitution-permutation network (SPN),
where each layer includes two S-boxes P, Q : IF24 → IF24 termed “mini-boxes”.
Fig. 1 depicts this structure.

The Transposition τ . Viewing the input as a 4 × 4 matrix, this mapping
outputs the transpose. To illustrate:⎡⎢⎢⎣

0 1 2 3
4 5 6 7
8 9 A B
C D E F

⎤⎥⎥⎦ �→

⎡⎢⎢⎣
0 4 8 C
1 5 9 D
2 6 A E
3 7 B F

⎤⎥⎥⎦ .

The Linear Diffusion Layer θ. This layer shares some similarities with the
AES MixColumns step. It multiplies the input in matrix form by the symmetric
matrix

H =

⎡⎢⎢⎣
01 02 04 06
02 01 06 04
04 06 01 02
06 04 02 01

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1 x x2 x2 + x
x 1 x2 + x x2

x2 x2 + x 1 x
x2 + x x2 x 1

⎤⎥⎥⎦
and θ : a �→ a ·H with all operations done in IF28 = IF2[x]/(x8 +x4+x3+x2+1).

272 B.B. Brumley

���� ����

P Q

����

�����

����������

�����

����

Q P

����

�����

����������

�����

����

P Q

���� ����

Fig. 1. S-box S as a three layer SPN with mini-boxes P and Q

The Cyclical Permutation π. This operation is otherwise analogous to the
AES ShiftRows step, but cyclically shifts column i of the matrix downward i
positions instead. This map only appears in the key schedule. To illustrate:⎡⎢⎢⎣

0 1 2 3
4 5 6 7
8 9 A B
C D E F

⎤⎥⎥⎦ �→

⎡⎢⎢⎣
0 D A 7
4 1 E B
8 5 2 F
C 9 6 3

⎤⎥⎥⎦ .

The Key Extraction ω. This is a linear mapping involving the Vandermonde
matrix

V =

⎡⎢⎢⎣
01 01 01 01
01 02 022 023

01 06 062 063

01 08 082 083

⎤⎥⎥⎦=

⎡⎢⎢⎣
1 1 1 1
1 x x2 x3

1 x2 + x x4 + x2 x6 + x5 + x4 + x3

1 x3 x6 x5 + x4 + x3 + x

⎤⎥⎥⎦=

⎡⎢⎢⎣
01 01 01 01
01 02 04 08
01 06 14 78
01 08 40 3A

⎤⎥⎥⎦
and ω : a �→ V · a. This map also only appears in the key schedule.

The Key Schedule. Given the cipher key K, round keys Ki for 0 ≤ i ≤ 12
satisfy Kr = (τ ◦ ω ◦ γ)(κr) where κ0 = K and κr = (σ[cr] ◦ θ ◦ π ◦ γ)(κr−1) for
r > 0, σ is addition in IF16

28 , and cr are vector constants dependent only on S.
Note the shared application of γ.

Secure and Fast Implementations of Two Involution Ciphers 273

The Complete Cipher. Anubis initializes the state as σ[K0] applied to the
input. This gets iteratively transformed through 12 rounds by σ[Kr] ◦ θ ◦ τ ◦ γ
where the last round omits θ.

2.2 The Khazad Cipher

The Khazad block cipher [3] works on 8-byte blocks and uses a 16-byte key. The
state is viewed as an element of IF8

28 . The components are similar to those of
Anubis in many respects; the nonlinear layer γ remains the same. A description
of the other components follows.

The Linear Diffusion Layer θ. This linear layer multiplies the input vector
by the symmetric matrix

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

01 03 04 05 06 08 0B 07
03 01 05 04 08 06 07 0B
04 05 01 03 0B 07 06 08
05 04 03 01 07 0B 08 06
06 08 0B 07 01 03 04 05
08 06 07 0B 03 01 05 04
0B 07 06 08 04 05 01 03
07 0B 08 06 05 04 03 01

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and θ : a �→ a · H .

The Key Schedule. Round keys satisfy Kr = (σ[Kr−2] ◦ σ[cr] ◦ θ ◦ γ)(Kr−1)
where 0 ≤ r ≤ 8 and K−2 and K−1 are the first and second eight bytes of the
key K, respectively. There is no component corresponding to the key extraction
ω in Anubis.

The Complete Cipher. Khazad initializes the state as σ[K0] applied to the
input. This gets iteratively transformed through eight rounds by σ[Kr] ◦ θ ◦ γ
where the last round omits θ.

3 Implementations

This section presents constant-time yet efficient implementations of both Anu-
bis and Khazad. It begins with some background on SIMD vector operations,
focusing on Intel processors. Then, for each cipher, a discussion on two imple-
mentation strategies appears. The first is more of a SIMD approach, running
one instance in the Anubis case and two for Khazad. The second is a bit-slice
approach running eight and sixteen instances, respectfully.

274 B.B. Brumley

3.1 Vector Operations

In 64-bit mode, processors with Streaming SIMD Extensions 3 (SSE3) can operate
on 16 128-bit SIMD registers xmm0 through xmm15. SSE3 and predecessors contain
a wealth of instructions for parallel computation amongst these registers. Cryp-
tosystem implementations usually restrict to a smaller subset of these instructions
dealing with integer values. Supplemental SSE3 (SSSE3) introduces a handful of
new instructions, the most interesting for this work being a byte shuffler pshufb.
Note that recent AMD processors implement SSE3 but not SSSE3, although a
related instruction is slated for the eXtended Operations (XOP) extension.

Byte Shuffling. Since the implementations in this work make heavy use of
pshufb, a brief description of the instruction is in order. The name already
implies the ability to shuffle bytes around in a vector, but perhaps hides an
important aspect of the instruction. Aranha, López, and Hankerson note its
versatility [1, Sect. 2.1]:

“A powerful use of this instruction is to perform 16 simultaneous lookups
in a 16-byte lookup table.”

Formally, given 16-signed-byte vector operands a and b, components of the 16-
byte vector output r of pshufb satisfy

ri =

{
abi mod 16 if bi ≥ 0,

0 otherwise,

so b holds the indices into the table and a the values. Indeed, this allows to
implement any IF4

2 → IF8
2 function in parallel: this is a constant-time hardware

lookup table, shuffling the values in a based on the indices in b. To summarize,
typical use of pshufb is either that of shuffling bytes around in a fixed manner
(b is fixed) or implementing lookups into a fixed table (a is fixed), and the
distinction is in the operand order.

