
Resource-Safe Systems Programming
with Embedded Domain Specific Languages

Edwin Brady and Kevin Hammond

University of St Andrews, KY16 9SX, Scotland/UK
{eb,kh}@cs.st-andrews.ac.uk

Abstract. We introduce a new overloading notation that facilitates pro-
gramming, modularity and reuse in Embedded Domain Specific Lan-
guages (EDSLs), and use it to reason about safe resource usage and
state management. We separate the structural language constructs from
our primitive operations, and show how precisely-typed functions can be
lifted into the EDSL. In this way, we implement a generic framework for
constructing state-aware EDSLs for systems programming.

Keywords: Dependent Types, Resource Usage, (Embedded) Domain-
Specific Languages, Program Verification.

1 Introduction

Domain Specific Languages (DSLs) are designed to solve problems in specific do-
mains (e.g. Matlab/Simulink for real-time systems or SQL for database queries).
One popular implementation technique is to embed a DSL in a host language, so
creating an Embedded Domain Specific Language (EDSL) [12]. This allows rapid
development of a DSL by exploiting host language features, such as parsing/code
generation. However, host-language specific information, such as details of host
language constructs, often “leaks” into the DSL, inhibiting usability and reduc-
ing abstraction. In order to be truly practical, we must address such issues so that
our EDSL is modular, composable and reusable. This paper introduces a new
overloading notation that allows EDSLs to be more easily used in practice, and
shows how it can be used to develop an EDSL for reasoning about safe resource
usage and state management. We make the following specific contributions:

1. We present the dsl construct, a modest extension to the dependently-typed
language Idris that allows host language syntax, in particular variable bind-
ing, to be overloaded by an Embedded DSL (Section 3).

2. Using the dsl construct, we show how to embed languages with alternative
forms of binding: we embed an imperative language, which manages mutable
local variables in a type-safe way, and extend this to a state-aware language
which manages linear resources (Section 4).

3. We show how to convert a protocol described by state transitions into a
verified implementation (Sections 5 and 6).

C. Russo and N.-F. Zhou (Eds.): PADL 2012, LNCS 7149, pp. 242–257, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Resource-Safe Systems Programming 243

By embedding the DSL within a dependently-typed language, we obtain the key
advantage of correctness by construction: the host language type system auto-
matically verifies the required DSL properties without needing to first translate
into an equivalent set of state transitions and subsequently checking these. As
Landin said, “Most programming languages are partly a way of expressing things
in terms of other things, and partly a basic set of given things” [14]. In our state-
aware DSL, the basic set of given things explains how resources are created and
how states interact. Like Landin’s Iswim, this DSL can be problem-oriented by
providing functions for creating, updating and using primitive values. The em-
bedding then composes these constructs into a complete and verifiable EDSL.
Example code for the resource language presented in this paper is available from
http://idris-lang.org/code/padl12-resources.tgz.

2 The Well-Typed Interpreter

Dependent types, in which types may be predicated on values, allow us to express
a program’s specification and constraints precisely. In the context of EDSLs, this
allows us to express a precise type system, describing the exact properties that
EDSL programs must satisfy, and have the host language check those properties.
The well-typed interpreter [1,6,20] for a simple functional language is commonly
used to illustrate the key concepts of dependently-typed programming. Here, the
type system ensures that only well-typed source programs can be represented
and interpreted. In this section, we use the well-typed interpreter example to
introduce Domain Specific Language implementation in Idris. Idris [5] is an
experimental functional programming language with dependent types, similar
to Agda [19] or Epigram [9,16]. It is eagerly evaluated and compiles to C via the
Epic compiler library [4]. It is implemented on top of the Ivor theorem proving
library [3], giving direct access to an interactive tactic-based theorem prover. A
full tutorial is available online at http://idris-lang.org/tutorial/.

