

Lecture Notes in Computer Science 7152
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Rajeev Joshi Peter Müller
Andreas Podelski (Eds.)

Verified Software:
Theories, Tools,
Experiments

4th International Conference, VSTTE 2012
Philadelphia, PA, USA, January 28-29, 2012
Proceedings

13

Volume Editors

Rajeev Joshi
MS 301-285
4800 Oak Grove Drive, Pasadena, CA 91109, USA
E-mail: rajeev.joshi@jpl.nasa.gov

Peter Müller
ETH Zürich
Universitätstr. 6, 8092 Zürich, Switzerland
E-mail: peter.mueller@inf.ethz.ch

Andreas Podelski
University of Freiburg
Department of Computer Science
Georges-Köhler-Allee 52, 79110 Freiburg, Germany
E-mail: podelski@informatik.uni-freiburg.de

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-27704-7 e-ISBN 978-3-642-27705-4
DOI 10.1007/978-3-642-27705-4
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011944848

CR Subject Classification (1998): D.2, F.3, D.3, D.1, C.2, F.4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the papers presented at the 4th International Conference
on Verified Software: Theories, Tool and Experiments (VSTTE), which was held
in Philadelphia, USA, during January 28–29, 2012. Historically, the conference
originated from the Verified Software Initiative (VSI), a cooperative, interna-
tional initiative directed at the scientific challenges of large-scale software ver-
ification. The inaugral VSTTE conference was held at ETH Zurich in October
2005. Starting in 2008, the conference became a biennial event: VSTTE 2008
was held in Toronto, and VSTTE 2010 was held in Edinburgh.

The goal of the VSTTE conference is to advance the state of the art through
the interaction of theory development, tool evolution, and experimental valida-
tion. Topics of interest include:

– Specification and verification techniques
– Tool support for specification languages
– Tool for various design methodologies
– Tool integration and plug-ins
– Automation in formal verification
– Tool comparisons and benchmark repositories
– Combination of tools and techniques (e.g., formal vs. semiformal, software

specification vs. engineering techniques)
– Customizing tools for particular applications
– Challenge problems
– Refinement methodologies
– Requirements modeling
– Specification languages
– Specification/verification case studies
– Software design methods
– Program logic

The conference received 54 submissions, of which 20 were accepted after a
rigorous review process, for an acceptance rate of 37%.

The conference included two invited talks, by Rupak Majumdar (Max Planck
Institute for Software Systems) and Wolfgang Paul (Saarland University), and
two tutorials, by Rustan Leino (Microsoft Research) and Francesco Logozzo
(Microsoft Research).

A software verification competition was also held in advance of the main con-
ference. This competition consisted of five independent programs, which had to
be verified using automated verification tools. The competition was held online,
November 8–10, 2011, and was a great success, with 29 participating teams,
comprising 79 individuals, and 22 verification tools. Competition results were
announced on December 5, 2011.

VI Preface

We would like to thank the invited speakers, all submitting authors, the
organizers of the verification competition, the Steering Committee, the General
Chair, the external reviewers, and especially the Program Committee, who put
in a lot of hard work into reviewing and selecting the papers that appear in this
volume.

November 2011 Rajeev Joshi
Peter Müller

Andreas Podelski

Organization

Program Committee

Clark Barrett New York University, USA
Lars Birkedal IT University of Copenhagen, Denmark
Patrick Cousot Courant Institute - New York University and École

normale supérieure, USA and France
Leonardo De Moura Microsoft Research, USA
Jean-Christophe Filliatre CNRS, France
John Hatcliff Kansas State University, USA
Bart Jacobs Katholieke Universiteit Leuven, Belgium
Ranjit Jhala UC San Diego, USA
Rajeev Joshi Laboratory for Reliable Software, Jet Propulsion

Laboratory, USA
Gerwin Klein NICTA and UNSW, Australia
Viktor Kuncak EPFL, Switzerland
Gary T. Leavens University of Central Florida, USA
Rustan Leino Microsoft Research, USA
Panagiotis Manolios Northeastern University, USA
Peter Müller ETH Zurich, Switzerland
Tobias Nipkow TU Munich, Germany
Matthew Parkinson Micrsosoft Research, UK
Corina Pasareanu CMU/NASA Ames Research Center, USA
Wolfgang Paul Saarland University, Germany
Andreas Podelski University of Freiburg, Germany
Natasha Sharygina Università della Svizzera Italiana, Switzerland
Willem Visser Stellenbosch University, South Africa
Thomas Wies IST Austria

Additional Reviewers

Alberti, Francesco
Andronick, June
Apel, Sven
Bagherzadeh, Mehdi
Bengtson, Jesper
Blanchet, Bruno
Boyton, Andrew
Brim, Lubos
Butterfield, Andrew
Chamarthi, Harsh Raju

Chlipala, Adam
Daum, Matthias
Dinsdale-Young, Thomas
Dross, Claire
Fedyukovich, Grigory
Feret, Jérôme
Goldberg, Eugene
Greenaway, David
Gvero, Tihomir
Hadarean, Liana

VIII Organization

Haddad, Ghaith
Hansen, Michael R.
Hildebrandt, Thomas
Hobor, Aquinas
Hojjat, Hossein
Hussain, Faraz
Jacobs, Swen
Jain, Mitesh
Jeong, Mina
Jovanovic, Dejan
King, Tim
Kolanski, Rafal
Lahiri, Shuvendu
Laviron, Vincent
Losa, Giuliano
Martel, Matthieu
Massé, Damien
Mauborgne, Laurent
Mery, Dominique
Milicevic, Aleksandar
Miné, Antoine

Murray, Toby
Neis, Georg
Norrish, Michael
Ouaknine, Joel
Owens, Scott
Papavasileiou, Vasilis
Paskevich, Andrei
Pichardie, David
Rollini, Simone Fulvio
Rozier, Kristin Yvonne
Sery, Ondrej
Smans, Jan
Suter, Philippe
Svendsen, Kasper
Tkachuk, Oksana
Tsitovich, Aliaksei
Vogels, Frédéric
Vujosevic-Janicic, Milena
Wang, Wei
Wickerson, John
Zufferey, Damien

Table of Contents

Cyber War, Formal Verification and Certified Infrastructure 1
Wolfgang Paul

A Certified Multi-prover Verification Condition Generator 2
Paolo Herms, Claude Marché, and Benjamin Monate

Integrated Semantics of Intermediate-Language C and Macro-Assembler
for Pervasive Formal Verification of Operating Systems and Hypervisors
from VerisoftXT . 18

Sabine Schmaltz and Andrey Shadrin

The Location Linking Concept: A Basis for Verification of Code Using
Pointers . 34

Gregory Kulczycki, Hampton Smith, Heather Harton,
Murali Sitaraman, William F. Ogden, and Joseph E. Hollingsworth

Verifying Implementations of Security Protocols by Refinement 50
Nadia Polikarpova and Micha�l Moskal

Deciding Functional Lists with Sublist Sets . 66
Thomas Wies, Marco Muñiz, and Viktor Kuncak

Developing Verified Programs with Dafny . 82
K. Rustan M. Leino

Verifying Two Lines of C with Why3: An Exercise in Program
Verification . 83

Jean-Christophe Filliâtre

Development and Evaluation of LAV: An SMT-Based Error Finding
Platform . 98

Milena Vujošević-Janičić and Viktor Kuncak

A Lightweight Technique for Distributed and Incremental Program
Verification . 114

Martin Brain and Florian Schanda

A Comparison of Intermediate Verification Languages: Boogie and
Sireum/Pilar . 130

Loren Segal and Patrice Chalin

LLBMC: Bounded Model Checking of C and C++ Programs Using a
Compiler IR . 146

Florian Merz, Stephan Falke, and Carsten Sinz

X Table of Contents

The Marriage of Exploration and Deduction . 162
Rupak Majumdar

Modeling and Validating the Train Fare Calculation and Adjustment
System Using VDM++ . 163

Nguyen Van Tang, Daisuke Souma, Goro Hatayama, and
Hitoshi Ohsaki

Formalized Verification of Snapshotable Trees: Separation and
Sharing . 179

Hannes Mehnert, Filip Sieczkowski, Lars Birkedal, and Peter Sestoft

Comparing Verification Condition Generation with Symbolic Execution:
An Experience Report . 196

Ioannis T. Kassios, Peter Müller, and Malte Schwerhoff

Verification of TLB Virtualization Implemented in C 209
Eyad Alkassar, Ernie Cohen, Mikhail Kovalev, and Wolfgang J. Paul

Formalization and Analysis of Real-Time Requirements: A Feasibility
Study at BOSCH . 225

Amalinda Post and Jochen Hoenicke

Our Experience with the CodeContracts Static Checker
(Invited Tutorial) . 241

Francesco Logozzo

Isabelle/Circus: A Process Specification and Verification
Environment . 243

Abderrahmane Feliachi, Marie-Claude Gaudel, and Burkhart Wolff

Termination Analysis of Imperative Programs Using Bitvector
Arithmetic . 261

Stephan Falke, Deepak Kapur, and Carsten Sinz

Specifying and Verifying the Correctness of Dynamic Software
Updates . 278

Christopher M. Hayden, Stephen Magill, Michael Hicks,
Nate Foster, and Jeffrey S. Foster

Symbolic Execution Enhanced System Testing . 294
Misty Davies, Corina S. Păsăreanu, and Vishwanath Raman

Infeasible Code Detection . 310
Cristiano Bertolini, Martin Schäf, and Pascal Schweitzer

Author Index . 327

Cyber War, Formal Verification
and Certified Infrastructure

Wolfgang Paul

Saarland University, Germany
wjp@cs.uni-saarland.de

Abstract. Cyber war is recognized to be real. Like all wars this is bad for many
people, but not for manufacturers of weapons. An attacker in cyber war can be
defined as an unauthorized user process without access to physical side channels;
with physical access we would be back to ordinary warfare and espionage. IT
infrastructure which - by separation theorems - can be guaranteed to be immune
against such attackers is therefore a defensive weapon in cyber war. The verifica-
tion community is the only potential manufacturer of such infrastructure and thus
has a chance to access resources vastly superior to those for ordinary research
and development.

In order to develop such infrastructure, one would have to

1. develop a pervasive mathematical theory of IT infrastructure
2. formally verify it
3. convince industry and politicians, that the specifications of this theory are

meaningful and
4. convince certification agencies, that all verification tools involved are sound

Problem (3) could be solved by providing standardized machine readable specifi-
cations of the usual components of IT infrastructure. Note that agreeing on stan-
dards is usually a non trivial sociological process. (1), (2) and (4) are ’ordinary’
technical problems. In the main part of this talk we will review the state of the
art for these problems and estimate the resources to resolve the remaining open
subproblems. The resulting costs are large compared to normal research budgets
and very small compared to the cost of war.

R. Joshi, P. Müller, and A. Podelski (Eds.): VSTTE 2012, LNCS 7152, p. 1, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Certified Multi-prover Verification Condition
Generator�

Paolo Herms1,2,3, Claude Marché2,3, and Benjamin Monate1

1 CEA, LIST, Lab. de Sûreté du Logiciel, Gif-sur-Yvette F-91191
2 INRIA Saclay - Île-de-France, 4 rue Jacques Monod, Orsay, F-91893

3 Lab. de Recherche en Informatique, Univ Paris-Sud, CNRS, Orsay, F-91405

Abstract. Deduction-based software verification tools have reached a
maturity allowing them to be used in industrial context where a very
high level of assurance is required. This raises the question of the level of
confidence we can grant to the tools themselves. We present a certified
implementation of a verification condition generator. An originality is its
genericity with respect to the logical context, which allows us to produce
proof obligations for a large class of theorem provers.

1 Introduction

Among the various classes of approaches to static verification of programs, the
so-called deductive verification approach amounts to verifying that a program
satisfies a given behavioral specification by means of theorem proving. Typically,
given a program and a formal specification, a verification condition generator
produces a set of logical formulas, that must be shown to be valid by some
theorem prover. Deductive verification tools have nowadays reached a maturity
allowing them to be used in industrial context where a very high level of assur-
ance is required [25]. This raises the question of the level of confidence we can
grant to the tools themselves. This is the question we address in this paper.

One can distinguish two main kinds of deductive verification approaches. The
first kind is characterized by the use of a deep embedding of the input program-
ming language in a general purpose proof assistant. One of the earlier work of
this kind is done in the SunRise system in 1995 [17] where a simple impera-
tive language is defined in HOL, with a formal operational semantics. A set of
Hoare-style deduction rules are then shown valid. A SunRise program can then
be specified using HOL assertions, and proved in the HOL environment.

The second kind of approaches provide standalone verification condition gen-
erators automatically producing verification conditions, usually by means of vari-
ants of Dijkstra’s weakest precondition calculus. This is the case of ESC/Java [10],
B [1] ; the Why platform [14] and its Java [22] and C [13] front-ends ; and
Spec# [3] and VCC [11] which are front-ends to Boogie [2]. Being independent of

� This work is partly supported by the U3CAT project (ANR-08-SEGI-021,
http://frama-c.com/u3cat/) of the French national research organization (ANR).

R. Joshi, P. Müller, and A. Podelski (Eds.): VSTTE 2012, LNCS 7152, pp. 2–17, 2012.
© Springer-Verlag Berlin Heidelberg 2012

http://frama-c.com/u3cat/

A Certified Multi-prover Verification Condition Generator 3

any underlying proof assistant, these tools analyze programs where formal spec-
ifications are given in ad-hoc annotation language such as JML [7] and ACSL [4].
However, up to now these standalone tools have never been formally proved to
be sound.

Our goal is to combine the best of both approaches: a guaranteed sound
VC generator, able to produce VCs for multiple provers. We implement and
prove sound, in the Coq proof assistant [5], a VC generator inspired by the former
Why tool. To make it usable with arbitrary theorem provers as back-ends, we
make it generic with respect to a logical context, containing arbitrary abstract
data types and axiomatizations. Such a generic aspect is suitable to formalize
memory models needed to design front-ends for mainstream programming lan-
guage, as it is done for C by VCC above Boogie or Frama-C/Jessie above Why.
The input programs of our VC generator are imperative programs written in a
core language which operates on mutable variables whose values are data types
of the logical context. The output logic formulas are built upon the same logical
context. This certified Coq implementation is crafted so it can be extracted into
a standalone executable.

Section 2 formalizes our notion of generic logical contexts. Section 3 formal-
izes our core language, and defines its operational semantics. Section 4 defines
the weakest precondition computation WP and proves its soundness. Theorem 1
states that if for each function of a program, its pre-condition implies the WP
of its post-condition, then all its annotations are satisfied. Section 5 aims at the
extraction of a standalone executable. We introduce a variant wp of the calcu-
lus which produces concrete formulas instead of Coq ones. Theorem 2 states
that wp obligations imply the WP obligations. The main result is then Theo-
rem 3 which states the soundness of the complete VC generation process. We
conclude in Section 6 by comparing with related works and discussing perspec-
tives. Due to lack of space, we sometimes refer to our technical report [16] for
technical details. The sources of the underlying Coq development are available
at http://www.lri.fr/~herms/ .

2 Logical Contexts

Our background logic is multi-sorted first-order logic with equality. Models for
specifying programs can be defined by declaring types, constant, function and
predicate symbols and axioms. Models may integrate predefined theories, a typ-
ical example being integer arithmetic.

Definition 1. A logical signature is composed of (1) a set utype of sort names
introduced by the user ; (2) a set sym of constant, function and predicate symbols;
(3) a set ref of global reference names and (4) a set exc of exceptions names.
The set of all data types is defined by the grammar

type::= Tuser utype | Tarrow type type | Tprop

that is, the types are completed with built-in types for propositions and func-
tions. We require every symbol, exception and reference to have an associated

http://www.lri.fr/~herms/

4 P. Herms, C. Marché, and B. Monate

type array
logic select : array -> int -> int
logic store :
array -> int -> int -> array
axiom select_eq: forall a,i,x.
select (store a i x) i = x
axiom select_neq : forall a,i,j,x.
i <> j ->
select (store a i x) j =
select a j

logic sorted : array -> int -> prop
axiom sorted_def: forall a,n.
sorted a n <->
forall i,j. 0 <= i <= j < n ->
select a i <= select a j

logic swap : array -> array ->
int -> int -> prop

axiom swap_def: forall a,b,i,j.
swap a b i j <->
select a i = select b j /\
select a j = select b i /\
forall k. k <> i /\ k <> j ->
select a k = select b k

logic permut:
array -> array -> int -> prop
axiom permut_refl: forall a,n.
permut a a n
axiom permut_sym: forall a,b,n.
permut a b n -> permut b a n
axiom permut_trans:
forall a,b,c,n.
permut a b n /\ permut b c n ->
permut a c n

axiom permut_swap:
forall a,b,i,j,n.
0 <= i < n /\ 0 <= j < n /\
swap a b i j -> permut a b n

Fig. 1. Logical context for sorting

type. In our Coq implementation, sym, ref , and exc are of type type → Type (see
the report for details [16]). The parameter of the latter are written as subscript
in the following.

Example 1. Fig. 1 presents an appropriate model for specifying a program for
sorting an array. An abstract type array is introduced to model arrays of integers
indexed by integers. It is axiomatized with the well-known theory of arrays. We
also define predicates (sorted t i) meaning that t[0], . . . , t[i− 1] is an increasing
sequence, and (permut t1 t2) meaning that t1 is a permutation of t2. The latter is
axiomatized: it is an equivalence relation that contains all transpositions (swap)
of two elements.

The logical signature of this example is thus given by utype = {array}
and sym = {select, store, sorted, swap, permut} (ref and exc will come
later). Each symbol is annotated by the appropriate type, e.g.
select : sym(Tarrow(Tuser array)(Tarrow Tint Tint)).

2.1 Dependently Typed de Bruijn Indices

A design choice in our formalization is to define terms and expressions such that
they are well typed by construction. This simplifies the definition of the semantics
and the weakest precondition calculus on such expressions, as we don’t need to
handle malformed constructions at those points. To begin we need to ensure
that occurrences of variables actually correspond to bound variables in their

A Certified Multi-prover Verification Condition Generator 5

current scopes and that they are used with the correct type. Here we use so-
called dependently typed de Bruijn indices following the preliminary approach
of Herms [15] as documented in [8].

Dependent indices are like regular de Bruijn indices, in that I0 refers to the
innermost bound variable, (IS I0) to the second innermost bound variable, etc.
Additionally they carry information about their typing environment and about
the type of the variable they represent. We use indices of type idxA,E to represent
variables of type A under a typing environment E, that is the list of the types of
the bound variables. The type of the innermost bound variable is stored at the
first position in the typing environment, the type of the second innermost bound
variable at the second position, etc. In Coq we can formalize this constraint about
the valid parameters of idx by assigning its constructors the types I0 : idxA,A::E

and IS : idxA,E → idxA,B::E (see [16]).
Dependent indices are thus placeholders within terms but they can also be

used to reference elements within heterogeneous lists. In such a heterogeneous
list each element may have a different type. The type hlistE of heterogeneous lists
then depends on the list of types E of their elements. Thanks to the constraints
on the type parameters, if an index i : idxA,E references an element within a
heterogeneous list l : hlistE , we are sure to find an element of type A at i-th
position of l. This allows us to define the function accsidx : idxA,E → hlistE → A
which recursively accesses elements within a heterogeneous list.

We will use these heterogeneous lists to give semantics to our languages.
Precisely, heterogeneous lists are the representation of evaluation environments
which associate a value to each variable in the current typing environment. The
function accsidx is then used in the semantics rule for variable access.

Example 2. The heterogeneous list l = [5; true; succ] has type hlist [Z; bool; Z →
Z]. De Bruijn indices I0 : idxZ,[Z;bool;Z→Z] and IS (IS I0) : idx(Z→Z),[Z;bool;Z→Z],
are well-typed and can be used to access their values, e.g. accsidx I0 l = 5 : Z

and accsidx (IS I0) l = true : bool.

2.2 Terms and Propositions

Terms and propositions follow the usual classical first-order logic. For the need of
programs, we add the declaration of local names using let binders, the access to
a reference r (with concrete syntax !r) and the dereferencing of such a reference
in a former state labeled by l (concrete syntax r@l). Labels are represented by
bounded integers and new labels can be declared at the expression level.

The formal syntax of terms and propositions is given in Fig. 2. Terms tL,E,A

and propositions pL,E depend on the parameters E and L, denoting respectively
the typing environment and the highest index of a valid label. Terms addition-
ally depend on the parameter A, the type of the value they denote. Variables
are represented by our dependent indices idxA,E. The constructor Tlet expresses
let-blocks at the term level. As usual with de Bruijn indices, no variable name is
given and the body of the block is typed in a typing environment that is enriched

6 P. Herms, C. Marché, and B. Monate

tL,E,A ::= Tconst symA

| Tvar idxA,E

| Tapp tL,E,(TarrowBA) tL,E,B

| Tlet tL,E,B tL,B::E,A

| Tderef refA (* !r *)
| Tat labelL refA (* r@l *)

pL,E ::= Peq tL,E,A tL,E,A

| Pand pL,E pL,E

| Pimply pL,E pL,E

| Pforall pL,A::E

| Plet tL,E,A pL,A::E

| Pfalse
| Pterm tL,E,Tprop

Fig. 2. Inductive definitions of terms and propositions

by the type of the term to be remembered. The symbol application is formalized
in a curryfied style. For the propositions we define only the ones needed within
the WP calculus. The constructor Pterm allows to construct user-defined atomic
propositions from terms. As Tlet at the term-level, Plet expresses let-blocks at
the level of props and binds a new de Bruijn variable. Similarly Pforall binds a
new de Bruijn variable but generalizing it instead of assigning a value to it. The
Pforall and the Plet bind a new de Bruijn variable.

2.3 Logical Contexts, Semantics

The semantics of our generic language depends on an interpretation given to
types and symbols. From such an interpretation, any term or proposition can be
given a value, in a given environment for variables and given state for references.

Given a logical signature, an interpretation is a pair of a function denutype
giving an interpretation of the user types, and a function densym giving an inter-
pretation of the introduced function and predicate symbols. Given
denutype we define dentype to interpret all types. An evaluation environment
Γ of type envE is a heterogeneous list as described above. A memory state S
of type stateL is a vector of size L of mappings from references refA to val-
ues of type dentypeA. The first element denotes the current state whereas the
(l + 1)-nth element denotes the state labeled by l. This is the reason for the
L-parameter of terms and propositions. A term of type tL,E can be safely eval-
uated in a state of type stateL. As a special case, a state0 is only composed of
the current state and t0,E cannot contain any labeled dereferenciation at all. The
semantics of terms is defined by structural recursion (Fig. 3), where we use the
syntactic sugar Here S = S[0] and At S l = S[l + 1] by analogy to the syntax.
Note how the rules for Tlet and Pforall push the newly bound variable into Γ .
Note also how correct typing is ensured by construction.

A logical context is a pair of a logical signature and a set of axioms over it.
The programs that will be written in the next section will assume a given logical
context. The goal is to prove them valid with respect to any interpretation which
makes the axioms of that context valid: this will allow us to use various provers
to discharge them.

A Certified Multi-prover Verification Condition Generator 7

[[Tconst s]]Γ,S ::= densym s
[[Tvar v]]Γ,S ::= accsidx Γ v

[[Tderef r]]Γ,S ::= Here S r
[[Tapp t1 t2]]Γ,S ::= ([[t1]]Γ,S [[t2]]Γ,S)
[[Tlet t1 t2]]Γ,S ::= [[t2]][[t1]]Γ,S ::Γ,S

[[Tat l r]]Γ,S ::= At S l r

[[Peq t1 t2]]Γ,S ::= [[t1]]Γ,S = [[t2]]Γ,S

[[Pand p1 p2]]Γ,S ::= [[p1]]Γ,S ∧ [[p2]]Γ,S

[[Pimply p1 p2]]Γ,S ::= [[p1]]Γ,S → [[p2]]Γ,S

[[Pforall p]]Γ,S ::= ∀b : B, [[p]]b::Γ,S

[[Plet t p]]Γ,S ::= [[p]][[t]]Γ,S ::Γ,S

[[Pfalse]]Γ,S ::= ⊥
[[Pterm t]]Γ,S ::= [[t]]Γ,S

Fig. 3. Denotational semantics of terms and propositions

3 The Core Programming Language

3.1 Informal Description

Our core language follows most of the design choices of the input language of
Why. Indeed we reduce to an even more basic set of constructs, nevertheless
remaining expressive enough to encode higher-level sequential algorithms. We
follow an ML-style syntax; in particular there is no distinction between expres-
sions and instructions. A program in this language is defined by a logical context
and a finite set of function definitions, denoted f below, which can modify the
global references of the context and can be mutually recursive.

Following again the Why design, our core language contains an exception
mechanism, providing powerful control flow structures. As we will see these can
be handled by weakest pre-condition calculus without major difficulty. Loops
are infinite ones, with a given invariant. The only way to exit them is by using
exceptions. We use e1; e2 as a shortcut for let v = e1 in e2 when the variable v
is unused.

A definition of a function follows the structure

let f(x1 : τ1, . . . , xn : τn) : τ = { p } e { q }

where the predicates p and q are the pre- and the post-condition. The types are
those declared in the logical context. In the post-condition, the reserved name
result is locally bound and denotes the result of the function of type τ and label
Old is bound to denote the pre-state. Note that exceptions are not supposed
to escape function bodies. We could easily support such a feature by adding a
family of post-conditions indexed by exceptions as in Why [12].

Example 3. In Fig. 4 is a program that sorts the global array t by the classical
selection sort algorithm. Note the use of the exception Break to exit from the
infinite loops. Note also the use of labels in annotations, allowing to specify
assertions, loop invariants and post-conditions that link up various states of
execution.

3.2 Formal Syntax of Expressions

Like terms of the logic, expressions of programs are formalized by an inductive
type eL,E,A depending on the parameters A, E and L, denoting respectively

8 P. Herms, C. Marché, and B. Monate

��� � � �����

��� 	
������� ����� � ��� �

� ���� �

��� ��� � 	����� �� �

� �� 	���� �� �	����� �� ���

� �� 	���� �� � ���

� 	
�� �� ����� � �

��� �� ��� � � � ��

��� ���! � ���

��� 	�������"	��������� � ��� �

� � #� $ �

 �� %�

��� ����

� ������� % &� � & � '(

	����� �� '(

������ �� ����� � '(

������ !$�!)*

% &� !$ & &� !) & � +#

	����� �� !$ &� 	����� �� !) �

� � #� �+$

�,�� ��	� � ���! ��� ��	� ���

�- ���! ��� ����� �����

����. �/**�+$0 -�

�� �� 	����� �� �� � �� ��

� �� �1$�

��� ����

� ������� � & �� '(

� &� �� & � '(

��� � 	����� �� �� '(

������ !* � &� ! & �� +#

	����� �� ! #� ��� �

� �� #� �

�,�� ��	� � ���! ��� ��	� ���

� 	����� �� �� & ���

�,�� �� �� �� �

�� �� 	����� �� ���

��	� ���

� �� �� 1 $

����, ���!��� ���

��2�� 3�2�

	
���������

�		��� � ������ �� ��3�2 � � �

 �� � 1 $

����, ���!��� ���

� 	����� �� � '(������ �� ����� � �

Fig. 4. Selection sort in our core language

eL,E,A ::= Eterm tL,E,A pure term t
| Elet eL,E,B eL,B::E,A let v = e1 in e2

| Eassign refA tL,E,A r := t
| Eassert pL,E eL,E,A assert { p } in e
| Eraise excA tL,E,A raise (ex t)
| Eif pL,E eL,E,A eL,E,A if p then e1 else e2

| Eloop pL,E eL,E,B loop { invariant p } e
| Etry eL,E,A excB eL,B::E,A try e1 catch ex(v) e2

| Elab eL+1,E,A label l: e
| Ecall fA,P (tL,E,P1 , ..., tL,E,Pn) call to f

Fig. 5. Inductive definition of expressions

the evaluation type, the typing environment and the highest index of a valid
label. Abstract syntax of expressions including comprehensive type annotations
is given in Fig 5. Notice that variables v and label l are left implicit in the
inductive definition thanks to de Bruijn representation. Additionally expressions
depend on a parameter F meaning the list of signatures of the functions in
the program the expression can appear in. A signature is a pair of the return
type of the function and the list of the function’s parameters. F appears within
expressions in function calls where we use dependent indexes to refer to functions,
fA,P := idx〈A,P 〉,F . A function identifier is therefore an index pointing to an

A Certified Multi-prover Verification Condition Generator 9

Γ, S, Eterm t ⇒ S, [[t]]Γ,S

Γ, S, e1 ⇒ S′, v v :: Γ, S′, e2 ⇒ S′′, o
Γ, S, Elet e1 e2 ⇒ S′′, o

Γ, S, Eassign r t ⇒ S [r/[[t]]Γ,S] , [[t]]Γ,S

Γ, S, e1 ⇒ S′, ex (v)

Γ, S, Elet e1 e2 ⇒ S′, ex (v)

Γ, S↑ , e ⇒ S′, o
Γ, S, Elabel e ⇒ S′↓ , o

[[p]]Γ,S Γ, S, e ⇒ S′, o
Γ, S, Eassert p e ⇒ S′, o

[[p]]Γ,S Γ, S, e1 ⇒ S′, o
Γ, S, Eif p e1 e2 ⇒ S′, o

¬[[p]]Γ,S Γ, S, e2 ⇒ S′, o
Γ, S, Eif p e1 e2 ⇒ S′, o

[[p]]Γ,S S, e ⇒ S′, v S′, Eloop p e ⇒ S′′, o
S, Eloop p e ⇒ S′′, o

[[p]]Γ,S S, e ⇒ S′, ex(v)

S, Eloop p e ⇒ S′, ex(v) Γ, S, Eraise ex t ⇒ S, ex([[t]]Γ,S)

S, e1 ⇒ S′, o o 	= ex

S, Etry e1 ex e2 ⇒ S′, o
S, e1 ⇒ S′, ex(v) v :: Γ, S′, e2 ⇒ S′′, o

S, Etry e1 ex e2 ⇒ S′′, o

Γf := [[[t1]]Γ,S , ..., [[tn]]Γ,S] [[pref]]Γf ,S Γf , S, bodyf ⇒ S′, v [[postf]]v::Γf ,S′

Γ, S, Ecall f (t1, ..., tn) ⇒ S′, v

Fig. 6. Operational semantics of terminating expressions

element with the signature 〈A, P 〉 within a heterogeneous list of types F . This
heterogeneous list hlistfunc F,F is precisely the representation of a program prF ,
where each element is a function funcF,〈A,P 〉.

A function funcF,〈A,P 〉 consists of a body eF,1,E,A, a pre-condition p0,P and
a post-condition p1,A::P . In the pre-condition no labels may appear, hence its
type has the parameter 0. In the post-condition we allow referring to the pre-
state of a function call: in the syntax this corresponds to using the label Old.
The post-condition may additionally refer to the result of the function, hence its
type environment is enriched by A. Note that in the definition of programs the
parameter F appears twice: once as parameter of hlist, to define the signatures of
the functions in the program, and once as parameter of func to constrain expres-
sions in function bodies to refer only to functions with a signature appearing in
F . This way we ensure the well-formedness of the graph structure of programs.

3.3 Operational Semantics

The operational semantics is defined in big-step style following the approach of
Leroy and Grall [20]. A first set of inference rules inductively defines the seman-
tics of terminating expressions (Fig. 6) and a second set defines the semantics of
non-terminating expressions, co-inductively (Fig. 7). Judgement Γ, S, e ⇒ S′, o
expresses that in environment Γ and state S, the execution of expression e termi-
nates, in a state S′ with outcome o: either a normal value v or an exception ex(v)
where v is the value held by it. There are two rules for let e1 in e2 depending
on the outcome of e1. The rule for assignment uses the update operation S[r/a]

10 P. Herms, C. Marché, and B. Monate

Γ, S, e1 ⇒ ∞
Γ, S, Elet e1 e2 ⇒ ∞====================

Γ, S, e1 ⇒ S′, v v :: Γ, S′, e2 ⇒ ∞
Γ, S, Elet e1 e2 ⇒ ∞====================================

[[p]]Γ,S Γ, S, e1 ⇒ ∞
Γ, S, Eif p e1 e2 ⇒ ∞======================

¬[[p]]Γ,S Γ, S, e2 ⇒ ∞
Γ, S, Eif p e1 e2 ⇒ ∞========================

Γ, S↑ , e ⇒ ∞
Γ, S, Elabel e ⇒ ∞==================

[[p]]Γ,S Γ, S, e ⇒ ∞
Γ, S, Eassert p e ⇒ ∞=====================

[[p]]Γ,S S, e ⇒ ∞
S, Eloop p e ⇒ ∞====================

[[p]]Γ,S S, e ⇒ S′, v S′, Eloop p e ⇒ ∞
S, Eloop p e ⇒ ∞===

S, e1 ⇒ ∞
S, try e1 catch ex() e2 ⇒ ∞===========================

S, e1 ⇒ S′, ex(v) v :: Γ, S′, e2 ⇒ ∞
S, try e1 ex e2 ⇒ ∞======================================

Γf := [[[t1]]Γ,S , ..., [[tn]]Γ,S] [[pref]]Γf ,S Γf , S, bodyf ⇒ ∞
Γ, S, Ecall f (t1, ..., tn) ⇒ ∞==

Fig. 7. Operational semantics of non-terminating expressions

on states which replaces the topmost mapping for r in S. A labeled expression
is evaluated in an enriched state S↑ where the current state is copied on top of
the vector. The resulting state S′↓ is obtained by deleting the second position
of the vector what corresponds to “forget” the previously copied current state.
The rule for function calls requires the pre-condition to be valid in the starting
state and, if the function terminates normally, the validity of the post-condition
in the returning state to be valid too.

Judgement Γ, S, e ⇒ ∞ expresses that the execution of expression e does not
terminate in environment Γ and state S. Its definition is straightforward: the
execution of an expression diverges if the execution of a sub-expression diverges.
The interesting cases are for the execution of a loop: starting from a given state
S, it diverges either if its body diverges or if its body terminates on some state
S′ and the whole loop diverges starting from this new state. Of course, non-
termination may be caused by infinite recursion of functions, too.

The main feature to notice is that execution blocks whenever an invalid asser-
tion is met: the rules for assertions, loops and function calls are applicable only
if the respective annotations are valid. Conversely, as everything is well-typed
by construction, the only reason why an expression wouldn’t execute is that one
of its annotations isn’t respected.

Definition 2 (Safe execution). An expression e executes safely in environ-
ment Γ and state S, denoted Γ, S, e

safe⇒ , if either it diverges: Γ, S, e ⇒ ∞, or it
terminates: S′, o, Γ, S, e ⇒ S′, o.

A program respects its annotations if for each function f and any Γ, S such
that [[pref]]Γ,S we have Γ, S, bodyf

safe⇒ and if Γ, S, bodyf ⇒ S′, o then o is a
normal outcome v such that [[postf]]v::Γ,S′ .

A Certified Multi-prover Verification Condition Generator 11

WP (Eterm t) Q R Γ S = Q S [[t]]Γ,S

WP (Elet e1 e2) Q R Γ S = WP e1 (λS a, WP e2 Q R (a :: Γ) S) R Γ S

WP (Eassign r t) Q R Γ S = Q (S[r/[[t]]Γ,S]) [[t]]Γ,S

WP (Eassert p e) Q R Γ S = [[p]]Γ,S ∧ WP e Q R Γ S

WP (Eraise ex t) Q R Γ S = R S ex [[t]]Γ,S

WP (Eif p e1 e2) Q R Γ S = ([[p]]Γ,S → WP e1 Q R Γ S)

∧ (¬[[p]]Γ,S → WP e2 Q R Γ S)

WP (Eloop p e) Q R Γ S = [[p]]Γ,S ∧ ∀S′, S writes e� S′ → [[p]]Γ,S′ →
WP e (λS′′ v, [[p]]Γ,S′′) R Γ S′

WP (Etry e1 ex e2) Q R Γ S = WP e1 Q (λS′ ex′ a, if ex = ex′

then WP e2 Q R (a :: Γ) S′ else R ex′ a) Γ S

WP(Elabel e) Q R Γ S = WP e Q R Γ S↑
WP (Ecall f (t1, ..., tn)) Q R Γ S = [[pref]]Γargs ,S ∧ ∀S′ a, S

writes f� S′ →
[[postf]](a::Γargs),(S′,S) → Q S′ a

where Γargs := [[[t1]]Γ,S , ..., [[tn]]Γ,S]

Fig. 8. Recursive definition of the WP-calculus

Our semantics is quite unusual, in particular it is not executable. Although, if
annotations are removed then it becomes executable (indeed only if the propo-
sitional guards in if-then-else blocks are decidable) and coincides with a natural
semantics. This approach makes obsolete a distinct set of rules for axiomatic
semantics à la Hoare: the soundness of the verification condition generator will
be stated using this definition of safe execution. Moreover this notion of safe
execution is indeed stronger than the usual notion of partial correctness: a safe
program that does not terminate will still satisfy its annotations forever.1

4 Weakest Precondition Calculus

We calculate the weakest pre-condition of an expression given a post-condition
by structural recursion over expressions (Fig. 8). We admit several post-
conditions, NormalL,A : stateL → dentypeA → Prop for regular execution and
ExceptionalL : stateL → ∀B, exnB → dentypeB → Prop for exceptional behav-
ior. So our calculus has the type WP : eL,E,A → NormalL,A → ExceptionalL →
envE → stateL → Prop. In the case of a loop, the pre-condition is calculated
using the loop invariant and in the case of a function call we use the pre- and
post-condition of that function. In both cases, as it is classical in WP calculi, we
need to quantify over all states that may be reached by normal execution starting
1 Total correctness is not considered in this paper; however it is clear that one

could add annotations for termination checking: variants for loops and for recursive
functions as in ACSL [4].

12 P. Herms, C. Marché, and B. Monate

from the given state S: these are the states S′ which differ from S only for the
references that are modified in the loop or the function’s body. This is denoted as
S

s� S′ := ∀r : refA, r /∈ s → (Here S′ r = Here S r ∧ ∀l, At l S′ r = At l S r).
The function writes computes the references modified by some expression, it is
shown correct [16] in the sense that if Γ, S, e ⇒ S′, o then S

writes e� S′.
The verification conditions, respectively for one function and for a whole pro-

gram, are

VC(f) := [[pref]]Γ,S → WP bodyf (λS′ v, [[postf]]v::Γ,S′) (λS′ ex v, False) Γ S

VCGEN := ∀f : idx〈A,P 〉,F Γ S, VC(f)

The False as exceptional post-conditions requires that no function body exits
with an exception.

We now state that if the VCs hold for all functions then any expression having
a valid WP executes safely. It is proved by co-induction, using the axiom of
excluded middle to distinguish whether the execution of an expression does or
does not terminate, following the guidelines of Leroy and Grall [20]. Notice that
it is enough to prove the verification conditions for each function separately, even
if functions can be mutually recursive, there is no circular reasoning.

Lemma 1 (safety of expressions). If VCGEN holds then for any Γ, S, e, Q, R,
if (WP e Q R Γ S) then Γ, S, e

safe⇒ .

The important corollary below states that if the VCs hold for all functions then
any of their bodies execute safely. By definition of the semantics, this implies
that all assertions, invariants and pre- and post-conditions in a given program
are verified if the verification conditions are valid.

Theorem 1 (soundness of VCGEN). If VCGEN holds then the program re-
spects its annotations, as defined in Def. 2

5 Extraction of a Certified Verification Tool

The obtained Coq function for generating verification conditions is not
extractable: given a program pg we obtain a Coq term (VCGEN pg) of Coq type
Prop which must be proved valid to show the correctness of the program. The
process thus remains based on Coq for making the proofs. In this section we show
how to extract the calculus into a separate tool so that proofs can be performed
with other provers, e.g. SMT solvers.

5.1 Concrete WP Computation

To achieve this we need the WP calculus to produce a formula in the abstract
syntax of Fig. 2 instead of a Coq Prop. We define another function

wp : eL,E,A → pL,A::E → (exnB → pL,B::E) → pL,E

A Certified Multi-prover Verification Condition Generator 13

which, given an expression e, a normal post-condition Q and a family of excep-
tional post-conditions R, returns a weakest pre-condition. It is defined recursively
on e similarly to WP in Fig. 8, but this time Q, R and the result are syntactic
propositions which are concretely transformed (see [16]).

Lemma 2. If [[wp e Q R]]Γ,S then

WP e (λS v, [[Q]]v::Γ,S) (λS ex v, [[R ex]]v::Γ,S) Γ S

From wp we now define a concrete verification-condition generator vcgen.

Definition 3. The concrete VCs of a program pg is the list (vcgen pg) of con-
crete formulas (Abstr(Pimply pref (wp bodyf postf Pfalse))) for each function
f of pg. Abstr is a generalization function: it prefixes any formula pL,E by as
many Pforall as elements of E to produce a pL,[] formula.

Theorem 2. If for all p in the list (vcgen pg) and for all state S, [[p]][],S then
(VCGEN pg).

That is, the hypothesis of Theorem 1 is valid if we prove the formulas generated
by vcgen valid in any state.

5.2 Producing Concrete Syntax with Explicit Binders

Still, formulas of vcgen are represented by a de Bruijn-style abstract syntax. To
print out such formulas we need to transform them into concrete syntax with
identifiers for variables by generating new names for all the binders. This could
be done on the fly in an unproven pretty-printer. Though, being a non trivial
transformation it is better to do it in a certified way directly after the generation.

We therefore formalize a back-end syntax, along with its semantics for well-
typed terms and propositions. It is similar to Fig. 2 where we replace Tconst,
Tvar and Tderef by a new constructor Tvar with an identifier as argument,
and Tlet and Pforall binders are also given an explicit identifier. We define a
compilation from de Bruijn-style terms and propositions to the back-end syntax
and prove preservation of semantics.

Finally, we define a proof task as a triple (d, h, g) where d is a finite map from
identifiers to their type, h is a set of hypotheses and g is a list of goals. Such a
task is said valid if the goals are logical consequences of the hypotheses, whatever
the interpretation of symbols in d. The complete process of VC generation is to
produce, from a logical context C and a program pg, the proof task T (C, pg) =
(d, h, g) where d are the declarations of C that appear in pg, h the compilation
of axioms of C, and g is the compilation of vcgen(pg).

Theorem 3 (Main soundness theorem). For all logical context C and pro-
gram p, if the proof task T (C, p) is valid then for any interpretation of the context
in which the axioms are valid, p executes safely.

14 P. Herms, C. Marché, and B. Monate

Notice that this statement is independent of the underlying proof assistant Coq:
the validity of logical formulas in the proof task can be established by any theo-
rem prover. The only hypothesis is that the backend theorem prover in use must
agree with our definition of the interpretation of logical contexts. But this is just
the classical first-order logic with equality, with standard predefined theories like
integer arithmetic. All the off-the-shelf theorem provers, e.g SMT solvers, agree
on that.

5.3 Extraction and Experimentation

For experimentation purposes we also defined a compilation in the opposite
direction, i.e. from programs in front-end syntax to the corresponding program
in de Bruijn syntax, provided that the former is well typed. We then use the
extraction mechanism of Coq to extract an Ocaml function that, given an AST of
our front-end syntax representing a program, produces a list of ASTs representing
the proof task. We finally combine this with the Why3 parser for input programs
and a hand-written pretty-printer that produces Why3 syntax [6], allowing us
to call automated provers on the proof task.

We made experiments to validate this process. On our selection sort example,
the two VCs for functions swap and selection_sort are generated in a fraction
of a second by the standalone VC generator. These are sent to the Why3 tool,
and they are proved automatically, again in a fraction of a second, by a combina-
tion of SMT solvers (i.e. after splitting these formulas, which are conjunctions,
into parts [6]). For details see the Coq development at the URL given in the
introduction.

6 Conclusions, Related Works and Perspectives

We formalized a core language for deductive verification of imperative pro-
grams. Its operational semantics is defined co-inductively to support possibly
non-terminating functions. The annotations are taken into account in the se-
mantics so that validity of a program with respect to its annotations is by defi-
nition the progress of its execution. We used an original formalization of binders
so that only well-typed programs can be considered, allowing us to simplify the
rest of the formalization. Weakest precondition calculus is defined by structural
recursion, even in presence of mutually recursive functions, assuming the given
function contracts. Even if there is an apparent cyclic reasoning, this approach
is shown sound by a co-inductive proof. By additionally formalizing an abstract
syntax for terms and formulas, and relating their semantics with respect to the
Coq propositions, we defined a concrete variant of the WP calculus which can
be extracted to OCaml code, thus obtaining a trustable and executable VC gen-
erator close to Why or Boogie.

As explained in the introduction, two kinds of approaches for deductive ver-
ification exist depending on the use of a deep embedding of the programming
language or not. The approaches without deep embedding typically allows the

A Certified Multi-prover Verification Condition Generator 15

user to discharge proof obligations using automatic provers, but are not certified
correct. Our work fills this gap. Among deep-embedding-based approaches, the
SunRise system of Homeier et al. [17,18] is probably the first certified program
verifier, and uses a deep embedding in the HOL proof environment. They for-
malize a core language and its operational semantics, and prove correct a set
of Hoare-style deduction rules. Programs are thus specified using HOL formu-
las and proved within the HOL environment. Later Schirmer [26] formalized
a core language in Isabelle/HOL, and Norrish formalized the C programming
language [24], with similar approaches. More recently, similar deep-embedding-
based approaches were proposed using Coq like in the Ynot system [23,9], which
can deal with “pointer” programs via separation logic, and also supports higher-
functions.

A major difference between the former approaches and ours is that we use
a deep embedding not only for programs but also for propositions and thus
for specifications. This allows us to extract a standalone executable, and conse-
quently to discharge VCs using external provers like SMT solvers. Our approach
is a basis to formalize specification languages like JML and ACSL defined on top
of mainstream programming language, which allows a user to specify and prove
Java or C programs without relying on the logic language of a specific proof
assistant.

Another difference is that we do not consider any Hoare-style rules but for-
malize a Dijkstra-style VC generator instead. This way to proceed is motivated
by the choice of defining the meaning of “a program satisfies its annotations” by
safety of its execution.

There are also some technical novelties in our approach with respect to the
systems mentioned above. Our core language supports exceptions, which is useful
for handling constructs of front-ends like break and continue, or Java excep-
tions. Specifications can also use labels to refer to former states of executions,
with constructs like \old and \at constructs of JML and ACSL. This provides
a handy alternative to the so-called auxiliary or ghost variables used in deep-
embedding-based systems above. Indeed in the context of VC generation instead
of Hoare-style rules, the semantics of such variables is tricky, e.g. when calling a
procedure, the ghost variables should be existentially quantified, which results
in VCs difficult to solve by automated provers. We believe that the use of labels
is thus better.

Our main future work is to certify the remaining part of a complete chain from
ACSL-annotated C programs to proof obligations. A first step is the formalization
of a front-end like Frama-C/Jessie which compiles annotated C to intermediate
Why code. We plan to reuse the C semantics defined in CompCert [19] and
incorporate ACSL annotations into it. The main issue in this compilation process
is the representation of the C memory heap by Why global references using a
memory heap modeling. In particular, first-order modeling of the heap, mainly
designed to help automatic provers, raised consistency problems in the past [27].
In our approach where the axioms of the logical context are realized in Coq, the
consistency is guaranteed. Finally, another part of the certification of the tool

16 P. Herms, C. Marché, and B. Monate

chain is the certification of back-end automatic provers, for which good progress
was obtained recently, see e.g. [21].

Acknowledgments. We would like to thanks Jean-Christophe Filliâtre and
Julien Signoles for their remarks on a preliminary version of this paper.

References

1. Abrial, J.-R.: The B-Book, assigning programs to meaning. Cambridge University
Press (1996)

2. Barnett, M., DeLine, R., Jacobs, B., Chang, B.-Y.E., Leino, K.R.M.: Boogie: A
Modular Reusable Verifier for Object-Oriented Programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006)

3. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# Programming System: An
Overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

4. Baudin, P., Filliâtre, J.-C., Marché, C., Monate, B., Moy, Y., Prevosto, V.: ACSL:
ANSI/ISO C Specification Language, version 1.4 (2009),
http://frama-c.cea.fr/acsl.html

5. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
Springer, Heidelberg (2004)

6. Bobot, F., Filliâtre, J.-C., Marché, C., Paskevich, A.: Why3: Shepherd your herd of
provers. In: Boogie 2011: First International Workshop on Intermediate Verification
Languages, Wrocław, Poland (August 2011)

7. Burdy, L., Cheon, Y., Cok, D.R., Ernst, M.D., Kiniry, J.R., Leavens, G.T., Leino,
K.R.M., Poll, E.: An overview of JML tools and applications. International Journal
on Software Tools for Technology Transfer (STTT) 7(3), 212–232 (2005)

8. Chlipala, A.: Certified Programming with Dependent Types. MIT Press (2011),
http://adam.chlipala.net/cpdt/

9. Chlipala, A.J., Malecha, J.G., Morrisett, G., Shinnar, A., Wisnesky, R.: Effective
interactive proofs for higher-order imperative programs. In: Hutton, G., Tolmach,
A.P. (eds.) ICFP, pp. 79–90. ACM, Edinburgh (2009)

10. Cok, D.R., Kiniry, J.R.: ESC/Java2: Uniting eSC/Java and JML. In: Barthe, G.,
Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS,
vol. 3362, pp. 108–128. Springer, Heidelberg (2005)

11. Dahlweid, M., Moskal, M., Santen, T., Tobies, S., Schulte, W.: VCC: Contract-
based modular verification of concurrent C. In: 31st International Conference on
Software Engineering Companion, ICSE 2009, Vancouver, Canada, May 16-24, pp.
429–430. IEEE Comp. Soc. Press (2009)

12. Filliâtre, J.-C.: Verification of non-functional programs using interpretations in
type theory. Journal of Functional Programming 13(4), 709–745 (2003)

13. Filliâtre, J.-C., Marché, C.: Multi-Prover Verification of C Programs. In: Davies, J.,
Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp. 15–29. Springer,
Heidelberg (2004)

14. Filliâtre, J.-C., Marché, C.: The Why/Krakatoa/Caduceus Platform for Deduc-
tive Program Verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 173–177. Springer, Heidelberg (2007)

http://frama-c.cea.fr/acsl.html
http://adam.chlipala.net/cpdt/

A Certified Multi-prover Verification Condition Generator 17

15. Herms, P.: Certification of a chain for deductive program verification. In: Bertot,
Y. (ed.) 2nd Coq Workshop, Satellite of ITP 2010 (2010)

16. Herms, P., Marché, C., Monate, B.: A certified multi-prover verification condition
generator. Research Report 7793, INRIA (2011),
http://hal.inria.fr/hal-00639977/en/

17. Homeier, P.V., Martin, D.F.: A mechanically verified verification condition gener-
ator. The Computer Journal 38(2), 131–141 (1995)

18. Homeier, P.V., Martin, D.F.: Mechanical Verification of Mutually Recursive Pro-
cedures. In: McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104,
pp. 201–215. Springer, Heidelberg (1996)

19. Leroy, X.: A formally verified compiler back-end. Journal of Automated Reason-
ing 43(4), 363–446 (2009)

20. Leroy, X., Grall, H.: Coinductive big-step operational semantics. Inf. Comput. 207,
284–304 (2009)

21. Lescuyer, S.: Formalisation et développement d’une tactique réflexive pour la dé-
monstration automatique en Coq. Thèse de doctorat, Université Paris-Sud (2011)

22. Marché, C., Paulin-Mohring, C., Urbain, X.: The Krakatoa tool for certification
of Java/JavaCard programs annotated in JML. Journal of Logic and Algebraic
Programming 58(1-2), 89–106 (2004), http://krakatoa.lri.fr

23. Nanevski, A., Morrisett, G., Shinnar, A., Govereau, P., Birkedal, L.: Ynot: Rea-
soning with the awkward squad. In: Proceedings of ICFP 2008(2008)

24. Norrish, M.: C Formalised in HOL. PhD thesis, University of Cambridge (November
1998)

25. Randimbivololona, F., Souyris, J., Baudin, P., Pacalet, A., Raguideau, J., Schoen,
D.: Applying Formal Proof Techniques to Avionics Software: A Pragmatic Ap-
proach. In: Wing, J.M., Woodcock, J., Davies, J. (eds.) FM 1999. LNCS, vol. 1709,
pp. 1798–1815. Springer, Heidelberg (1999)

26. Schirmer, N.: Verification of Sequential Imperative Programs in Isabelle/HOL. PhD
thesis, Technische Universität München (2006)

27. Wagner, M., Bormer, T.: Testing a verifying compiler. In: Beckert, B., Marché,
C. (eds.) Formal Verification of Object-Oriented Software, Papers Presented at
the International Conference, Karlsruhe Reports in Informatics, Paris (2010),
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000019083

http://hal.inria.fr/hal-00639977/en/
http://krakatoa.lri.fr
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000019083

Integrated Semantics of Intermediate-Language C and
Macro-Assembler for Pervasive Formal Verification of
Operating Systems and Hypervisors from VerisoftXT�

Sabine Schmaltz and Andrey Shadrin

Saarland University, Germany
{sabine,shavez}@wjpserver.cs.uni-saarland.de

Abstract. Pervasive formal verification of operating systems and hypervisors is,
due to their safety-critical aspects, a highly relevant area of research. Many im-
plementations consist of both assembler and C functions. Formal verification of
their correctness must consider the correct interaction of code written in these
languages, which is, in practice, ensured by using matching application binary
interfaces (ABIs). Also, these programs must be able to interact with hardware.
We present an integrated operational small-step semantics model of intermediate-
language C and Macro-Assembler code execution for pervasive operating systems
and hypervisor verification. Our semantics is based on a compiler calling conven-
tion that defines callee- and caller-save registers. We sketch a theory connecting
this semantic layer with an ISA-model executing the compiled code for use in a
pervasive verification context. This forms a basis for soundness proofs of tools
used in the VerisoftXT project and is a crucial step towards arguing formal cor-
rectness of execution of the verified code on a gate-level hardware model.

1 Introduction

For operating systems, correctness of implementation is highly desirable – in partic-
ular for safety-critical embedded systems such as cars or airplanes. Hypervisors are
employed to partition system resources efficiently, providing strictly-separated execu-
tion contexts in which operating systems can again be run. To argue implementation
correctness of a system consisting of both a hypervisor and operating systems, formal
verification can provide solid evidence if done in a pervasive way.

The L4verified kernel [1] is an example of a recent operating system verification
effort that has achieved impressive code verification results. A detailed memory model
for low-level pointer programs in C was applied in combination with separation logic
[2]. The assembler portions have not been verified in conjunction with the C code yet to
our knowledge. Judging from their choice of C semantics, however, we are certain that
all gaps present can be closed with minimal additional effort when the right models and
theories are applied. In this paper, we present a description of such a theory for C and
assembler code verification.

� Work partially funded by the German Federal Ministry of Education and Research (BMBF) in
the framework of the Verisoft XT project under grant 01 IS 07 008.

R. Joshi, P. Müller, and A. Podelski (Eds.): VSTTE 2012, LNCS 7152, pp. 18–33, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Integrated Semantics of Intermediate-Language C and Macro-Assembler 19

The FLINT group, on the other hand focuses on assembler code verification us-
ing their framework XCAP [3], which they successfully applied in [4] and [5]. So far,
however, no integration of results into a semantics stack with high-level programming
languages has been reported yet.

In a pervasive verification effort that aims at code verification above assembler-level,
compiler correctness is crucial. During the Verisoft project, a compiler for the C-like
language C0 was verified [6]. A mildly optimizing compiler that translates C-minor (a
subset of C) to PowerPC assembly code has been verified by Xavier Leroy et al. [7,8]
and used in a pervasive verification effort by Andrew Appel [9]. Both these efforts made
use of interactive theorem provers.

In the scope of this paper we provide descriptions of the Macro-Assembler
(short: MASM, section 2) and the C intermediate-language (C-IL, section 3) seman-
tics we use to construct the integrated C-IL+MASM-semantics we propose in section 4.
We combine a rather high-level assembler-semantics with a low-level C-intermediate-
language semantics. This results in a model in which function calls between the two
languages have the straightforward semantics we expect according to compiler calling
conventions. We describe how we apply pervasive theory in section 5 to prove that our
inter-language-call-semantics is sound with respect to the underlying machine-code ex-
ecution model. Note that all of this can still be considered work-in-progress since none
of the proofs have been checked in a theorem prover.

As main contributions of this paper, we consider, first, our unconventional choice to
design both C- and assembler-semantics in such a way that they can interoperate easily
– resulting in a model that accurately captures the compiler calling convention –, and,
second, our demonstration that such an integrated model can be easily justified using
pervasive compiler correctness theory.

2 Macro-Assembler Semantics

One might wonder why, in a pervasive verification effort, there is any need for a high-
level assembler semantics. Operating systems and hypervisors implemented in C and
assembler are generally compiled to machine code – a machine-code execution model
technically is fully sufficient to argue about such systems. However, doing this, we
would discard all the comfort and gain of speed that appropriate abstraction can provide.
We consider a machine-code execution model that we refer to using the name ISA-
Assembler. It is characterized by the following: Instructions are executed as atomic
transitions – an instruction pointer register points to the next instruction in memory.

Concerning code verification, the ISA-Assembler-model has one particular draw-
back: It provides no useful abstraction in terms of control flow. While this is true for
the language of machine code, the assembler code used in operating systems has struc-
ture we can exploit during formal verification: Our assembler code is called from or
calls functions of a stack-based programming language. Instead of executing machine
code instructions from the configuration’s memory at the instruction pointer, we apply
abstraction techniques normally used in high-level programming language semantics
definitions. We gain an easy-to-understand model of high-level assembler code execu-
tion that can be integrated with a C model in a straightforward way. This comes at a

20 S. Schmaltz and A. Shadrin

cost: In order to obtain a more simple model of assembler code execution, we enforce a
certain structure of code which may exclude well-behaving assembler programs. How-
ever, all code we want to verify has this structure.

We introduce Macro-Assembler (MASM) as a restricted assembler language: All tar-
gets of branch or jump instructions are either local labels or names of functions – we
model the control flow of Macro-Assembler as a labeled transition system. In order to
make integration of MASM with a stack-based programming language very simple, we
abstract from the concrete stack layout in memory by introducing a stack component in
form of a list of abstract stack frames to the configuration.

In [10], a stack-based typed low assembly language is proposed as a target language
for code verification. The authors can encode any compiler calling conventions in their
type system since everything about the stack including the stack frame header layout is
exposed. In our work we abstract the stack away hiding all details that are compiler rel-
evant. Additionally, we provide a feature found in some assembler languages: uses lists
that specify the registers used by an assembler function. The MASM-compiler inserts
instructions that save/restore these registers in the prologue/epilogue of the compiled
assembler function. In the following, we present formal definitions to elaborate on the
structure of MASM.

Configuration. A Macro-Assembler configuration

c = (c.M, c.regs, c.s) ∈ confMASM

consists of a byte-addressable memoryM : B8k → B8 (where k is the number of bytes
in a machine word and B ≡ {0, 1}), a component regs : R → B8k that maps register
names to their values, and an abstract stack s : frame∗MASM. Each frame

s[i] = (p, loc, saved, pars, lifo)

contains the name p of the assembler function we are executing in, the location loc of
the next instruction to be executed in p’s body, a component saved that is used to store
values of callee-save registers used by the function, a component pars that represents
the parameter region of the stack frame, and a component lifo that represents the part of
the stack where data can be pushed and popped to/from.

Program. A Macro-Assembler program π is a procedure table that maps function
names p to procedure table entries:

π(p) = (npar,P , uses)

Here, npar describes the total number of machine word parameters of the function,
P : instr∗MASM is a list of Macro-Assembler instructions representing the procedure
body, and uses: R∗ is a list of register names to be saved and restored.

In case the following instructions are not provided by the underlying hardware, we
implement them as assembler macros: call, ret, push, pop. An assembler macro is sim-
ply a shorthand for a sequence of assembler instructions. MASM can easily be extended
by the notion of user-defined macros, however, we have not done so yet.

Integrated Semantics of Intermediate-Language C and Macro-Assembler 21

Table 1. Operational semantics of MASM

instrnext(c) = instr(i) MASM-to-ISA(c) →
ISA

d′

π � c →
MASM

ISA-to-MASM(d′)
(INSTR)

instrnext(c) = goto l

π � c →
MASM

setloc(c, l)
(GOTO)

instrnext(c) = ifnez r goto l c.regs(r) = 08k

π � c →
MASM

incloc(c)

(GOTO-FAIL)

instrnext(c) = ifnez r goto l c.regs(r) �= 08k

π � c →
MASM

setloc(c, l)

(GOTO-SUCC)

instrnext(c) = push r
hd(c.s) = (p, loc, saved, pars, lifo)

π � c →
MASM

setlifo(incloc(c), c.regs(r) ◦ lifo)

(PUSH)

instrnext(c) = call p π(p).npar − 4 ≤ hd(c.s).lifo
callframe(c, p, framenew) c′ = droplifo(c, π(p).npar − 4)

π � c →
MASM

c′[s := framenew ◦ incloc(c
′).s]

(CALL)

instrnext(c) = pop r lifo �= [] hd(c.s) = (p, loc, saved, pars, lifo)
π � c →

MASM
setlifo(setreg(c, r, hd(lifo)), tl(lifo))

(POP)

instrnext(c) = ret

π � c →
MASM

dropframe(restoresaved(c))

(RET)

Semantics. Since Macro-Assembler is compiled to machine code, Macro-Assembler
semantics for basic instructions can be inferred from the semantics of ISA-Assembler.
The main differences stem from the distinct modeling of control-flow: In ISA-Assembler,
we have a global instruction pointer whereas in Macro-Assembler we have local pro-
gram location and stack-abstraction. Whenever a Macro-Assembler instruction accesses
the stack-region, instead of updating/reading the memory, we update/read the corre-
sponding component of the abstract stack. In case it is not trivially possible to find an
equivalent update on the abstract stack, we consider the program in question illegal – or
unsuitable for use with our semantics. This concerns, in particular, all instructions that
explicitly update the stack pointer registers (this would break our stack abstraction) or
write to addresses of the physical stack that describe return addresses or previous frame
base addresses.

In the call-rule presented in table 1, callframe(c, p, framenew) is a predicate over a
configuration c, a function p, and a frame f that enforces following conditions:

framenew.p = p, framenew.loc = 0, framenew.saved = c.regs|π(p).uses

framenew.pars[π(p).npar− 1 : 4] = readlifo(c, π(p).npar− 4), framenew.lifo = []

All registers in the uses list of the function are saved in the new frame, and parameters
that are passed on the stack are moved from the lifo-component of the top-most frame to
the pars-component of the new frame. The calling convention we assume states that the
first four parameters are passed in registers (space on the stack is reserved nonetheless),
while the remaining parameters are passed on the stack (in right-to-left order).

3 C Semantics

As countless others have noted before [11,12], there is not "the" C semantics: the term
"C" describes an equivalence class of semantics that fall under the scope of what is

22 S. Schmaltz and A. Shadrin

Table 2. The set T of types of C-IL

t ∈ T t ∈ TP

struct tC ∈ T tC ∈ TC

array(t, n) ∈ Tptr t ∈ T, n ∈ N

ptr(t) ∈ Tptr t ∈ T

fptr(t, T) ∈ Tptr t ∈ T, T ∈ T
∗

Table 3. The set val of values of C-IL

val(b, ii) ∈ val b ∈ B
i

val(b, ui) ∈ val b ∈ B
i

val(B, struct tC) ∈ valstruct B ∈ (B8)∗

val(b, t) ∈ valptr b ∈ B
sizeptr , t ∈ Tptr

lref((v, o), i, t) ∈ vallref v ∈ V, o, i ∈ N, t ∈ Tptr

fun(f) ∈ valfun f ∈ Fname

commonly called the programming language C and its standard library. Depending on
architecture and compiler, semantics may differ for the underspecified areas.

Since C is a programming language with an overwhelming complexity – much of
which is redundant –, we consider an intermediate language for C that we call C-IL.
Note that, instead of defining Pascal with C syntax (as has been done in Verisoft), we
now consider a semantics that really captures the low-level features of C. We do not
consider side-effects in expressions, and neither do we put much effort on modeling C
syntax. These, we leave to the layer above, where we can define C based on C-IL.

The intermediate language we consider has been designed with some very specific
features – optimized for integration with Macro-Assembler. Like MASM, C-IL is a goto-
language defined in the form of a labeled transition system.

Since we want to do lowest-level operating systems verification, we only consider a
global byte-addressable memory and an abstract stack. We do not consider the heap as
a separate memory since the notion of a heap only exists when there is some form of
memory allocation system available (e.g. the one provided by the standard library or the
operating system). Pointer arithmetics is allowed on pointers to the global memory to
the full extent possible. For local variables we restrict pointer arithmetics to calculating
offsets inside local variable memories. In the semantics we propose, every memory
access corresponds to dereferencing a left value – a left value is either a pointer to the
global memory or a reference to some offset in a local variable.

In interrupt descriptor tables, we need to store function pointer values, thus, we ex-
plicitly model the addresses of functions. Obviously, these cannot be derived from C
semantics since they depend only on where in memory the program resides, thus we
give them as parameter to the semantics.

One main issue of C is its dependency on the underlying architecture and compiler.
We suggest that semantics for C should be parameterizable to make it applicable to at
least the most common cases.

In the following, V is a set of variable names, F is a set of field names, Fname is a
set of function names. We use the notation X ∗ ≡

⋃∞
n=1 Xn ∪ {[]} to describe the set

of lists/strings with elements from the set X . A list of length n with elements from X
is given by x = (xn−1, . . . , x0) = x[n − 1 : 0] ∈ Xn and we define the shorthand

x[i]
def
= xi.

Types. For every instance of C-IL, we assume a set of primitive types TP to be given
such that TP ⊂ {void} ∪

⋃∞
i=0{ii, ui} describes a set of basic signed (i) and unsigned

Integrated Semantics of Intermediate-Language C and Macro-Assembler 23

(u) integer types of size i (given in bits). Usually, we consider sizes which are multiples
of 8. Further, we assume a set TC of struct type names to be given.

We define the set of types T inductively in table 2. Array types are given by their
element type and length. Function pointer types are identified by their return value type
and a list of their parameters’ types. Note that struct types are always identified by the
corresponding composite type name tC . The actual type definition of a struct type can
be found by looking it up in the program’s struct type declaration (defined later).

Values. We represent most values using bit-strings or byte-strings. This is owed to
the fact that C-IL is designed for use in conjunction with hardware models. For struct
types, we consider byte-strings as their value (see table 3). We only need them in order
to model struct assignment since access to a field of a struct is performed by calculating
the corresponding left value followed by a precise memory access. A pointer to the
global memory is a value val(b, t) consisting of an address and a pointer type.

Due to the stack abstraction used, we have to treat pointers to local variables differ-
ently: We represent these local references lref((v, o), i, t) by variable name v and offset
o inside that variable. Additionally, we have the number i of the stack frame the local
reference refers to and a pointer type t.

For functions f we do not need the exact address of (since we do not need to store
their function pointers in memory), we introduce a symbolic function value fun(f).

Expressions. We define the set of expressions E in table 4. O1 and O2 are sets of
operators (table 5) defined for the compiler in question. A unary operator is a partial
function ⊕ : val ⇀ val, whereas a binary operator is a function ⊕ : val × val ⇀
val. Operators are provided for each type they are meaningful for. All expressions are
strictly typed in C-IL – when translating from C to C-IL, type casts need to be inserted
explicitly.

Statements. C-IL uses a reduced set of statements (see table 6) consisting of assign-
ment, goto, if-not-goto, function call, procedure call, and corresponding return state-
ments. Goto statements specify the target destination in form of a label (the index of the
target statement in the program).

Configuration. A C-IL configuration

c = (M, s) ∈ confC-IL

consists of a global, byte-addressable memory M : B8k → B8 and a stack s ∈
frame∗C-IL which is a list of C-IL-frames. A C-IL-frame

s[i] = (ME , rds, f, loc) ∈ frameC-IL

consists of a local memory componentME : V → (B8)∗ which maps variable names
to local byte-offset-addressable memories (represented as lists of bytes), a return des-
tination component rds : valptr ∪ vallref ∪ {⊥} which is either a pointer to where the
return value of the function is going to be stored when it returns or the value ⊥ denot-
ing the absence of a return destination, a function name f which describes the function
we are executing and a location loc ∈ N which describes where in f ’s body execution
should continue.

24 S. Schmaltz and A. Shadrin

Table 4. The set E of C-IL-expressions

constants c c ∈ val
variable names v v ∈ V

function names f f ∈ Fname

unary operation ⊕e e ∈ E and ⊕ ∈ O1

binary operation (e1 ⊕ e2) e1, e2 ∈ E and ⊕ ∈ O2

ternary operation (e ? e1 : e2) e, e1, e2 ∈ E

type cast (t)e t ∈ T and e ∈ E

dereferencing ∗e e ∈ E

address-of &e e ∈ E

field access (e).f e ∈ E and f ∈ F

size of type sizeof(t) t ∈ T

size of expression sizeof(e) e ∈ E

Table 5. Operators of C-IL

unary operators O1 = {-,∼,!}
binary operators
O2 = {+,-,*,/,%, <<,>>,<,
>,<=, >=,==, !=,&, |, ,̂&&, ||}

Table 6. The set S of C-IL-statements

e0 = e1 e0, e1 ∈ E

goto l l ∈ N

ifnot e goto l e ∈ E, l ∈ N

e0 = call e(E) e0, e ∈ E, E ∈ E∗

call e(E) e ∈ E, E ∈ E
∗

return, return e e ∈ E

Program. A C-IL program
π = (F ,VG, TF)

consists of a function tableF , a declaration of global variablesVG : (V×T)∗ consisting
of pairs of variable names and types, and a struct type declaration TF : TC → (F×T)∗

which returns for every composite type name a declaration of its fields.
A function table entry

π.F(f) = (npar,V ,P)

contains the number of parametersnpar of the function f, a local variable and parameter
declaration V : (V× T)∗ and a function body P : S∗.

Context. Configuration and program are not enough: we need additional information
in order to execute a C-IL program. For this, we introduce a context θ which provides
all missing information. It contains information on the endianness of the underlying
architecture (i.e. byte-order used), the addresses of global variables in memory, function
pointer addresses (given by a partial, injective function θ.Fadr), offsets of fields in struct
types, sizes of struct types, a type-casting function that matches the behavior of the
compiler, and the type used by the compiler for results of the sizeof-operator.

Expression Evaluation. Expressions are evaluated by a function that returns either a
C-IL-value or the special value⊥ that denotes that the expression cannot be evaluated:

[e]π,θc ∈ val ∪ {⊥}

Depending on the expression, we may need the complete state, i.e. configuration, pro-
gram and context, to evaluate it. Since expression evaluation is defined in the obvious
way, given the choices we made, we omit its definition to save space.

Memory Semantics. On the one hand we have byte-addressable memories, on the
other we have typed values. We provide functions readθ : confC-IL×(valptr∪vallref)→
val and writeθ : confC-IL × val × (valptr ∪ vallref) → confC-IL which, respectively,

Integrated Semantics of Intermediate-Language C and Macro-Assembler 25

Table 7. Operational semantics of C-IL

stmtnext(c) = e0 = e1

π, θ � c →
C-IL

incloc(writeθ(c, [&e0]
θ,π
c , [e1]

θ,π
c))

(ASSIGN)
stmtnext(c) = goto l

π, θ � c →
C-IL

setloc(c, l)
(GOTO)

stmtnext(c) = ifnot e goto l zero([e]θ,πc)

π, θ � c →
C-IL

setloc(c, l)

(IFNOTGOTO-SUCC)

stmtnext(c) = ifnot e goto l ¬zero([e]θ,πc)

π, θ � c →
C-IL

incloc(c)

(IFNOTGOTO-FAIL)

stmtnext(c) = call e(E) ∨ stmtnext(c) = e0 = call e(E)

is-function([e]θ,πc , f) callframe(c, f, E, framenew)

π, θ � c →
C-IL

c[s := framenew ◦ incloc(c).s]
(CALL)

stmtnext(c) = return

π, θ � c →
C-IL

dropframe(c)
(RETURN)

stmtnext(c) = return e c.rdstop �= ⊥
π, θ � c →

C-IL
writeθ(dropframe(c), c.rdstop, [e]

θ,π
c)

(RETURNVAL1)
stmtnext(c) = return e c.rdstop = ⊥

π, θ � c →
C-IL

dropframe(c)

(RETURNVAL2)

dereference a pointer value in a given configuration (read from memory) or write a
given value to memory, resulting in a new configuration. To specify their effect, simi-
lar functions (readθE , writeθE) are provided to read and write a local variable/parameter
(identified by variable name) from a stack frame.

Note that, since we do not model addresses of local variables explicitly (this would
either expose stack layout or require a more sophisticated memory), our semantics car-
ries the limitation that pointers to local variables cannot be stored in memory.

Operational Semantics. In table 7, we give operational semantics of C-IL. zero is
a predicate that is true when the given C-IL-value is a representation of zero. The
next statement to be executed in the given configuration is computed by stmtnext from
program/location of the top-most stack frame. With incloc and dropframe we produce
configurations in which, respectively, the location counter of the top-most frame is in-
cremented or the top-most frame is simply removed from the stack.

In the call-rule, the new stack frame framenew is chosen nondeterministically accord-
ing to the following constraints (represented by the predicate callframe(c, f, E, framenew)):

∀0 ≤ i < npar : readθ
E(framenew, vi, 0, ti) = [E[i]]θ,πc

∀npar ≤ i < len(V) : len(framenew.ME(vi)) = size(ti)

framenew.loc = 0, framenew.f = f, framenew.rds =

{
[&e0]

θ,π
c for function call

⊥ for procedure call

Here, (vi, ti) = V [i] is the i-th declaration in function f ’s parameters and local variable
declaration V = π.F(f).V , and npar = π.F(f).npar is the number of parameters of
the function f . Note that we only place a strict constraint on the parameter values: initial
content of local variables is chosen nondeterministically with appropriate size for the
declared type.

4 Integrated C-IL+MASM-Semantics

We extend both C-IL and MASM in such a way that we can do the final step of integrat-
ing them into C-IL+MASM. To achieve this, we define a compiler calling convention

26 S. Schmaltz and A. Shadrin

and apply it to interface the two languages. The goal of this integration is to ’slice’
the model stack horizontally, providing a self-contained model to argue about a system
layer that involves both C-IL and MASM code execution.

In the first Verisoft project, whenever assembler code is encountered, the compiler
simulation relation is applied to reach an equivalent ISA-Assembler-configuration from
which to execute the assembler code. The proposed integrated semantics simply pro-
vides another layer of abstraction on top of such a model. The assembler verification
approach that was used in the VerisoftXT project is based on translating assembler
code to C so that it can be verified using a C verification tool [13]. We can benefit from
the abstraction we introduce here in a soundness proof for the assembler verification ap-
proach: Instead of proving a simulation between ISA-Assembler and C-IL (which would
require a substantial amount of software conditions), we can prove a simpler simulation
between MASM and C-IL. In turn, we have to prove correct compilation for MASM.

There is a restriction on the interaction between C-IL and MASM: currently, we only
allow primitive values to be passed between C-IL- and MASM-functions.

4.1 Calling Convention

The compiler calling convention describes the interface between the caller and the
callee. In our experiments, we consider a compiler calling convention given by the
following rules:

1. The first four parameters are passed through Registers Rp1 , Rp2 , Rp3 , Rp4 .
2. The remaining parameters (if existent) are passed on the stack in right-to-left order.

There is space reserved on the stack for parameters passed in registers.
3. The return value is passed through register Rrv.
4. All callee-save registers (given byRcallee ⊂ R) must be restored before return.
5. The callee is responsible for cleaning up the stack.
6. Rp1 , Rp2 , Rp3 , Rp4 , Rrv /∈ Rcallee.

4.2 Semantics

In order to obtain an integrated model of C-IL and MASM, there are two things left to
do: define how we model the state of the combined semantics and define transitions.

Probably the most basic way to define a configuration of C-IL+MASM is to con-
sider a list of alternating C-IL- and MASM-configurations that represents the call stack
between the two languages. The top-most configuration we consider active while we
consider the rest of them inactive. One observation that can be made is that in both
semantics we use the same byte-addressable memory, which can be shared.

In order to eliminate redundancy, we introduce the notion of execution context for
C-IL and MASM. An execution context is a configuration of the corresponding language
where the memory componentM is removed:

s ∈ contextC-IL ≡ frame∗C-IL, (regs, s) ∈ contextMASM ≡ (R → B8k)× frame∗MASM

Integrated Semantics of Intermediate-Language C and Macro-Assembler 27

Another observation we make is that in order to integrate the two semantics, we need
to add information to inactive C-IL-execution-contexts: It would be very nice to know
where the C-IL-execution context will store the return value that is passed in Rrv when
it becomes active again. Another notion we want to capture in the semantics is that
the C-IL-compiler may rely on the callee-save convention being respected by the pro-
grammer: When the callee-save registers have modified values, there is no guarantee
whatsoever that execution of the C-IL-code will continue as expected. We define the
inactive C-IL-execution-context

(rds, regscallee, s) ∈ contextinactive
C-IL

which consists of a return destination pointer rds ∈ valptr ∪ vallref ∪ {⊥}, a function
regscallee : Rcallee ⇀ B8k which describes the content of callee-save registers expected
when control is returned to the execution context, and a C-IL-stack s ∈ frame∗C-IL.

The last observation is that it is not meaningful to store register values in the inactive
MASM-execution-context, with one exception: we can keep the values of callee-save
registers, since, assuming the C-IL-compiler respects the calling conventions, they will
be restored when control is returned to the context. We define the inactive MASM-
execution-context

(regscallee, s) ∈ contextinactive
MASM

to consist of a callee-save register file regscallee : Rcallee → B8k that holds the values
of callee-save registers belonging to the execution context, and a MASM-stack s ∈
frame∗MASM.

Configuration. A C-IL+MASM-configuration

c = (M, ac, sc) ∈ confC-IL+MASM

consists of the same byte-addressable memoryM : B8k → B we have seen before, the
active execution context ac : contextC-IL ∪ contextMASM, and a list of inactive execution
contexts sc ∈ (contextinactive

C-IL ∪ contextinactive
MASM)∗.

Program and Context. A C-IL+MASM-program π = (πC-IL, πMASM) is simply a pair
of a C-IL-program and a MASM-program. Since we need context information about the
compiler to execute C-IL, we keep the context θ from C-IL.

Transitions. Essentially, we have three types of steps: We perform a pure C-IL- or
MASM-step, an external function from the other language is called, or we return to the
other language. Considering a given configuration, it is easy to decide which of these
has to happen next: Calling a function which is not declared in the current language’s
program must be an external call. Executing a return-statement or -instruction when the
stack of the active context is empty should return to the newest context from the list
of inactive contexts. Everything else is a pure step. Let ext(c) denote a predicate that

28 S. Schmaltz and A. Shadrin

Table 8. Representative choice of transitions from the semantics of C-IL+MASM

c.ac = s ¬ext(c) π.πC-IL, θ � (c.M, s) →C-IL c′C-IL

π, θ � c →C-IL+MASM c
[M := c′C-IL.M, ac := c′C-IL.s

] (PURE-C-IL)

c.ac = (regs, s) ¬ext(c) π.πMASM � (c.M, regs, s) →MASM c′MASM

π, θ � c →C-IL+MASM c
[M := c′MASM.M, ac := (c′MASM.regs, c′MASM.s)

] (PURE-MASM)

c.ac = s ext(c) stmtnext(s, π.πC-IL) = e0 = call e(E)

is-function([e]θ,πc , f) CIL2MASMctxt(c, f, E, regscallee, contextnew)

π, θ � c →C-IL+MASM c
[
ac := contextnew, sc := ([[&e0]]

θ,π
c , regscallee, incloc(s)) ◦ c.sc

] (C-IL-TO-MASM)

c.ac = (regs, s) ext(c) instrnext(s, π.πMASM) = call p
π.πC-IL(p).npar − 4 ≤ hd(s).lifo s′ = droplifo(s, π(p).npar − 4) MASM2CILctxt(c, p, hd(s).lifo, contextnew)

π, θ � c →C-IL+MASM c
[
ac := contextnew, sc := (regs|Rcallee

, incloc(s
′)) ◦ c.sc

]
(MASM-TO-C-IL)

c.ac = s ext(c) stmtnext(s, π.πC-IL) = return e

hd(c.sc) = (regscallee, s
′) regs′|Rcallee

= regscallee regs′(Rrv) = val2bytes([[e]]π,θ
c)

π, θ � c →C-IL+MASM c
[
ac := (regs′, s′), sc := tl(c.sc)

]
(RETURN-C-IL-TO-MASM)

c.ac = (regs, s) ext(c) instrnext(s, π.πMASM) = ret

hd(c.sc) = (rds, regscallee, s
′) regs|dom(regscallee)

= regscallee c′ = writeθraw((c.M, s′), rds, regs(Rrv))

π, θ � c →C-IL+MASM c
[M := c′.M, ac := c′.s, sc := tl(c.sc)

]
(RETURN-MASM-TO-C-IL)

checks in the described way whether the next step is an external step. Table 8 shows
inference rules that describe C-IL+MASM’s transitions.

Pure Steps. For¬ext(x), we have a pure step: We simply perform a step of the top-most
execution context according to the semantics of the corresponding language.

Call from C-IL to MASM. For an external call from C-IL to MASM, a new MASM
context is created and initialized according to the calling convention. The currently
active C-IL context is retired to the list of inactive contexts. Constraints on the non-
deterministically-chosen new context and the callee-save registers expected by the now
inactive C-IL-context are captured in the predicate CIL2MASMctxt(c, f, E, regscallee,
contextnew):

contextnew.s = [framenew]
contextnew.regs(Rpi) = [[E[i − 1]]]θ,πc if 1 ≤ i ≤ 4 ∧ i ≤ npar

where npar is a shorthand that denotes π.πMASM(f).npar and [[e]]θ,πc
def
= [e]θ,π.πC-IL

(c.M,c.ac).
The stack of the new active MASM-context consists of a single frame framenew:

framenew.p = f, framenew.loc = 0, framenew.lifo = []

framenew.pars[i] = [[E[i]]]θ,πc , 4 ≤ i < npar

Integrated Semantics of Intermediate-Language C and Macro-Assembler 29

Register content is chosen nondeterministically except for the values of the registers
Rp1 , . . . , Rp4 (parameters passed in registers according to the calling convention). The
remaining parameters are passed on the stack. As a final constraint, the callee-save
registers expected by the retired C-IL-execution-context are the same as in the new
MASM-execution-context:

regscallee = contextnew.regs|Rcallee\π.πMASM(f).uses

Note: since the MASM-compiler guarantees that registers in the uses list will be stored
and restored properly, we only have to consider the remaining callee-save registers.

Return from MASM to C-IL. When returning, callee-save registers must have the values
expected by the C-IL-context we return to. The content of the return-value register Rrv

is written to the return destination rds given in the C-IL-context we return to.

Call from MASM to C-IL. Calling from MASM to C-IL, we create a new active C-IL-
execution-context and transfer the currently active execution context to the list of inac-
tive contexts. MASM2CILctxt(c, p, lifo, contextnew) enforces the following constraints:

contextnew.s = [framenew]

where
framenew.f = p, framenew.loc = 0, framenew.rds = ⊥
∀npar ≤ i < len(V) : len(framenew.ME(vi)) = size(ti)

∀0 ≤ i ≤ 3 : (i+1) ≤ npar ⇒ readθE(framenew, vi, 0, ti) = bytes2val(regs(Rpi+1), ti)

∀4 ≤ i < npar : readθ
E(framenew, vi, 0, ti) = bytes2val(lifo[len(lifo)− 1− i], ti)

The first four parameters are taken from registers, we convert their values to C-IL-values
of the type expected by the function. The remaining parameters are passed on the stack
(lifo) in right-to-left order.

Return from C-IL to MASM. Callee-save registers of the restored MASM-context stay
the same, the remaining registers get assigned nondeterministically, except for Rrv. We
convert the result of evaluation of the return expression [[e]]θ,πc to its byte-representation
and assign this value to the return value register Rrv.

5 Pervasive Theory

To gain a correctness result over the whole system consisting of hard- and software,
we apply pervasive verification. In the pervasive stack sketched in Figure 1, adjacent
models are always connected by means of simulation theorems in such a way that
the abstraction provided by a higher-up layer is sound with respect to the correspond-
ing lower layer. Our reduction theorems involve placing additional assumptions on the
lower layer’s execution that allow us to construct a more abstract upper layer. We only
use assumptions that we can explicitly guarantee for the code we consider.

30 S. Schmaltz and A. Shadrin

hardware simulation

assembler reduction theorem

C+MASM reduction theoremcompiler correctness

Gate−Level Design

Environment

Environment

C+MASM

Abstract Hardware Model

ISA−Assembler

Fig. 1. Model stack for operating systems and hy-
pervisor verification

C−compiler

correctness
C−IL compiler

correctness
MASM−compiler

correctness

C+MASM

ABI

ABI

ISA−Assembler

C−IL+MASM

Macro−ASM C

Macro−ASM C−IL

Fig. 2. Close-up view of the model stack

We are interested in justifying that our combined C-IL+MASM-semantics indeed
correctly captures the behavior of the underlying ISA-Assembler-execution. In order to
prove this, we make use of compiler correctness for C-IL and MASM. In particular, we
rely on an explicit simulation relation that connects to the underlying ISA-Assembler-
model (we use the term compiler consistency relation to refer to it).

For pure steps, we can simply apply the assumed compiler correctness. Only for
inter-language steps, we need to prove that, given a state in which the compiler simu-
lation holds for the current language, the corresponding compiler consistency relation
is established. That is, after executing the compiled code of the external call, we reach
an ISA-Assembler-configuration which is consistent with the the configuration of the
abstract machine that has performed the call.

5.1 Compiler Consistency

In the actual formal definitions of the relations described in the following, we applied
earlier results from the Verisoft project [6].

C−IL+MASM

Program
ISA−Assembler

Context Stack

Memory

Processor

Memory

stack

code

stack

code

Fig. 3. Simulation of C-IL+MASM by the
underlying ISA-Assembler-model

Memory & Code Consistency. We con-
sider an ISA-Assembler-memory and a C-
IL+MASM-memory to be consistent iff
they carry identical values on all addresses
except for those from the stack- or the
code-region. The code region contains the
compiled code of the program.

MASM: Register Consistency. Config-
urations are consistent iff all registers of
the active MASM-execution-context ex-
cept those we abstracted away (instruction
pointer, stack pointers) are the same in the
ISA-Assembler-configuration.

Integrated Semantics of Intermediate-Language C and Macro-Assembler 31

MASM: Stack Consistency. Stack consistency describes on the one hand how the
abstract stack matches the stack region in an ISA-Assembler-configuration, i.e., for the
stacks of the MASM-contexts, how pars, saved, and lifo are laid out in memory and
pointed to by the stack pointer registers. On the other hand, it also relates the function
name and location pairs found in the abstract stack frames to the instruction pointer
register, respectively the return address fields in the concrete stack layout.

C-IL: Stack Consistency. For the C-IL-part, this describes how local memories ME
from C-IL’s stack frames are represented in the concrete stack layout and in the proces-
sor registers (parameters in registers, register allocation for local variables). The base
address of the return destination rds is part of the frame header. As in the MASM-case,
control consistency is expressed over the function name/location pairs occurring in it.

Software Conditions

No Explicit Writes to Stack and Code Region. Since we explicitly manage a stack
abstraction, bypassing this and writing directly to the memory region occupied by the
stack will break stack consistency. Also, we do not consider semantics of self-modifying
code, so the code region shall never be written. To use the described semantics, this
property must be guaranteed (e.g. by performing formal verification).

No Explicit Update of Stack Pointers. For maintaining a consistent configuration (w.r.t.
to the assembler execution of the compiled code) for these semantics, we should never
explicitly update the stack pointers. All changes to them currently happen automatically,
as a part of the push, pop, call and ret execution of MASM.

6 Results

The C-IL+MASM-model described here has been applied to extend the baby hypervisor
verification results obtained earlier [14]. In those results, there was merely specification
of the effect of assembler code for the context switch between guest and hypervisor –
with the presented theory, this gap has been closed. Compilation rules from MASM to
ISA-Assembler and compiler consistency relations for both C-IL and MASM have been
specified in full detail for the reduced version of the VAMP-processor used in baby
hypervisor verification.

7 Future Work

The ideas presented can be applied such that the resulting semantics can serve as a basis
for soundness proofs of translation-based assembler verification approaches, as the one
described and implemented by Stefan Maus in the Vx86-tool [13].

In order to have a model on which threading libraries can be verified (including the
assembler portion that actually performs the stack switch), the presented theory can be
be extended to allow stack pointer updates. This work is currently in progress.

32 S. Schmaltz and A. Shadrin

For multi-core machines, we need to consider store-buffers. Integrating the results of
Cohen and Schirmer on store-buffer reduction [15] appears to be a useful step.

In order to prove correct execution of compiled code in a multi-core context, we
need to place some restrictions on memory accesses in order to justify that interleav-
ing instructions on C-IL+MASM-level is actually sound with respect to the underlying
execution model. This work is currently in progress using an explicit ownership-model.

In an operating system and hypervisor verification effort, interrupts cannot be ne-
glected. There is work in progress to extend the pervasive theory in such a way that
interrupt handlers can be seen as additional threads interleaved with regular execution.

8 Conclusion

We have presented an integrated semantics of a simple C-intermediate-language and a
high-level assembler language. Choosing identical memory models and stack abstrac-
tion in form of lists of stack frames makes this integration very simple. Distinguishing
formally between active and inactive execution contexts, we are able to precisely model
the calling conventions between C-IL and MASM. Based on earlier results, we spec-
ified compiler consistency relations for C-IL and MASM to justify that the integrated
semantics presented is a sound abstraction of execution of the compiled code.

References

1. Klein, G., et al.: seL4: Formal verification of an OS kernel. In: Proc. 22nd ACM Symposium
on Operating Systems Principles (SOSP), pp. 207–220. ACM, Big Sky (2009)

2. Tuch, H., Klein, G., Norrish, M.: Types, bytes, and separation logic. In: POPL 2007: Pro-
ceedings of the 34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pp. 97–108. ACM, New York (2007)

3. Ni, Z., Shao, Z.: Certified assembly programming with embedded code pointers. In: POPL
2006: Conference Record of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pp. 320–333. ACM, New York (2006)

4. Ni, Z., Yu, D., Shao, Z.: Using XCAP to Certify Realistic Systems Code: Machine Context
Management. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 189–
206. Springer, Heidelberg (2007)

5. Feng, X., Shao, Z., Guo, Y., Dong, Y.: Certifying low-level programs with hardware inter-
rupts and preemptive threads. J. Autom. Reasoning 42(2-4), 301–347 (2009)

6. Leinenbach, D., Petrova, E.: Pervasive compiler verification – from verified programs to ver-
ified systems. In: 3rd Intl Workshop on Systems Software Verification (SSV 2008). Elsevier
Science B. V. (2008)

7. Blazy, S., Leroy, X.: Mechanized semantics for the Clight subset of the C language. Journal
of Automated Reasoning 43(3), 263–288 (2009)

8. Leroy, X.: Formal verification of a realistic compiler. Communications of the ACM 52(7),
107–115 (2009)

9. Appel, A.W.: Verified Software Toolchain. In: Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602,
pp. 1–17. Springer, Heidelberg (2011)

10. Morrisett, J.G., Crary, K., Glew, N., Walker, D.: Stack-Based Typed Assembly Language.
In: Leroy, X., Ohori, A. (eds.) TIC 1998. LNCS, vol. 1473, pp. 28–52. Springer, Heidelberg
(1998)

Integrated Semantics of Intermediate-Language C and Macro-Assembler 33

11. Gurevich, Y., Huggins, J.K.: The Semantics of the C Programming Language. In: Martini,
S., Börger, E., Kleine Büning, H., Jäger, G., Richter, M.M. (eds.) CSL 1992. LNCS, vol. 702,
pp. 274–308. Springer, Heidelberg (1993)

12. Papaspyrou, N.S.: A formal semantics for the C programming language. tech. report (1998)
13. Maus, S., Moskał, M., Schulte, W.: Vx86: x86 Assembler Simulated in C Powered by Auto-

mated Theorem Proving. In: Bevilacqua, V., Roşu, G. (eds.) AMAST 2008. LNCS, vol. 5140,
pp. 284–298. Springer, Heidelberg (2008)

14. Alkassar, E., Hillebrand, M.A., Paul, W., Petrova, E.: Automated Verification of a Small
Hypervisor. In: Leavens, G.T., O’Hearn, P., Rajamani, S.K. (eds.) VSTTE 2010. LNCS,
vol. 6217, pp. 40–54. Springer, Heidelberg (2010)

15. Cohen, E., Schirmer, N.: A better reduction theorem for store buffers. CoRR abs/0909.4637
(2009)

The Location Linking Concept: A Basis

for Verification of Code Using Pointers

Gregory Kulczycki1, Hampton Smith2, Heather Harton2, Murali Sitaraman2,
William F. Ogden3, and Joseph E. Hollingsworth4

1 Battelle Memorial Institute,
2111 Wilson Blvd, Arlington, VA 22201, USA

kulczyckig@battelle.org
2 School of Computing, Clemson University, Clemson, SC 29634, USA

{hamptos,hkeown,msitara}@clemson.edu
3 Department of Computer and Information Science,
Ohio State University, Columbus, OH, 43210, USA

ogden@cse.ohio-state.edu
4 Department of Computer Science,

Indiana University Southeast, New Albany, IN 47150, USA
jholly@ius.edu

Abstract. While the use of pointers can be minimized by language
mechanisms for data abstraction, alias avoidance and control, and disci-
plined software development techniques, ultimately, any verifying com-
piler effort must be able to verify code that makes use of them.
Additionally, in order to scale, the verification machinery of such a com-
piler must use specifications to reason about components. This paper
follows a natural question that arises from combining these ideas: can
the general machinery of specification-based component verification also
be used to verify code that uses instances of types that are more tra-
ditionally built-in, such as arrays and pointers? This paper answers the
question in the affirmative by presenting a Location Linking Template,
a concept that captures pointer behavior, and uses it to verify the code
of a simple data abstraction realized using pointers. In this deployment,
pointers have a specification like any other component. We also note
that the concept can be extended and realized so that different systems
can plug in alternative implementations to give programmers the flexi-
bility to choose, e.g., manual memory management or automatic garbage
collection depending on their performance concerns.

Keywords: Formal specification, linked data structures, memory man-
agement, reusable components, verification.

1 Introduction

Software components must be used strictly on the basis of their specifications[17].
This is necessary for clients to understand and reason about components without
concern for how they might be implemented. Implementation-neutral specifica-
tions give implementers the flexibility to provide alternative implementations for

R. Joshi, P. Müller, and A. Podelski (Eds.): VSTTE 2012, LNCS 7152, pp. 34–49, 2012.
� Springer-Verlag Berlin Heidelberg 2012

The Location Linking Concept 35

components based on different performance profiles. To verify component-based
software in a scalable fashion, the verification machinery of a verifying compiler
should use only the specifications of subcomponents[9,24,26]. We have developed
and experimented with such a compiler with RESOLVE[21].

Data types commonly built into languages can also be viewed as compo-
nents reused by nearly all software systems. If components are client-oriented
software1, then the software elements most frequently used by clients—built-
in data types—are the quintessential components. A natural research question,
therefore, is if it is possible to use the same verification machinery for verifying
component-based software to also verify code that is based on built-in types
such as arrays and pointers. In answering this question, this paper presents a
concept for “location linking” to capture the behavior of the most complex and
controversial of all data structures—the pointer.

Pointers break encapsulation [18], complicating reasoning about software.
Hoare compares them to goto statements because they can “be used to cre-
ate wide interfaces between parts of a program which appear to be disjoint”[7].
Despite having been well understood for over a decade, this fundamental problem
remains[5] and many schemes continue to be suggested to curtail, remove, or oth-
erwise manage the aliasing problem. Examples include ownership systems[1] and
dynamic frames[10]. One well-known approach is separation logic[19], wherein
procedures may define properties that hold on certain parts of the heap over
their lifetime. This technique is particularly effective for links contained entirely
within a component.

The approach we take for unifying verification of pointer-based code with
verification of other software relies on having a formal specification of a pointer
component. This idea is illustrated in Figure 1, which shows a design time dia-
gram of a software system. In the figure, circles represent component specifica-
tions and rectangles represent realized implementations. Each implementation
may depend on several other components. As an example, to reason that the
Queue-Based realization is correct with respect to the specified functional be-
havior in the Messenger component specification, it is sufficient to know the
component specifications Array and Queue. Thus, the Queue component may
be implemented as an Array-Based realization or a Pointer-Based realization,
but this is irrelevant to the person reasoning about the implementation of Mes-
senger. The verification of the Pointer-Based realization in turn depends only
on the specification of a pointer component. This specification-based reasoning
allows components that have the same functional specification—but potentially
different performance behavior—to be substituted for one another in the same
system without requiring the programmer to reanalyze the entire system. This
is important for maintainability and scalability.

Just as a concept exists that defines the behavior of a Queue independent
from implementation, pointer behavior can also be captured in a concept. Doing
so permits the system to use the same general verification machinery on pointers
as on queues and other components, but does not preclude a language designer

1 Attributed to Christine Mingins in [17].

36 G. Kulczycki et al.

Fig. 1. Design-time diagram with component specifications and implementations

from providing syntactic sugar for pointer operations or instructing a compiler
to translate such syntax as more straightforward pointer operations.

In this paper, we present specifications and code in the RESOLVE
language[13,20,22], an integrated specification and programming language de-
signed to facilitate full program verification. Though any specification language
can be used to describe the components behavior, using the component in the
context of the RESOLVE system highlights some of its benefits. In particular,
the RESOLVE reasoning system supports a clean, value-based semantics[12] in
which (1) the state space is made up of the currently defined variables and their
values, and (2) the effects of a procedure call are restricted to the arguments to
the call and global variables listed in the updates clause of the operation decla-
ration. In addition, the RESOLVE programming language avoids unintentional
aliasing from reference assignment and parameter passing, relying on swapping
as its primary means of data assignment [3]. These design choices ensure that
any aliasing is enacted exclusively by the pointer component. Our experience
indicates that the ideas of encapsulating pointers within a component interface
and avoiding most routine aliasing through swapping is applicable to, at least,
C++ [8], though no formal reasoning has been attempted.

2 Specification of a System of Linked Locations

This section introduces an informal idiom for a pointer component based on a
metaphor of linked locations. Figure 2 shows a diagram of an example system
where symbols (Greek letters) are the information and each location has exactly
one link. The eight locations to the left of the dotted line are free; the six
locations to the right are occupied. The location with the slash through it is
the Void location and it can never be taken. The information in free locations is
always an initial value, and the links of free locations always point to Void. In
the diagram, we omit these details in the interest reducing complexity.

Before a system of linked locations can be used, it has to be instantiated with
an information type and a number of links. The depiction above is a result of

The Location Linking Concept 37

Fig. 2. A system of linked locations with symbol information and one link per location

the following instantiation, which creates a system of linked locations containing
Symbols, each linking to one other location:

Facil ity Symbol Pointer Fac i s
Locat ion Link ing Template (Symbol , 1)

realized by De fau l t Rea l i z ;

To create locations with k links, suitable for a k-ary tree representation, one
would use k as the argument to instantiate the facility, instead of 1. Once in-
stantiated, variables for working with such nodes can be declared and used as
shown below.

Var p , q : Symbol Pointer Fac . Pos i t i on ;

The effects of various operations on Position type variables are illustrated in
Figure 3. Whereas Location is just an abstract mathematical set with a lower
bound on its cardinality, Position is a programming type. Conceptually, vari-
ables of this type (e.g., p, q, in the figure) each have a Location as their value.
Info type values are denoted by squares in the figure.

This abstraction, of a system of linked locations, is one that serves as the
most suitable basis for constructing common linked data structures. Nothing
would prevent one from designing a lower-level abstraction in which pointers are
modeled as Ns instead of abstract locations and providing operations for pointer
arithmetic. In this case, reasoning would still require no specialized machinery,
but resulting proof obligations would be more complex. In addition, by devising
higher-level abstractions—for example, in which Void is ultimately reachable
from all locations—implementations and reasoning of classical data structures,
such as stacks, lists, and trees may be simplified. The specification machinery
presented in the next section allows us to explore these trade-offs.

