
Chapter 5
Modeling of Transport Processes
in Porous Materials

5.1 Introduction

As far as porous materials are characterized by high complexity in their invisible
internal structure, modeling seems to be a grateful tool for understanding the
transport processes that take place in porous media. Several modeling approaches,
applicable in porous domain, have been introduced and used in a variety of
scientific and industrial applications. Numerous industrial and technological
applications involving fluid flow and mass transport processes within multi-par-
ticle assemblages have attracted scientific interest in recent decades. These focus
mainly on industrial physicochemical processes (e.g. sedimentation, catalysis),
alternative energy sources (e.g. fuel cells) and separation techniques (e.g. chro-
matography, filters). This chapter focuses on the modeling of mass transport in
granular structures as well as on the estimation of macroscopic quantities (such as
mass transport coefficient, adsorption efficiency, etc.).

5.2 Single Phase Transport in Unit Cells

Although arrays of regularly spatially distributed grains represent an idealization of
real granular media, they have been widely studied from both the fluid dynamics and
mass transport points of view. Due to their complex geometry, random particle
distributions were the subject of few investigations until about twenty years ago.
Since then, fast advances in computational capabilities have contributed to reviving
research on this topic with emphasis on hydrodynamic aspects. Very often the par-
ticles are assumed to be sufficiently small and the physical properties of the fluid
(i.e. viscosity and density) independent of the concentration of the transferred species,
thus making it possible to uncouple the fluid problem from the mass-transport
problem. Furthermore, the case of low Reynolds number flow is very important from
an application point of view, where analytical solutions can be obtained for the flow
field and the mass diffusion and/or adsorption process.
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5.2.1 Fundamental Quantities

Generally speaking, the transient mass transport of a passive solute in the void
space of a porous medium is described by the convection–diffusion equation [4]:

@cA

@t
þ v � rcA ¼ Dr2cA þ R cAð Þ ð5:1Þ

where cA is the concentration of the passive solute, v is its velocity in the medium,
D is its diffusivity in the intermediate occupying the medium’s void space, and
R cAð Þ describes the reactions taking place in the bulk phase.

For the sake of simplicity, the most common assumptions made in the relative
literature and applied in the forthcoming analysis are:

• steady state condition (i.e.
@cA

@t
¼ 0)

• inert bulk phase (i.e. R cAð Þ ¼ 0).

Consequently, the governing differential equation for mass transport in a porous
material can often be written as:

v � rcA ¼ Dr2cA ð5:2Þ

The LHS of the above equation describes the mass transport due to convection
while RHS stands for the mass transport due to diffusion. The relative dominance
between these simultaneously occurring phenomena is expressed by the dimen-
sionless Peclet number, defined as:

Pe ¼ characteristic velocity � characteristic length
diffusivity

¼ U � L
D

ð5:3Þ

Obviously, the higher the Pe, the more convective the mass transport regime.
The microscopic quantity cA is related to useful macroscopic quantities, such as

the mass transport coefficient, the Sherwood (Nusselt) number, and the adsorption
efficiency. A brief description of these quantities is given below.

The mass transport coefficient, k0; describes the ability of the mass to be
transferred from the bulk phase to solid absorbers. It is obviously dependant on the
physical properties of the materials involved in the procedure, the porous structure,
and some physical parameters such as pressure, temperature and volumetric flow-
rate, which could be considered critical for the process. Mathematically, the mass
transport coefficient is defined by the expression:

k0 DcAð ÞSabs ¼ �
ZZ

Sabs

½�NA�surf dSabs ð5:4Þ

where DcA is the absolute difference of the concentration upon the absorbing
surface Sabs from the incoming concentration, and ½�NA�surf is the component of
molar flux which is normal on the collectors surface. The dimensionless overall
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Sherwood number is a direct consequence of the mass transport coefficient and is
defined as:

Sho ¼
mass transport coefficient � characteristic length

diffusivity
¼ ko � L

D
ð5:5Þ

For practical applications, the most useful macroscopic quantity is the
adsorption efficiency, k0; defined by the ratio of the solute adsorption rate divided
by the rate of the upstream influx:

k0 ¼ 1�
RR

Soutlet
cAv � ndSRR

Sinlet
cAv � ndS

ð5:6Þ

where n is the vector normal to the surface. For cases regarding the adsorption
efficiency of a grain-in-cell, the above expression is modified to:

k0 ¼

RR
Sabs

½�NAr �surf dSabs

u1cA;1Sinlet
ð5:7Þ

where u1 is the approaching velocity, cA;1 is the constant bulk concentration
sufficiently far away from the collector surface, and Sinlet is the inlet surface that
the solute faces to pass through the porous medium.

5.2.2 Adsorption Mechanisms

The majority of scientific and technological applications that deal with mass
transport in porous materials, involve a sorption mechanism. Generally speaking,
sorption includes adsorption and ion exchange, processes that involve the transfer
and resulting equilibrium distribution of one or more solutes between a fluid phase
and a solid surface. More precisely, adsorption generally involves the accumula-
tion (or depletion) of solute molecules at an interface (gas–solid and liquid–solid
interfaces), with solute distributed selectively between the fluid and solid phases.
On the other hand, ion exchange occurs when positively (cations) or negatively
(anions) charged ions from the fluid replace dissimilar ions of the same charge,
being initially in the solid surface. Furthermore, the partitioning of a single solute
between fluid and sorbed phases can be also included in the sorption mechanism.