Linear Maps. Given the above, one can implement a linear map φ : IF8
2 → IF8

2

on 16 bytes in parallel. Denote α ∈ IF28 by α = αHx4 + αL where αi are the
4-bit nibbles. Linearity ensures φ(α) = φ(αHx4) + φ(αL) and each input on the
right is effectively only four bits. Denote 16-byte vectors tφH and tφL that map
the corresponding input to the output; these are the a from the previous section.
The following steps realize φ in parallel:

1. Mask the lower nibble (αL) of each byte in the input vector. (pand)
2. Bit-shift the input four positions towards LSB and mask again (αH). (psrlq,

pand)
3. Shuffle tφL and tφH with their respective indices from the above steps.

(pshufb × 2)
4. Bitwise XOR the two outputs together. (pxor)

Secure and Fast Implementations of Two Involution Ciphers 275

The second mask is a minor inconvenience due to the lack of an instruction to
shift bits of individual bytes in a 16-byte vector (there are no psllb and psrlb
instructions). The following implementations uses this strategy often. Note that
when applying multiple maps to the same input, the first two steps are needed
only once.

3.2 Implementing Anubis

This following presents SSSE3 implementation techniques for Anubis; it discusses
two different approaches. The first is serial in the sense that it employs only one
cipher instance, while the second runs eight instances in parallel.

A SIMD Approach. Beginning with the nonlinear layer γ, the authors state
that the choice to build it as an SPN with mini-boxes was influenced by efficient
hardware implementation [2, 6.2]. A key observation in this work is that as a
consequence of the underlying smaller IF24 → IF24 mini-boxes, the composition
can be implemented elegantly using pshufb. Since P and Q are four bits to
four bits but the instruction allows a parallel four bit to eight bit lookup, the
bit permutations following P and Q can be unrolled for each layer to provide
shifted and spread versions of their output. For example, Q(0x1) = 0xE = 11102

but following the first layer the upper two bits get shifted two positions towards
the MSB: here the lookup provides Q0(0x1) = 0x32 = 1100102. This unrolling
yields the following six lookup tables for the corresponding layers:

tQ0 = 0x20012313311000333003022212113221

tP0 = 0x0408804C488488C4C08C404400C8CC0C

tP1 = 0x01022013122122313023101100323303

tQ1 = 0x80048C4CC44000CCC00C08884844C884

tQ2 = 0x08010B070D04000F0C03020A06050E09

tP2 = 0x102080706090A0D0C0B0405000E0F030.

As the last layer does not permute the bits, note tP2 and tQ2 are simply the
nibble-shifted and original contents as bytes, respectively, of P and Q.

With these tables in hand, the following steps implement layer i of S:

1. Mask the lower nibble of each byte in the input vector. (pand)
2. Bit-shift the input four positions towards LSB and mask again. (psrlq, pand)
3. Shuffle tPi and tQi with their respective indices from the above steps. (pshufb

× 2)
4. Bitwise OR the two outputs together. (por)

Iterating this concept for all layers shows that S can be realized in parallel on all
16 input bytes using six pand, three psrlq, six pshufb, and three por. Another
option is to pair-wise reverse the wires on one mini-box per layer and use an
XOR swap on two bits instead to implement the permutations between layers.
It seems this does not reduce the operation count for current Intel processors.

276 B.B. Brumley

Moving on to other components, the näıve way to implement the transpose τ
requires a single pshufb instruction with indices defined as

tτ = 0x0F0B07030E0A06020D0905010C080400

but in fact, by modifying the cipher and key schedule appropriately τ can be
omitted. Consider the operation of rounds 1 and 2:

σ[K2] ◦ θ ◦ τ ◦ γ ◦ σ[K1] ◦ θ ◦ τ ◦ γ.

With H a symmetric matrix (HT = H), observe that the composition θ◦τ yields
aT · H = (H · a)T . Denote K̂1 as τ applied to K1 and θ̂ : a �→ H · a. Note γ
is invariant under τ ; it is not affected by any byte ordering. Then the following
expression, essentially relying on the fact that τ is an involution, yields the same
output:

σ[K2] ◦ θ ◦ γ ◦ σ[K̂1] ◦ θ̂ ◦ γ.

Hence all even rounds use the unmodified round keys and θ while odd rounds
use transposed round keys and θ̂. With an even number of rounds, τ never
needs to be applied during cipher operation. This is similar in spirit to Hamburg
eliminating ShiftRows when implementing AES [10, 4.2].

For the linear layers θ and θ̂, viewing the input vector components as ai ∈
IF28 , examining the matrix products reveals we need aibj for all i and all bj ∈
{1, x, x2, x2+x}. That is, we need the result of three distinct linear maps applied
to the input. Applying the machinery from Sect. 3.1 yields t2 = ax and t4 = ax2,
then the final product is t6 = t4 + t2. The outputs of θ and θ̂ differ only in how
these ti are subsequently shuffled. For θ, these vectors are shuffled using the
following indices corresponding to their positions in the columns of H :

tθ2 = 0x0E0F0C0D0A0B08090607040502030001

tθ4 = 0x0D0C0F0E09080B0A0504070601000302

tθ6 = 0x0C0D0E0F08090A0B0405060700010203

and the output is the XOR-sum of these three shuffled vectors with the input.
This strategy realizes θ using seven pshufb, six pxor, two pand, and one psrlq.
Note the pand can be eliminated by merging these layers with γ; the last layer
of S does not permute the bits so the output from the final P and Q can be
used directly as the indices for the linear maps. The byte shuffles for θ̂ are much
more regular; for example

tθ̂2 = 0x0B0A09080F0E0D0C0302010007060504

which in fact is not a byte shuffle but a dword shuffle pshufd that is more efficient
since it takes an immediate operand.

For the key schedule, it remains to implement both the permutation π and
key extraction ω; the former requires only one pshufb instruction with indices
defined as

tπ = 0x0306090C0F0205080B0E0104070A0D00.

Secure and Fast Implementations of Two Involution Ciphers 277

Unfortunately ω is quite a different situation compared to θ, where the prod-
uct of every entry in the matrix with every component of the input vector a is
required. For example, here (x2 + x)ai is only needed for 4 ≤ i < 8. When com-
puting with 16-component vectors, this kind of selective computation is difficult
to accomplish in an elegant fashion.

On the other hand, realizing multiple linear maps as in Sect. 3.1 with the same
input amortizes the cost of the first two steps: the nibbles (indices into tables)
need be produced only once. In light of this, one strategy is over-computation
by producing aibj for all i and all bj as distinct entries in V . Computing six
of the maps (02, 04, 08, 14, 3A, and 40) is enough to reach the remaining two
with XOR chains (06 and 78). This strategy uses twelve pshufb, nine pxor, two
pand, and one psrlq.

Denote the resulting vectors by ri; these need to be combined at different
indices before XOR-summing them to arrive at the result (three pxor). For
column j of V with entries [v0j , v1j , v2j , v3j] the needed vector is

[v0j [a4j , . . . , a4j+3], v1j [a4j , . . . , a4j+3], v2j [a4j , . . . , a4j+3], v3j [a4j , . . . , a4j+3]].

