
Chapter 6
Experimental and Numerical
Investigation of Mass Transport
in Porous Media

6.1 Measurement of Molecular Diffusion Coefficients

Mass transfer is a topic of central importance in chemical engineering, and
molecular diffusion is the basic physical mechanism underlying mass transfer
processes, even when convection comes into play. As a result, values of the
molecular diffusion coefficient ðDmÞ are required for mass transfer calculations
and extensive tabulations of this parameter have been prepared in the past
(see [38, 41]). Equations for the prediction of Dm are also available and, in general,
they have reasonable accuracy [44]. Nevertheless, it is important to determine
values Dm experimentally, in many instances.

In the simple experiment described here, consideration is given to the process of
mass transfer from a volatile solid sphere (a moth ball), buried in a packed bed of
inert particles (sand or glass ballotini), through which air is forced to flow con-
tinuously. And also, to the similar process of dissolution of slightly soluble spheres
buried in a packed beds of inerts through which water flows. These are important
‘‘model situations’’ for the understanding of such processes as char combustion in
fluidised beds [42] and leaching of ore (or contaminant) from buried rocks
(or buried waste).

When these processes are performed with very low fluid velocities, the rates of
mass transfer are strongly determined by molecular diffusion and the experiment
may be used to provide an accurate method for the measurement of the diffusion
coefficient. It is an entirely novel method that has the added interest of easily
providing data at temperatures and pressures that differ significantly from ambient
values. This is not always easy to achieve with other methods [35].

As an introduction to the present analysis, it is useful to consider the simple
situation depicted in Fig. 6.1a, where the vapour liberated by a buried sphere
travels through the interstices of a packed bed of inerts, as a result of molecular
diffusion.
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6.1.1 Diffusion Alone

The sphere of slightly volatile solid is assumed to be buried in a packed bed of
sand, of ‘‘infinite extent’’, the interstices of the bed being filled with a stagnant gas
(e.g. air) that is assumed to be free of solute at a large distance from the sphere (i.e.
C ! 0 as r !1). At r ¼ b; where the active sphere contacts the gas phase, the
molar concentration of solute in the gas is C� ¼ PV=RT ; where PV is the equi-
librium vapour pressure of the solute at the temperature ðTÞ of the experiment.

The concentration gradient will give rise to a process of outwards diffusion of
solute, but if diffusion is slow, the size of the sphere is taken to be constant, during one
experiment; in other words, the assumption of a quasi-steady state is legitimate.

Under that assumption, the rate of diffusion across a spherical surface of radius
r, concentric with the solid sphere, will be independent of r. From Fick’s law,

n ¼ �D0m 4pr2e
� � dC

dr
ð6:1Þ

where D0m ¼ Dm=s is the effective diffusion coefficient (s being the tortuosity factor,

accepted to be
ffiffiffi
2
p

for packed beds of granular materials [48] and e is the bed voidage
(assumed constant throughout). Since n is independent of r, integration of Eq. 6.1,
between the limits ðr ¼ b;C ¼ C�Þ and ðr !1; C ! 0Þ, gives

n ¼ 4D0me p b C� � 0ð Þ ¼ 2
D0m
d1

e p d2
1 C� � 0ð Þ ð6:2Þ

where d1 ð¼ 2bÞ is the diameter of the active sphere. Identifying ðp d2
1Þ as the area

of the active sphere, helps recognize the expression for the mass transfer

(a) (b)

Fig. 6.1 Sketch of iso-concentration surfaces around active sphere of radius b for a pure
diffusion, and b diffusion with convection
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coefficient as k ¼ 2e D0m=d1: Introduction of the Sherwood number, Sh0 ¼ kd1=D0m;
shows that for mass transfer by pure diffusion, around a buried sphere,

Sh0

e
¼ 2 ð6:3Þ

an expression similar to the well known result, Sh ¼ 2; for pure diffusion around a
sphere in an unbounded fluid [48].

6.1.2 Diffusion with Convection

Figure 6.1b represents again the buried sphere, but now exposed to a constant flow
of gas, with average interstitial velocity u0: The solute still diffuses away from the
surface of the sphere, but the rate of mass transfer is now enhanced, since the
solute is continuously swept away by the moving fluid. The surfaces of equal
concentration are no longer spheres. The analysis of the physical situation is
complicated, but it has been worked out in detail [23]. For the conditions of
interest in the present work, the expression

Sh0

e
¼ 4þ 4

5
Pe0p

d1

d

� �2=3

þ 4
p

Pe0p
d1

d

� �" #1=2

ð6:4Þ

has been shown to give accurate values of Sh0=e; where Pe0p ¼ u0d=D0m is the Peclet
number based on the diameter of the inert particles (d) making up the bed. It may be
easily seen that Eq. 6.4 reduces to Eq. 6.3, in the limit of low Pe0 ð¼ Pe0p d1=dÞ:
As Pe0p is increased, it is known that Eq. 6.4 becomes inaccurate [23]. At Pe0p ffi 1;

Eq. 6.4 is found to be accurate to within 5%, and therefore this value of Pe0p should
not be exceeded. This is because convective dispersion (rather than molecular
diffusion) would then become the relevant mechanism of mass transfer in the
packed bed. However, in the case of the experiments described below, conditions
are strictly restricted to the range of applicability of Eq. 6.4.

The essence of the experimental method proposed relies on burying a weighed
sphere of naphthalene (with initial mass m0 and diameter d1) in a packed bed of
sand of known porosity (e) and continuously forcing a metered stream of air
(volumetric flowrate, m) through the packed bed (cross sectional area, A) for a
given time interval, Dt. Weighing the sphere at the end of the time interval
ðmass mtÞ gives the rate of sublimation as m0 � mtð Þ=Dt and the mass transfer
coefficient may be calculated from

k ¼ m0 � mt

Dt M pd2
1 pV=RTð Þ ð6:5Þ

where M is the molecular weight of naphthalene.
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With the interstitial velocity given by u0 ¼ m=ðAeÞ; the only unknown in Eq. 6.4
is D0m: A simple way of solving this equation relies on re-arranging it, through

multiplication by D0m ð¼ Dm=
ffiffiffi
2
p
Þ; to obtain

kd1

e
¼ D0m 4þ 4

5
u0d1

D0m

� �2=3

þ 4
p

u0d1

D0m

� �" #1=2

ð6:6Þ

Several models can be found in the literature for the prediction of diffusion
coefficients in binary systems [48]. Fuller et al. [21] suggest the use of the fol-
lowing equation

Dm ¼

MA þMB

MAMB

� �1=2

T1:75

P Rvð Þ1=3
A þ Rvð Þ1=3

B

h i 2 � 10�7 ð6:7Þ

where P is the absolute pressure (in bar), MA and MB are, respectively, the
molecular weights of components A and B (in g/mol), and Rvð ÞA and Rvð ÞB are
the values of the atomic diffusion volumes of components A and B, which are
tabulated in Reid et al. [44].

Equation 6.7 predicts a proportionality between Dm and T1:75=P; and this is an
important result that may be demonstrated using the experimental technique
described in the following section.

6.1.3 Experiments

An example of the experimental setup is sketched in Fig. 6.2. The air supply may
determine the maximum pressure at which the experiment can be performed. The
tubing and valves connecting the air supply to the low pressure end of the rig will
be standard material, for the maximum working pressure intended. The test col-
umn, containing the packed bed of sieved sand (or glass ballotini) may be made
from a short piece of stainless steel tube (typically 80 mm internal diameter and
110 mm long) flanged at both ends. The test column is best kept vertical, to avoid
settling of the packing to one side, and a downward gas flow will prevent
unwanted fluidization of the bed material. A piece of some sort of gauze should be
placed over the bottom plate of the test column to prevent the granular material
from going into the tubing.

If the rotameter gives the flowrate mR; at pressure PR and temperature TR;
the actual flowrate in the test column is given as m ¼ mR PR=Pð Þ T=TRð Þ; where P is
the absolute pressure indicated in the manometer connected to the test column. The
vapour pressure is calculated using Uno’s correlation [53].
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In experiments at temperatures differing from ambient, the test column and a
significant length of the tubing feeding it have to be kept in a constant temperature
bath.

The naphthalene spheres used in the experiments were solidified from the melt,
in simple moulds made of silicone rubber for the purpose. The diameter of each
sphere was measured with callipers (along three perpendicular directions, to ensure
near sphericity) and it was typically about 20 or 25 mm.

Each sphere was weighed accurately ðinitial mass; m0Þ; in an analytical bal-
ance, before burying it (with some care, to avoid unwanted erosion) near the
middle of the packed bed, which had been previously immersed in the constant
temperature bath for a long enough period of time. The top plate of the test column
was then bolted in place and the column was tapped gently, a few times, to ensure
close packing of the granular material. The test column and associated tubing were
then immersed again in the constant temperature bath and the air supply was then
connected, to give the intended test pressure and gas flowrate. The air flowrate was
kept constant for a time Dt, following which it was interrupted and the test column
was opened, to remove the sphere for weighing ðfinal mass; mtÞ:

Each experiment lasted between 50 min and 60 h, the time being chosen to give
a measurable loss of weight (typically, 0.05 g), that nevertheless would not cor-
respond to a significant variation in the diameter of the sphere. The time intervals
were however sufficiently long to reduce inaccuracies due to evaporation in the
stages of sphere introduction and removal from the test column.

The experimental measurements of mass transfer in water were performed on
the dissolution of individual spheres of for example, 2-napthol or benzoic acid,
buried in beds of sand through which a metered stream of distilled water (which
had been previously deaerated under vacuum) was forced to flow steadily.

Instead of weighing the sphere, the concentration of solute in the outlet stream,
Cout; was continuously measured to give the rate of dissolution. Cout was measured
by means of a UV/VIS spectrophotometer. When steady state was reached, the rate
of dissolution of the solid could be found directly from n ¼ QCout; where Q is the
measured volumetric flow rate of water.

