

Lecture Notes in Computer Science 7149
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Claudio Russo Neng-Fa Zhou (Eds.)

Practical Aspects of
Declarative Languages

14th International Symposium, PADL 2012
Philadelphia, PA, USA, January 23-24, 2012
Proceedings

13

Volume Editors

Claudio Russo
Microsoft Research Ltd
7 JJ Thomson Ave, Cambridge, CB3 0FB, UK
E-mail: crusso@microsoft.com

Neng-Fa Zhou
Brooklyn College
Dept. of Computer and Information Science
2900 Bedford Ave, Brooklyn, NY 11210-2889, USA
E-mail: zhou@sci.brooklyn.cuny.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-27693-4 e-ISBN 978-3-642-27694-1
DOI 10.1007/978-3-642-27694-1
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011944653

CR Subject Classification (1998): D.3, D.1, F.3, D.2, I.2

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the proceedings of the 14th International Symposium on
Practical Aspects of Declarative Languages (PADL 2012), held in Philadelphia,
Pennsylvania, during January 23–24, 2012. PADL is an annual forum where
researchers and practitioners present original work emphasizing new ideas and
approaches pertaining to applications and implementation techniques of declar-
ative languages. This year’s topics of interest included:

– Innovative applications of declarative languages
– Declarative domain-specific languages and applications
– Practical applications of theoretical results
– New language developments and their impact on applications
– Evaluation of implementation techniques on practical applications
– Novel implementation techniques relevant to applications
– Novel uses of declarative languages in the classroom
– Practical experiences

PADL solicited both full technical papers and shorter application papers. In
both categories we initially received 52 abstracts, which materialized into 41
papers (38 technical papers and three application papers). Each submission was
reviewed by at least three Program Committee members and each member was
asked to referee at least one paper outside their usual area. In the end, the
Program Committee decided to accept 19 technical papers.

The set of accepted papers present a variety of contributions ranging from im-
plementation techniques, applied dependent types, (embedded) domain-specific
languages, declarative modelling and hardware design, concurrent and parallel
programming, constraint programming, attribute grammars, distributed policy
languages and work on new language features and type systems. The confer-
ence program also included an invited paper, “Recent Advances in Declarative
Networking,” presented by Boon Thau Loo (University of Pennsylvania), and an
invited talk “Make Things Now! Pragmatic Functional Programming in Haskell”
by Don Stewart (Standard Chartered Bank).

The PADL symposium was co-located with the ACM Symposium on Prin-
ciples of Programming Languages (POPL 2012). We would like to thank the
ACM, the POPL organizers, the Association for Logic Programming and Mi-
crosoft Research for their support, the developers of the EasyChair conference
management system for easing the lives of the Program Committee chairs and
the Springer staff responsible for producing the LNCS series. We would also like

VI Preface

to express our gratitude to all the authors who submitted papers, the partici-
pants for making the event a success, and the Program Committee members and
external reviewers – the symposium would not have been possible without their
dedicated and outstanding work. We are also indebted to Gopal Gupta for his
guidance and practical help and Ricardo Rocha for access to past materials.

November 2011 Claudio Russo
Neng-Fa Zhou

Organization

Program Committee

Marcello Balduccini Kodak Research Laboratories, USA
Edwin Brady University of St. Andrews, UK
Henning Christiansen Roskilde University, Denmark
Agostino Dovier University of Udine, Italy
Matthew Flatt University of Utah, USA
Gopal Gupta University of Texas at Dallas, USA
John Hughes Chalmers University of Technology, Sweden
Gabriele Keller University of New South Wales, Australia
Lunjin Lu Oakland University, USA
Marc Pouzet École Normale Supérieure, France
Ricardo Rocha University of Porto, Portugal
Andreas Rossberg Google Germany GmbH, Germany
Claudio Russo Microsoft Research, UK
Kostis Sagonas Uppsala University, Sweden; NTUA, Greece
Satnam Singh Microsoft Research, UK
Zoltan Somogyi The Univerity of Melbourne, Australia
Eijiro Sumii Tohoku University, Japan
Terrance Swift Universidade Nova de Lisboa, Portugal;

Johns Hopkins University, USA
Andrew Tolmach Portland State University, USA
Jan Wielemaker University of Amsterdam, The Netherlands
Roland Yap National University of Singapore,

Republic of Singapore
Kwangkeun Yi Seoul National University, Korea
Neng-Fa Zhou City University of New York, USA

Additional Reviewers

Antoy, Sergio
Axelsson, Emil
Bordeaux, Lucas
Brand, Sebastian
Caillaud, Benôıt
Carlsson, Mats
Chakravarty, Manuel
Chintabathina, Sandeep
Cohen, Albert

Cruz, Flávio
Devries, Brian
Dutra, Ins
Fiore, Marcelo
Formisano, Andrea
Gelfond, Gregory
Hamlen, Kevin
Hobor, Aquinas
Hur, Chung-Kil

VIII Organization

Kim, Sangsig
Komendantskaya, Ekaterina
Lee, Wonchan
Lee, Wooseok
Mainland, Geoffrey
Marple, Kyle
Montanari, Angelo
Oh, Hakjoo
Omodeo, Eugenio
Pace, Gordon

Park, Sungwoo
Piazza, Carla
Rosendahl, Mads
Santos Costa, Vitor
Sasano, Isao
Schulte, Christian
Tamura, Naoyuki
Theil Have, Christian
Van Wyk, Eric

Table of Contents

Recent Advances in Declarative Networking . 1
Boon Thau Loo, Harjot Gill, Changbin Liu, Yun Mao,
William R. Marczak, Micah Sherr, Anduo Wang, and Wenchao Zhou

Make Things Now! Pragmatic Functional Programming in Haskell 17
Don Stewart

A Declarative Approach for Software Modeling . 18
Mayer Goldberg and Guy Wiener

Contracts and Specifications for Functional Logic Programming 33
Sergio Antoy and Michael Hanus

The Environment as an Argument: Context-Aware Functional
Programming . 48

Pedro M. Martins, Julie A. McCann, and Susan Eisenbach

Weighted-Sequence Problem: ASP vs CASP and Declarative vs
Problem-Oriented Solving . 63

Yuliya Lierler, Shaden Smith, Miroslaw Truszczynski, and
Alex Westlund

Practical and Methodological Aspects of the Use of Cutting-Edge ASP
Tools . 78

Marcello Balduccini and Yuliya Lierler

Efficient Tabling of Structured Data Using Indexing and Program
Transformation . 93

Christian Theil Have and Henning Christiansen

Optimizing Inequality Joins in Datalog with Approximated Constraint
Propagation . 108

Dario Campagna, Beata Sarna-Starosta, and Tom Schrijvers

Symbolic Execution of Concurrent Objects in CLP 123
Elvira Albert, Puri Arenas, and Miguel Gómez-Zamalloa

A Segment-Swapping Approach for Executing Trapped
Computations . 138

Pablo Chico de Guzmán, Amadeo Casas, Manuel Carro, and
Manuel V. Hermenegildo

X Table of Contents

Palovca: Describing and Executing Graph Algorithms in Haskell 153
Michael Lesniak

LearnPADS
++: Incremental Inference of Ad Hoc Data Formats 168

Kenny Q. Zhu, Kathleen Fisher, and David Walker

The Kennedy-Warren Algorithm Revisited: Ordering Attribute
Grammars . 183

Jeroen Bransen, Arie Middelkoop, Atze Dijkstra, and
S. Doaitse Swierstra

Distributed Policy Specification and Interpretation with Classified
Advertisements . 198

Nicholas Coleman

Handshaking in Kansas Lava Using Patch Logic . 212
Andy Gill and Bowe Neuenschwander

Virtualizing Real-World Objects in FRP . 227
Daniel Winograd-Cort, Hai Liu, and Paul Hudak

Resource-Safe Systems Programming with Embedded Domain Specific
Languages . 242

Edwin Brady and Kevin Hammond

Node-Based Connection Semantics for Equation-Based Object-Oriented
Modeling Languages . 258

David Broman and Henrik Nilsson

A Declarative Specification of Tree-Based Symbolic Arithmetic
Computations . 273

Paul Tarau

Typing the Numeric Tower . 289
Vincent St-Amour, Sam Tobin-Hochstadt, Matthew Flatt, and
Matthias Felleisen

Author Index . 305

Recent Advances in Declarative Networking

Boon Thau Loo1, Harjot Gill1, Changbin Liu1, Yun Mao2,
William R. Marczak3, Micah Sherr4, Anduo Wang1, and Wenchao Zhou1

1 University of Pennsylvania
{boonloo,gillh,cliu,anduo,wenchaoz}@cis.upenn.edu

2 AT & T Labs Research
maoy@research.att.com

3 University of California Berkeley
wrm@berkeley.edu

4 Georgetown University
msherr@cs.georgetown.edu

Abstract. Declarative networking is a programming methodology that
enables developers to concisely specify network protocols and services,
and directly compile these specifications into a dataflow framework for
execution. This paper describes recent advances in declarative network-
ing, tracing its evolution from a rapid prototyping framework towards a
platform that serves as an important bridge connecting formal theories
for reasoning about protocol correctness and actual implementations. In
particular, the paper focuses on the use of declarative networking for
addressing four main challenges in the distributed systems development
cycle: the generation of safe routing implementations, debugging, secu-
rity and privacy, and optimizing distributed systems.

1 Introduction

Declarative networking [27,28,29,31] is a programming methodology that en-
ables developers to concisely specify network protocols and services using a dis-
tributed recursive query language, and directly compile these specifications into
a dataflow framework for execution. This approach provides ease and compact-
ness of specification, and offers additional benefits such as optimizability and the
potential for safety checks. The development of declarative networking began in
2004 with an initial goal of enabling safe and extensible routers [30].

As evidence of its widespread applicability, declarative techniques have been
used in several domains including fault tolerance protocols [52], cloud comput-
ing [4], sensor networks [11], overlay network compositions [33], anonymity sys-
tems [51], mobile ad-hoc networks [37,24], wireless channel selection [23], network
configuration management [10], and as a basis for course projects in a distributed
systems class [14] at the University of Pennsylvania. An open-source declarative
networking system called RapidNet [3] has also been integrated with the emerg-
ing ns-3 [40] simulator, demonstrated at SIGCOMM’09 [38], and successfully
deployed on testbeds such as PlanetLab [44] and ORBIT [42].

This paper will first present a background introduction to declarative net-
working (Section 2). We trace its evolution from a rapid prototyping framework

C. Russo and N.-F. Zhou (Eds.): PADL 2012, LNCS 7149, pp. 1–16, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 B.T. Loo et al.

to a platform that serves as an important bridge connecting formal theories for
reasoning about protocol correctness and actual implementations. The ability to
bridge this gap is a major step forward compared to traditional approaches in
which formal specifications, proof of protocol correctness and implementations
are decoupled from one another; this decoupling leads to increased development
time, error prone implementations, and tedious debugging.

Specifically, this paper describes recent work carried out within the
NetDB@Penn [39] research group to address four significant challenges in dis-
tributed systems: generating safe routing implementations (Section 3), securing
distributed systems (Section 4), debugging distributed systems (Section 5), and
optimizing distributed systems (Section 6).

2 Background

The high level goal of declarative networks is to build extensible architectures
that achieve a good balance of flexibility, performance and safety. Declarative
networks are specified using Network Datalog (NDlog), a distributed recursive
query language for querying networks.

NDlog enables a variety of routing protocols and overlay networks to be speci-
fied in a natural and concise manner. For example, traditional routing protocols
such as the path vector and distance-vector protocols can be expressed in a few
lines of code [31], and the Chord distributed hash table in 47 lines of code [29].
When compiled and executed, these declarative protocols perform efficiently rel-
ative to imperative implementations.

In addition to ease of implementation, another advantage of the declarative
networking approach is its amenability to formal and structured forms of cor-
rectness checks. These include the use of theorem proving [53], algebraic tech-
niques for constructing safe routing protocols [54], and runtime verification [61].
These formal analysis techniques are strengthened by recent work on formally
proving correct operational semantics of NDlog [41]. Finally, the dataflow frame-
work used in declarative networking naturally captures information flow as dis-
tributed queries, hence providing a natural way to use the concept of network
provenance [60] to analyze and explain the existence of any network state.

NDlog is based on Datalog [46]: a Datalog program consists of a set of declar-
ative rules. Each rule has the form p :- q1, q2, ..., qn., which can be read
informally as “q1 and q2 and ... and qn implies p”. Here, p is the head of the
rule, and q1, q2,...,qn is a list of literals that constitutes the body of the rule.
Literals are either predicates with attributes (which are bound to variables or
constants by the query), or boolean expressions that involve function symbols
(including arithmetic) applied to attributes.

Datalog rules can refer to one another in a mutually recursive fashion. The
order in which the rules are presented in a program is semantically immate-
rial; likewise, the order predicates appear in a rule is not semantically mean-
ingful. Commas are interpreted as logical conjunctions (AND). Conventionally,
the names of predicates, function symbols, and constants begin with a lowercase
letter, while variable names begin with an uppercase letter. Function calls are
additionally prepended by f . Aggregate constructs are represented as functions

Recent Advances in Declarative Networking 3

with attribute variables within angle brackets (<>). We illustrate NDlog using a
simple two rule program that computes all pairs of reachable nodes in a network:

r1 reachable(@S,N) :- link(@S,N).

r2 reachable(@S,D) :- link(@S,N), reachable(@N,D).

Rules r1 and r2 specify a distributed transitive closure computation, where rule
r1 computes all pairs of nodes reachable within a single hop from all input links
(denoted by the link predicate), and rule r2 expresses that “if there is a link
from S to N, and N can reach D, then S can reach D.” The output of interest is the
set of all reachable(@S,D) tuples, representing reachable pairs of nodes from S

to D. By modifying this simple example, we can construct more complex routing
protocols, such as the distance vector and path vector routing protocols.

NDlog supports a location specifier in each predicate, expressed with the @

symbol followed by an attribute. This attribute is used to denote the source
location of each corresponding tuple. For example, all reachable and link tuples
are stored based on the @S address field.

2.1 Query Evaluation

In declarative networking, each node runs its own set of NDlog rules. Typically,
these rules are common across all nodes (that is, all nodes run the same proto-
col), but may further include per-node policy customizations. NDlog rules are
compiled and executed as distributed dataflows by the query processor to im-
plement various network protocols. These dataflows share a similar execution
model with the Click modular router [21], which consists of elements that are
connected together to implement a variety of network and flow control compo-
nents. In addition, elements include database operators (such as joins, aggrega-
tion, and selections) that are directly generated from the NDlog rules. Messages
flow among dataflows executed at different nodes, resulting in updates to local
tables, or query results that are returned to the hosts that issued the queries.
The local tables store the network state of various network protocols.

To execute NDlog programs, we use the pipelined semi-näıve (PSN) model [27].
PSN extends the traditional semi-näıve Datalog evaluation strategy [9] to work
in an asynchronous distributed setting. PSN relaxes semi-näıve evaluation to the
extreme of processing each tuple as it is received. This provides opportunities
for additional optimizations on a per-tuple basis. New tuples that are gener-
ated from the semi-näıve rules, as well as tuples received from other nodes, are
used immediately to compute new tuples without waiting for the current (local)
iteration to complete.

In practice, most network protocols execute over a long period of time and in-
crementally update and repair routing tables as the underlying network changes
(for example, due to link failures, and node departures). To better map into prac-
tical networking scenarios, one key distinction that differentiates the execution
of NDlog from earlier work in Datalog is our support for continuous rule exe-
cution and result materialization, where all tuples derived from NDlog rules are
materialized and incrementally updated as the underlying network changes. As
in network protocols, such incremental maintenance is required both for timely
updates and for avoiding the overhead of recomputing all routing tables “from

4 B.T. Loo et al.

scratch” whenever there are changes to the underlying network. In the pres-
ence of insertions and deletions to base tuples, our original incremental view
maintenance implementation utilizes the count algorithm [17] that ensures only
tuples that are no longer derivable are deleted. This has subsequently been im-
proved [36] via the use of a compact form of data provenance encoded using
binary decision diagrams shipped with each derived tuple.

2.2 Language Extensions

In our original work [29], predicates are allowed to be declared as soft-state with
lifetimes. In the extreme case, event predicates form transient tables which are
used as input to rules but are not stored. To support wireless broadcast [24,37],
we have introduced a broadcast location specifier denoted by @* which causes a
tuple to be broadcast to all nodes within wireless range of the node on which the
rule is executed. In order to support network functionality composition and code
reuse, we introduced Composable Virtual Views [33], which define rule groups
that perform a specific functionality when executed together. These extensions
offer different levels of declarativity [32] to meet various application demands.

The meaning of a NDlog program is defined to be the behavior and out-
put obtained by running the program through PSN evaluation [27,41]. The
Dedalus [19,5] language is similar to NDlog, except its behavior and output is
defined in terms of a model-theoretic semantics. Dedalus also allows users to
write rules that mutate state.

Dedalus takes base Datalog, and adds an integer timestamp field to every tu-
ple. State update is expressed as locally-stratified recursion through negation.
Message delay and re-ordering is captured by requiring all rules to derive non-
local tuples at some non-deterministic future timestamp. Dedalus uses Saccà
and Zaniolo’s choice construct [49] to model this non-determinism, which man-
ifests itself in multiple stable models [13] – one model for each possible choice of
timestamp.

An interesting question is to what extent the behavior and output of the
program is “well-behaved.” The CALM Conjecture, posed by Hellerstein [19]
states that monotonic coordination-free Dedalus programs are eventually consis-
tent, and non-monotonic programs are eventually consistent when instrumented
with appropriate coordination. Recently, Ameloot et al. explored Hellerstein’s
CALM conjecture using relational transducers [6]. They proved that monotonic
first order queries are exactly the set of queries that can be computed in a
coordination-free fashion in their transducer formalism. Their work uses some
different assumptions than traditional declarative networking—for example, they
assume that all messages sent by a node are multicast to a fixed set of neighbors,
whereas NDlog permits arbitrary unicast.

3 Generating Safe Routing Implementations

Our Formally Verifiable Routing (FVR) project addresses a long-standing chal-
lenge in networking research: bridging the gap between formal routing theories

Recent Advances in Declarative Networking 5

and actual implementations. The application of declarative networking is espe-
cially useful here, serving as an intermediary layer between high-level formal
specifications of the network design and low-level implementations.

3.1 Formally Safe Routing Toolkit

The Formally Safe Routing (FSR) toolkit [54] attempts to bridge this gap in the
context of interdomain routing by unifying research in routing algebras [16] with
declarative networking to produce provably correct distributed implementations.
Specifically, FSR automates the process of analyzing routing configurations ex-
pressed in algebra for safety (i.e. convergence) using the Yices SMT solver [55],
and automatically compiles routing algebra into declarative routing implemen-
tations.

To enable an evaluation of protocol dynamics and convergence time, FSR
uses our extended routing algebra [54] to automatically generate a distributed
routing-protocol implementation that matches the policy configuration — avoid-
ing the time-consuming and error-prone task of manually creating an implemen-
tation. FSR generates a provably correct translation to a NDlog specification,
which is then executed using the RapidNet declarative networking engine.

Our choice of NDlog as the basis for FSR is motivated by the following. First,
the declarative features of NDlog allow for straightforward translation from the
routing algebra to NDlog programs. Second, NDlog enables a variety of routing
protocols and overlay networks to be specified in a natural and concise manner.
Given that NDlog specifications are orders of magnitude less code than impera-
tive implementations, this makes possible a clean and concise proof (via logical
inductions) of the correctness of the generated NDlog programs with regard to
safety. The compact specifications also make it easy to incorporate alternative
routing mechanisms to the basic path-vector protocol, as we have previously
demonstrated [54]. Finally, when compiled and executed, these declarative pro-
tocols perform efficiently relative to imperative routing implementations.

Our recent prototype demonstration at SIGCOMM’11 [48] shows how FSR
can detect problems in an AS’s iBGP configuration (using realistic topologies
and policies). We have also used our system to prove sufficient conditions for
BGP safety and empirically evaluate protocol dynamics and convergence time.

FSR serves two important communities. For researchers, FSR automates
important parts of the design process and provides a common framework for
describing, evaluating, and comparing new safety guidelines. For network opera-
tors, FSR automates the analysis of internal router (iBGP) and border gateway
(eBGP) configurations for safety violations. For both communities, FSR auto-
matically generates realistic protocol implementations to evaluate real network
configurations (e.g., to study convergence time) prior to actual deployment.

3.2 Declarative Network Verification

In addition to the FSR toolkit, we have also explored the use of theorem prov-
ing for verifying declarative networking programs. We have developed the DNV
(Declarative Network Verification) [53] toolkit that demonstrate the feasibility
of automatically compiling declarative networking programs written in NDlog

6 B.T. Loo et al.

into formal specifications recognizable by a theorem prover (e.g., PVS [2]) for
verification. Unlike model checkers, DNV can express properties beyond the tem-
poral properties to which most model-checking techniques are restricted. They
also avoid the state exploration problem inherent in model checking. Theorem
proving techniques are also sound and complete: once a property is verified, it
holds for all instances of the protocol. Moreover, modern theorem provers come
with powerful proof engines that support a large portion of automated proof
exploration, enabling the proof of non-trivial theorems with relatively modest
human effort.

4 Securing Distributed Systems

The Declarative Secure Distributed Systems (DS2) platform provides high-level
programming abstractions for implementing secure distributed systems, achieved
by unifying declarative networking and logic-based access control
specifications [12]. DS2 has a wide range of applications, including reconfig-
urable trust management [35], secure distributed data processing [34], and tun-
able anonymity [51].

DS2 is motivated in part by the observation that distributed trust manage-
ment languages share similarities with both data integration languages and the
distributed Datalog languages proposed for declarative networking. These lan-
guages support the notion of context (location) to identify components (nodes) in
distributed systems. The commonalities between these languages indicate that
ideas and methods from the database community are also applicable to process-
ing security policies, suggesting the unification of these declarative languages to
create an integrated system.

The DS2 system is currently available for download [47].

4.1 Secure Network Datalog

We developed the Secure Network Datalog (SeNDlog) language [59] that uni-
fies NDlog and logic-based languages for access control in distributed systems.
SeNDlog enables network routing, information systems, and security policies to
be specified and implemented within a common declarative framework. We have
additionally extended existing distributed recursive query processing techniques
to execute SeNDlog programs to incorporate secure communication among un-
trusted nodes.

In SeNDlog, we bind a set of rules and the associated tuples to reside at a
particular node. We do this at the top level for each rule (or set of rules), for
example by specifying:

At N,

r1 p :- p1,p2,...,pn.

r2 p1 :- p2,p3,...,pn.

The above rules r1 and r2 are in the context of N, where N is either a variable or
a constant representing the principal where the rules reside. If N is a variable, it
will be instantiated with local information upon rule installation. In a trusted

Recent Advances in Declarative Networking 7

distributed environment, N simply represents the network address of a node: ei-
ther a physical address (e.g., an IP address) or a logical address (e.g., an overlay
identifier). In a multi-user multi-layered network environment where multiple
users and overlay networks may reside on the same physical node, N can in-
clude the user name and an overlay network identifier. This is unlike declarative
networking in which location specifiers denote physical IP address.

SeNDlog allows different principals or contexts to communicate via import
and export of tuples. The communication serves two purposes: (1) maintenance
messages as part of a network protocol’s updates on routing tables, and (2)
distributed derivation of security decisions. Imported tuples from a principal N
are automatically quoted using “N says” to differentiate them from local tuples.
During the evaluation of SeNDlog rules, we allow derived tuples to be commu-
nicated among contexts via the use of import predicates and export predicates:

• An import predicate is of the form “N says p” in a rule body, where principal
N asserts the predicate p.

• An export predicate is of the form “N says p@X” in a rule head, where principal
N exports the predicate p to the context of principal X. Here, X can be a constant
or a variable. If X is a variable, in order to make bottom-up evaluation efficient,
we further require that the variable X occur in the rule body. As a shorthand,
we can omit “N says” if N is the principal where the rule resides.

By exporting tuples only to specified principals, the use of export predicates
ensures confidentiality and prevents information leakage. With the above defini-
tions, a SeNDlog rule is a Datalog rule where the rule body can include import
predicates and the rule head can be an export predicate.

We provide a concrete example based on the declarative path vector protocol
as presented in the original declarative routing [31] paper: At every node Z, this
program takes as input neighbor(Z,X) tuples that contain all neighbors X for
Z. The program generates route(Z,X,P) tuples, each of which stores the path P

from source Z to destination X. The basic protocol specification is similar to the
all-pairs reachable example presented in Section 2, with additional predicates for
computing the actual path using the f concat function which prepends neighbor
X to the input path P.

The input carryTraffic and acceptRoute tables respectively represent the
export and import policies of node Z. Each carryTraffic(Z,X,Y) tuple represents
the fact that node Z is willing to serve all network traffic on behalf of node X to
node Y, and each acceptRoute(Z,Y,X) tuple represents the fact that node Z will
accept a route from node X to node Y. A more complex version of this protocol
will have additional rules that derive carryTraffic and acceptRoute, avoid path
cycles and also derive shortest paths with the least hop count.

The path-vector protocol is used for inter-domain routing over the Internet
and is known to be vulnerable to a variety of attacks due to the lack of mecha-
nisms for verifying the authenticity and authorization of routing control traffic.
One potential solution is to authenticate every routing control message, as pro-
posed for Secure BGP [50].

8 B.T. Loo et al.

At Z,

z1 route(Z,X,P) :- neighbor(Z,X), P=f_initPath(Z,X).

z2 route(Z,Y,P) :- X says advertise(Y,P), acceptRoute(Z,X,Y).

z3 advertise(Y,P1)@X :- neighbor(Z,X), route(Z,Y,P),

carryTraffic(Z,X,Y), P1=f_concat(X,P).

In our example program, we can specify such authentication naturally via the
use of “says” to ensure that all advertise tuples are verified by the recipients for
authenticity. Rule z1 takes as input neighbor(Z,X) tuples, and computes all the
single hop route(Z,X,P) containing the path [Z,X] from node Z to X. Rules z2 and
z3 compute routes of increasing hop counts. Upon receiving an advertise(Y,P)

tuple from X, Z uses rule z2 to decide whether to accept the route advertisement
based on its local acceptRoute table. If the route is accepted, a route tuple is
derived locally, and this results in the generation of an advertise tuple which is
further exported by node Z via rule z3 to some of its neighbors X as determined
by the policies stored in the local carryTraffic table.

SeNDlog is able to compactly specify a variety of secure distributed protocols.
Our earlier work [59] has demonstrated, for example, the use of SeNDlog for
performing secure distributed joins and securing distributed hash tables [8].

4.2 Reconfigurable Security

Although one can achieve a high level of security using a “one-size-fits-all” solu-
tion with fixed constructs like says, an extensible trust management framework
where users can write and reconfigure their own constructs like says is appli-
cable to a much broader range of settings. For example, programmers could
customize the security protocols used by their application based on the execu-
tion environment without modifying the application logic. In the LBTrust [35]
work, we extended SeNDlog to support user-defined security constructs that can
be customized and composed in a declarative fashion. To validate our ideas in a
production system, we implemented our extension in the LogicBlox [26] system,
an emerging commercial Datalog-based platform for enterprise software systems.

We enhanced LogicBlox to support meta-rules — Datalog rules that operate
on the rules of the program as input, and produce new rules as output — and
meta-constraints — Datalog constraints that restrict the allowable rules in the
program. Security constructs are written using these two ingredients. For ex-
ample, the says construct would consist of meta-rules that rewrite the program
to perform signing of all exported messages, and constraints that ensure that
all imported messages have valid signatures. We demonstrate that a variety of
security primitives for authentication, confidentiality, integrity, speaks-for, and
restricted delegation can be supported. Based on these primitives, several exist-
ing distributed trust management systems (e.g., Binder [12], SD3 [20], Delegation
Logic [22], and SeNDlog) can be implemented in LBTrust.

A follow-up to LBTrust is the SecureBlox [34] system, which restricts the use
of meta-programming to make it a fully static, compile-time operation. We added
support for physical distribution to LBTrust, and looked at performance-security
tradeoffs between different constructs in distributed systems. Similar to LBTrust,
SecureBlox allows meta-programmability for compile-time code generation based
on the security requirements and trust policies of the deployed environment.

Recent Advances in Declarative Networking 9

While we specifically study security in the LBTrust and SecureBlox work, the
general pattern of using meta-programming to decompose a logic program into
different aspects representing cross-cutting concerns is more broadly applicable.

4.3 Application-Aware Anonymity

To further illustrate the feasibility of our methods and technologies for the devel-
opment of secure distributed systems, we have conceptualized and implemented
the Application-Aware Anonymity (A3) system [7,51], a distributed peer-to-peer
service that provides high-performance anonymity “for the masses”. A3 uses
SeNDlog for implementing an extensible policy engine for customizing its re-
lay selection and instantiation strategies. A3 allows applications to construct
anonymous Onion [15] paths that adhere to application specific constraints (e.g.,
end-to-end latency). Unlike existing anonymity systems that construct paths
according to predefined criteria, A3 enables applications to specify the require-
ments of their anonymous paths. For example, anonymized Voice-over-IP ser-
vices can request paths with low latency and modest bandwidth requirements,
while streaming video broadcasts can request high bandwidth anonymous paths
without regard for latency. A3 is open-source and available for download [7].

5 Debugging Distributed Systems

In the context of distributed systems, it is very common for system administra-
tors to perform analysis tasks that essentially amount to network provenance [60]
queries. For example, they might ask diagnostic queries to determine the root
cause of a malfunction, forensic queries to identify the source of an intrusion, or
profiling queries to find the reason for suboptimal performance.

The NetTrails [58,60] system is a declarative platform for incrementally
maintaining, interactively navigating, and querying network provenance in a
distributed system. During the system execution, NetTrails incrementally main-
tains provenance information using RapidNet as its distributed query engine.
Our architecture offers a unifying framework, as both maintenance and query-
ing functionalities are specified as NDlog programs.

NetTrails consists of two subcomponents: First, a maintenance engine takes
as input either NDlog programs or input/output dependencies captured from
legacy applications, and then incrementally computes and maintains network
provenance information as distributed relational tables. Second, a distributed
query engine executes user-customizable provenance queries that are evaluated
across multiple nodes. Legacy systems are supported either by modifying the
application’s source code to explicitly report provenance, or by using an external
specification of the application’s protocol to derive provenance information by
observing a node’s inputs and outputs [57].

5.1 Network Provenance Model

In NetTrails, the provenance graph is internally maintained as relational tables
which are distributed and partitioned across all nodes in the network. Network

10 B.T. Loo et al.

link(@b,c,2)

VID1=SHA1("link"+b+c+2)

link(@b,a,3)

VID2=SHA1("link"+b+a+3)

link(@a,c,5)

VID3=SHA1("link"+a+c+5)

pathCost(@b,c,2)

VID4=SHA1("pathCost"+b+c+2)

pathCost(@a,c,5)

VID5=SHA1("pathCost"+a+c+5)

sp2@b

RID3=SHA1("sp2"+b+VID2+VID6)

bestPathCost(@b,c,2)

VID6=SHA1("bestPathCost"+b+c+2)

bestPathCost(@a,c,5)

VID7=SHA1("bestPathCost"+a+c+5)
sp3@a

RID5=SHA1("sp3"+a+VID5)

sp1@b

RID1=SHA1("sp1"+b+VID1)

sp1@a

RID2=SHA1("sp1"+a+VID3)

sp3@b

RID4=SHA1("sp3"+b+VID4)

Fig. 1. The provenance graph of the tuple bestPathCost(@a,c,5) derived from the
execution of the MinCost program

provenance is modeled as an acyclic graph G(V, E). The vertex set V consists of
tuple vertices and rule execution vertices. Each tuple vertex in the graph is either
a base tuple or a computation result, and each rule execution vertex represents
an instance of a rule execution given a set of input tuples. The edge set E
represents dataflows between tuples and rule execution vertices.

To illustrate, we consider an example network consisting of three nodes a, b
and c connected by three bi-directional links (a,b), (a,c) and (b,c) with costs
3, 5 and 2 respectively. We further consider the following three-rule MinCost

program that computes the minimal path cost between each pair of nodes:

sp1 pathCost(@S,D,C) :- link(@S,D,C).

sp2 pathCost(@S,D,C1+C2) :- link(@Z,S,C1), bestPathCost(@Z,D,C2).

sp3 bestPathCost(@S,D,min<C>) :- pathCost(@S,D,C).

Figure 1 shows the provenance for a specific derived tuple bestPathCost(@a,c,5),
based on the dependency logic captured by the MinCost program. For instance,
the figure shows that bestPathCost(@a,c,5) is generated from rule sp3 at node
a taking pathCost(@a,c,5) as the input. To trace further, pathCost(@a,c,5) has
two derivations: the locally derivable one-hop path a → c and the two-hop path
a → b → c that requires a distributed join at b.

5.2 Distributed Maintenance and Querying

Given the adoption of a declarative networking engine, data dependencies are ex-
plicitly captured in derivation rules.1 The provenance maintenance in a dynamic
system execution can be performed in a straightforward manner: an automatic
rule rewrite algorithm takes as input a set of derivation rules, and outputs a
modified program that contains additional rules for capturing the provenance
information. These additional rules define network provenance in terms of views
over base and derived tuples. As the network protocol executes and updates
network state, views are incrementally recomputed.

Once generated, network provenance can be queried by issuing distributed
queries. Since provenance information is distributed across nodes, query execu-
tion performs a traversal of the provenance graphs in a distributed fashion.

NetTrails allows users to customize the provenance queries. For instance, users
can query for a tuple’s lineage, the set of nodes that have been involved in
1 For legacy applications, the data dependencies (reported by the modified source code

or inferred from the observed I/Os) can be formulated as derivation rules as well [57].

Recent Advances in Declarative Networking 11

Fig. 2. A screenshot of the NetTrails demonstration at SIGMOD’11

the derivation of a given tuples, and/or the total number of alternative deriva-
tions. To reduce querying overhead, NetTrails adopts a set of optimization tech-
niques [60], including caching previously queried results, leveraging alternative
tree traversal orders, and performing threshold-based pruning.

An early prototype of NetTrails was presented at SIGMOD’11 [58]. Figure 2
shows an example execution of the current version of the demonstration that
highlights the provenance of the system state (captured as tuples) for a running
MinCost program. One may further issue customized provenance queries and
visually inspect the progressive steps of the distributed querying.

5.3 Security and Temporal Extensions

NetTrails provides functionality required for richer provenance queries by adding
(i) new provenance models and maintenance strategies for capturing the time,
distribution, and causality of updates in distributed systems [56], and (ii) novel
query processing and optimization techniques for efficiently and securely answer-
ing queries at scale [57].

NetTrails explicitly captures causality: if some network state α depends on
some other state β, and β is changed, the provenance of the change in α is at-
tributable to the change in β. Additionally, since one of our potential use cases
is forensics, NetTrails achieves strong security guarantees even in the presence of
misbehaving and potentially malicious nodes. NetTrails utilizes secure network
provenance [57] to provide the strong guarantee that either a returned prove-
nance query is accurate and complete, or that a misbehaving node is identified
with non-repudiable evidence against the node.

To demonstrate the capabilities of NetTrails’s temporal and security exten-
sions, we describe a number of use cases of our system, as presented in [57].

Network Routing. The Border Gateway Protocol (BGP) used for interdomain
routing over the Internet is plagued by a variety of attacks and malfunctions. We
have applied NetTrails to the Quagga BGP daemon [45] and demonstrated how
our solution enables a network administrator to determine why an entry from
a routing table has disappeared. We also showed how NetTrails can be used to
detect well-known BGP misconfigurations.

12 B.T. Loo et al.

Distributed Hash Tables. We have applied NetTrails to a declarative imple-
mentation of the Chord [29] distributed hash table; no modifications are required
to the Chord source code. We demonstrated NetTrails’ ability to detect a well-
known attack against Chord in which the attacker gains control over a large
fraction of the neighbors of a correct node, and is then able to drop or reroute
messages to this node and prevent correct overlay operation.

Hadoop MapReduce. Finally, we have applied NetTrails to Hadoop MapRe-
duce [18]. We manually instrumented Hadoop to report provenance at the level
of individual key-value pairs. We used Hadoop to encode the WordCount pro-
gram that reports the number of occurrences of each word in a 1.2 GB Wikipedia
dataset. In this scenario, we queried for the provenance of a given (unlikely) key-
value pair in the output. NetTrails revealed that unexpected results might be
attributed to a faulty or compromised map worker. More generally, NetTrails
was able to identify the causes of suspicious MapReduce outputs.

6 Optimizing Distributed Systems

In distributed systems management, operators often configure system parame-
ters that optimize performance objectives, given constraints in the deployment
environment. In this section we present our recent work on a declarative opti-
mization platform that enables constraint optimization problems (COP) to be
declaratively specified and incrementally executed in distributed systems.

Traditional COP implementation approaches use imperative languages such
as C++ or Java and often result in cumbersome and error-prone programs that
are difficult to maintain and customize. Moreover, due to scalability and manage-
ment constraints imposed across administrative domains, it is often necessary to
execute COP in a distributed setting in which multiple local solvers must coordi-
nate with one another. Each local solver handles a portion of the whole problem,
and they together achieve a global objective.

Central to our optimization platform is the integration of a declarative net-
working engine [28] with an off-the-shelf constraint solver [1]. We highlight two
use cases to which we have applied our platform:

6.1 Use Cases: PUMA and COPE

First, we have developed the Policy-based Unified Multi-radio Architecture
(PUMA), a declarative constraint solving platform for optimizing wireless mesh
networks. In PUMA, network operators can flexibly vary the choice of routing via
adaptable hybrid routing protocols [24]. The hybrid technique combines several
existing protocols (e.g., proactive, reactive, and epidemic) with specific criteria
for determining when particular protocols are to be used. The hybrid composi-
tional capabilities are particularly useful for routing in heterogeneous network
settings in which application needs and network conditions keep changing over
time. In addition, PUMA enables policies for wireless channel selection [23] to
be declaratively specified and optimized; such policies may reduce network inter-
ference and maximize throughput while not violating constraints (for instance,
refraining from channels owned exclusively by the primary users [43]).

Recent Advances in Declarative Networking 13

Second, in our Cloud Orchestration Policy Engine (COPE) [25], we use our
optimization framework to declaratively control the provisioning, configuration,
management and decommissioning of cloud resource orchestration. COPE en-
ables the automatic realization of customer service level agreements while simul-
taneously conforming to operational objectives of the cloud providers.

Beyond these two use cases, we envision that our platform has a wide-range
of potential applications, including optimizing distributed systems for load bal-
ancing, robust routing, scheduling, and security.

6.2 Colog Language and Compilation

Our optimization platform uses the Colog declarative policy language. Colog al-
lows operators to concisely model distributed system resources and formulate
management decisions as declarative programs with specified goals and con-
straints. Compared to traditional imperative alternatives, Colog results in code
that is smaller by orders of magnitude, and is easier to understand, debug and
extend. Here, we present high level intuitions of Colog; a more comprehensive
treatment of the language can be found in our earlier work [23,25].

Language extensions. Based on NDlog, Colog extends traditional NDlog
with constructs for expressing goals and constraints. Two reserved keywords —
goal and var — respectively specify the optimization goal and variables used by
the constraint solver. Constraint rules of the form F1 -> F2, F3, ..., Fn denote
that whenever F1 is true, then the rule body (F2 and F3 and ... and Fn) must
also be true to satisfy the constraint. Unlike a Datalog rule which derives new
values for a predicate, a constraint restricts a predicate’s allowed values, hence
representing an invariant that must be maintained at all times. These are used
by the solver to limit the search space when computing the optimization goal.
Using Colog, it is easy to customize policies simply by modifying the goals and
constraints, and by adding additional derivation rules.

Distributed COP. Colog is extended for execution in a distributed setting.
At a high level, multiple solver nodes execute a local COP, and then iteratively ex-
change COP results with neighboring nodes until a stopping condition is reached.
Similar to NDlog, in the distributed COP program, a location specifier @ denotes
the source location of each corresponding tuple. This allows us to write rules in
which the input data span multiple nodes — a convenient language construct
for formulating distributed optimizations.

One of the interesting aspects of Colog, from a query processing standpoint,
is our integration of RapidNet (an incremental bottom-up distributed Data-
log evaluation engine) and Gecode (a top-down goal-oriented constraint solver).
This integration allows us to implement a distributed solver that can perform
incremental and distributed constraint optimizations.

To execute distributed COP rules, Colog uses RapidNet, which already pro-
vides a runtime environment for implementing these rules. At a high level, each
distributed rule or constraint (with multiple distinct location specifiers) is rewrit-
ten using a localization rewrite [28] step. This transformation results in rule
bodies that can be executed locally and rule heads that can be derived and sent
across nodes. The beauty of this rewrite is that even if the original program
expresses distributed properties and constraints, the rewrite process will realize

14 B.T. Loo et al.

multiple local COP operations at different nodes, and have the output of COP
operations via derivations sent across nodes.

Acknowledgments. Our work on declarative networking has been generously
funded by NSF (CNS-0721845, CNS-0831376, IIS-0812270, CCF-0820208, CNS-
0845552, CNS-1040672, CNS-1065130, and CNS-1117052), AFOSR MURI grant
FA9550-08-1-0352, DARPA SAFER award N66001-11-C-4020, and DARPA Air
Force Research Laboratory (AFRL) Contract FA8750-07-C-0169. We would also
like to thank our collaborators listed on the NetDB@Penn site [39] for their
contributions to the various research efforts described in this paper.

References

1. Gecode constraint development environment, http://www.gecode.org/
2. PVS Specification and Verification System, http://pvs.csl.sri.com/
3. RapidNet, http://netdb.cis.upenn.edu/rapidnet/
4. Alvaro, P., Condie, T., Conway, N., Elmeleegy, K., Hellerstein, J.M., Sears, R.:

Boom Analytics: Exploring Data-Centric, Declarative Programming for the Cloud.
In: Proceedings of Eurosys (2010)

5. Alvaro, P., Marczak, W., Conway, N., Hellerstein, J.M., Maier, D., Sears, R.C.:
Dedalus: Datalog in time and space. Technical Report UCB/EECS-2009-173,
EECS Department, University of California, Berkeley (December 2009)

6. Ameloot, T.J., Neven, F., Van den Bussche, J.: Relational Transducers for Declar-
ative Networking. In: PODS (2011)

7. Application Aware Anonymity, http://a3.cis.upenn.edu/
8. Balakrishnan, H., Kaashoek, M.F., Karger, D., Morris, R., Stoica, I.: Looking Up

Data in P2P Systems. Communications of the ACM 46(2) (2003)
9. Balbin, I., Ramamohanarao, K.: A Generalization of the Differential Approach to

Recursive Query Evaluation. Journal of Logic Prog. 4(3), 259–262 (1987)
10. Chen, X., Mao, Y., Mao, Z.M., van der Merwe, J.: Declarative Configuration Man-

agement for Complex and Dynamic Networks. In: CoNEXT (2010)
11. Chu, D.C., Popa, L., Tavakoli, A., Hellerstein, J.M., Levis, P., Shenker, S., Stoica,

I.: The Design and Implementation of a Declarative Sensor Network System. In:
5th ACM Conference on Embedded networked Sensor Systems, SenSys (2007)

12. DeTreville, J.: Binder: A logic-based security language. In: IEEE Symposium on
Security and Privacy (2002)

13. Gelfond, M., Lifschitz, V.: The Stable Model Semantics For Logic Programming.
In: ICLP/SLP, pp. 1070–1080 (1988)

14. Gill, H., Saeed, T., Fei, Q., Zhang, Z., Loo, B.T.: An Open-source and Declar-
ative Approach Towards Teaching Large-scale Networked Systems Programming.
In: SIGCOMM Education Workshop (2011)

15. Goldschlag, D., Reed, M., Syverson, P.: Onion Routing. Communications of the
ACM 42(2), 39–41 (1999)

16. Griffin, T.G., Sobrinho, J.L.: Metarouting. In: ACM SIGCOMM (2005)
17. Gupta, A., Mumick, I.S., Subrahmanian, V.S.: Maintaining Views Incrementally.

In: Proceedings of ACM SIGMOD International Conference on Management of
Data (1993)

18. Hadoop, http://hadoop.apache.org/
19. Hellerstein, J.M.: Declarative imperative: Experiences and conjectures in dis-

tributed logic. SIGMOD Record 39(1) (2010)
20. Jim, T.: SD3: A Trust Management System With Certified Evaluation. In: IEEE

Symposium on Security and Privacy (2001)

http://www.gecode.org/
http://pvs.csl.sri.com/
http://netdb.cis.upenn.edu/rapidnet/
http://a3.cis.upenn.edu/
http://hadoop.apache.org/

Recent Advances in Declarative Networking 15

21. Kohler, E., Morris, R., Chen, B., Jannotti, J., Kaashoek, M.F.: The Click Modular
Router. ACM Transactions on Computer Systems 18(3), 263–297 (2000)

22. Li, N., Grosof, B.N., Feigenbaum, J.: Delegation Logic: A logic-based approach to
distributed authorization. ACM TISSEC (2003)

23. Liu, C., Correa, R., Gill, H., Gill, T., Li, X., Muthukumar, S., Saeed, T., Loo,
B.T., Basu, P.: PUMA: Policy-based Unified Multi-radio Architecture for Agile
Mesh Networking. In: 4th International Conference on Communication Systems
and Networks, COMSNETS (2012)

24. Liu, C., Correa, R., Li, X., Basu, P., Loo, B.T., Mao, Y.: Declarative policy-based
adaptive mobile ad hoc networking. IEEE/ACM Transactions on Networking, ToN
(2011)

25. Liu, C., Loo, B.T., Mao, Y.: Declarative Automated Cloud Resource Orchestration.
In: ACM Symposium on Cloud Computing, SOCC (2011)

26. LogicBlox Inc., http://www.logicblox.com/
27. Loo, B.T., Condie, T., Garofalakis, M., Gay, D.E., Hellerstein, J.M., Maniatis,

P., Ramakrishnan, R., Roscoe, T., Stoica, I.: Declarative Networking: Language,
Execution and Optimization. In: Proceedings of ACM SIGMOD International Con-
ference on Management of Data (2006)

28. Loo, B.T., Condie, T., Garofalakis, M., Gay, D.E., Hellerstein, J.M., Maniatis, P.,
Ramakrishnan, R., Roscoe, T., Stoica, I.: Declarative Networking. Communications
of the ACM, CACM (2009)

29. Loo, B.T., Condie, T., Hellerstein, J.M., Maniatis, P., Roscoe, T., Stoica, I.: Imple-
menting Declarative Overlays. In: Proceedings of ACM Symposium on Operating
Systems Principles (2005)

30. Loo, B.T., Hellerstein, J.M., Stoica, I.: Customizable Routing with Declarative
Queries. In: ACM SIGCOMM Hot Topics in Networks (2004)

31. Loo, B.T., Hellerstein, J.M., Stoica, I., Ramakrishnan, R.: Declarative Routing:
Extensible Routing with Declarative Queries. In: Proceedings of ACM SIGCOMM
Conference on Data Communication (2005)

32. Mao, Y.: On the declarativity of declarative networking. In: ACM NetDB Workshop
(2009)

33. Mao, Y., Loo, B.T., Ives, Z., Smith, J.M.: MOSAIC: Unified Platform for Dynamic
Overlay Selection and Composition. In: CoNEXT (2008)

34. Marczak, W.R., Huang, S.S., Bravenboer, M., Sherr, M., Loo, B.T., Aref, M.: Se-
cureBlox: Customizable Secure Distributed Data Processing. In: SIGMOD (2010)

35. Marczak, W.R., Zook, D., Zhou, W., Aref, M., Loo, B.T.: Declarative Reconfig-
urable Trust Management. In: Proceedings of Conference on Innovative Data Sys-
tems Research, CIDR (2009)

36. Liu, M., Taylor, N., Zhou, W., Ives, Z., Loo, B.T.: Recursive Computation of
Regions and Connectivity in Networks. In: Proceedings of IEEE Conference on
Data Engineering, ICDE (2009)

37. Muthukumar, S.C., Li, X., Liu, C., Kopena, J.B., Oprea, M., Correa, R., Loo, B.T.,
Basu, P.: RapidMesh: declarative toolkit for rapid experimentation of wireless mesh
networks. In: WINTECH (2009)

38. Muthukumar, S.C., Li, X., Liu, C., Kopena, J.B., Oprea, M., Loo, B.T.: Declarative
toolkit for rapid network protocol simulation and experimentation. In: SIGCOMM,
demo (2009)

39. NetDB@Penn, http://netdb.cis.upenn.edu/
40. Network Simulator 3, http://www.nsnam.org/
41. Nigam, V., Jia, L., Loo, B.T., Scedrov, A.: Maintaining distributed logic programs

incrementally. In: 13th International ACM SIGPLAN Symposium on Principles
and Practice of Declarative Programming, PPDP (2011)

42. ORBIT - Wireless Network Testbed, http://www.orbit-lab.org/
43. Perich, F.: Policy-based Network Management for NeXt Generation Spectrum Ac-

cess Control. In: DySPAN (2007)
44. PlanetLab. Global testbed, http://www.planet-lab.org/

http://www.logicblox.com/
http://netdb.cis.upenn.edu/
http://www.nsnam.org/
http://www.orbit-lab.org/
http://www.planet-lab.org/

16 B.T. Loo et al.

45. Quagga Routing Suite, http://www.quagga.net/
46. Ramakrishnan, R., Ullman, J.D.: A Survey of Research on Deductive Database

Systems. Journal of Logic Programming 23(2), 125–149 (1993)
47. RapidNet Declarative Networking Engine,

http://netdb.cis.upenn.edu/rapidnet/
48. Ren, Y., Zhou, W., Wang, A., Jia, L., Gurney, A.J., Loo, B.T., Rexford, J.: FSR:

Formal Analysis and Implementation Toolkit for Safe Inter-domain Routing. In:
ACM SIGCOMM Conference on Data Communication, demonstration (2011)

49. Saccà, D., Zaniolo, C.: Stable Models and Non-Determinism in Logic Programs
with Negation. In: PODS, pp. 205–217 (1990)

50. Secure BGP, http://www.ir.bbn.com/sbgp/
51. Sherr, M., Mao, A., Marczak, W.R., Zhou, W., Loo, B.T., Blaze, M.: A3: An Ex-

tensible Platform for Application-Aware Anonymity. In: Network and Distributed
System Security (2010)

52. Singh, A., Das, T., Maniatis, P., Druschel, P., Roscoe, T.: BFT Protocols Under
Fire. In: USENIX Symposium on Networked Systems Design and Implementation
(2008)

53. Wang, A., Basu, P., Loo, B.T., Sokolsky, O.: Towards declarative network ver-
ification. In: 11th International Symposium on Practical Aspects of Declarative
Languages, PADL (2009)

54. Wang, A., Jia, L., Zhou, W., Ren, Y., Loo, B.T., Rexford, J., Nigam, V., Scedrov,
A., Talcott, C.: FSR: Formal analysis and implementation toolkit for safe inter-
domain routing. University of Pennsylvania CIS Technical Report No. MS-CIS-11-
10 (2011), http://repository.upenn.edu/cis_reports/954/

55. Yices, http://yices.csl.sri.com/
56. Zhou, W., Ding, L., Haeberlen, A., Ives, Z., Loo, B.T.: Tap: Time-aware provenance

for distributed systems. In: 3rd USENIX Workshop on the Theory and Practice of
Provenance, TaPP 2011 (2011)

57. Zhou, W., Fei, Q., Narayan, A., Haeberlen, A., Loo, B.T., Sherr, M.: Secure network
provenance. In: Proceedings of ACM Symposium on Operating Systems Principles
(2011)

58. Zhou, W., Fei, Q., Sun, S., Tao, T., Haeberlen, A., Ives, Z., Loo, B.T., Sherr,
M.: Nettrails: A declarative platform for provenance maintenance and querying in
distributed systems. In: SIGMOD, demonstration (2011)

59. Zhou, W., Mao, Y., Loo, B.T., Abadi, M.: Unified Declarative Platform for Secure
Networked Information Systems. In: Proceedings of IEEE Conference on Data
Engineering, ICDE (2009)

60. Zhou, W., Sherr, M., Tao, T., Li, X., Loo, B.T., Mao, Y.: Efficient querying and
maintenance of network provenance at Internet-scale. In: Proc. SIGMOD (2010)

61. Zhou, W., Sokolsky, O., Loo, B.T., Lee, I.: Dmac: Distributed monitoring and
checking. In: 9th International Workshop on Runtime Verification, RV (2009)

http://www.quagga.net/
http://netdb.cis.upenn.edu/rapidnet/
http://www.ir.bbn.com/sbgp/
http://repository.upenn.edu/cis_reports/954/
http://yices.csl.sri.com/

Make Things Now!

Pragmatic Functional Programming in Haskell

Don Stewart

Standard Chartered Bank
dons00@gmail.com

Abstract. For the past decade I’ve been building all kinds of software in
Haskell: software for programming languages research; open source soft-
ware as part of the Haskell.org project; and, more recently, commercial
software for business and government.

This talk will look at the experience of delivering software written in
Haskell, and how language features and tools can help you achieve a range
of engineering goals. Beyond just technical issues though, we will look at
how programmers that use Haskell and typed functional programming
approach problems differently, and how small, skilled teams can do things
faster and better.

C. Russo and N.-F. Zhou (Eds.): PADL 2012, LNCS 7149, p. 17, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Declarative Approach for Software Modeling

Mayer Goldberg1 and Guy Wiener2,�

1 Dept. of Computer Science,
Ben-Gurion University of the Negev

gmayer@cs.bgu.ac.il
2 Dept. of Computer Science & Applied Mathematics,

Weizmann Institute for Science
gwiener@weizmann.ac.il

Abstract. In this paper we describe a method for encoding software
models as Prolog programs, and how to use these programs to support
incremental development. Requirements, alternative designs, and imple-
mentation patterns are encoded as predicates in the program, and define
a search routine, the solutions of which are possible implementations of
the requirements. Under default operation, this routine validates that a
given parsed code is compatible with one of these solutions. Addition-
ally, the same search routine can be executed by special interpreters that
provide traceability and code generation as well. Code generation may
be complete or partial, allowing the user to combine hand-written and
generated code. By customizing the interpreter, the user can generate
an outline of the design or a tasks list, instead of code. We demonstrate
these techniques using Java and SQL, but our approach is applicable to
other programming languages and paradigms as well.

1 Introduction

What format will make requirements models, and models derived from them,
most useful for developers? More generally, what functionality should modeling
platforms provide to support the incremental development of long-term projects?
These questions lead an ongoing discussion in the software engineering commu-
nity. A survey of current approaches provides the following answers:

Compatibility. Developers should be able to validate that a given implementa-
tion conforms to the design and guidelines specified by the model. Works by
Sefika et al. [13] and Jean-Marie Favre [4] describe implementations of this
approach to validation based on logic programming. The validation process
should also point out which parts of the model and code are incompatible, as
described in works by the authors [6,19]. Following search-based approaches,
as outlined by Clarke et al. [3], we observe that the validation should accept

� This research was supported in part by the John von Neumann Minerva Center for
the Development of Reactive Systems at the Weizmann Institute of Science, and by
an Advanced Research Grant from the European Research Council (ERC) under the
European Community’s Seventh Framework Programme (FP7/2007-2013).

C. Russo and N.-F. Zhou (Eds.): PADL 2012, LNCS 7149, pp. 18–32, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Declarative Approach for Software Modeling 19

any program from a range of implementations, as there are often several
possible realizations for a given specification.

Traceability. Winkler and Pilgrim define traceability as “the ability to follow
the life of a software artifact” [20]. In the context of software development,
“life” refers to the chain of design decisions that led from the original require-
ment to a specific implementation. Put otherwise, developers should be able
to trace given implementation details to the requirements that they fulfill.

Code generation. It has become a common practice in software engineering
to use models for code generation. Model-based approaches advocate code
generation as a level of abstraction above third-generation programming lan-
guages (see Schmidt’s review of MDE [12]). As with the first item, we observe
that code generation should offer a range of generated programs, since there
are often several implementation patterns for a given design. The user can
select which program to generate, either explicitly, or by applying heuristics.
To support incremental development, code generation must be incremental
too, i.e., generate only specific parts of the code, and combine them with
existing code. The opposite of incremental code generation is complete code
generation, i.e., the entire application is generated automatically. Complete
code generation is currently limited to specific application domains.

This work presents a declarative approach for modeling requirements and their
implementations. In our approach, the requirements, the possible designs that de-
rive from them, and the implementation patterns for these designs, are encoded
as Prolog predicates. The patterns may describe implementations in another
programming language, not necessarily Prolog. These predicates, together with
the underlying Prolog interpreter, implement a search routine, in which design
decisions are represented by predicates with multiple clauses. The solutions of
the search are program fragments in the target language, that implement one
of the possible designs, according to the given rules. Our current examples use
the JTransformer framework (see Sect. 2.2) to read and write the abstract syn-
tax tree (AST) of a Java program using Prolog. The method itself, however, is
language-independent. The basic operation of the search routine is to find a so-
lution, consisting of program fragments, and match these fragments against the
given program, thus providing a compatibility check. We use logic programming
meta-interpretation to provide for traceability and code generation as well. The
resulting workflow is: (a) The developer encodes the software model. (b) The
code is parsed into facts, representing its AST. (c) The code and model predi-
cates are interpreted, for validation or traceability. (d) Code generation produces
a partial AST, which is combined with the existing AST to update the program.
(e) When the model or source code are updated, the process is repeated.

The rest of the paper is structured as follows. Section 2 provides the necessary
background. Section 3 describes the model encoding method. Section 4 describes
the usage of explanatory interpretation for traceability. Section 5 describes the
usage of partial evaluation for code generation, where the generated code in-
cludes only unimplemented features. This section also describes how to generate
a higher-level view, such as a summary of the design, or a list of tasks, using the

20 M. Goldberg and G. Wiener

same technique. Section 6 describes how to direct the code generation and prune
undesired solutions by providing a heuristic function. Section 7 reviews related
works. Section 8 discusses the limitations and possible extensions of this work.
Section 9 summarizes. The appendixes provide code listings and explanations
for the main Prolog predicates mentioned throughout this paper.

2 Background

2.1 Prolog

In the context of this work, Prolog serves as a generic platform for depth-first
search programs, the results of which is an assignment of variables to terms. A
Prolog program and a goal specify a search tree, where predicates with multiple
clauses are OR-nodes, the bodies of rules are AND-nodes, and facts are leafs. We
assume that the reader is reasonably familiar with Prolog. The material found
in this paper is covered by most Prolog textbooks, e.g., The Art of Prolog [16].

2.2 JTransformer

JTransformer is a logic-based query and transformation engine for Java code,
based on the Eclipse IDE. It is described in a survey by Kniesel, Hannemann and
Rho on logic-based concerns detection [9,11]. In our work we use JTransformer
to read the content of a Java program as Prolog facts, and to emit Java code that
was generated by Prolog predicates. The JTransformer representation of AST
nodes is as functors, whose arguments are a unique id of the node, the ids of
parent and child nodes, and the content of the node itself. JTransformer provides
a full AST, including method bodies and expressions, but in our examples, we
use only two kinds of nodes:
(a) class declaration classT(Id, ParentId, Name, Members), and
(b) field declaration fieldT(Id, ClassId, Type, Name, Init), where Type

is a functor type(class, ClassId, Mult). The multiplicity is 0 for simple
types and 1 for arrays.

Since node ids are not relevant to our examples, we replace the actual id with
either an underscore or the name of the element, and omit them from diagrams.

3 Model Encoding

Our model encoding system is based on the following rules:

1. The model is encoded as a Prolog program, consisting of predicates that rep-
resent various model elements. The program entry point is a single predicate,
named the system predicate. The body of the system predicate consists of
goals representing top-level requirements. For example, the system predicate
of a Content Management System cms_system/0 is encoded as

cms_system :- req1, req2, . . . , reqn.

A Declarative Approach for Software Modeling 21

where req1 . . . reqn are goals invoking requirement predicates. The encod-
ing of these predicates follow.

2. Hierarchy and composition are encoded as rules: the head is the contain-
ing element and the body consists of goals that invoke sub-elements. For
example, if fulfilling the requirement present content requires implementing
present summary and present full text, it is encoded as

present_content :- present_summary, present_full_text.

Similarly, if implementing an attribute in a database requires a table and a
column, it is encoded as

attribute(Type, Attr) :- table(Type), column(Type, Attr).

3. Alternatives and decision points are encoded as multiple clauses of the same
predicate. For example, if the requirement alert the user can be fulfilled by
either a pop-up alert or a blinking alert, it is encoded as

alert_the_user :- pop_up_alert.
alert_the_user :- blinking_alert.

Similarly, if an association R between A and B can be implemented either
as a pair of columns or as a single separate table, it is encoded as:

assoc(R, A, B) :- table(A), column(A, R), table(B), column(B, R).
assoc(R, A, B) :- table(R), column(R, A), column(R, B).

4. Dependencies between requirements are encoded similarly to sub-requirements.
If choosing one option implies having to choose another option, the implied op-
tion is added as a sub-goal of the first option. For example, if payment method
can be cash or credit, and communication can be plain or encrypted, and credit
payment requires encryption, we add encrypted as a goal of credit.

5. Existing code and completed tasks are represented by facts. This part of
the encoding depends on the format provided by the code parser. For Java
code, facts are provided by the JTransformer framework, as explained in
Sect. 2.2. Similarly, the fact that some requirement, e.g., redirect the user, is
implemented, without explaining how, is encoded as:

redirect_the_user.

6. Optional requirements are encoded as predicates that consist both of a rule
and a fact. If the rule is applied successfully, it means that the requirement is
implemented. If the requirement is not implemented, invoking the predicate
is still successful. The encoding pattern is:

opt_req :- goal1, goal2...
opt_req. % fact, always true

3.1 Encoding a Single Client-Story

To demonstrate our encoding rules, we provide a simplified example for encoding
a single client-story as a set of predicates. The example discusses a blogging

22 M. Goldberg and G. Wiener

platform named weblog. The first client story for the system is: As a writer,
I can write a blog post, with a title, content and category. We encode it using
the following predicates: weblog/0 is the system predicate, and write_post/0
breaks the above client story into a list of requirements.
weblog :- write_post. % Version 1
write_post :- post_has_title, post_has_content, post_has_category.

For brevity, we discuss only the data scheme for these requirements. The pred-
icate class_attr(Class, Attr, Type, Mult) specifies that the class Class
exists, it has a field named Attr, with the type Type, and multiplicity Mult,
which is either 0 for a single instance, or 1 for multiple instances.

The first two requirements are straightforward. We specify that they should
be implemented by string attributes of the class Post. There are two options
for implementing the third requirement: another attribute of Post, or a separate
Category class that will aggregate all the posts of the same category. Since it
is unclear which option is better, we encode both possibilities, resulting in a
predicate with two clauses.
post_has_title :- class_attr(’Post’, title, ’String’, 0).
post_has_content :- class_attr(’Post’, content, ’String’, 0).
post_has_category :- class_attr(’Post’, category, ’String’, 0).
post_has_category :- class_attr(’Category’, posts, ’Post’, 1).

The class_attr/4 predicate specifies the structure of the code for an attribute
in a class, using the underlying JTransformer framework:
class_attr(Class, Attr, Type, Mult) :-
classT(Cid, _, Class, _),
classT(Tid, _, Type, _),
fieldT(_, Cid, type(class, Tid, Mult), Attr, _).

The system predicate weblog/0 succeeds in one of two cases: (a) The code that
was parsed by JTransformer contains a class named Post with the three fields
specified above. (b) The code contains both the class Post with two fields, and
the class Category with an array of posts. Figure 1 lists matching code.

public class Post {
public String title;
public String content;
public String category;

}

(a) Single class

public class Post {
public String title;
public String content;

}
public class Category {
public Post[] posts;

}

(b) Two classes

Fig. 1. Possible implementations for the first client story, encoded as version 1 of the
weblog/0 system predicate

A Declarative Approach for Software Modeling 23

3.2 Encoding Several Stories

To demonstrate the incremental nature of the model encoding, we extend the
specifications of the system with another client story: As a reader, I can browse
from a post to other posts in the same category. Adding a new requirement
requires two steps: encode it as a predicate, and add to the system predicate
(or to an encoded requirement that is already included in the model) a goal
invoking it. In this example, we add the new requirement browse to other posts
to the system predicate, as the listing below shows.

weblog :- write_post, browse_to_other_posts. % Version 2
browse_to_other_posts :-
class_attr(’Post’, category, ’Category’, 0),
class_attr(’Category’, posts, ’Post’, 1).

The specified implementation for the new requirement uses a bidirectional asso-
ciation between posts and their categories. This association is implemented as a
pair of fields. Since a Java class cannot have two fields with the same name but
different types, this requirement constrains the search: the validated program
can not contain the string category field of the Post class. Therefore, there is
only one acceptable solution, shown in Fig. 2.

public class Post {
public String title;
public String content;
public Category category;

}

public class Category {
public Post[] posts;

}

Fig. 2. A possible implementation for both client stories, encoded as version 2 of the
weblog/0 system predicate

3.3 The Structure of the Model

As we can see from the above example, the model consists of several layers. The
root of the model is the system predicate. The root is followed by the require-
ments layer, that consists of a hierarchy of requirements and sub-requirements.
Leaf requirements are followed by design statements, that specify how the re-
quirements should be implemented. These statements compose the design layer.
The design statements are followed by patterns for coding the design elements
in a programming language. These patterns compose the implementation layer.
Implementation patterns for specific design statements can be re-used across
projects, as libraries of patterns, e.g., libraries for mapping conceptual designs to
Java or SQL code. Finally, the patterns in the implementation layer are matched
against facts that represent an actual program, i.e., the code layer. In the above
example, weblog is the system predicate; write_post, browse_to_other_posts,

24 M. Goldberg and G. Wiener

and the post_has. . . predicates are the requirements; the design layer consists
of the class_attr predicate; the implementation layer consists of JTransformer
predicates, such as classT and fieldT; the code layer includes concrete facts,
such as classT(12, 34, ’Post’, [...]) (ids are made up).

We can view this model format as an extension of feature models (see [8]),
that is not limited to requirements, but includes designs and implementations
as lower-level features. When the search program is run, it solves the feature
model using the depth-first search of Prolog, and matches the result with the
parsed code. As described above, alternative and optional features are encoded
as multi-clause predicates, and dependencies between features are encoded as
goals. Figure 3 shows the above example as a layered features model.

weblog

write_post browse_to_other_posts

AND

post_has
_content

post_has
_title

post_has
_category

AND

class_attr
(’Post’, category,
’String, 0)

class_attr
(’Category’, posts,
’Post’, 1)

OR

class_attr
(’Post’, cateory,
’Category’, 0)

AND

classT
(T, _, ’Post’, _)

classT
(C, _, category’, _)

fieldT(_, C,
type(class,T,1), posts, _)

AND

classT
(34, _, ’Post’, [...])

classT
(12, _,category’, [...])

fieldT(56, 12,
type(class,34,1), posts, [...])

Requirements

Design

Impl.

Code

Fig. 3. Layers in a model. Some branches were omitted, for brevity.

4 Traceability

The encoding method described in Sect. 3 also allows developers to trace the
sequence of design decisions that led to a specific code statement. This trace
is obtained by using a variation of the explanatory interpretation technique,
presented by Yoav Shoham [14, Chap. 3.4.1]. To trace the origin of a goal, we
first generate a proof tree for the system predicate, by using explain/2, and then
find the goal in it. The code for generating proof trees is listed in Appendix A.
The path from the root of the proof tree to the goal is the trace. Since there may
be more than one solution, and since a statement may implement more than one
requirement, there may be more than one trace. Figure 4 shows the proof tree
for weblog/0 with the paths to the Category class marked.

A Declarative Approach for Software Modeling 25

weblog

write_post browse_to_other_posts

post_has
_content

post_has
_title

post_has
_category

... ...
class_attr(’Post’,

category,
’Category’, 1)

class_attr(’Category’,
posts, ’Post’, n)

fieldT(’Post’,
category,

’Category’, 0)
classT(...’Category’...) classT(...’Post’...)

fieldT(’Category’,
posts, ’Post’, 1)

1 2,3

1

1

2 3

1,2 3

Fig. 4. Paths to the Category class in the proof tree. Redundant and alternative
branches were omitted. Numbered double edges mark traces from the root to the
implementation.

After gathering a proof tree, extracting the traces from the root to the goal
is done by simple recursion. An example for finding traces is listed below. The
different traces correspond to the paths in Fig. 4. We omitted the trivial code
for the find/3 predicate.

?- explain(weblog, P), find(classT(_, _, ’Category’, _), P, T).
T = [weblog, write_post, post_has_category,
class_attr(’Post’, category, ’Category’, 0), classT(...’Category’...)];
T = [weblog, browse_to_other_posts, ...]; % The rest as above
T = [weblog, browse_to_other_posts,
class_attr(’Category’, posts, ’Post’, 1), classT(...’Category’...)]

The technique described here also serves for finding unspecified code, i.e., code
that cannot be linked to any specific requirement. For example, the predicate
listed below finds unspecified classes. The second argument can be a variable. If
we add the class Dummy to our project, unspecified_class(weblog, X) will
return X = Dummy. In this way we can locate code that is either redundant, or
requires specification. Locating unspecified code is particularly important after
changes to the requirements, as some parts of the code may become unneeded.

unspecified_class(Pred, Class) :-
explain(Pred, Proof),
classT(Cid, _, Class, _), \+ externT(Cid)1,
\+ find(classT(Cid, _, Class, _), Proof, _).

1 Types are considered external if they have no source code, e.g., are a part of the
standard Java class library, or other imported libraries. \+ is the negation operator.