Phase equilibrium between liquid and sorbed phases for one or many compo-
nents in adsorption, or two or more species in ion exchange, is considered the
single most important factor affecting process performance. This equilibrium is
usually expressed by a boundary condition upon the liquid–solid interface, while it
is of great importance to obtain a simple expression for the detailed description of
the sorption mechanism. In relevant literature, several different cases for the
adsorption of the solute upon the solid surface have been considered and used.
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The first and simplest case corresponds to instantaneous adsorption upon the
solid surface [17] and can be expressed as:

cA ¼ 0; on the solid�liquid interface ð5:8Þ

Despite its mathematical simplicity, it is clear that the instantaneous adsorption
approach pertains to a very limited range of applications, being a fairly rare
physicochemical phenomenon. Thus, detailed models referring to adsorption fol-
lowing isotherms have also been adopted. The most common is that of Langmuir’s
isotherm, which can be formulated as [12]:

Dn � rcA ¼
k

K
cs; on the solid�liquid interface ð5:9Þ

where cs is the concentration of the sorpted material, K is a constant defined by the
Langmuir isotherm:

Heq ¼
Kcb

1þ Kcb
ð5:10Þ

and k is a reaction rate defined from the relation

RðcsÞ ¼ kcbðcmx � csÞ ð5:11Þ

where R(cs) is the overall adsorption rate given as a function of the surface con-
centration cs, cb is the concentration of the diluted mass in the neighborhood of the
solid surface, cmx is the maximum concentration attained when the surface is
completely covered by substance A, and Heq is the ratio of the covered to the total
surface, defined as:

Heq ¼
cs

cmx
ð5:12Þ

Another more detailed approach is the more complicated but realistic sorption
mechanism, which involves adsorption-reaction-desorption [13]. More specifi-
cally, it can be considered that the solute diluted in the bulk phase is initially
adsorbed by the solid surface where a heterogeneous reaction takes place, and its
products, assumed to be inactive and of very low concentrations, are again des-
orbed in the bulk phase. The adsorption is assumed to occur due to vacant sites [2]
that are normally distributed over the surface area while the whole process is
determined by an overall rate according to thermodynamics. The above mecha-
nism is often described by an expression of the form:

Dn � rcA ¼ Rn; on the solid�liquid interface ð5:13Þ

With Rn denoting the overall adsorption rate, given as:

Rn ¼ ksc
n
AS ð5:14Þ
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where ks is the rate constant of the heterogeneous reaction upon the surface, and
the concentration of solute on the solid surface, cAS; is calculated by solving the
non linear equation:

ksc
n
AS þ kd

A þ ka
AcAÞsurf N

h i
cAS � ka

A cAÞsurf nm ¼ 0 ð5:15Þ

Equation 5.15 correlates the hard-to-measure surface concentration of A, cAS;
with its concentration in the bulk phase very close to the solid surface cAÞsurf by
considering the balance for the active sites on the adsorbing surface. In the above
equation, the terms ka

Aand kd
Adenote the adsorption and desorption rate constants of

solute, respectively, nm is the concentration of the vacant sites of the solid surface,
and N is Avogadro’s number, while n denotes the order of the heterogeneous
reaction upon the surface. In general, only the cases of n ¼ 0; n ¼ 1 and n ¼ 2 are
of practical importance, but zero order reactions are also used in limited appli-
cations [2].

Finally, it should be noted that some models consider neutral solid surface i.e.
absolute absence of adsorption [11]. This case can be described by the following
boundary condition upon the solid surface:

n � rcA ¼ 0; on the solid�liquid interface ð5:16Þ

5.2.3 Mass Transport Through Spheres

As discussed in Sect. 2.2, sphere-in-cell geometry is a simple model that represents
the actual complex geometry of the pore space in spherical particle assemblages
and the approximation of the flow-field therein. Consider a typical sphere-in-cell
model where the approaching fluid is a dilute solution of a substance A, which is
moving towards the solid adsorbing surface. After taking into account the plane
symmetry of the problem, the governing equation for the steady state mass
transport in the fluid phase within the model can be written in spherical coordi-
nates r; hð Þ as:

ur
@cA

@r
þ uh

r

@cA

@h
¼ D

@2cA

@r2
þ 2

r

@cA

@r
þ 1

r2

@2cA

@h2 þ
cot h

r2

@cA

@h

� �
ð5:17Þ

where ur and uh are the r� and h�velocity components, given either by Eqs. 3.12
and 3.13 or by Eqs. 3.19 and 3.20, where the set chosen depends on the model
considered.

The axial symmetry of the mass transfer problem is expressed by the following
boundary conditions:

@cA

@h

�
h¼p

¼ 0; a\r� b ð5:18Þ
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@cA

@h

�
h¼0

¼ 0; a\r� b ð5:19Þ

To ensure the continuity of concentration for any Peclet number, Coutelieris et al.
[9] proposed the following boundary condition at the outer boundary of the cell:

cA r ¼ b; h ¼ pð Þ ¼ 1 ð5:20Þ

@cA

@r

�
r¼b

¼ 0; 0� h\p ð5:21Þ

For high Peclet values, the boundary condition (5.20) and (5.21) is completely
equivalent to the well-known Levich approach for unbounded fluids, given else-
where as [8, 17]:

cA ¼ 1; for r !1 or r ¼ b ð5:22Þ

Figure 5.1 shows the extent of the concentration boundary layer surrounding
the solid surface.

There are several approaches for describing the sorption mechanism (see Sect. 5.2.2).
By using the geometrical specification of the sphere-in-cell model, sorption in specific
spherical geometries can be written as follows:

½ð5:16Þ neutral surface� ) @cA

@r

�
r¼a

¼ 0; 0� h\p ð5:23Þ

½ð5:8Þ instantaneous adsorption� ) cA r ¼ a; hð Þ ¼ 0; 0� h� p ð5:24Þ

∂c
∂θ =0

∂c
∂r

=0

∂c
∂θ =0

c = 1

sorption 
mechanism

α

β

Fig. 5.1 Mass transport
taking place in a sphere-in-
cell. Bold arrows indicate
flow direction
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½ð5:9Þ Langmuir isotherm� ) D
@cA

@r

�
r¼a

¼ k

K
cs; 0� h� p ð5:25Þ

½ð5:13Þ adsorpionndash;reactionndash;desorption� ) D
@cA

@r

�
r¼a

¼ Rn; 0� h� p

ð5:26Þ

At high Pe numbers, the above described mass transport problem (considering
each possible adsorption case) is amenable to analytical treatment with sufficient
accuracy, as shown by various research groups [8, 17]. Mathematically, it is
notable here that the RHS of Eq. 5.2 is simplified enough to accept a variables’
separated function as an analytical solution. This is because the concentration
boundary layer is very thin compared to the local radius of curvature of the
particle, therefore the curvature term and the tangential diffusion terms can be
neglected. In particular, Eq. 5.2 becomes:

ur
@cA

@r
þ uh

r

@cA

@h
¼ D

@2cA

@r2
ð5:27Þ

which is parabolic on h and can be solved analytically in a manner quite similar to
that of Levich [17]. By using dimesionless quantities, the concentration profile in
the fluid phase is of the form:

cAðzÞ ¼ c2

Zz

0

e�
4
9t3

dtþ c3 ð5:28Þ

where:

z ¼
ffiffiffiffiffiffiffiffiffi
3 Pe

4a3

3

r
r

sin h
h� 0:5 sin 2h

ð5:29Þ

and c2 and c3 are coefficients that can impose the appropriate boundary conditions
for mass transport.