3 A Formal Specification

This section describes a formal specification of the Location Linking Template.
The relationships between the mathematical objects in the concept and the
notions introduced informally are straightforward. The complete specification is
available in a technical report [14].

38 G. Kulczycki et al.

Fig. 3. The effect of selected actions on a system

Listing 1.1. A formal specification of Location Linking Template

Concept Locat ion Link ing Template (type In fo ;
evaluates k : I n t e g e r) ;

uses Function Theory , Closure Op Ext ;
requires 1 ≤ k ;

Defines Locat ion : Set ;
Defines Void : Locat ion ;

Defines Ocpn Disp Incr : N
>0 ;

Var Ref : Locat ion× [1 . . k]→Locat ion ;
Var Content : Locat ion→ In fo ;
Var Occupied Loc : ℘(Locat ion) ;

Constraints
In fo . I s In i t i a l [Content [Locat ion ∼ Occupied Loc]] ⊆

{true} and
Ref [(Locat ion ∼ Occupied Loc)× [1 . . k]] ⊆ {Void} and
Void ∉ Occupied Loc and
| | Locat ion | | > Total Mem Cap / Ocpn Disp Incr ;

In i t ia l i zat ion
ensures Occupied Loc = φ ;

The Location Linking Concept 39

Family Pos i t i on ⊆ Locat ion ;
exemplar p ;
i n i t i a l i za t i on ensures p = Void ;

Definition Var Acess ib l e Loc : ℘(Locat ion) =
({Void} ∪
Clo su r e f o r (Location ,

⋃
i∶[1..k]

{λu : Locat ion . (Ref (i , u))} ,

Pos i t i on .Val in [Pos i t i on .Receptacle]) ;

f ina l i zat ion updates Acces s ib l e Loc ;

Operation Take New Loc (updates p : Pos i t i on) ;
updates Occupied Loc , Acces s ib l e Loc ;
requires p ∉ Occupied Loc and

Ocpn Disp Incr + In fo . Init Disp ≤ RemMemCap;
ensures p ∉ #Acces s ib l e Loc and

Occupied Loc = #Occupied Loc ∪ {p } ;

Operation Follow Link (updates p : Pos i t i on ;
evaluates i : I n t e g e r) ;

updates Acces s ib l e Loc ;
requires p ∈ Occupied Loc and 1 ≤ i ≤ k

which entails i : [1 . . k] ;
ensures p = Ref(#p , i) ;

Operation Swap Info (preserves p : Pos i t i on ;
updates I : I n fo) ;

updates Content ;
requires p ∈ Occupied Loc ;
ensures I = #Content (p) and

Content = λ q : Locat ion . ({
#I if q = p
#Content(q) otherwise

) ;

(� Other opera t i ons omi t ted f o r b r e v i t y . �)

end ;

The hash sign (#) indicates the value of a variable before a call. The set N>0

are those natural numbers above zero (i.e., all the natural numbers save zero).
We use S ∼ R as our notation for the set difference of S and R.

3.1 Shared Conceptual State

The shared conceptual state of Location Linking Template is specified through
defines clauses, conceptual (or “specification”) variable declarations, and their
constraints. The defines clauses at the beginning are placeholders for deferred
implementation-dependent definitions. Though we expect that objects of type

40 G. Kulczycki et al.

Location will somehow be tied to a machine’s memory addresses, for the pur-
poses of reasoning about this component the programmer need only know that
Location is a set, Void is a specific location, and Ocpn Disp Incr is a non-
zero natural number that represents the memory overhead for a Location.
Total Memory Capacity is a global variable across the system.

Objects of type Location correspond to the notion of locations described in
Section 2. The type parameter, Info, indicates the type of information that a
location contains, while the second parameter, k, indicates the number of links
from a given location. The three conceptual variables near the beginning of the
concept enable clean mathematical reasoning about locations: Ref(q, i) returns
the location targeted by the ith link of q, Content(q) returns the information
at a given location q, and Occupied Loc is the set of all non-free locations.

The first conjunct of the constraints clause asserts that all the unoccupied
locations have initial information value. It uses the square bracket notation to
lift a function from one that operation on a domain D and a range R, to one that
operates on the powerset of D, unioning all results, and returning a value in the
powerset of R. So the first conjunct unions the result of testing to see if each
Info in unoccupied locations is an initial value—which must be the singleton set
containing only true, i.e., all unoccupied locations must always contain initial
values. The second conjunct ensures that each link of each unoccupied location
references Void. The third ensures that Void cannot become an occupied loca-
tion. And the last conjunct ensures that the Location set is at least as big as
necessary.

The assertion that free locations have default information and default links
exists strictly for reasoning about functional behavior. The performance part of
this specification assumes that no memory is allocated for information until the
Take New Loc operation is invoked. The value of Ocpn Disp Incr is the overhead
space that a newly taken location with k links occupies in memory.

Once a system of locations is instantiated, the initialization clause ensures
that all locations in the newly created system are unoccupied, and the constraints
clause ensures that all of these free locations have default information and default
links. The default target for links is the Void location.

3.2 Position Type

The initialization ensures clause asserts that p = Void. Since the symbol p that
occurs here is the mathematical value of the programming variable p rather than
the programming variable p itself, the assertion is interpreted as “The location of
the variable named p is Void.” The clause indicates that all new pointer variables
are conceptually at the Void location.

The exemplar clause simply introduces an example position variable so that
the name can be used in the scope of the type declaration.

The mathematical definition Accesible Loc is a variable because its value de-
pends not only on the value of its parameter, q, but also the conceptual variables
Ref and Occupied Loc; so the same location may be accessible in one program
state and inaccessible in the next. Variable definitions such as this are simply

The Location Linking Concept 41

a notational convenience, as the necessary conceptual variables can be passed
explicitly as parameters. Accesible Loc states that a Location is accessible if it
is Void or in the closure of all links from all Locations starting from any named
position variable (i.e., a “receptacle”) currently in use.

Receptacle is a meta variable built into the specification language and it rep-
resents the set of all variables of a given type (in this case, Position) currently in
scope, while Val in() is a built-in function that takes an element of some type’s
Receptacle set and returns its corresponding mathematical value (in this case,
a Location). When a variable is declared of type Position, its unique identifier
is added to Position.Receptacle. When a variable is destroyed (goes out of
scope) the identifier is removed.

When an operation can potentially modify state that affects a definition vari-
able such as Accessible Loc, we include the variable in the updates clause; ones
not specified to be updated are not affected, providing an implicit frame prop-
erty. For example, the finalization (which acts as an implicit operation) includes
Accessible Loc in its updates clauses, since the destruction of a Position may
impact the set of accessible locations if one of its links referenced a location that
was otherwise inaccessible.

Note that, because of RESOLVE’s value semantics, an operation cannot affect
a variable outside it’s available scope save through a well-specified interaction
such as those provided by the component introduced in this paper. In that case,
it would be the responsibility of the components sharing Positions to specify
how their shared state is permitted to change.

3.3 Operations

The management actions informally described in Section 2 correspond directly
to the operations given in the concept.

The Take New Loc operation takes a single position variable as a parameter.
The updates parameter mode indicates to the client that the operation modifies
the value of p. The updates clause on the following line gives the conceptual
(state) variables that we can expect this operation to modify. In this case, we
can expect the operation to affect both the occupation status of one or more
locations and the accessibility of the system.

The requires clause guarantees that p cannot reside at a taken location and
that sufficient memory exists. Since the Void location is perpetually free, it
will be the location where p typically resides when the operation is called. In
general, performance behavior such as memory use should be decoupled from the
behavioral spec, but here sufficient memory is a constraint of any conceivable
implementation. Performance specification is discussed further in [6,23].

The ensures clause guarantees that the newly taken location was not previ-
ously accessible and that the set of occupied locations is extended by precisely
the newly occupied location. Because of the implicit frame property, and because
Content and Ref are not mentioned in the updates clause, a client can be sure
that the newly taken location has default information and that all of its links
point to the Void location.

42 G. Kulczycki et al.

The parameters in these operations have various modes that summarize the
operation’s effect. The updates mode has already been mentioned. The clears
mode ensures that an argument will return with an initial value. The preserves
mode prohibits any changes to an argument’s value. The replaces mode indicates
that the incoming value will be ignored and replaced with a meaningful one.
The evaluates mode indicates that the operation expects an expression, which
modifies the parameter swapping behavior.

We show only specifications of those operations that are used in the code in
the next section. Operation Follow Link causes a position to point to the target
of one of its links, whereas Swap Contents exchanges the Info associated with
a given location with the given Info. The interested reader is referred to [14]
for specifications of additional operations to redirect a position variable’s link,
abandon one, etc.

4 Memory Management

Through its operations, Location Linking Template provides all the function-
ality of traditional pointers. For example, the client can obtain the benefits of
aliasing by positioning two or more variables at the same location. But the con-
cept also allows the client to fall into the traditional traps involving pointers:
dangling references and memory leaks. This section looks at different ways these
problems can be managed.

4.1 Performance and Extensions

A dangling reference occurs when a location is free but remains accessible, as in
the following code.

Var x , y : Pos i t i on ;
Take New Loc (x) ;
Re locate (y , x) ;
Abandon Location (x) ;

When x abandoned its location, the location’s status changed from taken to free.
Though x was relocated to Void, y remained at the location, so the location
continues to be accessible. Position variables are effectively bound to the type
of Info during instantiation, so there is no danger of inadvertently modifying
(through the dangling reference) the contents of a memory location that is being
used by another variable somewhere else in the program. Real memory locations
on a machine are limited, so the specification permits implementations that
can reclaim memory even if a dangling reference existed for them. The Is Occ

operation (provided in an extension to the concept and shown in Figure 1.2)
effectively tells the client whether a variable contains a dangling reference. Since
a Position variable resides at the location in question, the location is accessible.
If the location is taken, it is usable by the client; if the location is free, the client
cannot affect it.

The Location Linking Concept 43

Listing 1.2. Extensions to Location Linking Template

Extension Occ Check ing Capabi l i ty
for Locat ion Link ing Template ;

Operation I s Occ (preserves p : Pos i t i on) : Boolean ;
ensures I s Occ = (p ∈ Occupied Loc) ;

end ;

Extension Cleanup Capabi l i ty for Locat ion Link ing Template ;

Operation Abandon Useless () ;
updates Occupied Loc , Content , Ref ;
ensures Occupied Loc =

#Occupied Loc ∩ Acces s ib l e Loc and
Content↿ ((Locat ion ∼ #Occupied Loc) ∪

Acces s ib l e Loc) =
#Content↿ ((Locat ion ∼ #Occupied Loc) ∪

Acces s ib l e Loc) and
In fo . I s In i t i a l [

Content [#Occupied Loc ∼ Occupied Loc]] =
{true} and

Ref = λ q : Location ,
λ j : [1 . . k] . (

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

Void if q ∈ #Occupied Loc ∼
Occupied Loc

#Ref(q, j) otherwise
) ;

end ;

A memory leak occurs when a location is taken but not accessible. The following
code segment creates a memory leak.

Var x , y : Pos i t i on ;
Take New Loc (x) ;
Re locate (x , y) ;

The location that was taken by x continues to have a taken status but has become
inaccessible. The operation that performs garbage collection, Abandon Useless,
is provided in an extension to the concept: a kind of module that introduces
functionality not all implementations will want to provide.

A garbage collecting implementation of Location Linking Template would
also provide the Abandon Useless operation. A client may then choose to ig-
nore the Abandon Location operation and periodically invoke Abandon Useless

operation. Extensions for other garbage collection strategies, such as mark-and-
sweep, could also be provided.

4.2 Implementation Flexibility

A given programming language will typically hardcode the choice of implementa-
tion for the location linking concept, but the concept itself allows implementation
options. If a language allows options, then a facility declaration mechansim such

44 G. Kulczycki et al.

as in RESOLVE can be used. The following declaration creates a pointer facility
containing Queue information with one link per location, providing no extension
operations and thus leaving the burden of memory management on the client.

Facil ity Queue Pointer Fac i s Locat ion Link ing Template (
Queue , 1)

realized by De fau l t Rea l i z ;

A garbage collecting implementation would additionally implement the
Cleanup Capability extension:

Facil ity GC Queue Pointer Fac i s
Locat ion Link ing Template (Queue , 1)

extended by Cleanup Capabi l i ty
realized by Garbage Co l l e c t ing Rea l i z ;

Each facility acts as a distinct component. Thus, an object of type
Queue Pointer Fac.Position cannot be used where an object of type
GC Queue Pointer Fac.Position is expected.

The stack component described in the next section contains a local pointer
facility and uses a form of manual component-level memory management[16].
Manual memory management for global pointer facilities becomes more difficult
with each realization that imports the facility, because all realizations that im-
port the same facility share the same set of locations. Therefore, global pointer
facilities may be good candidates for garbage collection implementations. The
facility mechanism allows multiple pointer components with different implemen-
tations to exist in the same program.

5 Application

Using Location Linking Template to implement linked data structures will
be familiar to anyone who has implemented a linked list in a language with
explicit pointers such as C or Pascal, though the nomenclature is different.
This section gives excerpts from a stack data abstraction implemented using
Location Linking Template, along with the necessary verification conditions
(VCs) generated by the RESOLVE verifying compiler in establishing its correct-
ness. The key point is that the compiler uses the same verification machinery for
generation of these VCs as for any other code based on a formal specification.
Our VC-generation mechanism is established in [4].

Due to space constraints, we make a number of simplifying assumptions. We
assume that an unlimited number of locations exist, so the notions of occupied
locations or abandoning locations are not used. The Stack specification is un-
bounded. Similarly, since a stack implementation requires only one link, we fix k
at 1 so that, for example, the Follow Link operation does not have an argument
that indicates which link to follow.

Because our compiler accepts inputs in ASCII, we use ASCII notations of
mathematical concepts here.

The Location Linking Concept 45

5.1 Specification of a Stack Concept

Just as a Pointer is modeled mathematically as a Location containing a generic
type, a Stack is modeled mathematically as a string (i.e., a finite sequence) of
genericly-typed entries.

Concept Unbounded Stack Template (type Entry) ;
uses Str ing Theory ;

Type Family Stack i s modeled by Str (Entry) ;
exemplar S ;
i n i t i a l i za t i on ensures S = empty str ing ;

Operation Pop(replaces R: Entry ; updates S : Stack) ;
requires S /= empty str ing ;
ensures #S = <R> o S ;

(� Other opera t i ons omi t ted �)

end Unbounded Stack Template ;

5.2 Pointer-Based Implementation of Stacks

In this implementation, the Stack type is represented by a Position. This re-
quires an instantiation of Location Linking Template 1. The representation
convention (or invariant) uses a locally-defined predicate Is Void Reachable

that is true iff Void can be reached by following links defined by some refer-
ence function (like, for example, Ref from Location Linking Template 1). The
present implementation does not share locations among different stacks, so a cor-
responding invariant (not shown) is necessary. It is also possible to develop an
implementation where stacks share locations. The correspondence (or abstrac-
tion) function uses another definition, Str Info, that takes a Location, as well
as a content function and a linking function, and returns the sequence of Info
elements contained along its link chain as a string2.

Realization Loca t i on L ink in g Rea l i z a t i on for Stack Template ;
uses Locat ion Link ing Template ;

Facil ity Entry Ptr Fac i s
Locat ion Link ing Template 1 (Entry)

realized by Std Locat ion L ink ing One Rea l i z ;

Type Stack i s represented by Entry Ptr Fac . Pos i t i on ;
convention I s Void Reachab le (S , Entry Ptr Fac . Ref) ;

(� Locations −not−shared i n va r i an t omi t ted �)
correspondence Conc . S = S t r I n f o (S ,

Entry Ptr Fac . Content , Entry Ptr Fac . Ref) ;

2 The actual definitions of Str Info and Is Void Reachable are omitted for brevity.

46 G. Kulczycki et al.

Procedure Pop(replaces R: Entry ; updates S : Stack) ;
Swap Contents (S , R) ;
Fol low Link (S) ;

end ;

(� Other Procedures omi t ted �)
end ;

Note that the facility’s location pool is local and represents an encapsulated,
private heap that is inaccessible outside this family of Stacks. This simplifies
reasoning significantly by providing an implicit frame property. One could define
a heap in a global facility, instead, though this would complicate reasoning.

5.3 Verification Process

Applying the specification-based verification machinery yields the VCs found
in Table 1, which arise from the ensures clauses of Stack operations, requires
clauses of called location linking operations, and showing conventions hold at
the end of each procedure. Proofs of the VCs are straightforward and can be
handled by most provers, such as those summarized in [11].

As an example, consider the following VC for establishing the convention at
the end of a call to Pop3:

Goal :
I s Void Reachab le (Ref (S) , Ref)

Given :
I s Void Reachab le (S , Ref) and
S t r I n f o (S , Content , Ref) /= empty str ing

Note that this is a straightforward proof because the prover employs pre-
established theorems about reachability so that we know the second given is
true iff S /= Void. Given that, if S’s links can be followed to Void given the
reference function Ref, then something that S links to directly can also be fol-
lowed to Void under the same reference function.

5.4 Closely Related Work

The closure results necessary for proofs such as reachability are established inde-
pendently in the math module Closure Op Ext (seen imported in Listing 1.1.)
Such factoring out of reusable mathematical development (independent of their
application to the present verification problem) is a key reason for the simplicity
of this treatment, compared to, for example, [15].

An important direction for further research is experimentation with an as-
sortment of benchmarks, such as the ones discussed in [2]. However, we hypoth-
esize that the assertions and complexity of their proofs are likely to be different

3 Irrelevant conjuncts of the “Given:” portion have been removed for brevity.

The Location Linking Concept 47

Table 1. VCs for Location Linking Realization

VC Given Goal

1 true Is Void Reachable(Void, Ref)

2 true Str Info(Void, Content, Ref) = empty string

3 Str Info(S, Content, Ref) /= S /= Void
empty string

4 Str Info(S, Content, Ref) /= S /= Void
empty string

5 Is Void Reachable(S, Ref) Is Void Reachable(Ref(S), Ref)

6 Is Void Reachable(S, Ref) Str Info(S, Content, Ref) = (<Content(S)> o
Str Info(Ref(S), lambda L: Z (

{R if L = S; Content(L) otherwise}), Ref))

7 true Void = Void

8 Temp’ /= Void Temp’ /= Void

9 Temp’ /= Void Temp’ /= Void

10 Is Void Reachable(S, Ref) Is Void Reachable(Temp’, lambda L: Z (
{S if L = Temp’; Ref(L) otherwise}))

11 Is Void Reachable(S, Ref) Is Void Reachable(S, Ref)

12 true (S = Void) =
(Str Info(S, Content, Ref) = empty string)

13 true Str Info(S, Content, Ref) =
Str Info(S, Content, Ref)

from those resulting from the approach discussed in this paper because of lan-
guage design differences and our use of pre-verified components. For example, an
always-void-reaching concept, such as the one in Section 2, would lead to much
simpler invariants for list implementations.

It will also be interesting to study our approach to tree structures in relation to
[25]. Our approach similarly involves establishing a mathematical theory of tree
structures and using it to specify and reason about a Tree concept. However, the
pointer-based implementation of the concept will be hidden (and verified once)
using the ideas in this paper. Thus, such details will not routinely be raised
in verification of client code. Given these simplifications, it may be interesting
to adapt the decision procedure presented there and determine if additional
theoretical or performance gains can be achieved in such a setting.

6 Summary

We have presented a formal specification of a concept to capture pointer behav-
ior. The specification is designed such that extensions to the basic specification
can give language designers and programmers the flexibility to choose between
manual memory management and automatic garbage collection based on their
performance concerns. We have shown that a verifying compiler with the neces-
sary machinery to reason about component-based software via the specifications

48 G. Kulczycki et al.

of reusable components can be used naturally to verify pointer-based code using
the given specification.

Acknowledgements. This research is funded by NSF grants CCF-0811748
and DMS-0701187. We would like to thank all current and past members of the
RESOLVE Software Research Group at The Ohio State University and Clemson
University, in particular Ray McDowell, whose comments have helped improve
the specifications. Our thanks are also due to the anonymous referees for their
extensive comments.

References

1. Banerjee, A., Naumann, D.A.: State Based Ownership, Reentrance, and Encapsu-
lation. In: Gao, X.-X. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 387–411. Springer,
Heidelberg (2005)

2. Böhme, S., Moskal, M.: Heaps and Data Structures: A Challenge for Automated
Provers. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS,
vol. 6803, pp. 177–191. Springer, Heidelberg (2011),
http://dx.doi.org/10.1007/978-3-642-22438-6_15

3. Harms, D.E., Weide, B.W.: Copying and swapping: Influences on the design
of reusable software components. IEEE Trans. Softw. Eng. 17, 424–435 (1991),
http://dl.acm.org/citation.cfm?id=114769.114773

4. Harton, H.: Mechanical and Modular Verification Condition Generation for Object-
Based Software. Phd dissertation. Clemson University, School of Computing (De-
cember 2011)

5. Hatcliff, J., Leavens, G.T., Rustan, K., Leino, M., Müller, P., Parkinson, M.: Be-
havioral interface specification languages (2009),
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.150.723

6. Hehner, E.C.R.: Formalization of time and space. Formal Aspects of Computing 10,
290–306 (1998), http://dx.doi.org/10.1007/s001650050017

7. Hoare, C.A.R.: Recursive data structures. In: Hoare, C.A.R., Jones, C.B. (eds.)
Essays in Computing Science. Prentice-Hall, New York (1989)

8. Hollingsworth, J.E., Blankenship, L., Weide, B.W.: Experience report: using
RESOLVE/C++ for commercial software. In: Proceedings of the 8th ACM
SIGSOFT International Symposium on Foundations of Software Engineering:
Twenty-First Century Applications, SIGSOFT 2000/FSE-8, pp. 11–19. ACM, New
York (2000), http://doi.acm.org/10.1145/355045.355048

9. Jones, C.B.: Systematic software development using VDM. Prentice Hall Interna-
tional (UK) Ltd., Hertfordshire (1986)

10. Kassios, I.T.: Dynamic Frames: Support for Framing, Dependencies and Sharing
without Restrictions. In: Misra, J., Nipkow, T., Karakostas, G. (eds.) FM 2006.
LNCS, vol. 4085, pp. 268–283. Springer, Heidelberg (2006)

11. Klebanov, V., Müller, P., Shankar, N., Leavens, G.T., Wüstholz, V., Alkassar, E.,
Arthan, R., Bronish, D., Chapman, R., Cohen, E., Hillebrand, M.A., Jacobs, B.,
Leino, K.R.M., Monahan, R., Piessens, F., Polikarpova, N., Ridge, T., Smans, J.,
Tobies, S., Tuerk, T., Ulbrich, M., Weiß, B.: The 1st Verified Software Competition:
Experience Report. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664,
pp. 154–168. Springer, Heidelberg (2011)

http://dx.doi.org/10.1007/978-3-642-22438-6_15
http://dl.acm.org/citation.cfm?id=114769.114773
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.150.723
http://dx.doi.org/10.1007/s001650050017
http://doi.acm.org/10.1145/355045.355048

The Location Linking Concept 49

12. Kulczycki, G.: Direct Reasoning. Phd dissertation. Clemson University, School of
Computing (January 2004)

13. Kulczycki, G., Sitaraman, M., Roche, K., Yasmin, N.: Formal specification. In:
Wah, B.W. (ed.) Wiley Encyclopedia of Computer Science and Engineering. John
Wiley & Sons, Inc. (2008)

14. Kulczycki, G., Smith, H., Harton, H., Sitaraman, M., Ogden, W.F., Hollingsworth,
J.E.: Technical report RSRG-11-04, The Location Linking Concept: A Basis for
Verification of Code Using Pointers (September 2011),
http://www.cs.clemson.edu/group/resolve/reports.html

15. Lahiri, S., Qadeer, S.: Back to the future: revisiting precise program verification
using smt solvers. In: Proceedings of the 35th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2008, pp. 171–182.
ACM, New York (2008), http://doi.acm.org/10.1145/1328438.1328461

16. Meyer, B.: Object-Oriented Software Construction, 1st edn. Prentice-Hall, Inc.,
Upper Saddle River (1988)

17. Meyer, B.: On to components. Computer 32, 139–140 (1999)
18. Noble, J., Vitek, J., Potter, J.: Flexible Alias Protection. In: Jul, E. (ed.) ECOOP

1998. LNCS, vol. 1445, pp. 158–185. Springer, Heidelberg (1998)
19. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:

Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science,
LICS 2002, pp. 55–74. IEEE Computer Society, Washington, DC, USA (2002),
http://dl.acm.org/citation.cfm?id=645683.664578

20. Sitaraman, M., Weide, B.: Component-based software using resolve. SIGSOFT
Softw. Eng. Notes 19, 21–22 (1994),
http://doi.acm.org/10.1145/190679.199221

21. Sitaraman, M., Adcock, B., Avigad, J., Bronish, D., Bucci, P., Frazier, D., Fried-
man, H., Harton, H., Heym, W., Kirschenbaum, J., Krone, J., Smith, H., Weide, B.:
Building a push-button resolve verifier: Progress and challenges. Formal Aspects of
Computing 23, 607–626 (2011), http://dx.doi.org/10.1007/s00165-010-0154-3

22. Sitaraman, M., Atkinson, S., Kulczycki, G., Weide, B.W., Long, T.J., Bucci,
P., Heym, W.D., Pike, S.M., Hollingsworth, J.E.: Reasoning about Software-
Component Behavior. In: Frakes, W.B. (ed.) ICSR 2000. LNCS, vol. 1844, pp.
266–283. Springer, Heidelberg (2000)

23. Sitaraman, M., Kulczycki, G., Krone, J., Ogden, W.F., Reddy, A.L.N.: Performance
specification of software components. In: SSR, pp. 3–10 (2001)

24. Spivey, J.M.: The Z notation: a reference manual. Prentice-Hall, Inc., Upper Saddle
River (1989)

25. Wies, T., Muñiz, M., Kuncak, V.: An Efficient Decision Procedure for Imperative
Tree Data Structures. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011.
LNCS, vol. 6803, pp. 476–491. Springer, Heidelberg (2011),
http://dl.acm.org/citation.cfm?id=2032266.2032302

26. Wing, J.M.: A specifier’s introduction to formal methods. Computer 23, 8–23
(1990), http://dl.acm.org/citation.cfm?id=102815.102816

http://www.cs.clemson.edu/group/resolve/reports.html
http://doi.acm.org/10.1145/1328438.1328461
http://dl.acm.org/citation.cfm?id=645683.664578
http://doi.acm.org/10.1145/190679.199221
http://dx.doi.org/10.1007/s00165-010-0154-3
http://dl.acm.org/citation.cfm?id=2032266.2032302
http://dl.acm.org/citation.cfm?id=102815.102816

Verifying Implementations of Security Protocols
by Refinement

Nadia Polikarpova1 and Michał Moskal2

1 Chair of Software Engineering, ETH Zurich, Switzerland
nadia.polikapova@inf.ethz.ch

2 Microsoft Research Redmond
michal.moskal@microsoft.com

Abstract. We propose a technique for verifying high-level security properties
of cryptographic protocol implementations based on stepwise refinement. Our
refinement strategy supports reasoning about abstract protocol descriptions in
the symbolic model of cryptography and gradually concretizing them towards
executable code. We have implemented the technique within a general-purpose
program verifier VCC and applied it to an extract from a draft reference imple-
mentation of Trusted Platform Module, written in C.

1 Introduction

Vulnerabilities in security-critical code can arise either from defects in underlying cryp-
tographic protocols, or from inconsistencies between the protocol and the implementa-
tion. A lot of research in security is devoted to verifying abstract protocol definitions
against high-level security goals, such as secrecy and authentication. An example of
such a goal could be that an honest client only accepts a message from a server, if it is
related to a previously made request.

On the implementation side, techniques of static and dynamic program analysis are
applicable for checking low-level properties of the code, such as absence of buffer over-
runs. A challenge that is addressed by very few existing approaches is bridging the gap
between the two sides, that is, verifying that a program implements a certain protocol
and accomplishes the same security goals.

Most protocol implementations are written manually in an imperative programming
language, often C. In this work we use VCC [5], a general-purpose verifier for C pro-
grams, to prove the security of both the protocol and its implementation.

This task poses two main challenges. First, VCC is a verifier for arbitrary functional
properties but does not support expressing secrecy and authentication in a straightfor-
ward manner. Second, it is desirable to decouple the security goals of the protocol
from the properties of its implementation to allow for simpler specifications and more
modular proofs.

VCC has been used previously for verification of cryptographic protocols [8]. Our
work is an extension thereupon, with two main differences. First, our approach relies
entirely on VCC and does not require external security proofs in Coq, which avoids
translation between different formalisms and utilizes VCC strengths in handling muta-
ble state. Second, we have applied the technique to a more complex, stateful protocol,

R. Joshi, P. Müller, and A. Podelski (Eds.): VSTTE 2012, LNCS 7152, pp. 50–65, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Verifying Implementations of Security Protocols by Refinement 51

which prompted the scalability problems and thus development of our refinement-based
verification approach, which is the main contribution of this paper.

Our refinement strategy consist of three levels. The initial model (L0) describes a se-
curity protocol on the level of abstraction of a conventional protocol definition language
(message sequence chart, role script and similar). The purpose of the first refinement
(L1) is to switch from an abstract representation of protocol messages to their concrete
byte string format. Finally, the second refinement (L2) connects the protocol model to
the real implementation.

We applied this approach to a key management protocol from a slightly simpli-
fied version of the code submitted by Microsoft to the Trusted Computing Group for
the reference implementation of the Trusted Platform Module version 2. The simpli-
fications we made are described in Sect. 5; however note that we did not change the
data structures that store cryptographic keys or the code manipulating those keys. We
therefore believe that the case study still represents a realistic protocol implementation
in C; moreover it is not a standalone program, but a part of a software system of
substantial size.

The next two sections introduce the VCC verifier and the Trusted Platform Module.
Sect. 4 describes the proposed refinement approach in detail. Sect. 5 summarizes the
results of our case study, Sect. 6 discusses some related work and Sect. 7 concludes.

2 Background: The VCC Verifier

VCC is a deductive verifier for C programs. It checks that a program adheres to a spec-
ification in the form of inline assertions, function pre- and post-conditions and object
invariants, which are associated with compound C types (struct and unions). It works by
generating verification conditions from the program and its specification, via the Boo-
gie intermediate language [2]. These conditions are discharged by a reasoning engine
of choice, usually Z3 [6].

The specifications are provided as annotations directly in the source code and are
expressed in a language that includes the C expression language, and extends it with
quantification, user-defined predicates and functions. Additionally, the annotations can
provide ghost code manipulating ghost data, i.e., code and data removed before the
program is executed. VCC supports unbounded integers, maps between arbitrary types
(defined using lambda-expressions), and user-defined algebraic data-types, which all
can be used in ghost code. This added expressivity is useful for specifying data struc-
tures. For example, a red-black tree can be equipped with a ghost field of a map type
representing the current value of the tree; functions operating on the tree can then be
fully functionally specified with respect to that field. We shall use a very similar mech-
anism to represent the state of a protocol execution.

In VCC object invariants specify ownership relations: an object would usually own
all the objects that comprise its internal representation. Together with ghost fields ab-
stracting over values of complex object trees, ownership provides for data abstraction.

Our approach to verifying security properties can be applied to any verifier with a
similar feature-set. While both ownership and invariants are built into VCC, we be-
lieve the technique would work equally well if they were implemented on top of, e.g.,
separation logic in a tool like VeriFast [10].

52 N. Polikarpova and M. Moskal

<public, private> =
Create(parent handle);

// other code
// ...
handle = Load(parent handle,

public, private);
plain = Decrypt(handle, cipher);

Listing 1: Example usage of a storage key

Create(parent handle) {
<public, sensitive> = Random();
integrity = Hash(<sensitive, public>);
private = Cipher(<integrity, sensitive>,

protection key(parent handle));
return <public, private>;

}

Listing 2: Pseudocode of Create

3 Case Study: Trusted Platform Module

A Trusted Platform Module (TPM) is a secure cryptoprocessor used in most modern
personal computers. A TPM device is equipped with volatile and non-volatile memory
and can generate cryptographic keys, restrict their further usage, perform random num-
ber generation, as well as other cryptographic operations (hashing, encryption, sign-
ing). TPM can provide a wide range of hardware security services, most popular being
cryptographic key management, ensuring platform integrity and disk encryption (for
example the BitLocker Drive Encryption feature of Microsoft Windows).

Being a member of Trusted Computing Group, Microsoft has submitted for com-
ments a draft of the new generation of the TPM standard: version 2.0. It consists of
about 1000 pages of natural language specification and a reference implementation in
C (approximately 30000 lines of code). TPM1 supports a total of 102 commands, such
as create a cryptographic key, load a key for further use, decrypt a ciphertext, etc.

In this case study we restrict ourselves to the key management functionality of TPM,
as it is the core part needed for most applications. Keys used by the TPM (also called
objects)2 are organized in a hierarchy, where child keys are protected by their parents.
The TPM specification poses a restriction that objects protecting other objects (called
storage keys) are not allowed to be imported, that is, have to be created and used by the
same TPM. We only consider management of such storage keys.

Internally a storage key consists of a public and a sensitive area. The former con-
tains an asymmetric public key together with object attributes and parameters; the latter
consists of an asymmetric private key as well as a symmetric protection key. Whenever
an object resides in the TPM internal memory, its sensitive area can be stored unen-
crypted; however when the object is stored off TPM, its sensitive area is protected by
the protection key of its parent. A protected sensitive area is called a private area.

3.1 Creating and Loading Objects

A typical usage scenario of a storage key is given in Listing 1. To create a key one
invokes the Create command of the TPM, which returns the public and private areas of
the new object. Before the key can be used (e.g., to decrypt data or protect other keys),
it needs to be loaded into the internal memory of the TPM using the Load command.

We would like to verify the following two properties about this scenario:

1 For brevity, we will use this name to refer to the draft specification.
2 Note that the notion of object in TPM (a cryptographic key) is different from object in VCC

(an instance of a compound type), but the former can be implemented using the latter.

Verifying Implementations of Security Protocols by Refinement 53

1. sensitive areas of all the objects in the hierarchy remain secret (not known outside
the TPM);

2. whenever a storage key is successfully loaded into a TPM under some parent, it had
been created by the same TPM under the same parent.

Looking at an abstract description of Create (Listing 2), it is easy to reason informally
that those properties are ensured by the format of the private area. Indeed, an external
client cannot encrypt arbitrary messages with a secret protection key, thus to load a fake
object he would have to guess two values pub and priv, such that, if priv decrypts to a
pair < i, s >, then i = h(s, pub) (where h is a known hash function).

3.2 Key Management as a Security Protocol

The scenario described above can be expressed as a single-message security protocol,
where an agent C (Create) sends a message to an agent L (Load):

C → L : par, p, {|h(p, s), s|}k(C,L,par)

Here comma is used for pairing, {| · |} is symmetric encryption, par is an identifier of
the parent, p and s are the public and the sensitive area of an object and k(C,L, par) is
a key shared between C and L (the protection key of the parent).

The security goals listed above can be expressed as follows:

1. (secrecy): s, k(C,L, par) are secret, shared between agents C and L;
2. (authentication): agent L agrees with C on par, p, s; that is, whenever L receives a

message of the above format, he can be sure that is has once been sent by C with
the same parameters par, p and s.

Symbolic formalisms for protocol verification usually consider agents communicating
through a network controlled by a Dolev-Yao attacker [7]. Such an attacker can eaves-
drop, decompose and recompose messages, but never relies on luck, e.g., he cannot
guess a secret key or accidentally obtain a required hash value due to a collision. We
adopt the same attacker model for our approach.

4 Refinement Approach

To deal with the complexity of specification and verification of real-world security code
we propose an approach based on stepwise refinement in the style of Event-B [1]. The
main idea is to first reason about a high-level protocol description (like the one given in
the previous section) and then gradually concretize it towards the real implementation.
Refinement enables us to separate different aspects of the problem, in particular the
security of the protocol and whether the protocol is correctly implemented by the code.

In Event-B the initial model of a system consists of an abstract state space con-
strained by invariants and a set of events that update the abstract state. The purpose
of the invariants is to express high-level system requirements (in our case, the security
goals) in a formal but straightforward way; all events have to be proved to maintain the
invariants.

54 N. Polikarpova and M. Moskal

(ghost typedef struct {
// Unbounded integer:
\integer a;
// Invariant on the state space:
(invariant a > 0)

} State 0;
State 0 s0;

void event 0()
(updates &s0)
(ensures s0.a == \old(s0.a) + 1)

{
(unwrapping &s0) {
s0.a = s0.a + 1;

}
})

Listing 3: An example initial model in
VCC

(ghost typedef struct {
\integer b, c;
(invariant \mine(&s0)) // Ownership

// Gluing invariant:
(invariant s0.a == b + c)

} State 1;
State 1 s1;

void event 1()
(updates &s1)
(ensures s1.b == \old(s1.b) + 1)

{
(unwrapping &s1) {
event 0();
s1.b = s1.b + 1;

}
})

Listing 4: An example refinement in VCC

Each refinement introduces new (concrete) variables that are linked to the old (ab-
stract) variables by a gluing invariant. An essential feature of stepwise refinement is
that verifying a concrete event (that manipulates concrete variables) does not require
re-verifying preservation of the abstract invariants, but only of the gluing invariants.
This enables decomposition of proofs in addition to specifications.

4.1 Refinement in VCC

Unlike Event-B we do not use a special-purpose notation and tool support, but rather
encode refinement within a general-purpose program verifier. One of the benefits is a
seamless transition from the model to the actual implementation, without relying on a
code generator.

In VCC we represent the state space of the initial model as a ghost struct and often
make use of unbounded integers and infinite maps to achieve a higher level of abstrac-
tion (see Listing 3 for an example). An event is encoded as a ghost function with a
contract (updates &state). This contract allows the function to open up the state ob-
ject (using a statement (unwrapping &state)) and modify it, as long as its invariant is
preserved, which is exactly the proof obligation we would like to impose on an event.

At least one of the events in a model has to ensure the invariant without requiring it
(it is called the initialization event), in order to make sure that the invariant is consistent.

On each refinement level concrete state is encoded as a struct (physical if it is the
final refinement, and ghost otherwise), equipped with a gluing invariant (Listing 4).
The ownership system of VCC makes it possible to express the refinement relation in an
elegant way. VCC does not allow mentioning abstract variables in the gluing invariant,
unless the abstract state is owned by the concrete state. The system then guarantees that
whenever the concrete state is known to be consistent (i.e., in between executing the

Verifying Implementations of Security Protocols by Refinement 55

events) no code could modify the abstract state without updating the concrete variables
accordingly.

Concrete events are encoded as functions with an (updates ...) contract for concrete
state. A body of such a function calls its abstract counterpart and then updates the
concrete state to reestablish the gluing invariant. Because the abstract event is already
known to maintain the invariant of the abstract state, only the preservation of the gluing
invariant has to be proved at this point.

Note that this approach uses refinement only as a methodology for structuring speci-
fications and proofs; the validity of verification results does not depend on maintaining
a simulation relation between the models on different levels of abstraction. Using the
example above, if the postcondition of event 1 faithfully describes its intended effect,
and the invariants of State 0 and State 1 capture all the system requirements, then it
does not matter if event 1 refines event 0; in fact, the latter can be eliminated from the
system, letting the former update s0 directly (and thus take up the burden of proving
the preservation of s0’s invariant).

In the next three sections we describe in detail the three models (the initial model and
its two refinements) that we propose for verifying protocol implementations.
We explain the approach in terms of the create-load protocol from our case study, how-
ever we believe that the description extends naturally to other similar protocols and
security goals.

4.2 High-Level Protocol Definition (L0)

Our initial model describes the protocol in the formalism of symbolic cryptography. In
this formalism the set of messages is modelled as a term algebra, which in VCC can be
defined using the datatype construct (Listing 6).3

In our example the algebra consists of byte string literals, terms denoting crypto-
graphic operations (encryption and hashing) as well as three different kinds of
compound terms: Sensitive, Object and Private. These three constructors essentially
all represent pairs; we distinguish them, as their concrete representations in the actual
code have different formats. To justify the distinction, we have to prove that no two
compound terms of different kinds can correspond to the same concrete representation,
which is discussed in Sect. 4.3.

The variables of the initial model keep track of the state of a protocol execution,
namely:

– internal TPM state: the object hierarchy and loaded objects;
– all the terms created by honest participants (i.e., the TPM) as part of the protocol

messages;
– all the terms known to the attacker, either eavesdropped or constructed.

We use infinite maps (denoted bool ...[Term]) to represent sets of terms through their
characteristic functions. The state space is encoded in a ghost struct called Log

3 The listings in this section are somewhat simplified for clarity; the full VCC source code of our
case study is available under http://se.inf.ethz.ch/people/polikarpova/
tpm.zip

http://se.inf.ethz.ch/people/polikarpova/tpm.zip
http://se.inf.ethz.ch/people/polikarpova/tpm.zip

56 N. Polikarpova and M. Moskal

(ghost
typedef struct {

// Objects in the hierarchy
bool objects[Term];
// Mapping from an object to its parent
Term parent[Term];
// Loaded objects
bool loaded[Term];
// Terms generated by honest agents
bool protocol[Term];
// Terms known to the attacker
bool attacker[Term];

(invariant \forall Term pub, sen; objects[Object(pub, sen)] ==> !attacker[sen])
(invariant \forall Term pub, sen, k; is object sym key(\this, k) ==>
attacker[Cipher(Private(Hash(Integrity(sen, pub)), sen), k)] ==>

objects[Object(pub, sen)] && symkey(parent[Object(pub, sen)]) == k)
// ... more invariants ...

} Log;
Log log;)

Listing 5: Protocol log

(datatype Term {
case Literal(ByteString s);
case Sensitive(Term skey, Term symkey);
case Object(Term pub, Term sen);
case Private(Term int hash, Term sen);
case Cipher(Term t, Term k);
case Hash(Term t);

})

Listing 6: Term algebra

(Listing 5). We also define a function bool used(Log, Term) that represents the union of
protocol and attacker sets of a log.

Each event of the model encodes a protocol step of one of three kinds: either an
honest agent sending a message (revealing it to the attacker), an honest agent receiving
a message, or the attacker constructing a new message from his current knowledge.

Secrecy goals are encoded as invariants of the log, restricting the attacker set. The
first of the object invariants in Listing 5 is an example of such a security invariant:
it states that for all objects in the hierarchy their sensitive area is never known to the
attacker. The second one is an auxiliary invariant, which is not part of the requirements
and is only used to assist verification.

An authentication goal is always associated with an honest agent receiving a mes-
sage: upon receipt the agent wants to be sure that the message came from a certain
principal. Thus authentication goals are encoded as security postconditions of receive
events (see Load for an example).

Verifying the events against the security invariants and postconditions, guarantees
that after an arbitrary sequence of protocol steps all secrecy properties will hold, and if
a receive event is then invoked, its associated authentication properties will also hold.
For verification to be meaningful we need to make sure that all the security require-
ments of interest are formalized as either invariants of the log or postconditions of
receive events, and the set of attacker capabilities is not too restrictive. In our approach
those specifications are expressed explicitly and straightforwardly, which reduces the
probability of a modeling error. Auxiliary invariants, on the other hand, can be added
and corrected gradually: VCC will check if they are erroneous or insufficient.

A send event (Create in our example) is modelled by a ghost function that adds terms
to the protocol set, publishes some of them in the attacker set and possibly updates the

Verifying Implementations of Security Protocols by Refinement 57

void create 0(Term parent, Term obj)
(requires log.loaded[parent])
(requires \forall Term t;
subterms(obj)[t] ==> !used(t))

(updates &log)
(ensures log.attacker[pub(obj)] &&
log.attacker[Cipher(private term(obj),

symkey(parent))])
{

(unwrapping &log) {
log.objects[obj] = \true;
log.parent[obj] = parent;
log.protocol = set union(

log.protocol, subterms(obj));

Term enc private = Cipher(
private term(obj),
symkey(parent));

log.protocol = set union(
log.protocol, subterms(enc private));

log.attacker[pub(obj)] = \true;
log.attacker[enc private] = \true;

}
}
Listing 7: Create event on L0

void load 0(Term parent, Term obj)
(requires log.loaded[parent])
(requires log.attacker[pub(obj)] &&
log.attacker[Cipher(private term(obj),

symkey(parent))])
(updates &log)

// Authentication postcondition:
(ensures \old(log.objects)[obj] &&
\old(log.parent)[obj] == parent)

{
(unwrapping &log)
log.loaded[obj] = \true;

}

void att decrypt 0(Term t, Term k)
(requires log.attacker[Cipher(t, k)])
(requires log.attacker[k])
(updates &log)
(ensures log.attacker[t])

{
(unwrapping &log)
log.attacker[t] = \true;

}

Listing 8: Load event and attacker’s
decryption capability on L0

internal state (Listing 7). It might seem counterintuitive that create 0 receives the new
object as an argument. In fact, the actual generation of a fresh storage key happens in
the physical code; this key is then passed to create 0, whose only purpose is to register
the key the log.

A receive event, such as Load, does not change the protocol and attacker sets, but
might update the internal state. The event’s precondition states that the message must
be a part of the attacker knowledge, which models the fact that all communications in
the system go through the attacker. In our example (Listing 8) the event is equipped
with an authentication postcondition, which states that the loaded object belongs to the
TPM hierarchy (and thus was sent by the Create event, as no other event can modify
the hierarchy), and it is loaded under its initial parent.

A Dolev-Yao attacker is usually modelled as a set of deduction rules that transitively
define the set of messages he can construct from some initial set. We encode those rules
as events that add terms to the attacker set, with the premise of the rule corresponding to
the event’s precondition and the conclusion of the rule corresponding to the postcondi-
tion. For example, Listing 8 shows an event that models attacker’s capability to decrypt
a ciphertext once he knows the key.

For our case study we used the standard Dolev-Yao rules: generating a fresh lit-
eral, construction and destruction of compound terms, encryption and decryption, hash-
ing. We also encoded several non-standard attacker capabilities in order to relax overly

58 N. Polikarpova and M. Moskal

strong assumptions of symbolic cryptography. One of them is encrypting a fresh literal
with a key not known to the attacker; it models the situation when the attacker provides
an honest agent with a random string, when an encryption is expected. The other one is
decomposing an encryption of a compound term with an unknown key into two encryp-
tions and vice versa; this event models the distributivity of stream and block ciphers
over concatenation.

Verifying correctness of the events requires adding auxiliary invariants to the log.
While these invariants are checked by VCC and thus do not need to be trusted (they
cannot accidentally weaken the security invariants or the attacker model), getting them
right is a non-trivial task. Based on our experience, we can suggest the following invari-
ant patterns:

1. Dolev-Yao rules describing how the attacker could have learnt a particular term. For
instance an invariant \forall Term t, k; attacker[Cipher(t, k)] ==> protocol[Cipher(t,
k)] || (attacker[t] && attacker[k]) says that he can learn a ciphertext by either eaves-
dropping it or constructing it from a plaintext and a key he knows. Those invariants
do not depend on the protocol, but only on the attacker model and the term algebra
(and thus reusable).

2. Invariants stating that the protocol set and the used set are closed under addition of
subterms (also protocol independent).

3. Message format invariants, describing the shape of the messages generated by
honest agents. For example an invariant \forall Term t, k; protocol[Cipher(t, k)] ==>
is object sym key(\this, k) says that honest agents only produce encryptions with

secret symmetric keys. These invariants are in general not reusable, but can be de-
rived straightforwardly from the protocol. Note that there is no harm in making
them stronger than required by adding all the knowledge about the protocol mes-
sages.

4. Internal data invariants, for example saying that a public key of an object in the
hierarchy never coincides with a private key of the same or another object. These
invariants are protocol-specific and most of the time have to be deduced from veri-
fication errors.

5. Additional attacker restrictions that do not correspond directly to the security goals.
These are protocol-dependent and usually tricky to figure out. For example, we had
to state that honest agents never publish a plaintext private area: \forall Term t1, t2;
protocol[Private(t1, t2)] ==> !attacker[Private(t1, t2)], because the protocol security

relies on the fact that private areas are only sent encrypted.

4.3 From Term Algebra to Byte Strings (L1)

The initial model represents protocol messages as symbolic terms, while in the phys-
ical code messages are plain byte strings. In order to connect the two descriptions,
we need a means to match a term to its string representation and vice versa. To this
end, we have developed a VCC library containing a ghost type ByteString that encodes
finite sequences of bytes of arbitrary size, together with a number of specification func-
tions manipulating those sequences. For example, the function from array(BYTE ∗data,
\integer size) returns a byte string stored in a physical byte array.

Verifying Implementations of Security Protocols by Refinement 59

(ghost typedef struct {
// Set of used strings:
bool strings[ByteString];
// Mapping from strings to terms:
Term term[ByteString];

// Ownership:
(invariant \mine(&log))

// Gluing invariants:
(invariant \forall ByteString s;
strings[s] ==> used(log, term[s])

&& string(term[s]) == s)
(invariant \forall Term t;
used(log, t) ==> strings[string(t)]

&& term[string(t)] == t)
} Table)
(ghost Table table)

Listing 9: Representation table

void att compute hash 1(ByteString s)
(requires attacker string(s))
(updates &table)
(ensures attacker string(lib hash(s)))

{
// Symbolic assumption:
(assume table.strings[lib hash(s)] ==>
is hash(table.term[lib hash(s)]) &&
string(hash arg(

table.term[lib hash(s)])) == s)

(unwrapping &table) {
att compute hash 0(table.term[s]);
add(Hash(table.term[s]));

}
}

Listing 10: Attacker’s hashing capability
on L1

Matching terms to strings is straightforward, as each term has a unique string rep-
resentation. We introduce a specification function ByteString string(Term t) that defines
the string format for every term constructor in such a way that it corresponds to the
physical code. As for cryptographic terms (Cipher and Hash), we assume that the im-
plementation uses a trusted cryptographic library to compute the corresponding byte
strings, and its specification and verification is outside of the scope of our problem.
Thus we model these operations with uninterpreted functions lib encrypt and lib hash
that operate on values of type ByteString.

The other direction — mapping strings to terms — cannot be expressed as a function
for cardinality reasons (e.g., hashing is generally not injective, and a ciphertext can
in principle coincide with a hash value). To be able to apply the symbolic model of
cryptography to byte string messages, following [8], we make symbolic assumptions on
string-manipulating operations:

– an operation that corresponds to constructing a new term, cannot produce a string
that had been used before as a representation of a different term;

– if an operation requires the corresponding term to be of a particular type, it cannot
be performed on a string that represents a term of a different type (for example, a
string that is obtained as a hash cannot be decrypted).

In the code instances of these assumptions appear in inline assume statements of L1
events (see examples below).

Symbolic assumptions guarantee that string has no collisions within the set of terms
used in a protocol execution, and thus there exists a mapping from used string to used
terms. This mapping, together with the set of used strings and the obvious gluing in-
variant is stored in a data structure called representation table (Listing 9).

The set of events of L1 closely corresponds to that of L0, except that they are spec-
ified using byte strings rather than terms. Following the general approach of Sect. 4.1,

60 N. Polikarpova and M. Moskal

(dynamic owns) typedef struct {
OBJECT SLOT slots[MAX LOADED];

(invariant \forall \integer i;
0 <= i && i < MAX LOADED

==> \mine(&slots[i]))
(invariant \mine(&table))

// Gluing invariant:
(invariant \forall \integer i;
0 <= i && i < MAX LOADED &&
slots[i].occupied ==>
log.loaded[term(&slots[i].object)])

} TPM STORAGE;
TPM STORAGE storage;

Listing 11: Physical state of the TPM

typedef struct {
UINT16 keySize;
BYTE key[MAX SYM DATA];
(ghost ByteString content)
(invariant

keySize <= MAX SYM DATA)
(invariant

content ==
from array(key, keySize))

} SYM KEY;

Listing 12: Physical representation of
a symmetric key

each refined event calls its L0 counterpart to modify the log and then updates the
representation table accordingly. As an example let us consider the attacker’s hash-
ing capability (Listing 10). The attacker string predicate states that a string represents a
term known to the attacker. The add(Term) function adds a term and the corresponding
string to the representation table, provided the no-collision condition holds: the string is
not yet associated with another term. To satisfy this condition we have to add a symbolic
assumption to the body of att compute hash 1. It states that if lib hash(s) already occurs
in the representation table, its corresponding term is a Hash, and moreover the argument
of the hash can only map to s (i.e., we did not encounter a collision of lib hash).

Symbolic assumptions are weaker for terms whose string representation is indeed
injective. For example, when adding an encryption lib encrypt(s, k) it is sufficient to
assume that the corresponding term, if in the table, is a Cipher and its key maps to k; we
can then prove that its plaintext also maps to s.

Sound handling of compound terms requires their string representation to be injec-
tive not only in both parts of the compound, but also in its type. Essentially, one has to
verify for the message format used in the physical code that for any byte string there is
at most one way to parse it into a compound term. With this property, the only symbolic
assumption that is needed to add a compound term to the table is that its representa-
tion does not coincide with the representation of any literal, encryption or hash, which
is reasonable. Without relying on injectivity it is hard to justify absence of collisions
among compound terms.

In general, one has to be careful with symbolic assumptions, as they are a part of
the trusted specification. Similarly to [8], our first refinement makes those assumptions
explicit, which simplifies their informal validation.

4.4 Physical Code (L2)

The concrete variables of the second refinement are the global variables of the physical
code. In our case, TPM stores a list of loaded objects (as an array of object slots that
can be either occupied or empty). We add a gluing invariant connecting this array to the
loaded set of the log (Listing 11).

Verifying Implementations of Security Protocols by Refinement 61

TPM RC Create(UINT32 parentHandle, PUBLIC ∗public, PRIVATE ∗private)
(requires object exists(parentHandle))
(updates &storage)
(ensures attacker string(public−>content)) // ”Gluing” postcondition
(ensures attacker string(private−>content)) // ”Gluing” postcondition

TPM RC Load(UINT32 parentHandle, PRIVATE ∗private, PUBLIC ∗public,
UINT32 ∗objectHandle)
(requires object exists(parentHandle))
(requires attacker string(public−>content)) // ”Gluing” precondition
(requires attacker string(private−>content)) // ”Gluing” precondition
(updates &storage)

// Authentication postcondition:
(ensures \result == SUCCESS ==>
\old(log.objects)[term(storage.slots[∗objectHandle].object)] &&
\old(log.parent)[term(storage.slots[∗objectHandle].object)] ==

term(storage.slots[parentHandle].object))

void SymmetricEncrypt(UINT16 keyBits, BYTE ∗key, UINT16 dataSize, BYTE∗ data)
(ensures from array(data, dataSize) ==

lib encrypt(\old(from array(data, dataSize)), from array(key, keyBits / 8)))

Listing 13: Some contracts of Create and Load and an extract from the cryptographic
library

A TPM object is represented in the code by an instance of the OBJECT struct, which
contains instances of PUBLIC and SENSITIVE. As expected, PUBLIC stores the public
asymmetric key, while SENSITIVE stores the secret asymmetric key and an instance
of SYM KEY, which in turn stores the symmetric protection key. All keys are stored in
statically allocated buffers with a length field (see Listing 12 for an example). To access
the byte string stored in a buffer we add a ghost field content to all structs that contain
such buffers.

Note that there is no physical data structure representing the attacker knowledge,
which could be connected by a gluing invariant to the attacker set of the log. Instead
all the information flowing in and out of the TPM should be considered known to the
attacker. This property can be encoded in the pre- and postconditions of TPM functions
that communicate with the outside world.

For an example, let us look at Create (Listing 13). Its signature reveals that it can pass
information to the outside world through two buffers: public and private. Thus it has to
be equipped with a gluing postcondition, stating that the content of each output buffer
corresponds to a term known to the attacker. An intuition behind this postcondition is
that whatever Create returns to the outside world is safe to publish, because, according
to the results of L0, the attacker cannot use it to violate the security goals.

The gluing postcondition forces Create to update the log and the representation table,
which is done by invoking its L1 counterpart, create 1. To make the connection between
the two levels, we have to verify that the protocol messages computed by the physical
code are the same as described by the ghost code. To achieve that for cryptographic
terms Cipher and Hash we have to instrument the cryptographic library with contracts

62 N. Polikarpova and M. Moskal

in terms of the uninterpreted functions lib encrypt and lib hash introduced in L1 (see an
example in Listing 13).

Our second TPM command, Load (Listing 13), receives data from the outside world;
thus the content of its input buffers has to be related to the attacker knowledge through
gluing preconditions. Note that these preconditions have somewhat special semantics:
they do not express a contract with the client code, but rather our model of the client.

The gluing invariant of storage forces Load to update the loaded set of the log, which
is accomplished through a call to load 1. The latter requires not only that the input
strings be known to the attacker, but also that they have a correct format (in this case:
that the integrity value matches). Those preconditions are established by the physical
code that parses the input buffers and performs the integrity check.

We do not provide physical code for the attacker events on L2, because a concrete
implementation of a TPM client would be of limited usefulness for our problem. Rather
we would like to argue that whatever program a client can write using the given TPM in-
terface, can be proved to refine a sequence of L1 events. This argument though remains
informal and comes down to adequacy of the chosen attacker model.

Our technique has several benefits when it comes to the physical code level. First,
it does not pose any requirements on the structure of the program and thus can work
with pre-existing code. Second, the security-related specification only appears in a few
top-level functions; the rest of the code is only concerned with memory safety and
functional correctness, which considerably improves scalability.

5 Empirical Results

In this section we summarize the results of our case study, present some statistics and
share our observations.

In the case study we managed to verify a slightly simplified version of the draft
reference implementation of two TPM 2.0 commands, Create and Load, against the two
security goals described in Sect. 3. Even though our objective was thorough verification
of the protocol code, as opposed to finding bugs, we still discovered two faults in the
original implementation, one related to memory safety and another one to security.

The security fault resided in the code performing the integrity check before loading
a key. In the faulty version, if the first two bytes of the decrypted private area were
zero, the integrity check was skipped and the rest of the private buffer was treated as the
sensitive area. In this case, in order to load an incorrect object the attacker has to guess
a value for the private area, such that its first two bytes would decrypt to zeros and the
rest would fit the format of a sensitive area (which is easier than matching the integrity
value). This fault shows up during verification as a failure to prove a postcondition of
the function performing the integrity check, which in turn is needed to establish the
precondition of load 1 and eventually to update the log in a consistent way. Note that in
this case the error lies in the implementation rather than in the protocol itself, and thus
could not be discovered by a high-level protocol checking tool.

One of the reasons we had to simplify the code is that VCC had problems reasoning
about deep syntactic nesting of C structs, which TPM uses to store parameters and
attributes of objects. Our simplified implementation only works with storage keys and

Verifying Implementations of Security Protocols by Refinement 63

supports just one encryption and one hashing algorithm, which eliminates the need to
store most of the object parameters. As a consequence we also removed the code that
checks consistency of those parameters or works explicitly with other types of objects.

File Specs Code Ratio
ByteString.h 127
CryptUtil.h 47 31 151%
TPM Types.h 43 37 116%
marshal.h 94 32 293%
marshal.c 33 199 16%
create load 0.c 384
create load 1.c 488
create load 2.c 282 205 137%
TOTAL 1498 504 297%

The table in this section gives code metrics
for our case study. The annotation overhead for
files containing both physical code and specifica-
tion is usually around 150%, which is consistent
with previous results for VCC. However, we also
have two extra “implementations” of the protocol
containing just ghost code, which brings the over-
all overhead to about 300%. The overhead in [8]
is roughly 150%, but does not include the Coq
proofs. Note, that our refinement models should
not be understood as just overhead, as they convey
useful information about the system in an easy to

understand, operational way, where the hints for the verifier only comprise a fraction of
the code.

Running VCC on the whole case study takes about 120 seconds (on a slightly dated
2.8GHz Core2 CPU using a single core), and only one function takes longer than 10
seconds to verify (precisely 38 seconds), whereas two more take between 3 and 10. They
are all physical level functions, which involve multiple struct assignments, numerous
function calls reading and writing entire nested structs, and complex postconditions.
All other functions (including all the ghost-only functions) take less than 3 seconds
to verify. It thus seems that handling of relatively complex C structs in VCC needs to
be improved, whereas reasoning about pure mathematical data structures (even if they
involve complex invariants) works well.

In terms of development time, specification and verification effort can be estimated as
4 person-months, including studying the TPM source code, developing the refinement
approach and writing reusable specifications (e.g., the byte string library).

The major verification road-blocker, and source of frustration, was understanding
failed verification attempts when working with physical code, especially large functions
that mutate a lot of state. One reason is the lack of immediate feedback: when verifying
those functions VCC would rarely produce a quick negative result, but rather keep on
running for indefinite time. The Z3 Inspector [5] tool, monitoring progress of the back-
end proof engine, was invaluable in those cases. Another reason is that error reports are
often related to internal properties of the VCC memory model and are obscure to a non-
expert user, as compared with errors expressed in terms of user-defined specifications.

6 Related Work

The introduction (Sect. 1) compares our work with previous work [8] on using VCC
for security verification, which was in turn based on invariants for cryptographic struc-
tures [3].

There exist special-purpose tools for verifying security properties of C code, using
abstract interpretation, like Csur [9], or model-checking techniques, as in ASPIER [4].

64 N. Polikarpova and M. Moskal

ASPIER only considers a limited number of protocol sessions, whereas Csur does not
prove memory safety.

A number of tools use various static analysis and symbolic execution techniques to
extract protocol description from code, or check conformance of code with a specific
protocol. These tools are useful for finding bugs but their usability for sound verification
is limited. In particular, various static analysis techniques tend to fail when confronted
with slightly unusual or more complex codebases. On the other hand, in VCC proving
correctness of complex code is a matter of putting in enough annotations, which is
admittedly a difficult but manageable task.

Stepwise refinement has been used before to systematically construct cryptographic
protocols from security goals [14]. Our approach complements this work, starting from
a symbolic protocol definition (the final result of their technique) and refining it even
further into an implementation.

There are other examples of encoding refinement techniques within a general-purpose
program verifier [11], however they have mostly been applied to constructing relatively
simple algorithms, rather than verifying pre-existing real-world software systems.

We believe that our approach could be implemented in any verification environment
with expressive enough specification language. For the C programming language this
includes Frama-C [12], VeriFast [10], and KeyC [13].

7 Conclusions

We proposed a novel approach to verifying implementations of security protocols based
on stepwise refinement. To this end we developed an encoding of refinement in a
general-purpose program verifier, which we believe can also be used in other problem
domains.

Our refinement strategy for security protocols separates specification and verification
into three levels of abstraction. Security goals can be expressed straightforwardly and
concisely on the most abstract level. In general, all the specifications that have to be
trusted (validated against the informal requirements) are explicit and relatively concise.
They include security invariants, pre- and postconditions of events, gluing invariants
between different levels, and symbolic assumptions. All other annotations are checked
by the verifier, which makes our approach less error-prone.

The proposed technique is flexible and scalable enough to handle real pre-existing
C code, which we confirmed by applying it to the draft reference implementation of
TPM 2.0.

One direction of future work is extending the TPM case study to remove the code
simplifications and include more TPM commands. The auxiliary invariants of the log
would need to be extended to allow the additional command behavior, and the existing
commands would need to be reverified against those invariants.

Another direction is applying the refinement approach to other security protocols.
In a network-based protocol there is no shared physical state between the participants,
however the ghost state can still be shared, which enables the use of our approach. In
multi-message protocols honest agents and the attacker have to be executed concur-
rently. This does not affect the ghost code, as ghost events represent atomic actions of

Verifying Implementations of Security Protocols by Refinement 65

sending and receiving single messages. A physical function that implements a protocol
role, can call multiple ghost events and havoc the ghost state in between. Because of the
flexibility of the general-purpose verifier, we believe that our approach can be naturally
extended to handle other kinds of security properties and attacker models.

Acknowledgements. We appreciate the collaboration of François Dupressoir, Paul
England, Cédric Fournet, Andy Gordon and David Wooten on the TPM project. We are
grateful to François Dupressoir, Carlo Furia and Andy Gordon, as well as the anony-
mous referees, for their comments on the draft versions of this paper.

References

1. Abrial, J.-R., Hallerstede, S.: Refinement, decomposition, and instantiation of discrete mod-
els: Application to Event-B. Fundam. Inform. 77(1-2), 1–28 (2007)

2. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A Modular
Reusable Verifier for Object-Oriented Programs. In: de Boer, F.S., Bonsangue, M.M., Graf,
S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 364–387. Springer, Heidelberg
(2006)

3. Bhargavan, K., Fournet, C., Gordon, A.D.: Modular verification of security protocol code by
typing. In: POPL 2010, pp. 445–456. ACM, New York (2010)

4. Chaki, S., Datta, A.: Aspier: An automated framework for verifying security protocol imple-
mentations. In: Proceedings of the 2009 22nd IEEE Computer Security Foundations Sympo-
sium, pp. 172–185. IEEE Computer Society, Washington, DC, USA (2009)

5. Cohen, E., Dahlweid, M., Hillebrand, M.A., Leinenbach, D., Moskal, M., Santen, T., Schulte,
W., Tobies, S.: VCC: A Practical System for Verifying Concurrent C. In: Berghofer, S.,
Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 23–42.
Springer, Heidelberg (2009)

6. de Moura, L., Bjørner, N.S.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof,
J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

7. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Transactions on Informa-
tion Theory 29(2), 198–208 (1983)

8. Dupressoir, F., Gordon, A.D., Jürjens, J., Naumann, D.A.: Guiding a general-purpose C ver-
ifier to prove cryptographic protocols. In: IEEE Computer Security Foundations Symposium
(2011)

9. Goubault-Larrecq, J., Parrennes, F.: Cryptographic Protocol Analysis on Real C Code. In:
Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 363–379. Springer, Heidelberg (2005)

10. Jacobs, B., Piessens, F.: The VeriFast program verifier. Technical Report CW-520, Depart-
ment of Computer Science, Katholieke Universiteit Leuven (2008)

11. Leino, K.R.M., Yessenov, K.: Automated stepwise refinement of heap-manipulating code
(2010)

12. Moy, Y.: Automatic Modular Static Safety Checking for C Programs. PhD thesis, Université
Paris-Sud (January 2009)

13. Mürk, O., Larsson, D., Hähnle, R.: KeY-C: A Tool for Verification of C Programs. In:
Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 385–390. Springer, Heidel-
berg (2007)

14. Sprenger, C., Basin, D.A.: Developing security protocols by refinement. In: ACM Confer-
ence on Computer and Communications Security, pp. 361–374 (2010)

Deciding Functional Lists with Sublist Sets

Thomas Wies1, Marco Muñiz2, and Viktor Kuncak3

1 New York University, New York, NY, USA
2 University of Freiburg, Germany

3 EPFL, Switzerland

Abstract. Motivated by the problem of deciding verification conditions
for the verification of functional programs, we present new decision pro-
cedures for automated reasoning about functional lists. We first show
how to decide in NP the satisfiability problem for logical constraints
containing equality, constructor, selectors, as well as the transitive sub-
list relation. We then extend this class of constraints with operators to
compute the set of all sublists, and the set of objects stored in a list.
Finally, we support constraints on sizes of sets, which gives us the ability
to compute list length as well as the number of distinct list elements.
We show that the extended theory is reducible to the theory of sets
with linear cardinality constraints, and therefore still in NP. This reduc-
tion enables us to combine our theory with other decidable theories that
impose constraints on sets of objects, which further increases the poten-
tial of our decidability result in verification of functional and imperative
software.

1 Introduction

Specifications using high-level data types, such as sets and algebraic data types
have proved effective for describing the behavior of functional and imperative
programs [12, 26]. Functional lists are particularly convenient and widespread
in both programs and specifications. Efficient decision procedures for reasoning
about lists can therefore greatly help automate software verification tasks.

Theories that allow only constructing and decomposing lists correspond to
term algebras and have efficient decision procedures for quantifier-free frag-
ments [1, 15]. However, these theories do not support list concatenation or sub-
lists. Adding list concatenation makes the logic difficult because it subsumes the
existential problem for word equations [11, 17, 7], which has been well-studied
and is known to be difficult.

This motivates us to use as a starting point the logic of lists with a sub-
list (suffix) relation, which can express some (even if not all) of the properties
expressible using list concatenation. We give an axiomatization of this theory
where quantifiers can be instantiated in a complete and efficient way, following
the methodology of local theory extensions [18]. Although local theory extensions
have been applied to term algebras with certain recursive functions [19], they
have not been applied to term algebras in the presence of the sublist operation.

R. Joshi, P. Müller, and A. Podelski (Eds.): VSTTE 2012, LNCS 7152, pp. 66–81, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Deciding Functional Lists with Sublist Sets 67

The general subterm relation in term algebras was shown to be in NP using dif-
ferent techniques [21], without discussion of practical implementation procedures
and without support for set operators. Several expressive logics of linked imper-
ative data structures have been proposed [3, 9, 23, 10]. In these logics, variables
range over graph nodes, as opposed to lists viewed as terms. In other words, the
theories that we consider have an additional extensionality axiom, which ensures
that no two list objects in the universe have identical tail and head. This axiom
has non-trivial consequences on the set of satisfiable formulas and requires a new
decision procedure. Our logic admits reasoning about set-algebraic constraints,
as well as cardinalities of sublist and content sets. Note that the cardinality of
the set of sublists of a list xs can be used to express the length xs. Our result is
particularly interesting given that the theory of concatenation with word length
function is not known to be decidable [4]. Decidable logics that allow reasoning
about length of lists have been considered before [20]. However, our set-algebraic
constraints are strictly more expressive and capture forms of quantification that
are useful for the specification of complex properties.

Contributions. We summarize the contributions of our paper as follows:

– We give a set of local axioms for the theory of lists with sublist relation that
admits an efficient implementation in the spirit of [9, 23] and can leverage
general implementation methods for local theory extensions [5, 6].

– We show how to extend this theory with an operator to compute the longest
common suffix of two lists. We also give local axioms that give the decision
procedure for the extended logic.

– We show how to further extend the theory by defining sets of elements that
correspond to all sublists of a list, and then stating set algebra and size
operations on such sets. Using a characterization of the models of this theory,
we establish that the theory admits a reduction to the logic BAPA of sets
with cardinality constraints [8]. We obtain a decidable logic that supports
reasoning about the contents of lists as well as about the number of elements
in a list.

Impact on Verification Tools. We have found common functions in libraries
of functional programming languages and interactive theorem provers that can
be verified to meet a detailed specification using our logic. We discuss several
examples in the paper. Moreover, the reduction to BAPA makes it possible to
combine this logic with a number of other BAPA-reducible logics [24, 20, 25, 16].
Therefore, we believe that our logic will be a useful component of verification
tools in the near future.

An extended version of this paper with proofs and additional material is
available as a technical report [22].

2 Examples

We describe our contributions through several examples. In the first two exam-
ples we show how we use our decision procedure to verify functional correctness

68 T. Wies, M. Muñiz, and V. Kuncak

def drop[T](n: Int, xs: List[T]): List[T] = {
if (n ≤ 0) xs
else xs match {
case nil ⇒ nil
case cons(x, ys) ⇒ drop(n−1, ys)

}
} ensuring (zs ⇒ (n < 0 → zs = xs) ∧ (n ≥ 0 ∧ length(xs) < n → zs = nil) ∧

(n ≥ 0 ∧ length(xs) ≥ n → zs � xs ∧ length(zs) = length(xs) − n))

Fig. 1. Function drop that drops the first n elements of a list xs

n > 0 ∧ xs �= nil ∧ cons(x, ys) = xs ∧ zs � ys ∧
(n− 1 ≥ 0 ∧ length(ys) ≥ n − 1 → length(zs) = length(ys) − (n − 1)) →

n ≥ 0 ∧ length(xs) ≥ n → length(zs) = length(xs)− n

Fig. 2. One of the verification conditions for the function drop

of a function written in a functional programming notation similar to the Scala
programming language [14]. In our third example we demonstrate the usefulness
of our logic to increase the degree of automation in interactive theorem proving.
Throughout this section we use the term sublist for a suffix of a list.

Example 1: Dropping Elements from a List. Our first example, listed in
Figure 1, is the function drop of the List class in the Scala standard library (such
functions also occur in standard libraries for other functional languages, such as
Haskell). The function takes as input an integer number n and a parametrized
functional list xs. The function returns a functional list zs which is the sublist
obtained from xs after dropping the initial n elements.

The ensuring statement specifies the postcondition of the function (a pre-
condition is not required). The postcondition is expressed in our logic FLS2 of
functional lists with sublist sets shown in Figure 8. We consider the third con-
junct of the postcondition in detail: it states that if the input n is a positive
number and smaller than the length of xs then (1) the returned list zs is a sublist
of the input list xs, denoted by zs xs, and (2) the length of zs is equal to the
length of xs discounting the n dropped elements.

Deciding Verification Conditions. To verify the correctness of the drop func-
tion, we generate verification conditions and use our decision procedure to decide
their validity. Figure 2 shows one of the generated verification conditions, ex-
pressed in our logic of Functional Lists with Sublist Sets (FLS2). This verification
condition considers the path through the second case of the match expression.

The verification condition can be proved valid using the FLS2 decision proce-
dure presented in Section 7. The theory FLS2 is a combination of the theory FLS
and the theory of sets with linear cardinality constraints (BAPA). Our decision
procedure follows the methodology of [24] that enables the combination of such
set-sharing theories via reduction to BAPA. Figure 3 illustrates how this decision
procedure proves subgoal G2. We first negate the subgoal and then eliminate the
length function. For every list xs we encode its length length(xs) using sublist sets
as follows. We introduce a set variable Xs and define it as the set of all sublists of

Deciding Functional Lists with Sublist Sets 69

FLS fragment:
Xs = σ(xs) ∧ Ys = σ(ys) ∧ Zs = σ(zs) ∧
xs �= nil ∧ cons(x, ys) = xs ∧ zs � ys
Projection onto shared sets Xs , Ys, Zs :
Zs ⊆ Ys ∧ Ys ⊆ Xs ∧ card(Xs) > 1 ∧ card(Xs) = card(Ys) + 1

BAPA fragment:
xs length = card(Xs) − 1 ∧ ys length = card(Ys) − 1 ∧ zs length = card(Zs) − 1 ∧
n > 0 ∧ (n − 1 ≥ 0 ∧ ys length ≥ n − 1 → zs length = ys length − (n − 1)) ∧
n ≥ 0 ∧ xs length ≥ n ∧ zs length �= xs length − n
Projection onto shared sets Xs , Ys, Zs : card(Xs) �= card(Ys) + 1

Fig. 3. Separated conjuncts for the negated subgoal G2 of the VC in Figure 2 with the
projections onto shared sets

xs: {l. l xs}, which we denote by σ(xs). We then introduce an integer variable
xs length that denotes the length of xs by defining xs length = card(Xs) − 1,
where card(Xs) denotes the cardinality of set Xs. Note that we have to subtract
1, since nil is also a sublist of xs. We then purify the resulting formula and sep-
arate it into two conjuncts for the individual fragments. These two conjuncts
are shown in Figure 3. The two separated conjuncts share the set variables Xs ,
Ys, and Zs . After the separation the underlying decision procedure of each frag-
ment computes a projection of the corresponding conjunct onto the shared set
variables. These projections are the strongest BAPA consequences that are ex-
pressible over the shared sets in the individual fragments. After the projections
have been computed, we check satisfiability of their conjunction using the BAPA
decision procedure. In our example the conjunction of the two projections is
unsatisfiable, which proves that G2 is valid. In Section 7 we describe how to
construct these projections onto set variables for the FLS2 theory.

Example 2: Greatest Common Suffix. Figure 4 shows our second example,
a Scala function gcs, which takes as input two functional lists xs, ys and their
corresponding lengths lxs, lys. This precondition is specified by the require state-
ment. The function returns a pair (zs,lzs) such that zs is the greatest common
suffix of the two input lists and lzs its length. This is captured by the postcondi-
tion. Our logic provides the operator xs � ys that denotes the greatest common
suffix of two lists xs and ys. Thus, we can directly express the desired property.

Figure 5 shows one of the verification conditions that are generated for the
function gcs. This verification condition captures the case when the lists xs, ys

are not empty, their lengths are equal, their head elements x, y are equal, and
lz1s is equal to length(xs)-1. The verification condition can again be split into two
subgoals. We focus on subgoal G1. Figure 6 shows the separated conjuncts for
this subgoal and their projections onto the shared set variables Xs , Ys , Zs , and
Z1s . Using the BAPA decision procedure, we can again prove that the conjunction
of the two projections is unsatisfiable.

Example 3: Interactive Theorem Proving. Given a complete specification
of functions such as drop and gcd in our logic, we can use our decision procedure to
automatically prove more complex properties about such functions. For instance,

70 T. Wies, M. Muñiz, and V. Kuncak

def gcs[T](xs: List[T], lxs: Int, ys: List[T], lys: Int): (List[T], Int)
require (length(xs)=lxs ∧ length(ys)=lys) =
(xs,ys) match {
case (nil,) ⇒ (nil, 0)
case (, nil) ⇒ (nil, 0)
case (cons(x, x1s), cons(y, y1s)) ⇒
if (lxs > lys) gcs(x1s, lxs−1, ys, lys)
else if (lxs < lys) gcs(xs, lxs, y1s, lys−1)
else {
val (z1s, lz1s) = gcs(x1s, lxs−1, y1s, lys−1)
if (x = y ∧ lz1s = (lxs − 1)) (cons(x, z1s), lz1s+1) else (z1s, lz1s)

}
} ensuring ((zs, lzs) ⇒ length(zs) = lzs ∧ zs = xs � ys)

Fig. 4. Function gcs that computes the greatest common suffix of two lists

length(xs) = lxs ∧ length(ys) = lys ∧ xs �= nil ∧ ys �= nil ∧ lxs = lys ∧ x = y ∧
cons(x, x1s) = xs ∧ cons(y, y1s) = ys ∧ lz1s = lxs − 1 ∧
length(z1s) = lz1s ∧ z1s = xs1 � y1s ∧ zs = cons(x, z1s) ∧ lzs = lz1s + 1 →

length(zs) = lzs︸ ︷︷ ︸
G1

∧ zs = xs � ys︸ ︷︷ ︸
G2

Fig. 5. One of the verification conditions for the function gcs

FLS fragment:
Xs = σ(xs) ∧ Ys = σ(ys) ∧ Zs = σ(zs) ∧ Z1s = σ(z1s) ∧
cons(x, x1s) = xs ∧ cons(y, y1s) = ys ∧ xs �= nil ∧ x = y ∧ ys �= nil ∧
z1s = x1s � y1s ∧ zs = cons(x,z1s)
Projection onto shared sets Xs, Ys , Zs, Z1s :
card(Xs) > 1 ∧ card(Ys) > 1 ∧ card(Zs) > 1 ∧
Z1s ⊆ Zs ∧ card(Zs) = card(Z1s) + 1 ∧
((card(Z1s) = card(Xs) − 1 ∨ card(Z1s) = card(Ys) − 1) → Zs = Xs = Ys)

BAPA fragment:
xs length = card(Xs) − 1 ∧ ys length = card(Ys) − 1 ∧
zs length = card(Zs) − 1 ∧ z1s length = card(Z1s) − 1 ∧
xs length = lxs ∧ ys length = lys ∧ z1s length = lz1s ∧
lxs = lys ∧ lz1s = lxs − 1 ∧ lzs = lz1s+ 1 ∧ zs length �= lzs
Projection onto shared sets Xs, Ys , Zs, Z1s :
card(Z1s) = card(Xs) − 1 ∧ card(Z1s) = card(Ys) − 1 ∧ card(Zs) �= card(Z1s) + 1

Fig. 6. Separated conjuncts for the negated subgoal G1 of the VC in Figure 5 with
projections onto the shared sets

the function drop is not just defined in the Scala standard library, but also in
the theory List of the Isabelle/HOL interactive theorem prover [13]. Consider the
following property of function drop:

n ≤ m→ τ(drop(n, xs)) ⊆ τ(drop(m, xs))

Deciding Functional Lists with Sublist Sets 71

(n < 0 → zsn = xs) ∧ (n ≥ 0 ∧ length(xs) < n → zsn = nil) ∧
(n ≥ 0 ∧ length(xs) ≥ n → zsn � xs ∧ length(zsn) = length(xs) − n) ∧
(m < 0 → zsm = xs) ∧ (m ≥ 0 ∧ length(xs) < m → zsm = nil) ∧
(m ≥ 0 ∧ length(xs) ≥ m → zsm � xs ∧ length(zsm) = length(xs) − m) ∧
n ≤ m → τ (zsn) ⊆ τ (zsm)

Fig. 7. Lemma set drop subset set drop expressed in our logic

where the expression τ(xs) denotes the content set of a list xs, i.e., τ(xs) =
{head(l). l xs}. This property corresponds to Lemma set drop subset set drop

stated and proved in the Isabelle theory List. Using the postcondition of function
drop to eliminate all occurrences of this function in Lemma set drop subset set drop

yields the formula shown in Figure 7. This formula belongs to our logic. The proof
of lemma set drop subset set drop that is presented inside the Isabelle theory is not
fully automated, and involves the statement of an intermediate auxiliary lemma.
Using our decision procedure, the main lemma can be proved directly and fully
automatically, without requiring an auxiliary lemma. Our logic is, thus, useful
to increase the degree of automation in interactive theorem proving.

3 Logic FLS2 of Functional Lists with Sublists Sets

The grammar of our logic of functional lists with sublist sets is shown in
Figure 8. It supports reasoning about lists built from list constructors and se-
lectors, sublists, the length of lists, and cardinality and set algebraic constraints
over the sets of sublists of lists σ(l) as well their content sets τ(l).

The remainder of the paper is structured as follows. In Section 5 we first
present the fragment FLS of the logic FLS2 that allows formulas over lists and
sublists, but not sets, cardinalities, or length constraints. We then formally define
the semantics of the logic FLS and give a decision procedure for its satisfiability
problem in Section 6. Finally, in Section 7 we show how to use this decision
procedure for a BAPA reduction that decides the full logic FLS2.

F ::= AL | AS | F1 ∧ F2 | F1 ∨ F2 | ¬F
AL ::= TL � TL | TL = TL | TH = TH

TL ::= vL | nil | cons(TH , TL) | tail(TL) | TL � TL

TH ::= vH | head(TL)

AS ::= BL = BL | BL ⊆ BL | TI = TI | TI < TI

BL ::= sL | ∅ | {TL} | σ(TL) | BL ∪ BL | BL \BL

BH ::= sH | ∅ | {TH} | τ (TL) | head[BL] | BH ∪ BH | BH \BH

TI ::= vI | K | TI + TI | K · TI | card(BL) | card(BH) | length(TL)

K ::= . . .−2 | −1 | 0 | 1 | 2 . . .

Fig. 8. Logic FLS2 of lists, sublist, sublist sets, list contents, and size constraints

72 T. Wies, M. Muñiz, and V. Kuncak

4 Preliminaries

In the following, we define the syntax and semantics of formulas. We also review
the notions of partial structures and local theory extensions from [18].

Sorted Logic. We present our problem in sorted logic with equality. A signature
Σ is a tuple (S,Ω), where S is a countable set of sorts and Ω is a countable set of
function symbols f with associated arity n ≥ 0 and associated sort s1×· · ·×sn →
s0 with si ∈ S for all i ≤ n. Function symbols of arity 0 are called constant
symbols. We assume that all signatures contain the sort bool and for every other
sort s ∈ S a dedicated equality symbol =s ∈ Ω of sort s× s → bool. Note that
we generally treat predicate symbols of sort s1, . . . , sn as function symbols of
sort s1× . . .× sn → bool. Terms are built as usual from the function symbols in
Ω and (sorted) variables taken from a countably infinite set X that is disjoint
from Ω. A term t is said to be ground, if no variable appears in t. We denote by
Terms(Σ) the set of all ground Σ-terms.

A Σ-atom A is a Σ-term of sort bool. We use infix notation for atoms built
from the equality symbol. A Σ-formula F is defined via structural recursion
as either one of A, ¬F1, F1 ∧ F2, or ∀x : s.F1, where A is a Σ-atom, F1 and
F2 are Σ-formulas, and x ∈ X is a variable of sort s ∈ S. We typically drop
the sort annotation (both for quantified variables and the equality symbols) if
this does not cause any ambiguity. We use syntactic sugar for Boolean constants
(true, false), disjunctions (F1 ∨ F2), implications (F1 → F2), and existential
quantification (∃x.F1). We define literals and clauses as usual. A clause C is
called flat if no term that occurs in C below a predicate symbol or the symbol
= contains nested function symbols. A clause C is called linear if (i) whenever a
variable occurs in two non-variable terms in C that do not start with a predicate
or the equality symbol, the two terms are identical, and if (ii) no such term
contains two occurrences of the same variable.

Total and Partial Structures. Given a signature Σ = (S,Ω), a partial Σ-
structure α is a function that maps each sort s ∈ S to a non-empty set α(s)
and each function symbol f ∈ Ω of sort s1 × · · · × sn → s0 to a partial function
α(f) : α(s1) × · · · × α(sn) ⇀ α(s0). If α is understood, we write just t instead
of α(t) whenever this is not ambiguous. We assume that all partial structures
interpret the sort bool by the two-element set of Booleans {0, 1}. We further
assume that all structures α interpret the symbol =s by the equality relation
on α(s). A partial structure α is called total structure or simply structure if it
interprets all function symbols by total functions. For a Σ-structure α where
Σ extends a signature Σ0 with additional sorts and function symbols, we write
α|Σ0 for the Σ0-structure obtained by restricting α to Σ0.

Given a total structure α and a variable assignment β : X → α(S), the
evaluation �t�α,β of a term t in α, β is defined as usual. For a ground term
t we typically write just �t�α. A quantified variable of sort s ranges over all
elements of α(s). From the interpretation of terms the notions of satisfiability,
validity, and entailment of atoms, formulas, clauses, and sets of clauses in total
structures are derived as usual. In particular, we use the standard interpretations

Deciding Functional Lists with Sublist Sets 73

for propositional connectives of classical logic. We write α, β |= F if α satisfies
F under β where F is a formula, a clause, or a set of clauses. Similarly, we
write α |= F if F is valid in α. In this case we also call α a model of F . The
interpretation �t�α,β of a term t in a partial structure α is as for total structures,
except that if t = f(t1, . . . , tn) for f ∈ Ω then �t�α,β is undefined if either �ti�α,β
is undefined for some i, or (�t1�α,β , . . . , �tn�α,β) is not in the domain of α(f).
We say that a partial structure α weakly satisfies a literal L under β, written
α, β |=w L, if (i) L is an atom A and either �A�α,β = 1 or �A�α,β is undefined, or
(ii) L is a negated atom ¬A and either �A�α,β = 0 or �A�α,β is undefined. The
notion of weak satisfiability is extended to clauses and sets of clauses as for total
structures. A clause C (respectively, a set of clauses) is weakly valid in a partial
structure α if α weakly satisfies α for all variable assignments β. We then call α
a weak partial model of C.

Theories and Local Theory Extensions. A theory T for a signature Σ
is simply a set of Σ-formulas. We consider theories T (M) defined as a set of
Σ-formulas that are valid in a given set of models M, as well as theories T (K)
defined as a set of Σ-formulas that are consequences of a given set of formulas
K. In the latter case, we call K the axioms of the theory T (K) and we often
identify K and T (K).

In what follows, we consider theories that are defined by a set of axioms.
Let Σ0 = (S,Ω0) be a signature and assume that signature Σ1 = (S,Ω0 ∪ Ω1)
extends Σ0 by new function symbols Ω1. We call the function symbols in Ω1

extension symbols and terms starting with extension symbols extension terms.
Now, a theory T1 over Σ1 is an extension of a theory T0 over Σ0, if T1 is
obtained from T0 by adding a set of (universally quantified) clauses K. In the
following, when we refer to a set of ground clauses G, we assume they are over
the signature Σc

1 = (S,Ω0 ∪Ω1∪Ωc) where Ωc is a set of new constant symbols.
Let K be a set of (universally quantified) clauses. We denote by st(K, G) the
set of all ground subterms that appear in K or G and by K[G] the set of all
instantiations of clauses in K where variables appearing below extension terms
have been instantiated by the terms in st(K, G). Then an extension T1 = T0 ∪K
is a local extension if it satisfies condition (Loc):

(Loc) For every finite set of ground clauses G, G ∪ T1 |= false iff there is
no partial Σc

1-structure α such that α|Σ0
is a total model of T0, all

terms in st(K, G) are defined in α, and α weakly satisfies K[G] ∪G.

5 Logic FLS of Functional Lists with Sublists

We now define the logic of functional lists with sublists (FLS) and its accompany-
ing theory. The logic FLS is given by all quantifier-free formulas over the signature
ΣFLS = (SFLS, ΩFLS). The signature ΣFLS consists of sorts SFLS = {bool, list, data}
and function symbols ΩFLS = {nil, cons, head, tail,�,}. The sorts of the function
symbols in ΩFLS are shown in Figure 9. We use infix notation for the symbols �
and .

74 T. Wies, M. Muñiz, and V. Kuncak

nil : list

cons : data× list → list

tail : list → list

head : list → data

� : list × list → bool

� : list × list → list

Fig. 9. Sorts of function symbols in the signature ΣFLS

αFLS(list)
def
= L

def
= { t ∈ Terms(ΣL) | t : list }

αFLS(data)
def
= D

def
= { t ∈ Terms(ΣL) | t : data }

αFLS(cons)
def
= consL

def
= λ(d, l). cons(d, l)

αFLS(nil)
def
= nil

αFLS(tail)
def
= tailL

def
= λl. if l = nil then nil else l′ where l = cons(d, l′)

αFLS(head)
def
= headL

def
= λl. if l = nil then d1 else d where l = cons(d, l′)

αFLS(�)
def
= λ(l1, l2). l1 �L l2

αFLS(�) def
= λ(l1, l2). l1 �L l2

Fig. 10. The canonical model αFLS of functional lists with sublists

The theory of functional lists with sublist relationship TFLS is the set of all
formulas in FLS that are true in the canonical model of lists. We denote this
canonical model by αFLS. The structure αFLS is the term algebra generated by
the signature ΣL = (SFLS, {cons, nil, d1, d2, . . . }), where d1, d2, . . . are infinitely
many constant symbols of sort data. The complete definition of αFLS is given in
Figure 10. The canonical model interprets the sort list as the set of all ΣL-terms
of sort list. We denote this set by L. Likewise, the sort data is interpreted as the
set of all ΣL-terms of sort data. We denote this set by D. The function symbols
cons and nil are interpreted as the corresponding term constructors. The function
symbols head and tail are interpreted as the appropriate selectors headL and tailL.
The predicate symbol is interpreted as the sublist relation L⊆ L×L on lists.
The sublist relation is defined as the inverse of the reflexive transitive closure of
the tail selector function:

l1 L l2
def⇐⇒ (l2, l1) ∈ { (l, tailL(l)) | l ∈ L }∗

The relation L is a partial order on lists. In fact, it induces a meet-semilattice
on the set L. We denote by �L the meet operator of this semilattice. Given two
lists l1 and l2, the list l1 �L l2 denotes the greatest common suffix of l1 and l2.
The structure αFLS interprets the function symbol � as the operator �L.

We further define the theory of all finite substructures of αFLS. LetΣFLSf be the
signature ΣFLS without the function symbol cons and let αFLSf be the structure
αFLS restricted to the signature ΣFLSf . We call a finite subset L of L sublist
closed if for all l ∈ L, l′ ∈ L, l′ L l implies l′ ∈ L. For a finite sublist closed
subset L of L, the structure αL is the finite total substructure of αL induced by
the restricted support sets αL(list)

def
= L and αL(data)

def
= { headL(l) | l ∈ L }. We

denote by MFLSf the set of all such finite total substructures αL of αFLSf . The
theory TFLSf is the set of all FLS formulas that are true in all structuresMFLSf .

Deciding Functional Lists with Sublist Sets 75

6 Decision Procedure for FLS

In the following, we show that the theory TFLS is decidable. For this purpose we
reduce the decision problem for TFLS to the decision problem of the theory TFLSf .
We then give a finite first-order axiomatization of the theory TFLSf and show that
it is a local theory extension. In total, this implies that deciding satisfiability of
a ground formula F with respect to the theory TFLS can be reduced to deciding
satisfiability of F conjoined with finitely many ground instances of the first-order
axioms of TFLSf .
Reducing FLS to FLSf. We first note that satisfiability of an FLS formula
F in the canonical model can be reduced to checking satisfiability in the finite
substructures, if the function symbol cons does not occur in F .

Proposition 1. Let F be a quantifier-free ΣFLSf-formula. Then F is satisfiable
in αFLS if and only if F is satisfiable in some structure α ∈MFLSf .

We can now exploit the fact that, in the term algebra αFLS, the constructor
consL is uniquely determined by the functions headL and tailL. Let F be an FLS
formula. Then we can eliminate an occurrence F (cons(td, tl)) of function symbol
cons in a term of F by rewriting F (cons(td, tl)) into:

x �= nil ∧ head(x) = td ∧ tail(x) = tl ∧ F (x)

where x is a fresh variable of sort list that does not appear elsewhere in F . Let
elimcons(F) be the formula that results from rewriting recursively all appear-
ances of function symbol cons in F . Clearly, in the canonical model αFLS, the
formulas F and elimcons(F) are equisatisfiable. Thus, with Proposition 1 we can
conclude.

Lemma 2. Let F be an FLS formula. Then F is satisfiable in αFLS if and only
if elimcons(F) is satisfiable in some structure α ∈MFLSf .

Axiomatizing FLSf. We next show that there exists a first-order axiomatiza-
tion KFLSf of the theory TFLSf . The axioms KFLSf are given in Figure 11. The free
variables appearing in the formulas are implicitly universally quantified.

Lemma 3. The axioms KFLSf are sound, i.e., for all α ∈MFLSf , α |= KFLSf .

Pure: head(x) = head(y) ∧ tail(x) = tail(y) → x = y ∨ x = nil ∨ y = nil

NoCycle1: nil � x UnfoldL: tail(x) � x

NoCycle2: tail(x) = x → x = nil UnfoldR: x � y → x = y ∨ x � tail(y)

Refl: x � x GCS1: x � y � x

Trans: x � y ∧ y � z → x � z GCS2: x � y � y

AntiSym: x � y ∧ y � x → x = y GCS3: z � x ∧ z � y → z � x � y

Total: y � x ∧ z � x → y � z ∨ z � y

Fig. 11. First-order axiomatization KFLSf of the theory TFLSf

76 T. Wies, M. Muñiz, and V. Kuncak

As a prerequisite for proving completeness of the axioms, we next show that
the finite models of the axioms KFLSf are structurally equivalent to the finite
substructures of the canonical model of functional lists.

Proposition 4. Every finite model of KFLSf is isomorphic to some structure in
MFLSf .

Locality of FLSf. We will now prove that the theory KFLSf can be understood
as a local theory extension and, at the same time, prove that KFLSf is a complete
axiomatization of the theory TFLSf .

In what follows, the signature ΣFLSf is the signature of the theory extension
KFLSf . We also have to determine the signature Σ0 of the base theory T0 by
fixing the extension symbols. We treat the function symbols Ωe

def
= {head, tail,�}

as extension symbols, but the sublist relation as a symbol in the signature
of the base theory, i.e. Σ0

def
= (SFLS, {nil,}). The base theory itself is given by

the axioms that define the sublist relation, but that do not contain any of the
extension symbols, i.e., T0 def

= {NoCycle1,Refl,Trans,AntiSym,Total}. We further
denote by Ke

def
= KFLSf \ T0 the extension axioms.

We now show that KFLSf = T0 ∪ Ke is a local theory extension. As in the
definition of local theory extensions in Section 4, for a set of ground clausesG, we
denote by Ke[G] all instances of axioms Ke where the variables occurring below
extension symbols Ωe are instantiated by all ground terms st(Ke, G) that appear
in Ke and G. Furthermore, we denote by Σc

FLSf the signature ΣFLSf extended with
finitely many new constant symbols Ωc.

Lemma 5. For every finite set of Σc
FLSf ground clauses G, if α is a partial

Σc
FLSf-structure such that α|Σ0

is a total model of T0, all terms in st(Ke, G) are
defined in α, and α weakly satisfies Ke[G] ∪ G then there exists a finite total
Σc

FLSf-structure that satisfies KFLSf ∪G.

We sketch the proof of Lemma 5. Let α be a partialΣc
FLSf -structure as required in

the lemma. We can obtain a finite partial substructure α′ from α by restricting
the interpretations of sorts data and list to the elements that are used in the
interpretations of the ground terms st(Ke, G). Then α′ is still a total model of
T0 and still weakly satisfies Ke[G] ∪ G, since all axioms in KFLSf are universal.
We can then complete α′ to a finite total model of KFLSf ∪ G as follows. First,
for every u ∈ α′(list) where α′(head) is not defined, we can extend α′(data) by
a fresh element du and define α′(head)(u) = du. Now, let u ∈ α′(list) such that
α(tail) is not defined on u. If u = α′(nil), we define α′(tail)(u) = u. Otherwise,
from the fact that α′ satisfies axioms NoCycle1, AntiSym, and Total we can
conclude that there exists a maximal element v ∈ α′(list)\{u} such that (v, u) ∈
α′(). However, we cannot simply define α′(tail)(u) = v. The resulting structure
would potentially violate axiom Pure. Instead, we extend α′(list) with a fresh
element w and α′(data) with a fresh element dw, and define: α′(head)(w) = dw,
α′(tail)(w) = v, and α′(tail)(u) = w. We further extend the definition of α′()
for the newly added element w, as expected. The completion of α′(�) to a total
function is then straightforward.

Deciding Functional Lists with Sublist Sets 77

From Lemma 5 we can now immediately conclude that the theory KFLSf satis-
fies condition (Loc). Completeness of the axioms follows from Proposition 4 and
Lemma 5.

Theorem 6. KFLSf is a local theory extension of the theory T0.

Theorem 7. KFLSf is an axiomatization of the theory TFLSf , i.e., T (KFLSf) =
TFLSf .

Deciding FLS. We now describe the decision procedure for deciding satisfia-
bility of FLS formulas. Given an FLS input formula F , the decision procedure
proceeds as follows: (1) compute F̂ = elimcons(¬F), replace all variables in F̂
with fresh constant symbols, and transform the resulting formula into a set of
ground clauses G; and (2) use Theorem 6 and the reduction scheme for rea-
soning in local theory extensions [18], to reduce the set of clauses KFLSf ∪ G
to an equisatisfiable formula in the Bernays-Schönfinkel-Ramsey class, which is
decidable. The reduction scheme computes the set of clauses T0 ∪Ke[G]∪G and
then eliminates all occurrences of extension functions Ωe in literals of clauses in
this set. The resulting set of clauses contains only universally quantified vari-
ables, constants, relation symbols, and equality, i.e., it belongs to the Bernays-
Schönfinkel-Ramsey class. Soundness and completeness of the decision procedure
follows from Lemma 2, Theorems 6 and 7, and [18, Lemma 4].

Complexity. For formulas in the Bernays-Schönfinkel-Ramsey class that have
a bounded number of universal quantifiers, the satisfiability problem is known to
be NP-complete [2, page 258]. The only quantified variables appearing in the set
of clauses obtained after the reduction step of the decision procedure are those
that come from the axioms in KFLSf , more precisely, the axioms in T0 and the
(partial) instantiations of the axioms in Ke. In fact, we can write the clauses for
these axioms in such a way that they use exactly 3 quantified variables. Finally,
from the parametric complexity considerations in [18] follows that the size of the
set of clauses obtained in the final step of our decision procedure is polynomial
in the size of the input formula. It follows that the satisfiability problem for FLS
is decidable in NP. NP-hardness follows immediately from the fact that FLS can
express arbitrary propositional formulas.

Theorem 8. The decision problem for the theory TFLS is NP-complete.

7 Extension with Sets of Sublists and Content Sets

We next show decidability of the logic that extends FLS with constraints on sets
of sublists and the contents of lists. We do this by reducing the extended logic to
constraints on sets. For this we need a normal form of formulas in our logic. To
obtain this normal form, we start from partial models of FLS, but refine them
further to be able to reduce them to constraints on disjoint sets. We then give a
BAPA reduction [24] for each of these refined models.

78 T. Wies, M. Muñiz, and V. Kuncak

Predecessor-Refined Partial Structures. Our normal form of an FLS for-
mula F is given by a disjunction of certain partial models α of KFLSf . We call
these models predecessor-refined partial models.