26 M. Goldberg and G. Wiener

5 Code Generation

The validation and tracing techniques described above assume that calling the
system predicate succeeds, i.e., all requirements are implemented. However, dur-
ing most of the development process, this is not the situation. The common
situation is that some of the requirements are implemented, and some are not.
We would like to identify which requirements are still unimplemented, and gen-
erate the missing code for them, if possible. To this end, we use partial evaluation
of the system predicate. According to Yoav Shoham, a partial evaluation of a
Prolog goal is the set of facts that should be added to the program in order for
the goal to succeed [14, Chap. 3.5]. For example, the partial evaluation of the rule
a :-b,c, given the fact b, is [c]. In the context of software development, this
set consists of the required code elements. To obtain this set, we use a variation
of Shoham’s partial evaluator. The modified code is listed in Appendix B.

The partial evaluation process requires some explanation. The partial evalu-
ator interprets the given goal and looks for sub-goals that fail. If a rule fails, it
tests the goals in the body of the rule, recursively. If a built-in predicate or a
fact fails, it tries to add it to the results set. Built-in predicates are identified by
the predicate builtin/1. Goal are added to the results set only if they they are
not conflicting with other goals in the set. This restriction prevents the partial
evaluator from finding impossible combinations. In our example, two fields in
the same class having the same name, but a different type, are considered con-
flicting. In Java code, this conflict is detected by the compiler. Since the partial
evaluator is not aware of the semantics of the programming language, it consults
the user-defined predicate conflicting/2.

To demonstrate how partial evaluation can generate code, lets assume that
the code contains only the Post class, with only the title and content fields. In
this case, the weblog predicate fails. The partial evaluation will return a set
with the following elements: (a) The Category class, (b) The posts array in the
Category class, (c) The category field in the Post class, as shown below.

?- partial_eval(weblog, P).
P = [classT(_, _, ’Category’, _),
fieldT(_, Category, type(class, Post, 1), posts, _),
fieldT(_, Post, type(class, Category, 0), category, _)]

This set provides sufficient information to generate the missing code.2 As men-
tioned above, the partial evaluation may return several results, as there may be
several possible ways to implement the given requirements — See, for example,
Fig. 1 in Sect. 3. We discuss how to choose between these results in Sect. 6. An
important advantage of using partial evaluation for code generation is that it
generates only the part of the code, and ignores the rest. This property allows
for incremental code generation. Code that becomes redundant after changes to
the model can be located and removed, as described in Sect. 4.

2 The actual code generation requires some more processing, due to the conditional
transformations mechanism in JTransformer.

A Declarative Approach for Software Modeling 27

5.1 Changing the Granularity of the Interpreter

As explained above, the partial evaluator treats built-in predicates as atomic
operations, i.e., even if the built-in predicate is a rule, its body is ignored. The
evaluator uses the builtin/1 predicate to identify built-ins. By default, it looks
for predicates with the property built_in set by the Prolog environment. Devel-
opers can use this mechanism and add clauses to builtin/1, to set the threshold
of the partial evaluation. For example, we can treat the class attribute design
statements as built-ins, cutting off the code and implementations layers.

builtin(class_attr(_, _, _, _)). % Extending builtin/1
?- partial_eval(weblog, P).
P = [class_attr(’Post’, category, ’String’, 0)] ;
P = [class_attr(’Category’, posts, ’Post’, 1)]

We can raise the threshold further up, cutting off anything other than the re-
quirements layer. In this case, the partial evaluation returns the unfulfilled re-
quirements — post_has_category in the example above. Since distinguishing
between the predicates from different layers depends on the structure of the
model, we omit the exact implementation.

6 Heuristic Code Generation

A software model defines a range of possible implementations. Therefore, the
code generator outlined in Sect. 5 provides a set of solutions. However, the
model of an actual application may contain many options, and generate a large
number of programs. To allow for limiting the number of solutions, we enhance
the partial evaluator with a pruning mechanism, based on a given monotonic
cost function. After each step of partial evaluation, the cost function is called. If
the cost of the current solution exceeds a given bound, the evaluation backtracks.
Therefore, the cost of the results of the enhanced evaluation is guaranteed to
be lower than the bound. Running the bounded evaluator recursively, each time
with the cost of the previous run as a bound, converges to a solution with a
minimal cost. Design metrics can be used as cost functions, as suggested by
Harman and Clark [7].

Since it is a part of the partial evaluation process, the cost function must con-
sider both existing clauses and the current results set. To make this requirement
transparent to the user, the cost function is not invoked directly, but interpreted.
The interpreter, based on the classic Prolog meta-interpreter [14, Chap. 3.2], first
checks if a goal is in the results set, before trying to invoke it. The complete code
for the heuristic partial evaluator can be found at our web page [18].

6.1 An Example of Heuristics Code Generation

To demonstrate heuristics code generation, we present the following example,
dealing with object-to-relational mapping. The model is based on Fowler’s ac-
counting analysis pattern [5, Chapter 6]. In an accounting system, there are two

28 M. Goldberg and G. Wiener

kinds of accounts: detailed and summary. A detailed account keeps track of en-
tries , where each entry has an amount that is added to, or withdrawn from, the
account. Each detailed account has an owner. A summary account aggregates
several other accounts. Figure 5 is a class diagram for this model.

Our model uses the following possible designs, taken from the work of Blaha
and Premerlani on object-oriented modeling for database applications [2, Chap-
ters 13,14]: (a) a table that represents a type and includes its attributes as
columns, (b) an extending table that contains the attributes of a sub-type and
refers to a parent table, (c) embedding the attributes of a sub-type in the table
of its super-type, and (d) a named relation, with the table and column names of
each end as arguments. This example supports only one-to-many relations, and
not the general case of many-to-many.
accounting :- account, entry, detailed, summary.
account :- table(account, [balance(int)]).
entry :- table(entry, [amount(int)]).

detailed :- % As a linked table
extend(detailed, account, [owner(string)]),
one_to_many(entries, detailed, account, entry, entry).

detailed :- % As embedded columns
embed(account, [owner(string)]),
one_to_many(entries, account, account, entry, entry).

summary :- % As a linked table
extend(summary, account, []),
one_to_many(components, summary, sum, account, sub).

summary :- % As embedded columns
one_to_many(components, account, sum, account, sub).

Account
balance: int

Summary Detailed
owner: string

sum
1

components

sub
n

Entry

amount: int
account
1 entries

entry
m

Fig. 5. Types in an accounting system

The following predicates encode implementation patterns mapping types and
relations to a relational database schema. The code layer in this example includes
a single predicate, col/4, whose arguments are the table name, the column
name and type, and a list of properties. Possible column properties are being a
primary key, or referring to a column in another table. The transformation of
this predicate to SQL statements is trivial. We have encoded the designs listed
above, with two alternatives for relations: (a) a reference column from the many
side to the one side, and (b) a separate table with two reference columns.

A Declarative Approach for Software Modeling 29

table(Name, Attrs) :- col(Name, id, int, [key]), attrs(Name, Attrs).

extend(Name, Super, Attrs) :-
col(Name, id, int, [key]), col(Name, parent, int, [ref(Super, id)]),
attrs(Name, Attrs).

embed(Super, Attrs) :- attrs(Super, Attrs).

attrs(_, []).
attrs(Table, [Attr | Rest]) :-
Attr =.. [Name, Type], col(Table, Name, Type, []),
attrs(Table, Rest).

one_to_many(_, S, A, T, _) :- col(T, A, int, [ref(S, id)]).
one_to_many(R, S, A, T, B) :-

col(R, A, int, [ref(S, id)]), col(R, B, int, [ref(T, id)]).

Since the model includes 4 choices, each with 2 alternatives, it matches, or gen-
erates, 16 different solutions. To choose between them, we use a cost function.
For example, minimizing the number of tables results in the solution shown in
Fig. 6a. Alternatively, penalizing tables with many columns gives Figs. 6b and 6c.

Account
id
balance
owner
sum

Entry
id
amount
account

(a) All sub-types and re-
lations embedded

Account
id
balance
owner

Entries
entry
account

Entry
id
amount

Components
sub
sum

(b) Embedded sub-types, relations in separate ta-
bles

Account
id
balance

Detailed
id
parent
owner

Summary
id
parent

Entries
entry
account

Entry
id
amount

Components
sub
sum

(c) All sub-types and relations in separate ta-
bles

Fig. 6. Few selected designs for an accounting system. Reference columns are connected
to their destination columns by arrows.

7 Related Works

We aimed in this work at enabling gradual refinement of software models into
code, while preserving traceability. There has been several efforts in this direc-
tion. Mainly, the architecture we propose can be viewed as a model-driven archi-
tecture, as described in [15], where Prolog replaces the OMG QVT language [10].

30 M. Goldberg and G. Wiener

While the QVT work-flow consists of a series of transformations, Prolog rules
will match any valid combination of given patterns. Similarly, our work does not
rely on the bi-directionality property of transformations to support incremental
changes (see Stevens’ criticism on this topic [17]). Instead, we make use of known
logic interpretation techniques, as discussed in Sects. 4 and 5.

Some formal methods, such as the B-method [1], discuss step-wise refinement
of formal specifications into programs. This process both maintains traceability
and assists in verifying the correctness of the code. In this work, however, we
deliberately avoided limiting the modeling language to mathematical properties,
in favor of free-form models. Adding formal contracts to code-generating patterns
can be an interesting and non-trivial extension of our approach.

8 Limitations and Future Work

We have chosen to base this work on minimalistic and concise versions of the
meta-interpreters we use. These versions, listed in the appendix, are short and
simple enough for the interested reader to read and follow. However, the lan-
guage that is accepted by these interpreters is limited. Cuts, negations and meta-
predicates, are not a part of it. Extensions to Prolog, such as constraint solvers,
are also not accepted. These limitations reduce the expressiveness of the mod-
eling language, and makes it hard to write abstractions over models. There are
two ways to overcome these limitations: (a) to enhance the interpreters, or (b) to
use features that are specific to a Prolog implementation, such as programmable
debugging. We leave extending the modeling language for future work.

We have selected to present our method using Prolog thanks to the availability
of Prolog systems and textbooks. However, software modeling using a declarative
programming language should not necessarily be limited to a specific language.
Rule-based systems or theorem provers may also be adequate for our modeling
method. We leave further explorations for future work as well.

9 Summary

In this work we presented a method for encoding software models as rules and
facts in Prolog, and using queries to perform software engineering tasks. The
encoded models consists of several layers: requirements, design, implementation
patterns, and parsed code. The advantages of this encoding are: (a) It allows for
validating that the code matches a possible implementation of the requirements,
as specified by the given design patterns. (b) Additional specifications can be
added incrementally, either widening or narrowing the search space. (c) Design
considerations and alternatives are encoded explicitly, making them first-class
elements of the model. (d) Interpreting the encoded model allows for tracing a
program statement to its original requirement, or detecting unspecified state-
ments. (e) Partial evaluation of the encoded model provides incremental code
generation, suitable for incremental development.

A Declarative Approach for Software Modeling 31

The cost of using encoded models is the need to maintain the model as an
auxiliary program. Our experience shows that implementation patterns requires
the most effort to develop. However, this effort is amortized across projects. Once
implementation patterns are encoded, they are re-used in the following models.

The current modeling language is limited to specifying a simple, choice-based
depth-first search. We hope to lift this limitation in future works, and support
a more expressive and intuitive model format.

A Explanatory Interpretation

The explain/2 predicate unifies the second argument with a list of proof trees
for the query given as the first argument. The nodes in a tree are goals, and the
branches are sub-goals of rules. Facts are leafs. The clause/2 predicate, used in
this code, unifies the second argument with the body of the clause whose head
is the first argument, where the body of facts is true.

explain((A, B), Proof) :- % A is a sequence
!, explain(A, AP), explain(B, BP), append(AP, BP, Proof).

explain(A, [A]) :- builtin(A), !, call(A). % A is a built−in
explain(A, [A]) :- clause(A, true), !. % A is a fact
explain(A, [tree(A, Proof)]) :- % A is a rule
clause(A, B), explain(B, Proof).

B Partial Evaluation

The partial_eval/2 predicate takes a query as the first argument, and unifies
the second argument with a list of facts, that had it been added to the pro-
gram, would make the query successful. For a given query, there may be several
possible partial evaluations. The conflicting/2 let the user specify impossible
combinations. The heuristic version of the partial evaluator is given in [18].

partial_eval(X, P) :- premises(X, [X], P).
premises(true, _, []) :- !. % a fact, no premise
premises((X, Y), Old, P) :- !, % combining two premises
premises(X, Old, P1), append(P1, Old, New),
premises(Y, New, P2), append(P1, P2, P).

premises(X, _, P) :- % built−in, ignore body
builtin(X), !, ((callable(X), call(X)) -> P = [] ; P = [X]).

premises(X, Z, P) :- clause(X, Y), premises(Y, Z, P). % a clause
premises(X, Z, [X]) :- % no clause, not in current set
\+ clause(X, _), \+ (member(Y, Z), conflicting(X, Y)), \+ member(X, Z).

premises(X, Z, []) :- % no clause, in current set
\+ clause(X, _), member(Y, Z), \+ conflicting(X, Y), X = Y.

32 M. Goldberg and G. Wiener

References

1. Abrial, J.: The B-book: assigning programs to meanings. Cambridge University
Press (1996)

2. Blaha, M., Premerlani, W.: Object-oriented modeling and design for database ap-
plications. Prentice-Hall, Inc., Upper Saddle River (1997)

3. Clarke, J., Dolado, J., Harman, M., Hierons, R., Jones, B., Lumkin, M., Mitchell,
B., Mancoridis, S., Rees, K., Roper, M., Shepperd, M.: Reformulating software
engineering as a search problem. IEEE Software 150(3), 161–175 (2003)

4. Favre, J.M.: Towards a basic theory to model model driven engineering. In: 3rd
Workshop in Software Model Engineering, WiSME (2004)

5. Fowler, M.: Analysis patterns: reusable objects models. Addison-Wesley Longman
Publishing Co., Inc., Boston (1997)

6. Goldberg, M., Wiener, G.: Round-Trip Modeling using OPM/PL. In: International
Conference on Software Science, Technology and Engineering, SwSTE (2010)

7. Harman, M., Clark, J.: Metrics are fitness functions too. In: 10th International
Symposium on Software Metrics, pp. 58–69 (2004)

8. Kang, K.: Feature-oriented domain analysis (FODA) feasibility study. Technical
report, Carnegie-Mellon University, Pittsburgh PA, USA (1990)

9. Kniesel, G., Hannemann, J., Rho, T.: A comparison of logic-based infrastructures
for concern detection and extraction. In: 3rd Workshop on Linking Aspect Tech-
nology and Evolution, p. 6. ACM (2007)

10. Object Management Group: Meta Object Facility (MOF) 2.0 Query/View/Trans-
formation Specification (2008), http://www.omg.org/spec/QVT/1.0/

11. ROOTS Group: The JTransformer project web page,
http://sewiki.iai.uni-bonn.de/research/jtransformer/

12. Schmidt, D.: Guest editor’s introduction: Model-driven engineering. Com-
puter 39(2), 25–31 (2006)

13. Sefika, M., Sane, A., Campbell, R.: Monitoring compliance of a software system
with its high-level design models. In: 18th International Conference for Software
Engineering, ICSE, vol. 18, pp. 387–396 (1996)

14. Shoham, Y.: Artificial Intelligence Techniques in PROLOG. Morgan Kaufmann
Publishers Inc., San Francisco (1993)

15. Soley, R.: The OMG Staff Strategy Group: Model-Driven Architecture. White pa-
per (November 2000), http://www.omg.org/cgi-bin/doc?omg/00-11-05

16. Sterling, L., Shapiro, E.: The art of Prolog. MIT Press, Cambridge (1994)
17. Stevens, P.: Bidirectional model transformations in QVT: Semantic issues and open

questions. Software and Systems Modeling 9(1), 7–20 (2010)
18. Wiener, G.: Heuristic partial evaluator source code,

http://www.cs.bgu.ac.il/~gwiener/software/hpe/
19. Wiener, G.: Persistent Semantic Information. PhD thesis, Ben-Gurion University

(March 2011) (to be published)
20. Winkler, S., Pilgrim, J.: A survey of traceability in requirements engineering and

model-driven development. Software and System Modeling 9, 529–565 (2010)

http://www.omg.org/spec/QVT/1.0/
http://sewiki.iai.uni-bonn.de/research/jtransformer/
http://www.omg.org/cgi-bin/doc?omg/00-11-05
http://www.cs.bgu.ac.il/~gwiener/software/hpe/

Contracts and Specifications
for Functional Logic Programming

Sergio Antoy1 and Michael Hanus2

1 Computer Science Dept., Portland State University, Oregon, U.S.A.
antoy@cs.pdx.edu

2 Institut für Informatik, CAU Kiel, D-24098 Kiel, Germany
mh@informatik.uni-kiel.de

Abstract. The expressive power of functional logic languages supports high-
level specifications as well as efficient implementations of problems in the same
language. If specifications are executable, they can be used both as initial proto-
typical implementations and as contracts for checking the reliable execution of
implementations intended to satisfy the specification. In this paper, we propose
a practical framework to support this general approach to coding. We discuss
the notions of specifications and contracts for functional logic programming and
present a tool that supports the development of declarative programs based on
these notions.

1 Introduction

Functional logic programming languages [3,15] support a wide spectrum of program-
ming styles. One can apply logic programming features like nondeterminism and logic
variables to specify the basic knowledge about a problem and let the run-time system
search for appropriate solutions. Or one can use a deterministic (functional) program-
ming style to implement sophisticated and efficient algorithms [22].

The combination of both styles can be leveraged for increased reliability: high-level
(“obviously correct”) specifications can be formulated as functional logic programs.
Since these specifications are executable, they can serve as initial prototypical imple-
mentations. Executable specifications are useful to run experiments which may expose
defects and ultimately raise the confidence that a specification captures the intent. If
the direct execution of the specification is too inefficient, one can choose more efficient
data structures (e.g., balanced search trees instead of lists) and/or better algorithms for
production software. In this case, the initial specification remains valuable since one
can use it as an oracle to test the implementation on a large set of test data [8,13] or to
check, via run-time assertions, that the implementation behaves as intended on particu-
lar executions.

In this paper we show the feasibility of this idea by formalizing specifications, con-
tracts, and assertions, by showing some important relations between them, and by pro-
viding tools to support this approach to program design and development. The concrete
language for our presentation is the multi-paradigm declarative language Curry [17].
We demonstrate that Curry can be used as a wide-spectrum language [5] for software

C. Russo and N.-F. Zhou (Eds.): PADL 2012, LNCS 7149, pp. 33–47, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

34 S. Antoy and M. Hanus

development. In particular, we have implemented a tool that either transforms a speci-
fication into an executable program or, if the implementation of the specification is also
provided, into a contract attached to this implementation.

Although we assume familiarity with the general concepts of functional logic pro-
gramming [3,15], we review in the next section the concepts crucial for this paper.
Section 3 presents the fundamental notions of our framework. The corresponding tool
support is sketched in Section 4 together with some examples.

2 Functional Logic Programming and Curry

The declarative multi-paradigm language Curry [17] extends non-strict functional pro-
gramming languages such as Haskell [23] with logic programming features, e.g., non-
determinism and equational constraints. Consequently, Curry has a Haskell-like syntax1

extended by the possible inclusion of free (logic) variables in conditions and right-hand
sides of defining rules. The operational semantics is based on an optimal evaluation
strategy [1] which is a conservative extension of lazy functional programming and (con-
current) logic programming.

Expressions in Curry programs contain operations (defined functions), constructors
(introduced in data type declarations), and variables (arguments of operations or free
variables). The goal of a computation is to obtain a value of some expression, where
a value is an expression that does not contain any operation. Note that in a functional
logic language expressions might have more than one value due to nondeterministically
defined operations. For instance, Curry contains a choice operation defined by:
x ? = x

? y = y

Thus, the expression “0 ? 1” has two values: 0 and 1. If expressions have more than
one value, these values are typically constrained by conditions in the rules defining
operations according to the program intent. A rule has the form “f t1 . . . tn | c = e”
where c is a constraint, i.e., an expression of the built-in type Success. For instance,
the trivial constraint success is a value of type Success that denotes the always satis-
fiable constraint. An equational constraint e1 =:= e2 is satisfiable if both sides e1 and
e2 are reducible to unifiable values. Furthermore, if c1 and c2 are constraints, c1 & c2

denotes their concurrent conjunction (i.e., both constraints are concurrently evaluated)
and c1 &> c2 denotes their sequential conjunction (i.e., c2 is evaluated after the success-
ful evaluation of c1).

Nondeterministic expressions could cause a semantical ambiguity when bound to
variables. Consider the operations
coin = 0 ? 1

double x = x + x

Standard term rewriting produces, among others, the derivation
double coin → coin + coin → 0 + coin → 0 + 1 → 1

1 Variables and function names usually start with lowercase letters and the names of type and
data constructors start with an uppercase letter. The application of f to e is denoted by juxta-
position (“f e”).

Contracts and Specifications for Functional Logic Programming 35

whose result is unintended. Therefore, González-Moreno et al. [14] proposed the rewrit-
ing logic CRWL as a logical foundation for declarative programming with non-strict
and nondeterministic operations. This logic specifies the call-time choice semantics
[18] where values of the arguments of an operation are determined before the operation
is evaluated. In a lazy strategy, this is naturally obtained by sharing. For instance, the
two occurrences of coin in the derivation above are shared so that “double coin” has
only the results: 0 or 2. Since standard term rewriting does not conform to the intended
call-time choice semantics, other notions of rewriting have been proposed to formalize
this idea, like graph rewriting [11,12] or let rewriting [19]. For our purposes, it is suffi-
cient to use a simple reduction relation that we sketch without giving all details (which
can be found in [19]).

To cover non-strict computations, expressions can also contain the special symbol
⊥ to represent undefined or unevaluated values. A partial value is a value contain-
ing occurrences of ⊥. A partial constructor substitution is a substitution that replaces
variables by partial values. A context C[·] is an expression with some “hole”. Then the
reduction relation we use throughout this paper is defined as follows (conditional rules
are not considered for the sake of simplicity):

C[f σ(t1) . . . σ(tn)] → C[σ(r)] f t1 . . . tn → r program rule,
σ partial constructor substitution

C[e] → C[⊥]

The first rule models the call-time choice: if a rule is applied, the actual arguments of
the operation must have been evaluated to partial values. The second rule models non-
strictness by allowing the evaluation of any subexpression to an undefined value (which
is intended if the value of this subexpression is not demanded). As usual,

∗→ denotes
the reflexive and transitive closure of this reduction relation. The equivalence of this
rewrite relation and CRWL is shown in [19].

Sometimes we use let-expressions to enforce the call-time choice semantics. In or-
der to avoid the explicit handling of let-expressions in the reduction relation (as pro-
posed in [19]), we consider let-expressions as syntactic sugar for auxiliary functions.
For instance, the definition
f x = let z = coin∗x in z+coin

is syntactic sugar for
f x = g (coin∗x)
g z = z+coin

where g is a fresh name.
In nondeterministic programming, it is sometimes useful to examine the set of all the

values of some expression. A “set-of-values” operation applied to an arbitrary argument
might produce results that depend on the degree of evaluation of the argument (see [6]
for a detailed discussion). Set functions overcome this problem [2]. For each defined
function f , fS denotes the corresponding set function. fS encapsulates the nondeter-
minism of f , but excludes the potential nondeterminism of the arguments to which f is
applied. For instance, consider the operation negOrPos defined by:

negOrPos x = −x ? x

36 S. Antoy and M. Hanus

Then “negOrPosS 2” evaluates to the set {-2, 2}, i.e., the nondeterminism originating
from negOrPos is encapsulated into a set. However, “negOrPosS (1?2)” evaluates to
two different sets {-1, 1} and {-2, 2} due to its nondeterministic argument, i.e., the
nondeterminism originating from the argument produces different sets. The type set is
abstract, i.e., the implementation is hidden, but there are operations, e.g., to determine
whether a set is empty, isEmpty, or an element belongs to a set.

3 Specifications and Contracts

Our framework to support the development of reliable declarative programs is based on
the idea of using a single language for specifications, contracts, and implementations.
Specifications differ from programs because they may be nondeterministic and/or re-
fer to existentially quantified quantities. A functional logic language such as Curry is
appropriate to express specifications because it is nondeterministic and it has equation-
solving capabilities.

Using the same language makes specifications and implementations similar. In fact,
a specification is like any other operation but with a specific tag so that the specification
is more versatile:

– If there is only a specification but no implementation of an operation, the specifica-
tion can be used as an initial implementation for this operation.

– If there are both a specification and an implementation of an operation, the specifi-
cation can be used to check the implementation in two different ways:
Dynamic checking: If the implementation computes some result when the opera-

tion is executed, test whether this result conforms to the specification.
Static checking: If one formally proves that the implementation is correct w.r.t.

the specification, run-time checking is not necessary.

We distinguish between a specification and a contract for an operation. A specifica-
tion describes precisely the intended meaning of an operation. However, a contract
describes conditions that must be satisfied by the implementation. These conditions
can be weaker than a specification. Contracts have been introduced in the context of
imperative and object-oriented programming languages [21] to improve the quality of
software. Typically, a contract consists of both a pre- and a postcondition. The precon-
dition is an obligation for the arguments of an operation application. The postcondition
is an obligation for both the arguments of an operation application and the result of the
operation application to those arguments. Intuitively, the application of or call to each
operation must satisfy its precondition, and, if both the precondition is satisfied and the
operation returns a result, this result must satisfy the postcondition. When a contract is
checked at run-time, the pre- and postcondition are called assertions.

Specifications, preconditions, and postconditions are independent notions separately
useful for software development. A precondition for an operation states general restric-
tions on arguments that must be satisfied in order to apply this operation. Hence, a
specification is intended only for inputs satisfying the precondition. Likewise, a post-
condition must only be satisfied for these inputs. In a strongly typed language, a type
restriction on arguments can be considered a precondition. In general, one is interested

Contracts and Specifications for Functional Logic Programming 37

in preconditions that are more expressive than a traditional type system. For instance,
a precondition for a factorial function could require the argument to be non-negative.
A postcondition is some requirement on all the results of an operation. It could be a
type restriction, but it could also be much stronger. For instance, a postcondition for an
operation to sort a list of values could state that the length of the output list is identical
to the length of the input list. If a postcondition specifies all and only the intended re-
sults of an operation, it can be considered a specification. As we will see later, we can
exploit the logic programming features of our language to execute a postcondition as a
prototypical implementation by generating result values satisfying the postcondition.

The following definition fixes the notions discussed so far. For the sake of simplicity,
we formally define our notions only for unary operations, but the extension to operations
with several arguments is straightforward and, thus, it will be used in the subsequent
examples.

Definition 1 (Specification, Contract). Let f be an operation of type τ → τ ′. A spec-
ification for f is an operation fspec of type τ → τ ′. A precondition for f is an op-
eration fpre of type τ → Bool. A postcondition for f is an operation fpost of type
τ → τ ′ → Bool. A precondition and postcondition pair is also called a contract for
the operation. If a precondition is not explicitly defined, the most general precondition
“fpre _ = True” is assumed.

Similarly to other proposals for assertions or contracts for functional (logic) programs
(e.g., [7,9,16]), we define pre- and postconditions as Boolean-valued functions. An ex-
ception is [4] where constraints are used as conditions which was motivated by the
use of postconditions as specifications instead of an unequivocal specification as in this
work.

As an example, consider an operation, sort, to sort a list of integers. The type of
sort is:
sort :: [Int] → [Int]

Since we have no further requirements on arguments (apart from its type), our precon-
dition for sort is the constant operation2

sort’pre :: [Int] → Bool

sort’pre = True

As an example for a postcondition, we require that the length of the input and output
lists must be equal:
sort’post :: [Int] → [Int] → Bool

sort’post xs ys = length xs == length ys

However, an unequivocal specification states that the result of sort is a permutation in
ascending order of its input:
sort’spec :: [Int] → [Int]

sort’spec xs | sorted ys = ys where ys = perm xs

This specification requires the definition of permutations and sorted lists which are
easily formalized in Curry (“<=:” denotes the less-than-or-equal-to constraint):

2 Note that in the concrete syntax we use in our tool (see below) we write f’pre instead of fpre

(and similarly for postconditions and specifications).

38 S. Antoy and M. Hanus

perm [] = []

perm (x:xs) = ndinsert x (perm xs)

where ndinsert x ys = x : ys

ndinsert x (y:ys) = y : ndinsert x ys

sorted [] = success

sorted [] = success

sorted (x:y:ys) = x<=:y & sorted (y:ys)

We can use the specification sort’spec to sort lists since it is a Curry program and,
as such, executable. Obviously, it is inefficient for large lists, so we implement it more
efficiently using the well-known quicksort algorithm:
sort :: [Int] → [Int]

sort [] = []

sort (x:xs) = sort (filter (<x) xs) ++ [x] ++ sort (filter (>x) xs)

If we apply our tool, DSDCurry, to this program, the specification is transformed into an
additional postcondition and all existing pre- and postconditions are attached to the sort
operation for dynamic assertion checking. The assertions checked during the execution
of this transformed program reveal an error in our implementation:
SortC> sort [5,1,2,6,5,3]

ERROR: Postcondition of operation ’sort’ violated for:

[5,1,2,6,5,3] → [1,2,3,5,6]

If we correct the error, by replacing the condition (>x) with (>=x), the transformed
program executes as intended and without error messages.

Before discussing some details of our tool, we have to define the precise meaning
of correct implementations and violated assertions. In imperative or strict functional
languages, this seems obvious. However, in a functional logic language like Curry, op-
erations might have multiple results or reduce to infinite structures (i.e., their evaluation
does not terminate). In order to support contract checking also in these situations, we
have to prepare an appropriate setup.

First, we consider the possible violation of contracts. Obviously, a precondition fpre

is violated for some expression e if fpre e is reducible to False, since we want to avoid
any calls on operations where the argument does not satisfy the precondition. For post-
conditions, the situation is less clear for nondeterministic functions. Consider a value v
such that fpre v is reducible to True, f v

∗→ v1, f v
∗→ v2, and fpost v v1

∗→ True, but
fpost v v2

∗→ False, i.e., one result, v1, satisfies the postcondition but another result for
the same input, v2, does not satisfy the postcondition. In a complete implementation, all
results of an operation could be produced. Therefore, we propose the strong view that
any result that a function produces must satisfy the function’s postcondition.

Definition 2 (Violation). Let f be an operation of type τ → τ ′, fpre and fpost be pre-
and postconditions for f , and e an expression of type τ . A violation of the precondition
fpre of f at e is a derivation of fpre e to False. A violation of the postcondition fpost

of f at e is a derivation of
let x = e in not (fpre x) | | fpost x (f x)

to False, where x is a fresh variable.

The definition of a postcondition violation considers the fact that a violation should
be reported only if the precondition holds for the given argument. Note that the

Contracts and Specifications for Functional Logic Programming 39

let-expression is reasonable for nondeterministic arguments since the condition
“not (fpre e) || fpost e (f e)” is different from the one given in the above defi-
nition if e is nondeterministic. For instance, consider
id’post x y = x==y

id x = x

e = 0 ? 1

Then “id’post e (id e)” reduces to both True and False whereas
let x = e in id’post x (id x)

cannot reduce to False due to the call-time choice semantics. The intent is that the
postcondition should be satisfied for the same values used in the precondition; thus, our
definition captures this demand.

Next we have to define the correctness of an implementation w.r.t. a given specifi-
cation. A simple approach could require that the values of the specification are all and
only the values of the implementation. However, this is not reasonable for non-strict
languages. For instance, consider
nums’spec n = n : nums’spec (n+1)

Since nums’spec does not reduce to a value (its evaluation does not terminate), any
other operation (of the same type) that does not reduce to a value would be correct w.r.t.
this specification, e.g.:
nums n = n : nums n

Obviously, this is not intended. If we put the specification and the implementation in
an identical context (e.g., by applying “take 2” to nums’spec and nums), then we might
obtain different results. This motivates the following definition.

Definition 3 (Equivalence, Correctness). Let f1, f2 be operations of type τ → τ ′. f1

is equivalent to f2 iff, for any expression E1, E1
∗→ v iff E2

∗→ v, where v is a value and
E2 is obtained from E1 by replacing any occurrence of f1 with f2. An implementation
f is correct w.r.t. a specification fspec iff f and fspec are equivalent when applied to
expressions satisfying fpre.

The correctness of an implementation w.r.t. a specification imposes an equality of two
sets of result values. The implementation could produce a value more or less times
than the specification in the sense that the same expression has “substantially” dis-
tinct derivations to the same value. Furthermore, equivalent operations could differ
in contexts that do not yield any result. For instance, the evaluation of one operation
could diverge where an equivalent operation might terminate with a failure or some
exception.

Intuitively, two operations are equivalent if it is impossible to detect any difference
between them in any application context. If operations do not produce values or produce
some values as well as failures, the consideration of an application context is important.
For instance, consider the following alternative implementation of sorting a list based
on an operation idSorted that is the identity on sorted lists:
sort’ xs = idSorted (perm xs)

where idSorted [] = []

idSorted [x] = [x]

idSorted (x:y:ys) | x<=y = x : idSorted (y:ys)

40 S. Antoy and M. Hanus

Although this implementation only returns values that are sorted lists, it is not correct
w.r.t. the specification sort’spec. For instance, consider the operation head that returns
the first element of the list. Then there is a derivation
head (sort’ [2,3,1])

∗→ head (idSorted [2,3,1])
∗→ head (2 : idSorted [3,1])
∗→ 2

whereas “head (sort’spec [2,3,1])” cannot be reduced to 2. The implementation
sort’ is incorrect with respect to the specification of sort: if we want to compute the
minimum of a list by sorting the list and taking the first element, the previous derivation
shows that we obtain an unintended result.

Specifications can be used to verify programs. This is a complex task that could be
supported by proof systems. In this paper we exploit the property that specifications
are executable so that we can use them to detect an incorrect execution of the imple-
mentation. For this purpose, we use a specification as a contract for an implementation.
Thus, if we detect a violation at run-time, we can deduce that the implementation is not
correct. This demands for a postcondition that is generated from a specification. In a
naive approach, we could try to define such a postcondition as

fpost x y = y ∈ fspec
S x

i.e., the postcondition checks whether the actual result is in the set of all the results
according to the specification. Unfortunately, this simple definition does not work as
intended due to the following problems:

1. For partially defined operations, this postcondition could be violated even though
the implementation is correct. For instance, consider the simple example
head’spec (x:) = x

head (x:) = x

Obviously, head is correct w.r.t. head’spec. However, the set head’specS [] is
empty so that the condition “head [] ∈ head’specS []” could reduce to False.
Therefore, this condition should be checked only if the actual result is a value and
not a failure. However, the implementation of “∈” may not require the evaluation
of its left argument when its right argument is empty.3

2. The membership test requires the decision that two entities are equal. Since in func-
tional logic languages, this test is evaluated by strict equality on (finite) values, the
test will never be successful for operations delivering infinite structures.

The first problem can be handled by the addition of an equality test “y==y”. Since the
equality “==” compares values, the test is successful only if y is a value. This has the
consequence that postconditions are not checked for failure cases. From a conceptual
point of view, it would be better to exclude such cases by appropriate preconditions.
Since the test for such an exclusion is undecidable in general, we add this sufficient
condition to the postcondition.

The second problem can be handled in part by avoiding the comparison of complete
results, and comparing only some computed parts, instead. For this purpose, we define
a postcondition that is parametric w.r.t. some observation operation g.

3 Although this problem can be avoided by excluding the application head [] using an appro-
priate precondition, in general it is difficult to avoid failing computations by preconditions.

Contracts and Specifications for Functional Logic Programming 41

Definition 4. Let fspec be a specification of type τ → τ ′ and g an operation of type
τ ′ → τ ′′. The postcondition fpost

g generated from fspec w.r.t. g is defined by

fpost
g x y = let z = g y

g′ a = g (fspec a)

in z==z && z ∈ g′
S x

If we use g = id (the identity function), the generated postcondition checks whether
a result y is a value and it is contained in the set of all the results according to the
specification. For instance, consider
f’spec = 0 ? 1

f = 1 ? 0

The generated postcondition fpost
id requires that each value of the implementation f is

contained in the set {0, 1}.
If we know that a specification is deterministic, i.e., it yields at most one result for a

given input, then we can provide a simpler postcondition without using an observation
operation and set functions:

fpost x y = y == fspec x

Although this definition does not support the detection of violations for failed compu-
tations (if the evaluation of y fails, the evaluation of fpost x y also fails so that it will
never reduce to False), it might report violations when computing infinite structures, if
the equality is checked in a demand-driven manner (e.g., the expression [1..]==[2..]

evaluates to False). Hence, this optimized formulation is supported by our tool.
The use of a postcondition generated from a specification to check an implementation

is justified by the following propositions. The first proposition shows that equivalent
operations have the same violations.

Proposition 1. Let fpost be a postcondition for f . If f is equivalent to f ′ and there is
a violation of the postcondition fpost for f at e, then there is also a violation of the
postcondition fpost for f ′ at e.

The next proposition shows that any postcondition fpost derived from a specification
fspec cannot cause any violation when fpost is used to check an execution of fspec.

Proposition 2. If fpost
g is the postcondition generated from fspec w.r.t. some operation

g, then there is no e such that there is a violation of the postcondition fpost
g for fspec at

e.

As a consequence, we can use the postcondition generated from fspec to detect an
incorrect implementation:

Corollary 1. Let fpost
g be the postcondition generated from fspec w.r.t. some operation

g. If there is a violation of fpost
g for f at e, then f is not correct w.r.t. fspec.

Similarly to testing, the correctness of an implementation cannot be determined by in-
dividual executions of a program. Nevertheless, we can infer from a satisfied postcon-
dition which is generated from fspec and an observation operation g that the observed
part of the computation is correct w.r.t. the specification:

42 S. Antoy and M. Hanus

Proposition 3. Let fpost
g be the postcondition generated from fspec w.r.t. some oper-

ation g and e an expression such that fpost
g e (f e)

∗→ True. Then there is a value s
with g (f e)

∗→ s and g (fspec e)
∗→ s.

Now we are ready to put this theoretical framework into a tool to support the develop-
ment of reliable declarative programs.

4 Tool Support

In this section we discuss a tool, DSDCurry4, based on the ideas described in the previ-
ous sections. Basically, the tool transforms a Curry module M containing specifications,
pre- and/or postconditions for some operations into a new Curry module MC providing
the same interface, but where some operations are checked against the provided spec-
ifications and/or contracts. Providing specifications and/or contracts is not mandatory.
However, when they are provided, they are used as follows in the transformed module:

– If there is a specification fspec, then a corresponding postcondition is generated
according to Definition 4 (if an observation operation is not provided by the pro-
grammer, the identity function id is used for g). If there is also a user-defined
postcondition, it is combined with the generated postcondition by conjunction.

– If there is only a specification fspec but no implementation5 of operation f is pro-
vided, then an implementation for f is generated by the rule f = fspec.

– If there is neither a specification nor an implementation but a postcondition fpost

for some operation f , the postcondition is used as a (weak) specification for f , i.e.,
an initial implementation is generated for f by the following definition:

f x | fpost x y = y where y free

– If there is a contract fpre/fpost for some operation f , the implementation of f is
replaced by

f x | checkPre "f" (fpre x) &> checkPost "f" (fpost x y)

= y

where y = f’ x

f’ . . .

where “f ′ . . .” contains the original definition of f with every occurrence of f
replaced by f ′. Thus, the original interface of any function is preserved by DSD-
Curry. The auxiliary operations checkPre and checkPost produce an error message
if their second argument evaluates to False. For instance, checkPre is defined by:6

checkPre fname checkresult =

if checkresult then success else

error ("Precondition of operation ’"++fname++"’ violated!")

4 The tool together with more examples is available at:
http://www.informatik.uni-kiel.de/~pakcs/dsdcurry/.

5 An operation defined by the rule “f = unknown” is considered as undefined. Such a vacuous
definition might be necessary if f is referenced in the definition of other operations in M .

6 The actual implementation provides more information, e.g., about the concrete arguments of
the pre- and postcondition.

http://www.informatik.uni-kiel.de/~pakcs/dsdcurry/.

Contracts and Specifications for Functional Logic Programming 43

The postcondition checker, checkPost, is similarly defined. Note that the pre- and
postcondition checkers are constraints rather than Boolean operations. This is use-
ful for lazy assertion checking [16] since constraints can be concurrently evaluated.

We demonstrate the development of a simple program using DSDCurry. Consider the
specification sort’spec and the contract sort’pre/sort’post for sorting a list as shown
in Section 3. According to Definition 4, the specification and postcondition are com-
bined into a new postcondition of the form
sort’post x y = sort’post’org x y && y == y && y ∈ sort’specS x

where sort’post’org xs ys = length xs == length ys

where sort’post’org is the original, user-supplied postcondition. If we do not provide
any implementation of the operation sort, an implementation is generated from its
specification where contract checking is added:
sort x | checkPre "sort" (sort’pre x)

&> checkPost "sort" (sort’post x y)

= y

where y = sort’spec x

In principle, postcondition checking should be superfluous for specifications since any
user-defined postcondition should be a logical consequence of the specification. Never-
theless, it is included since this entailment is not checked at compile time by our tool.

This prototypical implementation is not efficient because it does not exploit any
knowledge about sorting algorithms developed over decades of research in computer
science. We improve the efficiency of this implementation by adopting one of these
algorithms known as straight selection sort. Informally, a list is sorted by selecting its
smallest element, sorting the remaining elements, and placing the smallest element in
front of the sorted remaining elements. If we know how to select the smallest element
of a list, the implementation of this sort method is straightforward by a case distinction
on the form of the input list:
sort [] = []

sort (x:xs) = min : sort rest where (min,rest) = minRest (x:xs)

Here, we assume that the essential operation of selecting the smallest element is en-
coded by the operation minRest that, for a non-empty input list, returns both the smallest
element and the remaining elements. Since finding the smallest element is a non-trivial
task, we define a contract for minRest:
minRest’pre = not . null

minRest’post xs (min,rest) = (min:rest) ∈ permS xs && all (>= min) xs

The precondition requires that minRest is only applied to non-empty lists. Since there
might be different methods to select a minimal element and return the remaining ones,
we do not put any requirements on the order of the remaining elements in the postcon-
dition, hence (min:rest) is some permutation of the input list. This is also the reason
why it would be too restrictive to provide a specification of minRest. However, we can
use the postcondition as an initial implementation.7 This implementation of minRest

has the undesirable consequence of producing many values, i.e., the minimal element

7 In this case, we slightly change the postcondition and replace the Boolean operation “∈” by a
constraint since the equality test implicitly performed by “∈” suspends on free variables [17].

44 S. Antoy and M. Hanus

together with all permutations of the remaining elements. We can either restrict this im-
plementation to return only one value and ignore the others (for this reason, DSDCurry
has an option to enforce this behavior), or provide a more informed implementation of
the operation minRest as follows.

A direct implementation of minRest could be obtained via two auxiliary operations,
min and del, that return the minimal element of a list and delete an occurrence of an
element in a list, respectively:
minRest (x:xs) = let m = min x xs

in (m, del m (x:xs))

where min x [] = x

min x (y:ys) = if x<=y then min x ys else min y ys

del x (y:ys) = if x==y then ys else y : del x ys

If we transform this augmented program with DSDCurry, it works as intended without
any contract violation. We observe that our implementation of minRest, in the worst
case, performs two traversals of the input list, whereas it is possible to compute the
minimal element and the remaining elements with a single traversal. To improve the
performance, we re-code minRest as
minRest (x:xs) = mr x [] xs

where mr m r [] = (m,r)

mr m r (y:ys) = if m<=y then mr m (y:r) ys else mr y (m:r) ys

This implementation is more efficient, but also more complicated and its correctness is
not as apparent as before. Thus, we apply again our transformation tool to integrate the
contract into this implementation and execute the program to increase our confidence
in its correctness. Now that we are satisfied with the implementation, we could attempt
a formal correctness proof of this implementation. However, this is outside the scope of
this paper.

As a further example, consider a program to compute the infinite list, fibs, of all
the Fibonacci numbers. The specification maps the operation, fib, to compute the n-
th Fibonacci number defined by the immediate recursive definition, onto the list of all
naturals:
fibs’spec = map fib [0..]

where fib n | n == 0 = 0

| n == 1 = 1

| otherwise = fib (n−1) + fib (n−2)
The application of DSDCurry immediately gives us a correct implementation
of fibs from this specification, e.g., the expression “take 10 fibs” reduces to
[0,1,1,2,3,5,8,13,21,34]. Since each number in the list is computed by applying
operation fib, the implementation is quite inefficient due to the exponential complexity
of fib. Hence, we improve the implementation and construct the list (in linear time) by
creating the next element by adding the two previous ones:
fibs = fiblist 0 1 where fiblist x y = x : fiblist (x+y) y

When we execute “take 10 fibs” again after transforming our program with DSD-
Curry, a violation is reported for the third element, 2, of the result list. We made a typi-
cal error in iterative definitions by swapping some arguments. If we correct the program
to

Contracts and Specifications for Functional Logic Programming 45

fibs = fiblist 0 1 where fiblist x y = x : fiblist y (x+y)

and transform and run it again, no more violations are reported.
Contract checking in the presence of infinite structures requires the lazy evaluation of

assertions. Thus, our simple implementation where the contract is completely checked
in the condition of an operation would lead to an infinite loop in the transformed fibs

operation. In general, the eager or strict checking of assertions might influence the ex-
ecution behavior of a program. To avoid this problem, Chitil et al. [7] proposed lazy
assertions. Lazy assertions do not evaluate their arguments, but check them when they
become evaluated by the application program. Thus, as long as every assertion is sat-
isfied, program executions with or without lazy assertion checking deliver the same
results.

On the other hand, lazy assertion checking might not detect contract violations if
the assertion arguments are not sufficiently evaluated by the main program. Thus, it is
debatable whether full assertion checking should be avoided in order to preserve the
behavior of programs [9,16]. Lazy assertions do not modify the behavior, but a lazily
computed result cannot be trusted as long as some assertion has not been checked. As
a compromise between these conflicting goals, enforceable assertions are proposed in
[16]. These assertions behave like lazy assertions, but they can also be checked upon
an explicit request of the programmer, e.g., at the end of a program execution or at key
intermediate execution points.

Making the appropriate choice might be dependent on the application or require
some sophisticated program analysis. Therefore, DSDCurry supports strict, lazy, and
enforceable assertions by transformation options so that it can be easily adapted to
future insights.

5 Conclusions and Related Work

We have discussed some notions that are essential for a methodology intended to de-
velop reliable declarative programs. Specifications are executable so that they can be
used as initial prototypes as well as contracts for implementations that might later be
developed. We have shown some relationships between these notions that are the basis
of a transformation tool to support this development. Our tool, DSDCurry, transforms a
specification into an initial implementation, if an implementation is not provided, other-
wise it transforms the specification into a contract that checks the results computed by
the implementation. Furthermore, our tool supports various forms of contract checking,
such as eager, lazy, or enforceable assertions.

In principle, our method and tool support can be seen as a proposal to use Curry as
a wide-spectrum language. In contrast to a wide-spectrum language like CIP-L [5] that
supports the development of correct programs by applying a stepwise transformation
process to specifications, our approach is more flexible. It does not guarantee correct
implementations, but it allows very efficient implementations. The correctness is only
checked at each concrete program execution w.r.t. some observation operation.

The use of contracts or assertions to obtain more reliable programs has been proposed
for many programming languages and paradigms. Concepts for assertions in strict lan-
guages, like imperative, logic, or strict functional languages, are easier to handle than in

46 S. Antoy and M. Hanus

non-strict languages. For instance, [24] proposes an assertion language for (constraint)
logic programming that is combined in [20] with a static verification framework. [10]
considered a strict language with side effects and proposed the evaluation of assertions
in parallel to the application program to exploit the power of multi-core computers.
In non-strict languages, one has the option between lazy assertions [7], which do not
change the meaning of a program (apart from reporting violated assertions) but might
not report some violations, and strict assertions which could influence the evaluation or-
der. Degen et al. [9] discussed the different approaches and came to the conclusion that
there seems to be no way to satisfy both objectives, meaning preservation and violation
reporting, in a non-strict language.

ESC/Haskell [25] is an approach to add pre- and postconditions to Haskell programs
which are checked at compile time by sophisticated program transformations. Similarly
to our approach, pre- and postconditions are arbitrary Boolean operations implemented
in the source language. These conditions are considered as violated if the evaluation
of an operation might fail due to incompletely defined operations (e.g., applying the
operation head to the empty list). Such an interpretation of pre- and postconditions is
too restrictive for functional logic languages where failures are used as a programming
technique. Moreover, we distinguish between precise specifications and (weak) post-
conditions. For instance, [25] considers a sorting algorithm as verified if the output is
a sorted list. We consider such a property as a weak postcondition whereas a precise
specification should additionally require that the output is a permutation of the input
list in order to exclude non-intended implementations.

An obvious challenge for future work is to provide proof support for contracts and
specifications. If it can be shown at compile time that a contract is always satisfied by
the corresponding implementation, its run-time checking can be omitted. This improves
the efficiency of reliable software and reduces the need to test the developed software
with large sets of test data [8,13]. Furthermore, a static proof guarantees the correctness
of the implementation for all inputs rather than for particular executions.

References

1. Antoy, S., Echahed, R., Hanus, M.: A needed narrowing strategy. Journal of the ACM 47(4),
776–822 (2000)

2. Antoy, S., Hanus, M.: Set functions for functional logic programming. In: Proceedings of
the 11th ACM SIGPLAN International Conference on Principles and Practice of Declarative
Programming (PPDP 2009), pp. 73–82. ACM Press (2009)

3. Antoy, S., Hanus, M.: Functional logic programming. Communications of the ACM 53(4),
74–85 (2010)

4. Antoy, S., Hanus, M.: A transformation tool for functional logic program development. In:
Proc. of the 24th Workshop on (Constraint) Logic Programming (WLP 2010), pp. 23–33.
German University of Cairo (2010)

5. Bauer, F.L., Broy, M., Gnatz, R., Hesse, W., Krieg-Brückner, B., Partsch, H., Pepper, P.,
Wössner, H.: Towards a wide spectrum language to support program specification and pro-
gram development. ACM SIGPLAN Notices 13(12), 15–24 (1978)

6. Braßel, B., Hanus, M., Huch, F.: Encapsulating non-determinism in functional logic compu-
tations. Journal of Functional and Logic Programming (July 2004)

Contracts and Specifications for Functional Logic Programming 47

7. Chitil, O., McNeill, D., Runciman, C.: Lazy Assertions. In: Trinder, P., Michaelson, G.J.,
Peña, R. (eds.) IFL 2003. LNCS, vol. 3145, pp. 1–19. Springer, Heidelberg (2004)

8. Christiansen, J., Fischer, S.: EasyCheck — Test Data for Free. In: Garrigue, J.,
Hermenegildo, M.V. (eds.) FLOPS 2008. LNCS, vol. 4989, pp. 322–336. Springer, Heidel-
berg (2008)

9. Degen, M., Thiemann, P., Wehr, S.: True lies: Lazy contracts for lazy languages (faithfulness
is better than laziness). In: 4. Arbeitstagung Programmiersprachen (ATPS 2009), LNI. vol.
154, pages 370, 2946–2259. Springer (2009)

10. Dimoulas, C., Pucella, R., Felleisen, M.: Future contracts. In: Proceedings of the 11th ACM
SIGPLAN International Conference on Principles and Practice of Declarative Programming
(PPDP 2009), pp. 195–206. ACM Press (2009)

11. Echahed, R., Janodet, J.-C.: On constructor-based graph rewriting systems. Research report
imag 985-i, IMAG-LSR, CNRS, Grenoble (1997)

12. Echahed, R., Janodet, J.-C.: Admissible graph rewriting and narrowing. In: Proc. Joint Inter-
national Conference and Symposium on Logic Programming (JICSLP 1998), pp. 325–340
(1998)

13. Fischer, S., Kuchen, H.: Systematic generation of glass-box test cases for functional logic
programs. In: Proceedings of the 9th ACM SIGPLAN International Conference on Principles
and Practice of Declarative Programming (PPDP 2007), pp. 75–89. ACM Press (2007)

14. González-Moreno, J.C., Hortalá-González, M.T., López-Fraguas, F.J., Rodrı́guez-Artalejo,
M.: An approach to declarative programming based on a rewriting logic. Journal of Logic
Programming 40, 47–87 (1999)

15. Hanus, M.: Multi-paradigm Declarative Languages. In: Dahl, V., Niemelä, I. (eds.) ICLP
2007. LNCS, vol. 4670, pp. 45–75. Springer, Heidelberg (2007)

16. Hanus, M.: Lazy and Enforceable Assertions for Functional Logic Programs. In: Mariño, J.
(ed.) WFLP 2010. LNCS, vol. 6559, pp. 84–100. Springer, Heidelberg (2011)

17. Hanus, M. (ed.): Curry: An integrated functional logic language, vers. 0.8.2 (2006),
http://www.curry-language.org

18. Hussmann, H.: Nondeterministic algebraic specifications and nonconfluent term rewriting.
Journal of Logic Programming 12, 237–255 (1992)

19. López-Fraguas, F.J., Rodrı́guez-Hortalá, J., Sánchez-Hernández, J.: A simple rewrite notion
for call-time choice semantics. In: Proceedings of the 9th ACM SIGPLAN International
Conference on Principles and Practice of Declarative Programming (PPDP 2007), pp. 197–
208. ACM Press (2007)

20. Mera, E., Lopez-Garcı́a, P., Hermenegildo, M.: Integrating Software Testing and Run-Time
Checking in an Assertion Verification Framework. In: Hill, P.M., Warren, D.S. (eds.) ICLP
2009. LNCS, vol. 5649, pp. 281–295. Springer, Heidelberg (2009)

21. Meyer, B.: Object-oriented Software Construction, 2nd edn. Prentice Hall (1997)
22. Okasaki, C.: Purely Functional Data Structures. Cambridge University Press (1998)
23. Peyton Jones, S. (ed.): Haskell 98 Language and Libraries—The Revised Report. Cambridge

University Press (2003)
24. Puebla, G., Bueno, F., Hermenegildo, M.: An Assertion Language for Constraint Logic Pro-

grams. In: Deransart, P., Małuszyński, J. (eds.) DiSCiPl 1999. LNCS, vol. 1870, pp. 23–62.
Springer, Heidelberg (2000)

25. Xu, D.N.: Extended static checking for Haskell. In: Proc. of the 36th ACM SIGPLAN Work-
shop on Haskell (Haskell 2006), pp. 48–59 (2006)

http://www.curry-language.org

The Environment as an Argument
Context-Aware Functional Programming

Pedro M. Martins�, Julie A. McCann, and Susan Eisenbach

Imperial College London
{pm1108,jamm,susan}@doc.ic.ac.uk

Abstract. Context-awareness as defined in the setting of Ubiquitous
Computing [3] is all about expressing the dependency of a specific com-
putation upon some implicit piece of information. The manipulation and
expression of such dependencies may thus be neatly encapsulated in a
language where computations are first-class values. Perhaps surprisingly
however, context-aware programming has not been explored in a func-
tional setting, where first-class computations and higher-order functions
are commonplace. In this paper we present an embedded domain-specific
language (EDSL) for constructing context-aware applications in the func-
tional programming language Haskell.

1 Introduction

With widespread availability of mobile computing devices such as mobile phones
and tablets, practical implementations of context-aware applications have started
to appear. However, we observe a divide between the solutions proposed by re-
searchers and the practical solutions adopted by implementers. We believe that
this is because the former solutions are too heavyweight and rigid, and force
developers to sacrifice some freedom in designing their applications, for little
practical gain. As a result, practical implementations are typically based on be-
spoke implementations of context-aware behaviour. This prevents reusability of
behaviour, but makes it easier for subtle bugs and programming errors to be re-
peated throughout implementations of the same behaviour. It has been argued
that this is an inevitable consequence of context-awareness. Indeed, Lieberman
and Selker [8] present a simple model for context-awareness and postulates that
due to the dynamic nature of context-aware applications, it is hard to specify a
module’s behaviour in a way that will allow it to be reused at all.

In this paper we show that through a deeper embedding of context-awareness
semantics into a programming language, we are able to specify this behaviour and
provide natural programming language constructs for it. In addition to this, by
being aware of the semantics of context-awareness, the compiler for our language
is able to verify statically whether a certain number of properties that we believe
should be true for this type of behaviour actually hold. This allows us to reuse

� Funded by FCT (Portugal) under grant SFRH/BD/61917/2009.

C. Russo and N.-F. Zhou (Eds.): PADL 2012, LNCS 7149, pp. 48–62, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

The Environment as an Argument 49

context-aware behaviour in a controlled and automatically validated way, with
minimal loss of expressivity.

Our contributions are as follows:

– A composable representation of context-aware computations that automat-
ically derives the context dependencies needed at the type level (Section
3.1).

– An abstraction for knowledge bases which does not enforce any representa-
tion or reasoning procedure upon the knowledge base, over which we define
all of our abstractions (Section 3.3).

– A parameterized monad [1] that encapsulates the adding context to a knowl-
edge base, and statically verifies whether the required context information
will be available at the call site of one of the previous context-aware compu-
tations (Section 3.5).

– A Haskell library that captures all of these abstractions in an embedded
domain specific language (EDSL) (Section 3.6).

2 An Example Application

We present a simple implementation example of the declarative data-driven cod-
ing style for context-aware applications that we advocate in this paper. The syn-
tax for the example is that of a pure declarative context-aware language with
Haskell-like syntax, resembling the final syntax of our EDSL. Our simple scenario
is one where a user is walking home from work and wishes to pick up something
to eat on the way. The user does not want the food to get cold by the time they
reach their home, so they wish to know where the nearest shops to their current
location are, and how far each of these shops are from their home. Code listings
1.1 and 1.2 implement the main features needed for this functionality, namely a
sorted list of shops and a routine that shows the user how close the nearest shop
is from home. This example shows the definition of the domain of contextual
information the application is going to manipulate, the relevant data types and
the context-aware computation that is intrinsic in the given specification.

We begin by defining the domain of interesting contextual information for the
application. Individuals are the entities of the domain that we are concerned
with, in this case the user (1). Features are the properties of the individuals that
we wish to inspect and manipulate, in this case where the user and their home
are located at (3). The syntax i � f is a type-level representation for feature f of
individual i. We then define the normal data types that we will be manipulating
in the application, namely shops (5). The connection between normal data and
the contextual domain is provided in this case through a relevance relation. It
states that locations are more relevant to the user the closer they are to them
(10). We assume a data type Location is provided by some language library.
Using the relevance relation, we sort a list of shops by contextual information,
using the primitive sortC. In this case we are sorting the list of shops by their
location field, using the applicable relevance relation with context (16). This

50 P.M. Martins, J.A. McCann, and S. Eisenbach

1 individual User
2
3 feature IsLocatedAt :: Location
4
5 data Shop = Shop { name :: String, location :: Location }
6
7 allShops :: [Shop]
8 allShops = ...
9

10 relevant Location (User � IsLocatedAt) by distance
11
12 distance :: Location → Location → Double
13 distance = ...
14
15 nearestShops :: [Shop] ↓ { User � IsLocatedAt }
16 nearestShops = sortC location allShops
17
18 main = loop do
19 loc ← fetchLocation
20 User � IsLocatedAt := loc
21 print (take 10 nearestShops)

Listing 1.1. An application example

creates a computation that is context dependent, nearestShops. Its type reflects
the contextual dependencies that have to be satisfied in order for its value to
be computed. The type a ↓ c represents a value of type a, with contextual
dependencies c, where c is a set of context types.

In order to execute this computation we need to provide it with context.
The do keyword, similarly to Haskell, allows us to enter a sequential execu-
tion context. In this case the keyword will also provide a global knowledge base
for storing and retrieving context. Usage of the knowledge base will be tracked
and validated to ensure that contextual dependencies have been satisfied ap-
propriately before context dependent values are used. In the main loop of the
application, we first fetch a location from the device’s GPS (19) and add it to
the knowledge base with the primitive expression i � f := v, which allows us
to assign the value of a feature f for the individual i as having value v. In this
case, we are assigning the IsLocatedAt feature for the individual User as the
location we have just retrieved (20). We then print the ten most relevant shops
to the screen. The usage of context in nearestShops is statically verified by the
compiler. Indeed, if we remove the line adding context to the knowledge base,
we will get a compiler error specifying that the context of the type we removed
is not available at the call site of nearestShops.

The Environment as an Argument 51

1 individual Home
2
3 distanceFromHome ::
4 Location → Double ↓ { Home � IsLocatedAt }
5 distanceFromHome loc = distance loc (π (Home � IsLocatedAt))
6
7 nearestShopDistanceFromHome ::
8 Double ↓ { User � IsLocatedAt, Home � IsLocatedAt }
9 nearestShopDistanceFromHome = distanceFromHome (head nearestShops)

10
11 exampleHomeDistance = loop do
12 loc ← fetchLocation
13 hloc ← askUserForHomeLocation
14 User � IsLocatedAt := loc
15 Home � IsLocatedAt := hloc
16 print nearestShopDistanceFromHome

Listing 1.2. Merging contextual information.

One of the main driving goals mentioned in the introduction was composabil-
ity and code reuse. In that vein, we should be able to use our context dependent
list in the same way that we would use a regular list. In the final line of the
example, we use the standard library function take on the list of shops. This
function is completely independent from the context library, and has the type:
take :: Int → [a] → [a]

We can use this function for both regular lists and context dependent lists.
The application of this function to the sorted shops list will however push the
contextual dependencies to the type of the return value:
take 2 nearestShops :: [Shop] ↓ { User � IsLocatedAt }

The example so far shows that context-aware values are first-class and can inter-
act naturally with standard library functions. Moreover, if we were to use two
contextual values in a single expression, such as a value depending on the home
location and another depending on the user location, those two context depen-
dencies would be merged appropriately. This will be seen in the next example.
The primitive π is provided by the library, and allows us to manually project
context from the knowledge base by type. We have used it in listing 1.2 to cal-
culate the distance to the user’s home of the closest shop to them. Note how the
type of nearestShopDistanceFromHome (7-8) reflects the contextual dependen-
cies that we are required to satisfy, namely, User � IsLocatedAt, coming from
nearestShops and Home � IsLocatedAt coming from distanceFromHome. The
application semantics of this language collect the contextual dependencies we
use, in the type of the resulting value. This allows us to validate the state of the
global knowledge base. In exampleHomeDistance, if we removed either line 14
or 15, we would no longer be adding necessary context to the knowledge base,
and we would get a compile time error. This shows the basic behaviour that our
EDSL provides. The next sections describe our implementation, along with the
compromises that we had to take to conform to the host language.

52 P.M. Martins, J.A. McCann, and S. Eisenbach

3 A DSL for Context-Aware Programming

The application example in section 2 shows that there are two main facets to
context-awareness. Firstly, defining computations that depend on implicit val-
ues, without breaking composability and type safety. Secondly, managing a global
knowledge base of context, that can be accessed to provide context to the previ-
ous computations. We approach the former in sections 3.1 through 3.3 and the
latter in section 3.4. All of the following definitions are written in Haskell, with
liberal use of extensions provided by its flagship compiler GHC.

3.1 Context-Aware Computations

We start by representing context-aware computations as pure functions from a
contextual value to the desired output. Hinting at the fact that this input is
implicit, we define a new type for these functions, which is isomorphic to the
basic Haskell arrow type:
newtype ContextF a c = ContextF {runContextF :: c → a}
deriving (Functor, Applicative, Monad)

type a :↓ c = ContextF c a

Semantically, :↓ declares that a function’s argument is contextual and should be
considered implicit. runContextF then allows us to take this context-aware value
and apply it to a context to return a pure value. However, context-aware values
differ from regular functions in that we want to think about them as having
the type of the return value. Indeed, when applying regular functions to these
values, the argument of the context-aware value should be treated as implicit
and become the implicit argument of the final value returned by the application.
This effect can be achieved thus:
apply :: (a → b) → a :↓ c → b :↓ c
apply f ca = ContextF (λc → f (runContextF ca c))

This definition is that of fmap for the Reader functor. Extending this behaviour
to accepting multiple arguments in a curried manner leads to the definition of
� from the Applicative instance of Reader [9]:
(�) :: (a → b) :↓ c → a :↓ c → b :↓ c
ff � fa = ContextF (λc → (ff ‘runContextF‘ c)

(fa ‘runContextF‘ c))

However, this abstraction is exceedingly restrictive in the type of context it is
able to deal with, as it forces c to be constant. In our case, this would require the
definition of a “universe” product type for context types, which is impractical. We
would like the product type to be automatically derived as we use more and more
contexts. Effectively, what we want is to parameterise the applicative functor so
that it is able to manage context dependencies appropriately. In this vein, let us
define a new operator �× which combines the contextual dependencies of both
the function and the argument in a product type:

(�×) :: (a → b) :↓ c1 → a :↓ c2 → b :↓ (c1 × c2)

The Environment as an Argument 53

This is the operator we need to implement the application semantics we outlined
in section 2. In the next paragraphs, we will describe its implementation.

3.2 Application over Context-Aware Values

For a constant type c, the existing Applicative instance for Reader would be
enough to achieve the behaviour we want. To see how we might generalise this
approach to define �×, let us specialize the type of �:

(�) :: (a → b) :↓ (c1 × c2) → a :↓ (c1 × c2) → b :↓ (c1 × c2)

It seems that the only thing that we need to do to unify this type with that
proposed for �× is to provide functions that generate this “universe” type. All
we need to do is to precompose both functions with an appropriate projection
function; of type c1 × c2 → c1 for the first one and c1 × c2 → c2 for the second
one. In this way, the type of a composite computation can emerge from its com-
ponents in a canonical way. In order for this scheme to apply to n-ary functions,
however, we need to be able to represent and handle cartesian products effort-
lessly in Haskell. We will use the HList library as presented by Kiselyov et al
[6], which represents type-level lists as iterated products with a fixed structure,
and provides utility functions and error handling. We use an extended version
to obtain set semantics and operations. Other than the typical set operations we
will use the hProject function, which allows us to retrieve subsets of context:
hProject :: (c1 ⊆ c2) ⇒ c2 → c1

In all other cases we will use regular set notation in the code listings and re-
fer the reader to our online implementation for details 1. We can thus rely on
precomposition with hProject to derive the universe type that we referred to
previously. Then, we can just use the classic applicative instance for ((→) c), for
all c, and we get the desired functionality. We can therefore generalize to get the
�× operator:
(�×) :: (a → b) :↓ c1 → a :↓ c2 → b :↓ (c1 ∪ c2)
af �× ax = ContextF ((runContextF af) . hProject) �

ContextF ((runContextF ax) . hProject)

This definition of �× has a more general principal type than the one we originally
discussed, and generalizes to n-ary functions. We can also present a mapping
between the “application” of an n-ary function to context-aware values and our
combinators. Note that <$> is just infix fmap:
� f x1 x2 .. xn � = f <$> x1 �× x2 �× ... �× xn

evalC :: (c1 ⊆ c2) ⇒ a :↓ c1 → c2 → a
evalC ca k = ca ‘runContextF‘ hProject k

mkC1 :: (c → a) → a :↓ { c }
mkC1 f = ContextF (f . hHead)

mkC :: (c → a :↓ cs) → a :↓ (cs ∪ { c })
mkC = comb . mkC1

1 Available at http://www.doc.ic.ac.uk/~pm1108/hcontext

http://www.doc.ic.ac.uk/~pm1108/hcontext

54 P.M. Martins, J.A. McCann, and S. Eisenbach

where comb :: (a :↓ c1 :↓ c2) → (a :↓ (c1 ∪ c2))
comb cca = ContextF $ λk → (cca ‘evalC‘ k) ‘evalC‘ k

evalC allows us to evaluate a context dependent computation by providing it
with the necessary context (or a superset). mkC and mkC1 allow us to build
context-aware computations. mkC1 will have to be used when the return value of
the function is not context dependent.