2.1 Language Definition

Figure 1 defines a simple functional expression language, Expr, with integer
values and operators. The using notation means that wherever G is used it
can be treated as an implicit argument with type Vect Ty n. Terms of type
Expr are indexed by i) a context (of type Vect Ty n), which records types for
the variables that are in scope; and ii) the type of the term (of type Ty). The
valid types (Ty) are integers (TyInt) or functions (TyFun). We define terms
to represent variables (Var), integer values (Val), lambda-abstractions (Lam),
function calls (App), and binary operators (Op). Types may either be integers
(TyInt) or functions (TyFun), and are translated to Idris types using interpTy.
Our definition of Expr also states its typing rules, in some context, by showing
how the type of each term is constructed. For example:

Val : (x:Int) -> Expr G TyInt

Var : (i:Fin n) -> Expr G (vlookup i G)

http://idris-lang.org/code/padl12-resources.tgz
http://idris-lang.org/tutorial/

244 E. Brady and K. Hammond

data Ty = TyInt | TyFun Ty Ty;

interpTy : Ty -> Set;

interpTy TyInt = Int;

interpTy (TyFun A T) = interpTy A -> interpTy T;

data Fin : Nat -> Set where

fO : Fin (S k)

| fS : Fin k -> Fin (S k);

using (G:Vect Ty n) {

data Expr : Vect Ty n -> Ty -> Set where

Var : (i:Fin n) -> Expr G (vlookup i G)

| Val : (x:Int) -> Expr G TyInt

| Lam : Expr (A::G) T -> Expr G (TyFun A T)

| App : Expr G (TyFun A T) -> Expr G A -> Expr G T

| Op : (interpTy A -> interpTy B -> interpTy C) ->

Expr G A -> Expr G B -> Expr G C;

}

Fig. 1. The Simple Functional Expression Language, Expr

The type of Val indicates that values have integer types (TyInt), and the type
of Var indicates that the type of a variable is obtained by looking up i in context
G. For any term, x, we can read x : Expr G T as meaning “x has type T in the
context G”. Expressions in this representation are well-scoped, as well as well-
typed. Variables are represented by de Bruijn indices, which are guaranteed to
be bounded by the size of the context, using i:Fin n in the definition of Var.
A value of type Fin n is an element of a finite set of n elements, which we use
as a reference to one of n variables. Evaluation is via an interpretation function,
which takes an expression and and environment corresponding to the context in
which that expression is defined. The definition can be found in [8].

interp : Env G -> Expr G T -> interpTy T;

We can now define some simple example functions. We define each function to
work in an arbitrary context G, which allows it to be applied in any subexpression
in any context. Our first example function adds its integer inputs:

add : Expr G (TyFun TyInt (TyFun TyInt TyInt));

add = Lam (Lam (Op (+) (Var (fS fO)) (Var fO)));

We can use add to define the double function:
double : Expr G (TyFun TyInt TyInt);

double = Lam (App (App add (Var fO)) (Var fO));

2.2 Control Structures and Recursion

To make Expr more realistic, we add boolean values and an If construct. These
extensions are shown in Figure 2. Using these extensions, we can define a (re-
cursive) factorial function:

Resource-Safe Systems Programming 245

data Ty = TyInt | TyBool | TyFun Ty Ty;

interpTy TyBool = Bool;

data Expr : (Vect Ty n) -> Ty -> Set where

...

| If : Expr G TyBool -> Expr G A -> Expr G A -> Expr G A;

Fig. 2. Booleans and If construct

fact : Expr G (TyFun TyInt TyInt);

fact = Lam (If (Op (==) (Val 0) (Var fO)) (Val 1)

(Op (*) (Var fO)

(App fact (Op (-) (Var fO) (Val 1)))));

We have all the fundamental features of a full programming language here: a type
system, variables, functions and control structures. While Expr itself is clearly
too limited to be of practical use, we could use similar methods to represent more
complex systems, e.g. capturing sizes, resource usage or linearity constraints. In
the rest of this paper, we will explore how to achieve this.

3 Syntax Overloading

We would like to use the well-typed interpreter approach to implement domain
specific type systems capturing important properties of a particular problem
domain, such as resource correctness. Unfortunately, this at first appears to
be impractical because of the need to write programs as syntax trees, and in
particular the need to represent variables as de Bruijn indices. In this section,
we present a new host language construct that allows host language syntax to
be used when constructing programs in the EDSL, and use it to implement a
practical embedded DSL for resource- and state-aware programs.