For the case of low and moderate Peclet numbers, all the terms of the transport
equation (5.17) survive, therefore it is necessary to apply numerical approaches to
obtain the solution. What is important for cases of low Peclet number is the
boundary condition on the outer boundary, as described by Eqs. 5.20 and 5.21, is
equivalent to that of Levich for high Peclet numbers, while it allows the boundary
layer to violate the concept of a very thin boundary layer imposed by the Levich
approach [17]. The difference between high and low Peclet mass transport in
sphere-in-cell geometry, is graphically summarized in Fig. 5.2.

Obviously, mass transport problems assuming neutral solid grains (no adsorption)
result in a uniform concentration profile without scientific or industrial interest. For
instantaneous adsorption and using Kuwabara’s approach for the velocity field, the
concentration profiles for a moderate Peclet value (Pe = 70) are presented in Fig. 5.3.
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For Langmuir-type adsorption with the same geometry and flow conditions, the
concentration profiles are shown in Fig. 5.4.

It should be stressed however, that the boundary condition (5.26) in combi-
nation with (5.14)–(5.15), imply non-linearity in the whole approach and, there-
fore, an iterative numerical technique is necessary to obtain the solution. Thus, the
integration of the transport equation must be numerical, although the flow field can
be obtained analytically through Happel or Kuwabara type boundary conditions.
Figure 5.5 visualizes the concentration profiles for the realistic sorption mecha-
nism with the same geometry and flow conditions as those for the other adsorption
types, presented above.

The above Figs. 5.3, 5.4 and 5.5 show a gradual decrease of the concentration
for constant r as the angular position approaches the outlet because of the shape
and extent of the concentration boundary layer. Therefore, the possibility for the
solute to be captured by the solid surface decreases with angular position because
of the convective regime. In general, higher concentration gradients at any radial
and angular positions are found in cases of instantaneous adsorption compared to
those for other sorption mechanisms, as the surface concentration, cA(a,h), is much
higher in the cases of Langmuir type or realistic adsorption mechanisms, taking its
highest value at the impact point and decreasing monotonically as h tends to p.

For all sorption mechanisms considered, the overall Sherwood number, Sho, is
calculated as follows [6]:

Sho ¼
1

4pa2

Z0

p

@cA

@r

� �
r¼a

cAðb; hÞ � cAða; hÞ
dh ð5:30Þ

low Peclet
Diffusive regime 

wide boundary layer

high Peclet
Convective regime 
thin boundary layer

Fig. 5.2 Schematic
visualization of boundary
layers for low and high Peclet
numbers
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Finally, the adsorption efficiency of a sphere-in-cell model can be written as:

k0 ¼

RR
Ssphere

½�NAr �r¼adSsphere

u1cA;14pb2 ð5:31Þ

where it can be easily shown for the specified spherical geometry that:

ko ¼
a2

4pb2

Zp

0

sin h
@

cA

cA;1

� �

@
r

a

� �
0
BB@

1
CCA

r¼a

dh ð5:32Þ

To initially investigate the macroscopic behavior of the sphere-in-cell model,
Fig. 5.6 presents the overall Sherwood number as a function of the Peclet number
for a relatively high porosity value (e = 0.9) in the case of instantaneous
adsorption. An almost monotonic increment of Sho is observed as the Peclet values
increase. This is due to the higher concentration gradients close to the adsorbing
surfaces in highly convective regimes. It has been also shown that such analytical
results are in very good agreement with experimental measurements and numerical
simulations [11]. This agreement can be attributed to the high porosity value used,
taking into account that the analytical approach has been shown to be highly
accurate in that range [5, 9, 26]. High porosity values favor the accuracy of
transport results because mass transport under high Peclet values develops very
thin boundary layers, a consideration which corresponds to an outer sphere of
radius significantly higher than the inner one, i.e. porosity takes quite high values.
To further clarify the situation, the dependence of the overall Sherwood number on
porosity for the case of instantaneous adsorption is shown in Fig. 5.7. Evidently,
increasing porosities do not favor mass exchange efficiency and the Sho drops.
High porosity values correspond to low available surface for mass transfer leading
to low adsorption rates for the porous material. Again experimental data and
numerical predictions are generally in agreement with the analytical results [11]
although an erratic behavior is observed. This behavior is due to the fact that high
porosities, where analytical models are in principle applicable, correspond to a
very low number of spheres for the numerical representation of the porous med-
ium. It should be noted that at porosities lower than 0.8, the available analytical
approaches become gradually less accurate and therefore less dependable.

To include the more detailed and realistic sorption mechanism of Eqs. 5.26,
5.14 and 5.15 into the whole approach, it is necessary to numerically solve the
boundary value problem described above either using the Kuwabara or Happel
expression for the velocity components. Frequently, a non-uniform finite-
difference scheme is employed where the value of k0 can be calculated once the
radial component of the concentration gradient upon the surface is known by using
a numerical integration method (the most suitable choice could be the modified
Newton–Cotes with an adjustable step). The effect of the sorption mechanism
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considered, is clearly depicted in Fig. 5.8, which presents the adsorption efficiency
as a function of Pe for various adsorption mechanisms.

In general, higher efficiency is found for instantaneous adsorption than for the
Langmuir type, as the concentration gradients are lower in the latter case. Indeed,
in Langmuir adsorption concentration on the solid surface attains non zero values
thus rendering the overall driving force cA b; hð Þ � cA a; hð Þ smaller. A general
decrement of the efficiency with Peclet is observed, a trend expected as the more
convective flows (increasing Peclet) tend to prevent solute from being captured by
the solid surface. The discrete points represent the experimental data of Wilson
and Geankoplis [29] for the rather high porosity of 0.7 (the highest porosity used in

3

4

5

6

50 100 150 200 250 300 350 400

S
h

0

Pe
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their experiments). As these authors measured the overall Sherwood number, it is
necessary to transform it into adsorption efficiency to allow direct comparison with
the predictions. Starting from the definition of adsorption efficiency in Eq. 5.31 the
numerator (r-component of the molar flux on the adsorbing surface) can be
expressed by the use of the mass transfer coefficient as k0 � DC � Ssphere: After some
algebraic manipulations, this leads to the following linear relation between the
overall Sherwood number and k0:

Sh ¼ k0
Pe

ð1� eÞ
a

L

cA:1
cAh i

ð5:33Þ

where cAh i is the spatially averaged concentration of solute, and L is the charac-
teristic length, used when defining the Peclet number (see Eq. 5.3) As the
experimental adsorption mechanism is not clearly known, the agreement between
predictions and experimental data is considered sufficient.