3.3 Abstract Knowledge Bases

We now turn to the issue of context representation. The abstractions that we
have created clearly define semantics for context-aware values and ways to mean-
ingfully combine them. However, we have not yet modelled access to context
providers. In the sections that follow we assume that there is a language which
is able to describe the full spectrum of context information that we might need.
For the purposes of this paper we assume that all context information that we
retrieve is encoded in the same language. Moreover, we will assume that all con-
text providers will use the same ontology when describing concepts. This is a
very strong assumption, however solving this issue is not the focus of this paper,
and constitutes its own field of research [10]. To detach the current presentation
from the previous semantics, we use a different syntax for HProject, k :� c,
which is to be interpreted as a constraint that holds when we have a knowledge
base of type k from which we can extract context information of type c, a set of
context types. We also take this opportunity to add additional structure to our
context information. We provide support for individuals and features through
the following type:
type family FeatureType a :: ∗
data Feat a = a := (FeatureType a)

We then represent individuals as data types, and assign features to them with a
new data type. The type family FeatureType allows us to embed the type system
of features into that of Haskell. This is coupled with an arbitrary projection
function, whose arguments serve solely as witnesses for the types corresponding
to the individual/feature pair desired:
data individual � feature = individual � (Feat feature)
π :: a → f → FeatureType f :↓ { a � f }
π _ _ = mkC1 $ λ(_ � (_ := v)) → v

With these definitions, we have now implemented everything needed to produce
the context-aware value nearestShopDistanceFromHome, we discussed in section
2:
data User = User
data Home = Home
data IsLocatedAt = IsLocatedAt
type instance FeatureType IsLocatedAt = Location

distanceFromHome loc = distance loc <$> (π Home IsLocatedAt)
nearestShopDistanceFromHome =
distanceFromHome <$> (location . head <$> nearestShops)

The Environment as an Argument 55

In order to implement the example in section 2, the only feature missing in
our context representation is a notion of relevance of a piece of data for a user,
given a set of contextual information. Relevance is realised as a predicate, stating
whether a contextual value is relevant to the sorting of another non-contextual
value. We define a restriction of this notion in order to aid the type checker, where
we constrain the relation R(c, k), to instead be a function. This is represented
as the associated type R, which behaves as a type function, assigning a relevant
context type to a regular type:
class Relevant a where
typeR a :: ∗
relevance :: a →R a → Double

The Location example in section 2 would become:
instance Relevant Location where
typeR Location = User � IsLocatedAt
relevance l1 (User � (IsLocatedAt := l2)) = distance l1 l2

An example of this in action is the sortC function we introduced in section 2:

sortC :: (Relevant c) ⇒ (a → c) → [a] → [a] :↓ {R c }
sortC contextfn xs =
let sortfn c x y = compare (relevance (contextfn x) c)

(relevance (contextfn y) c)
in ContextF (λc → sortBy (sortfn . hOccurs $ c) xs)

3.4 Managing a Global Knowledge Base

Our abstractions allow us to model context-aware computations and sources in
a programming language. In order to make context truly implicit we would like
to represent context as a shared knowledge base, that is populated by retrieving
information from context sources and queried by context-aware computations.
We should also be able to exploit all the typing information that we have been
managing to make sure that this interaction is well-formed. It turns out that all
of this is possible, using the formalism of parameterised monads. [1] First, we
combine a context-aware computation and a contextual information producer
into one single abstraction, that of stateful computations, which is a straightfor-
ward parameterisation of the State functor available in the Haskell libraries. By
using the parameterised monad corresponding to this functor [1], we keep track
of which knowledge is in the knowledge base at the type level. The approach of
using parameterized monads to provide static guarantees over a DSL has been
used before. Sackman and Eisenbach[11] show how to provide security guaran-
tees for an imperative language embedded in Haskell. In Haskell, parameterised
monads can be defined as a minor generalisation of the Monad type class:
class PMonad m where
return :: a → m c c a
(>>=) :: m c1 c2 a → (a → m c2 c3 b) → m c1 c3 b

GHC’s support for rebindable syntax allows us to recover do notation for param-
eterized monads. Qualified importing of libraries may be used where traditional

56 P.M. Martins, J.A. McCann, and S. Eisenbach

monadic behaviour is desired. The types for the parameterised context monad
(and monad transformer) then become:
newtype ContextRuntime c1 c2 a =
CR { runContextRuntime :: c1 → (a, c2) }

newtype ContextRuntimeT m c1 c2 a =
CRT { runContextRuntimeT :: c1 → m (a, c2) }

liftCRT :: Monad m ⇒ m a → ContextRuntimeT m c c a

We omit the PMonad instances and transformer combinators as they are essen-
tially the same as the ones provided by the regular state monad. Note that our
parameterised “monad transformer” is not a fully general parameterised monad
transformer as it only works for non-parameterised monads. However, this is
enough for the purpose of interacting with most monads present in the Haskell
libraries. We then need to define an injection from the parameterised applicative
functor to the monad:
inContext :: (k :� cs) ⇒ ContextF cs a → ContextRuntime k k a
inContext cf = CR $ λk → (evalC cf k, k)

We must also provide combinators to add to and update the knowledge base,
all whilst performing the required type-level updates. We define a function that
operates on type-indexed products, which updates a value by type if it is in the
product, and appends it otherwise, called hUpdateAtTypeOrAppend (the defini-
tion is ommitted for space reasons). Using this, updating a context value in the
knowledge base simply becomes:

(�) :: HUpdateAtTypeOrAppend (i � f) c1 c2

⇒ i → Feat f → ContextRuntime c1 c2 ()
individual � feat = CR $

λc’ → ((), hUpdateAtTypeOrAppend (individual � feat) c’)

We may now add context values to the knowledge base represented by an HList.
Note that because of the constraints in the type of inContext, we can only
use an injected function if the required contextual information is present in the
knowledge base. The final step we must take before executing context-aware
computations in this monad is enforcing an empty starting context. Thus, we
now define a set of execution functions for the parameterised monad that enforce
this restriction. These were inspired by the ones provided for the State monad
in the Haskell standard library.
runCR :: ContextRuntime HNil k a → (a, k)
runCR ca = runContextRuntime ca hNil

evalCR and execCR are defined as the appropriate projections from the result of
runCR. We also define evalCRT, execCRT and runCRT as the transformer versions
of these combinators. Thus, the only way to run a context-aware computation
is to start with the empty context. The compiler may track all context de-
pendencies, and abort with a compile-time error if they are not satisfied. This
characteristic is arguably one of the most interesting features of our EDSL, as
we are able to reify into the type level the context dependencies of a particular

The Environment as an Argument 57

computation, and thus statically guarantee that they will be fulfilled. This elim-
inates a whole class of potential bugs in context-aware applications, whereby the
application attempts to use context when it is not stored in the knowledge base.

3.5 Automatically Satisfying Contextual Dependencies

Given that our EDSL is targeting situations where the domain of contextual
information can have a type system imposed on it, that uniquely identifies the
type of contextual information, it is not too far-fetched to think of satisfying
these implicit dependencies automatically. That is, we can use the mechanisms
outlined in the previous sections to collect contextual dependencies on the main
program, and we can also create a library that adds specific portions of contex-
tual information to a global knowledge base by querying device-specific sensors.
We can then tie both of these together automatically, through the type system.

To achieve this, we introduce a new type class, the instances of which specify
which types of contextual information we can retrieve under the IO monad, for
the device we are currently using.
pushC :: (Monad m) ⇒ c → ContextRuntimeT m HNil c ()
pushC c = CRT . const . M.return $ ((), c)

class Realizable c where
realize :: a :↓ c → ContextRuntimeT IO HNil c a
fetch :: IO c
realize x = liftCRT fetch >>= pushC >> inContextT x

This allows us to completely hide context from the programmer who is using the
EDSL. For example, if the programmer had a main loop and a function called
in every iteration that could benefit from contextual information, this depen-
dency could be added to the code for the function, and lifted to the top-level
using the mechanisms the EDSL provides. We can then provide the necessary
instances of Realizable for the device in question, and selectively import the ones
corresponding to the retrieval technique we wish to use.

4 Evaluation

In order to test the expressive power of our EDSL we implemented two context-
aware applications, showcasing both the abstraction capabilities provided by the
library as well as the ease of interaction with existing code.

4.1 Presence Board

Implementing a presence board application that keeps track of all people that
have checked into a certain context (e.g. a building), has become the canonical
application for evaluating context-aware libraries. This application is interesting
because the presence information can then be used for more exciting context-
aware applications, as will be seen. We assume an existing instance of Realizable
for Location and an online service that can be used to match a location with

58 P.M. Martins, J.A. McCann, and S. Eisenbach

the building that contains it, returning a circular area delimiting the range to
be considered for that building/context:
locationToRange :: Location → IO (Location, Double)

The EDSL allows us to provide a reusable library for this device, fetching the
contextual information under the IO monad. Through the realizable type class
we ready this for easy use by the programmer of the final application. In our
case, we simply supply an instance for Realizable, for presence information, in
our own data type:
data User = ...
users :: [User]
fetchLocationForUser :: User → IO Location
fetchUsers :: IO [User]
newtype Presence x = Presence [(x, Bool)] deriving (Show, Eq)

instance Realizable Location where ...
instance Realizable (Presence User) where
fetch :: IO (Presence User)
fetch = do

location ← fetch
us ← fetchUsers
ls ← mapM fetchLocationForUser us
(l,d) ← locationToRange location
return . Presence $ zip us (map ((<d) . distance l) ls)

With this we can define the application code easily:
displayPresence :: IO () :↓ { Presence User }
displayPresence = mkC1 $ λpresence → do -- ...
main = forever (realize displayPresence)

Which implements a simple presence board application. Note how the program-
mer writing the previous code did not need to worry about how to retrieve the
presence information, as it was abstracted away into a library. Then, retrieving
this contextual information from the point of view of the final presence board ap-
plication is simply a matter of using it at the right type, and making it implicit,
using the liftings.

4.2 Mailing List

In order to ascertain how easy it would be to add context-awareness to an exist-
ing application, we took one of the examples used by the context toolkit [4], a
context-aware mailing list application. This application should forward emails to
only those subscribers that are located in the specific context that the mailing list
applies to, in our case, physically located in a building. We located a mailing list
manager application implemented in Haskell, Mhailist, publicly available on the
Hackage package database [12]. We then proceeded to implement this behaviour
without using any EDSL for implicit information. At a high level this change
corresponds to retrieving presence information for the mailing list subscribers
and selectively forwarding emails depending on it.

The Environment as an Argument 59

...
(addressees, msg) ← return $

case action of
SendToList → (addresses, addHeader listIDHeader message)

...
main = do result ← runErrorT processMessage
...

The modification is fairly simple, we just have to pass in the presence infor-
mation to the forwarding function, and calculate it in the main loop. However,
this simple change implies adding an explicit argument at every call site of the
forwarding function, all the way up to the main loop. This can result in fairly
significant changes to the main program. Using the existent implicit arguments
feature present in GHC, we are able to propagate this dependency in a more
implicit way. However, we then need to satisfy these dependencies by name,
and it would be rather hard to provide a EDSL that extracts from the implicit
dependencies of a computation the exact fetching routine the program should
undertake, as these are identified by name. Using types to identify implicit ar-
guments however, we are able to do just that. We can, as before, propagate the
implicit argument to the main loop in an easy way. Then, in order to satisfy the
main loop’s context requirements, we just need to call realize, and the Realizable
type class will handle fetching the appropriate contextual information for the de-
vice and supplying it to the computation. We need to introduce the contextual
dependency at the top level instead of using the lifting mechanisms presented, as
otherwise we would have to fully desugar the do-notation and lift the binds. We
also had to import the parameterized monad bind operator qualified as PM.»=
to allow us to use both monadic semantics.
mkC1 $ λpresence → do
...
(addressees, msg) ← return $

case action of
SendToList →
(filter ((isJust . flip lookup $ presence) addresses)
, addHeader listIDHeader message)

...
main = evalCRT $ realize processMessage PM.>>= λpm →

liftCRT $ do result ← runErrorT pm
...

5 Related Work

Existing work in context-awareness has focused on creating flexible context rep-
resentations as well as design patterns for developing context-aware applications
within traditional programming languages. Context Toolkit [4] is a Java based
toolkit that defines an architecture for developing context-aware applications,
and provides the programming support for it. The central component of the
context toolkit is the widget. It is defined by attributes and callbacks. There

60 P.M. Martins, J.A. McCann, and S. Eisenbach

are several flaws with the widget abstraction, that are addressed with special
components in the toolkit. Firstly, widgets appear to segment context informa-
tion independently from the chosen context representation. This is accounted
for with context servers that both aggregate contextual information and can
choose an underlying widget depending on the request. In our representation,
widgets would be an artificial abstraction. The typing information allows an
application to precisely specify, at compile-time, what sort of information it is
going to require. This allows us to define a universal context runtime that will
produce widgets “on demand”. The context runtime serves as a flexible universal
context server. As pointed by Bardram [2], the context toolkit enforces a highly
distributed structure for a context-aware application. This aids flexibility and
allows for distribution of architectural components. However, it is also more de-
manding of the system where it is deployed. Through using a more lightweight
solution, we are able to support a less distributed solution if required. Because of
the data-driven approach that we take, we can exploit existing communication
libraries if we need to distribute components. This is not as allows the user to
pick the communication protocol and representation freely.

There has also been prior research done in modelling implicit arguments in a
functional programming language, most notably that of Lewis et al [7], which is
implemented in the Haskell compiler GHC as an extension. Our approach shares
certain characteristics with this calculus, such as the implicit “floating out” of
implicit arguments in composite computations. Our approach was designed from
the ground up to be customised to the typical use cases in context-awareness,
and that is reflected in our choice of identifying variables with their types, as
there should only be one value of each type in the knowledge base. This allows
us to make queries to the knowledge base more automatic, as only the typing
information is required. In Lewis et al’s solution [7] all implicit arguments have a
name that identifies them, and it is up to the programmer to manage assignment
of values to names and scoping of those names. In our approach, types identify
implicit arguments, so no manual management of names is needed. The flexibil-
ity lost lies in the fact that we cannot have two values of the same type, which
their calculus allows, but in our case is not necessary, as we have specified a
type system that distinguishes all individual contextual data by type. This con-
straint however, allows us to extract more typing information statically and be
able to manage the interaction between context sources and context consumers
automatically. Also, it is possible to have multiple values of isomorphic types,
and use the more sophisticated plumbing mechanisms of relevance and feature
projection to manage these. An example of this was given with the user and their
home’s location, having types that are isomorphic in the haskell EDSL, but can
conceptually be thought of as equal.

Another common way to introduce implicit global semantics is to use aspect-
oriented programming. We can think of contextual dependencies as cross-cutting
concerns, whereby the behaviours that would be injected would be both projec-
tions from the global knowledge base and retrieval and storage of contextual
information. Using aspects for this purpose would make it much harder for us

The Environment as an Argument 61

to provide safety guarantees in the knowledge base access. The manipulations
performed by aspect-oriented programming are purely syntactical, and it is hard
to work out which source code transformations are going to be applied to a piece
of code without examining the whole application. For this same reason aspect-
oriented programming is much more flexible. However, given that one of our main
goals was to provide clearer semantics for context-awareness, the disadvantages
of aspect-oriented programming would outweigh the advantages.

6 Future Work

We believe that the abstractions we presented are an interesting approach to
modelling context-awareness and can indeed be used to develop practical ap-
plications that use context in more complex ways than we have seen to date.
Our implementation in Haskell will hopefully encourage further experimentation
with these abstractions in real-world scenarios, and serves as further proof that
Haskell has become an extremely appropriate host language for DSLs even when
the semantics are quite different from its. However, there are some quirks in the
DSL that stem from the fact that our EDSL is being hosted in Haskell. For
instance, the fact that creating a contextual value is not encapsulated in only
one combinator, but is implemented as two separate functions mkC1 and mkC.
This is because we have to deal with non context-aware types and interact natu-
rally with them. If non context-aware types were considered equal to types that
are dependent on a null context, mkC1 would be a special case of mkC. On the
other hand, the fact that application of functions to context-aware values needs
to be performed with special operators, makes this library slightly unnatural
to use. Further, we have not provided abstractions for continuous retrieval of
contextual information and modelling the retrieval-usage loop. We believe that
we can use functional reactive programming [5] to manage context streams in
a natural way. Thus, we believe it would be interesting to design a language
from the ground up that is based around these concepts, as a purer exposition
of these ideas, and maybe as a theory that can bring further insights into the
nature of context-awareness and the interaction between context providers and
consumers.

7 Conclusion

When integrating context into a system, programmers are presented with two
options. To either conform to rigid frameworks or to build bespoke functions that
represent contextual behaviour. The latter, though providing more freedom, is
problematic in that it has been shown that these dynamical approaches limit
the amount of reusability, and errors can be easily propagated where attempts
to reuse are made.

This is the first work that aims to overcome these problems by presenting
an abstraction whereby context is deeply embedded into the programming lan-
guage. In doing so, we are able to show that static verification can be achieved;

62 P.M. Martins, J.A. McCann, and S. Eisenbach

limiting the propagation of undesirable behaviours. Representing context-aware
computations as functions with implicit arguments and inference rules, we are
able to provide a composable type-safe system that provides static guarantees
of well-formedness for context-aware applications. We also formalise the concept
of a knowledge base and by using the type information we collected we are able
to automatically satisfy contextual dependencies.

As proof of concept we implement our constructs in Haskell. It proved to be
a good choice for a host language as both its type system and syntax are fairly
programmable and allowed us to embed to provide an EDSL that presented
significantly different semantics from those of vanilla Haskell.

In summary, our formal grounding for context-awareness, combined with its
example implementation in Haskell, provides the abstractions to encourage the
exploration of more complex context driven applications than have been seen to
date.

References

1. Atkey, R.: Parameterised notions of computation. Journal of Functional Program-
ming 19(3-4), 335 (2009)

2. Bardram, J.: The Java Context Awareness Framework (JCAF)–a service infras-
tructure and programming framework for context-aware applications. Pervasive
Computing, 98–115 (2005)

3. Dey, A., Abowd, G.: Towards a better understanding of context and context-
awareness. In: CHI 2000 Workshop on the What, Who, Where, When, and How of
Context-Awareness, vol. 4, pp. 1–6. Citeseer (2000)

4. Dey, A., Abowd, G., Salber, D.: A conceptual framework and a toolkit for sup-
porting the rapid prototyping of context-aware applications. Human-Computer
Interaction 16(2), 97–166 (2001)

5. Elliott, C.: Push-pull functional reactive programming. In: Haskell Symposium
(2009)

6. Kiselyov, O., Lämmel, R., Schupke, K.: Strongly typed heterogeneous collections.
In: Haskell 2004: Proceedings of the ACM SIGPLAN Workshop on Haskell, pp.
96–107. ACM Press (2004)

7. Lewis, J.R., Launchbury, J., Meijer, E., Shields, M.B.: Implicit parameters: dy-
namic scoping with static types. In: Proceedings of the 27th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2000, pp.
108–118. ACM, New York (2000)

8. Lieberman, H., Selker, T.: Out of context: Computer systems that adapt to, and
learn from, context. IBM Systems Journal 39(3.4), 617–632 (2000)

9. McBride, C., Paterson, R.: Applicative programming with effects. Journal of Func-
tional Programming 18(01), 1–13 (2007)

10. Pinto, H., Gómez-Pérez, A., Martins, J.: Some issues on ontology integration. In:
IJCAI 1999 Workshop on Ontologies and Problem-Solving Methods (KRR5), Cite-
seer (1999)

11. Sackman, M., Eisenbach, S.: Safely Speaking in Tongues: Statically Checking Do-
main Specific Languages in Haskell. In: LDTA 2009 (March 2009)

12. Sampson, C., Kotthoff, L.: Mhailist: Haskell mailing list manager (April 2010),
http://hackage.haskell.org/package/Mhailist-0.0

http://hackage.haskell.org/package/Mhailist-0.0

Weighted-Sequence Problem: ASP vs CASP

and Declarative vs Problem-Oriented Solving

Yuliya Lierler, Shaden Smith, Miroslaw Truszczynski, and Alex Westlund

Department of Computer Science, University of Kentucky, Lexington, KY
40506-0633, USA

Abstract. Search problems with large variable domains pose a chal-
lenge to current answer-set programming (ASP) systems as large variable
domains make grounding take a long time, and lead to large ground the-
ories that may make solving infeasible. To circumvent the “grounding
bottleneck” researchers proposed to integrate constraint solving tech-
niques with ASP in an approach called constraint ASP (CASP). In the
paper, we evaluate an ASP system clingo and a CASP system cling-

con on a handcrafted problem involving large integer domains that is
patterned after the database task of determining the optimal join or-
der. We find that search methods used by clingo are superior to those
used by clingcon, yet the latter system, not hampered by grounding,
scales up better. The paper provides evidence that gains in solver tech-
nology can be obtained by further research on integrating ASP and CSP
technologies.

1 Introduction

ASP [11,13] is a declarative programming formalism based on the answer-set se-
mantics of logic programs [8]. It is oriented towards combinatorial search prob-
lems. Search problems with large variable domains pose a major challenge to
the current generation of answer-set programming (ASP) systems, which re-
quire that the answer-set program representing the problem first be grounded
by an ASP grounder and only then solved by an ASP solver [2]. The difficulty is
that large variable domains make grounding take long, sometimes prohibitively
long, time and result in large ground theories that often make solving infeasible,
even though the problem may in fact be quite easy. Typical examples of prob-
lems with variables ranging over large domains are optimization problems, which
require variables to represent possible values of goal function, and planning and
scheduling problems that require variables to represent times when events can
take place.

Constraint ASP [12,7,1] (CASP) integrates ASP with tools and techniques
developed for constraint satisfaction problems (CSP). The goal of CASP systems
is to address the grounding bottleneck of ASP. CASP solvers address the problem
by performing partial grounding only, not grounding variables whose values range
over large domains, but delegating the task of finding appropriate values for them
to specialized algorithms such as constraint solvers.

C. Russo and N.-F. Zhou (Eds.): PADL 2012, LNCS 7149, pp. 63–77, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

64 Y. Lierler et al.

In the work we report here we experimentally evaluated ASP and CASP sys-
tems. For our study we selected the highly optimized ASP system clingo

1 [6]
that is based on the ASP grounder gringo [5] and the ASP solver clasp [6], and
a CASP system clingcon

2 [7] that is based on modifications of gringo, clasp,
and the constraint solver gecode

3. To conduct the experiments we handcrafted
a benchmark called a weighted-sequence problem. The key features of the prob-
lem are inspired by the important industrial problem of finding an optimal join
order by cost-based query optimizers in database systems. When selecting and
designing the problem, we were motivated by the fact that it involved variables
with large domains of integers, which made it well suited for our study. We
were also motivated by the practical relevance of that problem and its hardness.
Current query optimizers attempt to find an optimal join order only for joins
consisting of relatively few tables (five tables in the case of the oracle optimizer
[9, Page 416]). We modified the problem by introducing additional complexities
to enrich its structure and create possibilities for non-trivial modeling enhance-
ments requiring a deeper understanding of problem properties.4

In our experiments we aimed to understand relative advantages of sophisti-
cated search procedures involving conflict-driven clause learning and backjump-
ing of the ASP solver clingo (which implements learning and backjumping
following clasp [6]) versus the idea of limiting grounding and delegating some
constraint solving tasks to a specialized constraint solver employed by cling-

con – an idea central to CASP. We experimented with two sets of instances: a
small set of 30 instances, where the integer parameters were quite small, and a
large set also of 30 instances, where the integer parameters were substantially
larger. Our key findings are that: the effectiveness of the search procedure used
by clingcon lags behind that of clingo; and that circumventing the grounding
bottleneck makes clingcon scale up substantially better.

The former finding is demonstrated by the running times we observed on in-
stances in the small set, where the integer parameters are low and grounding
is not a major factor. On these instances, clingo in general performed better.
Further evidence in support of that claim came from experiments with several en-
codings of the weighted-sequence problem, one of which represented the problem
requirements literally as they appeared in the problem statement, while others
also included constraints not given explicitly but derived from those stated di-
rectly. clingo was much less sensitive to modeling enhancements, suggesting
that its learning techniques could infer at least some of the derived constraints.
However, including these “derived” constraints had a major positive effect on
clingcon, suggesting its search methods are not yet powerful enough to infer
useful constraints when they are not given explicitly.

1 http://potassco.sourceforge.net/
2 http://www.cs.uni-potsdam.de/clingcon/
3 http://www.gecode.org/
4 The benchmark was submitted to and used in the Third Answer Set Programming

Competition (https://www.mat.unical.it/aspcomp2011/OfficialProblemSuite).
It was referred to as benchmark number 28, Weight-Assignment Tree.

http://potassco.sourceforge.net/
http://www.cs.uni-potsdam.de/clingcon/
http://www.gecode.org/
https://www.mat.unical.it/aspcomp2011/OfficialProblemSuite

Weighted-Sequence Problem 65

The latter key finding concerning the scalability was evidenced by the results
concerning the large set of instances showing that when the parameters get
larger, large sizes of grounded programs slow down clingo dramatically, while
even less sophisticated search methods of clingcon are capable to find solutions
quickly.

Our results strongly suggest the validity of the CASP approach but also point
out that there is still much room for improvement in the way CASP systems do
learning.

2 Problem Statement

In the weighted-sequence problem we are given a set of leaves (nodes) and an
integer m — maximum cost. Each leaf is a pair (weight, cardinality) where
weight and cardinality are integers. Every sequence (permutation) of leaves is
such that all leaves but the first are assigned a color. A colored sequence is
associated with the cost. The task is to find a colored sequence with the cost at
most m.

For a set S of leaves and an integer m, we denote the corresponding weighted-
sequence problem by [S, m]. We say that an integer m is optimal with respect
to a set S of leaves if m is the least integer u such that the weighted-sequence
problem [S, u] has a solution.

Let M be a sequence of n leaves l0, . . . , ln−1. For each leaf li, 0 ≤ i ≤ n−1, by
w(li) and c(li) we denote its weight and cardinality, respectively. We color each
leaf li, 1 ≤ i ≤ n− 1, green, red, or blue; the leaf l0 is not colored. We define the
costs of leaves as follows. For the leaf l0, we set

cost(l0) = w(l0).

For every colored leaf li, 1 ≤ i ≤ n − 1, we set

cost(li) =

⎧
⎨

⎩

w(li) + c(li) if li is green
cost(li−1) + w(li) if li is red
cost(li−1) + c(li) if li is blue.

The cost of the sequence M is the sum of the costs of its colored leaves:

cost(M) = cost(l1) + · · · + cost(ln−1).

3 ASP: Generate and Test Methodology

Answer set programming [11,13] is a declarative programming formalism based
on the answer set semantics of logic programs [8]. The idea of ASP is to represent
a given computational problem by a program whose answer sets correspond
to solutions. A common methodology to solve a problem in ASP is to design
two main parts of a program: generate and test [10]. The former defines a
larger collection of answer sets that could be seen as potential solutions. The

66 Y. Lierler et al.

latter consists of rules that eliminate the answer sets that do not correspond
to solutions. Often a third part of the program, define, is also necessary to
express auxiliary concepts that are used to encode the conditions of generate

and test. Thus, when we represent a problem in ASP, two kinds of rules have
a special role: those that generate many answer sets corresponding to possible
solutions, and those that can be used to eliminate the answer sets that do not
correspond to solutions.

A typical logic programming rule has a form

a0 ← a1, . . . , am, not am+1, . . . , not an, (1)

where each ai (0 ≤ i ≤ n) is an atom of the underlying language. We call the left-
hand side (right-hand side) of the arrow symbol in a rule (1) the rule’s head (body,
respectively). Rules are used to describe relations between concepts represented
by their atoms. Together, as a program, they specify a class of special models for
the program. These models are called answer sets. Informally speaking, answer
sets are those models of a program that are in some very precise way “justified”
by the program. We refer for the formal definition to the overview by Brewka et
al. [2].

For instance, the program

p.
q ← p, not r.

is composed of two rules. The first rule is often called a fact since its body is
empty and it represents the fact p. The second rule justifies the derivation of q,
as we have p and the program has no way to justify r (no rule has r as its head).
Consequently, by a form of the closed-world assumption, not r is true and the
rule “fires.” In this case, {p, q} is the only model “justified” by the program,
that is, the only answer set, even though the program has additional models.

In addition to rules of the form (1), gringo also accepts rules of other kinds.
Two important examples are choice rules and constraints. For example, the rule

{p, q, r}.

is a choice rule (in this case, with the empty body). Informally, it justifies any
(even empty) subset of {p, q, r}. Thus, any subset of {p, q, r} is an answer set
the program consisting of this rule only. As this example demonstrates, choice
rules generate sets of models and are typically members of the generate part
of the program.

Constraints often form the test section of a program. Syntactically, a con-
straint is the rule with an empty head. It encodes the constraints of the problem
that answer sets must have. For instance, the constraint

← p, not q.

eliminates answer sets that include p and do not include q. When this constraint
and the constraint ← r, which eliminates answer sets containing r, are conjoined

Weighted-Sequence Problem 67

with the choice rule above, the resulting program has three answer sets: ∅, {q}
and {p, q}.

The input language of clingo (clingcon) allows the user to specify large
programs in a compact fashion, using rules with schematic variables and other
abbreviations. We refer the reader to the manual of clingo [5] for more details.

When processing, programs are first grounded by a grounder (a program like
gringo). Afterwards, a solver program (for instance, clasp; these programs
share much similarity with propositional SAT solvers) searches for the answer
sets of the propositional output of the grounding phase.5 The problem is that
the output of the grounder may be large. By exploiting constraint (CSP) solvers
for some search tasks, one can get by with a smaller grounding. This is the
idea behind CASP, which we compare here experimentally to the standard ASP
solving method.

4 Encodings

ASP encodings of the weighted-sequence problem represent it as a logic program
so that answer sets of the program correspond to sequences of leaves with the
cost less than or equal to the given bound. Below we present several encodings.
One of them simply represents literally the requirements as they appear in the
problem statement. The remaining ones expand it by imposing additional con-
straints derived by analyzing the problem statement. All these encodings can
be systematically transformed into the corresponding clingcon programs that
take advantage of a special feature of clingcon, constraint atoms. We use the
resulting clingcon programs in our experiments with clingcon.

There are several concepts that are common to all the encodings. Let n and
m be integers giving the number of leaves in a weighted-sequence and the bound
on the total cost of a solution (maximum cost), respectively. Then each encoding
contains the following facts

num(n)
maxCost(m).

The weight and cardinality of each leaf is specified by facts of the form

leafWeightCard (i, w, c)

where i is an integer that ranges from 1 to n and stands for an id of a leaf, and
w and c are the weight and cardinality of this leaf, respectively.

In addition, the define part of every encoding presented here contains the
rules

position(X) ← X = 0..N − 1, num(N)
coloredPos(X) ← X = 1..N − 1, num(N),

which specify that there are n positions 0 . . . n− 1 in the sequence, and that the
positions 1 . . . n − 1 are colored and the position 0 is not.
5

clingo, the program we study in this paper, simply combines the two programs into
one.

68 Y. Lierler et al.

Declarative Encoding: The generate part of a declarative encoding, decl,
consists of two components. The first one generates a sequence by assigning each
leaf its position. It is formed by the following two rules:

1{leafPos(L, P) : position(P)}1 ← leaf (L)
1{leafPos(L, P) : leaf (L)}1 ← position(P).

Intuitively, the first rule says that each leaf is assigned exactly one position. The
second rule ensures that each position holds exactly one leaf.

The second component of the generate part assigns exactly one color to
every colored position in a sequence (positions 1, . . . , n− 1). To this end, it uses
the rule

1{posColor (P, C) : color(C)}1 ← coloredPos(P). (2)

The define part of the program decl includes the rules that specify the cost
of each colored leaf in a sequence. For instance, the two rules

posCost(0, Cost) ← leafWeightCard (L, Cost, C), leafPos(L, 0)
posCost(P, Cost) ← coloredPos(P), posColor(P, red), leafPos(L, P),

leafWeightCard (L, W, C), posCost(P − 1, Cost′),
Cost = Cost′ + W

(3)

state that (i) the cost of the leaf in position 0 is its weight, and (ii) the cost of
the leaf in position P that is colored red is the sum of its weight and the cost of
the preceding node. Similar rules specify costs of leaves when they are colored
green or blue. The define part of decl also contains rules that define the cost
of a sequence:

seqCost(1, Cost) ← posCost(1, Cost)
seqCost(P, Cost) ← coloredPos(P), P > 1, seqCost(P − 1, C),

posCost(P, C′), Cost = C + C′.
(4)

Consequently, an answer set contains the ground atom seqCost(n − 1, c) if and
only if c is the number that corresponds to the cost of the sequence determined
by other ground atoms in this answer set (we recall that n is the number of
leaves).

Finally, define includes the rule that introduces an auxiliary predicate exists:

exists ← seqCost(N − 1, Cost), num(N), Cost ≤ M, maxCost(M) (5)

which affirms that the sequence determined by an answer set has total cost
within the specified bound m.

The test part of decl contains a single constraint:

← not exists

It tests whether an answer set contains the atom exists and eliminates those that
do not. In this way only answer sets determining sequences with the total cost

Weighted-Sequence Problem 69

within the specified bound remain. If no such sequence exists the program has
no answer sets.

We note that the rules in (3) and (4) may be augmented by additional
conditions in the bodies

Cost ≤ M, maxCost(M).

This modification is crucial for making grounded instances of programs smaller
and is incorporated in our encodings.
Sequence Encoding: For a leaf l, we define its value val(l) as the smaller of
the two numbers, the weight and the cardinality, associated with l. That is,

val(l) =
{

w(l) if w(l) ≤ c(l),
c(l) otherwise.

Let l and l′ be two leaves in a sequence so that l immediately precedes l′. We
define the color number of the leaf l′ to be

colorNum(l′) = min(w(l′) + c(l′), cost(l) + val(l′)).

Let us assign a color to every leaf l′ in a colored position according to the formula:

color(l′) =

⎧
⎨

⎩

green if colorNum(l′) = w(l′) + c(l′)
red otherwise, if colorNum(l′) = cost(l) + w(l′)
blue otherwise, if colorNum(l′) = cost(l) + c(l′)

where l precedes l′ in the sequence.
Observation 1: Any color assignment different from the one defined above results
in a colored sequence with the same or higher cost.
Observation 1 represents a property of the weighted-sequence problem that is
not explicitly present in the problem statement and so, it is not a part of the
decl encoding. It is the basis for the sequence encoding seq that builds upon the
decl encoding by replacing the “non-deterministic” color-choice rule (2) with a
set of “deterministic rules.” For instance,

posColor (P, green) ← P > 1, coloredPos(P), leafPos(L, P),
leafWeightCard (L, W, C), leafValue(L, V),
posCost(P − 1, Cost), W + C < Cost + V

is one of the rules in this set (for a leaf l, leafValue(l, v) is defined to hold precisely
when v = val(l)).

Intuitively, the advantage of the encoding seq over decl is a reduced search
space as color assignment requires no choices. However, by Observation 1, no
optimal solutions are lost while some suboptimal ones are pruned. We note
that an additional (minor) simplification results from the fact that in the decl

encoding, three cases are considered when a position is colored green, red, and
blue. In the encoding seq, with the use of leafValue predicate, it is sufficient to
consider two cases only: when position is colored green and when it is not.

70 Y. Lierler et al.

Sequence Encoding+:
Observation 2: Let l and l′ be two consecutive elements in a sequence M (in that
order), neither being a green-colored leaf. It is easy to see that if val(l′) < val(l)
then the sequence M ′ constructed from M by changing the order of l and l′ has
a smaller cost than M , i.e., cost(M ′) < cost(M).

Observation 2 allows us to add the constraint

← coloredPos(P ; P − 1),
not posColor (P, green), not posColor (P − 1, green),
leafPos(L, P − 1), leafPos(L′, P),
leafValue(L, V), leafValue(L′, V ′), V > V ′.

(6)

to the seq encoding. We denote the resulting program by seq+.
The idea behind extending the seq encoding with (6) is that it reduces the

search space. Observation 2 implies that no optimal solutions to the weighted-
sequence problem are lost because of the additional constraint, some suboptimal
ones will in general be pruned.

Sequence Encoding++:
Let g1, . . . , gk be a set of all green nodes in a sequence M , that is,

M = M0 g1 M1 . . . gk Mk (7)

where each Mi, 0 ≤ i ≤ k, is a sequence of non-green leaves. We call M0 the 0th
partition of (7) and each gi Mi, 1 ≤ i ≤ k, a green partition of (7).
Observation 3: The fact that the cost of a green node only relies on its own
weight and cardinality makes it evident that the cost of the sequence (7) is the
same as the cost of the sequence M0 P , where P is any permutation of the set
of green partitions of (7), {g1 M1, . . . , gk Mk}.

Observation 3 allows us to add a constraint

← leafPos(L, P), leafPos(L′, P ′),
posColor (P, green), posColor (P ′, green),
L < L′, P > P ′

to the seq+ encoding. We denote the resulting program by seq++. Intuitively,
the last rule “breaks the symmetry” by enforcing that any answer set to the
program has the green leaves in the corresponding solution sequence sorted ac-
cording to their costs.

Clingcon Encodings: The CASP language of clingcon extends the ASP
language of clingo by introducing “constraint atoms”. These atoms are inter-
preted differently than “typical” ASP atoms. The system clingcon splits the
task of search between two programs: an ASP solver (clasp) and a CSP solver
(gecode). The ASP solver incorporated in clingcon treats constraint atoms
as boolean atoms and assigns them some truth value. The CSP solver, on the
other hand, is used to verify whether the assignments given to the constraint
atoms by the ASP solver of clingcon hold based on their “real” meaning.

Weighted-Sequence Problem 71

Let us note that posCost and seqCost predicates used in all clingo encodings
are “functional”. In other words, when this predicate occurs in an answer set
its first argument uniquely determines its second argument. Often, functional
predicates in ASP encodings can be replaced by constraint atoms in CASP en-
codings. Indeed, this is the case in the weighted-sequence problem domain. This
allows us to create alternative encodings for decl, seq and the extensions of
seq.

We note that only the rules containing functional predicates posCost and
seqCost were changed in decl and seq and its extensions to produce clingcon

programs. For instance, the rules in (4) and (5) have the following form in the
clingcon encodings

seqCost(1) =$ posCost(1) ← coloredPos(1)
seqCost(P) =$ posCost(P) + seqCost(P − 1) ← P > 1, coloredPos(P)
exists ← seqCost(N − 1) ≤$ M, num(N), maxCost(M),

where

seqCost(1) =$ leafCost (1), seqCost(P) =$ leafCost(P), seqCost(N − 1) ≤$ M

are constraint atoms. The rules defining posCost , such as (3), are rewritten in a
similar manner:

posCost(0) =$ Cost ← leafWeightCard (L, Cost, C), leafPos (L, 0)
posCost(P) =$ posCost(P − 1) + W ← coloredPos(P), posColor (P, red),

leafPos(L, P), lwc(L, W, C)

where posCost(0) =$ Cost and posCost(P) =$ posCost(P−1)+W are constraint
atoms.

We may benefit from the clingcon encodings when weights, cardinalities,
and maximum cost of a given weighted-sequence problem are “large” integers.
In such cases, any clingo encoding (that we were able to come up with) faces the
grounding bottleneck. The size of the grounded clingo program heavily depends
on the integer values provided by the problem specification. On the other hand,
the size of the corresponding grounded clingcon program is only affected by
these integer values to a small degree or, even, not affected at all.

5 Experimental Analysis

We first describe hardware specifications, the instance generation method, and
the procedures used to perform all experiments. Then we discuss the experimen-
tal results reported.

Experiments were performed concurrently on several identical machines, each
with a single-core 3.60GHz Pentium 4 CPU and 3Gb of RAM, and running
Ubuntu Linux version 10.04. Experiments were performed with clingo version
3.0.3 and clingcon version 0.1.2.

72 Y. Lierler et al.

Instance generation is driven by two inputs: the number of leaves in the in-
stance, n, and the maximum value of a weight and cardinality of a single leaf, v.
First, the set S of n leaves is created by generating random weights w0, . . . , wn−1

and cardinalities c0, . . . , cn−1 so that 0 ≤ wi, ci ≤ v. For all instances in small

we used v = 12 and n = 10. For all instances in large we used v = 100 and
n = 8.

As leaves are created they are assigned a unique position in a sequence M .
Positions 1 through n−1 in M are then randomly assigned colors green, red, or
blue. We calculate the total cost m of the resulting colored sequence M and use
it, together with S, as an instance to the weighted-sequence problem, denoted
by [S, m].

Thirty random problem instances generated in the way described above form
the first set of instances, called easy, in the small and in the large sets, re-
spectively. Clearly, all of these instances are satisfiable.

To create harder instances required an encoding and a solver. We chose the
encoding seq++ along with clingcon. We proceeded by starting with an in-
stance [S, m] in the set of easy instances. We used clingcon to solve it, and if
the instance was satisfiable, we calculated the tree cost for the solution found, m̂,
(clearly, m̂ ≤ m). We then repeated the process for the instance [S, m̂−1]. When
[S, m̂− 1] was found unsatisfiable, it indicated that m̂ was optimal with respect
to S, and m̂ − 1 made the set S “barely” unsatisfiable (to be more precise, we
used a version of binary search here to speed the process up). Instances obtained
in this way from the easy instances formed the sets of optimal and unsatisfiable
instances, respectively. The instances [S, m̂ +5] formed the set of hard instances
in the small set, and the instances [S, m̂+50] formed the set of hard instances
in the large set. As before, we constructed groups of thirty hard, optimal and
unsatisfiable instances for both small and large sets.

We used each instance with all encodings we considered. A time limit of 1500
seconds (25:00 minutes) was enforced for each instance. From each solve the
grounding time, solving time, solution, the number of choices and the sizes of
ground theories were recorded for further study.

We now present and discuss the results of our experiments. Due to space lim-
its only summary results are presented here. For the encodings we used and the
complete results, we refer to http://www.csr.uky.edu/WeightedSequence/.
The first two tables, Table 1 and Table 2, concern small and large sets of
instances, respectively. In the case of each set we considered its easy, hard, op-
timal and unsat subsets, and for each subset included a row in the table. There
are two groups of columns in each table, one for clingo and the other one for
clingcon. The columns in each group represent encodings decl, seq, seq+

and seq++. Each entry in the table contains either the average running time of
clingo or clingcon, respectively, for the set of 30 instances in the correspond-
ing easy, hard optimal and unsat subset. However, if for at least one instance in
the group we had a timeout, instead of the average running time we report the
number of timeouts in the group.

http://www.csr.uky.edu/WeightedSequence/

Weighted-Sequence Problem 73

Table 1. Small Instances

clingo clingcon

Instance decl seq seq+ seq++ decl seq seq+ seq++
Easy 0.88 0.75 0.81 0.86 0.02 0.06 0.05 0.15
Hard 4.01 1.19 1.77 2.97 to=7 9.50 4.34 5.04
Optimal 26.28 15.75 20.41 15.04 to=27 253.30 203.75 34.57
Unsat 180.62 193.79 162.88 27.88 to=30 to=25 to=17 128.63

Table 2. Large Instances

clingo clingcon

Instance decl seq seq+ seq++ decl seq seq+ seq++
Easy 21.76 15.38 15.35 16.73 0.01 0.07 0.07 0.08
Hard 22.75 13.96 14.41 23.36 to=4 1.76 1.18 0.72
Optimal to=1 97.38 to=1 101.95 to=24 46.58 23.49 5.07
Unsat to=12 to=12 to=10 248.81 to=30 189.38 92.29 10.43

Before we discuss the results as they pertain to comparisons of clingo versus
clingcon, and to the role of explicit modeling of additional domain knowledge,
we note that both tables show the increasing hardness of our instances as we
move from easy to hard to optimal and, finally, to unsat ones. That is, the tables
support the soundness of our approach to generate increasingly harder instances
by lowering the bound for the total weight.

Effectiveness of search. We consider first the small set of instances. When
run on easy instances in that group, clingcon outperforms clingo. However,
already on hard instances, the situation reverses. clingcon running times are
worse and it times out on seven instances under the encoding decl. The trend
continues when we move on to optimal and unsat instances — clingcon per-
formance deteriorates. The results suggest that for problems in that group, due
to relatively small integer parameters used, neither the time needed for the com-
pete grounding nor the size of the ground theory seem to have much negative
effect on clingo, whose efficient and highly optimized search techniques more
than compensate for that. On the other hand, worse (and, in the case of optimal
and unsat instances, significantly worse) performance of clingcon suggests its
search techniques lag behind those of clingo.

Our results provide also support to the claim of the importance of constraint
learning while solving. clingo exploits sophisticated conflict-driven clause learn-
ing algorithm. The encodings we considered differ in that they represent progres-
sively more and more problem constraints. The encoding used has very limited
effect on the performance of clingo, when it is run on instances from the small

set. The only exception comes from the seq++ encoding resulting in a much
better performance of clingo when run on the group of unsat instances. On
the other hand, the choice of the encoding has a major effect on clingcon. The
results concerning instances in the large set (Table 2), show a similar behavior.
The effect of extra domain knowledge on the performance of clingo (while no
longer negligible) is still much smaller that the effect it has on clingcon.

74 Y. Lierler et al.

Thus, it seems that search techniques of clingo can learn some or even a
major portion of the missing constraints, while clingcon search methods are
not effective enough in that respect, as they benefit greatly when the constraints
are provided explicitly.

Next, we note that instances in small set where generated for n = 10 leaves
(tables in the join problem), while in the large set for n = 8. The problems
in the large set turn out to be easier for clingcon than those in the small

set. This suggests that clingcon handles increasing weights well but is more
sensitive to changes in other parameters (line n). This observation is yet another
indication of clingcon’s weaker search techniques on the ASP side.

Lastly, we note briefly that while the additional constraints modeled explicitly
in seq and seq+ encodings do help clingcon, it is the symmetry-breaking
constraint used in seq++ that is particularly beneficial. In fact, it also seems to
have a significant positive effect on clingo, as evidenced by the performance of
clingo on unsat instances in the set large (cf. Table 2).

In summary, our discussion above shows that there seem to be much room
for improvement as concerns overall performance of search in CASP tools such
as clingcon. It shows that sophisticated search techniques can compensate for
some of the “derived” constraints not explicitly present in the problem statement,
but also that some types of constraints, such as symmetry-breaking, make a
difference even if solvers use a sophisticated constraint-learning algorithms.
Scalability: The results from Tables 3 and 4 provide evidence that clingcon

scales up better than clingo as weights go up. To argue that we recall (cf.
Table 1) that for the instances in the small set, clingcon performs worse
than clingo (except for instances that are easy). However when we move to
instances in the large set, the situation changes (cf. Table 2). Except for the
encoding decl, where it timed out frequently and much more often than clingo

(as we argued above, due to its inability to learn useful constraints), clingcon

completed the computation for every instance under seq, seq+ and seq++
encodings. clingo, on the other hand, times out on 23 instances under these
three encodings (12 unsat instances under seq, one optimal and 10 unsat under
seq+) and when it does not time out, its running times are much worse than
those of clingo (one order of magnitude difference for the encoding seq++.

These results suggest that clingcon successfully addresses the grounding
bottleneck resulting from large integer domains. To see this let us consider the
sizes of ground theories (measured as the numbers of clauses and reported as
averages over 30 instances that form each group).

First, we note that the sizes of clingcon encoding do not vary as we move
from easy down to unsat instances. It is because these clingcon instantiates
only non-weight, non-cardinality variables (such as the number of leaves and the
number of colored positions) and they do not change. The only parameter that
distinguishes between the encodings, the bound on the weight, m, does not affect
clingcon grounding size as, unlike in the clingo encodings, no “groundable”
variable in clingcon encodings ranges over the domain [0..m].

Weighted-Sequence Problem 75

Table 3. Sizes of ground programs: Small Instances

clingo clingcon

Instance decl seq seq+ seq++ decl seq seq+ seq++
Easy 75268 62739 63099 64719 575 539 899 2519
Hard 29326 26588 26948 28568 575 539 899 2519
Optimal 26842 24495 24855 26475 575 539 899 2519
Unsat 26350 24077 24437 26057 575 539 899 2519

Table 4. Sizes of ground programs: Large Instances

clingo clingcon

Instance decl seq seq+ seq++ decl seq seq+ seq++
Easy 1546714 1162451 1162619 1163207 383 358 526 1114
Hard 434237 377120 377288 377876 383 358 526 1114
Optimal 350933 308383 308551 309139 383 358 526 1114
Unsat 349336 307052 307220 307808 383 358 526 1114

This brings us to the second observation, directly relevant for our study.
Grounded clingcon encodings are much smaller than those resulting from the
clingo ones. For instances in the large set, the ground programs considered
by clingo are quite large (hundreds of thousands of ground rules) and when con-
straints become tight (for optimal and unsat problems), very hard for clingo

to process successfully within the time bounds set.
Next, we note that, not surprisingly, it is not only the size of the grounded

program that matters. Easy instances result, after grounding, in much larger
programs than unsat ones but as the constrains are not tight, the search process
can terminate quickly. It is the combination of a large size and tight constraints
that slows clingo down. Tight constraints are clearly a problem for clingcon,
too (cf. the tables reporting the running times). But since the size of the ground
theory it has to deal with is low, it does not hamper its performance on the
ASP side of search, and the types of constraint problems clingcon delegates to
gecode are handled well (at least for our instances) by that CSP solver.

6 Conclusions and Future Work

Our experimental findings suggest several observations. Highly tuned ASP search
algorithms (specifically, clingo) display a similar behavior on both “literal”
(decl) and “sophisticated” (seq, seq+ and seq++) encodings of a weighted-
sequence problem (although, as the instances get larger, symmetry-breaking
incorporated into seq++ seems to start showing a noticeable benefit). The so-
phisticated encodings impose a number of restrictions on the problem’s search
space in comparison with the literal encoding and, our results show, for hybrid
systems such as clingcon (that combines both ASP and CSP techniques in
its search), it is of importance. Reduced search space that results can have a
significant positive effect on their performance. Thus, our results suggest that

76 Y. Lierler et al.

the effectiveness of the search procedure used by clingcon lags behind that
of clingo. They show that the problem seems to be with lack of strong learn-
ing techniques in clingcon. Including extra domain knowledge explicitly into
problem representations greatly improves clingcon performance.

In the same time, we observed that clingcon scales up better than clingo

and we attribute it to the fact that search in clingcon has to process smaller
search spaces due to limiting the scope of grounding. Thus, CASP promises to
become a milestone in declarative problem solving by providing the means of
solving ASP grounding bottleneck. However, based on our work, we believe that
to reach its full potential, CASP search methods need to incorporate learning
to a much larger degree than they do so now. Certainly, other factors may be of
importance, too, such as the enhanced communication between ASP and CSP
processes while solving. The effect of those factors still needs to be evaluated.

We also stress that when we claim better scalability of clingcon we have in
mind scalability with the size of weights (and cardinalities) going up. When we
increase the number of leaves (and keep weight small) we expect the picture most
likely would be different simply because of stronger search methods implemented
in clingo.

This research focused on a single problem. In order to study the degree to which
our findings are generizable, in the future work we will consider additional prob-
lems with large integer parameters and subject them to a similar study. On the
other hand, we will also consider in more depth the problem that inspired the
benchmark we considered here, the optimal join order problem, and study the ef-
fectiveness of ASP/CASP/CSP tools in solving it. This work is already under way.

The integration of ASP and CSP has received significant attention. Much of
that research focused on ideas developed in constraint logic programming (CLP)
[4,3,14], with the last of these papers presenting a comparison of CLP and ASP
systems. CLP tools show significant promise in solving search and optimiza-
tion problems. In particular, a CLP system B-Prolog6, was the best solver for
the Weight-Assignment Tree benchmark in the Third Answer Set Programming
Competition7. We intend to extend our study to include CLP systems such as B-
Prolog. However, taking directly advantage of the B-Prolog encoding used in the
competition is not possible as there are minor differences between the problem
that underlies the benchmark and the one we studied here.

Acknowledgments. We are grateful to Philip Cannata for bringing the prob-
lem of finding an optimal join order to our attention, to Vladimir Lifschitz and
Yuanlin Zhang for useful discussions related to the topic of this work, and to Max
Ostrowski for suggestions on clingcon encodings. We thank the reviewers for
suggesting relevant references. Yuliya Lierler was supported by a CRA/NSF 2010
Computing Innovation Fellowship, Miroslaw Truszczynski by the NSF grant IIS-
0913459, and Shaden Smith and Alex Westlund by the NSF REU Supplement to
that grant.
6 http://www.probp.com/
7 The winning B-Prolog encoding can be found at
http://www.sci.brooklyn.cuny.edu/~zhou/asp11/weightAssign.pl

http://www.probp.com/
http://www.sci.brooklyn.cuny.edu/~zhou/asp11/weightAssign.pl

Weighted-Sequence Problem 77

References

1. Balduccini, M.: Representing constraint satisfaction problems in answer set pro-
gramming. In: Proceedings of ICLP 2009 Workshop on Answer Set Programming
and Other Computing Paradigms, ASPOCP 2009 (2009)

2. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Communications of the ACM (2011), to appear in December 2011

3. Dovier, A., Formisano, A., Pontelli, E.: A Comparison of CLP(FD) and ASP Solu-
tions to NP-Complete Problems. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005.
LNCS, vol. 3668, pp. 67–82. Springer, Heidelberg (2005)

4. Elkabani, I., Pontelli, E., Son, T.C.: Smodels with CLP and Its Applications: A
Simple and Effective Approach to Aggregates in ASP. In: Demoen, B., Lifschitz,
V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 73–89. Springer, Heidelberg (2004)

5. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.:
A User Guide to gringo, clasp, clingo and iclingo (2010),
http://cdnetworks-us-2.dl.sourceforge.net/project/potassco/potassco

guide/2010-10-04/guide.pdf

6. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set
solving. In: Proceedings of 20th International Joint Conference on Artificial Intel-
ligence (IJCAI 2007), pp. 386–392. MIT Press (2007)

7. Gebser, M., Ostrowski, M., Schaub, T.: Constraint Answer Set Solving. In: Hill,
P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 235–249. Springer,
Heidelberg (2009)

8. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Kowalski, R., Bowen, K. (eds.) Proceedings of International Logic Programming
Conference and Symposium, pp. 1070–1080. MIT Press (1988)

9. Lewis, J.: Cost-Based Oracle Fundamentals. Apress (2005)
10. Lifschitz, V.: Answer set programming and plan generation. Artif. Intell. 138(1-2),

39–54 (2002)
11. Marek, V., Truszczyński, M.: Stable models and an alternative logic programming

paradigm. In: The Logic Programming Paradigm: a 25-Year Perspective, pp. 375–
398. Springer, Heidelberg (1999)

12. Mellarkod, V.S., Gelfond, M., Zhang, Y.: Integrating answer set programming and
constraint logic programming. Annals of Mathematics and Artificial Intelligence
(2008)

13. Niemelä, I.: Logic programs with stable model semantics as a constraint program-
ming paradigm. Annals of Mathematics and Artificial Intelligence 25, 241–273
(1999)

14. Dal Palù, A., Dovier, A., Pontelli, E., Rossi, G.: Answer Set Programming with
Constraints Using Lazy Grounding. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009.
LNCS, vol. 5649, pp. 115–129. Springer, Heidelberg (2009)

http://cdnetworks-us-2.dl.sourceforge.net/project/potassco/potassco_guide/2010-10-04/guide.pdf
http://cdnetworks-us-2.dl.sourceforge.net/project/potassco/potassco_guide/2010-10-04/guide.pdf

Practical and Methodological Aspects
of the Use of Cutting-Edge ASP Tools

Marcello Balduccini1 and Yuliya Lierler2

1 Eastman Kodak Company
marcello.balduccini@gmail.com

2 University of Kentucky
yuliya@cs.utexas.edu

Abstract. In the development of practical applications of answer set program-
ming (ASP), encodings that use well-established solvers such as CLASP and DLV

are sometimes affected by scalability issues. In those situations, one can resort to
more sophisticated ASP tools exploiting, for instance, incremental and constraint
ASP. However, today there is no specific methodology for the selection or use of
such tools. In this paper we describe how we used such cutting-edge ASP tools
on challenging problems from the Third Answer Set Programming Competition.
We view this paper as a first step in the development of a general methodology
for the use of advanced ASP tools.

Keywords: answer set programming, solvers, constraint ASP, incremental ASP.

1 Introduction

The Third Answer Set Programming Competition – 2011 [1] (ASPCOMP) included a
Model and Solve track. Within this track the teams were free to choose a specific declar-
ative solver and modeling technique for each problem. Answer set programming (ASP)
solvers were the primary focus. Nowadays, there are a number of well-established ASP
solvers such as CLASP [6], DLV [8], and cutting-edge solvers based on constraint and
incremental ASP (resp., CASP, IASP), such as EZCSP [3] and ICLINGO [5]. Well-
established solvers are robust and their use relies on a well-understood programming
methodology. On the other hand, in some circumstances the encodings for these sys-
tems have scalability issues. The extensions of ASP implemented by the solvers for
CASP and IASP aim at overcoming some of these issues. However, today there is no
specific methodology for the formalization of knowledge with such new tools, or even
for the selection of a suitable tool given the features of a domain.

In this paper we describe how we used CASP and IASP tools to tackle four challeng-
ing ASPCOMP benchmarks (Weight-Assignment, Reverse-Folding, Hydraulic-System-
Planning, and Airport-Pickup). Throughout our description, we provide methodological
considerations, both from the perspective of tool selection and of knowledge representa-
tion. Although the discussion in this paper is still oriented towards the specific problems
we solved, we view this effort as a first, necessary step towards a general methodology
for the use of advanced ASP tools.

C. Russo and N.-F. Zhou (Eds.): PADL 2012, LNCS 7149, pp. 78–92, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Practical and Methodological Aspects 79

Our decisions with respect to tool selection and modeling techniques were based
on problem statement analysis and performance assessments that we conducted on the
training instances available before the competition. Because the number of training in-
stances was rather small – ranging from 5 to 7 – we could not carry out a thorough
pre-competition performance assessment. Nonetheless, the evaluation gave us some
evidence [4] of the performance yielded by our encodings. After the competition we
conducted a post-competition performance assessment described in Section 7.

The structure of this paper is as follows. We begin with a short introduction on
ASP, CASP and IASP. Sections 3, 4, 5, and 6 provide the problem statements
and the specifications of the encodings for the Weight-Assignment, Reverse-Folding,
Hydraulic-System-Planning, and Airport-Pickup benchmarks, respectively. In Section 7
we discuss performance. In the final section we draw conclusions.

2 Background

Because of space considerations, in this section we only provide a short introduction
on ASP, CASP and IASP, and refer the reader to [7], [3] and [5], respectively for the
syntax and semantics of the corresponding languages.

ASP is a declarative programming paradigm based on the answer set semantics of
logic programs [7]. The idea of ASP is to represent a given problem by a program
whose answer sets correspond to solutions. A common programming methodology is
to design two main parts of a program: generate and test. The former defines a collection
of answer sets, seen as potential solutions. The latter consists of the rules that remove
the non-solutions. To distinguish the language in [7] from its extensions, we talk about
pure ASP, programs, and rules.

CASP extends the syntax and semantics of ASP with constraint processing elements.
It allows for new modeling features and novel computational methods that combine
traditional ASP procedures with constraint satisfaction (CSP) and constraint logic pro-
gramming (CLP) algorithms. CASP is especially useful in domains that pose constraints
over large numerical values. In such cases, grounding often becomes a bottleneck in the
pure ASP approach. EZCSP is an inference engine for CASP that allows a lightweight
integration of ASP and constraint programming. In the EZCSP terminology, an extended
answer set of a CASP program Π , is a pair consisting of an answer set of Π where some
of the atoms encode CSP constraints, and of a solution to these CSP constraints. Given
a program Π , the EZCSP solver computes one or more of Π’s extended answer sets.
The solver combines off-the-shelf ASP (e.g., CLASP) and CLP solvers (e.g., BPROLOG,
http://www.probp.com/). The architecture is such that first the ASP solver is
used to find an answer set A of a given CASP program Π . Then the CSP constraints
encoded by A are evaluated by the constraint solver. If the solver determines that the
constraints from A are not satisfiable, another answer set is computed and the process
repeats. Otherwise, A and a solution found by the constraint solver form an extended
answer set. If Π is a pure ASP program then EZCSP behaves as its underlying ASP
solver. Conversely, Π may also be a direct encoding of a CSP theory, and in this case
EZCSP behaves as its underlying constraint solver.

In certain domains, a numerical parameter can be identified that reflects the size
or complexity of a candidate solution. IASP extends pure ASP by allowing one to take

80 M. Balduccini and Y. Lierler

advantage of such a parameter (the growth parameter). The programmer is given means
to denote rules that are independent of the growth parameter (the base), rules whose
grounding should be computed incrementally in dependence of the value of the param-
eter (the cumulative part), and rules that should be grounded anew for each different
value of the parameter considered (the volatile part). An incremental answer set solver
such as ICLINGO first attempts to find a solution for a minimum value of the growth
parameter. If unsuccessful, it iteratively (1) increments this value, incrementally grows
the grounding of the cumulative part of the program, (2) re-grounds the volatile part,
and (3) checks again for a solution.

3 Weight-Assignment Benchmark

In the Weight-Assignment Benchmark, a binary tree with n leaves is considered, such
that (1) the leaves are pairs of integers 〈weight, cardinality〉; (2) the right child of an
inner node is a leaf; (3) each inner node is a pair 〈color, weight〉, where color is green,
red, or blue; (4) the inner nodes are numbered from 1 to n − 1; node n − 1 is the root
node; the left child of each inner node i is inner node i − 1. The weight of an inner
node k is computed as follows: (1) if the color of k is green, then weight(k) is the sum
of the weight and cardinality of k’s right child; (2) if the color of k is red, then its weight
is the sum of the weight of its right and left children; (3) if the color of k is blue, then its
weight is the sum of the cardinality of its right child and of the weight of its left child.
The task is to verify that there is a tree formed by the given leaves in accordance with (1-
4) so that the total weight of this tree – the sum of the weights of its inner nodes – is less
than or equal to a given integer maximum weight. Problem instances are specified by
the relations of the form leafWeightCard(l, w, c), num(n), and maxWeight(mv),
where l is a name of the leaf 〈w, c〉, n is a number of leaves, and mv is a maximum
weight. More detailed descriptions of the Weight-Assignment benchmark and also of
other benchmarks discussed in this paper are given on the ASPCOMP website [1].

Because of the abundance of constraints over numerical values, i.e., weights and
cardinalities of the leaves and inner nodes, this benchmarks lends itself to being solved
using EZCSP.

Hybrid ASP-CSP Encoding: let n and mv denote a number of leaves and a maximum
weight in a given weight-assignment problem instance, respectively. We say that a leaf
l occurs at position 1 ≤ p < n in the tree if it is the right child of an inner node p.
Furthermore, a position of an inner node is identified with a number associated with it,
i.e., 1 . . . n − 1. A leaf occurs at position 0 if it is the left child of an inner node 1. We
model the assignment of a leaf to position p by the relation assignedLeafPos(l, p)
that denotes that a leaf with the name l is assigned a position p. Set of rules (1) below
states that each leaf is assigned a unique position. Relation innerNodeColor(k, c)
denotes the fact that inner node k is assigned a color c. Rule (2) states that each inner
node (identified by its position) is assigned a single color.

1{assignedLeafPos(L,P) : position(P)}1 ← leafWeightCard(L,W,C).
← assignedLeafPos(L,P), assignedLeafPos(L′, P), L
= L′.

(1)

1{innerNodeColor(P, C) : color(C)}1 ← position(P), P
= 0. (2)

Practical and Methodological Aspects 81

The weight of an inner node k is modeled by a CSP variable weight(k), whose value
ranges from 0 to mv. In order to simplify the encoding of the constraints, we use CSP
variable weight(0) to denote the weight of the leaf at position 0. The corresponding
rules are:

cspvar(weight(K), 0, MV) ← num(N), K = 0..N − 1, maxWeight(MV).
required(weight(0) = W) ← assignedLeafPos(L,0), leafWeightCard(L,W, C).

The first rule declares the CSP variables of the form weight(k). The other rule encodes
a CSP constraint that determines the value of variable weight(0) to be the weight of the
leaf assigned position 0. The constraints on the weights of the inner nodes are encoded
by statements such as:

required(weight(P) = W + weight(P ′)) ←
position(P), P
= 0, P ′ = P − 1, innerNodeColor(P, red),
assignedLeafPos(L,P), leafWeightCard(L,W,C).

(3)

To compute the total weight of a tree, we introduce a set of auxiliary CSP variables of
the form innerWeight(k), where k ranges from 1 to n − 1. For every k in that range,
variable innerWeight(k) equals weight(k):

cspvar(innerWeight(K),0, MV) ← num(N), K = 1..N − 1, maxWeight(MV).
required(innerWeight(K) = weight(K)) ← num(N), K = 1..N − 1.
required(sum([innerWeight/1],≤, MV)) ← maxWeight(MV).

The last rule encodes a CSP constraint stating that the sum of the weights of the inner
nodes of the tree must be less than or equal to mv. We denote the program consisting
of the rules discussed so far by Π1(WA).

Encoding Analysis: in program Π1(WA), the generate part consists of the rules in (1)
and (2). The rest of the rules form the test part. Note that generation is formed by pure
ASP rules whereas testing is formulated using rules that contain CSP variables. Recall
the general architecture of the EZCSP system discussed in Section 2. It is not difficult to
see that in the worst-case scenario (for instance, when the problem is unsatisfiable)
EZCSP will generate and evaluate every possible combination of leaf-position/inner
node-color assignments during its search process. To avoid such behavior we restate
the generate part of the program so that the CSP solver of the EZCSP system is respon-
sible for both generate and test. Thus the encoding we discuss next can be viewed as a
CSP formalization of the weight-assignment problem by means of a CASP language.
We denote this encoding by Π2(WA).

CSP Formalization by Means of CASP: we begin by modeling the assignment
of a leaf to a position p by the CSP variable assignedLeaf(p). Since CSP vari-
ables have numerical values, we map the name l of a leaf 〈w, c〉 (given by
leafWeightCard(l, w, c)) to an integer id ranging from 1 to n and add an auxiliary
fact leafId(l, id) to a program. The EZCSP declaration of assignedLeaf(p) is:

cspvar(assignedLeaf(P),1, N) ← position(P), num(N). (4)

The fact that a leaf can only be assigned one position is compactly enforced by means
of a global constraint all different, encoded by

required(all different([assignedLeaf/1])). (5)

82 M. Balduccini and Y. Lierler

where the expression [assignedLeaf/1] denotes the list of the CSP variables formed
by function symbol assignedLeaf with arity 1. Rules (4) and (5) are the counterparts
of (1) in Π1(WA). The statement

cspvar(innerNodeColor(P), 0, 2) ← position(P). (6)

declares a CSP variable innerNodeColor(k) for each inner node k; the value of the
variable denotes the color assigned to k that ranges between 0 (representing color red)
and 2 (representing blue). The association between a color and its identifier is encoded
by a set of facts of the form colorId(c, id), where c is red, blue or green, and id is
its identifier. The declaration of innerNodeColor(k) is the counterpart of rule (2). As
in Π1(WA), the weight of an inner node k is modeled by a CSP variable weight(k).
The variable declaration remains the same, but the encoding of the requirements on
weight(k) is different. For instance, rule (3) becomes:

required((innerNodeColor(P) = REDID ∧ assignedLeaf(P) = ID) →
weight(P) = W + weight(P ′)) ←

position(P), P
= 0, P ′ = P − 1,
colorId(red,REDID), leafId(L, ID), leafWeightCard(L,W, C).

The rules for innerWeight are reformulated similarly. In order to improve perfor-
mance, the encoding also contains constraints that provide bounds for the value of the
weight of an inner node independently of the color of the node, such as:
required(assignedLeaf(P) = ID → weight(P) ≥

min(W + C, min(W + weight(P ′), C + weight(P ′)))) ←
position(P), P
= 0, P ′ = P − 1, leafId(L, ID), leafWeightCard(L,W,C).

4 Reverse-Folding Benchmark

In the Reverse-Folding benchmark, one manipulates a sequence of n pairwise connected
segments located on a 2D plane in order to take the sequence from the initial configura-
tion to the goal configuration specified. The ordering of the sequence and the fact that
the segments are connected to each other allows one to label each end point of a segment
either as a starting point or as an ending point. All segments have unary length, and are
parallel either to the x-axis or to the y-axis. In the initial configuration, the segments are
parallel to the y-axis and oriented so that the sequence extends in the direction of the
positive y-axis. The sequence is manipulated by rotating a segment around its starting
point by 90 degree (in either direction). This action is called pivot move. A pivot move
on a segment causes the segments that follow it to rotate around the same center of ro-
tation. Concurrent pivot moves are prohibited. At the end of a pivot move, the segments
in the sequence must not intersect. In the Reverse-Folding problem, one is given the
number n of segments (relation length), the goal configuration (relation fold(i, x, y),
where 1 ≤ i ≤ n and x, y are the coordinates of the ith starting point, or of the ending
point of the last segment for i = n), and an integer t (relation time). The task is to
find a sequence of exactly t pivot moves, which produces the goal configuration from
the initial configuration, satisfying the constraints cited above. A solution is encoded as
a set of atoms of the form pivot(t, i, r), saying that the tth pivot move rotates the ith

segment either clockwise (r = clock) or counterclockwise (r = anticlock).

Practical and Methodological Aspects 83

Simple Encoding: In writing an encoding that solves this benchmark, the first thing that
became apparent is that a minimum number of necessary pivot moves can be inferred
directly by observing the structure of the goal configuration. If two segments are at
an angle in the goal configuration, it is not difficult to prove that every solution to
the problem instance must contain a pivot move that rotates the second segment of
the pair. In order to infer such moves, we first define a relation segDirection(i, d, o),
which intuitively states that the ith segment in the goal sequence has direction d and
orientation o. For example, the rules for the segments parallel to the x-axis are:

segDirection(I, horiz, plus) ← X2 > X1, fold(I, X1, Y), fold(I + 1, X2, Y).
segDirection(I, horiz, minus) ← X2 < X1, fold(I, X1, Y), fold(I + 1, X2, Y).

Next, we define relation foldDirection(i, d), intuitively saying that in the goal config-
uration the ith segment is aligned with its predecessor (r = none), or rotated clockwise
or counterclockwise with respect to it (r = clock and r = anticlock, respectively). The
rules for r ∈ {none, clock} are:

foldDirection(I, none) ← segDirection(I − 1, D, O), segDirection(I, D, O).
foldDirection(I, clock) ← clockFold(D1, O1, D2, O2),

segDirection(I − 1, D1, O1), segDirection(I,D2, O2).
clockFold(vert, plus, horiz, plus). clockFold(horiz, plus, vert, minus). . . .

Finally, relation requiredFold(i, r) says that the ith segment must be rotated clock-
wise or counterclockwise:

requiredFold(I,R) ← R
= none, foldDirection(I, R).
In most cases, performing the pivot moves beginning from the end of the sequence
produces a solution. In this case, the pivot moves can be determined by the rules:

pivot(1, I,R) ← first(I), requiredFold(I,R).
pivot(T1, I1, R1) ← pivot(T, I2, R2), T1 = T + 1, next(I1, I2)

requiredFold(I1,R1), requiredFold(I2,R2).

where first(i) and next(i1, i2) enumerate the segments that are to be rotated, begin-
ning from the one closest to the end of the sequence. Because a solution to the Reverse-
Folding problem is required to contain exactly the specified number of moves, it may
happen that extra, irrelevant moves need to be generated. This can be achieved by alter-
nating clockwise and counterclockwise rotations of segment 1:

pivot(T1, 1, clock) ← numRequiredFolds(R), time(T),
T1 > R, T1 ≤ T, (T1 − R) mod 2 = 1.

Relation numRequiredFolds(r) says that r required folds were identified in the goal
configuration. The rule for anticlock is similar. Next, we ensure that there are no over-
lapping segments during the execution of the moves. To achieve this, we project the
effects of each move on the segments and check for an overlap. To reduce the size of
the grounding, we consider separately the effects of the rotations on the x and y coor-
dinates of the end points of the segments. The information is encoded by foldx(t, i, p)
and foldy(t, i, p), saying that the x (resp., y) coordinate of the ith end point before
move t is p. The effect of a move on the x coordinate of a segment is encoded by:

foldx(T1, I, Y − Y 1 + X1) ← foldy(T, I, Y), pivot(T, I1, clock), I ≥ I1,
T1 = T + 1, foldx(T, I1, X1), foldy(T, I1, Y 1).

foldx(T1, I, Y 1 − Y + X1) ← foldy(T, I, Y), pivot(T, I1, anticlock), I ≥ I1,
T1 = T + 1, foldx(T, I1, X1), foldy(T, I1, Y 1).

foldx(T1, I, X) ← foldx(T, I, X), pivot(T, I1, R), I < I1, T1 = T + 1.

