
Chapter 4
Transport Phenomena in Porous
Structures

4.1 Introduction

The problem of solute dispersion during underground water movement has
attracted interest from the early days of the last century [127], but it was only since
the 1950s that the general topic of hydrodynamic dispersion, or miscible dis-
placement, became the subject of more systematic study. This topic has interested
hydrologists, geophysicists, petroleum and chemical engineers, among others, and
for some time now it is treated at length in books on flow through porous media
(e.g. [9, 116]). Some books on chemical reaction engineering (ex: [24, 55, 141])
treat the topic of dispersion (axial and lateral) in detail and it is generally observed
that data for liquids and gases do not overlap, even in the ‘‘appropriate’’ dimen-
sionless representation.

Since the early experiments of Slichter [127] and particularly since the analysis
of dispersion during solute transport in capillary tubes, developed by Taylor [133]
and Aris [5, 6], much work has been done on the description of the principles of
solute transport in porous media of inert particles (ex: soils) and in packed bed
reactors (see [9, 44]).

Gray [59], Bear [9] and Whitaker [143] derived the proper form of the transport
equation for the average concentration of solute in a porous medium, by using the
method of volume or spatial averaging, developed by Slattery [126].

Brenner [20] developed a general theory for determining the transport prop-
erties in spatially periodic porous media in the presence of convection, and showed
that dispersion models are valid asymptotically in time for the case of dispersion in
spatially periodic porous media, while Carbonell and Whitaker [26] demonstrated
that this should be the case for any porous medium. These authors presented a
volume–average approach for calculating the dispersion coefficient and carried out
specific calculations for a two-dimensional spatially periodic porous medium.
Eidsath et al. [48] have computed axial and lateral dispersion coefficients in
packed beds based on these spatially periodic models, and have compared the
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results to available experimental data. The axial dispersion coefficient calculated
by Eidsath et al. [48] shows a Peclet number dependence that is too strong, while
their radial dispersion. However, in soils or underground reservoirs, large scale
non-uniformities lead to values of dispersion coefficients that differ much from
those measured in packed beds, and for these cases spatially periodic models
cannot be expected to provide excellent results without modifications.

There have been other attempts at correlating and predicting dispersion coef-
ficients based on a probabilistic approach [38, 60, 70, 114] where the network of
pores in the porous medium is regarded as an array of cylindrical capillaries with
parameters governed by probability distribution functions.

Dispersion in porous media has been studied by a significant number of
investigators; using various experimental techniques. However, measurements of
axial and lateral dispersion are normally carried out separately, and it is generally
recognised that ‘experiments on lateral dispersion are much more difficult to
perform than those on axial dispersion’ [116].

When a fluid is flowing through a bed of inert particles, one observes the
dispersion of the fluid in consequence of the combined effects of molecular dif-
fusion and convection in the spaces between particles. Generally, the dispersion
coefficient in axial direction is superior to the dispersion coefficient in radial
direction by a factor of 5, for values of Reynolds number larger than 10. For low
values of the Reynolds number (say, Re\1Þ; the two dispersion coefficients are
approximately the same and e qual to molecular diffusion coefficient.

The detailed structure of a porous medium is greatly irregular and just some
statistical properties are known. An exact solution to characterize flowing fluid
through one of these structures is basically impossible. However, by the method of
volume or spatial averaging it is possible to obtain the transport equation for the
average concentration of solute in a porous medium [9, 143].

At a ‘‘macroscopic’’ level, the quantitative treatment of dispersion is currently
based on Fick’s law, with the appropriate dispersion coefficients; cross stream
dispersion is related to the radial dispersion coefficient, DT; whereas stream-wise
dispersion is related to the axial dispersion coefficient, DL:

If a small control volume is considered, a mass balance on the solute, without
chemical reaction, leads to
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where C is the mean solute concentration, u ð¼ U=e; where U is the superficial
velocity and e the porosity of the porous media of inert particles with diameter d)
the mean interstitial velocity of fluid and t the time.

A large number of theories, namely the theories based on a probabilistic
approach, have been proposed to explain dispersion in porous media; however, the
theory of Saffman [114], who modelled the microstructure of a porous media as a
network of capillary tubes of random orientation, and Koch and Brady [83] were
the most referred.
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4.2 Diffusion

Diffusion in porous media is a general subject that involves many fields of
research, such as chemistry (e.g. porous catalytic pallets), biology (e.g. porous
cellular organelles), and materials science (e.g. porous polymer matrixes for
controlled-release and gas-storage materials).

Diffusivity or diffusion coefficient is a proportionality constant between the
molar flux due to molecular diffusion and the gradient in the concentration of the
species (or the driving force for diffusion). Diffusivity is encountered in Fick’s law
and numerous other equations of physical chemistry.

The effective diffusion coefficient, De, describes diffusion through the pore space
of porous media. It is macroscopic in nature, because it is not individual pores but the
entire pore space that needs to be considered. Under steady state conditions the mass
flux, F, depends on the concentration gradient and is expressed by Fick’s first law:

F ¼ �De
dC

dx
ð4:2Þ

The effective diffusion coefficient for transport through the pores is estimated as
follows:

De ¼
Dmed

s
ð4:3Þ

where s and d are dimensionless factors accounting for tortuosity ([ 1) and
constrictivity (B1) of the pores, respectively, and e is the effective porosity which
accounts for the reduced cross-sectional area available for diffusion when diffusion
occurs only in the pore space. The constrictivity describes the slowing down of
diffusion by increasing the viscosity in narrow pores as a result of greater prox-
imity to the average pore wall. It is a function of pore diameter and the size of the
diffusing particles.

4.2.1 Constrictivity Factor

The constrictivity factor d depends on the ratio of the solute diameter to the pore
diameter (kp):

kp ¼
molecule diameter

pore diameter
ð4:4Þ

may be quantified by empirical equations, as developed by Beck and Schultz [11]
and Chantong and Massoth [28], respectively:

d ¼ 1� kp

� �4 ð4:5Þ
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d ¼ 1:03 exp �4:05kp

� �
ð4:6Þ

4.2.2 Tortuosity Factor

The tortuosity factor, s, in Eq. 4.3 accounts for the pore geometry and is defined as
the square of the ratio of the effective path length, le, in the pore to the shortest
distance, l, in a porous medium:

s ¼ le

l

� �2

ð4:7Þ

Tortuosity is not a physical constant and depends first of all on other porous
media characteristics, like porosity, pore diameter, channel shape, etc. In general,
in granular packings or beds the value of tortuosity lies in the region 1.1–1.7 (see
[9] and Dullien [43]), and our experimental results obtained with packed beds of
narrow size particles are in this range.

Several empirical correlations, suggesting a relationship between tortuosity and
porosity, have been found in the literature since the end of the nineteen century:

s ¼ 1:5� 0:5e Ref: ½113� ð4:8Þ

s ¼ e�n Ref: ½4� ð4:9Þ

s ¼ 1� 0:5� lnðeÞ Ref: ½168� ð4:10Þ

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� lnðe2Þ

p
Ref: ½22� ð4:11Þ

s ¼ 1� 0:41� lnðeÞ Ref: ½42� ð4:12Þ

s ¼ 1=
ffiffi
e
p

Refs: ½27�; ½113� ð4:13Þ

Recently, Yun et al. [148] presented a theoretical geometry model for tortuosity
of tortuous streamtubes in a porous media with spherical particles. The authors
suggested an average value of tortuosity given by

s ¼ s1 þ s2

2
ð4:14Þ
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with
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where P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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3
p
ð1� eÞ

� �q
� 2 and P1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=ð1� eÞ

p
� 2.

Equations 4.8–4.14 all satisfy the condition s ¼ 1 for e ¼ 1; and this is con-
sistent with the physical situation observed. Yun et al. [148] and Sen et al. [120]
showed that for an isotropic medium with spherical particles the tortuosity of
porous and granular media decreases with increasing bed voidage and increase for
non-spherical particles.

4.2.3 Porosity Factor

The overall porosity, e, of porous media can be determined (pore size distribution
and tortuosities are unknown). Therefore the relative diffusivity D� ¼ De=Dmð Þ is
often defined as an empirical function of e alone (d = 1):

De ¼ Dmem ð4:17Þ

where m is an empirical exponent.
Archie [4] found that the exponent m varied between 1.8 and 2.0 in consolidated

materials. In unconsolidated sand he found a value of 1.3. For an isotropic packing of
spherical particles a theoretical value of m = 3/2 was derived [21]. Adler et al. [1]
reported a value of m = 1.64 for Fontainebleau sandstone. Probst and Wohlfahrt
[107] found that m equals 1.43 for loose packings of catalyst particles and Millington
and Quirk [96] reported a value of 4/3 for diffusive flow of gases at normal pressures
or diffusion of ions in solution in soils. In experiments on the diffusion of gases
through compacted sands a value of m = 1.5 was determined [122].