Test column in water bath

Flow
 meter

   V2    V1

Manometer

Manometer  

Pressure
regulator

Compressed
air

Atmosphere

PR

 P

Fig. 6.2 Experimental set-up
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6.2 Measurement of Dispersion Coefficients
(Axial and Radial)

6.2.1 Measurement of Axial Dispersion Coefficients

Since the development of the dispersion approximation for the study of solute
transport in capillary tubes by Taylor [52], the flow of the tracer is described by
dispersion due to molecular diffusion and radial velocity variations. In packed
beds, with D=d [ 15; the assumption of flat velocity profiles and porosity is
reasonable as point out by Akehata and Sato [1] and Gunn [25] and later showed
by the experimental studies of Stephenson and Stewart [50] and Gunn and Pryce
[26], that suggested D=d [ 10:

Imagine a packed bed of uniform porosity ðeÞ; contained in a long column of
length L along which liquid flows at a superficial velocity U (the interstitial
velocity is then u ¼ U=e) and initial concentration of solute C0; in which a tracer
with continuously injection and concentration of soluteCS; is dispersed in radial
and axial direction. Taking a small control volume inside this boundary layer, a
material balance on the solute, with length dz and width dr, leads to (see [25])

DL

@2C

@z2
þ 1

r

@

@r
DTr

@C

@r

� �
� u

@C

@z
¼ @C

@t
ð6:8Þ

Klinkenberg et al. [33] and Bruinzeel et al. [9] show that radial dispersion can
be neglected in comparison with axial dispersion for a small ratio of column
diameter to length ðD=LÞ and large fluid velocity. The partial differential equation
describing tracer transport in the bed reduces then to

DL

@2C

@z2
� u

@C

@z
¼ @C

@t
ð6:9Þ

where z measures length along the bed, and if L is sufficiently large (semi-infinite
bed) the appropriate boundary conditions are

C ¼ C0 0� z� L t ¼ 0 ð6:10aÞ

uCS ¼ uC � DL

@C

@z
z ¼ 0 t [ 0 ð6:10bÞ

@C

@z
¼ 0 z ¼ L t [ 0 ð6:10cÞ

For a step input, the concentration at the outlet of the bed ðz ¼ LÞ can be
obtained by Carslaw and Jaeger [10], who give the exact solution of the equivalent
heat transfer problem. However, a study developed by Harrison et al. [29] showed
that the boundary conditions developed by Danckwerts [15], for an infinite system,
hold adequately for a finite system provided uL=DL� 10; So, for a step input
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(from C0 to CS), the concentration at the outlet of the bed ðz ¼ LÞ is known [15] to
be given, if L is sufficiently large, by

F(hÞ ¼ 1
2

1� erf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LPeL

hd

ð1� hÞ
2

r !" #

ð6:11Þ

or for a pulse response by

EðhÞ ¼ 1
2

LPeL

phd

� �1=2

� exp
�LPeLð1� hÞ2

4hd

" #

ð6:12Þ

Rifai et al. [45] and Ogata and Banks [39] showed that the solution of Eq. 6.9
with the boundary conditions and initial condition given by Eqs. 6.10a–c is

F(hÞ ¼ 1
2

1� erf

ffiffiffiffiffiffiffiffiffiffi
LPeL

hd

r
ð1� hÞ

2

 !" #
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hd
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ð1þ hÞ
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 !" #

exp
L

d
PeL

� � ð6:13Þ

However, Ogata and Banks [39] showed that for large molecular Peclet num-
bers ðsay; uL=DL [ 100Þ; the advection dominates and the second term in the
right-hand side can be neglected, with an error lesser than 5%, and Eq. 6.13
reduces to Eq. 6.11.

6.2.1.1 Experiments

Typically, dispersion along the direction of flow is studied by following the dis-
tortion of some concentration wave (of a tracer), as it progresses along the packing.
In our experiments, a step in tracer concentration was introduced at the top of a
long packed bed, of constant cross section, and the variation of tracer concen-
tration, continuously in the stream leaving the bed, was recorded.

The partial differential equation describing tracer transport in the bed is given
by Eq. 6.9 and for a step input (from C0 to CS), the concentration at the outlet of
the bed ðz ¼ LÞ is known [15] to be given by

C � C0

CS � C0
¼ 1

2
1� erf

L� ut

2
ffiffiffiffiffiffiffiffi
DLt
p

� �� �
ð6:14Þ

if L is sufficiently large. This result may be written as Eq. 6.11, where
F ¼ ðC � C0Þ=ðCS � C0Þ is the dimensionless concentration rise and h ¼ t=�t is the
dimensionless time (�t being the mean residence time of fluid in the bed).

For each set of C vs. t values, obtained in one experiment, the values of F vs.
h were calculated and the value of PeL determined to give the least deviation
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between the experimental points and the line representing Eq. 6.11. Figure 6.3
helps illustrate the method and it also gives some idea about its sensitivity to
variations inPeL.

The rig used in the majority of our experiments (including all those at tem-
perature above ambient) is sketched in Fig. 6.4, but the various items are not to
scale. Two large stainless steel reservoirs (about 0.3 m in diameter and 1.0 m tall)
were used to keep the distilled water and the dilute solution of sodium chloride
(up to 1.5 kg/m3 in salt) immersed in a silicone oil thermostatic bath. The use of
very dilute salt solutions and the care taken in equalizing the temperature of both
liquids is needed to avoid dispersion by natural convection. Both the distilled
water and the salt solution were degassed ‘‘in situ’’, by bubbling under vacuum, to
avoid liberation of small air bubbles inside the test column, at the higher
temperatures. Both reservoirs were connected (at the top) to the compressed air
line (approx.: 4 bar) to have the rig permanently pressurised and help discharge the
liquid through the flow regulating valve V, open to the atmosphere.

At the top of the test column (3.0 m long and 0.047 m in diameter, made of
brass), a three-way valve (T) could be manipulated to select the feed. At the
beginning of each experiment it was turned to let distilled water flow through the
bed, until no salt was detected in the conductivity meter monitoring the exit
stream. After that, it was turned to allow the salt solution to go through the column,
at a constant flowrate, measured by an orifice meter connected to a differential
pressure transducer. The dead space between the three-way valve and the top of
the bed was less than 0.1% of the void space in the bed proper and this is important
to ensure that a sharp step input of tracer is obtained in the bed. The conductivity
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Fig. 6.3 Comparison of experiment with Eq. 6.4 for three values of PeL
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cell at the exit of the test column was connected to a micro-computer and values of
the salt concentration were recorded at a frequency of 10 Hz. Care was taken to
have a negligible volume of liquid between the bottom of the bed and the con-
ductivity cell in order to avoid distortion of the signal read by the cell. A typical
record of outlet tracer concentration is shown in Fig. 6.3 and from the sensitivity
of the curves representing Eq. 6.11, to the value of PeL; it may be guessed that the
values of DL obtained are accurate to within �15%.

6.2.2 Measurement of Radial Dispersion Coefficients

The radial dispersion coefficient can be determined by plotting ð% composition :
C10 and C90Þ vs (distance from 50% composition) on arithmetic-probability paper
[40]. The dispersion coefficient can be calculated by

DT ¼
u

L

C90 � C10

3:625

� �2

ð6:15Þ

The most widely used techniques for the measurement of lateral dispersion
are the continuous point source and the instantaneous finite source methods
(see e.g. [46]), which rely on the injection of tracer in a flowing liquid, followed by
tracer detection at several points, downstream of the injection point. If at time
t ¼ 0 a tracer is injected into the porous medium from an injector, for the con-
tinuous point source method the tip of the injector is taken as the tracer origin. For
the instantaneous finite source method the origin lays just down-gradient of the
tracer injector.

Pre-heater in silicone oil bath
Test column immersed in 

silicone oil bath

Compressed 
air

Pressure 
transducers

 Solution  
 of  NaCl

 Distilled 
 water

  Termocouple

  TermocoupleConductivity
cell

Three-way valve (T)

 Valve (V)

to drain

Fig. 6.4 Diagram of experimental set-up
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Several authors like Roemer et al. [47] and Gunn and Pryce [26] used the
solution of Eq. 6.15 when the axial dispersion coefficient is taken equal to radial
dispersion coefficient. However, in this work we only consider experimental
techniques where axial dispersion is neglected.

6.2.2.1 ‘‘Instantaneous Finite Source’’ Method

The method adopted by some authors like Dorweiler and Fahien [16] and Fahien
and Smith [19] is based that the tracer is fed into the main stream at a point on the
axis on the column.

The analytical model for an instantaneous finite source in one dimension is first
presented by Crank [13]. Baetsle [6] extended the model to three-dimensional
dispersion. Hunt [32] and Sun [51] provided the three-dimensional solution to the
advection–dispersion equation [6] using different mathematical analysis. Van
Genuchten and Alves [54] presented a number of analytical solutions of the one-
dimensional convective–dispersive solute transport equation.

Tracer concentration should be low enough to avoid density-induced flow
effects. The tracer should be conserved (i.e. not destroyed) in the experiment and
the distribution of flow rates at the outlet must be the same as in the feed so as not
to induce complications in the flow field.

Radial dispersion may be evaluated by injecting a steady flow of a tracer at a
point of a test section column. For a boundary layer, which is thin in comparison
with the length of the axial distance (L), axial dispersion will be negligible. Taking
a radial co-ordinate, r, to measure distance to the axis of the bed and a co-ordinate
z, to measure distance along the average flow direction, the differential mass
balance on the solute reads

DT

r

@

@r
r
@C

@r

� �
¼ u

@C

@Z
ð6:16Þ

where DT is the radial dispersion coefficient. Fahien and Smith [19] solved the
differential dispersion Eq. 6.16 with

z ¼ 0 0\r\Ri C ¼ C0 ð6:17aÞ

z ¼ 0 Ri\r\R C ¼ 0 ð6:17bÞ

all z r ¼ R; r ¼ Ri

@C

@r
¼ 0 ð6:17cÞ

and the solution of Eq. 6.16 with the boundary conditions (6.17a–c) is

C

C0
¼ 1þ 2R

Ri

X1

n¼1

J1 bnRi=Rð ÞJ0 bnr=Rð Þ
bnJ2

0 bnð Þ
z

R
exp � b2

n

PeT

z

R

� �
ð6:18Þ
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where J0 and J1 are the Bessel functions of the first kind, of order 0 and 1,
respectively, and the bn are the positive roots of the Bessel function of the first
kind, of order 1.

6.2.2.2 ‘‘Continuous Point Source’’ Method

This method is based on the measurement of radial mass exchange between two
coaxial portions of a packed bed, along which liquid flows, parallel to the axis; the
feed to the central portion is water containing a small amount of sodium chloride
and that to the outer portion is pure water.

Klinkenberg et al. [33] derived an analytical solution for Eq. 6.16, neglecting
the effect of injector radius (see Fig. 6.5), with the boundary conditions given by

z ¼ þ1 all R C ¼ C0 ð6:19aÞ

z ¼ �1 all R C ¼ 0 ð6:19bÞ

all z r ¼ R; r ¼ 0
@C

@r
¼ 0 ð6:19cÞ

and the solution of Eq. 6.16 with the boundary conditions (6.19a–6.19c) is

C

C0
¼ 1þ

X1

n¼1

J0 bnr=Rð Þ
J2

0 bnð Þ
exp � b2

nDTz

R2u

� �
ð6:20Þ

where J0 is the Bessel function of the first kind, of order 0, and the bn are the
positive roots of the Bessel function of the first kind, of order 1.