(7)

84 M. Balduccini and Y. Lierler

The first two rules state the effect of clockwise and counterclockwise rotations on the
segments that follow the point where the rotation is applied. The last rule states that
the x coordinate of the other end points is unchanged. The definition of foldy is similar.
The following denial states that overlaps are not allowed to occur:

← foldx(T, I1, X1), foldy(T, I1, Y 1), foldx(T, I2, X1), foldy(T, I2, Y 1),
I1 < I2, pivot(T − 1, I3, R), I2 > I3.

The two inequalities in the denial are aimed at reducing the size of the grounding, the
former by exploiting symmetry considerations, and the second by preventing the denial
from considering segments that were not affected by the pivot move. Finally, relations
foldx and foldy are used to ensure that the goal configuration is eventually reached:

← time(T), T1 = T + 1, X1
= X2, foldx(T1, I, X1), fold(I, X2, Y 2).
← time(T), T1 = T + 1, Y 1
= Y 2, foldy(T1, I, Y 1), fold(I, X2, Y 2).

(8)

The program consisting of the rules discussed so far will be denoted by Π1(RF).

Encoding Analysis: Unfortunately, the presence of the pivot moves identified by
Π1(RF) is a necessary, but not always sufficient, condition to find a solution. In some
cases, executing the pivot moves beginning from the end of the sequence of segments
causes some segments to overlap, but the moves can be re-ordered so that no overlap
exists. In particular, it is often possible to find a solution by postponing one (suitable)
pivot move to the end of the sequence of moves. We call this the delayed-move case.
(To keep this presentation simple, other cases are not discussed.)

The delayed-move case can be handled by adding a choice rule for the selection of
one delayed move and modifying the definition of relation pivot so that the delayed
move is executed at the end of the sequence of moves. One such choice rule is:

0{ delayed(I) : requiredFold(I,D) }1.

Let Π2(RF) denote the modified program. The computation for Π2(RF) is substan-
tially slower than the computation for Π1(RF), with the performance of the grounding
process particularly affected. In Π2(RF) the grounder does not handle efficiently the
rules involving foldx and foldy, whose arguments have rather large numerical do-
mains. Recall that the definitions of foldx and foldy rely on relation pivot, whose
definition in Π2(RF) differs from the one in Π1(RF). Hence, we created a variant
Π3(RF) of Π2(RF) that takes advantage of CASP capabilities of EZCSP by encoding
constraints on foldx and foldy using CSP, such as:

required(foldxγ(T1, I) = foldyγ(T, I) − foldyγ(T, I1) + foldxγ(T, I1)) ←
pivot(T, I1, clock), T1 = T + 1, I ≥ I1.

5 Hydraulic-System-Planning Benchmark

In the Hydraulic-System-Planning benchmark, a hydraulic system is viewed as a di-
rected graph G. The nodes of G represent tanks, jets, and junctions. Tanks are either
empty or full. Each link between nodes is labeled by a valve. A valve can be opened
(by action switchon). Valves that are stuck cannot be opened. A node of G is called
pressurized in state S if it is a full tank or if there exists a path from some full tank to
this node such that all valves on the edges of this path are open. Furthermore, no path

Practical and Methodological Aspects 85

connecting two tanks exists and every jet is connected to at least one tank. An input for
this benchmark consists of a graph G, a specification of which tanks are full and which
valves are stuck (all valves are initially closed), and a set of goal jets. The goal is to find
a shortest sequence of switchon actions to pressurize the goal jets. In the sequence, no
actions can be executed concurrently.

The challenge in this benchmark is that the length of the sequence of actions must
be minimized. From a methodological standpoint, we approached the problem by first
writing a pure ASP encoding, and then addressing its performance by transforming it
into an ICLINGO program. For later reference, we label various sets of rules as we in-
troduce them. We define an important notion of viable path as a path in G such that no
valve along the path is stuck. Relation viablePath(j, n) formalizes this notion recur-
sively, restricting it to the goal jets for efficiency:

viablePath(J, J) ← goal(J).
viablePath(J,N ′) ← goal(J), viablePath(J,N), link(N ′, N, V), not stuck(V).

The following rules ensure that there is a viable path to a full tank for every goal jet:

canPressurize(J) ← goal(J), full(T), viablePath(J, T).
← goal(J), not canPressurize(J).

Let Π1(HP) denote all of the rules above. Next, we address the planning task in two
steps. In the first step we find the length of the shortest viable paths between each goal
jet and a full tank, and in the second step we determine a sequence of actions that opens
the paths of the given length. We begin by defining the notion of reachability in a given
number of steps, which again we restrict to goal jets for performance:

reachable(J, J, 0) ← goal(J).
reachable(J,N ′, S) ←

goal(J), reachable(J,N, S − 1), link(N ′, N, V), not stuck(V).

(9)

Using this relation, we can now define the notion of a pressure path of length k between
goal jet j and full tank t, i.e. a viable path of length k between j and t:

pressurePath(J,T, S) ← goal(J), full(T), reachable(J, T, S). (10)

We denote the set of rules (9) and (10) by Π2(HP). Next we describe the set of rules
that form Π3(HP). The length of the shortest paths from goal jet j to any full tank is
defined by:

shortestPath(J,Len) ←
goal(J), Len = #min[pressurePath(J,T, L) = L : full(T)].

Note that there may be multiple shortest paths for a goal jet. Therefore, we determine a
single shortest path for each jet. We begin by defining the notion of valves that can be
possibly used to open a shortest path for a given jet. We encode this notion recursively
using relation poss use valve(j, n, v, s), which states that at the end of the path from
j to node n of length s, valve v can be possibly used:

poss use valve(J,N, V, S − 1) ← goal(J), shortestPath(J,S), full(T), link(T, N, V),
reachable(J, T, S), reachable(J,N, S − 1).

poss use valve(J,N2, V 2, S − 1) ← goal(J), poss use valve(J, N1, V 1, S),
reachable(J,N2, S − 1), link(N1, N2, V 2).

86 M. Balduccini and Y. Lierler

The recursion intuitively enumerates the valves moving from a tank towards a goal jet.
The first rule encodes the base case and says that if the shortest paths for jet j have
length s and a full tank t is reachable from j in s steps, then for any node n connected
to t and reachable from j in s − 1 steps, the connecting valve v can be used at the end
of the path from j to n. The second rule states that, if valve v1 can be possibly used at
the end of the path from j to n1 of length s, then for any node n2 reachable from j in
s− 1 steps and directly connected to n1 by valve v2, v2 can be possibly used at the end
of the path to n2 of length s − 1.

The selection of valves to be used is also performed recursively. We begin by consid-
ering, for each jet j, all paths of length 0. We select exactly one valve among the valves
that can be possibly used at the end of each of those paths:

1{ use valve(J,N, V, 0) : poss use valve(J,N, V, 0) }1 ← goal(J).

Next, given the decision to use valve v at the end of the path from j to n of length s, we
identify the node, n′, connected to n by v, and select exactly one valve among the ones
that can be possibly used at the end of the path from j to n′:

1{ use valve(J, N2, V 2, S + 1) : poss use valve(J,N2, V 2, S + 1)
: link(N2, N1, V 1) : not tank(N2) }1 ←

goal(J), shortestPath(J,MS), use valve(J,N1, V 1, S), S < MS − 1.

Finally, we generate the corresponding switchon actions. Because the actions cannot
be executed concurrently, we produce a global ordering of the actions. This is achieved
by, first, ordering the goal jets (in lexicographic order according to their name). Second,
we schedule the execution of the actions for the first jet, followed by the actions for the
second jet, and so on. We define relation num prevActions(j, n), which states that n
is the number of actions to be executed before the first action for goal jet j takes place:

num prevActions(J,NP) ← goal(J),
NP = #sum[shortestPath(J1,N) = N : J1 < J].

At this point, the switchon actions for a jet j are scheduled to progressively open the
path beginning from the tank that has been selected to feed j:

switchon(V, S − LS − 1 + NP) ← goal(J), shortestPath(J,S),
num prevActions(J,NP), use valve(J,N, V, LS).

This concludes the description of Π3(HP).

Encoding Analysis: It is not difficult to see that the program Π(HP) consisting of
Π1(HP) – Π3(HP) may not scale well. As the size of the graph grows, the number
of possible paths of arbitrary length may grow dramatically, leading to an explosion in
the grounding. However, because the goal is to find a shortest path for each goal jet,
the search performed by Π(HP) could be intuitively done in an incremental fashion.
Among the ASP tools available, ICLINGO[5] offers a simple way to deal with programs
that involve an incremental search, and program Π(HP) lends itself to being extended
to exploit the features of ICLINGO.

Practical and Methodological Aspects 87

IASP Encoding: First, we identify the set Π ′
b(HP) of rules that define the base of the

program. Π ′
b(HP) consists of Π1(HP) together with the first rule in (9). The presence

of Π1(HP) is particularly important from the point of view of performance, because it
allows to identify a problem instance that has no solution without performing any iter-
ation of the search. Let s denote the growth parameter. The cumulative part, Π ′

c(HP),
of the program includes a number of elements. First, Π ′

c(HP) includes a modification
of the second rule in (9) and rule (10) where these two rules contain an additional con-
dition S = s. This allows us to restrict the grounding of the rules to only the paths of
the length considered by the current iteration of the search. The semantics of the rules
changes so that now they define, respectively, reachability in exactly s steps and the
presence of a pressure path of length s. The overall meaning of the relations remains
unchanged because the cumulative part of an ICLINGO program is implicitly quantified
over all of the possible values of the growth parameter.

Next, we add to Π ′
c(HP) rules aimed at detecting when the length of the shortest

paths for all goal jets can be computed. This detection was not needed in the pure ASP
program, but is used here to terminate the iterations of the search process:

¬orphan(J, s) ← goal(J), S ≤ s, pressurePath(J,T, S).
orphans(s) ← goal(J), not ¬orphan(J, s).
all jets fed(s) ← not orphans(s).

The key notion defined by the above rules is that of an orphan goal jet. A goal jet j
is orphan of rank s if no pressure path of length s or less exists for j. The second rule
determines if there are still orphans of rank s. The last rule states that all jets fed(s)
holds if no orphans of rank s exist.

Finally, Π ′
c(HP) includes Π3(HP) modified by adding to each rule the condition

all jets fed(s). This modification ensures that the rules are considered only if pressure
paths of length s or less exist for every goal jet.

The volatile part Π ′
v(HP) of the program contains the denial ← orphans(s), which

states that it is impossible for the iterative search to terminate at step s if orphans of rank
s exist. This constraint forces the iterative search to continue until pressure paths have
been found for every goal jet. Once these have been found, the rules in Π ′

c(HP) select a
shortest path for each goal jet and determine a suitable sequence of switchon operation.
By Π ′(HP) we denote the union of Π ′

b(HP), Π ′
c(HP), and Π ′

v(HP). Answer sets
of Π ′(HP) encode solutions to the problem instances.

6 Airport-Pickup Benchmark

In the Airport-Pickup benchmark, one must solve resource-based planning problems
that involve objects moving between locations. More precisely, a city is represented by
a weighted undirected graph G. The nodes of G represent locations where exactly two
of them are airports. Some locations may contain gas stations. The arcs of G represent
direct connections between the locations and are labeled with an integer corresponding
to the amount of gas required to travel between them. The problem also involves a set
of vehicles and a set of passengers. A vehicle can initially be at any location, and can
travel from its current location, l, to any location connected to l as long as it has enough

88 M. Balduccini and Y. Lierler

gas. A problem instance specifies the amount of gas in each vehicle originally. Each
passenger is initially located at an airport, and his goal is to reach the other airport.
Passengers can move between locations only by vehicle. Vehicles can pick up and drop
off passengers, but only one passenger at a time can ride a vehicle. Finally, vehicles can
fill their tanks at a gas station. The goal is to find a sequence of actions that takes each
passenger to its goal destination.

This benchmark is interesting because the large size of the corresponding search
space makes it difficult to solve it efficiently using a single call to a solver. In our
initial evaluation we could not find any such “monolithic” encoding that would scale
to the training instances provided for ASPCOMP. For this reason, we decided to adopt
an approach in which the problem is divided into sub-problems, and multiple calls to
solvers are used. It is important to stress that this approach, although not frequently
discussed in the literature, can be extremely useful in practical applications of ASP.

Our solution of the Airport-Pickup benchmark is based on an architecture con-
sisting of a main module, tackling the overall search problem, and of a number of
auxiliary modules, to which the main module delegates the solution of various sub-
problems. This allows us to limit the size of the grounding of the programs, and at the
same time makes it possible to use the language/solver best suited for each module.
The main module, Π1(AP), employs an extension of ASP developed for controlling
the interactions among modules [2]. To keep the presentation simple we abstract from
the technical details of the control structure, and describe Π1(AP) as a pure ASP
program.

The first task performed by the main module is a preliminary check to ensure that,
in the initial state of the domain, each passenger can be reached by at least one vehicle,
and that the vehicle can then reach the passenger’s destination. (Reachability also takes
into account the amount of gas initially in the vehicle and the amount of gas needed to
travel between locations.) This check is done by formulating a sub-problem Π2(AP, p)
for each passenger p, so that Π2(AP, p) is consistent if-and-only-if p can be reached by
some vehicle and then driven to his destination. The main module’s task is then reduced
to verifying whether all Π2(AP, p)’s are consistent. The passenger that is to be consid-
ered is specified by an atom of the form selected(p). The main rules of Π2(AP, p)
are:

1{ assigned(P,V) : vehicle(V, M) }1 ← selected(P).
← not pass reachable from start.
← not destination reachable from passenger.

pass reachable from start ← p location(S), reach from start(S,G).

The first rule states that exactly one vehicle should be assigned to drive the selected
passenger. The two denials require that the assigned vehicle can reach the passenger
from its initial location and can subsequently drive the passenger to his destination. As
a result, Π2(AP, p) ∪ {selected(p)} has an answer set if and only if passenger p can
be reached by at least one vehicle that satisfies these requirements. The last rule defines
reachability of the passenger in general terms of reachability of a location from the
vehicle’s initial location (with a certain amount of gas left at the end of the trip). Re-
lation destination reachable from passenger is defined in a similar way. Relation
reach from start(s, g) is defined by the rules:

Practical and Methodological Aspects 89

reach from start(S,G) ← start(S), gas(G).
reach from start(Y,G − C) ← reach from start(X,G), connected(X, Y, C), G ≥ C.
reach from start(X,T) ← reach from start(X,G), gasstation(X), tank(T).
start(S) ← assigned(P,V), vehicle at(V, S).

The relation is formalized recursively. The first rule encodes the base case, and states
that the start is reachable without using any gas. The next rule encodes the recursive
step, and says that any location connected to the current location is reachable if enough
fuel is left in the vehicle’s tank; the amount of fuel in the tank at the end of the leg
takes into account the cost of driving to the new location. The third rule considers the
availability of a gas station and states that, if the current location is reachable from the
start and has a gas station, then it is reachable from the start with a full tank left at
the end of the trip. The last rule determines the start location of the vehicle currently
assigned to the passenger; the rules for relations gas and tank are similar.

If the preliminary test implemented by Π2(AP, p) succeeds, then Π1(AP) proceeds
with the next phase of the search. In this phase, Π1(AP) maintains the current locations
of passengers and vehicles and the gas level in the tank of each vehicle. The program
selects one passenger p and assigns to him a vehicle v capable of taking him to his
destination. The state of the domain is then updated according to the effects of driving p
to his destination using v. Note that at this stage of the search we are only concerned
with final locations of the objects and gas levels, and abstract from the low-level actions
that need to be performed to drive p to his destination. At this point, the process repeats:
Π1(AP) selects another passenger, assigns him a vehicle, and the search continues.

Whenever no vehicle can be found for driving a currently selected passenger, the
search backtracks. To improve performance, the selection of passengers and vehicles is
guided by a heuristic that prefers to use vehicles that are already at a passenger’s current
location. This is implemented by the rules:

1{ use at passenger, ¬use at passenger }1 ← ¬all at destination.
← use at passenger,not some already at passenger.
#minimize[use at passenger = 1, ¬use at passenger = 2].

The first rule states that if not all passengers are at their destinations, then it is possible
to select between using vehicles that are at a passenger’s location and vehicles that are
not. The second rule states that it is impossible to require the use of a vehicle that is at
a passenger’s location if no vehicle is at this location. The last rule (from a language
extension of CLASP) states that choosing to use vehicles that are not at a passenger’s
location has a penalty. The selection of a passenger and a vehicle is performed by the
rules:

1{ assigned(P,V) : passenger(P) : not at destination(P)
: vehicle(V, M) : good(V, P) : already at passenger(V,P) }1 ←

¬all at destination, use at passenger.

1{ assigned(P,V) : passenger(P) : not at destination(P) : vehicle(V, M)
: good(V,P) }1 ← ¬all at destination, ¬use at passenger.

Both rules state that exactly one pair 〈p, v〉 must be selected. In the first rule, the selec-
tion is among the pairs for which p and v are at the same location. In the second rule,

90 M. Balduccini and Y. Lierler

this restriction is lifted. Next, Π1(AP) verifies the reachability of p from v’s location
(if necessary) and of p’s destination after v has picked up p. The rules for the definition
of reachability are the same as used in Π2(AP). Note that multiple paths may exist that
allow v to drive p to his destination. For this reason, we consider only best paths, i.e.
those that leave the largest amount of gas in v’s tank at the end of the path. Note that if a
solution to the main problem cannot be found by using best paths, then no solution can
be found even if the condition is lifted. Considering explicitly multiple paths, in general,
involves an amount of backtracking that would make performance unacceptable.

At this stage of the search, we focus on finding the amount of gas left that character-
izes the best path. The amount is determined in two steps. First, relation best d1 gas(g)
says that bg is the largest amount of gas left in v’s tank after it has reached p’s location:

best d1 gas(BG) ← p location(D), BG = # max[reach from start(D,G) = G].

It should be noted that in the definition of destination reachable from passenger
used in Π2(AP, p), the amount determined by best d1 gas is used as the initial gas
level for the trip to the passenger’s goal location. We then define the similar relation
best dest gas(g):

best dest gas(BG) ← destination(D), BG = # max[reach from d1(D, G) = G].

The value g for which best dest gas holds is the amount of gas left in v’s tank after
driving p to the airport along the best path.

Once Π1(AP) has determined a sequence of passenger-vehicle selections that suc-
cessfully takes all passengers to their respective destinations, the sequence of actions to
be performed for each passenger-vehicle pair is determined by means of another pro-
gram, Π3(AP). The program Π3(AP) (i) takes as an input a pair 〈p, v〉 and the current
state of the domain, and (ii) finds the sequence of actions corresponding to the best path
for 〈p, v〉. The program is called iteratively for each passenger-vehicle assignment de-
termined earlier by Π1(AP). Between calls, Π1(AP) updates the state of the domain
according to the sequences generated by Π3(AP).

As in the Hydraulic-System-Planning benchmark,Π3(AP) is written in the language
of ICLINGO, using the maximum length of the paths considered as the growth parameter.
The search revolves around the notion of extension of input graph G for vehicle v: a
directed graph whose nodes are pairs 〈l, g〉, where l is a location and g is an integer
specifying an amount of gas. A pair 〈l, g〉 belongs to the extension E of G if l can
be reached from the current location of v (in the current state of the domain) with an
amount of gas g left in the tank. In Π3(AP), we consider paths in E of increasing length
until we find the best path. The paths are represented by arc(l, lg, n, ng, i), stating that
the ith element of a path is the arc from 〈l, lg〉 to 〈n, ng〉. The base of Π3(AP) is:

arc(S,SG, X, SG − C, 1) ← start(S), gas(SG), connected(S, X, C), SG ≥ C.
arc(S,SG, S, T, 1) ← start(S), gas(SG), gasstation(SG), tank(T).

The rules define the first arc of each path in E, with the second rule dealing with the case
in which the vehicle is refueled at the start. The cumulative part of Π3(AP) determines
the ith arc in each path, where i is the growth parameter:

Practical and Methodological Aspects 91

arc(X,G1, Y, G1 − C, i + 1) ← arc(Z, G0, X, G1, i), connected(X, Y, C), G1 ≥ C.
arc(X,G1, X, T, i + 1) ← arc(Z, G0, X, G1, i), gasstation(X), tank(T).

The cumulative part also includes the definition of relation at dest(i), saying that there
exists a path of length i that leads v to the destination location (after picking up p) in
such a way that the intended amount of gas is left in v’s tank:

at dest(i) ← arc(X, G, D, BG, i), destination(D), best dest gas(BG).

Relation at dest is the key to detecting when the best path has been found. Finally,
the volatile part of Π3(AP) contains a denial ← not at dest(i). which intuitively
forces the iterations to continue until the best path has been found. Once that occurs,
the corresponding sequence of actions is generated by re-tracing the best path from its
end, with the same approach used in the Hydraulic-System-Planning benchmark. By
Π(AP) we denote Π1(AP)-Π3(AP).

7 Performance Assessment

In order to evaluate how well our tool selection and modeling techniques fared in the
competition, we conducted a series of experiments on the competition instances (made
publicly available after the end of ASPCOMP). All experiments were performed on a
computer with an Intel i7 processor running at 3 GHz, 4 GB RAM and FedoraCore
11. The systems used were GRINGO 3.0.3, CLASP 1.3.7, ICLINGO 3.0.3 (with CLASP

1.3.5), BPROLOG 7.4 and EZCSP 1.6.20b33. Our goal was to compare the performance
of our encodings with that of the pure ASP encodings made available by the ASPCOMP
organizers1 [1] and run using CLASP. Below, we label the pure ASP encodings by Πb(·)
(e.g. Πb(WA) is the pure ASP encoding for the Weight-Assignment benchmark). For
Reverse-Folding benchmark no pure ASP encoding was available. We use Π2(RF)
as the baseline. The timeout for each run was 600 seconds. The average times were
computed by considering only the instances that did not time out.

Table 1. Performance comparison (T/O stands for number of timeouts)

WA RF HP AP
Π2(WA) Πb(WA) Π3(RF) Π2(RF) Π ′(HP) Πb(HP) Π(AP) Πb(AP)

Total 3.49 2158.44 88.61 9000.00 2.07 47.25 302.71 7077.21
T/O 0 0 0 15 0 0 0 7
Avg 0.23 143.90 5.91 – 0.16 3.63 20.18 359.65

The results (see Table 1) show that the encodings developed in this paper are substan-
tially faster than the baseline encodings. In no case our encodings timed out, whereas
the baseline encodings timed out a total of 22 times. The time taken by our encod-
ings was between 1 and 3 orders of magnitude better than that of the baseline en-
codings, which is even more impressive considering that the instances that timed out

1 In these encodings we replaced all disjunctive rules by suitable choice rules.

92 M. Balduccini and Y. Lierler

were not used in computing the average times. We believe that the post-competition
results clearly demonstrate the superior performance and scalability yielded by the
encodings we developed. Detailed tables can be found on the EZCSP web page
(http://marcy.cjb.net/ezcsp) together with the encodings described in this paper.

8 Conclusions

In this paper we have described our solutions to four challenging ASPCOMP problems.
The solutions involved non-trivial use of solvers for CASP and IASP – selected out
of concerns for the scalability of the pure ASP solutions. Currently no programming
methodology exists for these tools. We hope that our description has provided an out-
line of the methodology we followed and that this, albeit being expressed at this point
in problem-specific terms, may constitute a first step in the development of a general
methodology for the use of such advanced ASP solvers.

Acknowledgments. The idea to use irrelevant moves in the Reverse-Folding bench-
mark is by Selim Erdogan, who also gave valuable suggestions on this paper and was a
member of the EZCSP team at ASPCOMP. Yuliya Lierler was supported by a CRA/NSF
2010 Computing Innovation Fellowship.

References

1. Third answer set programming competition (2011),
https://www.mat.unical.it/aspcomp2011/

2. Balduccini, M.: A General Method To Solve Complex Problems By Combining Multiple
Answer Set Programs. In: ICLP 2009 Workshop on Answer Set Programming and Other
Computing Paradigms (ASPOCP 2009) (July 2009)

3. Balduccini, M.: Representing Constraint Satisfaction Problems in Answer Set Programming.
In: ICLP 2009 Workshop on Answer Set Programming and Other Computing Paradigms
(ASPOCP 2009) (July 2009)

4. Balduccini, M., Lierler, Y.: ASP-Based Problem Solving with Cutting-Edge Tools. In: ICLP
2011 Workshop on Answer Set Programming and Other Computing Paradigms (ASPOCP
2011), pp. 14–28 (July 2011)

5. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: Engineering
an Incremental ASP Solver. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS,
vol. 5366, pp. 190–205. Springer, Heidelberg (2008)

6. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-Driven Answer Set Solving.
In: Veloso, M.M. (ed.) Proceedings of the Twentieth International Joint Conference on Arti-
ficial Intelligence (IJCAI 2007), pp. 386–392 (2007)

7. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases.
New Generation Computing 9, 365–385 (1991)

8. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
System for Knowledge Representation and Reasoning. ACM Transactions on Computational
Logic 7(3), 499–562 (2006)

https://www.mat.unical.it/aspcomp2011/

Efficient Tabling of Structured Data

Using Indexing and Program Transformation

Christian Theil Have and Henning Christiansen

Research group PLIS: Programming, Logic and Intelligent Systems
Department of Communication, Business and Information Technologies

Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
{cth, henning}@ruc.dk

Abstract. Tabling of structured data is important to support dynamic
programming in logic programs. Several existing tabling systems for Pro-
log do not efficiently deal with structured data, but duplicate part of the
structured data in different instances of tabled goals. As a consequence,
time and space complexity may often be significantly higher than the the-
oretically optimal. A simple program transformation is proposed which
uses an indexing of structured data that eliminates this problem, and
drastic improvements of time and space complexity can be demonstrated.
The technique is demonstrated for dynamic programming examples ex-
pressed in Prolog and in PRISM.

1 Introduction

Tabling in logic programming systems is an established technique which can
give a significant speed-up of program execution and make it easier to write
efficient programs in a declarative style. Basically, tabling means that the system
maintains a table of calls and their answers and each time a new call is entered,
it is checked if it (or a perhaps more general call, cf. [15]) is stored in the table
already; if so, there is no need to execute it again and a previously found solution
is used. It is included in several recognized Prolog systems such as B-Prolog [17],
XSB [13] and YAP [7].

However, we can demonstrate that these systems may waste unnecessary time
and space for copying and matching structures in situations where operations
on single pointers could have been used instead. This can be the case when a
program is called with a huge, ground structure as one of its arguments, and this
argument is decomposed into sub-structures which are tabled independently.

In addition to pointing out the problem, we can show how it can be bypassed
by a straightforward program transformation and a few auxiliary predicates that
can be written in plain Prolog. A significant speed-up is demonstrated for se-
lected test programs. In a longer perspective, we advocate such techniques be
incorporated into logic programming systems with tabling such as those men-
tioned, where it can be implemented at a lower level where machine address
pointers are available rather that using a high-level “simulation” of pointers as
we do here.

C. Russo and N.-F. Zhou (Eds.): PADL 2012, LNCS 7149, pp. 93–107, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

94 C. Theil Have and H. Christiansen

Our own background for working with this problem is work on analysis of
biological sequence data using the probabilistic-logic system PRISM [8] which is
implemented on top of B-Prolog and which is heavily dependent on its tabling
mechanism. Together with another general program transformation based tech-
nique that we have developed [2], which improves the performance of tabling
in the presence of non-discriminatory arguments, the technique described in the
present paper increases significantly the size of sequences that can be meaning-
fully analyzed by means of PRISM programs.

Section 2 introduces the problem with tabling of structured data through
an example. Section 3 describes an indexed representation of structured data
that circumvents the problem, and section 4 demonstrates the effect for two
problems, a dynamic programming problem in Prolog in section 4.1 and a PRISM
program in section 4.2. Section 5 describes a general and automatic program
transformation. Section 6 discuss limitations of our approach. Section 7 describes
related work and section 8 sums up and discuss future work.

2 The Trouble with Tabling Structured Data

In this section we empirically demonstrate that all major Prolog tabling sys-
tems have a problem with structured data. Through the benchmarking of an
implementation of the last/2 predicate — which traverses a list to find the
last element — we observe that when this predicate is tabled, time and space
complexity is far worse than without tabling.

The following is a straight-forward implementation of the last/2 predicate.

last([X],X).
last([_|L],X) :-

last(L,X).

If last/2 is called with a list L of length N , e.g. last(L,), then the expected
time-complexity of this implementation is clearly O(N). However, if the predi-
cate is tabled, then the tabling system may have to store N partial copies of the
list, e.g. the first copy will be the full list, the second copy will just store N − 1
elements, and so on until every possible tail down to the last element of the list
has been tabled. This results in O(N2) tabled list elements.

Naive copying of the lists hence make the tabled version of last/2 (at least)
quadratic — with regard to both time and space consumption — rather than
linear as in the non-tabled version. Tabling systems do employ some advanced
techniques to avoid the expensive copying and which may reduce memory con-
sumption and/or time complexity. For instance, B-Prolog uses hashing of goals
[18], XSB uses a trie data structure [13] and Yap [7] uses a trie structure, which
in [6] is refined into a so-called global trie which applies a sharing strategy for
common subterms whenever possible. This can reduce space consumption, but
since there is no sharing between the trie and the actual arguments of an ac-
tive call, each execution of a call may typically involve a full traversal of its
arguments.

Efficient Tabling of Structured Data 95

Nevertheless, as can be witnessed from Figure 1, all tabling systems pay a
price for structured data in either time or space. The figure shows time and
space consumption for last(L,) with varying sizes of L, where L is either a list
of consecutive ones or a list of random numbers generated using the following
simple random number generator.

random_list(0,_,[]).
random_list(N,Prev,[X|L]):-

B is (9381*Prev + 12345) mod 32768,
X is B mod 12,
N1 is N-1,
random_list(N1,B,L).

The nature of the data seems highly relevant. For instance, YAP and XSB per-
forms better with repeated data and B-Prolog performs better with random data.
As can be observed from Figure 1 plots a and c, time complexity is larger than
linear in all cases, but varies depending the type of data. Space consumption is
linear for repeated data in XSB and YAP, but for B-Prolog it is linear regardless
of the type of data. The best time complexity is observed for B-Prolog with ran-
dom data but as can be observed in plot c it is still super-linear. XSB and YAP
show a different pattern where the time complexity seems to be more closely cou-
pled to space complexity. For repeated data they are more time-efficient than
B-Prolog but still significantly slower than B-Prolog with random data and still
distinctively super-linear.

3 A Workaround and Its Implementation in Prolog

We present here a workaround that results in O(1) time and space complexity for
table lookups for programs with arbitrarily large ground structured data as input
arguments. A term is represented as a set of facts, each representing a subterm
which is referenced by a unique integer serving as an abstract pointer. Matching
related to tabling is done solely by comparison of such pointers, independently
of the underlying system. The representation is given by the following predicates
which all together can be understood as an abstract datatype.

store term(+ground-term, pointer)
The ground-term is any ground term, and the pointer returned is a unique
reference (an integer) for that term.

retrieve term(+pointer, ?functor, ?arg-pointers-list)
Returns the functor and a list of pointers to representations of the substruc-
tures of the term represented by pointer.

full retrieve term(+pointer, ?ground-term)
Returns the term represented by pointer.

More precisely, it must hold for any ground term s, that the query

store term(s, P), full retrieve term(P, S),

96 C. Theil Have and H. Christiansen

0 500 1000 1500 2000 2500 3000

0
1

2
3

4

a) Time usage

list length (N)

tim
e

us
ag

e
(s

ec
on

ds
)

XSB (random data)
B−Prolog (random data)
Yap (random data)
XSB (repeated data)
B−Prolog (repeated data)
Yap (repeated data)

0 500 1000 1500 2000 2500 3000

0
50

00
00

10
00

00
0

15
00

00
0

20
00

00
0

b) Space usage

list length (N)

sp
ac

e
us

ag
e

(k
ilo

by
te

s)

XSB (random data)
B−Prolog (random data)
Yap (random data)
XSB (repeated data)
B−Prolog (repeated data)
Yap (repeated data)

0 10000 20000 30000 40000 50000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

c) Time usage expanded for the three lower curves

list length (N)

tim
e

us
ag

e
(s

ec
on

ds
)

B−Prolog (random data)
XSB (repeated data)
Yap (repeated data)

0 5000 10000 15000

0
20

00
40

00
60

00
80

00
10

00
0

d) Space usage expanded for the four lower curves

list length (N)

sp
ac

e
us

ag
e

(k
ilo

by
te

s)

B−Prolog (random data)
XSB (repeated data)
B−Prolog (repeated data)
Yap (repeated data)

Fig. 1. Plot a) shows the time consumption of different Prolog engines for running
tabled last/2 with lists of length N and plot b) shows the table space usage. Table
space usage is measured using the statistics/1 predicate (which is different for each
Prolog). In Yap it includes no specific measurement of ”table space” and we measure
instead the ”program space” which is taken to include the table space. Random data
means that the list contained random integers and in the repeated data means that
the lists containing the same integer repeated N times. Plot c) and d) shows time and
table space usage for the curves in a) and b) that looks flat because of the scale, but
expanded for larger values of N . The curve of B-Prolog for repeated data in plot d) is
truncated at 5000 due to its long running time for larger values.

Efficient Tabling of Structured Data 97

assigns to the variable S a value identical to s. Furthermore, it must hold for
any ground term s of the form f(s1, . . . ,sn) that

store term(s, P), retrieve term(P, F, Ss),

assigns to the variable F the symbol f , and to Ss a list of ground values
[p1,. . .,pn] such that additional queries

full retrieve term(pi, Si), i = 1, . . . , n

assign to the variables Si values identical to si.

Example 1. The following call converts the term f(a,g(b)) into its internal
representation and returns a pointer value in the variable P.

store_term(f(a,g(b)),P).

After this, the following sequence of calls will succeed.

retrieve_term(P,f,[P1,P2]),
retrieve_term(P1,a,[]),
retrieve_term(P2,g,[P21]),
retrieve_term(P21,b,[]),
full_retrieve_term(P,f(a,g(b))).

Example 2. One possible way of implementing the predicates introduced above
is to have store term/2 asserting facts for the retrieve term/3 predicate using
increasing integers as pointers. Then the call store term(f(a,g(b)),P) consid-
ered in example 1 may assign the value 100 to P and as a side-effect assert the
following facts.

retrieve_term(100,f,[101,102]).
retrieve_term(101,a,[]).
retrieve_term(102,g,[103]).
retrieve_term(103,b,[]).

Notice that Prolog’s indexing on first arguments ensures a constant lookup time.

Example 3. In an application for which large numbers of identical subterms are
expected, the representation can exploit this for sharing, so for example the term
h(very(large,sub(term)), very(large,sub(term)))may be represented by
the pointer value 200 and the following facts.

retrieve_term(200,g,[201,201]).
retrieve_term(201,very,[...]).
...

This will increase the time complexity for store term/2 but the advantages are
i) storage consumption is reduced, and more importantly ii) an additional – and
for the right sort of application programs drastic – speed-up may be obtained
from the improved utilization of tabling that this automatically implies.

98 C. Theil Have and H. Christiansen

Finally we introduce a utility predicate which may simplify the use of the rep-
resentation in application programs. It utilizes a special kind of terms, called
patterns, which are not necessarily ground and which may contain subterms of
the form lazy(variable).

lookup pattern(+pointer, +pattern)
The pattern is matched in a recursive way against the term represented by
the pointer p in the following way.
– lookup pattern(p,X) is treated as full retrieve term(p,X).
– lookup pattern(p,lazy(X)) unifies X with p.
– For any other pattern =.. [F,X1,. . .,Xn] we call

retrieve term(p, F, [P1,. . .,Pn])
followed by lookup pattern(Pi,Xi), i = 1, . . . , n.

Example 4. Continuing example 2, we get that

lookup_pattern(100, f(X,lazy(Y)))

leads to X=a and Y=102.

The lookup pattern/2 predicate simplifies the program transformation intro-
duced in section 5 although further efficiency can be gained by compiling it out
for each specific pattern.

4 Examples

The impact of indexing for ground arguments with tabled execution is evaluated
through two experiments. Firstly, we compare the performance of existing Prolog
systems with tabling for a simple edit distance problem. The second experiment
is related to our driving motivation – biological sequence analysis in PRISM,
exemplified for probabilistic inference with Hidden Markov Models. All experi-
ments were run on a MacBook Pro with a 2.53 GHz Intel core 2 Duo processor,
4 GB memory and Mac OS X version 10.6.8 (Snow Leopard).

4.1 Example: Edit Distance

We consider a minimal edit-distance algorithm written in Prolog which is depen-
dent on tabling for any non-trivial problem. Time and space consumption are
measured for increasing problem sizes in the three major tabling systems with
and without our indexed representation.

Edit-distance is the textbook example dynamic programming. In the classic
imperative formulation of the problem, a matrix with N2 values is calculated,
such that the calculation of the value for each cell is a constant time operation
that depends on at most three other cells. The theoretical best time complexity
of edit distance has been proven to be O(N2) [16]. Dynamic programming prob-
lems exhibit optimal sub-structure which implies that partial solutions can be
reused rather than recomputed [1]. Tabling supports dynamic programming since

Efficient Tabling of Structured Data 99

resolved goals are kept in a table and reused rather than re-derived if the tabled
goals are called again. The following Prolog program implements minimal edit
distance between two lists; given two lists L1 and L2, the call edit(L1, L2,D)
will return the minimal number of edits (substitutions,insertions and deletions)
needed to change one of the lists into the other.

:- table edit/3.

edit([],[],0).

edit([],[Y|Ys],Dist) :-
edit([],Ys,Dist1),
Dist is 1 + Dist1.

edit([X|Xs],[],Dist) :-
edit(Xs,[],Dist1),
Dist is 1 + Dist1.

edit([X|Xs],[Y|Ys],Dist) :-
edit([X|Xs],Ys,InsDist),
edit(Xs,[Y|Ys],DelDist),
edit(Xs,Ys,TailDist),
(X==Y ->

Dist = TailDist
;
% Minimum of insertion, deletion or substitution
sort([InsDist,DelDist,TailDist],[MinDist|_]),
Dist is 1 + MinDist).

Without tabling the edit/3 predicate, the same subgoals are derived again and
again leading to exponential blowup, but it can be shown that the number of
distinct calls are quadratic, which is the actual complexity we may hope for with
optimal tabling.

The program has been transformed manually for this experiment based on
the pointer based representation shown in example 2 above, simplified slightly
for lists. The retrieve_term predicate is applied to resolve pointers during
program execution. For completeness, we include a suitable implementation of
store term/2 and retrieve term/2.

store_term([],Index) :- assert(retrieve_term([],Index)).

store_term([X|Xs],Idx) :-
Idx1 is Idx + 1,
assert(retrieve_term(Idx,[X,Idx1])),
store_term(Xs,Idx1).

The transformed version of the edit distance program is now as follows.

100 C. Theil Have and H. Christiansen

:- table edit/3.

edit(XIdx,YIdx,0) :-
retrieve_term(XIdx,[]),
retrieve_term(YIdx,[]).

edit(XIdx,YIdx,Dist) :-
retrieve_term(XIdx,[]),
retrieve_term(YIdx,[_,YIdxNext]),
edit(XIdx,YIdxNext,Dist1),
Dist is Dist1 + 1.

edit(XIdx,YIdx,Dist) :-
retrieve_term(YIdx,[]),
retrieve_term(XIdx,[_,XIdxNext]),
edit(XIdxNext,YIdx,Dist1),
Dist is Dist1 + 1.

edit(XIdx,YIdx,Dist) :-
retrieve_term(XIdx,[X,NextXIdx]),
retrieve_term(YIdx,[Y,NextYIdx]),
edit(XIdx,NextYIdx,InsDist),
edit(NextXIdx,YIdx,DelDist),
edit(NextXIdx,NextYIdx,TailDist),
(X==Y ->

Dist = TailDist
;
sort([InsDist,DelDist,TailDist],[MinDist|_]),
Dist is 1 + MinDist).

The program is tested for randomly generated sequences of increasing lengths.
We measure the total time for the different Prolog engines to load the program
file, generate two different random sequences of a particular length, assert these
lists using store term/2 and compute edit distance between these sequences, as
follows.

run(N) :-
random_list(N,117,L1), % Generate random list L1 with seed 117
random_list(N,42,L2), % Generate random list L1 with seed 42
store_term(L1,P1),
store_term(L2,P2),
edit(P1,P2,_Dist).

The results, shown in Figure 2, demonstrate that all tested Prolog systems use
more time for the unmodified tabled edit distance program than for the trans-
formed program when applied to large data instances. For XSB and Yap the
major factor impacting time complexity seems to be space consumption. The

Efficient Tabling of Structured Data 101

transformation has a positive impact space complexity regardless of the under-
lying tabling strategy. For B-Prolog, space consumption is much closer to the
theoretical O(N2). Even though B-Prolog is very space efficient, the transformed
program still uses less memory.

For larger problem instances the transformation has a significant impact on
time complexity. XSB seems to benefit greatly from the transformation, although
it starts out the slowest, it catches up for longer sequences, where it outperforms
the two other Prologs in time efficiency. Yap seems to gain a modest boost from
the transformation strategy and still seems to have a rather high time complexity
although it is significantly faster than without the transformation. For B-Prolog,
the two versions perform more or less the same for sequences of length up to
350, but for longer sequences (not shown in the figure) the transformed version
is significantly faster: for example, with length 1000, the execution times are 7.5
seconds for the transformed and 21.5 seconds for the original version.

0 50 100 150 200 250 300 350

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

list length (N)

tim
e

us
ag

e
(s

ec
on

ds
)

XSB 3.3
B−Prolog 7.5#4
Yap 6.2.1
index(XSB)
index(B−Prolog)
index(Yap)

0 50 100 150

0e
+

00
2e

+
04

4e
+

04
6e

+
04

8e
+

04
1e

+
05

list length (N)

sp
ac

e
us

ag
e

(k
ilo

by
te

s)

XSB 3.3
B−Prolog 7.5#4
Yap 6.2.1
index(XSB)
index(B−Prolog)
index(Yap)

Fig. 2. The first plot shows the time consumption of different Prolog engines for edit
distance with two lists of length N . The second is a plot of the space consumption for
the same calls. The plots for both normal tabled in execution and execution of a trans-
formed program that uses indexing as described in section 3 are shown, e.g. the plot
index(X) shows the performance of the transformed version for Prolog implementation
X.

4.2 Example: Hidden Markov Model in PRISM

PRISM [8] is an extension of Prolog with special goals representing random
variables. A global declaration such as values(coin,[head,tail]) introduces
a so-called multivalued switch which means that an occurrence of the subgoal
msw(coin,C) represents a probabilistic choice of assigning either head or tail
to C. The semantics of PRISM is defined in terms of probabilistic Herbrand
models, which means that a program specifies a probability of any goal G to be
true determined from the possible combinations of msw outcomes that happen
to make G true.

102 C. Theil Have and H. Christiansen

The PRISM system supports various probabilistic inferences, such as find-
ing an optimal derivation, computing the probability for a goal or deriving msw
probabilities by learning from a set of goals. The algorithms behind these in-
ferences are dynamic programming algorithms and PRISM is implemented in
B-Prolog [17], relying heavily on tabling for the efficiency of the probabilistic
inferences.

We consider the example of a Hidden Markov Model (HMM) in PRISM taken
from the PRISM manual [10] and adapted here to accommodate variable length
sequences. In general, an HMM is a probabilistic model for sequential phenomena
based on a finite automaton, which chooses state transitions and emissions by
probabilistic choices; see [5] for a general introduction to HMMs and [3] for an
account on how different HMMs are expressed in PRISM. Our example program
is the following.

values(init,[s0,s1]). hmm(_,[]).
values(out(_),[a,b]).
values(tr(_),[s0,s1]). hmm(S,[Ob|Y]) :-

msw(out(S),Ob),
hmm(L):- msw(tr(S),Next),

msw(init,S), hmm(Next,Y).
hmm(S,L).

The init, out(−) and tr(−) switches determine initial state, state transitions
and emissions. Notice that two last ones are parameterized meaning that they
define a switch for whatever value is substituted in for the parameter, which in
this program always is the present state.

Using the same list encoding as in the previous example, the recursive predi-
cate is rewritten as follows.

hmm(S,ObsPtr):-
retrieve_term(ObsPtr,[]).

hmm(S,ObsPtr) :-
retrieve_term(ObsPtr,[Ob,Y]),
msw(out(S),Ob),
msw(tr(S),Next),
hmm(Next,Y).

The rewritten program can be shown to be semantics preserving wrt a standard
Prolog semantics as well as PRISM’s probabilistic semantics, and thus running
PRISM’s utilities for probability calculations should yield the same results.

When calculating the probability of a given goal, PRISM iterates over all
possible ways to execute the goal using tabling to avoid enumerating the expo-
nential number of different derivations. The same principle applies for PRISMs
version of the Viterbi algorithm which is a dynamic programming algorithm that
finds the most probable derivation. Assuming optimal execution of tabling, these
algorithms should in principle run in linear time.

Efficient Tabling of Structured Data 103

We measured running times of probability calculations (prob in PRISM lingo)
for both the original and the transformed version of the PRISM HMM program
with sequences of increasing lengths from 100 to 5000. The actual sequences
used are instances of the pattern [a,b] repeated a number of times. The re-
sults are shown in Figure 3. It is apparent from the figure that indexed lookups
results in approximately linear running time while the running time is at least
quadratic for the unmodified program. The reported times are measured using
prism statistics(infer time,Time), which is a PRISM built-in predicate.

We did not measure running times of sequences longer than 5000 for the
unmodified program, but the transformed program scales up to sequences much
longer than this, for instance, the time for probability calculation for a sequence
of length 100000 takes less than 5 seconds.

0 1000 2000 3000 4000 5000

0.
00

0.
02

0.
04

0.
06

0.
08

a) Running time with indexed lookup

sequence length

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

0 1000 2000 3000 4000 5000

0
20

40
60

80
10

0
12

0
14

0

b) Running time without indexed lookup

sequence length

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Fig. 3. The running time of the a) the transformed PRISM program and b) the un-
modified PRISM program. While a) shows a linear development as function of sequence
length, the development in b) is a higher-degree polynomial. Notice also the different
scales on the vertical axes.

5 Automatic Program Transformation

The indexed versions of the example programs shown in section 4 can be pro-
duced automatically by a straightforward program transformation. The user
must declare modes for which arguments predicate arguments that should be
indexed. For the HMM program of section 4.2 this may look as follows; plus
means transform the argument, minus means keep it unchanged.

table_index_mode(hmm(+))
table_index_mode(hmm(-,+))

The correctness of the transformation depends on the following properties of the
program.

104 C. Theil Have and H. Christiansen

– The arguments indicated for indexing must be called with ground data only.
– Variables that occur in an indexed argument in the head of a clause, cannot

occur in the body of that clause in both an indexed and a non-indexed
argument.

– Any argument of a goal within a clause body which is declared to be indexed,
must be given as a variable that also occurs in an indexed argument in the
head of that clause.

Each clause whose head predicate is covered by a table mode declaration is
transformed using the procedure outlined in algorithm 1, and all other clauses
are left untouched. The transformation moves any term appearing in an indexed

for each clause H:-B in original program do
if table index mode (M) matching H then

for each argument Hi ∈ H, Mi ∈M do
if Mi =’+’ then

H ′
i ← MarkLazy(Hi, B)

B ← (lookup pattern(Vi, H
′
i), B)

Hi ← Vi

end

end

where MarkLazy is defined as

MarkLazy(Hi,B) :
PotentialLazy = variables in all goals G ∈ B

where G has table index mode declaration
NonLazy = variables in all goals G ∈ B

where G has no table index mode declaration
Lazy = PotentialLazy \ NonLazy
for each variable V ∈ Hi do

if V ∈ Lazy then
V ← lazy(V)

end
Algorithm 1: Program transformation

position in the head of a clause into a call to the lookup pattern predicate,
which is added to the body. Variables in such terms are marked lazy when they
do not occur in any non-indexed argument inside the clause. This transformation
can be shown to be semantics preserving for programs satisfying the requirements
given above.

The translation can be further enhanced by an unfolding of lookup pattern
calls into specialized calls to retrieve term as shown in the examples in the
previous section. This last step gave a speed-up of a factor of 5 for these examples
when comparing with implementations using lookup pattern directly.

Efficient Tabling of Structured Data 105

6 Limitations

Our transformation assumes ground input arguments. As illustrated by the
examples, this has applications to a lot of interesting problems, in particular
dynamic programming problems. With regard to PRISM, our transformation
is useful for ordinary probability calculation, Viterbi decoding and supervised
learning. For other probabilistic inferences such as sampling, posterior decoding,
unsupervised and semi-supervised learning, arguments containing variables are
required. Sampling is of minor concern, since this can be done in linear time
using the original program.

We currently have no optimization for structured terms in output arguments –
they must be handled by the usual tabling mechanism. Structured terms in out-
put arguments have the same consequences for complexity, which can be observed
for instance with the well-known append/3 predicate. Suppose that append/3 is
tabled and transformed using our approach, e.g. with table index mode(+,+,-).
Using our workaround, the space complexity for the input lists will be kept linear
rather than quadratic, but the answers for the third list is tabled in the usual
way which leads to quadratic space complexity nevertheless. Output arguments
that do not contain structured data — as in the case of edit distance — do not
present such a problem since the output argument is of constant size.

A drawback of our transformation is that it, by replacing the patterns in the
head of rules with pointers, circumvents Prolog own indexing mechanism. As
result, indexing cannot use the pattern of the arguments to determine which
clauses to try. Instead, when multiple clauses with same name and arity exist,
Prolog will have to try each of them in order and creates a choice point each time
it tries a clause. This adds a constant factor — corresponding to the number of
such clauses — to the running time of the program. It most practical programs
it is realistic to assume that this factor will be fairly low, e.g. in the edit distance
program only four such clauses exist.

7 Related Work

The hashing employed by B-Prolog and the global trie of YAP [6] address a
related problem. Both methods reduce space consumption and this may lead to
reductions in running time since less copying is needed. However, even with these
mechanisms complexity is sub-optimal as shown in section 2. Furthermore, the
methods have the drawback that the running time depends on the type of data.
In comparison, our approach is data invariant and yields optimal complexity.

Due to restrictions in the Mercury language, input arguments are always
ground, and the tabling system provides an option which identifies arguments
by their pointers [11] (see also more detailed explanations in the reference man-
ual [4]). This yields constant time storing and comparison of tabled arguments,
similar to how any standard tabling mechanism will work for the programs pro-
duced by our program transformation.

The problem with tabling of structured data has addressed in applications
with methods similar to our approach. In particular, in chart-parsing with DCGs

106 C. Theil Have and H. Christiansen

supported by tabling, position indexed facts has been used [12]. A similar ap-
proach has been applied to PCFG parsing in PRISM [9]. This works by splitting
the input list, t1 . . . tN into facts, {pos(1, t1, 2), . . ., pos(N − 1, tn, N)}. XSB
Prolog have special constructions for tabled DCGs, where the standard ’C’/3’
predicate is replaced by a special version that instead of using difference lists,
utilize position indexed facts constructed from the original input list [14]. The
position indexed difference list approach is quite similar to our approach, but is
specific for difference lists. Our approach is more generally applicable and can
be used with various kinds of structured data.

8 Conclusion

We have demonstrated that major Prolog implementations do not efficiently
handle tabling of structured data and we have provided a program transforma-
tion that ensures O(1) time and space complexity of tabled lookups of goals
with structured data in input arguments and is applicable regardless of ineffi-
ciencies with structured data in the underlying tabling implementation. We have
demonstrated the applicability of our transformation using examples from dy-
namic programming in Prolog and PRISM. The transformation makes it possible
to scale to much larger problem instances.

Our program transformation should be seen as workaround, until such opti-
mizations find their way into the tabling systems. We hope that Prolog imple-
mentors will pick up on this and integrate such optimizations directly in the
tabling systems, so that the user does not need to transform his program, and
need not worry about the underlying tabled representation and its implicit com-
plexity.

Acknowledgements. This work is supported by the project “Logic-statistic
modelling and analysis of biological sequence data” funded by the NABIIT pro-
gram under the Danish Strategic Research Council.

We would like to thank Neng-Fa Zhou and Yoshitaka Kameya for their en-
couraging comments on a very early draft of this paper. We would also like to
thank to the anonymous reviewers for insightful and constructive reviews.

References

1. Bellman, R.: Dynamic Programming. Princeton University Press (1957)

2. Christiansen, H., Gallagher, J.P.: Non-discriminating Arguments and Their Uses.
In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 55–69. Springer,
Heidelberg (2009)

3. Christiansen, H., Have, C.T., Lassen, O.T., Petit, M.: Taming the zoo of discrete
HMM subspecies & some of their relatives. In: Biology, Computation and Lin-
guistics, New Interdisciplinary Paradigms. Frontiers in Artificial Intelligence and
Applications, vol. 228, pp. 28–42. IOS Press (2011)

Efficient Tabling of Structured Data 107

4. Henderson, F., Conway, T., Somogyi, Z., Jeffery, D., Schachte, P., Taylor, S., Speirs,
C., Dowd, T., Becket, R., Brown, M., Wang, P.: The Mercury Language Reference
Manual. Version 11.01 (2011),
http://www.mercury.cs.mu.oz.au/information/documentation.html

5. Rabiner, L.R.: A tutorial on Hidden Markov Models and selected applications in
speech recognition. Proceedings of the IEEE 77(2), 257–286 (1989)

6. Raimundo, J., Rocha, R.: Global Trie for Subterms. In: Abreu, S., Costa, V.S.
(eds.) Proceedings of the 11th Colloquium on Implementation of Constraint and
Logic Programming Systems, CICLOPS 2011, Lexington, Kentucky, USA, pp. 34–
48 (July 2011)

7. Rocha, R., Silva, F., Costa, V.S.: A tabling engine for the Yap Prolog system. In:
Proceedings of the 2000 APPIA-GULP-PRODE Joint Conference on Declarative
Programming (AGP 2000), La Habana, Cuba (December 2000)

8. Sato, T., Kameya, Y.: PRISM: A language for symbolic-statistical modeling. In:
IJCAI, pp. 1330–1339 (1997)

9. Sato, T., Kameya, Y.: New advances in logic-based probabilistic modeling (2007)
10. Sato, T., Zhou, N.-F., Kameya, Y., Izumi, Y.: PRISM User’s Manual, Version 2.0

(2010)
11. Somogyi, Z., Sagonas, K.F.: Tabling in Mercury: Design and Implementation. In:

Van Hentenryck, P. (ed.) PADL 2006. LNCS, vol. 3819, pp. 150–167. Springer,
Heidelberg (2005)

12. Swift, T.: Design Patterns for Tabled Logic Programming. In: Abreu, S., Seipel,
D. (eds.) INAP 2009. LNCS, vol. 6547, pp. 1–19. Springer, Heidelberg (2011)

13. Swift, T., Warren, D.S.: XSB: Extending prolog with tabled logic programming.
Theory and Practice of Logic Programming (to appear, 2011)

14. Swift, T., Warren, D.S.: The XSB Programmer’s Manual. Version 3.3 (June 2011)
15. Tamaki, H., Sato, T.: OLD Resolution with Tabulation. In: Shapiro, E. (ed.) ICLP

1986. LNCS, vol. 225, pp. 84–98. Springer, Heidelberg (1986)
16. Wong, C.K., Chandra, A.K.: Bounds for the string editing problem. J. ACM 23(1),

13–16 (1976)
17. Zhou, N.-F.: The language features and architecture of B-Prolog. Theory and Prac-

tice of Logic Programming (to appear, 2011)
18. Zhou, N.-F., Shen, Y.-D., Yuan, L.-Y., You, J.-H.: Implementation of a Linear

Tabling Mechanism. In: Pontelli, E., Santos Costa, V. (eds.) PADL 2000. LNCS,
vol. 1753, pp. 109–123. Springer, Heidelberg (2000)

http://www.mercury.cs.mu.oz.au/information/documentation.html

Optimizing Inequality Joins in Datalog

with Approximated Constraint Propagation

Dario Campagna1, Beata Sarna-Starosta2, and Tom Schrijvers3

1 Dept.of Mathematics and Computer Science, University of Perugia, Italy
dario.campagna@dmi.unipg.it

2 LogicBlox Inc., Atlanta, Georgia, USA
bss@logicblox.com

3 Dept. of Applied Mathematics and Computer Science, UGent, Belgium
tom.schrijvers@ugent.be

Abstract. Datalog systems evaluate joins over arithmetic (in)equalities
as a naive generate-and-test of Cartesian products. We exploit aggre-
gates in a source-to-source transformation to reduce the size of Cartesian
products and to improve performance. Our approach approximates the
well-known propagation technique from Constraint Programming.

Experimental evaluation shows good run time speed-ups on a range of
non-recursive as well as recursive programs. Furthermore, our technique
improves upon the previously reported in the literature constraint magic
set transformation approach.

1 Introduction

Datalog [13,1] is a syntactic subset of Prolog introduced in the 1980s for database
processing. By supporting a limited, safe form of recursion, Datalog considerably
extends the expressive power of traditional database query languages like SQL.
At the same time, unlike Prolog, Datalog allows SQL’s set-at-a-time evaluation.
Also similarly to SQL, the programs in Datalog are guaranteed to terminate.
Hence, extra-logical constructs such as Prolog’s cut (‘!’) operator are not needed.

After its original introduction as a smarter version of SQL, Datalog lost the
interest of researchers for a time, until recently re-gaining attention in applica-
tions falling outside of the realm of traditional database reasoning, which include:
program analysis [8], networks [12], security protocols [10], knowledge representa-
tion [9], robotics [2] and gaming [19]. Our industrial partner, LogicBlox Inc. [11],
uses a variant of Datalog, called DatalogLB, as the basis for implementing deci-
sion automation and business planning systems.

Many of the above application domains rely on processing numerical data with
arithmetic operations, in Datalog available as built-in relations (predicates). We
focus in particular on built-in arithmetic (in)equality predicates (>, <, etc.)
which we also refer to as (arithmetic) constraints. Existing Datalog compilers
do not exploit the constraining properties of arithmetic predicates, but rather
implement them as ordinary tests. As a result, evaluation of programs with arith-
metic constraints follows the naive generate-and-test approach, where ordinary

C. Russo and N.-F. Zhou (Eds.): PADL 2012, LNCS 7149, pp. 108–122, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Optimizing Inequality Joins in Datalog 109

predicates act as generators, and the entire search space they produce is enu-
merated before the constraints can be applied to prune the candidate solutions.
In database terminology, the full O(n2) Cartesian product of two tables is com-
puted. This is in stark contrast with O(n log n) equality-based joins, for which
current Datalog systems are optimized.

The research area of Constraint Programming (CP) offers approaches that
prune the search space more eagerly, e.g., constrain-and-generate, as well as the
constraint implementation technique, called constraint propagators, which allows
to prune the domains of the variables involved in the constraints to narrow down
the sets of candidate values even before the values are enumerated.

We adapt the CP constraint propagator technique to filter the individual Dat-
alog generators in O(n) time before they are used in, potentially much smaller,
Cartesian products. For this purpose we extended the DatalogLB system with an
automatic program transformation framework. Experimental evaluation shows
that our technique enables good run-time improvements for a variety of test
programs.

2 DatalogLB

LogicBlox is a commercial Datalog-based platform for building enterprise-scale
corporate planning and pricing applications. LogicBlox is currently used in sev-
eral commercial decision automation applications, including retail supply-chain
management [14] and software program analysis [3,4,16]. A typical LogicBlox ap-
plication involves computational analyses that require aggregation across very
large data sets combined with simulation and modeling techniques. The platform
accommodates these features by means of its custom query language DatalogLB,
a type-safe variant of Datalog, based on incremental evaluation, with trigger-
like functionality and support for dynamic updates, declarative specification
of functional dependencies, non-deterministic choice, stratified negation, meta-
programming, and a wide range of extra-logical computations, including aggre-
gation utilized by our optimization approach. In the following paragraphs we
outline the main features of DatalogLB and the LogicBlox run-time system. A
more exhaustive description of DatalogLB can be found in [21]. Readers famil-
iar with Datalog may want to use this section as a reference when reading the
remainder of the paper.

The DatalogLB Language. Figure 1 shows a DatalogLB encoding of the crypta-
rithmetic puzzle LP+FP=PL, the goal of which is to find an assignment of digits
to letters that satisfies the equation LP+FP = PL.

The basic programming construct in DatalogLB is the implication ‘<-’, denot-
ing derivation rules of the form:

Head <- Body.

where Head and Body are conjunctions of atoms. An atom can be either a predi-
cate with variable or constant arguments, a comparison expression, an arithmetic

110 D. Campagna, B. Sarna-Starosta, and T. Schrijvers

1 digit(_) ->.

2 digit(d), val(d:v) -> uint[8](v), v<=9.

3

4 solution(l,p,f) -> digit(l), digit(p), digit(f).

5 solution(l,p,f) <-

6 digit(l), val(l:vl),

7 digit(p), val(p:vp),

8 digit(f), val(f:vf),

9 vl != 0, vp != 0, vf != 0,

10 vl != vp, vl != vf, vp != vf

11 10*vl+vp + 10*vf+vp = 10*vp+vl.

Fig. 1. The DatalogLB encoding of the LP+FP=PL cryptarithmetic puzzle

expressions, or a negated atom. The above rule means that the atoms consti-
tuting Head can be derived from the atoms constituting Body. The example
program in Figure 1 contains only one rule (lines 5-11), which derives the facts
of the predicate solution based on the facts of the predicates digit and val,
and the constraints represented as comparisons and arithmetic expressions on
their arguments.

DatalogLB extends Datalog with the notion of an integrity constraint of the
form:

Lhs -> Rhs.

Informally, the above constraint means that if Lhs is true, then Rhs must also
be true, where Lhs and Rhs are conjunctions of atoms. The difference between
a constraint and a rule is that a rule derives data for the atoms in its head,
whereas a constraint checks that for the existing data matching its left-hand
side, the right-hand side holds. The integrity constraints constitute the basis of
DatalogLB’s static type system, which guarantees at compile-time that certain
kinds of constraints always hold for all possible instantiations of a given schema.
Our approach uses integrity constraints to declare filter types which allow to
reduce the domains of predicates subjected to arithmetic constraints.

DatalogLB types are represented as unary predicates. Custom types may be
defined using entity predicates. For instance, in Figure 1, the constraint in line 1
declares the entity predicate digit. The constraint in line 4 is a type declaration
for the predicate solution, which states that for every tuple solution(l,p,f),
the arguments l, p, and f must be digit entities. An entity predicate P may
be associated with a reference mode predicate, which uniquely identifies each
element in P with a value of a primitive type, thus allowing to access the specific
entity elements from user applications. For instance, line 2 of Figure 1 declares
a reference mode predicate val, which associates each entity element d in digit
with v, an 8-bit unsigned integer value no greater than 9, thus binding the digit
type to represent single-digit integers. The syntactic form val(d:v) denotes the
one-to-one functional relation between d and v, and is reserved for declaring

Optimizing Inequality Joins in Datalog 111

reference mode predicates. The decision to express digits as entities is dictated
by one of the mechanisms contributing to DatalogLB’s termination guarantee,
which restricts the use of primitive types as arguments to built-in predicates
such as arithmetic operations.

The extra-logical operations supported by LogicBlox, including aggregation
computations, are represented by special-syntax rules of the form:

result[x1,...,xn]=v <- Op <<v=Method>> Body.

The head of the rule uses DatalogLB’s shorthand notation for declaring func-
tional dependencies: result[x1,...,xn]=v declares the predicate result to be
a function from x1,...,xn to v. The notation also allows declaring singleton
(constant) values: p[]=v declares the predicate p to be a singleton that contains
only the value v. The value can be retrieved through p[]. The right-hand side
of the above rule, in addition to the conjunction of atoms in Body, includes a
directive which specifies the type of the operation to be performed (e.g., aggrega-
tion), and the particular method (e.g., finding the minimum value) to be used.
For instance, in Section 3.1 we show the following rule which finds the lower
bound for the val predicate:

lb_digit[]=n <- agg<<n=min(v)>> digit(d), val(d:v).

Above, agg states that the rule computes an aggregation, and min names the
specific operation to be applied to the values referenced by v.

3 The Filter Predicates Transformation

This section describes the details of our transformation, beginning with non-
recursive programs, and then considering the impact of recursion.

3.1 Non-recursive Programs

Recall the LP+FP=PL program from the previous section. Our goal is to reduce
the number of different candidate values that are used for producing answers.
Thus, we exploit the equality constraint

10 ∗ vl + vp + 10 ∗ vf + vp = 10 ∗ vp + vl

from the program rule to filter candidate values in the generator predicate digit.
Specifically, for each generator predicate atom appearing in the constraint, we
consider the value generated by this atom in the context of the upper and lower
bounds of the values produced by other generator atoms.

For instance, for the generator atom digit(l), the original constraint, which
is equivalent to the pair of inequalities:

{
10 ∗ vl + vp + 10 ∗ vf + vp ≤ 10 ∗ vp + vl

10 ∗ vl + vp + 10 ∗ vf + vp ≥ 10 ∗ vp + vl

yields the pair of inequalities:

112 D. Campagna, B. Sarna-Starosta, and T. Schrijvers

{
10 ∗ vl + ld + 10 ∗ ld + ld ≤ 10 ∗ ud + vl

10 ∗ vl + ud + 10 ∗ ud + ud ≥ 10 ∗ ld + vl

where ud and ld represent the upper and lower bound of the generator predicate
digit, respectively. We use these inequalities in the Datalog definition of the
filter predicate for digit(l), which is linear in the size of the digit set.

digit_filtered_l(l) <-
digit(l),
val(l:vl),
lb_digit[]=ld,
ub_digit[]=ud,
10*vl+ld+10*ld+ld <= 10*ud+vl,
10*ld+vl <= 10*vl+ud+10*ud+ud.

Similar filter predicates are generated for the remaining generator atoms.
The bounds for the generator predicates are computed in separate aggregate

predicates, again adding only linear overhead, and reused in all filter predicates:

lb_digit[]=n <- agg<<n=min(v)>> digit(d), val(d:v).
ub_digit[]=n <- agg<<n=max(v)>> digit(d), val(d:v).

In the last step of the transformation we replace the generator predicate atoms
in the body of the solution/3 rule by atoms representing corresponding filter
predicates:

solution(l,p,f) <-
digit_filtered_l(l),
digit_filtered_p(p),
digit_filtered_f(f),
... % rest of the original LP+FP=PL program

As the transformation adds only linear overhead, the overall worst-case time
complexity is not increased. Moreover, the filtered generator sets are potentially
much smaller than the original sets, thus resulting in a Cartesian product much
smaller than the original one. In this small example the filtered generator sets
for l, p and f are all reduced from [0, 9] to respectively [1, 8], [2, 9] and [1, 8].

Our approach is inspired by the well-known bounds consistency technique [5],
in CP implemented by finite-domain constraint propagators. We simplify con-
straint propagation in two ways: (1) by computing filtered domains on the orig-
inal domains rather than as a fixed point of the filtering process, and (2) by
filtering only at the beginning of the evaluation rather than repeatedly after ev-
ery enumeration step (in CP terminology known as labeling). As a consequence of
these simplifications, (1) we cannot encode unbounded fixpoint computations,
and (2) computing and storing many successively filtered tables for the same
variable adds considerable time and space overhead. Nevertheless, our approach

Optimizing Inequality Joins in Datalog 113

p(t,w) -> string(t), int[64](w).

s(t,w) -> string(t), int[64](w).

e(t,w) -> string(t), int[64](w).

e(t,w) <- p(t,w).

e(t,w) <- s(t,w),

e(tp,wp),

w - wp <= 100,

w + wp >= 19500.

Fig. 2. The Engine program

e(t,w) <- p(t,w). s_filtered(t,w) <-

e(t,w) <- s_filtered(t,w), s(t,w),

e_filtered(tp,wp), w-ub_e[] <= 100,

w-wp <= 100, 19500 <= w+ub_e[].

w+wp >= 19500.

e_filtered(tp,wp) <-

e(tp,wp),

lb_s[]=n <- agg<<n=min(v)>> s(_,v). lb_s[]-wp <= 100,

ub_s[]=n <- agg<<n=max(v)>> s(_,v). 19500 <= ub_s[]+wp.

ub_e[]=n <- agg<<n=max(v)>> e(_,v). % ERROR

Fig. 3. Ill-formed Engine program after naive transformation

yields a light-weight technique that is easily provided on top of the existing Data-
log implementations, offering a satisfactory compromise between the anticipated
speed-up and the overhead.

3.2 Recursive Programs

Recursion considerably complicates our transformation. Consider the Engine
program listed in Figure 2. The program selects suitable engines for an engine
yard. In the predicates p(t,w), s(t,w) and e(t,w), t corresponds to the engine
type and w to the produced wattage. The predicate p represents the primary
engines, and the predicate s represents the potentially spare engines. A suitable
engine for the engine compound e(t,w) is either a primary engine, or a spare
engine that can assist another engine in the compound. The difference in wattage
between the assisting engine and the assistee should not exceed 100, and the total
wattage of the compound should be no less than 19,500.

The naive application of our technique yields the ill-formed program shown
in Figure 3. The program involves recursion through aggregation: in order to
compute the set of e/2 we need to know the upper bound of e/2. Such recursion
is not supported by DatalogLB (nor by any other LP system we are aware of).