One way to achieve this is through a series of interleaves: punpckldq interleaves
the lower two 4-byte values in the first operand with those in the second, and
punpckhqdq the high 8-byte value.

The following illustrates this concept with j = 1 where vectors {r1 = a, r2 =
ax, r6 = a(x2 + x), r8 = ax3} facilitate constructing the vector

[a4, a5, a6, a7, 02a4, 02a5, 02a6, 02a7, 06a4, 06a5, 06a6, 06a7, 08a4, 08a5, 08a6, 08a7].

Here the ri are filled with dummy data to help observe the interleaving action:

r1 = 0x33333333222222221111111100000000

r2 = 0x77777777666666665555555544444444

r6 = 0xBBBBBBBBAAAAAAAA9999999988888888

r8 = 0xFFFFFFFFEEEEEEEEDDDDDDDDCCCCCCCC

t0 = 0x55555555111111114444444400000000 (punpckldq)

t1 = 0xDDDDDDDD99999999CCCCCCCC88888888 (punpckldq)

t2 = 0xDDDDDDDD999999995555555511111111 (punpckhqdq).

These operations accomplish the goal of extracting bytes v4, . . . , v7 from each
of the given v = ri to a vector in a specific order corresponding to column j
of V . The vectors for other j are obtained similarly with three instructions,
but different interleaves. The exception being j = 0, using only one pshufd to
broadcast the lower 4-byte value of the input across the vector.

A Bit-slice Approach. Käsper and Schwabe use the SIMD registers to repre-
sent eight AES instances running in parallel [11]. While these can be unrelated in-
stances with different keys, parallel block cipher modes such as counter mode are

278 B.B. Brumley

where this method is particularly interesting: encrypting the next eight counter
values under one key in parallel. Eight SIMD registers hold the entire state for
these eight instances, but each register represents one bit-slice of the state bytes
for all instances.

Naturally, the same approach can be used to implement Anubis in counter
mode. Denote 128-bit SIMD registers ri for 0 ≤ i < 7 each holding bit i of all
state bytes. Byte j of ri holds bit i of the jth state byte for all eight instances,
each instance at a fixed offset within these bytes. Figure 2 depicts this structure.

With this representation, some of the components from the previous section
remain unchanged and are simply iterated for each ri. For example, τ , π, and
the shuffles at the end of θ. As this counter mode implementation uses only a
single key, the key schedule components stay the same, but the resulting round
keys must be subsequently converted into bit-slice format using eight times the
storage. See [11, Sect. 4.1] for a brief discussion on general data conversion
to and from bit-slice format. This implementation uses the same code for said
conversion.

The two components that differ significantly in implementation compared to
the serial case are the nonlinear layer γ and linear layer θ (θ̂), the only layers
where any time consuming operations are carried out during encryption. The
previous serial implementation relies heavily on pshufb as a lookup table to
realize γ. In contrast, bit-slicing relies on boolean expressions alone to evaluate
the S-box, facilitated by access to individual bits of all state bytes collected in
one register. Indeed, this is the allure of bit-slicing.

The specification gives boolean expressions for P and Q with 18 gates each,
implementing S with 108 gates [2, Appx. B]. This is not significantly lighter than
the current smallest published AES S-box with 115 gates [6], although the former
appeared at inception while the later took roughly a decade of research to whittle
down, and further they are not immediately comparable as the later employs
XNOR gates. Regardless, in software register-to-register moves must also be
considered since most SSE instructions, particularly those for bitwise operations,
do not allow passing a separate destination operand. The simple construction
of S as an SPN using smaller P and Q easily allows the implementation to
remain entirely within the working register set: the stack is not required, and in
this work the implementation of γ uses 148 instructions. Table 1 compares the
instruction counts to that of AES [11, Tbl. 2] and the result suggests, when bit-
slicing in software, the Anubis S-box is slightly more efficient compared to that
of AES. In practice, instruction scheduling is equally important: alas a succinct,
meaningful comparison is not straightforward.

byte 15 · · · byte 1 byte 0

bit 0 (xmm0)

in
sta

n
ce

0
in

sta
n
ce

1
in

sta
n
ce

2
in

sta
n
ce

3
in

sta
n
ce

4
in

sta
n
ce

5
in

sta
n
ce

6
in

sta
n
ce

7

· · · in
sta

n
ce

0
in

sta
n
ce

1
in

sta
n
ce

2
in

sta
n
ce

3
in

sta
n
ce

4
in

sta
n
ce

5
in

sta
n
ce

6
in

sta
n
ce

7

in
sta

n
ce

0
in

sta
n
ce

1
in

sta
n
ce

2
in

sta
n
ce

3
in

sta
n
ce

4
in

sta
n
ce

5
in

sta
n
ce

6
in

sta
n
ce

7

bit 1 (xmm1)
· · ·

bit 7 (xmm7) · · ·

Fig. 2. Bit-slice state representation for Anubis

Secure and Fast Implementations of Two Involution Ciphers 279

For the linear layer, similar to an AES MixColumns, viewing the input and
output of θ as matrices one can derive a formula for each byte of the output:

bij = aij + x(ai1−j + ai3−j + x(ai2+j + ai3−j))

where all the subscripts are modulo 4. Each multiplication by x implies three
XOR gates for reduction. This leads to a cost of 38 pxor and 24 pshufb (pshufd
for θ̂), notably heavier than the 27 pxor and 16 pshufd of MixColumns [11,
Sect. 4.4]. The difference in pxor counts is simply due to the fact that the entries
of H have higher degree than those for MixColumns, and the above formula for
each byte contains one extra term in the sum. The difference in shuffle counts
is due to the fact that the shuffles for MixColumns are simple dword rotations,
and one can reduce the required shuffles per bit from three to two. The shuffles
for H are not as simple and do not seem to allow this.

3.3 Implementing Khazad

This section presents two Khazad implementations, analogous to the previous two
Anubis implementations. Both require a parallel block cipher mode when only a
single key is used. The strategies are in fact so similar to those of Anubis that
only a brief summary is provided. The implementations of the nonlinear layer γ
stay the same; the key extraction ω and permutations π and τ in Anubis have no
equivalent in Khazad, so the only component to consider is the linear layer θ.

Two Parallel Instances. As the SIMD registers are 16-byte and Khazad main-
tains an 8-byte state, here the analogous SIMD implementation of Khazad runs
two instances in parallel, for convenience restricted here to the same key using
counter mode. The strategy to compute θ is the same as the corresponding layer
in Anubis. First compute three linear maps (02, 04, and 08) and derive the re-
maining maps with XOR chains. The output is the XOR-sum of the input and
the seven shuffled vectors resulting from the linear maps. This implementation
uses 15 pxor, 13 pshufb, two pand and one psrlq.