Plautz and Johnstone [43] and Sinclair and Potter [49] used Eq. 6.9 for an
infinite case, where no boundary is present, of mass diffusion from a point source.
The result with axial dispersion neglected was given by Carslaw and Jaeger [10]

C

C0
¼ R2u

4DTz
exp � r2u

4DTz

� �
ð6:21Þ

This solution includes a simplification possible when z=r [ 5 (axial dispersion
neglected).

    tracer

z = X0

z = XM

– ∞ ∞+

Fig. 6.5 A schematical diagram of test section for radial dispersion
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Blackwell [8] assumes the effect of radius injector and gives the analytical
solution to the differential equation describing radial dispersion in the absence of
axial dispersion. Hiby and Schummer [30] presented a solution of Eq. 6.16 that
considered the tracer pipe to be of significant diameter compared to the diameter of
the bed (see Fig. 6.6), and the boundary conditions adopted were

z [ 0 r ¼ R
@C

@r
¼ 0 ð6:22aÞ

z ¼ 0 r\Ri C ¼ C0 ð6:22bÞ

z ¼ 0 Ri\ r\R C ¼ 0 ð6:22cÞ

On the assumption that DT and u are independent of position, the solution of
Eq. 6.9 following Hiby and Schummer [30] gives, for the resulting outlet average
concentration in the inner stream of liquid,

C
C0
¼ 4

X1

n¼0

J2
1 bnRi=Rð Þ
b2

nJ2
0 bnð Þ

exp � Ld

PeT

bn

R

� �2
" #

ð6:23Þ

where J0 and J1 are the Bessel function of the first kind, of orders 0 and 1, respectively,
and the bn are the positive roots of the Bessel functions of the first kind, of order 1.
The measurement of �C and C0 provides a method for the determination of PeT

(and therefore of DT), since all other parameters in the equation are known.

C = C

C = 0

C = 0

C = C0

 z    z=L z= 0

2R 

u

r 

2Ri 2Riu

u u

u

u

C = Cω

C = Cω

Fig. 6.6 Sketch of boundary conditions proposed by [30]
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Harleman and Rumer [28] and Han et al. [27] consider a steady-state experi-
ment in a rectangular column. The authors solved the differential equation with the
boundary conditions,

C ¼ C0 x ¼ 0 0\y\þ1 ð6:24aÞ

C ¼ 0 x ¼ 0 �1\y\ 0 ð6:24bÞ

@C

@y
¼ 0 all x y! � 1 ð6:24cÞ

and the solution obtained for a step input in concentration, is
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2
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ð6:25Þ

6.2.2.3 Mass Transfer From a Flat Surface Aligned With the Flow

Coelho and Guedes de Carvalho [12] developed a new experimental technique,
based on the measurement of the rate of dissolution of planar or cylindrical sur-
faces, buried in the bed of inert particles and aligned with the flow direction.

Figure 6.7a sketches a section through a packed bed along which liquid is
flowing, close to a flat wall, part of which (0 \ x \ L) is slightly soluble. Liquid
flow will be taken to be steady, with uniform average interstitial velocity u, and if
the concentration of solute in the liquid fed to the bed is C0 and the solubility of the
solid in the wall is C*, a mass transfer boundary layer will develop, across which
the solute concentration drops from C ¼ C�; at y ¼ 0; to C ! C0; for large y.

The question of how large is meant by a ‘‘large y’’ needs some clarification.
Obviously, if L were only of the order of a few particle diameters, and u were
large, the concentration of solute would fall to C0 over a distance of less than one
particle diameter. In that case, flow in the bulk of the packed bed would have little
influence on the mass transfer process, which would be dominated by diffusion in a
thin layer of liquid, adjacent to the soluble surface. Already for large L and low u,
the thickness of the mass transfer boundary layer will grow from zero, at x = 0,
to a value of several particle diameters, at x = L and the process of mass transfer
will then be determined by a competition between advection and dispersion in the
bulk of the bed. Now, it is well known (e.g. [55]) that the voidage of a packed bed
(and therefore the fluid velocity) is higher near a containing flat wall, but in the
case of Guedes de Carvalho and Delgado [24] experiments it may be considered
that such a non-uniformity will have negligible effect. For one thing, we work with
bed particles of between 0.2 and 0.5 mm and therefore the region of increased
voidage will be very thin. Furthermore, because the inert particles making up the
bed indent the soluble surface slightly, as dissolution takes place (and this slight
indentation is easily confirmed when the piece of soluble solid is removed from
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within the bed), there is in fact virtually no near wall region of higher voidage.
Confirmation of these assumptions is given by the results of the experiments
described below.

Taking a small control volume inside this boundary layer (see Fig. 6.7b), with side
lengths dx; dy and unity (perpendicular to the figure), it is possible to perform a mass
balance on the solute, for the steady state. If the boundary layer is thin, compared to
the length of the soluble slab, axial dispersion is likely to be negligible, since the
surface y = 0, 0 \ x \ L, is a surface of constant concentration (C = C*).

Noting that the surface y ¼ 0; 0\ x \L; is a surface of constant concentration,
along which @2C=@x2 ¼ 0 and axial dispersion will be negligible, for a boundary
layer which is thin in comparison with the length of the soluble slab. (A conser-
vative criterion for this approximation to be valid is L=d [ 20). For a slab the
equation of diffusion in one dimension is

u
@C

@x
¼ DT

@2C

@y2
ð6:26Þ

to be solved with

C ¼ C0 x ¼ 0 y [ 0 ð6:27aÞ

C ¼ C� x [ 0 y ¼ 0 ð6:27bÞ

C ! C0 x [ 0 y!1 ð6:27cÞ

The solution is

C � C0

C� � C0
¼ erfc

y

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
DTx=u

p

 !

ð6:28Þ
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Fig. 6.7 a Flow along
soluble slab, b Mass transfer
boundary layer
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and the flux of dissolution at any point on the slab surface may be obtained from
(6.28) as

N ¼ �DTe
@C

@y

� �

y¼0

¼ C� � C0ð Þe DT

px=u

� �1=2

ð6:29Þ

The instant rate of solid dissolution over the whole slab surface may now be
calculated by integration of the local flux; taking a width b along the surface of the
solid, perpendicular to the flow direction, there results

n ¼
ZL

0

N b dx ¼ C� � C0ð Þe b L
4DT

pL=u

� �1=2

ð6:30Þ

and it is useful to define the coefficient

k ¼ n

ðbLÞðC� � C0Þ
¼ e

4DT

pL=u

� �1=2

ð6:31Þ

This result shows how the measurement of the rate of dissolution of the solid,
which is directly related to the average mass transfer coefficient, may be used to
determine the coefficient of radial dispersion in the bed.

A simple way of checking the result in Eq. 6.31 is afforded by the predicted
proportionality between k and the inverse square root of L. Experiments performed
by Coelho and Guedes de Carvalho [12] with a wide range of slab lengths, both for
the dissolution of benzoic acid in water and the sublimation of naphthalene in air,
confirm the general validity of the above theory, provided that the approximate
criterion

L

d
� 0:62

ud

Dm

� �
ð6:32Þ

is observed, where Dm is the molecular diffusion coefficient of the solute. When
the above criterion is not observed, the near wall film resistance to diffusion will
have to be taken into account and approximate ways of doing this are described by
Coelho and Guedes de Carvalho [12].

The similarity between the result given by Eq. 6.32 and that obtained by
Higbie [31], for gas–liquid mass transfer by surface renewal, is striking.
Equation 6.24a–c simply states that the average mass transfer coefficient, for the
soluble wall, is that corresponding to surface renewal with a time of contact
tc ¼ L=u and an apparent diffusion coefficient DT.
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6.2.2.4 Mass Transfer From a Cylinder Aligned With the Flow

For practical reasons, it proves simpler to perform experiments in which the dis-
solving solid is a cylinder, aligned with the flow direction and it is important to
know the theoretical expressions relating the average mass transfer coefficient with
the coefficient of dispersion, DT; for that situation.

Fortunately, under appropriate conditions, easy to reproduce in the laboratory, the
thickness of the mass transfer boundary layer is small in comparison with the radius
of the dissolving cylinder and under such circumstances, the analysis presented
above, for dissolution from a flat surface, is still applicable with good accuracy.

However, there are instances in which this simplification is not valid and an
exact solution may be worked out in cylindrical co-ordinates, as shown by Coelho
and Guedes de Carvalho [12].

The resulting expression for k is cumbersome to evaluate, but for small values
of the parameter hc ¼ DT tc=a2; where tc ¼ L=u is the time of contact between
liquid and solid, a good approximation is

k ¼ e
4DT

ptc

� �1=2

1þ
ffiffiffi
p
p

4
h1=2

c � 1
12

hc þ
ffiffiffi
p
p

32
h3=2

c � 	 	 	
� �

ð6:33Þ

For higher values of hc, up to hc =0.4, the first four terms may be used, instead
of the infinite series on the right hand side of Eq. 6.33, with an error of less than
1% in k.

6.2.2.5 Experiments

Experiments were performed on the dissolution of individual cylinders of
2-napthol, buried in beds of sand through which a metered stream of distilled water
(which had been previously deaerated under vacuum) was forced to flow steadily,
as sketched in Fig. 6.8. The beds of sand were contained in a stainless steel column
500 mm long and 100 mm in internal diameter, with the cylinder of 2-napthol
placed co-axially inside it, all in vertical alignment. The cylinders of 2-napthol had
a diameter of 20 mm and a length of 250 mm and they were tightly mounted in
alignment between two rods of stainless steel (each 20 mm in diameter and
100 mm long). These two metal rods fulfilled the double purpose of covering the
top and bottom of the 2-napthol cylinder and straightening the flow field, upstream
and downstream from it; they also provided the points of support for alignment
with the stainless steel column. Near the bottom of the stainless steel column, a
perforated plate, covered with fine stainless steel wire mesh, was used to support
the bed of sand and the cylinder inside it. The preparation and assemblage of the
cylinders of 2-napthol followed closely the method detailed by Coelho and Guedes
de Carvalho [12] for the preparation of cylinders of benzoic acid. The use of
2-napthol instead of benzoic acid was determined by the need to work at high
temperatures and the relevant properties of 2-naphtol.
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Before any new series of runs, the cylinder buried in the sand (and when
required, the sand itself) had to be replaced. In order to do that, ball valves B1 and
B2 were closed and disconnected from the upstream and downstream piping,
respectively, so as to allow the test column and the associated copper coil (and
valves B1 and B2 in the ends) to be lifted from the thermostatic bath. Following
that, the free ends of valves B1 and B2 were connected to plastic tubing that could
be supplied with distilled water or directed to the drain. After removing the lid of
the test column, distilled water was forced up through the bed of sand, so as to
fluidise it slightly and allow the cylinder to be replaced without difficulty. As the
water flow was stopped, to allow the sand particles to settle, the column was
vibrated for a few seconds to give a good compaction of the bed. The lid of the test
column was placed back in position and the stainless steel column (with attached
copper coil and valves B1 and B2) was again immersed in the silicone oil bath.
After connection to the main water circuit, valves B1, B2, and valve B3 were fully
open and the flowrate of water fed to the top of the column was adjusted by means
of valve N. The silicone oil bath was then heated to the required temperature of
operation. A pre-heater helped warm up the water feed to near the temperature of
the bath and an ice water bath was used to cool the liquid stream leaving the test
column, before it passed the valve regulating the flow. In this way it was possible
to perform experiments at temperatures up to the normal boiling point of water
(and above it, if necessary).