4.2.4 Diffusion in Semi-Infinite Porous Media

In the limit of very low fluid velocity, where u! 0; dispersion is determined
solely by molecular diffusion, with DT ¼ DL ¼ Dm=s ¼ De: Diffusion may be the
dominant mass transfer mechanism (compared to advection) in zones of low
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hydraulic conductivity. The geometry of these layers may be considered as plane
sheets and analytical solutions of Fick’s second law are available for a variety of
initial and boundary conditions [36].

Thick confining layers and bedrock formations of low permeability may rep-
resent a sink for contaminants which are spread out in an aquifer or a landfill. On
the other hand, once such low-permeability domains are contaminated, they may
become a long-term source during remediation of the aquifer (e.g. pump-and-
treat). These formations can be considered as semi-infinite media for diffusion. If
the low conductivity zone is free of the contaminant initially and then exposed to a
constant concentration at the surface for a given period of time, the initial and
boundary conditions are:

t ¼ 0 x [ 0 C ¼ C1 ð4:18aÞ

t [ 0 x ¼ 0 C ¼ C0 ð4:18bÞ

t [ 0 x!1 C ¼ C1 ð4:18cÞ

The concentration profile at a given time is:

C � C1

C0 � C1
¼ 1� erf

x

2
ffiffiffiffiffiffiffi
Det
p

� �
ð4:19Þ

The quantity 2
ffiffiffiffiffiffiffi
Det
p

¼ dp can be considered as ‘‘penetration depth’’ which rep-
resents the time dependent distance within which 87% of the mass of the diffusing
substance occurs. Accordingly, the ‘‘penetration time’’ then represents the time after
which 87% of the diffusing molecules have not yet moved beyond a given distance.

The special case of zero surface concentration is obvious. The rate of loss
diffusing substance from the semi-infinite medium when the surface concentration
is zero, is

De

@C

@x

� �
x¼0

¼ DeC0ffiffiffiffiffiffiffi
Det
p ð4:20Þ

and the total amount Mt of diffusing substance which has left the medium at time
t is given by integrating Eq. 4.19 and is

Mt ¼ 2C0

ffiffiffiffiffiffiffi
Det

p

r
ð4:21Þ

4.2.5 Diffusion in a Plane Sheet

In this case we consider one-dimensional diffusion through a plane sheet of
thickness 2d, initially at a uniform concentration C0 and with the surface at con-
stant concentration C1.
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The boundary conditions are:

t ¼ 0 � d\x\d C ¼ C1 ð4:22aÞ

t [ 0 x ¼ 0 C ¼ C0 ð4:22bÞ

t [ 0 x!1 C ¼ C1 ð4:22cÞ

The mass of solute per unit area which has diffused after a certain time is:
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ð4:23Þ

and the total amount Mt of diffusing substance which has entered the plane sheet at
time t is given by

Mt

M1 ¼ 1�
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ð4:24Þ

where M? is the corresponding quantity after infinite time. The corresponding
solutions for small times are:
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4.2.6 Diffusion in a Cylinder

If we consider a circular cylinder in which the diffusion is radial, concentration is
then a function of radius and time, and the diffusion equation is obtained:

@C

@t
¼ 1

r

@

@r
rDe

@C

@r

� �
ð4:27Þ

Considering the following boundary conditions:

t ¼ 0 0\r\a C ¼ C1 ð4:28aÞ

t [ 0 r ¼ a C ¼ C0 ð4:28bÞ
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t [ 0 r !1 C ¼ C1 ð4:28cÞ

the solution obtained is:

C � C1

C0 � C1
¼ 1� 2
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2
ntÞJ0ðranÞ ð4:29Þ

where an is the positive roots of J0ðaanÞ ¼ 0; J0ðxÞ is the Bessel function of the
first kind of order zero, and J1ðxÞ is the Bessel function of the first order.

The total amount Mt of diffusing substance which has entered or left the cyl-
inder at time t is given by
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where M? is the corresponding quantity after infinite time. The corresponding
solutions for small times are:
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4.2.7 Diffusion in a Sphere

If we consider a sphere in which the diffusion is radial, concentration is then a
function of radius and time, and the diffusion equation is obtained:
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Considering the following boundary conditions:

t ¼ 0 0\r\a C ¼ C1 ð4:34aÞ

t [ 0 r ¼ a C ¼ C0 ð4:34bÞ

t [ 0 r !1 C ¼ C1 ð4:34cÞ

the solution obtained is:
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And the concentration at the centre of the sphere, r ! 0; is given by
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The total amount Mt of diffusing substance which has entered or left the sphere
at time t is given by
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where M? is the corresponding quantity after infinite time. The corresponding
solutions for small times are:
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4.3 Axial Dispersion

Over the past 5 decades, axial dispersion in porous media has been measured and
correlated extensively for gaseous and liquid systems. Many publications are
available for a variety of applications, including: packed bed reactors [29, 47, 65,
89, 135] and soil column systems [9, 99, 102, 103].

One of the first results published about axial dispersion in packed beds of
inertial particles was in the 1950s by Danckwerts [37], who published his cele-
brated paper on residence time distribution in continuous contacting vessels,
including chemical reactors, and thus provided methods for measuring axial dis-
persion rates. The author studied dispersion along the direction of flow for a step
input in solute concentration (CS) in a bed of Raschig rings (with length L), crossed
by water (C0) with a value of Re ¼ qUd=lð Þ approximately equal to 25 and
obtained a PeL ¼ ud=DLð Þ value of 0.52.

Kramers and Alberda [85] followed Danckwerts’s study with a theoretical and
experimental investigation by the response to a sinusoidal input signal. These
authors proposed that packed beds could be represented as consecutive regions of
well-mixing rather than a sequence of stirred tanks (mixing-cell model) and
suggested a PeL ffi 1; for Re!1: McHenry and Wilhelm [94] assumed the axial

4.2 Diffusion 47



distance between the mixing-cells in a packing to be equal to particle diameter and
showed that PeL must be about two for high Reynolds number. The difference in
the two results may be explained on the basis of experimental results of Kramers
and Alberda [85] while are obtained with L=D � 4:6; a value significantly less
than L=D [ 20 [66]. Klinkenberg et al. [81] and Bruinzeel et al. [22] show that
radial dispersion can be neglected for a small ratio of column diameter to length
and large fluid velocity.

Brenner [19] presented the solution of a mathematical model of dispersion for a
bed with finite length, L, and the most relevant conclusion of his work was that for
Peað¼ uL=DLÞ� 10; the equations obtained by Danckwerts [37] for an input step
in solute concentration and Levenspiel and Smith [89] for a pulse in solute
concentration, that assumed an infinite bed, are corrected.

Hiby [75] proposed a better empirical correlation to cover the range of Rey-
nolds numbers to 100. The author reported experimental results with the aid of
photographs to compare the two dispersion mechanisms presented above: diffu-
sional model in turbulent flow and the mixing-cell model.

Sinclair and Potter [124] used a frequency response technique applied to the
flow of air through beds of glass ballotini in a Reynolds number range between 0.1
and 20. A further investigation in the intermediate Reynolds number region has
been carried out by Evans and Kenney [50] who used a pulse response technique in
beds of glass spheres and Raschig rings.

Experiments reported by Gunn and Pryce [68] showed that axial dispersion
coefficients given by the theoretical equation for the diffusional model and the
theoretical equation for the mixing-cell model are very similar. The authors also
showed that neither the mixing-cell model nor the axially dispersed plug flow
model could describe axial dispersion phenomena.

The description of solute transport in packed beds by dispersion models has
been studied since the 1950s and has long attracted the attention of engineers and
scientists.

Typically, the boundary conditions adopted, by the vast majority of the
investigators reported above, have corresponded to the semi-infinite bed, i.e., L is
sufficiently large L=D [ 20ð Þ: Dispersion of the given tracer was measured at two
points in the outlet and the distortion of a tracer forced by a pulse input (ex: [13,
25, 128]), frequency response (ex: [39, 45, 85, 94, 130]) and step input (ex: [37,
75, 95, 100]). Figure 4.1 illustrates some experimental data points for axial dis-
persion in liquid and gaseous systems. The experimental dispersion data are most
frequently presented in logarithmic plots of PeL (or DL=DmÞ vs. Pem ¼ ud=Dmð Þ;
spanning six or more orders of magnitude.

4.3.1 Parameters Influencing Axial Dispersion: Porous Medium

Perkins and Johnston [102] in their article review showed some of the variables
that influence axial and radial dispersion. However, before attempting in the
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parameters influencing dispersion, it is important to consider the effect of the
packing of the bed on dispersion coefficients. Gunn and Pryce [68] and Roemer
et al. [111] showed that when particles in packed beds are not well packed the
dispersion coefficient is increased. Experimental results of Gunn and Pryce [68]
showed that different re-packing of the bed gave deviations of 15% in radial Peclet
values. These experiments confirm that fluid mechanical characteristics are not
only defined by the values of the porosity and tortuosity (easy to reproduce), but
depend of the quality of packing in the bed.

