
Chapter 2
Fundamentals of Porous Structures

2.1 Introduction

The understanding of multiphase flow in porous media is of great importance in many
fields such as hydrology, contaminant clean-up and petroleum engineering. Macro-
scopic properties—principally capillary pressure and relative permeability—are often
needed when modelling flow and transport at the continuum scale, whether it is
transport of non-aqueous phase liquids (NAPL) in contaminant clean-up or the pro-
duction of oil during reservoir water flooding. These macroscopic properties are,
however, difficult to obtain. It is possible to conduct physical experiments on samples
of the reservoir, but this will only reflect one set of conditions. Furthermore, the scale
of the reservoir itself is so much larger that a few experiments are unlikely to describe
the variation likely to be present. Hence, there is a need to develop physically-based
models that can predict multiphase flow and transport properties and their likely
variation in a reservoir setting, based on readily available experimental data.

This chapter emphasizes the mathematical modelling of transport processes in
porous media by the cell models, the digital reconstruction of the porous structure
using the Lattice Boltzmann method and the stochastic modelling to obtain a
realistic description of the porous structure.

2.2 Cell Models

Mathematical modeling of transport processes in porous media is a powerful tool
employed whenever experimentation is either expensive or difficult due to the nature
of the process. On the other hand, the realistic description of the porous structure
significantly increases the complexity of the mathematics involved, due to the
coupling between the physicochemical mechanisms and the geometrical complexity
of the porous medium, thus requiring massive computational power. Given the poor
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computational power available sixty years ago, along with the industry-driven
increased necessity for research on porous media structure, in the late 1940s
modeling aimed towards the achievement of analytical solutions. The conceptual idea
behind this was the cell approach, where the medium is considered as an assemblage
of unit cells gathered in a regular manner. Accordingly, it was widely accepted that the
unit cell is the adequate representative of the whole medium, therefore processes
occurring through the porous structure are described sufficiently by those occurring in
the unit cell. As many industrial and technological applications are related with
swarms of cylindrical or spherical grains (filtration, separation, fibers, etc.) and the
analytical solution for the flow field around an isolated sphere was obtained by Stokes
one hundred years ago, what was introduced in those days were the sphere-in-cell
models, whose fundamental idea is schematically represented in Fig. 2.1.