The concentration of 2-naphtol in the outlet stream, Cout; was continuously
measured by means of a UV/VIS Spectrophotometer, set at 274 nm, and when
steady state was reached, the rate of dissolution of the solid could be found from
n ¼ QCout; where Q is the measured volumetric flow rate of water.

For the second example, a rig was built as sketched in Fig. 6.9, that allowed
experiments to be performed over a wide range of temperatures. Two large res-
ervoirs, of about 0.06 m3 internal volume, were used to store distilled water and a

Fig. 6.8 Diagram of experimental set-up

6.2 Measurement of Dispersion Coefficients (Axial and Radial) 139



dilute solution of NaCl in distilled water with a concentration of salt of approxi-
mately 1.5 kg/m3; both reservoirs were connected, at the top, to a source of air at
4 bar. The two reservoirs were kept in a thermostatic bath that was set at the
temperature of the experiment, or at 353 K, when the experiments were performed
above that temperature. The liquid held in each reservoir had been initially
deaerated by stripping under vacuum, at room temperature, to avoid subsequent
liberation of gas bubbles in the liquid streams going through the packed bed. In the
test column, care was taken to have a good alignment of the axes of the inlet and
outlet tubes of the core stream with that of the packed bed. The apparatus was kept
in vertical alignment to avoid ‘‘settling’’ of the packing to any one side. Liquid
flow was driven by the difference in pressure between the reservoirs and the exit
sections, at atmospheric pressure. Valves V1 and V2 were used to adjust the outlet
flowrate of each stream, to give equal velocity in the core tube and in the annulus,
at the outlet; by acting slightly on valves E1 or E2 it was then possible to also
impose equal velocities in the inlet streams to the bed. At the higher temperatures,
the outlet streams had to be cooled before reaching valves V1 and V2, to avoid
vaporization downstream of these valves, due to de-pressurization. The conduc-
tivity meter cell was built on a 30 mm nylon rod, 75 mm long, having a 10 mm
hole drilled along its axis. Two platinum wires, 0.5 mm in diameter, crossed the
wall of this nylon tube along opposite ends of one diameter of the mid cross
section and they were glued in place, leaving a distance of about 8 mm between
their tips. The platinum electrodes were connected to three 1 kX resistances (to
within 0.01%) to form a Wheatstone bridge that was connected to a 9.30 V source,
so that the liquid flowing through the cell acted as the variable resistance. The
output of this conductivity meter was connected to a micro-computer and care was
taken to calibrate the meter at the operating temperatures, whenever fresh solutions
were introduced in the reservoirs. After allowing steady state to be reached, the
rate of solute transfer from the core stream to the annulus is given simply as
n ¼ v C0 � C

� �
; where m is the volumetric flowrate of the core stream and C is the

Fig. 6.9 Sketch of experimental set-up for measurement of radial dispersion coefficient
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average concentration of salt in that stream, at the exit. Care was taken to check
that the value of n agreed with n ¼ x Cx; where x is the volumetric flowrate of the
stream going through the annulus and Cx the corresponding average salt con-
centration, at the outlet.

6.3 Measurement of Solubility at Different Temperatures

Solubility is perhaps the most fundamental of all chemical phenomena. The sig-
nificance of what dissolves what, to what extent, at what temperature and pressure,
and the effects of other species, was recognized at a very early stage. In more
recent times the importance of solubility phenomena has been acknowledged
throughout science. For example, in the environment, solubility phenomena
influence the weathering of rocks, the creation of soils, the composition of natural
water bodies and the behaviour and fate of many chemicals.

The characteristic ability of water to behave as a polar solvent changes when
water is subjected to high temperatures and pressures. As water becomes hotter, its
molecules seem much more likely to interact with non-polar molecules. For
example, at 300�C (and high pressure) water has dissolving properties very similar
to acetone, a common organic solvent.

Also, solid–liquid and solid–gas mass transfer investigations with Newtonian or
non-Newtonian fluids are frequently made by following the rate of dissolution of a
low solubility solute. In all researches, accurate solubility data are required.

On mass transfer investigations in porous media, as in studies of dispersion
coefficients and solute transport, the most common solutes used are benzoic acid,
2-naphthol, naphthalene, salicylic acid and succinic acid with water or air
(see [56]). In these experiments, knowledge of accurate solubility data at different
temperatures is very important, i.e., for low solubility solutes.

The experiment proposed is simple and inexpensive, and it provides an accurate
method for the measurement of solubilities of solid solutes in liquids and gases.
Consider a vertical column of length L; containing a packed bed of soluble spherical
particles of diameter d1: If liquid flow is steady, with a uniform volumetric flowrate
Q; if the concentration of solute in the liquid fed to the bed is c0 and the solubility of
the solid particle is c� ; a mass transfer boundary layer will develop.

In the analysis of results of experiments of dissolution of soluble spherical
particles in liquid flow, the equation for dissolution rate is given by,

Q
@c

@x
¼ kSLðc� � c0Þ ð6:34Þ

where SL is the active surface area per unit length and k is the average mass
transfer coefficient. Given constant flowrate, uniformly distributed particles and
isothermal conditions, Eq. 6.34 is integrated between the inlet and outlet condi-
tions of the bed, x ¼ 0 to x ¼ L and c ¼ c0 to c ¼ c: The following equation
results,
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c� c0

c� � c0
¼ 1� exp � kSL

Q
L

� �
ð6:35Þ

In order to guarantee that the outlet stream is saturated, it’s important to observe
the approximate criterion c� c0ð Þ= c� � c0ð Þ[ 0:999 (error less that 0.1%). The
number of soluble spheres presented in a packed bed is given by,

n ¼ Vcolunn

Vparticle

¼ 3
2
ð1�eÞD2L

d3
1

ð6:36Þ

and the general validity of the above theory holds, provided that the approximate
criterion

6ð1� eÞkL

u0e d1
[ 6:908 ð6:37Þ

If the criterion of Eq. 6.37 is to be satisfied, it is important to know the value of
the average mass transfer coefficient, k; so as to be able to estimate the interstitial
velocity of liquid, u0:

6.3.1 Mass Transfer Around a Buried Soluble Sphere

For the propose of analysis, let as consider the situation of a slightly soluble sphere
of diameter d1ð¼2aÞ buried in a bed of inert particles of diameter d ðwith d 
 d1Þ,
packed uniformly (void fraction e) around the spheres. The packed bed is assumed
to be ‘‘infinite’’ in extent and a uniform interstitial velocity of liquid, u0; is
imposed, at a large distance from the spheres.

In order to obtain the flow field in the vicinity of the buried sphere, Darcy’s law,
u = � K grad p; is coupled with the continuity equation, div u ¼ 0; and Laplace’s
equation, r2/ ¼ 0; is obtained for the flow potential / ¼ k p:

In terms of spherical coordinates (r, h), the potential and stream functions are,
respectively (see [14]),

/ ¼ �u0 1þ 1
2

a

r

	 
3
� �

r cos h ð6:38Þ

w ¼ u0

2
1� a

r

	 
3
� �

r2 sin2 h ð6:39Þ

and the velocity components are

ur ¼
@/
@r
¼ �u0 cos h 1� a

r

	 
3
� �

ð6:40Þ
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uh ¼
1
r

@/
@h
¼ u0 sin h 1þ 1

2
a

r

	 
3
� �

ð6:41Þ

Making use of the potential and stream lines, it is possible to perform a material
balance on the solute in a differential element of a ‘‘stream tube’’ to obtain (see [11])

@c

@/
¼ @

@/
DL

@c

@/

� �
þ @

@w
DTx2 @c

@w

� �
ð6:42Þ

where x is the distance to the flow axis, and DL and DT are the longitudinal and
transverse dispersion coefficients, respectively.

The boundary conditions to be observed in the integration of Eq. 6.42 are:
(1) the solute concentration is equal to the background concentration, c0; far away
from the sphere; (2) the solute concentration is equal to the equilibrium concen-
tration, c ¼ c� ; on the surface of the sphere and (3) the concentration field is
symmetric about the flow axis.

For very low fluid velocities, dispersion is the direct result of molecular dif-
fusion, with DT ¼ DL ¼ D0m; and the numerical solution presented by Carvalho
et al. [11] applies. Those authors suggest that their results are well approximated
(with an error of less than 1%) by

k ¼ e
D0m
d1

4þ 4
5
ðPe0Þ2=3 þ 4

p
Pe0

� �1=2

ð6:43Þ

where Pe0¼u0d1=D0m is the Peclet number for the soluble sphere.
Now, by substituting the average mass transfer coefficient, given by Eq. 6.43,

into Eq. 6.37, the following expression is obtained for the approximate validity
criterion of theory developed above:

1
Pe0

1þ p
Pe0
þ p

5ðPe0Þ1=3

 !

[
d1

ð1� eÞL

� �2

ð6:44Þ

Finally, with Eq. 6.44 we could predict the volumetric flowrates that guarantee
saturation in the outlet stream, Q ¼ Pe0pD2eD0m=ð4d1Þ: However, an important
aspect to consider is the dependence of Q on the effective molecular diffusion
coefficient, D0m: Fortunately, values of D0m increase with temperature, and the value
of D0m; at room temperature or lower, is a good estimate.

6.3.2 Experimental Set-Up

Experiments were performed on the dissolution of spheres of benzoic acid,
2-naphthol and salicylic acid (6.0 mm of internal diameter), buried in beds of sand
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(0.496 mm average particle diameter) through which water was steadily forced
down, at temperatures in the range 293–373 K.

A stainless steel tube (21 mm i.d. and 200 mm long) was used to hold the bed
of soluble solid spheres in an upright position while a metered stream of distilled
water was fed to the top of the column, as sketched in Fig. 6.10. Near the bottom
of the stainless steel column, a perforated plate, covered with fine wire mesh, was
used to support the bed.

