
Chapter 3
Flow in Porous Media

3.1 Introduction

As mentioned in Chap. 1, a porous medium is a particulate phase (usually solid) that
contains void spaces (microscopic pores). These pores may either be connected to
each other or unconnected, and are distributed in the medium in either a regular or a
random manner. Porous media can be distinguished as granular or fractured in
form with either consolidated or unconsolidated mechanical properties. In a con-
solidated porous medium, the particles (grains) are connected by an intermediate
cementing material, while in an unconsolidated porous medium the grains are loose.

The spatial distribution of matter in a porous medium can be typically repre-
sented by the phase function Z(x), defined as:

Z xð Þ ¼
1 x belongs to the pore space

0 otherwise

8
<

:
ð3:1Þ

where x is the position vector from an arbitrary origin.
The motion of a continuum is generally described by a usually linear relation

between some fluxes and the relative driving forces. Following the trend of deter-
minism, a large number of constitutive (phenomenological) equations describing
relationships between fluxes and driving forces exist in several fields of physics.
These include Newton’s law (which correlates developing forces with acceleration,
i.e. velocity gradient), Fourier’s law (which correlates heat flow with temperature
gradient), Fick’s law (which correlates mass flow with concentration gradient),
Ohm’s law (which correlates current with potential gradient), etc. The description of
flow in porous media is especially difficult due to the media’s complex geometry.
Furthermore, a general law of the continuum theory is the law of conservation of
extensive properties such as mass, momentum and energy. The resulting equations of
continuity are commonly referred to as field equations and must be considered along
with flow equations to adequately describe flow in porous structures.
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Experimental and theoretical investigations are normally associated with the
scale of the application considered. In general, these scales are microscopic (or
‘‘pore’’ scale), mesoscopic (or ‘‘local’’ scale), and macroscopic (or ‘‘field’’ scale). As
far as the phenomena considered (and the governing equations as well as the relative
solutions) are strongly dependent on the scale, the transition between different scales
is of great importance. This transition is usually considered from the lowest ‘‘pore’’
level, where experimental and simulation results could be easily obtained, to the
higher ‘‘field’’ scale, where data are hard to be measured. This up-scaling process is
the subject of many studies (see Sects. 5.5 and 7.5).

3.1.1 Macroscopic Description

During his experiments on flow in pipes, Darcy found and proved that the pressure
drop caused by the flow is proportional to the velocity. This result is expressed by
the phenomenological Darcy law equation [7]:

q ¼ A
k

l
Dp

L
ð3:2Þ

which generally describes the fluid flow through a porous medium. In the above
formula, q is the volumetric flowrate through a cross-section, A of the porous med-
ium, which is perpendicular to the flow direction, L is the length of the porous media
in direction of flow, Dp is the pressure difference along the porous medium, l is the
viscosity of the flowing fluid, and k is the permeability as a material property of the
porous medium. This equation can be written in differential form as:

rp ¼ � l
k

u ð3:3Þ

where u denotes the velocity vector of the fluid. It is important to note that the
Darcy law is only valid for a laminar and steady state one-phase flow through a
porous medium. In addition, the fluid must be largely incompressible.

An extension to the Darcy law is the isotropic law introduced by Brinkman law [3]:

rp ¼ � l
k

uþ leffr2u ð3:4Þ

where leff is an effective viscosity which may be different from l: The Brinkman
law is a slight modification of the Stokes equation and one of its practical
advantages is that applications and analytical tools devoted to the Stokes approach
can be used with small adaptations.

One of the most significant applications of Darcy’s law (3.2) is the calculation
of permeability of a porous material. After solving the equation for k:

k ¼ q

A
l

L

Dp
ð3:5Þ
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the permeability of a porous media is defined as 1 Darcy, if a fluid of 1 cP viscosity,
flowing through a cross-section of 1 cm2 at a rate of 1 cm3/s, causes a pressure drop
of 1 atm/cm. Many years later, Klinkenberg observed that gas permeability is not
the same as liquid permeability for the same porous structure, since gas perme-
ability depends on pressure [16]. The correlation between gas permeability kgas;
liquid permeability kliq and mean pressure inside the core pmean; is given as:

kgas ¼ kliq 1þ b

pmean

� �

ð3:6Þ

where parameter b depends on the gas studied.
All the above calculations are valid under the major restriction that perme-

ability should be a number, which means that the porous medium is homogeneous
and isotropic. For non-homogeneous and anisotropic media, permeability becomes
a tensor, thus the above equations should be transformed accordingly.