3.1 do-Notation

In Haskell, we can overload do-notation to give alternative interpretations of
variable binding in monadic code. We have implemented a similar notation in
Idris using syntactic overloading. For example, we can use do-notation for Maybe
by declaring which bind and return operators to use:

data Maybe a = Nothing | Just a;

maybeBind : Maybe a -> (a -> Maybe b) -> Maybe b;

do using (maybeBind, Just) {

m_add : Maybe Int -> Maybe Int -> Maybe Int;

m_add x y = do { x’ <- x;

y’ <- y;

return (x’ + y’); };

}

246 E. Brady and K. Hammond

dsl expr {

lambda = Lam, variable = Var,

index_first = fO, index_next = fS,

apply = App, pure = id

}

Fig. 3. Overloading syntax for Expr

add = expr (\x, y => Op (+) x y);

double = expr (\x => [| add x x |]);

fact : Expr G (TyFun TyInt TyInt);

fact = expr (\x => If (Op (==) x (Val 0)) (Val 1)

(Op (*) x [| fact (Op (-) x (Val 1)) |]));

Fig. 4. Expr programs after overloading

Overloading do-notation is useful for EDSL implementation, in that it allows us
to use a different binding construct provided by the EDSL. However, do-notation
provides only one kind of binding. What if we need e.g. λ and let binding? What
if we need a different notion of application, for example with effects [17]?

3.2 The dsl Construct

In order to allow multiple kinds of binding and application, we introduce a new
construct to Idris. A dsl declaration gives a name for a language and explains
how each host language construct is translated into the required EDSL con-
struct. Figure 3 shows, for example, how Idris’s binding syntax is overloaded
for Expr. We give a language name, expr, and say that Idris lambdas cor-
respond to Lam, and that variables correspond to Var applied to a de Bruijn
index, which is constructed from fO and fS. Applications are built using App,
with the pure, functional part of the application built using id. The programs
that we presented in the previous section can now be written using Idris’s
binding construct, as in Figure 4. Since we called the DSL expr, an expression
expr e applies the syntactic overloading to the sub-expression e. Application
overloading applies only under explicit “idiom brackets” [17]. Intuitively, expr
e translates e according to the following rules:

– Any expression \x => a is translated to Lam a’, where a’ is a with instances
of the variable x is translated to a de Bruijn indexed Var i. The index i is
built from fO and fS counting the number of names bound since x.

– Any application under idiom brackets [| f a1 a2 ... an |]is translated
to App (App (App (id f) a1) a2) ... an

Within a dsl declaration, we can provide several overloadings:

– bind and return, for overloading do-notation.
– pure and apply, for overloading application under idiom brackets.

Resource-Safe Systems Programming 247

e ::= x (Variable) | e e (Application)
| \ x => e (lambda binding) | let x = e1 in e2 (let binding)
| [| e |] (Idiomatic application) | do { ds } (do block)
| return (return keyword) | dsl e (Overloaded expression)

d ::= x <- e (Binding) ds ::= d ; ds | e
| e (Expression)

Fig. 5. Core Idris expressions

– lambda, let, variable, index first and index next, for overloading
lambda and let bindings.

It is not necessary to define all of these overloadings. However, if either lambda or
let is defined, all of variable, index first and index next must be defined,
otherwise there is no valid translation for the bound variable.

3.3 Formal Definition

To give a precise definition of the dsl construct, we define four translation
schemes on core Idris expressions as defined in Figure 5.

– D�·� dsl , defined in Figure 6, transforms an Idris expression by a given set
of overloadings dsl .

– V�·� x i , defined in Figure 7, converts a variable name x to de Bruijn index
i in an expression.

– I�·�, defined in Figure 8, converts an application under idiom brackets
– M�·�, also defined in Figure 8, converts a do-block.

Mostly, these schemes are a straightforward traversal of the structure of Idris
expressions. In D�·� , we can nest dsl declarations, updating the set of overload-
ings. We leave the overloading parameter o implicit in V�·� , I�·� and M�·�. The
definition of each of the overloadable names is extracted from this parameter.
Note that D�·� combines the other translation schemes, which each do a spe-
cific job. This means in particular that lambda bindings generated by M�·� can
further be translated to an overloaded lambda.