The effect of radial variations of porosity and velocity on axial and radial
transport of mass in packed beds was analytically quantified by Choudhary
et al. [30], Lerou and Froment [88], Vortmeyer and Winter [138] and Delmas
and Froment [41].

A rigorous measurement of the porosity in a packed bed is fundamental to
minimize the errors in the experimental measurements, because the porosity
between the inert particles of the bed helps the diffusion of a tracer and gradually
increases dispersion.

A more coherent interpretation of the experimental data may be obtained
through the use of dimensional analysis. As a starting point it is reasonable to
accept the functional dependence

DL ¼ / L;D; u; d; q; l;Dmð Þ ð4:40Þ

for randomly packed beds of mono sized particles with diameter d, where q and l
are the density and viscosity of the liquid, respectively, and Dm is the coefficient of

Pem

PeL

Edwards and Richardson (1968), Sc=0.72
Gunn and Pryce (1969), Sc=0.88
Hiby (1962), Sc=545
Chung and Wen (1968), Sc=675
Harleman and Rumer (1963), Sc=710
Miller and King (1966), Sc=730
Jacques and Vermeulen (1957), Sc=820
Cairns and Prausnitz (1960), Sc=770
Ebach and White (1958), Sc=1858
Carberry and Bretton (1958), Sc=1858
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Fig. 4.1 Some experimental data points for axial dispersion in liquid systems and gaseous
systems
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molecular diffusion of the solute. Making use of Buckingham’s p theorem,
Eq. 4.40 may be rearranged to give

DL

Dm

or PeL ¼ U
L

D
;
D

d
;

ud

Dm

;
l

qDm

� �
ð4:41Þ

and it is useful to define Pem ¼ ud=Dm and Sc ¼ l=qDm: This result suggests that
experimental data be plotted as DL=Dmð Þ vs. Pem:

4.3.1.1 Effect of Column Length

One first aspect to be considered, as a check on the experimental method (infinite
medium), is the influence of the length of the bed (L) on the measured value of
axial dispersion. In reality, if an experimental method is valid, values of the
dispersion coefficient measured with different column lengths, under otherwise
similar conditions, should be equal, within the reproducibility limits.

The dependence of the axial dispersion coefficient on the position in packed
beds was first examined by Taylor [133]. The author showed that, in laminar flow,
dispersion approximation would be valid if the following equation is satisfied,

h ¼ Dmt

R2
	 0:14 ð4:42Þ

where R is the tube radius. Carbonell and Whitaker [26] concluded that the axial
dispersion coefficient becomes constant if the following expression is satisfied

h ¼ 1� e
e

� �2Dmt

d2
	 1 ð4:43Þ

Han et al. [69], see Fig. 4.2, showed that values of the axial dispersion coef-
ficient, for uniform size packed beds, measured at different positions in the bed are
function of bed location unless the approximate criterion

L

d

1
Pem

1� e
e

� �2

� 0:3 or h ¼ Dmt

d2
� 0:15 ð4:44Þ

is satisfied. The authors showed that for Pem\700; axial dispersion coefficients
were nearly identical for all values of x ¼ L; and for Pem [ 700 observed an
increase in the value of dispersion coefficients with increasing distance down the
column.

4.3.1.2 Ratio of Column Diameter to Particle Diameter

It is well known (e.g. [137]) that the voidage of a packed bed (and therefore the
fluid velocity) is higher near a containing flat wall. The effects of radial variations
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of porosity and velocity on axial and radial transport of mass in packed beds were
analytically quantified by several investigators like Choudhary et al. [30], Lerou
and Froment [88], Vortmeyer and Winter [138] and Delmas and Froment [41].

Schwartz and Smith [118] were the first to present experimental data showing
zones of high porosity extending two or three particle diameters from the
containing flat wall. The results indicated that unless D=d [ 30 important velocity
variations exist across the packed bed. Other studies showed that packed bed
velocity profiles significantly differ from flows with large diameter particles in
small diameter tubes ([23, 34]).

Hiby [75] showed that the effect of D=d is not significant in the measured of
axial dispersion coefficient when the ratio is greater than 12.

Stephenson and Stewart [129] showed that the area of high fluid velocities
limits to the area of high porosities, and this area does not extend more than a
particle diameter of the wall and the assumption of a flat velocity profile is rea-
sonable. This work confirms the earlier experiments reported by Roblee et al.
[110], Schuster and Vortmeyer [117] and Vortmeyer and Schuster [137].

A similar effect was observed in measuring pressure drops across packings, so an
empirical rule can be considered that the variations, in radial position, of the fluid
velocity, porosity and dispersion coefficient can be negligible, if D=d [ 15 [3, 66].

4.3.1.3 Ratio of Column Length to Particle Diameter

Strang and Geankoplis [130] and Liles and Geankoplis [90] make much of the
effect of L=d but the evidence from fluid mechanical studies [67] was that the
effect is confined to a dozen layers of particles and is not very important.
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L=1.476 m (L/d=420), Han et al. (1987)
L=1.121 m (L/d=320), Han et al. (1987)
L=0.74 m (L/d=210), Han et al. (1987)
L=0.257 m (L/d=73.4), Han et al. (1987)
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Experimental results of Guedes de Carvalho and Delgado [61], presented in
Fig. 4.3, with two different spherical particles diameter and the same length of the
packed bed showed that axial dispersion coefficient does not increased with par-
ticle diameter, as long as the condition D=d [ 15 is satisfied (see Vortmeyer and
Schuster [137] and Ahn et al. [2], for wall effects).

4.3.1.4 Particle Size Distribution

Another aspect of dispersion in packed beds that needs to receive attention is the
effect of porous medium structure. In a packed bed of different particle sizes, the
small particles accumulate in the interstices between large particles, and porosity
tends to decrease.

Raimondi et al. [108] and Niemann [98] studied the effect of particle size
distribution on axial dispersion and concluded that DL increases with a wide
particle size distribution. Eidsath et al. [48] indicated a strong effect of particle size
distribution on dispersion. As the ratio of particle diameters went from a value of 2
to 5, the axial dispersion increased by a factor of 1.5, and radial dispersion
decreased by about the same factor.

Han et al. [69] showed that for a size distribution with a ratio of maximum to
minimum particle diameter equal to 7.3, axial dispersion coefficient are 2–3 times
larger than the uniform size particles (see Fig. 4.3).

Wronski and Molga [146] studied the effect of particle size non-uniformities on
axial dispersion coefficients during laminar liquid flow through packed beds (with
a ratio of maximum to minimum particle diameter equal to 2.13) and proposed a
generalized function to determine the increase of the axial dispersion coefficients
in non-uniform beds relative to those obtained in uniform beds.

Guedes de Carvalho and Delgado [61] obtained the same conclusion in their
experiments, with ballotini and a ratio of maximum to minimum particle diameter
equal to 3.5 in comparison with glass ballotini that have the same size.

4.3.1.5 Particle Shape

The effect of particle shape on axial dispersion has been studied by several
investigators, such as Bernard and Wilhelm [14], Ebach and White [45], Car-
berry and Bretton [25], Strang and Geankopolis [130], Hiby [75], Klotz [82] and
more recently Guedes de Carvalho and Delgado [61]. The authors have used
beds of spheres, cubes, Raschig rings, sand, saddles and other granular material,
and have concluded that generally axial dispersion coefficient tend to be greater
with packs of nonspherical particles than with packs of spherical particles, with
the same size.

Figure 4.4 shows that particle shape is a significant parameter, with higher
values of DL (i.e., lower PeLÞ being observed in packed beds of sand and
Raschig rings comparatively with the results obtained with spherical beds.
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Therefore, increased particle sphericity correlates with decreased dispersion, with
a sphericity defined as the surface area of a particle divided by the surface area
of a sphere of volume equal to the particle.

4.3.2 Parameters Influencing Axial Dispersion: Fluid Properties

4.3.2.1 Viscosity and Density of the Fluid

Some investigators, like Hennico et al. [74], used glycerol and obtained significant
effect of viscosity, at large Reynolds number, on axial dispersion coefficient. In
vertical miscible displacements, if a less viscous fluid displaced another fluid
viscous fingers will be formed [102]. However, if a more viscous fluid displaced a
different fluid the dispersion mechanisms are unaffected, but the situation will tend
to reduce convective dispersion. This leads to increased dispersion relative to the
more viscous fluid displacing a less viscous one.

The importance of density gradients was recently investigated by Benneker
et al. [12] and their experiments showed that axial dispersion coefficient is con-
siderably affected by fluids with different densities due the action of gravity forces.
Fluid density creates similar effects to fluid viscosity. In a displacement with a
denser fluid above the less-dense fluid, gravity forces cause redistribution of the
fluids. However, if a denser fluid is on the bottom, usually, a stable displacement
occurs.