3.1.2 Microscopic Description

Modeling approaches for microscopic conditions can be described by the appropriate
flow conditions equations (creeping, laminar, turbulent, etc.). It is important to note
that these equations are defined in the pore space, therefore the boundary conditions
in the solid–fluid interface are essential to solve the flow problem. Obviously,
equations of motion and the accompanying boundary conditions, are strongly
dependent on the application considered, thus many different approaches have been
proposed in the literature. The problem here is the derivation of representative
macroscopic quantities from the microscopic results, a procedure which hardly
allows for a generalized unique solution. As the extensive discussion of these issues
is not within the scope of this book, our presentation is limited to granular porous
media, where analytical solutions are also available through the cell models.

3.2 Analytical Solutions for Single Phase Flow in Cell Models

As mentioned in Chap. 2, cell models have been widely used for mathematical
simulation of the flow conditions through porous structures, especially granular
materials. According to these models, the grains are distributed throughout the
predefined space, and each grain is enclosed in a cell formed by the liquid phase.
The cell model can be used to reduce the solution of the boundary-value problem
for the flow around a system of particles to the problem for a single particle, where
the flow field solution can be obtained by the analytical solution of the Stokes
problem. The cell models differ in their boundary conditions, as discussed below.
A wide variety of assumptions exists for the shape of the grains, and the cells in
general: spherical, cylindrical, spheroidal, etc. Different approaches for the physical
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conditions and mathematical formulations have also been presented for each geom-
etry considered, therefore producing an extensive range of combinations between
geometrical and physical considerations. These combinations are described below.

3.2.1 Sphere-in-Cell Models: Kuwabara’s Approach

Consider a solid sphere of radius a, surrounded by another concentric spherical
liquid envelope of radius b, whose thickness is adjusted so the porosity of the
medium is equal to that of the model. The internal sphere is solid and stationary
while a Newtonian fluid flows around the solid core under constant approaching
velocity. The governing equation for quasi-steady creeping flow of incompressible
(i.e. constant density) viscous (i.e. constant dynamic viscosity) fluids is the well-
known Stokes equation, given as:

rp ¼ lr2v ð3:7Þ

along with the continuity equation:

r � v ¼ 0 ð3:8Þ

where p is the pressure field, v is the velocity vector, and l is the dynamic
viscosity. As the system is axially symmetrical, the problem is two-dimensional.
Accordingly, by using the spherical coordinates system r; hð Þ; the above equation
can be written in terms of the steam-function w; as:

E2 E2w
� �

¼ 0 ð3:9Þ

where:

E2 ¼ #2

#r2
� sin h

r2

#2

#h2 ð3:10Þ

Consequently, the velocity components are given as:

ur ¼ �
1

r2 sin h
#w
#h

; uh ¼
1

r sin h
#w
#r

ð3:11Þ

To solve the above problem, it is necessary to consider the appropriate
boundary conditions. According to Kuwabara’s approach [17], zero vorticity is
assumed on the outer surface, as depicted in Fig. 3.1.

The velocity components are expressed as:

ur ¼ �2
F1

r3
þ F2

r
þ F3 þ F4r2

� �

cos h ð3:12Þ

uh ¼ �
F1

r3
� F2

r
� 2F3 � 4F4r2

� �

sin h ð3:13Þ
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where:

F1 ¼ �
U1
4F5

1� 2
a3

b3

� �

ð3:14Þ

F2 ¼ �
3U1
4F5

ð3:15Þ

F3 ¼ �
U1
2F5

1þ a3

2b3

� �

ð3:16Þ

F4 ¼ �
3U1
20F5

b3

a3

� �

ð3:17Þ

F5 ¼ 1� a
b

� �3

1þ 6b
5a
þ 3b2

5a2
þ b3

5a3

� �

ð3:18Þ

and where U1 is the magnitude of the uniform approaching velocity.
Typical results for the stream function are presented in Fig. 3.2 which also

depicts a comparison with Happel’s approach (for details on Happel’s model, see
Sect. 3.2.2).

3.2.2 Sphere-in-Cell Models: Happel’s Approach

The model proposed by Happel [10, 11] is similar to that of Kuwabara but differs
in the fluid motion. Kuwabara’s stationary grain is located in a flowing fluid,
however, Happel proposed a grain moving under constant velocity in an otherwise

constant velocity

non-slip condition

zero vorticity

Fig. 3.1 Kuwabara’s sphere-
in-cell model
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quiescent surrounding fluid. This dissimilarity imposes different boundary condi-
tions, as depicted in Fig. 3.3.