Definition 9. α is a predecessor-refined partial (PRP) structure if it is a partial
substructure of a structure in MFLSf and the following conditions hold in α

1. is totally defined on α(list)
2. for all x, y ∈ α(list), (x � y) ∈ α(list). Moreover, if x, y, (x � y) are three

distinct elements, then there exists x1 ∈ α(list) such that x1 x and
tail(x1) = (x � y).

3. for all x, y ∈ α(list), if x �= y and tail(x) and tail(y) are defined and equal,
then both head(x) and head(y) are defined.

With each PRP structure α we associate the conjunction of literals that are
(strongly) satisfied in α. We call this formula a PRP conjunction.

Theorem 10. Each FLS formula is equivalent to an existentially quantified
finite disjunction of PRP conjunctions.

We can compute the PRP structures for an FLS formula F by using a simple
modification of the decision procedure for FLS presented in Section 6: instead
of instantiating the axioms Ke of the theory extension only with the ground
subterms st(Ke, G) appearing in the extension axioms Ke and the clauses G
generated from F , we instantiate the axioms with a larger set of ground terms
Ψ defined as follows:

Ψ0 = st(Ke, G) ∪ { t1 � t2 | t1, t2 ∈ st(Ke, G) }
Ψ = Ψ0 ∪ { head(t) | t ∈ Ψ0 } ∪ { pre(t1, t2), tail(pre(t1, t2)) | t1, t2 ∈ Ψ0 }

Here pre is a fresh binary function symbol, which we introduce as a Skolem
function for the existential variable x1 in Property 2 of PRP structures, i.e., we
constrain pre using the following axiom:

Pre : ∀xy. x �= y ∧ x �= x � y ∧ y �= x � y → pre(x, y) x ∧ tail(pre(x, y)) = x � y

The PRP structures for F are then given by the partial models of T0 ∪ (Ke ∪
{Pre})[Ψ] ∪ G in which all terms in Ψ and are totally defined. These partial
models can be computed using a tool such as H-PILoT [5].

Constraints on Sets of Sublists. Define σ(y) = {x. x y}. Our goal
is to show that extending FLS with the σ() operator and the set alge-
bra of such sets yields in a decidable logic. To this extent, we consider an
FLS formula F with free variables x1, . . . , xn and show that the defined re-
lation on sets ρ = {(σ(x1), . . . , σ(xn)). F (x1, . . . , xn)} is definable as ρ =
{(s1, . . . , sn). G(s1, . . . , sn)} for some quantifier-free BAPA [8] formula G. By
Theorem 10, it suffices to show this property when F is a PRP conjunction,
given by some PRP structure α. Figure 12 shows the generation of set con-
straints from a PRP structure. By replacing each σ(x) with a fresh set variable

Deciding Functional Lists with Sublist Sets 79

Input: a PRP structure α. Output: a set constraint Gα.
Step 1: Define the relation 1 as irreflexive transitive reduct of without

the tail relation. Formally, for all x, y ∈ α(list), define x 1 y iff all of the
following conditions hold: (1) x y, (2) x �= y, (3) tail(y) is undefined, and
(4) there is no z in α(list) such that x, y, z are distinct, x z, and z y.

Step 2: Introduce sets Sx,y with the meaning Sx,y = (σ(y) \ σ(x)) \ {y} and
define Segs = {Sx,y | x 1 y}.

Step 3: Generate the conjunction Ĝα of the following constraints:
1. σ(nil) = {nil}
2. σ(y) = {y} ∪ σ(x), for each x, y such that α satisfies tail(y) = x
3. σ(y) = {y} ∪ Sx,y ∪ σ(x), for each x, y such that α satisfies x 1 y
4. disjoint((S)S∈Segs, ({x})x∈α(list))

Step 4: Existentially quantify over all Segs variables in Ĝα. If the goal is to
obtain a formula without Segs variables, replace each variable Sx,y with
(σ(y) \ σ(x)) \ {y}.

Step 5: Return the resulting formula Gα.

Fig. 12. Generation of set constraints from a PRP structure

sx in the resulting constraint we obtain a formula in set algebra. We can check
the satisfiability of such formulas following the algorithms in [8].

Among the consequences of this reduction is NP-completeness of a logic con-
taining atomic formulas of FLS, along with formulas s = σ(x), set algebra ex-
pressions containing ⊆,∩,∪, \,= on sets, and the cardinality operator card(s)
that computes the size of the set s along with integer linear arithmetic con-
straints on such sizes. Because the length of the list x is equal to card(σ(x))− 1,
this logic also naturally supports reasoning about list lengths. We note that
such a logic can also support a large class of set comprehensions of the form
S = {x. F (x, y1, . . . , yn)} when the atomic formulas within F are of the form
u v and at least one atomic formula of the form x yi occurs positively in
disjunctive normal form of F . Because ∀x.F is equivalent to card({x.¬F}) = 0,
sets give us a form of universal quantification on top of FLS.

Additional Constraints on List Content. We next extend the language of
formulas to allow set constraints not only on the set of sublists σ(x) but also on
the images of such sets under the head function. We define the list content func-
tion by τ(x) = head[σ(x) \ {nil}] where we define head[s] = {head(x) | x ∈ s}.
We then obtain our full logic FLS2 shown in Figure 8 that introduces constraints
of the form head[s] = v on top of FLS and constraints on sets of sublists. To
show decidability of this logic, we use techniques inspired by [25] to eliminate
the image constraints. The elimination procedure is shown in Figure 13. We use
the properties of PRP structures that the elements for which tail(xL) = tail(xR)
holds have defined values head(xL) and head(xR). This allows us to enforce
sufficient conditions on sets of sublists and sets of their heads to ensure that the
axiom Pure can be enforced. The elimination procedure assumes that we have
head(s) expressions only in the cases where s is a combination of sets of the

80 T. Wies, M. Muñiz, and V. Kuncak

Input: a PRP structure α and an image constraint C.
Output: a set constraint Cα without head[s] expressions
Step 1: Replace each τ(x) in C with head[σ(x) \ {nil}].
Step 2: Let Pi be all sets of the form {xi} or Sxi,xj from Figure 12. If s is

a Boolean combination of expressions of the form σ(x), {x}, let J(s) be
such that s =

⋃
i∈J(s) Pi is the decomposition of s into disjoint sets, derived

from set equalities in Figure 12. Then replace each expression head[s] with⋃
i∈J(s) head[Pi].

Step 3: Replace each head[Pi] with a fresh set variable Qi and conjoin the result
with the following constraints on the image sets Qi:
1. card(Qi) ≤ card(Pi)
2. Qi = ∅ → Pi = ∅
3. Qi ∩Qj = ∅, for each x, y ∈ α(list) such that Pi = {x}, Pj = {y}, x �= y

and tail(x) = tail(y).
Step 4: Existentially quantify over all Qi and return the resulting formula Cα.

Fig. 13. Eliminating head[s] from image constraints by introducing additional con-
straints on top of Figure 12

form σ(x) and {x}, which ensures that s is a disjoint combination of polyno-
mially many partitions. This restriction is not necessary [25], but is natural in
applications and ensures the membership in NP.

8 Conclusion

We presented a new decidable logic that can express interesting properties of
functional lists and has a reasonably efficient decision procedure. We showed
that this decision procedure can be useful to increase the degree of automation
in verification tools and interactive theorem provers.

References

1. Barrett, C., Shikanian, I., Tinelli, C.: An abstract decision procedure for satisfia-
bility in the theory of recursive data types. ENTCS 174(8), 23–37 (2007)

2. Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Springer,
Heidelberg (1997)

3. Bouajjani, A., Dragoi, C., Enea, C., Sighireanu, M.: A Logic-Based Framework for
Reasoning about Composite Data Structures. In: Bravetti, M., Zavattaro, G. (eds.)
CONCUR 2009. LNCS, vol. 5710, pp. 178–195. Springer, Heidelberg (2009)

4. Furia, C.A.: What’s Decidable about Sequences? In: Bouajjani, A., Chin, W.-N.
(eds.) ATVA 2010. LNCS, vol. 6252, pp. 128–142. Springer, Heidelberg (2010)

5. Ihlemann, C., Sofronie-Stokkermans, V.: System Description: H-PILoT. In:
Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 131–139. Springer, Heidel-
berg (2009)

6. Jacobs, S.: Incremental Instance Generation in Local Reasoning. In: Bouajjani, A.,
Maler,O. (eds.)CAV2009.LNCS,vol. 5643,pp.368–382.Springer,Heidelberg(2009)

Deciding Functional Lists with Sublist Sets 81

7. Jaffar, J.: Minimal and complete word unification. J. ACM 37(1), 47–85 (1990)
8. Kuncak, V., Rinard, M.: Towards Efficient Satisfiability Checking for Boolean Alge-

bra with Presburger Arithmetic. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI),
vol. 4603, pp. 215–230. Springer, Heidelberg (2007)

9. Lahiri, S., Qadeer, S.: Back to the future: revisiting precise program verification
using SMT solvers. In: POPL (2008)

10. Lev-Ami, T., Immerman, N., Reps, T., Sagiv, M., Srivastava, S., Yorsh, G.: Sim-
ulating Reachability using First-Order Logic with Applications to Verification of
Linked Data Structures. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI),
vol. 3632, pp. 99–115. Springer, Heidelberg (2005)

11. Makanin, G.: The problem of solvability of equations in a free semigroup. Math.
USSR Sbornik, 129–198 (1977); AMS (1979)

12. Nguyen, H.H., David, C., Qin, S., Chin, W.-N.: Automated Verification of Shape,
Size and Bag Properties Via Separation Logic. In: Cook, B., Podelski, A. (eds.)
VMCAI 2007. LNCS, vol. 4349, pp. 251–266. Springer, Heidelberg (2007)

13. Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

14. Odersky, M., Spoon, L., Venners, B.: Programming in Scala: a comprehensive step-
by-step guide. Artima Press (2008)

15. Oppen, D.C.: Reasoning about recursively defined data structures. In: POPL, pp.
151–157 (1978)

16. Piskac, R., Suter, P., Kuncak, V.: On decision procedures for ordered collections.
Technical Report LARA-REPORT-2010-001, EPFL (2010)

17. Plandowski, W.: Satisfiability of word equations with constants is in PSPACE. J.
ACM 51(3) (2004)

18. Sofronie-Stokkermans, V.: Hierarchic Reasoning in Local Theory Extensions. In:
Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 219–234. Springer,
Heidelberg (2005)

19. Sofronie-Stokkermans, V.: Locality Results for Certain Extensions of Theories with
Bridging Functions. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 67–83.
Springer, Heidelberg (2009)

20. Suter, P., Dotta, M., Kuncak, V.: Decision procedures for algebraic data types with
abstractions. In: POPL (2010)

21. Venkataraman, K.N.: Decidability of the purely existential fragment of the theory
of term algebras. Journal of the ACM (JACM) 34(2), 492–510 (1987)

22. Wies, T., Muñiz, M., Kuncak, V.: On deciding functional lists with sublist sets.
Technical Report EPFL-REPORT-148361, EPFL (2010), http://cs.nyu.edu/

~wies/publ/on_deciding_functional_lists_with_sublist_sets.pdf

23. Wies, T., Muñiz, M., Kuncak, V.: An Efficient Decision Procedure for Imperative
Tree Data Structures. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011.
LNCS, vol. 6803, pp. 476–491. Springer, Heidelberg (2011)

24. Wies, T., Piskac, R., Kuncak, V.: Combining Theories with Shared Set Operations.
In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS, vol. 5749, pp. 263–278.
Springer, Heidelberg (2009)

25. Yessenov, K., Kuncak, V., Piskac, R.: Collections, Cardinalities, and Relations. In:
Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 380–395.
Springer, Heidelberg (2010)

26. Zee, K., Kuncak, V., Rinard, M.: Full functional verification of linked data struc-
tures. In: PLDI (2008)

http://cs.nyu.edu/~wies/publ/on_deciding_functional_lists_with_sublist_sets.pdf
http://cs.nyu.edu/~wies/publ/on_deciding_functional_lists_with_sublist_sets.pdf

Developing Verified Programs with Dafny

K. Rustan M. Leino

Microsoft Research, Redmond, WA, USA
leino@microsoft.com

Abstract. Dafny [2] is a programming language and program verifier. The lan-
guage is type-safe and sequential, and it includes common imperative features,
dynamic object allocation, and inductive datatypes. It also includes specification
constructs like pre- and postconditions, which let a programmer record the in-
tended behavior of the program along with the executable code that is supposed
to cause that behavior. Because the Dafny verifier runs continuously in the back-
ground, the consistency of a program and its specifications is always enforced.

Dafny has been used to verify a number of challenging algorithms, including
Schorr-Waite graph marking, Floyd’s “tortoise and hare” cycle-detection algo-
rithm, and snapshotable trees with iterators. Dafny is also being used in teaching
and it was a popular choice in the VSTTE 2012 program verification competi-
tion. Its open-source implementation has also been used as a foundation for other
verification tools.

In this tutorial, I will give a taste of how to use Dafny in program development.
This will include an overview of Dafny, basics of writing specifications, how to
debug verification attempts, how to formulate and prove lemmas, and some newer
features for staged program development.

References

1. Leino, K.R.M.: Specification and verification of object-oriented software. In: Broy, M.,
Sitou, W., Hoare, T. (eds.) Engineering Methods and Tools for Software Safety and Security.
NATO Science for Peace and Security Series D: Information and Communication Security,
vol. 22, pp. 231–266. IOS Press (2009); Summer School Marktoberdorf 2008 Lecture Notes

2. Leino, K.R.M.: Dafny: An Automatic Program Verifier for Functional Correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 348–370. Springer,
Heidelberg (2010)

3. Leino, K.R.M.: Automating induction with an SMT solver. In: VMCAI (to appear, 2012)

R. Joshi, P. Müller, and A. Podelski (Eds.): VSTTE 2012, LNCS 7152, p. 82, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Verifying Two Lines of C with Why3:

An Exercise in Program Verification�

Jean-Christophe Filliâtre

CNRS
LRI, Univ Paris-Sud, CNRS, Orsay F-91405

INRIA Saclay-̂Ile-de-France, ProVal, Orsay F-91893

Abstract. This article details the formal verification of a 2-line C pro-
gram that computes the number of solutions to the n-queens problem.
The formal proof of (an abstraction of) the C code is performed us-
ing the Why3 tool to generate the verification conditions and several
provers (Alt-Ergo, CVC3, Coq) to discharge them. The main purpose of
this article is to illustrate the use of Why3 in verifying an algorithmically
complex program.

1 Introduction

Even the shortest program can be a challenge for formal verification. This paper
exemplifies this claim with the following 2-line C program:

t(a,b,c){int d=0,e=a&~b&~c,f=1;if(a)for(f=0;d=(e-=d)&-e;f+=t(a-d,(b+d)*2,(

c+d)/2));return f;}main(q){scanf("%d",&q);printf("%d\n",t(~(~0<<q),0,0));}

This rather obfuscated code was found on a web page gathering C signature
programs1 and was apparently authored by Marcel van Kervinc. This is a stan-
dalone C program that reads an integer n from standard input and prints another
integer f(n) on standard output. If n is smaller than the machine word size in
bits (typically 32), then f(n) appears to be the number of solutions to the well-
known n-queens problem, that is the number of ways that n queens can be put
on a n× n chessboard so that they do not attack each other. More surprisingly,
this is a very efficient program to compute this number.

As a case study for Why3, a tool the author of this paper is co-developing [4],
we consider verifying this program formally. Since Why3 is not addressing C
programs, we make an abstraction of the algorithm above. Our goal is then a
mechanically-assisted proof that this algorithm terminates and indeed computes
the expected number. This is highly challenging, due to the algorithmic com-
plexity of this program. The main contribution of this paper is to demonstrate
the ability of our tool to tackle the wide range of verification issues involved in
such a proof. In particular, it shows the relevance of using both automated and

� This work is partly supported by the ANR project U3CAT (ANR-08-SEGI-021) and
the Open-DO project Hi-Lite.

1 http://www.iwriteiam.nl/SigProgC.html

R. Joshi, P. Müller, and A. Podelski (Eds.): VSTTE 2012, LNCS 7152, pp. 83–97, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.iwriteiam.nl/SigProgC.html

84 J.-C. Filliâtre

interactive theorem provers within the same framework. Additionally, this paper
provides a nice benchmark for people developing tools for the verification of C
programs; they may consider refining our proof into a proof of the C code above.

This paper is organized as follows. Section 2 “unobfuscates” the program,
explaining the algorithm and its data. Section 3 briefly introduces Why3, a tool
which takes annotated code as input and produces verification conditions in the
native syntax of several existing provers. Section 4 details the verification pro-
cess, namely the logical annotations inserted in the program and the methods
used to discharge the resulting verification conditions. We conclude with a dis-
cussion in Section 5. Annotated source code and proofs are available online at
http://why3.lri.fr/queens/. Proofs can be replayed in a batch mode.

2 Unobfuscation

Before we enter the formal verification process, we first explain this obfuscated
C program. The code is divided into a recursive function t, which takes three
integers as arguments and returns an integer, and a main function which reads
an integer from standard input, calls function t and prints the result on standard
output. With added type declarations and a bit of indentation, function t reads
as follows:

int t(int a, int b, int c) {

int d=0,e=a&~b&~c,f=1;

if(a) for(f=0; d=(e-=d)&-e; f+=t(a-d,(b+d)*2,(c+d)/2));

return f;

}

The assignment d=(e-=d)&-e does not strictly conform with ANSI C standard,
because it assumes that the inner assignment e-=d is performed before evaluating
-e. This is not guaranteed and the compiler may freely choose between both
possible evaluation strategies. It is easy to turn the code in legal C: since d is
initialized to 0, we can safely move assignment e-=d to the end of the loop body.
Then we do not need the initialization d=0 anymore2. The second modification
we make is to replace the main function with a queens function from int to int,
since we are only interested in the integer function and not in input-outputs. We
end up with the code given in Fig. 1. Our goal is to show that queens(n) is
indeed the number of solutions to the n-queens problem.

Let us now explain the algorithm and its data. This is a backtracking algo-
rithm which fills the rows of the chessboard one at a time. More precisely, each
call to t enumerates all possible positions for a queen on the current row inside
the for loop and, for each of them, recursively calls t to fill the remaining rows.
The number of solutions is accumulated in f and returned. The key idea is to
use integers as sets or, equivalently, as bit vectors : i belongs to the “set” x if and
only if the i-th bit of x is set. According to this trick, program variables a, b, c,

2 This even reduces the size of the original code.

http://why3.lri.fr/queens/

Verifying Two Lines of C with Why3: An Exercise in Program Verification 85

int t(int a, int b, int c) {

int d, e=a&~b&~c, f=1;

if (a)

for (f=0; d=e&-e; e-=d)

f += t(a-d,(b+d)*2,(c+d)/2));

return f;

}

int queens(int n) {

return t(~(~0<<n),0,0);

}

Fig. 1. Unobfuscated C code

int t(set a, set b, set c)
f ← 1
if a �= ∅

e ← (a \ b) \ c
f ← 0
while e �= ∅

d ← min elt(e)
f ← f + t(a \ {d}, succ(b ∪ {d}), pred(c ∪ {d}))
e ← e \ {d}

return f

int queens(int n)
return t({0, 1, . . . , n− 1}, ∅, ∅)

Fig. 2. Abstract version of the code using sets

d and e are seen as subsets of {0, 1, . . . , n − 1}. Then almost all computations
in this program are to be understood as set operations. Some of them are clear:
a&~b&~c computes the set a \ b \ c, the test if(a) checks whether a is empty,
etc. Others are more subtle. For instance, e&-e computes the smallest element
of e (and returns the corresponding singleton set). This is a nice property of the
two’s complement arithmetic; see for instance [14,10] for an explanation3. Then
the result d can be removed from set a using subtraction a-d since the bit of
d that is set is also set in a; similarly, d is added to sets b and c using a mere
addition since the corresponding bit is not set in b and c. Another trick is the
computation of the set {0, 1, . . . , n−1} as ~(~0<<n). Finally, multiplication by 2
(resp. division by 2) is used to add 1 (resp. subtract 1) to each element of a set;
from now on, we use succ and pred to denote those two set operations. We can
now write a more abstract version of the code that only deals with finite sets. It
is given in Fig. 2. Note that n, f , and returned values of t and queens are still
integers.

It is now easier to explain the algorithm. Set a contains the columns not yet
assigned to a queen, i.e. candidate positions for the queen to be set on the current

3 This trick is used in Patricia trees [11] implementations.

86 J.-C. Filliâtre

� � �

�

�

�

�

� � �

�

�

�

�

a = 111001012 , a = {0, 2, 5, 6, 7} b = 011010002 , b = {3, 5, 6}

�

�

�

�

� �

�

�

�

�

c = 000010012 , c = {0, 3} a&~b&~c = 100001002 , a \ b \ c = {2, 7}

Fig. 3. Interpretation of variables a, b, and c as sets

row. Initially, a contains all possible positions, that is a = {0, 1, . . . , n−1}. If we
have found one solution, a becomes empty, then we return 1. Otherwise, we have
to consider all possible positions on the current row. Sets b and c respectively
contain the positions to be avoided because they are on an ascending (resp.
descending) diagonal of a queen on previous rows. Thus e = a \ b \ c precisely
contains the positions to be considered for the current row. They are all examined
one at a time by repeatedly removing the smallest element from e, which is set
to d. Then next rows are considered by a recursive call to t with a, b and c being
updated according to the choice of column d for the current row: d is removed
from the set of possible columns (a\{d}), added to the set of ascending diagonals
which is shifted (succ(b ∪ {d}), and similarly added to the set of descending
diagonals which is shifted the other way (pred(c ∪ {d})). The values of a, b and
c are illustrated in Fig. 3 for n = 8 on a configuration where 3 rows are already
set (columns are numbered from right to left, starting from 0).

3 Overview of Why3

file.why

file.mlw

WhyML

VCgen

Why

transform/translate

print/run

Coq Alt-Ergo CVC3 Z3 etc.

Why3 is a set of tools for program verifica-
tion. Basically, it is composed of two parts,
which are depicted to the right: a logical lan-
guage called Why with an infrastructure to
translate it to existing theorem provers; and
a programming language called WhyML with
a verification condition generator.

The logic of Why3 is a polymorphic first-
order logic with algebraic data types and in-
ductive predicates [5]. Logical declarations are
organized in small units called theories. In
the following, we use two such theories from

Verifying Two Lines of C with Why3: An Exercise in Program Verification 87

01 let rec t (a b c: set int) =

02 if not (is empty a) then begin

03 let e = ref (diff (diff a b) c) in

04 let f = ref 0 in

05 while not (is empty !e) do

06 let d = min elt !e in

07 f := !f + t (remove d a) (succ (add d b)) (pred (add d c));

08 e := remove d !e

09 done;

10 !f

11 end else

12 1

13

14 let queens (q: int) =

15 t (below q) empty empty

Fig. 4. Why3 code for the program in Fig. 2

Why3’s standard library: integers and finite sets of integers. The latter provides
a type set int and several operations: a constant empty for the empty set;
functions add, remove, diff, min elt, cardinal, and below (below n is the set
{0, 1, . . . , n − 1}); a predicate is empty. Operations succ and pred are miss-
ing from this library and we need to introduce them. First, we declare them as
follows:

function succ (set int) : set int

function pred (set int) : set int

Then we axiomatize them as follows:

axiom succ def:

∀ s: set int, i: int. mem i (succ s) ↔ i ≥ 1 ∧ mem (i-1) s

axiom pred def:

∀ s: set int, i: int. mem i (pred s) ↔ i ≥ 0 ∧ mem (i+1) s

Why3 provides a way to show the consistency of these axioms (by providing a
definition in Coq); however, we haven’t done it.

On top of this logic, Why3 provides a programming language, WhyML, with
a verification condition generator. This is a first-order language with an ML-
flavored syntax. It provides the usual constructs of imperative programming
(while loop, sequence, exceptions) as well as several constructs of ML (pattern
matching, local functions, polymorphism). All symbols from the logic (types,
functions, predicates) can be used in programs. Mutable data types can also be
introduced, by means of record types with mutable fields. This includes poly-
morphic references, which are part of Why3’s standard library. A reference r to
a value of type τ has type ref τ , is created with function ref, is accessed with
!r, and assigned with r := e. Why3 code for the program in Fig. 2 is given in
Fig. 4.

Programs are annotated using pre- and postconditions, loop invariants, and
variants to ensure termination. Verification conditions are computed using a

88 J.-C. Filliâtre

weakest precondition calculus and then passed to the back-end of Why3 to be
sent to theorem provers.

4 Verification

We focus here on the verification of the code in Fig. 4. (The verification of the
original C code in Fig. 1 is discussed at the end of this paper.) We need to prove
three properties regarding this code: it does not fail, it terminates, and it indeed
computes the number of solutions to the n-queens problem. The first property
is immediate since there is no division, no array access, or any similar operation
that could fail. We will consider termination later, as part of the verification
process (Sec. 4.2). Let us first focus on the specification.

4.1 Specification

We need to express that the value returned by a call to queens n is indeed the
number of solutions to the n-queens problem. As we have seen, the program is
building solutions one by one. Thus we have to prove that it finds all solutions,
only solutions and that it does not find the same solution twice. There is a major
difficulty here: the program is not storing anything, not even the current solution
being built. How can we state properties about the solutions being found?

�

�

�

�

�

�

�

�

One solution is to use ghost code, that is additional code
not participating in the computation of the final result but
potentially accessing the program data. This ghost code will
fill an array with all solutions. One solution is represented by
an array of n integers. Each cell gives the column assigned to
the queen on the corresponding row. For instance, the array
5 2 4 6 0 3 1 7 corresponds to the solution of the 8-queens
problem displayed to the right. Rows are numbered from top to bottom and
columns from right to left — the latter follows the usual convention of displaying
least significant bits to the right, as in Fig. 3. Arrays used in ghost code do not
really have to be “true” arrays: there is need neither for efficiency, nor for array
bound checking. Thus we can model such arrays using purely applicative maps
from Why3’s standard library. Thus we simply define

type solution = map int int

We introduce a global variable col to record the current solution under con-
struction, as well as a global variable k to record the next row to be filled:

val col: ref solution (* solution under construction *)

val k : ref int (* next row in the current solution *)

The set of all solutions found so far is recorded into another array. It has type

type solutions = map int solution

and is declared as a global variable sol, together with another global variable s
holding the next empty slot in sol:

Verifying Two Lines of C with Why3: An Exercise in Program Verification 89

val sol: ref solutions (* all solutions *)

val s : ref int (* next slot for a solution *)

If solutions are stored in sol starting from index 0, then s is also the total
number of solutions found so far.

Using these four ghost variables, we can instrument the program with ghost
code to record the solutions. First, we surround the recursive call to f (line 7)
with code to record the value d for row k and to update k:

(* ghost *) col := !col[!k ← d];

(* ghost *) incr k;

f := !f + t (remove d a) (succ (add d b)) (pred (add d c));

(* ghost *) decr k;

Function incr (resp. decr) is a shortcut to increase (resp. decrease) an integer
reference. Second, when a solution is found, we record it into sol and increase
s by one, just before returning 1 (line 12):

else begin

(* ghost *) sol := !sol[!s ← !col];

(* ghost *) incr s;

1

end

So far we have instrumented the code to record the solutions it finds. We still have
to define what a solution is and to use this definition to specify the code. From
now on, it is convenient to introduce the number n of queens as a parameter:

function n : int

This is not a limitation: a suitable precondition to function queens will say that
its argument q is equal to n (and we don’t even have callers). An alternative
would be to pass n as a parameter everywhere, but we prefer avoiding it for
greater clarity. To define what a solution is, we first define the notion of partial
solution, up to row k (excluded):

predicate partial solution (k: int) (s: solution) =

∀ i: int. 0 ≤ i < k →
0 ≤ s[i] < n ∧
(∀ j: int. 0 ≤ j < i →

s[i] �= s[j] ∧ s[i]-s[j] �= i-j ∧ s[i]-s[j] �= j-i)

Note that we avoid the use of the absolute value function: we do so to relieve the
automated theorem provers from resorting to the definition (typically an axiom).
The notion of solution is derived immediately, by instantiating k with n:

predicate solution (s: solution) = partial solution n s

To prove the absence of duplicate solutions, it is convenient to equip the set of
solutions with a total order. It is naturally given by the code: since elements of e
are processed in increasing order, by repeated use of function min elt, solutions
are found in lexicographic order.

90 J.-C. Filliâtre

0 4 7 5 2 6 1 3
0 5 7 2 6 3 1 4
0 6 3 5 7 1 4 2
0 6 4 7 1 3 5 2
1 3 5 7 2 0 6 4

...

For instance, the first five solutions for n = 8 are displayed to
the right. To define the lexicographic order, we first define the
property for two arrays to have a common prefix of length i:

predicate eq prefix (t u: map int α) (i: int) =

∀ k: int. 0 ≤ k < i → t[k] = u[k]

We make this a polymorphic predicate, to reuse it on both
solutions and arrays of solutions. Then it is easy to define the
lexicographic order over solutions:

predicate lt sol (s1 s2: solution) =

∃ i: int. 0 ≤ i < n ∧ eq prefix s1 s2 i ∧ s1[i] < s2[i]

Finally, we introduce two convenient shortcuts for the forthcoming specifications.
Equality of two solutions is defined using eq prefix:

predicate eq sol (t u: solution) = eq prefix t u n

The property for an array of solutions s to be sorted in increasing order between
index a included and index b excluded is defined in an obvious way:

predicate sorted (s: solutions) (a b: int) =

∀ i j: int. a ≤ i < j < b → lt sol s[i] s[j]

This completes the set of definitions needed to specify the code’s behavior. The
full specification for function queens (lines 14–15) is the following4:

let queens (q: int) =

{ 0 ≤ q = n ∧ !s = 0 ∧ !k = 0 }
t (below q) empty empty

{ result = !s ∧ sorted !sol 0 !s ∧
∀ u: solution.

solution u ↔ (∃ i:int. 0 ≤ i < result ∧ eq sol u !sol[i]) }

(S)

The precondition requires both s and k to be initially equal to zero. The postcon-
dition states that the returned value is equal to the number of solutions stored
in array sol, that is !s. Additionally, it states that array sol is sorted and that
an array u is a solution if and only if it appears in sol.

At this point, the reader should be convinced that specification (S) is indeed
expressing that this program is computing the number of solutions to the n-
queens problem. This is slightly subtle, since the absence of duplicated solutions
is not immediate: it is only a provable consequence of sol being sorted. Our
proof includes this property as a lemma.

4.2 Correctness Proof

We now have to prove that function queens terminates and obeys specification
(S) above. As a warm-up, let us prove termination first.

4 The code with all annotations is given in the appendix.

Verifying Two Lines of C with Why3: An Exercise in Program Verification 91

Termination. Termination reduces to that of function t. This involves proving
its termination as a recursive function, as well as proving the termination of
the while loop it contains. The termination of the while loop (lines 5–9) is
immediate, since the cardinality of e is decreased by one at each step of the
loop. We give the loop a variant accordingly:

while not (is empty !e) do variant { cardinal !e } ... (V1)

The proof is immediate. Regarding the termination of recursive calls, there is
also an obvious variant, namely the cardinality of a. It is indeed decreased by
one at each recursive call. We give this variant for function t as follows:

let rec t (a b c: set int) variant { cardinal a } = ... (V2)

The proof is not immediate, however. Indeed, for the cardinality to decrease, we
have to prove that d is an element of a. Within the loop, we only know for sure
that d is an element of e. Thus we need a loop invariant to maintain that e is
included in a. This could be the following:

while not (is empty !e) do invariant { subset !e a } ...

However, we will later need a more accurate invariant, which states that e re-
mains included in its initial value, that is diff (diff a b) c. Thus we favor
the following invariant:

while not (is empty !e) do

invariant { subset !e (diff (diff a b) c) } ...
(I1)

Remaining Annotations. To prove that function queens satisfies specification
(S) above, we have to give function t a suitable specification as well. Obviously,
this is a generalization of specification (S). Let us start with the precondition
for t. First, variable k must contain a valid row number and s should be non-
negative:

{ 0 ≤ !k ∧ !k + cardinal a = n ∧ !s ≥ 0 ∧ ... } (P1)

Second, sets a, b, and c must contain elements that are consistent with the
contents of array col:

{ ...

(∀ i: int. mem i a ↔
(0 ≤ i < n ∧ ∀ j: int. 0 ≤ j < !k → !col[j] �= i)) ∧

(∀ i: int. i ≥ 0 → not (mem i b) ↔
(∀ j: int. 0 ≤ j < !k → !col[j] �= i + j - !k)) ∧

(∀ i: int. i ≥ 0 → not (mem i c) ↔
(∀ j: int. 0 ≤ j < !k → !col[j] �= i + !k - j)) ∧ ... }

(P2)

Finally, array col must contain a partial solution up to row k excluded:

{ ... partial solution !k !col } (P3)

This completes the precondition for function t. Let us consider now its postcon-
dition. First, it says that s must not decrease and that k must not be modified:

{ result = !s - old !s ≥ 0 ∧ !k = old !k ∧ ... } (Q1)

92 J.-C. Filliâtre

Then it says that all solutions found in this run of t, that is between the initial
and final values of s, must be sorted in increasing order:

{ ... sorted !sol (old !s) !s ∧ ... } (Q2)

Additionally, these new solutions must be exactly the solutions extending the
first k rows of array col:

{ ...

(∀ u: solution.

solution u ∧ eq prefix !col u !k ↔
∃ i: int. old !s ≤ i < !s ∧ eq sol u !sol[i]) ∧ ... }

(Q3)

Finally, the first k rows of col must not be modified, and so are the solutions
that were contained in sol prior to the call to t:

{ ... eq prefix (old !col) !col !k ∧
eq prefix (old !sol) !sol (old !s) } (Q4)

With such pre- and postcondition for function t, function queens can be proved
correct easily (verification conditions are discharged automatically).

The last step in the specification process is to come up with a loop invariant
for function t (lines 5–9). It should be strong enough to establish postconditions
(Q1)–(Q4). We already came up with invariant (I1) to ensure termination. To
ensure postcondition (Q1), there is an obvious invariant regarding s and k:

{ ... !f = !s - at !s ’L ≥ 0 ∧ !k = at !k ’L ∧ ... } (I2)

Notation at !s ’L is used to refer to the value of s at the program point
designated by label ’L. This label is introduced before the while keyword at
line 5 (this label appears in the code given in the appendix).

One key property to ensure that solutions are found in increasing order for
lt sol is that we traverse elements of e in increasing order, by repeated extrac-
tion of its minimum element. This must be turned into a loop invariant. It states
that elements of e already considered are all smaller than elements of e yet to
be considered:

{ ...

(∀ i j: int.

mem i (diff (at !e ’L) !e) → mem j !e → i < j) ∧ ... }
(I3)

Additionally, we must maintain that solutions found in this run of t, that is
between the initial value of s and its current value, are sorted in increasing
order:

{ ... sorted !sol (at !s ’L) !s ∧ ... } (I4)

We also have to maintain property (P3), since array col is modified by recursive
calls to t:

{ ... partial solution !k !col ∧ ... } (I5)

The most complex part of the loop invariant is surely the following, which is
needed to ensure postcondition (Q3). It states that the solutions found so far in
this run of function t are exactly those extending the first k rows of col with
an element of e already processed:

Verifying Two Lines of C with Why3: An Exercise in Program Verification 93

{ ...

(∀ u: solution.

solution u ∧ eq prefix !col u !k ∧
mem u[!k] (diff (at !e ’L) !e)

↔
∃ i: int. (at !s ’L) ≤ i < !s ∧ eq sol u !sol[i]) ∧ ... }

(I6)

Finally, we complete the loop invariant with an invariance property for col and
sol similar to (Q4):

{ ... eq prefix (at !col ’L) !col !k ∧
eq prefix (at !sol ’L) !sol (at !s ’L) } (I7)

This completes the specification for function t. Fully annotated code is given
in the appendix. We end up with 46 lines of annotations (not including the
preliminary definitions and axiomatizations!) for 2 lines of code. This huge ratio
should be considered as extreme: we are proving a very complex property of a
smart algorithm.

Mechanical Proof. The proof is performed using the SMT solvers Alt-Ergo [3]
and CVC3 [1], and the Coq proof assistant [13,2]. Running Why3 on the resulting
annotated source code produces 41 verification conditions for function t and
2 for function queens. The latter are automatically discharged by CVC3. As
expected, verification conditions for t are more difficult to prove. Only 35 of
them are discharged automatically, either by Alt-Ergo or CVC3. The remaining
6 verification conditions are discharged manually, using the Coq proof assistant.
They are the following:

– precondition (P2) for the recursive call to t (3 goals, corresponding to the 3
right to left implications);

– preservation of invariant (I3);
– preservation of invariant (I4);
– postcondition (Q3) (left to right implication).

The Coq proof scripts amount to 142 lines of tactics and represent a few hours
of work. It is important to point out that these Coq proofs only involve steps
that could, in principle, be performed by SMT solvers as well (case analysis,
Presburger arithmetic, definition expansion, rewriting, quantifier instantiation).

Beside verification conditions, our proof also contains two lemmas: one for the
absence of duplicate solutions (see end of Section 4.1) and one technical lemma
regarding partial solution. They are respectively discharged by CVC3 and
Alt-Ergo.

5 Discussion

We have presented the formal verification of an extremely short but also ex-
tremely complex program using Why3. Beyond being a nice specification exer-
cise, it was the opportunity to introduce program verification using Why3 and

94 J.-C. Filliâtre

to illustrate several key features such as user axiomatizations or combined use of
interactive and automated theorem provers. We conclude this paper with several
discussions.

Originality. The verification competition organized during VSTTE 2010 [9]
already included a problem related to the n-queens problem. It was simpler,
though, since the code to be verified only had to check the existence of at least
one solution (and to return one, if any).

Ghost Code. This case study is yet another example of where ghost code is
useful in verification [12]. In this particular case, the program is enumerating the
solutions to a problem, but does not store any of them, not even the current one.
Thus we enriched the code with new statements so that a rich specification is
possible. There is currently no support for ghost code in Why3; we plan to add
this feature in the future. In particular, this will include a check that (1) ghost
code is not modifying the program data, and (2) the program is not accessing
the ghost data. In this proof, we have only performed this verification manually.

Verification of the Original C Code. We have not verified the original C
code, only its abstraction into WhyML. Regarding the code structure, this is
not really an issue, since all C features involved (recursive function, while loop,
mutable variables) are available in WhyML as well. Regarding the code data,
on the contrary, our proof did not consider the use of integers as bit vectors; we
used sets instead. Our purpose was to focus on the specification of the algorithm.

Now that we have come up with a suitable specification, we could refine our
proof into a proof of the original C code. A possible route is to introduce a
function symbol, say bits, that turns an integer into the set of 1-bits in its
two’s complement representation. Then we can mechanically translate all the
annotations, replacing a with bits a, b with bits b, and so on. The only change
in the annotations is likely to be an extra precondition stating that the upper bits
of c are zeros (otherwise, ones could be erroneously introduced by the divisions
by two). The proof then requires extra lemmas to justify the tricks used in the
code. For instance, a lemma will show that, under suitable conditions on x, we
have bits (x & -x) = singleton (min elt (bits x)). A bit vector library
with two’s complement interpretations is currently under development in Why3;
we consider refining our proof along the lines we just sketched in a future work.
Last, translating the resulting proof into a verification tool for C programs, such
as VCC [6] or Frama-C [8], should be straightforward. It would be interesting to
see which level of proof automation can be achieved.

Overflows. There are two kinds of integer overflows in this program, depend-
ing on the use of integers as bit vectors or as counters. Regarding integers used
as bit vectors, we can easily cope with the boundedness of integers by imposing

Verifying Two Lines of C with Why3: An Exercise in Program Verification 95

the precondition n ≤ size where size stands for the machine word size5. The
program is performing overflows as soon as n > size/2 since b may contain bits
which will overflow due to the repetitive multiplications by 2. These are harmless
overflows, but any suitable model should allow them.

Yet there is another source of integer overflows, in variable f and the returned
value6. And it is more difficult to cope with. Even unsigned, 32-bit integers are
not large enough to hold the number of solutions to the n-queens problem as
soon as n ≥ 19, the number of solutions for n = 19 being 4,968,057,848. Even
if we use 64-bit integers for the result, we would need to limit n accordingly
(most likely with n ≤ 28) and then to prove the absence of overflow. But this
would in turn require to know the number of solutions, which is precisely what
we are trying to compute. An upper bound for the number of solutions would be
enough, but there is no good one (and even if it would exist, this would require
to be proved). One workaround would be to make the code detect overflows,
and fail in such a case. Then our proof can be seen as a proof of the following
statement: “if there is no overflow, then the returned value is indeed the number
of solutions”. Another workaround would be to perform the computation using
arbitrary precision integers, which would be faithful to the proof we have made.
But this would slow the computation; considering that a record attempt already
requires dozens of years of total CPU time, we can hardly afford slowing it.

Acknowledgement. Natarajan Shankar kindly encouraged me to submit this
paper; I’m glad I followed his advice. I’m grateful to Andrei Paskevich and
Evgeny Makarov for their detailed proofreadings of an early version of this paper.
Finally, I wish to thank the VSTTE reviewers for their helpful comments.

References

1. Barrett, C., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 298–302. Springer, Heidelberg (2007)

2. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
Springer, Heidelberg (2004)

3. Bobot, F., Conchon, S., Contejean, É., Iguernelala, M., Lescuyer, S., Mebsout, A.:
The Alt-Ergo automated theorem prover (2008), http://alt-ergo.lri.fr/

4. Bobot, F., Filliâtre, J.-C., Marché, C., Paskevich, A.: The Why3 platform. LRI,
CNRS & Univ. Paris-Sud & INRIA Saclay, version 0.64 edn. (February 2011),
http://why3.lri.fr/

5. Bobot, F., Filliâtre, J.-C., Marché, C., Paskevich, A.: Why3: Shepherd your herd of
provers. In: Boogie 2011: First International Workshop on Intermediate Verification
Languages, Wroc�law, Poland (August 2011)

5 Typically 32 or 64. On a practical point of view, imposing n ≤ 32 is not an issue
since the “world record”, i.e. the largest value of n for which we have computed the
solution, is n = 26 only [7]; we can expect all machines to be 64-bits before the limit
n = 32 is reached, if ever.

6 Historically, the first number of solutions announced for n = 24 was erroneous, due
to 182 overflows on 32-bit integers — see [7] for details.

http://alt-ergo.lri.fr/
http://why3.lri.fr/

96 J.-C. Filliâtre

6. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,
Schulte, W., Tobies, S.: VCC: A Practical System for Verifying Concurrent C. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 23–42. Springer, Heidelberg (2009)

7. Technische Universität Dresden. The world record to the n-queens puzzle (n = 26)
(2009), http://queens.inf.tu-dresden.de/

8. The Frama-C platform for static analysis of C programs (2008),
http://www.frama-c.cea.fr/

9. Klebanov, V., Müller, P., Shankar, N., Leavens, G.T., Wüstholz, V., Alkassar, E.,
Arthan, R., Bronish, D., Chapman, R., Cohen, E., Hillebrand, M., Jacobs, B.,
Leino, K.R.M., Monahan, R., Piessens, F., Polikarpova, N., Ridge, T., Smans, J.,
Tobies, S., Tuerk, T., Ulbrich, M., Weiß, B.: The 1st Verified Software Competition:
Experience report. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664,
pp. 154–168. Springer, Heidelberg (2011), www.vscomp.org

10. Knuth, D.E.: The Art of Computer Programming, volume 4A: Combinatorial Al-
gorithms, Part 1, 1st edn. Addison-Wesley Professional (2011)

11. Morrison, D.R.: PATRICIA—Practical Algorithm To Retrieve Information Coded
in Alphanumeric. J. ACM 15(4), 514–534 (1968)

12. Owicki, S., Gries, D.: Verifying properties of parallel programs: An axiomatic ap-
proach. Communications of the ACM 19(5), 279–285 (1976)

13. The Coq Development Team. The Coq Proof Assistant Reference Manual – Version
V8.3 (2010), http://coq.inria.fr

14. Warren, H.S.: Hackers’s Delight. Addison-Wesley (2003)

A Annotated Source Code

This is the annotated source code for the program in Fig. 4.

let rec t (a b c : set int) variant { cardinal a } =

{ 0 ≤ !k ∧ !k + cardinal a = n ∧ !s ≥ 0 ∧
(∀ i: int. mem i a ↔
(0≤i<n ∧ ∀ j: int. 0 ≤ j < !k → !col[j] �= i)) ∧

(∀ i: int. i≥0 → not (mem i b) ↔
(∀ j: int. 0 ≤ j < !k → !col[j] �= i + j - !k)) ∧

(∀ i: int. i≥0 → not (mem i c) ↔
(∀ j: int. 0 ≤ j < !k → !col[j] �= i + !k - j)) ∧

partial solution !k !col }
if not (is empty a) then begin

let e = ref (diff (diff a b) c) in

let f = ref 0 in

’L:while not (is empty !e) do

invariant {
!f = !s - at !s ’L ≥ 0 ∧ !k = at !k ’L ∧
subset !e (diff (diff a b) c) ∧
partial solution !k !col ∧
sorted !sol (at !s ’L) !s ∧
(∀ i j: int. mem i (diff (at !e ’L) !e) → mem j !e → i < j) ∧
(∀ u: solution.

(solution u ∧ eq prefix !col u !k ∧ mem u[!k] (diff (at !e ’L) !e))

http://queens.inf.tu-dresden.de/
http://www.frama-c.cea.fr/
www.vscomp.org
http://coq.inria.fr

Verifying Two Lines of C with Why3: An Exercise in Program Verification 97

↔
(∃ i: int. (at !s ’L) ≤ i < !s ∧ eq sol u !sol[i])) ∧
eq prefix (at !col ’L) !col (at !k ’L) ∧
eq prefix (at !sol ’L) !sol (at !s ’L) }

variant { cardinal !e }
let d = min elt !e in

(* ghost *) col := !col[!k ← d];

(* ghost *) incr k;

f := !f + t (remove d a) (succ (add d b)) (pred (add d c));

(* ghost *) decr k;

e := remove d !e

done;

!f

end else begin

(* ghost *) sol := !sol[!s ← !col];

(* ghost *) incr s;

1

end

{ result = !s - old !s ≥ 0 ∧ !k = old !k ∧
sorted !sol (old !s) !s ∧
(∀ u: solution.

((solution u ∧ eq prefix !col u !k) ↔
(∃ i: int. old !s ≤ i < !s ∧ eq sol u !sol[i]))) ∧

eq prefix (old !col) !col !k ∧
eq prefix (old !sol) !sol (old !s) }

let queens (q: int) =

{ 0 ≤ q = n ∧ !s = 0 ∧ !k = 0 }
t (below q) empty empty

{ result = !s ∧ sorted !sol 0 !s ∧
∀ u: solution.

solution u ↔ (∃ i: int. 0 ≤ i < result ∧ eq sol u !sol[i]) }

Development and Evaluation of LAV:

An SMT-Based Error Finding Platform�

System Description

Milena Vujošević-Janičić1 and Viktor Kuncak2

1 Faculty of Mathematics, Studentski trg 16, 11000 Belgrade, Serbia
milena@matf.bg.ac.rs

2 School of Computer and Communication Sciences, EPFL, Station 14,
CH-1015 Lausanne, Switzerland

viktor.kuncak@epfl.ch

Abstract. We present design and evaluation of LAV, a new open-source
tool for statically checking program assertions and errors. LAV integrates
into the popular LLVM infrastructure for compilation and analysis. LAV
uses symbolic execution to construct a first-order logic formula that mod-
els the behavior of each basic blocks. It models the relationships between
basic blocks using propositional formulas. By combining these two kinds
of formulas LAV generates polynomial-sized verification conditions for
loop-free code. It uses underapproximating or overapproximating un-
rolling to handle loops. LAV can pass generated verification conditions
to one of the several SMT solvers: Boolector, MathSAT, Yices, and Z3.
Our experiments with small 200 benchmarks suggest that LAV is com-
petitive with related tools, so it can be used as an effective alternative for
certain verification tasks. The experience also shows that LAV provides
significant help in analyzing student programs and providing feedback
to students in everyday university practice.

1 Introduction

In this paper we present LAV, a tool for finding bugs (such as buffer overflows
and division by zero) and for checking functional correctness conditions given
by assertions.1 We evaluated our approach primarily on programs in the C pro-
gramming language (where the opportunities for errors are abundant), but it
can be also used for other languages. LAV works on the LLVM low-level inter-
mediate representation, and applies to other similar representations. LLVM2 is
a compiler framework widely used for compilation tasks, but also for verification
as in tools KLEE [10], Calysto [2], and LLBMC [20]. LLVM has front-ends for C,
C++, Ada and Fortran, and there are further external projects for translating
a number of other languages to LLVM.

� This work was partially supported by the Serbian Ministry of Science grant 174021
and by Swiss National Science Foundation grant SCOPES IZ73Z0 127979/1.

1 LAV stands for LLVM Automated Verifier. LAV also means lion in Serbian.
2 http://llvm.org/

R. Joshi, P. Müller, and A. Podelski (Eds.): VSTTE 2012, LNCS 7152, pp. 98–113, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://llvm.org/

LAV: An SMT-Based Error Finding Platform 99

The approach we propose combines symbolic execution [17], SAT encoding of
program’s control-flow, and elements of bounded model checking [6]. LAV rep-
resents program meaning using first-order logic (FOL) formulas and generates
final verification conditions as FOL formulas. Each block of code is represented
by a FOL formula obtained through symbolic execution (blocks have no inter-
nal branchings and no loops). Symbolic execution, however, is not performed
between different blocks. Instead, relationships between blocks are modeled by
propositional variables encoding transitions between blocks. LAV constructs for-
mulas that encode block semantics once for each block. It then combines these
formulas with propositional formulas encoding the transitions between blocks.
The resulting compound FOL formulas describe correctness and incorrectness of
individual instructions. LAV checks them using one of the several SMT solvers.
If a command cannot be proved to be safe, LAV translates a potential coun-
terexample from the solver into a program trace that exhibits this error. It also
extracts the values of relevant program variables along this trace. Our experi-
ments with 200 benchmarks suggest that LAV is competitive with related tools.
The experience also shows that LAV provides significant help in analyzing stu-
dent programs, providing feedback to students in everyday university practice.

2 Motivating Example

Verification tools based on symbolic execution proved to be very efficient for
many verification tasks. However, they also have weaknesses that make them, in
some cases, less applicable than desired. As a simple example, consider the code
in Figure 1. There are four paths to be explored to check whether the program
has division by zero bug in line 10. If, in line 9, div is assigned a0+ a1+ 2, then
the bug occurs in the first of these four paths (assuming that else branches are
considered first). If, on the other hand, div was assigned a0 + a1 − 2, then the
bug occurs in the last of these four paths. If div was assigned a0 + a1 + 3, then
there is no division by zero bug in the line 10. In summary, if there is no bug,
or the bug is found in the last path, then all paths need to be explored.

If we generalize the example from Figure 1 to have n instead of two variables,
and to have n instead of two if commands, then there are 2n paths to con-
sider.3 This is the well-known problem of path explosion. Instead of considering
all paths separately, our approach models the control flow in a more compact way
that uses symbolic execution only within fragments (blocks) without branching.
The size of a formula in this approach is polynomial in the number of blocks.
Consequently, the path explosion does not occur in the verification tool itself.
The exploration of many possible paths is transferred to a reasoner (i.e. theorem
prover) which receives case splits only implicitly in form of disjunctions within
a formula representing verification condition. Thanks to the use of learning, the
reasoner typically solves such formula much more efficiently than by considering

3 Code with this control structure is not unrealistic. Many real-world functions, such
as lexical analyzers and parsers, contain a large number of if commands [16].

100 M. Vujošević-Janičić and V. Kuncak

0: int main() line 10: UNSAFE
1: {
2: int a0, a1, k, div = 1; function: main
3: if(a0>0) error: division_by_zero
4: a0 = 1; 3: a0 == 0, a1 == 0, div == 1
5: else a0 = -1; 5: a0 == -1, a1 == 0, div == 1
6: if(a1>0) 6: a0 == -1, a1 == 0, div == 1
7: a1 = 1; 8: a0 == -1, a1 == -1, div == 1
8: else a1 = -1; 10: a0 == -1, a1 == -1, div == 0
9: div = a0+a1+2; // div = a0+a1-2; // div = a0+a1+3;
10: k = 1/div;
11: }

LAV KLEE
ifs & # paths bug in bug in bug in bug in
vars the first the last no the first the last no

path path bug path path bug

2 4 0.07 0.07 0.07 < 1 0.05 0.05
5 32 0.18 0.19 0.18 < 1 0.55 0.55

10 1’024 0.41 0.46 0.38 < 1 45.00 45.00
11 2’048 0.42 0.54 0.43 < 1 107.00 107.00
12 4’096 0.50 0.67 0.50 < 1 268.00 268.00

20 1’048’576 0.73 1.82 0.72 < 1 TO TO

60 260 25.00 39.00 4.18 ≈ 1 TO TO

100 2100 153.00 111.00 15.00 ≈ 1 TO TO

Fig. 1. Code example (left-hand side, up) and LAV output for div = a0 + a1 + 2
(right-hand side, up). The table shows the number of if-s and variables, the number
of paths, the time spent by LAV and then by KLEE if a bug occurs in: the first path,
the last path, and if there was no bug. Times are given in seconds. TO means timeout.

all cases. Using this approach, we avoid the path explosion problem using mod-
ern, powerful theorem provers, such as SMT solvers. This observations motivated
our approach, and shows good results in our examples. In the above example,
as n increases, the time spent by our tool increases polynomially, instead of the
clearly exponential growth for the symbolic execution tool KLEE [10], as shown
in the table in Figure 1. The table shows that the verification of a program (in
the case where there are no bugs) with large number of paths is infeasible for
KLEE. The table also shows that the time needed by KLEE to find a bug (if it
exists) heavily depends on the path that leads to it. Neither of these holds for
our tool: verification of a correct program or finding a bug both follow a con-
struction of a single first order formula that is passed to an SMT solver. Certain
differences in the solving times (for bugs occurring in different paths) are not
consequences of the modeling process, but rather of the internal operation of the
solver.

3 Modelling Variables, Data Types, and Blocks

Store and Blocks. Each program function consists of blocks, while each block is a
sequence of commands. The execution can enter a block only at its entry point,
and exit only through the last command of the block. A store of a program
is a map from variables to values given by variable’s type. Each instruction

LAV: An SMT-Based Error Finding Platform 101

transforms the store and may add constraints over variables. In our approach,
symbolic execution is used to compute a FOL formula Transformation(b) that
describes how the block b transforms the store of the program.

Denote by s(b, v) the value of a variable v at the entry point of the block
b and by e(b, v) the value of v at the exit point. After the block is symbol-
ically executed, the formula Transformation(b) is constructed based on the
values of the variables at the end of the block. In the general case it is given by∧

v∈V (e(b, v) = ev)
∧
AdditionalConstraints(b), where V is the set of variables

and where ev is the value of v at the end of the block expressed in terms of
initial values s(b, v). The formulas AdditionalConstraints(b) are introduced for
modeling certain operations (as described in the rest of this section). Another
formula Transformation(b, i) is defined analogously, but considering only the
first i instructions of the block b.

Buffers, Structures and Unions. Buffers are sequences of memory allocated
statically or dynamically and accessible by a pointer and an offset. While these
pointers are treated in our tool as any other simple variables, they are also
associated with sizes of corresponding buffers. To deal with buffer sizes, we in-
troduce two functions: left(p) and right(p) for numbers of bytes reserved for
the pointer p on its left and its right hand side. For example, the command
*(p+i) introduces a buffer overflow iff left(p) ≤ i · sizeof(int) < right(p) is
false. The argument of the functions left and right can be a pointer or a sum of
a pointer and an offset (which is of the integer type), in accordance with prop-
erties of pointers in C. Note that it always holds left(p+ n) = left(p)− n and
right(p+n) = right(p)−n. These equalities can be considered as axioms about
the functions left and right, but, instead of introducing a universally quantified
formula into the generated formula, we add only its relevant instances to the
set of additional constraints attached to the block. More complex types, such as
structures and unions, are also treated as sequences of individual bytes.

Memory Contents. For simplicity and precision, LAV uses a flat memory
model: it treats the entire memory as an array mem of memory locations, that
may get updated during the symbolic execution, just as any other variable. For
modeling commands that access the memory via pointers we use the theory of
arrays. The theory of arrays provides functions for storing a value at a certain
index in the array (store) and for reading a value at a certain index in the array
(select). Also, if there is a reference operator on a local variable within a function,
then this variable is not tracked through its slot in the store, as other variables,
but is tracked through the memory content. A run-time library guarantees that
during the program execution all active variables and dynamic objects are as-
signed non-overlapping memory locations. Instead of adding conditions of the
form p �= q for each pair (p, q) of addresses of variables or dynamic objects, a
more efficient approach is used: each address p is assigned (within correctness
conditions) a unique fixed number (or magic number [19]).

Global Variables. Global variables are accessible in all functions (and, hence,
in all blocks), but instead of representing them individually within all functions,
they are modeled by the variable modeling memory. The reasoning involving the

102 M. Vujošević-Janičić and V. Kuncak

theory of arrays can be expensive, but if there are not many updates of global
variables, this model can still be more suitable. If there are many updates of
global variables, then, in some cases, global variables are tracked through their
slots in the store, just as local variables.

Function Calls. Function calls are modeled according to the available infor-
mation about the function. If a contract (i.e., a summary) of the function is
available, then the current store is updated and additional constraints are added
according to this contract. If a contract of the function is not available, while the
definition of function is, then an interprocedural analysis is required (performed
as described in the next section). If neither a contract nor the definition of the
function are available, then the memory contents (i.e. the current array mem)
is set to a new (fresh) variable as an effect of the function call.

4 Modelling Control Flow

Intraprocedural Loop-free Control Flow. Whereas single blocks are represented by
FOL formulas constructed using symbolic execution, LAV encodes relationships
between blocks by propositional variables and SAT formulas.

Assume, for a moment, that the programhas no loops in the control-flow graph.
A path in this graph is then determined by the sequence of nodes (representing
blocks) and edges (representing transitions from one block to another). For each
block and for each transition we introduce a propositional variable that denotes
whether the corresponding node or transition is in the path. Valid paths through
the graph are encoded by entry conditions (represented by EntryCond(b)) and
exit conditions (ExitCond(b)). Entry conditions are conditions that must hold
at the entry point of the block b — b is in the path iff there is a transition to b
from some of its predecessors; if the block b is reached from the block pred, then
the initial values of the variables within the block b are equal to the values of the
variables at the exit point of the block pred. Exit conditions are conditions that
must hold at the exit point of the block b — each block must lead somewhere
(either to some other block or to the exit of the function). If the block b was active
and if the exit condition ci of the block b was met, then the control is passed to the
successor succi. The final formula Description(b) describing the block b is defined
as EntryCond(b) ∧ Transformation(b) ∧ ExitCond(b).

Loops. Loops are eliminated by unrolling. This way, the control flow graph of
the function has no cycles and the above modeling mechanism can be applied.
Our system supports two techniques for dealing with loops: underapproximation
of loops and overapproximation of loops. In the former case, loops are unrolled
a fixed number of times n, as in bounded model checking. If the unrolled code
verifies successfully, it means that the original code has no bugs for n or less
passes through the loop. In the latter case, the unrolled code simulates first n
and lastm entries to the loop, where n and m are configurable parameters. After
the first n unrollings, we insert a block of code which simulates execution of an
arbitrary loop iteration by resetting the values of each loop target (i.e. the value
of each variable that is updated by any statement in any block in the loop),

LAV: An SMT-Based Error Finding Platform 103

similarly as, for instance, in [4]. This resetting of the values may cause loss of
precision and therefore may introduce false alarms. To overcome this problem,
it is necessary to have loop invariants annotated in the program (or to use
techniques that infer them automatically in some cases). If the overapproximated
code is verified, then the original code has no bugs too.

Interprocedural Control Flow. Starting with block descriptions as building
blocks, and given that there is a unique entry and a unique exit point for each
function,4 the description of a function is constructed as a conjunction of de-
scriptions of the function blocks. Recursive function calls can be unrolled in a
similar way as loops.

5 Correctness Conditions

To check whether a command leads to an error LAV builds two formulas, of
the form C ⇒ (¬)safe(c). Here C is a formula describing a context: in the
empty context (i.e., if the command is considered on its own), C equals �, in
the block context, C equals Transformation(b, i) (if c is i-the instruction in b),
and in the function context, C equals

∧
Description(b′) for all function’s blocks

b′ that precede b. (¬)safe(c) is a formula describing (in)correctness condition
of a command — it can be given by a bug definition (division by zero, buffer
overflow, dereferencing null pointers) or it can be given by an annotation in the
form of C logical expressions within assert commands.

If safe(c) holds (under assumption C), then the command is safe and if
¬safe(c) holds, the command c is flawed. If both safe(c) and ¬safe(c) hold for
some context C (i.e. if C is inconsistent), then the command c is unreachable.5

If neither safe(c) nor ¬safe(c) hold in a general case, then the command c is
considered unsafe. The difference between a flawed and an unsafe command is
that the flawed command always leads to an error in the program (if it is reach-
able), while unsafe command leads to an error only in some cases, depending on
the context of the command, i.e., to the path condition leading to the command.
Each command is first checked within the empty context. If it gets the unsafe
status, the command is then checked within the block context. If it keeps the
unsafe status within the block context, then it is checked within the function
context. If a command is detected to be safe or flawed at some stage, then this
status for the command is final and wider contexts are not considered. For each
function call, correctness conditions for all unsafe commands from the called
function are checked in the calling context.

Checking the status of the command c in the context C can always be done
within one or two prover calls. After the context is added into the solver, the
safety property of the command is first checked. If the solver proves it, then this
means that it is either safe or unreachable. In both cases, it is not flawed or
unsafe so there is no need for any further checks. If the solver cannot prove it,

4 This can be ensured, as in the LLVM code.
5 Note that, even if it was proved that the command c is safe, unsafe or flawed in some
context, it still does not mean that it is reachable in some wider context.

104 M. Vujošević-Janičić and V. Kuncak

then the negation of the safety property is checked and according to the answer
of the prover it can be concluded if it is a flawed or an unsafe command. If one
does not want to distinguish between flawed and unsafe commands (by selecting
this tool’s option, in case when trade-off of solving time and precision is needed),
then this second call is omitted.

When proving different (in)correctness conditions in one function context,
formulas corresponding to unnecessary but already considered blocks can be
kept in the context (thanks to deductive monotonicity). This enables incremental
approach, suitable for SMT solvers that can typically take advantage of the
results learned from the previous proof attempts [5].

6 Transforming a Code Model into an SMT Goal

The quantifier-free formula that models program code typically involves arith-
metic, logical, and relational operators, but also functions such as left and right.
We model integers by arbitrary-precision numbers (using linear arithmetic) or,
if so selected by a command-line argument, by finite-precision numbers in bit-
vector arithmetic. The functions left and right are considered to be uninterpreted
functions, with their specific properties added to the correctness conditions. These
functions are dealt by: (i) the theory of uninterpreted functions or by (ii) Ackerm-
annizing the goal [1]. Each of these options can lead to more efficient reasoning in
some cases [8]. Memory contents are represented by the theory of arrays, or can be
just ignored (leading to a less precise reasoning) because of a high computational
cost. Overall, the models of code typically require: bit-vector arithmetic (or linear
arithmetic), theory of uninterpreted functions (or, alternatively, Ackermanniza-
tion), and optionally theory or arrays. There are several SMT solvers that provide
support for such combinations of theories.

7 Implementation

The approach described in previous sections is implemented in C++ as a tool
LAV. The tool is publicly available and open-source.6 The tool is built on top
of LLVM that serves as a front-end to input programs. LLVM is developed
primarily for the programming language C, but can be used for other languages
as well. Thanks to this universality, LAV successfully handled several non trivial
examples in Fortran. (Dealing with object oriented languages requires certain
additions to our tool, which are planned for our future work.)

The LLVM programs are processed and the formulas representing correctness
conditions are generated following the approach described in the sections 3 and
4. As the default parameters, loop unrolling simulates the first two and the last
one passes through the loop, but this can be changed by the user. Correctness
conditions, built as described in Section 5, can be translated to a number of
theories and their combinations, as described in Section 6. Currently, there is

6 http://argo.matf.bg.ac.rs/?content=lav

http://argo.matf.bg.ac.rs/?content=lav

LAV: An SMT-Based Error Finding Platform 105

support for export to linear arithmetic, bit-vector arithmetic, the theory of un-
interpreted functions (and Ackermannization, as its alternative), and the theory
of arrays. Recursive function calls and support for floating point number arith-
metic are not implemented yet. Automated inference of loop invariants is not
part of LAV. There is currently no general notation for function contracts, but
contracts of certain memory-safety-critical functions such as malloc, calloc,
realloc, free, strcpy are encoded directly in C++, within LAV implementa-
tion. In addition, statements or assumptions (concerning loops or function calls)
can be given in the form of C logical expression within assume function call.

The generated formulas are passed to SMT solvers, by using function calls
from their APIs. Currently, supported solvers are Boolector [7] (for the theories
BVA and ARRAYS), Yices [15] and MathSAT [9] (LA, BVA and EUF) and
Z3 [14] (LA, BVA, EUF, ARRAYS). For unsafe and flawed commands, a coun-
terexample which includes program trace and values of program variables along
this trace is extracted from the model generated by a solver (if a corresponding
option is used).

8 Evaluation and Comparison to Related Tools

Related tools. CBMC [12] and ESBMC [13] are bounded model checkers for ANSI
C programs. As a front-end, ESBMC uses CBMC, which, in turn, uses goto-cc,
a compiler from C and C++ into GOTO-programs. On the other hand, LAV
uses LLVM, which is a multi language platform. CBMC and ESBMC unwind
program loops, while LAV supports both underapproximation and overapproxi-
mation of loops. CBMC translates correctness conditions to propositional logic
and instances of SAT. Like LAV, ESBMC converts verification conditions using
different background theories and passes them directly to an SMT solver.

KLEE, Calysto, S2E, and LLBMC use the LLVM compiler infrastructure as
a front-end to input programs. KLEE [10] is a symbolic execution tool, which
employs a variety of constraint solving optimizations, represents program states
compactly and uses search heuristics to improve code coverage. KLEE is used
within other verification tools, such as the S2E platform [11] for developing an-
alyzers. S2E introduces selective symbolic execution, relaxed execution consis-
tency models, and supports analysis of binaries. Calysto [2] is a static checker for
NULL pointer dereferencing and user-provided assertions. Calysto preserves the
structure of the analyzed program in the phase of symbolic execution and uses
it as an automatic abstraction/refinement framework for filtering verification
conditions. It handles loops and pointers in an unsound manner; for example,
loops are unrolled only once. The above tools are closely integrated with their
theorem provers and with theories that these provers use. This is in contrast
to LAV, which can chose amongst different SMT solvers and theories. LLBMC
[20] is a tool for low-level bounded model checking of C programs, which was
developed in parallel with our work. It focuses on covering memory consistency
constraints; it models control flow of a program in a similar way as LAV and
uses Boolector (the theory of bit-vectors and arrays) as the back-end solver.

106 M. Vujošević-Janičić and V. Kuncak

Table 1. Frontends, supported theories and solvers for considered tools

Tool LAV CBMC ESBMC KLEE LLBMC CALYSTO PEX

Frontend LLVM goto-cc goto-cc LLVM LLVM LLVM .NET

Theories - PL - - - - -
LA - LA - - - LA
BV - BV BV BV BV BV
EUF - EUF - - - EUF

ARRAYS - ARRAYS ARRAYS ARRAYS - ARRAYS

Solvers MathSAT MiniSAT2 CVC STP - Spear -
Boolector - Boolector - Boolector - -

Z3 - Z3 - - - Z3
Yices - - - - - -

Table 1 summarizes the front ends, supported theories, and solvers used by
considered tools.

Experimental Comparison. We describe experimental comparison of LAV with
KLEE, CBMC and ESBMC. At the time of writing, LLBMC and Calysto are
not publicly available, so we were not able to include them in this evaluation.
We also did not include the symbolic execution tool PEX [21], because it deals
with C# and not with C.

The experimental comparison of LAV with the related tools was based on the
NECLA static analysis benchmarks [19]. These benchmarks contain C programs
that demonstrate common programming situations that arise in practice such as
interprocedural data-flow, aliasing, array allocation modes, array size propaga-
tion, string library usage and so on. The ability of different techniques to prove
them (in)correct is an indication of their areas of strengths and weaknesses. All
ANSI C programs from the NECLA static analysis benchmarks are included in
our evaluation except those that contain recursive function calls, string library
usage and which depend on floating point number calculations (44 out of 57
benchmarks are included).

All the tools checked the benchmarks for pointer errors, buffer overflows,
division by zero, and user-defined assertions. The tools terminated (with an
appropriate report) when a first flawed command was found or when the code was
verified. The experiments were performed with default parameters for each tool.
We consider the results obtained with default parameters the most indicative
since the user does not have to examine the code in order to determine unwinding
and other parameters. If some tool, for its default parameters, produced an
irregular output (such as an error message, a false alarm or time out), then it
was invoked again with a loop unwinding parameter — with the upper bound
of the loop, if it exists. If that call produced an irregular output or the upper
bound of the loop does not exist, then a small loop bound was used. LAV and
ESBMC were used with a solver for the theory of bit-vectors and arrays (because
for KLEE this is the only option).

Experiments were performed on a system running Ubuntu, with Intel proces-
sor on 1.6GHz and with 1GB of RAM memory. The results are given in Table 2.

LAV: An SMT-Based Error Finding Platform 107

The table contains a name of the benchmark (bnc), the number of code lines (#L),
the number of loop unwindings (#UNW), whether or not the program contains some
flawed commands (F/V), the name of the tool and the name of the solver used (for
some tools, in some cases, the verification did not require invoking a solver). Ab-
breviations used are: B – Boolector, NA – not applicable, FA – false alarm, UB
– missed (not discovered) bug, U – unreachable bug, * – SAT/SMT solver was
not called, ERR – error, TO — time out, and Z3 – solver Z3 was called instead of
Boolector. The summary of the results is given in Table 3.

Table 2. Experimental results

F
/ LAV CBMC ESBMC KLEE

bnc. #L #UNW V B Z3 B Z3

ex1 21 def V FA FA 5.02* 5.02* 5.02* 0.19
513 V TO TO 5.02* 5.02* 5.02* NA
3 V 0.90 0.35 0.14* 0.14* 0.14* NA

ex2 40 def V 0.63 0.54 TO TO TO ERR
1024 V TO TO ERR Z3 67.48 NA

3 V 1.03 0.47 ERR Z3 0.27 NA
ex3 24 def F 0.04 0.06 0.08 0.09 0.09 0.04
ex4 16 def F 0.13 0.24 0.14 0.15 0.18 0.02
ex5 18 - V 0.02 0.02 0.06* 0.06* 0.06* 0.02
ex6 21 - V 0.07 0.11 0.07 Z3 0.07 0.03
ex7 28 def V 0.22 0.22 TO TO TO ERR

3 V 0.21 0.15 ERR Z3-FA FA NA
ex8 20 def F 0.13 0.15 TO TO TO ERR

3 F 0.14 0.14 FA ERR ERR NA
ex9 43 def V 1.34 0.85 TO TO TO ERR

1024 V TO TO ERR Z3-TO TO NA
3 V 2.93 0.62 ERR Z3-FA FA NA

ex10 72 def F 1.32 0.59 TO TO TO 0.03
17 F TO 10.47 0.31 UB UB NA
3 F 4.02 1.14 0.13 UB UB NA

ex11 25 def V FA FA TO TO TO TO
3 V 0.05 0.08 0.06* 0.06* 0.06* NA

ex12 24 def F 0.12 0.16 0.12 0.10 0.10 0.03
ex13 10 - F 0.03 0.44 0.07 0.06 0.13 TO
ex14 16 def V 0.10 0.13 0.08* 0.08* 0.08* 0.03
ex15 35 - V 0.56 0.34 FA Z3 0.09 0.03
ex16 35 def U 0.09F 0.10F TO TO TO TO

2 U 0.08F 0.09F 0.08*V 0.08*V 0.08*V NA
ex17 45 def V 1.56 0.68 0.34* 0.24* 0.24* 0.02
ex18 30 def V FA FA TO TO TO ERR

100 V TO TO ERR ERR ERR NA
10 V 1.30 3.0 ERR ERR ERR NA

ex19 29 def V FA FA TO TO TO TO
3 V 0.14 0.08 0.10 0.08 0.09 NA

ex20 33 def F FA FA TO TO TO 0.12
1024 F 455 TO 40.98 40.0 206 NA

3 F 0.21 0.32 0.25 0.09 0.11 NA
ex21 26 def V 0.45 0.36 FA Z3 1.68 0.02
ex22 39 def V 12.22 4.1 0.64 Z3 0.81 0.06
ex23 26 def V FA FA 16.49 0.16 0.18 0.69

36 V 25.14 6.46 16.49 0.16 0.18 NA
ex25 27 def V 0.26 0.27 TO TO TO TO

3 V 0.21 0.20 0.10* 0.08* 0.08* NA
ex26 30 def F 1.88 0.62 6.42 Z3 4.79 UB
ex27 40 def F 25.34 5.28 3.40 Z3 3.24 0.09
ex30 44 def F 0.15 0.24 TO TO TO ERR

108 M. Vujošević-Janičić and V. Kuncak

Table 2. (Continued)

F
/ LAV CBMC ESBMC KLEE

bnc. #L #UNW V B Z3 B Z3
100 F TO TO ERR Z3-UB UB NA

ex31 14 def V FA FA TO 0.08* 0.08* 0.02
7 V 1.38 5.62 0.57 0.08* 0.08* NA

ex32 27 def V 0.78 0.5 2.30* Z3 4.11 0.18
ex34 25 - V 0.08 0.24 0.10 0.12 0.14 0.16
ex37 30 - F 0.16 0.20 FA Z3-UB UB ERR
ex39 27 def F 0.06 0.08 TO TO TO ERR

3 F 0.07 0.07 UB 0.09 0.09 NA
ex40 20 def V 0.09 0.12 TO TO TO 0.02

3 V 0.08 0.10 0.12 0.08 0.08 NA
ex41 23 def F 0.25 0.25 TO TO TO 17

3 F 0.49 0.44 0.25 0.07 0.10 NA
ex43 113 def F 28.56 17.91 FA Z3 25.15 0.06
ex46 38 def F 6.57 5.75 TO TO TO ERR

2 F 37.43 TO FA Z3-FA FA NA
ex47 35 def F 3.71 2.32 TO TO TO ERR

2 F 4.40 1.38 FA Z3-FA FA NA
ex49 16 def F 0.18 0.11 TO TO TO TO

3 V 0.06 0.08 0.08 0.07 0.08 NA
inf1 36 - F 0.12 0.22 0.18 UB 0.15 0.13
inf2 63 - F 4.84 1.25 FA Z3-FA FA UB
inf4 62 - F 0.23 0.38 0.11 0.12 0.19 0.40
inf5 62 - F 0.09 0.15 0.11 0.12 0.15 0.06
inf6 43 - V 0.29 0.12 0.41 Z3 0.40 0.06
inf8 44 - V 0.16 0.19 0.11 FA 0.12 0.06

Analysis of Results. False alarms and bugs undiscovered by CBMC can be
explained by the way it models memory and control-flow of the programs. For
example, CBMC assumes that each dynamic memory allocation will succeed,
although this is not valid assumption. Also, CBMC does not precisely model
the memory assigned to global arrays and pointers to pointers so this explains
some false alarms. Concerning control-flow, imprecisions may arise after loop
unwinding. If CBMC cannot prove that the unwinding is performed for the
upper loop bound, it dismisses all current information about memory allocations
for arrays, no matter if these allocations were static or dynamic. Since CBMC
reports only flawed commands (and not commands that cannot prove to be safe),
this may lead to undiscovered bugs. CBMC does not check/report unreachable
bugs. Therefore, it can miss a bug if it is unreachable for all CBMC-feasible
unwinding parameters.7

ESBMC inherits program modeling of CBMC, but also introduces some im-
provements. ESBMC models memory more precisely and it exhibits less false
alarms than CBMC. It models that dynamically allocation may not succeed, but
it still may miss some NULL-dereferencing bugs. Concerning solvers, it seems
that ESBMC does not have support for Ackermannization and it calls the Z3

7 For instance, in example 39.c, CBMC encounters time out for its default parameters,
and for a small number of loop unwindings it does not discover the bug. The bug in
this example, which is reachable as a consequence of a possible integer overflow, is
discovered by LAV even for a small number of loop unwindings because LAV finds
that the command itself is flawed so its reachability is not further checked.

LAV: An SMT-Based Error Finding Platform 109

Table 3. Summary

Tool LAV CBMC ESBMC KLEE

Best times with default params. 45% 2% 0 47%

Best times with upp.bound 0% 22% 56% NA

Best times with unw.bound 66% 17% 44% NA

Timeouts 11% 26% 26% 13%

False alarms 9% 11% 8% 0%

Errors 0% 11% 4% 23%

Undiscovered bugs 0% 1% 7% 4%

solver instead of Boolector whenever the theory of uninterpreted functions is
involved (Boolector does not support the theory of uninterpreted functions).
Also, it is likely that there are some errors in solver interfaces since ESBMC can
give different results when different solvers for the same theory are used for the
same problem. ESBMC exhibits the largest number of timeouts and the largest
number of undiscovered bugs. ESBMC with its default parameters was not best
for any benchmark time, but it has the largest number of best times when the
upper loop bound was specified.

The usage of KLEE is somewhat different than the usage of LAV, CBMC
and ESBMC. Unlike these tools, for KLEE it is necessary to annotate programs
with claims which variables should be treated as symbolic. It is not possible to
have dynamic memory allocation with a size represented by a symbolic value,
so KLEE reports error messages for some benchmarks. Also, it is not possible
to simulate nondeterministic choice as a loop entry parameter. KLEE does not
terminate when it finds a first error (as other tools do) and there is no option to
do so. However, this behavior does not affect the best times reported in the table.
As a symbolic execution tool, the number of loop unwindings cannot be specified
to KLEE, but the number of states considered can. Since this is not comparable
to number of loop unwindings, we compare KLEE to other tools only with its
default parameters. KLEE had six time outs, ten errors, two undiscovered bugs
and no false alarms. It has the largest number of best times. KLEE was the
most efficient on examples where there is only one possible path through the
program, because it efficiently finds it and the symbolic execution in these cases
take almost the same as a real execution. Other tools, because of the different
nature of modeling, do not take the advantage of having just one path through
the code. However, in practical applications, this is rarely the case.

LAV has no timeouts for its default parameters. This comes with a price of the
biggest number of false alarms for default parameters. These false alarms are due
to the policy of LAV that reports all commands that are potentially unsafe (that
could not be proved to be safe). So, all the false alarms come with a message that
the command is potentially unsafe, and never with a message that the command
is flawed, which makes the difference to tools that have no ranking of potential
bugs. If we change this policy, and if LAV reports only commands which are
proved to be flawed, then LAV would not have so many false alarms but would
have undiscovered bugs. In more than half cases when LAV reported false alarm,

110 M. Vujošević-Janičić and V. Kuncak

the other tools had timeouts, therefore, neither tool exhibited desired behavior.
Concerning timeouts, most of the timeouts that LAV exhibited were due to the
high loop unwinding parameter. In most cases, the default parameters already
gave good results so there was no need for the unwinding with the upper loop
bound. LAV has no error messages, undiscovered bugs and has no false alarms
for a fixed number of unwindings. If we compare Boolector and Z3, we can see
that efficiency of LAV with Boolector is very similar to the efficiency obtained
with Z3, except that there are two cases when Z3 encountered timeout when
Boolector did not and only one case when Boolector encountered timeout and
Z3 did not.

We believe that these results present a useful experimental comparison of
existing tools. They also suggest that LAV is an interesting point in the design
space of verification and bug finding tools.

9 Application in Education

Software verification tools have different areas of application. One typical area
of application are safety-critical computer programs. On the other hand, verifi-
cation tools can be very beneficial in checking computer programs that are far
from being safety-critical but are massive in number and have other nature of
importance. In this section we consider one such application: computer programs
developed by students within programming courses in high schools and univer-
sities. A tool that could help students and teachers to notice errors in programs
would have multiple benefits. For students, such tool would be helpful when
there is no teacher to check the solution (which is, most of the time, the case).
For teachers, such tool would be helpful in marking exams, at least for pointing
to standard errors. For both, such tool would be illustrative and would demon-
strate power of verification tools, to which students should get accustomed and
ready to adopt in their professional work.

With this motivation in mind, we performed another set of experiments with
our tool—we analyzed programs written by students that took an introductory
C programming course at the University of Belgrade. Our corpus consists of 157
programs which were written by the students at test exams along the course.8

We divided the corpus into three groups. The first group consists of solutions
of problems that involve numerical calculations and manipulation of command
line arguments. The second group consists of solutions of problems that involve
manipulation with arrays and matrices. The third group consists of solutions
of problems that involve manipulation of strings and data structures. LAV was
set to use its default parameters and the time that LAV spent in analyzing the
programs was typically negligible. Some of the programs from the corpus did
not meet the given specification, but we considered only bugs and not functional
correctness. LAV discovered 423 genuine bugs in 121 programs and had 32 false
alarms in 8 programs.

8 The corpus can be found at the LAV web page.

LAV: An SMT-Based Error Finding Platform 111

Table 4. Application in education: the table contains the number of solutions considered
for the given problem, the average number of lines per solution, the average number of
reported bugs per solution, and the average number of false alarms per solution

Avg. Avg. Avg.
Problem # Solutions Lines Reported Bugs False Alarms

calculations 60 30 0.82 0.05

arrays and matrices 71 46 4.20 0

strings and structures 26 60 2.92 1.11

Summary 157 42 2.69 0.20

The results of our experiments are summarized in Table 4. In the first two
groups, the largest number of bugs were possible buffer overflows (225 bugs were
discovered in 81 programs), while the next most frequent bug was division by
zero (22 bugs in 22 programs). In the third group, the largest number of bugs
were possible null pointer dereferencing (46 bugs in 15 programs), while the next
most frequent bug was buffer overflow (30 bugs in 15 programs).

The vast majority of bugs that students produced follow wrong expectations
— for instance, expectations that input parameters of their programs will meet
certain constraints and that memory allocation will always succeed. In many
cases, omission of a necessary check (e.g. whether an input parameter meets the
constraints) produces several bugs in the rest of the program. This explains the
large number of bugs in the corpus — adding only one check in a program would
typically eliminate several bugs. Apart from these sources of bugs, there were
just a few bugs with other origin (such as uninitialized variables or accessing

line 12: UNSAFE
1: #include<stdio.h> line 18: UNSAFE
2: #include<stdlib.h> line 19: UNSAFE
3: int power(int n) line 20: 12: UNSAFE
4: {
5: int i, pow; function: get_digit
6: for(i=0, pow=1; i<n; i++, pow*=10); error: division_by_zero
7: return pow; line 12: d == 1073741824,
8: }
9: function: main
10: int get_digit(int n, int d) error: buffer_overflow
11: { line 18: argc == 1, argv == 1
12: return (n/power(d))%10;
13: } function: main
14: error: buffer_overflow
15: int main(int argc, char** argv) line 19: argc == 2, argv == 1
16: {
17: int n, d; function: main
18: n = atoi(argv[1]); error: division_by_zero
19: d = atoi(argv[2]); line 20: 12: argc == 512,
20: printf("%d\n", get_digit(n, d)); argv == 1,
21: } d == 1073741824, n == 0

Fig. 2. A simplified version of a program from the corpus (shown on the left) and the
LAV output (shown on the right). The shown output for this program is generated
by invoking LAV with default parameters, so the loop in line 6 is over-approximated.
The output states that lines 12, 18 and 19 are unsafe in general, and that the line 12
is unsafe when the function get digit is called from the line 20. LAV also shows the
nature of a possible error and the values of relevant variables.

112 M. Vujošević-Janičić and V. Kuncak

memory that was not allocated). Concerning false alarms, all false alarms were
consequences of overapproximations of loops or of the absence of support within
LAV for some functions from the standard library. It was beyond the scope of
this experiment to manually annotate all existing bugs so we cannot report on
the number of bugs that LAV missed to report.

A simplified example of a program from the corpus is given in Figure 2. This
example illustrates several typical students’ bugs: two possible buffer overflows
(lines 18 and 19) and one division by zero (line 12). Models generated by LAV
(given at the right-hand side of the figure) can help in correcting these bugs.
Although these are only preliminary experiments, the experience suggest that
LAV can be useful in everyday practice of an introductory programming course.

10 Conclusions and Further Work

We presented a new software verification approach and a corresponding tool,
LAV, for bug finding and for checking correctness conditions. LAV uses the
compiler intermediate language, LLVM, code. Therefore, LAV need not deal
with the specifics of C, and can be used for analysis of programs in several pro-
gramming languages. In addition, the approach can be used with any similar
low-level code representation. The approach combines symbolic execution, SAT
encoding of program’s behavior and bounded model checking. Individual blocks
of the code are modeled by first-order logic formulas constructed by symbolic
execution, and relationships between blocks are modeled by propositional for-
mulas. Formulas that describe blocks’ behavior are combined with correctness
conditions for individual commands to produce correctness conditions of the pro-
gram to be verified. These conditions are passed on to an SMT solver covering
a suitable combination of theories. The proposed approach is implemented as
an open-source tool LAV. Currently, several SMT solvers (Boolector, MathSAT,
Yices, and Z3) are supported. Our experiments suggest that the presented ap-
proach is competitive with related tools. We believe that our approach can be
a useful component of tools that combine multiple analysis and model checking
approaches (as suggested by recent tools [3]).

In the future we plan to further improve the modeling power and efficiency
of the tool. We plan to modify the implementation to use multi-core processor
design. We also plan to improve our interprocedural analysis and the robustness
of the tool. We are interested in further experiments with other benchmark suites
(such as, for example, [22] and [18]). We plan to make a number of extensions,
such as an improved user interface using a web client, more descriptive bug
explanations, and automated test-case generation. We expect that these features
will make LAV even more applicable in education and practice.

References

1. Ackermann, W.: Solvable cases of the decision problem. North-Holland (1954)
2. Babić, D., Hu, A.J.: Calysto: Scalable and Precise Extended Static Checking. In:

ICSE 2008, pp. 211–220. ACM (2008)

LAV: An SMT-Based Error Finding Platform 113

3. Balakrishnan, G., Ganai, M.K., Gupta, A., Ivancic, F., Kahlon, V., Li, W., Maeda,
N., Papakonstantinou, N., Sankaranarayanan, S., Sinha, N., Wang, C.: Scalable
and precise program analysis at nec. In: FMCAD (2010)

4. Barnett, M., Leino, K.R.M.: Weakest-precondition of unstructured programs. ACM
Sigsoft Software Engineering Notes 31, 82–87 (2006)

5. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories.
In: Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications,
vol. 185, pp. 825–885. IOS Press (2009)

6. Biere, A., Cimatti, A., Clarke, E., Strichman, O., Zhu, Y.: Bounded model checking.
Advances in Computers 58 (2003)

7. Brummayer, R., Biere, A.: Boolector: An Efficient SMT Solver for Bit-Vectors and
Arrays. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505,
pp. 174–177. Springer, Heidelberg (2009)

8. Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Santuari, A., Sebastiani, R.:
To Ackermannize or Not to Ackermannize? In: Hermann, M., Voronkov, A. (eds.)
LPAR 2006. LNCS (LNAI), vol. 4246, pp. 557–571. Springer, Heidelberg (2006)

9. Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R.: The Math-
SAT 4 SMT Solver. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123,
pp. 299–303. Springer, Heidelberg (2008)

10. Cadar, C., Dunbar, D., Engler, D.: Klee: Unassisted and automatic generation of
high-coverage tests for complex systems programs. In: OSDI (2008)

11. Chipounov, V., Kuznetsov, V., Candea, G.: S2e: a platform for in-vivo multi-path
analysis of software systems. SIGARCH Comput. Archit. News 39 (2011)

12. Clarke, E., Kroning, D., Lerda, F.: A Tool for Checking ANSL-C Programs.
In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

13. Cordeiro, L., Fischer, B., Marques-Silva, J.: SMT-based bounded model checking
for embedded ansi-c software. In: ASE, pp. 137–148 (2009)

14. de Moura, L., Bjørner, N.S.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

15. Dutertre, B., de Moura, L.: The Yices SMT solver. Tool paper at (August 2006),
http://-yices.csl.sri.com/tool-paper.pdf

16. Flanagan, C., Saxe, J.B.: Avoiding exponential explosion: generating compact ver-
ification conditions. In: Proc. ACM SIGPLAN POPL (January 2001)

17. King, J.C.: Symbolic execution and program testing. Communications of the
ACM 19(7), 385–394 (1976)

18. Ku, K., Hart, T.E., Chechik, M., Lie, D.: A buffer overflow benchmark for software
model checkers. In: Proceedings of ASE 2007. ACM (2007)

19. Sankaranarrayanan, S.: Necla static analysis benchmarks (2009),
http://www.nec-labs.com/research/system

20. Sinz, C., Falke, S., Merz, F.: The low-level bounded model checker llbmc: A precise
memory model for llbmc. In: SSV (2010)

21. Tillmann, N., Halleux, J.: PexWhite Box Test Generation for.NET. In: Beckert, B.,
Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134–153. Springer, Heidelberg
(2008)

22. Zitser, M., Lippmann, R., Leek, T.: Testing static analysis tools using exploitable
buffer overflows from open source code. SIGSOFT Softw. Eng. Notes 29 (2004)

http://-yices.csl.sri.com/tool-paper.pdf
http://www.nec-labs.com/research/system

A Lightweight Technique for Distributed

and Incremental Program Verification

Martin Brain1,2 and Florian Schanda2

1 Department of Computer Science, University of Bath, Bath, BA2 7AY, UK
mjb@cs.bath.ac.uk

2 Altran Praxis Limited, 20 Manvers Street, Bath, BA1 1PX, UK
{martin.brain,florian.schanda}@altran-praxis.com

Abstract. Applying automated verification to industrial code bases cre-
ates a significant computational task even when the individual conditions
to be checked are trivial. This affects the wall clock time taken to verify
the program and has knock-on effects on how the tools are used and on
project management. In this paper a simple and lightweight technique for
adding incremental and distributed capabilities to a program verification
system is given. Experiments with an implementation of the technique
for the SPARK tool set show that it can yield an average 29 fold speed
increase in incremental use and near optimal speedup in distributed use.
Critically, this gives a qualitative change in how automated verification
is used in a large commercial project.

1 Introduction

When using program verification tools in an industrial context, it is not uncom-
mon to have code bases that are significantly larger than those reasonable to
create for academic study. For example, the commercial application used in this
paper’s experiments consists of 890,000 physical lines / 260,000 logical lines of
SPARK code. Working at this scale creates additional problems with the time
taken to verify the software. The code base in question generates over 126,000
verification conditions. Even if it were possible to resolve each of these in 0.1
seconds, verification would still require over 3 CPU hours.

In a typical development model the verification process will be run many
times while the code is under development. Thus the time taken to verify makes
a significant difference to how the tools are used and how the project is managed.
To illustrate this issue it is useful to think of verification time in terms of the
qualitative time bands given in Table 1.

The two interactive time bands (“Typing” and “Wait”) can be viewed as part
of the process of writing the code and are run without a shift in the developer’s
attention. Adopting such tools is similar to migrating to a new IDE and de-
velopment suite. The next two time bands involve a shift in attention and are
thus typically run once a modification has been implemented. This is similar to
a change in development process, such as requiring all regression tests pass be-
fore code is committed. The asynchronous time bands (“Daily” and “Nightly”)

R. Joshi, P. Müller, and A. Podelski (Eds.): VSTTE 2012, LNCS 7152, pp. 114–129, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Lightweight Technique for Distributed and Incremental Program 115

Table 1. Qualitative time bands

Category Band Description Limit

Interactive
Typing Can be run as part of an IDE. For example basic syntax

checking, some type checking and template based bug
detection [21].

1s

Wait Can be run while the developer waits. Includes most
slower lightweight static analysis tools.

30-60s

Synchronous
Coffee Can be run while the developer switches to a short term

alternative task. Compilation of reasonably sized appli-
cation and build time checks often fall into this category.

10m

Lunch Can be run while the developer switches to an alter-
native task. This include running reasonably sized unit
and regression test suites.

60m

Asynchronous
Daily Can only be run once or twice per working day, requir-

ing developers to reorganise the day-to-day development
process around the tool’s usage.

4h

Nightly Only practical to run overnight. If verification is re-
quired before a modification can be accepted then the
minimum time to make a code changes is two days.

12h

Phase
Weekly Can be run each weekend. No longer reasonable to tie

verification to low level incremental changes.
2d

Phase Requires a separate development phase and changes in
how the project is scheduled and managed.

∞

require major changes to developers’ day-to-day practices and thus require a
different approach to project management. The results of verification will also
typically be returned after the detail of the modification has passed out of the
developer’s short term memory. In the final two bands reviewing the results be-
comes a task in itself and is effectively separated from the original modifications.
If decreasing the wall clock time taken results in dropping one or more bands, it
can give a significant decrease in project costs.

Most research on making verification tools faster focuses on improving the
proof tools to reduce the latency of proving individual formulae. However, for
industrial sized code bases there is a need to increase the throughput of proven
formulae to reduce the wall clock time of the verification process. This paper
presents two contributions towards this high level problem:

– First, Section 3 describes a lightweight technique for incremental and dis-
tributed proof. This makes use of memcached [16], a tool originally designed
for high performance web applications. A prototype implementation of this
approach for the SPARK tool chain required less than 250 lines of code.

– Next, Section 4 presents experimental results on an industrial application
showing how the implementation can be used to achieve an average 29 fold
speedup during incremental use and near optimal speedup during distributed
use. Critically, this changes the qualitative time band for a large scale indus-
trial project from “Nightly” to “Coffee”.

116 M. Brain and F. Schanda

2 The SPARK Language and Tools

It is useful to appreciate the nature and scale of the reasoning problems that
are generated during verification of industrial code bases. This shows why the
latency of proof tools on individual conditions is less of an issue than overall
verification throughput. To this end this section presents an overview of the
SPARK language and SPARK tool set and statistics on its usage on a large
industrial application.

2.1 The SPARK Language

SPARK is a subset of Ada with an additional contract language. Variants exist
for Ada 83, Ada 95 and Ada 2005. The key aim behind the creation of SPARK
was to create a language that increases the likelihood of a program behaving
as expected [2]. Restrictions were made to remove language features that were
ambiguous, platform or implementation specific or had unclear semantics and
to make formal reasoning (manual, semi-automated and fully automatic) about
programs achievable. These restrictions are common to many high integrity lan-
guage subsets and include limitations on access types (similar to pointers in C),
goto statements, recursion, overloading, dynamic dispatch and dynamic mem-
ory. However unlike many languages for high integrity software development,
SPARK has support for concurrent programming by including a subset of the
Ravenscar profile of the Ada standard called RavenSPARK.

While the executable part of SPARK is a strict subset of Ada, SPARK also
contains a contract language. These contracts allow specifications to be expressed
in terms of information and data dependency, pre conditions and post conditions.
Static checks, loop invariants and assertions are also supported. The logic used
to express conditions is full first order classical logic with typed terms includ-
ing integers, reals, arrays, records and user defined functions. Various forms of
abstraction are supported including predicates and proof-only functions, sepa-
rate subprogram specification and implementation, multiple orthogonal sets of
contracts and abstract state variables.

By restricting the language, many verification tasks are simplified or rendered
tractable. Aliasing between variables is not possible with SPARK as the language
specification forbids it and the tools reject any program where aliasing occurs.
The amount of memory required can be tightly bounded thus there is no risk
of running out of memory on embedded controllers. Likewise removing recur-
sion means that the stack space required is necessarily finite and can be easily
computed. In many cases runtime can be bounded and many common concur-
rent programming problems such as deadlock are eliminated or can be reliably
detected. One key property that aids verification is a strong guarantee on mod-
ularity. It is possible to analyse sub-programs (functions and procedures) using
only their implementation and the specification files of any sub-programs they
call. Thus a sub-program can be analysed as soon as it has been implemented
and properties proven long before the program can be run. The emphasis on

A Lightweight Technique for Distributed and Incremental Program 117

Examine Prove Summarise

Examiner POGS

Simplifier

SPARKBridge

(Victor)

Checker

.ads

.adb

VCs Results

Data
Flow

Proof
Status

Fig. 1. The SPARK Tool Chain

modularity turns out to have other unexpected benefits as it is key to enabling
the techniques described in this paper.

Language support for verification is of little use without tool support; the
next section describes the SPARK static analysis tool chain.

2.2 The SPARK Tool Chain

The SPARK analysis tools are one of the most established verification suites in
active use. The first version was released in March 1987. The GPL 2011 version
was released in July 2011 and the next release of the commercial version, SPARK
Pro [1] is due in Q2 2012. Figure 1 illustrates the current architecture of the tool
chain, with the phases of computation, flow of information and outputs. There
are three key phases, referred to as examine, prove and summarise.

Examine. The front-end to the system is the Examiner, this takes a set of Ada
specification (.ads) and implementation (.adb) files1 and performs the initial
analysis. After parsing the input, basic syntactic checks and type checking are
performed. These include checking for Ada features that are not permitted in
SPARK. Next, path insensitive [12] data flow analysis is performed using Berg-
eretti and Carré’s algorithm [3]. The results are checked against contracts giving

1 Roughly analogous to .h and .c files although they are fully integrated into the
language and have strong conditions on what each can contain.

118 M. Brain and F. Schanda

the specified information flow, allowing violations of information separation (of-
ten important in a safety case) and redundant parameters (often indicative of
bugs or specification flaws) to be detected. Data flow is the minimum analysis
performed by the tools, but in the common case verification condition (VC) gen-
eration is also performed using Bergeretti’s method [4]. Proof of these VCs shows
partial correctness in addition to absence of all run time exceptions including
numerical overflow and underflow, array bounds errors and divide by zero. The
Examiner generates one .vcg file2 per sub-program, each containing one or more
VCs per path. Within each individual VC there are multiple conclusions, one for
each of the conditions that need to be proven in the simplification phase.

Prove. The proof phase takes the set of .vcg files generated by the Examiner
and uses a series of tools to prove the VCs they contain. The output of these
tools differ, but is commonly a set of results and a log file. Although these will
then be used in the summary phase, the outputs are of independent interest as
they may be deliverables used as part of a system’s assurance case. It is also
important to note that each .vcg file is handled separately as the modularity
guarantees of SPARK mean that they are independent of each other.

The first tool used is the Simplifier. This is a rewriting proof system imple-
mented in Prolog. It is the fastest of the tools and the simplest. However as
it is heavily tuned to the type of formulae produced by the Examiner it is not
uncommon for it to discharge over 98% of conclusions showing absence of run
time exceptions in well written3 code. Although less comprehensive than vari-
ous model generation tools, there are a number of advantages of using syntactic
techniques. Firstly the output includes a human readable and machine checkable
proof and secondly when it is not capable of discharging a conclusion it outputs
a simplified version giving progress so far. The Simplifier also supports user sup-
plied rewrite rules which allow coverage to be extended to near 100% with some
manual effort.

The second tool used is Victor [22] (which is part of SPARKBridge4), a trans-
lator to SMTLib [31]. This converts each VC within a .vcg file into a formula
and uses an SMT solver to attempt to prove it. Alt-Ergo [9] is the currently
supported solver although CVC3 [11], Yices [13] and Z3 [29] can also be used as
they can discharge AUFNIRA theories. Although Victor can prove a wider range
of VCs than the Simplifier, its run-time is less predictable and in the cases where
it is not able to discharge a VC it does not produce any indication of which are
the problematic sub-formulae. Victor is currently regarded as experimental.

The final tool included with the SPARK tool chain is the checker. This is an
interactive theorem prover that can be used to construct proofs for VCs outside

2 Two more files are also generated: The .fdl file containing declarations and the
.rls file containing substitution rules and similar. The set of these three files form
the “VCs”.

3 Typically a discharge rate of less than 90% indicates badly written code or incorrect
tool configuration.

4 SPARKBridge is the umbrella term for interfacing with other proof engines besides
the Simplifier.

A Lightweight Technique for Distributed and Incremental Program 119

of the capability of the automatic tools. It can also be used to check the proof
logs generated by the Simplifier. Although very powerful, the time and skill
required to use an interactive theorem prover and the need to maintain program
and proof together means that its use is often only commercially viable on a few
core sub-programs.

In addition to the three core tools there is also a counter example generator
and programmer support tool (Riposte [7]) under development and a third party
tool that integrates with Isabelle [5].