Pem
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d=3.0 mm (uniform)
d=0.462 mm (uniform)
d= 3.5 mm (uniform), Han et al. (1987)
d=3.5 mm (dmax/dmin=2.2), Han et al. (1987)
d=3.5 mm (dmax/dmin=7.3), Han et al. (1987)
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4.3.2.2 Fluid Velocity

The first two groups of Eq. 4.8 have importance only when D=d is less than 15 and
L=D is so small that the characteristics of dispersion are affected by changing velocity
distributions. So, for packed beds we will usually have DL=Dm ¼ UðPem; ScÞ:

In order to understand the influence of fluid velocity on the dispersion coefficient,
it is important to consider the limiting case where u! 0: If DL was defined based on
the area open to diffusion (see Eq. 2), in the limit u! 0; solute dispersion is
determined by molecular diffusion, with DL ¼ D0m ¼ Dm=s (s being the tortuosity

factor for diffusion and it is equal to
ffiffiffi
2
p

as suggested by Sherwood et al. [121]).
As the velocity of the fluid is increased, the contribution of convective

dispersion becomes dominant over that of molecular diffusion (see [144]) and
DL ¼ ud=PeLð1Þ; where u is the interstitial fluid velocity and PeLð1Þ ffi 2 for
gas or liquid flow through beds of (approximately) isometric particles, with
diameter d [23, 79].

Assuming that the diffusive and convective components of dispersion are
additive, the same authors suggest that DL ¼ D

0
m þ ud=PeLð1Þ; which may be

written in dimensionless form [66] as

DL

Dm

¼ 1
s
þ 1

2
ud

Dm

or
1

PeL

¼ 1
s

e
ReSc

þ 1
2

ð4:45Þ

This equation is expected to give the correct asymptotic behaviour in gas and
liquid flow through packed beds, at high and low values of Pem ¼ud=Dmð Þ: For
gases this is confirmed in Fig. 4.5, but for liquids (Fig. 4.6) the data do not cover
the extreme conditions.
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Glass spheres, Ebach and White (1958)
Raschig rings, Ebach and White (1958)
Glass spheres, Strang and Geankoplis (1958)
Raschig rings, Strang and Geankoplis (1958)
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But these figures show that Eq. 4.45 is inaccurate over part of the intermediate
range of Pem: In the case of gas flow, shown Fig. 4.5, significant deviations are
observed only in the range 0:6\Pem\60; as pointed out by several of the authors
[47, 66, 75, 136]. The experimental values of PeL ¼ ud=DLð Þ are generally higher
than predicted by Eq. 4.12. Several equations have been proposed to represent the
data in this intermediate range and the equations of Hiby [75], Edwards and
Richardson [47], Evans and Kenney [50], Scott et al. [119], Langer et al. [80] and
Johnson and Kapner [80] are shown to fit the data points reasonably well (see
Fig. 4.5).

With liquids, deviations from Eq. 4.45 occur over the much wider range
2\Pem\106; the experimental values of PeL being significantly lower than
predicted by that equation. The difference in behaviour between gases and liquids
has to be ascribed to the dependence of PeL on Sc ð¼l=qDmÞ:

4.3.2.3 Fluid Temperature (or Schmidt Number)

The coefficient of axial dispersion for gas flow Sc ffi 1ð Þ is predicted with good
accuracy by Eq. 4.45, except in the approximate range 0:5\Pem\100; where
experimental values may be more than twice those given by the equation, as
confirmed by Fig. 4.5.

For liquid flow, a large number of data are available, that were obtained with
different solutes in water at near ambient temperature, corresponding to values of
Sc in the range 500\Sc\2000: Most of the data reported in the literature, for this
range of Sc, are shown in Fig. 4.6, and they form a ‘‘thick cloud’’ running parallel
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Jonhson and Kapner (Sc=0.22)
Carberry and Bretton (Sc=0.22)
Jonhson and Kapner (Sc=1.12)
Edwards and Richardson (Sc=1.12)
Gunn and Pryce (Sc=1.12)
Sinclair and Potter (Sc=1.2)
Blackwell et al. (Sc=1.90)
data compiled by Perkins and Johnson (1963)
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to the line defined by Eq. 4.45, though somewhat below it (at approximately,
0:3\PeL\2Þ:

In recent years, data on axial dispersion have been made available for values of
Sc between the two extremes of near ideal gas Sc ffi 1ð Þ and cold water
Sc [ 550ð Þ: Such data were obtained either supercritical carbon dioxide
1:5\Sc\20ð Þ or heated water 55\Sc\550ð Þ and are presented in Fig. 4.7.

Figure 4.7 show a consistent increase in PeL with a decrease in Sc and it may be
seen that the dependence is slight for the higher values of Sc (say for Sc of order
750 and above). At the lower end of the range of Pem investigated there seems to
be a tendency for PeL to become independent of Sc, even if the values of DL are
still significantly above Dm. In the intermediate range, 100\Pem\5000; values of
PeL are very nearly constant, for each value of Sc. The convergence of the different
series of points at about Pem ffi 20 seems to suggest that PeL is insensitive to Sc
below this value of Pem; for the range of Sc presented.

A good additional test of the consistency of the data of Guedes de Carvalho and
Delgado [61] is supplied by the plot in Fig. 4.8, where it may be seen that all the
series of points converge at high Re, as would be expected for turbulent flow. The
agreement with the data of Jacques and Vermeulen [79] and Miller and King [95],
for cold water, is worth stressing.

Recently, some workers have measured axial dispersion for the flow of
supercritical carbon dioxide through fixed beds and this provides important new
data in the range 1:5\Sc\20: However, the various authors fail to recognize the
direct dependence of PeL on Sc. Catchpole et al. [27] represent their data and those
of Tan and Liou [132] in a single plot (their Fig. 4.3) of PeL vs. Re: The majority
of points are in the range of 1\Re\30 and the data of both groups, together,
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 Rifai et al. (Sc=560)  Chung and Wen (Sc=675)
 Pfannkuch (Sc=680)  Bruinzeel et al (Sc=700)

 Miller and King (Sc=730)  Cairns and Prausnitz (Sc=770)
 Jacques and Vermeulen (Sc=820)  Liles and Geankopolis (Sc=883)

 Strang and Geankopolis (Sc=1080)  Ebach and White (Sc=1858)
 Carberry and Bretton (Sc=1858)  data compiled by Perkins and Jonhston
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define a horizontal cloud with mid line at about PeL ffi 0:8; spreading over the
approximate range 0:3\PeL\1:1:

The data of Yu et al. [147] are for 0:01\Re\2 and 2\Sc\9: It is worth
referring here that the modelling work of Coelho et al. [32] gives theoretical
support to experimental findings for low Re, both for spherical and non-spherical
particles. No influence of Sc on PeL is detected, but unfortunately the results are
not very consistent, particularly in the range 1\Pem\20; where the scatter is high
and the values of PeL are much too low.
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Figure 4.9 shows that for low values of Pem (Stokes flow regime) there seems to
be a tendency for PeL to become independent of Sc. The values of PeL reported by
Miller and King [95], for 6\Pem\100; are much too low; this may be because the
particles used in most experiments are too small (particle sizes of 55 and 99 lm)
and this is known to yield enhanced dispersion coefficients, possibly due to particle
agglomeration (see [64, 75]). The data reported by Miyauchi and Kikuchi [97] and
plotted in Fig. 4.9, for 6\Pem\300; are higher than our experimental data.

There are considerable experimental difficulties in the measurement of axial
dispersion in the liquid phase at small Reynolds number, because the usual method
of obtaining low Reynolds number is to reduce particle size and this is known to
yield enhanced dispersion coefficients.

4.4 Radial Dispersion

Generally, radial dispersion coefficients are measured in non-reactive conditions,
because the rate of mass transfer, observed experimentally, is directly related to
the coefficient of radial dispersion in the bed.

The most popular technique for the measurement of radial dispersion consists in
feeding a continuous stream of tracer from a ‘‘point’’ source somewhere in the bed
(usually along the axis, if there is one) and measuring the radial variation of tracer
concentration at one or more downstream locations.

The first study of mass transfer by radial dispersion in gaseous systems was
carried out by Towle and Sherwood [134]. The results presented were very
important for packed bed dispersion because they showed that dispersion was not
influenced by the tracer molecular weight.
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Bernard and Wilhelm [14] reported the first measurements, in liquid systems, of
experimental values of radial dispersion coefficients in packed beds of inerts by a
Fickian model. The authors took into account the wall effect condition and their
experiments suggested that for high values of Reynolds number the value of PeT is
constant and between 11 and 13.