Compared to Kuwabara’s approach, Happel’s model has the additional advantage
of being autonomous from an energy point of view. This benefit is the main reason for
the wider acceptance of Happel’s approach rather than Kuwabara’s model.

In Happel’s approach, the governing equations are the same as (3.7–3.11),
where it is assumed that the solid spherical core is moving under a constant
velocity gradient q. After all, the velocity components are expressed as [10]:

ur ¼ 6r3F1 þ 2rF2 þ
6
r2

F3 �
3
r4

F4 þ rq

� �

sin h cos h ð3:19Þ

uh ¼ 5r3F1 þ rF2 þ
1
r4

F4 þ
rq

2

� �

cos2 h� sin2 h
� �

ð3:20Þ

where:

F1 ¼ �
5q

4a2

a
b

� �7

10þ 4
a
b

� �7

0

B
B
B
@

1

C
C
C
A

F5 ð3:21Þ

F2 ¼
5q

4

4þ 10
a
b

� �7

10þ 4
a
b

� �7

0

B
B
B
@

1

C
C
C
A

F5 �
q

2
ð3:22Þ

F3 ¼ �
5qa3

12
F5 ð3:23Þ

Kuwabara Happel
Fig. 3.2 Sample stream lines
in two sphere-in-cell models
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F4 ¼ �
5a5

10þ 4
a
b

� �7 F5 ð3:24Þ

F5 ¼
10þ 4

a
b

� �7

10 1� a
b

� �10
" #

� 25
a
b

� �3

1� a
b

� �4
" # ð3:25Þ

The visual interpretation of sample flow in Happel’s sphere-in-cell is depicted
in Fig. 3.2.

3.2.3 Cylinder-in-Cell Models

Further to ‘‘sphere-in-cell’’ models, both Happel and Kuwabara also proposed
similar ‘‘cylinder-in-cell’’ ones. The similarity in the formulations and the con-
sequent analytical solutions is due to the two-dimensionality of the mathematical
description that allows us to ignore the shape imposed by the third dimension.

3.2.4 Spheroid-in-Cell Model

As described above, grain are often closer in shape to spheroids rather than spheres.
This observation leads to the development of ‘‘spheroidal-in-cell’’ models, similar to
those of Happel and Kuwabara. One difficulty of such a mathematical interpretation
arises from the orientation of the spheroidal geometry, which can be either prolate or
oblate, as illustrated in Fig. 3.4.

constant velocity

zero shear stress

Fig. 3.3 Happel’s sphere-in-
cell model
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In cases of prolate geometry, the inner solid spheroid has long semiaxis a3

and short semiaxis a1; where a3 [ a1: The semifocal distance a is defined as

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

3 � a2
1

p
: The outer confocal prolate spheroid is of long and short semiaxes

b3 and b1; respectively, while its dimensions are determined so that the volume
fraction of the spheroid-in-cell is equal to that of the original swarm of spheroidal
particles. Thus, given the dimensions of the inner spheroid, porosity is related to
the outer semiaxes by the following equations:

1� eð Þb2
1b3 ¼ a3 ð3:26Þ

b1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2
3 � a2

q

ð3:27Þ

The axisymmetric, steady state, incompressible, viscous creeping flow is
again described in terms of stream function by Eq. 3.9, where the operator E2 is
given as:

E2 ¼ 1

a2 sinh2 gþ sin2 h
� � coth2 g

o2

og2
� coth2 g

o

og
þ o2

oh2 � cot h
o

oh

� �

ð3:28Þ

Under this respect, the velocity components are given in the prolate spheroidal
coordinates system g; hð Þ as [20]:

ug ¼
�1

a2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2 gþ sin2 h

p
sinh g sin h

ow
oh

ð3:29Þ

uh ¼
1

a2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2 gþ sin2 h

p
sinh g sin h

ow
og

ð3:30Þ

prolate

oblate

Fig. 3.4 Prolate and oblate spheroidal cells
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By using the semi-separation concept introduced by Dassios et al. [8], the
stream function is analytically given by an infinite series expansion of the form:

w g; hð Þ ¼
X1

n¼2;4;...