Sphere-in-cell models are based on the representation of the overall solid mass
of the swarm by a spherical or cylindrical solid body, which is embedded in a
spherical or cylindrical liquid envelope, respectively. The boundary conditions
imposed on the outer surface of the envelope is supposed to adequately represent
the interactions with the other grains of the swarm. Obviously, the thickness of the
surrounding fluid layer is adjusted so the ratio of the solid volume to the volume of
the liquid envelope to represents exactly the solid volume fraction of the porous
medium. The main advantage of these models is that an analytical expression for
the stream function can be obtained demanding significantly less effort than that
needed for numerical investigations. The spherical shape corresponds to a for-
mulation which leads to axially symmetric flow that has a simple analytical
solution of closed form, and can thus be used readily for heat and mass transport
calculations. Although this analytical solution is actually an approximation of the
real flow field in a complex porous structure, it was sufficient for the engineering
applications raised until the early 1980s. On the other hand, the model has one
disadvantage in that the outer envelope is not space filling, a difficulty which must
be dealt with when a scale-up from the single unit cell to an assemblage of
particles is necessary.
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Fig. 2.1 Schematic representation of sphere-in-cell model idealization (a and b denote the radii
of the inner and outer spheres, respectively)
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The first introduction of sphere-in-cell model was by Cunningham [18]. When
considering particle sedimentation, Cunningham postulated that the movement of
each spherical particle was allowed only within a concentric mass of fluid boundary.
This model had problems in relating the size of the outer fluid sphere to the bed
voidage (or particle concentration), therefore Uschida proposed at 1959 an
improvement. He assumed that the porous medium is divided into numerous cubes
and a particle is placed into the center of each cube. Although space filling, this
approach failed to predict accurate flow field solutions due to discontinuities imposed
internally by the cubic schema. Richardson and Zaki [59] developed a hexagonal cell
model to predict the sedimentation velocity of uniform spheres under viscous flow
conditions. In this model, two configurations were considered depending on the
vertical particle arrangement. For the first, the distance between neighboring parti-
cles in the vertical direction was assumed to be equal to that in the horizontal
direction, while the second configuration assumed that vertical neighboring particles
are essentially in contact. Due, at least in part, to the oversimplification of the
pressure gradient and questionable assumptions regarding the angles between the
streamlines and the vertical axis, predictions of the sedimentation velocity from the
two configurations were not applicable to a dilute concentration of particles. Happel
[26] and Kuwabara [33] presented two independently devised sphere-in-cell models
to address the flow problem in sphere packing. The major differences between these
two models are in the boundary conditions imposed in the outer surface (A detailed
description can be found in Chap. 3). Despite their fundamental differences, both
models have been proved to yield very similar flow fields over a wide range of
porosity values [67]. At the same time, using formulations analogous to those of
spherical geometry, both Happel [26] and Kuwabara [33] also proposed cylinder-in-
cell models that consider particles of cylindrical instead of spherical shape. These
models were based on the cylindrical-cell model of Kawaguti [32] and found
applications in modeling flow through fibrous mats and arrays of parallel fibers.
Neale and Nader [45] proposed an important improvement over the aforementioned
models. They considered that the basic spherical cell is embedded in an unbounded,
continuous, homogeneous and isotropic permeable medium of the same porosity and
permeability as those of particle swarm. To describe the flow through the porous
surrounding, they used Brinkmans’s equation [8]. A decade later, a new spherical cell
model for predicting the bed expansion of a liquid–solid fluidized bed was presented
by Moritomi et al. [43]. They assumed that Stokes’ flow is valid for the fluid within
the outer cell boundary while outside the cell the flow is approximated by a potential
flow. However, prediction of the bed voidage did not agree well with their experi-
mental data. Another use of Brinkman’s equation in cell models is encountered
Prasad et al. [54], which replaces the solid sphere of the sphere-in-cell model with a
solid sphere surrounded by a concentric spherical shell of homogeneous and isotropic
porous material. This model combines features of those developed by Happel and
Kuwabara, and uses Brinkman’s equation to describe the flow through the porous
shell. The work of Prasad et al. is based on the work of Masliyah et al. [42] whose
‘‘solid-sphere-with-porous-shell’’ is embedded in an unbounded fluid instead of the
fluid envelope presented by Prasad et al. [54].
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The models described above all considered either spherical or cylindrical
grains, which corresponds to two-dimensional spherical geometry after some
physical assumptions and mathematical manipulations. However, grain shape is
closer to spheroidal than spherical for the majority of practical applications and
this is a crucial limitation for model accuracy. Epstein and Masliyah [22] solved
numerically the flow-field through clusters of spheroids under creeping flow
conditions, whereas the analytical solution of Ammar and Hsieh [4] for Stokes
flow inside an oblate hemispheroidal cap was the precursor for the work of Dassios
et al. [19, 20]. The latter presented a complete spheroid-in-cell model, quite
analogous to those of Happel and Kuwabara, and based on the introduced concept
of ‘‘semi-separation’’, an analytical formulation for the stream-function under
creeping flow conditions was obtained in terms of series expansions.

Depending on the application considered, several different non grain-type cell
models have been proposed and used to simulate the usually complex porous
structures. To model the transient behavior of deep-bed filtration systems, Payatakes
et al. [50] and Tien et al. [68] proposed the representation of the granular medium by
an ensemble of unit-bed elements (UBE), which was found to successfully describe
the initial stages of the filtration process. Each UBE is constructed of a number of
tube-type cells (collectors), sometimes surrounded by liquid envelopes [58].
Although the trend was to use straight capillaries for the sake of simplicity in the
calculations, representation of the pore space by sinusoidal cells, as suggested by
Payatakes et al. [51], seemed to produce results in good agreement with experimental
observations. The fundamental idea of sinusoidal cells is schematically represented
in Fig. 2.2.

The theoretical results of using UBEs for filtration simulations (Payatakes et al.
[52]) were found to be in good agreement with experimental data, thus indicating
that this simulator type could be used to provide an order-of-magnitude estimate
on a truly predictive basis for filtration processes. Some years later, Chiang and
Tien [12] used constricted tubes as collectors and employed the concept of UBE in
their analysis. Unfortunately, this model cannot describe a complete filter cycle, as
it does not deal with the problem of pore clogging and the simultaneous decrease
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Fig. 2.2 Schematic representation of sinusoidal cell concept
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in permeability. Based on the UBE concept, Choo and Tien [14] presented another
approach and assumed that each element contained a number of cylindrical tubes
of various sizes. However, it was already known that the assumption of straight
capillary tubes oversimplifies pore structure, leading to a substantial underesti-
mation of the particle deposition rate in each cell [49].