114 D. Campagna, B. Sarna-Starosta, and T. Schrijvers

Since it is not possible to effectively compute the exact upper bound on e/2,
we approximate it as the upper bound of the approximated upper bounds of the
two rules defining e/2. For the first, non-recursive rule, such an approximated
(and exact) upper bound is ub p[]. A crudely approximated upper bound for
the second, recursive rule, is ub s[]. Hence:

ub_e[]=n <- n=max(ub_p[],ub_s[]).

where

ub_p[]=n <- agg<<n=max(v)>> p(_,v).

We may attempt to tighten the upper bound of the second rule, based on the
observation that it is bounded from above by ub e[]+100:

ub_e[]=n <- n=max(ub_p[],min(ub_s[],ub_e[]+100)).

Alas, this step reintroduces recursion through aggregation. We eliminate it in the
same way as before, by substituting the cruder approximation derived earlier:

ub_e[]=n <- n=max(ub_p[],min(ub_s[],max(ub_p[],ub_s[])+100).

We further simplify the above expression by noticing that

∀x, y, c ∈ N. min(x, max(y, x) + c) = x

This step brings us back to the first approximation, thus proving that the re-
finement attempt was unsuccessful. Nevertheless, as we show in Section 5, our
approximation is still quite effective at pruning the predicate domains and im-
proving the performance of the programs.

4 Implementation

Most of the DatalogLB syntax is compatible with the term syntax of standard
Prolog. The discrepancies in the particular notations, such as the functional de-
pendency syntax, can be easily accommodated by simple processing steps. Hence,
we chose Prolog (specifically, SWI-Prolog [20]) to implement the transformations
of DatalogLB programs. Our analyzer consists of three Prolog modules, for the
total of about 1,500 lines of Prolog code, including comments.

4.1 LogicBlox/SWI-Prolog Interface

Figure 4 shows the LogicBlox compilation scheme and outlines the communica-
tion between the LogicBlox engine and the SWI-Prolog analyzer.

The LogicBlox compiler rewrites a source DatalogLB program into a core
representation, which is then encoded using Google’s protocol buffers (GPBs)
interface for further use by a number of tools, including an interpreter. GPBs [7]
is a platform-independent, extensible mechanism for serializing structured data

Optimizing Inequality Joins in Datalog 115

DatalogLB

DatalogLBDatalogLB

Compiler

bytecode representation

 Transformations

...

Optional

Bounds consistency
analyzer

legacy code
...

Engine
LogicBlox

SWI Prolog

protobuf message protobuf message

constraint checking
Static/type−based

optimization
Bounds consistency

Fig. 4. LogicBlox Compiler and its communication with SWI-Prolog

to binary form. GPBs allow the programmers to determine how to structure
their data by defining simple data structures (messages) in a dedicated specifi-
cation language, and then to compile those data structures into the language and
platform of their choice. As shown in Figure 4, the core program representation
generated by the LogicBlox compiler is either passed directly to the subsequent
phase of run-time processing, or subjected to one or more optional transforma-
tions aimed at optimizing the compiled code or collecting information to be used
in further evaluation steps. This infrastructure makes the GPBs the medium of
choice for interfacing LogicBlox with external analysis modules. The interface
for our application comprises three Prolog modules for the total of about 1,700
lines of code (including comments), and five new modules in the LogicBlox code,
for the total of 1,800 lines.

The interface on the SWI-Prolog side is based on SWI-Prolog’s native GPBs
library [15]. We extended the library with the capability to represent recursively
structured data (which is essential to encode DatalogLB programs), and opti-
mized it to linear run-time complexity. Our version of the library is available in
a dedicated branch of the SWI-Prolog code repository.

The communication between LogicBlox and SWI-Prolog proceeds as follows.
The output of the DatalogLB compiler is received by a new LogicBlox module
which extracts from it the information relevant to our analysis, encodes it as a
collection of GPBs messages, and opens a socket connection with SWI-Prolog.
Once the connection is established, the messages are supplied to our analyzer.
The analyzer decodes the messages into a program representation, applies the
transformation, encodes the resulting program, and sends it back to the Log-
icBlox side, where another dedicated module retrieves the transformation results
and updates the core representation of the program accordingly.

We illustrate the use of GPBs on DatalogLB rule bodies. A rule body is a
formula defined as an atom, a disjunction, a conjunction, or a negation. Log-
icBlox serializes and deserializes formulas with GPBs messages of the following
form:

116 D. Campagna, B. Sarna-Starosta, and T. Schrijvers

message Formula {

optional Atom atom = 1;

optional Negation negation = 2;

optional Conjunction conjunction = 3;

optional Disjunction disjunction = 4;

}

message Conjunction { repeated Formula formula = 1; }

...

Note the mutually recursive nature of the Formula and Conjunction definitions.
On the SWI-Prolog side, the messages are defined in message/2 clauses:

protobufs:message(formula, [optional(1,message(atom))

, optional(2,message(negation))

, optional(3,message(conjunction))

, optional(4,message(disjunction))]).

protobufs:message(conjunction, [repeated(1,message(formula))]).

The predicate message/2, which we added to the SWI-Prolog GPBs library,
enables naming message templates. It is essential for recursive and repeated em-
bedded messages. The protobuf message/2 predicate serializes and deserializes
messages to and from binary form, like the representation of the single-atom
formula digit(d).

?- protobuf_message(message(formula,

[optional(1, message(atom,

[string(1,"digit")

, repeated(2,[/* variable d */],term)]))

]),Bytes).

4.2 The Transformation

Given a representation of a DatalogLB program, our transformation processes in
turn each of its rules. For every rule with one or more arithmetic constraints,
it identifies the generator predicate atoms, exploits the constraints to produce
corresponding filter predicates, and replaces the generator atoms accordingly.
It also extends the program with the definitions for the auxiliary predicates
performing bounds computations.

Implementation of the code that generates the bounds-computing predicates
turned out to be one of the more involved aspects of our project. The numeri-
cal data appearing in the arithmetic constraints pertinent to our transformation
is often represented as the values of the DatalogLB reference mode predicates
where the keys are the entities produced by the predicates serving as genera-
tors. To access these data, it is necessary to reconstruct the chain of functional
dependencies connecting each value with the appropriate entity generator. For
instance, to compute predicate bounds for the atom set:

Optimizing Inequality Joins in Datalog 117

p(x), val_1(x:vx), q(y), val_2(y:vy), vx > vy

we need to reconstruct the chain connecting vx with p and vy with q. Additional
complications arise when the reference mode predicates (and the corresponding
generators) have non-unary keys, in which case the reconstructed dependencies
are trees with the functional dependencies as nodes and the generators as leaves.

As mentioned in Section 2, DatalogLB’s static type system relies on the type
information in the form of the integrity constraints. To ensure completeness of
the type information in the transformed programs, we need to provide type dec-
larations for the predicates generated by the analyzer (i.e., filter and aggregate
predicates). It turns out that we can conveniently derive these directly from the
original predicates, with no additional bookkeeping during the transformation.

5 Evaluation

We now present the results of applying our transformation to a variety of pro-
grams. All experiments were performed on a machine with a 2.83 GHz Intel R©
CoreTM 2 Quad CPU and 4 GB of RAM, running Ubuntu 10.10 (Linux kernel
2.6.35-24-server). For each experiment we show the run times, in seconds, for
the original programs (Original column), and the relative performance change
after the filter predicates transformations (FP column).

For LogicBlox (v 3.7), in the Opt column, we additionally measure the impact
of the system’s optimizer [17] aimed at improving the performance of equality-
based joins by reordering the goals and applying a variant of magic-set rewrite.

In order to have a point of reference, we also report the results of tabled
top-down evaluation of our test suites using XSB Prolog 3.3.1. The changes
required to accommodate DatalogLB programs in XSB are minimal and mainly
syntactic in nature: we omit type declarations, replace ‘<-’ arrows with ‘:-’, cap-
italize variable names, change functional dependencies to ordinary arguments,
and provide Prolog implementations for aggregates. To guarantee termination,
we declare all predicates as tabled.

5.1 Non-recursive Programs

Cryptarithmetic Puzzles. Table 1 shows the evaluation run times for a set of
cryptarithmetic puzzles building on the idea of the LP+FP=PL program from
Section 2. In almost all cases the transformation yields drastic performance im-
provements (3× to 10×) over both original and optimized LogicBlox evaluation.
There are two exceptions. In the first case, the overhead of the auxiliary predi-
cates introduced by the transformation dominates the extremely short run time
of the original program. In the second case, the transformed program prunes
very few values from the initial domains, and consequently shows performance
similar to that of the original program.

The XSB evaluation yields similar results both in terms of the original pro-
gram performance, and the benefits from the transformation.

118 D. Campagna, B. Sarna-Starosta, and T. Schrijvers

Table 1. Benchmark results for cryptarithmetic puzzles

Puzzle
DatalogLB XSB

Original Opt FP Original FP

Puzzle 1 0.01 sec. 100.00 % 140.90 % 0.01 sec. 100.00 %

LP+FP=PL 0.01 sec. 100.00 % 100.00 % 0.01 sec. 100.00 %

Puzzle 2 0.80 sec. 72.50 % 14.02 % 0.65 sec. 15.38 %

Puzzle 3 3.10 sec. 25.16 % 11.42 % 2.60 sec. 11.92 %

Puzzle 4 2.67 sec. 104.49 % 12.79 % 2.73 sec. 12.09 %

Puzzle 5 6.39 sec. 114.71 % 15.02 % 7.70 sec. 12.60 %

Puzzle 6 3.90 sec. 82.56 % 27.05 % 8.75 sec. 25.26 %

Puzzle 7 17.54 sec. 50.85 % 105.01 % 17.20 sec. 107.62 %

Puzzle 8 20.63 sec. 92.05 % 11.71 % 19.99 sec. 52.53 %

Table 2. Benchmark results for the Production problem

Tons range
DatalogLB XSB

Original Opt FP Original FP

[1,500] 0.60 sec. 101.67 % 103.64 % 0.29 sec. 96.55 %

[1,1000] 2.81 sec. 46.26 % 100.75 % 1.10 sec. 98.18 %

[1,2500] 12.37 sec. 42.52 % 40.60 % 5.01 sec. 92.41 %

[1,5000] 13.71 sec. 43.69 % 41.27 % 5.90 sec. 88.30 %

The Production Problem. The Production program1 models the mathemati-
cal programming problem of optimizing the profit from manufacturing several
types of products, subject to a set of constraints such as production costs and
maximum number of items to be manufactured for each product type, or the
availability of the factory line. From a technical point of view this program is
interesting because it contains multi-key functional dependencies that drive the
filter predicates. Another non-standard feature is the use of the aggregates for
computing the optimized profit.

Table 2 reports the results of evaluating the original and transformed program
with four data sets differing in the range of the generator predicate indicating
the number of tons of products being manufactured. Clearly, for LogicBlox eval-
uation, the transformation has no significant effect on the program for the small
tons ranges, but enables a lot of pruning, and thus considerable performance
improvement, when the tons ranges are large. On XSB the effects of the trans-
formation are more uniform across the different data sets, with slightly better
performance improvements for the larger tons ranges.

5.2 Recursive Programs

The Engine Program. To evaluate the effects of our transformation on the
recursive Engine program from Figure 2, we used four different data sets. Each

1 We refer to http://users.ugent.be/~tschrijv/Datalog for the source code.

http://users.ugent.be/~tschrijv/Datalog

Optimizing Inequality Joins in Datalog 119

Table 3. Benchmark results for the Engine program

Data set
DatalogLB XSB

Original Opt FP Original FP

Set1 26.87 sec. 106.43 % 21.41 % 43.40 sec. 6.11 %

Set2 9.82 sec. 106.92 % 4.65 % 8.29 sec. 0.84 %

Set3 172.47 sec. 100.93 % 84.18 % 119.82 sec. 64.91 %

Set4 53.61 sec. 100.39 % 104.75 % 20.30 sec. 97.93 %

data set defines the sets of couples produced by p/2 (denoted P in the following),
and s/2 (denoted S). Let

T = {Steam engine, Internal combustion engine, Gas Turbine}

The four data sets define the sets P and S as follows.

– Set1:
{

P = T × [1100, 11500]
S = T × [1, 10000]

– Set2:
{

P = T × [500, 5000]
S = T × [1, 6000]

– Set3:
{

P = T × [500, 16000]
S = T × [1000, 14000]

– Set4:
{

P = T × [10000, 16000]
S = T × [8, 12000]

The results of the evaluation are shown in Table 3. There is a visible correla-
tion between the particular data set and the effects of the transformation. With
little pruning comes modest speed-up or even a slow-down, whereas consider-
able pruning yields large performance improvements. Again our transformation
achieves drastic improvements where the LogicBlox optimizer does not.

Multi-Legged Flights Program. The Flights program (Figure 5) models multi-
legged flights and their travel distance. More abstractly, it captures the transitive
closure of a directed weighted graph. The DatalogLB encoding consists of the ba-
sic variant of the program, based on that studied by Stuckey and Sudarshan [18],
together with a sample query to compute all possible destinations no further than
10,000 miles from Sydney.

Predicate e(x,y,d) (line 1) denotes a flight leg, i.e., a direct connection be-
tween cities x and y with the distance d. The data of this predicate are given as
facts. The predicate f (lines 3-7) defines a multi-legged flight as the transitive
closure of the predicate e. Since the second rule for f contains recursion, to be
expressible in DatalogLB, it needs to be bounded. Hence, we have added the
constraint ‘d <= 10000’ (line 7), which is not present in the encoding of [18].
Lines 9-10 define the query predicate.

It turns out that our transformation has no significant effect on the perfor-
mance of the Flights program; it does not provide additional pruning. Fortu-
nately, to our aid comes the constraint magic set transformation [18]. Not only
is the constraint magic set rewritten (CMR) variant of the program (Figure 6)
faster than the original, but also it is amenable to our transformation.

120 D. Campagna, B. Sarna-Starosta, and T. Schrijvers

1 e(x,y,d) -> string(x), string(y), int[64](d).

2

3 f(x,y,d) -> string(x), string(y), int[64](d).

4 f(x,y,d) <- e(x,y,d), d >= 0.

5 f(x,y,d) <- e(x,z,d1), d1 >= 0,

6 f(z,y,d2), d2 >= 0,

7 d = d1 + d2, d <= 10000.

8

9 query(x,y,d) -> string(x), string(y), int[64](d).

10 query("Sydney",y,d) <- f("Sydney",y,d), d >= 0, d <= 10000.

Fig. 5. The DatalogLB encoding of the Flights program

answer_f(x,y,d) -> string(x), string(y), int[64](d).

answer_f(x,y,d) <- x = "Sydney", f_a(x,y,d), d >= 0, d <= 10000.

f_a(x,y,d) -> string(x), string(y), int[64](d).

f_a(x,y,d) <- query_f_a(x,ld,ud), ld <= ud,

e(x,y,d), d >= 0, d >= ld, d <= ud.

f_a(x,y,d) <- query_f_a(x,ld,ud), ld <= ud,

e(x,z,d1), d1 >= 0,

f_a(z,y,d2), d2 >= 0,

d = d1 + d2, d >= ld, d <= ud.

query_f_a(x,ld,ud) -> string(x), int[64](ld), int[64](ud).

query_f_a("Sydney",0,10000).

query_f_a(y,ld2,ud2) <- query_f_a(x,ld,ud), ld <= ud,

e(x,y,d), d >= 0,

ud2 = ud - d, ld2 = max(ld-d,0).

e(x,y,d) -> string(x), string(y), int[64](d).

Fig. 6. Constraint magic rewritten variant of the Flights program

Table 4 shows the results of evaluating the CMR variant of the Flights
program without (CMR) and with (CMR+FP) filter predicate transformation
for a collection of 19 different data graphs, with different structures.

For the LogicBlox evaluation, Table 4 reports performance decrease for three
transformed programs with corresponding original run times below 0.1s, and
visible improvement for all other benchmarks. The speed-up varies roughly be-
tween 2× for the original programs with the shorter run times and 8× for those
with longer run times. Interestingly, the performance in XSB is very different.
First, we observe that the run times for programs without the transformation
are considerably shorter than in LogicBlox. Furthermore, applying the trans-
formation has no effect on the three programs with the shortest original run

Optimizing Inequality Joins in Datalog 121

Table 4. Benchmark results for the Flights program

Graph
DatalogLB XSB

CMR CMR+FP CMR CMR+FP

Graph 1 0.01 sec. 191.1 % 0.01 sec. 100.0 %

Graph 2 0.03 sec. 162.0 % 0.01 sec. 100.0 %

Graph 3 0.02 sec. 117.2 % 0.01 sec. 100.0 %

Graph 4 0.19 sec. 54.5 % 0.02 sec. 250.0 %

Graph 5 4.47 sec. 21.2 % 0.51 sec. 468.6 %

Graph 6 0.24 sec. 63.5 % 0.04 sec. 925.0 %

Graph 7 0.76 sec. 41.7 % 0.12 sec. 2266.7 %

Graph 8 2.91 sec. 22.1 % 0.31 sec. 442.8 %

Graph 9 65.79 sec. 13.3 % 5.28 sec. 988.8 %

Graph 10 5.76 sec. 42.0 % 1.26 sec. 504.8 %

Graph 11 1.94 sec. 21.3 % 0.19 sec. 163.1 %

Graph 12 2.40 sec. 38.0 % 0.39 sec. 2761.5 %

Graph 13 2.83 sec. 22.1 % 0.29 sec. 320.7 %

Graph 14 4.99 sec. 25.5 % 0.73 sec. 291.8 %

Graph 15 66.93 sec. 13.0 % 5.14 sec. 1010.9 %

Graph 16 1.92 sec. 22.9 % 0.17 sec. 170.6 %

Graph 17 2.85 sec. 21.5 % 0.27 sec. 340.7 %

Graph 18 1.92 sec. 21.4 % 0.16 sec. 181.2 %

Graph 19 67.60 sec. 13.3 % 5.06 sec. 1030.0 %

times, whereas it significantly slows down the evaluation of all other programs.
We attribute this negative effect to the ordering of constraints—imposed by our
transformation when introducing filter predicates—which forces overhead com-
putations in the order-sensitive XSB.

6 Conclusion and Future Work

We presented a technique exploiting Datalog with aggregates to improve the per-
formance of DatalogLB programs with arithmetic (in)equalities. Our approach
employs a source-to-source program transformation that approximates the prop-
agation technique from Constraint Programming. The experimental evaluation
of the approach shows good run time speed-ups on a range of non-recursive as
well as recursive programs. Furthermore, our technique improves upon the con-
straint magic set transformation approach proposed by Stuckey and Sudarshan.

In the future we plan to investigate ways to integrate finite domain solvers
with the Datalog’s semi-naive bottom-up evaluation mechanism to enable fur-
ther benefits from constraint propagation. We would also like to compare our
transformation-based approach to the tabled constraint programming approach
proposed by Cui and Warren [6], applied to a finite domain constraint solver.

122 D. Campagna, B. Sarna-Starosta, and T. Schrijvers

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

2. Ashley-Rollman, M.P., De Rosa, M., Srinivasa, S.S., Pillai, P., Goldstein, S.C.,
Campbell, J.D.: Declarative Programming for Modular Robots. In: Workshop on
Self-Reconfigurable Robots/Systems and Applications at IROS (2007)

3. Bravenboer, M., Smaragdakis, Y.: Exception Analysis and Points-To Analysis: Bet-
ter Together. In: ISSTA, pp. 1–12 (2009)

4. Bravenboer, M., Smaragdakis, Y.: Strictly Declarative Specification of Sophisti-
cated Points-To Analyses. In: OOPSLA, pp. 243–262 (2009)

5. Choi, C., Harvey, W., Lee, J., Stuckey, P.: Finite Domain Bounds Consistency
Revisited. In: Sattar, A., Kang, B.-h. (eds.) AI 2006. LNCS (LNAI), vol. 4304, pp.
49–58. Springer, Heidelberg (2006)

6. Cui, B., Warren, D.S.: A System for Tabled Constraint Logic Programming. In:
Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber,
M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861,
pp. 478–492. Springer, Heidelberg (2000)

7. Google’s Protocol Buffers, http://code.google.com/apis/protocolbuffers/
8. Lam, M.S., Whaley, J., Livshits, V.B., Martin, M.C., Avots, D., Carbin, M., Unkel,

C.: Context-sensitive program analysis as database queries. In: PODS, pp. 1–12
(2005)

9. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The
DLV system for knowledge representation and reasoning. ACM Trans. Comput.
Logic 7(3), 499–562 (2006)

10. Li, N., Mitchell, J.C.: DATALOG with Constraints: A Foundation for Trust Man-
agement Languages. In: Dahl, V. (ed.) PADL 2003. LNCS, vol. 2562, pp. 58–73.
Springer, Heidelberg (2002)

11. LogicBlox, http://logicblox.com/
12. Loo, B.T., Condie, T., Garofalakis, M.N., Gay, D.E., Hellerstein, J.M., Maniatis,

P., Ramakrishnan, R., Roscoe, T., Stoica, I.: Declarative networking: language,
execution and optimization. In: SIGMOD, pp. 97–108 (2006)

13. Maier, D., Warren, D.S.: Computing with Logic: Logic Programming with Prolog.
Benjamin/Cummings (1988)

14. Predictix, http://www.predictix.com/
15. Rosenwald, J.: SWI-Prolog Google’s Protocol Buffers library,

http://www.swi-prolog.org/pldoc/package/protobufs.html

16. Semmle, http://semmle.com/
17. Sereni, D., Avgustinov, P., de Moor, O.: Adding magic to an optimising Datalog

compiler. In: SIGMOD, pp. 553–565 (2008)
18. Stuckey, P.J., Sudarshan, S.: Compiling query constraints (extended abstract). In:

PODS, pp. 56–67 (1994)
19. White, W., Demers, A., Koch, C., Gehrke, J., Rajagopalan, R.: Scaling games to

epic proportions. In: SIGMOD, pp. 31–42 (2007)
20. Wielemaker, J.: SWI-Prolog 5.10 Reference Manual (April 2010),

http://www.swi-prolog.org

21. Zook, D., Pasalic, E., Sarna-Starosta, B.: Typed Datalog. In: Gill, A., Swift, T.
(eds.) PADL 2009. LNCS, vol. 5418, pp. 168–182. Springer, Heidelberg (2008)

http://code.google.com/apis/protocolbuffers/
http://logicblox.com/
http://www.predictix.com/
http://www.swi-prolog.org/pldoc/package/protobufs.html
http://semmle.com/
http://www.swi-prolog.org

Symbolic Execution
of Concurrent Objects in CLP

Elvira Albert, Puri Arenas, and Miguel Gómez-Zamalloa

DSIC, Complutense University of Madrid, Spain

Abstract. In the concurrent objects model, objects have conceptually
dedicated processors and live in a distributed environment with un-
ordered communication by means of asynchronous method calls. Method
callers may decide at runtime when to synchronize with the reply from
a call. This paper presents a CLP-based approach to symbolic execution
of concurrent OO programs. Developing a symbolic execution engine for
concurrent objects is challenging because it needs to combine the OO
features of the language, concurrency and backtracking. Our approach
consists in, first, transforming the OO program into an equivalent CLP
program which contains calls to specific builtins that handle the concur-
rency model. The builtins are implemented in CLP and include primitives
to handle asynchronous calls synchronization operations and scheduling
policies, among others. Interestingly, symbolic execution of the trans-
formed programs then relies simply on the standard sequential execu-
tion of CLP. We report on a prototype implementation within the PET
system which shows the feasibility of our approach.

1 Introduction

Increasing performance demands, application complexity and multi-core paral-
lelism make distribution and concurrency omnipresent in today’s software appli-
cations. There is thus a renewed interest in investigating techniques that help in
simulating, debugging, testing, verifying, etc., distributed and concurrent pro-
grams. The focus of this paper is on developing a CLP-based framework for
the symbolic execution of concurrent object-oriented (OO) imperative programs.
Symbolic execution of a program consists in executing it “a la Prolog”, i.e., using
as arguments free (logic) variables. It allows thus reasoning about all the in-
puts that take the same path through the program. Symbolic execution is at the
core of software verification [14] and testing tools [15, 18, 23]. In the latter case,
by incorporating coverage and termination criteria, symbolic execution allows
automatically obtaining test-inputs ensuring a certain degree of code coverage.

Within the OO paradigm, there are two main approaches to concurrency:
(1) thread-based concurrency models (like those of Java and C#) are based on
threads which share memory and are scheduled preemptively, i.e., they can be
suspended or activated at any time. To prevent threads from undesired inter-
leavings, low-level synchronization mechanisms such as locks have to be used.

C. Russo and N.-F. Zhou (Eds.): PADL 2012, LNCS 7149, pp. 123–137, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

124 E. Albert, P. Arenas, and M. Gómez-Zamalloa

Experience has shown that software written in the thread-based model is error-
prone, difficult to debug, verify and maintain [20]. (2) In order to overcome
these problems, the active-objects model [6,13,17,20,21] aims at providing pro-
grammers with simple language extensions which allow programming concurrent
applications with relatively little effort. Active (also called concurrent) objects
operate similar to Actors [1] and Erlang processes [5].

In this paper, we consider the imperative OO language ABS [12] which is
based on the active-objects concurrency model. A concurrent object, conceptu-
ally, has a dedicated processor and it encapsulates a local heap which is not
accessible from outside the object. The language supports asynchronous method
calls, which trigger activities in other objects without transferring control from
the caller. The method caller may decide at runtime when to synchronize with
the reply from a call. In general, an object may have many method activations
competing to be executed. Among these, at most one process (or task) is ac-
tive and the other processes are suspended in a process pool. Process scheduling
is non-deterministic, but controlled by processor release points in a cooperative
way. Cooperative scheduling means that switching between tasks of the same ob-
ject happens only at specific scheduling points during program execution, which
are explicit in the source code and can be syntactically identified.

The goal of this paper is to design (and implement) a CLP-based symbolic
execution engine for concurrent ABS programs. This is a challenging problem
as one needs to combine the OO and concurrent aspects of the ABS language
with the backtracking mechanism required to perform symbolic execution. For
sequential programs, we have seen in [7, 8, 9, 16] that, as symbolic execution
is the standard evaluation mechanism of CLP, symbolic execution of imperative
programs can be performed in a natural and efficient way by: (1) first, translating
the imperative program into an equivalent CLP program and, (2) then, relying
on the execution mechanism of CLP which performs symbolic execution natively.

The main contribution of this paper is to lift such CLP-based framework from
the sequential to the concurrent OO setting. In particular, we first propose an
automatic transformation of concurrent imperative programs into CLP programs
which include specific builtin operations to handle the concurrency aspects of
the language. The global state is made explicit in the translation as an addi-
tional argument of clauses. It includes the set of concurrent objects with their
fields values and corresponding queues of pending tasks. We then provide an
implementation in CLP of the builtins to treat all concurrency aspects of the
language: (a) asynchronous calls are handled by adding corresponding pending
tasks to the queues of the remote objects on which the calls are performed, (b)
synchronization operations can be performed to suspend the execution of a task
in an object until certain condition holds, (c) future variables become part of
the state and allow synchronizing with the reply from a call, and (d) different
scheduling policies can be easily integrated in our symbolic execution engine. We
report on a prototype implementation of our proposal within the PET system [8]
(a generic platform for CLP-based testing) and evaluate it on a series of small
applications which are classical examples of concurrent programming.

Symbolic Execution of Concurrent Objects in CLP 125

T ::= B | I | D | D〈T̄ 〉 A ::= N | T | D〈Ā〉
Dd ::= data D[〈Ā〉] = Cons[| Cons] Cons ::= Co[(Ā)]

F ::= def A fn[〈Ā〉](A x) = e p ::= x | t | Co[(p̄)]
e ::= b | x | t | this | Co[(e)] | fn(e) | case e {p ⇒ e} t ::= Co[(t̄)] | null

IF ::= interface I [extends I] {Sg } Sg ::= T m (T x)

CL ::= classC [(T x)] [implements I] { T x; M} M ::= Sg {T x; s }
s ::= s ; s | x = rhs | await g | return e g ::= b | e? | g ∧ g

| if (b) { s } [else { s }] | while (b) { s } | skip
rhs ::= e | new C [(e)] | e ! m(e) | e.m(e) | x.get

Fig. 1. ABS Syntax for Functional (top) and Concurrent Object Level (bottom)

2 An Overview of Concurrent Objects

Our method is presented for the core of the ABS language [12], a successor of
Creol [13, 6]. ABS is an OO language for distributed concurrent systems whose
concurrency model is based on concurrent objects. An ABS program defines in-
terfaces, classes, datatypes, and functions, and has a main block to configure
the initial state. The functional sub-language allows abstracting from imple-
mentation details: abstract data types are used to specify internal, sequential
computations, while concurrency is handled in the imperative part.

Fig. 1 gives the syntax of ABS programs. In the functional level (top), ground
types T consist of basic types B (Bool, Int, etc.), names for interfaces I and
data types D. In contrast to T , types A may contain type variables named N .
Dd stands for data type declarations, where D has at least one constructor
Cons . Function declarations F consist of a return type A, a function name fn,
a list of variable declarations x of types A, and an expression e. Expressions e
include Boolean expressions b, variables x, (ground) terms t, the special read-only
variable this which refers to the identifier of the object, constructor expressions
of the form Co[(e)], function applications of the form fn(e), and case expressions
of the form case e{p ⇒ e}, where p is a pattern, as defined in the grammar.

In the concurrent object level of ABS (bottom), an interface IF has a name
I and method signatures Sg, and it can extend other interfaces I. A class has a
name C, implements a list of interfaces, may contain class parameters and state
variables x of type T , and methods M . The fields of the class are both its param-
eters and state variables. Objects are instances of classes; their declared fields
are initialized to arbitrary type-correct values. A method signature Sg declares
the return type T of a method m and formal parameters x of types T . M defines
a method with signature Sg, a list of local variable declarations x of types T ,
and a statement s. All methods return a value (Unit plays the role of void in se-
quential programming). Statements may access fields of the current class, locally
defined variables, and the method’s formal parameters. Right hand side expres-
sions rhs include object creation, method calls, and expressions e. Statements
are standard for assignment x = rhs , sequential composition s1 ; s2, skip, if,
while, and return constructs. In await g, the guard g controls processor

126 E. Albert, P. Arenas, and M. Gómez-Zamalloa

data List〈A〉=Nil | Cons(A,List〈A〉);
data Set〈A〉=EmptyS | Insert(A,Set〈A〉);
data Pairs〈A,B〉=Pair(A,B);
data Map〈A,B〉=EmptyM |

Assoc(Pairs〈A,B〉,Map〈A,B〉);
type FN , Packet=String ;
type FNs=Set〈String〉;
type File=List〈Packet〉;
type Catalog=List〈Pairs〈Node,FNs〉〉;
def B lookup〈A,B〉(Map〈A,B〉 ms, A k)=
case ms {Assoc(Pair(k,y),_) ⇒ y;

Assoc(_,tm) ⇒ lookup(tm,k);}

def Bool contains〈A〉(Set〈A〉 s,A e)=
case s {

EmptyS ⇒ False ;
Insert(e, _) ⇒ True;
Insert(_, xs) ⇒ contains(xs, e);}

def Node findServer (FN f,Catalog c)=
case c {

Nil ⇒ null;
Cons(Pair(s, fs), r) ⇒
case contains(fs, f) {

True ⇒ s;
False ⇒ findServer(f, r); };}

Fig. 2. (Fragment of) Functional Sequential Part of ABS P2P Network

release and consists of Boolean conditions b, return tests x? and conjunctions.
If g evaluates to false, the processor is released, the current process is suspended
and the processor becomes idle. When the processor is idle, any enabled process
from the object’s pool of suspended processes may be scheduled.

Example 1. Our running example is a peer-to-peer (P2P) distributed application
borrowed from [13]. Fig. 2 shows a fragment of the functional program which
includes type definitions (String and Int are predefined) and three functions
which are executed using strict evaluation. Fig. 3 shows the most relevant part
of the imperative concurrent program (interfaces and the implementation of class
Network are not shown). Calls to functions and functional data appear in italics.
Function nth returns the n-th element of a list and appr concatenates two lists.
A P2P network is formed by a set of interconnected peers which can act as clients
and servers. Peers make the files stored in their database (an object of type DB)
available to other peers, without central coordination. The only coordination is
by means of an object of class Network. It is enough to know that nodes learn
who their neighbors are by invoking getNeighbors implemented in this class. A
node acting as client triggers computations with searchFile, which first finds a
neighbor node s that can provide the file and then requests the file using reqFile.

Communication in ABS is based on asynchronous method calls, denoted o ! m(e),
and future variables (Fut〈·〉). Method calls may be seen as triggers of concurrent
activity, spawning new tasks (so-called processes) in the called object. After asyn-
chronously calling x=o ! m(e), the caller may proceed with its execution without
blocking on the call. Here x is a future variable, o is an object (typed by an inter-
face), and e are expressions. A future variable x refers to a return value which has
yet to be computed. There are two operations on future variables, which control
external synchronization in ABS. First, a return test x? evaluates to false unless
the reply to the call can be retrieved. Second, the return value is retrieved by the
expression x.get, which blocks all execution in the object until the return value is
available. A synchronous call, abbreviated as v=o.m(e), is internally transformed
into the statement sequence x=o ! m(e); if (o==this) await x?; v=x .get.

Symbolic Execution of Concurrent Objects in CLP 127

class DBImp(Map〈FN ,File〉 db)
implements DB {
File getFile(FN fId) {
return lookup(db, fId);}

Int getLength(FN fId) {
return length(lookup(db,fId));}

Unit storeFile(FN fId, File file) {
db=Assoc(Pair(fId,file), db);}

FNs listFiles() {
return keys(db);}

}
class Node(DB db,FN file)
implements Peer {
Catalog cat=Nil ;
List〈Peer〉 myN=Nil ;
Network admin=null;
Unit run() {

Fut〈Catalog〉 c; Fut〈List〈Peer〉〉 f;
Server server ;
await admin != null;
f=admin ! getNeighbors(this);
await f?; myN=f.get;
c=this ! availFiles(myN);
await c?; cat=c.get;
server=findServer(file, cat);
if (server != null) {

this.reqFile(server,file);}}
Unit setAdmin(Network admin) {

this.admin=admin;}
FNs enquire() {

Fut〈FNs〉 f; f=db ! listFiles();
await f?; return f.get;}

Int getLength(FN fId) {
Fut〈Int〉 lth; lth=db ! getLength(fId);
await lth?; return lth.get;}

Packet getPack(FN fId, Int pNbr) {
File f=Nil ; Fut〈File〉 ff;
ff=db ! getFile(fId);
await ff?; f=ff.get;
return nth(f, pNbr);}

Catalog availFiles (List〈Peer〉 sL) {
Catalog cat=Nil ; FNs fNs=EmptyS ;
Fut〈FNs〉 fN; Catalog catL=Nil ;
Fut〈Catalog〉 cL;
if (sL != Nil) {

fN=head(sL) ! enquire();
cL=this ! availFiles(tail(sL));
await fN? & cL?;
catL=cL.get; fNs=fN.get;
cat=appr(catL,Pair(head(sL),fNs));

}
return cat;}

Unit reqFile(Server sId, FN fId) {
Fut〈Int〉 l1; Fut〈Packet〉 l2;
l1=sId ! getLength(fId);
await l1?; Int lth=l1.get;
while (lth > 0) {

lth=lth - 1;
l2=sId ! getPack(fId, lth);
await l2?; Packet pack=l2.get ;
file=Cons(pack, file);}

db ! storeFile(fId, file);}
}

Fig. 3. Concurrent Part of ABS Implementation of P2P Network

Observe that checking if o==this is necessary to avoid that the execution of the
current object blocks when a synchronous local call is performed.

Example 2. The following fragment of code corresponds to a possible main
method for the P2P example.
Map〈FN ,File〉 dataBase = Assoc(Pair(”file0 ”, Cons(”a”, Cons(”b”, Cons(”c”, Nil)))),

Assoc(Pair(”file1 ”,Cons(”d”, Cons(”e”, Nil))),EmptyM));
DB db1 = new DBImp(EmptyM); DB db2 = new DBImp(dataBase);
Peer n1 = new Node(db1, ”file0”); Peer n2 = new Node(db1, ”file1”);
Peer n3 = new Node(db2, ”file1”); NetWork admin = new NetWork(n1, n2, n3);

n1 ! setAdmin(admin); n2 ! setAdmin(admin); n3 ! setAdmin(admin);
n1 ! run(); n2 ! run();

128 E. Albert, P. Arenas, and M. Gómez-Zamalloa

The network configuration consists of three nodes, two databases and one Net-
work object (admin). Nodes n1 and n2 are neighbors of n3. Such six objects be-
come distinct concurrent entities which communicate with each other by means
of asynchronous calls and use future variables to eventually return/retrieve the
results. Any concurrent object has its own heap, its queue of pending tasks and
an active task (if any).

3 CLP-Translated Programs

The translation of sequential imperative programs into equivalent CLP programs
has been subject of previous work (see, e.g., [3, 7]). Intuitively, for each method
(or function), the translation represents the method (or function) as well as the
intermediate blocks within the method (e.g., loops, conditionals) by means of
predicates in the CLP program. The fact that the imperative program works
on a global state is simulated by representing the state using additional argu-
ments of all predicates. We will not go into details of how the transformation of
the sequential part is formalized (see [3, 7]). Instead, we focus on the syntactic
extensions of the ABS translated concurrent programs.

3.1 Syntax of CLP-Translated Programs

An ABS CLP-translated program is made up of a set of predicates, each of them
defined by one or more mutually exclusive clauses, which adhere to the following
grammar:
Clause ::= Pred(Args, Args, S , S) : −[Ḡ ,]B̄ .

G ::= Num∗ OpR Num∗ | Ref ∗
1 \ == Ref ∗

2 | Var = FTerm∗ |
diff (Var , FTerm∗) |type(S ,Ref ∗,C)

B ::= Var #= Num∗ OpA Num∗ | Pred(Args, Args, S ,S) | Var=FTerm |
new(C ,Ref ∗,S ,S) | getField(Ref ∗,FSig ,Var , S) | async(Ref ∗,Call ,S ,S) |
setField(Ref ∗,FSig ,Var∗,S ,S) | await(Call ,Call ,S ,S) |
get(Var , Var , Call ,S ,S) | return(Var∗,Var , S ,S) | futAvail(Var , Var)

Call ::= Pred(Args, Args)
Pred ::= BlockN | MethodN | FuncN
Args ::= [] | [Data∗|Args]
Data ::= Num | Ref | FTerm

Ref ::= null | Var
OpR ::= #> | #< | #>= | #=< | #= | #\ =
OpA ::= + | − | ∗ | / | mod

S ::= Var

We use FuncN , MethodN , FSig to denote the set of functions names, methods
and field signatures. Clauses can define methods and functions which appear in
the original source program (MethodN , FuncN) and additional predicates which
correspond to intermediate blocks in the program (BlockN). Num is a number,
Var is a Prolog variable and FTerm is a term that represents a corresponding
functional data (namely p in Fig. 1). An asterisk on any element denotes that
it can be either as defined by the grammar or a variable. Each clause receives
as input a possibly empty list of parameters (1st argument) and a global state
(3rd argument), and returns an output (2nd argument) and a final global state

Symbolic Execution of Concurrent Objects in CLP 129

(4th argument). The body of a clause may include a sequence of guards followed
by a sequence of instructions, including: arithmetic operations, calls to other
predicates, builtins to create objects and to write and read on object fields, and
builtins to handle the concurrency.

We use three different kinds of inequalities in guards, namely, “\==”, “=”
and diff to represent, resp., arithmetic comparisons, comparisons of references
and pattern matchings in ABS functions. Virtual method invocations in the
OO language are resolved at compile-time and translated into a choice of type
builtins followed by the corresponding method invocation for each runtime in-
stance. As expected, the builtin new(C ,R,S1 ,S2) creates a new object of class
C in state S1 and returns its assigned reference R and the updated state S2;
getField(R,FSig,V ,S) retrieves in variable V the value of field FSig of the ob-
ject referenced by R in the state S; setField(R,FSig,V ,S1 ,S2) sets the field
FSig of the object referenced by R in S1 to V and returns the modified state S2.

In the translation of concurrent programs, when a concurrency construct ap-
pears (namely an asynchronous call, an await or get statement), we introduce
a call to a corresponding builtin predicate that will simulate the concurrent be-
haviour. Besides, an important point to notice is that, for all await and get
statements, we introduce a continuation predicate which allows us to suspend
the current task (if needed) and then be able to resume its execution at this
precise point. Also, we introduce in the translation return statements in order
to syntactically identify in the CLP-translated program when the execution of
a task finishes and thus another task from the queue can be scheduled.

Example 3. The following code shows the CLP-translated program for method
reqFile of class Node.

’Node.reqFile’([This, SId ,FId], [Out], S1 ,S2) :-
async(SId ,’Node.getLength’([SId , FId], [L1]),S1 ,S3),
await(awguard1 ([L1], [_]), cont1 ([This,SId ,FId ,L1], [Out]), S3 ,S2).

awguard1 ([L1], [V]) :- futAvail(L1 ,V).
cont1 ([This,SId ,FId ,L1], [Out], S1 ,S2) :-

get(L1 , Lth, cont2 ([This, SId ,FId ,Lth], [Out]), S1 ,S2).
cont2 ([This,SId ,FId ,Lth], [Out], S1 ,S2) :- File =’Nil ’,

while([This,SId ,FId ,File,Lth], [Out], S1 ,S2).
while([This,SId ,FId ,File,Lth], [Out], S1 ,S2) :- # <= (Lth, 0),

getField(This,’Node.db’, Db,S1),
async(Db,’DBImp.storeFile’([Db, FId ,File], [_], S1 ,S3),
return([’Unit ’], [Out], S3 ,S2).

while([This,SId ,FId ,File,Lth], [Out], S1 ,S2) :- # > (Lth, 0), # = (Lth1 ,Lth − 1),
async(SId ,’Node.getPack ’([SId , FId ,Lth1], [L2]),S1 ,S3),
await(awguard2 ([L2], _), cont3 ([This, SId ,FId ,File,L2 ,Lth1], [Out]), S3 ,S2).

awguard2 ([L2], [V]) :- futAvail(L2 ,V).
cont3 ([This,SId ,FId ,File,L2 ,Lth], [Out], S1 ,S2) :-

get(L2 , Pack , cont4 ([This, SId ,FId ,File,Pack , Lth], [Out], S1 ,S2).
cont4 ([This,SId ,FId ,File,Pack , Lth], [Out], S1 ,S2) :- File1 =’Cons’(Pack , File),

while([This,SId ,FId ,File1 ,Lth], [Out], S1 ,S2).

130 E. Albert, P. Arenas, and M. Gómez-Zamalloa

The main features that can be observed from the translation are: (1) Methods
(like reqFile), intermediate blocks (like cont1) and functions are uniformly repre-
sented by means of predicates and are not distinguishable in the translated pro-
gram. The input arguments list of all rules includes: the this reference, the list of
input parameters of the ABS method from which the rule originates, and, in the
case of predicates corresponding to intermediate blocks, their local variables. The
output arguments list is always a unitary list with the return value. (2) Condi-
tional statements and loops in the source program are transformed into guarded
rules and recursion in the CLP program, resp., e.g., rules for while. (3) Additional
rules are produced for the continuations after await and get statements. The calls
to such continuation rules are included within the arguments of the await and get
builtins (see e.g. rules ’Node.reqFile’ for the case of await or cont1 for get). This
allows the symbolic execution engine to suspend the execution at this point and
resume it later. (4) A global state is explicitly handled. Observe that each rule in-
cludes as arguments an input and an output state. The state is carried along the
execution being used and transformed by the corresponding builtins as a black
box, therefore it is always a variable in the CLP program.

3.2 The Global State

In a sequential OO language, the global state carried along by the CLP-translated
program only contains the data stored in the heap. Instead, in our concurrent
setting, it has to include the set of existing concurrent objects, each of them with
its associated internal state. The internal state of an object includes two pieces
of information: (1) its heap (set of fields) which is not accessible from outside
the object and (2) the queue of pending tasks. Formally, the syntax of the global
state is as follows:

State ::= [] | [(Num, Object)|State] Object ::= object(C ,Fields, Q)
Fields ::= [] | [field(f ,Data)|Fields] Q ::= [] | [Task |Q]

Fut ::= ready(Data)|Var Task ::= call(Call) | await(Call ,Call) |
get(Fut,V ar,Call)

The state is represented as a list of pairs, where Num is a unique reference to
the object Object . Each object is a term which includes its class C, a list of
fields Fields and a queue Q of pending tasks. Each element in Fields is a term
containing a field name and its associated data. The meaning of the different
kinds of tasks Task and the syntax of future variables Fut is related to the
symbolic execution of the translated programs and will be explained in detail in
the next section.

Example 4. Consider an execution of the main method in Ex. 2 which starts
from an initial state []. After creating the objects of type DBImp, the state takes
the form [odb1 , odb2], where odb1 =(1 , object(’DBImp’, [field(db,’EmptyM ’)], []))
and odb2 =(2 , object(’DBImp’, [field(db, dataBase)], []))]. Here, 1 and 2 are the
references for db1 and db2, respectively. Similarly, the next three new instructions
add three new elements to the state, resulting in [odb1 , odb2 , on1 , on2 , on3], where:
on1 = (3 , object(’Node’, [field(db, 1),field(file, ”file0”),field(cat ,’Nil ’),

field(myN ,’Nil ’), field(admin, null)], []))

Symbolic Execution of Concurrent Objects in CLP 131

async(Ref,Call,S1,S2) :- addTask(S1,Ref,call(Call),S2).
await(Cond,Cont,S1,S3) :-

Cond =..[_,[This|_],[Ret]], buildCall(Cond,S1,S2,CondCall), CondCall,
(Ret = ’False’ -> addTask(S1,This,await(Cond,Cont),S2), switchContext(S2,S3)

; buildCall(Cont,S1,S3,ContCall), ContCall).
get(FV,V,Cont,S1,S3) :- Cont =..[_,[This|_],_],

(var(FV) -> addTask(S1,This,get(FV,V,Cont),S2), switchContext(S2,S3)
; FV = ready(V), buildCall(Cont,S1,S3,ContCall), ContCall).

return([Ret],[ready(Ret)],S1,S2) :- switchContext(S1,S2).
futAvail(FV,’False’) :- var(FV), !.
futAvail(ready(_),’True’).

addTask(S1,Ref,T,S2) :- getCell(S1,Ref,object(C,Fs,Q1)),
insert(Q1,T,Q2), setCell(S1,Ref,object(C,Fs,Q2),S2).

switchContext(S1,S3) :- S1 = [(Ref,_)|_], firstToLast(S1,S2),
switchContext_(S2,S3,Ref).

switchContext_(S,S,Ref1) :- S = [(Ref2,object(_,_,[]))|_], Ref1 == Ref2, !.
switchContext_(S1,S3,Ref) :-

(extractTask(S1,Task,S2) -> runTask(Task,S2,S3)
firstToLast(S1,S2), switchContext_(S2,S3,Ref)).

runTask(call(ShortCall),S1,S2) :- buildCall(ShortCall,S1,S2,Call), Call.
runTask(await(Cond,Cont),S1,S2) :- await(Cond,Cont,S1,S2).
runTask(get(FV,V,Cont),S1,S2) :- get(FV,V,Cont,S1,S2).
buildCall(ShortCall,S1,S2,Call) :- ShortCall =..[RN,In,Out], Call =..[RN,In,Out,S1,S2].

Fig. 4. Implementation of Concurrency builtins

and on2 , on3 are similar to on1 except for the object identifiers (4 and 5 respec-
tively) and the value of field file (which is ”file1” in both objects). Field db has
value 1 for on2 , and value 2 for on3 .

4 Symbolic Execution of Concurrent Objects

In dynamic (or concrete) execution, the initial state must be a ground term (e.g.,
if execution starts from a main, it is an empty list). Objects must be created
using new/4 before their fields can be read or written. In symbolic execution, the
intuitive idea proposed in [8] is that the state contains two parts: the known part
(beginning of the list) with the objects that have been explicitly created during
symbolic execution, and the unknown part which is a logic variable (tail of the
list) in which new data can be added by producing the corresponding bindings.
Therefore, the state starts being a free variable, and the implementation of get-
Field/4 and setField/5 invokes predicates getCell/3 and setCell/4 which, if the
object whose fields are going to be read or written is not in the known part,
they instantiate the unknown part of the heap to be able to assume the previous
allocation of the object and access its fields. Figure 4 shows the CLP implemen-
tation of the builtins to handle concurrency. They rely on the above getCell/3

132 E. Albert, P. Arenas, and M. Gómez-Zamalloa

and setCell/4 operations (whose implementation is in [8]) to symbolically access
the heap. The following sections explain the behavior of the different builtins.

4.1 Asynchronous Calls

Predicate async(Ref,Call,S1,S2), given the current state S1 adds the asynchronous
call Call to the queue of tasks of the receiver object Ref producing the updated
state S2. The call to addTask/4 searches the state for the object pointed to by ref-
erence Ref by means of getCell/3, adds the task to its queue and updates the state
with the updated object. As explained above, if the object pointed to by Ref is not
in the known part of the state, getCell/3 produces a corresponding instantiation
on the unknown part so that after this operation the object is in the state.

Example 5. Let us consider the symbolic execution of method reqFile, i.e., we run
in CLP the goal ’Node.reqFile’(In,Out ,S0 ,S1). After the first call to async/4
the following instantiations are produced:
S0=[(SId , object(’Node’, [field(’Node.db’, DB), . . .]), [])]
S1=[(SId , object(’Node’, [field(’Node.db’, DB), . . .]), [call(’Node.getLength’(. . .))])]

Observe that, as expected, asynchronous calls do not transfer control from the
caller, i.e., they are not executed when they occur but rather added as pending
tasks on the receiver objects that will eventually schedule them for execution.

4.2 Implementation of Distribution and Concurrency

The fact that objects do not share memory ensures that their execution states
(and thus the global state) are not affected by how distribution is realized.
Therefore, symbolic execution can simulate distribution in any convenient way.
We implement it in the following specific way: each object executes its scheduled
task as far as possible and, when a task finishes or gets blocked, simulation
proceeds circularly with the next object in the state (which could be running in
parallel in an actual deployment configuration). In contrast, concurrency occurs
at the level of object in the sense that tasks in the object queue are executed
concurrently. Cooperative scheduling of the ABS language only specifies that the
execution of the current task must proceed until a call to return/4, await/4 or
get/5 is found. The scheduling policy which decides the task that executes next
(among those ready for execution) is left unspecified.

Predicate switchContext/2 is used when the execution of the current task can
no longer proceed. It gives the turn of execution to the first task (according to
the scheduling policy) of the following object (the next one in the state). This is
implemented by always keeping the current object in the head of the state, and
moving it to the last position when its current task finishes or gets blocked, as it
can be observed in the implementation of switchContext/2. If the current object
has some pending task in its queue, the task is run (calling runTask/3). Otherwise
(predicate extractTask/3 fails), the following object is tried. The execution of the
whole application finishes when there is no pending task in any object (see first

Symbolic Execution of Concurrent Objects in CLP 133

rule of switchContext_/3). Observe that there are three different types of tasks,
call, await and get, whose behaviour is explained below.

One can implement different scheduling policies by providing concrete im-
plementations of predicates insert/3 and extractTask/3. For instance, a FIFO
scheduling policy is implemented by 1) inserting at the end of the queue, and
2) extracting always the first task. One can also use priority queues. The im-
plementation becomes parametric on the scheduling policy by just asserting the
selected policy and adding a parameter to predicates insert and extractTask to
apply the selected policy. Furthermore, the language allows that different objects
apply different scheduling policies. Thus, one can also select the desired policy
per object. In this case, when scheduling a new task, we first read the asserted
information which indicates the scheduling policy at the object level and, then,
invoke the appropriate implementation of insert and extractTask for the current
object. Having parametric scheduling policies is interesting in the application of
symbolic execution to regression testing, as one then wants to save the selected
policy within the test-cases in order to be able to replay them.

4.3 Synchronization: Future Variables, Await, Get and Return

Await. Predicate await(Cond,Cont,S1,S3) first checks its condition Cond by means
of the meta-call CondCall. If the condition holds (Ret gets instantiated to ’True’),
a meta-call to the continuation Cont is made (meta-call ContCall). Otherwise (Ret
is ’False’), an await task is added to the queue of the involved object and we
switch context. Let us observe that the calls wrapped within asyncs, awaits and
gets as well as those stored in object queues, do not include states but just input
and output arguments (see grammars in Sect. 3). This is because when a task is
to be executed the current state must be used (and not the one that was current
when the task was first created). Predicate buildCall/4 builds a full call from a
call without states and the two states involved.
Future variables. The evaluation of await conditions can involve return tests
on future variables. This is represented in our CLP programs by a call to the
futAvail/2 builtin. Future variables occur in the global state in the output argu-
ments of call tasks, and are available when they get instantiated. Since, in the
context of symbolic execution, the return value of a method can be a variable
V , we use the special term ready(V) to know whether the execution has finished
(see the global state grammar in Sect. 3.2). Predicate futAvail/2 then just has to
check whether the future variable is a CLP variable or is instantiated to ready(_)
and returns, resp., ’False’ or ’True’.

Example 6. Let us continue with the symbolic execution of method reqFile right
after the execution of the first async (see Ex. 5). The call to await first pro-
duces a call to awguard1 which checks whether the return value L1 (future
variable) of the call to getLength is already available (by means of the call
to futAvail/2). Since it is not the case (i.e, a ’False’ is returned) the execu-
tion of the current task cannot proceed, therefore the await task is added to
the current object (so that it is re-tried later on) and context is switched (see

134 E. Albert, P. Arenas, and M. Gómez-Zamalloa

Table 1. Statistics about the Analysis Process

Benchmark D=50 D=75 D=100
#I #S T #I #S T #I #S T

ProducerImpl.loop 1175 29 30 8028 134 140 35291 437 630
ConsumerImpl.loop 35 2 10 159 4 20 254 5 20
BoundedBuffer.append 2751 77 10 10494 198 30 24840 360 40
DistHT.lookupNode 319 11 20 697 17 10 1219 23 10
DistHT.getAllData 6 1 10 1406 21 40 9466 111 130
DistHT.getAllKeysAux 96 3 10 849 14 60 15622 173 360
DistHT.getAllKeys 22 1 11 160 3 30 1177 14 119
DistHT.putData 2220 50 10 14608 242 30 47532 612 70
DBImp.getLength 9108 253 61 30940 595 160 78208 1128 359
Node.run 0 0 10 51241 720 240 14219536 148466 45640
Node.getLength 3731 91 40 20475 351 150 55081 741 360
Node.getPack 1736 42 20 9919 169 40 26961 361 60
Node.reqFile 0 0 10 1988 28 110 16530 190 390
SessionImp.order 0 0 30 0 0 110 5647 59 320
AgentImp.free 616 22 10 1435 35 10 2491 47 10
DBImp.confirmOrder 95568 2167 599 4863238 71277 21230 - - -

.

the calls to addTask/4 and switchContext/2). This, in turn, produces a call to
runTask(call(’Node.getLength’(. . .)),S2,S3) where the current state is now
S2=[(SId , object(’Node’, [field(’Node.db’, DB1), . . .]), []),
(This, object(’Node’, [field(’Node.db’, DB2), . . .]), [await(awguard1 (. . .), cont1 (. . .))])]

Return. When a method finishes its execution, we reach a return statement which
instantiates the future variable V associated to the current task to ready(V). This
allows that, if the task that requested the execution of this one was blocked await-
ing on this future variable, it can proceed its execution when it is re-scheduled.
Get. Predicate get first checks if the task can resume execution because the
future variable that is blocking it has become instantiated. In such case, the
continuation of the get is executed (meta-call ContCall). Otherwise, the current
task is added to the queue and context is switched.

5 Experimental Results in aPET

PET [8] is a test-case generation tool which aims at being a generic platform
for CLP-based test-case generation of different languages. This work implements
the core part of aPET, an extension of PET to generate test-cases from concur-
rent ABS programs. Currently, we have implemented the automatic translation
of ABS programs into CLP equivalent programs and extended the symbolic ex-
ecution engine of PET with the concurrency primitives of ABS described along
the paper. Experimental evaluation has been carried out using several typical
concurrent applications: BBuffer, a classical bounded-buffer for communicat-
ing several producers and consumers, DistHT which implements a distributed

Symbolic Execution of Concurrent Objects in CLP 135

hash-table, PeerToPeer, our running example; BookShop, which implements a
web shop client-server application. The code of the examples can be found in
http://costa.ls.fi.upm.es/pet/apet.

Table 1 summarizes our experiments. Each set of rows contains the results of
symbolically executing methods which belong to the above benchmarks. Sym-
bolic execution for all methods works properly but, in the table, we have only
showed the results for the methods which have more complex code and whose
symbolic execution takes longer. As methods contain loops or recursion, symbolic
execution does not terminate unless we introduce some termination criteria. In
our case, we limit the length of the branches of the symbolic execution tree to
a constant D (i.e., the depth of the tree to D). For each experiment, we show
three sets of columns with the results of setting D to 50, 75 and 100 steps.
Then, column #I shows the total number of instructions that have been exe-
cuted including all branches, #S shows the number of solutions (branches) in
the resulting symbolic execution tree, and T the total time (in milliseconds)
required to build the tree. Experiments have been performed on an Intel Core i5
at 3.2GHz with 3.1GB of RAM, running Linux. All times have been computed
as the average of 5 runs. When time is negligible, the system gives T = 10.
As expected, when allowing larger values for the depth of the tree, the number
of branches grows exponentially and thus the total time. This is not a problem
related to our approach, but rather inherent to symbolic execution. Methods
Node.run and DBImp.confirmOrder have larger times (and number of instruc-
tions) because the size of the code reachable from them is much larger (they
contain many calls to other methods). For the last one, no result is computed in
a reasonable time for D=100. In order to alleviate this problem, testing tools
often limit the number of iterations on loops to a small number. Otherwise, the
process can become quite expensive and too many test-cases can be obtained,
as it can be observed from the large number of solutions obtained.

6 Conclusions and Related Work

We have presented the first CLP-based approach to symbolic execution of con-
current objects. The main idea is that concurrent distributed imperative pro-
grams can be translated into equivalent CLP programs which contain calls to
builtin operations that simulate the concurrent behavior of the active objects
paradigm. A unique feature of our approach is that, as the builtin operations
can be fully implemented in logic programming, symbolic execution boils down
to standard sequential execution of the CLP transformed program.

Process scheduling in concurrent objects has some similarities with the dy-
namic scheduling available in Prolog systems. However, the behavior is not the
same and it cannot be directly used. This is because synchronization using dy-
namic scheduling can resume the execution of a task as soon as the await con-
dition is satisfied, while cooperative scheduling only allows switching between
tasks at specific scheduling points. As concurrent objects do not share memory,
one could think of using Prolog’s parallelism [11] to simulate the distributed

http://costa.ls.fi.upm.es/pet/apet

136 E. Albert, P. Arenas, and M. Gómez-Zamalloa

execution by running each object as a parallel task. However, there is no sup-
port to simulate the fact that one object receives requests from another one
by means of asynchronous calls. Some systems, like SWI, implement parallelism
using threads with associated queues and synchronization is achieved by means
of asserted variables. Indeed, for concrete execution, we have a working imple-
mentation using SWI Prolog parallelism in which tasks communicate by means
of global variables (asserted in Prolog’s database). However, the use of impure
features does not allow the backtracking required in symbolic execution. Re-
cent years are witnessing a wealth of research in testing concurrent programs.
Symbolic execution is the central part of most static test-case generation tools,
which typically obtain the test-cases from the branches of the symbolic execution
tree. There is previous related work on using Creol for modeling and testing sys-
tems against specifications [2], though the problem of symbolic execution is not
studied there. Later, [10] studies dynamic symbolic execution of Creol programs
which combines concrete and symbolic execution. A fundamental difference with
our approach is that they use an interpreter of Creol to perform symbolic execu-
tion, while in our case, we transform the ABS program into an equivalent CLP
which does not require any interpretation layer, rather it is executed natively in
CLP. Simulation tools for ABS programs that perform concrete execution [4] are
only tangentially related to our work. This is because dynamic execution does
not require backtracking and hence the use of CLP has less interest.

Recent work on testing thread-based languages studies ways to improve scal-
ability [19] which could also be adapted to our context. Likewise, [22] proposes
new coverage criteria in the context of concurrent languages that could be stud-
ied in our CLP-based setting. As future work, we plan to integrate our symbolic
execution mechanism within a test-case generation tool in order to generate unit
tests for ABS programs in a fully automatic way.

Acknowledgments. This work was funded in part by the Information & Com-
munication Technologies program of the European Commission, Future and
Emerging Technologies (FET), under the ICT-231620 HATS project, the UCM-
BSCH-GR35/10-A-910502 GPD Research Group, the Madrid Regional Govern-
ment under the S2009TIC-1465 PROMETIDOS-CM project and by the Spanish
Ministry of Science (MICINN) under the TIN-2008-05624 DOVES project.

References

1. Agha, G.A.: Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge (1986)

2. Aichernig, B.K., Griesmayer, A., Schlatte, R., Stam, A.: Modeling and Testing
Multi-Threaded Asynchronous Systems with Creol. ENTCS 243, 3–14 (2009)

3. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost Analysis of
Java Bytecode. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 157–172.
Springer, Heidelberg (2007)

4. Albert, E., Genaim, S., Gómez-Zamalloa, M., Johnsen, E.B., Schlatte, R., Tarifa,
S.L.T.: Simulating Concurrent Behaviors with Worst-Case Cost Bounds. In: Butler,
M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 353–368. Springer, Heidelberg
(2011)

Symbolic Execution of Concurrent Objects in CLP 137

5. Armstrong, J., Virding, R., Wistrom, C., Williams, M.: Concurrent Programming
in Erlang. Prentice Hall (1996)

6. de Boer, F.S., Clarke, D., Johnsen, E.B.: A Complete Guide to the Future. In: De
Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 316–330. Springer, Heidelberg
(2007)

7. Gómez-Zamalloa, M., Albert, E., Puebla, G.: Decompilation of Java Bytecode to
Prolog by Partial Evaluation. JIST 51, 1409–1427 (2009)

8. Gómez-Zamalloa, M., Albert, E., Puebla, G.: Test Case Generation for Object-
Oriented Imperative Languages in CLP. TPLP, ICLP 2010 Special Issue (2010)

9. Gotlieb, A., Botella, B., Rueher, M.: A CLP Framework for Computing Structural
Test Data. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach,
U., Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI),
vol. 1861, pp. 399–413. Springer, Heidelberg (2000)

10. Griesmayer, A., Aichernig, B.K., Johnsen, E.B., Schlatte, R.: Dynamic Symbolic
Execution of Distributed Concurrent Objects. In: Lee, D., Lopes, A., Poetzsch-
Heffter, A. (eds.) FMOODS 2009. LNCS, vol. 5522, pp. 225–230. Springer, Heidel-
berg (2009)

11. Gupta, G., Pontelli, E., Ali, K., Carlsson, M., Hermenegildo, M.: Parallel Execution
of Prolog Programs: a Survey. ACM TOPLAS 23(4), 472–602 (2001)

12. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A Core
Language for Abstract Behavioral Specification. In: Proc. of FMCO 2010. Springer,
Heidelberg (to appear, 2011)

13. Johnsen, E.B., Owe, O.: An Asynchronous Communication Model for Distributed
concurrent objects. Software and Systems Modeling 6(1), 35–58 (2007)

14. Khurshid, S., Păsăreanu, C.S., Visser, W.: Generalized Symbolic Execution for
Model Checking and Testing. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003.
LNCS, vol. 2619, pp. 553–568. Springer, Heidelberg (2003)

15. King, J.C.: Symbolic Execution and Program Testing. Commun. ACM 19(7), 385–
394 (1976)

16. Meudec, C.: Atgen: Automatic Test Data Generation using Constraint Logic Pro-
gramming and Symbolic Execution. Softw. Test., Verif. Reliab. 11(2), 81–96 (2001)

17. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice-Hall, Inc.,
Upper Saddle River (1997)

18. Müller, R.A., Lembeck, C., Kuchen, H.: A Symbolic Java Virtual Machine for Test
Case Generation. In: IASTED Conf. on Software Engineering, pp. 365–371 (2004)

19. Rungta, N., Mercer, E.G., Visser, W.: Efficient Testing of Concurrent Programs
with Abstraction-Guided Symbolic Execution. In: Păsăreanu, C.S. (ed.) SPIN 2009.
LNCS, vol. 5578, pp. 174–191. Springer, Heidelberg (2009)

20. Schäfer, J., Poetzsch-Heffter, A.: Jcobox: Generalizing Active Objects to Concur-
rent Components. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 275–
299. Springer, Heidelberg (2010)

21. Srinivasan, S., Mycroft, A.: Kilim: Isolation-Typed Actors for Java. In: Ryan, M.
(ed.) ECOOP 2008. LNCS, vol. 5142, pp. 104–128. Springer, Heidelberg (2008)

22. Takahashi, J., Kojima, H., Furukawa, Z.: Coverage based Testing for Concurrent
Software. In: ICDCS Workshops, pp. 533–538. IEEE Computer Society (2008)

23. Tillmann, N., de Halleux, J.: Pex–White Box Test Generation for.NET. In: Beckert,
B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134–153. Springer, Heidelberg
(2008)

A Segment-Swapping Approach for Executing
Trapped Computations�

Pablo Chico de Guzmán1, Amadeo Casas2,
Manuel Carro1,3, and Manuel V. Hermenegildo1,3

1 School of Computer Science, Univ. Politécnica de Madrid, Spain
2 Samsung Research, USA

3 IMDEA Software Institute, Spain
pchico@clip.dia.fi.upm.es, {mcarro,herme}@fi.upm.es,

amadeo.c@samsung.com

Abstract. We consider the problem of supporting goal-level, independent and-
parallelism (IAP) in the presence of non-determinism. IAP is exploited when two
or more goals which will not interfere at run time are scheduled for simultaneous
execution. Backtracking over non-deterministic parallel goals runs into the well-
known trapped goal and garbage slot problems. The proposed solutions for these
problems generally require complex low-level machinery which makes systems
difficult to maintain and extend, and in some cases can even affect sequential ex-
ecution performance. In this paper we propose a novel solution to the problem of
trapped nondeterministic goals and garbage slots which is based on a single stack
reordering operation and offers several advantages over previous proposals. While
the implementation of this operation itself is not simple, in return it does not im-
pose constraints on the scheduler. As a result, the scheduler and the rest of the
run-time machinery can safely ignore the trapped goal and garbage slot problems
and their implementation is greatly simplified. Also, standard sequential execu-
tion remains unaffected. In addition to describing the solution we report on an
implementation and provide performance results. We also suggest other possible
applications of the proposed approach beyond parallel execution.

Keywords: Parallelism, Logic Programming, Trapped Computations, Backtrack-
ing, Performance.

1 Introduction

Extracting parallelism from sequential programs has become a key point for the practical
exploitation of multicore technology. However, writing parallel application has shown
to be a difficult, time-consuming, and error-prone process for developers. Consequently,
the design of new language constructs that aim at easing the task of writing parallel ap-
plications and the development of language tools to uncover the parallelism intrinsic in
sequential applications have drawn the interest of the research community. Traditionally,
declarative languages have received much attention for both expressing and exploiting
parallelism due to their comparatively clean semantics and expressive power. In partic-
ular, a large amount of effort has been invested by the community in the area of parallel

� Work partially funded by EU project IST-215483 S-Cube, MICINN project TIN-2008-05624
DOVES, and CAM project S2009TIC-1465 PROMETIDOS. Pablo Chico is also funded by a
MEC FPU scholarship.

C. Russo and N.-F. Zhou (Eds.): PADL 2012, LNCS 7149, pp. 138–152, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Segment-Swapping Approach for Executing Trapped Computations 139

execution of logic programs [1], where two main sources of parallelism have been iden-
tified and exploited. Or-parallelism, efficiently exploited by systems such as Aurora [2]
and MUSE [3], aims at executing different branches of the execution in parallel. On
the other hand, and-parallelism schedules the literals of a resolvent to be executed in
parallel. As an alternative to execution models specifically designed for executing and-
parallel programs, efficient models to exploit and-parallelism based on the WAM were
developed. The latter have the advantage of retaining the many optimizations present in
the WAM which improve performance in the sequential execution parts — and, conse-
quently, improve the overall performance. &-Prolog [4] (the first fully described such
system) and DDAS [5] are among the best-known proposals in that class. In addition,
other systems such as (&)ACE [6], AKL [7], Andorra [8] and the Extended Andorra
Model (EAM) [9,10] have tackled the challenge of increasing performance of applica-
tions by providing solutions that combine both kinds of parallelism. In this paper we will
focus on goal-level, independent and-parallelism, a subclass of and-parallelism in which
parallelism is exploited among goals which do not compete for resources (bindings to
variables, I/O, databases, and others) at run-time.

Although previous systems that have exploited independent and-parallelism excelled
at speeding up the execution of programs in multiprocessor systems [1], the difficulty of
the machinery required to execute nondeterministic programs in parallel hindered their
widespread availability. In particular, one of the most delicate aspects that these systems
need to address is the management of trapped goals and stack unwinding, which are nec-
essary to free garbage slots left by the nondeterministic parallel execution, resulting in
a complex interaction between goal age, scheduling, and memory management [11,12].
Dealing with these issues required low-level, complex engineering, such as special stack
frames in the stack sets [4,13].

Notwithstanding, non-determinism is an essential concept that arises in many core
areas of computer science, such as artificial intelligence and constraint-based optimiza-
tion, and is necessary in general problem-solving patterns, such as generate-and-test. In
order to avoid complexity, recent approaches to independent and-parallelism focus more
on simplicity than on ultimate performance, abstracting core components of the imple-
mentation out to the source level. In [14], a high-level implementation of goal-level IAP
was proposed that showed reasonable speedups despite the overhead added by the high
level nature of the implementation. Other recent proposals [15], with a different focus
from traditional approaches, concentrate on providing machinery to take advantage of
underlying thread-based OS building blocks. Unfortunately, these implementations have
not completely removed to date the need for low-level machinery in order to solve the
trapped goal and garbage slot problems or are only appropriate for coarse-grain paral-
lelism.