gn cosh gð ÞGn cos hð Þ ð3:31Þ

The leading term of the above infinite series has proved to be sufficient enough
to adequately represent the whole stream function [4], thus the stream function is
given as:

w g; hð Þ ¼
	

A1G1
�
cosh g

�
þ A2G2

�
cosh gÞ þ A3G4

�
cosh g

�

þ A4H2
�
cosh gÞgG2 cos hð Þ

ð3:32Þ

where A1; A2; A3 and A4 are constants coefficients, the values of which depend on the
geometrical parameters ga and gb (the values of the coordinate g on the inner and
outer surface, respectively). Obviously, their expressions are also dependent on the
model considered (Kuwabara or Happel), i.e. on the boundary conditions applied.

More specifically, Kuwabara’s approach corresponds to the expression:

w g; hð Þ ¼ a
D

(

K2G2 cosh gð Þ þ K3
5G4 cosh gb

� �

G1 cosh gb

� � G1 cosh gð Þ þ G4 cosh gð Þ
" #

þ K4H2 cosh gð Þ
)

G2 cos hð Þ ð3:33Þ

where D, K2; K3 and K4 are g� and h� dependent coefficients, defined by Dassios
et al. [9], and GN xð Þ and HN xð Þ are the Gegenbauer polynomials of the first and

second kind, respectively, of degree � 1
2

and order N.

The Happel approach results in the algebraic linear system [9]:

G1 cosh gað Þ G2 cosh gað Þ G4 cosh gað Þ H2 cosh gað Þ
G01 cosh gað Þ G02 cosh gað Þ G04 cosh gað Þ H02 cosh gað Þ
G1 cosh gb

� �
G2 cosh gb

� �
G4 cosh gb

� �
H2 cosh gb

� �

KG001 cosh gb

� �

þKG01 cosh gb

� �
KG002 cosh gb

� �

þKG02 cosh gb

� �
KG004 cosh gb

� �

þKG04 cosh gb

� �
KH002 cosh gb

� �

þKH02 cosh gb

� �

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

�

A1

A2

A3

A4

2

6
6
6
4

3

7
7
7
5
¼

MG2 cosh gað Þ
MG1 cosh gað Þ

0

0

2

6
6
6
4

3

7
7
7
5

ð3:34Þ
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where:

K ¼ cosh2 gb �
1
5

ð3:35Þ

K ¼ �2 cosh gb ð3:36Þ

M ¼ 2

cosh2 ga � 1
ð3:37Þ

and where the primes and double primes denote the first and second derivatives of
the corresponding functions, respectively.

Some typical results for the flow field in a spheroidal-in-cell are shown in
Fig. 3.5.

The spheroid is oblate when a3\a1; where the semifocal distance is given by

�a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 � a2
3

p
: As shown by various researchers (see, for example, Happel and

Brenner [12]) the stream function for the oblate case can be obtained from the
same formulation as above, by using the following transformation from the prolate
coordinates system g; hð Þ to the oblate one �g; hð Þ:

cosh g ¼ i cosh �g ð3:38Þ

a ¼ �i�a ð3:39Þ

Following this, the solution for stream function can be easily obtained; some
typical results of which are shown in Fig. 3.6.

Kuwabara Happel

axis ratio = 2
porosity = 0.95

Fig. 3.5 Sample stream lines
in two identical prolate
spheroids-in-cell
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3.3 Single Phase Flow in Granular Structures

In the presence of porous media, the need for a realistic description of the structure of a
porous medium significantly increases the mathematical complexity of a model. As
porous media are generally characterized by highly complex internal geometry,
appropriate modeling is necessary for the derivation of meaningful conclusions.
Numerous industrial and technological applications involving fluid flow and mass
transport processes within multi-particle assemblages have attracted scientific interest
in the last decades, mainly focusing on industrial physicochemical processes (sedi-
mentation, catalysis, etc.), alternative energy sources (fuel cells, etc.), and separation
techniques (chromatography, filters, etc.). Although arrays of regularly spatially dis-
tributed spheres represent an idealization of real granular media, they have been widely
studied from both the fluid dynamics and mass transport points of view [19, 21]. On the
other hand, due to their complex geometry, random particle distributions were the
subject of rather limited investigations until the 1990s (see [2, 18]). Since then, fast
advances in computational capabilities have contributed to reviving interest on this
topic with emphasis placed on hydrodynamic aspects [5, 13, 22].