Further to representation purposes, unit cells of various dimensions have been
introduced and used for the study of diffusion, convection, dispersion and inter-
facial transport in homogeneous porous media [3, 17, 55–57]. Some of those unit
cells are presented in Fig. 2.3.

2.3 Digital Reconstruction (Lattice Boltzmann Method)
of the Porous Structure

Transport in porous media is a topic related to many technological and environ-
mental applications. The accurate prediction of the transport coefficients in porous
media is a challenging problem due to the complexity of transport mechanisms in
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Fig. 2.3 Various unit cells
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fluid–solid systems and the difficulty in representing accurately the complicated
and tortuous nature of a porous medium.

The digital reconstruction of porous materials is a relatively new, powerful
methodology that enables the reliable representation of the complex biphasic
structure induced by porosity. The significant advances in both experimental and
numerical practices have allowed the development of reconstruction techniques,
the most advantageous being (a) the statistical methods leading to the stochastic
reconstruction of porous media in three dimensions based on statistical informa-
tion obtained from one or several two dimensional images of thin sections of the
actual material, and (b) the process-based methods, where the computational
procedure tries to imitate the physical processes that commence during the for-
mation of the medium. Although the latter seem to be closer to the physical
system, they frequently exhibit severe computational requirements and hence are
limited to the specific material considered in each case (Kainourgiakis et al. 31).

The Lattice Boltzmann method (LBM) constitutes a very powerful tool for the
study of the hydrodynamical problem of fluid flow inside porous structures, mainly
due to the simplified handling of the complicate boundary conditions, as well as,
due to the efficiency of the method with regard to parallelization [63, 65]. Lattice
Boltzmann method (LBM) is a mesoscopic approach for simulating computational
fluid dynamics by solving a discretized Boltzmann equation [11, 60, 71]. An
attractive feature of LBM is the ease of addressing complex boundary conditions
by implementing very simple schemes. Numerous works have successfully applied
LBM in modeling fluid flow in porous media and quantification of porous media
permeability [10, 27, 48, 60]. LBM models fluids as particle distributions residing
on a discrete lattice, propagating to their adjacent lattice nodes, and colliding with
other particles to redistribute momentum.

Aharonov and Rothman [2] first used the Lattice Boltzmann method to simulate
the flow of non-Newtonian fluids. Their pioneering work addresses two dimen-
sional pipes and random media. They found that the flux is related to the driving
force by a simple scaling law. Similar results were reported by Boek et al. [7].
Recently, Gabbanelli et al. [24] studied the flow of truncated power-law fluids in
reentrant flow geometries and found a very good agreement between the results
obtained by the Lattice Boltzmann method and those obtained by standard finite
element methods, while Sullivan et al. [66] explored the relationship between
lattice resolution and simulation accuracy as a function of the power-law index.

2.3.1 Porous Media Generation

Accurate numerical simulation of fluid flow in porous media requires detailed
descriptions of porous media morphology, which should include geometric
properties such as particle or pore shape and volume, and topological properties
such as pore interconnectivity. In many cases, however, the type of model that can
be employed is dependent on the modeling method, and more importantly, limited

10 2 Fundamentals of Porous Structures



computational resources. It is thus important to construct models that are able to
closely mimic the heterogeneity of actual porous media, and at the same time are
sufficiently efficient to allow simulation of flow and transport phenomena with
reasonable computational effort. In this study, porous media are envisioned as a
statistical distribution of non-overlapping circular disks representing soil particles
distributed in a rectangular two-dimensional uniform continuum representing the
pore space through which a fluid flows.

As first proposed by Gardner, particle size distributions in soil are often
assumed to be lognormal in nature (Lerman [36]). Buchan noted that approxi-
mately one-half of the US Department of Agriculture textual classification triangle
could be adequately modeled by a lognormal distribution. Since a standard log-
normal distribution implies zero and infinity for the smallest and largest particle
sizes, respectively, modified lognormal distributions were developed to constrain
the upper and lower extremes of the particle size. Fredlund et al. [23] proposed a
new model based on a unimodal mathematical function, which is believed to
provide improved representations of particle size distributions relative to lognor-
mal distributions. This model’s ease of use, however, is limited by its employment
of five fitting parameters; our study thus employs a modified lognormal distribu-
tion to describe particle size distribution, assuming that all particle sizes reside in a
95% confidence interval to eliminate extremely large or small particles.