5.2.4 Mass Transport Through Cylinders

The 2-D sphere-in-cell models are completely equivalent to 2-D cylinder-in-cell
models. For this reason, the solutions of the previous Sect. 5.2.3 are valid for both
cases.

5.2.5 Mass Transport Through Spheroids

Spheroidal geometry was more difficultly approached until the 1990s than
spherical one because the flow field had to be estimated numerically, even for
creeping flow conditions. This is because the governing Eq. 3.9 in terms of stream
function is not separable in spheroidal coordinates whereas it is separable in
Cartesian, cylindrical and spherical ones. In 1994, Dassios et al. [14] overcome
this barrier by introducing the method of variable semi-separation, thus obtaining
analytical expressions for the velocity components when either Happel or
Kuwabara type boundary conditions were considered. (For a detailed description
of the spheroid-in-cell model, see Sect. 3.2.4.)

By considering this cell approach, the governing equation for steady state mass
transport in the fluid phase within the model can be written in prolate spheroidal
coordinates g; hð Þ as:

ug
@cA

@g
þ uh

@cA

@h
¼ D

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2 gþ sin2 h

p � @2cA

@g2
þ coth g

@cA

@g
þ @

2cA

@h2 þ cot h
@cA

@h

� �

ð5:34Þ
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where ug and uh are the g� and h�velocity components, depend on the model
considered (Happel or Kuwabara type boundary conditions).

The axial symmetry of the mass transfer problem is assured by the boundary
conditions (5.18) and (5.19), where the continuity of concentration for any Peclet
number is described by the boundary condition at the outer boundary of the cell [10]:

cA g ¼ gb; h ¼ p
� 	

¼ 1 ð5:35Þ

@cA

@g

�
g¼gb

¼ 0; 0� h\p ð5:36Þ

Again several approaches for describing the sorption mechanism can be
adopted (see Sect. 5.2.2), as follows:

½ð5:16Þ neutral surface� ) @cA

@g

�
g¼ga

¼ 0; 0� h\p ð5:37Þ

½ð5:8Þ instantaneous adsorption� ) cA g ¼ ga; hð Þ ¼ 0; 0� h� p ð5:38Þ

½ð5:9Þ Langmuir isotherm� ) D

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2 ga þ sin2 h

p @cA

@g

�
g¼ga

¼ k

K
cs; 0� h� p

ð5:39Þ

½ð5:13Þ adsorpionndash;reactionndash;desorption� ) D

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2 ga þ sin2 h

p @cA

@r

#

r¼a
¼ Rn; 0� h� p

ð5:40Þ

As shown above, the consideration of high Pe numbers corresponds to the
analytical solution to the mass transport problem [8, 10]. The assumption of a very
thin boundary layer leads to a transformed formation of Eq. 5.34 as follows:

ug
@cA

@r
þ uh

@cA

@h
¼ D

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2 ga þ sin2 h

p @2cA

@g2
ð5:41Þ

which can be solved analytically in a manner similar to that of Levich [17],
providing concentration profiles in the fluid phase of the form given by (5.28)
while the transformed variable z is given as:

z ¼ aK Pe

4K sinh2 ga


 �1
3

g
sin h

sin 2h
4
� h

2


 �1
3

ð5:42Þ

where K and K are given by Coutelieris et al. [8]. Whenever Peclet attains low or
moderate values, a numerical approach must be involved, as discussed previously.
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By employing the transformation for the oblate spheroidal coordinates, given
by (3.38) and (3.39), the concentration profile is again described by (5.28), where:

z ¼ �a �K Pe

4�K sinh2 �gaþ1
� 	

" #1
3

�g
sin h

sin 2h
4
� h

2


 �1
3

ð5:43Þ

and �K; �K are given by Coutelieris et al. [8].
Again the assumption of neutral solid grains clearly results in a uniform con-

centration profile that lacks scientific interest. For instantaneous adsorption and
using Kuwabara’s approach for the velocity field, the concentration profiles for a
high Peclet value (Pe = 10,000) are presented in Fig. 5.9.

The assumption of instantaneous adsorption for low Peclet values corresponds
to the concentration profiles in Fig. 5.10

For Langmuir type adsorption with the same geometry and flow conditions, the
concentration profiles are shown in Fig. 5.11.

Figure 5.12 depicts the concentration profiles for the realistic sorption mech-
anism with the same geometry and flow conditions as above.

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.05 0.10 0.15
c A

(η-ηα)/(ηβ-ηα)

θ=0

θ=π/2

θ=π

a3=2

Pe=10000

(a)

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.10 0.20 0.30

c A

(η-ηα)/(ηβ-ηα)

θ=0

θ=π/ 2

θ=π

a3=0.5
0.1

Pe=10000

(b)

Y=0.1

Y=

Fig. 5.9 Concentration
profiles in the vicinity of
adsorbing prolate (a) and
oblate (b) spheroids-in-cell at
three different angular
positions for instantaneous
adsorption and high Pe

100 5 Modeling of Transport Processes in Porous Materials

http://dx.doi.org/10.1007/978-3-642-27910-2_3
http://dx.doi.org/10.1007/978-3-642-27910-2_3


Clearly, the results are qualitatively similar to those for spheres with the same
transport and adsorption conditions.