Baron [7] proposed a new model of radial dispersion in which a particle
of tracer executes a simple random-walk displacement of ±� particle diameter to
give a transversal Peclet number between 5 and 13, when Re!1: The basis for
this prediction is the random-walk theory, in which a statistical approach is
employed. This method does not take into account effects of radial variations in
velocity and void space. Latinen [87] extended the random-walk concept to three
dimensions and predicted a value of 11.3, for PeTð1Þ:

Klinkenberg et al. [81] solved Eq. 4.1 for anisotropic dispersion, but considered
that dispersion occurs in an infinite medium. In the same work were considered the
particulate cases of isotropic dispersion and axial dispersion neglected.

Plautz and Johnstone [105] used the equation derived by Wilson [145], for heat
transfer, and suggested a PeT between 11 and 13, for Re!1: Fahien and Smith
[51] assumed that for Reynolds numbers in the range between 40 and 100, the
Peclet number is independent of fluid velocity and equal to 8. The authors were the
first to consider that the tracer pipe can be of significant diameter compared to the
diameter of the bed.

Dorweiler and Fahien [42] used the equation derived by Fahien and Smith [51]
to study mass transfer in laminar and transient flows. The results showed that for
Re \200; the Peclet number based on the radial dispersion coefficient is a linear
function of the fluid velocity and for Re [ 200; at room temperature, the Peclet
number is constant as also shown by Bernard and Wilhelm [14], Plautz and
Johnstone [105] and Fahien and Smith [51]. The authors have demonstrated a
difference in the Peclet number with radial position. The transversal Peclet number
is constant from the axis to 0.8 times the radius and then rises near the wall.

Hiby and Schummer [76], and later Roemer et al. [111], presented the solution
of the mass balance equation (Eq. 4.1), considering the tracer pipe to be of sig-
nificant diameter compared to the diameter of the packed bed.

Saffman [114] considered the packed bed as a network of capillary tubes ran-
domly orientated with respect to the main flow. At high Peclet number and at very
long time, Saffman found that the dispersion never becomes truly mechanical, with
zero velocity of the fluid at the capillary walls, the time required for a tracer
particle to leave a capillary would become infinite as its distance from the walls
goes to zero. The author proposed that DT ¼ ð3=16Þud when Re!1; but this
prevision of radial dispersion coefficient is higher than observed experimentally.

Hiby [75] and Blackwell [16] presented an experimental technique in which they
divided the sampling region into two annular regions and calculated the transversal
dispersion coefficient from the averaged concentrations of each of the two samples.

The experimental data points of Wilhelm [144] suggested that PeTð1Þ ¼ 12;
for beds of closely sized particles, and this value is accepted for the majority of the
investigators (ex: [15, 33, 66, 75, 144]).
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Roemer et al. [111] studied radial mass transfer in packed beds at low flow
rates, Re \100: The authors considered the tracer pipe to be of significant
diameter compared to the diameter of the bed (‘‘finite source’’ model) and axial
and radial dispersion are equal. In this work the authors compared the values of
PeT obtained with two methods (‘‘instantaneous finite source’’ and ‘‘point source’’)
and concluded that the values of PeT obtained with the ‘‘point source’’ method
were 10% less that the values obtained with the ‘‘instantaneous finite source’’
method. The authors estimated that the neglecting the axial dispersion in calcu-
lations of DT; for low values of Reynolds numbers, can cause errors of 10%.

Coelho and Guedes de Carvalho [33] developed a new experimental technique,
based on the measurement of the rate of dissolution of planar or cylindrical sur-
faces, buried in the bed of inert particles and aligned with the flow direction. This
alternative technique is simple to use, allows the determination of the coefficient of
radial dispersion in packed beds over a wide range of flow rates, and it is easily
adaptable to work over a range of temperatures above ambient, as shown by
Guedes de Carvalho and Delgado [63] and Delgado and Guedes de Carvalho [40].

In recent years, nuclear magnetic resonance has been used to determine both
diffusion and dispersion coefficients (e.g. [8, 57]), with significant advantages, but
this technique were limited to low fluid velocities.

It is important to remember that, at high Reynolds numbers, the main mecha-
nism of radial dispersion is the fluid deflection caused by deviations in the flow
path caused by the particles in the bed (axial dispersion is caused by differences in
fluid velocity in the flow), i.e., dispersion is caused by hydrodynamic mechanisms
(macroscopic scale) and not by molecular diffusion (Brownian motion).

The result is a poor mixture at the ‘‘microscopic scale’’. In fact, there are
detected different values of solute concentration over a distance of the order of a
particle diameter or less, what explains the convenience of use of an efficient
averaging procedure [66]. This is probably one of the reasons that explain the
difference observed in some experimental results of dispersion (see Fig. 4.10).
Gunn and Pryce [68] showed that the standard deviation without repacking in the
measurement of PeT was 5%, while when the bed was repacked each time of
measurement, the standard deviation found was 15%.

4.4.1 Parameters Influencing Radial Dispersion: Porous Medium

4.4.1.1 Length of the Packed Column

Han et al. [69] showed that values of the radial dispersion coefficient, for uniform
size packed beds, measured at different positions in the bed are not a function of
bed location, i.e., they observed no time dependent behaviour for radial dispersion,
because radial dispersion is caused by mechanical mechanism alone.

An important aspect to be considered, as a check on the experimental method of
Coelho and Guedes de Carvalho [33], is the influence of the length of the test
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cylinder on the measured value of DT: In reality, the two variables are indepen-
dent, provided that the criterion given by Eq. 4.46 is satisfied (see Fig. 4.11 )

L

d
� 0:62

ud

Dm

� �
ð4:46Þ

4.4.1.2 Ratio of Column Diameter to Particle Diameter

Several investigators, like Fahien and Smith [51], Latinen [87] and Singer and
Wilhelm [125], have studied the wall effect on radial dispersion coefficient. The
experiments suggested that in a packing structure characterized by significant
variations of void fraction in radial direction, up to distance of about two particle
diameters from the wall, a non-uniform radial velocity profile is induced, with a
maximum just near the wall. As result, wall effects occur due large voidage
fluctuations near the wall. The above investigators also showed that the increase in
radial dispersion in the laminar region would be the same order of magnitude as in
the turbulent region.

4.4.1.3 Particle Size Distribution

Eidsath et al. [48] studied the effect of particle size distribution on dispersion. As
the ratio of particle diameter went from a value of 2 to 5, the radial dispersion
decreased by a factor of 3, but perhaps the results were a cause of the simple
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 Hartman et al. (1958), Sc=750
 Bernard and Wilhelm (1950), Sc=754
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 Grane and Gardner (1961), Sc=1476
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Fig. 4.10 Some experimental data points for radial dispersion in liquid systems and gaseous
systems
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geometry employed in these computations (packed bed of cylinders). Steady-state
measurements of radial dispersion reported by Han et al. [69], with the same void
fraction and mean particle diameter, but different particle size range (ratio of
maximum to minimum particle diameter equal to 2.2 and 7.3), showed that there
was no evidence to indicate a change in radial dispersion with particle size dis-
tribution (see Fig. 4.12a).

The effect of a distribution of particle sizes within the bed, on the radial dis-
persion coefficient, may be assessed from Guedes de Carvalho and Delgado [63].
In particular, lot D was prepared by carefully blending lots B and E in a proportion
of 1:1 (by weight). In Fig. 4.12b, dispersion data obtained with the mixed lot are
seen to fall in between the data for the original separate lots, as might be expected.
Figure 4.12a shows that in a plot of DT=Dm vs. Pem; the data for the three lots fall
along the same line, when d (in PemÞ is taken to represent the average particle size
in the bed.

4.4.1.4 Particle Shape

The effect of particle shape on the radial dispersion coefficient has been given
attention by several investigators both for gaseous and liquid systems. England and
Gunn [49] measured the dispersion of argon in beds of solid cylinders and beds of
hollow cylinders and have concluded that DT tend to be greater with packs of
hollow cylinders than with packs of solid cylinders, and these results were greater
than obtained with packs of spherical particles (see Fig. 4.13).

The same conclusion, in liquid systems, was been obtained by Hiby [75], who
used packed beds of glass spheres and Rachig rings, and Bernard and Wilhem [14],
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Fig. 4.11 Effect of length of soluble cylinder on the measurement of radial dispersion

62 4 Transport Phenomena in Porous Structures



who used packed beds of cubes, cylinders and glass spheres. Figure 4.13 shows
that the radial dispersion coefficient tends to be greater in packed beds of non-
spherical particles.

However, Blackwell [16], List [91], Guedes de Carvalho and Delgado [63] and
others reported experiments with packed beds of sand and showed that DT

obtained with glass ballotini are very close to those for sand (not pebble or gravel)
and the conclusion seems to be that particle shape has only a small influence on
lateral dispersion, for random packings of ‘‘isometric’’ particles.