4 Resource Management

In a typical file management API, such as that in Haskell, we might find the
following typed operations:

open : String -> Purpose -> IO File;

read : File -> IO String;

close : File -> IO ();

248 E. Brady and K. Hammond

D�x� o �→ x
D�e1 e2� o �→ (D�e1� o) (D�e2� o)
D�\ x => e� o �→ D�lambda (V�e� x 0)� o (if lambda defined)

�→ \ x =>D�e� o (otherwise)
D�let x = e1 in e2� o �→ D�let e1 (V�e2� x 0)� o (if let defined)

�→ let x =D�e1� o inD�e2� o (otherwise)
D�[| e |]� o �→ D�I�e�� o
D�do { ds }� o �→ D�M�ds�� o
D�return� o �→ return

D�dsl e� o �→ D�e� dsl

Fig. 6. The D�·� translation schemes

V�x1� x2 i �→ variable (MkVar i) (if x1 = x2)
�→ x1 (otherwise)

V�e1 e2� x i �→ (V�e1� x i) (V�e2� x i)
V�\ x1 => e� x2 i �→ \ x1 => V�e� x2 (i + 1) (if lambda defined)

�→ \ x1 => V�e� x2 i (otherwise)
V�let x1 = e1 in e2� x2 i �→ let x1 = V�e1� x2 i in V�e2� x2 (i + 1) (if let defined)

�→ let x1 = V�e1� x2 i in V�e2� x2 i (otherwise)
V�[| e |]� x i �→ [| V�e� x i |]
V�do { ds }� x i �→ do { V�ds� x i }
V�return� x i �→ return
V�dsl e� x i �→ dsl (V�e� x i)

MkVar 0 �→ index first

MkVar (n + 1) �→ index next (MkVar n)

Fig. 7. The V�·� translation scheme

Unfortunately, it is easy to construct programs which are well-typed, but never-
theless fail at run-time, for example, if we read from a file opened for writing:

fprog filename = do { h <- open filename Writing;

content <- read h;

close h; };

If we make the types more precise, parameterising open files by purpose, fprog
is no longer well-typed, and will therefore be rejected at compile-time.

data Purpose = Reading | Writing;

open : String -> (p:Purpose) -> IO (File p);

read : File Reading -> IO String;

close : File p -> IO ();

However, there is still a problem. The following program is well-typed, but fails
at run-time — although the file has been closed, the handle h is still in scope:

Resource-Safe Systems Programming 249

I�e1 e2� �→ apply (I�e1�) e2 (top level application)
I�e� �→ pure e (all other expressions)

M�x <- e; ds� �→ bind e (\ x =>M�ds�)
M�e; ds� �→ bind e (\ =>M�ds�)
M�e� �→ e

Fig. 8. The I�·� and M�·� translation schemes

fprog filename = do { h <- open filename Reading;

content <- read h;

close h; read h; };

Furthermore, we did not check whether the handle h was created successfully.
Resource management problems such as this are common in systems program-
ming — we need to deal with files, memory, network handles, etc, ensuring that
operations are executed only when valid and errors are handled appropriately.

4.1 An EDSL for Generic Resource Correctness

To tackle this problem, we present an EDSL which tracks the state of resources
at any point during program execution, and ensures that any resource protocol
is correctly executed. We begin by categorising resource operations into creation,
update and usage operations, by lifting them from IO. We illustrate this using
Creator; Updater and Reader can be defined similarly.

data Creator a = MkCreator (IO a);

ioc : IO a -> Creator a;

ioc = MkCreator;

The MkCreator constructor is left abstract, so that a programmer can lift an
operation into Creator using ioc, but cannot run it directly. IO operations can
be converted into resource operations, tagging them appropriately:

open : String -> (p:Purpose) -> Creator (Either () (File p));

close : File p -> Updater ();

read : File Reading -> Reader String;

Here: open creates a resource, which may be either an error (represented by ()) or
a file handle that has been opened for the appropriate purpose; close updates a
resource from a File p to a () (i.e., it makes the resource unavailable); and read
accesses a resource (i.e., it reads from it, and the resource remains available).
They are implemented using the relevant (unsafe) IO functions from the Idris
library. Resource operations are executed via a resource management EDSL,
Res, with resource constructs (Figure 9), and control constructs (Figure 10).