For all the sorption mechanisms considered, and for the case of prolate sphe-
roidal coordinates, the overall Sherwood number, Sho, is calculated as follows [9]:

Sho ¼
1

1þ a3

a
sin�1 a

a3

� �
Z0

p

@cA

@g

� �
g¼ga

sin h dh ð5:44Þ

and, for oblate spheroidal coordinates [9]:

Sho ¼
1

1þ �a2
3

2�a
ln

1þ �a

1� �a

� �
Z0

p

@cA

@�g

� �
�g¼�ga

sin h dh ð5:45Þ
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Finally, the adsorption efficiency of prolate cells can be written as:

k0 ¼
2

Pe b2
1

Z0

p

@cA

@g

� �
g¼ga

sin h dh ð5:46Þ

and

�k0 ¼
2

Pe �b2
1

Z0

p

@cA

@�g

� �
�g¼�ga

sin h dh ð5:47Þ

The effect of the Peclet number on the Sherwood number for instantaneous
adsorption is presented in Fig. 5.13.

As shown above, the boundary condition on the outer boundary is crucial for
the estimation of macroscopic quantities such as the overall Sherwood number and
adsorption efficiency. The dashed lines in Fig. 5.13 correspond to a ‘‘Levich-
equivalent’’ approach, where a constant uniform concentration profile is consid-
ered on the surface of the outer spheroid. This condition is compatible with the
assumption of a thin boundary layer (i.e. high Peclet regime), unless it breaks
down when diffusion becomes significant and the boundary layer thickens. Indeed,
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for Pe� 20 the Levich type approach predicts the correct Sho value with sufficient
accuracy while, for lower Pe values, it yields Sho values weakly dependent on Pe,
and converges to a limiting value as Pe! 0: This limiting value is a function of
porosity and the axis ratio, given by [9]:

Sh�0 ¼ 2a 1þ a2
3

a
sin�1 a

a3

� ��1

ln
aþ b3

b1 aþ a3ð Þ

� ��1

ð5:50Þ

for prolate spheroids-in-cell, and by:

Sh�0 ¼ 2�a 1þ �a2
3

2�a
ln

1þ �a

1� �a

� ��1

tan�1
�b3

�a
� tan�1 �a3

�a

� ��1

ð5:51Þ

for oblate spheroids-in-cell. The above equations result from solving the Laplace
equation, which is valid for the pure diffusive regime, i.e. as Pe! 0 [5, 9].
However, conditions on the outer boundary (5.35) and (5.36) are obviously more
consistent, resulting in more realistic Sho. For the realistic adsorption mechanism,
typical analogous results are shown in Fig. 5.14.

In Fig. 5.14, a monotonic decrease of Sho, with increasing aspect ratio, is
observed for all cases because prolate spheroids present higher diffusional resis-
tance than oblate ones [6, 8]. Oblate spheroids present larger impact surface than
prolate ones, and thus their capacity for adsorption is higher. This advantage of
oblate shapes becomes very weak in the case of small Pe values because almost all
the parts of the adsorbing solid surface become active as diffusion becomes
dominant. For small Peclet values, unlike large ones, the overall Sherwood number
depends appreciably on the order of the heterogeneous reaction because the
concentration gradients become less significant. In this case, a decrease of Sho is
observed when the reaction is of second-order (rather than first-order) as a higher
reaction order causes lower concentration gradients and larger amounts of
adsorbed mass. The overall Sherwood number can be 15–50% higher, depending
on Pe, the shape, porosity, and order of the reaction, compared to the values
obtained assuming instantaneous adsorption for either high or low Peclet values
[8, 9]. This occurs because the concentration on the solid surface attains nonzero
values and, thus, the difference cA gb; h

� 	
� cA ga; hð Þ becomes almost nil for some

h-values. The decrease of this driving force is significantly larger than the decrease
of the concentration gradients observed when a realistic adsorption process is
assumed rather than an instantaneous one.

Figure 5.15 presents adsorption efficiency results for prolate and oblate
spheroids-in-cell, as functions of the Peclet number. The Levich approach on the
outer boundary overestimates the adsorption efficiency for low Peclet values,
leading to values larger than unity as Pe! 0 for both geometries. On the contrary,
the modification (5.35) and (5.36) predict ko values, which remain lower than unity
even in the very low Pe range. What is observed in general is that convention is a
favorable parameter allowing the escape of diluted material from the adsorbing
solid surface.
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The dependence of the overall adsorption efficiency on the Peclet number for
both prolate (a) and oblate (b) geometry is given in Fig. 5.16, where the hetero-
geneous reaction is assumed to be either of first (n = 1) or second (n = 2) order.
A significant decrease of the adsorption efficiency occurs as Pe increases. Values
of overall adsorption efficiency obtained using the instantaneous adsorption model
are 10–35% higher than those obtained here, because of the higher concentration
gradients that instantaneous adsorption generates.
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5.2.6 Single Phase Mass Transport in Other-Type Unit Cells

Further to the models described above, several unit cells have also been proposed in
recent decades. These assemblies are all characterized by: (a) complex geometry
which enforces numerical solutions of flow and transport problems, (b) the iteration
of their structure to occupy the volume of interest (periodic boundary conditions),
and (c) a high degree offreedom in the geometrical shapes considered to represent the
real porous material. Increased computational power nowadays allows for the con-
sideration of huge complex structures, therefore current research trends digress from
the unit cell formulation, as analytical solutions no longer essential.

5.3 Single Phase Flow in Granular Structures

As described in Sect. 3.3, transport processes in granular media are of high
scientific and technological interest, and mathematical modeling plays an impor-
tant role in the in-depth study and understanding of these processes. In the majority
of models on transport in granular media, the particles of the assemblage are
assumed to adsorb mass instantaneously, which is obviously a fairly rare physi-
cochemical phenomenon that pertains to a very limited range of applications. Only
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recently have several detailed models of the sorption mechanism been presented
for porous media processes [10, 13].

The aim of this Section is to present an adequate simulation for the adsorption
heterogeneous reaction–desorption mechanism, which accurately describes the
sorption upon a solid surface of a solute diluted in a flowing fluid [2, 20]. More
specifically, it can be considered that the solute diluted in the bulk phase is initially
adsorbed by the solid surface where a heterogeneous reaction takes place and its
products, assumed to be inactive and of very low concentrations, are again des-
orbed in the bulk phase. The adsorption is assumed to occur due to vacant sites that
are normally distributed over the surface area, while the whole process is deter-
mined by an overall rate according to the flow regime and thermodynamics [25].

As described in Sect. 3.3, the procedure of random deposition under specific
restrictions must be followed in order to represent the stochastically constructed
three-dimensional assemblages of spheres which are considered a typical dem-
onstration of a granular medium (see Fig. 3.7). The flow-field within such an
assemblage is typically obtained by the numerical solution of the Stokes equations
coupled with the continuity equation, as described in Sect. 3.3.