Table 1. S-box instruction counts compared

pxor pand/por movdqa Total

AES 93 35 35 163
Anubis 66 42 39 147

Sixteen Parallel Instances. Lastly, the bit-slice implementation of Khazad
in counter mode. Khazad works on 8-byte blocks and with 128-bit SIMD regis-
ters aligning the bits of bytes in the state, this implies 16 parallel streams. The
approach to implement θ is exactly the same as with the bit-slice Anubis imple-
mentation: derive a formula for the output bytes and accumulate the result in
output bits iteratively. For each of the eight input bits, this works out to 14 pxor
and seven pshufb to produce a degree-10 polynomial. Similarly the reduction
uses a total of 12 pxor to clear the three top bits.

280 B.B. Brumley

4 Results

This section presents the timing results for all of the implementations described
in this paper. The machine used for benchmarking is an Intel Core 2 Duo E8400
“Wolfdale” (45 nm) with 4GB of memory running Ubuntu 9.10, kernel 2.6.31-21,
and gcc 4.4.1. Table 2 contains the timings for long streams. Timings are median
over 1K runs obtained from the CPU time stamp counter rdtsc.

To place the results in some context, benchmark results of existing AES code
running on the same machine are included as well. Hamburg’s AES implemen-
tations includes a benchmarking script and the reported time is for encrypting
4kB [10]. Käsper and Schwabe implement the eSTREAM API that benchmarks
a number of different metrics; the reported time is the best result from the
test suite, that of “Encrypted 60 packets of 1500 bytes (under 1 keys, 60 pack-
ets/key)”.

Note that one purpose of this work is to improve the security and, if pos-
sible, speed of Anubis and Khazad software implementations. Hence the AES
timings are only included as a rough benchmark and are not for direct compar-
ison. In particular, AES-128 has 10 rounds while Anubis-128 has 12. They have
very different code footprints: AES encryption and decryption are implemented
separately, while with Anubis and Khazad they only differ in the key schedule.

Table 2. Timing results in cycles per byte

Cipher Method Language Mode Instances “Wolfdale”

Anubis SSSE3 C CTR 1 21.7
Anubis SSSE3 C CBC 1 20.7
Anubis SSSE3 C CBC−1 1 20.3
Anubis SSSE3 asm CTR 8 9.2
Anubis Table C [2] CTR 1 20.7
Anubis Table C [2] CBC 1 21.3
Anubis Table C [2] CBC−1 1 21.2
Khazad SSSE3 asm CTR 2 18.6
Khazad SSSE3 asm CTR 16 10.3
Khazad Table C [3] CTR 1 19.8
AES SSSE3 asm [10] CTR 1 11.6
AES SSSE3 asm [10] CBC 1 11.0
AES SSSE3 asm [10] CBC−1 1 13.6
AES SSSE3 asm [11] CTR 8 8.0

The timings in Table 2 show that the serial Anubis implementations outline
here are very competitive with the purely table-based implementation. In par-
ticular, there is no significant penalty to realize protection against cache-timing
attacks on this platform. The compiler is able to optimize the C implementation
using compiler intrinsics for SIMD operations quite well; it is unclear how to im-
prove it by hand-crafted assembly. For parallel modes, the bit-slice approach is
significantly more efficient than the serial approach for both Anubis and Khazad.

Secure and Fast Implementations of Two Involution Ciphers 281

5 Conclusion

This paper presents a number of constant-time implementations of the Anubis
and Khazad block ciphers. The results show that constant-time and efficient are
not mutually exclusive with respect to their software implementation. The work
here also further showcases the potential of a vector-byte shuffle instruction to
provide both secure and fast software implementations of cryptosystems.

It is worth mentioning that at least two other primitives make use of the com-
pact S-box used in Anubis and Khazad [4,15]. Its particularly efficient software
implementation here, in serial using pshufb or parallel when bit-slicing, greatly
encourages further use: perhaps as a building block for other primitives.

Realizing the threat that timing attacks pose to software implementations,
more recent trends in cipher design are away from the rather traditional view
of an S-box as a lookup table towards methods that better suit constant-time
implementations using native instructions supported by common processors. For
example, the Threefish block cipher explicitly states this as a design criteria [9,
Sect. 8.1], using an extremely simple nonlinear function MIX consisting of a ro-
tation, XOR, and addition modulo 264 iterated during a large number of rounds.
However, equipped with powerful instructions like pshufb it will be interesting
to see how cryptologists harness this machinery and what the future holds for
cipher design.

References

1. Aranha, D.F., López, J., Hankerson, D.: High-Speed Parallel Software Implemen-
tation of the ηT Pairing. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985,
pp. 89–105. Springer, Heidelberg (2010)

2. Barreto, P.S.L.M., Rijmen, V.: The Anubis block cipher (2001),
http://www.larc.usp.br/~pbarreto/anubis-tweak.zip

3. Barreto, P.S.L.M., Rijmen, V.: The Khazad legacy-level block cipher (2001),
http://www.larc.usp.br/~pbarreto/khazad-tweak.zip

4. Barreto, P.S.L.M., Simpĺıcio Jr., M.A.: CURUPIRA, a block cipher for constrained
platforms. In: 5th Brazilian Symposium on Computer Networks and Distributed
Systems, pp. 61–74 (2007),
http://www.sbrc2007.ufpa.br/anais/2007/ST02%20-%2001.pdf

5. Bernstein, D.J.: Cache-timing attacks on AES (2004),
http://cr.yp.to/papers.html#cachetiming

6. Boyar, J., Peralta, R.: New logic minimization techniques with applications to
cryptology. Cryptology ePrint Archive, Report 2009/191 (2009),
http://eprint.iacr.org/

7. Canright, D., Osvik, D.A.: A More Compact AES. In: Jacobson Jr., M.J., Rijmen,
V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 157–169. Springer,
Heidelberg (2009)

8. Clavier, C., Gaj, K. (eds.): CHES 2009. LNCS, vol. 5747. Springer, Heidelberg
(2009)

9. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas,
J., Walker, J.: The Skein hash function family. Submission to NIST (Round 2)
(2009), http://www.skein-hash.info/sites/default/files/skein1.2.pdf

http://www.larc.usp.br/~pbarreto/anubis-tweak.zip
http://www.larc.usp.br/~pbarreto/khazad-tweak.zip
http://www.sbrc2007.ufpa.br/anais/2007/ST02%20-%2001.pdf
http://cr.yp.to/papers.html#cachetiming
http://eprint.iacr.org/
http://www.skein-hash.info/sites/default/files/skein1.2.pdf

282 B.B. Brumley

10. Hamburg, M.: Accelerating AES with vector permute instructions. In: Clavier and
Gaj [8], pp. 18–32

11. Käsper, E., Schwabe, P.: Faster and timing-attack resistant AES-GCM. In: Clavier
and Gaj [8], pp. 1–17

12. Preneel, B.: The NESSIE project: towards new cryptographic algorithms. In:
3rd International Workshop on Information Security Applications, WISA 2002,
pp. 16–33 (2002)