As we did with Expr in Section 2, we index Res over the variables in scope
(which represent resources), and the type of the expression. This means that
firstly we can refer to resources by de Bruijn indices, and secondly we can express
precisely how operations may be combined. Unlike Expr, however, we allow

250 E. Brady and K. Hammond

data Res : Vect Ty n -> Vect Ty n -> Ty -> Set where

Let : Creator (interpTy a) ->

Res (a :: gam) (Val () :: gam’) (R t) -> Res gam gam’ (R t)

| Update : (a -> Updater b) -> (p:HasType gam i (Val a)) ->

Res gam (update gam p (Val b)) (R ())

| Use : (a -> Reader b) -> HasType gam i (Val a) ->

Res gam gam (R b)

...

Fig. 9. Resource constructs

data Res : Vect Ty n -> Vect Ty n -> Ty -> Set where

...

| Check : (p:HasType gam i (Choice (interpTy a) (interpTy b))) ->

(failure:Res (update gam p a) (update gam p c) T) ->

(success:Res (update gam p b) (update gam p c) T) ->

Res gam (update gam p c) T

| While : Res gam gam (R Bool) ->

Res gam gam (R ()) -> Res gam gam (R ())

| Lift : IO a -> Res gam gam (R a)

| Return : a -> Res gam gam (R a)

| Bind : Res gam gam’ (R a) -> (a -> Res gam’ gam’’ (R t)) ->

Res gam gam’’ (R t);

Fig. 10. Control constructs

types of variables to be updated. Therefore, we index over the input set of
resource states, and the output set:

data Res : Vect Ty n -> Vect Ty n -> Ty -> Set

We can read Res gam gam’ T as, “an expression of type T, with input resource
states gam and output resource states gam’”. Expression types can be resources,
values, or a choice type:

data Ty = R Set | Val Set | Choice Set Set;

The distinction between resource types, R a, and value types, Val a, is that
resource types arise from IO operations. A choice type corresponds to Either —
we use Either rather than Maybe as this leaves open the possibility of returning
informative error codes:

interpTy : Ty -> Set;

interpTy (R t) = IO t;

interpTy (Val t) = t;

interpTy (Choice x y) = Either x y;

We represent variables by proofs of context membership, rather than directly by
de Bruijn indices. As we will see shortly, this allows a neater representation of
some language constructs:

Resource-Safe Systems Programming 251

data HasType : Vect Ty n -> Fin n -> Ty -> Set where

stop : HasType (a :: gam) fO a

| pop : HasType gam i b -> HasType (a :: gam) (fS i) b;

envLookup : HasType gam i a -> Env gam -> interpTy a;

envUpdate : (p:HasType gam i a) -> (val:interpTy b) ->

Env gam -> Env (update gam p b);

The type of the Let construct explicitly shows that, in the scope of the Let
expression a new resource of type a is added to the set, having been made by
a Creator operation. Furthermore, by the end of the scope, this resource must
have been consumed (i.e. its type must have been updated to Val ()):

Let : Creator (interpTy a) ->

Res (a :: gam) (Val () :: gam’) (R t) -> Res gam gam’ (R t)

The Update construct applies an Updater operation, changing the type of a
resource in the context. Here, using HasType to represent resource variables
allows us to write the required type of the update operation simply as a ->
Updater b, and put the operation first, rather than the variable.

Update : (a -> Updater b) -> (p:HasType gam i (Val a)) ->

Res gam (update gam p (Val b)) (R ())

The Use construct simply executes an operation without updating the context,
provided that the operation is well-typed:

Use : (a -> Reader b) -> HasType gam i (Val a) ->

Res gam gam (R b)

Finally, we provide a small set of control structures: Check, a branching construct
that guarantees that resources are correctly defined in each branch; While, a loop
construct that guarantees that there are no state changes during the loop; Lift, a
lifting operator for IO functions1; and Bind and Return to support do-notation.
The type of Bind captures updates in the resource set. We use dsl-notation
to overload the Idris syntax, in particular providing a let-binding to bind a
resource and give it a human-readable name:

dsl res {

let = Let, variable = id,

bind = Bind, return = Return,

index_first = stop, index_next = pop

}

The interpreter for Res is written in continuation-passing style, where each
operation passes on a result and an updated environment (containing resources):

interp : Env gam -> Res gam gam’ t ->

(Env gam’ -> interpTy t -> IO u) -> IO u;

run : Res VNil VNil (R t) -> IO t;

run prog = interp Empty prog (\env, res => res);