The distilled water was initially dearated, under vacuum, to avoid liberation of
gas bubbles in the rig, at high temperature. The test column was immersed in a
silicone oil bath kept at the desired operating temperature by means of a ther-
mosetting bath head (not represented in Fig. 6.10). The copper tubing feeding the
distilled water to the column at a constant metered rate was partly immersed in a
pre-heater and it had a significant length immersed in the same thermosetting bath
as the test column; the copper tubing leaving the test column was immersed in a
chillier to cool the outlet stream before reaching the UV analyser.

The water flowrate was then adjusted to the required value, Q; and the
concentration of solute in the outlet stream was continuously monitored by means
of a UV/VIS Spectrophotometer (set at 274 nm, for 2-naphtol, at 226 nm, for
benzoic acid and 292 nm, for salicylic acid).

The solubility of the solutes studied in water was calculated from the steady
state average concentration of solute, cout; in the outlet stream (refrigerated to

Fig. 6.10 Sketch of experimental set-up
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room temperature), as c� ¼ 1þ Q1=Qð Þcout; where Q and Q1 were the measured
volumetric flowrates.

The spheres of solutes studied were prepared from p.a. grade material, which
was molten and then poured into moulds made of silicone rubber. Wherever any
slight imperfections showed on the surface of the spheres, they were easily
removed by rubbing with fine sand paper. Using callipers three measurements
were made of the diameter of each sphere along three perpendicular directions.

6.4 Measurement of Tortuosity in Porous Media

The two major properties to describing porous media and the associated mass
transfer phenomena are the permeability coefficient (flow phenomena) and the
effective diffusion (mass transfer phenomena). However, both coefficients are
functions of the characteristics of porous media, namely the media porosity and
tortuosity (see [17, 18]).

The tortuosity of a packed bed is an important parameter that describes pore
connectivity and fluid transport, however, it is difficult to determine experimentally.
Normally, tortuosity is calculated through measured values of the porosity and the
experimentally determined effective diffusion coefficient. However, tortuosity var-
ied with the particle volume fraction and the particle size ratio in the mixture.

In recent years, nuclear magnetic resonance (NMR) has been used to determine
both diffusion and tortuosity coefficients (see e.g. [22, 36]), with significant
advantages, but it’s a very expensive method.

The experiment proposed is simple and inexpensive, and it provides an accurate
method for the measurement of the tortuosity in packed beds.

Tortuosity can be defined as the ratio of the distance actually travelled by a
tracer through the pore space, Le, to the straight-line distance between the two
points, L, of the porous media with solute concentrations C1 and C2: When
ignoring that the ‘‘real’’ length (or effective) of diffusion trajectory is sinuous the
representative equation of the diffusion law it should be written as:

Q ¼ D0me A
C1 � C2

L
ð6:45Þ

where D0m is the ‘‘effective’’ molecular diffusion coefficient. However, the appli-
cability of Ficks first law to the ‘‘real’’ length of diffusion in a packed bed,
Le, result as

Q ¼ Dme A
C1 � C2

Le

ð6:46Þ

where Dm is the molecular diffusion coefficient. Now, by substituting Eq. 6.45 into
6.46 the following relation is obtained:
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D0m¼
Dm

Le=L
ð6:47Þ

The ratio Le=L being the tortuosity factor and it is usually represented by
s [7, 18]. In this work an original method for measurement of tortuosity in packed
beds is presented.

Consider a vertical column containing a packed bed of inert particles, and filled
with liquid to some level above the top of the packed bed (liquid ‘‘pool’’). If a
concentrated salt solution is then poured into this liquid ‘‘pool’’, with uniform
concentration Cp0; the tracer will gradually penetrate down the packed bed. The
concentration of tracer in the liquid ‘‘pool’’ decrease gradually in the time, until a
uniform concentration of tracer, equilibrium, is reached in the whole liquid.

Analysis of the process of salt diffusion may be made in analogy with the
process of diffusion from a stirred solution of limited volume, described by
Crank [13]. The concentration of the dissolver salt in the packed bed, C; will vary
according to (Fick’s Second Law)

@C

@t
¼ D0m

@2C

@ x2
ð6:48Þ

subject to the following initial and boundary conditions,

t ¼ 0 0� x� L C ¼ 0 ð6:49aÞ

t [ 0 x ¼ 0
@C

@x
¼ 0 ð6:49bÞ

t [ 0 x ¼ L � D0me
@C

@x
¼ Vp

A

@Cp

@t
ð6:49cÞ

where Vp is the volume of liquid in the ‘‘pool’’, above the bed of inerts and A is the
cross section area of the packed bed.

The solution of Eq. 6.48 with the boundary conditions (6.49a–c) could be
obtained through the use of Fourier transform. However, the solution given by
Crank [13] is conveniently expressed as the ratio between the amount of tracer in
the bed of inert particles at any time, Mt; and the corresponding amount of tracer
after a sufficiently long time, equilibrium, M1 :

Mt

M1
¼ 1�

X1

n¼0

2að1þaÞ
1þ aþ a2q2

n

exp �D0mq2
nt

L2

� �
ð6:50Þ

where a is the ratio between the volume in the ‘‘pool’’ and the volume in the
packed bed ða¼Vp=VÞ and qn are the non-zero positive roots of

tanðqnÞ ¼ �a qn ð6:51Þ
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As smaller is the value of D0mt=L2 more terms in the series, in Eq. 6.50, are
needed for a given accuracy. When more than three or four terms are need it is
better to use an alternative form of solution. For most values of a; the simplest
expression is

Mt

M1
¼ ð1þ aÞ 1� exp

D0mt

L2a2

� �
� erfc

D0mt

L2a2

� �0:5
" #

ð6:52Þ

The amount of tracer in the packed bed, at any time t; could be expressed by the
following equation,

Mt ¼ Vp Cp0 � CpðtÞ
� �

ð6:53Þ

where Cp0 is the initial tracer concentration in the ‘‘pool’’; and the equilibrium
amount of tracer in the packed bed of inerts is given by

M1 ¼ V C1 � C0ð Þ ¼ Vp Cp0 � Cp1
� �

ð6:54Þ

where C0 is the initial concentration of tracer in the bed of inerts (C0 ¼ 0) and C1
and Cp1 are the equilibrium salt (tracer) concentration (t ¼ 1), in the packed bed
and in the liquid ‘‘pool’’, respectively (C1 ¼ Cp1). So, the equilibrium tracer
concentration in packed bed could be determined as,

C1 ¼
C0V þ Cp0Vp

Vp þ V
� Cp0Vp

Vp þ V
ð6:55Þ

and, for experimental data, the expression of the ratio between the amount of tracer
at any time t and the amount of tracer in equilibrium is given by:

Mt

M1
¼

Vp þ V
� �

Cp0 � Cp

� �

V Cp0 � C0
� � �

Vp þ V
� �

Cp0 � Cp

� �

VCp0

ð6:56Þ

In each experiment the value of a is constant and the values of Cp was measured
at different times in order to determine the corresponding values of Mt=M1; from
the appropriate representation of Eq. 6.52 or 6.54; and the value of D0mt=L2 cor-
responding to each value of Mt=M1 could be determined. For each experimental
data point a plot of D0mt=L2 vs: t; was organized and the best straight line through
the points and the origin determined. The plot gives a straight line with slope of
D0mt=L2 and intercept of origin, to yield the experimental value of effective
molecular diffusion coefficient, D0m: Finally, the value of tortuosity was obtained
by s ¼ Dm=D0m.
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6.4.1 Experimental Example

All measurements of tortuosity were performed in a transparent acrylic column,
0.10 m in diameter, was kept at a constant temperature using a thermostatically
controlled water-bath (see Fig. 6.11).

The packed beds used in our experiments were beds of silica sand with average
diameter of 0.496, 0.297, 0.219 and 0.110 mm. The silica sand was washed, dried
and sieved in closely sized batches, for the experiments.

The dried silica sand was placed back inside the acrylic column at L length, and
the packed bed was carefully compacted. Afterwards, distilled water, with volume
V, was flowed in the ‘‘open space’’ of the packed bed; and a dilute salt solution
flowed carefully on top of the packed bed, with volume Vp (liquid ‘‘pool’’).
A mechanical stirrer was used to homogenize the salt concentration in liquid
‘‘pool’’, with very slow rotation to avoid dispersion by forced convection.

The liquids used in the experiments were both distilled water and a dilute
solution of NaCl in distilled water with a concentration of salt in the range of
0.05–2.0 M. The use of very dilute salt solutions and the care taken in equalizing
the temperature of both liquids is needed to avoid dispersion by natural
convection.

For each experiment the fraction of liquid volume in the packed bed, k, was
determined. The value of a¼Vp=V used in the experiments is largely a matter of
personal choice. The data in the present work refer to a � 1:5.

To prevent evaporation the column are closed with a rubber cap. However, it is
impossible to prevent some evaporation during the long execution time of the test.

The change of concentration in liquid ‘‘pool’’ was measured by monitoring
decreases in the electrical conductance as a function of time. The output of this
conductivity meter was connected to a micro-computer and care was taken to
calibrate the conductivity cell.

           0

“liquid pool”

x

L

Packed bed

 mechanical stirrers
conductivity meter cell

Personal 
computer 

(data logger)

Fig. 6.11 Sketch of
experimental set-up
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6.5 Mass Transfer Around Active Solids

There are several situations of practical interest, both in nature and in man made
processes, in which there is fluid flow through a bed of inert particles, packed
around a solid mass that contacts with the moving fluid. Examples may be found in
diverse fields, such as dilute catalyst fixed bed reactors, fluidised bed combustion,
ore leaching and water contamination by buried waste. In such processes there is
an interplay between diffusion, convection and dispersion and a detailed system-
atic study of the problem has been given by Coelho and Guedes de Carvalho [12]
for transfer from buried flat surfaces and for transfer from buried spheres. Both
these references present accurate solutions for certain limiting situations, namely
those of low and high fluid velocity (more precisely, low and high Peclet
numbers).

When the mass transfer process occur in a porous media with a fluid flowing
around the soluble particle, and at low fluid velocities (as typically observed in
underground flow), the assumption of thin boundary layer is not legitimate, and the
theoretical analysis developed by Coelho and Guedes de Carvalho [12] is not
applicable. Therefore, it is necessary to employ numerical methods for a correct
analysis of the mass transfer process in more general situations.

Flow around a buried sphere is an important model situation in many processes
and in a recent work Carvalho et al. [11] treated the problem numerically, so as to
cover the entire range of values of Peclet and Schmidt numbers.

Flow along buried cylindrical surfaces and flat surfaces are also important
model situations, and were investigated theoretically and numerically by Alves
et al. [3], yielding results for a wide range of values of Peclet number, aspect ratio
of soluble solid mass and Schmidt number.