Since SPARK 6 (released in 2001) an additional tool, sparksimp, has been
provided. This forms a list of all of the .vcg files in a project, optionally sorts
them by size (using file size as an approximation of difficulty) and then splits the
simplification over a user specified number of concurrent tasks. Each task checks
if the .vcg file is newer than the results file (a sufficient but not optimal condi-
tion for needing simplification) and then calls the Simplifier, with Victor being
optionally used on any simplified conclusions that remain unproven. Although
simple, the support for incremental and parallel simplification are of considerable
use, especially during development.

Summarise. Once the proof phase has been completed for all VCs, the POGS
tool is run to summarise the state of the system-wide verification proof. It
draws information from the results and log files produced by the proof tools and
presents it in a developer friendly format. Sub-programs with failed or undis-
charged verification conditions are highlighted and a wide array of statistics are
presented.

2.3 Verification in Practice

To give some qualitative idea of how the tools are used and the scale of the
verification task, it is worth considering some statistics on the code base used
in Section 4’s experiments. It is a monitoring system used to support the safe
operation of a piece of critical infrastructure. Multiple concurrent tasks (imple-
mented in RavenSPARK) are necessary to handle communication with various
inputs and outputs systems and achieve the hard realtime requirements. Figure 2
gives an approximate count of lines of code and breakdown.

Central to the system’s safety case is the use of the SPARK tool chain to
perform data flow analysis and prove the absence of run time exceptions across
the whole system. Pre and post conditions on a few critical subroutines are also
proven. Doing so generates approximately 12,500 .vcg files, containing 126,000
VCs comprising 130,000 individual conclusions. Figure 3(a) shows the distribu-
tion of the number of VCs per .vcg file, Figure 3(c) gives the distribution of
the number of conclusions per VC and Figure 3(b) gives the distribution of the
time taken to simplify each .vcg file. All of these graphs are plotted on a log
scale showing a rough power law distribution of all of these quantities – most
.vcg files contain only a handful of VCs each with relatively few conclusions
which are trivial to prove. The size of a .vcg file is generally a good estimate of
the time required to prove it. However there are exceptions – a small but very
complex .vcg file can take much longer to simplify than a huge but simple one.

120 M. Brain and F. Schanda

Blank

116k

13%

Comment

171k

19%

SPARK Contracts

74k

8%

Executable Code

529k

60%

Fig. 2. Project size in physical lines of code (counted with wc -l). The executable code
corresponds to 260,000 logical lines of code (counted with GNAT metric).

(a) VCs per .vcg file (b) Time per .vcg file

(c) Conclusions per VC

Fig. 3. Statistics on the VCs generated

Table 2. Verification times across a number of platforms. Times are rounded to the
nearest 30 seconds. The number after the slash is the number of processor cores used.

Desktop Server

Processor E6550 i7 860 2x E5430 2x X5550
2.33 GHz 2.8 GHz 2.66 GHz 2.67GHz

OS Windows XP GNU/Linux GNU/Linux Windows Server GNU/Linux
Debian 6.0 Debian 5.0 2003 R2 Ubuntu 10.04

Examine 79m / 1 10.5m / 2 5.5m / 4 71m / 1 4m / 8
Simplify 505m / 2 433m / 2 169.5m / 4 132m / 8 95.5m / 8

Summarise 29m / 1 10m / 1 3.5m / 1 18.5m / 1 4m / 1

Total 10h 13m 7h 33.5m 2h 58.5m 3h 41.5m 1h 43.5m

A Lightweight Technique for Distributed and Incremental Program 121

Table 2 gives timing results for the three phases of verification (note that the
project does not use Victor or the checker, thus the proof phase consists out of
only running the Simplifier) across a range of hardware and operating systems.
The numbers given after the times are the number of threads used. Although
the Examiner is not natively multi-threaded, the modularity of SPARK allows
the examination task to be decomposed, thus allowing parallel analysis. In all
cases the bottleneck are the CPU resources available; memory, disk and I/O
performance are not limiting factors and are thus not recorded. Victor is not
used by this project; if it was, some of the user written rewrite rules could be
removed but at additional computational cost. Using the qualitative time band
given in the introduction, verification times vary between the upper limit of
“Nightly” and down towards the middle of “Daily”. However all of them are
firmly in the “Asynchronous” time bands. This requires the developer’s day to
day work to be reorganised around the tools and results are usually obtained
after the changes being checked in have passed out of the developer’s short term
memory.

3 Increasing Verification Throughput

To reduce the time taken for verification to the “Lunch” or “Coffee” time band,
a classical approach to increasing system throughput [19] is used. First, focus
on the largest component of run-time; in this case the proof of VCs using the
Simplifier. Next identify independent sub-tasks; in this case VCs. Caching and
parallelism can then be used to increase the throughput of completed sub-tasks.

This approach raises a number of questions. Firstly, what granularity of sub-
task should be used? If the subtasks are too large then parallelism may be
limited and the total time cannot be reduced below the time taken to complete
the longest subtask. At the other end of the spectrum, if the tasks are too small,
the communications and synchronisation overhead will swamp any speedup.
In the proof phase there are three obvious levels of division into sub-tasks; per
.vcg file, per VC and per conclusion. Given the statistics in Figure 3, per .vcg
file is a good approach: This gives enough tasks that nodes will likely not be idle
but not so many that communications becomes a bottleneck. Also the tasks are
generally sufficiently short to not limit the system speed up. The other alterna-
tives will be discussed as future work.

The second question is how this integrates with sparksimp, which already
implements parallel dispatch and incremental computation. The parallelism in
sparksimp works at a per .vcg file scale, thus it is possible to fit ‘under’ this
by wrapping the calls to the actual proof tools. Using timestamps as a sufficient
condition works well when refining the implementation or proof of a particu-
lar package. However for many code changes the effects are not localised and
it is necessary to run the entire examination phase again, thus updating all
timestamps. Although the method described below is entirely compatible with
timestamp based recomputation, in practice using timestamps and caching seem
to be largely orthogonal.

122 M. Brain and F. Schanda

At the heart of the technique for implementing distributed and incremental
automatic proof is a slightly unconventional use of memcached.

3.1 Memcached

Memcached [16] is an in-memory cache originally designed to speed up dynamic
web sites by caching common database queries and thus avoiding the need to
access information on disk. A simple plain text protocol runs directly over a
TCP or UDP connection presenting the interface of an associative array. When
the configured memory limit is encountered the least recently used elements
are evicted from the cache5. Concurrent access is handled within the daemon
and multiple worker threads can be used. The simplicity of memcached allows
very high performance implementation. Distribution over multiple machines to
increase throughput and capacity is also supported. Furthermore, its widespread
adoption means that a range of monitoring and analysis tools are available.

3.2 Integrating Memcached into the SPARK Toolchain

Adding memcached support to the SPARK toolchain is simple. A wrapper for
the Simplifier hashes the .vcg, .fdl and .rls files the Examiner generates to
produce a 160 bit SHA1 hash, A, and the user supplied rewrite rules6 to produce
another 160 bit SHA1 hash, B. The full key is then composed out of the two
to give A:B and the wrapper checks whether this key appears in the associative
array. If it does then the contents are the compressed7 simplified .vcg file and
this can be output directly. If not then the .vcg file is simplified, compressed
and then stored. Line numbers are replaced with symbolic variables8 to avoid
cosmetic code changes causing cache misses. The implementation of this wrapper
is only around 250 lines of Python. Wrapping other proof tools would be just as
simple.

A key question about the use of memcached is to whether it could affect the
assurance of the proof produced by the toolchain. Memcached is a simple, robust
and widely deployed piece of software. The use of SHA1 hashes mean the chance
of collision is low; POGS would also flag up any accidental collisions as the
subprogram name or number of VCs of the simplified .vcg file would likely not
match with original .vcg file. In all of the experiments run, cache evictions do not
occur. However if they do they will only affect performance, not the correctness
of the proof. If desired the logs, including the Simplifier generated proofs, can
also be stored in the cache. Finally, caching can be used in development but
disabled on the final production builds of the system and proof.

5 There are protocol-compatible implementations that use a persistent backing store
on disk and thus operate as associative databases rather than caches.

6 Although these sets of rules change relatively rarely they can affect the soundness
and completeness of results. Thus changes to them need to give a different hash key.

7 We have used bzip2, but any compression scheme would work.
8 After implementing this, the authors discovered that [23] suggests this as a technique
for making caching more robust.

A Lightweight Technique for Distributed and Incremental Program 123

The cache can easily be shared between multiple developers meaning that
simplified/proven VCs may already be present in the cache before other devel-
opers receive the updated code. The memory requirements for most verification
runs are modest; all of the experiments performed in Section 4 use a 512 MB
cache and do not require any evictions.

Distributed verification is also supported at little extra cost as; a number of
machines use the same cache simultaneously. To support this, two options were
added to sparksimp: A ‘random shuffle’ method simplifies the .vcg files in a
random order on each node. An ‘equal shares’ option requires the total number
of nodes, n, and i, a unique id between 1 and n for each node. Sparksimp then
sorts .vcg files by size and simplifies every n-th one, starting at the i-th. On
reaching the end of the list it simplifies the remaining VCs in a random order.
The advantage of the random ordering that there is no synchronisation required
between nodes. Conversely, the equal shares option gives higher throughput but
it requires minimal coordination when starting the verification process.

Both approaches are also heterogeneous, ad-hoc and dynamic; if a verification
run is taking too long, other machines using the ‘random shuffle’ approach can
be started on the same task and will result in a speedup. Furthermore both
distributed approaches can be combined with the incremental usage of the cache.

The use of memcached is a simple idea and easily implemented; it is a purely
pragmatic approach. However, as the results in the next section show, it is re-
markably effective and gives a qualitative shift in how the tools are used.

4 Experiments

To demonstrate the possible usage scenarios of a memcached-based cache and
to measure their effectiveness, a series of experiments were conducted. A set of
twenty distinct, real-world modifications was used. These were changes that had
been developed on branches, reviewed and signed off. Thus they are larger than
typical development commits.

Experiments were run on desktop class computers running Debian 5.0 (as
shown in Table 2) with a single 4-core 2.8 GHz Intel Core i7 860 processor.
memcached was run on a separate server class computer using 512Mib of mem-
ory. The load on this machine was negligible and no cache evictions occurred.
The computers were connected with 100Mb Ethernet running over commodity
switches.

4.1 Incremental Solving

To test the incremental use of caching, the cache was emptied and each of the
twenty commits were simplified sequentially, using the populated cache. spark-
simp used four concurrent tasks to simplify the .vcg files in parallel. Figure 4
gives the results of this experiment. The times taken for incremental and non-
incremental (baseline) simplification are given in Figure 4(a), overlayed on the
size of the diff. Cache hit rates are given in Figure 4(b).

124 M. Brain and F. Schanda

(a) Simplification time and diff size

(b) Cache hits

Fig. 4. Results of the incremental usage of memcached

Fig. 5. Results of the distributed usage of memcached

A Lightweight Technique for Distributed and Incremental Program 125

Fifteen of the revisions were reduced to 10% or less of the original time taken
by non-incremental verification, two were reduced to 25% and even the largest
commits, that changed over 1% of the system’s code, were at least halved. The
cache miss figures show that the longer runtimes were due to a few difficult VCs
rather than a large number of .vcg files needing to be simplified.

The 5% cache-hit rate on the initial revision is not due to duplicate code
as such, but due to duplicate VCs. The project contains two sets of SPARK
contracts (each with a different focus and purpose) which are applied to different
parts of the system. Some packages - which sit on the boundary - contain both
sets of contracts and thus identical VCs are generated for some of them.

4.2 Distributed Solving

To test the distributed case, a single version of the code base was used. The
cache was emptied and a number of machines were used to simplify the set of
generated VCs, but sharing a cache. We have tested both approaches for dividing
up work between machines introduced in Section 3.2: ‘random shuffle’ and ‘equal
shares’.

In each test, all machine were started together and the time taken for the first
computer to generate a complete set of simplified VCs was recorded. The mini-
mum, maximum and average across three runs is given in Figure 5. On the same
graph the time taken for the slowest single .vcg file is plotted, along with speedup
per machine (dashed lines). Finally, an estimate of the optimal speedup for each
approach is plotted. For the ‘random’ approach this is computed using Amdahl’s
law, using the most time-consuming .vcg as the sequential part of the compu-
tation. Although this is an oversimplification it gives a good estimate of what is
possible. The optimal speedup for the ‘equal shares’ approach is linear.

Both approaches are close to their optimal performance. The ‘equal shares’
approach produces very predictable and stable results. With five machines used,
analysis time was reduced from around 2:45 hours to around 35 minutes.

As expected, some variance in run-time is apparent for the ‘random’ approach,
but as more computers are used results becomes more predictable. As the largest
VC takes more than 30 minutes to discharge and it is dis-proportionally large,
having a good result depends on this VC being analysed early by one computer
and very late by the others (in order to use the result in the cache). As outlined
previously, the ‘random’ approach takes less time to set up as the number of
machines used does not have to be known in advance.

5 Related Work

Distribution and incremental computation are widely applicable techniques for
increasing system performance so there are many uses of these ideas within the
verification literature. Thus it is necessary to be clear on how, where and why
systems use these techniques.

Most of the systems that use contracts and VC generation and are technically
comparable to SPARK are research projects. There are a number of tools which

126 M. Brain and F. Schanda

implement parts of the JML standard [26] including ESC4 [24], which will be
discussed below. Many of the other research projects are centred around inter-
mediate verification languages such as Why [15] and Boogie [25]. These provide
a simplified procedural language, a contract language for specifying pre and post
conditions and tools for generating and proving verification conditions. Front-
ends are then constructed for a variety of programming languages; examples
include VCC [8], Dafny [27] for Boogie and the Jessie plug-in [30] of Frama-C,
Krakatoa [15] and Hi-Lite [18] for Why.

Out of all of these systems, only the JML analyser ESC4 [24] makes use of
caching and distribution. Each VC is checked against a persistent local hash table
before proof is attempted. If it is already contained in the hash then the result can
be returned immediately. JML4 attempts to verify each method as it is saved and
caching is needed to help maintain interactivity. This is similar to the argument
made in this paper, although on a smaller scale. A key technical difference is that
the ESC4 cache is local and not shared between users. However when it comes to
support for distributed processing there are larger differences between the two
systems. ESC4 uses distribution to increase the range of propositions that can be
proven by running a variety of solvers as a portfolio, thus targeting the latency
of proving VCs not the throughput. The implementation of distribution in ESC4
is separate from the implementation of caching. In contrast, using memcached
gives support for distributed processing at no extra cost and allows much more
dynamic and ad-hoc use of multiple computers.

Recent development versions of the Why system have included an IDE which
stores proof attempts in a local XML database [6]. Although this feature is aimed
towards improving the usability of Why for manual theorem proving it doubles
as a local, unshared cache in a similar fashion to ESC4.

Looking beyond verification conditions, incremental and distributed tech-
niques have been used in various other verification tools. In model checking,
distribution across multiple machines was originally used as a way of mitigating
the high memory requirements of explicit state model checking. More recently
it has been used in symbolic and CEGAR model checkers to improve perfor-
mance [28]. Incremental computation and caching has received less attention
in model checking. However there are algorithms for updating abstractions [20]
and explicit state models [10] for similar use-cases to this paper. There is also
widespread use of incremental computation in lighter weight static analysis sys-
tems [14].

Finally, the use of memcached as a shared, persistent space is somewhat rem-
iniscent of tuple space programming models as pioneered by Linda [17].

6 Conclusion

In an industrial context, verification time is not just a number, it has a signif-
icant qualitative effect on how verification tools are used and thus on project
management. Adding support for memcached and creating a shared, persistent
cache of proven results is a trivial modification. The prototype implementation

A Lightweight Technique for Distributed and Incremental Program 127

for the SPARK tool chain required only around 250 lines of code, implementa-
tion in other systems should be similar. However the results in Section 4 show
that it has a significant impact. When used to support incremental verification
from a single machine it improves runtime 29 fold (on average). When used for
distributed simplification it yields near optimal speedup. More importantly this
shifts verification from the upper end of the “asynchronous” time bands to the
lower end of the “synchronous” time bands with a corresponding reduction in
costs and increased practicality. Given its low cost of implementation and qual-
itative impact on the development process, the use of a persistent shared cache
(such as memcached) is an obvious feature for any verification system intended
to be used industrially.

A number of future developments are possible. Adding support for parallelism
at the per-VC level would help mitigate the impact of the few .vcg files with long
verification times. Likewise, adding a ‘pending’ flag to the cache could reduce
the impact of two nodes attempting to simplify the same .vcg file at the same
time. There are also a number of techniques that could be used to increase hit
rates including caching per VC and abstracting out procedure names. Ideally the
caching system could be modified to be robust against the addition and deletion
of irrelevant hypotheses, although this would require integrating the caching and
reasoning logic.

Although these additions will give pragmatic gains, the primary motivation
of this work was to change the qualitative time band of verification and these
changes are unlikely to be able to reduce verification to the interactive time band.
To achieve this it will be necessary to consider other parts of the verification
process. Utilising the incremental nature of software development to speed up
these phases represents an overarching future challenge.

References

1. Altran Praxis: SPARK Pro. (2009),
http://www.adacore.com/home/products/sparkpro

2. Barnes, J.: High Integrity Software - The SPARK Approach to Saftey and Security,
2nd edn. Addison Wesley (2006)

3. Bergeretti, Carré.: Information-flow and data-flow analysis of while programs.
ACM Transactions on Programming Languages and Systems 7, 37–61 (1985)

4. Bergeretti, J.F.: An algebraic approach to program analysis: Foundations of a
practical analysis system. Ph.D. thesis, University of Southampton, Faculty of
Engineering and Applied Science, Department of Electronics (1979)

5. Berghofer, S.: Verification of Dependable Software using SPARK and Isabelle. In:
Brauer, J., Roveri, M., Tews, H. (eds.) Proceedings of the 6th International Work-
shop on Systems Software Verification (SSV 2011). pp. 48–65. TU Dresden (August
2011); technical report TUDIFI11

6. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: Shepherd your herd
of provers. In: Rustan, et al. [32], pp. 53–64

7. Brain, M., Schanda, F.: The Riposte counter example generator (2011),
http://forge.open-do.org/projects/riposte

http://www.adacore.com/home/products/sparkpro
http://forge.open-do.org/projects/riposte

128 M. Brain and F. Schanda

8. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,
Schulte, W., Tobies, S.: Vcc: A Practical System for Verifying Concurrent C. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 23–42. Springer, Heidelberg (2009)

9. Conchon, S., Contejean, E., Kanig, J.: Ergo: A theorem prover for polymorphic
first-order logic modulo theories (2006), http://ergo.lri.fr/papers/ergo.ps

10. Conway, C.L., Namjoshi, K.S., Dams, D., Edwards, S.A.: Incremental Algorithms
for Inter-Procedural Analysis of Safety Properties. In: Etessami, K., Rajamani,
S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 449–461. Springer, Heidelberg (2005)

11. CVC3: An automatic theorem prover for Satisfiability Modulo Theories (SMT)
(2006), http://www.cs.nyu.edu/acsys/cvc3

12. D’Silva, V., Kroening, D., Weissenbacher, G.: A survey of automated techniques
for formal software verification. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 27(7), 1165–1178 (2008)

13. Dutertre, B., de Moura, L.: The YICES SMT Solver (2006),
http://yices.csl.sri.com/tool-paper.pdf

14. Eichberg, M., Kahl, M., Saha, D., Mezini, M., Ostermann, K.: Automatic Incre-
mentalization of Prolog Based Static Analyses. In: Hanus, M. (ed.) PADL 2007.
LNCS, vol. 4354, pp. 109–123. Springer, Heidelberg (2006)

15. Filliâtre, J.C., Marché, C.: The Why/Krakatoa/Caduceus Platform for Deduc-
tive Program Verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 173–177. Springer, Heidelberg (2007)

16. Fitzpatrick, B., et al.: Memcached - a distributed memory object caching system
(2003), http://memcached.org

17. Gelernter, D., Carriero, N., Chandran, S., Chang, S.: Parallel programming in
Linda. In: ICPP, pp. 255–263 (1985)

18. Guitton, J., Kanig, J., Moy, Y.: Why hi-lite ada? In: Rustan, et al. [32], pp. 27–39

19. Hennessy, J.L., Patterson, D.: Computer Architecture, A Quantitative Approach,
4th edn. Morgan Kaufmann (2007)

20. Henzinger, T.A., Jhala, R., Majumdar, R., Sanvido, M.A.A.: Extreme Model
Checking. In: Dershowitz, N. (ed.) Verification: Theory and Practice. LNCS,
vol. 2772, pp. 332–358. Springer, Heidelberg (2004)

21. Hovemeyer, D., Pugh, W.: Finding bugs is easy. SIGPLAN Not. 39, 92–106 (2004),
http://doi.acm.org/10.1145/1052883.1052895

22. Jackson, P.B., Passmore, G.O.: Proving SPARK Verification Conditions with SMT
solvers (December 2009),
http://homepages.inf.ed.ac.uk/pbj/papers/vct-dec09-draft.pdf

23. James, P.R., Chalin, P.: Esc4: A modern caching ESC for Java. In: Huisman, M.
(ed.) Proceedings of the 8th International Workshop on Specification and Verifi-
cation of Component-Based Systems, pp. 19–26. Association for Computing Ma-
chinery (2009)

24. James, P.R., Chalin, P.: Faster and more complete extended static checking for the
java modeling language. Journal of Automated Reasoning 44(1-2), 145–174 (2010)

25. Lahiri, S.K., Qadeer, S., Rakamarić, Z.: Static and Precise Detection of Concur-
rency Errors in Systems Code using SMT Solvers. In: Bouajjani, A., Maler, O.
(eds.) CAV 2009. LNCS, vol. 5643, pp. 509–524. Springer, Heidelberg (2009)

26. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of jml: a behavioral
interface specification language for java. SIGSOFT Softw. Eng. Notes 31, 1–38
(2006), http://doi.acm.org/10.1145/1127878.1127884

http://ergo.lri.fr/papers/ergo.ps
http://www.cs.nyu.edu/acsys/cvc3
http://yices.csl.sri.com/tool-paper.pdf
http://memcached.org
http://doi.acm.org/10.1145/1052883.1052895
http://homepages.inf.ed.ac.uk/pbj/papers/vct-dec09-draft.pdf
http://doi.acm.org/10.1145/1127878.1127884

A Lightweight Technique for Distributed and Incremental Program 129

27. Leino, K.: Dafny: An Automatic Program Verifier for Functional Correctness. In:
Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 348–370.
Springer, Heidelberg (2010)

28. Lopes, N.P., Rybalchenko, A.: Distributed and Predictable Software Model Check-
ing. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 340–355.
Springer, Heidelberg (2011)

29. de Moura, L., Bjørner, N.S.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

30. Moy, Y.: Automatic Modular Static Safety Checking for C Programs. Ph.D. thesis,
Université Paris-Sud (January 2009)

31. Ranise, S., Tinelli, C.: The SMT-LIB format: An initial proposal. In: Workshop on
Pragmatics of Decision Procedures in Automated Reasoning (2003)

32. Rustan, K., Leino, M., Moskal, M. (eds.): First International Workshop on Inter-
mediate Verification Languages (August 2011)

A Comparison of Intermediate Verification
Languages: Boogie and Sireum/Pilar

Loren Segal1 and Patrice Chalin2

1 Dependable Software Research Group, Concordia University, Montreal
2 Kansas State University, Manhattan, Kansas

Abstract. Use of contract-based specification languages is slowly in-
creasing. This advancement has been due in part to the growing efficiency
and usefulness of Intermediate Verification Languages (IVLs) which ab-
stract the low level details of program verification and act as a backbone
for higher level tools. This paper looks at two mature IVLs, Boogie and
Sireum/Pilar, and provides a comparative study of their features in order
to offer resources for tool developers and IVL designers. As validation for
this comparison, we introduce two tools, ruby2boogie and ruby2pilar, to
illustrate the translation from Ruby to Boogie and Pilar.

1 Introduction

Though very slowly, contract-based specification languages (or language exten-
sions) are increasingly making their way into developers’ toolboxes—e.g., at Mi-
crosoft [15] and Google [9]. This is due, in part, to the availability of specification
processing tools that are easy to use (i.e., automated), useful and efficient enough
to make it realistic to integrate them into software development process base-
lines. Development of such tools, like for most other “high-integrity” software,
takes considerable effort and offers serious engineering challenges. To help mit-
igate development costs, most tooling products and recent product families are
conceptually organized following a pipe-and-filter (dataflow) architecture mak-
ing a judicious use of Intermediate Verification Languages (IVLs). This leaves
developers re-engineering old verification tools or creating new tools (e.g., to add
support for a new language) with an opportunity and a problem: given various,
potentially equivalent and suitable IVLs, which one should be adopted?

This paper takes a first step in addressing this important question by compar-
ing two IVLs: Boogie 2 from the Microsoft RiSE Group [13], and Sireum/Pilar
(Pilar for short) from the Kansas State University SAnToS Laboratory’s Sireum
framework [17,16]. Specifically, our primary contributions are:

– After establishing the scope of the comparison and offering a very brief in-
troduction to both languages (Section 2), we present a detailed point-wise,
theoretical comparison of the language features of Boogie and Pilar (Sec-
tion 3).

– A practical tool-developer oriented comparison (Section 4) via the descrip-
tion of our experiences in developing two tools that perform automatic

R. Joshi, P. Müller, and A. Podelski (Eds.): VSTTE 2012, LNCS 7152, pp. 130–145, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Comparison of Intermediate Verification Languages 131

source translation from Ruby [8] to Boogie and Pilar named, respectively,
ruby2boogie and ruby2pilar. We use these tools to illustrate pragmatic
differences in performing translation from a source language to each IVL.
We believe that this comparison and validation will be useful not only to
tool developers, but also IVL designers. Since neither Boogie nor Pilar were
designed with a dynamic language like Ruby in mind as a source language,
we believe that this makes an interesting case for the challenges faced by
verification tool developers adding support for new languages.

To our knowledge, this is the first such comparison.
The work reported here is part of a larger effort to provide redesigned

verification-condition (VCgen) based checkers for Java and Spark/Ada, hence
this study to determine which IVL would be most suitable for such a task. Due
to the authors’ appreciation for dynamic languages like JavaScript and Ruby,
and the first author’s extensive experience in the use of Ruby, our study ended
up taking the form of the exploratory development of a static checking, sym-
bolic execution and test case generation tool for an important subset of Ruby.
As such, a secondary contribution of this paper is the presentation of pre-
liminary work on a unique approach to the static analysis of Ruby programs,
which offers special challenges due to its dynamic nature [19]. A summary of the
comparison is offered in Section 5. Related work, conclusions and future work
are covered in Sections Section 6 and Section 7.

2 Background

Intermediate Verification Languages (IVLs) exist as a way to encode computer
programs into a common language while maintaining (only) the important logi-
cal and stateful properties of the original program. This common language can
therefore sit between the source language and the language of theorem provers
like Simplify, Z3, and Isabelle, in order to provide a higher level representation
that is both more human-readable and more easily encodable from a given source
language.

For example, the languages Java and C++ have very many semantic and
syntactic similarities, but at the same time, also have quite a number of se-
mantic and syntactic differences. For a developer to translate either language
into verification conditions (VCs) for a theorem prover to parse, the developer
would be required to implement two very distinct algorithms to perform such a
translation, and the translations involved would not be trivial. Making use of an
intermediate language allows developers to implement a very simple translation
from either language into a common syntax, at which point a more refined tool
could perform the more complex translations in converting the IVL into VCs,
discharging the VCs, and performing the verification. A powerful IVL would be
one that allows differing syntaxes to be encoded with the least amount of effort
while still being expressive enough to ensure that the semantics of each language
are preserved.

132 L. Segal and P. Chalin

In this sense, an IVL is a great asset to developers who need robust verification
tools implemented for a wide range of languages. However, it is ultimately not
trivial to define a common intermediate language that can still support the syn-
tax and semantics of many source languages. We look at Boogie 2 and Pilar, two
possible IVLs, and compare them in terms of their functionality and effectiveness
at specifying “common” programs. Although our research focuses primarily on
object oriented programs, we also look at how other language paradigms might
be encoded (specifically, procedural and functional) using these IVLs.

Boogie 2 [13]1 (formerly BoogiePL [2]) and Pilar [17] can be defined as IVLs,
as they both attempt to abstract programs into simple logical steps meant for
formal verification tools. Boogie is developed by the RiSE group at Microsoft
Research. The Boogie verification language, as well as its open-source tool by the
same name, were initially created to target the C# language through the Spec#
project, though they were eventually used to support a host of other languages
(including C) as well.

Pilar, a component of the open-source Sireum [16] framework, is developed
by the SAnToS Lab members (Kansas State University). This language was ini-
tially used to describe both Java and SPARK programs in order for the Sireum
framework to perform various analyses. Pilar is effectively the intermediate rep-
resentation for all data and programs processed by the Sireum framework, and
as new languages are supported by the framework, they too will be translated
into this representation.

2.1 Scope of Comparison

Both Boogie and Pilar have language features and use-cases that exceed the scope
of this comparison. For instance, Boogie has many features (such as axioms) that
are useful when inputting manual proofs rather than performing a direct source
language translation with a tool. Furthermore, Pilar is not only used as an IVL,
and in fact is more generally intended as a “modeling language” for many forms of
data analysis and model checking. We therefore focus our comparison on features
of either language that assist with automatic translation of a source language
into Boogie or Pilar as IVLs, since this is the most common use case for both
languages.

2.2 Translation of a Simple Java Program

Before looking closely at the features of Pilar and Boogie we present a translation
of a simple Java stack class (Figure 1) to both Boogie and Pilar so that we can
become more familiar with the syntax. The stack implementation uses the Java
Modeling Language (JML) to express contracts. JML is a notation for specifying
and describing the detailed design and implementation of Java modules [12]. It
is a Behavioral Interface Specification Language (BISL) offering, in particular,
method specification by pre- and postcondition and class invariants to document

1 From this point on, an unqualified use of the term “Boogie” shall refer to “Boogie 2”.

A Comparison of Intermediate Verification Languages 133

������ � ���� ����� �
�	�
��� �� � � 	
 � � � � � �

��� ����� ��	 	 �
� � � �
������ ����� � � �

�� � � �� �� � � � � �
� � 	
 � � �

�
��� ����� ��	 	 �
� � � �
��� ��� � �	 	 �
 � � ����
��� ��	��	 	 �
 � �� ���� � 	 �
 � ����
��� ��	��	 � �� � �� � 	 �
 � ������ � �
������
��� ���� � �� �� � � �

�� � � � 	
 ��� � ��� �
�

��� ����� ��	 	 �
� � � �
��� ��� � �	 	 �
 � � ��
��� ��	��	 	 �
 � �� ���� � 	 �
 � �−��
������ �� ��� � � �

	���	 �� � −− � � 	
 � �
�

������ ���� ��
��� ���� � �� � ��� � � ��� ��
����� ����� � �� ����� � � �
� ���� ���� � � � �
�� ! � ����� ��� � � �
! �� ����� ��� � � � �� �� �

�
�

Fig. 1. Java Stack Example (with Contracts Written in JML)

module behavior. The Pilar and Boogie representations can be found in Figure 2.
It should be noted that these are manual, not automatic, translations, and may
have shortcuts that are not taken when performing automatic source translation.

3 Comparison of Language Features

3.1 Basic Assertion Language

Both Boogie and Pilar have similar assertion languages that can be used to
encode verification conditions and be sent to various theorem provers to verify
program input. The basic assertion language used in both IVLs can be defined by
the simple commands assert(expr) and assume(expr). These commands assert
the validity of an expression or assume the validity of an expression respec-
tively. The expressions themselves can be variables, simple arithmetic operators
or boolean comparisons. Boogie also specifically allows two logical quantifiers,
forall and exists, though Pilar allows function calls and function types as expres-
sion values, which Boogie does not.

In addition to these two basic commands, Boogie adds an extra command to
this basic set known as havoc, which acts similarly to assume, encoding that
some variable is assumed to now contain some unknown value.

3.2 Basic Control Flow

Boogie and Pilar are both, at their core, block based languages. They support
control flow and branching through this fundamental concept of blocks. This
allows them to model the control flow graph of source languages quite closely. It
should be noted that BoogiePL (the original version of Boogie) was purely block
based and had no abstraction for procedures, which illustrates the fundamental
nature of this construct.

Location and Blocks. In Boogie, a block refers to a sequence of statements to
be executed in order. Every procedure has at least one block, though if a block

134 L. Segal and P. Chalin

���� ��� � ���� �
����� 	
�� � ���� �
	
� 	
�� � � � � � � ��� � � � �
 � � �
 �
	
� 	
�� � � � � � � � ��� � � �
 �

�� ���� � � � �� � ��� ������ ���

�� �

�������� 	
����
�� �
 � � � � ��� �
��� � � � � � 	
�� � � � � � �
 � � � � �

	
�� � � � � �
 � � � � �
	
� ���
�!���� � � � �
 � � �
 �
	
�� � � � � �
 � � � � �" ���
�!���� �
	
�� � � � � � �
 � � � � �" # �

$
�������� 	
�� � �%�� �
 � � � � ��� � &� ' � � �
 �

��� � � � � � 	
�� � � � � � �
 � � � � �
	
�� � � � � �
 � � � � �

� � (% � � � � 	
�� � � � � � �
 � � � �) *## �
���%�� � 	
�� � � � � � �
 � � � � ""

�'� � 	
�� � � � � � �
 � � � � �+* �
	
� ���&,%� � � �
 �
���&,%� �" 	
�� � � � � � �
 � � � � �
	
�� � � � � � �
 � � � � �" ���&,%� + * �
	
�� � � � � �
 � � � � � ���&,%� � �" &� ' �

$
�������� 	
�� � ��� �
 � � � � ��� �

� �
% �� � � � � � �
 �
��� � � � � � 	
�� � � � � � �
 � � � � �
� � (% � � � � 	
�� � � � � � �
 � � � � - # �
���%�� � 	
�� � � � � � �
 � � � � ""

�'� � 	
�� � � � � � �
 � � � ��−*�
	
� �%�,%� � � �
 �
�%�,%� �" 	
�� � � � � � �
 � � � � �
	
�� � � � � � �
 � � � � �" �%�,%� − * �
� �" 	
�� � � � � �
 � � � � � �%�,%� − * � �

$
�������� 	
�� � ���� � ��.� � � ��� � ��� �

��� � � � � � 	
�� � � � � � �
��� � � � � � 	
�� � � � � �

	
� �
�� � ��� � � � ��
 � � � � �
 �
� � ' ' 	
����
�� � �
�� � �
� � ' ' 	
�� � �%�� � �
�� � * � �
� � ' ' � �" 	
�� � ��� � �
�� � �
� �" � + � �

$

������ 	
��
/�
 �. � � � � � � � �
/ �
 �. � � � � � � �

$

�������� 	
����
�� � 	
��
 � � � �
0����� ��� �
 � � � � � � � � �
0����� ��� �
 � � � � � � � �

1
� � � � � � � " � � �
1
� � � � � � � � " # �

$

�������� 	
�� � �%�� � 	
��
� � � �
/ �
 �. � � &� ' �

0����� ��� �
 � � � � � � � � �
0����� ��� �
 � � � � � � � �
0��� �
 � � � � � � � �) *##�
0���
 �
 � � � � � � � � ""

�'� �
 � � � � � � � � � + *�

1
� � � � � � � � �"
 � � � � � � � � + * �
1
� � � � � � � �
 � � � � � � � � − * � �" &� ' �

$

�������� / �
 �. � � 	
�� � ��� � 	
��
 � � � �
0����� ��� �
 � � � � � � � � �
0����� ��� �
 � � � � � � � �
0��� �
 � � � � � � � � - #�
0���
 �
 � � � � � � � � ""

�'� �
 � � � � � � � � � − *�

1
� � � � � � � � �"
 � � � � � � � � − * �
1 �����
 � � � � � � � �
 � � � � � � � � � �

$

�������� 	
�� � ���� � 	
 � ��. ��.� � � �
' � � � ' 	
�� �
�� �

/�
 �. � � � �
1 �
�� � �%�� � * � �
1 � �" �
�� � ��� � � �
1 � �" � + �
�� � ��� � � �

$

��� ������ �	�
����

Fig. 2. Java Stack Example Translated into Boogie and Pilar

is not specified at the start of a procedure, Boogie will create an anonymous
implicit block. The Boogie procedure in Figure 3 shows two blocks, one implicit,
and one explicit. The first two statements are part of the implicit block that
Boogie adds to the start of the procedure and the last statement is part of
the subtractX block. If no goto statement is provided for a jump, Boogie will
automatically jump to the next block in sequence. Therefore, the statements 1,
2 and 3 will be executed in order.

Pilar has the same basic concept of blocks, but they are called “locations”.
The equivalent of the Boogie example is shown in Figure 3(b). Pilar requires the
explicit declaration of the first location, though it can be anonymously named.
Finally, as shown, Pilar and Boogie will both implicitly jump to the next block
(or location) in the source, if an explicit jump is not provided.

In addition to standard block sequences, Pilar also supports non-deterministic
choice through a “choice operator” (explained further in the next subsection),

A Comparison of Intermediate Verification Languages 135

procedure run() {
var x: int, y: int;
x := x + 1; // #1
y := x + y; // #2

subtractX:
x := x - y; // #3

}

(a) Boogie

procedure run() {
local Integer x, Integer y;
x := x + 1; // #1
y := x + y; // #2

#subtractX.
x := x - y; // #3

}

(b) Pilar

Fig. 3. Locations in Boogie and Pilar

similar to Dijkstra’s guarded commands [6], which potentially allows for parallel
execution of statements. Although this feature is not discussed, it can be useful
for the modeling of concurrent systems, or where there is non-deterministic be-
haviour. It is unclear how Boogie would be able to model similar concurrent (or
non-deterministic) systems.

Branching and Looping. Both Boogie and Pilar can deal with control flow in
terms of unstructured goto or return statements, which can be placed in any
location or block. Boogie, however, has many convenience syntaxes for elements
such as if statements and loops, and does not require goto statements or blocks
for these. To exemplify the syntax for both languages, consider a Java for-loop
with an if statement inside of it:

int x, r = 0;
for (x = 0; x < 10; x++) {

if (x < 5) r = r + 1;
else r = r + 2;

}

Figure 4 presents one possible encoding of such a loop into Boogie and Pilar
respectively. Boogie resembles the high level Java syntax much more closely and
is therefore much more convenient to encode to. Specifically, a translator would
not need to keep track of (or even consider) location names as is the case for the
Pilar equivalent code. Since most popular languages use structured looping and
branching constructs such as if/else and for/while, this significantly simplifies
translations.

3.3 Annotations

Pilar relies heavily on its annotation syntax to encode source language-specific
constructs. As we will see, even contracts are specified through annotations. In
this sense, annotations are a very important part of the language syntax. Even
types can be encoded using annotations:

procedure inc(x @Type Integer) { # x := x + 1 }

136 L. Segal and P. Chalin

var x: int, r: int;
x := 0; r := 0;
while (x < 10) {
if (x < 5) { r := r + 1; }
else { r := r + 2; }
x := x + 1;

}

local Integer x, Integer r;
x := 0; r := 0;
#loop. :: (x < 10)

+> goto if;
| else goto endloop;

#if. :: (x < 5)
+> r := r + 1; goto endif;
| else r := r + 2; goto endif;

#endif
x := x + 1; goto loop;

#endloop

(a) Boogie (b) Pilar

Fig. 4. while and if statements in Boogie and Pilar

However, it seems as though abuse of this annotation syntax can end up del-
egating too much of a source language’s features to individual back-end tools,
leading to too much complexity in the back-end tooling. For instance, encoding
types as annotations entirely bypasses the inheritance and sub-typing semantics
that one would get “for free” by using the record keyword to declare a type. It
would therefore rarely be recommended to encode types in this manner in Pilar.

Boogie also allows for annotations (though they are called tool directives) in
the form:

var { :NonNull } x: Ref;

Such a variable x would be marked as NonNull. The equivalent Pilar would be
MyClass x @NonNull. Neither of these formats have any semantic meaning in
the language as-is. Tools would have to look for these annotations and encode
the semantic meaning themselves, either via another source transformation or a
computation.

It is important to note that although Boogie has annotations, it only has
them in a limited context. Specifically, they can not be defined for assignments
or branch/loop syntaxes.

3.4 Specification of Contracts

Specifying Pre and Post Conditions. Boogie has a special construct for
specifying pre and post conditions on a procedure. The full syntax is shown
in Figure 5: multiple requires or ensures clauses are allowed, and the old
operator refers to the state of a specific variable in the pre-state (before the
procedure run).

Pilar has no set syntax for declaring such clauses. In Pilar, one would use
annotations to encode pre- and post-conditions and rely on tools to process
this information. For instance, if VC generation is performed, it would be the
tool’s responsibility to check for properly named annotations. Although this
allows for more flexibility, it also requires more discipline to ensure that the

A Comparison of Intermediate Verification Languages 137

procedure inc(x:int) returns (r:int)
requires x >= 0; requires x < 100;
ensures old(x) + 1 == r;

{ r := x + 1; }

procedure inc(Integer x)
@pre(x >= 0) @pre(x < 100)
@post(old(x) + 1 == x)

{ # x := x + 1; # return x; }

(a) Boogie (b) Pilar

Fig. 5. Pre and post conditions in Boogie and Pilar

tools used to translate the source to Pilar are compatible with the tools used
to process the generated Pilar code. It would be also be the source translation
tool’s responsibility to insert contracts using the correctly named annotations
(as expected by the rest of the tools in the workflow). Therefore, one possible
Pilar equivalent of the Boogie example is shown beside it in Figure 5.

Specifying Loop Invariants. Loop invariants in Boogie are specified with the
invariant keyword attached to looping constructs. Again, Pilar uses annota-
tions to define these invariants.

3.5 Modeling Data Structures and Object Oriented Type Systems

One of the most basic features an IVL should support is the encoding of language
specific data structures. Both Pilar and Boogie have relatively different syntactic
methods of encoding data structures, though their semantics are roughly the
same.

Pilar has a syntactic record element which is similar, in a sense, to C’s struct,
and is the singular method of encoding any data structure in the language. A
record, like a Java class, can inherit from another and it can also be declared
abstract. Boogie, on the other hand, has no construct to represent classes or
data structures. It uses the type keyword along with var declarations to define
symbols in a flat namespace which represent the fields. For reference, we will use
the Stack class from Figure 2 to illustrate how data structures are modeled.

The flat namespace that Boogie uses is an important difference in the way
heap-based structures are modeled between the two languages. Specifically, Boo-
gie gives the user full control over defining how to model “memory allocation”,
and has no concept of object instantiation. In fact, a considerable amount of
detail can be found in the Boogie manual [14] about the ways in which the heap
can be encoded. On the other hand, Pilar handles allocations through a new key-
word. Although Boogie’s methodology allows for much more flexibility, it is not
exactly clear which languages require this much control over heap modeling.The
cost of this flexibility is complexity in modeling object-based systems. As we saw
from the Boogie example in Figure 2, the declaration

var Stack.arrSize: [Ref]int;

models the field arrSize from class Stack. However, to do this in a flat names-
pace, the field must be translated into a variable map of references to values,

138 L. Segal and P. Chalin

where references are the instances of the Stack class, and values are of the type
defined for arrSize. To reference the field data under this scheme, we write
Stack.arrSize[o] where o is of type Ref. We must also have introduced this
reference type Ref, whereas the Pilar code does not require defining a reference
pointer type.

As we have seen, Boogie does not impose any typing rules. They may or
may not be specified prior to static analysis. Again, this makes Boogie more
flexible for languages with non-traditional type systems, while Pilar tends to be
optimized for OO-based languages. In Figure 2 we briefly saw the translation of
a Stack class into Boogie code, including basic type specifications. However, we
did not include the specification of inheritance rules in this example. To do so,
would require the use of axioms (and an extra supertype declaration) as follows:

const Object
axiom Stack <: Object;

The code above declares the class Stack to be a subclass of Object. The same
semantics is implicitly defined in our Pilar example, since a record will automat-
ically extend Object (if no explicit superclass is defined). The inheritance syntax
of Pilar is like that of Java:

record ColorPoint extends Point { }

However, unlike Java, Pilar supports multiple inheritance. Note that Boogie can
emulate multiple inheritance by modeling the relationships through independent
axioms.

Generics Support. Boogie and Pilar both support generics (or “parameterized
types”) on type declarations. The syntax of this feature in each IVL is presented
in the technical report [20].

3.6 Unique Features and Tool Support

Each IVL hosts a set of unique language features, which, due to space con-
straints, are not covered in this paper. Specifically, Boogie supports an elegant
type system and the ability to define semantics through axioms and mathemati-
cal operators. Pilar supports first class functions and procedures, dynamic typing
and exception handling. These features, as well as implementation considerations
for tool developers, are discussed in the extended technical report version of this
paper [20].

4 Preliminary Validation: Ruby to Boogie and Pilar

As a preliminary validation, we present and discuss two tools, ruby2boogie
and ruby2pilar, that perform source translation from the Ruby programming
language [8] to their respective IVLs. Since neither Boogie nor Pilar was designed
with Ruby in mind, we believe that this comparison is an accurate representation

A Comparison of Intermediate Verification Languages 139

of the challenges faced by verification tool developers adding support for new
languages.

In both of these tools, we target a subset of the Ruby language for integer
math, basic conditional support, and basic modeling of properties and meth-
ods on classes. This subset illustrates some, but not all, of the more interesting
and practical features that are compared in Section 3. Since Ruby is dynamically
typed, we rely on source code annotations embedded in comments to provide op-
tional type information and member declarations when necessary for translation
or the underlying verification tools. We also use annotations in order to provide
contract specifications. The details of the supported language translations are
discussed in this section.

4.1 Type System Modeling

Ruby is an object-oriented, dynamically typed programming language. Object
orientation can be modeled by both IVLs, however dynamic typing presents
a problem for Boogie in particular. To deal with this lack of dynamic typing
support, we model Ruby’s type system in ruby2boogie after the canonical C
implementation of the Ruby interpreter known as MRI. Since C is a statically
typed language, the implementation (and its API which allows developers to
write Ruby extensions using native code) refers to all Ruby types as a VALUE
type in C, which is a type alias for a long. We therefore model this similarly
in Boogie, starting every translated Boogie program with (where int represents
the mathematical integers in Boogie):

type VALUE = int;

Note that the MRI implementation of Ruby will reserve the first bit of an inte-
ger to denote whether the VALUE is an object reference or integer. Consider the
Ruby method in Figure 6(a) that calculates the cube of a given integer x. Fig-
ure 6(b) shows the MRI native C implementation of this cube method. A similar
translation to Boogie performed by ruby2boogie is given in Figure 7. Although
we do not perform any actual type checking here, we could enforce typing the
way it is done for any source language through requires and ensures con-
tract clauses that verify type constraints. Alternative type checking strategies
are still being explored and therefore not discussed, however it should be noted
that implementing this type checking is more complex than the type checking
implemented in ruby2pilar.

Pilar allows for a much less involved approach to modeling Ruby’s type sys-
tem, thanks to its inherent support for dynamic typing. In short, we generally
need not worry about object or native types, and allow the IVL to handle these
details. If type constraints can be provided in the source language via anno-
tations, they are inserted during translation, otherwise they are simply omit-
ted. For instance, ruby2pilar translates the above cube method as shown in
Figure 7(b).

As mentioned previously, if a type annotation is provided in the Ruby source,
it is taken as a type specification for the variable. For instance, Figure 8 illustrates

140 L. Segal and P. Chalin

def cube(x)
x * x * x

end

VALUE rb_cube(VALUE self, VALUE x) {
long v = FIX2LONG(x);
return LONG2FIX(v * v * v);

}
(a) Ruby (b) MRI CRuby

Fig. 6. A cube method in Ruby and MRI CRuby

procedure #cube(self: VALUE, x: VALUE)
returns ($result: VALUE) {

$result := x * x * x;
return;

}

procedure #cube(self, x)
{
return x * x * x;

}

(a) ruby2boogie (b) ruby2pilar

Fig. 7. Translation of the cube to Boogie and Pilar

the resulting Ruby and Pilar translation if the cube method was modified to
include a type annotation (the Fixnum class in Ruby represents the native integer
type). With such an annotation, the method is now implicitly constrained to a
type, and type checking can be provided lower in the pipeline (by the verification
tools or Sireum itself).

4.2 Handling Arrays

One specific issue of importance to Ruby is the translation of arrays. It is intu-
itive in many cases to translate arrays from the source language directly as an
array in the IVL, but in the case of a dynamic language, this cannot always be
easily done. Once again, this issue applies more specifically to the ruby2boogie
implementation than it does to ruby2pilar. This is because Boogie expects the
declaration of an array to be of the form:

var myArr: [int]int; // map of ints -> ints
myArr[0] := 1; myArr[1] := 2; // ...

The type [int]int is a distinct type, and different from the simple type int. By
the same token, the Ruby modeled type of VALUEwould be different from an array
[int]VALUE. We cannot assign one to the other, and therefore we would have to
pay special attention to such variables. Fortunately, we can avoid the issue by
avoiding Boogie’s array syntax altogether. Instead, arrays in ruby2boogie are
mapped as simple VALUE objects, and array values are populated using assume
statements for each array element and a function that represents the array data.
Pilar, on the other hand, can represent this data with the single initialization
expression arr := [1,2,3];

4.3 Modeling Fields

Fields present an interesting problem in Ruby, because the language has no
special syntax for declaring “fields” (data members of a class). Data members

A Comparison of Intermediate Verification Languages 141

@param [Fixnum] x
def cube(x) x * x * x end

record Fixnum extends Integer {}
procedure #cube(self, Fixnum x) {

return x * x * x;
}

(a) Ruby code (b) ruby2pilar

Fig. 8. Translation of Ruby (with a type annotation) to Pilar

are called instance variables in Ruby, and do not need prior declaration. To
handle this, the source is parsed and every instance variable token (recognized
by the syntax @varname) is automatically represented as a field in the model.
For instance, the Ruby version of the Stack implementation of Figure 1 might
look like (push, pop and main methods omitted):

class Stack
def initialize; @arr = []; @arr_size = 0 end

end

Translating the source for the above Ruby code recognizes the two fields arr
and arr_size. Note that we could also add type information to these declara-
tions, or even declare new fields (that are not visible during translation) through
annotations.

In the ruby2boogie implementation, these fields are mapped similarly to how
they were illustrated in Figure 2, the main differences being that we (a) do not
declare arr as an array type, and (b) use VALUE rather than Ref or int. Below
is what the two fields are translated into, using the ruby2boogie tool:

var Stack$arr: [VALUE]VALUE;
var Stack$arr_size: [VALUE]VALUE;

The ruby2pilar implementation takes advantage of the Pilar record syntax
seen in Figure 2. With no annotations, the record is simply:

record Stack { arr; arr_size; }

4.4 Control Flow

Both Boogie and Pilar support relatively high-level control flow constructs. Con-
ditional branching using an if statement are supported in both IVLs (though in
Pilar the “choice” :: operator is used instead). Since Ruby has an if keyword,
this mapping is quite straightforward.

Looping, however, is slightly more challenging. Ruby does have for and while
keywords that map fairly directly to traditional looping constructs in both Boo-
gie and Pilar, however Ruby also allows (and recommends) that looping be per-
formed using closures as arguments to methods such as times, each, or loop. A
traditional loop in Ruby looks more like the following:

total = 0
[1,2,3,4].each {|x| total += x }

142 L. Segal and P. Chalin

The above would roughly translate to the following C code for the built-in version
of the each method:

void each(int *total, int value) { *total += value; }
void main() { int total, i, arr[] = {1,2,3,4};

for (i = 0; i < 4; i++) each(&total, arr[i]); }

Therefore, translating such a loop in either IVL is a much more complex process,
and there are a few ways to do it. One such method is to translate the each
call into a traditional while or for loop, however this would only work for a
specific set of built-in looping methods. Another technique is to model the Ruby’s
closure construct completely (which is necessary for full translation anyway) and
generate separate “anonymous” procedures (or inline functions in Pilar’s case)
representing the closures. Note that although Pilar supports inline functions,
Ruby’s closures can access data and variables in the outer scope of the closure,
whereas Pilar’s closures cannot. This makes translation much more difficult in
using either inline functions or anonymous procedures.

In short, it is not entirely clear which IVL is more suitable to encode looping
constructs in a language with closures such as Ruby. Although it would seem
that Pilar’s type system would be more conducive to this type of a translation,
there are many technical difficulties beyond typing that make this translation
complex. It should be noted that the ruby2boogie and ruby2pilar case study
tools lack any significant loop structure support for Ruby at this time due to
the complexity of translating these constructs.

5 Summary

Table 1 shows a summary of the language features and tool support of Boo-
gie and Pilar for the topics covered in this paper. The table highlights some of
the main differences in these two languages, and helps us justify some of these
differences. Specifically, we see that Boogie is targeted mainly to one backend
(VCGen). Pilar, on the other hand has been used for different forms of veri-
fication from model checking to symbolic execution, test case generation, and
most recently (and still in development), VCGen. This has affected the features
that these languages target. For example, the lack of non-deterministic choice or
more complete record structures for data modeling in Boogie are likely due to its
focus on VCGen instead of other verification methods such as model checking.
Similarly, the lack of native contract specification clauses in Pilar is due to the
fact that its predecessor languages, the Bogor Intermediate Representation [18]
and the Bandera Intermediate Representation [5], essentially used other con-
structs for program specification such as basic assertion and observable clauses.
Pilar language designers have opted for support of contracts via the flexible an-
notation feature, pending decisions regarding the most suitable way to encode
contracts—e.g. Spec# and Boogie support only simple “single-case” contracts,
whereas JML supports complex contracts potentially involving multiple so-called

A Comparison of Intermediate Verification Languages 143

Table 1. A Summary of Boogie and Pilar Features

Feature Boogie Pilar
Language Features
Basic statements assert, assume, assignment,

call
assert, assume, assignment,
call

Control flow (basic) if, while, goto guards, jumps (if, case, goto),
return

Control flow (exceptions) none throw, catch

Annotations can be written
alongside . . .

declaration, assert/assume,
procedure, invariant,
quantifier

almost any syntactic construct

Namespace flat package, record

Type system (higher-ranked) polymorphic order-sorted

Basic types int, bool, bit vector (bv*),
polymorphic maps

numeric, string, tuple, list, set,
function, relation, multi-array

Modeling data structures and
Object-oriented type system

must use encoding scheme native (support for multiple
inheritance)

Literals true, false, numeric for all basic types

Procedural abstraction yes yes

Contracts, invariants native via annotations

Tool Support
Front-ends / input languages Chalice, Dafny, Havoc,

Spec#, Vcc, others
Java, Spark/Ada, Ruby*

Back-ends VCGen Model Checker (Bogor),
Symexe (Kiasan), Test case
generation, VCGen*

(*) Currently under development.

“specification-cases” [12]. While multiple specification-case contracts can be ex-
pressed as single-case contracts, it is not clear that single-case contracts are the
most suitable choice for an IVL.

6 Related Work

IVLs other than Boogie and Pilar exist. We first mention FreeBoogie [11,4] an
open-source implementation of Boogie that is built on Java and therefore has
superior multi-platform support to Boogie’s .NET codebase. It is licensed under
the MIT license, and is fairly actively developed [10].

Why, both the name of a VCGen-based verification platform and the IVL it
uses, supports many of the features discussed in this paper [7]. Its tooling is
built for Java and C VCGen, with back-end support for many theorem provers
including Isabelle, for which there is currently experimental support in Boogie [3]
but no support in Pilar. Why is published under GPLv2, making it open source
and easily modifiable, similar to Pilar.

Spec# [1] is the main source language for which Boogie is targeted. The
language extends the popular C# .NET language, by adding contracts and a
non-null type system, among other features. The Boogie tool has native un-
derstanding of C# bytecode in order to directly communicate with the Spec#

144 L. Segal and P. Chalin

compiler and IDE. Spec# introduces many of the features that Boogie supports,
including method contracts, class invariants and field checking.

7 Conclusion and Future Work

Boogie and Pilar are both powerful tools for software verification. They are
each able to encode a host of language features into their respective languages.
This enables developers to take advantage of complex verification tools without
having to re-engineer these tools to work with new source languages.

In our study, we compared the individual features of each IVL in order to
determine which language might be more suitable in encoding certain source
languages (e.g., SPARK/Ada, Java, and Ruby). We found that, although Boogie
has many more high level constructs that make translation easier (e.g., branch-
ing and looping), it is less effective at handling dynamically typed or untyped
languages due to the restrictiveness of its type system. We believe that Boo-
gie would benefit greatly from alternative typing options. On the other hand,
Pilar’s reliance on user-defined annotations and lack of constructs for contract
specification makes it difficult to encode contracts in a standardized fashion. Pi-
lar would be more effective (especially for VCGen) if contract specification was
standardized as part of the basic grammar.

To validate our claims, we implemented two proof of concept tools, ruby2-
boogie, and ruby2pilar. These tools perform automatic translation of Ruby
to Boogie and Pilar respectively. From this exercise, we are able to qualify the
pros and cons of each IVL from the point of view of their intended audience of
language tool developers. We studied, in specific, the support for the modeling
of object oriented paradigms, as well as the support for dynamic typing com-
monly found in many new languages. We plan to focus our future work on a
more comprehensive study of the features of each IVL by increasing the Ruby
language feature coverage in our two Ruby source translation tools. We also
plan to perform a quantitative comparison of each IVLs own tooling pipeline
(VC generation, for example). Finally, as a means of broadening our comparison
of IVLs, we plan to include Why in such a study, as well as a comparison of its
features in relation to the two IVLs discussed in this paper.

References

1. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# Programming System: An
Overview. In: Meyer, B., Woodcock, J. (eds.) VSTTE 2005. LNCS, vol. 4171, pp.
144–152. Springer, Heidelberg (2008)

2. de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.P. (eds.): Formal Methods
for Components and Objects, 4th International Symposium, FMCO 2005, Novem-
ber 1-4. LNCS, vol. 4111, pp. 243–258. Springer, Heidelberg (2005)

3. Böhme, S., Moskał, M., Schulte, W., Wolff, B.: Hol-boogiean interactive prover-
backend for the verifying c compiler. Journal of Automated Reasoning 44, 111–144
(2010), http://dx.doi.org/10.1007/s10817-009-9142-9

http://dx.doi.org/10.1007/s10817-009-9142-9

A Comparison of Intermediate Verification Languages 145

4. Chrząszcz, J., Huisman, M., Schubert, A.: BML and Related Tools. In: de Boer,
F.S., Bonsangue, M.M., Madelaine, E. (eds.) FMCO 2008. LNCS, vol. 5751, pp.
278–297. Springer, Heidelberg (2009)

5. Corbett, J.C., Dwyer, M.B., Hatcliff, J., Robby.: Expressing checkable properties
of dynamic systems: The bandera specification language. International Journal on
Software Tools for Technology Transfer (STFTT) (2002)

6. Dijkstra, E.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Communications of the ACM 18(8), 453–457 (1975)

7. Filliâtre, J.C., Marché, C.: The Why/Krakatoa/Caduceus Platform for Deduc-
tive Program Verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 173–177. Springer, Heidelberg (2007)

8. Flanagan, D., Matsumoto, Y.: The Ruby Programming Language, 1st edn. O’Reilly
(2008)

9. Google Code: cofoja: Contracts for Java, http://code.google.com/p/cofoja/
10. Grigore, R.: FreeBoogie, http://code.google.com/p/freeboogie
11. Grigore, R.: Efficiency of Extended Static Checkers. Tech. rep., PhD Research Plan.

UCD Dublin (December 2007)
12. Leavens, G.T., Baker, A.L., Ruby, C.: JML: A notation for detailed design. In:

Kilov, H., Rumpe, B., Simmonds, I. (eds.) Behavioral Specifications of Businesses
and Systems, pp. 175–188. Kluwer Academic Publishers, Boston (1999)

13. Leino, K.R.M.: This is Boogie 2. Tech. Rep. KRML 178, Microsoft Research (June
2008)

14. Leino, K.: This is Boogie 2. Manuscript KRML 178 (2008)
15. Leino, K.: Verification tools at Microsoft (January 2009); Invited talk, Digiteo

seminar
16. Robby: Sireum website, http://www.sireum.org
17. Robby: Sireum: A Software Analysis Platform. SAnToS, Kansas State Univerity

(February 2007)
18. Robby, Dwyer, M.B., Hatcliff, J.: Bogor: An extensible and highly-modular model

checking framework. In: Proceedings of the 9th European Software Engineering
Conference Held Jointly with the 11th ACM SIGSOFT Symposium on the Foun-
dations of Software Engineering, pp. 267–276 (2003)

19. Segal, L.: Automatic program verification and test case generation of ruby pro-
grams. Tech. Rep. DSRG-TR-2011-02, Concordia University (2011)

20. Segal, L., Chalin, P.: A comparison of intermediate verification languages: Boogie
and sireum/pilar. Tech. Rep. DSRG-TR-2011-01, Concordia University (2011)

http://code.google.com/p/cofoja/
http://code.google.com/p/freeboogie
http://www.sireum.org

LLBMC: Bounded Model Checking of C and C++
Programs Using a Compiler IR�

Florian Merz, Stephan Falke, and Carsten Sinz

Institute for Theoretical Computer Science
Karlsruhe Institute of Technology (KIT), Germany

{florian.merz,stephan.falke,carsten.sinz}@kit.edu

Abstract. Bounded model checking (BMC) of C and C++ programs
is challenging due to the complex and intricate syntax and semantics
of these programming languages. The BMC tool LLBMC presented in this
paper thus uses the LLVM compiler framework in order to translate C and
C++ programs into LLVM’s intermediate representation. The resulting
code is then converted into a logical representation and simplified using
rewrite rules. The simplified formula is finally passed to an SMT solver.
In contrast to many other tools, LLBMC uses a flat, bit-precise memory
model. It can thus precisely model, e.g., memory-based re-interpret casts
as used in C and static/dynamic casts as used in C++. An empirical
evaluation shows that LLBMC compares favorable to the related BMC
tools CBMC and ESBMC.

1 Introduction

Bounded model checking (BMC) [3], introduced by Biere et al. in 1999, is a pop-
ular technique for bug finding and verification of hardware designs that is widely
used in an industrial setting. For bug finding of software, BMC of C programs
was introduced by Clarke et al. in 2004 [8], and has shown its strength in check-
ing a variety of aspects of embedded and low-level system software (see, e.g.,
[16,23]). Tools implementing BMC for C programs include CBMC [8] (developed
by D. Kröning et al.), F-Soft [15] (developed at NEC Laboratories America),
SMT-CBMC [1] (developed by A. Armando et al.), and ESBMC [10] (developed by
L. Cordeiro et al.).

To build a BMC tool that supports all language features of a high-level lan-
guage like C or C++ reliably, including common non-standard extensions that
are used by, e.g., the GCC compiler, is a daunting task. This is mostly due
to the complex syntax and intricate, sometimes ambiguous, semantics of these
languages. The bounded model checker LLBMC presented in this paper there-
fore performs BMC not on the source code level but on the level of a compiler
intermediate representation (IR). This approach offers a range of advantages:

� This work was supported in part by the “Concept for the Future” of Karlsruhe
Institute of Technology within the framework of the German Excellence Initiative.

R. Joshi, P. Müller, and A. Podelski (Eds.): VSTTE 2012, LNCS 7152, pp. 146–161, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

LLBMC: BMC of C and C++Programs Using a Compiler IR 147

– The compiler IR possesses a much simpler syntax and semantics than C/C++
and thus eases a logical encoding considerably. Furthermore, most features
of C and C++ can be supported without much effort.1

– The program that is analyzed is much closer to the program that is ac-
tually executed on the computer since ambiguities of C/C++’s semantics
have already been resolved. Furthermore, it becomes possible to find bugs
introduced by the compiler.

– In producing the IR, compilers already use program optimizations that can
also result in simplified BMC problems.

– The use of a compiler IR makes it possible to perform BMC on programs
written in a variety of programming languages.

The use of an IR makes LLBMC, to the best of our knowledge, the only BMC tool
that can be successfully applied to non-trivial C++ programs (CBMC contains
rudimentary support for C++ but failed to analyze nearly all of the over 50
C++ programs we tried it on). A drawback of using an IR is that bugs that are
(intuitively) present in the C/C++ program may be “optimized away” by the
compiler (but notice that the bugs would then also not occur during execution
of the program if the same compiler is used to produce the executable).

Besides using a compiler IR, LLBMC offers the following key features:

Large Set of Built-In Checks: LLBMC provides a comprehensive set of built-
in checks which are described in detail in Sect. 2.

Extensive Simplification: LLBMC uses simplification techniques on different
levels. First, using the optimizations of the compiler front-end generates
smaller and simpler IR programs. In particular, memory-related compiler
optimization techniques (e.g., moving memory operations to registers when-
ever possible) can simplify the BMC problem significantly. Second, rewriting
techniques are used on the logical representation, e.g., to propagate constants
or to simplify arithmetical and Boolean expressions.

Memory is Modeled as a Flat Byte-Array: This design decision is in con-
trast to what is implemented in many other tools (e.g., pre-3.9 versions of
CBMC [8] or deductive verification tools such as VCC [9]) which use a typed
memory model. In a typed memory model, memory is a collection of typed
objects rather than a sequence of bytes. Using a byte-array makes it possi-
ble to support programs which make use of C’s weak type system, e.g., by
converting an int to a sequence of chars that are written to a file. Another
example is the use of a union for the conversion between types. Typically,
modeling memory on the byte level causes a performance penalty in BMC,
but LLBMC uses simplification techniques that, according to an empirical
evaluation, compensate for this.

Section 2 recalls BMC of software and discusses the built-in checks of LLBMC.
The compiler framework LLVM is briefly introduced in Sect. 3, while Sect. 4

1 Currently, LLBMC does not support floating-point numbers, exception handling and
run-time type information (RTTI).

148 F. Merz, S. Falke, and C. Sinz

and 5 give details on LLBMC’s approach. An empirical evaluation is presented in
Sect. 6. Section 7 discusses related work and Sect. 8 concludes.

2 BMC and LLBMC’s Built-In Checks

Software inherently deals with unbounded data structures such as linked lists
or trees. This may give rise to infinite program runs and property checking
of such programs is in general undecidable. For bug finding, BMC thus limits
all program runs to finite ones, thereby achieving decidability. The bound is
imposed by restricting the number of nested function calls and loop iterations
that are considered. BMC performs function inlining and loop unrolling (up to
these bounds), resulting in one large function that is then subject to further
analysis.

LLBMC has an extensive set of built-in checks for commonly occurring bugs
in C programs. Furthermore, user defined checks (specified via C’s assert func-
tion) are supported as well. Each of these checks can be enabled or disabled
independently, but most of them are enabled by default.

Arithmetic Overflow and Underflow: Arithmetic overflow2 occurs when
the result of a signed or unsigned arithmetic operation cannot be repre-
sented with the available number of bits. While the semantics of unsigned
integer overflows is well-defined by the C standard using modular arithmetic,
this is not true for their signed counterparts. The semantics of signed integer
overflows are intentionally under-specified in the standard to give different
implementations room for optimizations. Thus, any signed arithmetic over-
flow in a program may give rise to undefined behavior and LLBMC checks for
them by default. Checks for unsigned arithmetic overflows are enabled only
if requested.

Logic or Arithmetic Shift Exceeding the Bit-Width: While most pro-
grammers are familiar with arithmetic overflows, shift operations are a less
well-known cause for undefined behavior. The C standard leaves shift opera-
tions like n << l undefined if l is larger than or equal to the bit-width of n.3

LLBMC supports checks for this kind of error by default since this behavior is
not expected by most programmers.

Memory Access at Invalid Addresses: One of the most important classes
of errors is caused by invalid memory access operations. The prime exam-
ple of this are security-critical buffer overflows. An access operation for an
object on the heap is only valid if it is completely contained within a block
of memory which was previously allocated using malloc. Due to C’s unre-
stricted pointer arithmetic, invalid memory access operations are a frequent
source of crashes and vulnerabilities. LLBMC detects invalid memory accesses
on the stack, on the heap, and for global variables.

2 In the following, “overflow” is used to denote both overflow and underflow.
3 On many architectures, shifting x by l bits is equivalent to shifting x by l mod b
bits, where b is the bit-width of x’s data type.

LLBMC: BMC of C and C++Programs Using a Compiler IR 149

Invalid Memory Allocation: Heap memory allocations are considered in-
valid by LLBMC if a memory block of the requested size can be allocated
under no circumstances. Currently, LLBMC approximates this by checking if
the total size of all allocated blocks would exceed the size of the heap.

Invalid Memory De-Allocation: A call to free(p)/delete p is invalid if a
memory block starting at p was already de-allocated, was never allocated, or
if p points to an address which is not the first byte of an allocated memory
block. LLBMC checks whether either of these situations occurs.

Overlapping Memory Regions in memcpy: In C, memcpy is used to copy the
content of a block of memory from one location to another. The result is
undefined, though, if the source and destination blocks overlap. LLBMC checks
that this does not happen.

Memory Leaks: Memory leaks occur when blocks of memory are allocated,
but never de-allocated. For long running programs this might cause an out-
of-memory situation. LLBMC checks for memory leaks as described in [26].

User Defined Assertions: In addition to the built-in assertions, LLBMC sup-
ports checking user defined properties expressed in C via C’s assert function
or the LLBMC-specific llbmc assert.4 Assumptions can also be specified us-
ing the built-in function llbmc assume.

BMC Specific Assertions: Finally, LLBMC is able to automatically detect in-
sufficient bounds for nested function calls and loop iterations that cause
BMC to be incomplete since not all programs executions are considered in
these cases.

3 LLVM

LLBMC uses the LLVM compiler framework (versions from 2.7 through 3.0) and its
intermediate representation LLVM-IR [18]. This makes it possible to use LLBMC

on programs that are written in several programming languages, since compiler
front-ends for, amongst others, C and C++, are available. The main target of
LLBMC is bounded model checking of C programs, but C++ programs that do not
use exception handling or run-time type information (RTTI) are also supported.

LLVM’s intermediate representation is an abstract, RISC-like assembler lan-
guage for a register machine with an unbounded number of registers. A program
in LLVM-IR consists of type definitions, global variable declarations, and the
program itself, which is represented as a set of functions, each consisting of a
graph of basic blocks. Each basic block in turn is a list of instructions, where
the instruction set can broadly be split into six types:

1. Three-address-code (TAC) instructions working on registers or constants.
2. The memory access instructions load and store.
3. Address calculations using getelementptr.
4. Conditional and unconditional branch instructions, phi instructions.
5. Function call instructions.
6. Bit-level instructions like extensions, truncations, and type casts.

4 llbmc assert is used only for specification purposes and not checked at runtime.

150 F. Merz, S. Falke, and C. Sinz

Here, (conditional and unconditional) branch instructions are only allowed as the
last instruction of a basic block. The branch instructions between basic blocks
induce a basic block graph, in which edges are annotated with the condition under
which the transition between the two basic blocks is taken.

Programs in LLVM-IR are in static single assignment (SSA) form, i.e., each
(scalar) variable is assigned exactly once in the static program. Assignments
to scalar variables can thus be treated as logical equivalences. Due to its re-
stricted instruction set, the use of SSA form, and its low-level nature, converting
an LLVM-IR program into a logical representation is considerably easier than
operating on the source code of a high-level programming language.

The simple C program given in Fig. 1 is used as a running example. This
program is converted into the LLVM-IR program also shown in Fig. 1 by the C
front-end llvm-gcc (on a 32-bit architecture using the optimization level -O2).

union U {
char c[4];
struct { int v: 31; int s: 1; } t;
int i;

};

void llbmc main(char n) {
union U ∗u; char ∗p; int i;
u = malloc(sizeof(union U));
p = u−>c;
u−>t.s = 1;
u−>t.v = 0;
p[0] = n;
llbmc assert(u−>i == INT MIN);

}

define void @ llbmc main(i8 %n) {
entry:
%0 = call i8∗ @malloc(i32 4) ; u = malloc(sizeof(

%1 = bitcast i8∗ %0 to i32∗ ; union U));

store i32 −2147483648, i32∗ %1 ; u->t.s = 1; u->t.v = 0;

store i8 %n, i8∗ %0 ; p[0] = n;

%2 = load i32∗ %1 ; u->i

%3 = icmp eq i32 %2, −2147483648 ; == INT_MIN ?

%4 = zext i1 %3 to i32
call void @ llbmc assert(i32 %4)
ret void

}

Fig. 1. Example C program. It is converted into the given LLVM-IR program by the C
front-end llvm-gcc. The function llbmc main is taken as the starting point for BMC.

LLBMC: BMC of C and C++Programs Using a Compiler IR 151

Notice that the low-level bit-field and union operations have been replaced by
word-level instructions by the front-end.

4 The Approach of LLBMC

The overall approach of LLBMC is as follows: First, an LLVM compiler front-end
(such as clang or llvm-gcc) is used in order to convert a C program into an
LLVM-IR program. This LLVM-IR program is then converted into LLBMC’s internal
logical representation ILR. The ILR formula is simplified by LLBMC using rewrite
rules before being passed to an SMT solver. If the SMT solver finds a satisfying
assignment (corresponding to a bug in the program), this can be converted into
a counterexample, first on the ILR level and then on the LLVM-IR level. The
approach is summarized in Fig. 2.

C program LLVM-IR LLVM-IR ILR ILR SAT / UNSAT

Compile Unroll &
Inline

Encode Simplify Solve

Fig. 2. LLBMC’s approach

4.1 From LLVM-IR to ILR

After parsing the LLVM-IR program, a number of transformations are applied to
it (e.g., loops are unrolled and functions are inlined a fixed number of times and
the control flow graph is simplified).5 The transformed program is then converted
into ILR, which is a representation of a formula in the logic of bit-vectors and
arrays with some extensions that, e.g., handle the special semantics of memory
allocation instructions like malloc and free. This format closely follows LLVM’s
instruction set, but differs from LLVM-IR in that it provides an explicit state
object for the memory content as well as for the state of the memory allocation
system. These state objects encode the dependencies between memory access
instructions and malloc/free, respectively. With an explicit representation of
the memory state, dependencies between memory-related instructions in LLVM
(which were implicitly given by the ordering of the operations) are made explicit
in the ILR formula. This makes the expressions in ILR order-independent.

5 LLBMC accepts arbitrary LLVM-IR programs as input and does not depend on any
optimizations performed by the compiler. For efficiency reasons, LLBMC internally
runs LLVM’s mem2reg pass in order to promote stack memory to registers when
possible. Furthermore, the indvars pass is used in order to automatically determine
the (static) number of loop iterations for certain kinds of simple loops.

152 F. Merz, S. Falke, and C. Sinz

Translation of LLVM’s three-address-code, memory access, address calcula-
tion, and bit-level instructions is straightforward, since these instructions are
part of the theory of bit-vectors and arrays—or can easily be encoded into it.

phi instructions are a common tool in compiler IRs that use SSA form. They
are used to select the correct value for a variable from a set of previous values
(e.g., when control flow merges after an if-then-else statement). In general, a
phi expression in ILR has the form

i′ = phi [i1, c1] . . . [in, cn]

where the value that the variable i′ takes is one of i1, . . . , in, depending on which
of the conditions c1, . . . , cn is true. The conditions cj are mutually exclusive and
cover all possible cases, i.e., the value of i′ is always uniquely determined.

For SMT solvers, a phi expression can be translated into a sequence of ITE
(if-then-else) operators (written in C syntax below):

i′ = c1 ? i1 : (c2 ? i2 : (. . . (cn−1 ? in−1 : in) . . .))

The conditions cj are not given explicitly on the LLVM-IR level, though. Instead,
basic blocks are used as designators. These basic blocks refer to the immediate
predecessor in the basic block graph from which the current basic block has
been reached. It thus becomes necessary to compute the conditions cj. This
is accomplished as follows. An execution condition cexec(b) is associated with
each basic block b. Execution conditions can be calculated recursively. Let P (b)
denote the set of predecessors of b in the basic block graph, and let t(b, b′) be
the condition under which the transition from basic block b to b′ is taken (the
edge label in the basic block graph). Then

cexec(b) =
∨

b′∈P (b)

(
cexec(b

′) ∧ t(b′, b)
)

if P (b) �= ∅, and cexec(b) = � otherwise. Then, the basic block b′ in a phi

instruction on the LLVM-IR level that occurs in the basic block b can be replaced
by the condition cexec(b

′) ∧ t(b′, b) on the ILR level.
Notice that each cexec(b) requires only linear space in the number of predeces-

sors of the basic block b if the recursive definition is not expanded but encoded
by introducing new Boolean variables for each cexec(b) and t(b, b′) instead.

4.2 Adding Checks to the ILR Formula

After the initial ILR formula has been generated, it is annotated with LLBMC’s
built-in checks. Most of these checks are supported by a predicate that is part
of ILR, e.g., there are no overflow, valid access, and valid free predicates.
Then, an instruction that can possibly overflow is guarded by an assertion that
no overflow occurs, a memory access instruction is guarded by an assertion that
the access is valid, and so on.

After converting the LLVM-IR program from Fig. 1 into ILR and adding the
predicates for the built-in checks, the ILR formula shown in Fig. 3 is obtained.
Here, assertions are encoded in such a way that only the first error in the program
is reported.

LLBMC: BMC of C and C++Programs Using a Compiler IR 153

i8 %n = nondef()
i8∗ %0 = nondef()
heap %1 = malloc(%initialHeap, %0, i32 4)
bool %2 = valid malloc(%initialHeap, %0, i32 4)
assert(%2, ”valid malloc”)
i32∗ %3 = bitcast(%0)
mem %4 = store(%initialMemory, %3, i32 2147483648)
bool %5 = valid access(%1, %3, i32 4)
bool %6 = and(%2, %5)
bool %7 = not(%2)
bool %8 = or(%7, %6)
assert(%8, ”valid store ”)
mem %9 = store(%4, %0, %n)
bool %10 = valid access(%1, %0, i32 1)
bool %11 = and(%6, %10)
bool %12 = not(%6)
bool %13 = or(%12, %11)
assert(%13, ”valid store”)
i32 %14 = load(%9, %3)
bool %15 = valid access(%1, %3, i32 4)
bool %16 = and(%11, %15)
bool %17 = not(%11)
bool %18 = or(%17, %16)
assert (valid load , %18)
bool %19 = compare(EQ, %14, i32 2147483648)
bool %20 = and(%16, %19)
bool %21 = not(%16)
bool %22 = or(%21, %20)
assert(%22, ”custom”)

Fig. 3. ILR formula obtained for the LLVM-IR program from Fig. 1

4.3 Simplification of the ILR Formula

Similar to [25], LLBMC uses term rewriting in order to simplify the ILR formula
before passing it to an SMT solver (LLBMC uses Boolector [4] by default, but
also supports STP [13] and Z3 [22]). Most of the rewrite rules used by LLBMC

are rather simple and correspond to constant propagation or simple arithmetical
and logical properties. In total, approximately 150 (conditional) rewrite rules
have been implemented in LLBMC in order to simplify the ILR formula.

Before the ILR formula is passed to the SMT solver, ILR’s predicates for built-
in checks are expanded if they are not already supported by the SMT solver:

– Arithmetic overflow detection is supported by many current SMT solvers.
Otherwise, it can be encoded in bit-vector logic directly (see, e.g., [5]).

– Checks for logic and arithmetic shift exceeding the bit-width can easily be
encoded in bit-vector logic using suitable comparison expressions. The same
is true for invalid memory allocations (i.e., memory allocations that are “too
big”) and overlapping memory regions in memcpy.

154 F. Merz, S. Falke, and C. Sinz

– Invalid memory access, invalid free, and memory leak detection is more
complex. Their encoding is discussed in detail in Sect. 5.

After expanding the predicates for the built-in checks and rewrite-based simpli-
fications of the formula from Fig. 3, the formula shown in Fig. 4 is obtained.

i8 %n = nondef()
i8∗ %0 = nondef()
i32∗ %3 = bitcast(%0)
mem %4 = store(%initialMemory, %3, i32 2147483648)
mem %9 = store(%4, %0, %n)
i32 %14 = load(%9, %3)
bool %19 = compare(EQ, %14, i32 2147483648)
assert(%19, ”custom”)

Fig. 4. ILR formula obtained by simplifying the ILR formula from Fig. 3

4.4 Counterexample Generation

The simplified ILR formula is then passed to an SMT solver for the logic of
bit-vectors and arrays. If the formula is satisfiable, any satisfying assignment
corresponds to a bug in the program. By mapping ILR variables to the corre-
sponding instructions in the LLVM-IR program and simulating execution with
these values, a trace of the LLVM-IR program that exhibits the bug can be ob-
tained. The bug exhibited by assigning −128 to n (and where malloc returns
the address 0x7ffffffc) in the running example is displayed in Fig. 5.

5 Encoding Memory Checks

In this section it is described how the memory-related check predicates are ex-
panded into formulas that can be handled by current SMT solvers. The following
discussion only considers the heap. Memory blocks on the heap are allocated us-
ing malloc and de-allocated using free. In ILR, these functions take the form

h′ = malloc(h, p, s)

h′ = free(h, p)

where h, h′ are (explicit but abstract) heap allocation states, p is a pointer, and
s is the size (in bytes) of the memory block that is to be allocated by malloc.
Notice that malloc takes the pointer p as a parameter and does not provide
it as a return value. In the conversion from LLVM-IR to ILR, malloc is always
preceded by a new pointer variable declaration for p, and malloc intuitively
adds suitable constraints on this pointer. The heap allocation state h′ returned
by malloc can then be considered as having these constraints added. The free
function modifies the heap allocation state in such a way that the (currently
allocated) memory block starting at address p is de-allocated.

LLBMC: BMC of C and C++Programs Using a Compiler IR 155

define void @ llbmc main(i8 %n) { ; i8 %n = -128

entry: ; executed

%0 = call i8∗ @malloc(i32 4) ; 0x7ffffffc

%1 = bitcast i8∗ %0 to i32∗ ; 0x7ffffffc

store i32 −2147483648, i32∗ %1
; [0x7ffffffc] -> [0x00 0x00 0x00 0x80]

store i8 %n, i8∗ %0
; [0x7ffffffc] -> [0x80 0x00 0x00 0x80]

%2 = load i32∗ %1 ; -2147483520

%3 = icmp eq i32 %2, −2147483648 ; 0

%4 = zext i1 %3 to i32 ; 0

call void @ llbmc assert(i32 %4) ; FAILED

}

Fig. 5. Error trace exhibiting a bug in the running example

LLBMC supports two different encodings for the memory checks: a “global”
encoding (following [26]) and a “local” encoding (following [12]). In the global
encoding, the memory check predicates are expanded by taking the whole for-
mula into consideration at once. In contrast, the local approach is based on
conditional rewrite rules that only take the immediate arguments of the predi-
cates into account. As an example, the expansion of the valid-access predicate
is discussed below, the remaining memory-related check predicates are handled
similarly, see [26,12] for details.

The valid-access predicate has the form

valid-access(h, p, s)

where h is a heap allocation state, p is a pointer, and s is the size (in bytes) of the
memory block that is to be accessed. The intended semantics of this predicate
is that it is true in exactly those cases where the memory region [p, p + s) is
contained within a memory block that is currently allocated in h.

The “global” encoding of valid-access is given below. The encoding of
valid-access(h, p, s) iterates over all mallocs that potentially took place when
obtaining the heap allocation state h. valid-access(h, p, s) is then true if a
malloc that actually took place allocated a memory block that contains [p, p+s)
and if this memory block was not de-allocated since then.

valid-access(h, p, s) ≡∨
h′�h

I: h′= malloc(h′′,q,t)

(
cexec(I) ∧ q ≤ p ∧ p+ s ≤ q + t ∧ ¬deallocated(h′, h, q)

)

deallocated(h, h′, p) ≡
∨

h�h∗�h′

I: h∗= free(h′′,q)

(
cexec(I) ∧ p = q

)

156 F. Merz, S. Falke, and C. Sinz

Here, cexec(I) is the execution condition of (the basic block containing the) in-
struction I. h′ h means that h′ is a (direct or indirect) predecessor of h in the
history of heap allocation states.

The “local” encoding of valid-access is given in the following. It uses condi-
tional rewrite rules of the form C | −→ r, expressing that can be rewritten to
r if the condition C can be evaluated to true. A memory access in the “empty”
heap allocation state ε is never valid (first rewrite rule). An access within an al-
located memory block is always valid (second rewrite rule), and, e.g., an access
that partially overlaps with a memory block that is getting de-allocated is never
valid (last rewrite rule).

contained(p, s, q, t) := p ≤ q ∧ q + t ≤ p+ s

disjoint(p, s, q, t) := p+ s ≤ q ∨ q + t ≤ p

valid-access(ε, p, s)

−→ ⊥
contained(p, s, q, t) | valid-access(malloc(h, p, s), q, t)

−→ �
¬contained(p, s, q, t) | valid-access(malloc(h, p, s), q, t)

−→ valid-access(h, q, t)

¬valid-free(h, p) | valid-access(free(h, p), q, t)

−→ valid-access(h, q, t)

valid-free(h, p) ∧ disjoint(p, bsize(h, p), q, t) | valid-access(free(h, p), q, t)

−→ valid-access(h, q, t)

valid-free(h, p) ∧ ¬disjoint(p, bsize(h, p), q, t) | valid-access(free(h, p), q, t)

−→ ⊥

Here, valid-free determines whether a free is valid, i.e., whether it changes
the heap allocation state. bsize determines the size of the (currently allocated)
memory block beginning at p. See [12] for details on their encodings.

6 Evaluation

In order to evaluate LLBMC’s performance, we compared it with two other BMC
tools: the C Bounded Model Checker CBMC [8] and the Efficient SMT-Based
Context-Bounded Model Checker ESBMC 1.16 [10].6 CBMC 3.9 contains significant
changes concerning the memory model since the typed memory model has been
replaced by a (mostly) byte-oriented model [17]. Since this new memory model
is less mature than CBMC’s typed memory model, we also included the previous
version of CBMC (3.8) in the comparison.

Benchmarks for the comparison were selected from a variety of papers and
sources in order to minimize any kind of bias. In total, 175 C programs were
included. The benchmark selection did not include any C++ programs since

6 F-Soft [15] and SMT-CBMC [1] are not publicly available.

LLBMC: BMC of C and C++Programs Using a Compiler IR 157

ESBMC does not support C++ and CBMC’s C++ support is still very rudimentary.
We have, however, successfully used LLBMC on 57 C++ programs containing ad-
vanced features such as multiple inheritance, STL containers, and templates.7

All four examples presented in [21] and all benchmarks mentioned in [1] were
included in the evaluation. All of the benchmarks from the NEC Laboratories
America benchmark suite8 were considered, but only those without infinite loops
were chosen (otherwise BMC is incomplete for all loop unrolling depths). A fam-
ily of four benchmarks implementing queues was constructed by us. Eight exam-
ples provided in SLAyer’s web interface9 were included, as well as all examples
distributed with the Static Modular Assertion ChecKer SMACK10 [24], except for
those where non-trivial loop invariants were used (which are not supported by
either of the evaluated tools). Ten examples from the URBiVA distribution [20]
were added as well. Finally, two sets of worst-case execution time benchmark
suites were added to the selection of benchmarks: the SNU11 and the WCET12

[14] suites. The complete benchmark collection and LLBMC itself are available at
http://baldur.iti.kit.edu/llbmc/.

In order to compensate for different default settings, CBMC was run with
the options --bounds-check, --div-by-zero-check, --pointer-check, and
--overflow-check and ESBMC was run with the option --overflow-check.
Otherwise, CBMC and ESBMC where run with their default settings, in particu-
lar concerning the choice of SAT or SMT solvers. For LLBMC, the C programs
were converted to LLVM-IR using llvm-gcc (version 2.8) with all compiler opti-
mizations switched off. Furthermore, LLBMC was configured to use Boolector as
its SMT solver. The loop unrolling and function inlining bounds were set to the
lowest possible values to detect a bug or show that no bug is present.

The evaluation was performed on an Intel R© CoreTM 2 Duo machine with
2.4GHz running Ubuntu Linux 11.04. For each benchmark, the memory limit
was set to 2.5GB and the time limit was set to 15 minutes. The results of the
comparison are shown in Table 1.

Notice that LLBMC is able to successfully solve (i.e., find bugs in) over 18%
more benchmarks than the best other tool in the comparison. The evaluation,
however, contains two incorrect results reported by LLBMC:

– In the benchmark family WCET: in the benchmark containing Duff’s device
(duff.c), a loop is not recognized as such by LLVM. Because of this, LLBMC
incorrectly reports insufficient loop unrolling bounds.

– In the benchmark family NECLA: LLVM’s optimizations (even using the
compiler setting -O0) cause information about signedness of an arithmetic

7 For these C++ programs, CBMC 3.8 correctly solves nine programs, fails to handle
41 programs, and produces incorrect results for seven programs. For CBMC 3.9, the
numbers are four, 53, and zero, respectively.

8 http://www.nec-labs.com/research/system/systems_SAV-website/
9 http://rise4fun.com/SLAyer

10 http://www.zvonimir.info/projects/
11 http://www.cprover.org/satabs/examples/SNU_Real_Time_Benchmarks/
12 http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

http://baldur.iti.kit.edu/llbmc/
http://www.nec-labs.com/research/system/systems_SAV-website/
http://rise4fun.com/SLAyer
http://www.zvonimir.info/projects/
http://www.cprover.org/satabs/examples/SNU_Real_Time_Benchmarks/
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

158 F. Merz, S. Falke, and C. Sinz

Table 1. Results of the evaluation. “N” denotes the number of instances in a bench-
mark family. “S” denotes the number of successfully solved instances (correctly detected
bugs or absence of bugs proved), “O” the number of times the tool ran out of time or
memory, “F” the number of failures to handle the input program, and “I” the number
of incorrect results (i.e., the tool reports a non-existing “bug” or misses a bug).

Benchmark LLBMC CBMC 3.8 CBMC 3.9 ESBMC 1.16
Family N S O F I S O F I S O F I S O F I

[21] 4 4 0 0 0 4 0 0 0 2 0 2 0 1 1 2 0
[1] 32 32 0 0 0 28 4 0 0 28 4 0 0 31 0 1 0
NECLA 45 44 0 0 1 34 4 5 2 29 2 9 5 31 4 6 4
Queue 4 4 0 0 0 3 1 0 0 3 1 0 0 3 1 0 0
SLAyer 8 8 0 0 0 5 0 0 3 4 0 0 4 4 0 1 3
SMACK 38 38 0 0 0 30 3 0 5 16 0 0 22 31 0 0 7
SNU 6 6 0 0 0 5 0 1 0 5 0 1 0 6 0 0 0
URBiVA 10 10 0 0 0 9 0 0 1 5 0 0 5 4 1 5 0
WCET 28 26 1 0 1 27 1 0 0 27 1 0 0 26 1 0 1

Total 175 172 1 0 2 145 13 6 11 119 8 12 36 137 8 15 15
% 98.3 0.6 0.0 1.1 82.9 7.4 3.4 6.3 68.0 4.6 6.9 20.6 78.3 4.6 8.6 8.6

operation to be lost. LLBMC then does not check the operation for signed
arithmetic overflow and misses an overflow bug.

Notice that both CBMC and ESBMC have a significantly larger number of incorrect
results, i.e., report more non-existing “bugs” or miss bugs.

The cactus plot in Fig. 6 compares the run-times of the four tools. Bench-
marks that could not be handled or where an incorrect result was reported are
considered as time-outs. The plot clearly shows that LLBMC produces more cor-
rect results in a shorter amount of time than any of the competing tools. Also
notice the decrease in the number of correct results between CBMC 3.8 and 3.9.

7 Related Work

Bounded model checking of hardware was introduced by Biere et al. in 1999
[3] as an alternative to symbolic model checking using binary decision diagrams
(BDDs) [6]. In 2004 Clarke et al. were the first to describe the application of
BMC to software (more specifically, C programs) [8].

Also in 2004, NEC Laboratories America implemented a bounded model
checking approach for C programs in the tool F-Soft as described in [15]. They
differentiate their tool from CBMC mainly through a basic block-based approach
instead of an SSA-based approach. Several static program analysis techniques
are performed on the control-flow graph in order to simplify the BMC problem.

In 2009, Armando et al. extended CBMC to use SMT solvers instead of encoding
the problem directly into SAT [1]. Results from that paper clearly show the
benefits of using SMT solvers w.r.t. formula size and execution time compared
to a direct SAT encoding as done by CBMC and F-Soft.

LLBMC: BMC of C and C++Programs Using a Compiler IR 159

 0.1

 1

 10

 100

 20 40 60 80 100 120 140 160

tim
e

lim
it

pe
r

in
st

an
ce

 (
in

 s
ec

on
ds

)

number of solved instance

CBMC 3.9
ESBMC

CBMC 3.8
LLBMC

Fig. 6. Cactus plot comparing LLBMC, CBMC 3.8, CBMC 3.9, and ESBMC

Recently, Cordeiro et al. presented ESBMC [10], which is based on CBMC but
uses an SMT solver instead of a SAT solver. The main novelty of ESBMC is its
added support for bug finding in multi-threaded software.

Milicevic and Kugler introduced an approach for model checking of software
based on SMT and the theory of lists [21]. While that approach avoids the
boundedness limitation of BMC, the evaluation in [21] indicates that it does not
scale comparably to BMC based approaches.

Symbolic execution is a different approach to bug detection in programs. In
contrast to BMC, which encodes all paths up to a bounded length in a single
formula, symbolic execution performs a symbolic path exploration that considers
the paths separately. The constraints obtained for each path are solved using SAT
or SMT solvers. Recent symbolic execution tools include KLEE [7] for C programs
and KLOVER [19], which extends KLEE for C++ programs. Both KLEE and KLOVER

perform symbolic execution on the level of LLVM-IR.
A recent tool that combines features of symbolic execution and BMC is LAV

[27]. Like KLEE, KLOVER, and LLBMC, the tool LAV also operates on the level of
LLVM-IR programs.

Out of the numerous static checking programs, at least Calysto [2] and SMACK

[24] operate on the level of LLVM-IR as well.
For related work concerning memory models, we refer to [26,12].

160 F. Merz, S. Falke, and C. Sinz

8 Conclusions and Future Work

This paper has presented LLBMC, a tool for bounded model checking of C/C++
programs. LLBMC uses the LLVM compiler framework to translate C/C++
programs into LLVM’s intermediate representation. The resulting code is then
converted into a logical representation and simplified using rewrite rules. The
simplified formula is finally passed to an SMT solver. An empirical evaluation
on a large collection of C programs has shown that LLBMC compares favorably to
CBMC [8] and ESBMC [10], both in run-time and in number of found bugs. Further-
more, LLBMC has successfully been used on over 50 non-trivial C++ programs
containing advanced features such as multiple inheritance, STL containers, and
templates, making it (to the best of our knowledge) the first BMC tool that can
handle non-trivial C++ programs.

For future work, we are currently working on lifting the error trace of the
LLVM-IR program to an error trace of the C program by using debug informa-
tion generated by the compiler front-end. We are also planning to determine
(and iteratively adapt) loop unrolling and function inlining bounds automati-
cally: starting with low bounds for function inlining and loop unrolling, they are
gradually increased based on the results of previous runs of LLBMC. Since the
C++ support in LLBMC is currently preliminary and incomplete, we are planning
to extend the support for BMC of C++ programs. Similar to [19], support for
exception handling and run-time type information (RTTI) needs to be added to
LLBMC. Finally, LLBMC could be extended in the direction of software verification
(as opposed to bug finding) using k-induction, similar to how this was recently
done for CBMC [11].

References

1. Armando, A., Mantovani, J., Platania, L.: Bounded model checking of software
using SMT solvers instead of SAT solvers. STTT 11(1), 69–83 (2009)

2. Babić, D., Hu, A.J.: Calysto: Scalable and precise extended static checking. In:
Proc. ICSE 2008, pp. 211–220 (2008)

3. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic Model Checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999)

4. Brummayer, R., Biere, A.: Boolector: An Efficient SMT Solver for Bit-Vectors and
Arrays. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505,
pp. 174–177. Springer, Heidelberg (2009)

5. Brummayer, R.D.: Efficient SMT Solving for Bit-Vectors and the Extensional The-
ory of Arrays. Ph.D. thesis, Johannes Kepler Universität, Linz, Austria (2009)

6. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 1020 states and beyond. IC 98(2), 142–170 (1992)

7. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proc. OSDI 2008, pp.
209–224 (2008)

8. Clarke, E.M., Kroening, D., Lerda, F.: A Tool for Checking ANSI-C Programs.
In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

LLBMC: BMC of C and C++Programs Using a Compiler IR 161

9. Cohen, E., Moskal, M., Tobies, S., Schulte, W.: A precise yet efficient memory
model for C. ENTCS 254, 85–103 (2009)

10. Cordeiro, L., Fischer, B., Marques-Silva, J.: SMT-based bounded model checking
for embedded ANSI-C software. In: Proc. ASE 2009, pp. 137–148 (2009)

11. Donaldson, A.F., Haller, L., Kroening, D., Rümmer, P.: Software Verification using
k-Induction. In: Yahav, E. (ed.) Static Analysis. LNCS, vol. 6887, pp. 351–368.
Springer, Heidelberg (2011)

12. Falke, S., Merz, F., Sinz, C.: A theory of C-style memory allocation. In: Proc. SMT
2011, pp. 71–80 (2011)

13. Ganesh, V., Dill, D.L.: A Decision Procedure for Bit-Vectors and Arrays. In:
Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 519–531.
Springer, Heidelberg (2007)

14. Gustafsson, J., Betts, A., Ermedahl, A., Lisper, B.: The Mälardalen WCET bench-
marks – past, present and future. In: Proc. WCET 2010, pp. 137–147 (2010)

15. Ivančić, F., Yang, Z., Ganai, M.K., Gupta, A., Ashar, P.: Efficient SAT-based
bounded model checking for software verification. TCS 404(3), 256–274 (2008)

16. Kim, M., Kim, Y., Kim, H.: Unit testing of flash memory device driver through a
SAT-based model checker. In: Proc. ASE 2008, 198–207 (2008)

17. Kröning, D.: CBMC release 3.9 announcement on (December 19, 2010),
cprovergooglegroups.com

18. Lattner, C., Adve, V.S.: LLVM: A compilation framework for lifelong program
analysis & transformation. In: Proc. CGO 2004, pp. 75–88 (2004)

19. Li, G., Ghosh, I., Rajan, S.: KLOVER: A Symbolic Execution and Automatic Test
Generation Tool for C++ Programs. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 609–615. Springer, Heidelberg (2011)

20. Maric, F., Janicic, P.: URBiVA: Uniform Reduction to Bit-Vector Arithmetic. In:
Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 346–352. Springer,
Heidelberg (2010)

21. Milicevic, A., Kugler, H.: Model Checking using SMT and Theory of Lists. In:
Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS,
vol. 6617, pp. 282–297. Springer, Heidelberg (2011)

22. de Moura, L., Bjørner, N.S.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

23. Post, H., Sinz, C., Küchlin, W.: Towards automatic software model checking of
thousands of Linux modules—A case study with Avinux. STVR 19(2), 155–172
(2009)

24. Rakamarić, Z., Hu, A.J.: A Scalable Memory Model for Low-Level Code. In: Jones,
N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403, pp. 290–304. Springer,
Heidelberg (2009)

25. Sinha, N.: Symbolic program analysis using term rewriting and generalization. In:
Proc. FMCAD 2008, pp. 1–9 (2008)

26. Sinz, C., Falke, S., Merz, F.: A precise memory model for low-level bounded model
checking. In: Proc. SSV 2010 (2010)

27. Vujosevic-Janicic, M., Kuncak, V.: Development and Evaluation of LAV: an
SMT-Based Error Finding Platform. In: Joshi, R., Müller, P., Podelski, A. (eds.)
VSSTE 2012. LNCS, vol. 7152, pp. 98–113. Springer, Heidelberg (2012)

cprovergooglegroups.com

The Marriage of Exploration and Deduction

Rupak Majumdar

Max-Planck Institute for Software Systems, Germany
rupak@mpi-sws.org

State space exploration based on abstraction and refinement has been the cor-
nerstone of several successful software verification tools from the last decade.
While these tools have made impressive progress in verifying control-dominant
properties of code, most prominently in the domain of device drivers, their ap-
plications to more data-intensive properties have been limited. In particular, we
focus on parameterized systems, which define infinite families of systems, one for
each value of the parameter. Many real-life software systems, for example, mem-
ory management units or cache coherence protocols can be modeled as param-
eterized systems (parameterized, e.g., by the number of processes and memory
locations), We want to perform uniform verification of parameterized systems,
where we show a formula is an invariant of every member in the parameterized
family.