1 This requires us to hide the resource operations, e.g. in a module.

252 E. Brady and K. Hammond

5 First Example: File Management

We can use Res to implement a safe file-management protocol, where each file
must be opened before use, opening a file must be checked, and files must be
closed on exit. We define the following operations for opening, closing, reading
a line2, and testing for the end of file.

open : String -> (p:Purpose) -> Creator (Either () (File p));

close : File p -> Updater ();

read : File Reading -> Reader String;

eof : File Reading -> Reader Bool;

Simple example. Returning to our simple example from Section 4, we now
write the file-reading program as follows:

fprog : {gam:Vect Ty n} -> String -> Res gam gam (R String);

fprog filename =

res do { let h = open filename Reading;

Check h

(Lift (putStrLn "File error"))

(do { content <- Use read h;

Update close h; }); };

This is well-typed because the file is opened for reading, and by the end of the
scope, the file has been closed. Syntax overloading allows us to name the resource
h rather than using a de Bruijn index or context membership proof. Although
this is a big improvement, the syntax is still somewhat unsatisfactory:

– The type of fprog is hard to read and write (and for practical use, we need
programmers to write these signatures!)

– The need to apply Use, Read and Lift explicitly is a little ugly.

Fortunately, both problems can be addressed using Idris’s syntax macros:
syntax RES x = {gam:Vect Ty n} -> Res gam gam (R x);

syntax rclose h = Update close h;

syntax rread h = Use read h;

syntax reof h = Use eof h;

syntax rputStrLn x = Lift putStrLn x;

We use macros rather than functions, as the types of Update and Use are context
dependent. We now use RES x as the type of any resource safe program which
returns an x, and rclose and rread as the file operations:

2 Reading a line may fail, but we consider this harmless and return an empty string.

Resource-Safe Systems Programming 253

fprog : String -> RES String;

fprog filename =

res do { let h = open filename Reading;

Check h

(rputStrLn "File error")

(do { content <- rread h;

rclose h; }) };

Using loops. In the following program, we open a file, read each line of the file
and output it using a While loop, then close it:

dump : String -> RES String;

dump filename =

res do { let h = open filename Reading;

Check h

(rputStrLn "File error")

(do { While (do { end <- reof h;

return (not end); })

(do { str <- rread h;

rputStrLn str; });

rclose h; }) };

This program has a similar structure to the equivalent Haskell program written
using the IO monad However, here the Idris type system guarantees that each
operation is executed only when it is valid. We cannot, for instance, close the
file during the loop, or try to read from the file in the branch where opening
has failed. We have achieved this by writing ordinary monadic IO functions and
lifting them intro a general framework which guarantees linear use of resources.

Embedding functions. We can improve the program by lifting out the While
loop into a function. Since this is an EDSL, we can use a host language function,
but its type must refer to the EDSL’s context. A Res function which uses a
resource a but does not update it, and returns a value b is denoted by a :-> b:

syntax (:->) a b = {gam:Vect Ty n} ->

HasType gam i (Val a) -> Res gam gam b;

readFile : File Reading :-> R ();

readFile h = res (While (do { end <- reof h;

return (not end); })

(do { str <- rreadLine h;

rputStrLn str; }));

We can use this function directly in a Res program:
dump filename = res do { let h = open filename Reading;

Check h

(rputStrLn "File error")

(do { readFile h; rclose h; }) };

Correspondingly, updating a resource variable is denoted by a |-> b:
syntax (|->) a b = {gam:Vect Ty n} ->

(p:HasType gam i (Val a)) -> Res gam (update gam p b) (R ()) ;

254 E. Brady and K. Hammond

6 Second Example: Network Transport

As well as defining high-level APIs, we can also use Res to implement low-level
operating systems components such as reliable network transport. Let us briefly
consider a simple automatic repeat request (ARQ) protocol, in which a machine
S attempts to send packets reliably to a machine R.

1. S opens a connection to R and waits for R to acknowledge the connection.
2. For each packet, with a sequence number n:

(a) S sends a packet with sequence number n, and waits for an acknowl-
edgement from R.

(b) If an acknowledgement is not received within a timeout period, retry.
3. S requests that the connection be closed.