Over the last years, our focus has been driven preferentially to the analysis of
the mass transfer of particles with spherical geometry. This work is a contribution
for the study of mass transfer of soluble particles with different geometries buried
in inert particles with smaller diameter. Additionally, a simple approximate
method is presented to obtain concentration contours plots for solute distribution
around and downstream of the buried surfaces (with different geometries).

The following sections present a detailed description of the mass transfer and
dispersion process around a soluble solid particle with different shapes (sphere,
cylinder or a plane surface aligned with the flow, cylinder in cross-flow, prolate
spheroid and a oblate spheroid) buried in a packed bed of smaller inert particles
with uniform voidage, with a moving fluid with constant interstitial velocity.

6.5.1 Mass Transfer From a Soluble Flat Slab

Figure 6.12 sketches a section through a packed bed along which liquid is flowing,
close to a flat wall, part of which (0 \ z \ L) is soluble. Liquid flow is assumed
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steady, with uniform average interstitial velocity u. If the concentration of solute in
the liquid fed to the bed is c0 and the solubility of the solid wall is c*, a mass
transfer boundary layer will develop, across which the solute concentration drops
from c = c*, at y = 0, to c ? c0 for large y.

If we restrict the analysis to those situations for which the mass transfer
boundary layer extends over several particle diameters and if a small control
volume is considered, inside this boundary layer, with side lengths dz, dy and
unity, a steady state material balance on the solute leads to

u
@c

@z
¼ D0m

@2c

@y2
þ D0m

@2c

@z2
ð6:57Þ

To integrate Eq. 6.57 it is convenient to define the following dimensionless
variables:

C ¼ c� c0

c� � c0
ð6:58aÞ

Y ¼ y

L
ð6:58bÞ

Z ¼ z

L
ð6:58cÞ

Pe0sf ¼
uL

D0m
ð6:58dÞ

Fig. 6.12 Flow through
packed bed near soluble flat
surface
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where Pe0sf represents the Peclet number (based on the length, L, of the soluble
slab), and D0m is the effective molecular diffusion coefficient, defined as the ratio
between the molecular diffusion coefficient and the tortuosity, s; of the packed bed
ðD0m ¼ Dm=sÞ.

In terms of dimensionless variables, Eq. 6.57 becomes

pe0sf

@C

@Z
¼ @

2C

@Z2
þ @

2C

@Y2
ð6:59Þ

and the appropriate boundary conditions are

C! 0 Z! �1 8Y ð6:60aÞ

C = 1 0�Z� 1 Y ¼ 0 ð6:60bÞ

@C
@Y
¼ 0 Z \0 _ Z [ 1 Y ¼ 0 ð6:60cÞ

C! 0 8Z Y! þ1 ð6:60dÞ

C! 0 Z! þ1 Y� 0 ð6:60eÞ

Equation 6.59 is to be solved numerically, subjected to the boundary conditions
(6.60a–6.60e), over the ranges of Pe0sf of practical interest.

6.5.1.1 Discretisation

Equation 6.59 was solved numerically, using a finite-difference method in a non-
uniform grid similar to that adopted by Carvalho et al. [11]. A second-order central
differencing scheme was adopted for the discretisation of the diffusive terms on the
right hand side of Eq. 6.59, and the convective term, on the left hand side of
Eq. 6.59, was discretised using the CUBISTA high-resolution scheme of Alves
et al. [3], which preserves boundedness, even for highly advective flows.

The discretised equation resulting from the finite-difference approximation of
Eq. 6.59 reads:

pe0sf

Ciþ1=2; j � Ci�1=2; j

DZi þ DZiþ1ð Þ=2
¼ Ciþ1; j DZið Þ � Ci; j DZi þ DZiþ1ð Þ þ Ci�1; j DZiþ1ð Þ

DZi DZiþ1 DZi þ DZiþ1ð Þ=2

þ
Ci; jþ1 DYj

� �
� Ci; j DYj þ DYjþ1

� �
þ Ci; j�1 DYjþ1

� �

DYj DYjþ1 DYj þ DYjþ1
� �

=2

ð6:61Þ

The Ciþ1=2;j and Ci�1=2;j values are interpolated from the known grid node
values using the CUBISTA high-resolution scheme (HRS), in order to ensure
numerical stability and good precision. The normalised variable approach (NVA)
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of Leonard [34] was adopted for implementations of the HRS, in which a general
differencing scheme up to third order of accuracy can be expressed as

Ciþ1=2;j ¼ f ðCi�1;j;Ci;j;Ciþ1;jÞ ð6:62Þ

The NVA uses an appropriate upwind biased normalisation, and Eq. 6.62 can
be rewritten in compact form as

C
_

iþ1=2;j ¼ f ðC
_

i;jÞ ð6:63Þ

where

C
_

k;j ¼
Ck;j � Ci�1;j

Ciþ1;j � Ci�1;j
ðfor k ¼ i� 1; i; iþ 1=2; iþ 1Þ ð6:64Þ

since, by definition of Eq. 6.64, C
_

i�1;j ¼ 0 and C
_

iþ1;j ¼ 1:
The CUBISTA scheme is represented in the context of the NVA by the fol-

lowing piecewise linear functions [3]:

C
_

iþ1=2;j ¼

7
4

C
_

i;j 0�C
_

i;j\
3
8

3
4

C
_

i;j þ
3
8

3
8
�C

_

i;j�
3
4

1
4

C
_

i;j þ
3
4

3
4
\C

_

i;j� 1

C
_

i;j elsewhere

8
>>>>>>><

>>>>>>>:

ð6:65Þ

The resulting system of equations was solved iteratively using the successive
over-relaxation (SOR) method [20], and the implementation of the boundary
conditions was carried out in the same way as described in our previous work [11].
For the situation under study an orthogonal mesh is adequate and care was taken to
ensure proper refinement in the regions where high concentration gradients are
expected. The computational domain was defined according to the flow conditions
(typically for small Pe0sf ; longer meshes are needed) and during mesh refinement,
the number of nodes along each direction was doubled, thus halving the mesh sizes
along each direction. This systematic procedure allows direct use of Richardson’s
extrapolation technique in order to obtain very accurate results [20].

6.5.1.2 Numerical Results

The numerical solution of Eq. 6.59 gives the concentration field and from it, the
rate of dissolution of the slab, n, is obtained integrating the diffusion/dispersion
flux over the whole slab surface. This integral is evaluated numerically, for each

152 6 Experimental and Numerical Investigation



set of conditions, from the discretised concentration field that is obtained through
the numerical solution of Eq. 6.59. It is convenient to express the rate of disso-
lution in terms of a Sherwood number, Sh0sf ¼ kL=D0m; where k ¼ n= Sðc� � c0Þ½ � is
the mass transfer coefficient for the soluble slab and A is the exposed area of the
soluble solid.

In the analysis of the results of the numerical computations we only consider
the situation of low Pe0pð¼ ud=D0mÞ values, diffusional regime.

For low Pe0p values, dispersion is the direct result of molecular diffusion and
DT ffi DL ffi D0m: Fig. 6.13 presents the results obtained numerically, for the situ-
ation of dispersion dominated by molecular diffusion, and two asymptotes can be
observed:

Sh0sf

e
! 2

p

� �1=2

Pe0sf

� �1=8
for Pe0sf ! 0 ð6:66Þ

and

Sh0sf

e
! 4

p

� �1=2

Pe0sf

� �1=2
for Pe0sf !1 ð6:67Þ

Taking the geometric mean of those two asymptotes

Sh0sf

e
¼ 2

p
Pe0 1=4

sf þ 4
p

Pe0sf

� �1=2

ð6:68Þ

one observes that it does not deviate more than 3% from the numerical values.
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Shsf'/ε

 Numerical solution
 Eq. (6.68)

Fig. 6.13 Dependence of Sh0sf=e on Pe0sf when DT ¼ DL ¼ D0m throughout, for slab flat
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6.5.2 Mass Transfer From a Soluble a Cylinder Aligned
With Flow

Figure 6.14 sketches a dissolving cylinder in a packed bed, aligned with the flow
direction. In this case the mass transfer boundary layer forms around the cylinder
and has axial symmetry.

Considering a small control-volume inside the boundary layer and performing a
steady-state material balance on the solute, one obtains

Pe0c
@C

@Z
¼ @

2C

@Z2
þ 4

L

d1

� �21
R

@

@R
R
@C
@R

� �
ð6:69Þ

where R ¼ 2r=dc; and dc represents the diameter of the soluble cylinder. Equa-
tion 6.62 was solved numerically with boundary conditions

C! 0 Z! �1 R� 1 ð6:70aÞ

C = 1 0�Z� 1 R = 1 ð6:70bÞ

@C
@R
¼ 0 Z \0 _ Z [ 1 R = 1 ð670cÞ

C! 0 8Z R! þ1 ð6:70dÞ

C! 0 Z! þ1 R� 1 ð6:70eÞ

over the ranges of Pe0cð¼ uL=D0mÞ and L=dc of practical interest.

Fig. 6.14 Flow through
packed bed near soluble
cylinder aligned with flow
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6.5.2.1 Numerical Results

For low Pe0p values ðsay, Pe0p\0:1Þ; the values of Sh0c=e ¼ kL=D0me
� �

were obtained
by integrating the flux along the soluble surface, in a similar way to that described
for the flat surface. The first point to be mentioned is that the lower set of points in
Fig. 6.16 (those for L=dc ¼ 0) were not obtained by solving Eq. 6.69 directly.
Indeed, for L=dc ! 0 (with finite L) the physical situation depicted in Fig. 6.15
degenerates into mass transfer from a flat surface. The plot for L=dc ¼ 0 reveals
the two asymptotes obtained for the dissolution of a slab in a packed bed (see
Eqs. 6.66 and 6.67. Equation 6.67 is the result obtained by Coelho and Guedes de
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L /d1
L /d1

Fig. 6.15 Dependence of Sh0=eð Þ0 on L=d1
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L /dc =2
Eq. (6.73)

Fig. 6.16 Dependence of Sh0c=e on Pe0c for different values of L=dc
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Carvalho [12] who argued that it would be also the asymptote for L=dc [ 0: This is
shown to be the case in Fig. 6.16 and it is not surprising, since for thin concen-
tration boundary layer, the curvature of the cylinder is not relevant.