The primary verification strategy for parameterized systems is deduction. For
safety verification, the user guesses an inductive invariant for the parameterized
family, and uses decision procedures to check that the guess is indeed correct. The
deductive approach has the advantage of better scalability (through reducing the
problem to a few SMT queries), expressiveness (invariants are usually quantified,
and modern decision procedures have good quantifier instantiation heuristics),
and avoids unbounded refinement loops that plague abstraction-refinement based
model checkers. However, it depends on the ingenuity of the user to provide
appropriate inductive invariants.

We shall show how combinations of deductive and explorative techniques can
lead to automatic verification for parameterized systems, or at least, reduce the
manual effort required to come up with appropriate inductive invariants. We
demonstrate the applicability of the technique through two case studies: the
verification of transactional memories and of cache coherence protocols. We also
outline some challenges in applying the methods, and directions which require
further research.

R. Joshi, P. Müller, and A. Podelski (Eds.): VSTTE 2012, LNCS 7152, p. 162, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Modeling and Validating the Train Fare

Calculation and Adjustment System
Using VDM++

Nguyen Van Tang1,�, Daisuke Souma1, Goro Hatayama2, and Hitoshi Ohsaki1

1 Research Team for Verification and Specification
National Institute of Advanced Industrial Science and Technology, Japan

2 Core Technology Development Department
Omron Social Solutions Co., Ltd, Japan

t.nguyen@aist.go.jp

Abstract. The Train Fare Calculation and Adjustment System (TFCAS),
developed by the OMRON Corporation, is a large-scale and complex
system that helps passengers buy tickets and adjust their train fare on
the railways across Japan. In this paper we present the results and ex-
periences gained in a collaborative research project between AIST and
OMRON, in which VDM++ has been applied to formalize TFCAS’s spec-
ifications and validate its consistency as well as reliability properties. An
executable VDM++ model can be used to raise the level of the qual-
ity of the informal system specification, the efficiency of existing system
test-suites, and the quality of real implementation. The application of
VDM++ enables us to detect 32 erroneous issues in the original informal
specification document. Moreover, we also show how the development
process can be improved in a front-loading manner using the formal
method VDM++.

1 Introduction

More and more cities are using train (subway) systems for public transporta-
tion in daily life. Among other important systems on a train system, such as,
sensors, the interlocking system, and the train control system, etc., the train
fare calculation system can be seen as the nerve center system of the train ser-
vices. This system serves as the key communication between the passengers,
the station workers, and even the train companies. As a consequence, train fare
calculation systems are becoming useful, but these systems are complex and
large-scale systems, and they include many complicated data structures and al-
gorithms for computing routes (lists of stations, and a station is a pair of line
name and station name), the fares of routes, and fare adjustments, etc. These
systems are embedded into the ticket vending and fare adjustment machines at
every station and are used daily. For example, the Paris train system has about
550 stations, the London train system 750 stations, the New York train system

� Corresponding author.

R. Joshi, P. Müller, and A. Podelski (Eds.): VSTTE 2012, LNCS 7152, pp. 163–178, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

164 N.V. Tang et al.

1000 stations, and the Kansai train system (Osaka and its suburb) has 1300
stations. The Kanto area train system (Tokyo and its suburbs) includes about
3000 train stations, and approximately 40 million people use the train fare calcu-
lation system everyday1. There are many kinds of tickets in Japan, e.g., regular
tickets, section tickets, tickets for children, etc. Once a passenger buys a ticket,
it is worth noting that if a ticket price is higher than the fare of the trip be-
cause of a bug or error, the passenger loses money. Otherwise, if a ticket price
is lower than the fare of the trip, the company loses money. Because there are
so many customers, a tiny error on the ticket price could turn out to be a huge
loss of money for the railways company or passengers. Furthermore, once bugs
are found, the Japanese government will ask the company to make reports and
fix the bugs. This kind of task is expensive and time-consuming, and will affect
the prestige of the company. Due to these social factors, there is a crucial need
to reduce risks in the development process of train service systems.

The Train Fare Calculation and Adjustment System (TFCAS for abbrevia-
tion), promoted by Japanese railways companies, is a complex system for train
fare calculation of the railways across Japan. The train fare calculation system
currently in use was developed over 10 years ago, and some modules (com-
ponents) of this system can be reused. The system was embedded into ticket
vending machines and fare adjustment machines at every station in Japan. The
task of OMRON is to develop a new system with more useful features by reusing
legacy modules of the old system. The new system includes new algorithms and
user-friendly interfaces in order to help users find the shortest route or the best
fare between two stations, and to help users perform fare adjustment (or pay
a penalty) if they buy the wrong ticket for the trip or there are errors with the
system, etc. With such convenient and useful services, the system is necessar-
ily a complex and large-scale system with a huge database. Our goal is to find
an efficient way to improve the specification of TFCAS and guarantee that the
design of the new system is consistent and compatible with the legacy modules.

Formal software development has been extensively studied (for instance,
see [1,4] for surveys) in recent years. VDM++, in particular, is an object-oriented
extension of VDM-SL [9], which is a formal specification language. VDM++ is
supported by an industry-strength tool set VDMTools2 owned and developed by
CSK Systems and extended from the former IFAD VDM-SL Toolbox [9]. The
tools offer syntax checking, type checking and proof obligation generation capa-
bilities, code generators for C++ or Java, a mechanism for a VDM-C++ connec-
tion, an attractive printer, a CORBA-based Application Programming Interface
(API) and links to external tools for UML modeling to support round-trip en-
gineering. VDMTools also supports Japanese, so that transforming the informal
specifications (in Japanese) to the formal model in VDM++ is relatively easy.

In this paper we present the results and experiences gained from a case study
where VDM++ has been applied to formalize and verify reliability properties
of the TFCAS specifications. This work has been performed in a joint project

1 http://en.wikipedia.org/wiki/Tokyo subway
2 http://www.vdmtools.jp/en/

Modeling and Validating the Train Fare Calculation 165

of the OMRON Corporation and the National Institute of Advanced Industrial
Science and Technology (AIST). Our approach is as follows: Because the sys-
tem reuses several legacy components of the existing system, we first employ
a VDM-C++ connection to integrate the newly added/maintained components
(written in VDM++) with the legacy ones (written in C/C++) to check for
consistency and compatibility. Second, we perform model-based testing on the
integrated model against system requirements. Third, we apply conformance
testing to check whether the practical implementation of the system (concur-
rently developed in C/C++ by OMRON) conform with the VDM++ model.
With this overall goal, the main results of this paper are as follows:

– First, the application we present here demonstrates the benefits derived from
establishing an explicit formal model of the system. During the formal spec-
ification of the TFCAS system, 31 erroneous issues have been found in the
informal specification documents of the system. The errors are categorized
into several groups: ambiguities, omissions, duplications, description of spec-
ifications, and inconsistencies.

– Second, besides the expected improvement of the informal specification docu-
ments, the efficiency of the system test environment (using cluster machines)
to test the functionality of the system has been analyzed and then increased.
We present the model-based and conformance testing of several properties
with different characteristics (types of tickets, companies, etc) of the fare
adjustment functionality. In the first stage of testing, we use cluster ma-
chines to perform testing for about 850000 test cases. With this test setting,
redundant test cases as well as wrong-data test cases are detected. Also, one
subtle defect of system design was found in the testing phase. This helps us
not only to test for correctness but also to optimize the set of test cases by
providing test designers. In order to have more coverage, OMRON engineers
will apply our approach to test more fare adjustment functions against about
10 million test cases in the next coming months.

– Third, the engineers at OMRONwanted to know how such a model would im-
prove informal specifications and support maintenance. An existing change
request has been chosen in order to investigate the role of an explicit model
in the needed modification process, such as the openness of the system. With
a formal model in VDM++, whenever new features are added into the sys-
tem, we only need to formalize the newly added/maintained parts in the
VDM++ specification. In this way, it is more convenient to combine legacy
components with the newly added components to test for consistency and
compatibility.

The remainder of this paper is organized as follows. Section 2 describes an
overview of the project including goals and our approach, as well as an overview
of the system. In Section 3 we present our method of using VDM++ for formal-
izing and validating the TFCAS specifications. We also report certain identified
issues in this section too. Section 4 describes our strategy and the process of test-
ing and validating the system. Section 5 reports on our intensive experiments of

166 N.V. Tang et al.

testing and some types of defects. Section 6 presents several lessons learned from
our project. In Section 7 we discuss related works. Finally, Section 8 concludes
the paper and outlines future work.

2 Project Overview

2.1 The TFCAS System: An Informal Overview

The system is embedded into ticket vending and fare adjustment machines at
every station in Japan. The main modules and notions of this system are split
up as follows:

– Ticket Vending Machines: A train system may be owned by one or several
companies. Each company may have several lines, e.g., the company A has
the L1 and L2 lines. Station here is an abstract notion. A station is not only
a location name, but a pair of line names and location names. This is because
there are many lines owned by different railway companies in Japan. A route
is simply a list of stations. There are many types of tickets and fares, e.g., the
fare for routes, the fares for children, the fares in a company, special fares
between two companies, etc. The first module of the system is embedded
in ticket vending machines at every station in Japan. With a user-friendly
interface, passengers can easily query the shortest trip (or a trip with the
cheapest fare) between two arbitrary stations using the system, so that the
passengers can select and buy tickets using cash or cards.

– Fare Adjustment Machines: The second important module of the sys-
tem consists of fare adjustment functionality. This part is embedded into fare
adjustment machines inside every station in Japan. In the USA and most
European countries, fare adjustment is not allowed. In Japan, fare adjust-
ment is allowed when passengers arrive at the destination station by using
the fare adjustment machines. For example, a passenger buys a ticket for a
trip from station A to station B. He/she however can use this ticket to take
another trip, say from station A to station C, provided that he/she has to
make a fare adjustment to get out of station C. Although the idea is simple,
those required fare adjustment functionalities are complicated in practice.
Because there are about 20 types of tickets, fare adjustment depends on the
types of tickets and the relationship between companies as well as many
other conditions, e.g., conditions for children or disabled persons.

2.2 Goals and Approach of the Project

In this project we aim at the following goals: producing consistent and precise
specifications, enhancing the quality of the design documents, improving develop-
ment processes, extensive testing at different levels, checking consistency between
the reused components and the newly developed components.

We have decided to use the formal specification language VDM++ [5] with
VDMTools [5] since they support the description and validation of large-scale

Modeling and Validating the Train Fare Calculation 167

Requirements and design documents

High level specification (UML)

Formal Specification Description

Formal Specification Development
VDM++, VDMTools

Test Cases, Scripts, Environment

Testing and Validating

Fig. 1. An overview of our approach

systems. Readers are referred to [5,6] for more details of the VDM++ technology.
Our approach consists of the following main steps (also graphically depicted as
the waterfall model in Figure 1):

– High Level Specification: To formalize the specification, our approach
first exploits the Unified Modeling Language (UML) to obtain a class dia-
gram of the system. This graphical view of the system makes it easier to
understand an overview of classes, data types, abstract methods and func-
tions, and relationships among classes.

– Formal Specification Description: In this step, we define abstract data
types and classes, as well as implicit specifications of functions using pre/post
conditions. Syntax and type checking were performed in this step to check
consistencies of data types.

– Formal Specification Development: To get a comprehensive and detailed
specification, we refine the specification step-by-step by defining the detailed
contents of functions.

– Test Environment Development: After finishing the functionality spec-
ification, we establish data and the environment for testing the system. We
import the test data from the OMRON corporation. The test tickets were
given in XML format, therefore, we have to translate test data from XML to
VDM format.

– Testing and Validating: We perform integrated and conformance testing
on the system. The test results in VDM were compared to the test results
of the C/C++ system (concurrently implemented by OMRON). If there
are any differences found from the comparison, we report the problem to
the company to check more details of the formal specification and the real
implementation.

– Training Industrial Users: Finally, a part of results has been opened in
public in the form of a workshop attended by (employees of) the Japanese
railway companies.

168 N.V. Tang et al.

3 VDM++ Model of the TFCAS

In this section the techniques and results of modeling the system in VDM++
are presented. First, an abstract UML model of the object-oriented architec-
ture is outlined. Second, the specification of several classes and functions serves
to demonstrate the specification language of VDM++. The section concludes
with statistics of the errors found in the natural language specifications by the
modeling phase.

Fig. 2. An Abstract UML Class Diagram of the System

Modeling and Validating the Train Fare Calculation 169

3.1 Architecture of the System

In order to describe the specification graphically, an object-oriented architecture
reflecting the physical components has been chosen. Figure 2 shows the main
classes of the system and the relationship between these classes in UML nota-
tion. We give abstract information of TCFAS in the UML class diagram. In the
following, we illustrate the architecture of the TFCAS system in VDM++ nota-
tion. In this paper, we only give abstract definitions of several classes such as
Line, Station, RouteMap, and NormalTicketAdjustment.

class Line

types

public Company = token;

instance variables

iCompany : Company;

iLineName : seq1 of char;

operations

public Line : Company * seq1 of char ==> Line

Line(aCompany,aLineName) ==(

iCompany := aCompany;

iLineName := aLineName;

);

public getCompany : () ==> Company

getCompany() == return iCompany

;

public getLineName : () ==> seq1 of char

getLineName() == return iLineName

;

end Line

In the definition of the class Line, we use an abstract data type token for Com-
pany. Later, for testing purposes, each element of this type can be constructed by
using mk token(“ACompanyName′′), e.g., mk token(“X ′′) indicates the com-
pany (with name) X . Once we have the class Line, the class Station can be
defined in VDM++ as follows:

class Station

instance variables

iStationName : seq1 of char;

iCompany : Line‘Company;

170 N.V. Tang et al.

operations

public Station : Line‘Company * seq1 of char ==> Station

Station(aCompany,aStationName) ==(

iCompany := aCompany;

iStationName := aStationName;

)

;

public getName : () ==> seq1 of char

getName() == return iStationName

;

public getCompany : () ==> Line‘Company

getCompany() == return iCompany

;

end Station

The RouteMap class contains information about the line-change and transfer
relation as well as the mapping from a set of lines to lists of stations. The abstract
of this class is defined as follows. The additional invariant constraints (inv)
means that the company of all stations (in the range of iRouteMap) coincides
with and the company of the domain of iRouteMap.

class RouteMap

instance variables

iRouteMap : map Line to seq1 of Station;

iLineChangeSet : set of LineChangeRelation;

iTransferSet : set of TransferRelation;

inv

forall xLine in set dom iRouteMap

&

forall xStation in set elems iRouteMap(xLine)

&

xStation.getCompany() = xLine.getCompany()

...

end RouteMap

3.2 A Simple Example of the TFCAS’s Functionality

Within this project, fare adjustments are critical functions of train fare calcula-
tion systems. Therefore, in this paper, we focus mainly on the functions of fare
adjustments.

In the original specification, there are many functions for fare adjustments.
The content of each function depends on not only the type of the ticket, but

Modeling and Validating the Train Fare Calculation 171

also the destination station. In what follows, we present the simplest case of fare
adjustment function for regular tickets. The fare adjustment for other types of
tickets are much more complicated. For presentation purposes, we omit their
details in this paper.

class NormalTicketAdjustment

types

public <extra_fare> = nat;

public AdjustResult = <Unnecessary> | <Impossible> | <Certificate>

| <Extra_fare>;

operations

protected adjustFor1Company : NormalTicket * Station * Line‘Company

==> AdjustResult

adjustFor1Company(aTicket,adjustStation,aCompany) ==

let fareOfTrip = cheapestFareInACompany(aTicket.getDeparture(),

adjustStation,aCompany,aTicket.getFareAttribute())

in

if (fareOfTrip <= aTicket.getValue())

then return <unnecessary>

else return fareOfTrip - aTicket.getValue()

pre

aTicket.TypeCode() in set {<standard>}

;

...

end NormalTicketAdjustment

Each company may have different policies for fare adjustment if the depar-
ture stations and the stations they get out at are in the same company. In other
words, the fare adjustments mainly depend on policies of companies and the
relationships among companies (in the cases where there are more than 2 com-
panies involved). In the above example of fare adjustment for regular tickets, the
operation adjustFor1Company describes the simple case of fare adjustment for
the single company. More precisely, the specification of this function in VDM++
can be interpreted as follows:

1. <Extra fare> is a type of natural numbers this type represents an extra fare
that a client needs to pay.

2. <AdjustResult> is an enumerated type of VDM++ to represents four pos-
sible cases of fare adjustments: <Unneceassry> indicates that it is not nec-
essary to adjust the fare. <Impossible> indicates that it is impossible to
adjust the fare. <Certificate> indicated that passengers can adjust fares,
and receive a certificate that helps the them to get out of the station with-
out paying more money. <Extra fare> indicates that passengers can adjust
fares by paying an extra fare to get out of the station.

172 N.V. Tang et al.

3. The operation adjustFor1Company: If the value of the ticket is greater than
the fare of the trip, the passenger does not need to adjust fares. Otherwise,
the passenger needs to adjust fare by paying an extra fee (fine): fareOfTrip
- aTicket.getValue().

3.3 Analysis of Identified Issues

During the formal specification of the TFCAS system, a total number of 31 er-
roneous issues were found in the original informal specification document. It is
significant to note that most of the errors were detected in the modeling (spec-
ification) process. The errors in the design documents related to specifications
detected in the modeling phase are shown in Table 1.

Table 1. Statistics of Errors before the Integration Test

Reasons of errors number of errors

Ambiguities 8

Omission 6

Duplication 3

Description of specification 5

Inconsistencies 9

4 Testing and Validating Process

Testing always needs some reference to test against in order to decide whether
the behavior of the system is correct or not. In our project, we apply the following
test strategy. First, we test the VDM++ model of the system to check whether
the specification satisfies system requirements. Second, we use the VDM-C++
connection functionality to integrate the newly added components (written in
VDM++) with the legacy modules of the old system (written in C/C++). We
then perform testing on the resulting integrated system to check whether the
newly added components are consistent with the legacy ones. Third, the im-
plementation of software in practice, however, may not conform with the spec-
ification (model). We therefore perform conformance testing to check whether
the implementation in OMRON conforms to the specification. Our testing and
validating process is described in Figure 3. The main phases of the process can
be described as follows:

– Phase 1. Modeling in VDM++: From the original design document of
the system, we formalize the design specification of the system in VDM++.

– Phase 2. Implementation in C/C++: To keep the development sched-
ule on time, concurrent with the modeling phase in VDM++, a OMRON
developing team starts implementing the system in C/C++. Both teams
(research and development) frequently communicate with each other to get
information and feedback to improve the modeling and implementation step
by step.

Modeling and Validating the Train Fare Calculation 173

fo rm alizeIn form al
specifica tion

V D M ++ system
specifica tion

Im plem ent in
C /C ++

P roto type
system in C /C ++

In form al
test cases

T est cases
In V D M ++

T est cases
in C /C ++

T est in
V D M ++

T est in
C /C ++

P ass and
C onform ance ?C heck /m odify

N o
S T O P

Yes
communicate

A utom atic
T ransla tion

A utom atic
T ransla tion

Fig. 3. The Modeling and Model-based/Conformance Testing Process

– Phase 3. Test cases preparation: The informal test cases were created
and stored in XML format by engineers and domain experts in OMRON
and Japan Railways Companies. In the current state, all test cases are for
fare adjustment of regular tickets, section tickets, and combination tickets.
We imported the test data from OMRON corporation. The test tickets were
given in XML format, therefore, we have to write a program to automatically
translate test data from XML to VDM++ and C/C++ formats, respectively.

– Phase 4. Testing in VDM++: After modeling the new design specifi-
cation in VDM++, we connect the components in VDM++ with the legacy
modules (e.g., functions to compute the fare between two stations of the
same company) in C/C++. We then test the VDM++ model of the system
for the test cases obtained from Phase 3.

– Phase 5. Testing in C/C++: Independently, the development team at
OMRON performs testing for the implementation (in C/C++) of the system
with the same set of test cases obtained from Phase 3.

– Phase 6. Conformance Testing and Refinement:We analyze and make
comparisons between the test results of the system requirements (i.e., ex-
pected results), the system design (i.e., test results of the VDM++ model),
and the real implementation (i.e., test results of the implementation). In
particular, there are several possible cases as follows: First, if all tests from
both teams pass, both the VDM++ model and its implementation validate
the required properties. Second, if some tests for the VDM++ model fail,
there are errors in the design or specification steps. We need to recheck and
revise the design document or the VDM++ model to make all tests pass.
Third, if some tests for the implementation fail, it means that there are mis-
takes in the implementation (i.e., the implementation does not conform with
the specification in VDM++). We need to inspect and revise the implemen-
tation to make all tests pass.

5 Experiments

The total duration of the project was 24 months including the training of in-
dustrial users. There were 6 team members in this project, and the average age

174 N.V. Tang et al.

was about 30 years old. We have implemented a part of the specification (in
Japanese) of the TFCAS system in VDM++. One person is mainly responsible
for VDM++ programming the others are responsible for checking the specifica-
tion in VDM++ and the original documents, the test environment preparation,
the VDM-C++ connection, and the testing performance. However, all members
of the project frequently discuss with each other the details of the specifica-
tion. Two members joined the project in the last six months (of the entire 24
months duration) to learn VDM++ and to transform our technique to OMRON.
The specification is implemented by CSK VDMToolbox 8.2.0 on Windows XP.
The average productivity for the formal specifications was about 400 lines of
VDM++ code per engineer per month (approximately 160 hours), including the
time used for examination of requirements, and for testing the formal specifica-
tion. In summary, the details are given in Table 2.

Table 2. Parameters, Cost Estimation and Testing Information

Contents Size

a part of an informal document 6400 lines (161 A4 pages)

functional specification in VDM++ 9400 lines

data specification in VDM++ 800000 lines

C++ code to connect VDM++ with C++ legacy modules 1000 lines

number of test cases 839771

research team 6 persons

cost estimation of the research project 6 man-year

Test cases Time

395,000 regular tickets 1:16:00

275,000 section tickets 6:28:00

170,000 pair of normal and section tickets 41:42:00

We tested the functions of the fare adjustment functionalities against a large
number of test cases. In particular, the set of test cases is categorized into three
groups: fare adjustment for regular tickets, fare adjustment for section tickets,
and fare adjustment for combination tickets (pairs of normal and section tick-
ets). We perform testing in parallel using cluster machines (Intel Xeon X7350
2.93GHz Quad Core A-16 of 1TB memory). Concurrently, the team of OMRON
has developed a test environment in C/C++ and performed testing with the
same set of test cases as ours. The running time of testing in C/C++ is 10
times faster than that of in VDM++. This is because VDM++ is a (interpreter)
specification language, not a programming language. However, because we use
cluster machines and do testing in parallel, we think that the testing time of
VDM++ is acceptable.

Thanks to VDM++, the test results helps us in detecting some problems of
the specification of functions for the fare adjustment as follows:

Modeling and Validating the Train Fare Calculation 175

1. Some tested results are found to be different from the expected ones. Based
on those test cases, we detected and fixed 1 subtle error related to func-
tions of fare adjustment for combination tickets in the informal specification
document of the systems.

2. Testing in VDM++ enables us to detect the redundant test cases supplied by
OMRON. Also, a set of test cases that could not be processed by VDM++
was discovered. We realized that this set of test cases have the wrong data,
i.e., the data is out of the range of the specification. Altogether, such detected
information helps test designers to optimize the set of test cases.

3. Based on a comparison of the tested results of the model (in VDM++)
and that of the implementation (in C/C++), differences were detected. We
inspected both the codes of VDM++ and C/C++ and found that some
functions in C/C++ were incorrectly implemented. This led us to early dis-
cussion with the team at OMRON, which allowed us to fix errors to make
C/C++ implementation conform with the model.

6 Lessons Learned

In this section we discuss several interesting positive and negative observations,
which could be used in exploitation of the methodology in other industrial set-
tings.

– Tests and Reviews of Specifications: First, with a VDM++ model of
the system, it is easier for us to check consistency and correctness of the
system specification. As reported in the previous section, the formal method
contributes to enhancing the quality of deliverables at the design phase of
the development process, because the formal specification can be syntax-
checked, type-checked and tested. In our experience, achieving the same
level of quality with natural language and the UML specifications that are
subjected to more limited checking and inspection is difficult.

– Conformance Testing and Refinement: Second, we analyze the test
results and make a comparison among system requirements (i.e., expected
results), system design (i.e., test results of VDM++ model), and real imple-
mentation (i.e., test results of implementation). In particular, there are sev-
eral cases as follows: (1) if all tests from both teams pass, both the VDM++
model and its implementation validate the required properties; (2) if some
tests for the VDM++ model fail, it means that there are errors in the design
or specification steps. We need to recheck and revise the design document
or the VDM++ model to make all tests pass; (3) if some tests for the imple-
mentation fail, it means that there are mistakes in implementation (i.e., the
implementation does not conform with the specification in VDM++). We
need to inspect and revise the implementation to make all tests pass.

– Cost Estimation and Comparison: Third, from the practical point of
view, we found that using the VDM++ formal method can help us to reduce
the development cost for the TFCAS system. Based on experiences obtained

176 N.V. Tang et al.

from previous projects, a comparison is made between the cost using the
formal method VDM++ and the estimated cost using the standard approach
(natural language and UML) for software development. At the beginning of
the process, the cost is higher for using the formal method for specification
compared to the cost for the standard approach. The reason is that, at this
step, we need more engineers to make a team for formal specification as
well as the expense of buying formal method tools (i.e., VDM++ Toolbox),
etc. However, using the formal method, errors and mistakes can be detected
earlier in the design phase, which helps us to reduce costs in testing and
maintenance afterwards. In contrast to this, the standard approach cannot
detect errors early, and thus errors still remain until the integration and
system testing phase. It is very costly to detect errors and modify the system.
As a result, the total cost of the formal method approach is smaller than
that of the standard one (see Figure 4 for details).

Requirement
analysis

System
design

Architecture
design

Coding

Integration
Test

System
Test

Acceptance
Test

Module
design Unit Test

cost

time

Standard
Proposed

Fig. 4. Cost Comparison Diagram

7 Related Work

The successful transfer of formal method technology into industrial practice has
been a goal of researchers and practitioners for several decades. Many attempts
apply formal specification and validation into industrial projects have been re-
ported in recent surveys [1,4]. Many attempts have been made to apply formal
methods to railways and their associated systems such as sensors, interlocking
systems and train control systems [2,7,10]. Eriksson has applied formal methods
to the problem of verifying interlocking systems with great success for over ten
years in this, notably on behalf of Banverket (the Swedish National Rail Admin-
istration) [10]. This approach works by creating two mathematical models: the
first is that of the interlocking system and consists of rules, and the second is
of the topological aspects of the railway yard for which the interlocking system

Modeling and Validating the Train Fare Calculation 177

has been designed. Verification proceeds by proving that a signalling principle
holds for the interlocking model in the topology model of the railyard. NP-Tools
software produced by the company Prover3 have been used for the verification.

In [2], Chiappini et al. presented a method for formalization and validation
of a subset of the European Train Control System (ETCS). In their approach,
they first exploit a subset of the Unified Modeling Language (UML) and a frag-
ment of the Property Specification Language (PSL). The constraint language
mixes Linear time temporal logic (LTL), regular expressions, first-order logic
and hybrid aspects related to real-time evolution. Second, they created a new
specification language so-called Control Natural Language (CNL) by combining
the constraint language and a small fragment of English expressions. Next, the
specification and requirements of the ETCS system was formalized by CNL. Fi-
nally, CNL constraints were verified by an extended version of the NuSMV model
checker, which is able to deal with continuous variables.

Successful industry use has been a major driver behind the development of
methods and tools for VDM in the past fifteen years, influencing the develop-
ment of tool support [5]. The ConForm studied at British Aerospace [3] strongly
suggested that benefits could be gained from early-stage abstract modeling using
a tool-supported formalism, even with only testing available as an analytic tool.
Further, VDM++ was used to demonstrate how maintenance (of a Voice Com-
munication System used in Air Traffic Control) is supported by a formal model
at FREQUENTIS [7]. More recent applications have used the object-oriented ex-
tensions, notably the key components of the TradeOne back-office system devel-
oped by CSK systems for the Japanese stock exchange [5] and the development
of the Mobile Felica operating system for an integrated circuit for cellular tele-
phone applications by Sony [8]. A common factor in many VDM applications
has been the use of formal models as a way of gaining rapid early feedback on
requirements and designs. The goal of providing such useful feedback during the
development of embedded systems has motivated our work reported here.

8 Conclusions

We have reported a case-study using VDM++, a formal specification method
and tool, to formalize and validate the Train Fare Calculation and Adjustment
System (TFCAS). The validation technique allows us to check consistency and
correctness of the specification with respect to the system requirements. A total
number of 32 erroneous issues have been found in the original informal specifi-
cation document. The application of VDM++ was viewed as highly successful
in not only keeping our project on schedule but also in enhancing the quality
of deliverables at the design phase of the development process. Thanks to the
formal method VDM++, the results of our project were positively evaluated by
domain experts and potential users external to the Japanese railway consortium.

We conclude that the formal method VDM++ is suitable for reaching high
quality by continuously (and simultaneously) improving the formalization and

3 http://www.prover.com/

178 N.V. Tang et al.

development process step by step, working closely together with team members.
For future work, we plan to explore more efficient and comprehensive ways to
combine VDM++ and a theorem prover/model checker/SAT solver for formal
specification and verification. We hope to use such a combined approach instead
of only testing to verify more complicated properties.

Acknowledgments. We would like to express our great appreciation to the
anonymous reviewers and editors for giving us valuable and helpful comments
to improve the paper.

References

1. Bicarregui, J., Fitzgerald, J.S., Larsen, P.G., Woodcock, J.: Industrial Practice in
Formal Methods: A Review. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS,
vol. 5850, pp. 810–813. Springer, Heidelberg (2009)

2. Chiappini, A., Cimatti, A., Macchi, L., Rebollo, O., Roveri, M., Susi, A., Tonetta,
S., Vittorini, B.: Formalization and validation of a subset of the European Train
Control System. In: Proc. of ICSE 2010, pp. 109–118. ACM Press (2010)

3. Fitzgerald, J.S., Brookes, T.M., Green, M.A., Larsen, P.G.: Formal and Informal
Specifications of a Secure System Component: First Results in a Comparative
Study. In: Naftalin, M., Bertrán, M., Denvir, T. (eds.) FME 1994. LNCS, vol. 873,
pp. 35–44. Springer, Heidelberg (1994)

4. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.S.: Formal methods: Prac-
tice and experience. ACM Comput. Surv. 41(4) (2009)

5. Fitzgerald, J., Larsen, P.G., Mukherjee, P., Plat, N., Verhoef, M.: Validated Designs
for Object oriented Systems. Springer, New York (2005)

6. Larsen, P.G., Fitzgerald, J.S., Wolff, S.: Methods for the Development of Dis-
tributed Real-Time Embedded Systems Using VDM. Int. J. Software and Infor-
matics 3(2-3), 305–341 (2009)

7. Hörl, J., Aichernig, B.K.: Validating Voice Communication Requirements Using
Lightweight Formal Methods. IEEE Software 17(3) (2000)

8. Kurita, T., Nakatsugawa, Y.: The Application of VDM to the Industrial Develop-
ment of Firmware for a Smart Card IC Chip. Int. J. Software and Informatics 3(2-
3), 343–355 (2009)

9. The VDM Tool Group, IFAD. User Manual for the IFAD VDM++ Toolbox. The
Institute of Applied Computer Science, Forskerparken 10, 5230 Odense M, Den-
mark/Europe, 1.0 edn. (September 1997) Doc.Id.: IFAD-VDM-50

10. Eriksson, L.: Formal Verification of Railway Interlockings. Swedish National Rail
Administration Technical Report 4 (1997)

Formalized Verification of Snapshotable Trees:

Separation and Sharing

Hannes Mehnert, Filip Sieczkowski, Lars Birkedal, and Peter Sestoft

IT University of Copenhagen
{hame,fisi,birkedal,sestoft}@itu.dk

Abstract. We use separation logic to specify and verify a Java program
that implements snapshotable search trees, fully formalizing the specifi-
cation and verification in the Coq proof assistant. We achieve local and
modular reasoning about a tree and its snapshots and their iterators, al-
though the implementation involves shared mutable heap data structures
with no separation or ownership relation between the various data.

The paper also introduces a series of four increasingly sophisticated
implementations and verifies the first one. The others are included as fu-
ture work and as a set of challenge problems for full functional specifica-
tion and verification, whether by separation logic or by other formalisms.

1 Introduction

This paper presents a family of realistic but compact challenge case studies
for modular software verification. We fully specified and verified the first case
study in Coq, using a domain-specific separation logic [10] and building upon
our higher-order separation logic [2]. As future work we plan to verify the other
implementations with the presented abstract interface specification. We believe
this is the first mechanical formalization of this approach to modular reason-
ing about implementations that use shared heap data with no separation or
ownership relation between the various data.

The family of case studies consists of a single interface specification for snap-
shotable trees, and four different implementations. A snapshotable tree is an
ordered binary tree that represents a set of items and supports taking readonly
snapshots of the set, in constant time, at the expense of slightly slower subsequent
updates to the tree. A snapshotable tree also supports iteration (enumeration)
over its items as do, e.g., the Java collection classes. The four implementations
of the snapshotable tree interface all involve shared heap data as well as increas-
ingly subtle uses of destructive heap update.

For practical purposes it is important that the same interface specification can
support verification of multiple implementations with varying degrees of internal
sharing and destructive update. Moreover, the specification must accommodate
any number of data structure (tree) instances, each having any number of iter-
ators and snapshots, each of which in turn can have any number of iterators.
Most importantly, we show how we can have local reasoning (a frame rule) even
though the tree and its snapshots share mutable heap data.

R. Joshi, P. Müller, and A. Podelski (Eds.): VSTTE 2012, LNCS 7152, pp. 179–195, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

180 H. Mehnert et al.

We welcome other solutions to the specification and verification of this case
study; indeed R. Leino has already made one (unpublished) using Dafny [11].

The Java source code of the case studies of all four implementations and the
Coq source is available at http://www.itu.dk/people/hame/snapshots.tgz.

Section 2 presents the interface of the case study data structure, shows an
example use, and outlines four implementations. Section 3 gives a formal spec-
ification of the interface using separation logic and verifies the example code.
Sections 4 and 5 verify the first implementation.

2 Case Study: Snapshotable Trees

The case study is a simplified version of snapshotable treesets from the C5 col-
lection library [8].

2.1 Interface: Operations on Snapshotable Trees

Conceptually, a snapshot of a treeset is a readonly copy of the treeset. Subsequent
updates to the tree do not affect any of its snapshots, so one can update the
tree while iterating over a snapshot. Taking a snapshot must be a constant time
operation, but subsequent updates to the tree may be slower after a snapshot has
been taken. Implementations (Section 2.3) typically achieve this by making the
tree and its snapshots share parts of their representation, gradually unsharing
it as the tree gets updated, in a manner somewhat analogous to copy-on-write
memory management schemes in operating systems.

All tree and snapshot implementations implement the same ITree interface:

public interface ITree extends Iterable<Integer> {

public boolean contains(int x);

public boolean add(int x);

public ITree snapshot();

public Iterator<Integer> iterator();

}

These operations have the following effect:

– tree.contains(x) returns true if the item is in the tree, otherwise false.
– tree.add(x) adds the item to the tree and returns true if the item was not

already in the tree; otherwise does nothing and returns false.
– tree.snapshot() returns a readonly snapshot of the given tree. Updates to

the given tree will not affect the snapshot. A snapshot cannot be made from
a snapshot.

– tree.iterator() returns an iterator (also called enumerator, or stream) of
the tree’s items. Any number of iterators on a tree or snapshot may exist
at the same time. Modifying a tree will invalidate all iterators on that tree
(but not on its snapshots), so that the next operation on such an iterator
will throw ConcurrentModificationException.

Formalized Verification of Snapshotable Trees 181

We include the somewhat complicated iterator() operation because it makes
the distinction between a tree and its snapshots completely clear: While it is
illegal to modify a tree while iterating over it, it is perfectly legal to modify
the tree while iterating over one of its snapshots. Also, this poses an additional
verification challenge when considering implementations with rebalancing (cases
A2B1 and A2B2 in Section 2.3) because tree.add(item) may rebalance the
tree in the middle of an iteration over a snapshot of the tree, and that should
be legal and not affect the iteration.

Note that for simplicity, items are here taken to be integers; using techniques
from [20] it is straightforward to extend our formal specification and verification
to handle a generic version of snapshotable trees.

2.2 Example Client Code

To show what can be done with snapshots and iterators (and not without),
consider this piece of client code. It creates a treeset t, adds three items to it,
creates a snapshot s of the tree, and then iterates over the snapshot’s three items
while adding new items (6 and 9) to the tree:

ITree t = new Tree();

t.add(2); t.add(1); t.add(3);

ITree s = t.snapshot();

Iterator<Integer> it = s.iterator();

boolean lc = it.hasNext();

while (lc) {

int x = it.next();

t.add(x * 3);

lc = it.hasNext();

}

2.3 Implementations of Snapshotable Trees

One may consider four implementations of treesets, spanned by two orthogonal
implementation features. First, the tree may be unbalanced (A1) or it may be
actively rebalanced (A2) to keep depth O(log n). Second, snapshots may be kept
persistent, that is, unaffected by tree updates, either by path copy persistence
(B1) or by node copy persistence (B2):

Without rebalancing With rebalancing
Path copy persistence A1B1 A2B1
Node copy persistence A1B2 A2B2

The implementation closest to that of the C5 library [8, section 13.10] is A2B2,
which is still somewhat simplified: only integer items, no comparer argument, no
update events, and so on. In this paper we formalize and verify only implemen-
tation A1B1; the verification of the more sophisticated implementations A1B2,
A2B1 and A2B2 will be addressed in future work.

182 H. Mehnert et al.

Nevertheless, for completeness and in the hope that others may consider this
verification challenge, we briefly discuss all four implementations and the ex-
pected verification challenges here.

With path copy persistence (cases AxB1), adding an item to a tree will du-
plicate the path from the root to the added node, if this is necessary to avoid
modifying any snapshot of the tree. Thus an update will create O(d) new nodes
where d is the depth of the tree.

With node copy persistence (cases AxB2), each tree node has a spare child
reference. The first update to a node uses this spare reference, does not copy the
node and does not update its parent; the node remains shared between the tree
and its snapshots. Only the second update to a node copies it and updates its
parent. Thus an update does not replicate the entire path to the tree root; the
number of new nodes per update is amortized O(1). See Driscoll [6] or [8].

To implement ordered trees without rebalancing (cases A1By), we use a Node
class containing an item (here an integer) and left and right children; null is
used to indicate the absence of a child. A tree or snapshot contains a stamp
(indicating the “time” of the most recent update) and a reference to the root
Node object; null if the tree is empty.

To implement rebalancing of trees (cases A2By), we use left-leaning red-black
trees (LLRB) which encode 2-3 trees [1,19], instead of general red-black trees [7]
as in the C5 library. This reduces the number of rebalancing cases.

To implement iterators on a tree or snapshot we use a class TreeIterator that
holds a reference to the underlying tree, a stamp (the creation “time” of the
iterator) and a stack of nodes. The stamp is used to detect subsequent updates
to the underlying tree, which will invalidate the iterator. Since snapshots cannot
be updated, their iterators are never invalidated. The iterator’s stack holds its
current state: for each node in the stack, the node’s own item and all items in
the right subtree have yet to be output by the iterator.

Case A1B1 = no rebalancing, path copy persistence In this implementation there
is shared data between a tree and its snapshots, but the shared data is not being
mutated because the entire path from the root to an added node gets replicated.
Hence no node reachable from the root of a snapshot, or from nodes in its
iterators’ stacks, can be affected by an update to the live tree; therefore no
operation on a snapshot can be affected by operations on the live tree. Although
this case is therefore the simplest case, it already contains many challenges in
finding a suitable specification for trees, snapshots and iterators, and in proving
the stack-based iterator implementation correct.

Case A2B1 = rebalancing, path copy persistence In this case there is potential
mutation of shared data, because the rebalancing rotations seem to be able to
affect nodes just off the fresh unshared path from a newly added node to the root.
This could adversely affect an iterator of a snapshot because a reference from
the iterator’s node stack might have its right child updated (by a rotation), thus
wrongly outputting the items of its right subtree twice or not at all. However,
this does not happen because the receiver of a rotation (to be moved down) is

Formalized Verification of Snapshotable Trees 183

always a fresh node (we’re in case B1 = path copy persistence) and moreover we
consider only add operations (not remove), so the child being rotated (moved up)
is also a fresh node and thus not on the stack of any iterator – the rebalancing
was caused by this child being “too deep” in the tree. Hence if we were to
support remove as well, then perhaps the implementation of rotations needs to
be refined.

Case A1B2 = no rebalancing, node copy persistence In this case, there is muta-
tion of shared data not observable by the client. For example, a left-child update
to a tree node that is also part of a snapshot will move the snapshot’s left-child
value to the node’s extra reference field, and destructively update the left child as
required for the live tree. There should be no observable change to the snapshot,
despite the change to the data representing it. The basic reason for correctness
is that any snapshot involving an updated node will use the extra reference and
hence not see the update; this is true for nodes reachable from the root of a
snapshot as well as for nodes reachable from the stack of an iterator. When we
need to update a node whose extra reference is already in use, we leave the old
node alone and create a fresh copy of the node for use in the live tree; again,
existing snapshots and their iterators do not see the update.

Case A2B2 = rebalancing, node copy persistence In this case there is mutation
of shared data (due both to moving child fields to the extra reference in nodes,
and due to rotations), not observable for the client. Since the updates caused by
rotations are handled exactly like other updates, the correctness of rebalancing
with respect to iterators seems to be more straightforward than in case A2B1.

3 Abstract Specification and Client Code Verification

We use higher-order separation logic [18,3] to specify and verify the snapshotable
tree data structure. We build on top of our intuitionistic formalization of HOSL
in Coq [2] with semantics for an untyped Java-like language.

To allow implementations to share data between a tree, its snapshots, and
iterators and still make it possible for clients to reason locally (to focus only
on a single tree / snapshot / iterator), we will use an idea from [10] (see also
the verification of Union-Find in [9]). The idea is to introduce an abstract pred-
icate, here named H , global to each tree data structure consisting of a single
tree, multiple snapshots, and multiple iterators. This abstract predicate H is
parameterized by a finite set of disjoint abstract structures. We have three kinds
of abstract structures: Tree, Snap, and Iter. The use of H enables a client of
our specification to consider each abstract structure to be separate or disjoint
from the rest of the abstract structures and thus the client can reason modu-
larly about client code using only those abstract structures she needs; the rest
can be framed out. Since the abstract predicate H is existentially quantified,
the client has no knowledge of how an implementation defines H (see [3,16] for
more on abstract predicates in higher-order separation logic). The implementor
of the tree data structure has a global view on the tree with its snapshots and

184 H. Mehnert et al.

iterators, and is able to define which parts of the abstract structures are shared
in the concrete heap. Section 4 defines H for the A1B1 case from Section 2.3.

The Tree abstract structure consists of a handle (reference) to the tree and a
model, which is an ordered finite set, containing the elements of the tree. The
Snap structure is similar to Tree. The Iter structure consists of a handle to
the iterator and a model, which is a list containing the remaining elements for
iteration. Because H is tree-global, exactly one Tree structure must be present
(“the tree”), while the number of Snap and Iter structures is not constrained.

3.1 Specification of the ITree Interface

We now present the formal abstract specification of the ITree interface informally
described in Section 2.1. The specification also contains five axioms, which are
useful for a client and obligations to an implementor of the interface. The specifi-
cation is parametrized over an implementation class C and the above-mentioned
predicate H , and each method specification is universally quantified over the
model τ , a finite set of integers and a finite set of abstract structures φ.

interface ITree {
{H({Tree(this, τ)} � φ)} contains(x) {ret = x ∈ τ ∧H({Tree(this, τ)} � φ)}
{H({Snap(this, τ)} � φ)} contains(x) {ret = x ∈ τ ∧H({Snap(this, τ)} � φ)}
{H({Tree(this, τ)} � φ)} add(x) {ret = x �∈ τ ∧H({Tree(this, {x} ∪ τ)} � φ)}
{H({Tree(this, τ)} � φ)} snapshot() {H({Snap(ret, τ)} � {Tree(this, τ)} � φ)}
{H({Snap(this, τ)} � φ)} iterator() {H({Iter(ret, [τ])} � {Snap(this, τ)} � φ) ∧

ret <: Iterator}
(a) H({Tree(t, τ)} � φ) � t : C

(b) H({Snap(s, τ)} � φ) � s : C

(c) τ = τ ′ ∧H({Tree(t, τ)} � φ) � H({Tree(t, τ ′)} � φ)

(d) H({Snap(s, τ)} � φ) � H(φ)

(e) H({Iter(it, α)} � φ) � H(φ)

}
These specifications can be read as follows:

– contains requires either a Snap or Tree structure (written as separate spec-
ifications) for the this handle and some set τ . The structure is unmodified
in the postcondition, and the return value ret is true if the item x is in the
set τ , otherwise false.

– add requires a Tree structure for the this handle and some set τ . The
postcondition states that the given item x is added to the set τ . The return
value indicates whether the tree was modified, which is the case if the item
was not already present in the set τ .

– snapshot requires a Tree structure for the this handle and some set τ . The
postcondition constructs a Snap structure for the returned handle ret and
the set τ . So the Tree and the Snap structure contain the same elements.

– iterator requires a Snap structure for the this handle and some set τ . The
postcondition constructs an Iter structure with the return handle and the
set τ converted to an ordered list, written [τ]. The returned handle conforms
(written <:) to the Iterator specification shown in Section 3.2.

Formalized Verification of Snapshotable Trees 185

The five axioms state that (a) the static type of the tree is the given class C;
(b) the static type of a snapshot is C; (c) the model τ of the tree can be replaced
by an equal model τ ′ 1; and we can forget about snapshots (d) and iterators (e).

In contrast to the description in Section 2.1 we leave iterators over the tree
for future work. We could use the ramification operator [10] to express that any
iterators over the tree become invalid when the tree is modified.

The abstract separation can be observed, e.g., in the specification of add: it
only modifies the model of the Tree structure and does not affect the rest of
the abstract structures (φ is preserved in the postcondition). Hence the client
can reason about calls to add locally, independently of how many snapshots and
iterators there are.

In our Coq formalization we do not have any syntax for interfaces at the
specification logic level [2], but represent interfaces using Coq-level definitions.
Appendix A contains the formal representations (ITree, Iterator, Stack).

3.2 Iterator Specification

Our iterator specification is also parametrized over a class IC and a predicate
H , and each method specification is universally quantified over a list of integers
α and a finite set of abstract structures φ.

interface Iterator<Integer> {
{H({Iter(this, α)} � φ)} hasNext() {ret = (|α| �= 0) ∧ H({Iter(this, α)} � φ) }
{H({Iter(this, x :: α)} � φ)} next() {ret = x ∧ H({Iter(this, α)} � φ)}

}
The specification of the Iterator interface requires an Iter structure with the
this handle and some list α. The return value of the method hasNext captures
whether the list α is non-empty. The Iter structure in the postcondition is not
modified. The method next requires an Iter structure with a non-empty list
(x :: α). The list head is returned and the model of the Iter structure is updated
to the remainder of the list.

3.3 Client Code Verification

To verify the client code from Section 2.2 we assume we are given a class C
such that ITree C H holds for some H and then verify the client code under the
precondition {H({Tree(t, {})})}.

Figure 1 gives a step-by-step proof of the client code from Section 2.2, with
client code lines to the left and their postconditions to the right.

After inserting some items (line 1) to the tree, the model contains these items,
{1, 2, 3}. In line 2, a snapshot s of the tree t is created. The invariant H now
consists of the Tree structure and a Snap structure containing the same elements.
For the client the abstract structures are disjoint, but in an implementation, they
will be realized using sharing. Indeed, for the A1B1 implementation, the concrete

1 This is explicit for technical reasons: in our implementation H is defined inside a
monad [2], and the client should not have to discharge obligations inside the monad.

186 H. Mehnert et al.

1: t.add(2);t.add(1);t.add(3);
{
H({Tree(t, {1, 2, 3})})

}
2: ITree s = t.snapshot();

{
H({Tree(t, {1, 2, 3})} � {Snap(s, {1, 2, 3})})

}
3: Iterator<Integer> it =

s.iterator();

{
H({Tree(t, {1, 2, 3})} � {Snap(s, {1, 2, 3})} �

{Iter(it, [1, 2, 3])})
}

4: boolean lc =

it.hasNext();

{
lc = true ∧ H({Tree(t, {1, 2, 3})} �

{Snap(s, {1, 2, 3})} � {Iter(it, [1, 2, 3])})
}

5: while (lc) { invariant: ∃α, β.α@β = [1, 2, 3] ∧ lc = (|β| �=
0) ∧ H({Tree(t, {1, 2, 3} ∪ {3z|z ∈ α}))} �
{Snap(s, {1, 2, 3})} � {Iter(it, β)})

6: int x = it.next();
{
α@β = [1, 2, 3] ∧ lc = (|β| �= 0) ∧ β =

x :: β′ ∧ H({Tree(t, {1, 2, 3} ∪ {3z|z ∈ α})} �
{Snap(s, {1, 2, 3})} � {Iter(it, β′)})

}
7: t.add(x * 3);

{
α@β = [1, 2, 3] ∧ lc = (|β| �= 0) ∧ β = x ::

β′ ∧ H({Tree(t, {1, 2, 3} ∪ {3z|z ∈ α} ∪ {3x})} �
{Snap(s, {1, 2, 3})} � {Iter(it, β′)})

}
8: lc = it.hasNext();

{
α@β = [1, 2, 3] ∧ lc = (|β′| �= 0) ∧ β = x ::

β′ ∧ H({Tree(t, {1, 2, 3} ∪ {3z|z ∈ α} ∪ {3x})} �
{Snap(s, {1, 2, 3})} � {Iter(it, β′)})

}
9: }

{
H({Tree(t, {1, 2, 3, 6, 9})} � {Snap(s, {1, 2, 3})})

}
Fig. 1. Client code verification

heap will be as shown in Figure 2, where all the nodes are shared between the
tree and the snapshot.

In line 3 an iterator it over the snapshot s is created. To apply the call rule of
the iteratormethod, only the Snap structure is taken into account, the rest (the
Tree structure) is framed out inside ofH (via appropriate instantiation of φ in the
iterator specification). The result is that an Iter structure is constructed, whose
model contains the same values as the model of the snapshot, but converted to
an ordered list. We introduce the loop condition lc in line 4, and again use
abstract framing to call hasNext.

Lines 5–9 contain a while loop with loop condition lc. The loop invariant
splits the iteration list [1, 2, 3] into the list α containing the elements already
iterated over and the list β containing the remainder. The loop variable lc is
false iff β is the empty list. The invariant H contains the Tree structure whose
model is the initial set {1, 2, 3} joined with the set of the elements of α, each
multiplied by 3. H also contains the Iter and the Snap structures.

We omit detailed explanation of the remaining lines of verification.
Note that in the final postcondition, the client sees two disjoint structures

(axiom (e) is used to forget the empty iterator), but in the A1B1 implementation,
the concrete heap will involve sharing, as shown in Figure 3. Only the left subtree
is shared by the tree and the snapshot; the root and right subtree were unshared
by the first call to add in the loop.

In summary, we have shown the following theorem, which says that given
any H and any classes C and IC satisfying the ITree and Iterator interface

Formalized Verification of Snapshotable Trees 187

2

1 3

t.root s.root

Fig. 2. Heap after snapshot construction

2

1 3

6

9

2

3

t.root s.root

Fig. 3. Live heap after loop

specifications, the client code satisfies its specification. The postcondition states
that snapshot s contains 1, 2 and 3, and tree t contains additionally 6 and 9.

Theorem 1. ∀H.∀C.∀IC.IT ree C H ∧ Iterator IC H � {H({Tree(t, {})})}
client code {H({Tree(t, {1, 2, 3, 6, 9})}� {Snap(s, {1, 2, 3}))}

4 Implementation A1B1

In this section we show the partial correctness verification of the A1B1 imple-
mentation with respect to the abstract specification from the previous section.
This involves defining a concrete H and showing that the methods satisfy the
required specifications for this concrete H . The development has been formally
verified in Coq (as has the client program verification above).

The Coq formalization uses a shallow embedding of higher-order separation
logic, developed for verification of OO programs using interfaces. See [2].

Invariant H is radically different depending on whether snapshots of the tree
are present or not. The reason is that method add mutates the existing tree if
there are no snapshots present, see Section 5 for details. Here we focus on the
case where snapshots are present.

The A1B1Tree class stores its data in three fields: the root node, a boolean
field isSnapshot, indicating whether it is a snapshot, and a field hasSnapshot,
indicating whether it has snapshots. The stamp field mentioned in Section 2.3
is only required for iterators over the tree and so not further discussed here.

The Node class is a nested class of the A1B1Tree with three fields, item
containing its value, and a handle to the right (rght) and left (left) subtree.

In the following we use standard separation logic connectives, in particular
the separating conjunction ∗ and the points to predicate �→.

We now define our concrete H and also the realization of the abstract struc-
tures. We first explain the realization of Tree and Snap; the Iter structure is
described in Section 4.1. Recall that φ ranges over finite sets of abstract struc-
tures (Tree, Snap, Iter), with exactly one Tree structure, and recall thatH , given
a φ, returns a separation logic predicate. The definition of H is:

H(φ) � ∃σ.wf(σ) ∧ heap(σ) ∗ σ � φ

188 H. Mehnert et al.

Here σ is a finite map of type ptr → ptr × Z × ptr, with ptr being the type
of Java pointers (handles), corresponding to the Node class. The map σ must
be well-formed (pure predicate wf(σ)), which simply means that all pointers in
the codomain of σ are either null or in the domain of σ.

The heap function maps σ to a separation logic predicate, which describes the
realization of σ as a linked structure in the concrete heap, starting with �:

heap(σ) � fold (λp n Q. match n with (pl, v, pr)⇒
p.left �→ pl ∗ p.item �→ v ∗ p.rght �→ pr ∗ Q) � σ

Finally, we present the definition of σ � φ (we defer the definition of σ �
{Iter(,)} to the following subsection):

σ � φ � ψ � σ � φ ∗ σ � ψ

σ � {Tree(ptr, τ)} � ∃p.Node(σ, p, τ) ∧ ptr.root �→ p ∗
ptr.isSnapshot �→ false ∗ ptr.hasSnapshot �→ true

σ � {Snap(ptr, τ)} � ∃p.Node(σ, p, τ) ∧ ptr.root �→ p ∗
ptr.isSnapshot �→ true ∗ ptr.hasSnapshot �→ false

The spatial structure of all the nodes is covered by heap(σ) so σ � φ just needs
to describe the additional heap taken up by Tree, Snap, and Iter structures.

The pure Node predicate is defined inductively on τ below. It is used to
express that τ is the finite set of items reachable from p in σ.

Node(σ, p, τ) �
(
p = null ∧ τ = {}

)
∨(

p ∈ dom(σ) ∧ ∃pl, v, pr. σ[p] = (pl, v, pr) ∧
∃τl, τr.τ = τl ∪ {v} ∪ τr ∧
(∀x ∈ τl.x < v) ∧ (∀x ∈ τr.x > v) ∧
Node(σ, pl, τl) ∧Node(σ, pr, τr)

)
The sortedness constraint (a strict total order) in the Node predicate enforces
implicitly that σ has the right shape: σ cannot contain cycles and the left and
right subtrees must be disjoint. The set τ is split into three sets, one with strictly
smaller elements (τl), the singleton v and with strictly bigger elements (τr).

4.1 Iterator

The TreeIterator class implements the Iterator interface. It contains a single
field, context, which is a stack of Node objects.

The constructor of the TreeIterator pushes all nodes on the leftmost path of
the tree onto the stack. The method next pops the top node from the stack and
returns the value held in that node. Before returning, it pushes the leftmost path
of the node’s right subtree (if any) onto the stack. The method hasNext returns
true if and only if the stack is empty.

The verification of the iterator depends on the following specification of a
stack class, generic in C. The specification is parametrized over a representation
type T and existentially over a representation predicate SR (of type classname→
(val → T → HeapAsn) → val → T ∗ → HeapAsn). The second argument is the

Formalized Verification of Snapshotable Trees 189

predicate P (of type val→ T → HeapAsn) , which holds for every stack element.
This specification is kept in the style of [17], although we use a different logic.

class Stack<C> {
	 new() SR C P ret nil

SR C P this α empty() ret = (α = nil) ∧ SR C P this α

SR C P this α ∗ P x t ∧ x : C push(x) SR C P this (t :: α)

SR C P this (t :: α) pop() P ret t ∗ SR C P this α

SR C P this (t :: α) peek() P ret t ∗(∀u.P ret u−∗SR C P this (u :: α))

(a) P v t � P ′ v t =⇒ SR C P v α � SR C P ′ v α

}

For the purpose of specifying the iterators over snapshotable trees, we instantiate
the type T with Z∗; the model of a node on the stack is a list of integers.
Intuitively, this list corresponds to the node value and the element list of its right
subtree. The iterator is modelled as a list that is equal to the concatenation of
the elements of the stack. We also require that the topmost element of the stack
is nonempty (if present). This intuition is formalized in the interpretation of the
Iter structure, where SR is a representation predicate of a stack:

σ � {Iter(p, α)} � ∃st. p.context �→ st ∗ ∃β.stack inv(β, α)∧
SR Node (NS σ) st β.

To make this definition complete, we provide the definitions of stack inv , which
connects the representation of the stack with the representation of the iterator,
and the definition of the NS predicate.

stack inv(xss, ys) � ys = concat(xss) ∧
{

� iff xss = nil
xs �= nil iff xss = xs :: xss′

NS σ node α � Node(σ, node, τ) ∧ α = [{x ∈ τ |x ≥ node.item}]

These definitions, along with an assumption that SR is the representation predi-
cate of Stack (i.e., fulfills all the method specifications and axioms of Stack spec)
suffice to show the correctness of Iter-dependent methods. The axiom present in
Stack spec is needed to preserve iterators if some new memory is added to σ: it
allows us to replace (NS σ) with (NS σ′) as a representation predicate of stack
objects under certain side conditions.

5 On the Verification of Implemented Code

We now give an intuitive description of how the A1B1 implementation was ver-
ified, given the concrete H defined above. We verified the complete implemen-
tation in Coq but only discuss the add method here. We used Kopitiam [13] to
transform the Java code into SimpleJava, the fragment represented in Coq.

Method add calls method addRecursive with the root node to insert the
item into the binary tree, respecting the ordering. Method addRecursive, shown
below, must handle several cases:

190 H. Mehnert et al.

– if there are no snapshots present, then
• if the item x is already in the tree, then the heap is not modified.
• if the item x is not in the tree, then a new node is allocated and destruc-
tively inserted into the tree.

– if there are snapshots present, then
• if the item x is already in the tree, then the heap is not modified.
• if the item x is not in the tree, then a new node is allocated and every
node on the path from the root to the added node is replicated, so that
the snapshots are unimpaired.

The implementation of addRecursive walks down the tree until a node with
the same value, or a leaf, is reached. It uses the call stack to remember the path
in the tree. If a node was added, either the entire path from the root to the
added node is duplicated (if snapshots are present) or the handles to the left or
right subtree are updated (happens destructively exactly once, the parent of the
added node updates its left or right handle, previously pointing to null):

Node addRecursive (Node node, int item, RefBool updated) {

Node res = node;

if (node == null) {

updated.value = true;

res = new Node(item);

} else {

if (item < node.item) {

Node newLeft = addRecursive(node.left, item, updated);

if (updated.value && this.hasSnapshot)

res = new Node(newLeft, node.item, node.rght);

else

node.left = newLeft;

} else if (node.item < item) {

Node newRght = addRecursive(node.rght, item, updated);

if (updated.value && this.hasSnapshot)

res = new Node(node.left, node.item, newRght);

else

node.rght = newRght;

} //else item == node.item so no update

}

return res;

}

We now show the pre- and postcondition of addRecursive for the two cases
where snapshots are present. If the item is already present in the tree, the pre-
and postcondition are equal:

{updated.value �→ false ∗ this.hasSnapshot �→ true ∗
heap(σ) ∗ wf(σ) ∧ Node(σ, node, τ) ∧ item ∈ τ}

addRecursive(node, item, updated)

{updated.value �→ false ∗ this.hasSnapshot �→ true ∗
heap(σ) ∗ ret = node}

Formalized Verification of Snapshotable Trees 191

The postcondition in the case that the item is added to the tree extends the
map σ to σ′, for which the heap layout and the well-formedness condition must
hold. The Node predicate uses σ′ and the finite set is extended with item:

{updated.value �→ false ∗ this.hasSnapshot �→ true ∗
heap(σ) ∗ wf(σ) ∧ Node(σ, node, τ) ∧ item �∈ τ}

addRecursive(node, item, updated)

{updated.value �→ true ∗ this.hasSnapshot �→ true ∗
∃σ′.σ ⊆ σ′ ∧ heap(σ′) ∗ wf(σ′) ∧ Node(σ′, ret, {item} ∪ τ)}

The call to addRecursive inside of add is verified for each specification of
addRecursive independently.

To summarize Sections 4 and 5, we state the following theorem, which says
there exists an H that given a stack fulfilling the stack specification, the TreeIt-
erator class meets the Iterator specification and the A1B1 class meets the ITree
specification, and the constructor for the A1B1Tree establishes the H predicate.

Theorem 2. ∃H.Stack spec � Iterator T reeIterator H ∧ IT ree A1B1 H ∧
{�} A1B1Tree() {H({Tree(ret, {})})}

The client code, independently verified, can be safely linked with the A1B1
implementation!

6 Related Work

Malecha and Morrisett [12] presented a formalization of a Ynot implementation
of B-trees with an iterator method. In their case, the iterator and the tree also
share data in the concrete heap. However, they can only reason about “single-
threaded” uses of trees and iterators: their specification of the iterator method
transforms the abstract tree predicate into an abstract iterator predicate, which
prohibits calling tree methods until the client turns the iterator back into a tree.
In our setup, we have one tree, but multiple snapshots and iterators, and the tree
can be updated after an iterator has been created. To permit sharing between
a tree and an iterator, Malecha and Morrisett use fractional permissions, where
we use the H predicate. They work in an axiomatic extension of Coq, whereas
our proofs are done in a shallowly embedded program logic, since our programs
are written in an existing programming language (Java).

Dinsdale-Young et al. [5] present another approach to reasoning about shared
data structures, which gives the client a fiction of disjointness. Roughly speaking,
they define a new abstract program logic for each module (they can be combined)
for abstract client reasoning. Their approach allows one to give a client specifi-
cation similar to ours, but without using the H and with the abstract structures
(Tree / Snap / Iter) being predicates in the (abstract) program logic. This has
the advantage that one can use ordinary framing for local reasoning.

Dinsdale-Young et al. [4] also presented an approach to reasoning about shar-
ing. Sharing can happen in certain regions, and the module implementor has to

192 H. Mehnert et al.

define a protocol that describes how data in the shared region can evolve. What
corresponds to our abstract structures can now be seen as separation logic pred-
icates and thus one can use ordinary framing for local reasoning.

In both approaches [5] and [4] the module implementor has more proof obli-
gations than in our approach: In [5] he must show that the abstract operations
satisfy some conditions related to the realization of the abstract structures in
the concrete heap. In [4] she must show related properties phrased in terms of
certain stability conditions.

Compared to the work of Dinsdale-Young et al., our approach has the advan-
tage that it is arguably simpler, with no need to introduce new separation (or
context) algebras for the modules. That is why we could build our formalization
on an implementation of standard separation logic in Coq.

Rustan Leino made a solution for a custom implementation of this data struc-
ture (A1B1) using Dafny [11]. Dafny verifies that if a snapshot is present, the
nodes are shared and not mutated by the tree operations. His solution does not
(yet) verify the content of the tree, snapshots or iterators. Our verification spec-
ifies the concrete heap layout. Dafny does not support abstract specification due
to the lack of inheritance. The trusted code base is different: Dafny relies on
Boogie, Z3 and the CLR, whereas our proof trusts Coq.

7 Conclusion and Future Work

We have presented snapshotable trees as a challenge for formalized modular
reasoning about mutable data structures that use sharing extensively, and given
an abstract specification of the ITree interface. Moreover, we have presented a
formalization of the A1B1 implementation of snapshotable trees.

The overall size of the formalization effort is roughly 5000 lines of Coq code
and it takes 2 hours to Qed the proofs. This is quite big compared to other
formalization efforts of imperative programs in Coq, such as Hoare Type Theory
/ Ynot [14,15]. The main reason is that we are working in a shallowly embedded
program logic for a Java-like language, whereas Hoare Type Theory / Ynot is an
axiomatic extension of Coq. Thus our formalization includes both the operational
semantics of the Java subset and the soundness theorems for the program logic;
also, Java program variables cannot simply be represented by Coq variables.

We also plan to verify the even subtler implementations A1B2, A2B1 and
A2B2, which are expected to provide further insight into the challenges of deal-
ing with shared mutable data and unobservable state changes. Through those
more complex applications of separation logic we hope to learn more about de-
sirable tool support, including how to automate the “obvious” reasoning that
currently requires much thought and excessive amounts of proof code. Although
we have not formally verified these implementations yet, we are fairly certain
they would match the interface specification presented in Section 3. In all four
implementations the tree is conceptually separate from its snapshots, which is
the property required by the interface, and the invariant H allows us to describe
the heap layout very precisely, using techniques shown in Section 4.

Formalized Verification of Snapshotable Trees 193

Finally, we would like to explore how to combine the advantages of our ap-
proach and those of Dinsdale-Young’s approach discussed above.

References

1. Andersson, A.: Balanced Search Trees Made Simple. In: Dehne, F., et al. (eds.)
WADS 1993. LNCS, vol. 709, pp. 60–71. Springer, Heidelberg (1993)

2. Bengtson, J., Jensen, J.B., Sieczkowski, F., Birkedal, L.: Verifying Object-Oriented
Programs with Higher-Order Separation Logic in Coq. In: van Eekelen, M., Geu-
vers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 22–38.
Springer, Heidelberg (2011)

3. Biering, B., Birkedal, L., Torp-Smith, N.: BI-hyperdoctrines, higher-order separa-
tion logic, and abstraction. ACM Trans. Program. Lang. Syst. 29(5) (2007)

4. Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M.J., Vafeiadis, V.: Con-
current Abstract Predicates. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183,
pp. 504–528. Springer, Heidelberg (2010)

5. Dinsdale-Young, T., Gardner, P., Wheelhouse, M.: Abstraction and Refinement for
Local Reasoning. In: Leavens, G.T., O’Hearn, P., Rajamani, S.K. (eds.) VSTTE
2010. LNCS, vol. 6217, pp. 199–215. Springer, Heidelberg (2010)

6. Driscoll, J., Sarnak, N., Sleator, D., Tarjan, R.: Making data structures persistent.
Journal of Computer and Systems Sciences 38(1), 86–124 (1989)

7. Guibas, L., Sedgewick, R.: A dichromatic framework for balanced trees. In: 19th
FCS, pp. 8–21. Ann Arbor, Michigan (1978)

8. Kokholm, N., Sestoft, P.: The C5 Generic Collection Library for C# and CLI.
Technical Report ITU-TR-2006-76, IT University of Copenhagen (January 2006)

9. Krishnaswami, N.: Verifying Higher-Order Imperative Programs with Higher-Order
Separation Logic. PhD thesis. Carnegie Mellon University (forthcoming, 2011)

10. Krishnaswami, N.R., Birkedal, L., Aldrich, J.: Verifying event-driven programs
using ramified frame properties. In: TLDI, pp. 63–76. ACM (2010)

11. Leino, K.R.M.: Dafny: An Automatic Program Verifier for Functional Correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 348–370.
Springer, Heidelberg (2010)

12. Malecha, G., Morrisett, G.: Mechanized verification with sharing. In: 7th Interna-
tional Colloquium on Theoretical Aspects of Computing (September 2010)

13. Mehnert, H.: Kopitiam: Modular Incremental Interactive Full Functional Static
Verification of Java Code. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi,
R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 518–524. Springer, Heidelberg (2011)

14. Nanevski, A., Morrisett, G., Shinnar, A., Govereau, P., Birkedal, L.: Ynot: depen-
dent types for imperative programs. In: Hook, J., Thiemann, P. (eds.) Proc. of
13th ACM ICFP 2008, pp. 229–240. ACM (2008)

15. Nanevski, A., Vafeiadis, V., Berdine, J.: Structuring the verification of
heap-manipulating programs. In: Proceedings of POPL (2010)

16. Parkinson, M.J., Bierman, G.M.: Separation logic and abstraction. In: Proceedings
of POPL, pp. 247–258 (2005)

17. Petersen, R.L., Birkedal, L., Nanevski, A., Morrisett, G.: A Realizability Model
for Impredicative Hoare Type Theory. In: Gairing, M. (ed.) ESOP 2008. LNCS,
vol. 4960, pp. 337–352. Springer, Heidelberg (2008)

18. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
IEEE Proc. of 17th Symp. on Logic in CS (November 2002)

194 H. Mehnert et al.

19. Sedgewick, R.: Left-leaning red-black trees,
http://www.cs.princeton.edu/~rs/talks/LLRB/LLRB.pdf

20. Svendsen, K., Birkedal, L., Parkinson, M.: Verifying Generics and Delegates. In:
D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 175–199. Springer, Heidel-
berg (2010)

A Appendix

We define here the ITree and the Iterator interface specification as Coq defini-
tions, as well as the Stack class. We use the name SPred for the finite set of
abstract structures containing exactly one Tree structure and any number of
Snap and Iter structures.

The notation f̂ lifts the function f such that it operates on expressions rather
than values.

A detailed explanation of the notation and of lifting can be found in [2].

ITree � λC : classname . λH : Pfin(SPred) → HeapAsn .

(∀τ : Pfin(Z). ∀φ : Pfin(SPred). C::contains(this, x) �→

{Ĥ({T̂ree(this, τ)} � φ)} {r. Ĥ({T̂ree(this, τ)} � φ) ∧ r = (x ∈ τ)})
∧ (∀τ : Pfin(Z). ∀φ : Pfin(SPred). C::contains(this, x) �→

{Ĥ({Ŝnap(this, τ)} � φ)} {r. Ĥ({Ŝnap(this, τ)} � φ) ∧ r = (x ∈ τ)})
∧ (∀τ : Pfin(Z). ∀φ : Pfin(SPred). C::add(this, x) �→

{Ĥ({T̂ree(this, τ)} � φ)} {r. Ĥ({T̂ree(this, {x} ∪ τ)} � φ) ∧ r = (x �∈ τ)})
∧ (∀τ : Pfin(Z). ∀φ : Pfin(SPred). C::snapshot(this) �→

{Ĥ({T̂ree(this, τ)} � φ)} {r. Ĥ({T̂ree(this, τ), Ŝnap(r, τ)} � φ)})
∧ (∀τ : Pfin(Z). ∀φ : Pfin(SPred). C::iterator(this) �→

{Ĥ({Ŝnap(this, τ)} � φ)} {r. ∃IC : classname. Iterator IC H ∧ r : IC∧

Ĥ({Ŝnap(this, τ), Îter(r, [τ])} � φ)})
∧ (∀v : val . ∀τ : Pfin(Z). ∀φ : Pfin(SPred).

(H({Tree(v, τ)} � φ) =⇒ v : C) ∧ (H({Snap(v, τ)} � φ) =⇒ v : C))

∧ (∀v : val . ∀τ : Pfin(Z). ∀φ : Pfin(SPred).

(H({Snap(v, τ)} � φ) � H(φ)))

∧ (∀v : val . ∀α : Z∗. ∀φ : Pfin(SPred).

(H({Iter(v,α)} � φ) � H(φ)))

∧ (∀v : val . ∀τ, τ ′ : Pfin(Z). ∀φ : Pfin(SPred).

τ = τ ′ =⇒ (H({Tree(v, τ)} � φ) � H({Tree(v, τ ′)} � φ)))

 http://www.cs.princeton.edu/~rs/talks/LLRB/LLRB.pdf

Formalized Verification of Snapshotable Trees 195

Iterator � λC : classname . λH : Pfin(SPred) → HeapAsn .

(∀α : Z∗. ∀φ : Pfin(SPred). C::hasNext(this) �→

{Ĥ({Îter(this, α)} � φ)} {r. Ĥ({Îter(this, α)} � φ) ∧ r = (α �= nil)})
∧ (∀x : Z. ∀α : Z∗. ∀φ : Pfin(SPred). C::next(this) �→

{Ĥ({Îter(this, x::α)} � φ)} {r. Ĥ({Îter(this, α)} � φ) ∧ r = x})

Stack spec � ∀T : Type.

∃SR : classname → (val → T → HeapAsn) → val → T ∗ → HeapAsn .

(∀C : classname . ∀P : val → T → HeapAsn .

Stack::new() �→ {�} {r. ŜR C P r nil}
∧ (∀α : T ∗. Stack::empty(this) �→

{ŜR C P this α} {r. ŜR C P this α ∧ r = (α = nil)})
∧ (∀α : T ∗. ∀t : T . Stack::push(this, x) �→

{ŜR C P this α ∗ P̂ x t ∧ x : C} {ŜR C P this (t :: α)})
∧ (∀α : T ∗. ∀t : T . Stack::pop(this, x) �→

{ŜR C P this (t :: α)} {r. P̂ r t ∗ ŜR C P this α})
∧ (∀α : T ∗. ∀t : T . Stack::peek(this, x) �→

{ŜR C P this (t :: α)} {r. P̂ r t∗

(∀u : T . P̂ r u −∗ ŜR C P this (u :: α))}))
∧ (∀C : classname . ∀P, P ′ : val → T → HeapAsn .

(∀v : val . ∀t : T . (P v t � P ′ v t)) =⇒
∀v : val . ∀α : T ∗. (SR C P v α � SR C P ′ v α))

Comparing Verification Condition Generation

with Symbolic Execution: An Experience Report

Ioannis T. Kassios, Peter Müller, and Malte Schwerhoff

ETH Zurich, Switzerland
{ioannis.kassios,peter.mueller,malte.schwerhoff}@inf.ethz.ch

Abstract. There are two dominant approaches for the construction of
automatic program verifiers, Verification Condition Generation (VCG)
and Symbolic Execution (SE). Both techniques have been used to develop
powerful program verifiers. However, to the best of our knowledge, no
systematic experiment has been conducted to compare them.

This paper reports on such an experiment. We have used the specifica-
tion and programming language Chalice and compared the performance
of its standard VCG verifier with a newer SE engine called Syxc, using
the Chalice test suite as a benchmark. We have focused on comparing
the efficiency of the two approaches, choosing suitable metrics for that
purpose. Our metrics also suggest conclusions about the predictability
of the performance. Our results show that verification via SE is roughly
twice as fast as via VCG. It requires only a small fraction of the quantifier
instantiations that are performed in the VCG-based verification.

1 Introduction

During the last years, automated program verification has progressed signifi-
cantly. This progress is due to advances in each of the three layers that comprise
an automatic verification tool: the specification methodology, the program ver-
ifier, and the theorem prover. The program verifier layer extracts proof obliga-
tions from the specified program and passes them to the theorem prover. There
are two prevalent approaches to design program verifiers:

– Verification Condition Generation (VCG) uses programming calculi such as
weakest preconditions [9] to compute a formula whose validity entails the
correctness of the program. VCG is used in many state-of-the-art verifiers,
in particular, those built on top of the intermediate languages Boogie [18]
and Why [10]. Examples of VCG-based verifiers are Chalice [21], Dafny [17],
ESC/Java [7], Frama-C [1], Spec# [3], and VCC [8].

– Symbolic Execution (SE) [14] executes a program using symbolic instead
of concrete values and accumulates constraints on those values, which are
used to generate proof obligations. SE has gained momentum especially in
the separation logic world (for instance, jStar [24], Smallfoot [5], and Veri-
Fast [12]), but has also been used in combination with other specification
methodologies, for instance in KeY [4] and Syxc [28].

R. Joshi, P. Müller, and A. Podelski (Eds.): VSTTE 2012, LNCS 7152, pp. 196–208, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Comparing Verification Condition Generation with SE 197

To the best of our knowledge, there has been no systematic comparison of the
two approaches. Such a comparison would provide insights into the workings of
current verification tools and useful guidance for the design of future ones. This
guidance is especially important since the choice of specification methodology
no longer dictates a verification approach. For instance, dynamic frames are
supported in the VCG-based Dafny and the SE-based KeY [27]. Permission-
based methodologies such as separation logic are supported in the VCG-based
Chalice and the SE-based Syxc; VeriCool [29] supports both VCG and SE in a
single tool.

This paper reports on an experiment we conducted to compare verification
condition generation and symbolic execution. We used the Chalice language [21]
and compared its standard VCG-based verifier [20] to a new SE engine [28]. Both
verifiers use Z3 [22] as theorem prover. Chalice is an interesting target for such
a comparison for several reasons: (1) It is small enough to make it feasible to
develop two verifiers for the same language. (2) It provides a variety of features
that make verification challenging, in particular, dynamic memory allocation
and multi-threading. (3) Chalice’s specification methodology is closely related
to separation logic [25] such that our observations can be expected to apply also
to verifiers for that methodology.

We ran both verifiers on the Chalice test suite. Our experiment focuses mainly
on the efficiency of the verification by measuring run times. However, we also
measured the number of quantifier instantiations performed by Z3, which gives
an impression of how predictable the performance is, as well as the number of
conflicts encountered during the verification, which characterizes the size of the
search space. The results of these measurements are reported in Sec. 3. They
show that the SE-engine Syxc is about twice as fast as the VCG-based Chalice
verifier on most benchmarks. It requires much less quantifier instantiations and
generally leads to fewer conflicts. Further comparisons, for instance, about the
ease of understanding verification failures, are left as future work.

The initial comparisons of the performance of the two verifiers identified sev-
eral outliers. Their investigation lead to interesting observations about the design
of Syxc, which we discuss in Sec. 4.

2 Background

In this section, we provide the background on verification condition generation
and symbolic execution that is used in the rest of the paper. We assume for both
approaches that loops are annotated with loop invariants.

2.1 Verification Condition Generation

Verification condition generators use a programming calculus such as a weakest
precondition calculus to compute a verification condition (VC), a pure logical
formula whose validity entails the correctness of the program w.r.t. its specifica-
tion. The VC is then fed to the theorem prover. Many modern program verifiers

198 I.T. Kassios, P. Müller, and M. Schwerhoff

generate verification conditions by first translating the program and its specifi-
cation into an intermediate language such as Boogie [18] or Why [10] and then
computing the VC on the intermediate representation.

Since a verification condition is a pure logic formula, it must include all knowl-
edge that is needed to prove the correctness of the program. This knowledge
includes many properties of the programming language semantics, for instance,
about values and types. For imperative languages, it also contains a heap model,
typically expressed as a global map from locations to values. All aspects of the
verification, including reasoning about heap properties such as aliasing, are then
left to the theorem prover.

A characteristic of the VCG approach is that it computes only one VC per
module and, thus, invokes the theorem prover only once per module. On the
upside, dealing with one large VC allows the theorem prover to apply optimiza-
tions. On the downside, the VC tends to be large, even for small programs,
which increases the complexity for the theorem prover and complicates quanti-
fier instantiation because the prover will in general find more matching patterns.
Another drawback of large VCs is that they are undecipherable to the human,
so VCG-based debugging needs extra tool assistance [23].

2.2 Symbolic Execution

Symbolic execution [14] verifies a program by simulating an execution with vari-
ables that do not take concrete values, but whole expressions (known as symbolic
values). Knowledge about the symbolic values is accumulated in a logical for-
mula called the path condition. When a branch in the control flow is encountered,
the execution takes both branches and conjoins the appropriate formula to the
path condition of each branch. The prover is called each time an assertion needs
to be proved. The prover is then given the path condition as an assumption and
a relatively simple proof obligation.

A known limitation of this approach is its exponential execution time in the
number of branches. Since SE verifies each path through a program indepen-
dently, this may cause inefficiencies when there are redundancies between the
proof obligations for different paths. With VCG, one would hope that theorem
provers detect and exploit such redundancies in the single large verification con-
dition, avoiding or moderating the exponential blowup of SE.

Berdine et al. [5] have noticed that the heap topology described by a separation
logic specification can be treated independently of the rest of the information
that the formula contains. This observation makes it possible for an SE-verifier
to deal with heap properties inside the verifier, without sending them to the
prover. This approach is implemented in Smallfoot and has been adopted by
VeriCool, VeriFast, as well as the verifier Syxc that we used for our experiment.
Smallfoot-style symbolic execution produces proof obligations that are simpler
than VCs, because more reasoning is done within the program verifier and less
in the theorem prover.

A potential drawback of this division of labor is that the prover has only
partial access to the information that is available to the verifier, for instance,

Comparing Verification Condition Generation with SE 199

because heap properties are not encoded in the proof obligation sent to the
prover. This may mean that the prover can prove less than in the VCG approach.

Understanding the implications of Smallfoot-style SE in terms of efficiency,
predictability, and completeness was one of the motivations for our experiment.
While building Syxc, we encountered several instances of the incompleteness
problem, and a striking instance of the exponential branching problem, which
we report on in Sec. 4.

3 Experiment and Results

In this section, we describe the set-up of our experiment and discuss our mea-
surements. The tools and the benchmarks that were used in the experiments can
be found on-line under http://www.pm.inf.ethz.ch/people/schwerhoffm/

vstte_sevcg_verifiers.zip

Benchmarks. For the experiment we have utilized 29 test cases from the cur-
rent Chalice test suite. These test cases exercise the main Chalice features such
as fractional permissions, objects, threads, locks, and message passing. The de-
velopment of the Chalice test suite was unrelated to the present experiment. We
separated the test cases into correct and incorrect programs. Both tools verify
all the correct programs and reject all incorrect programs.

The Chalice test suite includes additional examples that we could not bench-
mark, because Syxc does not yet support all features the Chalice language offers.
For five examples we also had to (1) manually desugar certain expressions be-
cause they are not supported by Syxc, and to (2) remove a few methods that
used unsupported features.

Verification in Chalice is modular, that is, each method is verified without
considering its callers or the implementations of methods it calls. Therefore, the
total size of the benchmark programs is less important than the size of individual
methods. The largest two programs are two implementations of AVL trees, one
iterative and one recursive. The recursive version is by far the largest benchmark
in terms of lines of code and number of methods, whereas the iterative version
includes the longest method.

Verification Tools. The VCG-based Chalice verifier used in our experiments
is built from revision 08870c66a385. This is a slightly outdated version that does
not use the new Chalice permission model [11], which is not yet implemented in
Syxc. It uses the Boogie build from revision ba07abf9500e and Z3 3.1 x64. Boogie
has been limited to a single error per Boogie procedure, since this comes closest
to the behavior of Syxc, which is limited to one error per Chalice method. Both
tool chains use the SMTLib2 front-end of Z3 and log their interactions with Z3.
In this configuration Z3 is used via std-io, not via an API.

The Syxc tool chain comprised the same Chalice build in order to parse the
input, and the same Z3 installation. It uses Z3 in a configuration that is nearly
identical to that of Boogie, with two minor differences: (1) Z3 responds to every

http://www.pm.inf.ethz.ch/people/schwerhoffm/vstte_sevcg_verifiers.zip
http://www.pm.inf.ethz.ch/people/schwerhoffm/vstte_sevcg_verifiers.zip

200 I.T. Kassios, P. Müller, and M. Schwerhoff

command it receives, and not only to satisfiability checks, and (2) declarations
are global instead of scope-local to optimize the verification of multiple paths.

Both the standard VCG-based Chalice verifier and the SE engine Syxc are
written in Scala 2.8.

Two possibly relevant differences between the Z3 encoding generated by Boo-
gie and by Syxc are (1) Syxc currently uses a “weak” Z3 type system, in the sense
that there are not types (sorts) for snapshots, references and lists, all of which
are encoded as integer-typed symbols. (2) Syxc uses the same sequence axioms
as Boogie, except that they only range over integers, whereas Boogie’s sequence
axioms are polymorphic. Sequences are used by six out of the 22 examples in
our test suite.

The Metrics. In the experiment, we measured for each benchmark program:

– Verification time (wall time) in seconds
– Number of quantifier instantiations that Z3 performed during the verification
– Number of conflicts encountered by Z3 during the verification time

Verification time is the total run time, including parsing and type checking,
symbolic execution or verification condition generation, and time spent in the
prover. Since Chalice and Syxc use the same parser and type checker, differences
in the measurements can be attributed to the actual verification.

The number of quantifier instantiations is interesting, because it serves as an
indication of the predictability of the verifier. Quantifier instantiation is guided
by heuristics, which are often overly sensitive to small changes in the program
or specification. The fewer quantifier instantiations a technique needs, the less
it depends on heuristics.

A conflict is a failed attempt by the prover to assign a value to a variable.
More instantiation attempts indicate that the prover had to explore a larger
search space before finding a satisfying assignment.

Experiment. The experiments have been run on an Intel Core2 Quad CPU
Q9550 2.83GHz, 4GB RAM, with Windows 7 Enterprise x64. For each bench-
mark program, the statistics have been collected by verifying the program with
the VCG-based Chalice verifier and with Syxc, and then running Z3 on the in-
teraction log file in order to get statistics from Z3. This has been done ten times
for each file and each verifier. The numbers of these ten runs have been averaged.
The run times of both verifiers have been measured with the same tool.

Results. The results of the experiment are summarized in Fig. 1. For each
program, we show: lines of code, number of methods, the results of SE, the
results of VCG, and finally, for each metric, the percentage of the result of SE
over the result of VCG. Times are measured in seconds. Incorrect programs are
in folder “fail”. Correct programs are in folder “hold”.

The standard deviation of the averages (not shown in the table) is negligible
in all measurements. For run time, the worst deviation is 3% of the mean time,
observed for the fail\cell example in the VCG tool. For the other metrics, VCG

Comparing Verification Condition Generation with SE 201

N
am

e
LO

C
M
ethods

Tim
e

Q
I

Conflicts
Tim

e
Q
I

Conflicts
Tim

e
Q
I

Conflicts
fail\cell

30
3

1.12
13

1
2.39

410
21

46.86
3.17

4.76
fail\LoopLockChange

44
3

1.12
134

9
2.47

1519
90

45.34
8.82

10.00
fail\ProdConsChannel

60
6

1.24
47

10
2.51

1009
72

49.40
4.66

13.89
fail\prog1

53
7

1.12
28

6
2.41

1045
97

46.47
2.68

6.19
fail\prog2

26
4

1.04
7

3
2.25

124
12

46.22
5.65

25.00
fail\prog3

20
3

0.98
8

1
2.25

128
7

43.56
6.25

14.29
fail\prog4

36
3

1.09
25

4
2.35

375
47

46.38
6.67

8.51
hold\AVLTree.iterative

212
3

2.24
231

177
9.45

146238
1288

23.70
0.16

13.72
hold\AVLTree.nokeys

572
19

34.21
2357

4304
154.03

2541875
19593

22.21
0.09

21.97
hold\cell

131
11

1.78
233

40
3.23

9599
526

55.11
2.43

7.60
hold\CopyLessM

essagePassing
54

3
1.46

218
35

2.72
4769

210
53.68

4.57
16.67

hold\CopyLessM
essagePassing-w

ith-ack
62

3
1.71

751
75

2.76
4014

181
61.96

18.71
41.44

hold\CopyLessM
essagePassing-w

ith-ack2
66

3
1.66

792
78

2.92
10542

325
56.85

7.51
24.00

hold\dining-philosophers
74

3
1.62

1181
128

3.09
17144

416
52.43

6.89
30.82

hold\iterator
123

6
3.65

436
210

3.27
7577

316
111.62

5.75
66.39

hold\iterator2
111

6
1.69

174
41

3.17
12867

304
53.31

1.35
13.49

hold\LoopLockChange
69

5
1.26

220
42

2.60
2624

207
48.46

8.38
20.29

hold\O
w
ickiG

ries
31

2
1.21

121
41

2.61
5696

206
46.36

2.12
19.90

hold\PetersonsAlgorithm
70

3
2.12

1196
278

7.36
160574

1500
28.80

0.74
18.53

hold\ProdConsChannel
78

6
1.43

282
117

2.78
4640

316
51.44

6.08
37.03

hold\producer-consum
er

171
11

1.91
466

147
3.84

17667
598

49.74
2.64

24.58
hold\quantifiers

28
1

1.02
16

4
2.23

196
12

45.74
8.16

33.33
hold\RockBand

109
13

1.30
79

14
2.92

9129
341

44.52
0.87

4.11
hold\Sieve

56
4

1.42
308

93
2.74

7596
246

51.82
4.05

37.80
hold\sw

ap
19

2
0.98

10
2

2.20
261

20
44.55

3.83
10.00

hold\prog1
33

4
1.07

40
27

2.32
1101

106
46.12

3.63
25.47

hold\prog2
52

7
1.11

22
17

2.31
258

28
48.05

8.53
60.71

hold\prog3
163

16
1.58

627
144

3.53
21632

640
44.76

2.90
22.50

hold\prog4
19

1
1.07

76
22

2.32
877

61
46.12

8.67
36.07

%
File

Syxc
Chalice

Fig. 1. Results of the Experiment

202 I.T. Kassios, P. Müller, and M. Schwerhoff

has no deviation (deterministic behavior), while SE has very minor deviations
only in the large examples (these are attributed to the non-determinism of some
standard Scala collection libraries). The insignificant deviation indicates that
the results are stable and repeatable.

A consistent observation is that the execution time of SE is in the range of
40% to 50% of that of VCG. Thus, SE outperforms VCG, by what seems to be
a constant factor.

An interesting observation is that the performance benefit of SE in the two
largest programs (the AVL tree implementations) is bigger: there, the execution
time of SE drops to around 20% of the time of VCG. This is promising, but
far from conclusive for the scalability of SE. To draw reliable conclusions about
scalability, we would need more and larger benchmarks. However, we chose not
to develop extra benchmarks just for this experiment.

The number of quantifier instantiations in SE is consistently under 10% of that
in VCG. Although it was expected that less quantifier instantiations would occur
in SE because heap properties are handled outside the prover, such a difference
was beyond our expectations. This is an indication that the performance of SE
might be more predictable than the performance of VCG.

The percentage of conflicts had a greater variation than the percentage in
the other metrics. Still conflicts in SE are consistently much fewer than in VCG,
indicating that SE verification is “more focused” (explores a smaller proof space)
than VCG.

We did not find significant differences in the results between correct and in-
correct benchmark programs, although we intuitively believed that SE would
deliver verification errors earlier. That said, given the small number of failing
test cases that we have, this observation should be taken with a grain of salt.

Among the test cases, there is one outlier, the “iterator” program, in which
VCG marginally outperforms SE. We are currently looking into this outstanding
behavior, with the hope of discovering interesting design issues, as happened with
outliers in previous experiments (see for example Sec. 4.2).

4 Additional Observations

In Sec. 2.2, we mentioned two challenges for symbolic execution: (1) the potential
incompleteness caused by separating heap properties from path conditions and
reasoning about the former in the verifier and about the latter in the prover (in
Smallfoot-style SE), and (2) the exponential branching problem. The comparison
to the VCG-based Chalice verifier exposed problems related to both challenges
in an earlier version of Syxc: Syxc was not able to prove some examples that
Chalice proved soundly, and for one example, the relative performance of Syxc
was significantly worse than for the other examples. In this section, we discuss
the problems and describe the solution that is implemented in the current version
of Syxc.

Comparing Verification Condition Generation with SE 203

4.1 Heap Compression

Smallfoot-style SE is more susceptible to incompleteness than VCG, since the SE
verifier does not give all the available heap-related information to the theorem
prover. Dealing with such incompletenesses is not straightforward and involves
several design trade-offs. In this subsection, we show one such incompleteness
and its solution.

In Smallfoot-style SE, information about a heap location is expressed by a
heap chunk t.f �→ t′, where t, t′ are symbolic values and f is a field name. The
heap chunk t.f �→ t′ means that access to the field f of the object t is granted
and that t′ is the value of that field. Syxc adds fractional permissions, so a
Syxc heap chunk has the following form: t.f �→ t′#p. The extra information p
is the percentage of permission granted. Heap chunks are stored in the symbolic
heap, which is used by the verifier to decide access permissions, ideally without
consulting the prover. The relationship between symbolic values is encoded in
the path condition, which is available to the prover when a proof obligation is
checked.

Suppose that a program acquires the heap chunks t1.f �→ t2#30% and t3.f �→
t4#30%. Suppose also that the path condition implies t1 = t3. This situation
illustrates two sources of incompleteness caused by the division of labor between
the verifier and the prover. First, the verifier fails to show an assertion that we
have 60% permission to t1.f , because without consulting the prover, it cannot de-
rive the needed information t1 = t3 from the path condition. Second, the prover
fails to show an assertion that t2 = t4, because this equality is a consequence of
the contents of the symbolic heap, which is not available to the prover.

We fix this problem by using the path condition and the theorem prover to
compress the symbolic heap, that is, to reflect aliasing information as follows:
For each pair of heap chunks t1.f �→ t2#p1 and t3.f �→ t4#p2:

– Ask the prover if t1 = t3 follows from the path condition.
– If yes, then:

• Replace the two heap chunks by one: t1.f �→ t2#p3
• Add to the path condition the following conjuncts: t1 = t3, t2 = t4,
p3 = p1 + p2

Notice that the compression process introduces more equalities into the path
condition. The stronger path condition may justify more compression. Therefore,
we compress the symbolic heap iteratively, an operation that costs O(n3) queries
to the prover (where n is the number of heap chunks).

A related problem appears when we have the following two heap chunks:
t1.f �→ t2#60% and t3.f �→ t4#60%. Since the accumulative permission to a
field cannot exceed 100%, we can conclude from this symbolic heap that t1 �= t3.
To allow the prover to exploit this knowledge, we add it to the path condition
during the heap compression.

204 I.T. Kassios, P. Müller, and M. Schwerhoff

The need for heap compression is due to the fact that Smallfoot-style SE does
not include heap (and permission) properties in the proof obligations sent to the
prover, while they are included in the verification condition produced by a VCG-
based verifier. Our experiments show that SE outperforms VCG even though we
have to perform the explicit heap compression. Nevertheless, we believe that it
has a lot of potential for optimization, for instance, it could be performed on
demand only when a proof fails.

Our experience with VCG and SE suggests that the higher efficiency of SE
does not necessarily come at the price of less precision. However, tool developers
have to be careful to enable the necessary information flow between the symbolic
heap and the path condition.

4.2 Branching

Symbolic execution verifies each path through a module separately. In addition
to the branches introduced by control flow, Syxc also introduces branches when
it needs to represent properties expressed as implications. For example, the Chal-
ice specification b⇒ acc(e.f) means that if b is true then the current thread has
write access to field e.f , and no access permission otherwise. Since such a condi-
tional permission cannot be represented with the heap chunks described above,
Syxc branches. One branch adds b to the path condition and an appropriate
heap chunk for e.f to the symbolic heap, whereas the other branch adds ¬p to
the path condition and leaves the symbolic heap unchanged.

Experiments with an earlier version of Syxc identified “Peterson’s Algorithm”
from the Chalice test suite as a significant outlier: while SE performed better
than VCG in the other examples, it performed significantly worse here. Our
analysis revealed that the bad performance was caused by excessive branching
on implications. However, all the implications in this example were pure, that
is, did not contain any access permission predicates. Therefore, the whole im-
plication could be added to the path condition, and no branching is necessary.
Implementing this change made SE outperform VCG again.

Our experience suggests that the theorem prover has better ways to handle
implications than just case splits; the larger proof obligation with the implica-
tions allows the prover to avoid redundant proofs. This seems to confirm the
intuition that VCG outperforms SE in case of heavy branching.

Note that our solution is possible only for pure implications, because a pure
implication does not influence the symbolic heap. To alleviate the problem of
branching on impure implications, we consider introducing “conditional” heap
chunks. Initial experiments in this direction show some promise.

5 Related Work

As mentioned earlier, there is a multitude of tools that support SE in the style of
Smallfoot [5]. These include jStar [24], VeriCool [29], VeriFast [12], and Syxc [28].
Of those, Smallfoot, jStar, and VeriFast use a fragment of separation logic [26]

Comparing Verification Condition Generation with SE 205

as their specification language, while the target programming language differs.
VeriCool and Syxc use implicit dynamic frames [29]. VeriFast and Syxc also sup-
port fractional permissions [6]. Implicit dynamic frames have similar expressive
power to the fragment of separation logic used by SE tools [25].

The KeY system [4] uses a different form of symbolic execution that does not
separate heap properties from “pure” properties, in the style of Smallfoot. The
specification language of KeY is JML [16] with dynamic frames [13]. The KeY
approach admits some degree of interaction with the prover. Our comparison
focuses on Smallfoot-style SE. It is not clear to what degree our observations
apply to KeY-style SE.

Tools that are based on VCG include Chalice [20], Dafny [17], ESC/Java
[7], Frama-C [1], Regional Logic [2], Spec# [3], VCC [8], and VeriCool [29].
Most of them employ the intermediate languages Boogie [18] or Why [10]. Chal-
ice and VeriCool support implicit dynamic frames (in Chalice with fractional
permissions), Dafny supports dynamic frames, and Spec# and VCC support
ownership [19].

VeriCool [29] supports both SE and VCG. The authors report on experiments
using the visitor pattern and an artificial example that show an overwhelming
advantage for SE [30]. Our experiments do not confirm this result, even though
our tools are similar to VeriCool (based on implicit dynamic frames, Smallfoot-
style SE, and Z3). We decided to perform our comparison using Chalice and Syxc
rather than VeriCool because the specification language supported by VeriCool’s
VCG engine is significantly different from the one supported by its SE engine,
which means that we could not have tried the exact same code in both en-
gines. For example, the VeriCool specification language for SE does not support
quantification.

VSTTE 2010 hosted a software verification competition [15]. The evaluation
focused on the quality of specifications and the strength of the verification, but
does not permit a comparison of the efficiency of verification approaches like the
one we present here.

6 Conclusion

In this paper, we reported on an experiment that compared two dominant
approaches for the construction of automated program verifiers, Verification
Condition Generation and Symbolic Execution. Our experiment shows that SE
is generally more efficient, leads to a smaller search space for the prover, and
requires fewer quantifier instantiations. Even though the differences in the run
times are noticeable, they are just a constant factor. Future experiments will
have to show whether more substantial differences exist for larger modules. An-
other topic for future work is to compare other important criteria, such as com-
pleteness, the ease of understanding and fixing verification errors, as well as the
performance on more substantial failing cases. The latter is also a strong indi-
cator of the responsiveness of the tools in an interactive setting, in which the
program and its specifications are developed over several iterations of running
the tool.

206 I.T. Kassios, P. Müller, and M. Schwerhoff

We believe that experimental evaluation is an important aspect of advancing
the field of software verification. The VSTTE verification competition provides
interesting insights in to the strength of various verifiers (tools and their users).
Our experiment complements the competition by providing a comparison of two
verification approaches in terms of their efficiency. We hope that it will encourage
others to perform additional studies that will help the community to better
understand the impact of design decisions on the performance of verification
tools.

Acknowledgments. We are grateful to Jan Smans for his patient explanations
of VeriCool and to Leonardo de Moura and Christoph Wintersteiger for help-
ful explanations of Z3’s statistics and heuristics. We also like to thank Micha�l
Moskal for help on Boogie and Z3, Uri Juhasz for providing us with the AVL-tree
example, and Alex Summers for many fruitful discussions. We would also like to
thank the anonymous reviewers for their helpful comments and suggestions.