3.3.1 Representation of 3-D Sphere Assemblages

To define a realistic domain to solve flow and transport problems, a granular porous
medium was constructed in the form of a spherical particle assemblage. The structure
was digitized and the phase function (equal to zero for solid and unity for the pore
space) was determined to obtain the specified porosity. More specifically, repre-
sentation of the domains under consideration was achieved as follows:

Step (1) Using a random number generator, the position of the sphere’s center was
selected, being in a box of specified dimensions (3 9 2 9 3 mm)

Step (2) Using a random number generator, a radius assumed to follow the log-
normal distribution was selected

Kuwabara Happel

axis ratio = 0.5
porosity = 0.95

Fig. 3.6 Sample stream lines
in two identical oblate
spheroids-in-cell
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Step (3) The void space around the sphere was checked. If it was free the radius
value was accepted, otherwise Step 2 was repeated

Step (4) The sphere was posed
Step (5) Steps 1–4 were repeated until the volume of the positioned spheres

satisfied the pre-defined porosity value.

Obviously, many three-dimensional representations can be generated by the
above algorithm for a specific porosity value. Therefore, it is necessary to validate
the results against these configurations to ensure that the macroscopic results are
independent of each specific realization. A graphic representation of a repre-
sentative medium for a typical porosity of e = 0.43 is presented in Fig. 3.7.

A randomly selected two-dimensional cut of this domain in is shown in
Fig. 3.8, which also depicts the grid of the numerical solution.

3.3.2 The Flow Field

For the numerical simulations, the velocity field was computed numerically by
solving the Stokes equations

rp ¼ lr2v ð3:40Þ

r � v ¼ 0 ð3:41Þ

v ¼ 0 at liquid�solid interface ð3:42Þ

Fig. 3.7 A three-
dimensional representation
of a porous medium
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where v, p, and l are the velocity vector, pressure field, and fluid viscosity,
respectively.

The procedure for solving the Stokes flow problem involves discretization in
terms of cubic elements as follows [1, 6, 14, 15]: At the pore level, a staggered
marker-and-cell (MAC) mesh is used, with the pressure defined at the center of the
cell, and the velocity components defined along the corresponding face bound-
aries. The resulting linear system of equations is solved by a successive over-
relaxation (SOR) method. An initial estimate of p is determined by solving the
Laplace equation. Next, the velocity vector v is calculated from the corresponding
momentum balance and the continuity equation r � v ¼ 0: The pressure is cor-
rected through an artificial compressibility equation of the form:

dp

dt
¼ r � v ð3:43Þ

Essentially, the method adds an artificial density time derivative related to the
pressure by an artificial equation of state p = bq, where b is an artificial
compressibility factor. Similar to the compressible momentum equation, c = b1/2

is an artificial speed of sound and for stability during the iterative procedure,
its magnitude should be such that the respective artificial Mach number,

M ¼ R
c max

D

P

i
u2

i

� �1=2
is low (M � 1), where R is the relevant Reynolds number.

In the limiting case of R ? 0, which is the present case, any finite value of b
should meet this criterion. Thus, b = 1 was selected although it is evident that the

Fig. 3.8 A selected two-
dimensional cut of the
simulated geometry
discretized by an unstructured
grid
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Fig. 3.9 Snapshot of the
a pressure field, b velocity,
and c stream line simulations
through the representative
porous medium. The flow
direction is from left to right
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exact value cannot have any effect on the final (steady state) results, since at steady
state the artificial density time derivative is equal to zero.

The above steps are repeated until convergence is reached. This numerical
scheme for the determination of the velocity field has been widely validated in
terms of both the velocity field and the corresponding permeability [1, 6, 14, 15].

3.3.3 Results and Discussion

Figure 3.9 show the results of the (a) pressure field, (b) velocity, and (c) stream
function for a typical porous medium of e = 0.72. A randomly selected two-
dimensional cut of the medium is considered so the results can be visualized
clearly. The boundary condition at the closed walls is non-slip, at the left
boundary an inflow was imposed, and at the right boundary an outflow condition.
Small vortices and recirculating flow are produced in the medium depending on
the pore size, while smoother profiles are obtained at the inlet and outlet. The
velocity gradient observed from top to bottom at the inlet surface is generated
because the inflow condition ensures constant molar flux instead of a plug-type
velocity vector. Finally, it is interesting to observe that the faster flow paths are
generated by the porous structure and they appear wherever pore diameters are
fairly small.
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