Each operation may have pre-/post-conditions on the state of the connection.
connect : Receiver -> Creator (Either () (Net (Ready O)));

send : Net (Ready n) -> Updater (Net (Waiting n));

recvAck : Net (Waiting n) -> Updater (Either (Net (Ready n))

(Net (Ready (S n))));

disconnect : Net (Ready n) -> Updater ();

We implement the protocol by lifting these functions into Res, defining a func-
tion sendList which iterates across a list of packets, either sending them suc-
cessfully or timing out:

sendList : List Packet -> (Net (Ready n) |-> R ());

arq : Receiver -> List Packet -> RES ();

arq r pkts = res do { let h = connect r;

Check h (rputStrLn "Couldn’t open connection")

(do { sendList pkts h; }); };

Note that sendList’s type requires that it also closes the connection. It is written
as a combination of send and recvAck, retrying if an acknowledgement is not
received. As before, the primitives are composed using the constructs in Res to
guarantee that resources are managed according to the protocol.

7 Related Work

We have previously explored the use of Idris for implementing EDSLs in do-
mains such as networking [2,5] and concurrency [7]. The work described here is
similar to that of [7]. However, by using de Bruijn indices we obtain the key
advantage of compositionality, a neat way to build contexts, etc. Unlike other
approaches to resource usage verification based on e.g. model-checking [13,15,21],
which translate the program into a (hopefully) equivalent set of state transitions
that can subsequently be checked, the EDSL approach we have used here relates
the actual program to the abstract state machine model, so guaranteeing cor-
rectness by construction. Res is inspired by work on linear types for resource

Resource-Safe Systems Programming 255

management [10,11], and an alternative approach would have been to add lin-
ear types to Idris’s type system. We have avoided this for two reasons: firstly,
we prefer to keep the core type theory of Idris as small and as easy to reason
about as possible; secondly, as Res demonstrates, dependent types alone are
strong enough to capture the linearity property. Finally, Hoare Type Theory
has also been used in the Ynot system [18] to reason about imperative pro-
grams with side effects, as we have done in Res. However, our approach is much
lighter weight: it involves writing the state transition functions directly, as nor-
mal Idris functions, then “promoting” them into the resource language. This
makes it much easier to plug in new functionality, for example, in our system.

8 Conclusion

We have shown a new way to write resource-safe systems programs using domain-
specific languages embedded in a dependently-typed host language. The dsl-
notation introduced in this paper raises the abstraction level when programming
EDSLs, adding the important properties of compositionality and modularity over
previous approaches. The notation captures common patterns in EDSL imple-
mentation, in particular variable binding and function application, and can easily
be extended to overload other language features, for example literal values. Using
this notation over a dependently-typed host language, we are able to produce au-
tomatically verified EDSL programs, provided the primitive state transitions are
correctly written. We have also demonstrated the applicability and generality of
the notation by developing a generic resource usage framework and applying it
to two realistic systems programming scenarios. Like Landin’s Iswim, the EDSL
can be problem-oriented, providing functions for creating, updating and using
primitive values. These primitives are then embedded into a generic composition
framework, here exemplified by Res. Although not shown here, the approach can
easily handle other constructs such as (higher-order) functions, further extend-
ing its applicability. We have not considered how to e.g. embed resources within
data structures, although we expect this to be achievable by indexing larger data
structures over a resource context. This may be important for some examples,
particularly where we have long-lived resources, or a collection of live resources
such as a list of open file handles.

There are a number of obvious future applications of this work in systems
programming. In particular, we intend to study larger applications in network
protocols, and consider how to capture and reason about security issues. The
use of dependent types simplifies the task of producing verifiable systems pro-
grams as EDSLs, providing a lightweight, extensible and composable framework
that is tightly integrated with the actual systems program. The dsl-notation
itself also deserves further study. At present it provides straightforward syntac-
tic overloadings, but there is no checking of whether the overloadings interact
safely and reliably other than by type checking the resulting term. It would be
interesting to investigate whether they can be give a more theoretically sound
presentation, for example using type classes.

256 E. Brady and K. Hammond

Acknowledgments. This work was partly funded by the Scottish Informat-
ics and Computer Science Alliance (SICSA), by EPSRC grant EP/F030592/1
(Islay), and by EU Framework 7 Project No. 248828 (ADVANCE).