For each value of L=dc [ 0; the plot of Sh0c=e vs. Pe0c has a horizontal

asymptote, for Pe
0

c ! 0: This limiting value of Sh0c=e (for each value of L=dc) may
be conveniently represented by Sh0c=e

� �
0: to emphasize that it corresponds to the

situation of pure molecular diffusion with no flow. The numerical results indicated
a dependence of Sh0c=e

� �
0 on L=dc and again, two asymptotes are revealed:

Sh0c
e

� �

0

! 6
L

dc

� �1=4

for low
L

dc

ð6:71Þ

and

Sh0c
e

� �

0

! 4
3

L

dc

� �3=4

for high
L

dc

ð6:72Þ

Having disclosed the above asymptotes, a general approximate expression for
Sh0c=e; that has the correct asymptotic behaviour, was found to be [4]

sh0c
e
¼

2
p

pe0 1=4
c þ 4

p
pe0c þ 6

L

dc

� �1=2

þ 4
3

L

dc

� �3=2

þ 5
3

pe0 5=9
c

L

dc

� �
� pe0 2=9

c 2
L

dc

� �1=3

2

6664

3

7775

1=2

ð6:73Þ
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u0

Fig. 6.17 Flow through
packed bed near soluble
sphere
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This equation does not deviate more than 2% from the numerical values, over the
entire range of values of Pe0c and L=dcx represented in Fig. 6.16. The approximate
conditions of validity of these equation are: dc=d� 50 and L=dc� 100:

6.5.3 Mass Transfer From a Soluble Sphere

Consider a soluble sphere of diameter d1ðd1 ¼ 2aÞ; buried in a bed of inert particles
of diameter d (with d 
 d1), packed uniformly (void fraction e) around the sphere
(see Fig. 6.17). The packed bed is assumed to be ‘‘infinite’’ in extent and a uniform
interstitial velocity of liquid, u0; is imposed, at a large distance from the sphere.

Darcy’s law, u ¼ �K grad p; is assumed to hold and if it is coupled with the
continuity relation for an incompressible fluid, div u ¼ 0; Laplace’s equation
r2/ ¼ 0 is obtained for the flow potential, / ¼ K p; around the sphere. In terms
of spherical coordinates (r, h), the potential and stream functions are, respectively
[14],

@c

@/
¼ @

@/
D0m

@c

@/

� �
þ @

@w
D0mx2 @c

@w

� �
ð6:74Þ

where x is the distance to the flow axis ð¼ r sin hÞ.
To integrate Eq. 6.74, with the auxiliary Eqs. 6.75 and 6.76, it is convenient to

define the following dimensionless variables:

/ ¼ �u0 1þ 1
2

a

r

	 
3
� �

r cos h ð6:75Þ

w ¼ u0

2
1� a

r

	 
3
� �

r2 sin2 h ð6:76Þ

and the velocity components are

ur ¼
@/
@r
¼ �u0 cos h 1� a

r

	 
3
� �

ð6:77Þ

uh ¼
1
r

@/
@h
¼ u0 sin h 1þ 1

2
a

r

	 
3
� �

ð6:78Þ

The analysis of mass transfer is based on a steady state material balance on the
solute crossing the borders of an elementary volume, limited by the potential
surfaces / and /þ d/; and the stream surfaces w and wþ dw: The resulting
equation is [4],

C ¼ c� c0

c� � c0
ð6:79aÞ

6.5 Mass Transfer Around Active Solids 157



< ¼ r

a
ð6:79bÞ

U ¼ u

u0
¼

u2
r þ u2

h

� �1=2

u0
ð6:79cÞ

U ¼ 4
3

/
u0d1

ð6:79dÞ

W ¼ w

u0d2
1

ð6:79eÞ

Equation 6.78 may be re-arranged to

@C

@U
¼ @

@U
4

3Pe0s

@C

@U

� �
þ @

@w
3

16
<2sin2h

Pe0s

@C

@w

� �
ð6:80Þ

The boundary conditions to be observed in the integration of Eq. 6.74 are: (1)
the solute concentration is equal to the background concentration, c0; far away
from the sphere; (2) the solute concentration is equal to the equilibrium concen-
tration, c = c*, on the surface of the sphere and (3) the concentration field is
symmetric about the flow axis:

U! �1; W� 0 C ! 0 ð6:81aÞ

U! þ1; W� 0 C ! 0 ð6:81bÞ

W ¼ 0
�1�/� 1 C ¼ 1

/j j[ 1
@C

@W
¼ 0

(

ð6:81c; dÞ

W! þ1; all U C ! 0 ð6:81eÞ

Equation 6.80 was solved numerically, subjected to the boundary conditions
(6.81a–e), over the ranges of Pe0sð¼ u0d1=D0mÞ of practical interest.

6.5.3.1 Numerical Results

For low values of Pe0p; dispersion is the direct result of molecular diffusion and the
numerical solution obtained by Guedes de Carvalho and Alves [23] applies. Those
authors showed that the numerical results are well described (with an error of less
than 1% in Sh0s ¼ kd1=D0m) by (see Fig. 6.18)

Sh0s
e
¼ 4þ 4

5
Pe0s
� �2=3þ 4

p
pe0s

� �1=2

ð6:82Þ
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6.5.4 Mass Transfer From a Cylinder in Cross Flow

Consider a slightly soluble cylinder, of diameter d1; buried in a packed bed of inert
spherical particles of diameter d ðd 
 d1Þ and exposed to fluid flow perpendicular
to its axis, with uniform interstitial velocity, u0; at a large distance from the
cylinder (see Fig. 6.19).

Assuming Darcy’s law, Laplace’s equation is obtained for the flow potential
around the cylinder. For a sufficiently long cylinder (assumed to be of ‘‘infinite’’

1
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Shs'/ε

Numerical solution

Eq. (6.82)

Fig. 6.18 Dependence of Sh0s=e on Pe0s for soluble sphere
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u0

Fig. 6.19 Flow through
packed bed near soluble
cylinder in cross flow
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length) the flow field is bi-dimensional and in polar coordinates, the potential and
stream functions are expressed as

/ ¼ �u0 1þ a

r

	 
2
� �

r cos h ð6:83Þ

w ¼ u0 1� a

r

	 
2
� �

r sin h ð6:84Þ

and the velocity components are given by

ur ¼
@/
@r
¼ �u0 cos h 1� a

r

	 
2
� �

ð6:85Þ

uh ¼
1
r

@/
@h
¼ u0 sin h 1þ a

r

	 
2
� �

ð6:86Þ

To formulate the mass transfer problem we take the concentration of the dif-
fusing species to be c* on the surface of the cylinder and c0 at a large distance from
it, in the approaching stream. The resulting concentration field will have axial
symmetry and the differential equation for mass transfer may be derived from a
mass balance on the elementary volume.

The analysis of mass transfer is based on a steady state material balance on the
solute crossing the borders of an elementary volume, limited by the potential
surfaces / and /þd/; and the stream surfaces w and wþ dw: The material mass
balance on the solute may be expressed as

@c

@/
¼ @

@/
D0m

@c

@/

� �
þ @

@w
D0m

@c

@w

� �
ð6:87Þ

The assumption of steady state is acceptable for a solid that is taken to be
slightly soluble and the use of the dispersion coefficients makes sense if the
boundary layer extends over several particle diameters.

To integrate Eq. 6.87, with the auxiliary Eqs. 6.83 and 6.84, it is convenient to
define the dimensionless variables:

C ¼ c� c0

c� � c0
ð6:88aÞ

< ¼ r

R
ð6:88bÞ

U ¼ u

u0
¼

u2
r þ u2

h

� �1=2

u0
ð6:88cÞ

U ¼ /
u0dc

ð6:88dÞ
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W ¼ w
u0dc

ð6:88eÞ

Pe0cf ¼
u0dc

D0m
ð6:88fÞ

where Pe0cf represents the Peclet number based on the diameter of the soluble
cylinder, dc: Equation 6.87 may then be rewritten as

@C

@U
¼ @

@U
1

Pe0cf

@C

@U

� �
þ @

@w
1

Pe0cf

@C

@w

� �
ð6:89Þ

The boundary conditions to be observed in the integration of Eq. 6.89 are: (1)
the solute concentration is equal to the background concentration, c0; far from the
cylinder; (2) the solute concentration is equal to the equilibrium concentration,
c ¼ c�; on the surface of the cylinder and (3) the concentration field is symmetric
about w ¼ 0:

U! �1; W� 0 C ! 0 ð6:90aÞ

U! þ1; W� 0 C ! 0 ð6:90bÞ

W ¼ 0
�1�U� 1 C ¼ 1

Uj j[ 1
@C

@W
¼ 0

(

ð6:90c; dÞ

W! þ1; all U C ! 0 ð6:90eÞ

Equation 6.89 has to be solved numerically and the method developed and
described in detail by Alves et al. [3] was adapted, to obtain the solute concen-
tration field around the dissolving cylinder.
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Numerical solution

Eq. (6.91)

Fig. 6.20 Dependence of Sh0cf=e on Pe0cf ; for a soluble cylinder in cross flow
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6.5.4.1 Numerical Results

For very low Pe0p; dispersion is the direct result of molecular diffusion, with

DT ffi DL ffi D0m; and Sherwood number is only function of Pe0: Numerical solu-
tions were worked out for the range of Pe0 between 10-3 and 104. The numerical
values of Sh0=e obtained are shown as dots in the plot of Fig. 6.20.

An improved approximation was found to describe the values of Sh0cf=e obtained
numerically, Eq. 6.91, which is represented as a full line in the same figure:

Sh0cf

e
¼ 2

p2
Pe0 1=4

cf þ 32
p3

Pe0cf

� �1=2

ð6:91Þ

and the values of Sh0cf=e calculated from this equation differ at most by 2% from
the corresponding numerical solution obtained in the present work.

6.5.5 Mass Transfer From a Prolate Spheroid

In many practical situations it is often required to consider operations in which
there are physico-chemical interactions between a solid particle and the fluid
flowing around it. In the treatment of these operations it is common practice to
assume the soluble particle to be spherical, because the treatment of irregular
shapes could only be done by numerical methods.

The surface of the prolate spheroid ðh ¼ h0Þ is described by (see Fig. 6.21)

c

a

z

x

 = const.L’

Fig. 6.21 The prolate
spheroidal coordinates
system
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x2 þ y2

a2
þ z2

c2
¼ 1 ð6:92Þ

Since r2 ¼ x2 þ y2; Eq. 6.92 can be written as

z ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðr=aÞ2

q
ð6:93Þ

The surface area S and volume V of a prolate spheroid are given by

S ¼ 2pa2 1þ c=a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2=c2

p sin�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2=c2

p	 

 !

ð6:94Þ

V ¼ 4
3
pa2c ð6:95Þ

where e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2=c2

p
is the ellipticity, and where e ¼ 0 corresponds to a sphere.