In line with this trend towards simplicity, we propose in this paper a novel solution
for trapped goals and garbage slots that is based on reordering the stack to generate
a stack state that could have been generated by a sequential SLD execution. Although
the implementation of this solution is involved, in return it does not impose constraints
on the scheduler for parallel execution which can remain unchanged. As a result, the
scheduler and the rest of the run-time machinery can safely ignore the trapped goal
and garbage slot problems and as a result their implementation and maintenance are
greatly simplified. Finally, it is worth mentioning that our approach does not affect the
performance of standard sequential execution.

140 P. Chico de Guzmán et al.

m :- a(X, Y) & b(Z).

a(X, Y) :- b(X) & b(Y).

b(1).
b(2).

b(X)

Agent 1

a(X, Y)

Agent 2

b(Y)b(Z)

m

Fig. 1. Example of execution state in IAP with trapped goals

In Section 2, we provide a brief introduction to the trapped goal problem and review
some of the classical solutions that have been proposed to work around it. Section 3
focuses on the design and low-level details of our approach. Section 4 shows how this
solution can be applied as well to solving the garbage slot problem. In Section 5, we
present a performance evaluation of our approach, together with some data on the fre-
quency of trapped goals in our implementation. Section 6 discusses how our technique
can be applied to the implementation of execution strategies other than and-parallelism.
Finally, Section 7 presents some conclusions.

For brevity, we assume the reader is familiar with the WAM [16,17] and the RAP-
WAM [4] architectures.

2 The Trapped Goal Problem

As mentioned before, one of the main challenges in IAP implementation is how to deal
correctly with backtracking. The problem stems from the fact that in principle any of the
available parallel goals can be selected for execution, and therefore they can be piled on
the execution stacks in an order which differs from the one which would be generated
by sequential execution. Since IAP implementations have been traditionally required to
follow a right-to-left backtracking order, this clearly leads to a problem: it is possible
that a goal to be backtracked over is trapped under a logically older goal which would
hinder the application of the usual right-to-left backtracking order [11,12]. We illustrate
this with an example.

Figure 1 shows a possible state of the execution of a call to m using two agents.1 When
the first agent starts computing the first answer, goals a(X, Y) and b(Z) are scheduled to
be executed in parallel. Let us assume that goal b(Z) is executed locally by the first agent
and that goal a(X, Y) is stolen by the second agent for execution. Then, the second agent
schedules goals b(X) and b(Y) to be executed in parallel, which results in goal b(Y) being
locally executed by the second agent and goal b(X) taken by the first agent after finishing
the computation of an answer for goal b(Z). In order to obtain another answer for predicate
m, right-to-left backtracking requires computing additional answers for goals b(Z), b(Y),
and b(X), in that order. However, goal b(Z) cannot be directly backtracked over since the
execution of goal b(X) is stacked on top of it. Goal b(Z) has become a trapped goal.

Several solutions have been proposed to solve this problem. One of the original pro-
posals makes use of continuation markers [4,13] to skip over stacked goals. Even though

1 Herein we use agent to refer to an executing thread attached to its own stack set.

A Segment-Swapping Approach for Executing Trapped Computations 141

this solution deals correctly with the trapped goal problem, it leads to a quite complex
implementation, having to cope with a relatively large number of cases. In addition, it
needs to store a good amount of additional information, which increases memory over-
head. Another solution (also suggested in [4,5,18] and developed further and studied
in [13]) is to allow public backtracking, i.e., to let an agent perform backtracking over a
choicepoint that belongs to the stack set of a different agent. Unfortunately, this solution
creates a difference between logical and physical views of the stacks, and adds the com-
plexity of having to manage parallel accesses to the private stacks of each of the agents.
More recently, a further solution to the problem was presented in [14], which is based on
moving the execution of the trapped goals to the top of the stack before the agent starts
to compute a new answer of the parallel goal. This solution simplifies the implementa-
tion, reducing the need for low-level machinery in comparison to previous approaches.
However, garbage slots may still appear in the stacks. A common disadvantage of these
approaches is that the parallel scheduler is forced to directly manage trapped goals. Also,
they all share a relatively complex marker architecture. All of this keeps the complexity
of these approaches still relatively high, affecting overall system maintenance, extensi-
bility, and portability, as well as affecting standard sequential execution.

A completely different approach to solving the trapped goal and garbage slot prob-
lems is restricted scheduling: to keep track of goal execution order dependencies in order
to restrict the set of goals that an agent is allowed to execute to only those that ensure that
no goal under them will become trapped or garbage [11,12]. An agent will not execute a
goal G on a stack set if that stack set already contains a goal which could be backtracked
over before goal G. While this solution shares with our approach the advantage of keep-
ing stacks ordered, it complicates scheduling, adds overhead, and, above all, it comes at
the cost of limiting the degree of parallelism in the system. In Section 5.2 we present a
preliminary performance evaluation that shows that this effect can be quite significant in
practice.

Finally, other systems with support for parallelism, such as Erlang [19], opted to
create a new small stack set for each parallel goal. Note that Erlang, unlike Prolog,
does not have support for backtracking. Therefore the problem we are tackling in this
paper simply does not exist and the shape of the stacks is much simpler. The creation
of multiple stacks (as needed) has also been suggested in the context of Prolog (as early
as [11]), but the WAM multi-stack structure makes creating fresh stacks more expensive
in time and memory.

Note that, while we have discussed so far approaches which keep the sequential solu-
tion order, trapped computations also appear in approaches to and-parallelism which give
up on maintaining sequential execution solution order [20]. Therefore this paper is not
as much a quest for efficiency as an attempt to find a simple solution (which minimizes
changes to the scheduler while keeping the performance of the sequential execution) to
a problem which seems unavoidable in and-parallel execution.

3 Reordering Stacks to Free Trapped Goals

In classical WAM implementations [16,17], the order of the choicepoints corresponds
to the chronological order in which backtracking has to be performed. This strong cor-
respondence between the logical and the physical view of the choicepoint stack (and
the corresponding heap and trail segments) is exploited to perform backtracking effi-
ciently, to reclaim all storage in the process in a very simple and fast way, and to pave

142 P. Chico de Guzmán et al.

HEAP

CHOICE

TRAIL

...

C1

C2

...

Cm

1

2

3

4

5

6

7

init_trail

init_cp

T_C1

T_Cn

t1

t2

t3

t4

t5

t6

t7

(a) Snapshot of a trapped goal execution.

HEAP

CHOICE

TRAIL

1

2

3

4

5

6

7

C1

...

Cm

...

init_trail

init_cp

C2

T_C1

T_Cn

t3

t2

t1

t7

t6

t5

t4

(b) Snapshot after choicepoints reordering.

Fig. 2. Example of choicepoint reordering before executing a trapped goal

the way to other optimizations. Unfortunately, trapped goals break this correspondence
between logical and physical views and therefore some of the WAM assumptions do not
hold anymore. As we saw before, this lack of correspondence appears in most previ-
ous approaches, in which the logical and physical views are separated. We propose to
force this correspondence by explicitly reordering the stacks. The advantage is that this
will maintain all the invariants of the sequential execution, which will in turn facilitate
maintenance and make sequential optimizations easier to adopt.

3.1 An Example of Stack Reordering

Figure 2(a) shows the stack state of an agent which needs to compute a new answer of a
goal that is currently trapped. T C1, . . . , T Cn correspond to the choicepoints generated
by the previous execution of such trapped goal. C1, . . . , Cm correspond to the choice-
points that belong to computations younger than the one of the trapped goal. Pointers on
the left of each choicepoint indicate the corresponding trail section associated to each
choicepoint (trail(choice point)), and show the limits of the logical effects that
need to be undone when backtracking over each of the choicepoints. Pointers on the
right of each choicepoint indicate the corresponding heap section of each of the choi-
cepoints (heap top(choice point)), and show the limit of heap memory that can
be reclaimed on backtracking.2 In this case, it is possible to reinstate the correspondence
between the logical and physical views by reordering the choicepoints in the stack. Fig-
ure 2(b) shows the stack set after reordering, which involves moving the choicepoints
of the trapped goal T C1, . . . , T Cn to the top of the stack, therefore creating a new
backtracking execution order. Note that reordering the choicepoints needs a trail cell re-
ordering in order to remove those logical effects generated by previous goal executions.

In addition, this choicepoint reordering operation requires updating the heap top point-
ers heap top(T C1), . . . , heap top(T Cn) of each choicepoint to the current heap
top of the agent’s stack set, in order to protect the heap positions which belong to
the trapping computations from backtracking over the trapped goal.3 If these pointers
are not reallocated, backtracking over the previously trapped goal (now on top) would

2 Similar pointers for the environment stack have been omitted from Figure 2(a).
3 A similar idea was proposed in the context of tabling [21].

A Segment-Swapping Approach for Executing Trapped Computations 143

set the H (heap) pointer to a location under the trapping goal heap area and forward
execution would run over the heap area used by the trapping goal. For example, if
heap top(T Cn) were still pointing to cell 4, backtracking over T Cn would set H
= 4 and forward execution could overwrite heap cell 5, which belongs to another com-
putation. By setting all heap pointers from heap top(T C1) to heap top(T Cn)
to point to the heap top, trapped cells remain protected and heap construction happens
at the top of the heap. Given that younger heap cells point to older heap cells (i.e., top
points to bottom in this figure), dangling pointers will not appear.

After reallocating pointers as shown in the previous paragraph, the heap section cor-
responding to the old trapped computation becomes unreachable. This is taken care of
by updating the heap top pointer heap top(C1) associated with choicepoint C1. It is
made to point to the cell where the first choicepoint of the initially trapped computation
was pointing (heap top(T C1)). This will reclaim the unused section on backtracking
as backtracking over C1 will set the heap pointer to the start of the heap area.

A similar operation needs to be performed for the environment stack to protect the
environments of the trapping computation from backtracking. Note that it is not neces-
sary to reorder the heap or the environment frame stack, and that the choicepoint stack
reordering operation can be executed without requiring the agents to compete for mutual
exclusion since this operation only affects locally the stack set of each agent.

3.2 Stack Reordering Algorithm

Figure 3 presents the algorithm that allows restarting the computation of a particular
trapped goal. The proceduremove exec top is supplied with a handler h as argument,
which corresponds to a structure that is associated to the execution of each parallel goal,
and stores the execution state of such computation. Let us use the example shown in
Figure 2 to understand this procedure.

Fields initCP(h) and lastCP(h) of a particular handler h return the initial and
the last choicepoint of the parallel computation associated with h. Lines 4 and 5 initialize
local variables to point to the first choicepoint and the first trail cell of the trapped goal.

The first step in the algorithm (line 7) is to check whether the goal execution that needs
to be restarted is currently trapped or not. If that is the case then the choicepoints of the
trapped goal execution need to be moved to the top of the stack and the corresponding
trail sections to the top of the trail (Section 3.1). In the case of the example shown in
Figure 2, lines 8 to 12 of the algorithm copy the choicepoints T C1, . . . , T Cn to an
auxiliary memory location denoted by tg cp and, similarly, the choicepoints C1, . . . ,
Cm are copied over to yg cp, the trail sections t1 to t3 are copied onto tg trail,
and finally trail sections t4 to t7 are copied over to yg trail.4

We maintain a handler stack, HandlerStack, keeping the chronological order in
which goals are executed. It is used by lines 14 to 18 to update the pointers initCP and
lastCP of those handlers representing goals younger than the trapped one.5 Lines 19
and 20 update the pointers initCP and lastCP of the trapped handler. Line 21 moves
the trapped handler to the top of the handler stack, corresponding with the new stack
order.

4 The amount of necessary auxiliary memory is usually negligible w.r.t. heap memory. Its size
is the maximum between that of the trail/choicepoint stack section of the trapped goal and the
trapping computations.

5 Note that the complexity of this traversal is never worse than the choicepoint stack reordering.

144 P. Chico de Guzmán et al.

1 void move exec top(Handler h)
2 begin
3

4 init cp = initCP(h);
5 init trail = trail(initCP(h));
6

7 if (IS YOUNGER CP(CP(wam), lastCP(h))) then
8 MEM ALLOC COPY(tg cp, init cp, lastCP(h));
9 MEM ALLOC COPY(yg cp, ONE YOUNGER CP(lastCP(h)), CP(wam));

10 MEM ALLOC COPY(tg trail, init trail,
11 ONE OLDER TRAIL(trail(ONE YOUNGER CP(lastCP(h)))));
12 MEM ALLOC COPY(yg trail, trail(ONE YOUNGER CP(lastCP(h))), trail(wam));
13

14 for all handler OnTop(handler, h, HandlerStack) do
15 begin
16 initCP(handler) := initCP(handler) − sizeof(tg cp);
17 lastCP(handler) := lastCP(handler) − sizeof(tg cp)
18 end for;
19 initCP(h) := initCP(h) + sizeof(yg cp);
20 lastCP(h) := lastCP(h) + sizeof(yg cp);
21 MoveToTop(h, HandlerStack);
22

23 MEM COPY(init cp, yg cp);
24 MEM COPY(init cp + sizeof(yg cp), tg cp);
25 MEM COPY(init trail, yg trail);
26 MEM COPY(init trail + sizeof(yg trail), tg trail);
27

28 for all cp in yg cp do
29 begin
30 trail(cp) := trail(cp) − sizeof(tg trail);
31 end for;
32

33 heap top(CP(init cp)) := heap top(initCP(h));
34 frame top(CP(init cp)) := frame top(initCP(h));
35

36 for all cp in tg cp do
37 begin
38 trail(cp) := trail(cp) + sizeof(yg trail);
39 heap top(cp) := heap top(wam);
40 frame top(cp) := frame top(wam);
41 end for;
42 end if
43 end;

Fig. 3. Algorithm to perform choicepoints reordering in an agent’s stack set

The next step in the algorithm is to copy the choicepoints and trail sections back
from the auxiliary memory locations tg cp, yg cp, tg trail and yg trail to the
agent’s stack and trail. This is performed in lines 23 to 26, which first move the choice-
points C1, . . . , Cm back to the stack, followed by choicepoints T C1, . . . , T Cn, and then
move trail sections t4 to t7 over to the trail, followed by trail sections t1 to t3.

A Segment-Swapping Approach for Executing Trapped Computations 145

Lines 28 to 31 iterate over the trail pointers of each of the initially trapping choice-
points trail(C1), . . . , trail(Cm) to ensure that they point to the updated location
of their corresponding trail sections. Lines 33 and 34 update the heap and frame top
pointers of the first trapping choicepoint in the stack C1 to point to the original value of
the heap and frame top pointers of the first choicepoint of the initially trapped compu-
tation T C1, to allow a proper release of the trapped goal memory when the execution
backtracks over choicepoint C1. After executing lines 23 to 26, init cp is now point-
ing to C1.

The algorithm then continues in lines 36 to 41 updating the trail pointers
trail(T C1), . . . , trail(T Cn) for each of the choicepoints of the initially trapped
computation to point to the new location of their corresponding trail sections, as well as
their heap top and frame top pointers to point to the current heap top of the agent’s stack
set, and therefore protect the heap and the environment frame of choicepointsC1, . . . , Cm

from backtracking over the initially trapped goal. Now, the trapped goal is ready to be
backtracked over using standard WAM machinery, after the auxiliary memory allocated
in tg cp, yg cp, tg trail and yg trail is released.

Note that this algorithm assumes that choicepoints are not linked, but just stacked one
over the previous one. In implementations where each choicepoint points to the previous
one, reordering can boil down to pointer updating. Also, even for the case of memory
reallocation, as will be shown in Section 5, backtracking over trapped goals does not
occur very often, which reduces the impact of the overhead of the move exec top
algorithm so that it does not significantly impact performance during execution of IAP.

3.3 Some Low Level Details

Our solution for the trapped goals problem requires considering two particular situations
which have to be managed at a low level. The first one involves considering the environ-
ment trimming optimization, and the second one is related to “spurious” trail cells that
may appear after the execution of the Prolog cut/0 operator.

Environment Trimming. The environment trimming optimization reclaims, during for-
ward execution, variables of the current environment when it is known that they are not
going to be accessed again during forward execution. This is determined by comparing
the ages of the current environment and the environment pointed to by the current choi-
cepoint (using the environment cp field of the choicepoint). In general, choicepoints
protect local variables which have been created prior to the creation of the choicepoint.
Under IAP execution, environment trimming may occur after a parallel call is performed.
However, remote agents may generate choicepoints that protect some of these local vari-
ables. Unfortunately, environment trimming is not aware of the existence of these remote
choicepoints, and unsafe environment trimming operations may then be performed. The
simplest way to solve this problem is to insert a “void” choicepoint before any parallel
call in order to protect all current local variables. A lighter solution would involve mod-
ifying the environment cp field of the last choicepoint to protect all current local
variables. The trail may be used to reinstall the original value of the environment cp
field before backwards execution is performed over this choicepoint.

Spurious trail cells. Trail entries keep track of the cells with conditional bindings: those
made to variables which appeared before a given choicepoint was pushed and bound

146 P. Chico de Guzmán et al.

after that choicepoint is pushed. These cells will not be reclaimed after backtracking
over the last choicepoint of a goal execution, but their bindings need to be undone on
backtracking. After executing a cut/0 operator, some of these bindings become un-
conditional (because the choicepoint which was pushed between cell creation and cell
binding is no longer active), and therefore they should not be part of the trail. Some
Prolog systems remove these bindings as soon as a cut/0 is executed. However, other
systems (such as Ciao, on which our implementation is based) do not do so because
these “spurious” trail cells do not affect the standard sequential execution: they always
point to reclaimed memory. Unfortunately, spurious trail cells become a problem after
the execution of the move exec top procedure, since the order of cells in the trail
changes. In the case of environment frame variables, environment trimming or last call
optimizations could make these spurious trail cells point to new, live environment stack
sections. Using again the example in Figure 2, referencing a spurious trail cell belonging
to choicepoint T Cn could affect the environment frame of C1. The problem is solved by
invalidating those trail cells of choicepoints T C1, . . . , T Cn which do not belong to the
heap and the environment frame segments of these choicepoints (because they are not
conditional).

4 Dealing with Garbage Slots

In addition to the trapped goal problem, unused sections of the stack may appear when
executing nondeterministic parallel programs under IAP. Let us consider the goal g :-
a, (b & c), d.. Let us assume that all goals in the body of g/0 can return several
solutions. There are several scenarios that may occur depending on which subgoal fails:

– If subgoal a/0 fails, sequential backtracking is performed.
– Since subgoals b/0 and c/0 are mutually independent, if either one of them fails

without a solution, backwards execution must proceed over subgoal a/0, because
subgoals b/0 and c/0 do not affect each other’s search space.

– If subgoal d/0 fails, backwards execution must proceed over the right-most choi-
cepoint of the parallel conjunction b & c, which could be trapped, and recompute
the answers for all subgoals to the right of that choicepoint. Thus, backtracking
within a conjunction of parallel subgoals occurs only if initiated by a failure from
outside of the subgoals conjunction (also known as outside backtracking). Instead,
if the backwards execution is initiated from within the subgoals in the parallel con-
junction, backtracking proceeds outside of all these subgoals, i.e., to the left of the
conjunction (also known as inside backtracking).

Inside backtracking requires canceling the execution of the parallel goals that belong
to the same parallel goal conjunction. These goals could be trapped and they would
then produce garbage slots in the trail, choicepoint stack, and heap. Traditionally, IAP
implementations have solved this problem with methods closely related to those used
to solve the trapped goal problem, with similar drawbacks, including complexity in the
implementation of the parallel scheduler, as well as impacting its performance.

The solution for trapped goals that we have presented in Section 3.2 can be reused to
avoid leaving garbage slots in the stack by executing the procedure move exec top
before canceling the execution of a trapped goal. By doing so, the corresponding trail

A Segment-Swapping Approach for Executing Trapped Computations 147

cells and choicepoints of the canceled goal would be immediately reclaimed. The heap
and environment frame stack would be reclaimed by garbage collection or upon back-
wards execution over the first choicepoint above the choice points of the canceled goal
(choicepoint C1 following the example in Figure 2). In our set of benchmarks, the
trapped heap memory increases the memory use by 1% in the worst case.

5 Performance Evaluation

We present in this section some of the performance results obtained with the imple-
mentation of our proposed solution in the Ciao [22,23] system. Such implementation
is based on a previous high-level implementation of IAP [14], whose functionality has
been augmented with the support to manage trapped goals and garbage slots.

All the benchmarks that are shown in this section were automatically parallelized
with CiaoPP [24], using the annotation algorithms described in [25,26,27]. Finally, the
actual performance results for each of the benchmarks were obtained after averaging ten
different runs on a Sun UltraSparc T2000 (known as Niagara architecture) machine with
eight 4-thread cores and 8Gb of memory running Solaris 10u1.

As we stated before, the aim of this paper is not so much to evaluate raw performance
gains as it is to clarify up to which point the proposed technique is advantageous. In order
to measure this, we will evaluate, on one hand, how often trapped goals appear in typical
and-parallel computations and how much overhead the stack reorganization operations
impose on the execution and, on the other hand, what speedups can be expected from
executions which respect goal dependencies in order to avoid trapped computations.

We have used some deterministic and non-deterministic benchmarks selected from
[28,20], listed in Table 1. All these benchmarks can produce trapped goals (i.e., goals
stacked out of order w.r.t. the sequential execution). Note that even if some of these
benchmarks only return one solution, they are forced to fail in order to backtrack and
explore all the search tree. For deterministic benchmarks, this means that backtracking
is attempted on all parallel goals which are piled out-of-order in the stacks following the
logical dependencies across the execution tree, even if they do not produce additional
solutions.

5.1 Deterministic and Non-deterministic Benchmarks

Table 2 presents the ratio of trapped goals vs. total parallel goals in the execution of each
benchmark (column Trapped) and the percentage of the parallel execution time that is
spent on the move exec top operation (column Lost). While this of course depends
on the particular scheduling performed, it has been found to be quite stable in our current
implementation. The evaluation is performed only up to 8 agents in order to make sure
that every agent receives the full computing power of a core (threads in a core compete
for shared resources, such as arithmetic units). The cases for one and two agents are also
omitted since they do not generate trapped goals.

The first conclusion is that trapped goals do not appear very often in general, and their
behavior depends largely on the nature of the benchmark itself. This scarcity favors our
approach, whose cost grows with the number of trapped goals that need to be moved
but otherwise does not pose overhead. This explains that the overhead imposed by the
move exec top operation is very small in all of the benchmarks. These benchmarks
create between 200 and 6000 choicepoints, and the precise number is related to the

148 P. Chico de Guzmán et al.

Table 1. Benchmark descriptions

Program Description
fft Fast Fourier transform.
fibo 22nd Fibonacci number, executed sequentially from the 12th downwards.
hanoi Towers of Hanoi of size 14, executed sequentially from the 7th downwards.
hanoi dl Towers of Hanoi with difference lists.
mmat Multiplication of two 50 × 50 matrices.
pal Recursively generates a palindrome of 215 elements, switching to sequential exe-

cution when generating palindromes of length 27.
qsort Use QuickSort to sort a list of 10000 elements, switching to sequential execution

when the list to be sorted has 300 elements.
qsort dl QuickSort with difference lists.
iqsort QuickSort with an irregular input list which makes the subgoals to be very differ-

ent in size and favours the occurrence of trapped goals.
iqsort dl QuickSort with difference lists, sorting an irregular input list.
tak Takeuchi function with arguments tak(14, 10, 3).
qsort nd Non-deterministic QuickSort (gives topological sortings) with an input list size

4000 elements, switching to sequential execution on 50 elements.

Table 2. Trapped goal statistics

3 4 5 6 7 8
Program Trapped Lost Trapped Lost Trapped Lost Trapped Lost Trapped Lost Trapped Lost

fft 0.03 0.00 0.00 0.00 0.05 0.00 0.09 0.00 0.10 0.00 0.15 0.00
fibo 0.00 0.00 0.02 0.01 0.03 0.00 0.03 0.01 0.04 0.01 0.06 0.02
hanoi 0.00 0.00 0.00 0.00 0.02 0.00 0.02 0.00 0.04 0.00 0.04 0.00
hanoi dl 0.00 0.02 0.00 0.03 0.03 0.05 0.04 0.05 0.03 0.05 0.04 0.07
mmat 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.00 0.00
pal 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.01 0.00 0.03 0.00
qsort 0.02 0.00 0.02 0.00 0.07 0.00 0.11 0.00 0.06 0.00 0.09 0.00
qsort dl 0.03 0.00 0.03 0.00 0.06 0.00 0.13 0.01 0.11 0.01 0.11 0.01
iqsort 0.03 0.00 0.09 0.01 0.18 0.02 0.26 0.02 0.27 0.02 0.35 0.03
iqsort dl 0.03 0.00 0.08 0.01 0.15 0.02 0.20 0.02 0.28 0.03 0.36 0.03
tak 0.00 0.00 0.08 0.00 0.01 0.00 0.13 0.00 0.07 0.00 0.05 0.00
qsort nd 0.02 0.00 0.07 0.00 0.14 0.00 0.21 0.00 0.33 0.01 0.39 0.01

amount of work that move exec top operation has to perform. The highest overhead
(7%) is in hanoi dl, which appears as an exceptional case. These results appear to
support our thesis that it is debatable whether providing a very efficient but complex
solution to the trapped goals problems is worth the effort. Instead, the proposed solution
seems more practical since it greatly simplifies the parallel scheduler (with the added
advantage, discussed later, that it can be reused for other purposes). This is even more
so if we take into account that the frequency of trapped goals can be largely reduced by
out-of-order backtracking with answer memoization [20], in which the traditional right-
to-left order in backtracking is not maintained on parallel goal conjunctions. In this case
the stack reorganization operation, although still necessary, is used even less frequently.

A Segment-Swapping Approach for Executing Trapped Computations 149

Table 3. Speedup comparison: dependence analysis vs. trapped goals

2 3 4 5 6 7 8
Program Trap Prec Trap Prec Trap Prec Trap Prec Trap Prec Trap Prec Trap Prec

fft 1.75 1.74 2.06 1.75 2.69 2.68 2.68 2.69 2.87 2.68 2.97 2.67 3.02 2.68
fibo 1.91 1.72 2.62 2.51 3.18 2.50 3.98 4.10 4.51 3.98 5.48 5.14 5.98 5.13
hanoi 1.81 1.81 1.94 1.91 2.93 1.91 3.24 3.24 3.41 3.21 3.74 3.23 4.11 3.42
hanoi dl 1.41 1.41 1.41 1.41 1.86 1.40 2.95 2.76 3.06 2.75 3.59 2.75 3.75 2.67
mmat 1.52 1.53 2.24 2.23 2.95 2.91 3.72 3.67 4.35 4.11 4.97 4.68 5.63 5.42
pal 1.81 1.82 2.27 1.83 2.59 1.82 3.18 1.82 3.29 3.17 3.60 3.18 3.96 3.03
qsort 1.79 1.78 2.25 1.78 2.51 2.27 2.69 2.29 2.84 2.29 3.42 2.29 3.73 2.29
qsort dl 1.73 1.71 2.23 1.71 2.44 2.19 2.65 2.19 3.13 2.19 3.25 2.19 3.32 2.16
iqsort 1.33 1.33 1.33 1.33 1.67 1.33 2.27 1.33 2.43 1.33 2.80 1.33 3.02 1.33
iqsort dl 1.29 1.29 1.30 1.29 1.64 1.29 2.13 1.29 2.68 1.29 2.88 1.29 3.19 1.29
tak 0.89 0.89 1.77 1.77 2.38 2.38 3.50 3.50 3.54 3.54 4.47 3.54 4.25 4.40
qsort nd 1.53 1.53 1.59 1.58 1.92 1.59 1.93 1.59 2.01 1.59 2.34 1.59 2.54 1.66

5.2 Avoiding Trapped Goals: The Impact of Goal Precedence

As mentioned in Section 2, a valid approach [12] to solving the trapped goal problem
is to respect a notion of goal precedence during forward execution to completely avoid
trapped goals. The low frequency of trapped goals previously found seems to suggest
that this approach might be effective in practice.

In order to assess whether this is the case, we have developed a prototype implementa-
tion of IAP which schedules goals according to their precedence. Table 3 presents some
of the speedups we obtained w.r.t. the Ciao sequential execution using this prototype
(column Prec) and the speedups of our approach to handle trapped goals (column Trap),
but adding the overhead of determining precedences: precedence dependencies are cal-
culated but not used. The reason is that our dependency calculation algorithm may be
suboptimal, and by applying it to both cases we obtain a conservative comparison.6

From the experimental results, the speedups obtained with a goal-precedence sched-
uler are in general reduced, with some benchmarks having a bigger difference (e.g.,
iqsort and iqsort dl, probably due to an initial imbalanced split of the input list).
In addition, the execution based on goal precedence of our prototype has been shown
to be quite sensitive to the order in which the parallel goals are taken by remote agents,
which makes the overall speed of the parallel execution less predictable. Finally, this so-
lution is intended to match the behavior of standard sequential execution and is of no use
in the case of strategies which use less strict execution strategies to increase the amount
of search performed in parallel [20]. Therefore, we believe that avoiding trapped goals
based on goal precedence has drawbacks which makes it not advantageous in practice.

6 Other Applications for Stack Reordering

So far, we have used move exec top to arrange the stack order so that it could have
been generated by the standard sequential execution. However, other execution algo-
rithms for logic programs can also benefit from this approach and take advantage of

6 Note that the observed overhead of the precedence analysis is rarely above 1%.

150 P. Chico de Guzmán et al.

the move exec top operation. We show two examples: swapping evaluation [29] and
intelligent backtracking [30].

Swapping Evaluation. Swapping evaluation originates in the context of tabling [31].
Tabling records calls to goals to reuse their solutions and also to break infinite loops:
repeated calls (which generate loops) are suspended and other clauses for the looping
predicate are tried in order to generate answers which allow the suspended computa-
tion branch to continue. The first call to a tabled predicate is named the generator and
subsequent calls are named the consumers. Consumers read answers from a table where
the generator inserted them. If the generator returns answers on demand, consumers can
appear out of the scope of the generator execution. These consumers, named external
consumers, suspend waiting for the generator to compute more answers, and fail when
there are no more available answers.

External consumers change the standard SLD execution order. Assume t/1 is tabled
and has two solutions, t(1) and t(2). In the query ?- t(X), t(Y) goal t(X)
is a generator and t(Y) is an external consumer. In an SLD execution, the answer
sequence would be: {X=1, Y=1}, {X=1, Y=2}, {X=2, Y=1} and {X=2, Y=2}.
Under tabled evaluation, t(Y) suspends and more answers of t(X), the generator,
are generated on backtracking. In this case, under tabled execution, the sequence of
answers would be: {X=1, Y =1}, {X=2, Y=1}, {X=2, Y=2} and {X=1, Y=2}.
With standard scheduling strategies (e.g., batched scheduling), the suspension of an ex-
ternal consumer can lead to massive memory consumption.

Swapping evaluation exchanges the role of the external consumer and its generator to
avoid external consumer suspension. When t(Y) consumes the first answer, the execu-
tion tree of t(X), which is trapped in the stack, is moved to the top of the stack so it can
generate more answers. Swapping evaluation was originally implemented in XSB [32]
and it is currently being ported to Ciao Prolog using the move exec top operation in
order to untrap the execution tree of the generator.

Intelligent Backtracking. Intelligent backtracking strategies are based on the idea of
performing backtracking directly on the goal which generated the bindings that caused
a failure. In the following example:

p(X,Y) :- a(X), b(Y), c(X).
a(1). a(2). b(1). b(2). c(2).

the execution of c(X) fails because a(X) unified X with 1. Standard backtracking
would retry b(Y) in a purposeless attempt to execute c(X) with a new binding for
Y. Intelligent backtracking would change the backward execution order to allow back-
ward execution over a(X) before backtracking over b(X). Intelligent backtracking
needs to keep track of the point where bindings were produced in order to safely de-
tect the closest useful backtracking point. Intelligent backtracking could make use of the
move exec top operation to change the backtracking order.

7 Conclusions

We have presented a new algorithm to solve the trapped goal problem in which the stack
is reordered to generate an execution state that could have been generated by the sequen-
tial execution. Using this algorithm simplifies the implementation of the scheduler for

A Segment-Swapping Approach for Executing Trapped Computations 151

parallelism and does not affect the performance in case of standard sequential execu-
tion. Our approach has been implemented in the Ciao system, and we have performed
an experimental evaluation of its effectiveness. We have also compared our approach
to that based on keeping track of goal dependencies in order not to generate trapped
goals and found that the restriction in the degree of parallelism brought about by the
dependency-based approach makes this solution less advantageous. On the other hand,
the use of the move exec top operation imposes only a limited overhead and does
not restrict parallelism. Finally, the stack reordering operation presented in this paper
represents semantically a change in the backtracking execution order, which we believe
could be successfully applied to the implementation of tabling, swapping evaluation, or
intelligent backtracking.

References

1. Gupta, G., Pontelli, E., Ali, K., Carlsson, M., Hermenegildo, M.: Parallel Execution of Prolog
Programs: a Survey. ACM Transactions on Programming Languages and Systems 23(4), 472–
602 (2001)

2. Lusk, E., Butler, R., Disz, T., Olson, R., Stevens, R., Warren, D.H.D., Calderwood, A., Sz-
eredi, P., Brand, P., Carlsson, M., Ciepielewski, A., Hausman, B., Haridi, S.: The Aurora
Or-parallel Prolog System. New Generation Computing 7(2/3), 243–271 (1988)

3. Ali, K.A.M., Karlsson, R.: The Muse Or-Parallel Prolog Model and its Performance. In: 1990
North American Conference on Logic Programming, pp. 757–776. MIT Press, Cambridge
(1990)

4. Hermenegildo, M., Greene, K.: The &-Prolog System: Exploiting Independent And-
Parallelism. New Generation Computing 9(3,4), 233–257 (1991)

5. Shen, K.: Overview of DASWAM: Exploitation of Dependent And-parallelism. Journal of
Logic Programming 29(1-3), 245–293 (1996)

6. Pontelli, E., Gupta, G., Hermenegildo, M.: &ACE: A High-Performance Parallel Prolog Sys-
tem. In: International Parallel Processing Symposium IEEE Computer Society Technical
Committee on Parallel Processing, pp. 564–572. IEEE Computer Society (April 1995)

7. Janson, S.: AKL. A Multiparadigm Programming Language. PhD thesis, Uppsala University
(1994)

8. Santos-Costa, V.M.: Compile-Time Analysis for the Parallel Execution of Logic Programs in
Andorra-I. PhD thesis, University of Bristol (August 1993)

9. Warren, D.: The Extended Andorra Model with Implicit Control. In: Jansson, S. (ed.) Parallel
Logic Programming Workshop, Box 1263, S-163 13 Spanga, Sweden. SICS (June 1990)

10. Lopes, R., Santos Costa, V., Silva, F.: A Novel Implementation of the Extended Andorra
Model. In: Ramakrishnan, I.V. (ed.) PADL 2001. LNCS, vol. 1990, pp. 199–213. Springer,
Heidelberg (2001)

11. Hermenegildo, M.: An Abstract Machine Based Execution Model for Computer Architecture
Design and Efficient Implementation of Logic Programs in Parallel. PhD thesis, U. of Texas
at Austin (August 1986)

12. Hermenegildo, M.: Relating Goal Scheduling, Precedence, and Memory Management in
AND-Parallel Execution of Logic Programs. In: 4th. ICLP, pp. 556–575. MIT Press (1987)

13. Pontelli, E., Gupta, G.: Backtracking in independent and-parallel implementations of logic
programming languages. IEEE Transactions on Parallel and Distributed Systems 12(11),
1169–1189 (2001)

14. Casas, A., Carro, M., Hermenegildo, M.V.: A High-Level Implementation of Non-
deterministic, Unrestricted, Independent And-Parallelism. In: Garcia de la Banda, M., Pon-
telli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 651–666. Springer, Heidelberg (2008)

152 P. Chico de Guzmán et al.

15. Moura, P., Crocker, P., Nunes, P.: High-Level Multi-threading Programming in Logtalk. In:
Hudak, P., Warren, D.S. (eds.) PADL 2008. LNCS, vol. 4902, pp. 265–281. Springer, Heidel-
berg (2008)

16. Warren, D.: An Abstract Prolog Instruction Set. Technical Report 309, Artificial Intelligence
Center, SRI International, 333 Ravenswood Ave, Menlo Park CA 94025 (1983)

17. Ait-Kaci, H.: Warren’s Abstract Machine, A Tutorial Reconstruction. MIT Press (1991)
18. Shen, K., Hermenegildo, M.: Flexible Scheduling for Non-Deterministic, And-parallel Execu-

tion of Logic Programs. In: Fraigniaud, P., Mignotte, A., Robert, Y., Bougé, L. (eds.) Euro-Par
1996. LNCS, vol. 1124, pp. 635–640. Springer, Heidelberg (1996)

19. Ericsson, A.B.: Erlang Efficiency Guide. 5.8.5 edn. (October 2011),
http://www.erlang.org/doc/efficiency_guide/users_guide.html

20. Chico de Guzmán, P., Casas, A., Carro, M., Hermenegildo, M.: Parallel Backtracking with An-
swer Memoing for Independent And-Parallelism. In: Theory and Practice of Logic Program-
ming, 27th Int’l. Conference on Logic Programming (ICLP 2011) Special Issue, vol. 11(4–5),
pp. 555–574 (July 2011), http://arxiv.org/abs/1107.4724

21. Demoen, B., Sagonas, K.: CHAT: the copy-hybrid approach to tabling. Future Generation
Computer Systems 16, 809–830 (2000)

22. Bueno, F., Cabeza, D., Carro, M., Hermenegildo, M., López-Garcı́a, P., Puebla, G. (eds.): The
Ciao System. Ref. Manual (v1.13). Technical report, School of Computer Science, T.U. of
Madrid, UPM (2009), http://www.ciaohome.org

23. Hermenegildo, M.V., Bueno, F., Carro, M., López, P., Mera, E., Morales, J., Puebla, G.: An
Overview of Ciao and its Design Philosophy. Theory and Practice of Logic Programming
(2012), http://arxiv.org/abs/1102.5497

24. Hermenegildo, M., Puebla, G., Bueno, F., López-Garcı́a, P.: Integrated Program Debugging,
Verification, and Optimization Using Abstract Interpretation (and The Ciao System Prepro-
cessor). Science of Computer Programming 58(1-2), 115–140 (2005)

25. Muthukumar, K., Bueno, F., de la Banda, M.G., Hermenegildo, M.: Automatic Compile-time
Parallelization of Logic Programs for Restricted, Goal-level, Independent And-parallelism.
Journal of Logic Programming 38(2), 165–218 (1999)

26. Cabeza, D.: An Extensible, Global Analysis Friendly Logic Programming System. PhD thesis,
Universidad Politécnica de Madrid (UPM), Facultad Informatica UPM, 28660-Boadilla del
Monte, Madrid-Spain (August 2004)

27. Casas, A., Carro, M., Hermenegildo, M.: Annotation Algorithms for Unrestricted Independent
And-Parallelism in Logic Programs. In: King, A. (ed.) LOPSTR 2007. LNCS, vol. 4915, pp.
138–153. Springer, Heidelberg (2008)

28. Casas, A.: Automatic Unrestricted Independent And-Parallelism in Declarative Multi-
paradigm Languages. PhD thesis, University of New Mexico (UNM), Electrical and Com-
puter Engineering Department, University of New Mexico, Albuquerque, NM 87131-0001
(USA) (September 2008)

29. Chico de Guzmán, P., Carro, M., Warren, D.S.: Swapping Evaluation: A Memory-Scalable
Solution for Answer-On-Demand Tabling. In: Theory and Practice of Logic Programming,
26th Int’l. Conference on Logic Programming (ICLP 2010) Special Issue, vol. 10(4-6), pp.
401–416 (July 2010)

30. Pereira, L., Porto, A.: Intelligent backtracking and sidetracking in horn clause programs - the
theory. Report 2/79, Departamento de Informatica, Universidade Nova de Lisboa (October
1979)

31. Warren, D.S.: Memoing for logic programs. Communications of the ACM 35(3), 93–111
(1992)

32. Sagonas, K., Swift, T.: An Abstract Machine for Tabled Execution of Fixed-Order Stratified
Logic Programs. ACM Transactions on Programming Languages and Systems 20(3), 586–634
(1998)

http://www.erlang.org/doc/efficiency_guide/users_guide.html
http://arxiv.org/abs/1107.4724
http://www.ciaohome.org
http://arxiv.org/abs/1102.5497

Palovca: Describing and Executing

Graph Algorithms in Haskell

Michael Lesniak

University of Kassel
Research Group Programming Languages / Methodologies

Wilhelmshöher Allee 73
Kassel, Germany

mlesniak@uni-kassel.de

Abstract. Graph algorithms have fundamental applications in the real
world but can be both cumbersome to implement in traditional languages
and difficult to execute efficiently on modern multicore hardware. The
Bulk Synchronous Parallel model of computation has recently been used
to define vertex-centric computations on graphs. We describe an em-
bedded domain specific language (using Haskell as the underlying host
language) for specifying such algorithms, and show an implementation of
an execution platform that allows to execute them on multicore systems
in parallel. For several benchmarks varying in algorithm, graph size and
edge distribution, we achieved speedups ranging from 9 up to 11 for 16
threads.

1 Introduction

Graph algorithms such as finding shortest paths, clustering or matching have
fundamental applications in the real world. It can be quite challenging for non-
experts to write and optimize them, in particular on multicore hardware [1].

A new approach to implement graph algorithms is based on Valiant’s Bulk
Synchronous Parallel (BSP) model of computation [2,3]. BSP models a con-
current computation as a set of independent processing nodes with local state
that communicate solely by explicit message passing. This model has recently
been adapted to support a new vertex-centric approach for graph algorithms
called Pregel [4]. In Pregel, an algorithm performs local (sub)computations for
each vertex: these computations do not have direct access to the whole graph
structure but only to the local vertex state, the vertex’ neighbors and received
messages. Pregel uses C++ as the underlying description language and defines a
class Vertex which is inherited to implement the actual vertex behavior. In our
opinion, the usage of C++ has drawbacks for both users and implementators of
the system. For users, concepts like iterators and inheritance are rather unintu-
itive in the context of graph algorithms. For implementators, problem-specific
optimizations are difficult, since the vertex-centric C++-code can use arbitrary
functions. A solution to both problems is to restrict the description of graph
algorithms to a small sublanguage.

C. Russo and N.-F. Zhou (Eds.): PADL 2012, LNCS 7149, pp. 153–167, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

154 M. Lesniak

Domain specific languages (DSLs) are a well-known software-engineering con-
cept to describe solutions or problems in a restricted domain. Successful exam-
ples of DSLs are Verilog for hardware design [5] and SQL for databases [6]. For
DSL users, the reduced vocabulary is more intuitive and makes development
less error-prone. For implementators, DSLs offer potential for efficient imple-
mentation, since boundary conditions and particular features of the problems
are known in advance and can be used for optimizations such as parallelization
on shared-memory multicore machines. Although DSLs have both theoretical
and practical advantages, e.g. are easier to prove for correctness and are self-
documenting, they are seldom developed from scratch. The implementation of
a compiler and the whole ecosystem that a modern language offers (debuggers,
profilers and libraries) is rarely justified. Instead, modern DSLs are typically em-
bedded into a host language, which provides the underlying infrastructure, and
called Embedded Domain Specific Language (EDSL). The functional program-
ming language Haskell is well-suited as a host language due to its high degree of
abstraction [7] such as support for higher-order functions and monads. Success-
ful Haskell EDSLs have been developed for hardware design [8], programming
GPUs [9], describing graphics [10] and financial contracts [11].

In our work we combine the advantages of an EDSL and the ideas of the bulk
synchronous parallel model and Pregel. We call our combination of the language
and its execution platform Palovca for PArallel LOcal Vertex Calculations in
hAskell. The full source code of our implementation, as well as the shell scripts
for benchmarking and the raw benchmark results can be found at the author’s
software repository [12]. Our contributions in this paper are

– The definition of an embedded domain specific language to describe vertex-
centric graph algorithms and an evaluation of Haskell’s suitability as a host
language for this purpose.

– The implementation of an execution platform that runs on shared-memory
multicore systems. It is based on explicit concurrency, i.e. manual synchro-
nization and explicit thread control.

– An experimental investigation of the platform with various benchmarks.

To summarize our results, the expressiveness of the EDSL is high and allows a
concise and comprehensible formulation of vertex-centric algorithms. Our exper-
iments have shown that the implementation scales very well. Depending on the
particular graph, its edge distribution and the computational load per vertex,
we achieve speedups between 9 and 11 with 16 threads.

The rest of the paper is structured as follows. Section 2 describes Palovca’s
underlying computational model. Section 3 shows its syntax and examples of
vertex-centric algorithms. Section 4 describes the implementation in detail. Sec-
tion 5 explains our benchmarks and discusses the experimental results. Section 6
reviews related work and Section 7 concludes and gives an outlook to future
work.

Palovca: Describing and Executing Graph Algorithms in Haskell 155

2 Palovca’s Computational Model

The BSP model that Palovca is based on uses independent processing nodes and
messages. The computation is divided into a sequence of discrete steps called su-
persteps: In each superstep, all nodes work independently and are allowed to 1)
perform computations on their local data 2) receive messages sent in the previ-
ous superstep, and 3) send messages to other nodes. The messages are delivered
by the beginning of the next superstep, after all computations of the current
superstep have finished. An advantage of BSP is its simplicity. By restricting
communication to message passing, problems with concurrent synchronization,
e.g. race conditions and deadlocks, do not occur. Since messages are only deliv-
ered between supersteps, developing and reasoning about algorithms is easier.

The central idea behind Pregel and Palovca is adapting BSP to graph prob-
lems. Vertices correspond to nodes and graph edges define the source and destina-
tion for messages. A sent message is delivered to all vertices which are connected
to the source vertex by an edge (see Figure 1). Termination is handled as follows.
In addition to the user-defined local state each vertex is in one of two states,
active or inactive. Initially all vertices are active and run the algorithm. After
each superstep, a node can switch to inactive state and is only reactivated by
receiving new messages. When all vertices are inactive, the algorithm terminates.

Fig. 1. Source graph and part of the computation of a vertex-centric algorithm showing
message passing, buffering and local computations

With this approach, graph algorithms can be expressed quite elegantly, in
particular with the Palovca language, as will be shown in Section 3.2. Moreover,
we show in Section 5 that it allows for an efficient parallelization.

3 An EDSL for Vertex-Centric Graph Algorithms

In the following sections we describe the syntax and core functions of the EDSL.
Two examples illustrate that the syntax is concise but easy to understand.

156 M. Lesniak

3.1 The Palovca Language

A major design requirement for the Palovca language was to allow a concise
yet understandable formulation of vertex-centric algorithms. Therefore many
functions typical for graph algorithms and BSP are part of the language, e.g.
size to get the number of vertices in the graph, or step to get the number of
the current superstep, numbered 0, 1, . . .

The language is internally based on a type that describes graphs (Graph), and
a custom monad (GraphM) that handles the global and local states. Both have
type parameters v, e and m for the local vertex state, the value of the edges and
the value of the messages, respectively. All types need to be instances of NFData
(see Section 4) but we omit that in nearly all type signatures for conciseness. An
initial graph is typically created by calling one of the file-based input functions
mentioned below. Palovca only supports directed graphs, although undirected
graphs can easily be created by inserting symmetrical edges. A calculation with
a graph is expressed with the function run :: Graph v e m -> GraphM v e m
() -> IO (). It receives a graph and a function working in the GraphM monad.
The function is executed for each active vertex (in accordance with the com-
putational model mentioned in the last section) until all vertices are inactive.

Table 1. Overview of core functions in Palovca

-- Graph query

s i z e : : GraphM v e m Int
step : : GraphM v e m Int

-- Vertex modifications

modi fyVer t i c e s : : Graph v e m −> GraphM v e m () −> IO ()

-- Vertex local state

i d e n t i f i e r : : GraphM v e m Int
get : : GraphM v e m v
se t : : v −> GraphM v e m ()
ha l t : : GraphM v e m ()

-- Message passing

messages : : GraphM v e m [m]
send : : m −> GraphM v e m
sendEdges : : (e −> m) −> GraphM v e m ()
ne ighbors : : GraphM v e m Int

Table 1 gives an overview of core functions. The local vertex state is accessible
and modifiable by the get and set functions, respectively. A graph-wide unique
identifier for each vertex is obtained by identifier. A vertex switches to inactive
by calling halt. The number of neighbors is obtained by neighbors. Messages
sent in the previous superstep are obtained by calling messages, messages for
the next superstep are sent by send and sendEdges. While send sends the same

Palovca: Describing and Executing Graph Algorithms in Haskell 157

message to all connected vertices (neighbors), sendEdges allows to modify the
message with respect to the edge value of each particular neighbor.

For file-based input we defined a data format that specifies the vertex value, its
neighbors and their possible edge values. Parsers for typical types are predefined
in Palovca. Moreover, adding own parsers to support arbitrarily complex graphs
is easily possible.

Some algorithms use a global convergence criterion to check for termination
or want to collect statistical data. Therefore, Palovca supports aggregators (see
Table 2): in each superstep a vertex can aggregate a value with aggregate; to re-
duce the number of type parameters, the aggregated value must currently have the
same type as the vertex state. All aggregated values of a superstep are combined
using a previously defined aggregator function [v] -> v. The new value is avail-
able in the next superstep and accessible by calling aggregator. Some algorithms,
e.g. clustering or matching, need to change the graph topology. Our current ver-
sion of Palovca supports adding and removing edges, and adding new vertices.
Moreover, Palovca contains various functions that ease the formulation of vertex-
centric graph algorithms such as selective sends and random neighbor selection.
Many of these functions use higher-order functions or partial evaluation similar
to sendEdges which was an argument for using Haskell as our host language.

Table 2. Aggregator functions for global communication between supersteps

setAggregator : : Graph v e m −> ([v] −> v) −> IO ()
aggregate : : v −> GraphM v e m ()
aggregator : : GraphM v e m v

3.2 Examples

In the following we describe two examples of vertex-centric algorithms and show
their concise and understandable implementation in our EDSL. More examples
of Palovca can be found in the source repository [12].

Pagerank. The pagerank algorithm [13] is widely known for being the founda-
tion of the Google search engine: the pagerank of a webpage is a numerical value
that is the higher the more pages point to it. In our modeling of this scheme ver-
tices stand for pages, and edges denote links. The formulation of this algorithm is
shown in Figure 2. Both vertices and messages are of type Double and edges are
of type None (a synonym for ()), i.e. do not store any value. Each vertex state
is initialized with 1

N where N denotes the size of the graph. In each superstep
the new pagerank for each vertex is computed and distributed: First, a vertex
collects all weights from its incoming neighbors with the messages function.
Second, it accesses the graph size with size and updates its new pagerank with
the shown formula using set. Third, the vertex distributes its updated value to
its outgoing neighbors. The calculation stops after a given number of calculation
steps. A nice property of having a lazy host language is shown at (*): we do not

158 M. Lesniak

need to check that n is zero. In this case, no messages are sent and the division
is never evaluated.

pagerank : : GraphM Double None Double ()
pagerank = do

msgs <− messages
s <− s i z e
l e t value = 0.15 / (toEnum s) + 0 .85 ∗ (sum msgs)
s e t value

s <− step
i f s < 30

then do
n <− neighbors
send (value / toEnum n) -- (*)

else ha l t

Fig. 2. The pagerank algorithm in the Palovca EDSL

Single-source shortest path. Finding the shortest path between different
vertices in a graph is one of the most important real-world applications of graph
theory. In the single-source shortest-path (SSSP) problem we want to find the
shortest path between a single source and every other vertex. The vertex-centric
formulation of this algorithm is shown in Figure 3 and works as follows. Vertex
state, edges and messages are of type Double. The state defines the distance from
the source and is initially set to 1e30 (denoting infinity). In an initialization phase
that precedes the execution of the run-function, all vertices except the source
(here the vertex with identifier 0) are set inactive using modifyVertices. In
each superstep all active vertices receive messages from their incoming neighbors
that denote the minimal distances of these neighbours. The minimal value of the
distances is compared to the currently stored one: if it is smaller, the stored one
is updated and sent to each outgoing neighbor, which reactivates them. When
all vertices are inactive, the calculation is finished.

4 Implementation

In this section we describe the implementation of the EDSL and its paralleliza-
tion using explicit concurrent programming. The presentation is occasionally
simplified for conciseness; further details can be found in the documentation of
the source code [12].

4.1 Implementing Palovca in Haskell

Language features of Haskell are not only useful in the Palovca language (e.g.
lazy evaluation in Section 3.2), but in the Palovca implementation as well. We use
monads to hide the underlying local and global state and higher-order functions
to make the code reusable and maintainable.

Palovca: Describing and Executing Graph Algorithms in Haskell 159

s s sp : : GraphM Double Double Double ()
s s sp = do

i <− i d e n t i f i e r
l e t d i s t = i f i == 0 then 0 else 1e30 -- 1e30 as infinity

m <− (minimum . (d i s t :)) ‘ liftM ‘ messages
cur <− get
when (m < cur) $ do

s e t m
sendEdges (m+)

ha l t

main : : IO ()
main = do

-- Initialization phase

g <− <graph reading >
modi fyVer t i c e s g $

i <− i d e n t i f i e r
when (i > 0) ha l t

run g ss sp

Fig. 3. The SSSP algorithm in the Palovca EDSL

The two most important types of Palovca are Graph for whole graphs, and
Vertex for single vertices (see Figure 4). All type variables need to be instances
of NFData to avoid that the evaluation of expressions is delayed due to lazy
evaluation and can instead be forced inside concurrently running threads. In the
following we will explain the elements of the types by going through the compu-
tation of a single superstep for a vertex-centric algorithm f. The computation
is divided into three phases: vertex computation (which includes message pass-
ing), aggregator computation, and termination checking. Another phase, topol-
ogy modification, which handles vertex and edge modifications, is not shown due
to space reasons. It is similar to the aggregator phase.

All vertices are stored in a GArray (1) which resembles an IOArray but
supports additional parallel map- and fold-like operations; its internal details are
explained in the next section. The first phase, which is computationally most
expensive, evaluates f on all vertices of the graph: for inactive vertices nothing
is done, for active ones f is executed in a monadic GraphM context. GraphM is
a StateT-based wrapper around the graph and the currently computed vertex,
additionally encapsulating the IO monad to support channel-based concurrent
communication and mutable variables:

type GraphM v e m = StateT (ComputeState v e m) IO

data ComputeState v e m = ComputeState {
cVertex : : Vertex v e m

, cGraph : : Graph v e m
}

160 M. Lesniak

data (NFData v , NFData e , NFData m) => Graph v e m = Graph {
gVer t i c e s : : GArray (Vertex v e m) -- (1)

, gSuperstep : : Int -- (2)

, gAggregator : : IORef (Maybe ([v] −> v)) -- (3)

, gAggValue : : Maybe v -- (4)

, gAggChannel : : SChan v -- (5)

}

data (NFData v , NFData e , NFData m) => Vertex v e m = Vertex {
vIndex : : Index -- (6)

, vValue : : IORef v -- (7)

, vHalt : : IORef Bool
, vEdges : : IORef [Edge e] -- (8)

, vMessages : : (SChan m, SChan m) -- (9)

}

type Index = Int
type Edge a = (Index , a)
type SChan m = IORef [m]

Fig. 4. The Graph and Vertex data types contain informations for representing arbi-
trary graphs and BSP-based computation

Functions in the domain specific language therefore access and modify either the
current vertex or the graph. For example, modifying the local vertex state (7)
with set is internally defined by

-- User-visible functions

s e t : : v −> GraphM v e m ()
s e t v = modify (const v)

modify : : (v −> v) −> GraphM v e m ()
modify f = do

v <− ver t ex
l i f t I O $ modifyIORef (vValue v) f

-- Internal functions

ver t ex : : GraphM v e m (Vertex v e m)
ver t ex = acc e s s cVertex

ac c e s s : : (ComputeState v e m −> a) −> GraphM v e m a
acc e s s f = f ‘ liftM ‘ StateT . get

Note that the use of higher-order functions improves conciseness. Message pass-
ing is also performed in this phase and implemented as follows: each vertex has
a graph-wide unique identifier (6) which serves as its index in the GArray. The
directed edges to its neighbors are stored as (identifier, edge-value) tuples (8).

Palovca: Describing and Executing Graph Algorithms in Haskell 161

When a message is sent, the vertex iterates over all tuples to contact neighbors
separately: it accesses a particular pair of message channels (9) over the GArray
by

sendTo : : Index −> m −> GraphM v e m ()
sendTo dst msg = do

vs <− ac c e s s (gVer t i c e s . cGraph)
v <− l i f t I O (vs ‘GArray . at ‘ dst)
. . .

In the BSP model messages are buffered between successive supersteps (see Sec-
tion 2). We use a pair of channels for each vertex to implement this separation:
in even supersteps messages are read from the first channel and written to the
second one, in odd ones this is reversed; sendTo writes to the first channel in
even supersteps to send its message:

. . .
s <− super s t ep
l e t choose = i f s ‘mod‘ 2 == 0 then fst e lse snd

chan = choose (vMessages v)
l i f t I O $ atomicModifyIORef chan (\msgs −> msg : msgs)

In a previous version we separated message channel pairs to prevent contention
which could occur when too many threads access the channel of one vertex. Each
vertex had an array of pairs of message channels, such that each thread wrote
messages to its own non-shared channel. Instead of improving performance it
actually slowed down the computation. We think one reason was the increased
number of lookups to access the correct channel for writing. Another reason
was the additional overhead of combining the input of all channels for reading.
Although we use the term channel (SChan) to describe the different buffers,
we internally implement them as a list of elements wrapped in an IORef and
modified by atomicModifyIORef. In our measurements we found it to be slightly
faster than traditional channels.

In the first phase, where the vertex state was updated and messages were sent,
vertices might also submit values to the global aggregator by calling aggregate.
It accesses the graph’s aggregator channel (5) and writes a value to it. In the sec-
ond phase a new global aggregation value is calculated if a combination function
has been initially defined in (3): all values from the channel are read, combined
and stored in (4), hence are available in the following superstep. In the third
phase all vertices are scanned: if an inactive vertex has new messages waiting
in its channel, its state is changed back to active, and it will participate again
in phase one of the following superstep. It is then checked if any active ver-
tices exist. If not, the overall computation is stopped. Otherwise, phase one is
restarted.

Since all mentioned operations on vertices are performed independently, the
order of execution is not important. In fact, all operations on them can be per-
formed in parallel (using map in all phases and an additional fold in phase three).
Since vertices are stored in a GArray, the parallel operations are implemented
there and discussed in the following section.

162 M. Lesniak

4.2 Dynamic Arrays and Parallelizing Vertex Evaluation

The GArray data structure, which is used for storing the vertices of the graph
implements a dynamic (growable) array with additional support for parallel map-
and fold-like operations.

A growable array is needed for vertex addition (vertex removal is not yet
supported). Our implementation uses the traditional way to implement such
arrays: if the array is full, a new one with twice the original size is created and
the contents copied. Initially we implemented a chunk-based growable array, but
found that indexed access times to elements increase. Since vertex additions are
less frequent than indexed access, we chose the copy-based approach.

The vertex operations of the last section need two parallel operations: exe-
cuting a function for every element in the IO-monad, and evaluating a binary
function for every successive pair of elements. They resemble the well-known
mapM -function and a fold-like foldM-function, respectively. In the following we
describe parallel implementations for both.

The mapM -implementation it similar to Prelude.mapM but restricted to the
IO-monad and needs an additional parameter that defines a chunksize:

mapM : : ChunkSize −> (a −> IO b) −> GArray a −> IO ()
type ChunkSize = Int

For parallelization, (the used part of) the array is divided into chunks of the
defined size (or smaller). Forked threads, whose number is defined by the -N
commandline parameter, work on these chunks in parallel. For each element
of the chunk the given function is called. By default the chunksize is chosen
such that each thread works on one chunk. For more irregular vertex-centric
algorithms with large differences in the local vertex computation time, load
balancing is achieved by choosing a smaller chunk size. We intentionally did not
implement a mapM-function that returns the results of the called function since
it would seldom be of use for our requirements.

To collect and combine information about vertices for internal use, for example
their current activation state, we need a parallelized fold-like function:

foldM : : ChunkSize −> (b −> a −> IO b) −> (b −> b −> b) −> b
−> GArray a −> IO b

foldM calls the fold function for each chunk in parallel (using the above scheme)
and returns the combined result. The combination is computed sequentially since
the number of chunks is rather small and the combinator function is fast to
evaluate.

5 Benchmarks

We ran our experiments on a 2.3 GHz 16-core AMD Opteron 6134 with 32 GB
RAM running a Linux-kernel 2.6.38-8 with GHC 7.0.3. Similar to Pregel and
to ease comparison, we measured only the pure computation time, i.e. excluded

Palovca: Describing and Executing Graph Algorithms in Haskell 163

graph reading. The speedup is calculated relative to the time when using a single
thread, and all stated calculation times are the average of three runs.

The number of generated messages and thus allocated short-living chunks of
memory is quite high and puts a lot of stress on the parallel garbage collector. By
increasing the amount of memory that is allocated at once, we decrease the calls
to the garbage collector and, since the collectors runs over the allocated data
in parallel, increase the overall performance. For all benchmarks we chose -A1G
-H16G for sequential and -A1500M for parallel runs as additional GHC runtime
parameters (found by experimentation). The option -H sets the initial heap size
(with G for gigabyte and M for megabytes as potential suffixes) and -A the size
of the allocation area if the garbage collector needs to allocate more memory.
Although these parameters worked well for all our benchmarks, it should be
stated that parameter tuning for a particular algorithm and graph might result
in even better speedups.

We chose three different benchmarks with varying number of active vertices
and message sizes. In the pagerank benchmark the computational time per vertex
is nearly equal and all vertices work until the calculation is finished. In the single-
source shortest path benchmark the number of active vertices depends on the
graph structure and is more irregular. In the semi-clustering benchmark (shortly
described below) computational times are also more irregular and the message
size increases over the course of the computation. We used randomly generated
graphs with v vertices. The probability that two vertices are connected was p.
The values for v and p were as follows: For the first two benchmarks we chose
v = 105 and for the third v = 104. To see the effect of additional computational
load through more communication, we chose two different probabilities for edge
generation, p1 = 0.0001 and p2 = 0.0002 such that in the second case of each
benchmark the number of edges is doubled. Note that the number of vertices is
much smaller than the ones used in Pregel’s benchmarks since it is distributed
and uses hundreds of machines and therefore can handle much larger data sets.
Since Pregel is not publicy available we were not able to directly compare running
times.

Pagerank Benchmark. Figure 5 shows the benchmark results for the page-
rank algorithm. Since all vertices are active over the whole computation and by
default each thread works on a chunk of the same size, both graphs correspond
to a typical speedup curve. Linear speedup is not reached as it is typical to
parallel computations. In addition, the influence of more communication is visible
for p2. For p1, computational time becomes so small that additional threads
do not increase the performance. When the number of edges is doubled, more
communication and thus more computations per vertex need to be performed,
which results in better scaling.

Single-Source-Shortest-Path Benchmark. Figure 6 shows the results for the
SSSP algorithm. The SSSP algorithm does have a messaging model where many
vertices are initially inactive and more become active with each superstep. This
makes an efficient parallelization more difficult since the number of active and

164 M. Lesniak

Fig. 5. Pagerank speedup and computa-
tion times for a random graph with v =
105 and p1 = 0.0001 and p2 = 0.0002, re-
spectively

Fig. 6. SSSP speedup and computation
times for a random graph with v = 105

and p1 = 0.0001 and p2 = 0.0002, respec-
tively

thus processable vertices is initially low. Nevertheless, the first graph corresponds
to a typical speedup curve since the computational load is higher than in the
pagerank algorithm. The jump of the second graph at eight cores might be due
to cache effects.

Semi-Clustering Benchmark. Our third benchmark implements a semi-clus-
tering algorithm [4]. It greedily divides the graph into a set of Cmax clusters
with a maximum of Vmax vertices in each. In contrast to traditional clustering
problems, vertices can belong to more than one cluster. Semi-clusters are chosen
such that their score Sc = Ic−fBBc

Vc(V c−1)/2 is maximized. Here, Ic denotes the sum
of all internal edges, Bc the sum of boundary edges, Vc the number of vertices
in the cluster and fB a user-specified score factor. The local computational
time is higher and more irregular than in the previous two benchmarks. Figure 7
shows the speedup graphs, which scale to about 10 for 16 threads. The difference
between the graphs is low since the initial computational load in the first graph
is already high.

6 Related Work

The foundation of Palovca’s computational model is the Bulk Synchronous Par-
allel model of Valiant [2,3]. While some BSP libraries exist for classical pro-
gramming languages, e.g. the Paderborn University BSP by Bonorden et al. [14]
or the Green BSP library by Goudreau et al. [15], we are not aware of any
Haskell-based implementations. Three Haskell approaches that could be used to
implement BSP-like computations are Glasgow Distributed Haskell (GdH) [16],
the CHP library [17] and data parallel Haskell [18]. GdH implements parallel
and concurrent computations on distributed-memory systems. It allows to work
with the same concurrent primitives that are traditionally used for concurrent

Palovca: Describing and Executing Graph Algorithms in Haskell 165

Fig. 7. Semi-clustering speedup and computation times for random graphs with
v = 104, CMax = 20, VMax = 20. Probabilities are p1 = 0.0001 and p2 = 0.0002,
respectively.

programming with Haskell in a distributed environment. Besides a simple BSP
implementation it would be worthwhile to research if advanced BSP optimization
techniques, e.g. relaxing the barrier restriction [19], could also be implemented.
CHP implements combinators to allow communication of concurrent processes.
Its computational model, which is based on Hoare’s communicating sequential
processes [20], is similar to BSP: Processes communicate over synchronous chan-
nels, interact via barriers and do not share any local data. Despite its similarity
with BSP we did not choose CHP for the core of Palovca since computations
in the IO-monad are rather difficult to express but were necessary for efficiency.
Since vertex-centric computations are compelling data parallel, an efficient ex-
ecution should be possible with automatically parallelized array operations as
they are provided in data parallel Haskell. Unfortunately it is yet unclear how to
handle communication between vertices in a side-effect free (pure) environment
efficiently (see Section 7).

Palovca was strongly influenced by Malewicz et al.’s paper on Pregel [4]: they
implement a distributed platform for large-scale vertex-centric graph algorithms
with billions of vertices, programmable in C++. Albeit difficult to compare
due to their different nature, their implementation achieves similar speedups as
ours: when utilizing 16 times as many worker threads (absolute numbers were
not stated) they reach speedups of about 10.

As we mentioned in Section 1, Haskell EDSLs are quite successful for a vari-
ety of domains. To the best of our knowledge there are no other DSLs for any
problems that parallelize the execution nor libraries that allow to describe gen-
eral (vertex-centric) graph algorithms. The closest approach to Palovca is the
containers package, which defines the module Data.Graph. It allows to describe
graphs and perform standard algorithms such as depth-first search [21].

7 Conclusion and Future Work

In this paper we defined and implemented Palovca (PArallel Local Vertex Cal-
culations in hAskell) which consists of a Haskell-based EDSL for vertex-centric

166 M. Lesniak

graph algorithms and an execution platform for shared-memory multicore ma-
chines. We have shown different examples of the conciseness and simplicity of
the EDSL and provided benchmarks that show its scalability on modern hard-
ware. We achieved speedups between 9 and 11 with 16 threads, depending on
the particular problem and source graph. Unlike other data-parallel applications
we did not yet achieve nearly linear speedups, since the irregularity of the vertex
computations can be high. We found that the general approach of implementing
a BSP-based computation in Haskell and applying it to vertex-centric calcula-
tions is feasible and enables good performance. Outside the scope of this paper,
we developed a prototype of a pure execution platform that uses determinis-
tic parallelism. Future work is need to improve it regarding performance and
memory-consumption. Currently message passing and state update are quite
memory-intensive and only a speedup of about 6 for 16 threads is achieved.

Future work may address different related topics: First, we have not used the
advantages of having a restricted problem domain or the knowledge of the partic-
ular graph structures to optimize computations, e.g. by switching the execution
platforms depending on the irregularity of the vertex computations. Second, ex-
periments with Palovca’s scalability regarding larger graphs could explore the
efficient usage of the garbage collector with high amounts of short-living data.
Third, it would be interesting to use the EDSL to generate source code in a
low-level language and link it to an already existing BSP library as for example
done in [22].

References

1. Grama, A., Karypis, G., Kumar, V., Gupta, A.: Introduction to Parallel Comput-
ing, 2nd edn. Addison Wesley (January 2003)

2. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8),
103–111 (1990)

3. Valiant, L.G.: A bridging model for multi-core computing. Journal of Computer
and System Sciences 77(1), 154–166 (2008)

4. Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I., Leiser, N., Cza-
jkowski, G.: Pregel: a system for large-scale graph processing. In: Proceedings of
the 2010 International Conference on Management of Data, SIGMOD 2010, pp.
135–146. ACM, New York (2010)

5. Thomas, D.E., Moorby, P.R.: The Verilog hardware description language, 4th edn.
Kluwer Academic Publishers, Norwell (1998)

6. Codd, E.F.: The relational model for database management: version 2. Addison-
Wesley Longman Publishing Co., Inc., Boston (1990)

7. Hudak, P.: Modular domain specific languages and tools. In: Proceedings of Fifth
International Conference on Software Reuse, pp. 134–142. IEEE Computer Society
Press (1998)

8. Alves, N.M.M., de Mello Schneider, S.: Implementation of an embedded hardware
description language using haskell. Journal of Universal Computer Science 9(8),
795–812 (2003)

9. Elliott, C.: Programming graphics processors functionally. In: Proceedings of the
2004 Haskell Workshop. ACM Press (2004)

Palovca: Describing and Executing Graph Algorithms in Haskell 167

10. Elliott, C.: Tangible functional programming. In: International Conference on
Functional Programming (2007)

11. Jones, S.P., Eber, J.M., Seward, J.: Composing contracts: an adventure in financial
engineering (functional pearl). In: Proceedings of the Fifth ACM SIGPLAN Inter-
national Conference on Functional Programming, ICFP 2000, pp. 280–292. ACM,
New York (2000)

12. GitHub: Repository with source code, http://github.com/mlesniak/palovca
13. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.