References

1. Almeida, J.B., Frade, M.J., Pinto, J.S., Melo de Sousa, S.: Verifying C programs.
In: Rigorous Software Development. Undergraduate Topics in Computer Science,
pp. 241–256. Springer, Heidelberg (2011)

2. Banerjee, A., Naumann, D., Rosenberg, S.: Regional Logic for Local Reasoning
about Global Invariants. In: Ryan, M. (ed.) ECOOP 2008. LNCS, vol. 5142, pp.
387–411. Springer, Heidelberg (2008)

3. Barnett, M., Fähndrich, M., Leino, K.R.M., Müller, P., Schulte, W., Venter, H.:
Specification and verification: The Spec# experience. Communications of the
ACM 54(6), 81–91 (2011)

4. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware. LNCS (LNAI), vol. 4334, pp. 69–177. Springer, Heidelberg (2007)

5. Berdine, J., Calcagno, C., O’Hearn, P.: Smallfoot: Modular Automatic Assertion
Checking with Separation Logic. In: de Boer, F.S., Bonsangue, M.M., Graf, S.,
de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 115–137. Springer,
Heidelberg (2006)

6. Boyland, J.: Checking Interference with Fractional Permissions. In: Cousot, R.
(ed.) SAS 2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003)

7. Chalin, P., Kiniry, J.R., Leavens, G.T., Poll, E.: Beyond Assertions: Advanced
Specification and Verification with JML and ESC/Java2. In: de Boer, F.S.,
Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111,
pp. 342–363. Springer, Heidelberg (2006)

8. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moska�l, M., Santen, T.,
Schulte, W., Tobies, S.: VCC: A Practical System for Verifying Concurrent C. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 23–42. Springer, Heidelberg (2009)

9. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall Series in Automatic
Computation. Prentice Hall (1976)

Comparing Verification Condition Generation with SE 207

10. Filliâtre, J.C.: Why: a multi-language multi-prover verification tool. Technical Re-
port 1366, LRI, Université Paris Sud (2003)

11. Heule, S., Leino, K.R.M., Müller, P., Summers, A.J.: Fractional permissions with-
out the fractions. In: Formal Techniques for Java-like Programs, FTfJP (2011)

12. Jacobs, B., Smans, J., Piessens, F.: VeriFast: Imperative programs as proofs. In:
VS-Tools Workshop at VSTTE 2010 (2010)

13. Kassios, I.T.: Dynamic Frames: Support for Framing, Dependencies and Sharing
without Restrictions. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006.
LNCS, vol. 4085, pp. 268–283. Springer, Heidelberg (2006)

14. King, J.C.: Symbolic execution and program testing. Communications of the
ACM 19(7), 385–394 (1976)

15. Klebanov, V., Müller, P., Shankar, N., Leavens, G.T., Wüstholz, V., Alkassar, E.,
Arthan, R., Bronish, D., Chapman, R., Cohen, E., Hillebrand, M., Jacobs, B.,
Leino, K.R.M., Monahan, R., Piessens, F., Polikarpova, N., Ridge, T., Smans, J.,
Tobies, S., Tuerk, T., Ulbrich, M., Weiß, B.: The 1st Verified Software Competition:
Experience report. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664,
pp. 154–168. Springer, Heidelberg (2011)

16. Leavens, G., Baker, A.L., Ruby, C.: JML: a notation for detailed design. In: Kilov,
I., Rumpe, B., Simmonds, I. (eds.) Behavioral Specifications of Businesses and
Systems, pp. 175–188. Kluwer (1999)

17. Leino, K.R.M.: Specification and verification of object-oriented software. In: Mark-
toberdorf International Summer School 2008. Lecture Notes (2008)

18. Leino, K.R.M.: This is Boogie 2. Working Draft (2008), http://-research.

microsoft.com/en-us/um/people/leino/papers.html

19. Leino, K.R.M., Müller, P.: Object Invariants in Dynamic Contexts. In: Vetta, A.
(ed.) ECOOP 2004. LNCS, vol. 3086, pp. 491–515. Springer, Heidelberg (2004)

20. Leino, K.R.M., Müller, P.: A Basis for Verifying Multi-Threaded Programs. In:
Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 378–393. Springer, Heidelberg
(2009)

21. Leino, K.R.M., Müller, P., Smans, J.: Verification of Concurrent Programs with
Chalice. In: Aldini, A., Barthe, G., Gorrieri, R. (eds.) Foundations of Security
Analysis and Design V. Lecture Notes In Computer Science, vol. 5705, pp. 195–
222. Springer, Heidelberg (2009)

22. Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

23. Müller, P., Ruskiewicz, J.N.: Using Debuggers to Understand Failed Verification
Attempts. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 73–87.
Springer, Heidelberg (2011)

24. Parkinson, M., Distefano, D.: jStar: Towards practical verification for Java. In:
Harris, G.E. (ed.) OOPSLA 2008, pp. 213–226. ACM (2008)

25. Parkinson, M., Summers, A.: The Relationship Between Separation Logic and Im-
plicit Dynamic Frames. In: Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602, pp.
439–458. Springer, Heidelberg (2011)

26. Reynolds, J.: Separation logic: A logic for shared mutable data structures. In: LICS
2002, pp. 55–74. IEEE Computer Society (2002)

http://-research.microsoft.com/en-us/um/people/leino/papers.html
http://-research.microsoft.com/en-us/um/people/leino/papers.html

208 I.T. Kassios, P. Müller, and M. Schwerhoff

27. Schmitt, P., Ulbrich, M., Weiß, B.: Dynamic Frames in Java Dynamic Logic. In:
Beckert, B., Marché, C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp. 138–152.
Springer, Heidelberg (2011)

28. Schwerhoff, M.: Symbolic execution for Chalice. Master’s thesis, ETH Zurich (2011)
29. Smans, J., Jacobs, B., Piessens, F.: Implicit Dynamic Frames: Combining Dynamic

Frames and Separation Logic. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS,
vol. 5653, pp. 148–172. Springer, Heidelberg (2009)

30. Smans, J., Jacobs, B., Piessens, F.: Symbolic execution for implicit dynamic frames
(2009), http://people.cs.kuleuven.be/~jan.smans/vericool3/

http://people.cs.kuleuven.be/~jan.smans/vericool3/

Verification of TLB Virtualization

Implemented in C�

Eyad Alkassar1, Ernie Cohen2, Mikhail Kovalev1, and Wolfgang J. Paul1

1 Saarland University, Saarbrücken, Germany
{eyad,kovalev,wjp}@wjpserver.cs.uni-saarland.de

2 European Microsoft Innovation Center (EMIC), Aachen, Germany
ecohen@microsoft.com

Abstract. Efficient TLB virtualization is a core component of modern
hypervisors. Verifying such code is challenging; the code races with TLB
virtualization code in other processors, with other guest threads, and
with the hardware TLBs, and implements an abstract TLB that races
with other abstract TLBs and guest threads. We give a general method-
ology for verifying virtual device implementations, and demonstrate the
verification of TLB virtualization code (using shadow page tables) in the
concurrent C verifier VCC. To our knowledge, this is the first verification
of any kind against a realistic model of a modern hardware MMU.

Keywords: Shadow Page Tables, TLB, Hardware/Software Interaction,
Automatic Verification, Virtualization.

1 Introduction

A major challenge in the formal verification of low-level system software is
dealing with devices. Because devices run in parallel with software, they typi-
cally necessitate concurrent program reasoning even for single-threaded software.
Existing verifications of software that interacts with devices (e.g., [3]) rely on
transforming the software and hardware into a single transition system. Simi-
larly, verifying correct device virtualization requires reasoning about simulation,
which is usually viewed as a relation between transition systems (rather than
a property of a single program), and so likewise depends on treating the entire
program as a big transition system, an approach sufficient for toy programs but
hardly appetizing for industrial-scale software verification.

In this paper, we show how software that interacts with and simulates devices
can be verified directly in VCC [4], a verifier for concurrent C. VCC provides
several features that are central to our methodology:

– it supports verification of programs with fine-grained concurrency, which is
generally needed for programs that deal with devices,

� Work partially funded by the German Federal Ministry of Education and Research
(BMBF) in the Verisoft XT project under grant 01 IS 07 008.

R. Joshi, P. Müller, and A. Podelski (Eds.): VSTTE 2012, LNCS 7152, pp. 209–224, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

210 E. Alkassar et al.

– it provides ghost state, which we use to represent the abstract state of a
virtual device,

– it provides two-state object invariants (i.e., invariants that constrain not only
the states of an object but its atomic state transitions also), which we use
to express the desired behavior of the virtual device,

– it provides ghost code, which we use to witness the existence of simulation-
preserving updates to the abstract state, allowing forward simulation to be
expressed using ordinary program reasoning.

We apply our methodology to verify the (partial) correctness of C code (the
hypervisor) that virtualizes the MMU of an x64-like processor1. The purpose
of such virtualization is to provide, to several virtual machines (VMs), each
running its own operating system, the illusion that every VM is running alone
on a physical machine, even though different machines might try to configure
their page tables to use the same physical addresses. To provide this illusion,
the algorithm provides an additional level of address translation beyond what is
provided by the hardware MMU. It does this by maintaining a separate set of
shadow page tables (SPTs) for each VM, each SPT shadowing a page table of
the guest (GPT). These SPTs are the tables actually used by the hardware for
address translation, but are kept invisible to the VMs.

The guest TLB-controlling instructions, such as TLB invalidation (INVLPG) or
modification of control registers (e.g., CR3 register), are intercepted by hardware
and virtualized by the hypervisor. When a memory access by the guest results
in a page fault (#PF) the hypervisor emulates the steps of the virtual MMU by
walking the GPTs, setting access (A) and dirty (D) bits in the GPTs, and caching
the translations in the SPTs. A correct SPT algorithm guarantees that the virtual
TLB (VTLB), provided to the VM by the hardware TLB (HTLB) together with
the intercept handlers, behaves accordingly to the hardware specification and
provides appropriate translations to the guest running in the VM.

The verification target is interesting for several reasons. First, efficient MMU
virtualization is perhaps the trickiest part of building correct hypervisors for
modern processor architectures (particularly for machines without hardware
SLATs). Second, precise reasoning about MMU behavior is central to the cor-
rectness of efficient memory management software; because flushing part or
all of a TLB is expensive, memory managers often use clever tricks to avoid
flushes whenever possible by allowing the TLBs to drift out of synchronization
with the page tables (PTs), and using obscure properties of TLB behavior [5]
(e.g., that the MMU will set an accessed bit in a nonterminal page table entry
(PTE) atomically with its read of that entry, rather than in a separate memory
transaction) to deduce that certain translations are not in the TLB. Third, in
spite of the critical importance of MMU behavior, it has never been seriously
treated in OS kernel verification. For example, the Verisoft project [3] used a syn-
thetic hardware model without TLBs, while the L4.verified project [6] explicitly

1 While the proof involves specification of many additional functions and data struc-
tures, the top-level result depends only on the definitions of the hardware behavior
and the coupling relation between the virtual and concrete states (Section 4).

Verification of TLB Virtualization Implemented in C 211

assumed that the TLBs were kept in sync with the page tables, essentially mak-
ing the TLBs transparent to software. The similar approach was chosen in the
Nova micro-hypervisor verification project [7], which used an abstract model of
IA-32 hardware with MMU, but without the TLB.

In the rest of the paper we present an overview of the techniques we used for
modelling the concurrent hardware and for verifying the code in VCC, formulate
the VTLB correctness, and provide the annotated portions of the code crucial
for our verification methodology.

2 Verification Methodology

2.1 VCC Background

VCC is a (hopefully) sound, deductive verifier for concurrent C code. As in many
other modern, function-modular software verifiers, each function is specified
using preconditions, postconditions, and framing information (writes clauses);
when verifying the body of a function, the specifications of functions are used to
provide the meanings of function calls. VCC allows ghost data of various kinds
(locals, fields of data structures, and function parameters); ghost data is typi-
cally used to represent the abstract value of a data structure. Ghost data can
use mathematical types not provided by C (integers and maps of arbitrary size).

Where VCC most differs from other deductive verifiers is in its treatment of
data structures and concurrency. In each state, each object (i.e., each instance
of a C structured type) is classified as open or closed, and has a unique owner.
Only closed objects and threads can own other objects, and only threads can
own open objects. A thread can sequentially access only data in an open object
that the thread owns2; this guarantees that sequential operations in different
threads cannot interfere.

The volatile keyword has a special meaning in VCC, identifying the shared
data which may be changed in an atomic step without opening an object. VCC
allows each object type to be annotated with 2-state invariants specifying how
the system state may change (in a single atomic step). The invariant of an object
is only required to hold in transitions that begin or end with the object closed.
(Each type implicitly includes invariants stating that non-volatile fields of the
object do not change.) Unlike other verifiers, VCC object invariants can mention
arbitrary parts of the state, necessitating the following check: a transition is said
to be legal if it satisfies the invariants of all objects that it modifies; an object
invariant is said to be admissible iff it is guaranteed to be preserved by all legal
transitions that do not update the object. VCC requires all object invariants
to be admissible; this check is made on the basis of type definitions (without
looking at code).

A typical idiom is for an invariant of an observer object to assert a property
of a subject object, this invariant holding because it was true at the time the

2 It can also sequentially read data that it knows (by virtue of object invariants) not
to be changing.

212 E. Alkassar et al.

observer was formed and it is maintained by the subject. Because the subject
cannot be relied on to maintain any invariant when it is open, the observer
invariant must also guarantee that the subject stays closed. For this invariant
to be admissible, the subject must include an invariant that once closed, it
remains closed until there are no closed observers observing it. This idiom is very
common and useful (particularly for ghost objects), so VCC provides syntactic
support for it: subjects supporting such observers are said to be claimable, and
the supported observers are called claims. Each claimable object maintains a
count of the number of outstanding claims on it; the object cannot be opened
when the claim count is nonzero. When forming a claim that claims a set of
subjects and a particular property of the state, VCC does the corresponding
admissibility check “inline” to avoid having to introduce a separate object type.

One way to make an observer invariant admissible is for the subject invari-
ant to explicitly require a check of the observer invariant whenever the subject
changes state in a way that might violate this invariant. We describe this invari-
ant by saying that the observer approves such state changes. Approval provides
a general technique for semantic subclassing of concurrency in VCC. A type with
an invariant that does not use approval corresponds to a “closed” class (w.r.t
concurrency), in the sense that clients cannot strengthen the invariant of an ob-
ject of the type. A type in which certain updates are approved by a client allow
the client to effectively strengthen the invariant of the type as needed (to the
extent allowed by his approval). This is the norm when implementing concurrent
abstract data types. Approval of a volatile field of an object by a thread that
owns the object has the effect of making the field sequential from the standpoint
of the owning thread (except that it must still update the field with atomic
actions).

2.2 Modelling Hardware

When verifying a multi-threaded program that operates on shared data, the
normal procedure is to choose invariants on the shared data that are suitably
strong to verify the particular program. To specify a multi-threaded system, such
as a multiprocessor, we do not know what particular program will be run, and
so have to choose a “generic” invariant for the shared data i.e., the strongest
invariant maintained by the system. To construct this invariant, we introduce
a ghost variable indicating which component of the system is executing at each
step, and require that changes of the shared state (in the current verification,
the shared memory) are approved by the currently executing component.

There are two natural ways to model hardware devices in VCC. One is to
model a device with a program that exhibits all possible behaviors of the device.
This is convenient for verifying a program designed to run in parallel with the
device; the verification of the device code guarantees that the invariants required
by the program are not so strong as to be potentially broken by actions of the
hardware.

The other way to model a device is by modelling the device as an object,
where the 2-state invariant of the object gives the allowed transitions of the

Verification of TLB Virtualization Implemented in C 213

hardware. This model is convenient for showing correct simulation of the device:
we model the virtual device state with ghost data, and show that each update to
this data (along with updates to concrete data, like shared memory) satisfies the
2-state invariant of the hardware. (In addition, we normally maintain a 1-state
coupling invariant between the concrete state and the virtual state, which has
to be maintained by updates to either concrete or virtual state.) In principle,
an object model could be used in place of the hardware thread, but there are
technical difficulties in doing this that go beyond the scope of this paper, so the
current verification uses both models.

3 Specification

The type of n-bit strings {0, 1}n is denoted by Bn. We interpret a string a ∈ B64

either as a 64-bit string, a natural number, or a PTE. We consider a quad-
word (64 bits) addressable memory, 45-bit long (quad-word) virtual addresses
(VAs), and (quad-word) physical addresses (PAs) 49 bits long (which correspond
to architecturally defined byte addresses of 48 bits for virtual and 52 bits for
physical addresses). We call the top-most 36 bits (for the VAs) or 40 bits (for the
PAs) the page frame number (PFN). We use the operator =l:: B36 �→ B36 �→ B
to compare the bits [35 : 9 · l] of two virtual PFNs.

3.1 Host Hardware Model

We model an x64 multi-core/multi-processor machine in the AMD64 style [1]
with the record h :: x64conf . Shared memory of the system is denoted by h.mm ::
B49 �→ B64. The hardware configuration of a processor h.p[i] consists of a register
CR3 giving the address of the root PT, a (processor local) TLB tlb tagged with
address space identifiers (ASIDs), a register asid providing the tag of the current
address space running on the processor, and an uninterpreted variable state
encapsulating the rest of the processor state. In order to implement and specify
the TLB lazy flushing mechanism (which exploits TLB tags), we introduce the
function asidgen(p), returning the generation of the tags which are still valid in
the TLB.

A single PT occupies one memory page (4KB long) and consists of 512 PTEs,
each being a 64-bit long union containing the page frame number pfn at which the
entry is pointing (40-bits long), accessed (A) and dirty (D) bits a and d, a present
bit p, and the bits denoting access rights. To simplify reasoning, we introduce
the set of access rights r where e.g., pte.r[rw] denotes the write access bit pte.rw,
with operations of rights comparison and rights restriction (i.e., addition):

r1 ≤ r2
def
= ∀j : r1[j] ≤ r2[j] r1 + r2

def
= λi : r1[i] ∧ r2[i] .

We model the TLB state as a set of page table walks, each of which summarizes
a partial or complete traversal of the page tables for a given VA. Each walk is
given by a virtual PFN vpfn , a level l giving the number of page table levels

214 E. Alkassar et al.

remaining to be walked3, the page frame number pfn of the next page table to
be used for translation, the tag asid of the address space where the walk was
performed and a set r of access rights giving all rights not denied by the walk
gathered thus far. A walk is complete if its level is 0, and partial otherwise.

For the transition system of the host TLB we use the non-deterministic TLB
model from [2] extended with ASIDs. We distinguish between autonomous MMU
steps, s.t. walk creation, extension, deletion and setting of A and D bits and
the TLB-dependent abstracted processor steps, s.t. address invalidation (INVLPG
and INVLPGA), writing of CR3 register and TLB flush. We use the predicate
valid step(h, h′) to denote that the hardware has performed a valid step of the
transition system from configuration h to h′.

We assume that the hypervisor is running untranslated and abstract the TLB
to have no walks in the zero ASID (in AMD64 the hypervisor code is always
executed with ASID equals zero).

3.2 Virtual Hardware Model

A hypervisor provides to each VM (and to the guest code executed in the VM)
the illusion of running on its own private hardware. In the paper we provide this
illusion for a single VM (this can be easily generalized to multiple VMs mapped
to disjoint host memory portions).

The specification model is an abstract (virtual) machine g :: x64conf , which
resembles a slightly restricted hardware with the virtual memory g.mm and
virtual processors (VPs) g.p[i], i ∈ [0 . . .Np]. The hardware virtualization fea-
tures, such as tagged TLB and virtualization instructions, are not available for
the VM.

3.3 Memory Virtualization

The memory of the VM is mapped to some region of the memory of the host
machine by means of the injective function gpa2hpa :: B40 �→ B40, translating
guest physical PFN into the host physical PFN. Translations of guest virtual
to guest physical addresses are defined by the GPTs, which are located in the
memory of the VM and can be modified by the guest without notifying the
hypervisor. When the VM is running runs, the hardware TLB does not have
access to the GPTs, but rather operates with SPTs allocated and maintained
by the hypervisor.

SPT j of VP i is identified by a pair (i, j) and is obtained from the hypervisor
memory by the function4 spt(i, j). The function i2a(i, j) returns the host PFN of
the SPT (i, j). We organize the SPTs for each VP as a tree of SPTs, and assign

3 To simplify the presentation, we do not consider large pages and legacy addressing
modes here, so each complete walk goes through exactly four page tables. Also, we
do not consider global page translations.

4 We assume configuration C to be an implicit parameter in all functions dependent
on the memory state.

Verification of TLB Virtualization Implemented in C 215

to each SPT a level ranging from 4 (top-level) to 1 (terminal). The entries of non-
terminal SPTs point to other SPTs, while the entries of terminal SPTs point to
memory of the VM (under the gpa2hpamap). The predicate walks to(i, j, px, j′)
denotes that SPT (i, j) points to SPT (i, j′):

walks to(i, j, px, j′) def
= (spt(i, j)[px].pfn = i2a(i, j′)) .

The index of the top most SPT of VP i is denoted by iwo(i). The predicate
used(i, j) checks whether SPT (i, j) is in use by its VP or is free otherwise, the
function l(i, j) returns the level of the SPT (i, j) if it is currently used by the VP.
The function vpfn(i, j) returns the prefix of the SPT (VA range for the addresses
of the walks that might go through to this SPT) and the function r(i, j) provides
the accumulated rights from the top-level SPT to the SPT (i, j). The ASID of
the VP i is obtained by the function asid(i) and the ASID generation by the
function asidgen(i). The predicate re(i, j) checks whether the SPT is reachable
from the root iwo(i).

Guest instructions and exceptions that operate on the TLBs are intercepted
by the hypervisor so that they can be virtualized in the SPTs.

3.4 Correctness of TLB Virtualization

The abstract VM g is implemented on a host machine h running the hypervi-
sor code. The VM abstraction and the implementation are linked by a coupling
invariant. Correctness of the hypervisor is established by proving the simula-
tion between the abstract VM and the VM implementation running atop of the
hypervisor. More detailed, we have to show that (i) the coupling invariant is
maintained and (ii) the host transitions can be abstracted to valid VM steps
(i.e. respecting the hardware transition relation). These properties are encoded
by the following invariant:

Invariant 1. Let h and h′ be states of the host hardware machine and the cou-
pling invariant holds between h and g. Then it follows

coupling(h, g)∧ valid step(h, h′) =⇒ ∃g′ : valid step(g, g′)∧ coupling(h′, g′) .

For correct TLB virtualization, we have to consider (i) those parts of the coupling
invariant related to the TLB and registers used for address translation and (ii)
MMU-related steps of the host.

A VTLB, being part of the virtual hardware g, has to correctly simulate every
address translation performed by the HTLB (as well as flushes and autonomous
TLB steps). Intuitively, this means that when the guest code is performing a
memory access to a guest physical address a (i.e., the VTLB of the VM returns
address a for this memory operation), the HTLB should return the translated
address gpa2hpa(a). To make this possible, we have to couple every complete
walk in the HTLB with the respective ones in the VTLB. We do this by linking
the VTLB to the two components of the implementation: the HTLB and the
SPTs.

216 E. Alkassar et al.

Table 1. Main invariants of the SPT algorithm

Invariant name Invariant property

htlb walks w ∈ h.p[i].tlb ∧ valid(h, i, w.asid) =⇒ w ∈ W [i]

vtlb walks w ∈ W [i] ∧ w.l = 0 ∧ w.asid = asid(j) =⇒ hw2gw(w) ∈ g.p[j].tlb

running asid h.p[i].asid �= 0 =⇒ valid(h, i, h.p[i].asid)

distinct asids i �= j ∧ vp2hp(i) = vp2hp(j) ∧ asid(i) = asid(j)
=⇒ asidgen(i) �= asidgen(j)

partial walks w ∈ W [i] ∧ w.l �= 0 ∧ asid(j) = w.asid =⇒ w ∈ rwalks(j)
∧w ∈ rwalks(j) =⇒ w ∈ W [vp2hp(j)]

reachability re(i, iwo(i)) ∧ (re(i, j) ∧ walks to(i, j, px, j′) =⇒ re(i, j′))
complete walks w ∈ cwalks(j) =⇒ w ∈ W [vp2hp(j)]

coupling gwo g.p[i].CR3 = gwo(i)

Formally, we want the coupling invariant to establish the following property
over the HTLB:

w ∈ h.p[i].tlb ∧ w.asid = h.p[i].asid ∧ w.l = 0 =⇒ hw2gw(w) ∈ g.p[j].tlb ,
(1)

where j is the ID of the currently running VP and the function hw2gw(w)
transforms a host walk to the respective walk of the VTLB by applying the
inverse of the function gpa2hpa to w.pfn .

However, to make (1) inductive we have to argue about HTLB walks not
only in the currently running ASID, but in all ASIDs which could possibly be
scheduled to run without a preceding TLB flush. If an ASID a could be scheduled
to run on a host processor (HP) i without a flush, we call it valid and we define
the set of valid ASIDs in the following way

valid(h, i, a)
def
= ∃j : vp2hp(j) = i ∧ a = asid(j) ∧ asidgen(h.p[i]) = asidgen(j) ,

where the function vp2hp(i) identifies the HP on which VP i is scheduled to run.
For a better partitioning of the invariants in data structures (Sec. 4), we

introduce the superset W [i], holding all walks possibly residing in the HTLB of
HP i. The desired property (1) is now obtained by the invariants htlb walks,
vtlb walks, and running asid (Tab. 1) with the help of distinct asids, which
ensures the uniqueness of a VP with a given valid ASID.

To maintain htlb walks when the HTLB is extending a walk, we have to define
the content of W [i] and argue about all SPTs, which could be walked by the
HTLB in a given configuration.

Our algorithm ensures that the HTLB only accesses reachable SPTs i.e., those
linked in the SPT tree. The set of all partial walks of VP i sitting on reachable
SPTs is defined as

rwalks(i)
def
= {w |re(i, j) ∧ w.r ≤ r(i, j) ∧ w.pfn = i2a(i, j) ∧ w.l = l(i, j)

∧ w.vpfn =w.l vpfn(i, j) ∧ w.asid = asid(i)} .

Verification of TLB Virtualization Implemented in C 217

Invariant partial walks (Tab. 1) relates partial walks from W [i] with the walks
over the reachable SPTs. Invariant reachability helps to maintain partial walks
when the HTLB extends a walk (going from one reachable SPT to another).

A straightforward way to identify the complete walks in W [i] is to argue about
all terminal shadow PTEs (SPTEs) that could have possibly been walked by the
HTLB since the last flush [2]. The task however is cumbersome: a single SPT
could be reused for shadowing different GPTs without a complete flush of the
HTLB. In this case the HTLB could have walked some SPTE twice - before and
after it was reused for a new shadowing. In our approach we only keep track of
the terminal SPTEs belonging to reachable SPTs, which is enough to justify the
new walks added to the HTLB w.r.t the VTLB. Additionally, we make sure that
the VTLB (and the set W [i]) drops only the walks which are no longer present
in the HTLB.

For a walk through a (terminal) SPT (i, j) let spte = spt(i, j)[w.vpfn [8 : 0]].
Then the set of complete reachable walks of VP i is defined as

cwalks(i)
def
= {w | re(i, j)∧ l(i, j) = 1∧w.r ≤ r(i, j) + spte.r ∧w.l = 0∧ spte.p

∧ w.vpfn =1 vpfn(i, j) ∧ w.asid = asid(i) ∧ w.pfn = spte.pfn} .

Invariant complete walks (Tab. 1) relates the complete walks over the reachable
SPTs with the complete walks in W [i].

Finally, invariant coupling gwo couples the CR3 register of the VM with the
guest walk origin, which is necessary for creating a new walk in the VTLB.

4 Implementation and Verification in VCC

We use ghost data to maintain both the state of the virtual hardware and the
state of the host hardware other than the memory (Fig. 1). The hardware transi-
tion relation is formulated as a 2-state invariant of the hardware data structure.
We use the same data types for modeling the host hardware and for the specifi-
cation of the abstract VM.

The autonomous part of the host hardware state (e.g., HTLB) is modelled
with volatile data and is allowed to change non-deterministically. We locate the
host hardware state in the ghost memory, but we do allow limited information
flow between some of its fields (e.g., registers and TLB) and the concrete pro-
gram5. We do not restrict the memory updates of the host hardware in the
transition relation, since that would require approval of the whole VCC memory
by the hardware data structure, making memory changes in the code through
regular variable assignments impossible. Instead, we allow VCC software invari-
ants to specify memory transitions on C level. As a result, the autonomous
hardware is verified as a C thread with the same annotations on type definitions
as the main program.

5 This is done for lack of a dedicated hybrid type capturing implementation state other
then the main memory.

218 E. Alkassar et al.

TLB

HP

TLB

HP

ghost

SPT

a d

SPT

a d

SPT

a d

Hypervisor

Guest pages

C memory

HW tran

Host hardware Hypervisor VM hardware

struct Vp

struct Guest

HW interface

VTLB

VP

VTLB

VP

ghost

Fig. 1. Approval scenario for the SPT algorithm

The state of the virtual hardware (excluding the memory) is also located in the
ghost memory. In contrast to the host hardware, we do specify memory framing
for the hardware transitions of the VM. The memory of the VM is abstracted
from the portions of the C memory allocated to the machine w.r.t the function
gpa2hpa. To ensure that every update of the virtual memory is justified by the
transition relation of the VM, we model the memory of the VM as volatile data
approved by the virtual hardware.

The updates of the virtual hardware, simulating the steps of the VM, are
performed by the ghost code in atomic statements, guaranteeing that the tran-
sition relation and coupling invariant are maintained by every update. When
the step of the virtual hardware involves accessing the implementation memory
(e.g., fetching of a GPTE by the #PF handler), the update to the virtual con-
figuration is done in the same atomic block as the memory access. This allows
to simulate a step of the VM on the virtual memory abstracted from the C
implementation memory.

The correctness (coupling) invariants from Tab. 1 are specified as 1-state in-
variants over the data structures of the hypervisor and over the simulated virtual
hardware. More precisely, the invariants specific to a single virtual processor are
included in the invariant of the implementation data structure of type Vp (Fig. 1)
and the invariants establishing properties over the VPs altogether (s.t. the in-
variant distinct asids) are specified in the data structure of type Guest. With
each VP we associate a set of ghost fields used for maintaining correctness of
the SPT algorithm (e.g., maps of allocated and reachable SPTs for this VP).

The properties of the overall system which have to be maintained by software
and hardware steps are specified in the so called hardware interface. For instance,
it specifies for each HP a map W [i] (Sec. 3.4), which contains all walks possibly

Verification of TLB Virtualization Implemented in C 219

residing in the HTLB of that processor, and states the invariant htlb walks (Tab.
1). The hardware interface is purely ghost, since it is only used for specification
rather than to implement concrete data structures or hardware components.
To check that the invariants of the hardware interface are maintained by all
possible hardware transitions, we have to explicitly invoke each of them in the
MMU thread.

4.1 Specification

The processor state6 is modeled using the struct type Processor.

spec(typedef struct Processor {
Procx i; // Processor id
bool v; // flag for virtual
volatile Asid asid; // processor ASID
volatile Tlb tlb; // TLB (a map of walks)
Hardware ∗h; // pointer to hardware container
Hwinterface ∗hwi; // pointer to HW interface
inv(approves(h, tlb, asid)) // approval by hardware
inv(!v ==> approves(hwi, tlb, asid)) // approval by HWI
inv(approves(owner(this), asid)) // thread approval
inv(v ==> approves(owner(this), tlb)) //thread approval

} Processor;)

Fields of the processor which may change only by instruction execution (as e.g.
registers) are approved by the running thread. (We mark these sequential fields
volatile to allow them being controlled by the 2-state transition invariant of the
hardware.) The flag v is used to distinguish between the host and the virtual
hardware. For the virtual hardware the TLB of the processor is also approved by
the running thread (the steps of the VTLB are always explicitly performed by
intercept handlers). For the host hardware, the TLB and the current ASID reg-
ister are approved by the hardware interface, where we state software dependent
properties on these fields (see Fig. 1 for dependencies between data structures
used for hardware modeling and implementation of the algorithm).

The data structure Hardware encapsulates all processors and defines via 2-
state invariants all valid hardware transitions. To ensure that the processor re-
spects this transition relation, it has to approve all processor fields.

spec(typedef struct Hardware {
Processor ∗p; // array of processors
bool v; // flag for virtual
claim t cm[Ppfn], cp[Procx]; //claims on processors and memory
Ppfn gpa2hpa[Ppfn]; // memory translation (for VM)
volatile Procx i; // index of acting processor
volatile Action act; // type of action
volatile Walk w; // TLB walk for the action
inv(forall(Procx i; claims obj(cp[i], &p[i]))) // Claims on processors
// Claims on memory (for VM)
inv(forall(Ppfn a; gpa2hpa[a] ==> claims obj(cm[a], page(gpa2hpa, a))))
inv(p unch(p) && (!v || m unch(abs m(gpa2hpa))) ||

act == TLB SET AD && tlb setad(p, i, w, old(read pte(w,gpa2hpa,v)))
&& (!v || m upd(abs m(gpa2hpa), w)) ||

act == CORE INVLPGA && core invlpga(p, i, v)
&& (!v || m unch(abs m(gpa2hpa))) || ...) // Transition relation

} Hardware;)

6 We expose only the most crucial parts of the data structures necessary to understand
our methodology, omitting e.g., valid ASIDs and CR3 registers here.

220 E. Alkassar et al.

typedef struct Spt {
volatile Pte e[512];
spec(volatile Pte ge[uint];)
inv(approves(owner(this), ge))
inv(sptes eq except a and d(e, ge))

} Spt;

typedef struct vcc(claimable) Gpt {
volatile Pte e[512];
spec(Hardware ∗h;)
inv(approves(h, e))

} Gpt;

Listing 1. SPTs and GPTs

The current hardware transition is specified by variables i, act, and w, where
i identifies the acting processor, act the action type and w the walk targeted by
the action in case of a TLB transition. When we prove simulation for the VMs,
we use these variables to choose a certain step we want to simulate. In case of
the host hardware these variables allow us to explicitly go over all possible TLB
steps in the MMU thread, showing that none of them violate the VCC software
invariants.

In the hardware transition system we make a distinction between the steps of
the host hardware and the steps of the virtual hardware, having memory framing
only if the v bit is set. For the virtual hardware we also require that it claims all
memory pages allocated the the VM. We obtain those pages by the map gpa2hpa
translating guest physical addresses to host physical addresses (constructed dur-
ing VM initialization and maintained during memory allocation). An arbitrary
memory page of the VM is modeled as a GPT (Listing 1) consisting of guest
PTEs (GPTEs) which are approved by Hardware.

4.2 Implementation

A SPT (Listing 1) contains an array of SPTEs. Since the A/D bits of a SPTE
may be accessed concurrently by hardware, we have to mark the complete entry
as volatile. All other bits may only be accessed by the software currently running
on the processor. Since thread approval can not be stated bit-wise we have to
introduce an approved ghost copy of each SPTE (identical to the original one
except for A/D bits).

The SPT algorithm itself consists of a number of intercept handlers. The most
crucial ones are considered below.

#PF Intercept. When a #PF is intercepted, the hypervisor walks the GPTs
to obtain a set of GPTEs used for the translation of the faulty VA. Every access
to a GPT is performed inside an atomic block. During the walk we simulate the
respective VTLB steps (initializing a walk, setting A/D bits, extending a walk),
which makes the GPT walker the core part of the #PFhandler. If the walk ex-
tension is unsuccessful (rights violation or present bit not set), we simulate the
#PF -signalling step of the VP, inject #PF to the VM and return. After success-
ful walking of GPTs the handler walks the SPTs and finds the first SPTE which
is not in-sync with the associated GPTE. The subtree pointed by this SPTE
is freed and new subtree (being in-sync with the fetched GPTEs) is allocated

Verification of TLB Virtualization Implemented in C 221

and attached to the SPTE. The set of walks W [i] is updated to hold the newly
attached walks and to drop the detached ones. Non-dirty terminal SPTEs are
marked write protected to propagate a D bit to the VM when it is being set by
the HTLB. In case of detaching a subtree we perform a hardware INVLPGA to
ensure that the HTLB is not sitting on the freed SPTs.

Flush Intercept. When the TLB flush is intercepted, the handler frees all the
SPTs of the VP, allocates a fresh top-level SPT (which has all its entries set
to non-present), assigns an unused ASID for the VP and simulates the VTLB
flush step. If all the ASIDs are already in use, the handler flushes the HTLB
and increments the ASID generation of the HP. (Currently we explicitly assume
that the ASID generation doesn’t overflow.) At this point, all ASIDs which were
previously assigned to VPs running on this HP become invalid. The handler
then gives the first ASID to the intercepted VP and makes it valid by setting
the ASID generation of the VP to the current one of the HP. Set W [i] in the
hardware interface is updated to hold only walks sitting on the fresh top-level
SPT.

Every time when some VP is scheduled to run we check whether the ASID
generation of the VP is equal to the ASID generation of the HP. If this is not
the case (i.e., some other VP has increased the ASID generation of the HP), we
allocate an unused ASID for the VP and proceed in the same way as in the case
of a flush intercept.

INVLPG Intercept. In case of the INVLPG intercept the handler walks down the
SPTs for the invalidated address and marks a terminal SPTE non-present. Then
it performs a hardware INVLPGA on the faulty VA in the ASID of the intercepted
VP. The complete walk through the modified terminal SPTE is removed from
the set W and the INVLPG step of the virtual VP is simulated.

4.3 Verification

We consider verification examples of the code of the #PFhandler simulating
the step of the VTLB and, of a single HTLB transition performed in the MMU
thread.

VTLB Steps Simulation. The VTLB operates on the shared (volatile) mem-
ory of the VM and races with other VTLBs and with the running VPs. Hence,
the memory of the VM may change arbitrarily in between atomic accesses to it.
To simulate a VTLB step corresponding to the operation on the memory of the
VM, we have to perform the simulation in the same atomic block where the han-
dler reads/writes GPTs. We also need to have access to the state of the virtual
processor and to the transition relation of the virtual hardware. The VP and
everything in its ownership domain is thread local, while an instance of Guest
is shared between all the VPs and is claimed to be closed by a claim gc (i.e., we
can not update sequential data of the guest, but can assert its invariant).

222 E. Alkassar et al.

As an example of a VLTB step we consider the setting of A/D bits for a
top-level walk (performed in a GPT walker before we fetch a top-level GPTE
for walk extension):

pfn = gpa2hpa(vp−>gwo, guest);
if (pfn == 0) return 0; // non−allocated guest address
gpt = (Gpt ∗)(pfn << 12);
px = compute idx(vpfn, 4);
while (!cmp result)

writes(vp)
inv(thread local(vp) && claims(gc, guest) && ...)

{
atomic(gpt){old pte = gpt−>e[px];} //fetching GPTE
unwrap(vp); // opening thread−local object
atomic(...){ // setting A and D bits

if (old pte.p) { // modifying and writing GPTE
cmp result = (old pte == (rw && old pte.rw)

? asm cmpxchg(&gpt−>e[px], old pte, SET AD(old pte))
: asm cmpxchg(&gpt−>e[px], old pte, SET A(old pte)));

spec(if (cmp result) { // fixing step parameters
guest−>g.i = vp−>i;
guest−>g.act = TLB SET AD;
guest−>g.w = top level walk(vp−>gwo, vpfn);

})
} else // don’t do update if the entry is not present

cmp result = 1;
}
wrap(vp); // closing thread−local object

}

Since the x64 architecture does not provide an instruction performing an atomic
read-modify-write operation we use a loop in which we fetch an entry, modify it,
and then write it back if the entry has not been changed in between. Writing to
a GPTE is done by an interlocked compare-exchange operation. To specify the
behaviour of compare-exchange we define a C function asm cmpxchg reflecting
the effect of the interlocked operation on the C memory. If the compare-exchange
is successful, we simulate the setting of A/D bits by the VTLB.

The invariants of the virtual hardware are checked automatically at the end of
the atomic block, ensuring that a selected TLB step is performed accordingly to
the transition relation. Since we operate only with one VP, VCC doesn’t need to
check the invariants of other VPs. The invariants of the hardware interface also
are untouched here, because the set of the reachable walks remains unchanged.

MMU Thread. For soundness of the approach we have to emulate the be-
haviour of a hardware MMU in a C thread. There are two reasons why the
two-state invariant of Hardware describing the MMU behaviour alone is not
enough. First, the only place where VCC checks that the invariant of the con-
current object being modified holds is the atomic block where the writing to the
object is done. Moreover, to check this VCC first has to ensure that the address
being written belongs to a typed object. In the MMU thread we guarantee that
all MMU writes are done to the SPTs of a running VP and these writes do not
violate the invariants of SPTs.

The second reason why we need a software MMU thread is the presence of
the observer: the invariants of the hardware interface should not restrict the
hardware transition system in any sense. Since the transition invariant contains

Verification of TLB Virtualization Implemented in C 223

a disjunction of steps, we have to ensure that the invariant of the hardware
interface holds for every step from the disjunction. Note, that the invariant of
the hardware interface has to be checked not only for MMU steps, but for other
hardware steps as well. This check is done in the intercept handlers every time
we execute a certain TLB-dependent processor step (e.g., INVLPGA).

The MMU thread consists of a number of atomic actions each performing a
single MMU step. As an example, we again consider the setting of A/D bits by
the TLB of the hardware processor hp.

atomic(...) {
spt = (Spt ∗)(w.pfn << 12);
px = compute idx(w.vpfn, w.l);
assume(hp−>tlb[w] && w.l != 0 && w.asid == hp−>asid

&& hp−>asid > 0 && spt−>e[px].p); // assuming guard
vp = guest−>hp2vp[hp−>i][hp−>asid]; // get the running VP
assert(inv(vp)); // asserting invariant of running VP
begin update(); // start of update in the block
spt−>e[px] = (w.l == 1 && w.r[rw] && spt−>e[px].rw)

? SET AD(spt−>e[px])
: SET A(spt−>e[px]); // performing a write

guest−>h.i = hp−>i; // fixing step parameters
guest−>h.act = TLB SET AD;
guest−>h.w = w;

}

With the help of the invariant of the running VP (obtained from the current
ASID of the HP), VCC derives that the memory write is done to the SPT
owned by that VP and the system invariants are maintained. Note, that the
only invariants which might get broken by the HTLB step are the invariant of
the hardware interface (if the HTLB adds a walk which is not present in W [i])
and the invariant of the SPT itself (if the HTLB modifies other bits than A/D).

5 Conclusion and Future Work

We have demonstrated the verification of a concurrent program dealing with
devices using an automatic C code verifier. We have given a general methodology
for verification of virtual device implementations, specified TLB virtualization
with SPTs and formally verified a SPT algorithm.

The implementation of the SPT algorithm contains ca. 700 lines of C code
(including initialization of data structures) and ca. 4K lines of the annotations
which include function contracts, loop invariants, data invariants, ghost code,
and (proof) assertions. Roughly a third of annotations comprise function and
block contracts and another third is ghost code for maintaining ghost fields,
showing simulation, and running MMU thread (which is purely ghost). The
overall proof time is ca. 18 hours on one core of 2GHz Intel Core 2 Duo machine.
The estimated person effort is 1.5 person-years, including VCC learning period.

There are two possible directions of future work. The first one is to integrate
the proof and the specification to a prototypical hypervisor being developed and
verified at the Saarland University. In particular, this requires adapting the proof
to be done on top of the kernel layer of the hypervisor, rather than on top of the

224 E. Alkassar et al.

real hardware (the support for this scenario is already included in our models).
The second direction is to verify a more sophisticated version of the algorithm,
which uses write-protection of GPTs and sharing of SPTs.

References

1. Advanced Micro Devices: AMD64 Architecture Programmer’s Manual Volume 2:
System Programming, 3.14 edn. (September 2007)

2. Alkassar, E., Cohen, E., Hillebrand, M., Kovalev, M., Paul, W.: Verifying shadow
page table algorithms. In: Formal Methods in Computer Aided Design (FMCAD)
2010, pp. 267–270. IEEE, Lugano (2010)

3. Alkassar, E., Paul, W., Starostin, A., Tsyban, A.: Pervasive Verification of an OS
Microkernel: Inline Assembly, Memory Consumption, Concurrent Devices. In: Leav-
ens, G.T., O’Hearn, P., Rajamani, S.K. (eds.) VSTTE 2010. LNCS, vol. 6217, pp.
71–85. Springer, Heidelberg (2010)

4. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,
Schulte, W., Tobies, S.: VCC: A Practical System for Verifying Concurrent C. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 23–42. Springer, Heidelberg (2009)

5. Intel Corporation: TLBs, Paging-Structure Caches, and Their Invalidation (April
2007)

6. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elkaduwe,
D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood, S.:
sel4: formal verification of an OS kernel. In: Proceedings of the ACM SIGOPS 22nd
Symposium on Operating Systems Principles, SOSP 2009, pp. 207–220. ACM, New
York (2009)

7. Tews, H., Weber, T., Völp, M., Poll, E., van Eekelen, M., van Rossum, P.:
Nova micro–hypervisor verification. Tech. Rep. ICIS–R08012. Radboud University
Nijmegen (May 2008)

Formalization and Analysis of Real-Time

Requirements:
A Feasibility Study at BOSCH

Amalinda Post1 and Jochen Hoenicke2

1 Robert Bosch GmbH, Stuttgart, Germany
amalinda.post@de.bosch.com

2 University of Freiburg, Germany
hoenicke@informatik.uni-freiburg.de

Abstract. In this paper, we evaluate a tool chain to algorithmically an-
alyze real-time requirements. According to this tool chain, one formalizes
the requirements in a natural-language pattern system. The requirements
can then be automatically compiled into formulas in a real-time logic.
The formulas can be checked automatically for properties whose viola-
tion indicates an error in the requirements specification (the properties
considered are: consistency, rt-consistency, vacuity). We report on a fea-
sibility study in the context of several automotive projects at Bosch.
The results of the study indicate that the effort for the formalization of
real-time requirements is acceptable; the analysis algorithms are compu-
tationally feasible; the benefit (the detection of specification errors resp.
the formal guarantee of their absence) seems significant.

1 Introduction

According to common industrial practice, requirements are specified in natu-
ral language and checked for errors manually, e. g., by peer reviews [16]. The
shortcomings of this tool chain are well-known: the disambiguation of the (nat-
ural language) requirements is done by component specialists (instead of system
specialists) during implementation and testing; both, the cost and the error
detection rate of the manual checks do not scale well with the number of re-
quirements, which each affect another and cannot be analyzed in isolation [3].
Further, a review can detect errors but never guarantee their absence.

A tool chain for the formalization of requirements and the (subsequently
possible) formal, automatic analysis of requirements opens the perspective
of eliminating the above shortcomings. Much research has been invested re-
cently in language and tool support for both, formalization and analysis, e. g.,
[14,6,7,18,13,12]. The question whether such a tool chain is feasible in practice
can not be decided by a principled argument that applies uniformly to all prac-
tical settings; we need a number of feasibility studies which address the question
on a case-by-case basis. This paper presents such a study, for a special case of
behavioral requirements, namely real-time requirements, in the context of sev-
eral automotive projects at Bosch. We call a requirement real-time requirement

R. Joshi, P. Müller, and A. Podelski (Eds.): VSTTE 2012, LNCS 7152, pp. 225–240, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

226 A. Post and J. Hoenicke

if it contains an explicit timing bound, e. g., “If IRTest is set then the infrared
lamps are turned on after at most 10 s.”

We believe that real-time requirements are a good ‘first target’ for a feasibility
study. Their formulation tends to be concrete; i. e., they are more amenable to
formalization than other requirements. Real-time requirements are notoriously
hard to get right, and they appear in projects for safety-critical systems; i. e., the
extra need for quality assurance efforts is widely accepted. (The same reasons
gave the incentive for previous work on real-time requirements [14,13,12]).

This paper contributes a first comprehensive evaluation of a tool chain for the
algorithmic analysis of real-time requirements in a particular industrial setting.
The tool chain contains, in addition to the algorithms proposed in [13,12], also
a user-friendly input language which is indispensable in an industrial setting. In
particular, we combine a specialized specification language based on a system of
natural-language patterns [9,14] with analysis tools for requirements in a real-
time logic [13,12]. To allow that we developed a compiler from the specification
language into the real-time logic used in [13,12]; see Figure 1.

We perform a feasibility study in the context of several automotive projects at
Bosch and evaluate the tool chain in terms of the human effort required for the
formalization, the performance of the tools, and the outcome of the application
of the tool chain to each of the examples in the case study. The overall result of
the evaluation indicates that the tool chain is feasible and worthwhile. We will
now recount the results of the evaluation in greater detail.

Results of the Evaluation. As expected, the effort for the formalization of
real-time requirements was heavy. Two to three minutes per requirement in aver-
age seems still acceptable, however (in contrast with analysis), the formalization
of requirements is done one by one; i. e., it scales linearly in the number of re-
quirements. We chose the setting for our study where we start with already
existing sets of documented informal requirements. This separation between re-
quirements elicitation and formalization allows us to measure the effort spent for
the formalization. The by far largest chunk of the measured effort goes into un-
derstanding the requirements. We thus obtain a safe approximation of the effort
that is spent in the (preferable) setting where the formalization is interleaved
with the elicitation.

manual tool

compile
requirements

into
logical

formulae

check
requirements for

- consistency
- rt-consistency

- vacuity

formulate
requirements

in the
specification

language

ok

error

Fig. 1. The tool chain evaluated in the feasibility study. The compiler from the spec-
ification language to the real-time logic interfaces the manual formalization and the
automatic analysis; see also Figure 2.

Formalization and Analysis of Real-Time Requirements 227

informal requirement
requirement in specification

language

If the system’s diagnostic
request IRTest is set, then the
infrared lamps are turned on

after at most 10 Seconds.

Globally, it is always the case
that if IRTest holds then
IRLampsOn holds after at
most 10 Seconds.

requirement in Duration
Calculus

compilationmanual

visible for stakeholder visible for computer

Fig. 2. In the tool chain, a specification language for real-time requirements is used as
an intermediate step between the informal part and the formalism used as input for
the analysis tools (the transition from the specification language to the input format
is automatic, i. e., done by a compiler)

We already knew that the computational complexity of the analysis algo-
rithms is high and that the tools still need to be optimized [13,12]. The situation
is comparable to model checking in that one cannot expect the tools to scale
uniformly, and the tools need to be specialized to the application domain. The
performance of the tools in our study (which ranges from several seconds to
more than an hour) is too irregular for an on line use, e. g., interleaved with
elicitation; for batch processing, as with our tool chain, the execution times on
the examples in our study are more than acceptable.

The benefit of applying the tool chain seems significant. The detection of
several specification errors in examples that had undergone extensive reviews
is a benefit of obvious practical value. That is, the tool chain has allowed us
to find errors that had escaped the reviews. Each error was detected because
of the violation of one of three correctness properties. If we had a larger set of
correctness properties that our tool chain could use, we might detect further
errors still hidden in the requirements specification. This opens an avenue for
further research.

The other kind of benefit, i. e., the formal guarantee of the absence of a par-
ticular kind of error, is of a purely conceptual value. It is interesting to note,
however, that engineers at Bosch are quite keen on this functionality of the tool
chain. This is noteworthy since engineers are reputed to be pragmatic. Perhaps
mathematical certitude is an innate universal need, after all.

2 The Tool Chain

As depicted in Figure 1, the first step of the tool chain is manual and the second is
fully automatic. In the first step, the requirements engineer formalizes real-time
requirements in the specification language. The second step is a call to a tool
(with, as front end, a compiler from the specification language to the proper
input format of the analysis tools). We now briefly present the specification
language, the different properties checked by each of the analysis tools, and the
analysis tools themselves.

228 A. Post and J. Hoenicke

In this paper, we rely on the results which state the correctness of the analysis
tools which we use in our case study; for completeness, we will explain the
properties checked by the analysis tools but we must refer to [14,13,12] for further
details about the foundation of the algorithms used in the tools.

2.1 The Specification Language

The specification language is depicted in Table 1. It is a restricted English
grammar based on the specification pattern system (SPS) given by Konrad and
Cheng [9].

Every pattern consists of non-literal terminals P,Q, c and literal terminals.
For example, in the bnd response pattern “it is always the case that if P holds,
then S holds after at most c time unit(s)”, P , S, and c are (the only) non-
literal terminals. The non-literal terminals P and S denote boolean propositional
formulae that capture properties of the system. The non-literal terminal c is
instantiated with constants. In the example of a requirement (in the specification
language) given in Figure 2, the pattern is instantiated by setting P to IRTest,
S to IRLampsOn, and c to 10.

The specification language is geared toward a person who is not formally
minded [14]. The use of the specification language in our tool chain is possible
only thanks to the compilation from the specification language into the mini-
malistic formalism used for the input of the analysis tools; see Figure 2. The
stakeholder only needs to care about the formulation of the requirements in the
specification language; their formulation in the real-time logic (the input format
of the analysis tools) is irrelevant for the stakeholder and only relevant for the
analysis tool.

2.2 Translation of the SPS to Duration Calculus

Konrad and Cheng provide a translation of their SPS to the logics TCTL (Timed
Computation Tree Logic), RTGIL (Real-Time Graphical Interval Logic) and
MTL (Metric Temporal Logic). In this work we translate the SPS to the Du-
ration Calculus fragment defined in [8]. Table 2 depicts our translation. These
formulas are further translated into Phase Event Automata (PEA) [8], on which
the consistency properties are checked.

Note that for the eventually pattern and the response pattern we need for
the scopes Globally, After Q, After Q until R the translation uses the Duration
Calculus operator � introduced by Skakkebæk [15]. For these six instances the
algorithms to check rt-consistency and vacuity cannot be directly applied, as
the algorithm to calculate a PEA representing a requirement is not defined for
requirements with the � operator. We circumvent this problem in our tool in
having defined the corresponding PEAs by hand.

2.3 The Correctness Properties

In the tool chain we check requirements for three properties: inconsistency,
rt-inconsistency and vacuity.

Formalization and Analysis of Real-Time Requirements 229

Table 1. Restricted English grammar based on the grammar given by Konrad and
Cheng in [9]

Start 1: property ::= scope specification .

Scope 2: scope ::= Globally | Before R | After Q | Between Q and R |
After Q until R

General 3: specification ::= qualitative | real-time | invariant

qualit.

4: qualitative ::= absence | universality | existence | bnd existence |
precedence | response

5: absence ::= it is never the case that P holds
6: universality ::= it is always the case that P holds
7: existence ::= P eventually holds
8: bnd. exist. ::= transitions to states in which P holds occur at most

twice
9: precedence ::= it is always the case that if P holds, then S previously

held
10: response ::= it is always the case that if P holds then S eventually

holds

real-time

11: real-time ::= min duration | max duration | bnd recurrence | bnd
response | bnd invariance

12: min dur. ::= it is always the case that once P becomes satisfied, it
holds for at least c time unit(s)

13: max dur. ::= it is always the case that once P becomes satisfied, it
holds for at most c time unit(s)

14: bnd recur. ::= it is always the case that P holds at least every c time
unit(s)

15: bnd resp. ::= it is always the case that if P holds, then S holds after
at most c time unit(s)

16: bnd inv. ::= it is always the case that if P holds, then S holds for
at least c time unit(s)

invariant 17: invariant ::= it is always the case that if P holds, then S holds as
well

We say that a set of requirements ϕ is inconsistent if there exists no system
satisfying ϕ, e. g., it exists no system satisfying both “Req1: Once IRTest holds
it holds for at least 5 Seconds.” and “Req2: Once IRTest holds it holds for at
most 3 Seconds.”

The check for rt-inconsistency analyzes whether timing bounds of real-time
requirements may be in conflict. The formal definition of rt-inconsistency is given
in [13], e. g., the following two requirements are consistent but not rt-consistent :
“Req3: Globally, it is always the case that if IRTest holds, then IRLamps holds
after at most 10 seconds”, “Req4: Globally, it is always the case that if IRTest
holds, then ¬IRLamps holds for at least 6 seconds”. Say the observable IRTest
holds from time point 4 on for 6 seconds (as depicted in Figure 3). Then Req3
requires that IRLamps appears not later than t = 14. At the same time Req4
requires that IRLamps does not hold until at least t = 16—a conflict. Formally,
a set of requirements is rt-inconsistent if there is a a finite trace satisfying all
requirements that cannot be extended to an infinite trace.

230 A. Post and J. Hoenicke

Table 2. Translation of the SPS into Duration Calculus (Excerpt)

Scope Pattern Duration Calculus

Globally it is never the ¬(true; �P �; true)
Before R case that ¬(�¬R�; �¬R ∧ P �; �¬R�; true)
After Q P holds ¬(true; �Q�; true; �P �; true)
Between Q
and R

¬(true; �Q ∧ ¬R�; �¬R�; �P ∧¬R�; �¬R�; �R�; true)

After Q
until R

¬(true; �Q ∧ ¬R�; �¬R�; �P ∧ ¬R�; true)

Globally P eventually (¬(�¬P �))� true
Before R holds ¬(�¬R ∧ ¬P �; �R�; true)
After Q (¬(true; �Q ∧ ¬P �; �¬P �))� true
Between Q
and R

¬(true; �Q ∧ ¬R�; �¬P ∧ ¬R�; �R�; true)

After Q
until R

¬(true; �Q ∧ ¬R�; �¬P ∧ ¬R�; �R�; true) ∧
(¬(true; �Q ∧ ¬P ∧ ¬R�; �¬P ∧ ¬R�))� true

Globally it is always the (¬(true; �P ∧ ¬S�; �¬S�))� true
Before R case that ¬(�¬R�; �P ∧ ¬S ∧ ¬R�; �¬S ∧ ¬R�; �R�; true)
After Q if P holds (¬(true; �Q�; true; �P ∧ ¬S�; �¬S�))� true
Between Q
and R

then S eventually
holds

¬(true; �Q ∧ ¬R�; �¬R�; �P ∧ ¬R ∧ ¬S�; �¬R ∧
¬S�; �R�; true)

After Q
until R

(¬(true; �Q∧¬R�; �¬R�; �P∧¬S∧¬R�; �¬S∧¬R�))�
true ∧ (¬(true; �Q�; true; �P ∧ ¬S�; �¬S�))� true

Globally it is always the ¬(true; �P ∧ ¬S�; �¬S� ∧
 > c; true)
Before R case that if ¬(�¬R�; �¬R ∧ P ∧ ¬S�; �¬R ∧ ¬S� ∧
 > c; true)
After Q P holds then ¬(true; �Q�; true; �P ∧ ¬S�; �¬S� ∧
 > c; true)
Between Q
and R

S holds after at
most c time units

¬(true; �Q∧¬R�; �¬R�; �P∧¬R∧¬S�; �¬S∧¬R�∧
 >
c; �¬R�; �R�; true)

After Q
until R

¬(true; �Q∧¬R�; �¬R�; �P∧¬R∧¬S�; �¬S∧¬R�∧
 >
c; true)

The check for vacuity checks whether there is a requirement in the set that
is only vacuously satisfied in the context of the set. The formal definition is
given in [12], e. g., the following requirements are consistent and rt-consistent
but vacuous : “Req5 : Globally, it is always the case that if IRTest holds then
IRLamps holds after at most 10 seconds”, “Req6: Globally, it is never the case
that IRTest holds”. In every system satisfying both requirements the observable
IRTest never holds (according to Req6), i. e., the precondition of Req5 never
holds. Thus, in the context of the set of requirements Req5 is only vacuously
satisfied. We assume that a requirements engineer specifies only requirements
with behavior that shall be visible in a system, thus we assume that there is an
error in the requirements and call Req5 vacuous with the set of requirements.

To formally define vacuity, a purely syntactical characterization of simpler re-
quirements is needed. In our case a requirement is of the form ¬(ϕ1; . . . ;ϕn; true)
and simpler requirements are those, where some trailing phases ϕi; . . . ;ϕn are
omitted. Then a requirement ϕ is vacuous in the context of a set of requirement,
if there is a simpler requirement that is equivalent in the context. For example,

Formalization and Analysis of Real-Time Requirements 231

IRTest

IRLamps

IRTest=0 IRTest=1 &
IRLamps=0

IRTest=0 &
IRLamps=0

4 6 8 10 12 1420 time

1

0

1

0

Fig. 3. Req3 and Req4 are rt-inconsistent

tool

compile
requirements into
Duration Calculus

formulae

transform
requirements

into
Phase Event

Automata

consistent? non-vacuous? rt-consistent?

no

yesrequirements in
specification

language

nono

yes yes

Fig. 4. The prototype tool compiles requirements in specification language to Dura-
tion Calculus formulae; it then starts the analysis tools, i. e., it transforms the logical
formulae into a Phase Event Automaton and then checks for consistency, vacuity, and
rt-consistency

if in some context, the requirement “after Q it is never the case that P holds”,
¬(true; �Q�; true�P �; true), is equivalent to “it is never the case that Q holds”,
¬(true; �Q�; true), we say that the first requirement is vacuous in that context.

2.4 The Tool

We have assembled a prototype tool that parses requirements formalized in the
specification language and automatically transforms them into formulae in a real-
time logic (the Duration Calculus); it then analyzes the formulae to check the
formalized requirements for consistency, rt-consistency and vacuity; see Figure 4.
The tool is written in Java and bases on the PEA-toolkit developed by [11] and
the model checker UPPAAL [2]. Every algorithm is sound and complete (i. e.,
for every input data the decision procedure returns a correct answer). If the set
of requirements is rt-inconsistent, the tool returns a counterexample (a possible
behavior that leads to a timing conflict). If the set of requirements is incongruous
then the tool returns the requirement that is incongruous in the set.

232 A. Post and J. Hoenicke

3 Planning of the Feasibility Study

3.1 Study Goals and Questions

In order to assess the practical relevance of the tool chain in the automotive
context, two main questions must be addressed. First, what is the benefit of the
tool chain? Second, what are the costs of applying the tool chain?

A preliminary question is whether requirements engineers and software devel-
opers are in principle willing to use the specification language for requirements.
We addressed this question in an informal inquiry, before starting the actual fea-
sibility study which addresses the two questions above. We asked requirements
engineers at Bosch to take some of their behavioral requirements and reformu-
late them in the specification language. We showed requirements formalized in
the specification language to software developers at Bosch and asked them to
explain their meaning to us. The reaction was only positive; i. e., the specifica-
tion language seems easy to use, both for writing and reading. In the context of
this inquiry, the request for tool support was constantly repeated.

Before developing a tool that is fit for an industrial use, we decided to first
develop a prototype tool and start with evaluating the two questions above in
a feasibility study on requirements of different Bosch projects. To summarize,
we identified the following two items for evaluation in the study.

(Benefit). Is the tool chain useful in terms of quality assurance for require-
ments, resp., does it help to identify errors that were not detected in a manual
review? Does it support a user in resolving the errors?

(Cost). What effort (measured in time) is needed to formulate requirements
in the specification language? Are the analysis algorithms computationally
feasible for the examples in the study?

3.2 Selection of the Sample

In the first step we selected requirements documents from different Bosch
projects of the automotive domain. To get a representative sampling, we decided
to apply stratified sampling over the automotive application domains driving as-
sistance, engine controlling, car multimedia, catalytic converter development and
power train development. We then used convenience sampling to select a project
out of every stratum.

Each project had several requirements documents, some consisting of more
than 100 pages. In order to get a representative sample of requirements we
asked the corresponding requirements engineers to give us 1 to 4 sets of require-
ments (representative for their domain and containing behavioral requirements
and real-time requirements), each specifying a system component. This way we
obtained sixteen sets of requirements.

3.3 Feasibility Study Design

In the first step we formulated the requirements in the specification language.
Every set of requirements was then again reviewed with feedback from the

Formalization and Analysis of Real-Time Requirements 233

responsible requirement engineers, and, if needed, changed until we agreed that
the meaning of the informal requirements was accurately represented in the
requirements formulated in the specification language. For one project we let
the requirements engineer directly translate the requirements in SPS, in this
case we were just available as coach. We then used the tool to automatically
transform the requirements into Duration Calculus formulae. We checked the
requirements with the help of our tool for consistency, rt-consistency and vacu-
ity on a PC Windows XP system with 2 GHz Intel Core 2 Duo processor and
1 GB RAM, whereas only one core was used. If the tool detected an error we
searched the reason for the error, fixed it and then checked the set again (until the
set was consistent, rt-consistent and non-vacuous). We measured the execution
time as CPU-time needed to parse the requirements, transform them to Duration
Calculus formulae and then do the respective check.

4 Analysis of the Results

4.1 Benefit

Benefit. Table 3 depicts the validation results for each component. The specifics
of the components are not relevant; hence we do not present them and just
number the examples from 1 to 16 (first column). The second column refers to
the size of the input in the number of requirements. Columns 3 to 6 refer to the
outcome of the consistency/vacuity/rt-consistency check.

As Table 3 shows, every component (except Component 13 and 14) was con-
sistent. We guess that this indicates that the manual review process successfully
detected any inconsistencies. For Component 13 and 14 we got an out-of-memory
error thus we could not determine the consistency.

Regarding vacuity, the automatic validation could guarantee the absence of
vacuities for 12 components, in one component it detected an error. In Com-
ponent 8 the precondition of the following requirement was never satisfied “If
accelerationPedal = 0 and brakePedalActivated then regeneration holds after
at most 1 time unit.” Debugging the requirements we found out that another
requirement was ambiguously specified as “The value range of the acceleration
pedal is between 0 and 100.” This second requirements was misinterpreted as
“0 < accelerationPedal < 100” instead of “0 ≤ accelerationPedal ≤ 100”.
We resolved the ambiguity and changed the requirement to “The value range of
the acceleration pedal is between 0 and 100 where the endpoints of the interval
are included”. The needed change was only a minor change, but the analysis
helped to discover an ambiguous requirement. Thus, the check for vacuity was
beneficial. Note that only the biggest component contained an vacuity. We see
two possible reasons for that. First, it might be that in practice vacuity only
rarely occurs. Second, it might be that vacuities occurred, but they were already
detected in the manual reviews and subsequently resolved. In the belief of the
requirements engineers at Bosch, vacuity occurs in practice. Thus, we believe
that the vacuities were resolved in the earlier steps. This would also explain,
why the vacuity was detected in the biggest component—large components are

234 A. Post and J. Hoenicke

Table 3. Checking consistency, rt-consistency and vacuity for existing examples of sets
of real-time requirements for software components in automotive projects at Bosch
using a prototype implementation (Fig. 4)

#req consistent? non-vacuous? rt-consistent?

1 9 yes yes no

2 10 yes n/a no

3 10 yes yes no

4 12 yes yes yes

5 13 yes yes yes

6 17 yes yes yes

7 17 yes yes no

8 18 yes yes no

9 27 yes yes yes

10 27 yes yes yes

11 29 yes yes no

12 40 yes yes no

13 48 n/a n/a n/a

14 58 n/a n/a n/a

15 81 yes no yes

16 81 yes yes yes

much more difficult to review for humans, as it gets difficult to keep the inter-
dependencies in mind.

For three components our algorithm returned with an out-of-memory error.
Note that the space of solution tends to explode, if there are not many interde-
pendencies between the requirements in the set. If there are many interdepen-
dencies, then the space of solution gets reduced. Thus, the instances that are
difficult to check for the tool, are often quite easy to review for a human—and
vice versa: the instances with many interdependencies, which are more difficult
to grasp for a human, get easy to check for the tool. Thus, for this property it
seems that the automatic and the manual analysis might well complement each
other.

Most errors were discovered by the rt-consistency-check: seven out of 16 com-
ponents were in fact rt-inconsistent, i. e., for Components 1, 2, 3, 7, 8, 11 and
12, the check identified flaws in the requirement specification that needed to
be repaired. Major changes were needed to correct these requirements. e. g., for
Component 3, two of the existing requirements were deleted, five were changed,
and seven new requirements were added.

Fixing the errors was an iterative process, with up to 10 iterations. In every
iteration we thought to have fixed the problem, but then the check again found
an rt-inconsistency. The output-interpretation then helped us to identify the
reason of the errors. Thus, although rt-inconsistencies seem to appear frequently
in requirements specifications this property seems to be difficult to detect for
humans. The benefit of this check is thus very high.

Formalization and Analysis of Real-Time Requirements 235

For Component 4, 5, 6, 9, 10 and 15 the tool chain assured the consistency,
non-vacuity, and rt-consistency of the requirements. The tool chain helped us to
assure the quality of six components, and to detect 8 errors in the requirements
that were not known before. Three of the errors were even found in the smallest
sets of requirements. We thus think that the tool chain is even beneficial for
smaller sets of requirements.

Costs. To evaluate whether the benefit of applying our tool chain justifies its
costs, we measure the time needed to formalize the requirements and second
the execution time needed by our tool (i. e., the time the requirements engineer
needs to wait for the results).

To express the informal requirements in the SPS we needed in average about
2–3 minutes per requirement, i. e., for Component 1 to 9 we needed 26 Min,
30 Min, 28 Min, 35 Min, 25 Min, 28 Min, 32 Min, 38 Min, 60 Min, and 2 h
50 Min for Component 16. Most of the time was needed to understand the
meaning of the informal requirement, the reformulation itself was then quickly
done. However even two minutes per requirement may scale to a considerable
amount of time as in the automotive domain there are often thousands of re-
quirements for one product. However, if the tool chain is integrated within the
development processes (i.e, the requirements are directly formulated in the SPS
when developing the requirements) then these costs could be omitted.

Secondly, we evaluate the execution time of the tool. If the requirements
engineer needs to wait a long time before getting the validation results this is
costly. As he is working on other topics in the meantime, he will need some time
to familiarize himself again with the requirements, and it will need more time
to debug the requirements. In practice, the requirements engineer needs to wait
for the results of a manual review for some days. Thus, our tool chain has to
compete with that time slot. The execution time for the checks is considerably
smaller. The longest execution time took 1 h 32 Min—a big improvement. Thus,
with respect to the waiting time, applying the tool chain might even decrease
the costs of requirements engineering, as the requirements engineer can validate
a set of requirements directly when specifying the requirements.

Over all, it seems that the tool chain is very beneficial and the costs of applying
the tool chain are reasonable, they might even slightly decrease. However, there is
one restriction: we suspect that for big sets of requirements the space of solutions
grows explosively. For Component 13 and 14, our checks returned with an Out-of-
Memory-Error. Further optimizations are needed to develop efficient algorithms,
still the algorithms have to handle the state explosion problem [19,13]. We think
that the tool chain is cost-effective when validating component requirements or
sets of component requirements, but probably not suited to validate the set of
all system requirements at once. Further studies on bigger sets of requirements
are needed to confirm or refute that belief.

4.2 Observations

Usability. In an initial survey we had asked requirements engineers of Bosch
to apply the SPS on requirements. The results indicated that they thought the

236 A. Post and J. Hoenicke

SPS easy to apply and easy to learn. This was confirmed in our feasibility study:
initially, the training curve was steep. For the first requirements the requirements
engineer needed up to 10 minutes per requirement to express the requirement
in SPS, i. e., to compare the requirement with the available patterns. But once
he had used a pattern at least once the needed time considerably decreased
to 1–3 minutes. Further, all requirements engineers could directly explain the
meaning of a requirement in SPS. Only the use of the different scopes needed
some explanation. Thus, we think that the SPS as input language is suited for
the whole development team, even without much training.

In contrast, we believe that to interpret the output of the checks a more
extensive training is needed. For a given set of requirements we return the check
result, and if the set is rt-inconsistent a run to the rt-inconsistency, and if it
is vacuous the set of requirements that are only vacuously satisfied. Without
training, the engineers could interpret the check results, but they had some
problems in interpreting the runs. But without the runs, the requirements are
very difficult to debug. Thus, we think that the tool chain allows that many
developers specify requirements, and they can do so directly in SPS. But we
recommend that only the requirements engineer checks the requirements for
consistency, rt-consistency and non-vacuity. This way, only the requirements
engineer needs to be trained in interpreting the output of the checks.

For some requirements it was difficult to decide, whether the requirement
should be formalized with an “invariant pattern” or with a “(bounded) response
pattern”, e. g., the requirement “If the system is in error-mode then AssistFunc-
tion has to be deactivated” might be formalized as “Globally, it is always the
case that if errorMode holds then ¬AssistFunctionActive holds as well”, ex-
pressing the desired invariant relation between the two variables. However, on
a deeper abstraction level, that may not be quite true. Say the system state is
calculated in one software function, and AssistFunction is implemented in an-
other function. Both functions are called in the same task, and AssistFunction
checks the system state when being called. Then the formalization “Globally, if
errorMode holds, then ¬AssistFunction holds after at most 10 ms.” would be
more appropriate. The natural language requirement may be the same on every
abstraction level, although its meaning changes depending on the context. In
contrast the formalized requirements must change depending on the abstraction
levels—they make the change of the semantics explicit.

Specification Language. We further noticed that if a requirements engineer
specified a system component in SPS, then the requirements in SPS tended
to contain more information than the ones in natural language, e. g., the re-
quirement “If the locally measured voltage is not available for Local Voltage
Usage (InternVoltageError), the system voltage value as received from the bus
shall be used.” was expressed in SPS as “Globally, it is always the case that if
¬BusOff ∧ InternVoltageError holds then VoltageValue’=VoltageValueFromBus
eventually holds”. The requirements engineer used the implicit knowledge, that
the voltage value received from the bus is only received if the bus is not off.
Thus, it seems that the SPS is a way to make implicit knowledge more explicit.

Formalization and Analysis of Real-Time Requirements 237

Nearly all requirements in the case study specified invariant or future behavior.
The precedence pattern was only used once.Further, about two thirds of the
requirements were formalized using the invariant pattern(it is always the case
that if P holds then S holds as well) or (bounded) response pattern (it is always
the case that if P holds then S eventually holds, resp., then S holds after at most
C time units. The other patterns were only rarely used. We believe that this
is the case, as for the specification of the behavioral requirements the systems
were seen as blackbox. Thus, the resulting requirements mostly relate input and
output variables to each other.

What we found a bit surprising was that there was no need to express uncer-
tainty or prioritization in the specification language. When asking the require-
ments engineers, they said that all requirements needed to be implemented,
there are no “nice-to-have” requirements. The only prioritization needed is the
one to decide what requirement has to be implemented for what release—but this
question was managed with the help of requirements attributes. Furthermore, al-
though there is a high degree of uncertainty in the requirements, this uncertainty
is hidden within application parameters, e. g., say AssistFunction shall only be
active if the vehicle speed is above a certain threshold, however the value of that
threshold is not yet known. Then, the requirements engineers invent an applica-
tion parameter and specify the requirement like, e. g., “if velocity ≤ threshold
holds then ¬AssistFunctionActive holds as well”. This way, uncertainty is re-
solved using application parameters.

Change Requests. We detected three items to tailor the specification language by
Konrad and Cheng to the automotive domain. First, the requirements engineers
asked for a new pattern, specifying invariant behavior. They wanted to express
requirements like if P holds then S holds as well. In the specification language
given by [9] this behavior can be expressed using the absencepattern, i. e., via “it
is never the case that P∧¬S holds”. However, the requirements engineers thought
it to be not intuitive, to specify invariant behavior via the absence pattern. We
thus extended the specification language with the further pattern, to improve
the intuitiveness. Second, some requirements engineers asked us to omit the “it
is always the case that” in the precedence, response, min duration, max duration,
bnd recurrence-, bnd response and bnd invariance pattern. They noted that this
part of the pattern sounded strange in combination with the Globally scope.
Third, we needed one further pattern. In the error handler concept, errors need
to be qualified (i. e., they need to be detected during some time) before they are
stored in the error memory. To express such a behavior we needed one further
pattern, “if P holds for at least c time units then S holds after at most c time
units.”.

5 Threats to Validity

In this section, we analyze threats to validity defined in Wohlin [17]. Note that
the results of the study are only valid in the given context, we do not aim to

238 A. Post and J. Hoenicke

make any generalizations. Threats to validity concerning the suitability of the
specification language are discussed in [14].

5.1 Construct Validity

Expectancy Effect. Expectations of an evaluator toward the outcome can affect
a study. We formulated the informal requirements in the specification language.
However, the reliability analysis in [14] suggests that applying the specification
language is sufficiently independent of the evaluator. Furthermore, the require-
ments were automatically analyzed by a tool, thus the number of errors is ob-
jectively measured.

Inadequate Preoperational Explication of Constructs. This threat arises if the
measures are not well defined. In order to minimize that threat we discussed
with experts whether our properties inconsistency, rt-inconsistency and vacu-
ity represent their concept of erroneous behavioral requirements. The discussion
indicated that the properties seem to capture erroneous requirements. Further-
more, we formally (i. e., unambiguously) defined the properties. We obtained a
safe approximation of the effort that is spent for the formalization and the check
in separating elicitation, formalization, and analysis, i. e., in measuring the effort
to formulate an informal requirement in specification language (independent of
the elicitation effort) and the execution time of the analysis tools.

5.2 External Validity

Sampling validity. This threat arises if the sample is not representative for the
requirements. The defects in the requirements specifications might over or under
represent the defects in the rest of the corporate requirements specifications.
In order to minimize this threat we used the selection procedure described in
Section 3.2. A limitation of the feasibility study is that we only used requirements
of Bosch projects. Thus we cannot extend our results to the whole automotive
domain.

6 Conclusion

The contribution of this paper is twofold. First, we showed how to build-up a
tool chain that combines a user-friendly input language (based on a SPS) with
an automatic check for consistency, rt-consistency and non-vacuity as proposed
in [13,12] for requirements specified in the real-time logic Duration Calculus.
Second, we have evaluated the tool chain to algorithmically analyze real-time
requirements, in the context of several automotive projects at Bosch. In partic-
ular, compared to the case studies in [13,12] we extended the number of samples
to 16 samples from six samples in [13] and eleven samples in [12]. The results of
the study indicate that the effort for the formalization of real-time requirements
is acceptable, that the analysis algorithms are computationally feasible, and that

Formalization and Analysis of Real-Time Requirements 239

the benefit (the detection of specification errors resp. the formal guarantee of
their absence) seems significant. This is encouraging. However, before we can
turn the tool chain into a technology that is apt for industrial use, we need to
solve a number of research and engineering problems related to scalability and
usability. Another avenue for research is to identify more meta-requirements that
can be formalized and automatically analyzed, in addition to the three we con-
sidered in this paper. The more meta-requirements we have, the more errors in
our requirements specifications we will automatically detect (at first), and the
more (mathematically founded) trust in our requirements specification we will
gain (at last).

References

1. Abrial, J.-R.: Formal methods in industry: achievements, problems, future. In:
ICSE, pp. 761–768 (2006)

2. Behrmann, G., David, A., Larsen, K.G.: A Tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004)

3. Dahlstedt, A.G., Persson, A.: Requirements interdependencies - moulding the state
of research into a research agenda. In: REFSQ, pp. 71–80 (2003)

4. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: ICSE, pp. 411–420. ACM, New York (1999)

5. Han, B., Gates, D., Levin, L.: From language to time: A temporal expression an-
chorer. In: TIME, pp. 196–203 (June 2006)

6. Heimdahl, M.P.E., Leveson, N.G.: Completeness and consistency analysis of state-
based requirements. IEEE Trans. on SW Engineering, 3–14 (1995)

7. Heitmeyer, C.L., Jeffords, R.D., Labaw, B.G.: Automated consistency checking of
requirements specifications. ACM Trans. SW Eng. and Meth. 5(3), 231–261 (1996)

8. Hoenicke, J.: Combination of Processes, Data, and Time. PhD thesis, University
of Oldenburg (July 2006)

9. Konrad, S., Cheng, B.H.C.: Real-time specification patterns. In:ICSE 2005: Proc.
27th Int. Conf. Softw. Eng., pp. 372–381. ACM, New York (2005)

10. Kuhn, T.: Acerules: Executing Rules in Controlled Natural Language. In:
Marchiori, M., Pan, J.Z., de Sainte Marie, C. (eds.) RR 2007. LNCS, vol. 4524, pp.
299–308. Springer, Heidelberg (2007)

11. Meyer, R., Faber, J., Hoenicke, J., Rybalchenko, A.: Model checking duration cal-
culus: a practical approach. Formal Asp. Comput. 20(4-5), 481–505 (2008)

12. Post, A., Hoenicke, J., Podelski, A.: Vacuous of real-time requirements. In: RE
2011, pp. 153–162. IEEE (2011)

13. Post, A., Hoenicke, J., Podelski, A.: rt-inconsistency: A New Property for Real-
Time Requirements. In: Giannakopoulou, D., Orejas, F. (eds.) FASE 2011. LNCS,
vol. 6603, pp. 34–49. Springer, Heidelberg (2011)

14. Post, A., Menzel, I., Podelski, A.: Applying restricted english grammar on auto-
motive requirements — does it work? a case study. In: REFSQ, pp. 166–180 (2011)

15. Skakkebæk, J.: Liveness and Fairness in Duration Calculus. In: Jonsson, B., Parrow,
J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 283–298. Springer, Heidelberg (1994)

240 A. Post and J. Hoenicke

16. Walia, G.S., Carver, J.C.: A systematic literature review to identify and classify
software requirement errors. Inf. Softw. Technol. 51(7), 1087–1109 (2009)

17. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in software engineering: an introduction. Kluwer Acad. Pub., Norwell
(2000)

18. Yu, L., Su, S., Luo, S., Su, Y.: Completeness and consistency analysis on require-
ments of distributed event-driven systems. In: TASE, Washington, pp. 241–244
(2008)

19. Zhou, C., Hansen, M.: Duration Calculus: A Formal Approach to Real-Time Sys-
tems. Springer, Heidelberg (2004)

Our Experience

with the CodeContracts Static Checker

(Invited Tutorial)

Francesco Logozzo

Microsoft Research, Redmond, WA, USA
logozzo@microsoft.com

In this tutorial I will report our experience with CodeContracts [5], and in par-
ticular with its static checker (cccheck/clousot) [6].

CodeContracts are a language-agnostic solution to the specification problem.
Preconditions, postconditions and object invariants are with opportune method
calls acting as specification markers [4]. The CodeContracts API is part of the
core .NET standard. The CodeContracts tools have been downloaded more than
50 000 times, and they are currently used in many projects by professional
programmers.

The CodeContracts static checker (cccheck) is designed to be used by non-
expert professional programmers, with no background in formal methods, in their
every-day development activity. The evolution of cccheck is strongly influenced
by the user community, who suggest improvements and new features but who
also do not hesitate to criticize or stress the tool. Because of that, cccheck has a
very pragmatic angle, and in many things it is surprisingly different from what
one may expect from a purely Academic perspective.

The main difference of cccheck with respect to similar tools is that is based
on abstract interpretation [1]. It focuses on the properties of main interest for
the programmer (e.g., non-null values, numerical relationship [9,7], floating point
comparisons [10], collection contents [2], and simple universally and existential
quantifiers . . .). It infers loop invariants, preconditions [3], postconditions, object
invariants [8]; it makes explicit the assumptions in the code as the programmer
type in her program. We found inference to be a crucial point for the adoption of
the tool. Whereas a strict Design-by-Contract discipline requires the programmer
to provide all the annotations, in practice very few of them are willing to pay
the burden of the full annotation process.

In the tutorial I detail the internals of, and the experience with cccheck. I
report (some of) the user feedback (in the good and the bad). I conclude with
a vision of cccheck as a real-time semantic programmer assistant, suggesting
semantic code fixes, improving the refactoring experience (e.g., with the “extract
method with contracts” refactoring of Fig. 1), and acting as a discrete, non-
intrusive program verifier. The verbosity of the warnings can be finely tuned
and only a certain class of warnings can be shown (e.g., “all callers that do not
satisfy this precondition”).

R. Joshi, P. Müller, and A. Podelski (Eds.): VSTTE 2012, LNCS 7152, pp. 241–242, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

242 F. Logozzo

Fig. 1. A screenshot of the extract method with contracts. The suggested contract for
the extracted method is correct, safe, complete and the most general one.

References

1. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL 1977.
ACM Press (1977)

2. Cousot, P., Cousot, R., Logozzo, F.: A parametric segmentation functor for fully
automatic and scalable array content analysis. In: POPL, pp. 105–118 (2011)

3. Cousot, P., Cousot, R., Logozzo, F.: Precondition Inference from Intermittent As-
sertions and Application to Contracts on Collections. In: Jhala, R., Schmidt, D.
(eds.) VMCAI 2011. LNCS, vol. 6538, pp. 150–168. Springer, Heidelberg (2011)

4. Fähndrich, M., Barnett, M., Logozzo, F.: Embedded contract languages. In: SAC
2010: Proceedings of the 2010 ACM Symposium on Applied Computing, pp. 2103–
2110. ACM, New York (2010)

5. Fähndrich, M., Barnett, M., Logozzo, F.: Code Contracts (March 2009)
6. Fähndrich, M., Logozzo, F.: Static Contract Checking with Abstract Interpreta-

tion. In: Beckert, B., Marché, C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp. 10–30.
Springer, Heidelberg (2011)

7. Laviron, V., Logozzo, F.: Subpolyhedra: A (More) Scalable Approach to Infer
Linear Inequalities. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS,
vol. 5403, pp. 229–244. Springer, Heidelberg (2009)

8. Logozzo, F.: Cibai: An Abstract Interpretation-Based Static Analyzer for Modular
Analysis and Verification of Java Classes. In: Cook, B., Podelski, A. (eds.) VMCAI
2007. LNCS, vol. 4349, pp. 283–298. Springer, Heidelberg (2007)

9. Logozzo, F., Fähndrich, M.: Pentagons: a weakly relational abstract domain for
the efficient validation of array accesses. In: SAC, pp. 184–188 (2008)

10. Logozzo, F., Fähndrich, M.: Checking compatibility of bit sizes in floating point
comparison operations. In: 3rd workshop on Numerical and Symbolic Abstract
Domains. ENTCS (2011)

Isabelle/Circus: A Process Specification

and Verification Environment

Abderrahmane Feliachi, Marie-Claude Gaudel, and Burkhart Wolff

Univ. Paris-Sud, Laboratoire LRI, UMR8623,
Orsay, F-91405, France

CNRS, Orsay, F-91405, France
{Abderrahmane.Feliachi,Marie-Claude.Gaudel,Burkhart.Wolff}@lri.fr

Abstract. The Circus specification language combines elements for com-
plex data and behavior specifications, using an integration of Z and CSP
with a refinement calculus. Its semantics is based on Hoare and He’s
unifying theories of programming (UTP).

We develop a machine-checked, formal semantics based on a “shal-
low embedding” of Circus in Isabelle/UTP (our semantic theory of UTP
based on Isabelle/HOL). We derive proof rules from this semantics and
implement tactic support that finally allows for proofs of refinement for
Circus processes (involving both data and behavioral aspects).

This proof environment supports a syntax for the semantic definitions
which is close to textbook presentations of Circus.

Keywords: Circus, denotational semantics, Isabelle/HOL, Process
Algebras, Refinement.

1 Introduction

Many systems involve both complex (sometimes infinite) data structures and
interactions between concurrent processes. Refinement of abstract specifications
of such systems into more concrete ones, requires an appropriate formalisation
of refinement and appropriate proof support.

There are several combinations of process-oriented modeling languages with
data-oriented specification formalisms such as Z or B or CASL; examples are
discussed in [3,10,17,14]. In this paper, we consider Circus [18], a language for
refinement, that supports modeling of high-level specifications, designs, and con-
crete programs. It is representative of a class of languages that provide facilities
to model data types, using a predicate-based notation, and patterns of interac-
tions, without imposing architectural restrictions. It is this feature that makes
it suitable for reasoning about both abstract and low-level designs.

We present a “shallow embedding” of the Circus semantics enabling state vari-
ables and channels in Circus to have arbitrary HOL types. Therefore, the entire
handling of typing can be completely shifted to the (efficiently implemented) Is-
abelle type-checker and is therefore implicit in proofs. This drastically simplifies
definitions and proofs, and makes the reuse of standardized proof procedures

R. Joshi, P. Müller, and A. Podelski (Eds.): VSTTE 2012, LNCS 7152, pp. 243–260, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

244 A. Feliachi, M.-C. Gaudel, and B. Wolff

possible. Compared to implementations based on a “deep embedding” such as
[19] this significantly improves the usability of the resulting proof environment.

Our representation brings particular technical challenges and contributions
concerning some important notions about variables. The main challenge was to
represent alphabets and bindings in a typed way that preserves the semantics
and improves deduction. We provide a representation of bindings without an
explicit management of alphabets. However, the representation of some core
concepts in the unifying theories of programming (UTP) and Circus constructs
(variable scopes and renaming) became challenging. Thus, we propose a (stack-
based) solution that allows the coding of state variables scoping with no need
for renaming. This solution is even a contribution to the UTP theory that does
not allow nested variable scoping. Some challenging and tricky definitions (e.g.
channels and name sets) are explained in this paper.

This paper is organized as follows. The next section gives an introduction to
the basics of our work: Isabelle/HOL, UTP and Circus with a short example of a
Circus process. In Section 3, we present our embedding of the basic concepts of
Circus (alphabet, variables ...). We introduce the representation of some Circus
actions and process, with an overview of the Isabelle/Circus syntax. In Section 4,
we show on an example, how Isabelle/Circus can be used to write specifications.
We give some details on what is happening “behind the scenes” when the system
parses each part of the specification. In the last part of this section, we show how
to write proofs based on specifications, and give a refinement proof example. A
more developed version of this paper can be found in [9].

2 Background

2.1 Isabelle, HOL and Isabelle/HOL

Isabelle [12] is a generic theorem prover implemented in SML. It is based on
the so-called “LCF-style architecture”, which makes it possible to extend a small
trusted logical kernel by user-programmed procedures in a logically safe way.
New object logics can be introduced to Isabelle by specifying their syntax and
semantics, by deriving its inference rules from there and program specific tactic
support for the object logic. Isabelle is based on a typed λ-calculus including a
Haskell-style type-system with type-classes (e.g. in α :: order, the type-variable
ranges over all types that posses a partial ordering.)

Higher-Order Logic (HOL) [7,1] is a classical logic based on a simple
type system. It provides the usual logical connectives like ∧ , ⇒ , ¬
as well as the object-logical quantifiers ∀ x • P x and ∃ x • P x ; in con-
trast to first-order logic, quantifiers may range over arbitrary types, includ-
ing total functions f : : α ⇒ β. HOL is centered around extensional equality
= : : α ⇒ α ⇒ bool. HOL is more expressive than first-order logic, since,

e. g., induction schemes can be expressed inside the logic. Being based on some
polymorphically typed λ-calculus, HOL can be viewed as a combination of a pro-
gramming language like SML or Haskell and a specification language providing
powerful logical quantifiers ranging over elementary and function types.

Isabelle/Circus: A Process Specification and Verification Environment 245

Isabelle/HOL is an instance of Isabelle with higher-order logic. It provides a
rich collection of library theories like sets, pairs, relations, partial functions lists,
multi-sets, orderings, and various arithmetic theories which only contain rules
derived from conservative, i. e. logically safe definitions. Setups for the automated
proof procedures like simp, auto, and arithmetic types such as int are provided.

2.2 Advanced Specification Constructs in Isabelle/HOL

Constant Definitions. In its easiest form, constant definitions are definitional
logical axioms of the form c ≡ E where c is a fresh constant symbol not occurring
in E which is closed (both wrt. variables and type variables). For example:

definition upd::(α⇒β)⇒α⇒β⇒(α⇒β) ("_�_ := _�")
where upd f x v ≡ λ z. if x=z then v else f z

The pragma ("_� _ := _�") for the Isabelle syntax engine introduces the nota-
tion f�x:=y� for upd f x y. Moreover, some elaborate preprocessing allows for
recursive definitions, provided that a termination ordering can be established.
Such recursive definitions are thus internally reduced to definitional axioms.

Type Definitions. Types can be introduced in Isabelle/HOL in different ways.
The most general way to safely introduce new types is using the typedef con-
struct. This allows introducing a type as a non-empty subset of an existing type.
More precisely, the new type is specified to be isomorphic to this non-empty
subset. For instance:

typedef mytype = "{x::nat. x < 10}"

This definition requires that the set is non-empty: ∃ x. x∈{x::nat. x<10},
which is easy to prove in this case:

by (rule_tac x = 1 in exI, simp)

where rule_tac is a tactic that applies an introduction rule, and exI corresponds
to the introduction of the existential quantification.

Similarly, the datatype command allows the definition of inductive datatypes.
It introduces a datatype using a list of constructors. For instance, a logical
compiler is invoked for the following introduction of the type option:

datatype α option = None | Some α

which generates the underlying type definition and derives distinctness rules
and induction principles. Besides the constructors None and Some, the following
match-operator and his rules are also generated:

case x of None⇒ ... | Some a ⇒ ...

Extensible Records. Isabelle/HOL’s support for extensible records is of par-
ticular importance for our work. Record types are denoted, for example, by:

record T = a::T1
b::T2

246 A. Feliachi, M.-C. Gaudel, and B. Wolff

which implicitly introduces the record constructor �a:=e1,b:=e2� and the up-
date of record r in field a, written as r�a:= x�. Extensible records are represented
internally by cartesian products with an implicit free component δ, i.e. in this
case by a triple of the type T1 × T2 × δ. The third component can be referenced
by a special selector more available on extensible records. Thus, the record T can
be extended later on using the syntax:

record ET = T + c::T3

The key point is that theorems can be established, once and for all, on T types,
even if future parts of the record are not yet known, and reused in the later
definition and proofs over ET-values. Using this feature, we can model the effect
of defining the alphabet of UTP processes incrementally while maintaining the
full expressivity of HOL wrt. the types of T1, T2 and T3.

2.3 Circus and Its UTP Foundation

Circus is a formal specification language [18] which integrates the notions of
states and complex data types (in a Z-like style) and communicating parallel
processes inspired from CSP. From Z, the language inherits the notion of a
schema used to model sets of (ground) states as well as syntactic machinery to
describe pre-states and post-states; from CSP, the language inherits the concept
of communication events and typed communication channels, the concepts of
deterministic and non-deterministic choice (reflected by the process combinators
P �P ′ and P � P ′), the concept of concealment (hiding) P\A of events in A
occurring in in the evolution of process P . Due to the presence of state variables,
the Circus synchronous communication operator syntax is slightly different frome
CSP: P � n | c | n ′ �P ′ means that P and P ′ communicate via the channels
mentioned in c; moreover, P may modify the variables mentioned in n only, and
P ′ in n ′ only, n and n ′ are disjoint name sets.

Moreover, the language comes with a formal notion of refinement based on
a denotational semantics. It follows the failure/divergence semantics [15], (but
coined in terms of the UTP [13]) providing a notion of execution trace tr, re-
fusals ref, and divergences. It is expressed in terms of the UTP [11] which makes
it amenable to other refinement-notions in UTP. Figure 1 presents a simple Cir-
cus specification, FIG, the fresh identifiers generator.

Predicates and Relations. The UTP is a semantic framework based on an
alphabetized relational calculus. An alphabetized predicate is a pair (alphabet ,
predicate) where the free variables appearing in the predicate are all in the al-
phabet, e.g. ({x , y}, x > y). As such, it is very similar to the concept of a schema
in Z. In the base theory Isabelle/UTP of this work, we represent alphabetized
predicates by sets of (extensible) records, e.g. {A. x A > y A}.

An alphabetized relation is an alphabetized predicate where the alphabet is
composed of input (undecorated) and output (dashed) variables. In this case the
predicate describes a relation between input and output variables, for example

Isabelle/Circus: A Process Specification and Verification Environment 247

[ID]

channel req
channel ret , out : ID

process FIG =̂ begin
state S == [idS : P ID]
Init =̂ idS := ∅

Out
ΔS
v ! : ID

v ! /∈ idS
idS ′ = idS ∪ {v !}

Remove
ΔS
x? : ID

idS ′ = idS \ {x?}

• Init ; var v : ID •
(μ X • (req → Out ; out !v → Skip � ret?x → Remove) ; X)

end

Fig. 1. The Fresh Identifiers Generator in (Textbook) Circus

({x , x ′, y, y ′}, x ′ = x +y) which is a notation for: {(A,A’).x A’ = x A + y A},
which is a set of pairs, thus a relation.

Standard predicate calculus operators are used to combine alphabetized pred-
icates. The definition of these operators is very similar to the standard one, with
some additional constraints on the alphabets.

Designs and Processes. In UTP, in order to explicitly record the termination
of a program, a subset of alphabetized relations is introduced. These relations
are called designs and their alphabet should contain the special boolean obser-
vational variable ok. It is used to record the start and termination of a program.
A UTP design is defined as follows in Isabelle:

(P � Q) ≡ λ (A,A’). (ok A ∧ P (A,A’)) −→ (ok A’ ∧ Q (A,A’))

Following the way of UTP to describe reactive processes, more observational
variables are needed to record the interaction with the environment. Three ob-
servational variables are defined for this subset of relations: wait, tr and ref.
The boolean variable wait records if the process is waiting for an interaction
or has terminated. tr records the list (trace) of interactions the process has
performed so far. The variable ref contains the set of interactions (events) the
process may refuse to perform. These observational variables defines the basic
alphabet of all reactive processes called “alpha_rp”.

Some healthiness conditions are defined over wait, tr and ref to ensure that
a recative process satisfies some properties [6] (see Table 2 in [9]).

A CSP process is a UTP reactive process that satisfies two additional health-
iness conditions(all well-formedness conditions can be found in [9]). A process
that satisfies these conditions is said to be CSP healthy.

248 A. Feliachi, M.-C. Gaudel, and B. Wolff

3 Isabelle/Circus

The Isabelle/Circus environment allows a syntax of processes which is close to
the textbook presentations of Circus (see Fig. 2). Similar to other specification
constructs in Isabelle/HOL, this syntax is “parsed away”, i. e. compiled into
an internal representation of the denotational semantics of Circus, which is a
formalization in form of a shallow embedding of the (essentially untyped) paper-
and-pencil definitions by Oliveira et al. [13], based on UTP. Circus actions are
defined as CSP healthy reactive processes.

Process ::= circusprocess Tpar∗ name = PParagraph∗ where Action
PParagraph ::= AlphabetP | StateP | ChannelP | NamesetP | ChansetP | SchemaP

| ActionP
AlphabetP ::= alphabet [vardecl+]
vardecl ::= name :: type
StateP ::= state [vardecl+]
ChannelP ::= channel [chandecl+]
chandecl ::= name | name type
NamesetP ::= nameset name = [name+]
ChansetP ::= chanset name = [name+]
SchemaP ::= schema name = SchemaExpression
ActionP ::= action name = Action
Action ::= Skip | Stop | Action ; Action | Action � Action | Action � Action

| Action \ chansetN | var := expr | guard & Action | comm → Action
| Schema name | ActionName | μ var • Action | var var • Action
| Action � namesetN | chansetN | namesetN � Action

Fig. 2. Isabelle/Circus syntax

In the UTP representation of reactive processes we have given in a previous
paper [8], the process type is generic. It contains two type parameters that
represent the channel type and the alphabet of the process. These parameters
are very general, and they are instantiated for each specific process. This could
be problematic when representing the Circus semantics, since some definitions
rely directly on variables and channels (e.g assignment and communication). In
this section we present our solution to deal with this kind of problems, and our
representation of the Circus actions and processes.

We now describe the foundation as well as the semantic definition of some
process operators of Circus. A distinguishing feature of Circus processes are ex-
plicit state variables which do not exist in other process algebras like, e.g., CSP.
These can be:

– global state variables, i. e. they are declared via alphabetized predicates in
the state section, or Z-like Δ operations on global states that generate
alphabetized relations, or

– local state variables, i. e. they are result of the variable declaration statement
var var • Action. The scope of local variables is restricted to Action.

On both kind of state variables, logical constraints may be expressed.

Isabelle/Circus: A Process Specification and Verification Environment 249

3.1 Alphabets and Variables

In order to define the set of variables of a specification, the Circus semantics
considers the alphabet of its components, be it on the level of alphabetized
predicates, alphabetized relations or actions. We recall that these items are rep-
resented by sets of records or sets of pairs of records. The alphabet of a process is
defined by extending the basic reactive process alphabet (cf. Section 2.3) by its
variable names and types. For the example FIG, where the global state variable
idS is defined, this is reflected in Isabelle/Circus by the extension of the process
alphabet by this variable, i.e. by the extension of the Isabelle/HOL record:

record α alpha = α alpha_rp + idS :: ID set

This introduces the record type alpha that contains the observational variables
of a reactive process, plus the variable idS. Note that our Circus semantic rep-
resentation allows “built-in” bindings of alphabets in a typed way. Moreover,
there is no restriction on the associated HOL type. However, the inconvenience
of this representation is that variables cannot be introduced “on the fly”; they
must be known statically i.e. at type inference time. Another consequence is
that a ”syntactic” operation such as variable renaming has to be expressed as a
”semantic” operation that maps one record type into another.

Updating and Accessing Global Variables. Since the alphabets are repre-
sented by HOL records, i.e. a kind binding ”name �→ value”, we need a certain
infrastructure to access data in them and to update them. The Isabelle repre-
sentation as records gives us already two functions (for each record)“select” and
“update”. The “select” function returns the value of a given variable name, and
the “update” functions updates the value of this variable. Since we may have
different HOL types for different variables, a unique definition for select and
update cannot be provided. There is an instance of these functions for each vari-
able in the record. The name of the variable is used to distinguish the different
instances: for the select function the name is used directly and for the update
function the name is used as a prefix e.g. for a variable named “x” the names of
the select and update functions are respectively x of type α and x_update.