13. Rudra, A., Dubey, P.K., Jutla, C.S., Kumar, V., Rao, J.R., Rohatgi, P.: Efficient
Rijndael Encryption Implementation with Composite Field Arithmetic. In: Koç,
Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 171–184.
Springer, Heidelberg (2001)

14. Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A Compact Rijndael Hardware
Architecture with S-Box Optimization. In: Boyd, C. (ed.) ASIACRYPT 2001.
LNCS, vol. 2248, pp. 239–254. Springer, Heidelberg (2001)

15. Simpĺıcio Jr., M.A., Barreto, P.S.L.M., Carvalho, T.C.M.B., Margi, C.B., Näslund,
M.: The CURUPIRA-2 block cipher for constrained platforms: Specification and
benchmarking. In: Bettini, C., Jajodia, S., Samarati, P., Wang, X.S. (eds.) PiLBA.
CEUR Workshop Proceedings, vol. 397, CEUR-WS.org (2008)

The PASSERINE Public Key Encryption
and Authentication Mechanism

Markku-Juhani O. Saarinen

Aalto University
Department of Communications and Networking

P.O. Box 13000, 00076 Aalto, Finland
m.saarinen@tkk.fi

Abstract. PASSERINE1 is a lightweight public key encryption mechanism
which is based on a hybrid, randomized variant of the Rabin public key encryp-
tion scheme. Its design is targeted for extremely low-resource applications such
as wireless sensor networks, RFID tags, embedded systems, and smart cards. As
is the case with the Rabin scheme, the security of PASSERINE can be shown
to be equivalent to factoring the public modulus. On many low-resource imple-
mentation platforms PASSERINE offers smaller transmission latency, hardware
and software footprint and better encryption speed when compared to RSA or
Elliptic Curve Cryptography. This is mainly due to the fact that PASSERINE
implementations can avoid expensive big integer arithmetic in favor of a fully
parallelizable CRT randomized-square operation. In order to reduce latency and
memory requirements, PASSERINE uses Naccache-Shamir randomized multipli-
cation, which is implemented with a system of simultaneous congruences modulo
small coprime numbers. The PASSERINE private key operation is of compara-
ble computational complexity to the RSA private key operation. The private key
operation is typically performed by a computationally superior recipient such as
a base station.

Keywords: Rabin Cryptosystem, Randomized Multiplication, RFID, Wireless
Sensor Networks.

1 Introduction

Public key encryption is often viewed as unimplementable for extremely low-resource
devices such as sensor network nodes and RFID tags. However, public key cryptog-
raphy offers clear security advantages as fixed secret keys do not have to be shared
between the two communicating parties. The PASSERINE public key encryption op-
eration is very light, but the private key operation is approximately as computationally
demanding as the private key operation of RSA.

For (RFID) authentication purposes a protocol can be devised that requires the tag to
only perform public key encryption using the interrogator’s public key.

In a military application a large number of sensors may be dispersed to an area of
operations to lay passively dormant until an a particular combination of events triggers

1 PASSERINE 0.7 of October 2010. This is a short “work in progress” report.

T. Aura, K. Järvinen, and K. Nyberg (Eds.): NordSec 2010, LNCS 7127, pp. 283–288, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

284 M.-J.O. Saarinen

their activation. In such a scenario, key management with symmetric-only encryption
may become exceedingly difficult. A single captured and reverse-engineered sensor unit
may reveal all shared keys that it contains, possibly compromising the entire sensor
network. Use of public-key cryptography simplifies key management and also reduces
the need to protect keying information contained in the node. Each node only needs
to store its unique identifier and the public key of the secure receiving station. The
adversary can only impersonate a single physically captured sensor unit.

In this scenario the devices are controlled by a base station that stores their private
identifiers. The devices only need to be able to perform the public key operation - to
broadcast messages to the base station. A sensor unit can securely authenticate an an-
other node with the aid of the trusted base station.

1.1 Previous Work

The use of Rabin encryption in low-resource platforms has been investigated by Shamir
[19], Gaubatz et al. [6,7] and more recently by Oren and Feldhofer [14]. The approaches
considered in these papers differ significantly from PASSERINE; Gaubatz et al. do not
consider randomized multiplication but only bit-serial multiplication. Shamir, Oren and
Feldhofer use randomized multiplication but not CRT arithmetic nor payload encod-
ing into the random mask. Systems described in [14,19] require substantial amounts
of real randomness, which may be difficult to generate in a resource-strained device.
PASSERINE requires only a single random 128-bit key for each message. Naccache et
al. [12] use randomized multiplication and CRT arithmetic (which they call Brugia-di
Porto-Filipponi number system after [4]) in a low-resource implementation of a related
identification protocol which was subsequently broken in [5].

2 The PASSERINE Randomized Rabin Cryptosystem

Rabin’s public key cryptosystem [18] is in many ways similar to the RSA cryptosystem.
Let n be a product of two large primes p and q. In order to facilitate implementation,
these primes are often chosen so that p ≡ q ≡ 3 (mod 4). To encrypt a message x, one
simply squares it modulo the public modulus n:

z = x2 (mod n). (1)

The Rabin private key operation requires computation of modular square roots and is of
comparable complexity to the RSA private key algorithm. Since there are a total of four
possible square roots (

√
z ≡ ±x mod p and

√
z ≡ ±x mod q), a special mechanism

is required in to mark and find the correct root. We refer to standard cryptography
textbooks such as [9] for a discussion about implementation options.

The main distinguishing factor for the Rabin cryptosystem, in addition to being
slightly faster than RSA in encryption, is that it is provably as secure as factoring. This
equivalence may or may not hold for RSA [1,3].

The PASSERINE Public Key Encryption and Authentication Mechanism 285

2.1 Shamir’s Randomized Variant

In Eurocrypt ’94 [19] Shamir proposed a randomized variant of the Rabin cryptosys-
tem that avoids arithmetic mod n by using a random masking variable r > n. The
encryption operation is

z = x2 + r · n. (2)

The private key operation is essentially the same as with the standard Rabin scheme.
Randomized multiplication was originally considered by Naccache [11], albeit for

a different application. Shamir proved that this randomized variant has equivalent se-
curity properties to the standard version. The main drawback from avoiding modular
arithmetic is that the ciphertext roughly doubles in size and that a large amount of high
quality random bits must be generated for r. We avoid this problem using an encoding
technique described in Section 2.3.

2.2 Arithmetic Modulo a Set of Coprime Numbers

A large majority of the implementation footprint of traditional public key encryption
schemes such as RSA or ECC tends to be consumed by implementing large finite field
multiplication and exponentiation. We avoid this by using arithmetic modulo a set of
coprime numbers.