Assuming no reactions occur in the bulk phase, the time-dependent mass
transport of a passive solute (namely, component A) in the stochastically con-
structed medium is described by the convection–diffusion equation:

@cA

@t
þr � ucAð Þ ¼ Dr2cA ð5:52Þ

To investigate the importance of the adsorption mechanism in such complex
structures, all the previously discussed different adsorption mechanisms are adopted
here. Neutral solid surfaces again lack scientific and engineering interest. The other
sorption mechanisms considered are instantaneous adsorption (5.8), adsorption
under the Langmuir isotherm (5.9)–(5.11), and the realistic sorption mechanism
(5.13)–(5.15). Typical conditions are also considered at the other boundaries.

The validity of the solution scheme for the mass transport problem can be
checked in the limiting case of a periodic array of spheres with radius R, which is
fed at x ¼ 0 by a concentration pulse. The concentration profile with time at the

outlet x ¼ L ¼ 51
8

R

� �
is then expressed as [23]:

cðtÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
4pD�t
p exp

�ðL� uh itÞ2

4D�t

" #
ð5:53Þ

where uh i is the average fluid velocity, and D� the dispersion coefficient. There-

fore, the dimensionless time (defined by using
L2

D�
as characteristic time) at which

the maximum outlet concentration is recorded can be calculated as:

tmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Pe2
p

� 1
� 	

Pe2
ð5:54Þ
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where Pe ¼ uh iL
D

is the Peclet number.

The dispersion coefficient can be determined based on the approach of Salles
et al. [24] and in these simulations is found to be D� ¼ 1:34D; thus giving tmax ¼
0:047 for Pe ¼ 20, when the numerically calculated value is 0.048 (see Fig. 5.17).

Note that the dimensionless time step dt must be small enough (\10-5) to attain
acceptable accuracy in the calculations.

The spatial distribution of the concentration, obtained numerically for Pe = 20
and e = 0.7243 along the flow direction, is presented in Fig. 5.18 where a ran-
domly selected two-dimensional cut of the stochastically constructed medium is
visualized for both instantaneous and Langmuir-type adsorption. The concentra-
tion is higher on the left side of the images (inlet) and gradually decreases across
the medium in a manner significantly steeper for the instantaneous than the
Langmuir-type adsorption. The adsorption efficiency for several porosities
(e = 0.9883, e = 0.8136 and e = 0.7243) and Peclet numbers was calculated by
the full-numerical scheme in the sphere assembly for both instantaneous and
Langmuir-type adsorption and presented in Fig. 5.19. The effects of porosity and
Peclet on the adsorption efficiency are the same as those above (higher efficiencies
correspond to lower porosity, and increasing Peclet numbers lead to lower k0

values). Instantaneous adsorption leads to higher adsorption efficiency values than
those calculated under other adsorption mechanisms with the same Peclet number
and porosity.

The effect of the k/K ratio used in the boundary condition for Langmuir-type
adsorption, on the computed adsorption efficiency is presented in Fig. 5.20 for
Pe = 20 and e = 0.8136. As this ratio increases, a significant increase of k0 is
observed because higher k/K corresponds to lower ratios of the covered surface,
Heq. This, in turn, corresponds to lower surface concentrations and higher con-
centration gradients, i.e. to higher k0. On the other hand, an increased k/K ratio can
be viewed as a higher adsorption rate for a given K value and therefore, less mass
of substance A can escape from the solid surfaces resulting in higher k0 values.

Fig. 5.17 Outlet
concentration profile for
Pe = 20 in a periodic array of
spheres
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It is interesting to consider the relative agreement between the results produced
by considering the sphere-in-cell approximation and those obtained from the
numerical solution of the three-dimensional sphere assemblages. Figure 5.21a
compares the respective adsorption efficiencies and instantaneous adsorption for
porosity approaching unity (e = 0.9883). The agreement is perfect as the semi-
analytical sphere-in-cell model can adequately predict reality for such high
porosity values. When lower porosities are considered, the fundamental assump-
tions of the sphere-in-cell approximation are less satisfactory. Indeed, in the low
Pe regime characterized by the gradual dominance of the diffusive over the con-
vective terms, the semi-analytical approach of the sphere-in-cell model cannot
adequately describe the mass transport process, as the diffusion layer is very thick

(a)

(b)

Fig. 5.18 Spatial
distribution of the
concentration of substance A
within a two-dimensional cut
of the three-dimensional
sphere assemblage for
a instantaneous and
b Langmuir-type adsorption.
(The flow inlet is on the left
side. Darker areas
correspond to higher
concentrations.)
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(larger than the cell itself) and tends to infinity as Pe! 0: On the other hand, as
Pe increases, flow becomes more convective and the analytical flow-field of the
sphere-in-cell is no longer a sufficient approximation of the actual flow-field in real
granular media, thus leading to model discrepancies. However, for e = 0.8136 and
e = 0.7243 the agreement between the two approaches ranges from very good to
satisfactory depending on the Pe range considered. This result is expected since
both the sphere-in-cell and sphere assemblage geometries used in the present study
were constructed to be characterized by the same porosity and internal (adsorbing)
surface area. This was accomplished by selecting the correct radius and sphere
population number in the assemblage. Of course, it is possible to construct several
sphere assemblages of the same porosity but with varying sphere radius and
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population number and therefore with different internal surfaces. Figure 5.22
shows how these different arrangements of spheres affect the calculated adsorption
efficiency for instantaneous and Langmuir adsorption. The horizontal axes repre-
sent the internal surface ratio which changes when different media are considered.
The case of adsorption surface ratio equal to unity corresponds to the results
discussed so far. Evidently under instantaneous adsorption conditions k0 is not
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influenced significantly by changes in the medium. This is again due to the high
concentration gradients prevailing that mask the effect of internal surface varia-
tion. However, in the more realistic Langmuir-type of adsorption a very pro-
nounced influence on k0 is observed implying that caution should be exercised
when using the sphere-in-cell model to determine adsorption efficiency in granular
media. This strongly indicates that matching porosity alone is not sufficient for a
reliable result.