Li et al. [37] modified the algorithm proposed by Yang et al. [72] for a three
dimensional sphere packing, a two-step collective rearrangement technique to
generate random porous media. In this work, the particles with size distributions
following a modified lognormal distribution are generated until the required
porosity is satisfied. The particles are then assigned to a two dimensional domain
by assuming a uniform distribution of particle locations. Based on this initial,
possibly overlapped configuration (i.e., one particle may overlap another particle),
an iterative arrangement process is applied to achieve an overlap free condition.
During each iterations the largest particle is selected for relocation if there is any
overlap with another particle; if overlap occurs, its spatial location is adjusted until
the overlap is removed, and then registered in the final non-overlap location. The
procedure continues with the next largest particle, etc. until all particles are
registered in their final non-overlap location. Periodic boundary conditions are
maintained at all boundaries throughout the iteration process. Figure 2.4 provides an
illustration of several of the generated random porous media employed in this study.

2.4 Stochastic Modeling

Most natural and biological phenomena, such as solute transport in porous media,
exhibit variability which can not be modeled using deterministic approaches. There
is evidence in natural phenomena to suggest that some observations cannot be
explained using models which give deterministic solutions. Stochastic processes
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have a rich repository of objects which can be used to express the randomness
inherent in the system and the evolution of the system over time.

Transport processes are generally modeled by initial/boundary value problems
for a partial differential equation (PDE) describing the local balance of the con-
centration fields. However, during probabilistic analysis of flow and transport
properties in porous media, the uncertainties due to spatial heterogeneity of
governing parameters will be often taken into account. The definition of the
properties of porous media in space and time using the concept of random func-
tions provides means for (1) studying the inherent heterogeneity, (2) evaluating the
spatiotemporal variability of the properties, and (3) assessing the uncertainty
associated with their estimated values.

For example, if a small control volume is considered, a mass balance on the
solute, in one-dimension, without chemical reaction, leads to

@
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where De is the diffusion coefficient, C is the mean solute concentration, u is the
interstitial velocity of fluid, and t the time. The velocity field u(x,t) and diffusion
coefficients De(x,t) instead account for the spatial heterogeneity of the porous
media. Within the frame of Scheidegger’s theory of dispersion in porous media the

Fig. 2.4 Example of generated porous media
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components of the diffusion tensor are proportional with those of the velocity field
[61]. The velocity field is modelled by the solution of flow equation. For instance,
the stationary (in time) and divergence free flow through a saturated porous
medium, is governed by Darcy and continuity equations

ui ¼ �
K

e
@H

@xi
;
Xn

i¼1

@ui

@xi
ð2:2Þ

where K is the isotropic hydraulic conductivity, e is the porosity supposed to be
constant and H is the hydraulic head. The solution of Eq. 2.2 describes flow
through isotropic porous media.

For example, the hydraulic conductivity, K, as a function of x, it is convenient
to use its logarithm Y(x) = lnK(x). This quantity can be inferred from field
experiments consisting of pumping tests performed in observation wells. In most
experimental settings the locations of the wells are chosen so that an optimum
sampling of concentration during tracer tests is obtained. These results in a sparse
and non-regular distribution of wells and, therefore interpolation techniques are
used to estimate spatial correlations of Y(x). Based on experimentally inferred
correlations, stochastic models are proposed. For example, it is assumed that Y is a
statistically homogeneous in space random function, normal distributed with
constant mean and exponential covariance function [13].

Consequently, Eq. 2.1 has random coefficients. The stochastic approach con-
siders ensembles of solutions of (2.1), corresponding to the ensemble of K field
realizations. Expectations and standard deviations of the concentration are com-
puted as ensemble averages. In many applications an upscaled transport model
with simpler structure (in general with constant coefficients) is used to describe the
process at the desired observation scale. An observable transport process corre-
sponds to a solution of (2.1) for a fixed realization of hydraulic conductivity.
Therefore, to obtain realistic predictions, ergodicity assessments have to complete
stochastic modelling. Ergodicity can be quantified, for instance, by root mean-
square distances between single realization solutions and the output of the upscale
model [64]. Technical issues related to the construction of the numerical solutions
for PDEs of form (2.1) also provide arguments for a stochastic approach.