Let b1, b2, . . . , bk denote a base, a set of coprime numbers, and B =
∏k

i=1 bi their
product. The Chinese Remainder Theorem (CRT) states that any number x, 0 ≤ x <
B can be uniquely expressed as a vector xi that represents a set of k congruences
xi = x mod bi when i = 1, 2, . . . , k. Furthermore, ring arithmetic modulo B can be
performed in this domain. To compute the sum, difference or a product of two numbers
mod B, all one needs to do is to is to add or multiply the individual vector components
i, each mod bi. Multiplication modulo B therefore has essentially linear complexity.
Looking at Equation 2, one notices that when z < B, the entire public key computation
can be performed in the CRT domain. This observation was first made in [4,12].

Encryption Latency. One of the main advantages of a CRT implementation of
PASSERINE is that serial transmission of encrypted data may be started immediately
after the first word of x2 + r · n has been computed. This is not the case with RSA or
in ECC cryptography. This technique also helps to reduce the memory requirements of
a PASSERINE implementation.

2.3 Carrying Payload Data in the Randomization Mask

An important and novel feature of PASSERINE is that r is used to carry payload data
that has been encrypted using a random symmetric key, contained in x. This encoding
technique allows us to essentially double the transmission bandwidth of the channel
when compared to the original proposal by Shamir in [19].

286 M.-J.O. Saarinen

3 Implementing PASSERINE Public Key Operation on a
Low-Resource Platform

We targeted our implementation of PASSERINE encryption for low-power 8/16 - bit
microprocessors and microcontrollers typically found in active RFID and wireless sen-
sor network applications. We chose to use a 1025-bit public modulus, which offers a
reasonable level of security [8]. For highly sensitive data, a larger modulus should be
used. For symmetric encryption, we use AES-128 in counter mode.

The total code size is about 750 bytes on the ultra-low power MSP430 microcon-
troller architecture (we used TI CC430F6137 which has a 32-bit hardware multiplier
and an AES accelerator and is therefore well suited for this application). For a 32-bit
x86 platform the implementation size was 1136 bytes, including a tiny AES implemen-
tation. These implementations do not call any external functions. The implementations
were in C and compiled with GCC-MSP430 4.4.3 and GCC 4.4.3.

The CRT base (Section 2.2) was chosen to consist of 64 primes 4294965793 . . .
4294967291 and the word 232. The encoding capacity is

∏65
i=1 bi ≈ 22079.999982, which

is very close to the maximum channel capacity of 2080 bits.

Encoding parameters:

n = A 1025-bit public modulus.

m = k d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 c

x = First 1024 bits of m.

r = Remaining 1055 bits of m.

Public Key Encryption Operation:

x2 = A 2048-bit square.
+

rn = A 2080-bit randomization mask.
=

z = Ciphertext (2080 bits).

Transmission in CRT format:

z′ = 65× 32 - bit words (2080 bits, capacity 2079.99998)

Fig. 1. Encoding of key and payload in PASSERINE. Encryption is actually performed using CRT
representation (modulo small primes in base b), not in standard two’s complement representation

Figure 1 illustrates PASSERINE data encoding. We use AES-128 [13] in counter
mode (CTR) for encryption of data blocks di. The first 1024 bits (m[0..31]) of the
message are used as x and the latter 1056 bits (m[32..64]) as r in Equation 2.

Current v0.7 implementation sacrifices some message integrity protection for sim-
plicity and only a 31-bit checksum c is used. Incorporating an authenticated encryption
mode such as the EAX [2], CCM [15] or GCM [16] is straightforward. Our final hard-
ware design will use GCM, which is also a part of NSA’s “Suite B cryptography” [17].

The PASSERINE Public Key Encryption and Authentication Mechanism 287

4 PASSERINE Private Key Operation and Decryption

We implemented the private key operation in C using the OpenSSL library for both
fast big number arithmetic and AES. The implementation required only about 230 code
lines. In this section we will only give the relevant mathematics.

A straightforward method for converting the ciphertext to conventional two’s com-
plement binary representation is given in Equation 3. Here bi is the base with k = 65
coprime numbers, B =

∏k
i=1, and the CRT ciphertext vector zi satisfies 0 ≤ zi < bi

for each i.

z =

(
k∑

i=1

zi · B

bi
·
(B

bi

)−1

bi

)
mod B. (3)

The de-CRT coefficients di = (B/bi) · (B/bi)−1
bi

in Equation 3 can be precomputed as
they do not depend on the private parameters used.

Computing the square root. For decryption, one needs the private factorization pq of
n. Rabin decryption is significantly easier to implement when p ≡ q ≡ 3 mod 4 and we
will assume that this is the case. There are four square roots for every quadratic residue
mod pq:

xp = (z
p+1
4 mod p) · q · q−1

p . (4)

xq = (z
q+1
4 mod q) · p · p−1

q . (5)

The four square roots of z are given by x = {xp + xq, xp − xq,−xp + xq,−xp −
xq} (modn). The correct root can be recognized using authenticator c.

Symmetric decryption. Once the correct square root x is found, the mask r can be
derived from

r =
z − x2

n
. (6)

We can then concatenate the two values and obtain the full message m = x || r, which
contains the symmetric decryption key and proceed to decrypt the entire data payload.

5 Further Work

The PASSERINE system has been implemented on the Texas Instruments CC430F6137,
which is a MSP430 architecture MCU with an integrated sub-1-GHz wireless transceiver.

We are currently implementing wireless sensor applications in the 433 MHz band us-
ing the CC430F6137. Further implementation details and applications will be discussed
in a separate report.

Acknowledgements. The author gratefully acknowledges financial support from
Matine (Project 776). Further work on the PASSERINE project has been undertaken
with Revere Security Corp. after the publication of this initial report.