4.4.2 Parameters Influencing Radial Dispersion:
Fluid Properties

4.4.2.1 Viscosity and Density of the Fluid

The effect of fluid densities and viscous forces on radial dispersion has been
studied by Grane and Garner [58] and Pozzi and Blackwell [106]. They concluded
that when a fluid is displaced from a packed bed by a less viscous fluid, the viscous
forces create an unstable pressure distribution and the less viscous fluid will
penetrate the medium in the form of fingers, unless the density has an opposing
effect.
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d=0.496 mm (uniform, lot E - narrow caut)
d=0.297 mm (uniform, lot B - narrow cut)
d=0.409 mm (lot D - mixed)
d= 3.5 mm (uniform), Han et al. (1987)
d=3.5 mm (dmax/dmin=2.2), Han et al. (1987)
d=3.5 mm (dmax/dmin=7.3), Han et al. (1987)
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Fig. 4.12 Effect of particle
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dispersion. a DT=Dm vs. Pem;
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4.4.2.2 Fluid Velocity

For very low fluid velocities, u, dispersion is the direct result of molecular
diffusion, with DT ¼ D0m: As the velocity of the fluid is increased, the contri-
bution of convective dispersion becomes dominant over that of molecular dif-
fusion and DT becomes less sensitive to temperature. According to several authors
(see [15, 33, 66, 75, 144]) DT ! ud=PeTð1Þ; for high enough values of u, where
d is particle size and PeTð1Þ ffi 12 for beds of closely sized particles. Assuming
that the diffusive and convective components of dispersion are additive, the same
authors suggest that DT ¼ D0m þ ud=K; which may be written in dimensionless
form as

DT

Dm

¼ 1
s
þ 1

12
ud

Dm

or
1

PeT

¼ 1
s

e
ReSc

þ 1
12

ð4:47Þ

This equation has been shown (see [33]) to give a fairly accurate description of
radial dispersion in gas flow through packed beds, but it is not appropriate for the
description of dispersion in liquids, over an intermediate range of values of
ud=Dm; as pointed out by several of the authors mentioned above.

Figure 4.14a–b shows that the value of the radial dispersion coefficient is seen
to increase with fluid velocity and comparison between the two plots shows that
DT also increases with particle size.

Data on dispersion in randomly packed beds of closely sized, near spherical
particles, lend themselves to simple correlation by means of dimensional analysis.
Making use of Buckingham’s theorem it may therefore be concluded that

Pem

PeT

Sand, G.Carvalho and Delgado (2001) Sand, List (1965)
Spheres, Bernard and Wilhelm (1950) Spheres, Hiby (1962)
Spheres, Coelho and G.Carvalho (1988) Spheres, Grane and Gardner (1961)
Cubes, Bernard and Wilhelm (1950) Cylinders, Bernard and Wilhelm (1950)
Pebble, Grane and Gardner (1961) Cylinders, England and Gunn (1970)
Hollow cylind, England and Gunn (1970) Raschig Rings, Hiby (1962)
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Fig. 4.13 Effect of particle shape on radial dispersion
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DT

Dm

¼ U
ud

Dm
;

l
qDm

� �
or PeL ¼ U Re, Scð Þ ð4:48Þ

and it is useful to make Pem ¼ ud=Dm and Sc ¼ l=qDm:

4.4.2.3 Fluid Temperature (or Schmidt Number)

The dependence of DT on liquid properties and velocity is best given in plots of
PeT vs. Pem; for different values of Sc. Not surprisingly, Fig. 4.15 shows that the
variation of PeT with Pem gets closer to that for gas flow as the value of Sc is
decreased. For the lowest Sc tested (Sc = 54; T = 373 K), PeT does not differ by
more than 30% from the value given by Eq. 4.47, with PeTð1Þ ¼ 12; over the
entire range of Pem: However, for the higher values of Sc, the experimental values
of PeT may be up to four times the values given by Eq. 4.47.

Delgado and Guedes de Carvalho [40] had studied the dependence of DT=Dm

on Sc, up to Pem ffi 1350; and they reported a smooth increase in DT=Dm with Pem;
for all values of Sc. But the data in Fig. 4.15 show that there is a sudden change in
the trend of variation of PeT with Pem; somewhere above Pem ffi 1; 350; a maxi-
mum being reached in the approximate range 1; 400\Pem\1; 800 (depending on
Sc). The fact that the change in trend corresponds to a much enhanced increase in
DT (i.e. a decrease in PeTÞ; in response to a small increase in u (i.e. in PemÞ;
strongly suggests a connection with the transition from laminar to turbulent flow in
the interstices of the packing. The plot of PeT vs. Re, shown in Fig. 4.16, seems to
support this view, since the maxima in PeT are reached for 0:3\Re\10
(depending on Sc) and this is the approximate range of values of Re for the
transition from laminar to turbulent flow. The range 1\Re\10 is often indicated
for that transition (see for example [9]), but Scheidegger [116] as giving Re ¼ 0:1
for the lower limit of that transition.

The plot in Fig. 4.16 also suggests that ‘‘purely mechanical’’ fluid dispersion
will be observed above about Re ¼ 100; this value is estimated as the convergence
of the data points for liquids with the line representing Eq. 4.47. Figure 4.17 shows
the data reported by most other authors (all for Sc C 540) in a plot of PeT vs. Pem:
With the exception of the data of Hoopes and Harleman [78] and some of the points
of Grane and Gardner [58] and Bernard and Wilhelm [14], general agreement is
observed with Guedes de Carvalho and Delgado [62] data for high Sc.

4.5 Dispersion in Packed Beds Flowing by Non-Newtonian
Fluids

Hilal et al. [77], Edwards and Helail [46], Payne and Paker [101] and Wen and Yin
[142] reported results of axial dispersion coefficients for the flow of two polymer
solutions through a packed bed and their results were similar to the corresponding
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Newtonian results (see Table 4.1). Wen and Fan [140] correlate the previous
results for packed beds with the following expression:

Pe ¼ Ud

DL

� �
¼ 0:2þ 0:011Re0:48

n with Ren ¼
qdnU2�n

m
ð4:49Þ

where m is the power law consistency coefficient. Note that Eq. 4.49 for n = 1
(Newtonian fluids) reduces to the correlation obtained by Chung and Wen [31], for
Newtonian fluid through packed beds.

The only study on the influence of Non-Newtonian fluid in radial dispersion
coefficients is reported by Hassell and Bondi [73]. who showed that the quality of
mixing deteriorate with increasing viscosity.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 2 4 6 8 10 12 14 16
u  (mm/s)

D
T
 (

m
2 /s

).
10

11

 T=373 K  T=363 K
 T=353 K  T=343 K
 T=333 K  T=323 K
 T=313 K  T=303 K
 T=293 K

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 1 2 3 4 5 6 7 8
u  (mm/s)

D
T
 (

m
2 /s

).
10

11

 T=373 K  T=363 K
 T=353 K  T=343 K
 T=333 K  T=323 K
 T=303 K  T=293 K

(a)

(b)

Fig. 4.14 Variation of radial dispersion coefficient with fluid velocity. a sand size
d = 0.297 mm; b sand size d = 0.496 mm
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4.6 Correlations

Many equations have been proposed to correlate dispersion experimental data in
porous media, and the most used are the equations proposed by Bear and Verruijt
[10] in groundwater works and the equations proposed by Koch and Brady [83].
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Fig. 4.16 Dependence of PeT on Re for different values of Sc
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The coefficients of radial and longitudinal dispersion are not linear function of
velocity and expressions with the form DL ¼ D0m þ aLun or DT ¼ D0m þ aTun are
suggested. The coefficients aT and aL are the radial and longitudinal dispersivities,
respectively, of the porous medium in the direction of transport and n is an
empirically constant, n ¼ 1� 2 [53]. In most applications, the exponent, n, is
assumed to be unity, i.e., dispersion coefficient is assumed to be a linear function
of fluid velocity. However, n may be greater than unity in many situations [10].
Also, the dispersivity, aL; is probably scale dependent with larger values for aL

being associated with greater transport distances [104]. For example, values of aL

reported from the results of field studies may be as much as four or six orders of
magnitude greater than the corresponding laboratory measured values which
commonly are found to range between 0.1 and 10 mm [53]. Ratios of aL=aT of
5:1–100:1 have been reported in the literature [10].