The dimensional Cartesian coordinates (x, y, z) are related to the prolate spheroidal
ones (h, g, b) through the equations [37]

x ¼ L0 sinh h sin g cos b ð6:96aÞ

y ¼ L0 sinh h sin g sin b ð6:96bÞ

z ¼ L0 cosh h cos g ð6:96cÞ

where L0 is the focal distance L0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2
p	 


and the coordinates range are:

0� h\1; 0� g� p and 0� b� 2p:

6.5.5.1 Analytical Results

For high Peclet numbers, with DT ffi DL ffi D0m; our the theory is based on the
assumption that the inert particles in the bed are packed with uniform voidage,
e; and that the flow may be approximated everywhere by Darcy’s law,
u ¼ �K grad p: Furthermore, if the fluid is treated as incompressible, mass con-
servation leads to div u ¼ 0; Laplace’s equation is obtained r2/ ¼ 0.

Darcy’s law is strictly valid only for laminar flow through the packing, but
according to Bear [7] it is still a good approximation for values of the Reynolds
number (based on superficial velocity) up to 
 10; which for beds with e
 0:4 is
equivalent to Re
 25; the upper limit for the validity of this analysis.

When a solid prolate spheroid is immersed in a packed bed of significantly
smaller particles, through which fluid flows with uniform interstitial velocity u0;
far from the spheroid, the solution of Laplace’s equation and the corresponding
stream function, in terms of spheroidal coordinates (h, g, b), are [2]
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/ ¼ �u0L0 cos g cosh h� cosh h coth�1ðcosh hÞ � 1

coth�1ðcosh h0Þ �
cosh h0

sinh2 h0
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775 ð6:97Þ

w¼u0
L2

4
sinhh sinhh�cosð2gÞsinhh�ð1�cosð2gÞÞsinhhcoth�1ðcoshhÞ�cothh
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ð6:98Þ

The stream and potential functions are related to the dimensionless velocity
components ðuh; ugÞ by Batchelor, [5]

uh ¼
1

L0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2 hþ sin2 g

p
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L02
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sinh2 hþ sin2 g sinh h sin g
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ð6:99Þ
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1
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p
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resulting the following velocity components

uh ¼
�u0 cos g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2 hþ sin2 g
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u0 sin g
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The tangential velocity at the surface of the prolate spheroid ðh ¼ h0Þ can be
found by

ug0 ¼
1

L0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2 hþ sin2 g

p
@/
@g

����
h¼h0

ð6:103Þ

and the resulting expression is

ug0 ¼
u0 sin g

1=e2 � 1þ sin2 g
� �0:5

1=e� ð1=e2 � 1Þ tanh�1 e
� 
 ð6:104Þ

Figure 6.22 shows the adimensional tangential surface velocity, ug0=u0; of a
prolate spheroid as a function of g, for different values of the eccentricity, e. Note
that, for the case of a sphere, e � 0; the well-known result of ug0 ¼ 1:5u0 sin g is
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obtained, for potential flow over the surface of the sphere. On the other hand, for a
slender prolate, e! 1; as expected ug0=u0 ! 1.

A convenient way of expressing the differential mass balance on the solute is to
take a control volume along a stream tube, between two nearby potential surfaces.
The resulting expression, for convection with molecular diffusion, is

@C

@/
¼ @

@/
D0m

@C

@/

� �
þ @

@w
D0mx2 @C

@w

� �
ð6:105Þ

For high values of the Peclet number the concentration boundary layer will be
thin and the first term on the r.h.s. of Eq. 6.105 may be neglected. After some
algebraic manipulation and a suitable change of variables, it is then possible to
obtain

@C
@n
¼ @

2C

@w2 ð6:106Þ

where n is defined by

n ¼
Zg

0

L03 sinh2 h0 sin2 g0ðsinh2 h0 þ sin2 g0Þ0:5 ug D0mdg0 ð6:107Þ

with x ¼ L0 sinh h0 sin g: The boundary conditions for Eq. 6.105, in our problem,
are

C ¼ C0 n ¼ 0 w [ 0 ð6:108aÞ
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Fig. 6.22 The adimensional tangential surface velocity, ug0=u0; as a function of g, for different
values of the eccentricity, e
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C ¼ C� n[ 0 w ¼ 0 ð6:108bÞ

C ! C0 n[ 0 w!1 ð6:108cÞ

and the corresponding solution is

C� C0

C� � C0
¼ 1� erf

w

2
ffiffiffi
n
p

� �
ð6:109Þ

The value of n varies over the surface of the spheroid. Now, for potential flow
ug is given by Eq. 6.104 over the surface of the spheroid ðh ¼ h0Þ and the integral
in (6.107) is

n ¼ u0D0m
c3e3ð1� e2Þ

e� ð1� e2Þ tanh�1 e

2
3
� cos gþ 1

3
cos3 g

� �
ð6:110Þ

The flux of solute at any point on the surface of the spheroid is

N ¼ �D0me
@C
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� �
¼ � D0me
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2 h0 þ sin2 g

p
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¼ �D0me ugL0 sinh h0 sin g
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@w

� �
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ð6:111Þ

and from (6.104) it may be shown that @C=@wð Þw¼0¼ �1=
ffiffiffiffiffiffiffiffiffi
pnð Þ

p� �
C� � C0ð Þ.

The rate of dissolution of the spheroid in the region 0\g\g1 will then be

n g1ð Þ ¼
Zg1

0

N2pL02
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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pz
p

ð Þdz ¼ 4
ffiffiffi
p
p

e n1=2 C� � C0ð Þ ð6:112Þ

with nðg1Þgiven by (6.110). In particular, the total rate of dissolution of the
spheroid, nT; may be obtained taking g1 ¼ p: By definition, the average mass
transfer coefficient, k, is

k ¼ nT= S C� � C0ð Þ½ � ð6:113Þ

the resulting expression for k (from (6.112) and (6.113)) is

k ¼ 4e
ffiffiffi
p
p

2pa2 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð1� e2Þ

p

e
sin�1 eð Þ

 !
4
3

c3ð1� e2Þe3u0D0m
e� ð1� e2Þ tanh�1 e

� �1=2

ð6:114Þ
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It is convenient to express the rate of dissolution in terms of the Sherwood

number, Sh0ps ¼ kdeq=D0m; with deq ¼ 2ða2cÞ1=3; and the expression obtained, after
some algebraic manipulation is

sh0ps

e
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
4
p

Pe0ps

r
2
3

e3

e� ð1� e2Þ tanh�1 e

� �1=2
2

ð1� e2Þ1=3 þ ð1�e2Þ�1=6

e sin�1 e

ð6:115Þ

where Pe0ps ¼ u0deq=D0m is the Peclet number. It is expected that Eq. 6.115 does
not differ by more than 10% from the exact solution to obtain numerically.

For the special case of a sphere, e � 0; the result of Sh0s=e ¼ ½4 Pe0=p�1=2 is
obtained, which corresponds to the asymptotic behaviour for thin concentration
layer (high values of Peclet number) when dispersion is constant and tend to D0m
over the surface of the sphere.

6.5.6 Mass Transfer From an Oblate Spheroid

The surface area S of an oblate spheroid is given by

S ¼ 2pa2 1þ ðc=aÞ2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2=a2

p ln
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2=a2

p

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2=a2

p

 ! !

ð6:116Þ

where e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2=a2

p
is the ellipticity, and for e ¼ 0 corresponds to a sphere.

Figure 6.23 describes the oblate spheroidal coordinate system.
The dimensional Cartesian coordinates (x, y, z) are related to the oblate sphe-

roidal ones (h, g, b) through the equations

x ¼ L0 cosh h sin g cos b ð6:117aÞ

y ¼ L0 cosh h sin g sin b ð6:117bÞ

θ
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z 
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Fig. 6.23 The oblate
spheroidal coordinates
system
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z ¼ L0 sinh h cos g ð6:117cÞ

where L0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � c2
p

is the focal distance and the coordinates are
0� h\1; 0� g� p and 0� b� 2p:

6.5.6.1 Analytical Results

For high values of Peclet numbers, the theory used is based on the assumption that
the inert particles in the bed are packed with uniform voidage, e; and that the fluid
flow may be approximated everywhere by Darcy’s law, u ¼ �K grad p; as in the
case of a prolate spheroid.

When a solid oblate spheroid is immersed in a packed bed of significantly
smaller particles, through which fluid flows with uniform interstitial velocity u0;
far from the spheroid, the solution of Laplace’s equation and the corresponding
stream function, in terms of spheroidal coordinates (h, g, b), are [2]
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The stream and potential functions are related to the dimensionless velocity
components and resulting the following velocity components
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�u0 cos g
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The tangential velocity at the surface of the oblate spheroid ðh ¼ h0Þ can be
found by
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Figure 6.24 shows the adimensional tangential surface velocity, ug0=u0; of a
prolate spheroid as a function of g, for different values of the eccentricity, e.
Note that, for the case of a sphere, e � 0; the well-known result of ug0 ¼
1:5u0 sin g is obtained, for potential flow over the surface of the sphere. On the
other hand, for a slender oblate, e! 1; as expected ug0=u0 ! 1:

A convenient way of expressing the differential mass balance on the solute is to
take a control volume along a stream tube, between two nearby potential surfaces.
The resulting expression, for convection with molecular diffusion, is given by
Eq. 6.99, where n is defined by

n ¼
Zg

0

L03 cosh2 h0 sin2 g0ðcosh2 h0 � sin2 g0Þ1=2 ug D0m d g0 ð6:123Þ

with x ¼ L0 cosh h0 sin g. The boundary conditions for are given by Eqs. 6.108a–c
and the corresponding solution is
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Fig. 6.24 The adimensional tangential surface velocity, ug0=u0; as a function of g, for different
values of the eccentricity, e
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¼ 1� erf

w

2
ffiffiffi
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� �
ð6:124Þ

The value of n varies over the surface of the spheroid. Now, for potential flow
ug is given by Eq. 6.115 over the surface of the spheroid ðh ¼ h0Þ and the integral
in (6.125) is

n ¼ u0D0m
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The flux of solute at any point on the surface of the spheroid is
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and from (6.126) it may be shown that @C=@wð Þw¼0¼ �1=
ffiffiffiffiffiffiffiffiffi
pnð Þ

p� �
C� � C0ð Þ.

The rate of dissolution of the spheroid in the region 0\g\g1 will then be
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with nðg1Þgiven by (6.125). In particular, the total rate of dissolution of the
spheroid, nT; may be obtained taking g1 ¼ p: By definition, the average mass
transfer coefficient, k, is given by Eq. 6.106 and the resulting expression for k is

k ¼ 4e
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It is convenient to express the rate of dissolution in terms of the Sherwood

number, Sh0os ¼ kdeq=D0m; with deq ¼ 2ða2cÞ1=3; and the expression obtained is
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where Pe0os ¼ u0deq=D0m is the Peclet number.
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