288 M.-J.O. Saarinen

References

1. Aggarwal, D., Maurer, U.: Breaking RSA Generically is Equivalent to Factoring. In: Joux,
A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 36–53. Springer, Heidelberg (2009)

2. Bellare, M., Rogaway, P., Wagner, D.: The EAX Mode of Operation. In: Roy, B., Meier, W.
(eds.) FSE 2004. LNCS, vol. 3017, pp. 389–407. Springer, Heidelberg (2004)

3. Boneh, D., Venkatesan, R.: Breaking RSA May Not Be Equivalent to Factoring. In: Nyberg,
K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 59–71. Springer, Heidelberg (1998)

4. Brugia, O., di Porto, A., Filiponi, P.: Un metodo per migliorare I’efficienza degli algoritmi
di generazione delle chiavi crittografiche basati sull’impiego di grandi numeri primi. Note
Recesioni e Notizie, Ministero Poste e Telecommunicazioni 33(1-2), 15–22 (1984)

5. Coron, J., Naccache, D.: Cryptanalysis of a Zero-Knowledge Identification Protocol of Eu-
rocrypt ’95. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 157–162. Springer,
Heidelberg (2004)

6. Gaubatz, G., Kaps, J., Özturk, E., Sunar, B.: State of the Art in Ultra-Low Power Public Key
Cryptography for Wireless Sensor Networks. In: PerCom 2005 Workshops, pp. 146–150.
IEEE (2005)

7. Gaubatz, G., Kaps, J.-P., Sunar, B.: Public Key Cryptography in Sensor Networks—
Revisited. In: Castelluccia, C., Hartenstein, H., Paar, C., Westhoff, D. (eds.) ESAS 2004.
LNCS, vol. 3313, pp. 2–18. Springer, Heidelberg (2005)

8. Kleinjung, T., Aoki, K., Franke, J., Lenstra, A., Thomé, E., Bos, J., Gaudry, P., Kruppa,
A., Montgomery, P., Osvik, D.A., te Riele, H., Timofeev, A., Zimmermann, P.: Factoriza-
tion of a 768-bit RSA modulus. IACR Cryptology ePrint Archive: Report 2010/006 (2010),
http://eprint.iacr.org/2010/006

9. Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC Press
(1996)

10. Lowe, G.: An Attack on the Needham-Schroeder Public-Key Authenticaion protocol. Infor-
mation Processing Letters 56, 131–131 (1995)

11. Naccache, D.: Method, Sender Apparatus And Receiver Apparatus For Modulo Operation.
US patent: US5479511 (December 26, 1995), European patent application: EP0611506 (Au-
gust 24, 1994), World publication: WO9309620 (1993)

12. Naccache, D., M’Raïhi, D., Wolfowicz, W., di Porto, A.: Are Crypto-Accelerators Really
Inevitable? In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921,
pp. 404–409. Springer, Heidelberg (1995)

13. NIST. Specification for the Advanced Encryption Standard (AES) Federal Information Pro-
cessing Standards Publication. FIPS-197, NIST (2001)

14. Oren, Y., Feldhofer, M.: A Low-Resource Public-Key Identification Scheme for RFID Tags
and Sensor Nodes. In: WiSec 2009, pp. 59–68. ACM (2009)

15. NIST. Recommendation for Block Cipher Modes of Operation: The CCM Mode for Authen-
tication and Confidentiality. NIST Special Publication 800-38 C, NIST (2004)

16. NIST. Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode
(GCM) and GMAC. NIST Special Publication 800-38 D, NIST (2007)

17. National Security Agency. NSA Suite B Cryptography,
http://www.nsa.gov/ia/programs/suiteb_cryptography/

18. Rabin, M.C.: Digitalized Signatures and Public-Key Functions as Intractable as Factoriza-
tion. MIT / LCS / TR-212, Massachusetts Institute of Technology (1979)

19. Shamir, A.: Memory Efficient Variants of Public-Key Schemes for Smart Card Applica-
tions. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 445–449. Springer,
Heidelberg (1995)

http://eprint.iacr.org/2010/006
http://www.nsa.gov/ia/programs/suiteb_cryptography/

Author Index

Almgren, Magnus 104
Asokan, N. 71, 171

Banse, Christian 136
Borgaonkar, Ravishankar 49
Brumley, Billy Bob 269

Chia, Pern Hui 71
Coles-Kemp, Lizzie 121
Conti, Juan José 210
Crampton, Jason 155

Dam, Mads 89
Decat, Maarten 223
Del Tedesco, Filippo 193
De Ryck, Philippe 223
Desmet, Lieven 223

Esteve Rothenberg, Christian 1
Ekberg, Jan-Erik 171

Federrath, Hannes 136

Gadyatskaya, Olga 187
Gerber, Christoph 136

Heikkinen, Jani 17
Heiner, Andreas P. 71
Herrmann, Dominik 136
Huth, Michael 155

John, Wolfgang 104
Joosen, Wouter 223

Kani-Zabihi, Elahe 121
Koivunen, Erka 55

Komu, Miika 33
Kostiainen, Kari 171
Kreitz, Gunnar 89

Lukyanenko, Andrey 33

Magazinius, Jonas 239
Massacci, Fabio 187

Nikander, Pekka 1

Ott, Jörg 1

Paci, Federica 187
Phung, Phu H. 239
Piessens, Frank 223
Probst, Christian W. 256

Quaresma, Jose 256

Redon, Kevin 49
Russo, Alejandro 193, 210

Saarinen, Markku-Juhani O. 283
Sands, David 193, 239
Särelä, Mikko 1
Seifert, Jean-Pierre 49
Silvekoski, Pekka 17
Stankevich, Sergey 187
Suoranta, Sanna 17

Tarkoma, Sasu 33

Wikström, Douglas 89

Zahemszky, András 1

	Title Page
	Preface
	Organization
	Table of Contents
	Network Security
	BloomCasting: Security in Bloom Filter Based Multicast
	Introduction
	Security Issues in Bloom Filter Based Multicast
	Forwarding with in-Packet Bloom Filters
	Threat Model and Existing Attacks
	Chain Reaction Attacks.
	Target Path Attack.

	BloomCasting
	Group Membership Management
	Multicast Forwarding
	Connecting Intra-domain Multicast with BloomCasting

	Security Techniques in Bloom Filter Based Forwarding
	Security Evaluation
	Related Work
	Conclusions
	References

	Authentication Session Migration
	Introduction
	Related Work on Session Migration
	Federated Identity Systems and Web Session Cookies
	Design
	Firefox Implementation
	Porting to Other Browsers and Operating Systems
	Experimental Evaluation
	Discussion
	Conclusion
	References

	Mitigation of Unsolicited Traffic across Domains with Host Identities and Puzzles
	Introduction
	HostIdentityProtocol
	SystemModel
	Basic Architecture for Spam Mitigation
	Deployment Considerations
	Pushing Puzzles to Spam Relays
	Re-generating a Host Identity
	Switching Identities

	CostModel
	Preliminaries
	Cost Model
	A Comparison of HIP with Constant Puzzle Cost to the Scenario without HIP
	A Comparison of HIP with Exponential Puzzle Cost the Scenario without HIP
	Optimal Strategies for a Spam Relay
	Optimal Strategies for an Inbound Server

	Experimental Evaluation
	Setup
	Results

	Conclusions
	References

	Experimental Analysis of the Femtocell Location Verification Techniques
	Introduction
	HNB Security Architecture
	Goals of the Location Locking Methods
	Location Locking Methods and Attacks
	IP Address of the Broadband Access Device
	Information of Neighboring Macro-cells
	UE Information
	GPS Information