2.4.1 The Pore Space

The pore space description can be generated directly using X-ray microtomogra-
phy (see [16]), where the rock is imaged at resolutions of around a few microns.
This can be done due to the differences in X-ray absorption of rock matrix and
void space. An example of a 3D image, of Fontainebleau sandstone, is shown in
Fig. 2.5a along with a 2D cross section in Fig. 2.6a. This method has the
advantage of directly reconstructing the pore space, but due to the specialized
scanners required, it is not readily available and also very costly. It is, however,
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very useful for validating numerical reconstruction techniques of the microstruc-
ture, described below.

Most stochastic reconstruction algorithms are based on threshold Gaussian field
techniques [1]. These algorithms are based on porosity and two-point correlation
functions, both of which can be readily obtained by image analysis of 2D thin
sections. The technique is similar to that used in geostatistics. A continuous cor-
related field is generated using Fourier transform methods and threshold to retrieve
the binary phases (pore space and matrix) with the correct porosity and correlation
function, as sketched in Figs. 2.5c and 2.6c. This method can also be extended to
include more phases, such as clays.

Realising that the earlier Gaussian based methods were not very good at
reproducing the underlying particulate structures of the porous media, as evident
from Fig. 2.6c, Yeong et al. [73] developed a stochastic method based on simu-
lated annealing, later extended by Manwart et al. [40]. Rather than being restricted
to one- and two-point correlation functions, the objective function used can be
made to match additional quantities such as multi-point correlation functions,

Fig. 2.5 Comparison between different 3D voxel representations of a Fontainebleau sandstone [6],
generated using different reconstruction techniques. The side length of each sample is 2.25 mm.
a X-ray microtomography. b Object-based modelling. c Gaussian field technique. d Simulated
annealing
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lineal-path function or pore size distribution function to name a few. Since the
method is based on moving pore-space voxels around to minimize the objective
function, the correct porosity is always retained. They subsequently reconstructed
a 3D Fontainebleau and Berea sandstones from 2D sections using an objective
function based on both two-point correlation function and either lineal-path or pore
size distribution function, Figs. 2.5d and 2.6d. The estimated percolation proba-
bility was closer to the reference than when only using the two-point correlation
function. Incorporating more higher-order information into the objective function,
such as the local percolation probability, would most likely improve the recon-
struction further, but that would also increase the computational cost of the method
significantly.

Fig. 2.6 Comparison between different 2D cross-sections of a Fontainebleau sandstone [6],
generated using different reconstruction techniques. The side length of each sample is 2.25 mm.
a X-ray microtomography. b Object-based modelling. c Gaussian field technique. d Simulated
annealing
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Another technique is the use of object-based modelling whereby the actual
rock-forming process is simulated. Packing algorithms for spheres are well
established (see [1]) and algorithms for arbitrary shapes have also been presented
by several authors [15, 34, 35, 53]. An algorithm that takes into account the whole
rock-forming process where primary grain sedimentation is followed by com-
paction and diagenesis has been presented by Bakke and Øren [5] and later by Jin
et al. [30]. A grain size distribution is determined from image analysis of thin
sections. Grains are then randomly picked from this distribution during the sedi-
mentation process. Compaction is modelled by moving the centre of each grain
down in proportion to its original vertical position. Finally, diagenetic processes
are modelled. Quartz overgrowth is modelled by increasing the radii of the grains,
and clays are precipitated on quartz surfaces. The amount of diagenesis to include
is also determined from thin section analysis. Though this reconstruction method
does not guarantee that statistical geometrical parameters such as the two-point
correlation functions are honoured, it is assumed that these will be adequately
reproduced since the actual rock-forming process is simulated, Figs. 2.5b and 2.6b.

Biswal et al. [6] performed a quantitative comparison of three reconstruction
methods (Gaussian field, simulated annealing and object-based) on a Fontaine-
bleau sandstone, where the reference, containing 3,003 voxels, was obtained using
microtomography. They found that the object-based technique reproduced the two-
point correlation function reasonably well. When comparing connectivity using
local percolation probability it was clear that the object-based technique was far
superior to the statistical techniques. This result agrees with analysis performed by
other authors as Hilfer [28].