Since a variable is characterized essentially by these functions, we define a
general type (synonym) called var which represents a variable as a pair of its
select and update function (in the underlying state σ).

types (β, σ) var = "(σ ⇒ β) * ((β ⇒ β) ⇒ σ ⇒ σ)"

For a given alphabet (record) of type σ , (β, the type σ)var represents the
type of the variables whose value type is β. One can then extract the select and
update functions from a given variable with the following functions:

definition select :: "(β, σ) var ⇒σ ⇒ β"
where select f ≡ (fst f)

definition update :: "(β, σ) var ⇒ β ⇒ σ ⇒ σ "
where update f v ≡ (snd f) (λ _ . v)

250 A. Feliachi, M.-C. Gaudel, and B. Wolff

Finally, we introduce a function called VAR to implement a syntactic translation
of a variable name to an entity of type var.

syntax "_VAR" :: "id ⇒(β, σ) var" ("VAR _")

translations VAR x => (x, _update_ name x)

Note that in this syntactic translation rule, _update_ name x stands for the
concatenation of the string _update_ with the content of the variable x; the
resulting _update_x in this example is mapped to the field-update function
of the extensible record x_update by a default mechanism. On this basis, the
assignment notation can be written as usual:

syntax

"_assign" :: "id ⇒(σ ⇒β) ⇒ (α, σ) action" ("_ ‘:=‘ _")

translations

"x ‘:=‘ E" => "CONST ASSIGN (VAR x) E"

and mapped to the semantics of the program variable (x,x_update) together
with the universal ASSIGN operator defined later on, in Section 3.3.

Updating and Accessing Local Variables. In Circus, local program variables
can be introduced on the fly, and their scopes are explicitly defined, as can be
seen in the FIG example. In textbook Circus, nested scopes are handled by
variable renaming which is not possible in our representation due to the implicit
representation of variable names. We represent local program variables by global
variables, using the var type defined above, where selection and update involve
an explicit stack discipline. Each variable is mapped to a list of values, and not
to one value only (as for state variables). Entering the scope of a variable is
just adding a new value as the head of the corresponding values list. Leaving a
variable scope is just removing the head of the values list. The select and update
functions correspond to selecting and updating the head of the list. This ensures
dynamic scoping, as it is stated by the Circus semantics.

Note that this encoding scheme requires to make local variables lexically dis-
tinct from global variables; local variable instances are just distinguished from
the global ones by the stack discipline.

3.2 Synchronization Infrastructure: Name Sets and Channels

Name Sets. An important notion, used in the definition of parallel Circus
actions, is name sets as seen in Section 2.3. A name set is a set of variable names,
which is a subset of the alphabet. This notion cannot be directly expressed in
our representation since variable names are not explicitly represented. Thus its
definition relies on the characterization of the variables in our representation. As
for variables, name sets are defined by their functional characterization. They
are used in the definition of the binding merge function MSt below:
∀ v • (v ∈ ns1 ⇒ v ′ = (1.v)) ∧ (v ∈ ns2 ⇒ v ′ = (2.v)) ∧ (v /∈ ns1 ∪ ns2 ⇒ v ′ = v).

Isabelle/Circus: A Process Specification and Verification Environment 251

The disjoint name sets ns1 and ns2 are used to determine which variable
values (extracted from local bindings of the parallel components) are used to
update the global binding of the process. A name set can be functionally defined
as a binding update function, that copies values from a local binding to the
global one. For example, a name set NS that only contains the variable x can
be defined as follows in Isabelle/Circus:

definition NS lb gb ≡ x_update (x lb) gb

where lb and gb stands for local and global bindings, x and x_update are the
select and update functions of variable x. Then the merge function can be defined
by composing the application of the name sets to the global binding.

Channels. Reactive processes interact with the environment via synchroniza-
tions and communications. A synchronization is an interaction via a channel
without any exchange of data. A communication is a synchronization with data
exchange. In order to reason about communications in the same way, a datatype
channels is defined using the channels names as constructors. For instance, in:

datatype channels = chan1 | chan2 nat | chan3 bool

we declare three channels: chan1 that synchronizes without data , chan2 that
communicates natural values and chan3 that exchanges boolean values.

This definition makes it possible to reason globally about communications
since they have the same type. However, the channels may not have the same
type: in the example above, the types of chan1, chan2 and chan3 are respectively
channels, nat ⇒ channels and bool ⇒channels. In the definition of some
Circus operators, we need to compare two channels, and one can’t compare for
example chan1 with chan2 since they don’t have the same type. A solution
would be to compare chan1 with (chan2 v). The types are equivalent in this
case, but the problem remains because comparing (chan2 0) to (chan2 1) will
state inequality just because the communicated values are not equal. We could
define an inductive function over the datatype channels to compare channels,
but this is only possible when all the channels are known a priori .

Thus, we add some constraint to the generic channels type: we require the
channels type to implement a function chan_eq that tests the equality of two
channels. Fortunately, Isabelle/HOL provides a construct for this kind of restric-
tion: the type classes (sorts) mentioned in Section 2.1. We define a type class
(interface) chan_eq that contains a signature of the chan_eq function.

class chan_eq =

fixes chan_eq :: "α ⇒α ⇒ bool"

begin end

Concrete channels type must implement the interface (class) “ chan_eq” that
can be easily defined for this concrete type. Moreover, one can use this class
to add some definition that depends on the channel equivalence function. For
example, a trace equivalence function can be defined as follows:

252 A. Feliachi, M.-C. Gaudel, and B. Wolff

fun tr_eq where

tr_eq [] [] = True | tr_eq xs [] = False | tr_eq [] ys = False

| tr_eq (x#xs) (y#ys) = if chan_eq x y then tr_eq xs ys else False

It is applicable to traces of elements whose type belongs to the sort chan_eq.

3.3 Actions and Processes

The Circus actions type is defined as the set of all the CSP healthy reactive
processes. The type (α,σ)relation_rp is the reactive process type where α
is of channels type and σ is a record extensions of action_rp, i. e. the global
state variables. On this basis, we can encode the concept of a process for a family
of possible state instances. We introduce below the vital type action:

typedef(Action)

(α::chan_eq,σ) action = {p::(α,σ)relation_rp. is_CSP_process p}

proof - {...}

qed

As mentioned before, a type-definition introduces a new type by stating a set. In
our case it is the set of reactive processes that satisfy the healthiness-conditions
for CSP-processes, isomorphic to the new type.

Technically, this construct introduces two constants definitions Abs_Action

and Rep_Action respectively of type (α,σ) relation_rp ⇒(α,σ) action and
(α,σ)action ⇒(α,σ)relation_rp as well as the usual two axioms express-
ing the bijection Abs_Action(Rep_Action(X))=X and is_CSP_process p =⇒
Rep_Action(Abs_Action(p))=p where is_CSP_process captures the healthi-
ness conditions.

Every Circus action is an abstraction of an alphabetized predicate. In [9], we
introduce the definitions of all the actions and operators using their denotational
semantics. The environment contains, for each action, the proof that this predi-
cate is CSP healthy. In this section, we present some of the important definitions,
namely: basic actions, assignments, communications, hiding, and recursion.

Basic Actions. Stop is defined as a reactive design, with a precondition true

and a postcondition stating that the system deadlocks and the traces are not
evolving.

definition

Stop ≡ Abs_Action (R (true �λ(A, A’). tr A’ = tr A ∧ wait A’))

Skip is defined as a reactive design, with a precondition true and a postcondition
stating that the system terminates and all the state variables are not changed.
We represent this fact by stating that the more field (seen in Section 2.2) is not
changed, since this field is mapped to all the state variables. Note that using the
more-field is a tribute to our encoding of alphabets by extensible records and
stands for all future extensions of the alphabet (e.g. state variables).

definition Skip ≡ Abs_Action (R (true � λ (A, A’). tr A’ = tr A

∧ ¬ wait A’ ∧ more A = more A’))

Isabelle/Circus: A Process Specification and Verification Environment 253

The Universal Assignment Action. In Section 3.1, we described how global
and local variables are represented by access- and updates functions introduced
by fields in extensible records. In these terms, the ”lifting” to the assignment
action in Circus processes is straightforward:

definition

ASSIGN::"(β, σ) var ⇒(σ ⇒ β) ⇒ (α::ev_eq, σ) action"

where

ASSIGN x e ≡ Abs_Action (R (true � Y))
where

Y = λ(A, A’). tr A’ = tr A ∧ ¬ wait A’ ∧
more A’ = (assign x (e (more A))) (more A)

where assign is the projection into the update operation of a semantic variable
described in section 3.1.

Communications. The definition of prefixed actions is based on the definition
of a special relation do_I. In the Circus denotational semantics [13], various
forms of prefixing were defined. In our theory, we define one general form, and
the other forms are defined as special cases.

definition do_I c x P ≡ X � wait o fst � Y

where

X = (λ (A, A’). tr A = tr A’ ∧ ((c ‘ P) ∩ ref A’) = {})

and

Y = (λ (A, A’). hd ((tr A’) - (tr A)) ∈ (c ‘ P) ∧
(c (select x (more A))) = (last (tr A’)))

where c is a channel constructor, x is a variable (of var type) and P is a pred-
icate. The do_I relation gives the semantics of an interaction: if the system is
ready to interact, the trace is unchanged and the waiting channel is not refused.
After performing the interaction, the new event in the trace corresponds to this
interaction.

The semantics of the whole action is given by the following definition:

definition Prefix c x P S ≡ Abs_Action(R (true � Y)) ; S

where

Y = do_I c x P ∧ (λ (A, A’). more A’ = more A)

where c is a channel constructor, x is a variable (of type var), P is a predicate and
S is an action. This definition states that the prefixed action semantics is given
by the interaction semantics (do_I) sequentially composed with the semantics
of the continuation (action S).

Different types of communication are considered:

– Inputs: the communication is done over a variable.
– Constrained Inputs: the input variable value is constrained with a predicate.
– Outputs: the communications exchanges only one value.
– Synchronizations: only the channel name is considered (no data).

254 A. Feliachi, M.-C. Gaudel, and B. Wolff

The semantics of these different forms of communications is based on the general
definition above.

definition read c x P ≡ Prefix c x true P

definition write1 c a P ≡ Prefix c (λs. a s, (λ x. λy. y)) true P

definition write0 c P ≡ Prefix (λ_.c) (λ_._, (λ x. λy. y)) true P

where read, write1 and write0 respectively correspond to inputs, outputs and
synchronization. Constrained inputs correspond to the general definition.

We configure the Isabelle syntax-engine such that it parses the usual commu-
nication primitives and gives the corresponding semantics:

translations

c ? p →P == CONST read c (VAR p) P

c ? p : b →P == CONST Prefix c (VAR p) b P

c ! p →P == CONST write1 c p P

a → P == CONST write0 (TYPE(_)) a P

Hiding. The hiding operator is interesting because it depends on a channel set.
This operator P \ cs is used to encapsulate the events that are in the channel set
cs. These events become no longer visible from the environment. The semantics
of the hiding operator is given by the following reactive process:

definition

Hide ::"[(α, σ) action , α set] ⇒(α, σ) action" (infixl "\")

where

P \ cs ≡ Abs_Action(R(λ (A, A’).

∃ s. (Rep_Action P)(A, A’(|tr :=s, ref := (ref A’) ∪ cs|))
∧ (tr A’ - tr A) = (tr_filter (s - tr A) cs))); Skip

The definition uses a filtering function tr_filter that removes from a trace the
events whose channels belong to a given set. The definition of this function is
based on the function chan_eq we defined in the class chan_eq. This explains
the presence of the constraint on the type of the action channels in the hiding
definition, and in the definition of the filtering function below:

fun tr_filter::"a::chan_eq list ⇒a set ⇒a list" where

tr_filter [] cs = []

| tr_filter (x#xs) cs = (if (¬ chan-in_set x cs)

then (x#(tr_filter xs cs))

else (tr_filter xs cs))

where the chan-in_set function checks if a given channel belongs to a channel
set using chan_eq as equality function.

Recursion. To represent the recursion operator “μ” over actions, we use the
universal least fix-point operator “lfp” defined in the HOL library for lattices
and we follow again [13]. The use of least fix-points in [13] is the most substantial
deviation from the standard CSP denotational semantics, which requires Scott-
domains and complete partial orderings. The operator lfp is inherited from the

Isabelle/Circus: A Process Specification and Verification Environment 255

“Complete Lattice class” under some conditions, and all theorems defined over
this operator can be reused. In order to reuse this operator, we have to show that
the least-fixpoint over functionals that enrich pairs of failure - and divergence
trace sets monotonely, produces an action that satisfies the CSP healthiness
conditions. This consistency proof for the recursion operator is the largest con-
tained in the Isabelle/Circus library.

Therefore, we must prove that the Circus actions type defines a complete
lattice. This leads to prove that the actions type belongs to the HOL “Complete
Lattice class”. Since type classes in HOL are hierarchic, the proof is in three
steps: first, a proof that the Circus actions type forms a lattice by instantiating
the HOL “Lattice class”; second, a proof that actions type instantiates a subclass
of lattices called “Bounded Lattice class”; third, proof of the instantiation from
the “Complete Lattice class”. More on these proofs can be found in [9].

Circus Processes. A Circus process is defined in our environment as a local the-
ory by introducing qualified names for all its components. This is very similar to
the notion of namespaces popular in programming languages. Defining a Circus
process locally makes it possible to encapsulate definitions of alphabet, chan-
nels, schema expressions and actions in the same namespace. It is important for
the foundation of Isabelle/Circus to avoid the ambiguity between local process
entities definitions (e.g. FIG.Out and DFIG.Out in the example of Section 4).

4 Using Isabelle/Circus

We describe the front-end interface of Isabelle/Circus. In order to support a
maximum of common Circus syntactic look-and-feel, we have programmed at
the SML level of Isabelle a compiler that parses and (partially) pretty prints
Circus process given in the syntax presented in Figure 2.

4.1 Writing Specifications

A specification is a sequence of paragraphs. Each paragraph may be a declara-
tion of alphabet, state, channels, name sets, channel sets, schema expressions or
actions. The main action is introduced by the keyword where. Below, we illus-
trate how to use the environment to write a Circus specification using the FIG

process example presented in Figure 1.

circusprocess FIG =

alphabet = [v::nat, x::nat]

state = [idS::nat set]

channel = [req, ret nat, out nat]

schema Init = idS := {}

schema Out = ∃ a. v’ = a ∧ v’ /∈ idS ∧ idS’ = idS ∪ {v’}
schema Remove = x /∈ idS ∧ idS’ = idS - {x}

where var v · Schema Init; (μ X ·(req →Schema Out; out!v →Skip)

� (ret?x →Schema Remove); X)

256 A. Feliachi, M.-C. Gaudel, and B. Wolff

Each line of the specification is translated into the corresponding semantic opera-
tor given in Section 3.3. We describe below the result of executing each command
of FIG:

– the compiler introduces a scope of local components whose names are qual-
ified by the process name (FIG in the example).

– alphabet generates a list of record fields to represent the binding. These
fields map names to value lists.

– state generates a list of record fields that corresponds to the state vari-
ables. The names are mapped to single values. This command, together with
alphabet command, generates a record that represents all the variables (for
the FIG example the command generates the record FIG_alphabet, that con-
tains the fields v and x of type nat list and the field idS of type nat set).

– channel introduces a datatype of typed communication channels (for the FIG
example the command generates the datatype FIG_channels that contains
the constructors req without communicated value and ret and out that
communicate natural values).

– schema allows the definition of schema expressions represented as an al-
phabetized relation over the process variables (in the example the schema
expressions FIG.Init, FIG.Out and FIG.Remove are generated).

– action introduces definitions for Circus actions in the process. These defi-
nitions are based on the denotational semantics of Circus actions. The type
parameters of the action type are instantiated with the locally defined chan-
nels and alphabet types.

– where introduces the main action as in action command (in the example the
main action is FIG.FIG of type (FIG_channels, FIG_alphabet)action).

4.2 Relational and Functional Refinement in Circus

The main goal of Isabelle/Circus is to provide a proof environment for Circus
processes. The “shallow-embedding” of Circus and UTP in Isabelle/HOL offers
the possibility to reuse proof procedures, infrastructure and theorem libraries
already existing in Isabelle/HOL. Moreover, once a process specification is en-
coded and parsed in Isabelle/Circus, proofs of, e. g., refinement properties can
be developped using the ISAR language for structured proofs.

To show in more details how to use Isabelle/Circus, we provide a small example
of action refinement proof. The refinement relation is defined as the universal
reverse implication in the UTP. In Circus, it is defined as follows:

definition A1 �c A2 ≡(Rep_Action A1) �utp (Rep_Action A2)

where A1 and A2 are Circus actions, �c and �utp stands respectively for refine-
ment relation on Circus actions and on UTP predicate.

This definition assumes that the actions A1 and A2 share the same alphabet
(binding) and the same channels. In general, refinement involves an important
data evolution and growth. The data refinement is defined in [16,5] by backwards
and forwards simulations. In this paper, we restrict ourselves to a special case,

Isabelle/Circus: A Process Specification and Verification Environment 257

the so-called functional backwards simulation. This refers to the fact that the
abstraction relation R that relates concrete and abstract actions is just a function:

definition Simulation ("_ _ _") where

A1 R A2 = ∀a b.(Rep_Action A2)(a,b) −→(Rep_Action A1)(R a,R b)

where A1 and A2 are Circus actions and R is a function mapping the corresponding
A1 alphabet to the A2 alphabet.

4.3 Refinement Proofs

We can use the definition of simulation to transform the proof of refinement
to a simple proof of implication by unfolding the operators in terms of their
underlying relational semantics. The problem with this approach is that the
size of proofs will grow exponentially with the size of the processes. To avoid
this problem, some general refinement laws were defined in [5] to deal with
the refinement of Circus actions at operators level and not at UTP level. We
introduced and proved a subset of theses laws in our environment (see Table 1).

Table 1. Proved refinement laws

P �S Q P ′ �S Q ′

P ; P ′ �S Q ; Q ′ SeqI
P �S Q g1 �S g2

g1&P �S g2&Q
GrdI

P �S Q x ∼S y

var x • P �S var y •Q
VarI

P �S Q x ∼S y

c?x → P �S c?y → Q
InpI

P �S Q P ′ �S Q ′

P � P ′ �S Q � Q ′ NdetI
P �S Q x ∼S y

c!x → P �S c!y → Q
OutI

[X �S Y]
....

P X �S Q Y mono P mono Q

μX • P X �S μY • Q Y
MuI

P �S Q P ′ �S Q ′

P�P ′ �S Q�Q ′ DetI

[Pre sc1 (S A)]
....

Pre sc2 A

[Pre sc1 (S A) sc2 (A,A′)]
....

sc1 (S A,S A′)
schema sc1 �S schema sc2

SchI
P �S Q

a → P �S a → Q
SyncI

P �S Q P ′ �S Q ′ ns1 ∼S ns ′1 ns2 ∼S ns ′2
P�ns1 | cs | ns2�P ′ �S Q�ns ′1 | cs | ns ′2�Q ′ ParI

Skip �S Skip
SkipI

In Table 1, the relations “x ∼S y” and “g1 S g2” record the fact that the
variable x (repectively the guard g1) is refined by the variable y (repectively by
the guard g2) w.r.t the simulation function S .

These laws can be used in complex refinement proofs to simplify them at the
Circus level. More rules can be defined and proved to deal with more compli-
cated statements like combination of operators for example. Using these laws,

258 A. Feliachi, M.-C. Gaudel, and B. Wolff

and exploiting the advantages of a shallow embedding, the automated proof of
refinement becomes surprisingly simple.

Coming back to our example, let us consider the DFIG specification below,
where the management of the identifiers via the set idS is refined into a set
of removed identifiers retidS and a number max, which is the rank of the last
issued identifier.

circusprocess DFIG =

alphabet = [w::nat, y::nat]

state = [retidS::nat set, max::nat]

schema Init = retidS’ = {} ∧max’ = 0

schema Out = w’ = max ∧ max’ = max+1 ∧ retidS’ = retidS - {max}

schema Remove = y < max ∧ y /∈ retidS ∧ retidS’ = retidS ∪ {y}

∧ max’ = max

where var w · Schema Init; (μ X ·(req →Schema Out; out!w →Skip)

� (ret?y →Schema Remove); X)

We provide the proof of refinement of FIG by DFIG just instantiating the simula-
tion function R by the following abstraction function, that maps the underlying
concrete states to abstract states:

definition Sim A = FIG_alphabet.make (w A) (y A)

({a. a < (max A) ∧ a /∈ (retidS A)})

where A is the alphabet of DFIG, and FIG_alphabet.make yields an alphabet of
type FIG_Alphabet initializing the values of v, x and idS by their corresponding
values from DFIG_alphabet: w, y and {a. a < max ∧ a /∈ retidS}).

To prove that DFIG is a refinement of FIG one must prove that the main action
DFIG.DFIG refines the main action FIG.FIG. The definition is then simplified,
and the refinement laws are applied to simplify the proof goal. Thus, the full
proof consists of a few lines in ISAR:

theorem "FIG.FIG Sim DFIG.DFIG"

apply (auto simp: DFIG.DFIG_def FIG.FIG_def mono_Seq

intro!: VarI SeqI MuI DetI SyncI InpI OutI SkipI)

apply (simp_all add: SimRemove SimOut SimInit Sim_def)

done

First, the definitions of FIG.FIG and DFIG.DFIG are simplified and the defined
refinement laws are used by the auto tactic as introduction rules. The second step
replaces the definition of the simulation function and uses some proved lemmas
to finish the proof. The three lemmas used in this proof: SimInit, SimOut and
SimRemove give proofs of simulation for the schema Init, Out and Remove.

5 Conclusions

We have shown for the language Circus, which combines data-oriented modeling
in the style of Z and behavioral modeling in the style of CSP, a semantics in

Isabelle/Circus: A Process Specification and Verification Environment 259

form of a shallow embedding in Isabelle/HOL. In particular, by representing
the somewhat non-standard concept of the alphabet in UTP in form of exten-
sible records in HOL, we achieved a fairly compact, typed presentation of the
language. In contrast to previous work based on some deep embedding [19],
this shallow embedding allows arbitrary (higher-order) HOL-types for channels,
events, and state-variables, such as, e.g., sets of relations etc. Besides, systematic
renaming of local variables is avoided by compiling them essentially to global
variables using a stack of variable instances. The necessary proofs for showing
that the definitions are consistent — i. e. satisfy altogether is_CSP_healthy —
have been done, together with a number of algebraic simplification laws on Circus
processes.

Since the encoding effort can be hidden behind the scene by flexible extension
mechanisms of the Isabelle, it is possible to have a compact notation for both
specifications and proofs. Moreover, existing standard tactics of Isabelle such
as auto, simp and metis can be reused since our Circus semantics is represen-
tationally close to HOL. Thus, we provide an environment that can cope with
combined refinements concerning data and behavior. Finally, we demonstrate
its power — w.r.t. both expressivity and proof automation — with a small, but
prototypic example of a process-refinement.

In the future, we intend to use Isabelle/Circus for the generation of test-cases,
on the basis of [4], using the HOL-TestGen-environment [2].

Acknowledgement. We warmly thank Markarius Wenzel for his valuable help
with the Isabelle framework. Furthermore, we are greatly indebted to Ana Cav-
alcanti for her comments on the semantic foundation of this work.

References

1. Andrews, P.B.: Introduction to Mathematical Logic and Type Theory: To Truth
through Proof, 2nd edn. Kluwer Academic (2002); now published by Springer

2. Brucker, A.D., Wolff, B.: On theorem prover-based testing. Formal Aspects of
Computing (to appear, 2012)

3. Butler, M.: CSP2B: A practical approach to combining CSP and B. Formal Aspects
of Computing 12, 182–196 (2000)

4. Cavalcanti, A., Gaudel, M.-C.: Testing for refinement in Circus. Acta Informat-
ica 48(2), 97–147 (2011)

5. Cavalcanti, A.L.C., Sampaio, A.C.A., Woodcock, J.C.P.: A Refinement Strategy
for Circus. Formal Aspects of Computing 15(2-3), 146–181 (2003)

6. Cavalcanti, A., Woodcock, J.: A Tutorial Introduction to CSP in Unifying Theories
of Programming. In: Cavalcanti, A., Sampaio, A., Woodcock, J. (eds.) PSSE 2004.
LNCS, vol. 3167, pp. 220–268. Springer, Heidelberg (2006)

7. Church, A.: A formulation of the simple theory of types. Journal of Symbolic
Logic 5(2), 56–68 (1940)

8. Feliachi, A., Gaudel, M.-C., Wolff, B.: Unifying Theories in Isabelle/HOL. In: Qin,
S. (ed.) UTP 2010. LNCS, vol. 6445, pp. 188–206. Springer, Heidelberg (2010)

9. Feliachi, A., Gaudel, M.-C., Wolff, B.: Isabelle/Circus : a process specification
and verification environment. Technical Report 1547, Univ. Paris-Sud XI LRI
(November 2011), http://www.lri.fr/srubrique.php?news=33

http://www.lri.fr/srubrique.php?news=33

260 A. Feliachi, M.-C. Gaudel, and B. Wolff

10. Fischer, C.: How to Combine Z with Process Algebra. In: Bowen, J., Fett, A.,
Hinchey, M.G. (eds.) ZUM 1998. LNCS, vol. 1493, pp. 5–25. Springer, Heidelberg
(1998)

11. Hoare, C.A.R., Jifeng, H.: Unifying Theories of Programming. Prentice Hall Inter-
national Series in Computer Science (1998)

12. Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL—A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

13. Oliveira, M., Cavalcanti, A.L.C., Woodcock, J.C.P.: A denotational semantics for
Circus. Electron. Notes Theor. Comput. Sci. 187, 107–123 (2007)

14. Roggenbach, M.: CSP-CASL: a new integration of process algebra and algebraic
specification. Theor. Comput. Sci. 354, 42–71 (2006)

15. Roscoe, A.W., Hoare, C.A.R., Bird, R.: The Theory and Practice of Concurrency.
Prentice Hall PTR, Upper Saddle River (1997)

16. Sampaio, A., Woodcock, J., Cavalcanti, A.: Refinement in Circus. In: Eriksson,
L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS, vol. 2391, pp. 451–470. Springer,
Heidelberg (2002)

17. Taguchi, K., Araki, K.: The state-based CCS semantics for concurrent Z specifica-
tion. In: ICFEM 1997, pp. 283–292. IEEE (1997)

18. Woodcock, J., Cavalcanti, A.: The Semantics of Circus. In: Bert, D., Bowen, J.,
Henson, M., Robinson, K. (eds.) B 2002 and ZB 2002. LNCS, vol. 2272, pp. 184–
203. Springer, Heidelberg (2002)

19. Zeyda, F., Cavalcanti, A.: Encoding Circus Programs in ProofPowerZ. In:
Butterfield, A. (ed.) UTP 2008. LNCS, vol. 5713, pp. 218–237. Springer, Heidelberg
(2010)

Termination Analysis of Imperative Programs

Using Bitvector Arithmetic�

Stephan Falke1, Deepak Kapur2, and Carsten Sinz1

1 Institute for Theoretical Computer Science, KIT, Germany
{stephan.falke,carsten.sinz}@kit.edu

2 Dept. of Computer Science, University of New Mexico, USA
kapur@cs.unm.edu

Abstract. Currently, nearly all methods for proving termination of im-
perative programs apply an unsound and incomplete abstraction by
treating bitvectors and bitvector arithmetic as (unbounded) integers
and integer arithmetic, respectively. This abstraction ignores the wrap-
around behavior caused by under- and overflows in bitvector arithmetic
operations. This is particularly problematic in the termination analysis of
low-level system code. This paper proposes a novel method for encoding
the wrap-around behavior of bitvector arithmetic within integer arith-
metic. Afterwards, existing methods for reasoning about the termination
of integer arithmetic programs can be employed for reasoning about the
termination of bitvector arithmetic programs. An empirical evaluation
shows the practicality and effectiveness of the proposed method.

1 Introduction

Most methods for proving termination of imperative programs (e.g.,
[1,3,4,5,6,7,9,10,14,18,19,20,23,24] and including our own recent work [13]) de-
veloped during the past decade deviate in their analysis in one important aspect
from the execution of a program on a computer: machine arithmetic operating
on bitvectors of a limited range is treated as arithmetic on (unbounded) integers
(or as arithmetic on real numbers). Thus, the wrap-around behavior caused by
under- and overflow is ignored and the semantics of the computer program is
only approximated.

This approximation is undesirable and can err in both directions:

– A program may be terminating using bitvector arithmetic, but nonterminat-
ing using integer arithmetic.

– A program may be terminating using integer arithmetic, but nonterminating
using bitvector arithmetic.

Example 1. Consider the following C functions:

� This work was supported in part by the “Concept for the Future” of Karlsruhe
Institute of Technology within the framework of the German Excellence Initiative.

R. Joshi, P. Müller, and A. Podelski (Eds.): VSTTE 2012, LNCS 7152, pp. 261–277, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

262 S. Falke, D. Kapur, and C. Sinz

void f(int i)
{

while (i > 0) {
++i;

}
}

void g(int i, int j)
{

while (i <= j) {
++i;

}
}

Then f is terminating using bitvector arithmetic since i will eventually overflow
and become negative.1 On the other hand, f is nonterminating using integer
arithmetic since the loop-condition stays always true whenever the argument
passed to f is at least 1. For g the situation is reversed. It is nonterminating using
bitvector arithmetic if j is INT MAX, but terminating using integer arithmetic
since i will eventually exceed j. ♦

This paper presents an adaptation of the method developed in [13] that correctly
models the wrap-around behavior of bitvector arithmetic. For this, bitvectors are
represented by integers and the wrap-around behavior is explicitly modeled in
the integer domain using a normalization step after each arithmetic operation.
The technique is not specific to [13], however, and can be combined with other
methods for the termination analysis of imperative programs.

The only previous work concerned with the termination analysis of programs
using bitvector arithmetic is, to the best of our knowledge, [8]. That paper has
developed two methods for the synthesis of ranking functions for programs using
bitvector arithmetic:

1. An encoding of bitvector arithmetic within integer arithmetic. This is similar
in spirit to our approach, but [8] requires the use of quantifiers. These quan-
tifiers need to be eliminated before the ranking functions can be synthesized.
Quantifier elimination is an expensive operation in general. In contrast to
this, the approach developed in the present paper does not introduce any
quantifiers and thus does not rely on quantifier elimination.

2. An approach based on template matching for linear ranking functions. This
approach uses a SAT, QBF, or (in the later [26]) SMT solver in order to in-
stantiate the templates by solving quantified bitvector formulas of the shape
∃x1, . . . , xn. ∀y1, . . . , ym. ψ. While QBF solvers can directly be applied to
such formulas, they currently lack in performance and are not very success-
ful in solving the generated formulas. The SMT solver from [26] performs
better than current QBF solvers but its performance is still not completely
satisfactory. In order to apply SAT solvers to quantified bitvector formulas
of the shape ∃x1, . . . , xn. ∀y1, . . . , ym. ψ, [8] uses the following approach: the

1 Strictly speaking, a signed under- or overflow yields undefined behavior according to
the C99 standard. Virtually all compilers treat signed under- and overflows using the
wrap-around behavior, though. This is also the required behavior for unsigned under-
and overflows according to the C99 standard. This paper assumes the wrap-around
behavior semantics for both signed and unsigned under- and overflows.

Termination Analysis of Imperative Programs Using Bitvector Arithmetic 263

existentially quantified variables x1, . . . , xn are instantiated by the bitvectors
corresponding to values from {−1, 0, 1}, and for each of these possibilities,
the instantiated quantifier-free formula ¬ψ is checked for unsatisfiability.
Using this approach, the SAT-based implementation of [8] is quite efficient
but fails to generate ranking functions such as 2x − y which can easily be
generated by our implementation.

An empirical comparison of our method as implemented in the tool KITTeL [13]
with the methods from [8] (and [26]) is very encouraging. Of the 61 examples
considered in [8] (51 terminating ones and 10 nonterminating ones), our imple-
mentation succeeds in proving termination of 38 examples. The methods from [8]
(and [26]) succeed on 30 examples (quantifier-elimination-based approach), 34
examples (template-based approach with a SAT solver), 8 examples (template-
based approach with a QBF solver), and 27 examples (template-based approach
with the SMT solver from [26]), respectively.

The problem of unsoundness if bitvectors are abstracted to integers is also
present in other static program analysis methods. Similar to termination analy-
sis, this problem is rarely addressed, but invariant generation methods based on
modular arithmetic are presented in [17,21]. Furthermore, decision procedures
for modular arithmetic have been developed in [2,25].

This paper is organized as follows: Sect. 2 briefly introduces LLVM [15] since
our method makes use of this compiler framework. Then, Sect. 3 recalls the
method for termination analysis developed in [13], but presents it in a new light.
Next, Sect. 4 shows how the wrap-around behavior of bitvector arithmetic can
be modeled by introducing explicit normalization steps. Section 5 presents an
empirical comparison with the methods of [8] (and [26]), and Sect. 6 concludes.

2 A Brief Overview of LLVM and Its Use in KITTeL

Termination analysis of programs written in real-life programming languages is
a very important, yet notoriously difficult, task. This is in part due to the rich
syntax of these languages. Furthermore, their complex and sometimes ambiguous
semantics gives rise to further intricacies. The tool KITTeL [13] thus performs the
termination analysis not on the source code level but on the level of a compiler
intermediate representation (IR). This approach has the following advantages:

1. The IR is considerably simpler than real-life programming languages. This
makes it possible to accept arbitrary (valid) programs as input.

2. The program whose termination behavior is analyzed is much closer to the
program that is actually executed on the computer since most ambiguities
of the semantics have already been resolved.

3. It becomes possible to analyze the termination behavior of programs written
in any programming language that can be converted into the IR by a compiler
front-end.

More concretely, KITTeL is based on the LLVM compiler framework and its inter-
mediate language LLVM-IR [15]. Since there are compilers for various program-
ming languages built atop of LLVM, KITTeL can be used for the termination

264 S. Falke, D. Kapur, and C. Sinz

analysis of programs written in C, C++, Objective-C, Ada, Fortran, etc. The
main goal of KITTeL is the termination analysis of C programs.

A C program is first compiled into an LLVM-IR program using existing com-
piler front-ends such as llvm-gcc or clang. The LLVM-IR program is next con-
verted into a transition system. This transition system is represented in the form
of an int-based term rewrite system (int-based TRS) [12,13] in KITTeL, and the
termination analysis itself is performed on this int-based TRS.2 Fig. 1 gives an
overview of the approach.

C program LLVM-IR Transition System/TRS Result

Compiler Conversion Termination Analysis

Fig. 1. Bird’s-eye view of KITTeL’s approach

2.1 LLVM-IR

An LLVM-IR program is an assembly program for a register machine with an
unbounded number of registers. All registers in LLVM-IR are typed. Available
types include a void type, integer types like i32 (where the bit-width is given
explicitly but signed and unsigned types are not distinguished), floating point
types, and derived types (such as pointer, array and structure types). The type i1
serves as a Boolean type. An LLVM-IR program consists of one or more functions.
Each function is given as a list of basic blocks, where each basic block is a list
of instructions. Execution of a function starts at the first basic block in the list.

LLVM-IR instructions can roughly be categorized into six classes:

1. Three-address code (TAC) instructions for arithmetical operations, compar-
ison operations, and bitwise operations.

2. Control flow instructions: conditional and unconditional branch (br) instruc-
tions, return (ret) instructions, and phi (phi) instructions.

3. Function calls using call instructions.
4. Memory access instructions, namely load and store instructions.
5. Address calculations using getelementptr instructions.
6. Auxiliary instructions like type cast instructions (which do not change the

bitlevel representation), signed and unsigned extension instructions, and
truncation instructions.

Branch instructions and return instructions only occur as the last instruction of
a basic block and each basic block is terminated by one of these instructions.

2 Alternatively, it would be possible to apply methods based on ranking functions
[3,4,6,7,19], possibly combined with abstraction refinement [9,10,14,20], in order to
investigate the termination behavior of the transition system.

Termination Analysis of Imperative Programs Using Bitvector Arithmetic 265

A function gives rise to a basic block graph [22] which contains one node for
each basic block and an edge from the basic block bb to the basic block bb’ if
bb is terminated by a branch instruction that can branch to bb’. For conditional
branches, this edge is labeled by the condition under which the branch is taken.

Example 2. The following figure shows a C program, the LLVM-IR program ob-
tained using the compiler front-end llvm-gcc, and the basic block graph of the
function power:

int power(int x, int y) {
int r = 1;
while (y > 0) {

r = r∗x;
y = y − 1;

}
return r;

}

entry bb1

bb

return

y.0 > 0

¬(y.0 > 0)

define i32 @power(i32 %x, i32 %y) {
entry:
br label %bb1

bb1:
%y.0 = phi i32 [%y, %entry], [%2, %bb]
%r.0 = phi i32 [1, %entry], [%1, %bb]
%0 = icmp sgt i32 %y.0, 0
br i1 %0, label %bb, label %return

bb:
%1 = mul i32 %r.0, %x
%2 = sub i32 %y.0, 1
br label %bb1

return:
ret i32 %r.0

}

This example is used in the next section in order to illustrate the conversion of
an LLVM-IR program into a transition system/int-based TRS. ♦

LLVM-IR programs are in static single assignment (SSA) form, i.e., each register
(variable) is assigned exactly once in the static program. This requires the use
of phi-instructions, which may only occur at the beginning of basic blocks and
select one of several values whenever the control flow in a program converges
(e.g., after an if-then-else statement). Thus, the meaning of %r.0 = phi i32

[1, %entry], [%1, %bb] contained in the basic block bb1 in Exa. 2 is that
the register %r.0 is assigned the value 1 if the control flow passed from entry

to bb1 and the value contained in %1 if the control passed from bb to bb1.

3 Termination Analysis Using LLVM

For the termination analysis using LLVM, an LLVM-IR program is converted into
a transition system whose termination behavior is then investigated. Within
KITTeL, the transition system is represented in the form of an int-based TRS.

3.1 Translating LLVM-IR Programs into Transition Systems

For ease of exposition, it is assumed that the LLVM-IR program operates only on
integer types, that there is exactly one function, and that this function does not

266 S. Falke, D. Kapur, and C. Sinz

contain any function calls. It thus only contains arithmetical and bitwise TAC
instructions, comparison instructions, control flow instructions, and auxiliary
instructions.3

For the translation into a transition system, each integer-typed function argu-
ment (i.e., of a type ik with k > 1) and each register defined by an integer-typed
TAC instruction or phi-instruction is mapped to a variable. The set of these
variables is denoted by V . The transition system (S,Λ,→) corresponding to the
LLVM-IR program is now constructed as follows:

– S contains one element for each node in the basic block graph.
– Λ denotes the set of transition constraints, which are quantifier-free con-

straints from (non-linear) integer arithmetic over the variables V and their
primed versions in V ′ = {v′ | v ∈ V}. As usual, the intended semantics of V ′

is to refer to the values of the variables in V after executing a transition.
– −→ ⊆ S × Λ × S denotes the set of transitions: for each branch from the

basic block bb to the basic block bb’, let bb
λ−→ bb’ such that λ

• describes the effect of the integer-typed TAC instructions in bb,
• contains the condition under which the branch is taken, and
• instantiates the variables corresponding to integer-typed phi-instructions
in bb’ according to their value if the control flow passes from bb to bb’.

The transition system is thus the basic block graph where each edge is, in addi-
tion to the branch condition, labeled by the state change caused by the transition.

In [13], bitvectors and bitvector arithmetic are abstracted to integers and
integer arithmetic, respectively. Furthermore, there is no distinction between
signed and unsigned operations. The arithmetical TAC instructions add, sub,
and mul are replaced by the obvious integer arithmetic operations. The effect
of the TAC instructions sdiv, udiv, srem, and urem is not modeled exactly.
Instead, their result is abstracted to a fresh variable (optionally, constraints can
restrict the range of this fresh variable, see [13] for details). The bitwise TAC
instructions and, or, and xor are handled the same way. Finally, the extension
and truncation instructions sext, uext, and trunc are modeled to not change
the value of the integer.

Comparison instructions used in branch conditions are replaced in the obvious
way by the corresponding integer comparisons. Signed and unsigned comparisons
are not distinguished, i.e., icmp ugt and icmp sgt are both replaced by >.
Boolean-typed TAC instructions used in branch conditions (and, or, and xor)
are converted in the obvious way as well.

Example 3. For the LLVM-IR program from Exa. 2, the following transition
system is obtained:

3 Multiple (recursive) functions are handled by abstracting the return value of the
called function by a fresh variable and by introducing suitable transitions to the
entry state of the called function. Since KITTeL currently does not model the memory
content, pointers are not tracked, store instructions are handled as no-ops, and load

instructions are abstracted to fresh variables. Similarly, floating point instructions
are handled as no-ops or abstracted to fresh variables.

Termination Analysis of Imperative Programs Using Bitvector Arithmetic 267

entry bb1

bb

return

(1)

(2)
(3)

(4)

(1) y.0′ y ∧ r.0′ 1
(2) y.0 > 0
(3) y.0′ y.0− 1 ∧ r.0′ r.0 ∗ x ∧

%1′ r.0 ∗ x ∧ %2′ y.0− 1
(4) ¬(y.0 > 0)

Here, V = {x, y, y.0, r.0, %1, %2}. ♦

3.2 Representing Transition Systems Using int-Based TRSs

A transition system can be represented in the form of an int-based TRS
[12,13]. The rewrite rules of an int-based TRS have the form f(x1, . . . , xn) →
g(p1, . . . , pm) �ϕ� where f and g are (uninterpreted) function symbols, x1, . . . , xn

are pairwise distinct variables, p1, . . . , pm are (possibly non-linear) polynomials,
and ϕ is a quantifier-free constraint from (non-linear) integer arithmetic that
guards when a rewrite rule can be applied.4 Then, each transition s1

λ−→ s2
gives rise to a rewrite rule

s1(x1, . . . , xn)→ s2(e1, . . . , en) �ϕ�

where x1, . . . , xn is a fixed order of the variables in V and

– ei = p if λ contains an “assignment” x′
i p and ei = xi otherwise.

– ϕ is λ with the “assignments” removed.

Example 4. Continuing Exa. 3,

entry(x, y, y.0, r.0, %1, %2) → bb1(x, y, y, 1, %1, %2)

bb1(x, y, y.0, r.0, %1, %2) → bb(x, y, y.0, r.0, %1, %2) �y.0 > 0�

bb1(x, y, y.0, r.0, %1, %2) → return(x, y, y.0, r.0, %1, %2) �¬(y.0 > 0)�

bb(x, y, y.0, r.0, %1, %2) → bb1(x, y, y.0 − 1, r.0, r.0 ∗ x, y.0 − 1)

is the representation of the transition system as an int-based TRS. ♦

When we talk about adding rewrite rules or replacing rewrite rules in the fol-
lowing, this can equally well be thought of as adding transitions or replacing
transitions in the transition system (possibly adding new states as well if the
rewrite rules introduce new function symbols).

The translation as outlined above produces rewrite rules where the function
symbols have an unnecessarily large number of arguments. The number of argu-
ments can be reduced by adapting standard compiler techniques:

1. Backward slicing with respect to the constraints removes all variables that
are not relevant for the control flow of the program. In the running example,
this removes the arguments corresponding to x, r.0, %1, and %2.

4 In contrast to ordinary TRSs, p1, . . . , pm and ϕ may contain variables not occurring
in x1, . . . , xn.

268 S. Falke, D. Kapur, and C. Sinz

2. Liveness analysis removes variables before they are defined or after they
are no longer needed. In the running examples, this removes the argument
corresponding to y.0 from the function symbols entry and return and the
argument corresponding to y from all function symbols but entry.

Example 5. Applying these methods,

entry(y) → bb1(y) (1)

bb1(y.0) → bb(y.0) �y.0 > 0� (2)

bb1(y.0) → return() �¬(y.0 > 0)� (3)

bb(y.0) → bb1(y.0− 1) (4)

is the final int-based TRS obtained from Exa. 4. ♦

3.3 Termination Analysis of int-Based TRSs

The int-based TRS obtained from an LLVM-IR program is then analyzed for
termination using term rewriting techniques. The key techniques are:

1. Determining which rules may be applied following each other and a decom-
position into non-trivial strongly connected components (SCCs). This step
roughly corresponds to a decomposition into loops of the program.

2. Automatically generating well-founded relations based on (possibly non-
linear) polynomial interpretations. Here, a polynomial interpretation maps
the function symbols to polynomials such that a function symbol f with n
arguments is mapped to a polynomial Pol(f) ∈ Z[X1, . . . , Xn]. A polyno-
mial interpretation is applied to terms by applying the polynomial assigned
to the function symbol to the arguments, i.e., by letting Pol(f(p1, . . . , pn)) =
Pol(f)(p1, . . . , pn). A polynomial interpretation gives rise to a well-founded
relation by letting (for terms s, t and a quantifier-free integer constraint ϕ)

s !Pol t �ϕ� iff ϕ⇒ Pol(s) > Pol(t) and ϕ⇒ Pol(s) ≥ 0 are valid

Similarly, s �Pol t �ϕ� iff ϕ ⇒ Pol(s) ≥ Pol(t) is valid (these relations
are in general undecidable due to non-linearity). Then, all rules s → t �ϕ�
with s !Pol t �ϕ� can be removed from an int-based TRS if all remaining
rules s′ → t′ �ϕ′� satisfy s′ �Pol t′ �ϕ′�. Methods for the automatic gen-
eration of suitable polynomial interpretations are discussed in [12,13]. The
current implementation is restricted to polynomials of the form

∑n
i=1 aiXi+∑n

j=1 bjX
2
j + c, with ai, bj , c ∈ Z. Notice that this is more general than the

linear ranking functions that are considered in [8] since the coefficients are
not restricted and a limited form of non-linearity is supported.

3. Combining rewrite rules that may be applied following each other into new
rewrite rules. This corresponds to combining transitions that may be applied
successively in the transition system.

These techniques can be applied modularly in any order and combination. Con-
cretely, KITTeL applies them in a loop, where each loop iteration applies the first

Termination Analysis of Imperative Programs Using Bitvector Arithmetic 269

technique from the list that is successfully applicable. For SCC decomposition
and the generation of polynomial interpretations, SMT-solvers such as Yices

[11] or Z3 [16] are used for solving (linear) integer arithmetic constraints, where
KITTeL uses Yices by default. Details are discussed in [12,13].

Example 6. Termination of the int-based TRS from Exa. 5 is easily established
using these techniques, thus establishing termination of the C program using in-
teger arithmetic. First, SCC decomposition removes the rewrite rules (1) and (3).
Next, the polynomial interpretation Pol(bb1) = X1, Pol(bb) = X1 − 1 removes
the rewrite rule (2) since bb1(y.0) !Pol bb(y.0) �y.0 > 0� and bb(y.0) �Pol
bb1(y.0− 1). Finally, SCC decomposition finishes the termination proof. ♦

4 Encoding Bitvector Arithmetic

In order to model the bitvector semantics of machine arithmetic, bitvectors can
be represented by (unbounded) integers if the wrap-around behavior of the arith-
metical operations is modeled properly. There are two natural choices for the
representation of a bitvector by an integer:

1. The bitvector bn−1 · · · b0 is represented by its unsigned value
∑n−1

i=0 bi · 2i ∈
{0, . . . , 2n − 1}.

2. The bitvector bn−1 · · · b0 is represented by its signed (two’s complement)

value −bn−1 · 2n−1 +
∑n−2

i=0 bi · 2i ∈ {−2n−1, . . . , 2n−1 − 1}.

In the following, the representation by the signed value is considered (the imple-
mentation in KITTeL supports both possibilities).

The semantics of the bitvector operations and the wrap-around behavior of
bitvector arithmetic is handled by a two-phase approach:

1. For the generation of the transition system/int-based TRS, the conversion
of comparison instructions, arithmetical and bitwise TAC instructions, and
extension/truncation instructions is adapted in order to correspond to their
semantics on bitvectors. In particular, signed and unsigned operations are
carefully distinguished. The wrap-around behavior of the arithmetical oper-
ations is not yet taken into account since this will be done afterwards in the
second phase.

2. The wrap-around behavior of the arithmetical instructions is modeled by
explicitly normalizing the results of arithmetical operations in order to ensure
that they are within the appropriate ranges.

In the following, ‖x‖ for a variable x denotes the size of the bitvector of the LLVM-
IR value corresponding to x. This extends to arithmetical expressions in the
obvious way. Furthermore, intmin(n) = −2n−1 and intmax(n) = 2n−1− 1 denote
the minimal and maximal signed value that can be represented by bitvectors of
size n.

270 S. Falke, D. Kapur, and C. Sinz

4.1 Phase 1

In contrast to Sect. 3, signed and unsigned comparison instructions are now dis-
tinguished. Since a bitvector is represented by its signed value, the signed com-
parison instructions are still converted to the corresponding integer comparisons
and only the unsigned comparison instructions need to be handled differently.

icmp eq ik x, y x y icmp ne ik x, y x � y
icmp ugt ik x, y ugt(x, y) icmp sgt ik x, y x > y
icmp uge ik x, y ugt(x, y) ∨ x y icmp sge ik x, y x ≥ y
icmp ult ik x, y ult(x, y) icmp slt ik x, y x < y
icmp ule ik x, y ult(x, y) ∨ x y icmp sle ik x, y x < y

Here, ugt(x, y) and ult(x, y) encode unsigned greater-than and less-than compar-
isons on bitvectors, respectively, where bitvectors are represented by their signed
value. They are defined as follows:

ugt(x, y) = (x ≥ 0 ∧ y ≥ 0 ∧ x > y)

∨ (x ≥ 0 ∧ y < 0)

∨ (x < 0 ∧ y < 0 ∧ x > y)

ult(x, y) = ugt(y, x)

Arithmetical and bitwise TAC instructions as well as auxiliary instructions are
converted as follows. Again, signed and unsigned operations are carefully dis-
tinguished. The results of sdiv, udiv, srem, urem, and, and or instructions are
represented by a fresh variable ni. Furthermore, constraints on the value of this
variable are added. These constraints describe the (approximated) semantics of
the corresponding instructions on bitvectors.

arithmetic z = add ik x, y z′ x+ y
z = sub ik x, y z′ x− y
z = mul ik x, y z′ x ∗ y
z = sdiv ik x, y z′ ni ∧ sdiv(x, y, ni)
z = udiv ik x, y z′ ni ∧ udiv(x, y, ni)
z = srem ik x, y z′ ni ∧ srem(x, y, ni)
z = urem ik x, y z′ ni ∧ urem(x, y, ni)

bitwise operations z = and ik x, y z′ ni ∧ and(x, y, ni)
z = or ik x, y z′ ni ∧ or(x, y, ni)
z = xor ik x, y z′ ni

extension/truncation z = sext ik x to il z′ ni

z = uext ik x to il z′ x ∧ uext(z, ni)
z = trunc ik x to il z′ x

The formulas for the constraints typically perform a case distinction on the
inputs x and y in order to obtain constraints on the result ni. For instance for
and, if both x and y are positive (most significant bit is zero), then ni is positive
as well and exceeds neither x nor y. If exactly one of x and y is positive, then

Termination Analysis of Imperative Programs Using Bitvector Arithmetic 271

ni is positive and does not exceed the positive input. Finally, if both x and y
are negative (most significant bit is one), then ni is negative as well and again
exceeds neither x nor y. The formulas are as follows:

sdiv(x, y, ni) = (x 0 ∧ ni 0) ∨ (y 1 ∧ ni x) ∨ (y −1 ∧ ni −x)
∨ (y > 1 ∧ x > 0 ∧ ni ≥ 0 ∧ ni < x)

∨ (y > 1 ∧ x < 0 ∧ ni ≤ 0 ∧ ni > x)

∨ (y < −1 ∧ x > 0 ∧ ni ≤ 0 ∧ ni > −x)
∨ (y < −1 ∧ x < 0 ∧ ni ≥ 0 ∧ ni < −x)

udiv(x, y, ni) = (x 0 ∧ ni 0) ∨ (y 1 ∧ ni x)

∨ (ugt(y, 1) ∧ ugt(x, 0) ∧ ugt(ni, 0) ∧ ult(ni, x))

srem(x, y, ni) = (x 0 ∧ ni 0) ∨ (y 1 ∧ ni 0) ∨ (y −1 ∧ ni 0)

∨ (y > 1 ∧ x > 0 ∧ ni ≥ 0 ∧ ni < y)

∨ (y > 1 ∧ x < 0 ∧ ni ≤ 0 ∧ ni > −y)
∨ (y < −1 ∧ x > 0 ∧ ni ≥ 0 ∧ ni < y)

∨ (y < −1 ∧ x < 0 ∧ ni ≤ 0 ∧ ni > y)

urem(x, y, ni) = (x 0 ∧ ni 0) ∨ (y 1 ∧ ni 0)

∨ (ugt(y, 1) ∧ ugt(x, 0) ∧ ult(ni, y))

and(x, y, ni) = (x ≥ 0 ∧ y ≥ 0 ∧ ni ≥ 0 ∧ ni ≤ x ∧ ni ≤ y)

∨ (x ≥ 0 ∧ y < 0 ∧ ni ≥ 0 ∧ ni ≤ x)

∨ (x < 0 ∧ y ≥ 0 ∧ ni ≥ 0 ∧ ni ≤ y)

∨ (x < 0 ∧ y < 0 ∧ ni < 0 ∧ ni ≤ x ∧ ni ≤ y)

or(x, y, ni) = (x ≥ 0 ∧ y ≥ 0 ∧ ni ≥ 0 ∧ ni ≥ x ∧ ni ≥ y)

∨ (x ≥ 0 ∧ y < 0 ∧ ni < 0 ∧ ni ≥ y)

∨ (x < 0 ∧ y ≥ 0 ∧ ni < 0 ∧ ni ≥ x)

∨ (x < 0 ∧ y < 0 ∧ ni < 0 ∧ ni ≥ x ∧ ni ≥ y)

uext(x, ni) = (x ≥ 0 ∧ ni x) ∨
(
x < 0 ∧ ni x+ 2‖x‖

)
Example 7. Recall the function f from Exa. 1:

void f(int i) {
while (i > 0) {

++i;
}

}

entry(i) → bb1(i)

bb1(i.0) → bb(i.0) �i.0 > 0�

bb1(i.0) → return() �¬(i.0 > 0)�

bb(i.0) → bb1(i.0+ 1)

define void @f(i32 %i) {
entry:
br label %bb1

bb1:
%i.0 = phi i32 [%i, %entry], [%1, %bb]
%0 = icmp sgt i32 %i.0, 0
br i1 %0, label %bb, label %return

bb:
%1 = add nsw i32 %i.0, 1
br label %bb1

return:
ret void

}

272 S. Falke, D. Kapur, and C. Sinz

After phase 1 and the slicing/liveness analysis based elimination of arguments,
the int-based TRS show above is obtained. Notice that the wrap-around behav-
ior caused by an overflow in i.0+ 1 it not yet taken care of. This is addressed
in phase 2. ♦

4.2 Phase 2

Next, the wrap-around behavior of the arithmetical instructions is modeled by
modifying the generated int-based TRS. For this, the wrap-around behavior is
simulated by explicitly normalizing the resulting integers to be in the appropriate
ranges. For a variable x, the normalization consists of the repeated addition or
subtraction of the correction 2‖x‖ until x is in the range of bitvectors of size ‖x‖.
The following construction is applied separately to each rewrite rule.

No arithmetical operations in the constraint: At first, it is assumed that the
constraint of the rewrite rule does not contain any arithmetical operations. The
general case is discussed subsequently.

Then, the rewrite rule

ρ : f(x1, . . . , xn)→ g(p1, . . . , pm) �ϕ�

is replaced by the following rewrite rules (notice that p1, . . . , pm may be outside
of the appropriate ranges even if the instantiations of all variables are within
their appropriate ranges):

f(x1, . . . , xn)→ g	(p1, . . . , pm) �ϕ ∧ inrange(V(ρ))�
g	(x1, . . . , xm)→ g	(x1 + 2‖x1‖, . . . , xm) �x1 < intmin(‖x1‖)�
g	(x1, . . . , xm)→ g	(x1 − 2‖x1‖, . . . , xm) �x1 > intmax(‖x1‖)�

...

g	(x1, . . . , xm)→ g	(x1, . . . , xm + 2‖xm‖) �xm < intmin(‖xm‖)�
g	(x1, . . . , xm)→ g	(x1, . . . , xm − 2‖xm‖) �xm > intmax(‖xm‖)�
g	(x1, . . . , xm)→ g(x1, . . . , xm) �inrange({x1, . . . , xm})�

Here, g	 is a fresh function symbol, V(ρ) are the variables occurring in ρ, and

inrange(V) =
∧
v∈V

(v ≥ intmin(‖v‖) ∧ v ≤ intmax(‖v‖))

expresses that all arithmetical expressions in V are in the appropriate ranges.5

5 It of course suffices to add the g�(. . .) → g�(. . .) �. . .� rules only for those xi where
pi contains arithmetical operations. If there is no such i, then the rewrite rule ρ can
be taken as is.

Termination Analysis of Imperative Programs Using Bitvector Arithmetic 273

Example 8. Continuing Exa. 7, phase 2 produces

entry(i) → bb1(i) �inrange({i})� (5)

bb1(i.0) → bb(i.0) �i.0 > 0 ∧ inrange({i.0})� (6)

bb1(i.0) → return() �¬(i.0 > 0) ∧ inrange({i.0})� (7)

bb(i.0) → bb1
�(i.0+ 1) �inrange({i.0})� (8)

bb1
�(i.0) → bb1

�(i.0+ 232) �i.0 < intmin(32)� (9)

bb1
�(i.0) → bb1

�(i.0− 232) �i.0 > intmax(32)� (10)

bb1
�(i.0) → bb1(i.0) �inrange({i.0})� (11)

as an int-based TRS. ♦

Arithmetical operations in the constraint: If the constraint ϕ contains arith-
metical operations, then the results of these operations need to be normalized
before the constraint can be evaluated. This can be done by adding “dummy”
variables for these arithmetic expressions. If ϕ contains the maximal arithmetic
expressions q1, . . . , ql, then the rewrite rule ρ is first converted into

f(x1, . . . , xn)→ f †(x1, . . . , xn, q1, . . . , ql) �inrange(V(ρ))�
f †(x1, . . . , xn, y1, . . . , yl)→ f †(x1, . . . , xn, y1 + 2‖y1‖, . . . , yl) �y1 < intmin(‖y1‖)�
f †(x1, . . . , xn, y1, . . . , yl)→ f †(x1, . . . , xn, y1 − 2‖y1‖, . . . , yl) �y1 > intmax(‖y1‖)�

...

f †(x1, . . . , xn, y1, . . . , yl)→ f †(x1, . . . , xn, y1, . . . , yl + 2‖yl‖) �yl < intmin(‖yl‖)�
f †(x1, . . . , xn, y1, . . . , yl)→ f †(x1, . . . , xn, y1, . . . , yl − 2‖yl‖) �yl > intmax(‖yl‖)�
f †(x1, . . . , xn, y1, . . . , yl)→ g(p1, . . . , pm) �ϕ̂ ∧ inrange(V(ρ) ∪ {y1, . . . , yl})�

were f † is a fresh function symbol and ϕ̂ is obtained from ϕ by replacing qi by
yi for all 1 ≤ i ≤ l. Next, the last newly generated rewrite rule is converted as
in the previous paragraph.

Optimizations: Notice that the g	-rules (and the f †-rules) essentially use loops
for the normalization. Often, a small upper bound on the number of needed loop
iterations is known. For instance in i.0 + 1 from Exa. 8, the correction 2‖i.0‖

needs to be applied at most once. Thus, the loop for the variable corresponding
to i.0 + 1 can be eliminated by applying the correction zero or one times.
Furthermore, i.0+1 can only overflow but never underflow, i.e., an addition of
the correction 2‖i.0‖ does not need to be considered at all.

Example 9. Continuing Exa. 8, the rewrite rules (8)–(11) can be replaced by
rewrite rules obtained by combining rewrite rules (8) and (11) and rewrite rules

274 S. Falke, D. Kapur, and C. Sinz

(8), (10), and (11) into new rewrite rules (these are all possible ways to execute
the normalization loop zero or one times for a possible overflow). Then,

entry(i) → bb1(i) �inrange({i})�
bb1(i.0) → bb(i.0) �i.0 > 0 ∧ inrange({i.0})�
bb1(i.0) → return() �¬(i.0 > 0) ∧ inrange({i.0})�
bb(i.0) → bb1(i.0+ 1) �inrange({i.0}) ∧ inrange({i.0+ 1})�
bb(i.0) → bb1(i.0+ 1− 232) �inrange({i.0}) ∧ i.0+ 1 > intmax(32)

∧ inrange({i.0+ 1 − 232})�

is obtained. Termination of this int-based TRS (or the int-based TRS from
Exa. 8) is easily established using the techniques from Sect. 3.3, thus establishing
termination of the C program using bitvector arithmetic. ♦

5 Experimental Results and Evaluation

In order to assess the practicality of the proposed method, we have implemented
it in the termination prover KITTeL [13]. For an empirical evaluation, we ran
KITTeL on the 61 examples presented in [8, Sect. 4.2].6 These examples were
extracted from the Windows Driver Development Kit. Of these 61 examples,
51 are terminating and 10 are nonterminating using bitvector arithmetic. Since
[8] also provides experimental results for an implementation of their methods,
a direct comparison is easily possible.7 Furthermore, these examples were also
used as benchmarks in [26] in order to evaluate an SMT solver.8 These results
are contained in the evaluation as well.

All tools were (assumed to be) run with a timeout of 60s for each example. A
summary of the results is given in the following table.9 In this table, “yes” means
a successful termination proof, “maybe” means that execution stopped before the
timeout without producing a successful termination proof, and “timeout” means
that the timeout was reached. The calculation of average times only takes “yes”
and “maybe” answers into account, whereas the average “yes” time only takes
“yes” answers into account.

6 These are all examples considered in [8] for which the source code is available at
http://www.cprover.org/termination/ranking/index.shtml.

7 Due to different machines used for the experiments ([8] uses an 8-core IntelR© XeonR©

3GHz with 16GB of RAM, whereas our experiments where performed on a 2-core
IntelR© CoreTM 2 Duo 2.4GHz with 4GB of RAM), the comparison of the runtimes
is not completely accurate.

8 A “sat” in [26] means that termination could be shown whereas an “unsat” means
that termination could not be shown.

9 Complete results for KITTeL can be found at http://baldur.iti.kit.edu/~falke/
kittel-bitvector/

http://www.cprover.org/termination/ranking/index.shtml
http://baldur.iti.kit.edu/~falke/kittel-bitvector/
http://baldur.iti.kit.edu/~falke/kittel-bitvector/

Termination Analysis of Imperative Programs Using Bitvector Arithmetic 275

KITTeL [8], quantifier [8], SAT [8], QBF [8], SMT
elimination solver solver solver [26]

yes 38 30 34 8 27
maybe 8 24 26 11 14
timeout 15 7 1 42 20
average time 6.6s 10.8s 2.2s 7.1s 11.8s
average “yes” time 3.3s 11.1s 2.7s 13.4s 12.2s

To summarize the results, KITTeL is more successful than the most successful
method from [8] (even in combination with [26]) and needs a comparable average
“yes” time. The higher number of timeouts and the higher average time of KITTeL
is due to the modular analysis loop used for the termination analysis of int-
based TRSs within KITTeL. Whereas the methods from [8] give up as soon as
they encounter a path for which they cannot find a ranking function, KITTeL can
usually continue its analysis loop by combining rewrite rules (in the evaluation,
the number of applications of this technique was restricted to 15).

6 Conclusions

We have shown how the method presented in [13] can be extended to show ter-
mination of programs using bitvector arithmetic. In particular, the wrap-around
behavior caused by under- and overflows is correctly modeled. Bitwise opera-
tions such as and and or, as well as arithmetical operations such as division and
remainder, are soundly approximated. This way, unsound and incomplete ab-
stractions caused by identifying bitvectors with integers and bitvector arithmetic
with integer arithmetic (as is done by nearly all current methods for proving ter-
mination of imperative programs) are avoided and the behavior of an imperative
program is modeled in the way it is executed on the computer.

An implementation of the proposed method in the tool KITTeL [13] has been
evaluated on 61 examples extracted from the Windows Driver Development Kit
that were also used in [8]. The performance of KITTeL on these examples is very
encouraging—better than the performance of the tool presented in [8]. In future
work, we plan to extend KITTeL in order to reason about termination due to
the traversal of well-formed linked data structures on the heap. Furthermore,
we plan to explore refined sound approximations for arithmetic and bitwise op-
erations. Finally, since the modeling of bitvector arithmetic adds overhead in
comparison to integer arithmetic, the development of a CEGAR-like approach
which starts using integer arithmetic and gradually refines the model to use
bitvector arithmetic is a promising direction for future research.

Acknowledgments. We thank the anonymous reviewers for helpful comments
and for pointing us to the evaluation contained in [26].

276 S. Falke, D. Kapur, and C. Sinz

References

1. Albert, E., Arenas, P., Codish, M., Genaim, S., Puebla, G., Zanardini, D.: Termi-
nation Analysis of Java Bytecode. In: Barthe, G., de Boer, F.S. (eds.) FMOODS
2008. LNCS, vol. 5051, pp. 2–18. Springer, Heidelberg (2008)

2. Babić, D., Musuvathi, M.: Modular arithmetic decision procedure. Tech. Rep. TR-
2005-114, Microsoft Research Redmond (2005)

3. Bradley, A.R., Manna, Z., Sipma, H.B.: Linear Ranking with Reachability. In:
Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 491–504.
Springer, Heidelberg (2005)

4. Bradley, A.R., Manna, Z., Sipma, H.B.: Termination Analysis of Integer Linear
Loops. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp.
488–502. Springer, Heidelberg (2005)

5. Brockschmidt, M., Otto, C., Giesl, J.: Modular termination proofs of recursive Java
bytecode programs by term rewriting. In: RTA 2011(2011)

6. Colón, M., Sipma, H.: Synthesis of Linear Ranking Functions. In: Margaria, T., Yi,
W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 67–81. Springer, Heidelberg (2001)

7. Colón, M., Sipma, H.: Practical Methods for Proving Program Termination. In:
Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 442–454.
Springer, Heidelberg (2002)

8. Cook, B., Kroening, D., Rümmer, P., Wintersteiger, C.M.: Ranking Function Syn-
thesis for Bit-Vector Relations. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010.
LNCS, vol. 6015, pp. 236–250. Springer, Heidelberg (2010)

9. Cook, B., Podelski, A., Rybalchenko, A.: Abstraction Refinement for Termination.
In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 87–101. Springer,
Heidelberg (2005)

10. Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In:
PLDI 2006, pp. 415–426 (2006)

11. Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006)

12. Falke, S., Kapur, D.: A Term Rewriting Approach to the Automated Termina-
tion Analysis of Imperative Programs. In: Schmidt, R.A. (ed.) CADE-22. LNCS,
vol. 5663, pp. 277–293. Springer, Heidelberg (2009)

13. Falke, S., Kapur, D., Sinz, C.: Termination analysis of C programs using compiler
intermediate languages. In: RTA 2011, pp. 41–50 (2011)

14. Kroening, D., Sharygina, N., Tsitovich, A., Wintersteiger, C.M.: Termination Anal-
ysis with Compositional Transition Invariants. In: Touili, T., Cook, B., Jackson,
P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 89–103. Springer, Heidelberg (2010)

15. Lattner, C., Adve, V.S.: LLVM: A compilation framework for lifelong program
analysis & transformation. In: CGO 2004, pp. 75–88 (2004)

16. de Moura, L., Bjørner, N.S.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

17. Müller-Olm, M., Seidl, H.: Analysis of modular arithmetic. ACM TOPLAS 29(5),
29:1–29:27 (2007)

18. Otto, C., Brockschmidt, M., von Essen, C., Giesl, J.: Automated termination anal-
ysis of Java bytecode by term rewriting. In: RTA 2010, pp. 259–276 (2010)

19. Podelski, A., Rybalchenko, A.: A Complete Method for the Synthesis of Linear
Ranking Functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937,
pp. 239–251. Springer, Heidelberg (2004)

Termination Analysis of Imperative Programs Using Bitvector Arithmetic 277

20. Podelski, A., Rybalchenko, A.: Transition invariants. In: LICS 2004, pp. 32–41
(2004)

21. Simon, A., King, A.: Taming the Wrapping of Integer Arithmetic. In: Riis Nielson,
H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 121–136. Springer, Heidelberg
(2007)

22. Sinz, C., Falke, S., Merz, F.: A precise memory model for low-level bounded model
checking. In: SSV 2010 (2010)

23. Spoto, F., Mesnard, F., Payet, É.: A termination analyzer for Java bytecode based
on path-length. ACM TOPLAS 32(3), 8:1–8:70 (2010)

24. Tsitovich, A., Sharygina, N., Wintersteiger, C.M., Kroening, D.: Loop Summariza-
tion and Termination Analysis. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS
2011. LNCS, vol. 6605, pp. 81–95. Springer, Heidelberg (2011)

25. Wang, B.Y.: On the Satisfiability of Modular Arithmetic Formulae. In: Graf, S.,
Zhang, W. (eds.) ATVA 2006. LNCS, vol. 4218, pp. 186–199. Springer, Heidelberg
(2006)

26. Wintersteiger, C.M., Hamadi, Y., de Moura, L.: Efficiently solving quantified
bit-vector formulas. In: FMCAD 2010, pp. 239–246 (2010)

Specifying and Verifying the Correctness

of Dynamic Software Updates

Christopher M. Hayden1, Stephen Magill1, Michael Hicks1,
Nate Foster2, and Jeffrey S. Foster1

1 Computer Science Department, University of Maryland, College Park
{hayden,smagill,mwh,jfoster}@cs.umd.edu

2 Computer Science Department, Cornell University
jnfoster@cs.cornell.edu

Abstract. Dynamic software updating (DSU) systems allow running
programs to be patched on-the-fly to add features or fix bugs. While
dynamic updates can be tricky to write, techniques for establishing their
correctness have received little attention. In this paper, we present the
first methodology for automatically verifying the correctness of dynamic
updates. Programmers express the desired properties of an updated exe-
cution using client-oriented specifications (CO-specs), which can describe
a wide range of client-visible behaviors. We verify CO-specs automati-
cally by using off-the-shelf tools to analyze a merged program, which is
a combination of the old and new versions of a program. We formalize
the merging transformation and prove it correct. We have implemented a
program merger for C, and applied it to updates for the Redis key-value
store and several synthetic programs. Using Thor, a verification tool, we
could verify many of the synthetic programs; using Otter, a symbolic ex-
ecutor, we could analyze every program, often in less than a minute. Both
tools were able to detect faulty patches and incurred only a factor-of-four
slowdown, on average, compared to single version programs.

1 Introduction

Dynamic software updating (DSU) systems allow programs to be patched on-
the-fly, to add features or fix bugs without incurring downtime. DSU systems
were originally developed for a few limited domains such as telecommunications
networks, financial transaction processors, and the like, but are now becoming
pervasive. Ksplice, recently acquired by Oracle, supports applying Linux kernel
security patches dynamically [16]. The Erlang language, which provides built-
in support for dynamic updates, is gaining in popularity for building server
programs [2]. Many web applications employ DSU techniques to provide 24/7
service to a global audience—for these systems, there is no single time of day
when taking down the service to perform upgrades is acceptable.

Given the increasing need for DSU, a natural question is: How can developers
ensure a dynamically updated program will behave correctly? Today, developers
need to reason manually about all the pieces of an updating program: the old

R. Joshi, P. Müller, and A. Podelski (Eds.): VSTTE 2012, LNCS 7152, pp. 278–293, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Specifying and Verifying the Correctness of Dynamic Software Updates 279

program version, the new program version, and code that transforms the state of
the (old) running version into the form expected by the new version. Moreover,
they need to repeat this reasoning process for each allowable “update point”
during execution. In our experience this is a tricky proposition in which it is all
too easy to make mistakes. Despite such difficulties, most DSU systems do not
address the issue of correctness, or they focus exclusively on generic safety prop-
erties, such as type safety, that rule out obviously wrong behavior [7,23,24,25]
but are insufficient for establishing correctness [12].

This paper presents a methodology for verifying the correctness of dynamic
updates. Rather than propose a new verification algorithm that accounts for the
semantics of updating, we develop a novel program transformation that produces
a program suitable for verification with off-the-shelf tools. Our transformation
merges an old program and an update into a program that simulates running
the program and applying the update at any allowable point. We formalize our
transformation and prove that it is correct (Section 3).

We are particularly interested in using our transformation to prove execution
properties from clients’ points of view, to show that a dynamic update does not
disrupt active sessions. For example, suppose we wish to update a key-value store
such as Redis [21] so that it uses a different internal data structure. To verify
this update’s transformation code, we could prove that values inserted into the
store by the client are still present after it is dynamically updated. We call such
specifications client-oriented specifications (or CO-specs for short).

We have identified three categories of CO-specs that capture most properties
of interest: backward-compatible CO-specs describe properties that are identical
in the old and new versions; post-update CO-specs describe properties that hold
after new features are added or bugs are fixed by an update; and conformable
CO-specs describe properties that are identical in the old and new versions,
modulo uniform changes to the external interface. CO-specs in these categories
can often be mechanically constructed from CO-specs written for either the old
or new program alone. Thus, if a programmer is inclined to verify each program
version using CO-specs, there is little additional work to verify a dynamic up-
date between the two. Nevertheless, some interesting and subtle properties lie
outside these categories, so our framework also allows arbitrary properties to be
expressed (Section 2).

We have implemented our merging transformation for C programs and used it
in combination with two existing tools to verify properties of several dynamic up-
dates (Section 4). We chose the symbolic executor Otter [22] and the verification
tool Thor [17] as they represent two ends of the design space: symbolic execu-
tion is easy to use and scales reasonably well but is incomplete, while verification
scales less well but provides greater assurance. We wrote two synthetic bench-
marks, a key-value store and a multiset implementation, and designed dynamic
patches for them based on realistic changes (e.g., one change was inspired by an
update to the storage server Cassandra [5]). We also wrote dynamic patches for
six releases of Redis [21], a popular, open-source key-value store. We used the
Redis code as is, and wrote the state transformation code ourselves.

280 C.M. Hayden et al.

We checked all the benchmark programs with Otter and verified several prop-
erties of the synthetic updates using Thor. Both tools successfully uncovered bugs
that were intentionally and unintentionally introduced in the state transforma-
tion code. The running time for verification of merged programs was roughly
four times slower than single-version checking. This slowdown was due to the
additional branching introduced by update points and the need to analyze the
state transformer code. As tools become faster and more effective, our approach
will scale with them. In summary, this paper makes three main contributions:

– It presents the first automated technique for verifying the behavioral correct-
ness of dynamic updates.

– It proposes client-oriented specifications as a means to specify general update
correctness properties.

– It shows the effectiveness of merging-based verification on practical examples,
including Redis [21], a widely deployed server program.

2 Defining Dynamic Software Update Correctness

Before we can set out verifying DSU correctness, we have to decide what cor-
rectness is. In this section, we first review previously proposed notions of cor-
rectness and argue why they are insufficient for our purposes. Then we propose
client-oriented specifications (CO-specs) as a means of specifying correctness
properties, and argue that this notion overcomes limitations of prior notions.
We also describe a simple refactoring that allows CO-specs to be used to verify
client-server programs that communicate over a network.

2.1 Prior Work on Update Correctness

Kramer and Magee [15] proposed that updates are correct if they are observation-
ally equivalent—i.e., if the updated program preserves all observable behaviors
of the old program. Bloom and Day [3] observed that, while intuitive, this is too
restrictive: an update may fix bugs or add new features.

To address the limitations of strict observational equivalence, Gupta et al. [9]
proposed reachability. This condition classifies an update as correct if, after the
update is applied, the program eventually reaches some state of the new program.
Reachability thus admits bugfixes, where the new state consists of the corrected
code and data, as well as feature additions, where the new state is the old
data plus the new code and any new data. Unfortunately, reachability is both
too permissive and too restrictive, as shown by the following example. Version
1.1.2 of the vsftpd FTP server introduced a feature that limits the number of
connections from a single host. If we update a running vsftpd server, we would
expect it to preserve any active connections. But doing so violates reachability.
If the number of connections from a particular host exceeds the limit and these
connections remain open indefinitely, the server will never enter a reachable state
of the new program. On the other hand, reachability would allow an update that

Specifying and Verifying the Correctness of Dynamic Software Updates 281

terminates all existing connections. This is almost certainly not what we want—if
we were willing to drop existing connections we could just restart the server!

We believe that the flaw in all of these approaches is that they attempt to
define correctness in a completely general way. We think it makes more sense
for programmers to specify the behavior they expect as a collection of proper-
ties. Some properties will apply to multiple versions of the program while other
properties will change as the program evolves. Because the goal of a dynamic
update is to preserve active processing and state, the properties should express
the expected continuity that a dynamic update is meant to provide to active
clients. We therefore introduce client-oriented specifications (CO-specs) to spec-
ify update properties that satisfy these requirements.

2.2 Client-Oriented Specifications

We can think of a CO-spec as a kind of client program that opens connections,
sends messages, and asserts that the output received is correct. CO-specs resem-
ble tests, but certain elements of the test code are left abstract for generality (cf.
Figure 1). For example, consider again reasoning about updates to a key-value
store such as Redis. A CO-spec might model a client that inserts a key-value pair
into the store and then looks up the key, checking that it maps to the correct
value (even if a dynamic update has occurred in the meantime). We can make
such a CO-spec general by leaving certain elements like the particular keys or
values used unconstrained. Similarly, we can allow arbitrary actions to be in-
terleaved between the insert and lookup. Such specifications capture essentially
arbitrary client interactions with the server.

Our goal is to use our program transformation, defined in Section 3, to produce
a merged program that we can verify using off-the-shelf tools. But existing tools
only verify single programs in isolation, so we cannot literally write CO-specs as
client programs that communicate with a server being updated. To verify a CO-
spec in a real client-server program we replace the server’smain function the CO-
spec and call the relevant server functions directly. In doing so, we are checking
the server’s core functionality, but not its main loop or any networking code. For
example, suppose our key-value store implements functions get and set to read
and write mappings from the store, and the server’s main loop would normally
dispatch to these functions. CO-specs would call the functions directly as shown
in Figure 1. Here, ? denotes a non-deterministically chosen (integer) value, and
assume and assert have their standard semantics. If updates are permitted while
executing either get or set, verifying Figure 1(b) will establish that the assertions
at the end of the specification hold no matter when the update takes place.

In our experience writing CO-specs for updates, we have found that they often
fall into one of the following categories:

– Backward-compatible CO-specs describe behaviors that are unaffected by an
update. For the data structure-changing update to Redis mentioned earlier,
the CO-spec in Figure 1(b) would check that existing mappings are preserved.

– Post-update CO-specs describe behavior specific to the new program version.
For example, suppose we added a delete feature to the key-value store. Then

282 C.M. Hayden et al.

1 int get(int k, int ∗v);
2 void set(int k, int v);

3

4 void arbitrary (int k1) {
5 int k2 = ?, v = ?;

6 if (k1 == k2 || ?)
7 get(k2,&v);

8 else set (k2,v);

9 }

10 void back compat spec() {
11 int k = ?, v in = ?;

12 int v out , found;

13 set(k, v in);

14 while(?) arbitrary (k);

15 found = get(k,&v out);

16 assert (found &&

17 v out == v in);

18 }

19 void post update spec() {
20 int k = ?;

21 int v out , found;

22 while(?) arbitrary (?);

23 assume(is updated);

24 delete (k);

25 found = get(k,&v out);

26 assert (!found);

27 }

(a) interface, helper (b) backward-compat. spec (c) post-update spec

Fig. 1. Sample C specifications for key-value store

the CO-spec in Figure 1(c) verifies that, after the update, the feature is work-
ing properly. The CO-spec employs the flag is updated, which is true after an
update has taken place, to ensure that we are testing the new or changed func-
tionality after the update. We discuss the semantics of this flag in Section 3.

– Conformable CO-specs describe updates that change interfaces, but preserve
core functionality. For example, suppose we added namespaces to our key-value
store, so that get and set take an additional namespace argument. The state
transformation code would map existing entries to a default namespace. A
conformable CO-spec could check that mappings inserted prior to the update
are present in the default namespace afterward; in essence, the CO-spec would
associate old-version calls with new-version calls at the default namespace.
(Further details are given in our technical report [11].)

These categories encompass prior notions of correctness. Backward compatible
specifications capture the spirit of Kramer and Magee’s condition, but apply
to individual, not all, behaviors. The combination of backward-compatible and
post-update specifications capture Bloom and Day’s notions of “future-only im-
plementations” and “invisible extensions”—parts of a program whose semantics
change but not in a way that affects existing clients [3]. The combination of
backward-compatible and conformable specifications match ideas proposed by
Ajmani et al. [1], who studied dynamic updates for distributed systems and
proposed mechanisms to maintain continuity for clients of a particular version.

CO-specs can also be used to express the constraints intended by Gupta’s
reachability while side-stepping the problem that reachability can leave behavior
under-constrained. For example, for the vsftpd update mentioned above, the
programmer can directly write a CO-spec that expresses what should happen to
existing client connections, e.g., whether all, some, or none should be preserved.
This does not fall into one of the categories above, demonstrating the utility of a
full specification language over “one size fits all” notions of update correctness.

Another feature of CO-specs in these categories is that they can be mechani-
cally constructed from CO-specs that are written for a single version. Thus, if a
programmer was inclined to verify the correctness of each version of his program

Specifying and Verifying the Correctness of Dynamic Software Updates 283

Prog. p ::= p, (g, λx.e) | ·
Exprs. e ::= v | v1 op v2 | v1(v2) | ? | !v | ref v |

v1 := v2 | if v e1 e2 | update |
let x = e1 in e2 | assume v |
while e1 do e2 | assert v |
running p | error

Values v ::= x | l | i | (v1, v2) | ()
Locs. l ::= a | g

Variables x, y, z
Globals f, g
Operators op
Integers i, j
Addresses a
Heaps σ ∈ Locs ⇀ Values
Patch π ::= (p, e)
Labels ν ::= π | ε

〈p;σ; v1 op v2〉 � 〈p;σ; v′〉 v′ = [[op]](v1, v2)
〈p;σ; ref v〉 � 〈p;σ[a �→ v]; a〉 a �∈ dom(σ)
〈p;σ; !l〉 � 〈p;σ; v〉 σ(l) = v and l �∈ dom(p)
〈p;σ; a := v〉 � 〈p;σ[a �→ v]; v〉 a ∈ dom(σ)
〈p;σ; g := v〉 � 〈p;σ[g �→ v]; v〉 g �∈ dom(p)
〈p;σ; ?〉 � 〈p;σ; i〉 for some i
〈p;σ; let x = v in e〉 � 〈p;σ; e[v/x]〉
〈p;σ; f(v)〉 � 〈p;σ; e[v/x]〉 p(f) = λx.e
〈p;σ; if 0 e1 e2〉 � 〈p;σ; e2〉
〈p;σ; if v e1 e2〉 � 〈p;σ; e1〉 v �= 0
〈p;σ;while e1 do e2〉 � 〈p;σ; let x = e1 in

if x (e2;while e1 do e2) 0〉
x �∈ fv(e1, e2)

〈p;σ; update〉 � 〈p;σ; 0〉
〈p;σ; update〉 π� 〈pπ;σ; (eπ; 1)〉 π = (pπ, eπ)
〈p;σ; running p〉 � 〈p;σ; 1〉
〈p;σ; running p′〉 � 〈p;σ; 0〉 p′ �= p
〈p;σ; assume v〉 � 〈p;σ; v〉 v �= 0
〈p;σ; assert v〉 � 〈p;σ; v〉 v �= 0
〈p;σ; assert 0〉 � 〈p;σ; error〉
〈p;σ; let x = error in e〉 � 〈p;σ; error〉

〈p;σ; e1〉 ν� 〈p′;σ′; e′1〉
〈p;σ; let x = e1 in e2〉 ν� 〈p′;σ′; let x = e′1 in e2〉

Fig. 2. Syntax and semantics

using CO-specs, the additional work to verify a dynamic update is not much
greater. For details, see our technical report [11].

3 Verification via Program Merging

We verify CO-specs by merging an existing program version with its update, so
that the semantics of the merged program is equivalent to the updating program.
This section formalizes a semantics for dynamic updates to single-threaded pro-
grams, then defines the merging transformation and proves it correct with respect
to the semantics. Many server programs for which dynamic updating is useful
are single-threaded [13,19,12]. However, an important next step for this work
would be to adapt it to support updates to multi-threaded (and distributed)
programs.

284 C.M. Hayden et al.

3.1 Syntax

The top of Figure 2 defines the syntax of a simple programming language
supporting dynamic updates. It is based on the Proteus dynamic update cal-
culus [23], and closely models the semantics of common DSU systems, includ-
ing Ginseng [19] (which is the foundation of our implementation), Ksplice [16],
Jvolve [24], K42 [14], DLpop [13], Dynamic ML [25] and Bracha’s DSU system [4].

A program p is a mapping from function names g to functions λx.e. A function
body e is defined by a mostly standard core language with a few extensions for
updating. Our language contains a construct update, which indicates a position
where a dynamic update may take effect. To support writing specifications, the
language includes an expression ?, which represents a random integer, and ex-
pressions assume v, assert v, and running p, all of whose semantics are discussed
below. Expressions are in administrative normal (A-normal) form [8] to keep the
semantics simple—e.g., instead of e1+e2, we write let x = e1 in let y = e2 in x+y.
We write e1; e2 as shorthand for let x = e1 in e2, where x is fresh for e2.

3.2 Semantics

The semantics, given in the latter half of Figure 2, is written as a series of small-
step rewriting rules between configurations of the form 〈p;σ; e〉, which contain
the program p, its current heap σ, and the current expression e being evaluated.
A heap is a partial function from locations l to values v, and a location l is either
a (dynamically allocated) address a or a (static) global name g. Note that while
the language does not include closures, global names g are values, and so the
language does support C-style function pointers.1

Most of the operational semantics rules are straightforward. We write e[x/
v] for the capture-avoiding substitution of x with v in e. We assume that the
semantics of primitive operations op is defined by some mathematical function
[[op]]; e.g., [[+]] is the integer addition function. Loops are rewritten to condition-
als, where in both cases a non-zero guard is treated as true and zero is treated as
false. Addresses a for dynamically allocated memory must be allocated prior to
assigning to them, whereas a global variable g is created when it is first assigned
to. This semantics allows state transformation functions, described below, to
define new global variables that are accessible to an updated program.

The update command identifies a position in the program at which a dynamic
update may take place. Semantically, update non-deterministically transitions
either to 0, indicating that an update did not occur, or to 1 (eventually), indi-
cating that a dynamic update was available and was applied.2 In the case where

1 Variables names x are values so that we can use a simple grammar to enforce A-
normal form. The downside is that syntactically well-formed programs could pass
around unbound variables and store them in the heap. The ability to express such
programs is immaterial to our modeling of DSU, and could be easily ruled out with
a simple static type system.

2 In practice, update would be implemented by having the run-time system check for
an update and apply it if one is available [13].

Specifying and Verifying the Correctness of Dynamic Software Updates 285

an update occurs, the transition arrow is labeled with the patch π; all other
(unadorned) transitions implicitly have label ε. A patch π is a pair (pπ, eπ)
consisting of the new program code (including unmodified functions) pπ and
an expression eπ that transforms the current heap as necessary, e.g., to update
an existing data structure or add a new one for compatibility with the new pro-
gram pπ. In practice, eπ will be a call to a function defined in pπ. The transformer
expression eπ is placed in redex position and is evaluated immediately; to avoid
capture, non-global variables may not appear free in eπ. Notice that an update
that changes function f has no effect on running instances of f since evaluation
of their code began prior to the update taking place.

The placement of the update command has a strong influence on the semantics
of updates. Placing update pervasively throughout the code essentially models
asynchronous updates. Or, as prior work recommends [15,1,19,12], we could in-
sert update selectively, e.g., at the end of each request-handling function or within
the request-handling loop, to make an update easier to reason about

The constructs running p, assume v, and assert v allow us to write specifica-
tions. The expression running p returns 1 if p is the program currently running
and 0 otherwise; i.e., we encode a program version as the program text itself.
(In Figure 1(c) the expression is updated is equivalent to running p where p is the
new program version.) The expression assert v returns v if it is non-zero, and
error otherwise, which by the rule for let propagates to the top level. Finally, the
expression assume v returns v if v is non-zero, and otherwise is stuck.

3.3 Program Merging Transformation

We now present our program merging transformation, which takes an old pro-
gram configuration 〈p, σ, e〉 and a patch π and yields a single merged program
configuration, written 〈p, σ, e〉 � π. We present the transformation formally and
then prove that the merged program is equivalent to the original program with
the patch applied dynamically. While we focus on merging a program with a sin-
gle update, the merging strategy can be readily generalized to multiple updates
(see our technical report [11] for details).

The definition of 〈p, σ, e〉 � π is given in Figure 3(e). It makes use of functions
[[·]]· and {| · |}·, defined in Figure 3(a)–(d). We present the interesting cases; the
remaining cases are translated structurally in the natural way. For simplicity, the
transformation assumes the updated program pπ does not delete any functions
in p. Deletion of function f can be modeled by a new version of f with the same
signature as the original and the body assert(0).

The merging transformation renames each new-version function from g to g′,
and changes all new-version code to call g′ instead of g (the first rewrite rules in
Figure 3(b) and (d), respectively). For each old-version function g, it generates
a new function gptr whose body conditionally calls the old or new version of g,
depending on whether an update has occurred (Figure 3(a)). The transformation
introduces a global variable uflag (Figure 3(e)) and a function isupd to keep track
of whether the update has taken place (bottom of Figure 3(a)). All calls to g in
the old version are rewritten to call gptr instead (top of Figure 3(c)).

286 C.M. Hayden et al.

[[p′, (g, λy.e)]]p,π �
[[p′]]p,π , (g, λy.[[e]]p,π),
(gptr , λy.let z = isupd() in if z g′(y) g(y))

[[·]]p,π � (·, (isupd , λy.let z = !uflag in z > 0))

{|p′, (g, λy.e)|}p �
{|p′|}p, (g′, λy.{|e|}p)

{| · |}p � ·

(a) Old version programs (b) New version programs

[[g]]p,π �{
gptr if p(g) = λx.e

g otherwise

[[running p′′]]p,(pπ ,eπ) �⎧⎪⎨⎪⎩
let z = isupd() in z = 0 if p = p′′

isupd() if pπ = p′′

0 otherwise

[[update]]p,(pπ ,eπ) �
let z = isupd() in
if z 0 (uflag := ?;

let z = isupd() in if z ({|e|}pπ ; 1) 0)

{|g|}p �{
g′ if p(g) = λx.e

g otherwise

{|running p′′|}p �{
1 if p = p′′

0 otherwise

{|update|}p � 0

(c) Old version expressions (d) New version expressions

〈p;σ; e〉 � π � 〈p, σ[uflag �→ i], e〉
where (pπ, eπ) = π p = {|pπ |}pπ , [[p]]p,π e = [[e]]p,π

i ≤ 0 σ = {l �→ [[v]]p,π | σ(l) = v}
(e) Merging a configuration and a patch

Fig. 3. Merging transformation (partial)

The transformation rewrites occurrences of update in old-version code into ex-
pressions that check whether uflag is positive (bottom of Figure 3(c)). If it is, then
the update has already taken place, so there is nothing to do. Otherwise, the trans-
formation sets uflag to ?, which simulates a non-deterministic choice of whether to
apply the update. If uflag now has a positive value, the update path was chosen, so
the transformation executes the developer-provided state transformation e, which
must also be transformed according to {| · |}· to properly reference functions in the
new program.While this transformation results in multiple occurrences of the ex-
pression e, in practice e is a call to a state transformation function defined in the
new version and so does not significantly increase code size.

Version tests running p are translated into calls to isupd in the old version,
and to appropriate constants in the new code (since we know the update has
occurred if new code is running).

3.4 Equivalence

We can now prove that an update to an old-program configuration is correct if
and only if the result of merging that configuration and the update is correct.

Specifying and Verifying the Correctness of Dynamic Software Updates 287

This result lets us use stock verification tools to check properties of dynamic
updates using the merged program, which simulates updating, instead of having
to develop new tools or extend existing ones.

We say that a program and a sequence of updates are correct if evaluation
never reaches error (i.e., if there are no assertion failures). More formally:

Definition 1 (Correctness). A configuration 〈p;σ; e〉 and an update π are
correct, written |= 〈p;σ; e〉, π, if and only if for all p′, σ′, e′ it is the case that

〈p;σ; e〉 π�∗ 〈p′;σ′; e′〉 implies e′ is not error.

The expression e at startup could be a call to an entry-point function (i.e., main).
A correct program need not apply π, though no other update may occur. When
no update is permitted we write |= 〈p;σ; e〉.

Theorem 1 (Equivalence). For all p, σ, e, π such that dom(pπ) ⊇ dom(p) we
have that |= 〈p;σ; e〉, π if and only if |= (〈p, σ, e〉 � π).

The proof is by bisimulation and is detailed in our technical report [11].
Observe that type errors result in stuck programs, e.g., !1 does not reduce,

while the above theorem speaks only about reductions to error. We have chosen
not to consider type safety in the formal system to keep things simple; adding
types, we could appeal to standard techniques [23,24,25,7]. Our implementation
catches type errors that could arise due to a dynamic update by transforming
them into assertion violations. In particular, we rename functions and global vari-
ables whose type has changed prior to merging, essentially modeling the change
as a deletion of one variable and the addition of another. Deleted functions are
modeled as mentioned above, and deleted global variables are essentially as-
signed the error expression. Thus, any old code that accesses a stale definition
post-update (including one with a changed type) fails with an assertion violation.

4 Experiments

To evaluate our approach, we have implemented the merging transformation for
C programs, with the additional work to handle C being largely routine. We
merged several programs and dynamic updates and then checked the merged
programs against a range of CO-specs. We analyzed the merged programs using
two different tools: the symbolic executor Otter, developed by Ma et al. [22], and
the verification tool Thor, developed by Magill et al. [18]. The tools represent a
tradeoff: Otter is easier to use and more scalable but provides incomplete assur-
ance, while Thor can guarantee correctness but is less scalable and requires more
manual effort. Overall, both tools proved useful. Otter successfully checked all
the COs-specs we tried, generally in less than one minute. Thor was able to fully
verify several updates, though running times were longer. Both tools found bugs
in updates, including mistakes we introduced inadvertently. On average, verifi-
cation of merged code took four times longer than verification of a single version.
Since our approach is independent of the verification tool used, its performance
and effectiveness will improve as advances are made in verification technology.

288 C.M. Hayden et al.

Program – change Thor time (s) Otter time (s)
CO-specs old new mrg old new mrg

Multiset – disallow duplicates (correct)
mem-memb 90.11 121.27 1003.22 6.29 9.72 49.37

add-memb 64.17 89.71 537.01 3.26 10.48 50.84
add-add-del-setg – 4.04

Multiset – disallow duplicates (broken)

mem-memb 25.33 57.78 133.68 6.28 9.77 42.5
add-memb 15.68 33.50 80.07 3.25 9.94 33.53
add-add-del-set-failsg 122.71 5.49

Key-value store – bug fix

put-getb 27.01 26.13 41.62 3.28 2.54 18.42
new-def-shadowsg – 4.19
new-def-shadows-bc-failsb 38.97 41.52 117.56 3.88 2.06 19.03

Key-value store – added namespaces
new-def-shadows-postp – – 1.02 2.99
put-getp – – 18.32 228.69
new-def-shadows-confc – – – 1.19 1.93 7.53
put-get-confc – – – 4.23 7.09 61.41

Key-value store – optimization (broken)

put-get-backb 42.133 – – 2.08 11.01 56.44
new-def-shadows-backb 15.344 – – 2.14 11.33 56.03

Key-value store – optimization (correct)

put-get-backb 41.87 – – 2.07 10.87 69.31
new-def-shadows-backb 15.72 – – 2.14 10.96 68.95

b – backward compatible p – post update c – conformable g – general
A dash indicates that the example could not be verified.

Fig. 4. Synthetic examples

4.1 Programs

We ran Otter and Thor on updates to three target programs. The first two
are small, synthetic examples: a multiset server, which maintains a multiset of
integer values, and a key-value store. For each program, we also developed a
number of updates inspired by common program changes such as memory and
performance optimizations and semantic changes observed in real-world systems
such as Cassandra [5]. The third program we considered is Redis [21], a widely
used open-source key-value server. At roughly 12k lines of C code, Redis is
significantly larger that our synthetic examples, and is currently not tractable
for Thor. We developed six dynamic patches for Redis that update between each
pair of consecutive versions from 1.3.6 through 1.3.12, and we also wrote a set
of CO-specs that describe basic correctness properties of the updates.

As we mention in Section 2, we join each CO-spec with the server code and
have the main function invoke the CO-spec after it initializes server data struc-
tures. The new-version source code includes the state transformation code, which
is identified by a distinguished function name recognized by the merger.

Specifying and Verifying the Correctness of Dynamic Software Updates 289

Synthetic Examples. Figure 4 lists the synthetic benchmarks we constructed for
our multiset and key-value store programs. Each grouping of rows shows a dy-
namic update and a list of CO-specs we wrote for that update. The multiset
program has routines to add and delete elements and to test membership. The
updates both change to a set semantics, where duplicate elements are disal-
lowed. The first (correct) state transformer removes all duplicates from a linked
list that maintains the current multiset. The second update has a broken state
transformer that fails to remove duplicates.

The key-value store program also implements its store with a linked list. The
updates are inspired by code changes we have seen in practice and include a bug
fix (bindings could not be overwritten), a feature addition (adding namespaces),
and an optimization (removing overwritten bindings), where for this last update
the state transformer was broken at first.

The properties span all the categories of CO-specs that we outlined in Sec-
tion 2. Backward compatible specs, such as add-mem, check core functionality
that does not change between versions (add actually adds elements, delete re-
moves elements, etc.). Post-update and general CO-specs are used to check that
functionality does change, but only in expected ways. For example, new-def-
shadows in the bug-fix update checks that, following the update, new key-value
bindings properly overwrite old bindings (which was not true in the old version).

We wrote specifications to be as general as possible. For example, add-mem,
on the second line of the table in Figure 4, checks that after an element is added,
it is reported as present after an arbitrary sequence of function calls that does
not include delete(). The code for our synthetic examples and their associated
CO-specs is available on-line.3

Redis. Figure 5 lists the updates and CO-specs for Redis. Four of the six updates
required writing state transformers, often just to initialize added fields but some-
times to perform more complex transformation, e.g., the update to 1.3.9 required
some reorganization of data structures storing the main database.

We found that across these updates, there were four different kinds of behav-
ioral changes, each of which suggested a certain strategy for developing CO-specs;
we employed CO-specs in each of the classes described in Section 2:

– Unmodified behavior : We adapted two CO-specs from our synthetic key-value
store example (Figure 4), put-get and new-def-shadows, to check correct be-
havior of Redis’ SET and GET operations over string values. As these CO-specs
concern behavior that all versions of Redis should exhibit, we applied them as
backward compatible CO-specs.

– New operations : The HASHINCRBY operation, which adds to the numeric
value stored for a hash key, first appeared in version 1.3.8. We check the
operation’s correctness using a post-update CO-spec, hashincrby. The HASH-
INCRBY operation is supported by all later versions, and so we also developed
a backward compatible hashincrby CO-spec for subsequent updates.