	Discussion and Conclusion
	References

	Invited Talk
	“Why Wasn’t I Notified?”: Information Security Incident Reporting Demystified
	Introduction
	Methodology
	Outlining the Disconnect between the Theory and the Practice
	Linear Model of the Incident Reporting Process
	Cases of Real-Life Incidents

	Theory and Practice of the Incident Reporting Process
	Incident Discovery
	Identifying Points of Contacts
	Information Exchange
	Report Validation

	Case Summaries
	Compromised Web Servers
	Data Breach
	Denial of Service Attack

	Conclusion
	Incidents Can Be Detected by Outside Parties
	Finding Correct Incident Reporting Contacts Is Challenging
	Incident Reporting Not Fully Understood in Standards Literature
	Automation Not Fully Exploited in Incident Reporting

	References

	Monitoring and Reputation
	Use of Ratings from Personalized Communities for Trustworthy Application Installation
	Introduction
	What Is Inappropriate Software?
	Software Certification and Its Limitations
	Our Contribution

	Designing a Trustworthy Installation Process
	Cognition during Application Installation
	Information Flow and Risk Signaling
	Design Guidelines

	Web-Based Survey
	System Architecture and Prototype
	User Evaluation
	Related Work
	Discussion and Future Work
	Conclusions
	References

	Practical Private Information Aggregation in Large Networks
	Introduction
	Our Contributions
	Related Work
	Organization of This Paper

	Model and Definitions
	Adversary Structures
	Security Definition
	Homomorphic Cryptosystems

	Computing Sums
	A Computationally Secure Protocol for Disjunction
	Privacy
	Computing the Maximum

	General Composition
	Conclusion
	References

	Tracking Malicious Hosts on a 10Gbps Backbone Link
	Introduction
	Description of the Data Collection
	Measurement Setup
	Description of the Collected Data: Unidirectional Flows
	Measurement Bias and Errors

	Overall Data Characteristics
	Finding Malicious Hosts
	Analysis of Malicious Host Behavior
	Characteristics of Malicious Flows
	The Ubiquitous Malicious Hosts

	Related Work
	Discussions and Conclusions
	References

	Privacy
	Service Users’ Requirements for Tools to Support Effective On-line Privacy and Consent Practices
	Introduction
	The Privacy Dialogue

	Positioning of Our Work
	Privacy Protection Practice Literature
	Dialogue System Literature

	Research Method
	User Study – UK Online Centres

	Results
	Privacy Practice
	Privacy Dialogue
	User Preference for Online Privacy and Consent

	Conclusion
	References

	Analyzing Characteristic Host Access Patterns for Re-identification of Web User Sessions
	Introduction
	Related Work
	Re-identification Methodology
	Modelling the Web User Re-identification Problem
	Multinomial Naïve Bayes (MNB)
	Vector Transformations

	DataAcquisition
	Evaluation Methodology and Results
	Attacker’s View
	Simulations
	Linkability Metric

	Countermeasures
	Discussion
	Conclusion
	References

	Policy Enforcement
	A Framework for the Modular Specification and Orchestration of Authorization Policies
	Introduction
	Authorization Using Trees
	APOL: A Typed, Modular Policy Language
	Discussion
	Conclusions
	References

	Credential Disabling from Trusted Execution Environments
	Introduction
	Assumptions and Requirements
	Assumptions
	Attacker Model
	Requirements

	Straightforward Solutions
	Credential Disabling with Passwords
	Credential Disabling with Removable Element
	Credential Disabling with Embedded Secure Counter

	Credential Disabling with Personal Element Presence
	Credential Disabling with Semi-trusted Server
	Definitions
	Initialization
	Credential Disabling
	Credential Recovery

	Implementation
	Analysis
	Credential Disabling with Personal Element Presence
	Credential Disabling with Semi-Trusted Server
	Comparison of Different Solutions

	Related Work
	Conclusions
	References

	Java Card Architecture for Autonomous Yet Secure Evolution of Smart Cards Applications
	Introduction
	Security-by-Contract Smart Card Architecture
	Policy Checker Implementation
	Related Works and Conclusions
	References

	Implementing Erasure Policies Using Taint Analysis
	Introduction
	The Erasure Library
	Delegation
	The Primitive erasure_source
	Taint Analysis
	Erasing Data

	Extended Example
	LazyErasure
	The Lazy Erasure API
	Lazy Erasure Examples

	Related Work
	Conclusions and Future Work
	References

	Selected OWASP AppSec Research 2010 Papers
	A Taint Mode for Python via a Library
	Introduction
	A Motivating Example

	A Library for Taint Analysis
	Using the Library
	Hardening email.py

	Implementation
	Generating Taint-aware Classes
	Decorators
	Taint-aware Functions
	Scope of the Library

	Related Work
	Conclusions
	References

	Security of Web Mashups: A Survey
	Introduction
	Problems with Mashup Security
	Separation and Interaction
	Subspace
	Fragment Identifier Messaging
	PostMessage
	Module Tag
	Sandbox Attribute
	MashupOS
	OMash

	Script Isolation
	ADsafe
	Facebook JavaScript
	Caja

	Communication
	XMLHttpRequest Proxies
	Script Communication
	Using Browser Plugins
	Cross-Origin Resource Sharing

	Advanced Fine-Grained Control
	Policy Enforcement Techniques for JavaScript
	Mediating Access to Objects
	Information Flow Control for JavaScript

	Discussion
	References

	Safe Wrappers and Sane Policies for Self Protecting JavaScript
	Introduction
	The Wrapper Landscape
	Self Protecting JavaScript

	Breaking and Fixing the Wrapping Code
	Function and Object Subversion
	Global Setter Subversion
	Issues Concerning Aliases of Built-ins
	Abusing the Caller-Chain
	Browser Specific Issues
	Other Lightweight AOP Libraries

	Declarative Policies
	Object and Function Subversion in Policies
	Non Declarative Arguments

	Related Work
	Future Work
	References

	Cryptography and Protocols
	Protocol Implementation Generator
	Introduction
	The Protocol Implementation Generator
	A Practical Realisation of PiG
	LySa and the LySatool
	ANTLR
	Retargeting the PiG

	Related Work
	Conclusions and Future Work
	References

	Secure and Fast Implementations of Two Involution Ciphers
	Introduction
	Cipher Descriptions
	The Anubis Cipher
	The Khazad Cipher

	Implementations
	Vector Operations
	Implementing Anubis
	Implementing Khazad

	Results
	Conclusion
	References

	The PASSERINE Public Key Encryption and Authentication Mechanism
	Introduction
	PreviousWork

	The PASSERINE Randomized Rabin Cryptosystem
	Shamir’s Randomized Variant
	Arithmetic Modulo a Set of Coprime Numbers
	Carrying Payload Data in the RandomizationMask

	Implementing PASSERINE Public Key Operation on a Low-Resource Platform
	PASSERINE Private Key Operation and Decryption
	Further Work
	References

	Author Index