References

1. Augustsson, L., Carlsson, M.: An exercise in dependent types: A well-typed inter-
preter (1999)

2. Bhatti, S., Brady, E., Hammond, K., McKinna, J.: Domain specific languages
(DSLs) for network protocols. In: International Workshop on Next Generation
Network Architecture, NGNA 2009 (2009)

3. Brady, E.: Ivor, a Proof Engine. In: Horváth, Z., Zsók, V., Butterfield, A. (eds.)
IFL 2006. LNCS, vol. 4449, pp. 145–162. Springer, Heidelberg (2007)

4. Brady, E.: Epic — a library for generating compilers. In: Trends in Functional
Programming, TFP 2011 (to appear, 2011)

5. Brady, E.: Idris — systems programming meets full dependent types. In: Program-
ming Languages meets Program Verification (PLPV 2011), pp. 43–54 (2011)

6. Brady, E., Hammond, K.: A Verified Staged Interpreter is a Verified Compiler. In:
Proc. GPCE 2006: Conf. on Generative Prog. and Component Eng. (2006)

7. Brady, E., Hammond, K.: Correct-by-construction concurrency: Using dependent
types to verify implementations of effectful resource usage protocols. Fundamenta
Informaticae 102(2), 145–176 (2010)

8. Brady, E., Hammond, K.: Scrapping your Inefficient Engine: using Partial Evalua-
tion to Improve Domain-Specific Language Implementation. In: Proc. ICFP 2010:
ACM Intl. Conf. on Functional Programming, pp. 297–308 (2010)

9. Chapman, J., Dagand, P.-E., McBride, C., Morris, P.: The Gentle Art of Levitation.
In: Proc. ICFP 2010: ACM Intl. Conf. on Funct. Prog., pp. 3–14 (2010)

10. Hawblitzel, C.: Linear types for aliased resources. Technical Report MSR-TR-2005-
141, Microsoft Research (2005)

11. Hofmann, M., Jost, S.: Static prediction of heap space usage for first-order function
al programs. In: Proc. POPL 2003 — 2003 ACM Symp. on Principles of Program-
ming La nguages, pp. 185–197. ACM (2003)

12. Hudak, P.: Building domain-specific embedded languages. ACM Computing Sur-
veys 28A(4) (December 1996)

13. Igarashi, A., Kobayashi, N.: Resource usage analysis. ACM Trans. Program. Lang.
Syst. 27, 264–313 (2005)

14. Landin, P.: The next 700 programming languages. Communications of the
ACM 9(3) (March 1966)

15. Marriott, K., Stuckey, P., Sulzmann, M.: Resource Usage Verification. In: Ohori,
A. (ed.) APLAS 2003. LNCS, vol. 2895, pp. 212–229. Springer, Heidelberg (2003)

16. McBride, C., McKinna, J.: The view from the left. Journal of Functional Program-
ming 14(1), 69–111 (2004)

17. McBride, C., Paterson, R.: Applicative programming with effects. J. Funct. Pro-
gram. 18, 1–13 (2008)

18. Nanevski, A., Morrisett, G., Shinnar, A., Govereau, P., Birkedal, L.: Ynot: Rea-
soning with the Awkward Squad. In: Proc. ICFP 2008: 2008 ACM Intl. Conf. on
Functional Programming, pp. 229–240. ACM (2008)

Resource-Safe Systems Programming 257

19. Norell, U.: Towards a practical programming language based on dependent type
theory. PhD thesis, Chalmers University of Technology (September 2007)

20. Pašaĺıc, E., Taha, W., Sheard, T.: Tagless Staged Interpreters for Typed Languages.
In: Proc. ICFP 2002: Intl. Conf. on Functional Programming. ACM (2002)

21. Walker, D.: A Type System for Expressive Security Policies. In: Proc. POPL 2000:
ACM Intl. Symp. on Principles of Programming Languages, pp. 254–267 (2000)

	Resource-Safe Systems Programming with Embedded Domain Specific Languages
	Introduction
	The Well-Typed Interpreter
	Language Definition
	Control Structures and Recursion

	Syntax Overloading
	do-Notation
	The dsl Construct
	Formal Definition

	Resource Management
	An EDSL for Generic Resource Correctness

	First Example: File Management
	Second Example: Network Transport
	Related Work
	Conclusion
	References