Some of most referred works were developed by Fried and Combarnous [54]
and Bear and Verruijt [10, p. 166]; the authors showed the existence of five
dispersion regimes, in unconsolidated porous media. Sahimi [115] and Marsily
[92] analyze the data compiled by Fried and Combarnous [54] to characterize
longitudinal dispersion in five dispersion regimes and radial dispersion in four
dispersion regimes and a hold-up dispersion. The (1) pure molecular diffusion
regime, for very low fluid velocity, is represented by Koplik et al. [84]

DL

Dm

¼ DT

Dm

¼ 1
s

ð4:50Þ

The (2) superposition regime 0:3\Pem\5ð Þ not quantify by an equation. In
this zone the effect of molecular diffusion and dispersion are of the same order of
magnitude. The (3) predominant mechanical dispersion 5\Pem\300ð Þ:

Pem

PeT

Sc=754 (sand), G.Carvalho and Delgado (2001)
 Sc=540 (glass spheres), Hiby (1962)
 Sc=550 (sand), Blackwell (1962)
 Sc=710 (plastic spheres), Harleman and Rumer (1963)
 Sc=710 (sand), List (1965)
 Sc=750 (ion-exchangeresin), Hartman et al. (1958)
 Sc=754 (glass spheres), Bernard and Wilhelm (1950)
 Sc=986 (glass spheres), Coelho and G.Carvalho (1988)
 Sc=1070 (sand), Hoopes and Harleman (1965)
 Sc=1270 (sand bonded by resin), Simpsom (1962)
 Sc=1476 (glass spheres), Grane and Gardner (1961)
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Fig. 4.17 Comparison between our data points and the results of other authors for Sc� 540
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DL

Dm

¼ 1
s
þ 0:5Pe1:2

m ð4:51aÞ

DT

Dm

¼ 1
s
þ 0:025Pe1:1

m ð4:51bÞ

The (4) pure mechanical dispersion 300\Pem\105
� �

represented by

DL

Dm

¼ 1
s
þ ð1:8
 0:4ÞPem ð4:52aÞ

DT

Dm

¼ 1
s
þ 0:025Pem ð4:52bÞ

In this zone (yet in the range of validity of Darcy’s law) the effect of molecular
diffusion is negligible. The (5) dispersion out of Darcy domain Pem [ 105

� �
not

quantify by an equation. This is the region in which the effects of inertia and
turbulence cannot be neglected.

The (6) holdup dispersion [83]:

DL

Dm

¼ DT

Dm

� Pe2
m ð4:53Þ

Probably one of the most important studies in dispersion topic was presented by
Saffman [113, 114]. These works are the most detailed analysis of dispersion in
porous media, but the correlation proposed for axial and radial dispersion diverge
slightly from the existing experimental data, in the literature (see Fig. 4.18). The
author proposed the following equation, for longitudinal dispersion:

DL

D0m
¼ Pe0m

6
ln

3
2

sPe0m

� �
� 1

4

� �
valid for Pe0m 	 1 ð4:54Þ

Another important study was presented by Koch and Brady [83] who showed
that the ratio of the dispersion coefficient to the molecular diffusivity is only a
function of the product ReSc: However, experimental measurements show that the
dispersion Peclet group is a function of both Reynolds and Schmidt groups as
Pe ¼ f ðRe; Sc) and not Pe ¼ f ðReSc): For Stokes flow through a random packed
bed of spheres, Koch and Brady [83] derived analytical expressions for the lon-
gitudinal and radial dispersion coefficients. Since the solid phase is not permeable
to the tracer, for Pe0m [ 1; DL=D0m and DT=D0m are given by:

DL

D0m
¼ 1þ 3

4
Pe0m

2
þ p2

6
ð1� eÞ Pe0m

2
ln

Pe0m
2

� �
ð4:55Þ

DT

D0m
¼ 1þ 63

ffiffiffi
2
p

320

ffiffiffiffiffiffiffiffiffiffiffi
1� e
p Pe0m

2
ð4:56Þ
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The works of Saffman [113, 114] and Koch and Brady [83] have shown that
DL=D0m� Pe0m ln(Pe0mÞ and DT=D0m� Pe0m: The logarithmic dependence results
from the fact that velocity of fluid at the walls is zero. Different Peclet number
contributions to dispersion were identified: hold-up in a closed circulation region
Pe0m2
� �

; particle boundary layer Pe0m ln(Pe0mÞ
� �

and random velocity field contri-

bution Pe0m
� �

: The agreement with the experimental results of Fried and Com-
barnous [54] was very good for both longitudinal and radial dispersivities. Saffman
[113] modelled random porous media with randomly oriented capillary tubes and
found Fickian dispersion at long times with dispersivity approaching a Pe0mln(Pe0mÞ
behaviour.

It’s important to enhance the fact that in literature, it was possible to find a large
number of empirical correlations. For example, Fetter [52] used the experimental
data obtained by Carberry and Bretton [25], Raimondi et al. [108], Blackwell et al.
[17] and Rosenberg [112] to conclude that longitudinal dispersion coefficient is
well represented by the fitted curve:

DL

D0m
¼ 1þ 1:75Pe0m valid for Pe0m\50s ð4:57Þ

and the data of Blackwell [16] and Grane and Gardner [58], to suggest the fol-
lowing equation for radial dispersion:

DT

D0m
¼ 1þ 0:055Pe0m ð4:58Þ

Gunn [65] admitted the existence of two regions in the packing, one of fast
flowing and the other of nearly stagnant fluid, to deduce the following expression
for the axial dispersion coefficient in terms of probability theory

1
PeL

¼ ePem

4a2
1ð1� eÞ ð1� pÞ2 þ ePem

4a2
1ð1� eÞ

� �2

pð1� pÞ3

� exp � 4ð1� eÞa2
1

pð1� pÞe Pem

� �
� 1


 �
þ 1

s Pem

ð4:59Þ

where a1 is the first zero of equation J0ðUÞ ¼ 0 and p is defined, for a packing of
spherical particles, by

p ¼ 0:17þ 0:20� exp � 24
Re

� �
for spheres; s ¼

ffiffiffi
2
p

ð4:60aÞ

p ¼ 0:17þ 0:20� exp � 24
Re

� �
for solid cylinders; s ¼ 1:93 ð4:60bÞ

p ¼ 0:17þ 0:20� exp � 24
Re

� �
for hollow cylinders; s ¼ 1:8 ð4:60cÞ
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Tsotsas and Schlunder [135] deduced an alternative correlation for the pre-
diction of PeL: The authors defining two zones in a simple flow model consisting
of a fast stream (central zone in the model capillary) and a stagnant fluid, but the
mathematical expressions associated with it are a little cumbersome,

1
PeL

¼ 1
s

1
Pez;1

þ 1
Pe0m

1� n2
c

� �� �
þ 1

32
Dc

d

� �2

Per;1n
2
c f1ðncÞ þ Pe0m f2ðncÞ

� 

ð4:61Þ

Pem
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Fig. 4.18 Comparison between experimental data and correlations presented in the literature
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where the axial and radial Peclet number of the fast stream is

1
Pez;1

¼ 1
Pe01
þ 1

1:14ð1þ 10=Pe01Þ
ð4:62aÞ

1
Per;1

¼ 1
Pe01
þ 1

8
ð4:62bÞ

Pe01 ¼
u1d

D0m
ð4:62cÞ

and u1 ¼ u=n2
c is the interstitial velocity of the fast stream, with nc (the dimen-

sionless position of the velocity jump, i.e. the ratio between the radius of the zone
of high velocities and the radius of packed bed) equal to

Re� 0:1! nc ¼ 0:2þ 0:21exp(2:81yÞ ð4:62dÞ

Re� 0:1! nc ¼ 1� 0:59 exp½�fðyÞ� ð4:62eÞ

with

y ¼ log Reð Þ þ 1 ð4:62fÞ

f(yÞ ¼ y 1�0:274yþ 0:086y2
� �

ð4:62gÞ

Finally, the distributions functions f1ðncÞ and f2ðncÞ are defined by:

f1ðncÞ ¼ 1�n2
c

� �2 ð4:62hÞ

f2ðncÞ ¼ 4n2
c � 3� 4ln(ncÞ � n4

c ð4:62iÞ

In Fig. 4.18a, the lines corresponding to the correlations of Gunn [65] and of
Tsotsas and Schlunder [135] are represented, for the higher and lower values of Sc
in our experiments (Sc = 57 and 1,930), as well as for gas flow (Sc = 1). It may
be seen that the correlation of Gunn [65] is not sensitive to changes in Sc, for
Pem\103; and the correlation of Tsotsas and Schlunder [135] is much too sen-
sitive to variations in Sc; however, this correlation describes dispersion in gas flow
with good accuracy.

In this context it is interesting to consider, for radial dispersion, the predicting
accuracy of some alternative empirical correlations that have been proposed to
represent the experimental data in liquid flow, as the equation of Gunn [65]:

1
PeT

¼ 1
Pef

þ 1
s

e
ReSc

ð4:63Þ

where the fluid-mechanical Peclet number, Pef ; is defined by,

Pef ¼ 40� 29e�7=Re for spheres; s ¼
ffiffiffi
2
p

ð4:64aÞ
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Pef ¼ 11� 4e�7=Re for solid cylinders; s ¼ 1:93 ð4:64bÞ

Pef ¼ 9� 3:3e�7=Re for hollow cylinders; s ¼ 1:8 ð4:64cÞ

And the empirical equation proposed by Wen and Fan [141],

PeT ¼
17:5

Re0:75 þ 11:4 for high values of Pemð Þ ð4:65Þ

In Fig. 4.18b, the lines corresponding Gunn [65] and Wen and Fan [141]
correlations are represented for the two extreme values of Schmidt observed in our
experiments (Sc = 54 and 1,930); comparison with the experimental points shows
that the correlations are very inadequate over significant ranges of Pem:

In conclusion, we can say that it was possible to find a large number of
equations in the literature that have been proposed to correlate dispersion exper-
imental data in porous media. However, the vast amount of data available is
obtained mostly for air and water at room temperature (the influence of Schmidt
number is not taking into account).