In: Seventh International World-Wide Web Conference, WWW 1998 (1998)
14. Bonorden, O., Juurlink, B.H., von Otte, I., Rieping, I.: The paderborn university

bsp (pub) library. Parallel Computing 29(2), 187–207 (2003)
15. Goudreau, M.W., Lang, K., Rao, S.B., Suel, T., Tsantilas, T.: Portable and efficient

parallel computing using the bsp model. IEEE Trans. Comput. 48 (July 1999)
16. Pointon, R.F., Trinder, P.W., Loidl, H.-W.: The Design and Implementation of

Glasgow Distributed Haskell. In: Mohnen, M., Koopman, P. (eds.) IFL 2000. LNCS,
vol. 2011, pp. 53–70. Springer, Heidelberg (2001)

17. Brown, N.C.C.: Communicating haskell processes: Composable explicit concur-
rency using monads. In: Welch, P.H., Stepney, S., Polack, F., Barnes, F.R.M.,
McEwan, A.A., Stiles, G.S., Broenink, J.F., Sampson, A.T. (eds.) CPA. Concur-
rent Systems Engineering Series, vol. 66, pp. 67–83. IOS Press (2008)

18. Jones, S.L.P., Leshchinskiy, R., Keller, G., Chakravarty, M.M.T.: Harnessing the
multicores: Nested data parallelism in haskell. In: Hariharan, R., Mukund, M.,
Vinay, V. (eds.) FSTTCS. LIPIcs, vol. 2, pp. 383–414. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2008)

19. Stewart, A., Clint, M., Gabarró, J.: Barrier synchronisation: Axiomatisation and
relaxation. Formal Aspects of Computing 16, 36–50 (2004)

20. Hoare, C.A.R.: Communicating sequential processes (1985)
21. King, D.J., Launchbury, J.: Lazy depth-first search and linear graph algorithms in

haskell. GLA, 145–155 (1994)
22. Anand, C.K., Kahl, W.: A domain-specific language for the generation of opti-

mized SIMD-parallel assembly code. SQRL Report 43, Software Quality Research
Laboratory, McMaster University (May 2007)

http://github.com/mlesniak/palovca

LearnPADS
++:

Incremental Inference of Ad Hoc Data Formats

Kenny Q. Zhu1, Kathleen Fisher2, and David Walker3

1 Shanghai Jiao Tong University
2 Tufts University

3 Princeton University

Abstract. An ad hoc data source is any semi-structured, non-standard
data source. The format of such data sources is often evolving and fre-
quently lacking documentation. Consequently, off-the-shelf tools for pro-
cessing such data often do not exist, forcing analysts to develop their own
tools, a costly and time-consuming process. In this paper, we present an
incremental algorithm that automatically infers the format of large-scale
data sources. From the resulting format descriptions, we can generate
a suite of data processing tools automatically. The system can handle
large-scale or streaming data sources whose formats evolve over time.
Furthermore, it allows analysts to modify inferred descriptions as de-
sired and incorporates those changes in future revisions.1

1 Introduction

Ad hoc data is any non-standard, semi-structured data source for which pro-
cessing tools and libraries are not readily available. HTML, XML, and data in
relational databases are not ad hoc because many tools exist to manage such
data. Despite efforts to standardize data formats, ad hoc data persists in many
domains ranging from computer system administration to financial transactions
to health care to computational biology. Figure 1 shows an example of a piece
of ad hoc data source.

People continue to produce and use ad hoc data because such formats are
expedient and compact. Typical uses of these data sources include system fault
monitoring by tracking vital system health parameters in the system logs, intru-
sion detection by matching access patterns to intrusion models and data mining
of scientific and financial data.
1 This work was partially supported by NSFC Grants No. 61033002 and 61100050 and

by NSF grant CCF-1016937. Any opinions, findings, and recommendations expressed
in this material are those of the authors and do not necessarily reflect the views of the
NSFC or NSF. The views expressed are those of the authors and do not reflect the
official policy or position of the Department of Defense or the U.S. Government. The
views, opinions, and/or findings contained in this article/presentation are those of
the author/presenter and should not be interpreted as representing the official views
or policies, either expressed or implied, of the Defense Advanced Research Projects
Agency or the Department of Defense. Distribution Statement “A” (Approved for
Public Release, Distribution Unlimited).

C. Russo and N.-F. Zhou (Eds.): PADL 2012, LNCS 7149, pp. 168–182, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

LearnPADS
++: Incremental Inference of Ad Hoc Data Formats 169

207.136.97.49 - - [05/May/2009:16:37:20 -0400] "GET /README.txt HTTP/1.1" 404 216
ks38.kms.com - kim [10/May/2009:18:38:35 -0400] "GET /doc/prev.gif HTTP/1.1" 304 576

Fig. 1. A Fragment of a Simple Web Server Log wl

Despite the expediency of producing ad hoc data, these data formats become
very difficult to deal with because of missing documentation, the lack of tools,
and corruptions caused by repeated redesign and re-engineering over time. In
the past, ad hoc data analysis usually involved writing a shell script or one-
off wrapper program to parse each data format, a practice which is expensive,
error-prone and brittle.

The pads project [11] aims to solve the above problems. The central technol-
ogy is a declarative, type-based, data description language that allows the user
to specify the physical layout of data sources as well as semantic properties of
the data. pads specifications can be compiled into a suite of processing tools
such as a statistical reporting tool, an XML converter and a query engine, and
programming libraries including parser, printer and traversal functions. Figure
2 shows the pads description for the wl data source, and Figure 3 demonstrates
the XML translator output automatically generated from the pads description.

Punion client_t {
Pip ip; // 207.136.97.49
Phostname host; // ks38.kms.com

};

Punion auth_id_t {
Pchar unauthorized : unauthorized == ’-’;
Pstring(:’ ’:) id;

};

Pstruct request_t {
"GET "; Ppath path;
" HTTP/"; Pfloat http_ver;
’"’;

};

Precord Pstruct entry_t {
client_t client;

’ ’; auth_id_t remoteID;
’ ’; auth_id_t auth;
" ["; Pdate date;
’:’; Ptime time;
"] "; request_t request;
’ ’; Pint response;
’ ’; Pint length;

};

Fig. 2. pads/c description for the wl format

<entry_t>
<client>
<ip>

<elt><val>207</val></elt>
<elt><val>136</val></elt>
<elt><val>97</val></elt>
<elt><val>49</val></elt>
<length>4</length>

</ip>
</client>

<remoteID>
<unauthorized><val>-</val></unauthorized>

</remoteID>
<auth>
<unauthorized><val>-</val></unauthorized>

</auth>
<date><val>2009-05-05</val></date>
<time><val>16:37:20</val></time>
<timezone><val>-0400</val></timezone>
...

</entry_t>

Fig. 3. Fragment of XML translator output from a wl record

170 K.Q. Zhu, K. Fisher, and D. Walker

The large scale as well as the streaming and evolving nature of many ad
hoc sources led us to believe that a system which automatically learns a pads

description of a given data source and incrementally updates that description
as the source evolves could significantly improve the productivity of ad hoc
data users. As a first step, we developed an unsupervised algorithm learnpads

[7,8] that automatically infers a pads description of a data source by computing
frequency statistics for the tokens in the data and using an information theoretic
score to guide description optimization.

This algorithm, however, has three important limitations: first, it requires
that all data fit into main memory and contains procedures that are quadratic
to the size of data, and therefore cannot scale to very large sources; second,
when the data format evolves over time, the description has to be learned from
scratch; and finally, machine learned description, while optimized for both pre-
cision and conciseness at the same time, may not be very user-friendly in terms
of readability.

In this paper, we propose a new algorithm that incrementally infers descrip-
tions of large scale or evolving ad hoc data sources. 2 The system takes as input
an initial description and a new batch of data. It returns a modified descrip-
tion that extends the initial description and covers the new data. The initial
description may be supplied by the user or automatically generated using the
original learnpads system. This iterative architecture enables the learning of
a very large data source by partitioning it into smaller batches and updating
the description from one batch to the next. It also allows the user to modify the
description output at the end of an iteration (e.g., renaming the automatically
generated variable names), and insert the revised description back into the loop.

The main contributions of this paper are:

1. The design of a new system for generation of data descriptions and end-to-
end ad hoc data processing tools from example data. The system is incre-
mental and interactive, allowing it to process streaming data a chunk at a
time, and allowing users to intercede to correct, adapt or modify intermedi-
ate results.

2. The engineering and optimization of algorithms that allow the system to
handle large, industrial data sources of 30GB or more in a matter of a few
hours.

3. The evaluation and analysis of the system on 16 different examples drawn
from various industrial data sources.

In the rest of the paper, we describe the new incremental inference algorithm
(Section 2) and give a comprehensive experimental evaluation of the system
(Section 3). We then compare this system with some related work (Section 4)
and finally conclude the paper (Section 5).

2 A preliminary version of this paper appeared in an informal workshop [14].

LearnPADS
++: Incremental Inference of Ad Hoc Data Formats 171

User

Data Source

Data

Description

Filter

Program

(Generated)

Bad Data

Current
LearnPADS

Fig. 4. An Overview of the Incremental Learning Framework

2 Main Algorithm

Our main algorithm can be characterized as a user-assisted bootstrapping pro-
cessing, depicted in Figure 4. Given a candidate description D, the algorithm
uses D to parse the records in the data source. It discards records that parse
successfully, since these records are already covered by D, but it collects records
that fail to parse. Specifically, if a portion of a record fails to parse, that failure
will be detected at a particular node in D. These failed portions are collected in
an aggregation data structure A that mirrors the structure of D. When the algo-
rithm accumulates M such records, where M is a parameter of the algorithm, it
transforms D to accommodate the places where differences were found (i.e., by
introducing options where a piece of data was missing or unions where a new
type of data was discovered). It then uses the original learnpads algorithm
to infer descriptions for the aggregated portions of bad data, and merge these
new sub-descriptions into the transformed description to produce a new, refined
description D’. This refined description subsumes D and describes the M new
records. In addition, the algorithm attempts to preserve as much of the structure
of D as possible, so users supplying initial descriptions can recognize the resulting
descriptions. This is so because the updates are localized to only parts of D that
incur parsing errors. At this point, the user can optionally get into the loop and
makes modification to the description to create D’’. The algorithm then makes
D’’ the new candidate description and repeats the process until it has consumed
all the input data. We call the main loop in Figure 4 the incremental learning
step. The initial description D can either be supplied by a user or be inferred
automatically by applying the original algorithm to N records selected from the
data source, where N is another parameter.

In the following, we present the algorithm in more detail.

2.1 Preliminaries

Figure 5 defines the data structures for descriptions D, data representations R,
and aggregate structures A. Some data types, such as the switched union, are
omitted for the succinctness of the presentation. In these definitions, variable re

172 K.Q. Zhu, K. Fisher, and D. Walker

Basic notation:
c (a string character)
s1.s2 (concatenation of strings)
first(s) (first character of s)
prefix(s) (set of prefixes of s)
sprefix(s) (set of strict prefixes of s)
len(s) (length of s)

Descriptions:
Base ::= Pint | PstringME(re) | PstringFW(e)
D ::=

Base (Base token)
| Sync s (Synchronizing token)
| Pair (x:D1, D2) (Pair with dependency)
| Union (D1, D2) (Union)
| Array(D, s, t) (Array)
| Option D (Option)

Data representation:
BaseR ::= Str s | Int i | Error
SyncR ::= Good | Fail | Recovered s
R ::=

BaseR
| SyncR
| PairR (R1, R2)
| Union1R R | Union2R R
| ArrayR (R list, SyncR list, SyncR)
| OptionR (R option)

Aggregation structure:
A :: =

BaseA Base
| SyncA s
| PairA(A1, A2)
| UnionA(Al, Ar)
| ArrayA (A_elem, A_sep, A_term)
| OptionA A
| Opt A
| Learn [s]

Fig. 5. Preliminary data structures used in incremental inference

ranges over regular expressions, e over host language expressions, s and t over
strings, and i over integers. For simplicity of presentation, we assume just three
base types: integers, strings that match a regular expression and strings with a
fixed width specified by an expression. Synchronizing tokens, or sync tokens for
short, correspond to string literals in pads descriptions. Such tokens, which are
often white spaces or punctuation, serve as delimiters in the data and are useful
for detecting errors. The binary dependent pairs Pair (x:D1, D2) are a simpli-
fication of pads more general Pstructs. The variable x refers to the data parsed
by D1 and may be used in D2. The union Union (D1, D2) provides a choice
between descriptions D1 and D2. An array description Array(D, s, t) has an
element type described by D, a separator string s that appears between array
elements, and a terminator string t. Finally, Option D indicates D is optional. To
resolve ambiguities, unions are biased towards their first element, arrays are bi-
ased towards a longest match semantics and options are biased towards matching
as opposed to not matching.

A term R is a parse tree obtained from parsing data using a description D.
Parsing a base type can result in a string, an integer or an error. Parsing a sync
token Sync s can give three different results: Good, meaning the parser found s
at the beginning of the input; Fail, meaning s is not a substring of the current
input; or Recovered s’, meaning s is not found at the beginning of the input,
but can be recovered after “skipping” string s’. The parse of a pair is a pair of
representations, and the parse of a union is either the parse of the first branch
or the parse of the second branch. The parse of an option is either the parse of
its body or empty. The parse of an array includes a list of parses for the element
type, a list of parses for the separator and a parse for the terminator which
appears at the end of the array.

An aggregation structure accumulates the set of currently unparseable data
fragments whose form must be learned for inclusion in the grammar. The aggre-
gation structure mirrors the structure of the description D with two additional

LearnPADS
++: Incremental Inference of Ad Hoc Data Formats 173

nodes: an Opt node and a Learn node. The Learn nodes accumulate extra data
whose structure must be learned. The Opt nodes do the opposite: they mark
where data were missing. An invariant of the aggregation structure is that newly
inserted Opt nodes always wrap either a BaseA or a SyncA node.

2.2 Incremental Learning Step

Figure 6 gives pseudo-code for the incremental learning step. The input is the
current description D and a batch of data records xs. The init aggregate func-
tion initializes an empty aggregate according to description D. During parsing,
the algorithm iteratively updates a list of possible aggregates As, seeded with
the initial aggregate of D. For each data record x, the algorithm uses the parse
function to produce a list Rs of possible parses. It then calls the aggregate
function to merge each parse R in the current list of parses with each aggregate
A in the current list of aggregates. (We use ‘::’ to denote prepending an element
onto the front of a list.) Note that the potentially large number of parses and
the growing list of aggregates in the inner loop are the performance bottleneck.
We will show in Section 2.6 some strategies to alleviate this complexity.

incremental_step(D, xs) =
As = [init_aggregate(D)];
foreach x in xs {

Rs = parse(D, x);
As’ = [];
foreach R in Rs {

foreach A in As {
A’ = aggregate(A, R);
As’ = A’ :: As’

}
}
As = As’

}
best_a = select_best(As);
D’ = update_desc(D, best_A);
return D’

Fig. 6. Pseudo-code for the incremental learning step

When the system finishes parsing all the input data, the algorithm uses the
select best function to select the best aggregate from the list of candidate
aggregates As. The select best function counts the total number of Opt and
Learn nodes in each of the aggregates, and returns the one with the smallest
number. The idea is that the aggregate with the smallest number of added nodes
is more likely to represent a description that is closest to the original description.

Finally, the update desc function uses the structure of the best aggregate to
update the previous description D to produce the new current description D’. The
update desc function works by doing two things. First, it converts the aggregate
structure back to a pads description with Opt nodes translated to Poption types.
In addition, it invokes the learnpads format inference algorithm to learn a sub-
description for the data collected at each of the Learn nodes and replaces these

174 K.Q. Zhu, K. Fisher, and D. Walker

Learn nodes with these new sub-descriptions. Second, it uses rewriting rules to
improve the overall description.

2.3 Parsing

Our parser is a top-down recursive descent parser that performs error detection
and recovery using synchronizing tokens. Figure 7 describes the most important
elements of the parsing algorithm. For simplicity and brevity, we describe the
algorithm abstractly using a relation of the form (R,m) ∈ L(D,E,s,s’). This re-
lation may be read “using description D and operating within the environment E,
parsing the input I = s.s’ will consume input prefix s and leave s’ as the resid-
ual input, returning the parse tree R and correctness metric m.” The environment
E is a mapping from variable names x to parse trees R. This environment stores
the binding of variables to parse trees that the pads dependent pair construct
introduces. We use the symbol ‘ε’ to denote the empty environment.

Base:
(Int (atoi s), m) ∈ L(Pint,E,s,s’)

if re = (+|-)?[0-9]+
and s ∈ L(re)
and s’’ ∈ prefix(s’) and s.s’’ �∈ L(re)
and m = (0,1,0,len(s))

(Error, (1,0,0,0)) ∈ L(Pint,E,"",s’),
if x ∈ prefix(s’) then x �∈ L((+|-)?[0-9]+)

(Str s, m) ∈ L(PstringME(re),E,s,s’),
if s ∈ L(re)
and s’’ ∈ prefix(s’) and s.s’’ �∈ L(re)
and m = (0,1,0,len(s))

(Error, (1,0,0,0)) ∈ L(PstringME(re),E,"",s’),
if x ∈ prefix(s’) then x �∈ L(re)

(Str s, m) ∈ L(PstringFW(e),E,s,s’)
if E(e) = Int k and k >= 0
and s = c1...ck and m = (0,1,0,k)

(Error, (1,0,0,0)) ∈ L(PstringFW(e),E,"",s’)
if E(e) �= Int k for any k > 0

(Error, (1,0,0,0)) ∈ L(PstringFW(e),E,"",s’)
if E(e) = Int k and k > 0 and len(s’) < k

Sync:
(Good, (0,1,0,len(s))) ∈ L(Sync(s),E,s,s’)
(Recovered s1, m) ∈ L(Sync(s2),E,s,s’)
if s = s1.s2
and s3.s2 �∈ sprefix(s1.s2) for any s3
and m = (1,0,len(s1),len(s2))

(Fail, (1,0,0,0)) ∈ L(Sync(s),E,"",s’)
if s �∈ prefix(s’)

Pair:
(PairR (R1,R2), (m1 + m2))

∈ L(Pair(x:D1, D2),E,s1.s2,s’)
if (R1, m1) ∈ L(D1,E,s1,s2.s’)
and (R2, m2) ∈ L(D2,E[x → R1],s2,s’)

Union:
(Union1R R, m) ∈ L(Union(D1, D2),E,s,s’)
if (R, m) ∈ L(D1, E, s, s’)

(Union2R R, m) ∈ L(Union(D1, D2),E,s,s’)
if (R, m) ∈ L(D2, E, s, s’)

Main parse function:
parse(D, s) = {R | (R, m) ∈ L(D,ε,s,"")}

Fig. 7. Definition of parse function (excerpts)

The parse metric m measures the quality of a parse. It is a 4-tuple: (e, g,
s, c), where the e is the number of tokens with parse errors, g is the number
of tokens parsed correctly, s is the number of characters skipped during Sync
token recovery, and c is the number of characters correctly parsed. To sum two
parse metrics, we sum their components: (e1, g1, s1, c1) + (e2, g2, s2, c2) = (e1 +
e2, g1 +g2, s1 +s2, c1 +c2). We compare parse metrics by comparing the ratios of
correctly parsed characters against erroneous tokens and the estimated number
of skipped tokens. We estimate the number of skipped tokens by computing the
fraction of the number of skipped characters over the estimated token length.
Hence, (e1, g1, s1, c1) ≥ (e2, g2, s2, c2) iff

c1

e1 + s1
max((s1+c1)/(e1+g1),1)

≥ c2

e2 + s2
max((s2+c2)/(e2+g2),1)

LearnPADS
++: Incremental Inference of Ad Hoc Data Formats 175

(3)

Pair

Pint Sync "*"

input: "5*"

parse
Int 5 Good

PairR

(R1)

Pair

Pint Sync "*"
(D)

Pair

Pint Sync "*"

(D)

input: "8$"

parse

(R3)

Int 8

PairR

Fail
(R2)

Error

PairR

Recovered("abc")

input: "abc*"

parse

(D)
(1) (2)

Fig. 8. Result of parsing three input lines

(Final aggregate for D)

PairA

BaseA Pint SyncA "*"

PairA

Opt PairA

SyncA "*"Learn ["abc"]BaseA Pint

R3

aggregate
SyncA "*"

PairA

BaseA Pint
aggregate

R1

(Initial aggregate for D)

R2

aggregate

PairA

Opt PairA

Learn ["abc"]BaseA Pint Opt

SyncA "*"

Fig. 9. Aggregation of three parses

2.4 An Example of Parsing and Aggregation

To illustrate the parsing and aggregation phases of the algorithm, we introduce
a simple example. Suppose we have a description d, comprised of a pair of an
integer and a sync token “*”, and we are given the following three lines of new
input: “5*” and “abc*” and “8$”. Figure 8 shows the three data representations
that result from parsing the lines, which we call R1, R2 and R3, respectively.
Notice the first line parsed without errors, the second line contains an error for
Pint and some unparseable data “abc”, and the third contains a Fail node
because the sync token * was missing. Figure 9 shows the aggregation of R1
to R3 starting from an empty aggregate. In general, Error and Fail nodes in
the data representation trigger the creation of Opt nodes in the aggregate, while
unparseable data is collected in Learn nodes.

2.5 Description Rewriting

Once we have successfully parsed, aggregated and relearned a new chunk of
data, we optimize the new description using rewriting rules. Our original non-
incremental algorithm already had such an optimization phase; we have modified
and tuned the algorithm for use in the incremental system.

Description rewriting optimizes an information-theoretic Minimum Descrip-
tion Length (MDL) score [9], which is defined over descriptions D as:

MDL(D) = TC(D) + w × ADC(x1, . . . , xk | D),

where TC(D) is called the type complexity of D and ADC(x1, . . . , xk | D) is called
the atomic data complexity. The type complexity is a measure of the size of
the abstract syntax of D. The atomic data complexity of data records x1, . . . , xk

relative to D is the number of bits required to transmit an average data record
given the description D. The MDL score of D is the weighted sum of these two
components. Our experiments indicate a weight w of approximately 10 is effective

176 K.Q. Zhu, K. Fisher, and D. Walker

in our domain. Given a rewriting rule that rewrites D to D’, the rule fires if and
only if MDL(D) ≤ MDL(D’). Rewriting continues until no further rule can fire.
Hence, our rewriting strategy is a greedy local search.

The original learning system contains many MDL-based rewriting rules, for ex-
ample, to flatten nested structs and unions and to refine ranged types. BlobFind-
ing is an important new rewriting rule which takes a given sub-description D
and uses a heuristic to determine if the type complexity of D is too high w.r.t.
the amount of data it covers. If this is true, and there is an identifiable con-
stant string or pattern re that immediately follows D, then we rewrite D to
Pstring_SE(:re:). This rule is tremendously helpful in controlling the size and
complexity of learned descriptions. Without it, descriptions can grow in com-
plexity to the point where parsing is slow and the algorithm fails to scale.

We also introduced a new data dependent rewriting rule called MergeOpts
to optimize a pattern that occurs frequently in descriptions during incremental
learning. Recall that the aggregate function introduces Opt nodes above a BaseA
or SyncA node whenever the corresponding Base or Sync token in the description
failed to parse. When faced with an entirely new form of data, the algorithm is
likely to introduce a series of Opt nodes as each type in the original description
fails in succession. The MergeOpts rule collapses these consecutive Opt nodes if
they are correlated, i.e., either they are all always present or all always absent.

2.6 Optimizations

The pseudo-code in Figure 6 suggests the number of aggregates is of the order
O(pn), where p is the maximum number of parses for a line of input and n is
the number of lines to aggregate. Clearly, this algorithm will not scale unless
p and n are bounded. To deal with this problem, we have implemented several
optimizations to limit the number of parses and aggregates.

The first key optimization culls parses based on the parse metric m. To be
more precise, we instrument the implementation of the parse function to return
a list of parse triples (r,m,j), where r is the data representation of the parse, m
is the metric associated with r, and j is the position in the input after the parse
rather than just representations. We define a clean function that retains all
perfect parses or, if no perfect parse exists, the best k non-perfect parses within
the same span. This idea is similar to the dynamic programming techniques used
in Earley Parsers [6].

A second optimization, the parse cut-off optimization, terminates a candidate
parse when parsing a struct with multiple fields f1, f2, ..., fn if the algorithm
encounters a threshold number of errors in succession. This may result in no
possible parses for the top-level description, in which case we restart the process
with this optimization turned off.

A third optimization is memoization. The program keeps a global memo table
indexed by the pair of a description D and the beginning position for parsing D.
This table stores the result for parsing according to D at the specific position.

LearnPADS
++: Incremental Inference of Ad Hoc Data Formats 177

Table 1. The data sources

Name (Large) Size Lines Description
redstorm 34.18 GB 219096168 Supercomputer log from Sandia National Lab
liberty 30.833 GB 265569231 Supercomputer log from Sandia National Lab
dalpiv.dat 15.41 GB 25867260 Yellow pages web server log
vshkap2.log 10.33 GB 89662433 Syslog format
cosmosLog csm.exe.log 6.09 GB 22143288 Microsoft Cosmos service manager log
free impression.dat 2.60 GB 27644006 Impression data of yellow pages for Free users

Name (Small) Size Lines Description
free clickthroughs.dat 24 MB 285332 Yellow pages click through stream data
thirdpartycontent.log 40 MB 281519 Third party content stream data
eventstream.current 500 MB 1579920 Event streams on Cosmos
strace jaccn.dat 80 MB 896490 NERSC application traces
LA-UR-EVENTS.csv 30 MB 433490 Comma separated LANL disk replacement data
messages.sdb 520 MB 5047341 /var/log/messages from CRAY
HALO have2impression.log 360 MB 210034 Server side impression records of iPhone apps
LA-UR-NODE-NOZ.TXT 32 MB 1630479 Space separated LANL disk replacement data
searchevents.dat 90 MB 2035348 Yellow pages search event log
4046.xls 7 MB 24193 DNA Microarray data

3 Experimental Results

To evaluate the performance of our prototype system and to understand the
trade-offs in setting the various parameters in the algorithm, we ran a number
of experiments using 16 data sources. These sources are divided into two groups:
six large files, each more than 1GB, and ten smaller files, each under 1GB. Table
1 lists the names of these data sources, the file sizes, the number of lines, and
brief descriptions. We conducted our experiments on a 2.4GHz machine with 24
GBs of memory and two 64-bit quad-core Intel Xeon Processors running Linux
version 2.6.18. Our system is single-threaded, so we effectively used only one of
the eight available cores.

Benchmark data sources. We are interested in two kinds of performance mea-
sures: time to learn a description and quality of the learned description. The
time to learn can be further broken down into two components: time to learn
the initial description and time to learn with an initial description in hand.

The quality of the description can be measured in three ways: the MDL
score [9] of the description, the edit distance [4] between the learned descrip-
tion and a “gold description” written by human expert, and the accuracy of the
learned description. The MDL score provides a fully automated way to quantify
both the precision and the compactness of a description, with smaller MDL scores
corresponding to better descriptions. However, while MDL is useful, it is best
seen as a proxy measure, since humans may prefer a description with a higher
MDL score if that description better captures the human being’s intuitions.

To address this concern, we use edit distance to measure how close the learned
description is to something a human being might write. This metric counts the
number of edits necessary to convert the learned description into a “gold de-
scription” written by a human being, where an edit can be either an insertion
or deletion of a node in the description. More precisely, the distance measure is
a relative edit distance score: rel dist(D) = edit dist(D, Dgold)/|Dgold|, where

178 K.Q. Zhu, K. Fisher, and D. Walker

Table 2. Large data sources

Data MDL Dist Accuracy Learn parse pads wc Blob
(secs) (secs) (secs) (secs) (secs)

cosmosLog csm.exe.log 21301.34 0.805 100% 1040 1225 430 34 89
dalpiv.dat 45785.72 0.865 100% 4012 2196 767 82 278

free impressions.dat 6062.39 0.89 100% 2701 4032 493 15 46
liberty 8790.85 0.722 100% 21144 20851 8036 175 677

redstorm 13837.73 0.707 100% 35548 24736 9791 191 719
vshkap2.log 10063.71 1.750 100% 23337 14651 2163 57 174

|D| denotes the total number of nodes in D. We have empirically determined
that a relative edit distance of less than 1 indicates a relatively good descrip-
tion. Of course, the edit distance measure may also be imperfect as there can
be a number of different but equally “good” ways to craft a gold description.
Nevertheless, we have found it a useful measure.

Finally, our system would not be very useful if the learned description was not
correct. Therefore, we also use an accuracy measure, which reports the percent-
age of original data source that the learned description parses without errors.

Large data sources. Our first experiment learns a description for each of the
six large data sources in the benchmark. We set the initial batch size N to be
2000 and the incremental batch size M to be 100. Table 2 reports the MDL
and distance scores, the accuracy, and the total learning time. In addition, it
report various times to parse the data. The parse time is the time it takes the
algorithm’s parse function to parse the source data using the learned description.
The pads time is the time it takes the generated pads parser to parse the same
data. To put these parsing times in perspective, we list the time to count the total
number of lines using the Unix wc -l command and the time to parse the data
using the simple pads type Pstring(:Peor:), a.k.a blob, which parses each line
as a newline-terminated string. The result shows that the incremental learning
algorithm can learn the format of a 30GB file in a few hours. Importantly, the
learned descriptions are all correct with respect to their original raw data.

Scaling performance. In the next experiment, we evaluate how the algorithm
scales with increasing data size by running the system on increasingly large
fractions of each of the small data files, starting with 20% and ending with 100%.
For a given data source, we empirically determined which values of the batch-
size parameters N and M give the best result when learning the entire source,
and then used those values for this experiment. Figure 10 plots the resulting
total learning time versus the percentage of the data file used in learning. The
graph shows the algorithm enjoys near linear scale-up for all sources except
4046.xls, which flattens after 40% of data. The BlobFinding rule is the cause
of this anomaly: learning the initial description takes a relatively long time, but
after the algorithm sees the first 40% of the data, the BlobFinding rule simplifies
the description to one that parses much more quickly.

LearnPADS
++: Incremental Inference of Ad Hoc Data Formats 179

 0

 200

 400

 600

 800

 1000

 1200

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Le
ar

ni
ng

 T
im

e
(s

ec
s)

Proportion of Orig Data

free_clickthroughs.dat
thirdpartycontent.log
eventstream.current

strace_jaccn.dat
LA-UR-EVENTS.cvs

messages.sdb
HALO_have2impression.log

LA-UR-NODE-NOZ.TXT
searchevents.data

4046.xls

Fig. 10. Learning time vs. percentage of data sources

Initial and incremental batch size. We study the interplay of parameters N and
M next. For each of the 10 small files, we repeatedly doubled N from 500 to
32000. For each N , we repeatedly quadrupled M from 25 to 6400. For each
resulting pair of N and M , we ran the learning system on each data file and
recorded the learning time, the MDL score and the relative distance score. All the
learned descriptions parse the original data without error and therefore achieve
100% accuracy. We show only the results for messages.sdb in Table 3, while
the remaining results are available on the web [1]. Table 3 represents a two-
dimensional array, in which the N increases downward and the M increases to
the right. Each table cell contains three numbers: the distance score, the MDL
score and the total learning time in seconds. The number in parenthesis in the
first column is the time to learn the initial batch in seconds, which is the same
across all M ’s. As a baseline, we add a “Manual” row in which the time for
the expert to produce an initial description is estimated to be 1 hour and the
subsequent learning starts from that description. We highlight the best result in
the table. The best description for message.sdb is learned with N = 16000 and
M = 400 which are the parameters used for the scaling test of this source.

In general, as M goes up, the total learning time increases. With smaller
batch sizes, the system updates descriptions more frequently, often simplifying
them. These simplified descriptions parse more efficiently and hence require less
time. When N is large, this phenomenon is not as prominent because the initial
description learned from large initial batches is often good enough to cover most
of the remaining data, and thus no incremental updates are needed.

Our main conclusion is that the end results of our algorithm are sensitive to
the quality of the initial description, and that the quality of the initial descrip-

180 K.Q. Zhu, K. Fisher, and D. Walker

Table 3. N vs. M - messages.sdb

N\M 25 100 400 1600 6400

0.62 0.62 0.62 0.52 0.52
Manual 8316.77 8355.71 8313.52 8297.47 8297.04
(3600) 337.44 438.29 292.88 295.68 292.05

0.67 0.67 0.67 0.67 0.67
500 8098.46 8098.46 8098.46 8098.46 8098.46

(2.13) 123.88 127.76 130.17 125.52 124.45
1.10 1.10 1.24 1.24 1.24

1000 9346.35 8443.28 8549.67 8544.63 8541.95
(5.75) 432.61 418.64 425.35 442.23 444.56

2.48 2.48 2.48 2.48 2.48
2000 10881.17 10881.17 10881.17 10881.17 10881.17
(6.55) 3935.54 3640.04 3983.46 3695.27 3643.84

0.57 0.57 0.57 0.57 0.57
4000 7936.66 7936.66 7936.66 7936.66 7936.66

(16.26) 868.20 881.52 885.64 910.99 925.19
0.48 0.48 0.48 0.48 0.48

8000 7932.71 7932.71 7932.71 7932.71 7932.71
(74.20) 245.05 242.79 249.90 244.78 248.62

0.57 0.48 0.48 0.48 0.48
16000 7995.88 7932.65 7932.65 7932.65 7932.65

(585.03) 717.57 758.57 696.82 760.00 698.15

tion is dependent upon the initial batch of data. This is to be expected since our
rewriting system is an incomplete, greedy local search, and therefore is sensitive
to the initial candidate grammar it starts with. But given that the user can ex-
amine the intermediate descriptions during any iteration, necessary adjustments
can be made to influence the final description.

To illustrate the quality of learned description and the difference between
it and the gold description, we show the gold description and the best learned
description of messages.sdb in Figure 11 and Figure 12. The learned description
maintains a top-level structure almost identical to the gold description, except
the gold description has slightly more refined details about the message t type,
which was represented by Popt Struct 6113 and the blob at the end. The gold
and learned descriptions for the other files are available on the web [1].

4 Related Work

There is a long history of research in grammar induction, the process of discov-
ering grammars from example data. Vidal [13] and De La Higuera [10] both give
surveys of research in the area. Readers are also referred to the extensive survey
in this area from our previous paper [7].

The adaptations of our algorithm to incremental processing are partly inspired
by traditional compiler error detection and correction techniques. In particular,
the idea of using synchronizing tokens as a means for accumulating chunks of
unknown/unparseable data has long been used in parsers from programming
languages (see Appel’s text [2] for an introduction to such techniques). This
heuristic appears to work well in our domain of systems logs as these logs are
usually structured around punctuation symbols (commas, semi-colons, vertical

LearnPADS
++: Incremental Inference of Ad Hoc Data Formats 181

Pstruct proc_id_t {
’[’;
Puint32 id;
’]’;

};

Pstruct daemon_t {
Pstring_SE (:"/[:\[]/":) name;
Popt proc_id_t v_proc_id;
’:’;

};

Pstruct msg_body_t {
daemon_t v_daemon_pri;
Pwhite v_space;
Pstring_SE(:Peor:) v_msg;

};

Punion message_t {
msg_body_t v_normal_msg;
Pstring_SE(:Peor:) v_other_msg;

};

Precord Pstruct entry_t {
Pdate v_date;
’ ’;
Ptime v_time;
’ ’;
Pstring(:’ ’:) v_id;
’ ’;
message_t v_message;

};
Psource Parray entries_t {

entry_t[];
};

Fig. 11. Gold description of messages.sdb

Pstruct Struct_6113 {
Pstring(:’:’:) v_blob_5869;
’:’;

};

Precord Pstruct Struct_5671 {
Pdate v_date_1;
’ ’;
Ptime v_time_6;
’ ’;
Pstring (:’ ’:) v_string_33;
’ ’;
Popt Struct_6113 v_opt_6096;
Pstring_SE(:Peor:) v_blob_6095;

};

Psource Parray entries_t {
Struct_5671[];

};

Fig. 12. Best learned description of messages.sdb

bars, parens, newlines, etc.) that act as field-terminators and hence work well as
synchronizing tokens.

Other incremental algorithms for learning grammars from example data have
been developed in the past. For example, Parekh and Honavar [12] have de-
veloped and proven correct an incremental interactive algorithm for inferring
regular grammars from positive examples and membership queries. This algo-
rithm works quite differently than ours: it operates over automata and it uses
membership queries, which ours does not. More broadly speaking, Parekh and
Honavar and many other related algorithms provide beautiful theoretical guar-
antees. In contrast, we have focused on implementation, empirical evaluation
and scaling to support massive data sets.

Another place in which grammar induction is used is in information extraction
from web pages. One example (amongst many others) is work by Chidlovskii et
al. [5], which seeks to learn wrappers (i.e., data extraction functions) by using
a modified edit distance algorithm. Our algorithm also uses edit distance in its
guts to measure similarity between chunks of data. However, the edit distance
metric we use is just one element of a larger induction algorithm related to

182 K.Q. Zhu, K. Fisher, and D. Walker

Arasu and Garcia-Molina’s recursive descent algorithm [3]. Chidlovskii et al.’s
algorithm is also incremental – it integrates one new record of data at a time into
a grammar. Our algorithm integrates batches of new data at a time. One reason
we chose a batch-oriented approach is that processing data in batches helps
disambiguate between various possibilities for both token definitions and tree
structure. The tagged tree-structure of XML or HTML documents eliminates
many of the ambiguities that appear in log files where the separators or tags
are not known a priori. Our ad hoc data sets also appear different from the
web-based data studied by Chidlovskii et al. in terms of their scale: our data is
about a million times larger.

5 Conclusion

Ad hoc data sources are extremely difficult to manage because of their large size,
evolving format, and lack of documentation. In this paper, we have presented
the design, implementation and evaluation of a system for incrementally learning
the structure of large or stream ad hoc data files. The output of the system is a
data description in pads language which can further generate end-to-end data
processing tools. The system allows the users to get into the iterative learning
process and make the description more accurate and readable.

References

1. LearnPADS++, http://www.padsproj.org/incremental-learning.html
2. Appel, A.W.: Modern Compiler Implementation in ML. Cambridge University

Press (1998)
3. Arasu, A., Garcia-Molina, H.: Extracting structured data from web pages. In: SIG-

MOD, pp. 337–348 (2003)
4. Bille, P.: A survey on tree edit distance and related problems. Theor. Comput.

Sci. 337(1-3), 217–239 (2005)
5. Chidlovskii, B., Ragetli, J., de Rijke, M.: Wrapper Generation via Grammar In-

duction. In: Lopez de Mantaras, R., Plaza, E. (eds.) ECML 2000. LNCS (LNAI),
vol. 1810, pp. 96–108. Springer, Heidelberg (2000)

6. Earley, J.: An efficient context-free parsing algorithm. Communications of the
ACM 13(2), 94–102 (1970)

7. Fisher, K., Walker, D., Zhu, K., White, P.: From dirt to shovels: Fully automatic
tool generation from ad hoc data. In: POPL (January 2008)

8. Fisher, K., Walker, D., Zhu, K.Q.: LearnPADS: Automatic tool generation from
ad hoc data. In: SIGMOD (2008)

9. Grünwald, P.D.: The Minimum Description Length Principle. MIT Press (May
2007)

10. De La Higuera, C.: Current Trends in Grammatical Inference. In: Amin, A., Pudil,
P., Ferri, F., Iñesta, J.M. (eds.) SPR 2000 and SSPR 2000. LNCS, vol. 1876, pp.
28–31. Springer, Heidelberg (2000)

11. PADS project (2009), http://www.padsproj.org/
12. Parekh, R., Honavar, V.: An Incremental Interactive Algorithm for Regular Gram-

mar Inference. In: Miclet, L., de la Higuera, C. (eds.) ICGI 1996. LNCS, vol. 1147,
pp. 238–249. Springer, Heidelberg (1996)

13. Vidal, E.: Grammatical Inference: An Introduction Survey. In: Carrasco, R.C.,
Oncina, J. (eds.) ICGI 1994. LNCS, vol. 862, pp. 1–4. Springer, Heidelberg (1994)

14. Zhu, K.Q., Fisher, K., Walker, D.: Incremental learning of system log formats. In:
ACM SOSP Workshop on the Analysis of System Logs (2009)

http://www.padsproj.org/incremental-learning.html
http://www.padsproj.org/

The Kennedy-Warren Algorithm Revisited:
Ordering Attribute Grammars

Jeroen Bransen1, Arie Middelkoop2, Atze Dijkstra1, and S. Doaitse Swierstra1

1 Utrecht University
{J.Bransen,atze,doaitse}@uu.nl

2 LIP6-Regal
amiddelk@gmail.com

Abstract. Attribute Grammars (AGs) are a powerful tool for defining
an executable semantics of a programming language, and thus for im-
plementing a compiler. An execution plan for an AG determines a static
evaluation order for the attributes which are defined as part of an AG
specification. In building the Utrecht Haskell Compiler (UHC), a large
scale AG project, we discovered that the Ordered AG approach (Kastens,
1980) for building such plans becomes impractical: the additional depen-
dencies between attributes introduced by this algorithm too often result
in grammars for which no execution plan can be generated.

To avoid such problems we have implemented a refined version of the
algorithm of Kennedy and Warren (1976) as part of our purely functional
AG system and show how this algorithm solves the problems that surface
with the Ordered AG approach. Furthermore, we present the results of
applying this algorithm to the UHC code and show that this approach
in some cases also has a positive effect on the runtime of the resulting
program.

Keywords: Attribute Grammars, Haskell, Dependency graph, Ordered.

1 Introduction

Attribute Grammars (AGs) (Knuth, 1968) are well-suited for the implementation
of the semantics of programming languages. An AG consists of a context-free
grammar specifying the Abstract Syntax Tree (AST) together with a set of at-
tribute definitions describing how the nodes in an AST are to be decorated
with attributes describing the properties of that node. Semantic rules, possibly
directly written in a host language, describe how attribute values can be com-
puted out of other attributes. Attributes are either inherited, indicating that
their value is defined in terms of the context of a node, or synthesized, meaning
that their value is defined in terms of the tree rooted at that node.

AG based language definitions are compiled into a host language. For this we
use the Utrecht University Attribute Grammar Compiler (UUAGC)
(Swierstra and Baars, 2005) which uses Haskell as its host language. AG based
definitions are of a purely declarative nature, since they leave the order in which

C. Russo and N.-F. Zhou (Eds.): PADL 2012, LNCS 7149, pp. 183–197, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

184 J. Bransen et al.

the attributes are to be evaluated completely unspecified. A straightforward im-
plementation, as supported by the UUAGC, uses the lazy evaluation mechanism
of Haskell to determine an order at evaluation time.

One of the problems of this approach is that circular AGs, in which attributes
can directly or indirectly depend on their own value, are not detected at compile-
time, but rather may result in nontermination of the generated code. To overcome
this problem the UUAGC has an option to apply the Ordered AG algorithm
(Kastens, 1980), which tries to find such an order between the attributes of
each nonterminal so that for all instances of such a nonterminal the attributes
can be evaluated in that order. A side effect of this algorithm is that circular
AGs are detected, since for them such an order cannot exist. Furthermore, the
resulting code can be much more efficient and far less space consuming because
it no longer relies on lazy evaluation. The generated compilers can thus all be
evaluated in a strict manner.

Although this approach works well for simple AG examples, our experience has
shown that for more complex AGs this is no longer the case: for more complex
AGs the algorithm often fails to find an evaluation order, even when the AG
itself is non-circular. This is caused by the additional attribute dependencies
introduced by the algorithm, which quite unpredictably can lead to artificial
cycles. The additional attribute dependencies are introduced by scheduling two
or more unrelated attributes in the same visit, which is not always possible.

In most cases it is possible to assist the algorithm by manually adding fake de-
pendencies to the source code, such that the algorithm does not run into the de-
scribed problem. However, this is not a desirable situation as it is not only a tedious
task to add such fake dependencies, but it also requires the programmer to have
a deep understanding of the used global analysis and scheduling algorithms.

To overcome the need for manually tweaking the AGs we have implemented
the K&W algorithm (Kennedy and Warren, 1976). In this paper we make the
following new contributions:

– We describe what the problem is with Ordered AGs.
– We describe a purely functional implementation of the K&W algorithm.
– We show its effect on the Utrecht Haskell Compiler (UHC) (Dijkstra et al.,

2009): not only works the algorithm as expected, but also the runtime of the
resulting program decreases.

1.1 Overview

In section 2 we introduce our running example and explain the problem that
shows up when using OAGs, we show how fake dependencies can be used to
resolve this issue and explain why this approach eventually fails. We assume basic
Haskell knowledge and will not explain the AG syntax in detail1, understanding
the AG concept should be enough to understand the example.

In the subsequent sections we continue with the implementation K&W algo-
rithm. The implementation consists of 3 phases: the construction of production
1 See http://www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem

http://www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem

The Kennedy-Warren Algorithm Revisited 185

dependency graphs (PDG) (section 3), the construction of the visit graph (sec-
tion 4) and finally the code generation (section 5). Where relevant we give code
fragments.

In section 6 we dicuss related work and in section 7 we wrap up with some
results of the experiments on the UHC and points of discussion.

2 A Motivating Example

The running example in this paper uses a tree with integers in its leaves, defined
by:

DATA Tree | Leaf val : Int
| Bin l , r : Tree

Given a type Label and a function nextLabel :: Label → Label , we associate a
unique label to each leaf by threading a Label value through the tree from left
to right. The lhs refers to the left hand side of the production at hand, and loc
refers to an attribute that is local to a production:

ATTR Tree [nextLabI : Label | | nextLabS : Label]
SEM Tree | Leaf loc.label = @lhs.nextLabI

lhs.nextLabS = nextLabel @loc.label
| Bin l .nextLabI = @lhs.nextLabI

r .nextLabI = @l .nextLabS
lhs.nextLabS = @r .nextLabS

The attribute nextLab is a threaded attribute, which is the combination of an
inherited (nextLabI) and a synthesized (nextLabS) attribute. In the text we write
nextLab for the combination of nextLabI and nextLabS .

Suppose now we are also interested in the sequence of all Leaf .val values that
appear in the leaves as they appear from left to right. When using a cons-list as
result type, the most efficient way to gather the values in a list is to introduce
another threaded attribute and add the variables to the list from right to left,
thereby preserving the order in the resulting list:

ATTR Tree [valsI : [Int] | | valsS : [Int]]
SEM Tree | Leaf lhs.valsS = @val : @lhs.valsI

| Bin r .valsI = @lhs.valsI
l .valsI = @r .valsS
lhs.valsS = @l .valsS

At first glance there seems to be no problem with this definition, since both
attribute computations are completely independent of each other, and one would
expect an AG compiler to be able to generate code for such a simple AG. The
OAG algorithm however fails due to induced cycles as explained below.

186 J. Bransen et al.

2.1 Induced Cycles

The problem with the OAG algorithm is that it tries to find a global ordering on
the attributes and divides these into as few visits as possible. In our case there
are two threaded attributes, nextLab and vals , that do not depend on each other.
Therefore, they are scheduled in a single visit. However, for the Bin branch there
now is a problem with scheduling the child visits. For the nextLab attribute the
left child has to be visited before the right child, but for the vals attribute this is
the other way around. It is therefore not possible to schedule both computations
in a single visit, and the algorithm fails to find a solution, since it has already
decided to compute them in the same visit.

To be more precise, by putting two attributes in the same visit, the depen-
dencies of these two attributes are merged into a single set of dependencies.
In this case for the nextLab attribute we have, amongst others, the dependen-
cies r .nextLabI → l .nextLabS and r .nextLabS → r .nextLabI . A dependency
a → b means that the value of a depends on the computation of b, so b must
be scheduled before a. For the vals attribute we have l .valsI → r .valsS and
l .valsS → l .valsI . It is clear that in the the AG attributes do not depend on them-
selves, but when we schedule the nextLab and vals attributes in the same visit
we end up with the induced cycle r .(nextLabI , valsI) → l .(nextLabS , valsS) →
l .(nextLabI , valsI) → r .(nextLabS , valsS) → r .(nextLabI , valsI).

2.2 Fake Dependencies

There are several solutions to this problem. The most straightforward solution is
to introduce a so-called fake dependency. We could change the lhs.vals definition
of the Leaf production to:

SEM Tree | Leaf lhs.valsS = const (@val : @lhs.valsI) @lhs.nextLabI

The const ::a → b → a function ignores its second argument, so semantically the
AG has not changed. However, with this definition the scheduling does succeed
because of the extra dependency from vals on nextLab that was introduced. Now
vals does depend on nextLab, so there will be two visits, the first for nextLab and
the second one for vals : the grammar can be evaluated by making two passes
over the tree.

In our experience with the UHC, we found that patterns like this occur more
often than not: that is having two or more attributes that do not depend on each
other but introduce a cycle when being combined into a single visit. To keep the
code compilable we had to introduce quite a few fake dependencies, and worse,
it usually is unclear for a complex AG where to put such fake dependencies.
In a project like the UHC this becomes a rather tedious task, as it is almost
impossible to manually keep track of all dependencies between the attributes.
When a new attribute is added to the code this usually introduces lots of new
induced cycles, some going away as more code is written, but some requiring
time consuming trial-and-error interaction with UUAGC to determine the most
helpful fake dependencies.

The Kennedy-Warren Algorithm Revisited 187

3 Dependency Graphs

An AG is noncircular if no attributes can be defined, directly or indirectly, in
terms of themselves. The algorithm from Knuth (1968), which we call Knuth-1, is
an algorithm that statically determines whether an AG is absolutely noncircular,
where absolute noncircularity is a slightly pessimistic variant of noncircularity,
thus an AG that passes this stronger test is always noncircular. However, expe-
rience shows that for practical AGs the Knuth-1 algorithm is sufficient, as the
programmer usually has an evaluation order in mind.

We now present our Haskell implementation of the Knuth-1 algorithm for
constructing the dependency graphs for an AG. A dependency graph is a graph
where the vertices are attributes and directed edges represent dependencies be-
tween attributes, so in order to be able to evaluate the attribute where the edge
starts, the attribute where the edge points to needs to be evaluated first. We
distinguish between production dependency graphs, the dependency graph for a
single production, and nonterminal dependency graphs, the combined dependen-
cies of all trees possibly derived from a nonterminal.

3.1 Production Dependency Graphs

For every production p of nonterminal N a production dependency graph PDGN
p

is constructed. We construct the initial PDGN
p as follows. For every synthesized,

inherited and local attribute that is used in any of the rules in p, so both for
the production itself as for its children, we add a vertex to PDGN

p . For every
semantic rule in p we add a direct edge from the attribute in the lefthand side
to each attribute in the righthand side of this rule.

Figure 1 shows PDGTree
Bin of our example. All solid edges are the initial edges,

and the dashed edges are the edges that are added during the execution of the
algorithm. The three nonterminal nodes are drawn for clarity only and are not
part of the actual dependency graph.

3.2 Nonterminal Dependency Graphs

The nonterminal dependency graph NDGN of nonterminal N represents the
union over all possible dependencies induced by a tree rooted by N . To construct
the initial NDGN we add a vertex for every inherited and every synthesized
attribute of this nonterminal. There are no initial edges in NDGN .

3.3 Representation

We represent the dependency graphs in Haskell efficiently using the implemen-
tation as shown in Figure 2. An important property of the dependency graphs
is that no vertices are added to the graph during the execution of the algorithm,
so upon construction of the initial graph the list of all vertices is known. We use
this property to assign a unique number to each vertex at construction time and
we use these numbers as Array indices thus giving constant lookup time.

188 J. Bransen et al.

lhs

Tree

nextLabI valsI nextLabS valsS

lnextLabI valsI nextLabS valsS rnextLabI valsI nextLabS valsS

Fig. 1. Production dependency graph of production Bin

In the Knuth-1 algorithm there are several operations on the dependency
graph for which an efficient implementation is important: graphEdges , the enu-
meration of all edges in the graph, graphInsert , the insertion of a new edge into
the graph, and graphContainsEdge , a check whether two vertices are connected.
Also, it is important to know which vertices become connected as a result of the
insertion of a new edge.

To accomplish this we maintain the invariant that the graph is always transi-
tively closed. We store the graph as a set of successors and a set of predecessors
for each vertex. Upon insertion of a new edge we transitively close the graph
in the obvious way. The return value of graphInsert is the list of newly added
edges, excluding the one in the argument.

We use the ST Monad for performing efficient in-memory updates in a func-
tional setting. Using the STRef in the successors and predecessors Array, the
sets are updated in place without the need to update the Array structure itself.

3.4 Derived Edges

The idea of the Knuth-1 algorithm is that the nonterminal dependency graphs
capture all dependencies of synthesized attributes on inherited attributes that
are present in any of the trees rooted by that nonterminal. These nonterminal de-
pendency graphs are then used for dependencies on the children of a production,
as to obtain an approximation of the dependencies.

To add the derived edges to the production dependency graphs and the non-
terminal dependency graphs, the following process is repeated until no more
edges can be added. Add an edge for every pair of synthesized and inherited
attributes in a nonterminal graph NDGN , if there is a production p of N such
that there is a path from this synthesized to that inherited attribute in PDGN

p .
For every edge in any NDGN , add an edge to every PDGM

p for every N child of
p.

The Kennedy-Warren Algorithm Revisited 189

type Vertex = ... -- External vertex type
type Edge = (Vertex ,Vertex) -- External edge type
type IVertex = Int -- Internal representation of a vertex
type IEdge = (IVertex , IVertex) -- Internal representation of an edge
data DepGraph s = -- Representation of the graph

DepGraph {vertexIMap :: Map Vertex IVertex
, vertexOMap :: Array IVertex Vertex
, successors :: Array IVertex (STRef s (Set IVertex))
, predecessors :: Array IVertex (STRef s (Set IVertex))}

graphConstruct :: [Vertex] → [Edge] → ST s (DepGraph s)
graphInsert :: DepGraph s → Edge → ST s [Edge]
graphContainsEdge :: DepGraph s → Edge → ST s Bool
graphSuccessors :: DepGraph s → Vertex → ST s [Vertex]
graphPredecessors :: DepGraph s → Vertex → ST s [Vertex]
graphVertices :: DepGraph s → ST s [Vertex]
graphEdges :: DepGraph s → ST s [Edge]

Fig. 2. Dependency graph representation

Because there are only a finite number of possible edges this process termi-
nates. We say that the AG is absolutely noncircular if and only if none of the
production dependency graphs contains a cycle.

3.5 Worklist Algorithm

We have implemented this process as a work-list algorithm. The work-list con-
tains the pending edges, edges that have been added to one of the graphs and
must be potentially also added to other graphs. Initially the list of pending edges
consists of all initial edges of the production dependency graphs. The main func-
tion is implemented as:

knuth1 :: [NontM s] → ST s ()
knuth1 nonts = do

nes ← forM nonts $ λnont → do
pend ← mapM graphEdges (productions nont)
return (pend ,nont)

knuth′
1 nes -- run worklist algorithm on initial graph

All pending edges that must be represesented in the nonterminal dependency
graph and are not yet present are added to the corresponding nonterminal de-
pendency graph by the following helper function:

addProdNont :: ([[Edge]],NontM s) → ST s [Edge]

190 J. Bransen et al.

The return value of this function is the list of all edges that are newly added
due to taking transitivity into account. These edges are then taken as the new
list of pending edges which are added to the production dependency graphs:

addNontProd :: ([Edge],NontM s) → ST s [[Edge]]

This function returns per nonterminal a list of edges that were added to its
PDG’s due to transitivity, and which must be taken as new pending list.

The helper function knuth′
1 recursively alternates adding edges to the NDG’s

and adding edges to the PDG ’s, and terminates when the list of pending edges
is exhausted.

knuth′
1 :: [([[Edge]],NontM s)] → ST s ()

knuth′
1 nonts = do

edges ← mapM addProdNont nonts
let nontedges = concat edges
if null nontedges

then return ()
else do

perprod ← mapM (λ(, x) → addNontProd (nontedges , x)) nonts
newlist ← zipWithM (λ(,nt) me → return (me,nt)) nonts perprod
if any (not ◦ null) perprod

then knuth′
1 newlist

else return ()

4 Visit Graph

The dependency graphs induce a partial order on the evaluation of the attributes,
but they do not specify an evaluator yet. For this we use the K&W algorithm.

We construct a visit graph, which is a directed acyclic graph. Every possible
path from a starting vertex (one per nonterminal) to a leaf vertex represents a
visit sequence. The vertices in the graph represent the possible states of a non-
terminal, where a state is the set of attributes that have already been evaluated.

Every edge in the graph corresponds to a so-called visit to a node. A visit can
start when the parent node has made some new inherited attributes available
and it yields a set of newly evaluated synthesized attributes. Hence each set is
labelled with an ({inh}, {syn}) pair.

With every edge we associate an execution plan for each production of the
corresponding nonterminal. This execution plan describes for every synthesized
attribute how it can be computed. The execution plan also includes child visits
that are needed for the computation of the set of synthesized attributes.

Figure 3 shows the visit graph for our running example. The execution plans
for the productions are not made explicit in this figure. There are three different
visit sequences in this example. Visit v0 is the main visit with both inherited
attributes available at the start of the visit, that will be used at the top-level. For

The Kennedy-Warren Algorithm Revisited 191

visit v2

inh : valsI

syn : valsS

visit v3

inh : valsI

syn : valsS

visit v0

inh : nextLabI, valsI

syn : nextLabS, valsS

visit v1

inh : nextLabI

syn : nextLabS

visit v4

inh : nextLabI

syn : nextLabS

Tree3Tree2

Tree1

Tree0

Fig. 3. The visit graph of the example

the Leaf it is directly possible to compute both synthesized attributes directly,
but for the Bin production we need to perform child visits. As we have already
seen it is impossible to do this in a single visit, so for the left child first visit v1

is done and then visit v3, and for the right child first visit v2 and then visit v4.
It is clear that we can create execution plans for each of these visits using only
these visit sequences.

The key algorithm of this paper is an adapted version of the K&W algorithm
for the construction of the visit graph including the execution plans. This algo-
rithm performs stable and predictable inference of the evaluation order which
determines visits in a demand driven fashion with per visit the smallest set of
inherited attributes that are needed to produce the demand set of synthesized
attributes, and per visit the largest set of synthesized attributes that can be
derived from the inherited attributes. If the AG is absolutely noncircular, thus
none of the production dependency graphs contains a cycle, this algorithm will
return a complete visit graph.

4.1 Representation

In order to implement the K&W algorithm and maintain the visit graph we use
a monad, VG, built on top of the ST monad. In this way the representation of
the visit graph is separated from the actual algorithm. This greatly improves the
readability of the code.

The VG monad is defined as follows:

type VG s a = ErrorT String (StateT (VGState s) (ST s)) a

The inner monad is the ST monad with threaded state s . On top of this there is a
State monad with state VGState s , which contains the visit graph representation.

192 J. Bransen et al.

runVG :: VG s a → ST s a
insertInitialNode :: NontM s → VG s VGNode
createPending :: VGNode → [Identifier] → [Identifier] → VG s VGEdge
selectPending :: VG s VGEdge
getInherited :: VGEdge → VG s [Identifier]
getSynthesized :: VGEdge → VG s [Identifier]
markFinal :: VGEdge → VG s ()
getProductions :: VGEdge → VG s [VGProd]
onMarkedDG :: (ProdDepGraphM s → ST s a) → VGProd → VG s a
isDGVertexFinal :: VGProd → Vertex → VG s Bool
setDGVerticesFinal :: VGProd → [Vertex] → VG s ()
getChildState :: VGProd → Identifier → VG s VGNode
addChildVisit :: VGProd → Identifier → VGEdge → VG s VisitStep
addVisitStep :: VGProd → VisitStep → VG s ()
repeatM :: VG s () → VG s ()

Fig. 4. Functions available in VG monad

The topmost monad is the Error monad which is used for capturing failure
and error messages. This is also used in the implementation of the function
repeatM :: VG s () → VG s () that repeats the execution of the argument until
mzero (failure) is encountered. The VGState s is used for storing the visit graph
and all necessary related data.

Type signatures of the functions that are available in the VG monad are
shown in Figure 4.

4.2 Initial Configuration

The algorithm works by gradually building up the visit graph. We distinguish
between pending edges and final edges, and we refer to a vertex as a pending
vertex if and only if all its incoming edges are pending. Vertices with no incoming
edges are called initial vertices.

At the start of the algorithm we create an initial vertex for each nonterminal.
Additionally, we insert one pending edge (plus pending target vertex) for every
starting nonterminal, containing all inherited and synthesized attributes defined
on this nonterminal. In our example Tree0 is the initial vertex and v0 the initial
pending edge. In the following code wr is the set of wrapper nonterminals for
which a wrapper function should be generated, and initvs is the list of initial
VGEdge’s, used in the code generation.

kennedyWarren :: Set Identifier → [NontM s] → VG s [Maybe VGEdge]
kennedyWarren wr nonts = do

initvs ← forM nonts $ λnont → do
nd ← insertInitialNode nont

The Kennedy-Warren Algorithm Revisited 193

if (nonterminal nont) ‘Set .member ‘ wr
then do

initv ← createPending nd (inh nont) (syn nont)
return $ Just initv

else return Nothing
...

4.3 Handling Pending Edges

The main loop handles pending edges one by one, thereby potentially adding new
pending edges. The pending edges are marked final and the algorithm terminates
when there are no more pending edges. Again, the set of possible edges is finite so
the algorithm will always terminate. It is implemented using repeatM as follows:

repeatM $ do
pend ← selectPending
prods ← getProductions pend
inhs ← getInherited pend
syns ← getSynthesized pend
forM prods $ λprod → do

...
markFinal pend

return initvs

When there are no more pending edges the selectPending function will result in
mzero, thereby breaking the repeatM loop and the algorithm will then termi-
nate. The final visit graph and all execution plans will be stored in the internal
representation.

4.4 Dependency Graph Marks

In addition to the visit graph we keep for every vertex a list with a state for
each of the the children of the productions. A state is the set of attributes that
have already been computed for the child and is thus represented by a reference
to a vertex in the graph. Initially every child is in the state of the initial vertex
of the nonterminal of this child.

For the construction of an execution plan we use marks on the production
dependency graph. Marked vertices represent the attributes that have already
been evaluated and thus are available. To handle a pending edge we perform the
following steps for each production of the nonterminal that this edge belongs
to. We start by copying the marks on the production dependency graph from
the source to the target vertex. In addition to the already existing marks we
mark the vertices corresponding to the inherited attributes represented by the
pending edge.

194 J. Bransen et al.

The goal of scheduling a pending edge is to mark all synthesized attributes
represented by this pending edge. A vertex can be marked only if all its suc-
cessors are already marked, so all its dependencies are satisfied. For synthesized
attributes of children we need to do a child visit, and we maximize the number
of synthesized attributes that we compute in the child visit. The vertices are
recursively marked until all synthesized attributes are marked. If the production
dependency graphs do not contain cycles this is always possible.

The recursive marking is implemented as recursive function that assigns a
number to every vertex in a depth-first way. For every attribute the number is
the maximum of all its successors, and for a synthesized child attribute it is the
maximum plus one, because one extra child visit needs to be performed. The
foldChildVisits helper function implements this behaviour.

We mark the inherited attributes as final and then call the foldChildVisits :

setDepGraphVerticesFinal prod (map createLhsInh inhs)
(vis , i) ← foldM (foldChildVisits prod) ([], 0) (map createLhsSyn syns)
setDepGraphVerticesFinal prod (map fst vis)
...

The return value vis has type [(Vertex , Int)] and indicates the vertices that
correspond to rules or attributes that need to be evaluated at this stage, together
with the corresponding child visit number.

4.5 Extra Synthesized Attributes

Apart from the synthesized attributes of the children that are strictly needed
for computing the desired synthesized attributes of the current nonterminal, we
also add synthesized child attributes that depend only on the inherited child
attributes that we already evaluate. In other words, we add synthesized child
attributes that can already be computed without introducing extra child visits.

By eagerly adding such synthesized attributes we avoid constructing many
almost similar visits, and thus limit the growth of the visit graph resulting from
the K&W approach.

4.6 Difference to Original Algorithm

We have formulated our version of the K&W algorithm in a rather different way
than the original formulation of Kennedy and Warren (1976). One important
difference involves the marking of the dependency graph vertices.

In the original formulation, the child visits are done based on availability of
inherited attributes. So, all child visits that can be done are done. Our approach
works demand-driven, in the sense that we only do child visits that are strictly
needed for the computation of the requested synthesized attributes. This opti-
misation thus removes unneccesary child visits.

The Kennedy-Warren Algorithm Revisited 195

4.7 Execution Plans

To generate the final execution plans (implemented in terms of addVisitStep)
we group the vis2 (vis combined with the extra synthesized child attributes) by
visit number. For every visit we first evaluate all corresponding rules, and then
add the desired child visits.

forM (groupSortBy (comparing snd) vis2) $ λvisit → do
let (chattrs , rules) = partition isChildAttr $ map fst visit

-- Rules have been added to the list in reverse order
forM (reverse rules) $ λrule → do

addVisitStep prod (Sem rule)
-- Group by child

forM (groupSortBy (comparing getChildName) chattrs) $ λchildvs → do
let cinhs = map getName $ filter isChildInh childvs
let csyns = map getName $ filter isChildSyn childvs
let cname = getChildName $ head childvs
curstate ← getChildState prod cname
target ← createPending curstate (fromList cinhs) (fromList csyns)
step ← addChildVisit prod cname target
addVisitStep prod step

5 Code Generation

In the code generation the generated execution plans are translated to Haskell
in a relatively straightforward way. We use a monadic structure for defining the
evaluation order of semantic rules. For a child visit a parameter is passed to
specify which visit needs to be done. The result type of this function depends
on the argument, so we use GADTs for type indices to accomplish this in a type
safe way.

The generated code is purely functional and strongly typed. The type checker
proves that the code has the define-before-use property and that no attribute
depends indirectly on itself. The generated code can be seen as the evidence of
the proof that the AG is absolutely noncircular.

It is out of the scope of the current paper to discuss the exact implementation
of the code generation. We refer the interested reader to (Middelkoop, 2011).

6 Related Work

AGs were first introducted by Knuth (1968), and in the same paper the Knuth-
1 algorithm that we used for the dependency graphs was introduced. The orig-
inal paper claims that that this algorithm will statically determine whether an
attribute grammar is noncircular. In the Knuth (1971) paper this claim was cor-
rected to the claim that it determines absolute noncircularity. The latter also de-
scribes a new version of the algorithm, Knuth-2, that performs the correct noncir-
cularity check. However, for efficiency reasons we have chosen to use the former.

196 J. Bransen et al.

The Synthesizer Generator (Reps and Teitelbaum, 1984) is a tool for creating
syntax-directed editors from language descriptions. It is completely build with
AGs and is a good example of applications of AGs.

Saraiva (1999) describes how AGs can be implemented in a purely functional
way, amongst others based on Ordered AGs (Kastens, 1980).

7 Results and Discussion

We have experimented with the implementation of the described algorithm on
the code of the UHC (Dijkstra et al., 2009), which makes extensive use of AGs.
For the main AG in the UHC, the visit graph contains 895 vertices (visit states)
and 1699 edges (visits).

7.1 Compile Time

Compared to the use of the OAG algorithm the time spent by the AG compiler
has not changed. The compile time of the resulting code has roughly doubled,
and is thus still acceptable.

One of the most important reasons for this is probably the increase of source
code length. Because the K&W approach uses multiple, partially overlapping,
visit sequences there is a certain level of code duplication. Although the semantic
rules are not duplicated, their uses and all tupling and untupling of attributes
might be duplicated.

7.2 Runtime

Our experiments with the UHC code show that the runtime of the resulting
UHC executable has decreased when using the K&W approach. In table 1 we
show the runtimes for a simple benchmark, with 10 runs per algorithm, in which
the UHC was used to compile a set 74 of base libraries.

Table 1. Benchmark for UHC

UHC build with Avg. runtime
OAG 2m38.538s
K&W 2m36.155s

The runtime decrease is 2.383s, which is about 1.5% of the total runtime.
It is important to note that most time-consuming parts of the UHC code are
the typechecking algorithms which are not AG based and are thus unchanged.
Therefore, although 1.5% might seem like a minor decrease, it could be a much
bigger decrease in runtime spent on the AG part of the code. We believe that this
decrease is due to the fact that smaller closures are build, but further research
is needed before we can draw conclusions from this.

The Kennedy-Warren Algorithm Revisited 197

7.3 AG Extensions

Our implementation integrates seamlessly with many AG extensions, including
higher-order children and collection attributes. The possibility of splitting the
generated code into multiple files is also supported, to overcome potential prob-
lems when the generated files become too large.

For obvious reasons, our implementation does not work with extensions that
require demand-driven AG evaluation.

8 Conclusion

We have presented our purely function implementation of the K&W algorithm
for ordering Attribute Grammars. Using an example we have shown what the
problem of induced cycles with the OAG approach is, and how this problem is
solved. We believe it is worth the price of a higher compilation time. For the
UHC this can even lead to better runtime behaviour, but we want to make clear
that this is not the core result of the paper.