5.4 Macroscopic Quantities for Single Phase Transport

There are many industrial and technological applications of mass transport within
porous media in a variety of scientific fields, such as environment, energy, biology,
etc. [15, 18, 27]. Mathematical modeling of transport processes in porous med,ia is a
powerful tool, especially whenever experimental observations are difficult, time
consuming and expensive. Due to the coupling between the physicochemical
mechanisms and the local geometry of the porous medium mathematical descrip-
tions of mass transport in realistic porous media are highly complex. Modeling
becomes more difficult when moving from the pore level to the field level, because
different length scales result in complicated descriptions of the problem’s physics
and therefore increased computational power is usually required.
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From the late 1950s, special effort has been given to mathematically describe
and solve flow and mass transport problems in porous media. Initially quite
simplified geometries were considered, where analytical solutions can be obtained
for the flow field and the mass diffusion and/or adsorption process (see previous
chapters on cell models). Numerical solutions in realistic reconstructions of porous
media for the Stokes equations and related transport problems have been obtained
for several specific applications during the last decades [1, 3, 16, 19, 26]. In the
majority of these works, the particles were assumed to adsorb mass instanta-
neously however, this is a rare physicochemical phenomenon that pertains to a
very limited range of applications. Recently, further detailed models of the sorp-
tion mechanism have been presented for porous media processes.

This Section aims to simulate an adsorption—heterogeneous reaction—
desorption mechanism for a complex granular porous geometry that can accurately
describe the sorption upon a solid surface of a solute diluted in the flowing fluid
[2, 20]. Details about this sorption mechanism can be found in Sect. 5.2.

The major issue of typical macroscopic modeling for such, or simpler, cases can
be identified at the a priori definition of the macroscopic quantities necessary to solve
these equations, although they are normally derived from the solution of these
equations. So far, mainly empirical or semi-empirical correlations for these
parameters have been proposed based on experimental measurements of specific
systems [5, 22]. The generalized treatment of such a problem corresponds to theo-
retical estimations of these quantities where the volume averaging concept is a
frequently employed tool for large-scale modeling of processes taking place in
porous media, thus eliminating the influence of porous geometry on the transport
results [28, 30, 31]. Starting with transport equations at the micro-scale (pore) level,
the spatial averaging theorem is applied with the correct assumptions, leading to the
estimation of macroscopic quantities such as mass transfer coefficient and dispersion
tensor [21]. To further simplify the modeling and eliminate the simulation effort, the
majority of the above-mentioned models have been applied to simplistic domains,
such as unit cells, since the focus was on the interfacial mass exchange rather than the
representation of the medium in a realistic manner.

5.4.1 Stochastically Constructed 3-D Sphere Assemblage

Representation of the biphasic domains under consideration is achieved by the
random deposition of spheres of a given radius in a box of specified length. (For
specific details on the efficient algorithm (ballistic deposition) used for the
domain’s stochastic construction, see Sect. 3.3).

5.4.2 The Flow Field (Single Phase Flow)

The velocity field is computed numerically by solving the Stokes equations as
described previously (see Sect. 3.3).
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5.4.3 Mathematical Formulation

The area of interest is a porous domain consisting of a flowing aqueous phase
(L-phase) and a solid phase (S-phase). A tracer is advected by the flowing liquid phase,
being sorpted in the liquid–solid interface. The governing processes are diffusion and
advection in the liquid phase, and the liquid–solid interface is characterized by the
realistic adsorption/reaction/desorption mechanism of the tracer (see below).

Assuming that the bulk phase is chemically neutral, the pore-level transport of
the tracer in the b-phase is described by the convection–diffusion equation:

@CL

@t
þr � vCLð Þ ¼ DLr2CL ð5:55Þ

where CL is concentration, t is time, v is the fluid velocity, and DL is the diffusivity
in the liquid phase.

To ensure the continuity of the mass fluxes on the solid–liquid interfaces, the
following boundary condition (similar to Eq. 5.13) is applied:

nLS � rCL ¼ Rn; at the solid�liquid interface ALS ð5:56Þ

where the overall sorption rate Rn is dependent on the type of sorption process
considered. In accordance to Sect. 5.2, the rate Rn is given as:

Rn ¼ ksC
n
LS ð5:57Þ

where the concentration of the tracer upon the solid surface, CLS; is described by
the relation:

ksC
n
LS þ kd þ kaCLN½ �CLS � kaCLnm ¼ 0 ð5:58Þ

5.4.4 The Volume-Averaging Procedure

Following the volume-averaging procedure [22], local concentrations and veloc-
ities are next decomposed into interstitial averages and fluctuations

CL ¼ CLh iLþC0L ð5:59Þ

v ¼ vh iLþv0 ð5:60Þ

which are subsequently substituted in the governing differential equations.
Invoking separation of scales to discard small terms, linearizing and following
Quintard and Whitaker [22], assuming an isotropic medium of uniform porosity
and constant volume fractions, the following representation is obtained:

C0L ¼ b � r CLh iL�sL CLh iL ð5:61Þ
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where b and sL are closure variables satisfying specific boundary value problems.
It can be readily shown that variable s of the b-phase satisfies the boundary

value problem:

v � rsL ¼ Dr2sL � e�1a ð5:62Þ

with

nLS � rsL ¼ 0; at the solid�liquid interface ALS ð5:63Þ

and

sLh i ¼ 0 ð5:64Þ

The mass-transfer coefficient, a, on Eq. 5.62, is given by:

a ¼ D

V

Z

ALS

nLS � rsLdA ð5:65Þ

The above can be simplified by introducing the transformation sL ¼ 1þ awLr
and in dimensionless form:

sL ¼ 1þ a�fL ð5:66Þ

where the dimensionless mass-transfer coefficient is defined as:

a� ¼ al2L
D

ð5:67Þ

and lL denotes the characteristic length of the liquid phase. In dimensionless
notation, the boundary value problems then read as follows:

Pe u � rfL ¼ r2fL � e�1
L in the liquid phase ð5:68Þ

nLS � rfL ¼ rn at the solid�liquid interface ALS ð5:69Þ

where Pe ¼ uh iLlL
D is the Peclet number defined in the liquid phase, u is the

dimensionless velocity vector, fL is the scalar variable used for the decomposition,
and rn is the dimensionless sorption rate.