Recently several statistical reconstruction techniques have been suggested that
try to improve on the deficiencies of the Gaussian field techniques, while not being
as computationally demanding as simulated annealing. Thovert et al. [69] intro-
duced a method that is a hybrid between the statistical and object-based methods.
Their technique is statistical, using only porosity and two-point correlation func-
tion, but conditioned to an underlying granular structure, defined using a pore size
distribution derived from the two-point correlation function. This is based on a
Poissonian penetrable sphere model. They verified their method using a 3D
Fontainebleau sample and reported good agreement with the reference, even for
the percolation probability. Hilfer and Manswart [29] also developed a hybrid
between statistical and object-based method. Initially a close packing of spheres is
laid down. Matrix voxels are then randomly distributed in the pore space until a
prescribed porosity is attained. The configuration of the added matrix voxels are
then updated using simulated annealing, matching the two-point correlation
function. They also verified their method using a 3D Fontainebleau sample and the
local percolation probability was found to be significantly better than traditional
simulated annealing though not quite as good as a traditional object-based method.

For many types of porous media it might, however, be difficult to define the
structures that make up the matrix. In carbonate rocks post-depositional diagenesis
often completely dominates the matrix structure (see [39]), making object-based
techniques difficult to use. In field-scale reservoir characterization the same
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problems are often experienced where there are multiple faces with distinctive
connected geometries; for example, in fluvial reservoirs. Gaussian field techniques
will not reproduce the channel connectivity whereas object-based methods rely on
the faces geometries being easily parameterized. Strebelle [62] suggested a
statistical algorithm in which the multiple-point statistics were inferred from
exhaustive 2D training images of equivalent reservoir structures and then used to
reconstruct the reservoir, adhering to any conditioning data. This method was
applied successfully to both fluvial and more complex patterned reservoirs. The
ability to reproduce any pattern makes this method highly attractive for recon-
structing complex porous media like carbonates. Okabe et al. [46] have used this
algorithm to reconstruct a 3D Fontainebleau sandstone from a 2D training image.
Although the granular structure is not as well reproduced as in object-based
methods, the local percolation probability is significantly better reproduced than
that achieved by other statistical methods such as Gaussian field techniques.

2.4.2 Transport Properties

When estimating single phase transport properties like absolute permeability it is
possible to conduct flow experiments directly on the 3D reconstructed sample.
Many authors have reported good agreement with experimentally obtained values
when solving the Stokes equation for single phase flow using finite difference
methods (see [1, 29]) or the Lattice-Boltzmann method [41]. The importance of
reproducing long-range connectivity in any reconstruction technique is clearly
evident from calculations of absolute permeability. Whereas object-based methods
reproduce permeability values within a few percentage points, traditional Gaussian
field techniques and simulated annealing typically under-predict permeability by
about a factor of ten for low porosity systems that are close to the percolation
threshold [29, 41]. For higher porosity systems, the statistical methods generally
perform somewhat better at reproducing the local percolation probability [40],
with permeability predicted within a factor of about five (see [47]).

Even single phase simulations conducted directly on the 3D reconstructed
sample are computationally very expensive. A common way to model both single
and multiphase flow quickly on large systems is to represent complex porous media
by an equivalent network of pores and connecting throats. Absolute permeability
has been successfully predicted, as already mentioned, by Bryant et al. [9] using this
method. Another approach is to skip the 3D reconstruction process and estimate
absolute permeability directly from the 2D thin sections. Lock et al. [38] computed
a distribution of fluid conductance’s by recoding pore areas and perimeter lengths.
From this a single effective conductance was found using effective medium theory,
resulting in a direct estimate of absolute permeability. This approach was applied to
a number of sandstone thin sections with predicted absolute permeability’s
generally within a factor of 2 of the measured values.
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For multiphase flow it is possible to use Lattice-Boltzmann techniques
(see [11, 25]) to solve the transport equations on the 3D reconstructed sample.
Being computationally very demanding, their use in multiphase flow problems is,
however, limited to relatively small systems. As a consequence their applications
are more tailored towards understanding the fundamental physics of flow in
complex systems rather than for quantitative predictions.

A whole range of empirical or semi-empirical methods for predicting relative
permeability have suggested over the last five decades (see [21]). One of the most
widely used is found by combining the model by van Genuchten [70], relating
effective wetting saturation to capillary pressure, with the model for relative
permeability by Mualem [44]. Empirical fitting parameters are found by matching
the van Genuchten model to experimental capillary pressure. These parameters are
subsequently used for the relative permeability predictions. However, what most
of these models have in common is that they are only applicable for strongly
water-wet data, and many of them also rely on difficult to define parameters such
as tortuosity exponents.
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