4.6.1 New Correlations: Axial Dispersion

In the limit of very low fluid velocity, dispersion is determined solely by molecular
diffusion, with DL ¼ Dm=s (s being the tortuosity factor for diffusion). At high
fluid velocities, dispersion is purely ‘‘fluid mechanical’’ (see [144]), with DL ¼
ud=PeLð1Þ; where u is the interstitial fluid velocity and PeLð1Þ ffi 2 for gas or
liquid flow through beds of (approximately) isometric particles, with diameter d. A
common approximation for the intermediate range of fluid velocities is to assume
that the effects of molecular diffusion and fluid mechanical dispersion are additive
and the resulting expression is given by

DL ¼ D0m þ ud=PeLð1Þ ð4:66Þ

where D0m ¼ Dm=s: This equation is expected to give the correct asymptotic
behaviour at high and low values of Pem: In the case of gas flow, see Fig. 4.19,
significant deviations are observed in the range 0:6\Pem\60; the experimental
values of PeL are generally higher than predicted by Eq. 4.66, with PeLð1Þ ffi 2:
Several equations have been proposed to represent the data in this intermediate
range and the equation presented by Hiby [75],

DL

D0m
¼ 1 þ 0:65Pe0m

1þ 7
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s=Pe0m

p valid for Re\100ð Þ ð4:67Þ

is shown to fit the data points reasonably well.
For most gaseous mixtures, far from the critical point, the value of Sc is close to

unity, whereas for most solutes in cold water, it is 550\Sc\2; 000: In recent
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years, data on longitudinal dispersion have been made available for values of Sc
between these ranges, such data were obtained with either supercritical carbon
dioxide 1:5\Sc\20ð Þ or heated water 55\Sc\550ð Þ:

Some workers have measured axial dispersion for the flow of supercritical
carbon dioxide through fixed beds and this provides important new data in the
range 1:5\Sc\20 (see Fig. 4.19). The experiments of Catchpole et al. [27]
were performed in the range 8\Sc\20; but the individual values of Sc, for the
data points represented, are not given by the authors. One would expect that the
data of Catchpole et al. [27] would lie somewhere between the series of points for
Sc = 57 and the line corresponding to Eq. 4.67. It turns out that values of PeL are
a little lower than expected, possibly as a result of low accuracy; the scatter is
certainly very pronounced. The data of Tan and Liou [132] represents some 90
data points by those authors, for 0:3\Re\135 and 1:5\Sc\3; the points are
more or less evenly distributed, meaning that scatter is very significant.

The data of Yu et al. [147] are for 0:01\Re\2 and 2:0\Sc\9:1: Unfortu-
nately they are not very consistent, particularly in the range 1\Pem\20; where
the scatter is high and the values of PeL are much too low. The experiments of
Ghoreishi and Akgermanb [56], again for the flow of supercritical carbon dioxide,
are for 0:1\Re\0:3 and 3:3\Sc\5:8: No influence of Sc on PeL is detected, but
this is what might be expected, considering that the values of Re are generally very
low, with the consequence that the points are partly in the range where dispersion
is totally determined by molecular diffusion.

For the case of liquid flow in a porous media, our group used the division in five
dispersion regimes to obtain the expressions presented below.

(1) Diffusion regime (valid for Pem\0:1Þ:

DL

D0m
¼ 1 ð4:68Þ

(2) Predominant diffusional regime (valid for 0:1\Pem\4Þ :

DL

D0m
¼ Pe0m

0:8=Pe0m þ 0:4
ð4:69Þ

with a an average relative deviation lesser than 14%.
(3) Predominant mechanical dispersion (valid for 4\Pem and Re\10Þ :

DL

D0m
¼ Pe0mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

18 Pe�1:2
m þ 2:35 Sc�0:38

q ð4:70Þ

with a deviation lesser than 11%, over the entire range of Pe0m and Sc.
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(4) Pure mechanical dispersion (valid for 10\Re and Pem\106Þ :

DL

D0m
¼ Pe0m

25Sc1:14=Pe0m þ 0:5
ð4:71Þ

with a an average relative deviation lesser than 16%, over the entire range of
Pe0m and Sc.

(5) Dispersion out of Darcy domain (valid for Pem [ 106Þ :

DL

D0m
¼ Pe0m

2
ð4:72Þ

The correlations proposed are shown (see Fig. 4.20) to be significantly more
accurate than previous correlations (see Fig. 4.18) and they cover the entire
spectrum of values of Pem and Sc expected to be useful. It is important to have in
mind that Eqs. 4.68–4.72 are recommended only for random packings of
approximately ‘‘isometric’’ particles.

4.6.2 New Correlations: Radial Dispersion

For gas flow, by simply adding the contributions of molecular diffusion and tur-
bulent dispersion, we suggested the well-known equation (in dimensionless form)

Pem

PeL

Sc=1.12, Johnson and Kapner (1990)
Sc=0.22, Johnson and Kapner (1990)
Sc=1.20, Suzuki and Smith (1972)
Sc=1.12, Gunn and Pryce (1969)
Sc=1.12, Edwards and Richardson (1968)
Sc=1.12, Sinclair and Potter (1965)
Sc=1.90, Blackwell et al. (1959)
Sc=0.22, Carberry and Breton (1955)
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DT

D0m
¼ 1 þ Pe0m

12
ð4:73Þ

with a an average relative deviation lesser than 12%. Equation 4.73 give the
correct asymptotic behaviour (both for very high and very low PemÞ for both gases
and liquids, as reported by several workers (see [65, 144]).

In the intermediate range of Pem they are still a reasonable approximation for
gases, the wider deviation being observed in the intervals 3\Pem\300; as shown
in Fig. 4.21.

For the case of liquid flow in a porous media, our group used the division in
four dispersion regimes to obtain the expressions presented below.

(1) Diffusion regime (valid for Pem\1Þ :

DT

D0m
¼ 1 ð4:74Þ

(2) Predominant mechanical dispersion (valid for 1\Pem\1600Þ :

DT

D0m
¼ 1þ 1

2:7� 10�5Scþ 12=Pe0m
for Sc\550 ð4:75aÞ

DT

D0m
¼ 1þ 1

0:017þ 14=Pe0m
for Sc� 550 ð4:75bÞ

with a deviation lesser than 8 and 5%, respectively, over the entire range of
Pe0m and Sc.

(3) Pure mechanical dispersion (valid for 1; 600\Pem\106Þ:

DT

D0m
¼ Pe0m

ð0:058Scþ 14Þ � ð0:058Scþ 2Þ exp � 500Sc0:5

Pe0m

� � for Sc\550 ð4:76aÞ

DT

D0m
¼ Pe0m

45:9� 33:9� exp � 21Sc
Pe0m

� � for Sc� 550 ð4:76bÞ

and the experimental data do not deviate by more than 6 and 4% from the
values given by Eqs. 4.76a and 4.76b, respectively.

(4) Dispersion out of Darcy domain (valid for Pem [ 106Þ:

DT

D0m
¼ Pe0m

12
ð4:77Þ
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Fig. 4.20 Comparison between experimental data and correlations given by Eqs. 4.68–4.72
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Sc=0.94, Bernard and Wilhelm (1950)
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The experimental data are shown in Fig. 4.22, alongside the solid lines corre-
sponding to Eqs. 4.74–4.77, for the values of Sc indicated in the figure. The
agreement is seen to be generally very good, even when the values of PeT are
represented on a linear scale. For Sc [ 550 (see experiments with values of Sc of
754 and 1,930), the above equations representing the data must take into account
that PeT is only dependent on Pem; in the ascending part of the curve PeT vs. Pem

and that PeT only depends on Re ¼ e Pem=Scð Þ; in the descending part of the same
curve.

In conclusion, the present chapter increases our knowledge about diffusion and
dispersion in packed beds by providing a critical analysis on the effect of fluid
properties and porous medium on the values of axial and radial dispersion
coefficients.

Different experimental techniques are presented in full detail and the data
obtained from these techniques are very similar. An improved technique for the
determination of the coefficient of radial dispersion in fluid flow through packed
beds is described more detailed, which is based on the measurement of the rate of
dissolution of buried flat or cylindrical surfaces.

A large number of experimental data on dispersion available in literature for
packed beds were examined to pave the way for the formulation of new correla-
tions for the prediction of PeT and PeL: The correlations proposed are shown to be
more accurate than previous correlations and they cover the entire range of values
of Pem and Sc. The axial dispersion coefficient can be calculated by Eqs. 4.68–
4.72 and the radial dispersion coefficient by Eqs. 4.73–4.77.
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