Following the above, the dimensionless mass transfer coefficient simply
becomes:

a� ¼ � e
fLh i

ð5:70Þ

Brackets denote averages over the total volume V or the volume of the aqueous
phase, VL, where the superficial volume average is defined as:

yLh i ¼
1
V

Z

VL

yLdV ð5:71Þ
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and the interstitial volume average as:

yLh iL¼
1

VL

Z

VL

yLdV ð5:72Þ

5.4.5 Simulations

To adequately simulate the above-described problem, an algorithmic procedure
has been developed as follows:

• Solve the flow problem at the pore level and calculate interstitial and superficial
velocity fields

• Formulate the mass transport problem at the pore level
• Decompose the local velocity and concentration in terms of an interstitial

average and a fluctuation
• Describe the concentration fluctuations in terms of linear combinations of

interstitial averaged concentration and its gradient
• Solve the closure problem
• Integrate the resulting quantities to calculate macroscopic coefficients.

The numerical scheme used for all the simulations is described in Sect. 3.3 and
a typical grid representation is depicted in Fig. 5.23 (for the same two-dimensional
cut as the previous Fig. 5.18).

Fig. 5.23 A selected two-
dimensional cut of the
simulated geometry
discretized by an unstructured
grid
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5.4.6 Results and Discussion

The results were initially validated against the randomness of the structure, as
previously discussed. More precisely, the mass transfer coefficient a� was calcu-
lated for several different depositions of spheres while the porosity value was kept
constant (=0.43). It was found that the random deposition does not significantly
affect mass transfer to the solid phase, as shown in Table 5.1, where each ‘‘case’’
corresponds to a different deposition of a variable number of spheres of different
radii, and porosity is kept constant in all cases. (Five different cases were chosen
for the same porosity to verify whether the results were independent of the medium
construction). Solution dependence on the grid was also examined in terms of the
mass transfer coefficient. It was found that the discretization used is more than
sufficient for adequate calculations. It should be noted that the parametric analysis
of the grid influence is limited to only reaction order, as this parameter introduces
non-linearity, thus the solution it is depended on this reaction order.

The relative agreement between the results produced by considering the approx-
imation presented in Sect. 5.3 and those obtained using the above technique is pre-
sented in Fig. 5.24. By assuming a typical value of nm (1 active site per Å2), the values
of the sorption constants were (before the non-dimensionalization of the problems)
ka = 1 9 10-30 m3sec-1, kd = 8 9 10-3 sec-1 and ks = 8 9 10-3 9 100(1-n)

(kg m-2)1-nsec-1. These values can be considered as typical [2] and are used in the

Table 5.1 Independence on
random deposition
e ¼ 0:43ð Þ:

Different random assemblages Pe n a*

Case 1 1 1 20.93
Case 2 1 1 20.83
Case 3 1 1 21.01
Case 4 1 1 20.77
Case 5 1 1 20.96

Case 1 100 1 46.55
Case 2 100 1 45.87
Case 3 100 1 46.11
Case 4 100 1 47.02
Case 5 100 1 46.39

Case 1 1 2 19.36
Case 2 1 2 19.91
Case 3 1 2 19.07
Case 4 1 2 18.66
Case 5 1 2 19.12

Case 1 100 2 45.88
Case 2 100 2 45.01
Case 3 100 2 46.99
Case 4 100 2 45.85
Case 5 100 2 46.02
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simulations presented here unless otherwise stated. Figure 5.24 compares the
respective mass transfer coefficient for the standard porosity e = 0.43 while the
realistic adsorption/reaction/desorption mechanism includes the heterogeneous
reaction of first (n = 1) and second (n = 2) order. Regarding the pore-level simu-
lations, a discrepancy from the results of the current model is always observed, thus
indicating the underestimation of macroscopic mass transport quantities when cal-
culated using pore-level approaches in small-scale domains [7].

In terms of physical interpretation, Fig. 5.24 depicts the effect of convection on
mass transport. It can be seen that the stronger the convection, the more efficient
the tracer transport from the fluid to the solid phase, at least for low and inter-
mediate porosity values, which correspond to relatively high amounts of active
solid absorbers in the medium and absorb the tracer. Finally, the order of the
reaction does not seem to significantly affect the results, or the agreement between
the two approaches. Only the first order reaction is considered hereafter.

The influence of the medium’s volume porosity on mass transport is presented
in Fig. 5.25. It is clear that porosity is an unfavorable parameter for adsorption,
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Fig. 5.24 Comparison
between the results of the
current model and those
found in the literature

Fig. 5.25 The influence of
porosity on mass transport
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since void space increases as porosity increases (although the active solid surface
area does not necessarily decrease), thus corresponding to high possibility for the
tracer to escape from the porous material through the void space. For high porosity
values, as Peclet values increase, the transport process becomes more and more
convective, thus mass transport becomes less effective, i.e. high amounts of the
tracer can escape from the medium. On the other hand, low porosity values cor-
respond to large amounts of solid phase in the medium, thus convection favors
mass transport since the tracer is forced to approach the absorbing surfaces. These
two competitive phenomena are shown by the cross of the curves in Fig. 5.25,
which correspond to a porosity value where both mechanisms are of equal
strength. This value obviously depends on the specific flow and transport
characteristics.

Figures 5.26 and 5.27 depict the relative influence of the sorption mechanism,
i.e. the reaction, adsorption and desorption rates, on mass transport. More pre-
cisely, Fig. 5.26 presents the mass transfer coefficient as a function of the ratio of
tracer destruction rate due to the reaction, divided by the tracer destruction rate due
to adsorption. In any case, the values of the rate constants not involved in these
ratios were kept standard. It is observed that the decrement of the reaction rate
(for constant adsorption rate) corresponds to a consequent decrement of mass
transport because the tracer has been adsorbed but not destroyed at the same rate
and, therefore remains on the surface filling the vacant sites, i.e. setting barriers in
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Fig. 5.26 Dependence of mass transport on the ratio of the reaction to the adsorption rates
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the tracer sorption process. The increased reaction rate forces adsorption to tend
asymptotically to a constant value which depends on the geometrical character-
istics of the medium. Figure 5.27 shows the influence of the ratio desorption/
adsorption rate on mass transport for a heterogeneous reaction of the first order. It
is observed that increasing the desorption rate beyond a critical value corresponds
to a decrease in mass transport. It is important to note that the value attained by the
mass transfer coefficient before the critical desorption rate is the same as the
asymptotic value of Figure 5.26, thus further underlying its independence on
the reaction characteristics.
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