3 http://www.cs.umd.edu/projects/PL/dsu/data/dsumerge-examples.tar.gz

http://www.cs.umd.edu/projects/PL/dsu/data/dsumerge-examples.tar.gz

290 C.M. Hayden et al.

Otter time (s)
Specification old new mrg

→
1
.3
.7 put-getb 9.76 9.52 24.99

new-def-shadowsb 2.19 2.19 3.97

empty-set-existsb 9.95 9.92 29.15

→
1
.3
.8

∗ put-getb 9.20 9.58 28.53
new-def-shadowsb 2.17 2.27 4.14
hashincrbyp 3.02 14.81
empty-set-notexistsg 27.58

→
1
.3
.9

∗ put-getb 9.14 9.31 48.08

new-def-shadowsb 2.27 2.66 5.46
hashincrbyb 14.23 14.83 77.14

empty-set-notexistsb 10.56 11.13 62.88

b – backward compatible p – post update
c – conformable g – general ∗ – xform

Otter time (s)
Specification old new mrg

→
1
.3
.1
0 put-getb 9.22 10.05 27.37

new-def-shadowsb 2.70 2.69 4.79

hashincrbyb 14.86 15.26 46.74

empty-set-notexistsb 11.14 11.36 35.01

→
1
.3
.1
1
∗ put-getb 9.85 10.04 50.73

new-def-shadowsb 2.69 2.77 6.30

hashincrbyb 15.19 15.51 77.80

empty-set-notexistsb 11.33 11.57 72.40

→
1
.3
.1
2
∗ put-getb 10.32 9.72 49.23

new-def-shadowsb 2.85 2.92 6.27
hashincrbyb 15.20 14.79 77.27

empty-set-notexistsb 11.58 11.67 72.16
zinterc 60.30 59.73 294.05

Fig. 5. Otter checking times for Redis

– Modified semantics : Before Redis version 1.3.8, a set whose last element was
removed would remain in the database. We use the backward compatible CO-
spec empty-set-exists to check this property against the patch to 1.3.7. Then
for the patch to 1.3.8, which causes the server to remove a set when it becomes
empty, we use a general CO-spec empty-set-notexists to ensure that sets are
removed if they become empty after the update. Subsequent versions preserve
this behavior, which we specify using a backward compatible CO-spec.

– Conformable changes : Redis’s ZINTER operation, which computes the inter-
section of two sorted sets, was renamed to ZINTERSTORE in version 1.3.12.
We use a conformable CO-spec, zinter, to specify correct behavior regardless
of when an update occurs.

To make symbolic execution tractable for Redis, we had to bound the non-
determinism in our CO-specs, e.g., by limiting “arbitrary behavior” to a single
operation, non-deterministically chosen from a subset of commands that relate
to the specified property (rather than from the full set of Redis operations).

4.2 Effectiveness

In most cases, checking CO-specs validated the correctness of our dynamic
patches. In some cases the checking found bugs. For example, in the state trans-
former for the multiset-to-set update, we inadvertently introduced a possible null
pointer dereference when freeing duplicates. Verification with Thor discovered
this problem. For Redis, we experimented with omitting state transformation
code or using code with a simple mistake in it. In all cases, checking our speci-
fications with Otter uncovered the mistakes.

Figures 4 and 5 show the running times for each of the update/CO-spec/tool
combinations, listed under the mrg heading. As a baseline, we also list the
running times for the backward-compatible specifications on both individual

Specifying and Verifying the Correctness of Dynamic Software Updates 291

program versions, and for post-update specifications on the new version—this
lets us compare the relative slowdown incurred by reasoning about updates.

Otter. We performed experiments with Otter on a machine with a dual-core
Pentium-D 3.6GHz processor and 2GB of memory. The running times range
from seconds to a few minutes, depending on the complexity of the specification
and the program. For example, the CO-specs for the multiset-to-set example
were expensive to symbolically execute because each set insertion checks for
duplicates, which induces many branches when symbolic values are involved.

We also see that, across the synthetic examples and Redis, it takes four times
longer to analyze merged programs versus individual versions on average, and
6.4 times longer in the worst case. We investigated the source of the slowdown,
and found it was due to the extra time required to model update points and
state transformers, which is fundamental to verifying updating programs, rather
than an artifact of our merging strategy. In particular, Otter runs on the merged
versions, so it must explore additional program paths to model each possible up-
date timing; on average, CO-specs reached 3.7 update points during execution
and, loosely speaking, each update point could induce another full exploration
through the set of non-updating program paths. State transformation is also exe-
cuted following updates, so the expense of symbolically executing the transformer
is multiplied by the number of times an update point is reached. Nevertheless,
despite this slowdown, total checking time was rarely an impediment to checking
useful properties.

Thor. We ran Thor on a 2.8GHz Intel Core 2 Duo with 4GB of memory. The
average slowdown was 3.9 times, and ranged from 1.5 times to 8.3 times. Much of
the slowdown derived from per-update-point analysis of the state transformation
function; tools that compute procedure summaries or otherwise support modular
verification would likely do better. Thor could not verify all our examples, owing
to complex state transformation code and CO-specs that specify very precise
properties. For example, for the multiset-to-set example, Thor was able to prove
that the state transformer preserves list membership (used to verify mem-mem),
but not that it leaves at most one copy of any element in the list (needed for
add-add-del-set).

The CO-specs we considered lie at the boundary of what is possible for current
verification technology. To verify all our examples requires a robust treatment
of pointer manipulation, integer arithmetic, and reasoning about collections. We
are not aware of any tools that currently offer such a combination. However, we
hope that the demonstrated utility of such specifications will help inspire further
research in this area.

5 Related Work

This paper presents the first approach for automatically verifying the correctness
of dynamic software updates. As mentioned in the introduction, prior automated
analyses focus on safety properties like type safety [23], rather than correctness.

292 C.M. Hayden et al.

As described in Section 2, our notion of client-oriented specifications captures
and extends prior notions of update correctness.

Our verification methodology generalizes our prior work [10,12] on system-
atically testing dynamic software updates. Given tests that pass for both the
old and new versions, the tool tests every possible updating execution. This ap-
proach only supported backward-compatible properties and does not extend to
general properties (e.g., with non-deterministically chosen operations or values).

The merging transformation proposed in this paper was inspired by KISS [20],
a tool that transforms multi-threaded programs into single-threaded programs
that fix the timing of context switches. This allows them to be analyzed by non–
thread-aware tools, just as our merging transformation makes dynamic patches
palatable to analysis tools that are not DSU-aware.

An alternative technique for verifying dynamic updates, explored by Charlton
et al. [6], uses a Hoare logic to prove that programs and updates satisfy their
specifications, expressed as pre/post-conditions. We find CO-specs preferable to
pre/post-conditions because they require less manual effort to verify, and because
they naturally express rich properties that span multiple server commands.

6 Summary

We have presented the first system for automatically verifying dynamic-software-
update (DSU) correctness. We introduced client-oriented specifications as a way
to specify update correctness and identified three common, easy-to-construct
classes of DSU CO-specs. To permit verification using non-DSU-aware tools, we
developed a technique where the old and new versions are merged into a single
program and proved that it correctly models dynamic updates. We implemented
merging for C and found that it enabled the analysis tool, Thor, to fully verify
several CO-specs for small updates, and the symbolic executor, Otter, to check
and find errors in dynamic patches to Redis, a widely-used server program.

Acknowledgements. We thank Elnatan Reisner, Matthew Parkinson, Nishant
Sinha, and the anonymous reviewers for helpful comments on drafts of this pa-
per. This research was supported by the partnership between UMIACS and the
Laboratory for Telecommunications Sciences, by ONR grant N00014-09-1-0652,
and NSF grants CCF-0910530, CCF-0915978 and CNS-1111698. Any opinions,
findings, and recommendations are those of the authors and do not necessarily
reflect the views of the ONR or NSF.

References

1. Ajmani, S., Liskov, B., Shrira, L.: Modular Software Upgrades for Distributed
Systems. In: Hu, Q. (ed.) ECOOP 2006. LNCS, vol. 4067, pp. 452–476. Springer,
Heidelberg (2006)

2. Armstrong, J., Virding, R., Wikstrom, C., Williams, M.: Concurrent programming
in ERLANG, 2nd edn. Prentice Hall International Ltd. (1996)

Specifying and Verifying the Correctness of Dynamic Software Updates 293

3. Bloom, T., Day, M.: Reconfiguration and module replacement in Argus: theory
and practice. Software Engineering Journal 8(2), 102–108 (1993)

4. Bracha, G.: Objects as software services (August 2006),
http://bracha.org/objectsAsSoftwareServices.pdf

5. Cassandra API overview, http://wiki.apache.org/cassandra/API
6. Charlton, N., Horsfall, B., Reus, B.: Formal reasoning about runtime code update.

In: HOTSWUP (2011)
7. Duggan, D.: Type-based hot swapping of running modules. In: ICFP (2001)
8. Flanagan, C., Sabry, A., Duba, B.F., Felleisen, M.: The essence of compiling with

continuations. In: PLDI (1993)
9. Gupta, D., Jalote, P., Barua, G.: A formal framework for on-line software version

change. IEEE TSE 22(2) (1996)
10. Hayden, C.M., Hardisty, E.A., Hicks, M., Foster, J.S.: Efficient Systematic Testing

for Dynamically Updatable Software. In: HOTSWUP (2009)
11. Hayden, C.M., Magill, S., Hicks, M., Foster, N., Foster, J.S.: Specifying and ver-

ifying the correctness of dynamic software updates (extended version). Technical
Report CS-TR-4997, Dept. of Computer Science, University of Maryland (2011)

12. Hayden, C.M., Smith, E.K., Hardisty, E.A., Hicks, M., Foster, J.S.: Evaluating
dynamic software update safety using systematic testing (March 2011)

13. Hicks, M., Nettles, S.: Dynamic software updating. ACM TOPLAS 27(6) (2005)
14. The K42 Project, http://www.research.ibm.com/K42/
15. Kramer, J., Magee, J.: The evolving philosophers problem: Dynamic change man-

agement. IEEE TSE 16(11) (1990)
16. Never reboot Linux for Linux security updates : Ksplice, http://www.ksplice.com
17. Magill, S., Tsai, M.-H., Lee, P., Tsay, Y.-K.: THOR: A Tool for Reasoning about

Shape and Arithmetic. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123,
pp. 428–432. Springer, Heidelberg (2008)

18. Magill, S., Tsai, M.-H., Lee, P., Tsay, Y.-K.: Automatic numeric abstractions for
heap-manipulating programs. In: POPL (2010)

19. Neamtiu, I., Hicks, M., Stoyle, G., Oriol, M.: Practical dynamic software updating
for C. In: PLDI (2006)

20. Qadeer, S., Wu, D.: KISS: Leep it simple and sequential. In: PLDI (2004)
21. The Redis project, http://code.google.com/p/redis/
22. Reisner, E., Song, C., Ma, K.-K., Foster, J.S., Porter, A.: Using symbolic evaluation

to understand behavior in configurable software systems. In: ICSE (2010)
23. Stoyle, G., Hicks, M., Bierman, G., Sewell, P., Neamtiu, I.: Mutatis Mutandis: Safe

and flexible dynamic software updating. ACM TOPLAS 29(4) (2007)
24. Subramanian, S., Hicks, M., McKinley, K.S.: Dynamic software updates for Java:

A VM-centric approach. In: PLDI (2009)
25. Walton, C.: Abstract Machines for Dynamic Computation. PhD thesis, University

of Edinburgh, ECS-LFCS-01-425 (2001)

http://bracha.org/objectsAsSoftwareServices.pdf
http://wiki.apache.org/cassandra/API
http://www.research.ibm.com/K42/
http://www.ksplice.com
http://code.google.com/p/redis/

Symbolic Execution Enhanced System Testing

Misty Davies1, Corina S. Păsăreanu2, and Vishwanath Raman2

1 NASA Ames Research Center, Moffett Field CA 94035, USA
misty.d.davies@nasa.gov

2 Carnegie Mellon University, Moffett Field, CA 94035, USA
corina.s.pasareanu@nasa.gov, vishwa.raman@west.cmu.edu

Abstract. We describe a testing technique that uses information computed by
symbolic execution of a program unit to guide the generation of inputs to the
system containing the unit, in such a way that the unit’s, and hence the sys-
tem’s, coverage is increased. The symbolic execution computes unit constraints at
run-time, along program paths obtained by system simulations. We use machine
learning techniques –treatment learning and function fitting– to approximate the
system input constraints that will lead to the satisfaction of the unit constraints.
Execution of system input predictions either uncovers new code regions in the
unit under analysis or provides information that can be used to improve the ap-
proximation. We have implemented the technique and we have demonstrated its
effectiveness on several examples, including one from the aerospace domain.

1 Introduction

Modern software, and in particular flight control software like that written at NASA,
needs to be highly reliable and hence thoroughly tested. NASA software is typically
tested using system level Monte Carlo or combinatorial simulations. Such system level
“black-box” simulations have the advantage that they are (a) easy to set up, since the
user only needs to specify the ranges for the system level inputs, and (b) can be used to
test software systems that contain COTS (”Commercial-Off-The-Shelf”), binary or even
hardware components that are impervious to “white-box” methods. However, system
level simulations provide few guarantees in terms of testing coverage. Furthermore,
they may be quite expensive. For example, a run using NASA’s ANTARES simulator [1]
may take hours to complete.

Recently, a new set of techniques [2,3,4] based on symbolic execution [5] have
emerged for generating test cases that achieve high code coverage. Symbolic execu-
tion and its variant, concolic execution, are white-box as they collect constraints based
on the internal code structure. The collected constraints are solved systematically to
obtain inputs that exercise all the paths through the code (up to some user specified
bound). Such white-box techniques are not effective in the presence of COTS or binary
components; e.g., in such cases, concolic execution may lead to divergence [4]. For
this reason, and due to the large number of paths to explore and complex constraints to
be solved, white-box symbolic execution is used most effectively for testing individual
software units, but not the whole system. On the other hand, when analyzing a unit in

R. Joshi, P. Müller, and A. Podelski (Eds.): VSTTE 2012, LNCS 7152, pp. 294–309, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Symbolic Execution Enhanced System Testing 295

isolation, it is often the case that the unit’s inputs need to be constrained by the sys-
tem calling context, in order to obtain realistic test cases. Encoding input constraints
requires significant manual effort by developers [2].

The goal of our work is to find system level test cases that increase the coverage
of a unit of interest by exploiting a synergy between black-box system simulation and
white-box unit symbolic execution. We propose an iterative procedure that uses the
information computed by a symbolic execution of a unit to guide, via machine learning
techniques, the generation of new system level inputs that increase the coverage of
the unit, and hence of the system containing the unit. Thus, our approach improves
on system level testing by increasing the obtained coverage with a reduced number
of tests, and hence with a reduced cost. It also enables a modular unit level analysis
under realistic contexts, since symbolic execution is performed along the program paths
obtained via simulation.

Specifically, we use data mining techniques (i.e. treatment learning [6]) to obtain an
approximation of the system level input constraints that influence the satisfaction of the
unit level constraints computed by the symbolic execution of the unit. Function fitting
is performed to incrementally approximate the behavior of the unit’s calling context.
Finally, the unit level constraints are solved with off-the shelf constraint solvers and,
together with the approximations, are used to guide the generation of new system level
inputs towards executing uncovered code regions in the unit under analysis. We have
implemented the techniques in the context of the analysis of C programs. We report
here on the application of our approach to several illustrative examples, including one
from the aerospace domain.

Related Work. The work related to automated testing is vast and we only highlight
here the work that is most related to our approach. We have already discussed related
symbolic and concolic execution approaches [7,4,3,8]. The work on carving differential
unit tests from system tests [9] extracts the components that influence the execution of
a unit and reassembles them so that the unit can be exercised as it was by the system
test. Differential unit tests are used to detect differences between multiple unit imple-
mentations; they can not be used to guide the system level inputs to increase coverage.

In previous work [2] we described a symbolic execution framework that used sys-
tem level simulations to improve the precision of symbolic execution at the unit level.
This was achieved in two ways: first, the framework allows symbolic execution to be
started at any point in the program; thus, the concrete execution of the system can be
effectively used to set up the environment for the symbolic execution of a unit in the
system. However, that work could not be used for guiding the generation of new sys-
tem level inputs to increase the coverage of the unit—which is our contribution here.
Furthermore, we described in [2] how to use the data collected during system level runs
to mine constraints on the unit level inputs (using treatment learning or Daikon, for
example). While this approach would allow more focused unit level testing, it suffers
from the drawback that the mined constraints can be unrealistically restrictive, and thus
prevent us to achieve coverage of corner cases in the unit.

296 M. Davies, C.S. Păsăreanu, and V. Raman

2 Background

A Program Model. A program is a tuple P = (I, A,C), where I is a set of input
parameters, A is a set of assignment statements and C is a set of conditional state-
ments. We assume that the elements of I are of basic types, defined to be a type
from the set {int, short, unsigned int, char, f loat, double, enum}, with each ele-
ment a ∈ I taking values from a domain Da based on its type; all assignment and
conditional statements refer to elements in I . The set of all executions of the program
P is R(P) ⊆ {(A ∪ C)∗} – a set of finite sequences of assignments and conditional
statements visited over all possible values of the parameters in I . An assignment over
the parameters in I , called a valuation, is denoted by I and associates every element
a ∈ I to a value in Da. Given a valuation I , we assume that all executions of the pro-
gram visit exactly the same finite sequence of assignments and conditional statements;
the programs are deterministic.

Concolic Execution. Concolic execution [4,10] is a technique that combines concrete
and symbolic program execution to increase path coverage. Symbolic path constraints
(PCs) are collected along concrete program runs; the PCs are conjunctions of Boolean
expressions, each expression representing the condition on the inputs to follow that
particular path. The conditions in the PCs are systematically negated to generate new
PCs that are solved with off-the-shelf solvers. The obtained solutions are used as new
program inputs to run the program along different paths. The process terminates when
all the paths have been resolved or a user-specified bound has been reached; paths are
either covered, unsatisfiable or unsolvable due to limitations in the chosen solvers.

Treatment Learning. Treatment learning [6,11] is a machine learning technique that
finds the minimal difference between two sets. In our work, we use treatment learning
to determine a small number of controllable inputs and ranges (a treatment) that are
most likely to lead to some output.

TAR3 is a treatment learner that finds association rules involving both continuous
and discrete variables quickly [11]. Given a data set and a partition of that set into a set
of desired data points and a set of all remaining points, TAR3 looks for rules (subsets
of input parameters and their ranges) that maximize the likelihood of seeing points in
the desired set. We note that one can use other association rule learners [12,13,14] to
potentially find more accurate rules; however this would come with greater complexity
and time costs [15,16].

Function Fitting. Function fitting finds a predictive relationship between associated
outputs and inputs (usually one output variable and a small number of inputs). We use
discrete least-squares function fitting [17,18] to approximate a relationship between the
unit inputs and the associated system inputs; the technique is less sensitive to outliers
than many competing techniques [19]. Assume y(x) is a complex, non-linear func-
tion; its approximation can be given by a polynomial p(x) with coefficients ci, for
i ∈ {1, 2, 3, . . .}. A least-squares solution finds the constant values ci that minimize
the total Euclidean distance (the residual) between p(x) and y(x) at the given measure-
ments x. If the relationships we are trying to approximate are Lipschitz continuous (or
smooth), we can find a polynomial approximation that is arbitrarily close to our desired
function by the Weierstrass Approximation Theorem [20]. A function that is not smooth

Symbolic Execution Enhanced System Testing 297

Fig. 1. A system S with inputs I and an embedded unit U with inputs i

along its entire domain may be locally smooth, or smooth along some subinterval of the
domain. A polynomial constructed on this subset is known as a piecewise-polynomial
approximation. Shrinking each subinterval allows for arbitrarily close approximations
with low-order polynomials [21]. We use the term Threshold to represent the minimum
number of data points that we need for function fitting.

3 Approach

We illustrate the proposed approach using Figure 1, which shows a System Under Test
(S) that may have both white-box and black-box components. A white-box unit is a
code fragment that lends itself to concolic testing. S is a system with input parameters
I containing a white-box unit U = (i, A, C) with unit level parameters i. The goal is to
generate system level inputs I that increase the coverage of unit U .

Let c ∈ C denote some conditional statement in U that was not covered during
system level testing. Let Cons(c) denote the unit level constraint, over parameters in
i, associated with statement c; this constraint is obtained by the concolic execution
of U . As an example, if i = {v, w}, a constraint could be (v > w). We note that the
concolic execution of U (in isolation) excludes the system that instantiates U ; while this
is useful for discovering new constraints for the uncovered paths, it may also generate an
over-approximation of the actual paths that can be covered during system level testing.
By the same token, paths that are unreachable in U remain unreachable in S; a path
unreachable in the most liberal environment forU remains unreachable in S. If Cons(c)
is satisfiable, then a satisfying valuation i will enable us to cover statement c at the unit
level, but as mentioned, that statement may still be unreachable at the system level. Our
goal is to try to generate assignments over the system level parameters I that can cover
c (and other statements in the unit) during system level testing.

We note that the calling context for the unit can be represented by some function
f such that i = f(I). To discover the new valuations for I , we monitor the values
of I and i during simulations and use machine learning techniques to approximate f ,
based on the monitored values. Once we have an approximation p of f , we use it to
solve i = p(I) ∧ Cons(c); the solutions for I are the likely candidates to the system
level inputs that lead to the satisfaction of Cons(c). These valuations are used to start
new simulation runs, which lead to either covering c or to obtaining a more accurate

298 M. Davies, C.S. Păsăreanu, and V. Raman

Program 1. Prototype Linear Example
int g1 = 1, g2 = 2;
int System(int I1, int I2) {
if (I1 > 0) g1 = I2; else g1 = -I2;
g2 = I1 + 3;
Unit(I2, I1);

}
int Unit(int i1, int i2) {
if(i1 > 0) {

i2 = g2;
if(i2 > 0) return 0; else return 1;

} else {
i2 = g1 + 3;
if(i2 > 0) return 2; else return 3;

}
}

approximation of f . The process is repeated until either the desired coverage is obtained
or a user-specified bound has been reached. We note here that if the function relating
I and i is invertible, one can learn an approximation of the form I = p(i) and use the
solutions of Cons(c) to directly obtain the valuations of I . To simplify the presentation,
we will assume for the rest of the paper that we have such invertible functions. We
describe our approach in detail in the next section.

4 Testing Algorithms

As a running example, consider the linear code in listing Program 1. Integers I1 and
I2 are the system inputs, while i1 and i2 are the unit inputs. The two integer global
variables g1 and g2 are treated as inputs to both System and Unit. The unit inputs are
therefore i1, i2, g1 and g2.

Constraints Trees. We assume concolic execution achieves full path coverage over
Unit. The set of path constraints over all executions of Unit are stored in a constraints
tree T . The constraints tree reflects the set of all paths that were taken by all executions
of a program unit (assume that the unit has no infinite loops).

1 [Parameters]
2 i1
3 g2
4 g1
[Tree]

6 (i1 > 0) (C)
7 (g2 > 0) (C)
8 (g2 <= 0) (S)
9 (i1 <= 0) (C)
10 ((g1 + 3) > 0) (C)
11 ((g1 + 3) <= 0) (S)

Fig. 2. The constraints tree after some
rounds of initial testing

Fig. 3. A graphical representation of
Figure 2. Covered nodes are solid circles;
those not covered are dotted.

Symbolic Execution Enhanced System Testing 299

Figure 2 shows T for Unit after some initial testing. Lines 2-4 list the inputs that
are constrained. Lines 6-11 contain a textual representation of the tree. The number
of leaves is equal to the number of path constraints in T ; each path constraint is a
conjunction of the terms encountered along the parent hierarchy starting at each leaf.
Therefore, given the tree in Fig 2, the set of constraints are: (i1 > 0) ∧ (g2 > 0),
(i1 ≤ 0)∧ (g2 ≤ 0), (i1 ≤ 0)∧ ((g1+3) > 0) and (i1 ≤ 0)∧ ((g1+3) ≤ 0). Of these
constraints, (i1 > 0) ∧ (g2 > 0) and (i1 ≤ 0) ∧ ((g1 + 3) > 0) were covered during
our initial testing, denoted by the letter “C” within parentheses. The other constraints
are satisfiable at the Unit level but not covered during system level testing, denoted by
the letter “S”.

Observations. Consider again a system S, with system inputs I , and a unit U within
S, with unit inputs i. We let d = |I|. We assume the unit can be fully analyzed using
concolic execution. Let T be a constraints tree extracted by monitoringU during system
level testing. Consider nodes in T that are satisfiable at the unit level but not covered by
system level testing. We attempt to cover such nodes using a combination of concolic
execution, treatment learning and function fitting. For a node n in T we take Cons(n)
as the unit constraint that leads to n and that when satisfiable will cover n. To present
our coverage algorithm, we first make the following observations.

Consider a path σ = n1, n2, . . . , nk in T such that all nodes ni for 1 ≤ i ≤ k are
covered by system testing. There exist vectors at the system and unit level that witness
covering each node ni in σ; for a set of system vectors Vi that witness covering ni in
σ, there exist corresponding witnesses vi of unit vectors. We then have the following
properties of these witnesses:

Observation 1 (Monotonicity of Witnesses). For a constraints tree T and a path σ =
n1, n2, . . . , nk of nodes in T , such that n1, n2, . . . , nk are covered with witness sets
V1, V2, . . . , Vk at the system level and corresponding sets v1, v2, . . . , vk at the unit level,
we have, V1 ⊇ V2 ⊇ . . . ⊇ Vk and v1 ⊇ v2 ⊇ . . . ⊇ vk.

Monotonicity of Witnesses follows easily by noting that Cons(nk)⇒ Cons(nk−1)⇒
. . .⇒ Cons(n1) for the constraints of nodes in σ.

Observation 2 (Sufficiency of Witnesses). For a constraints tree T and a path σ =
n1, n2, . . . , nk of nodes in T , such that n1, n2, . . . , nk are covered with witness sets
V1, V2, . . . , Vk at the system level and corresponding sets v1, v2, . . . , vk at the unit level,
let |Vj | ≥ Threshold such that for all i ∈ [1, k] with |Vi| ≥ Threshold, we have
|Vj | ≤ |Vi|. If the relation between Vj and vj is smooth for function fitting, then for all
i ≥ j, the relation between Vi and vi is also smooth for function fitting.

Consider T and a σ = n1, n2, . . . , nk in T such that all nodes that precede nk are cov-
ered during system testing, but node nk is not covered. Since concolic execution fails
at the system level, we have that Cons(nk) is the finest symbolic path constraint, such
that when Cons(nk) is satisfiable, the assignment that satisfies Cons(nk) covers nk

at the unit level. We take Term(nk) as the term corresponding to nk and Parent(nk)
as the parent of nk in σ. Given a constraint C, let Vars(C) be the set of parame-
ters that appear in the terms of constraint C. The path constraint Cons(nk) is then
Term(n1)∧Term(n2)∧. . .∧Term(nk). We would like to learn the system level behav-
ior as a function f , such that I = f(Vars(Cons(nk)), via function fitting. If Cons(nk)

300 M. Davies, C.S. Păsăreanu, and V. Raman

is satisfiable, we can use f to find a system level vector that covers nk using the satis-
fying assignment over Vars(Cons(nk)) for Cons(nk). The caveat in this approach is
that function fitting is difficult over large data sets due to both the number of parameters
involved and due to the presence of discontinuities. We tackle this problem as follows:

– We function fit for C, starting at Term(nk), progressively conjoining terms
Term(ni) for i = k − 1, k − 2, . . . , 1, stopping when we find a smooth func-
tion. This reduces the number of unit vectors we consider and by the Sufficiency of
Witnesses considers the smaller number of data points.

– We reduce the number of system parameters for function fitting using treatment
learning. For C, we use the data seen during system testing to find the subset In ⊆ I
of system parameters that most affect the values of the unit parameters in Vars(C).

For all terms in Cons(nk) that are not considered in a given iteration of function fitting,
i.e., terms in Cons(nk) but not in C, we use treatment learning to find satisfying as-
signments. By the Monotonicity of Witnesses, we have more data points to cover these
terms than to cover Cons(nk), increasing the likelihood of finding good treatments.

Algorithm. We now describe Cover, our coverage algorithm presented in Algorithm 1.
The algorithm works as follows:

1. Lines 2–4. We perform n-factor combinatorial Monte Carlo (MC) simulations by
picking values over a space sp; a d-dimensional space for the d input parameters
constrained by their data types. Unlike traditional random MC, n-factor MC gen-
erates test cases such that every possible combination of input parameters equal to
size n appears at least once in the test suite [22]. For every system vector a, we
monitor the unit and capture the unit vector b together with the path constraint for
the path taken within the unit. The set of path constraints are summarized in T ;
system and unit vectors are stored in sets V and v.

2. Lines 7–11. We traverse the nodes in T in breadth first order. The treatment learner
learns a treatment for each node n in T as long as its sibling is also covered. Since
the treatment learner is a contrast set learner, it can be used to identify a set In ⊆ I
and ranges Rn of parameters in In, only when given data points that differentiate n
from its sibling.

3. Lines 13–16. For each satisfiable node n in T not covered by MC simulations,
we store the assignment i satisfying Cons(n). We start with a constraint C set to
Term(n) and progressively strengthen C until we find a system vector to cover n.
As we want to fit a function that maps I to i, we keep track of the parameters in C in
in and the restriction of i to the parameters in in in. The function ComputeMap
finds a function fn such that In = fn(in) using function fitting.

4. Lines 17–19. We iterate over all satisfiable nodes n in T not covered during system
testing. For each such n we run a system level test by composing a system vector
as follows: (a) take In = fn(in) such that it is consistent with the ranges rj for
all j ∈ In as returned by the treatment learner in Line 10 and (b) for all other
system level parameters j ∈ I \ In, pick a value from the ranges rj returned by the
treatment learner in Line 10.

Symbolic Execution Enhanced System Testing 301

Algorithm 1. Cover(S,U)

input : System S with inputs I with d = |I |, unit U with inputs i

1 sp ← IRd;
2 Perform n-factor combinatorial MC simulations over space sp;
3 (V, v) ← {(a, b) | a is a system level vector and b is the corresponding monitored

unit level vector};
4 T ← (PC from U);
5 repeat
6 T ′ ← T ;

// Do BFS on T
7 for (node n in T using BFS) do
8 if (n and n’s sibling are covered) then

// Use contrasting data to learn a treatment
9 V ′ ← {a ∈ V | a covers n} and V ′′ ← V \ V ′;

10 (In, Rn,) ← RunTAR3(I, V, V ′, V ′′);
11 ∀j ∈ In store the range rj ∈ Rn for j;
12 else
13 if (n is satisfiable but not covered) then

// Compute fn such that In = fn(in)
14 i ← model for Cons(n);
15 C ← Term(n);
16 (In, in, fn) ← ComputeMap(C,I, V, v, n,Parent(n), i);

// Build new test-cases
17 for (n in T satisfiable but not covered) do
18 Run S with a consistent valuation using fn(in) and ∀j ∈ I \ In using rj

from Line 10;
19 T ′ ← T ′ ∪ (PC from U);

20 T ← T ′;
21 until (T has no unprocessed nodes);

The function fitting algorithm ComputeMap, shown in Algorithm 2, works as
follows:

1. Lines 1–4 We compute in occurring in C and the restriction of the model i, for
Cons(n), to in. We use treatment learning to isolate a set In ⊆ I most likely to
affect in and to determine if the data points in V and v have a smooth relationship.

2. Lines 5–6 If the relationship is smooth we build the map fn such that In = fn(in).
3. Lines 8–10 If the relationship is not smooth, we strengthen C by including the

parent term from Cons(n) and then recursively call ComputeMap.
4. Lines 12–22 If we cannot find a smooth relationship by including all terms in

Cons(n), then we use the Sufficiency of Witnesses to walk up the parent hier-
archy of n to reach a node n′′ that has at least Threshold data points that witness
covering n′′. By Assumption 2, we have at least one path that was taken through
the unit during system testing. If we find two data points that covered a node in the
parent hierarchy of n, we attempt a linear fit and return. If we cannot find at least
two data points, we run more MC simulations.

302 M. Davies, C.S. Păsăreanu, and V. Raman

Algorithm 2. ComputeMap(C, I, V, v, n, n′, i)
input : Constraint C such that Cons(nk) ⇒ C, system inputs I , system vectors V ,

unit vectors v, a node n that we want to cover, a node n′ that is in the parent
hierarchy of n and a model i for Cons(n)

output: (In, in, fn) where In = fn(in) and in = Vars(C))

1 in ← Vars(C);
2 in ← restriction of i to in;
// Find a subset of I for function fitting

3 V ′ ← {a ∈ V | a is in 20% of points closest to Cons(n)} and V ′′ ← V \ V ′;
4 (In, Rn, smooth) ← RunTAR3(I, V, V ′, V ′′);
5 if (smooth) then
6 Build map In = fn(in);
7 else

// Strengthen constraint and try again
8 if (n′ exists) then
9 C ← C ∧ Term(n′);

10 (In, in, fn) ← ComputeMap(C, I, V, v, n, parent(n′), i);
11 else

// If no smooth relation between In and in, then
walk up the parent of n, pick a node with
Threshold points, and attempt a linear fit

12 n′′ ← n;
13 while (Parent(n′′) exists) do
14 C ← C ∧ Term(Parent(n′′));
15 n′′ ← Parent(n′′);
16 V ′ ← {a ∈ V | a covers n′′};
17 if (|V ′| ≥ Threshold) then
18 break;

19 V ′′ ← V \ V ′;
20 (In, Rn,) ← RunTAR3(I, V, V ′, V ′′);
21 in ← Vars(C);
22 Build map In = fn(in);

We use the treatment learning algorithm TAR3, presented in Algorithm 3 for the fol-
lowing two purposes in our coverage algorithm:

Learning Rules for Covered Nodes. We use TAR3 to determine the subset of system
inputs and their ranges that covered nodes at the unit level. For every node n that was
covered during system testing, if its sibling was also covered, then we have a partition
of the data points at the system level into one set that covered n and the other set that
covered its sibling. We use TAR3 with these partitions to learn rules that will either visit
n or its sibling; Line 10 of Algorithm 1. We use these rules at Line 18 to pick values for
a subset of I as described in the algorithm.

Symbolic Execution Enhanced System Testing 303

Algorithm 3. RunTAR3(I, V, V ′, V ′′)
input : System level parameters I , system level vectors V and contrast sets V ′ ⊂ V

and V ′′ = V \ V ′.
output: (I ′, R, smooth) where I ′ ⊆ I , R is a set of ranges for each parameter in I ,

smooth is set to true by examining the output

1 Call TAR3 with V , V ′ and V ′′;
2 Compose I ′ ⊆ I , R and smooth based on the results of running TAR3;
3 Return (I ′, R, smooth);

Learning Inputs for Function Fitting. We attempt to fit a function to cover node n
using a weak C initially set to Term(n). This C is progressively strengthened as seen
in Algorithm 2. For each C, we construct contrast sets by partitioning the data points
into a.) the 20% of the data points nearest in Euclidean distance to the PC boundary and
b.) all remaining points. These sets are used to learn a small subset of I most influencing
i close to the PC boundary. We use this reduced subset of I for function fitting.

As an example, in Figure 4 the desired i are represented by the gray rectangle in
the center of the plot. Curves are built from data pairs seen during program execution;
dotted circles surround the data nearest the PC boundary and comprise a contrast set.
TAR3 returns the I that most affect the i near the PC boundary. We also use TAR3 to
determine whether a smooth relationship exists between subsets of i and I . In Figure 4,
the relationship between i and I appears to be discontinuous. To each side of the PC
boundary, a small variation in system values leads to a large variation in the unit values;
it is possible to get two different unit values for the same system level value.

Fig. 4. A non-smooth relationship between
a system and a unit parameter. The gray re-
gion represents values of i not seen during
testing. Dotted circles surround data closest
to the boundary.

Fig. 5. Bars outline a rule that guides execu-
tion through Node 2. Data points (asterisks)
are boxed if the runs pass through Node 2.
The dotted oval outlines a contiguous re-
gion that suggests f2 is smooth.

Discussion. We now discuss the assumptions made in our coverage algorithm and also
the conditions under which the algorithm makes progress. We make the following as-
sumptions in our coverage algorithm:

1. The unit U can be analyzed using concolic execution,
2. At least one path in U is taken during system testing.

304 M. Davies, C.S. Păsăreanu, and V. Raman

The first assumption is required since our goal is to use unit level concolic execution
to improve system testing. The second assumption may be satisfied using one of the
following two approaches:

1. Iteratively choose smaller systems that enclose U , until we find a system such that
at least one path is taken in U during system testing.

2. Pick the earliest method U ′ up the call chain of U that has at least one path covered
during system testing and then run Cover(S,U ′). This increases the test vectors
that explore U ′ and hence the likelihood of taking paths in U .

We remark that by using a breadth first exploration of the constraints tree, we ensure
that when we attempt to cover a node, all its parent nodes have been processed. This
ensures that when we build a system level vector for a node n, we have learnt ranges for
all nodes in its parent hierarchy; the system level vector is composed using these ranges
and the function fn.

Remark 1 (Progress). In the presence of perfect function fitting, if we have an over-
approximation of the subset of In that affect the in = Vars(Cons(n)) for every node
n that is satisfiable at the system level, then the algorithm will eventually cover n.

Consider a satisfiable node n that cannot be covered by considering any constraint
weaker than Cons(n). As we strengthen the C from Term(n) to Cons(n), we even-
tually include in C all terms from Cons(n) and all in in Vars(Cons(n)). If we find
a perfect function f , such that In = f(in), and if In includes all the I that affect in,
we are guaranteed to cover n. We use TAR3 to extract In. We can supplant TAR3 with
static analysis techniques, such as [23], to learn an over approximation of the set In.
Note that due to loops or recursion, our algorithm may not terminate.

5 Experience

In this section, we present our experience using the technique proposed in this paper
on several examples. Two of these examples are purely illustrative, the third is a clas-
sic aerospace example. Planned experiments include larger aerospace examples: flight
control software for unmanned aerial vehicles and a prototype conflict detection and
resolution algorithm.

Our algorithms are implemented in the context of analyzing C code. We use MAT-
LAB scripts to generate an initial suite of system vectors V given the known I , and to
execute programs instrumented for concolic execution. The concolic execution frame-
work is implemented using CIL [24], the C Intermediate Language, that provides an
API for the analysis of C programs, to instrument user code. We use CIL to walk the
intermediate representation of the program and insert calls to a set of runtime listen-
ers. The user program is then re-generated from the intermediate representation, linked
with our runtime library and run. During MC simulations, we use the instrumented ver-
sion of the unit to monitor unit and system inputs and to capture paths that were taken
within the unit. The constraints tree generated during MC simulations is used as an
input to a subsequent solve cycle, where we solve for paths not taken within the unit
during system level testing, replay solutions found and thus explore the tree to com-
pletion; we solve path constraints using Yices [25]. The outputs of these steps are a

Symbolic Execution Enhanced System Testing 305

fully explored constraints tree T together with models for all satisfiable paths, a set of
unit vectors v and the corresponding system vectors V that we monitored during MC
simulations. These outputs are fed to MATLAB scripts that use I , T , i, V and v to per-
form treatment learning and function fitting, and to predict new I that better cover T in
subsequent iterations. Two steps in our current process are manual, and we have plans
to automate both: a) determining whether TAR3’s treatments suggest smooth functions,
and b) choosing whether to begin execution of the new I .

A Piecewise Linear Case Study. We will first use the simple, piecewise linear imple-
mentation in Program 1. Although the fn for this example can be found by hand or by
symbolic execution, we use it here to illustrate our technique. Unit is instrumented to
perform concolic execution and graphical results are shown in Figure 3. All invocations
of Unit begin at Node 1 in Figure 3. Control flow from Node 1 is determined by f1,
which is i1 = I2. If I2 > 0, control flow passes to Node 2; otherwise, to Node 5. For
demonstration, we treat f1 as unknown, and determine it using our heuristic methods.

We initially create 25 test cases using values for I1 and I2 between -2 and 2 (Al-
gorithm 1, Lines 2–4). Nodes 4 and 7 within Unit are not covered; concolic execution
provides the unit input constraints that will cover them. Figure 2, Lines 2–4 give the
required unit level parameters: g2, g1, and i1. Lines 6–11 show T for Unit; Line 11
corresponds to Node 7, and has an ‘S’ to show that the constraint is satisfiable at the
unit level.

The generated constraint tree is traversed using breadth-first search (Algorithm 1,
Lines 7–16). Lines 6 and 9 in Figure 2 indicate covered sibling nodes (Algorithm 1, Line
8); TAR3 automatically returns the rule set for passing through Node 2, (0.5 ≤ I2 ≤ 2),
as shown by parallel bars in Figure 5. Similarly, TAR3 discovers (−2 ≤ I2 ≤ 0.5) for
passing through Node 5. Note that TAR3 does not capture the exact location of the
constraint boundary between Nodes 2 and 5. TAR3 can not learn system constraints for
Nodes 3 and 6 as there is no contrasting data.

TAR3 is then used to reduce the subset of values of In for function fitting. Contrast
data sets are built by isolating the 20% of unit input data nearest the constraint boundary.
For Node 4, TAR3 suggests that g2 depends on a smooth relationship involving only I1.
To cover Node 7, our approach first considers all data satisfying the weakest constraint
(g1 ≤ −3); TAR3’s results are in Figure 6. The data nearest in value to the constraint
boundary are spread discontinuously across I1 and I2 space. TAR3 makes a prediction
involving a subset of the points. This happens when the the relationship between i and
I is not smooth; in this case, the relationship between g1 and I2 has a discontinuity
at I1 = 0. The constraint is strengthened by considering the data satisfying i1 ≤ 0 ∧
g1 ≤ −3. By the Monotonicity of Witnesses, this yields fewer data points; there are a
total of 15 data points passing through Node 5. TAR3 now suggests there is a smooth
g1 = f7(I1, I2).

For Node 7 the exact solution g1 = I2 is predicted using function fitting (Algo-
rithm 2), with an error less than 10−15. For Node 4 the solution g2 = I1 + 3 is pre-
dicted with an error less than 10−14. These approximations, along with the previously
discovered system level constraints (Algorithm 1, Line 10), enable building new test
inputs for I1 and I2 to cover Nodes 4 and 7 on the next test iteration (Algorithm 1,
Lines 17–19).

306 M. Davies, C.S. Păsăreanu, and V. Raman

Program 2. The System Function in the Prototype Quadratic Example. The Unit Func-
tion is the same as in Program 1, except that the Unit Function for this case expects
inputs of type double.

double g1=1.0, g2=2.0;
int System(double I1, double I2)
{
if (I1 > 0) g1 = I2;
else g1 = -I2;
g2 = I1*I2+3.0*I1*I1+I2*I2;
Unit(I2, I1);

}

A Piecewise Quadratic Case Study. As a simple example of how our technique could
be used in the presence of nonlinear constraints (that are not typically handled by off-
the-shelf solvers), we propose the example in Program 2. Program 2 and Program 1
differ in the use of doubles instead of ints and the nonlinear assignment formula for
g2 before Unit is called. T is identical to the one given in Figure 2 and Figure 3. A
breadth-first search over covered nodes gives identical results to the previous section.

TAR3’s results for Node 4 are shown in Figure 7. The treatment was unable to bound
all of the contiguous boxed data; this suggests that f4 is smooth but nonlinear.

Fig. 6. Node 7’s treatment Fig. 7. Node 4’s treatment

Function fitting is applied for Nodes 4 and 7. Node 7’s results are identical to those
in the previous section. For Node 4, function fitting gives a residual error of less than
10−15 and the exact solution g2 = 3.0 ∗ I12 + I22 + I1 ∗ I2. Our algorithm first
attempts to create an I that satisfies g2 ≤ 0 and is consistent with the system parameters
and ranges learned previously (Line 10 of Algorithm 1), but discovers that there is
an inconsistency. There are no real roots that satisfy the constraint for g2 given f4
and the range constraints for Node 4’s parent (Node 2). Function fitting for Node 2
yields the exact result i1 = I2. By simple substitution the correct system constraint is
I2 > 0. An examination of Node 4’s constraint reveals that the two system constraints
are unsatisfiable; no system test leads us to Node 4.

An Aerodynamics Case Study. In this aerodynamics case study the code predicts the
drag coefficient Cd, as calculated by the USAF Stability and Control DATCOM man-
ual [26]; it can be found at https://c3.nasa.gov/dashlink/projects/
57/#c0. Cd is used in the yaw control law for a supersonic aircraft designed to fly

https://c3.nasa.gov/dashlink/projects/57/#c0
https://c3.nasa.gov/dashlink/projects/57/#c0

Symbolic Execution Enhanced System Testing 307

between 30,000 and 80,000 feet at Mach numbers M between 0.8 and 3.0. M is a ra-
tio of the plane’s airspeed to the speed of sound, and is calculated by measuring two
different pressures, Pt and Ps. The system I consists of three arguments from sensors:
Pt, Ps, and the altitude Alt. This sensed data is used to calculate M , compressible and
incompressible skin friction coefficients Cf and Cfb, and the corresponding terminal
skin friction coefficients CfT and CfbT . For subsonic (M < 1) compressible flow in
air, M is given by Equation 1; for supersonic (M >= 1) flow, M is found implicitly
using the Rayleigh Pitot tube formula [27], shown here as Equation 2.

M =

√√√√5

[(
Pt

Ps

) 0.4
1.4

− 1

]
(1)

Pt

Ps
=

(
5.76M2

5.6M2 − 0.8

)3.5
2.8M2 − 0.4

2.4
(2)

For Equation 2, there is no explicit formula for M given Pt, Ps. One code component
uses Newton’s Method to solve Equation 2, and is used as a black box for our technique.
Cf , Cfb, CfT and CfbT are complicated nonlinear functions of M and Alt [26]. The
unit calculates Cd based on the skin friction and the base drag. The relationships be-
tween Cd and the unit inputs are nonlinear, but the constraints defining the relationships
are linear and easy to both discover and solve using concolic execution techniques.

[Parameters]
2 CfbT
3 Cf
4 M
5 CfT
6 Cfb

[Tree]
8 (Cf > CfT) (C)
9 (M >= (780000 / 1000000)) (C)
10 (M > (1040000 / 1000000)) (C)
11 (M >= (600000 / 1000000)) (C)
12 (Cfb > CfbT) (C)
13 (M >= 1) (C)
14 (M <= (2000000 / 1000000)) (C)
15 (M > (2000000 / 1000000)) (C)
16 (M < 1) (S)
17 (Cfb <= CfbT) (S)
18 (M < (600000 / 1000000)) (S)
19 (M <= (1040000 / 1000000)) (S)
20 (M < (780000 / 1000000)) (S)
21 (Cf <= CfT) (S)

Fig. 8. The constraints tree after seven rounds of initial testing

We begin our testing of the system by looking at nominal ranges for the aircraft: Alt
between 30 and 80 thousand feet, Pt between 0.0145 and 25, and Ps between 0.00971
and 3.5. Performing 2-factor combinatorial testing [28] with 5 bins for each of these
parameters gives 9 initial test cases. Two of these cases have Pt < Ps, a physical
impossibility, and are thrown out.

The constraints tree T for our 7 initial test cases covers only 2 paths through the
tree, as shown in Figure 8. T is traversed using a breadth-first search. For the nodes
at lines 21 and 17 of Figure 8, TAR3 suggests a smooth relationship between the unit
parameters and the system parameters Ps and Alt. For the nodes at lines 16 and 18-20,

308 M. Davies, C.S. Păsăreanu, and V. Raman

TAR3 suggests a smooth relationship between M and the system parameters Pt and
Ps. Function fitting is performed for the nodes not covered by system testing, using all
7 initial data points, giving the approximation M = 5.7022 + 0.0035 ∗ P 2

t − 0.0092 ∗
Ps ∗ Pt + 0.7255 ∗ P 2

s − 0.0124 ∗ Pt − 3.4665 ∗ Ps with a residual of 0.0479. This
process is repeated to find approximations between the unit parameters Cf , Cfb, CfT
and CfbT , and the system parameters Ps and Alt that were implicated by TAR3.

Constraint solving is then used to find test inputs for each node not covered in T .
The result is 17 new I , which are used for new simulations. Concolic execution records
the paths taken through the unit; the resulting T has 5 covered paths with 21 covered
nodes and 12 nodes not covered—only 5 of the nodes not covered are satisfiable. When
the new T is compared against the one in Figure 8; the constraints at lines 17, 19 and
21 are covered. After two rounds of testing, our method uses 24 tests to illuminate a
constraints tree with 21 covered nodes and 12 nodes not covered.

We compared our technique against state-of-the-art black box testing by generating
a test suite with 25 n-factor combinatorial tests; n-factor combinatorial testing typically
obtains better coverage than random Monte Carlo testing [22,29]. With a comparable
number of tests (24 vs. 25) our technique achieves significantly higher coverage (21
covered nodes) than the coverage obtained by n-factor combinatorial testing alone (16
covered nodes).

6 Conclusion

We described a testing technique that combines the strengths of black-box system simu-
lation with white-box unit symbolic execution to overcome their weaknesses. The tech-
nique uses machine learning, function fitting and constraint solving to iteratively guide
the generation of system-level inputs and increases the testing coverage. We showed in
the experience section that we could use our tool to increase coverage of a unit using
fewer test cases compared to state-of-the-art combinatorial testing. System level simu-
lation can be expensive, and using information from white-box techniques allowed us
to significantly decrease the time cost. White-box techniques, like concolic execution,
may not scale to a full system. This is especially true when the system either contains
non-linear components or contains components for which the source code is unavail-
able. Covering each white-box unit separately is an option, but there are likely to be
test cases which are not possible given the constraints of the full system. As an exam-
ple, the values of the Mach number and the friction coefficients in our aerodynamics
case study are constrained by the measured values of the pressures Pt and Ps and the
altitude. This means that, even though the Mach number and the friction coefficients
are treated as independent inputs to our unit, the values of these variables cannot truly
vary independently. If we performed only unit-level full coverage, we may miss dead
code that is unreachable given the system, or we may spend too much time exploring
behaviors in the unit that are not possible given the unit’s true calling context. In the
future, we plan to study alternative approaches to machine learning (e.g. Daikon) and
to perform a thorough evaluation of the technique to determine its utility in practice.

Symbolic Execution Enhanced System Testing 309

References

1. Acevedo, A., Arnold, J., Othon, W., Berndt, J.: ANTARES: Spacecraft simulation for multi-
ple user communities and facilities. In: AIAA 2007–6888 Mod. and Sim. (2007)

2. Pasareanu, C., Mehlitz, P., Bushnell, D., Gundy-Burlet, K., Lowry, M., Person, S., Pape, M.:
Combining unit-level symbolic execution and system-level concrete execution for testing
NASA software. In: ISSTA (2008)

3. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In: FSE (2005)
4. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing. In: PLDI.

ACM (2005)
5. King, J.C.: Symbolic execution and program testing. CACM (1976)
6. Menzies, T., Hu, Y.: Data mining for very busy people. IEEE Computer (2003)
7. Xie, T., Marinov, D., Schulte, W., Notkin, D.: Symstra: A Framework for Generating Object-

Oriented Unit Tests using Symbolic Execution. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS
2005. LNCS, vol. 3440, pp. 365–381. Springer, Heidelberg (2005)

8. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: automatically gener-
ating inputs of death. In: ACM CCS (2006)

9. Elbaum, S., Chin, H.N., Dwyer, M.B., Dokulil, J.: Carving differential unit test cases from
system test cases. In: FSE (2006)

10. Sen, K.: Concolic testing. In: ASE (2007)
11. Gay, G., Menzies, T., Davies, M., Gundy-Burlet, K.: Automatically finding the control vari-

ables for complex system behavior. In: ASE (2010)
12. Bay, S., Pazzani, M.: Detecting change in categorical data: Mining contrast sets. In: KDDM

(1999)
13. Agrawal, R., Imeilinski, T., Swami, A.: Mining association rules between sets of items in

large databases. In: ACM SIGMOD (1993)
14. Cai, C., Fu, A., Cheng, C., Kwong, W.: Mining association rules with weighted items. In:

IDEAS (1998)
15. Holte, R.C.: Very simple classification rules perform well on most commonly used datasets.

Machine Learning 11 (1993)
16. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artificial Intelligence (1997)
17. Trefethen, L.N., David Bau, I.: Numerical linear algebra. SIAM (1997)
18. Strang, G.: Linear algebra and its applications, 3rd edn. Thomson Learning (1988)
19. Burden, R.L., Faires, J.D.: Numerical analysis, 7th edn. Brooks/Cole (2001)
20. Bartle, R.: The elements of real analysis, 2nd edn. John Wiley & Sons (1976)
21. Schumaker, L.L.: Spline functions: basic theory. Wiley Interscience (1981)
22. Cohen, D., Dalal, S., Parelius, J., Patton, G.: The combinatorial design approach to automatic

test generation. IEEE Software 13, 83–88 (1996)
23. Clause, J.A., Li, W., Orso, A.: Dytan: a generic dynamic taint analysis framework. In: ISSTA

(2007)
24. Necula, G.C., Mcpeak, S., Rahul, S.P., Weimer, W.: CIL: Intermediate language and tools

for analysis and transformation of C programs. In: International Conference on Compiler
Construction, pp. 213–228 (2002)

25. Dutertre, B., Moura, L.D.: The YICES SMT solver. Technical report, SRI International
(2006)

26. Finck, R.: USAF stability and control DATCOM. Technical Report AFWAL-TR-83-3048,
USAF (1978)

27. Anderson, J.D.: Fundamentals of Aerodynamics, 3rd edn. Mc-Graw Hill (2001)
28. Gundy-Burlet, K., Schumann, J., Barrett, T., Menzies, T.: Parametric analysis of a hover test

vehicle using advanced test generation and data analysis. In: AIAA Aerospace (2009)
29. Dunietz, I., Ehrlich, W., Szablak, B., Mallows, C., Iannino, A.: Applying design of

experiments to software testing: experience report. In: ICSE, pp. 205–215 (1997)

Infeasible Code Detection

Cristiano Bertolini1, Martin Schäf1, and Pascal Schweitzer2

1 United Nations University, IIST, Macau
2 Australian National University

Abstract. A piece of code in a computer program is infeasible if it
cannot be part of any normally-terminating execution of the program.
We develop an algorithm for the automatic detection of all infeasible code
in a program. We first translate the task of determining all infeasible
code into the problem of finding all statements that can be covered by a
feasible path. We prove that in order to identify all coverable statements,
it is sufficient to find all coverable statements within a certain minimal
subset. For this, our algorithm repeatedly queries an oracle, asking for
the infeasibility of specific sets of control-flow paths.

We present a sound implementation of the proposed algorithm on
top of the Boogie program verifier utilizing a theorem prover to provide
the oracle required by the algorithm. We show experimentally a drastic
decrease in the number of theorem prover queries compared to existing
approaches, resulting in an overall speedup of the entire computation.

1 Introduction

Static analysis allows us to detect undesired behavior of a program before it is ex-
ecuted or even compiled. A particular application of static analysis is to identify
code fragments that show only undesired behavior. Tools implementing this ap-
proach detect code which is never part of an execution that terminates normally.
We refer to this type of code as infeasible code. The terminology infeasible code
is justified as follows: an execution is infeasible if it does not terminate normally
(note that we do not model error states and thus, any terminating execution
terminates normally). A path is infeasible if all its executions are infeasible. And
code is infeasible if it only occurs on infeasible paths. Compared to unreach-
able code, where no feasible path ends in the considered code, infeasible code
is a more general concept as it only requires that no feasible path contains the
considered code.

Subsets of infeasible code are, for example, found by the static analyzers in
modern development environments such as Eclipse. These tools detect simple, yet
common errors such as guaranteed null pointer dereference, use of uninitialized
variables, or unreachable program fragments. In practice, finding such type of
errors is one of the most frequent applications of static analysis. Thus, improving
the detection of infeasible code is a worthwhile problem.

An intriguing property of infeasible code is that it can be detected without
prior knowledge of the desired program behavior or it’s environment (e.g., the

R. Joshi, P. Müller, and A. Podelski (Eds.): VSTTE 2012, LNCS 7152, pp. 310–325, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Infeasible Code Detection 311

possible input values). If a piece of code is infeasible, it will stay infeasible even
if the context is subsequently restricted by other means such as adding guarding
statements or specifying admissible input values. Thus, infeasible code can be
detected while typing the program, and infeasible code can only be eliminated
by changing the code fragment itself and not by changing other code.

Recently, new static analysis approaches have emerged that use formal meth-
ods to prove the presence of infeasible code [11, 14]. They prove a particular
program statement to be infeasible code by encoding all paths passing through
the statement in a logic formula. The formula is satisfiable if there exists a nor-
mally terminating execution of the program following one of these paths. The
benefit of proving the presence of infeasible code with this approach is that it
does not produce false warnings [12].

To detect all infeasible code in a program, this method is repeatedly applied to
different program statements. Each application invokes a theorem prover query
and is thus computationally expensive. It is possible to query the infeasibility
of several statements simultaneously, in order to reduce the number of queries.
Minimizing the number of queries can help us to devise more efficient ways to
process the entire code, however, using more complex queries may be computa-
tionally more expensive. Thus the following question arises:

What is an efficient strategy to detect all
infeasible statements in a given program?

In this paper, we show that the problem of identifying all infeasible code can be
expressed as a set cover problem on a minimal subset of program statements.
We then show that the problem of detecting infeasible code is equivalent to
proving the non-existence of a feasible path cover for this subset of statements
in the control-flow graph of the program. We further show that a feasible path
cover of this set covers all feasible statements in the program. This in particular
shows how the feasibility or infeasibility of every statements can be determined
from the feasibility information on the subset of statements. We present a query
optimal greedy algorithm to compute a feasible path cover and a sound imple-
mentation. The implementation uses a theorem prover (we use Z3 [6]) as an
oracle to check the existence of a feasible control-flow path in a particular set.
We show experimentally that the proposed method is more efficient in terms of
oracle calls and computation time than existing approaches.

Related Work. Numerous approaches exist that, among other things, show
infeasible code to be faulty. E.g., when a test case executes infeasible code it
must reveal an error. Many of these approaches suffer from false warnings or
require a strong user interaction (e.g., [8, 19]). Moreover, the approaches do not
prove code to be infeasible. We restrict the discussion to static error detection
approaches that detect statements from which a good state is unreachable. Find-
bugs [13] detects contradicting control-flow using pattern matching. It detects
statements similar to infeasible code, however, pattern matching is neither sound
nor complete.

312 C. Bertolini, M. Schäf, and P. Schweitzer

Encoding the feasibility of control-flow paths as a logic formula goes back to
the idea of predicate transformers [7]. An algorithm that uses formal methods
to prove that a statement cannot be reached by a feasible execution is presented
in [14]. Unreachable code is a special type of infeasible code. An algorithm to
detect if a particular control location is never passed by a feasible execution
is developed in [11]. They query a theorem prover whether there exists some
feasible path containing a particular location. Their approach detects doomed
locations while our approach detects infeasible statements. By inserting auxiliary
locations, the two approaches can be reduced to each other. However, one of the
central insights of this paper is that, in order to find all statements occurring on
feasible paths, it is in general not sufficient to check only control locations.

In [12] the algorithm from [11] is extended to an algorithm that detects all such
locations. They present a strategy to minimize the number of theorem prover
queries to detect infeasible code on a loop-free abstraction of the program. In
this paper, we present a more general type of query. This type of query allows us
to check infeasibility of several statements simultaneously. Moreover, we prove
that it is possible to determine all infeasible statements by only checking a
minimal subset of all statements. Without the use of auxiliary locations, our
proof cannot be translated to suit the approach using locations. Any direct
proof for program locations seems to require further properties of the program.
We show our approach, which also works for programs with loops, further reduces
the number of queries and prove that our approach is query optimal.

Algorithms to compute feasible path covers or sets of infeasible control-flow
paths have been proposed in software testing (e.g. [4]). These approaches either
require an executable program, or over-approximate the feasible path cover.

Organization of the paper. In Section 2 we give some examples of infeasible
code. In Section 3 we formalize the notion of infeasible code and show that
it’s detection can be expressed as a path cover problem. In Section 4 we then
present an algorithm to check the existence of a feasible path cover of a control-
flow graph that uses an oracle to check if a given set of paths is infeasible. In
Section 5 we show how this oracle can be realized using weakest liberal precon-
ditions. In Section 6 we present a prototype implementation of our algorithm
and in Section 7 we experimentally compare this implementation with existing
implementations in terms of theorem prover calls and computation time.

2 Examples of Infeasible Code

Figure 1 provides 4 example programs that demonstrate the usefulness of infea-
sible code detection. In ex01, line 3 is infeasible because any execution passing
that line will loop forever. This example shows that infeasible code also refers
to code that does neither reach a normal terminating state nor violates an as-
sertion. However, infeasible code detection only detects non-termination if any
execution entering the loop must run forever.

The program ex02 has infeasible code in line 3. It shows that code can be in-
feasible because its execution always causes an error at some later stage. Indeed,

Infeasible Code Detection 313

1 void ex01(int x) {

2 while (x>0) {

3 x=(x/2) +1;

4 }

5 }

1 void ex02(C a, int x) {

2 if (a== null)

3 x=-1;

4 a.toString ();

5 }

1 void ex03 () {

2 int a, b;

3 a=1;

4 if (a>0) b=1;

5 a=b;

6 }

1 void ex04(C a) {

2 int y=0;

3 if (a!= null)

4 y=1;

5 if (y==0)

6 a.toString ();

7 }

Fig. 1. The example programs show different possible causes for code to become
infeasible

on any execution passing line 3, the reference a is guaranteed to be null and
thus, the program terminates abnormally in line 4. Note that the only infeasible
statement in this program is line 3. All other statements are part of feasible
executions.

In practice, we use automatically generated assertions to guard pointer deref-
erences and other properties. In general, the approach presented in this paper
can be used with arbitrary safety properties. E.g., we can use infeasible code
detection for definite-assignment analysis and encode the property that every
variable must be written once before it is read by using helper variables and
assertions. To this end, we can show that in ex03, the variable b is initialized on
any feasible path. In contrast, the Java compiler rejects this program claiming
b might be not initialized if a is not positive at line 4. We can encode other
properties, such as array-bound checking, or locking behavior in the same way.

A more complex example of infeasible code is given in ex04. Any path con-
taining line 6 is either infeasible because the conditional evaluates to false, or
null is dereferenced. For code to be infeasible, it is not necessary that all paths
are infeasible for the same reason or diverge at the same control location.

3 Infeasible Code, Effectual Sets, and Path Covers

A program is defined by a control-flow graph P = (S, δ,Σ). A control-flow graph
is a connected directed graph where S is the set of control locations and Σ is
the set of instructions in the program. A program statement st = (s, inst, s′) ∈ δ
is an instruction inst ∈ Σ at a control-location s whose execution ends in a
control-location s′. The transition relation δ ⊆ S × Σ × S represents the set of
statements in P . W.l.o.g., we assume that the program has a unique source and
a unique sink node. A path from a node s1 to a node sk+1 in P is a sequence of
statements π = st1 . . . stk = (s1, inst1, s2) . . . (sk, instk, sk+1), s.t. st1, . . . , stk ∈ δ.
Note that, as customary in the context of control flow graphs, a path may use

314 C. Bertolini, M. Schäf, and P. Schweitzer

vertices repeatedly. A complete path is a path that starts in the source node
and ends in the sink node of the graph. Throughout this paper, unless stated
otherwise, the word path always refers to a complete path.

Infeasibility. We assume that the semantics of a statement st is given by a weak-
est liberal precondition operator P = wlp(st,Q), s.t. any execution of st starting
in a state satisfying P results in a state satisfying Q or does not terminate nor-
mally [7]. We say an execution does not terminate normally if it blocks, either
because a conditional statement is not satisfied or it crashes because an (possibly
implicitly) assertion is violated, or it runs forever. We extend the weakest liberal
precondition from statements to paths in the obvious way.

Definition 1. Given a program P = (S, δ,Σ), a path π in P is infeasible if
wlp(π, false) = true.

Here, true denotes the set of all possible states and false the empty set of states.
Note that we do not take into account the reason for paths being infeasible. We
are only interested in the fact that their executions do not terminate normally.

In general, not every control-flow path in a genuine program is feasible. E.g.,
control-flow paths may be infeasible because of complex conditional branching.
Only if a statement is not part of any feasible execution we call it infeasible code.

Definition 2. Given a program P = (S, δ,Σ), a statement st ∈ δ is infeasible
code, if there is no feasible path π in P that contains st.

There are two reasons why a statement can be infeasible code. One is that it
is not part of any (terminating) execution, the other is that it is only part of
executions that terminate in an error state.

Effectual sets. For the detection of infeasible code, it is not necessary to consider
all edges (statements) in a control-flow graph. It suffices to focus on a minimal
subset of edges of which each control-flow path contains at least one. As shown
in [3, 12], this set can be identified using a partial order over control-flow edges.
The minimal subset can be used to decide whether there is infeasible code.
However, for our purpose of determining all infeasible code, there are examples
of control flow graphs where these sets are not sufficient (see [2] for an example).

Definition 3. Given a program P and two statements st, st′ ∈ δ, we write st
st′ if every complete or infinite path π in P that contains st also contains st′.

We remark that in acyclic graphs the defined relation coincides with the one
used in [12]. The relation is reflexive and transitive, therefore the relation
 = ∩ −1 is an equivalence relation. We denote by [st] the equivalence class
of a statement st under . We say that [st] [st′] if and only if st st′.

For a set δ′ ⊆ δ we define cov(δ′) to be the maximal number of elements of δ′

contained in a (not-necessarily feasible) path.
We call a set δ′ ⊆ δ effectual if it is a maximal set of statements that are all

minimal w.r.t. , such that for any two distinct statements st, st′ ∈ δ′ we have
st �∈ [st′]. We will usually denote effectual sets by F(δ).

Infeasible Code Detection 315

Path covers. A path cover of the program P = (S, δ,Σ) is a set of paths such
that each statement in δ is contained in at least one of the paths. A path cover
is feasible if it contains only feasible paths. Path covers and effectual sets are
the key element to our method of determining infeasible code.

Theorem 1. Let P = (S, δ,Σ) be a program and F(δ) ⊆ δ an effectual set.
Program P has no infeasible code, if and only if there is a feasible path cover
of F(δ).

Proof. ”⇒”: If P has no infeasible code, every statement st ∈ δ is part of some
feasible path πst. The set

⋃
st∈F(δ) πst is a feasible path cover of F(δ) .

”⇐”: suppose there is a feasible path cover of F(δ). Let st ∈ δ be a statement.
Since F(δ) is maximal, there is a statement st′ ∈ F(δ) such that st′ st. Since
there is a feasible path cover of F(δ), there is a feasible path that contains st′.
Since st′ st this path also contains st. Thus every statement is contained in
some feasible path and P has no infeasible code. �&

The theorem shows that the problem of detecting infeasible code can be under-
stood as a path cover problem on an effectual set. By definition, the code of two
equivalent statements st st′ is either for both infeasible or for neither. Thus,
from knowing for each statement in an effectual set whether it is infeasible code,
we can easily identify all minimal statements that are infeasible code. In the
following we show that in reducible control flow graphs we can even identify all
infeasible code. A control flow graph is reducible if removing all its back edges
yields an acyclic graph. Recall that any path that contains a back edge has a loop
that contains the back edge. We first show this for acyclic control flow graphs.

Lemma 1. Let P = (S, δ,Σ) be an acyclic program. A statement st ∈ δ is
infeasible code, if and only if every statement st′ which is minimal with respect
to and for which st′ st holds is infeasible.

Proof. If there is a feasible statement st′ with st′ st, there exists a feasible path
which contains st′ and therefore also contains st. Thus, st is feasible.

To show the other direction, we define a statement st to be bad if every minimal
element st′ with st′ st is infeasible but st itself is feasible. We need to show that
there are no bad statements. For the sake of contradiction, suppose st is a bad
statement that is minimal among all bad statements. Let st1 be some minimal
element with st1 st. By our assumption st1 is infeasible. Let π1 be an infeasible
path that contains st1 and therefore necessarily also contains st, see Figure 2.
W.l.o.g. we assume that when traversing π1 from the source to the sink we first
encounter st and then encounter st1 (otherwise we invert the directions of all
edges). Since st is feasible, there is a feasible path π2 that contains st. Since π2

does not contain st1, after passing through st it must leave the path π1 before
reaching st1. Let st2 be the first edge on π2 encountered after passing st that is
not on π1. We now show that st2 st. Suppose this is not the case, then there is
a path π3 that contains st2 but not st. We construct a path that contains st1 but
not st giving a contradiction: This path is obtained by starting along the path π3

316 C. Bertolini, M. Schäf, and P. Schweitzer

st1

stπ1

π3

st2
π2

Fig. 2. The elements used in the proof of Lemma 1

up to the starting vertex of the edge st2 and then following π1 until the end. This
path cannot exist, therefore we conclude st2 st. We have st � st2, since there
is a path, namely π1, that contains st but not st2. Finally note that st2 is bad
since it is feasible and has the property that all statements st′ with st′ st2 in
particular fulfill st′ st and are thus infeasible. This is a contradiction to our
minimal choice of a bad statement st and shows the theorem. �&

For the curious reader, we remark that there is no equivalent theorem for the
case of path-vertex covers (see [2] for an example). We now extend the lemma
from acyclic graphs to reducible graphs.

Theorem 2. Let P = (S, δ,Σ) be a program with a reducible control flow graph.

1. A statement st ∈ δ is infeasible code, if and only if every statement st′ which
is minimal with respect to and for which st′ st holds is infeasible.

2. If a set of feasible paths covers all feasible statements within an effectual
set F(δ), then the set of paths covers all feasible statements.

Proof. (Part 1). Given a reducible control flow graph P let P ′ be the graph
obtained by redirecting all endpoints of back edges into the sink. Since P is
reducible, P ′ is acyclic. Abusing terminology, for a back edge st in P , we refer
to the redirected back edge in P ′ also as st.

Claim: For statements st, st′ we have st′ st in P if and only if st′ st
in P ′. To see the claim it suffices to observe that for every complete or infinite
path π in one of the programs P or P ′ that uses a set of statements δ′ there is
a complete or infinite path π′ in the other program that uses a (not necessarily
strict) subset δ′′ ⊆ δ′ of the statements. For a path π in P this is easy to see. We
now show this for a path π in P ′. Let δ′ be the set of statements on the path π.
First note that π is finite since P ′ is acyclic. If the last edge of π does not
correspond to a back edge in P then π is also a complete path in P . Otherwise,
if the last edge of π is a back edge in P then this edge closes a loop. By repeating
this loop indefinitely, we obtain a path whose set of statements is the same as
that of π. Either way, we obtain a path in P with the desired properties, showing
the claim.

In P ′ we define a complete path to be feasible if its projection to P is a
subgraph of some (complete) feasible path of P . With this definition, a state-
ment st is feasible in P if and only if it is feasible in P ′. Moreover, having now
an acyclic control flow graph, Theorem 2 applies. Since feasibility of a statement
and the “” relation are equivalent in P and P ′, Part 1 of the theorem follows.

Infeasible Code Detection 317

(Part 2). To show Part 2 of the theorem let st be feasible code. Then, by the first
part of the theorem, there is a minimal element st′ st that is feasible code. Any
path cover that covers all feasible statements in an effectual set F(δ) covers st′.
A path that contains st′ also contains st and the theorem follows. �&

The proof of the theorem also provides us with a method to compute the rela-
tion “”: Indeed, to compute the relation of a program P we first construct
the acyclic program P ′ obtained by redirecting back edges into the sink. Since
the relation described in [12] then coincides with the relation defined in this
paper, we can then apply the method described in [12] for the computation of .

To make use of the connection between infeasible code, effectual sets, and
path covers, we first design an efficient path cover algorithm.

4 A Path Cover Algorithm

In this section we describe an algorithm that finds a feasible path cover for a
given reducible control flow graph. The feasible paths are not given explicitly.
We rather assume an oracle answers queries from which we can infer which edges
of the graph are coverable by some feasible path. Intuitively, we need to optimize
our query strategy towards a method that quickly dismisses large portions of the
graph as coverable, allowing us to focus on edges that are uncoverable.

Abstractly we have the following model: We are given a control-flow graph P
and repeatedly query for the non-existence of a feasible path with certain prop-
erties. We assume an oracle is available that provides us with an answer that
either proves that no feasible path with the desired properties exists, or with a
counterexample in form of a feasible path that possesses the required properties.

In more detail, the oracle answers the following type of query: For a specified
set of nodes δ′, and specified positive integers , k ∈ N with ≤ k, does no
feasible path exist that contains at least , and at most k elements of δ′? We
assume this Constrained Path Infeasibility query is answered by a call to the
function CPI(δ′, , k). In Sections 5 and 6 we explain why we use specifically
queries of this type and how to realize an oracle that answers them.

Being able to query for a path that contains at least a certain number of edges
from a specified subset allows us to adapt the greedy algorithm to our scenario.
The standard greedy algorithm for the set cover problem repeatedly chooses a
set that covers a maximal number of previously uncovered elements. A classic
result by Johnson [15] shows this algorithm to be an O(log(n)) approximation in
terms of the number of sets used, and this is best possible, unless P = NP [18].

Description of the algorithm. The path cover algorithm PCA (Algorithm 1) takes
as input a reducible control flow graph and outputs a set of feasible paths that
cover all feasible code. The algorithm starts by computing an effectual set F(δ).
It maintains a subset δ′ of F(δ) which at any point in time contains all elements
of F(δ) that cannot be covered by a feasible path. It repeatedly queries the
oracle, and if returned a path, removes the statements on that path from δ′.
The algorithm also maintains an integer k which is an upper bound on the
number of statements in δ′ that may lie simultaneously on a feasible path.

318 C. Bertolini, M. Schäf, and P. Schweitzer

Algorithm 1. Path Cover Algorithm PCA

Input: P = (S, δ,Σ): A reducible control flow graph.
Output: A set of feasible paths that cover all feasible code of P .

compute an effectual set F(δ)
k ← cov(F(δ))
δ′ ← F(δ)
while δ′ �= {} do

5: k ← min{k, cov(δ′)}
query CPI(δ′, �k/2�, k)
if the query returned a path π then

let E(π) be the statements on the path π
δ′ ← δ′ \ E(π)

10: else
if k = 1 then

return all paths that were reported by queries
else

k ← #k/2$
15: end if

end if
end while
return all paths that were reported by queries

Theorem 3. Let P = (S, δ,Σ) be a program with a reducible control flow graph
that has a unique sink, a unique source, and an unknown set of feasible paths.
Let F(δ) be an effectual set. Algorithm 1 returns a set of feasible paths that
covers all feasible code of P. If K is the size of the smallest set of feasible
paths that covers all coverable elements in F(δ), then Algorithm 1 performs at
most O(K · log(cov(F(δ)))) queries.

A proof of Theorem 3 is given in the extended version of this paper [2]. As
mentioned previously, the set cover problem cannot be approximated with an
approximation ratio of o(log(n)) unless P = NP [18]. In our algorithm we made
use of the parameter cov(F(δ)) to get a finer analysis of the number of queries.

In general every set cover problem can be modeled as a path cover problem
on a graph with unique sink and unique source: Indeed, by taking the tran-
sitive closure of a directed path, any subset of the edges of the original path
can be chosen to be simultaneously on a feasible path. The inapproximability
result thus applies to our path cover problem as well, and in this sense our al-
gorithm is optimal with respect to the number of queries. However, control-flow
graphs are not arbitrary graphs, and it might be possible to improve beyond the
inapproximability ratio by using properties inherent to control-flow graphs.

5 Checking Constrained Path Infeasibility

In this section we explain how to construct the oracle CPI(δ′, , k) that checks
for a program P = (S, δ,Σ) whether there exists no feasible control-flow path π

Infeasible Code Detection 319

that contains at least and at most k statements in δ′ ⊆ δ. The call CPI returns
such a feasible path π if it exists, otherwise it returns the empty path. We first
devise a technique that allows us to modify any program so that this type of
query can be answered. In particular with our modification, each query translates
into a formula whose validity is equivalent to the non-existence of such a path.
We use the concept of reachability variables introduced in [11] to monitor which
statements are involved in an execution of a program P .

So far, our approach is independent of a particular programming language. In
the following, we require that our programming language is expressive enough
to support variables with numeric types and assignment statements.

Let P = (S, δ,Σ) be a program and δ′ ⊆ δ. For each statement st ∈ δ′,
we create an auxiliary reachability variable rst in P which is initially zero. We
replace a statement st ∈ δ′ by the sequence rst := 1; st. That is, every time st is
executed rst is assigned to one. Thus, after the execution of a path π in P the
sum

∑
st∈δ′ rst is the total number of statements in δ′ that occur on π.

Having introduced the reachability variables, the existence of a feasible path
with at least and at most k statements from δ′ in a program P can be checked
using the weakest liberal precondition wlp of P and the postcondition ¬(≤∑

st∈δ′ rst ≤ k) . This leads to the following theorem:

Theorem 4. Let P = (S, δ,Σ) be a program, δ′ ⊆ δ a set and , k integers with
1 ≤ ≤ k ≤ |δ′|. The program P has no feasible path π, s.t. π contains at least
 and at most k statements from δ′ if and only if the formula

CPI(δ′, , k) := wlp(P ,¬(≤ (
∑
st∈δ′

rst) ≤ k))

is universally valid in the program augmented with reachability variables.

A proof of Theorem 4 is given in the extended version of this paper [2]. In princi-
ple, we could design the query function CPI to work for arbitrarily complicated
properties that are based on the reachability variables. In particular for any first
order formula over the reachability variables we can obtain a theorem analogous
to the one just presented. However, for actual implementations of the oracle, the
complexity of the queries may alter the query response time, as we show in our
experiments in Section 7. Our choice of query type is motivated by the fact that
linear inequalities in practice can be handled well by theorem provers, and that
this type of query suffices to construct an algorithm that is optimal with respect
to the number of queries.

Up to this point neither the algorithm PCA nor the realization of CPI per-
form any abstraction. That is:

Lemma 2. Given a sound, complete implementation of CPI, algorithm PCA
is a sound and complete method to detect all infeasible code in a program.

The proof of Lemma 2 follows directly from Theorem 3 and 4. However, an
implementation of CPI needs to compute the weakest liberal precondition of a
program, which is an undecidable problem in general. We will thus not be able to

320 C. Bertolini, M. Schäf, and P. Schweitzer

design an implementation of CPI which makes algorithm PCA simultaneously
sound and complete. In the following, we describe a sound implementation of
PCA which uses a sound wlp computation presented in [11].

6 Implementation

We now describe our implementation of a sound tool that detects infeasible
code. Our implementation takes a Boogie program [16] as input, augments it
with reachability variables, then applies the algorithm described in Section 4 and
returns a subset of the infeasible statements of the program. We implement the
constrained path infeasibility queries CPI using the sound over-approximation of
the weakest liberal precondition presented in [11]. Soundness, in this case, means
that for any path that has a feasible execution in the original program, there is
a corresponding path with a feasible execution in the abstract program. If our
translation were not sound, we might report infeasible paths that have feasible
executions in the original program. We stress that this notion of soundness is
dual to the notion of soundness used in verification.

Computing a formula representation of an over-approximation of the weakest
(liberal) precondition of a program is a common technique [9, 10, 12, 14, 17]. It
involves two steps: 1.) compute a loop-free abstraction of the input program, 2.)
compute a formula representation of the weakest (liberal) precondition of the
loop-free program.

Compute a loop-free abstraction. Given a Boogie program, we use the abstract
loop unrolling presented in [12]. Loops are unrolled three times. The first un-
rolling represents the first iteration of the loop. The third unrolling represents
the last iteration of the loop. Any other iteration is represented by the second,
abstract unrolling. To retain soundness of the abstraction, non-deterministic as-
signments to all variables modified by the loop are added before and after the
abstract unrolling. This abstraction is sound as it preserves the set of feasible
executions of the original program. A proof of soundness is given in [12].

Compute weakest liberal precondition. For the loop-free program we perform a
single-assignment transformation (e.g., [5]). We introduce an auxiliary variable
for each assignment statement such that each variable is only written once. The
resulting program is passive in a way that it does not change its state.

For a program P , we denote the result of introducing reachability variables,
eliminating loops, and altering the code to single assignment form by trans(P).
For trans(P), we can compute a formula representing the weakest liberal pre-
condition straightforwardly (see, e.g., [1, 11, 14, 17]).

In our implementation we can now use an automated theorem prover to check
the satisfiability of the negation of the formula CPI from Theorem 4:

V C(δ′, , k) := ≤
∑

st∈δ′(r
′
st) ≤ k ∧wlp (trans(P), false) ,

where r′st refers to the last incarnation introduced by the single assignment trans-
formation. If the theorem prover is able to prove V C unsatisfiable for given

Infeasible Code Detection 321

δ′, , k we know that there exists no feasible path in the over-approximation of
the program that contains at least and at most k statements in δ′, and from
the soundness of trans it follows that there is no feasible path in the original
program either. Together with the algorithm PCA, this gives us a sound tool to
detect infeasible code. We now compare this tool with existing techniques.

7 Evaluation

In this section we compare 3 algorithms to detect infeasible code in terms of
theorem prover calls and computation time. We compare PCA presented in
this paper, Doomed [11], which checks a minimal set of statements on loop-free
programs, and DoomedCE [12], which performs the same checks as Doomed but
utilizes the counterexamples emitted by the theorem prover to avoid redundant
queries. Note, that DoomedCE can be considered a special case of PCA, where
 = 1 and k is set to the number of statements.

We do not need to consider detection rate since all algorithms use the same
sound weakest liberal precondition computation (which is part of the Boogie
program verifier) and thus report the same infeasible code. For a comparison of
detection rate with, e.g., Findbugs we refer to [12].

Experimental Material. To evaluate the performance of our algorithm, we use a
set of 100 randomly generated Boogie procedures. We use generated programs
because this allows us to vary the number of diamond shapes in the control-
flow graph freely and no translation from a high-level language to Boogie that
preserves the set of feasible executions is required. Existing translations from
high-level languages into unstructured languages are not suitable for our algo-
rithms since they over-approximate the set of infeasible executions to retain
soundness w.r.t. partial correctness proofs. The threat to validity which arises
from generated programs is discussed at the end of this section.

Each generated procedure has between 150 and 1500 lines of code and mod-
ifies up to 50 unbounded integer. The body of a procedure contains a sequence

 0

 20

 40

 60

 80

 100

 120

 140

 160
PCA

DoomedCE

 0

 20

 40

 60

 80

 100

 120

 140

 160
PCA

DoomedCE

Fig. 3. Comparison of the number of queries. The x-axis ranges over the tested pro-
cedures, sorted by increasing length, the y-axis indicates the total number of theorem
prover calls.

322 C. Bertolini, M. Schäf, and P. Schweitzer

 0

 5

 10

 15

 20

 25

 30
PCA

DoomedCE

 0

 5

 10

 15

 20

 25

 30
PCA

DoomedCE

Fig. 4. Comparison of the computation time per program for PCA and DoomedCE.
The x-axis ranges over the tested procedures, sorted by increasing length, the y-axis
displays computation time in seconds.

of 5 to 10 conditional choices (diamond shapes) each with up to 5 nested con-
ditional choices or loops. Besides the nested conditionals and loops, each block
has between 3 and 5 statements. The statements are either assignments of ex-
pressions to variables, or assertions. All experiments are run several times on a
standard laptop computer with ample memory.

Comparison of the algorithms. All algorithms identify 23997 out of 116925 state-
ments to be infeasible code. PCA uses 1383 theorem prover calls and a total time
of 324 sec to identify all infeasible code; Doomed uses 8942 theorem prover calls
and 1309 seconds; DoomedCE uses 6365 queries theorem prover calls and 948
seconds. By its definition Doomed uses one query for each element in the effec-
tual set. The algorithm DoomedCE covers the effectual set by querying 71% of
the elements, and PCA is able to cover the set by querying 15% of the elements.
In terms of computation time, DoomedCE needs 72% of the computation time
of Doomed, and PCA needs 24% of the time used by Doomed.

Figure 3 compares the number of queries of PCA and DoomedCE in more
detail. As expected, we can see that the number of queries for PCA is drastically
lower than the number of queries for DoomedCE.

Figure 4 compares the computation time per procedure for algorithms PCA
and DoomedCE. We can see that, even though PCA uses more expensive ora-
cle queries than DoomedCE, there is a significant speedup due to the reduced
number of queries.

Threats to Validity. The randomly generated programs is the main internal
threat to validity. However, they allow us to control the shape of the control-
flow graph and, in particular, the number of diamond shapes which is important
to show the benefit of the path cover algorithm. The generated programs are
of a very simple nature. They do not use complex types or a heap. For all
algorithms, each query reasons about the set of paths in the program, these
queries will become proportionally more expensive if reasoning about a single
path becomes more expensive. Thus, we expect that our observations will still

Infeasible Code Detection 323

hold for real programs. However, in our future work, we have to evaluate if
control-flow graphs of this complexity occur in practice.

Another internal threat to validity of our experiments arise form the used
theorem prover. In our experiments we use only Z3. Other theorem provers may
have a different efficiency for our kind of query (i.e., the linear inequalities).
However, to avoid using a slow integer theory solver, we could alternatively
encode the sum of reachability variables as a boolean formula.

External threats to validity arise from the needed translation from some high-
level language to Boogie.

Discussion of the results. The drawback of DoomedCE compared to PCA is its
inability to influence the counterexamples produced by the theorem prover. A
counterexample may cover many statements that have already been covered by
previously found counterexamples. Yet, forcing the theorem prover to provide
more useful counterexamples comes at the price of longer query times. How
high this price is, depends on the program structure. For example, if a program
consists of sequential but independent parts, there are feasible paths that provide
useful information in all parts simultaneously.

The effectiveness of searching useful counterexamples is also influenced by
the properties we check. It is to be expected that there are properties for which
the queries presented in this paper are significantly more expensive than, e.g.,
the queries used in DoomedCE. For these cases, algorithm PCA may require
noticeably more computation time than DoomedCE. However, our experiments
indicate that, at least for null pointer dereference and definite assignment anal-
ysis, the presented approach yields a significant performance improvement.

As mentioned earlier, algorithm DoomedCE can be considered as a special
variant of PCA. Both algorithms are part of a family of algorithms obtained by
varying the variables and k used to call CPI. This indicates that, even though
the presented approach is query optimal, there is still room for optimization to
achieve optimal computation times.

8 Conclusion

We have shown that the detection of infeasible code can be seen as a set cover
problem and, more importantly, that covering all feasible statements in an ef-
fectual set determines all feasible statements in a program.

We presented an algorithm that detects all infeasible code in a program which
uses an optimal number of queries. Using our implementation, for various appli-
cations of infeasible code detection, we have experimentally shown a significant
decrease in the computation time when compared to existing methods.

For our future work we see two promising directions. We will incorporate
the path cover algorithm directly in a theorem prover. In fact, the presented
algorithm can be seen as a strategy to force a theorem prover to search for a
particular counterexample. Thus, implementing this directly in a theorem prover
may lead to performance improvements by allowing reuse of information more
efficiently.

324 C. Bertolini, M. Schäf, and P. Schweitzer

Another direction of future work is the development of different strategies to
realize CPI based on different approximations of the weakest liberal precon-
dition. A sound implementation of CPI that is only required to preserve all
feasible executions of a program (in contrast to verification contexts, where all
infeasible executions must be preserved) can use a coarser approximation and
may result in a significant performance improvement while maintaining a rea-
sonable detection rate. For some properties, a very coarse abstraction of wlp
may still be sufficient to identify most infeasible code.

The main usefulness of the presented approach is that it detects some common
types of errors. It works without user interaction and, in particular, without any
false warnings. Perhaps the most intriguing aspect is that it has the potential to
become fast enough to be applied while typing.

Acknowledgements. This work is supported by the project ARV funded by
Macau Science and Technology Development Fund, by the National Research
Fund, Luxembourg, and the Marie Curie Actions of the European Commission.

References

1. Barnett, M., Leino, K.R.M.: Weakest-precondition of unstructured programs. In:
Proceedings of the 6th ACM SIGPLAN-SIGSOFTWorkshop on Program Analysis
for Software Tools and Engineering, PASTE 2005, pp. 82–87. ACM, New York
(2005)

2. Bertolini, C., Schäf, M., Schweitzer, P.: Infeasible code detection. Technical Report
455, United Nations University, IIST (November 2011)

3. Bertolino, A.: Unconstrained edges and their application to branch analysis and
testing of programs. Journal of Systems and Software 20, 125–133 (1993)

4. Bertolino, A., Marré, M.: Automatic generation of path covers based on the control
flow analysis of computer programs. IEEE Trans. Softw. Eng. 20, 885–899 (1994)

5. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph. ACM
Trans. Program. Lang. Syst. 13, 451–490 (1991)

6. De Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

7. Dijkstra, E.W.: A discipline of programming. Prentice-Hall, Englewood Cliffs
(1976)

8. Emanuelsson, P., Nilsson, U.: A comparative study of industrial static analysis
tools. Electron. Notes Theor. Comput. Sci. 217, 5–21 (2008)

9. Filliâtre, J.-C., Marché, C.: The why/krakatoa/caduceus Platform for Deductive
Program Verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 173–177. Springer, Heidelberg (2007)

10. Grigore, R., Charles, J., Fairmichael, F., Kiniry, J.: Strongest postcondition of
unstructured programs. In: Proceedings of the 11th International Workshop on
Formal Techniques for Java-like Programs, FTfJP 2009, pp. 6:1–6:7. ACM, New
York (2009)

11. Hoenicke, J., Leino, K.R., Podelski, A., Schäf, M., Wies, T.: It’s Doomed; We Can
Prove It. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp.
338–353. Springer, Heidelberg (2009)

Infeasible Code Detection 325

12. Hoenicke, J., Leino, K.R., Podelski, A., Schäf, M., Wies, T.: Doomed program
points. Form. Methods Syst. Des. 37, 171–199 (2010)

13. Hovemeyer, D., Pugh, W.: Finding bugs is easy. In: Companion to the 19th An-
nual ACM SIGPLAN Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications, OOPSLA 2004, pp. 132–136. ACM, New York (2004)

14. Janota, M., Grigore, R., Moskal, M.: Reachability analysis for annotated code.
In: Proceedings of the 2007 Conference on Specification and Verification of
Component-Based Systems: 6th Joint Meeting of the European Conference on
Software Engineering and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering, SAVCBS 2007, pp. 23–30. ACM, New York (2007)

15. Johnson, D.S.: Approximation algorithms for combinatorial problems, vol. 9, pp.
256–278. Academic Press, Inc., Orlando (1974)

16. Leino, K., Rümmer, P.: A Polymorphic Intermediate Verification Language: Design
and Logical Encoding. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS,
vol. 6015, pp. 312–327. Springer, Heidelberg (2010)

17. Leino, K.R.M.: Efficient weakest preconditions. Inf. Process. Lett. 93, 281–288
(2005)

18. Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and a sub-
constant error-probability PCP characterization of NP. In: Proceedings of the
Twenty-Ninth Annual ACM Symposium on Theory of Computing, STOC 1997,
pp. 475–484. ACM, New York (1997)

19. Rutar, N., Almazan, C.B., Foster, J.S.: A comparison of bug finding tools for
java. In: Proceedings of the 15th International Symposium on Software Reliability
Engineering, pp. 245–256. IEEE Computer Society, Washington, DC, USA (2004)

Author Index

Alkassar, Eyad 209

Bertolini, Cristiano 310
Birkedal, Lars 179
Brain, Martin 114

Chalin, Patrice 130
Cohen, Ernie 209

Davies, Misty 294

Falke, Stephan 146, 261
Feliachi, Abderrahmane 243
Filliâtre, Jean-Christophe 83
Foster, Jeffrey S. 278
Foster, Nate 278

Gaudel, Marie-Claude 243

Harton, Heather 34
Hatayama, Goro 163
Hayden, Christopher M. 278
Herms, Paolo 2
Hicks, Michael 278
Hoenicke, Jochen 225
Hollingsworth, Joseph E. 34

Kapur, Deepak 261
Kassios, Ioannis T. 196
Kovalev, Mikhail 209
Kulczycki, Gregory 34
Kuncak, Viktor 66, 98

Leino, K. Rustan M. 82
Logozzo, Francesco 241

Magill, Stephen 278
Majumdar, Rupak 162

Marché, Claude 2
Mehnert, Hannes 179
Merz, Florian 146
Monate, Benjamin 2
Moskal, Micha�l 50
Müller, Peter 196
Muñiz, Marco 66

Ogden, William F. 34
Ohsaki, Hitoshi 163

Păsăreanu, Corina S. 294
Paul, Wolfgang J. 1, 209
Polikarpova, Nadia 50
Post, Amalinda 225

Raman, Vishwanath 294

Schäf, Martin 310
Schanda, Florian 114
Schmaltz, Sabine 18
Schweitzer, Pascal 310
Schwerhoff, Malte 196
Segal, Loren 130
Sestoft, Peter 179
Shadrin, Andrey 18
Sieczkowski, Filip 179
Sinz, Carsten 146, 261
Sitaraman, Murali 34
Smith, Hampton 34
Souma, Daisuke 163

Tang, Nguyen Van 163

Vujošević-Janičić, Milena 98

Wies, Thomas 66
Wolff, Burkhart 243

	Title Page
	Preface
	Organization
	Table of Contents
	Cyber War, Formal Verification and Certified Infrastructure
	A Certified Multi-prover Verification Condition Generator
	Introduction
	Logical Contexts
	Dependently Typed de Bruijn Indices
	Terms and Propositions
	Logical Contexts, Semantics

	The Core Programming Language
	Informal Description
	Formal Syntax of Expressions
	Operational Semantics

	Weakest Precondition Calculus
	Extraction of a Certified Verification Tool
	Concrete WP Computation
	Producing Concrete Syntax with Explicit Binders
	Extraction and Experimentation

	Conclusions, Related Works and Perspectives
	References

	Integrated Semantics of Intermediate-Language C and Macro-Assembler for Pervasive Formal Verification of Operating Systems and Hypervisors from VerisoftXT
	Introduction
	Macro-Assembler Semantics
	C Semantics
	Integrated C-IL+MASM-Semantics
	Calling Convention
	Semantics

	Pervasive Theory
	Compiler Consistency

	Results
	Future Work
	Conclusion
	References

	The Location Linking Concept: A Basis for Verification of Code Using Pointers
	Introduction
	Specification of a System of Linked Locations
	A Formal Specification
	Shared Conceptual State
	Position Type
	Operations

	Memory Management
	Performance and Extensions
	Implementation Flexibility

	Application
	Specification of a Stack Concept
	Pointer-Based Implementation of Stacks
	Verification Process
	Closely Related Work

	Summary
	References

	Verifying Implementations of Security Protocols by Refinement
	Introduction
	Background: The VCC Verifier
	Case Study: Trusted Platform Module
	Creating and Loading Objects
	Key Management as a Security Protocol

	Refinement Approach
	Refinement in VCC
	High-Level Protocol Definition (L0)
	From Term Algebra to Byte Strings (L1)
	Physical Code (L2)

	Empirical Results
	Related Work
	Conclusions
	References

	Deciding Functional Lists with Sublist Sets
	Introduction
	Examples
	Logic FLS2 of Functional Lists with Sublists Sets
	Preliminaries
	Logic FLS of Functional Lists with Sublists
	Decision Procedure for FLS
	Extension with Sets of Sublists and Content Sets
	Conclusion
	References

	Developing Verified Programs with Dafny
	References

	Verifying Two Lines of C with Why3: An Exercise in Program Verification
	Introduction
	Unobfuscation
	Overview of Why3
	Verification
	Specification
	Correctness Proof

	Discussion
	References
	Annotated Source Code

	Development and Evaluation of LAV:An SMT-Based Error Finding Platform
	Introduction
	Motivating Example
	Modelling Variables, Data Types, and Blocks
	Modelling Control Flow
	Correctness Conditions
	Transforming a Code Model into an SMT Goal
	Implementation
	Evaluation and Comparison to Related Tools
	Application in Education
	Conclusions and Further Work
	References

	A Lightweight Technique for Distributed and Incremental Program Verification
	Introduction
	The SPARK Language and Tools
	The SPARK Language
	The SPARK Tool Chain
	Verification in Practice

	Increasing Verification Throughput
	Memcached
	Integrating Memcached into the SPARK Toolchain

	Experiments
	Incremental Solving
	Distributed Solving

	Related Work
	Conclusion
	References

	A Comparison of Intermediate Verification Languages: Boogie and Sireum/Pilar
	Introduction
	Background
	Scope of Comparison
	Translation of a Simple Java Program

	Comparison of Language Features
	Basic Assertion Language
	Basic Control Flow
	Annotations
	Specification of Contracts
	Modeling Data Structures and Object Oriented Type Systems
	Unique Features and Tool Support

	Preliminary Validation: Ruby to Boogie and Pilar
	Type System Modeling
	Handling Arrays
	Modeling Fields
	Control Flow

	Summary
	Related Work
	Conclusion and Future Work
	References

	LLBMC: Bounded Model Checking of C and C++ Programs Using a Compiler IR
	Introduction
	BMC and LLBMC's Built-In Checks
	LLVM
	The Approach of LLBMC
	From LLVM-IR to ILR
	Adding Checks to the ILR Formula
	Simplification of the ILR Formula
	Counterexample Generation

	Encoding Memory Checks
	Evaluation
	Related Work
	Conclusions and Future Work
	References

	The Marriage of Exploration and Deduction
	Modeling and Validating the Train Fare Calculation and Adjustment SystemUsing VDM++
	Introduction
	Project Overview
	The TFCAS System: An Informal Overview
	Goals and Approach of the Project

	VDM++ Model of the TFCAS
	Architecture of the System
	A Simple Example of the TFCAS's Functionality
	Analysis of Identified Issues

	Testing and Validating Process
	Experiments
	Lessons Learned
	Related Work
	Conclusions
	References

	Formalized Verification of Snapshotable Trees: Separation and Sharing
	Introduction
	Case Study: Snapshotable Trees
	Interface: Operations on Snapshotable Trees
	Example Client Code
	Implementations of Snapshotable Trees

	Abstract Specification and Client Code Verification
	Specification of the ITree Interface
	Iterator Specification
	Client Code Verification

	Implementation A1B1
	Iterator

	On the Verification of Implemented Code
	Related Work
	Conclusion and Future Work
	References
	Appendix

	Comparing Verification Condition Generation with Symbolic Execution: An Experience Report
	Introduction
	Background
	Verification Condition Generation
	Symbolic Execution

	Experiment and Results
	Additional Observations
	Heap Compression
	Branching

	Related Work
	Conclusion
	References

	Verification of TLB Virtualization Implemented in C
	Introduction
	Verification Methodology
	VCC Background
	Modelling Hardware

	Specification
	Host Hardware Model
	Virtual Hardware Model
	Memory Virtualization
	Correctness of TLB Virtualization

	Implementation and Verification in VCC
	Specification
	Implementation
	Verification

	Conclusion and Future Work
	References

	Formalization and Analysis of Real-Time Requirements: A Feasibility Study at BOSCH
	Introduction
	The Tool Chain
	The Specification Language
	Translation of the SPS to Duration Calculus
	The Correctness Properties
	The Tool

	Planning of the Feasibility Study
	Study Goals and Questions
	Selection of the Sample
	Feasibility Study Design

	Analysis of the Results
	Benefit
	Observations

	Threats to Validity
	Construct Validity
	External Validity

	Conclusion
	References

	Our Experience with the CodeContracts Static Checker
	References

	Isabelle/Circus: A Process Specification and Verification Environment
	Introduction
	Background
	Isabelle, HOL and Isabelle/HOL
	Advanced Specification Constructs in Isabelle/HOL
	Circus and Its UTP Foundation

	Isabelle/Circus
	Alphabets and Variables
	Synchronization Infrastructure: Name Sets and Channels
	Actions and Processes

	Using Isabelle/Circus
	Writing Specifications
	Relational and Functional Refinement in Circus
	Refinement Proofs

	Conclusions
	References

	Termination Analysis of Imperative Programs Using Bitvector Arithmetic
	Introduction
	A Brief Overview of LLVM and Its Use in KITTeL
	LLVM-IR

	Termination Analysis Using LLVM
	Translating LLVM-IR Programs into Transition Systems
	Representing Transition Systems Using int-Based TRSs
	Termination Analysis of int-Based TRSs

	Encoding Bitvector Arithmetic
	Phase 1
	Phase 2

	Experimental Results and Evaluation
	Conclusions
	References

	Specifying and Verifying the Correctness of Dynamic Software Updates
	Introduction
	Defining Dynamic Software Update Correctness
	Prior Work on Update Correctness
	Client-Oriented Specifications

	Verification via Program Merging
	Syntax
	Semantics
	Program Merging Transformation
	Equivalence

	Experiments
	Programs
	Effectiveness

	Related Work
	Summary
	References

	Symbolic Execution Enhanced System Testing
	Introduction
	Background
	Approach
	Testing Algorithms
	Experience
	Conclusion
	References

	Infeasible Code Detection
	Introduction
	Examples of Infeasible Code
	Infeasible Code, Effectual Sets, and Path Covers
	A Path Cover Algorithm
	Checking Constrained Path Infeasibility
	Implementation
	Evaluation
	Conclusion
	References

	Author Index