References

Dijkstra, A., Fokker, J., Swierstra, S.D.: The architecture of the Utrecht Haskell com-
piler. In: Proceedings of the 2nd ACM SIGPLAN Symposium on Haskell, Haskell
2009, pp. 93–104. ACM, New York (2009)

Kastens, U.: Ordered attributed grammars. Acta Informatica 13, 229–256 (1980),
doi:10.1007/BF00288644

Kennedy, K., Warren, S.K.: Automatic generation of efficient evaluators for attribute
grammars. In: Proceedings of the 3rd ACM SIGACT-SIGPLAN Symposium on Prin-
ciples on Programming Languages, POPL 1976, pp. 32–49. ACM, New York (1976)

Knuth, D.E.: Semantics of context-free languages. Theory of Computing Systems 2(2),
127–145 (1968)

Knuth, D.E.: Semantics of context-free languages: Correction. Theory of Computing
Systems 5, 95–96 (1971), doi:10.1007/BF01702865

Middelkoop, A.: Inference with Attribute Grammars. PhD thesis, Utrecht University
(2011)

Reps, T., Teitelbaum, T.: The synthesizer generator. SIGPLAN Not. 19, 42–48 (1984)
Saraiva, J.: Purely Functional Implementation of Attribute Grammars. PhD thesis,

Utrecht University (1999)
Swierstra, S.D., Baars, A.: Attribute Grammar System (2005),

http://www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem

http://www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem

Distributed Policy Specification and

Interpretation with Classified Advertisements

Nicholas Coleman

West Virginia University Institute of Technology
405 Fayette Pike, Montgomery, WV 25136

Nicholas.Coleman@mail.wvu.edu

Abstract. In a distributed system, the principle of separation of pol-
icy and mechanism provides the flexibility to revise policies without al-
tering mechanisms and vice versa. This separation can be achieved by
devising a language for specifying policy and an engine for interpret-
ing policy. In the Condor [14] high throughput distributed system the
ClassAd language [16] is used to specify resource selection policies and
matchmaking algorithms are used to interpret that policy by matching
jobs with available machines. We extend this framework to specify and
interpret authorization policies using the SPKI/SDSI [6] public key in-
frastructure. SPKI/SDSI certificates are represented using the ClassAd
language and certificate chain discovery is implemented using a modi-
fied matchmaking algorithm. This extension complements the resource
selection policy capabilities of Condor with the authorization policy ca-
pabilities of SPKI/SDSI. Techniques for policy analysis in the context of
resource selection and authorization are also presented.

1 Introduction

One of the challenges of distributed computing environments is the specification
and interpretation of policy. The separation of policy and mechanism has long
been one of the key principles in systems design. This principle simplifies the
specification of policies and keeps them independent of implementation changes.
One way of achieving separation is to provide a policy framework consisting of a
language for specifying policies and an engine for interpreting these policies in the
context of a given set of system conditions. The flexibility of such a framework
is particularly suitable for resource allocation policy in a distributed system.

Distributed systems are dynamic in that principals and resources may join
or leave the federation at any time. Allocation of resources in a decentralized
environment requires policy for resource selection and access control. Resource
selection is the process of finding resources that satisfy a principal’s requests.
Access control policies determine whether the principal is permitted to access
the resources. Currently there is no single language or framework that deals with
authorization and resource selection policies.

C. Russo and N.-F. Zhou (Eds.): PADL 2012, LNCS 7149, pp. 198–211, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Distributed Policy Specification and Interpretation 199

The ClassAd language is based on the concept of classified advertisements.
Entities in Condor are represented by classified advertisements or ClassAds.
Each job submitted by a condor user has a corresponding ClassAd as does each
compute machine. The matchmaking process pairs jobs with machines based
on the policies expressed in their ClassAds. Since the bilateral matchmaking
framework is not sufficient for assembling three or more parties a multilateral
matchmaking framework, gangmatching, is required in such cases. A collection
of three or more ClassAds that satisfy each others Requirements expressions is
called a gang.

SPKI/SDSI is an infrastructure for expressing authorization policy using pub-
lic key encryption. Two kinds of certificates can be issued by a principal. An
authorization certificate grants another principal a set of access rights for a re-
source as well as the permission to delegate these rights to other principals. A
name certificate creates a name for another principal or set of principals. A com-
bination of several certificates that authorize a principal to access a resource is
called a certificate chain. The problem of assembling a suitable certificate chain
for a given authorization is called the certificate chain discovery problem [2].

SPKI/SDSI certificates may be represented using the ClassAd language in
a gangmatching context. A ClassAd representing a certificate is composed of
several nested ClassAds called ports. One of these ports offers the certificate for
use in a chain. If needed, additional ports request other certificates to resolve a
SPKI/SDSI name or delegate an authorization. A gang of such ClassAds corre-
sponds to a chain of certificates. In order to support the capability to reuse a
certificate indefinitely in a chain while avoiding infinite loops, a modified algo-
rithm for gangmatching is presented.

In the case of multilateral matching, two matchmaking analysis problems are
presented along with their solutions: Break the Chain and Missing Link. The
Break the chain problem occurs when an authorization policy grants an access
that needs to be revoked. To revoke an authorization, a set of certificates must
be invalidated such that no chain can be constructed granting the authorization.
A new algorithm using the results of the gangmatching algorithm identifies a
set of ClassAds representing such certificates. The Missing Link problem occurs
when a desired authorization is not granted by any certificate chain. A modified
version of the gangmatching algorithm identifies the additional certificate Class-
Ads needed to complete a gang representing a chain of certificates granting the
desired authorization.

Section 2 describes the ClassAd language and the gangmatching paradigm.
Section 3 provides an introduction to the SPKI/SDSI trust management sys-
tem and describes a ClassAd language representation of SPKI/SDSI certificates.
Section 4 discusses the structures and concepts necessary for extending the gang-
matching algorithm. The algorithm itself is presented in Sect. 5. Techniques for
gangmatching analysis are explored in Sect. 6. Section 7 surveys related work
and Sect. 8 concludes the paper.

200 N. Coleman

2 The ClassAd Language and Gangmatching

The ClassAd language is used by Condor primarily to advertise resources and
requests for those resources in a distributed environment. An advertisement,
called a ClassAd, represents an offer of or request for a resource and consists
of named descriptive attributes, constraints and preferences. The constraints
are expressed by an attribute named Requirements, and the expression of the
preferences is named Rank. 1 A matchmaking process is used to discover offers
and requests that satisfy one another’s constraints and best suit one another’s
preferences. If more than two parties are involved – such as a job, a machine,
and a license – a bilateral matchmaking scheme is insufficient and a multilateral
framework, called gangmatching [15], must be used.

In the gangmatching framework a multilateral match is broken down into
several bilateral matches. A set of ClassAds that satisfy one another’s constraints
is called a gang. Each ClassAd contains a list of nested ClassAds called ports,
each of which represents a single bilateral match. A gang is complete if all ports
of all ClassAds in the gang have been successfully matched to ports of other
ClassAds in the gang. A port that has not been matched is an open port. Given
a port P of a ClassAd and a potentially matching port P ′ of another ClassAd, a
reference in P to an attribute attr defined in P ′ is represented as other.attr to
distinguish it from a reference to an attribute in P . In addition, P has a label that
is used by subsequent ports in the same ClassAd to reference attributes defined
in P ′. If P ’s label is label, a reference in a subsequent port to an attribute attr
defined in P ′ is represented as label.attr. The attribute attr is imported from
P ′ and is called an imported attribute.

Figure 1 shows a gangmatching ClassAd representing a job. The ClassAd has
two ports: the first requests a machine to run the job, and the second requests a
license to run a particular application on that machine. In the Requirements ex-
pression of the first port of the job ClassAd, a reference to the attribute Memory,
imported from a matching ClassAd representing a machine, is expressed as
other.Memory. The port is labeled cpu, and the subsequent port contains a ref-
erence to the Name attribute imported from the ClassAd matching the first port
expressed as cpu.Name. In contrast, a locally defined attribute like ImageSize
is referenced locally without using a prefix.

A gang is tree-structured, which means that some ClassAds may not express
constraints on other ClassAds directly. For example, in Fig. 1 the job ClassAd
contains a port requesting a machine and another port requesting a license. The
license and machine ClassAds that match may each contain a port expressing
constraints on the job, but may not have ports expressing constraints on one an-
other. This restriction can be circumvented if the job exports attributes imported
from the machine ClassAd in the license port. In Fig. 1 the Name attribute of
the cpu ad is exposed in the license port by the definition CPUName = cpu.Name.
The matching license ClassAd can indirectly reference the Name attribute of

1 To simplify matters this paper deals only with Requirements expressions and omits
Rank expressions from example ClassAds.

Distributed Policy Specification and Interpretation 201

[Ports = {

[// request a workstation

other = cpu; Type = "cpu_request"; ImageSize = 28M;

Requirements = other.Type == "Machine" && other.Arch == "INTEL" &&

other.OpSys == "LINUX" && other.Memory >= ImageSize

],

[// request a license

other = license; Type = "license_request"; CPUName = cpu.Name;

Cmd = "run_sim";

Requirements = other.Type == "License" && other.App == Cmd

]}

]

Fig. 1. A gangmatching ClassAd for a job

the machine ClassAd as other.CPUName. Circular dependencies are avoided by
the restriction that a port may only use imported attributes from previous
ports.

3 SPKI/SDSI

SPKI/SDSI is a trust management system that specifies access control policies
using certificates. A SPKI/SDSI certificate is a declaration by a principal, the
issuer of the certificate, about the naming of another principal, the subject of
the certificate, or the authorization for the subject to access a resource.

Principals are represented by a unique public key. They may also be referred
to indirectly by a SPKI/SDSI name. A SPKI/SDSI name consists of a public key
followed by zero or more identifiers. The identifiers navigate a hierarchical name
space, similar to a hierarchical directory structure. For example, if KA represents
the principal named Alice, then the SPKI/SDSI name “KA Bob Carol” can be
resolved by looking up the identifier “Bob” in Alice’s namespace. Assuming that
KA Bob resolves to KB, Bob’s public key, the identifier “Carol” must now be
looked up in Bob’s namespace. If Bob has defined the identifier “Carol” to resolve
to KC , Carol’s public key, then “KA Bob Carol” is equivalent to the SPKI/SDSI
names “KB Carol” and “KC .”

A name certificate (name cert) defines a name in the issuer’s local name space
by assigning an identifier to a SPKI/SDSI name that represents the subject of
the certificate. An authorization certificate (auth cert) indicates that the issuer
(represented by a public key) authorizes the subject (represented by a SPKI/SDSI
name) to access a resource. Both the resource and the permission being granted
are specified in an auth cert. For the purposes of this paper we are only concerned
with a single anonymous resource and a generic operation on that resource. An
auth cert also indicates whether or not the authorization may be delegated. In the
discussion that follows, we shall adopt the representation of certificates as rewrite

202 N. Coleman

rules with the issuer on the left and the subject on the right as introduced in [2].
Four examples of this rewrite rule representation are shown in Fig. 2.

There are four principals involved in the example certificates in Fig. 2: the
administrator of resource R (identified by the public key KR), Alice, Bob, and
Carol (identified by their public keys KA, KB, and KC). Certs (2) and (4)
are name certs that indicate that the identifier “Bob” in Alice’s name space
represents Bob’s key, and the identifier “Carol” in Bob’s name space represents
Carol’s key. Certs (1) and (3) are auth certs, denoted by the � after the subject.
In cert (1), the subject “KA Bob” is granted access to the resource R. The � at
the end indicates that the subject may delegate this access right. Similarly, cert
(3) grants the subject “KB Carol” access to whatever KB has access to. The �
at the end of this cert indicates that the subject may not delegate this access
right.

(1) KR � → KA Bob �
(2) KA Bob → KB

(3) KB � → KB Carol �
(4) KB Carol → KC

Fig. 2. SPKI/SDSI certificates as rewrite rules

The use of delegation and an indirect naming scheme means that more than
one certificate may be necessary for a principal to access a resource. Such a set of
one or more certificates is called a certificate chain. A certificate chain may also
be represented by a rewrite rule, derived from the composition of compatible
certificates. As defined in [2], certs C1 = K1 A1 → S1 and C2 = K2 A2 → S2

are compatible if S1 = K2 A2 X for some sequence of zero or more identifiers X
(that is K2 A2 is a prefix of S1). The composition of C1 and C2, written as C1

◦ C2 is defined by replacing the prefix of S1 with S2. Using the term rewriting
notation:

C1 = K1 A1 → K2 A2 X
C2 = K2 A2 → S2

C1 ◦ C2 = K1 A1 → S2 X

Certificate chains are built by repeated use of composition.
Returning to the examples in Fig. 2, we can form cert chains by composing

compatible certificates. (1) ◦ (2) = KR � → KB � authorizes KB to access
resource R and to delegate that access right; (3) ◦ (4) = KB � → KC � grants
KC access to whatever KB has access to. Putting these two chains together
we get the chain ((1) ◦ (2)) ◦ ((3) ◦ (4)) = KR � → KC � that authorizes
KC to access resource R, but not to delegate that access right. The problem
of assembling such a chain is called the certificate chain discovery problem.
Solutions based on formal language techniques can be found in [2, 11].

The ClassAd representation of SPKI/SDSI certificates is fairly simple. Each
certificate ClassAd consists zero or more cert request ports and a cert offer port.

Distributed Policy Specification and Interpretation 203

A cert offer port contains attributes corresponding to the type (name or auth),
issuer, identifier (name certs only), and subject of the cert. The Subject at-
tribute is a literal value if the subject of the cert is directly specified using a
public key, or an attribute reference if the subject is indirectly specified using a
SPKI/SDSI name with one or more identifiers. In the indirect case the ClassAd
also contains one or more cert request ports, each of which requests a name cert
(or chain of certs) to resolve the SPKI/SDSI name. If the ClassAd represents an
auth cert with the delegation bit turned on, there is an additional cert request
port requesting an additional auth cert (or chain of certs) issued by the subject
of the cert.

For example, the authorization certificate designated as (1) in Fig. 2 would
be represented by the ClassAd shown in Fig. 3. The name certificate designated
as (2) in Fig. 2 would be represented by the ClassAd shown in Fig. 4.

[Ports = {

[other = chain1; Type = "cert_request";

Requirements = other.Type == "cert_offer" && other.CertType == "Name" &&

other.Issuer == "K_A" && other.Identifier == "Bob";

],

[other = chain2; Type = "cert_request";

Requirements = other.Type == "cert_offer" &&

other.CertType == "Auth" && other.Issuer == chain1.Subject

],

[other = request; Type = "cert_offer"; CertType = "Auth";

Issuer = "X"; Subject = chain2.Subject;

Requirements = other.Type == "cert_request"

]}

]

Fig. 3. The ClassAd for cert(1)

[Ports = {

[other = request; Type = "cert_offer"; CertType = "Name";

Issuer = "K_A"; Identifier = "Bob"; Subject = "K_B";

Requirements = other.Type == "cert_request"

]}

]

Fig. 4. ClassAd for certificate (2)

4 Gangmatching Structures and Concepts

As we have seen in the examples above, a gangmatching ClassAd is made up
of a set of ports, each of which represents a request for another ClassAd. We

204 N. Coleman

formally define a port P as a 5-tuple (EP , IP , JP , δP , φP) where EP is the
set of all attributes defined or exported by P , IP is the set of all attributes
imported from the ClassAd that is matched with P , JP is the set of all attributes
referenced in P that are imported via other ports in the same ClassAd, δP is a
function representing the attribute definitions in P , φP is a Boolean expression
in disjunctive normal form (DNF) over IP , JP representing the Requirements
expression of P . A ClassAd C is defined as an ordered list of ports.

The gangmatching process assembles a gang of ClassAds that is complete
when all ports of all ClassAds in the gang have been matched with ports of other
ClassAds in the gang. A gangster is an intermediate structure formed during
gangmatching that represents an open or unmatched port in an incomplete gang.
We define a gangster G as a triple (P , β, L) where P =(EP , IP , JP , δP , φP)
is a port, β is a function that binds the attributes in JP to literal values, and
L associates attributes imported from elsewhere in the gang with attributes
imported from the ClassAd that will ultimately be matched with P . A port
connecting a ClassAd C to one of its children is called a child port, and the port
connecting C to its parent is the parent port. A gang can be thought of as a
tree of ClassAds where each ClassAd is connected to its parent or child through
one of its ports. The ClassAd at the root of the tree is referred to as the root
ClassAd.

The gangmatching algorithm relies heavily upon the concepts of equivalence,
partial evaluation and validity. Two gangsters are equivalent if they are struc-
turally the same, but contain attributes from different ClassAds. An individual
match is conditionally valid if one or both of the Requirements expressions in-
volved unresolved attribute references. Partial evaluation is used to condense
these expressions, which must then be satisfied by bindings generated by subse-
quent matches. A gang in which all of these expressions have been satisfied is
considered a valid gang.

The input to the algorithm is the root ClassAd C0 and a set of additional
ClassAds C that will be used to build the rest of the gang. Beginning with the
gangster consisting of the single port of C0, the algorithm creates new gangsters
by matching existing gangsters to parent ports of other ClassAds. Whenever a
new gangster is created, a new rule in a regular grammar is generated. When the
algorithm terminates, this grammar generates all complete valid gangs built from
C0 and the ClassAds in C. In order to avoid repeated work and infinite loops
caused by the reuse of ClassAds, the algorithm must test each new gangster
for equivalence to previously encountered gangsters. If an equivalent gangster is
found, the algorithm adds a new rule to the grammar, but does not attempt to
match the new gangster. Otherwise, the new gangster is tested against the par-
ent port of each ClassAd in C for a potential match. If the match is conditionally
valid, the Requirements expressions of the respective ports are partially eval-
uated, and the resulting expression is passed to the first new gangster created
by the match. Further matches must satisfy this expression in addition to the
Requirements expressions of other ports encountered later.

The structures and concepts described here are examined in more detail in [4].

Distributed Policy Specification and Interpretation 205

5 Gangmatching Algorithm

The gangmatching algorithm builds individual gangs in a top-down (root to
leaves) fashion. The premise of the algorithm is that if an infinite number of
gangs can be composed from a finite set of ClassAds, then there must be a
repeating pattern – in the same way that a finite automaton can define an
infinite but regular language. These repetitions can be prevented by detecting
new gangsters that are equivalent to previously encountered gangsters. Thus, we
can assemble a finite grammar that may produce an infinite number of gangs.
In addition, this algorithm makes use of the partial evaluation facility described
in Sect. 4 to build gangs that satisfy conditionally valid matches.

The algorithm takes as input a set C of ClassAds, and a root ClassAd C0.
Without loss of generality we will assume C0 has only one port. We also assume
that each ClassAd C ∈ C ∪ {C0} satisfies the following properties:

1. The Requirements expression φP of each port P of C consists of a con-
junction of binary or unary predicates over attributes imported via P (IP),
attributes imported via previous ports in C (JP) and literal values (repre-
sented by the set V) in which no predicate contains attributes imported from
more than one previous port in C and every predicate contains at least one
attribute imported via P .

2. The last port in C is the parent port of C, and all other ports are child ports.
3. C has no more than 2 child ports.

In order to facilitate the handling of conditionally valid matches we will add an
additional component ψG to each gang G. The purpose of ψG will become clear
as we discuss the algorithm.

The following methods are not explicitly defined here:

1. AddGangster - adds a new gangster to a queue to be processed later
2. AddRule - adds a new rule to the grammar
3. MoreGangsters - returns true if more unprocessed gangsters are avail-

able, false otherwise
4. RemoveGangster - removes a gangster from the queue
5. CheckSeen - checks if a gangster is equivalent to a previously encountered

gangster, and adds it to the previously seen gangsters if it hasn’t
6. AddExtraRules - finds any rules containing a gangster equivalent to given

gangster, and creates duplicates of those rules for the given gangster
7. MatchResults - tests a match between a gangster and a ClassAd, and

returns an expression generated by partially evaluating and conjoining the
Requirements expressions of the gangster and ClassAd

8. ValidMatch - determines if the result of a match indicates that it is valid
(both Requirements expressions evaluate to true, or can be partially evalu-
ated to satisfiable expressions)

9. SetNext - adds a link to a list of gangsters in an incomplete gang
10. GetNext - gets then next gangster in the list of gangsters.

206 N. Coleman

The GangMatch method shown in Fig. 5 adds a gangster created from the sin-
gle port of C0. The algorithm then enters a loop in which gangsters are removed
and added to a list of gangs using the AddGangster and RemoveGangster

methods. At the beginning of each loop, a gangster G is selected and tested to see
if an equivalent gangster has been previously encountered using the CheckSeen

method. If CheckSeen returns true, the AddExtraRules method is called,
adding new rules containing G to the grammar based on existing rules containing
equivalent gangsters. If CheckSeen returns false, the ProcessMatch method
is called on each C ∈ C to see if it matches G. When the GangMatch method
has completed, the generated grammar will produce a set of matches represent-
ing all complete valid gangs rooted at C0. Each gang is a list of ClassAds in
order of appearance in the gang, with the parent port of each ClassAd matching
the first open port of the gang made up of the previous ClassAds.

GangMatch(C0, C)
1 P ← C0’s port
2 G ← (P ,∅,∅,T)
3 AddGangster(G)
4 AddRule(G → C0)
5 while MoreGangsters()
6 G ← RemoveGangster()
7 if CheckSeen(G)
8 AddExtraRules(G)
9 else

10 for each C ∈ C
11 ProcessMatch(G, C)

Fig. 5. The GangMatch algorithm

The ProcessMatch method shown in Fig. 6 tests the match between G and
C using the MatchResults method. The ValidMatch method is then used
on the resulting expression to determine whether or not the match was valid
or conditionally valid (i.e. further matches will be needed). If ValidMatch re-
turns true, the MatchBindings, ProcessPorts, and ProcessNextGang-

ster methods are called to process any new gangsters generated by the match.
The MatchBindings method shown in Fig. 7 creates a set of bindings to

be used by ProcessPorts and ProcessNextGangster. The bindings are
produced using the set of attribute definitions δP contained in C’s parent port
P . If any attribute defined in δP (attr, Y) corresponds to an attribute referenced
in the set LG of existing bindings in G (X , attr), a new binding (X , Y)is created
and added to the set LM . Additionally, a binding is created from the attribute
definition itself (attr, Y). Once all attribute definitions in δP are checked, the
set of bindings LM is returned.

Distributed Policy Specification and Interpretation 207

ProcessMatch(G, C)
1 ψM ← MatchResults(G, C)
2 if ValidMatch(ψM)
3 LM ← MatchBindings(G, C)
4 Glast ← ProcessPorts(G, C, ψM , LM)
5 ProcessNextGangster(G, C, LM , Glast)

Fig. 6. The ProcessMatch method

MatchBindings(G, C)
1 P ← C’s parent port
2 LM ← ∅

3 for each (attr, Y) ∈ δP

3 if (X, attr) ∈ LG

4 LM ← LM ∪ {(X, Y)}
5 LM ← LM ∪ {(attr, Y)}
6 return LM

Fig. 7. The MatchBindings method

The ProcessPorts method shown in Fig. 8 goes through each port in C
and creates a new gangster corresponding to that port based on the results
of the match. The method takes as arguments G, C, the resulting expression
ψM from the match between them, and the set of bindings LM generated by
MatchBindings. First, LM is searched for any binding (X , Y) where Y is a
member of the set IP of imported attributes in P , and the resulting bindings are
added to the set L. Second, psiM is searched for any predicates containing an
attribute in IP , and the results are conjoined to form the expression psi. A new
gangster Gnew is then created from P , L, and psi, and is added to the queue of
new gangsters. If there are no prior gangsters in the gang, a new rule Gnew → G
C is added to the grammar to indicate that Gnew is a result of matching G and
C. Finally, Gnew is added to the linked list of gangsters comprising the current
gang. The last gangster generated is returned by the method.

The ProcessNextGangster method shown in Fig. 9 updates the next
gangster in the gang after G to reflect the results of the match between G and
C. Like ProcessPorts the ProcessNextGangster method takes G, C, and
LM as arguments, along with the last gangster Glast created by ProcessPorts.
The method begins by checking if there are any more gangsters in the gang after
G. If there are no more gangsters, Glast is set as the last gangster in the gang. If
there was no Glast the gang must be complete and the rule S → G C is added
to complete the grammar. If there is a next gangster G′ it must be updated.

The update of G′ proceeds in a manner similar to the generation of new
gangsters in ProcessPorts. First, LM is searched for any binding (X , Y) where
Y is a literal value, and X is a member of the set of attributes JPG′ imported in
PG′ from previous ports in the ClassAd containing PG′ . The resulting bindings

208 N. Coleman

ProcessPorts(G, C, ψM , LM)
1 Glast ← null
2 for each child port P of C
3 L ← {(X, Y) ∈ LM | Y ∈ IP }
4 ψ ← ∧ {preds in ψM over i ∈ IP}
5 Gnew ← (P , ∅, L, ψ)
6 AddGangster(Gnew)
7 if Glast = null
8 AddRule(Gnew → G C)
9 else

10 SetNext(Glast, Gnew)
11 Glast ← Gnew

12 return Glast

Fig. 8. The ProcessPorts method

ProcessNextGangster(G, C, LM , Glast)
1 G′ ← GetNext(G)
2 if G′
= null
3 β ← {(X, Y) ∈ LM | X ∈ JPG′ , Y ∈ V}
4 Gnew ← (PG′ , β, LG′ , ψG′)
5 AddGangster(Gnew)
6 if Glast = null
7 AddRule(Gnew → G C)
8 else SetNext(Glast, Gnew)
9 SetNext(Gnew, GetNext(G′))

10 elsif Glast
= null
11 SetNext(Glast, null)
12 else
13 AddRule(S → G C)

Fig. 9. The ProcessNextGangster method

are stored in the set of bindings β, which is added to G′ to create the new gangster
Gnew. The remainder of the method is similar to lines 7-10 in ProcessPorts

in which the rule Gnew → G C is added to the grammar if it is the first gangster
in the gang, and the linked list of gangs is adjusted to include Gnew .

6 Gangmatching Analysis

Gangmatching analysis is essentially an extension of bilateral matching analy-
sis [3]. Between any two given ports, the same techniques can be used to deter-
mine why the first port does not match the second and vice versa. However, the
presence of prior ports in a ClassAd introduces the possibility that one match
may be dependent on the results of other matches. In addition, new problems
arise from the more complex structure of a gang as opposed to two matching
ClassAds.

Distributed Policy Specification and Interpretation 209

A common problem in authorization systems is how to revoke a principal’s
access to a resource. For example, in SPKI/SDSI a principal may have access
to a resource via several different certificate chains containing certificates issued
by several different principals. In order to revoke the principal’s access to the
resource, at least one certificate in each such chain must be revoked. To avoid
unnecessary disruption caused by certificate revocation, the set of certificates
revoked should be minimal.

The Break the Chain problem may be abstracted to the problem of finding
a minimal element in a subset lattice that passes a given test. In this case the
top set in the lattice is the set of all certificates in C. The test on a given C′

⊆ C is whether the certificates in C′ grant the principal access to the resource.
The problem of finding all such minimal elements has been shown to be NP-
hard [10], but the problem of finding one such element is linear. Furthermore,
finding k such elements for a constant k is polynomial: for k > 1 the complexity
is O(nk−1). The algorithm itself [4] applies this abstraction, then improves the
performance by optimizing to reduce repeated work.

The Missing Link problem is the opposite of the Break the Chain problem. In
this case a principal has no access to a resource, but may have elements of a cer-
tificate chain that would grant access. The problem is to find which certificates
are needed to complete a chain that will authorize the principal to access the
resource. The gangmatching equivalent of this problem is finding which Class-
Ads are needed to complete a gang. The solution to this problem is to run the
gangmatching algorithm with a slight modification: When a port does not match
any other ports, the gang is not abandoned; instead, the algorithm continues to
match the rest of the ports in the gang and any dependencies on the unmatched
port are ignored. When a partial gang has been completed, the “missing links”
in the gang can be determined by using the Requirements expressions of the un-
matched ports, and the references to imported attributes in these ports. Satisfied
Requirements expressions elsewhere in the gang that contain such references can
be partially evaluated to produce additional constraints for missing links. The
gangmatching algorithm can be modified [4] to accept prototype ClassAds that
will capture these additional constraints.

7 Related Work

There are some similarities between ClassAds and agent communication lan-
guages [9, 7, 17], though ClassAds employ a representation more akin to a
database record than the rule-based representation used by these languages.
There are also similarities between ClassAds matchmaking and the unification-
based matching used by Linda [8] and Datalog. Linda uses tuples containing
variables or literals to search a tuple space for a matching tuple. Datalog oper-
ates similarly on relational databases.

The term rewriting approach to SPKI/SDSI was introduced in [2] along with
an algorithm for certificate chain discovery. It is also possible to use pushdown
systems (PDS) to represent SPKI/SDSI rewrite rules [11, 12]. The enhanced

210 N. Coleman

gangmatching algorithm in Sect. 5 began as a generalization of the post* algo-
rithm for PDS reachability.

The resource selection and authorization policies discussed in this paper both
fall under the category of provisions. Provisions are conditions that must be
satisfied or actions that must occur before a decision takes place. In contrast
obligations are conditions or actions that must be fulfilled after a decision has
been made [1]. An SLA is an agreement between a service provider and a cus-
tomer that specifies certain attributes of the service such as availability, service-
ability, performance and operation [19]. PDL [13] expresses obligation policies
as event-condition-action rules. The Ponder policy language [5] can also be used
to express both obligation and authorization policies.

Several other policy languages – such as Rei and Kaos have been developed
specifically for the semantic web and grid computing applications. These lan-
guages are typically based on description logics such as DAML and OWL. A
comparison of Rei, Kaos and Ponder is presented here [18].

8 Conclusions

Distributed computing environments provide users with a wide range of ser-
vices that a single isolated system can not provide. Policies must be designed
and enforced to protect the interests of users and providers of these services.
Resource selection policies address the question: What kind of resource does a
principal want, and is such a resource available? Access control policies address
the question: Can a principal be trusted to have access to a given resource?

The framework for policy specification and interpretation presented in this
paper provides a clearing house for both types of policies. It is built on the simple
yet powerful concept of matchmaking. The ClassAd language and matchmaking
algorithms were initially developed to solve resource selection problems in a
distributed system. As we have shown, the same framework with some minor
modifications is applicable to managing access control policies.

We have demonstrated that the ClassAd language can be used to specify
SPKI/SDSI authorization policies, and an enhanced gangmatching algorithm
can be used to assemble SPKI/SDSI certificate chains correctly and efficiently.
We have also presented the necessary theoretical underpinnings of the enhanced
gangmatching algorithm which generalize beyond the specific instance of
SPKI/SDSI certificate chain discovery. Finally, we have demonstrated analy-
sis techniques for bilateral and multilateral matchmaking that serve as essential
tools for comprehending matchmaking results. Taken together these contribu-
tions provide a robust framework for specifying and interpreting resource allo-
cation policies.

References

[1] Bettini, C., Jajodia, S., Wang, S., Wijesekera, D.: Provisions and obligations in
policy rule management and security applications. In: Proceedings of 28th Inter-
national Conference on Very Large Data Bases (VLDB), Hong Kong, China, pp.
502–513 (August 2002)

Distributed Policy Specification and Interpretation 211

[2] Clarke, D., Elien, J.-E., Ellison, C., Fredette, M., Morcos, A., Rivest, R.: Certifi-
cate chain discovery in SPKI/SDSI. Journal of Computer Security 9(4), 285–322
(2001)

[3] Coleman, N., Raman, R., Livny, M., Solomon, M.: Distributed policy management
and comprehension with classified advertisements. Technical Report UW-CS-TR-
1481, University of Wisconsin (April 2003)

[4] Coleman, N.: A Matchmaking Approach to Distributed Policy Specification and
Interpretation. PhD thesis, University of Wisconsin-Madison (August 2007)

[5] Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The Ponder Policy Specification
Language. In: Sloman, M., Lobo, J., Lupu, E.C. (eds.) POLICY 2001. LNCS,
vol. 1995, pp. 18–38. Springer, Heidelberg (2001)

[6] Ellison, C., Frantz, B., Lampson, B., Rivest, R.L., Thomas, B., Ylonen, T.: SPKI
certificate theory. RFC 2693 (September 1999)

[7] Finin, T., Fritzson, R., McKay, D., McEntire, R.: KQML as an agent communi-
cation language. In: Proc. of the Third Int’l Conf. on Information and Knowledge
Management, CIKM 1994. ACM Press (November1994)

[8] Gelernter, D.: Generative communication in linda. ACM Trans. Program. Lang.
Syst. 7(1), 80–112 (1985)

[9] Genesereth, M., Singh, N., Syed, M.: A distributed anonymous knowledge sharing
approach to software interoperation. In: Proc. of the Int’l Symposium on Fifth
Generation Computing Systems, pp. 125–139 (1994)

[10] Godfrey, P.: Minimization in cooperative response to failing database queries.
International Journal of Cooperative Information Systems (IJCIS) 6(2), 95–149
(1997)

[11] Jha, S., Reps, T.: Analysis of SPKI/SDSI certificates using model checking. In:
Proceedings of IEEE Computer Security Foundations Workshop (CSFW). IEEE
Computer Society Press (2002)

[12] Jha, S., Reps, T.W.: Model checking spki/sdsi. Journal of Computer Security 12(3-
4), 317–353 (2004)

[13] Lobo, J., Bhatia, R., Naqvi, S.: A policy description language. In: AAAI/IAAI,
pp. 291–298 (1999)

[14] Raman, R., Livny, M., Solomon, M.: Matchmaking: Distributed resource man-
agement for high-throughput computing. In: Proceedings of the Seventh IEEE
International Symposium on High Performance Distributed Computing, HPDC7
(July 1998)

[15] Raman, R., Livny, M., Solomon, M.: Policy driven heterogeneous resource co-
allocation with gangmatching. In: Proceedings of the Twelfth IEEE International
Symposium on High Performance Distributed Computing (HPDC12), Seattle, WA
(June 2003)

[16] Solomon, M.: The ClassAd language reference manual version 2.4 (May 2004),
http://www.cs.wisc.edu/condor/classad/refman/

[17] Sycara, K., Decker, K., Pannu, A., Williamson, M., Zeng, D.: Distributed intelli-
gent agents. IEEE Expert, 36–46 (December 1996)

[18] Tonti, G., Bradshaw, J.M., Jeffers, R., Montanari, R., Suri, N., Uszok, A.: Se-
mantic Web Languages for Policy Representation and Reasoning: A Comparison
of KAoS, Rei, and Ponder. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC
2003. LNCS, vol. 2870, pp. 419–437. Springer, Heidelberg (2003)

[19] Westerinen, A., Schnizlein, J., Strassner, J., Scherling, M., Quinn, B., Herzog, S.,
Huynh, A., Carlson, M., Perry, J., Waldbusser, S.: Policy terminology. RFC 3198
(November 2001)

http://www.cs.wisc.edu/condor/classad/refman/

Handshaking in Kansas Lava Using Patch Logic

Andy Gill and Bowe Neuenschwander

Information Technology and Telecommunication Center
Department of Electrical Engineering and Computer Science

The University of Kansas
{andygill,bneuen}@ku.edu

Abstract. Designing hardware is like writing music for an orchestra -
lots of pieces have to come together at the correct time for everything to
work. In systems design, there is a confusing array of standards for allow-
ing cooperating components, and little type-level support in traditional
design methodologies for helping connect components with pre-arranged
protocols. In this paper, we explore bringing protocol-level types to com-
municating processes. Inside our hardware description language Kansas
Lava we introduce the notation of a patch, which is a communicating
component with well-understood protocols. We build a theory round the
notion of patches, which we call patch logic, and then use the patch
abstraction to build a small driver for an FPGA board.

1 Introduction

When writing cooperative components for hardware fabrics like FPGAs, some
form of handshaking or inter-component cooperation is required. One common
solution is using central control logic. This allows for maximizing global through-
put, but at the cost of composability of the sub-components. Another solution
is to allow components to act independently, and throttle the communication
between components using bus protocols. In this paper, we take the second ap-
proach to hardware design, and build a set of types and combinators to facilitate
the construction of hardware using composition.

We program in the language Haskell [12], and design hardware using Kansas
Lava [8,7], our version of a Haskell library for describing hardware. Kansas Lava,
like other the versions of Lava before it [4,14], makes extensive use of types to
describe signals. Kansas Lava has distinct types for combinatorially and sequen-
tially generated values, a family of lifting functions to coerce between these two
styles of hardware logic, and various structured types for complex signals. This
paper takes this type-based approach one step further, where we express the
protocol between components using types, and build abstractions around these
types.

The contribution of this paper is explaining in detail how Lava may be suc-
cessfully used in the large by utilizing both the traditional idioms and a new
Lava idiom which we call patches. Of course, all circuits could be described us-
ing simple logic and structural composition. Types, higher-order functions and

C. Russo and N.-F. Zhou (Eds.): PADL 2012, LNCS 7149, pp. 212–226, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Handshaking in Kansas Lava Using Patch Logic 213

mathematical structures like monads give functional language-based hardware
description languages the advantage of powerful and composable abstractions.
Specifically, we make the following contributions.

– We introduce a new Haskell structure for constructing large circuits, a Patch,
which facilitates the construction of cooperating components.

– We give the laws for our patches, and show how complex dataflow can be
managed and connected to the interfaces of our circuits.

– To support our thesis that this new abstraction support the modular con-
struction of circuits we give an extended example of building an LCD driver.

2 Kansas Lava

Kansas Lava is a Haskell library for simulating and generating hardware com-
ponents, in the spirit of Chalmers Lava and Xilinx Lava. Like Chalmers Lava,
Kansas Lava uses observable sharing [5,6] to represent and capture cycles in
hardware, but uniquely uses an explicit monad to represent external connec-
tivity. The major novel feature of Kansas Lava is the aggressive use of types
and type extensions to capture hardware restrictions and concerns. This paper
represents an extension of this initiative, by giving a typed interface to protocols.

All variants of Lava are based around the idea that you can write a struc-
tural description of hardware, and then observe or extract the description of the
described hardware. The classical example is the half-adder.

halfAdder :: Seq Bool -> Seq Bool -> (Seq Bool,Seq Bool)

halfAdder a b = (carry,sum) where

carry = and2 a b

sum = xor2 a b

In this example, two arguments are combined to make two results, the carry and
the result of the sum. The Seq :: * -> * type constructor lifts its argument to
make it observable; a well-understood Domain Specific Language trick [11,8,2].
Seq here is a sequence of values of time, interpreted by an implicit clock, in much
the same way as signal is typically used in VHDL.

There are several structures like Seq in Kansas Lava; here is a short taxonomy
of the major structures.

– There are fixed width values, signed (Sn), unsigned (Un), and fixed range
values (Xn).

– These values, and other built-in Haskell types, like tuples and Bool, can be
lifted into an observable signal using Comb, CSeq c, a signal interpreted by
a given clock type, or Seq, a signal interpreted by a global clock. For the
remainder of this paper we will use Seq with its global clock for conciseness,
the ideas presented here generalize to multi-clock designs.

– We have what we call the protocol gap, where types are used to represent
protocol. Filling this gap is the subject of this paper. As an example of a
protocol, Enabled represents an optional value implemented using an extra
ENABLE status flag.

214 A. Gill and B. Neuenschwander

– Finally, we have the Fabrics. Fabric is the monad used to connect a Kansas
Lava program to an external device, like a LCD screen or RJ-45 port. We
have two implementations of Fabric: one for use on real hardware, and one
for use in simulation.

These different type classifications are connected using combinators. There is a
lift function that lifts pure Haskell functions into a function that operates on
signals, and a fixed set of lift functions that lifts Comb-based functions into Seq-
based functions. As well as these functions, many primitives are provided, and
overloaded to work over Signal, a class that abstracts over Comb and Seq.

Fabric is the monad for connecting to the outside world, via specific pins on
the FPGA. As an example, consider listening to physical switches and pushbut-
tons on a specific FPGA board, and lighting up a row of LEDs. In Kansas Lava,
this would read:

test_leds :: Fabric ()

test_leds = do sw <- switches

bu <- buttons

leds (sw ‘M.append‘ bu)

-- switches, buttons and leds are provided by a board-specific prelude

switches :: Fabric (Matrix X4 (Seq Bool))

switches = do

inp <- inStdLogicVector "SW" :: Fabric (Seq (Matrix X4 Bool))

return (unpack inp)

buttons :: Fabric (Matrix X4 (Seq Bool))

buttons = do i0 <- inStdLogic "BTN_WEST"

i1 <- inStdLogic "BTN_NORTH"

i2 <- inStdLogic "BTN_EAST"

i3 <- inStdLogic "BTN_SOUTH"

return (matrix [i0,i1,i2,i3])

leds :: Matrix X8 (Seq Bool) -> Fabric ()

leds inp = outStdLogicVector "LED" (pack inp :: Seq (Matrix X8 Bool))

There is a Haskell class for each FPGA board supported, with peripherals being
provided as overloaded Fabric-based functions. Furthermore, each board is given
two instances, one for programming the physical device using an associated UCF
specification, and one for programming a board simulator. In this way, programs
can be developed for specific boards, and tested offline before being actually
deployed.

3 Protocols

When building larger Lava circuits, we want some typed idioms to help us with
our hardware development. The need for an idiom appears when allowing two
components to communicate when a new datum does not appear every cycle. We

Handshaking in Kansas Lava Using Patch Logic 215

CLOCK

DATA[0:n] A B C D E F

ENABLE

Fig. 1. The Enabled Protocol

now introduce two such well-understood idioms, built on top of Seq: sequences
of optionally defined values, and sequences of handshaken values.

3.1 The Enabled Protocol

The basic way of arranging one-direction optional communication is marking
data as valid or invalid at each clock cycle. In Kansas Lava, we call this protocol
the Enable protocol. Figure 1 gives the timing table for Enabled. On every
clock cycle, DATA is either transmitted with the ENABLE bit high, or the
DATA is unknown/ignored and ENABLE is low. In this example, the sequence
A,B,C,D,E,F is transmitted, taking just over a dozen cycles to do so.

In order to help describe our use of protocols, we use a simple notation to
give a type to this agreement between producer and consumer. We notate the
Enabled protocol using a pair of E α, indicated an Enabled value of type α is
sent; and •, to indicate that nothing is sent from consumer to producer. We
place the outgoing type above the back-edge type, and group with Oxford-style
brackets, to notate the use of Seq to do the actual transmission.

[[
E α
•

]]

(1)

3.2 Handshaking

The basic shortcoming of Enabled is the inability of the consumer to slow down
the dataflow. This is overcome by handshaking. There are two general types of
handshaking: sending an acknowledgment to an Enabled datum (“Yes, I got that,
please send the next one.”), or indicating readiness to receive an Enabled datum
(“If you send me something, I promise to be ready for it.”). In Kansas Lava,
we support both, but standardize around the acknowledge, simply because this
use of acknowledge complies with the opencores.org Wishbone bus protocol,
and one standard protocol with necessary coercions is more manageable than
supporting both handshake styles everywhere. Figure 2 gives the timing diagram
for standardized handshaking, which we called AckBox (acknowledge/mailbox).
Again using our invented notation, we can describe this protocol mnemonically.

[[
E α
A

]]

(2)

216 A. Gill and B. Neuenschwander

D
a
ta

A
ck

D
a
ta

A
ck

D
a
ta

A
ck

D
a
ta

A
ck

D
a
ta

A
ck

D
a
ta

A
ck

CLOCK

DATA[0:n] A B C D E F

ENABLE

ACK

Fig. 2. The Handshake Protocol

Like before, we transmit datums using the Enable protocol. This time, how-
ever, we have an acknowledgment, A, which asynchronously responds to the EN-
ABLE line, and provides actionable evidence of receipt of data. In Kansas Lava,
the acknowledgment is typed Ack, and Ack is always used to indicate successful
receipt of data.

The issue with sending acknowledgment to a producer of data is purely logis-
tical. If Lava was based on relations, like Ruby [10], this would be easy. However,
we need to instead take an extra output from the consumer, and feed it back-
wards, as an extra input into the transmitter. This wiring is error-prone and
cumbersome to do manually.

4 Patches

A patch is what we call a circuit, or stream processor, between two protocols.
There can be communication patches, that act as bridges between protocols,
and there can be computational patches, that perform some computation on the
input to generate the output. A patch becomes a mid-level unit of expressing
computation on an FPGA fabric.

In Kansas Lava, we can represent a patch with a function that takes input
from the left hand protocol and the acknowledge from the right hand protocol,
and returns the acknowledge to the left hand protocol, and the output for the
right hand protocol. A patch is a function from two-tuple to two-tuple. For
example, a fifo (a bounded channel in hardware, a pipe in UNIX), could have
the type:

-- lhs input * rhs ack lhs ack * rhs output

fifo :: ... -> (Seq (Enabled a), Seq Ack) -> (Seq Ack, Seq (Enabled a))

The connection and direction of each input and output in not as clear as could
be here. We found using this tuple convention confusing, and wiring between
patches tedious, because wiring is needed in both directions.

We want to find a good type abstraction to clarify the relationship between
data-flow direction and protocol used. Further, with this abstraction we hope to
build combinators that make the wiring of patches straightforward in practice.
Towards this, we choose to represent our patches using the following notation,
based on the idea that both input and output is performed on a specific protocol.

Handshaking in Kansas Lava Using Patch Logic 217

fifo ::

[[
E α
A

]]

�

[[
E α
A

]]

This notates, using a left-to-right dataflow assumption, that a component called
fifo takes an enabled, handshaken value using the AckBox protocol from a (un-
represented) component, and passes on results, also using the AckBox protocol.
The diagram presents the types of values being passed, and how the protocol is
used, but says nothing about what fifo actually does.

We can capture the cleaner notational style of the protocol based patch de-
scription in Haskell, by using a type synonym. Specifically, a Patch is defined
as

type Patch lhs_dat rhs_dat

lhs_ack rhs_ack = (lhs_dat,rhs_ack) -> (lhs_ack,rhs_dat)

Now Patch can mirror the []�[] notation for patches, by making use of whitespace.

fifoP :: (...) => Patch (Seq (Enabled a)) (Seq (Enabled a))

(Seq Ack) (Seq Ack)

The first and the third argument line up as a column, to specify the protocol
used as input. Likewise for the output, with the second and forth arguments
respectively. We use the suffix P to denote the use of a patch, as M is sometimes
used to denote the use of a monad.

Patches can, of course, be used as coercions between different sequence-based
protocols. For example, the Enabled protocol can be translated into AckBox
protocol, assuming frequent enough handshakes, using latch:

latch ::

[[
E α
•

]]

�

[[
E α
A

]]

(3)

Therefore, latch would have the following Haskell type:

latchP :: (...) => Patch (Seq (Enabled a)) (Seq (Enabled a))

() (Seq Ack)

4.1 Multi-protocol Patches

Some patches have multiple input or output protocols. We notate a multi-
protocol interface using multiple columns inside our protocol box. A multi-
protocol interface consisting of two AckBox protocols that send an α and β
respectively, can be notated using:

[[
E α E β
A A

]]

(4)

Having multi-protocol patches allows various standard list processing idioms to
be captured at the protocol level. For example, zip and unzip are possible:

218 A. Gill and B. Neuenschwander

zip ::

[[
E α E β
A A

]]

�

[[
E (α, β)

A

]]

(5)

unzip ::

[[
E (α, β)

A

]]

�

[[
E α E β
A A

]]

(6)

When writing multi-protocol interfaces, we use an infix tupling constructor :>,
and line up the columns to mirror the patch description. We give the type of
zip here; the unzip follows from the patch description in the same way.

data a :> b = a :> b

zipP :: (...)

=> Patch (Seq (Enabled a) :> Seq (Enabled b)) (Seq (Enabled (a,b)))

(Seq Ack :> Seq Ack) (Seq Ack)

This ability to write multi-protocol patches allows the implementation of data-
flow style hardware descriptions, furthering abstractions provided to the Kansas
Lava user.

4.2 Patches for Kansas Lava Sequences

So far, patches and protocols are a hand-shake of sequences, mapping to signals
in VHDL. However, there is a powerful generalization that can be introduced.
We want to generalize patches and protocols to other transport mechanisms
other than just Kansas Lava sequences. The protocols rendered with Oxford
brackets can be written explicitly, using single-line brackets. We therefore define
our Oxford brackets in terms of the more primitive notation.

[[
α1 . . . αn

β1 . . . βn

]]

≡
[
(Seq α1) . . . (Seq αn)
(Seq β1) . . . (Seq βn)

]

(7)

We take a small liberty with the rewriting using rule (7), where • inside Oxford
brackets represents (), not Seq (). We appeal to the isomorphism between ()

and Seq (), where our use of () is unlifted, to justify this syntactical shortcut.
We retain, however, the Oxford-style brackets for conciseness.

This generalization allows us to insert and extract Haskell values straight into
our patches. We can have a patch that has conventional Haskell values on one
side, and uses Kansas Lava Seq on the other. For example, we can have patches
that coerce to and from Haskell lists, here called toAckBox and fromAckBox.

toAckBox ::

[
[E α]
•

]

�

[[
E α
A

]]

(8)

fromAckBox ::

[[
E α
A

]]

�

[
[E α]
•

]

(9)

Handshaking in Kansas Lava Using Patch Logic 219

We call these patches “shallow” because they have a shallow embedding; that
is, they can never be rendered into hardware because of the direct use of the
Haskell lists; they exist for simulation and test-bench use only. The protocol

[
[E α]
•

]

(10)

is implemented directly as a Haskell list of Maybe (and the returned ().)
There is no requirement for the left-hand side of a patch to share the same

timings as the right-hand side. In the case of toAckBox the left-hand side is a
Haskell list, the right hand side is a Lava sequence. The use of [E α] inside (10),
rather than simply a [α] allows toAckBox to generate a punctured use of the
AckBox protocol; toAckBox can literally be told to send Nothing.

4.3 Chaining Together Patches

The principal thing we can do with patches is combine them into bigger patches.
We do this using a type-safe bus builder, $$.

$$::

[
α
β

]

�

[
γ
δ

]

−→
[
γ
δ

]

�

[
π
φ

]

−→
[
α
β

]

�

[
π
φ

]

(11)

Unsurprisingly, $$ is also associative:

([]�1 [] $$ []�2 []) $$ []�3 [] = []�1 [] $$ ([]�2 [] $$ []�3 []) (12)

When chaining components together, we sometimes use an infix variant of our
signatures, where the � is replaced by the name of the component, and $$ to
notate a bus.

· · ·
([[

E α
•

]]

latch

[[
E α
A

]])

$$

([[
E α
A

]]

fifo

[[
E α
A

]])

· · · (13)

The bus can also be collapsed, by replacing the $$ and the duplicate protocol
description with a single instance of the protocol, thus:

· · ·
[[
E α
•

]]

latch

[[
E α
A

]]

fifo

[[
E α
A

]]

· · · (14)

This gives us a concise notation to describe a pipeline of cooperating components.

5 Patch Logic

At this point of the discourse of protocols and patches, traditional functional
programming kicks in. Do we have a unit for our patch, for example? What are
the laws for patches? This section introduces patch logic.

First, we have the combinators for lifting into the patch world and for exe-
cuting a patch, called output and run respectively, and the law that they form
an identity.

220 A. Gill and B. Neuenschwander

output :: α −→
[•
•
]

�

[
α
•
]

(15)

run ::

[•
•
]

�

[
α
•
]

−→ α (16)

run ◦ output = idα (17)

The next primitive is empty, which is the identity for patches.

empty ::

[
α
β

]

�

[
α
β

]

(18)

empty $$ []�[] = []�[] = []�[] $$ empty (19)

We have a way of changing the incoming or outgoing component of a protocol.
using forward and backward.

forward :: (α → β) −→
[
α
γ

]

�

[
β
γ

]

(20)

forward f $$ forward g = forward (g ◦ f) (21)

forward id = empty (22)

backward :: (β → α) −→
[
γ
α

]

�

[
γ
β

]

(23)

backward f $$ backward g = backward (f ◦ g) (24)

backward id = empty (25)

forward f $$ backward g = backward g $$ forward f (26)

Finally, we have a way of stacking patches.

stack ::

[
α1

β1

]

�

[
γ1
δ1

]

×[
α2

β2

]

�

[
γ2
δ2

] −→
[
α1 α2

β1 β2

]

�

[
γ1 γ2
δ1 δ2

]

(27)

As a note, stack has the property of a form of distributivity between stacks.

stack([]�1 []× []�2 []) $$ stack([]�3 []× []�4 [])
=

stack
(
([]�1 [] $$ []�3 [])× ([]�2 [] $$ []�4 [])

) (28)

Handshaking in Kansas Lava Using Patch Logic 221

From these primitives, a number of useful combinators can be constructed. Often,
forward and backward are used together to jointly built the edge of a stack. For
example, open, which opens a new channel, has the protocols

open ::

[
α
β

]

�

[• α
• β

]

(29)

and can be defined thus:
[
α
β

]

forward (λx → () :> x)

[• α
β

]

backward (λ(() :> x) → x)

[• α
• β

]

(30)

From experience, forward and backward are often used as a pair in this way.

6 Case Study: LCD Driver

As an extended example of a real hardware driver, consider the problem of
controlling the LCD panel on the Xilinx Spartan3e FPGA, which is driven by
the Sitronix ST7066U Dot Matrix LCD controller. The LCD panel has 16x2
character elements, each of which can display a single ASCII character. Laying
aside the more advanced features like user-definable character sets and auto-
scroll modes, we want to write a simple memory-mapped driver for this LCD in
Kansas Lava.

6.1 Description of the Sitronix ST7066U

Control commands for the LCD are sent to the ST7066U in 9-bit datums. We
can represent possible control commands using a Haskell data-structure, with
representative constructors shown here, and a table (not given) which maps
between these Haskell values, and the relevant 9-bit pattern.

data LCD

= ClearDisplay

| ReturnHome

| EntryMode {moveRight::Bool, displayShift::Bool}

| SetDisplay {displayOn::Bool, cursorOn::Bool, blinkingCursor::Bool}

| FunctionSet {eightBit::Bool, twoLines::Bool, fiveByEleven::Bool}

| SetDDAddr {dd_addr::U7}

| WriteChar {char::U8}

| ...

The ST7066U itself is programmed on the Spartan3e board via a slow 4-bit
data-bus, with a number of control wires, as explained in Figure 3.

Each command is physically transmitted by using two 4-bit nibbles, with a
small 1μs delay between them. The 9th bit (a status-bit) of the command is is
sent with both nibbles, on the LD RS line. The gap between 9-bit commands is
longer, at least 40μs. Figure 4 explains how complete commands are transmitted.
There is also a boot sequence for setting up the ST7066U.

222 A. Gill and B. Neuenschwander

≥ 230 ns

≥ 40 ns ≥ 10 ns

CLOCK

LCD RS 0 = Command, 1 = Data

SF D[11:8] Valid Data

LCD RW

LCD E

Fig. 3. Timing for the ST7066U 4-bit asynchronous bus (with 50MHz clock)

≥ 1 μs ≥ 40 μs

LCD RS 0 or 1 0 or 1

SF D[11:8] Upper 4 Bits Lower 4 Bits Upper 4 Bits Lower 4 Bits

LCD RW

LCD E

Fig. 4. Sending 9-bit commands to ST7066U over the 4-bit asynchronous bus

– There is a nibble-based boot sequence, with 4 separate nibbles sent, with
non-standard delays between them.

– After the nibble boot sequence has been sent, a small sequence of 9-bit LCD
commands are required to be sent to reset the device.

– After most 9-bit commands, a 40μs delay is required; with 2 exceptions
requiring a 1.40ms delay – the joy of hardware interfaces.

6.2 LCD Driver Design

From these specifications, a design based on four separate patches emerges.

– A patch that takes memory writes, and outputs a sequence of LCD com-
mands.

– A patch that prepends the fixed LCD command boot sequence to a stream.
– A patch that takes LCD commands, and outputs nibbles and intra-nibble

pause durations. This patch can be responsible for issuing the correct nibble
boot sequence.

– Finally, a patch that takes nibbles and intra-nibble pause durations, and
drives the bus according to Figure 3, then waits for the given duration before
accepting the next nibble, based on Figure 4.

The pipeline of patches we therefore need is:

[[
E ((X2, X16), U8)

A

]]

�

[[
E LCD

A

]]

�

[[
E LCD

A

]]

�

[[
E (U5, U18)

A

]]

�

[[
(U1, U4, Bool)

•
]]

Handshaking in Kansas Lava Using Patch Logic 223

The use of patches has informed our design decisions here, and modularized our
implementation into reusable components. We now discuss the implementation
of these components, in right-to-left order.

6.3 LCD Bus Driver

The lowest-level patch takes 5-bit nibble-and-status values, a delay before ac-
cepting the next nibble, and physically drives the bus, including pausing after
each nibble for the prescribed delay.

phy_4bit_LCD :: Patch (Seq (Enabled (U5,U18))) (Seq (U1,U4,Bool))

(Seq Ack) ()

phy_4bit_LCD is implemented in Kansas Lava using an internal 6-state state-
machine and a 20-bit counter, taking approximately 40 lines of code. We use
a flip-flop on the output signal to clean up any glitches; perhaps an extension
could require this using types in the future.

6.4 LCD Instruction Compiler

The LCD instruction compiler is the heart of the LCD driver, so we give the
complete code here (some whitespace has been removed for space reasons).

phy_Inst_4bit_LCD :: Patch (sig (Enabled LCD)) (sig (U1,U4,Bool))

(sig Ack) ()

phy_Inst_4bit_LCD = mapP splitCmd

$$ matrixExpandP

$$ prependP bootCmds

$$ phy_4bit_LCD -- invokes patch from section 6.3

bootCmds :: Matrix X4 (U5,U18)

bootCmds = matrix [(3, 205000), (3, 5000), (3, 2000), (2, 2000)]

splitCmd :: Comb LCD -> Comb (Matrix X2 (U5,U18))

splitCmd cmd = pack $ matrix

[pack (high_op ‘KL.append‘ mode, smallGap)

, pack (low_op ‘KL.append‘ mode, otherGap)]

where

otherGap = mux ((bitwise) cmd .<=. (0x03 :: Comb U9)) (bigGap,hugeGap)

(op :: Comb U8, mode :: Comb U1) = unappend ((bitwise) cmd :: Comb U9)

(low_op :: Comb U4, high_op :: Comb U4) = unappend op

smallGap = 50 -- between nibbles

bigGap = 2000 -- between commands

hugeGap = 100000 -- after clear display or return cursor home

The compiler is itself built from three patches, and because the only possible
client of the nibble instructions is the LCD bus driver, phy_4bit_LCD it is directly

224 A. Gill and B. Neuenschwander

Fig. 5. Example of using the LCD driver

invoked by phy_Inst_4bit_LCD. The three patches split the commands into
nibbles, intersperse the nibbles in one channel, then prepend the nibble-based
boot sequence, as given by bootCmds.

6.5 LCD Instruction Boot Sequence

The init_LCD patch prepends the instruction-level boot sequence, which is not
magic instructions, but rather the setting of the LCD into a sensible state (no
cursor, correct LCD hardware setup, no display shift). Though this is the rec-
ommended sequence, it may certainly be possible for a user to use a different
setup sequence, so we have init_LCD as its own patch. We include the code
for initCmds, because it demonstrates that we are programming using Haskell
structures not bit-level representations at this point.

init_LCD :: Patch (sig (Enabled LCD)) (sig (Enabled LCD))

(sig Ack) (sig Ack)

init_LCD = prependP initCmds

initCmds :: Matrix X4 LCDInstruction

initCmds = matrix

[FunctionSet { eightBit=False, twoLines=True, fiveByEleven=False }

, EntryMode { moveRight=True, displayShift=False }

, SetDisplay { displayOn=True, cursorOn=False, blinkingCursor=False }

, ClearDisplay]

6.6 Memory-Mapped LCD Interface

Finally, we have a simple memory mapped interface, that is (2-dimensional)
index-value pairs, and an enable. The user literally writes, using this interface,
to the LCD. This implementation is almost trivial; for each write command sent
to the memory mapped LCD interface, we can simply issue two LCD instructions,
one to place the cursor, and the second to place the specified character. There
is no reason to optimize the commands sent; the entire display can be rewritten
in a fraction of a second. The memory mapped LCD interface has the type:

mm_LCD_Inst :: Patch (sig (Enabled ((X2,X16),U8))) (sig (Enabled LCD))

(sig Ack) (sig Ack)

Handshaking in Kansas Lava Using Patch Logic 225

Chaining our sub-components together gives us our working LCD driver, tak-
ing character write operations, and returning the bus interactions for our LCD
controller. Figure 5 gives an example of using the LCD driver.

7 Discussion

Kansas Lava builds on a long history of hardware description languages, which
can be traced back to μFP [13]. There have also been many code generators for
VHDL, including JHDL [3], and the combinations of Xilinx Lava to JBits [15].

The use of Patch resembles an early feature of Lava: to suggest layout; for
example Chapter 16 of [9]. In early versions of Lava, implementations could
be configured to work like systolic arrays, with data flowing left to right on
every clock cycle, and extra information like carry being passed in the vertical
direction. Kansas Lava explicitly chooses to rely on the Xilinx tools for physical
layout, based on the improvements made by Xilinx over the last decade. Use of
Patch is about channels between components, not proximity, though there is no
reason why patches could not be extended to give layout hints.

A Patch could be represented in Wired [1], a DSL that uses Chalmers Lava.
Wired uses a monad called Let, and a writable Var constructor that allows
the acknowledge back-edge to be wired. For example, a fifo could be given the
following type:

fifo :: (...)

=> (Seq (Enabled a), Var (Seq Ack)) -- left hand side

-> Let (Seq (Enabled a), Var (Seq Ack)) -- right hand side

The differences are that in Wired traditional monadic constructions can be used,
though Var needs to be dynamically checked for single usage at code generation
time. In Kansas Lava the back-edge connection can only be connected using
juxtapositioning, avoiding the need for this check. In Wired however, the bidi-
rections of a protocol can be expressed inside a single tuple, perhaps allowing
for new protocol abstractions.

The Patch idiom emerged from frustration when developing a FPGA-centric
protocol stack we call λ-bridge. We experimented with different variations of
Patch, for example originally there were additional control and status signals
for each Patch. This was later subsumed when needed by simply using extra
columns of protocol interactions.

It turns out that Patch is a useful place to hide an environment, and we plan
to make Patch abstract in the future, then experiment with passing in resource
hints. It would be useful to know, for example, if a 1-element FIFO will suffice
with the necessary bubbles, or if a larger fifo is required.

Overall, we are pleased with how the Patch idiom has helped us structure our
Kansas Lava programs. Extensions to the simple Patch logic, however, would be
useful to show specific properties, like compliance to protocol. Patches such as
forward and backward can be used to break the protocol abstraction, in the same
way thatmapping over an even-only list can destroy the even-only property. Higher
level combinators, on top of forward and backward, will help here.

226 A. Gill and B. Neuenschwander

Acknowledgments. We would like to thank the anonymous referees for their
useful comments, Garrin Kimmell who wrote the Haskell datatype in section 6.1,
as well as Andrew Farmer, Ed Komp, and the other members of the CSDL lab
at KU for their feedback. This work was partially supported by NSF grant CCF-
1117569.

References

1. Axelsson, E.: Functional Programming Enabling Flexible Hardware Design at Low
Levels of Abstraction. Ph.D. thesis, Department of Computer Science and Engi-
neering Chalmers University of Technology and University of Gothenburg (2008)

2. Axelsson, E., Claessen, K., Dvai, G., Horvth, Z., Keijzer, K., Lyckegrd, B., Persson,
A., Sheeran, M., Svenningsson, J., Vajdax, A.: Feldspar: A domain specific language
for digital signal processing algorithms. In: MEMOCODE 2010, pp. 169–178 (2010)

3. Bellows, P., Hutchings, B.: JHDL - an HDL for reconfigurable systems. In: Annual
IEEE Symposium on Field-Programmable Custom Computing Machines, p. 175
(1998)

4. Bjesse, P., Claessen, K., Sheeran, M., Singh, S.: Lava: Hardware design in Haskell.
In: International Conference on Functional Programming, pp. 174–184 (1998)

5. Claessen, K., Sands, D.: Observable Sharing for Functional Circuit Description. In:
Thiagarajan, P.S., Yap, R.H.C. (eds.) ASIAN 1999. LNCS, vol. 1742, pp. 62–73.
Springer, Heidelberg (1999)

6. Gill, A.: Type-safe observable sharing in Haskell. In: Proceedings of the 2009 ACM
SIGPLAN Haskell Symposium (September 2009)

7. Gill, A.: Declarative FPGA circuit synthesis using Kansas Lava. In: The Inter-
national Conference on Engineering of Reconfigurable Systems and Algorithms
(ERSA 2011), Las Vegas, Nevada, USA (July 2011)

8. Gill, A., Bull, T., Farmer, A., Kimmell, G., Komp, E.: Types and Type Families
for Hardware Simulation and Synthesis. In: Page, R., Horváth, Z., Zsók, V. (eds.)
TFP 2010. LNCS, vol. 6546, pp. 118–133. Springer, Heidelberg (2011)

9. Hauck, S., DeHon, A.: Reconfigurable Computing: The Theory and Practice of
FPGA-Based Computation. Morgan Kaufmann Publishers Inc., San Francisco
(2007)

10. Jones, G., Sheeran, M.: Circuit design in ruby. In: Staunstrup (ed.) Formal Methods
for VLSI Design. Elsevier Science Publications (1990)

11. Matlage, K., Gill, A.: ChalkBoard: Mapping Functions to Polygons. In: Morazán,
M.T., Scholz, S.-B. (eds.) IFL 2009. LNCS, vol. 6041, pp. 55–71. Springer, Heidel-
berg (2010)

12. Peyton Jones, S. (ed.): Haskell 98 Language and Libraries – The Revised Report.
Cambridge University Press, Cambridge (2003)

13. Sheeran, M.: mufp, a language for vlsi design. In: LFP 1984: Proceedings of the
1984 ACM Symposium on LISP and Functional Programming, pp. 104–112. ACM,
New York (1984)

14. Singh, S.: Designing reconfigurable systems in lava. In: International Conference
on VLSI Design, p. 299 (2004)

15. Singh, S., James-Roxby, P.: Lava and JBits: From hdl to bitstream in seconds.
In: FCCM 2001: Proceedings of the the 9th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines, pp. 91–100. IEEE Computer Society,
Washington, DC (2001)

Virtualizing Real-World Objects in FRP

Daniel Winograd-Cort1, Hai Liu2, and Paul Hudak3

1 Yale University
daniel.winograd-cort@yale.edu

2 Intel, Inc.
hai.liu@intel.com
3 Yale University

paul.hudak@yale.edu

Abstract. We begin with a functional reactive programming (FRP)
model in which every program is viewed as a signal function that con-
verts a stream of input values into a stream of output values. We observe
that objects in the real world – such as a keyboard or sound card – can
be thought of as signal functions as well. This leads us to a radically
different approach to I/O: instead of treating real-world objects as being
external to the program, we expand the sphere of influence of program
execution to include them within. We call this virtualizing real-world
objects. We explore how virtual objects (such as GUI widgets) and even
non-local effects (such as debugging and random number generation) can
be handled in the same way.

The key to our approach is the notion of a resource type that assures
that a virtualized object cannot be duplicated, and is safe. Resource
types also provide a deeper level of transparency: by inspecting the type,
one can see exactly what resources are being used. We use arrows, type
classes, and type families to implement our ideas in Haskell, and the
result is a safe, effective, and transparent approach to stream-based I/O.

Keywords: Functional Programming, Arrows, Functional Reactive
Programming, Stream Processing, Haskell, Unique Types, I/O.

1 Introduction

Every programming language has some way of communicating with the outside
world. Usually we refer to such mechanisms as input/output, or I/O. In most
imperative languages the mechanisms have effects almost entirely outside the
program, serving a purpose typically unrelated to the internal computation of
an answer to the program. In Haskell, programs engage in I/O by using the IO
monad [20,19]. An advantage of Haskell is that we can determine from the type
of a function whether or not it is engaged in I/O – if any one part of a program
is, then the type of the whole program reflects this. The monadic framework
assures us that the overall program is well defined, and in particular, that the
I/O operations are executed in a deterministic, sequential manner. However,
even in Haskell, the IO monad is “special” compared to other monads. I/O

C. Russo and N.-F. Zhou (Eds.): PADL 2012, LNCS 7149, pp. 227–241, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

228 D. Winograd-Cort, H. Liu, and P. Hudak

commands often represent an awkward disconnect between the internal execution
of a program and the objects, devices, and protocols of the real world.

In this paper, we take a different approach. Instead of using an imperative or
even monadic basis for overall program execution, we use arrows [13]. Specifi-
cally, we assume that a program is a signal function having the (over-simplified
for now) type SF inp out , where both the input and output are time-varying
signals: inp is the type of the instantaneous values of the input, and out is the
type of the instantaneous values of the output. Just as IO is a monad, SF is an
arrow, and like a monad, the arrow framework composes program components
in a way that assures us that the streams are well-defined and that I/O is done
in a deterministic, sequential manner.

This approach is the basis for arrow-based versions of functional reactive pro-
gramming (FRP), such as Yampa [12,3] (which has been used for animation,
robotics, GUI design, and more), Nettle [23] (for networking), and Euterpea [11]
(for audio processing and sound synthesis). In fact, our work was motivated by
Euterpea, and in this paper we use examples from that domain: synthesizers,
speakers, keyboards, and MIDI devices.1

Our research is based on three insights. First, we observe that objects and
devices in the real world can also be viewed as signal functions. For example, a
MIDI keyboard takes note events as input and generates note events as output.
Similarly, a speaker takes a signal representing sound as input and produces no
output, and a microphone produces a sound signal as output while ignoring its
input. So it would seem natural to simply include these signal functions as part of
the program – i.e. to program with them directly and independently rather than
merge everything together as one input and one output for the whole program.
In this sense, the real-world objects are being virtualized for use in the program.

A major problem with this approach is that one could easily duplicate one
of these virtualized objects – after all, they are just values – which would cause
the semantics of the program to become unclear. For example, how does a single
concrete device handle the multiple event streams that would result from its vir-
tualized duplicates? This leads to our second insight, namely that the uniqueness
of signal function can be realized at the type level. In particular, we introduce
the notion of a resource type to ensure that there is exactly one signal function
that represents each real-world device.

Our final insight is that many unsafe functions can be treated as unique signal
functions as well. Examples include GUI widgets, random number generators,
and “wormholes” (mutable variables that are written to at one point in a pro-
gram and safely read from at another).

The advantages of our approach include:

1. Virtualization. I/O devices can be treated conveniently and independently
as signal functions that are just like any other signal function in a program.
I/O is no longer a special case in the language design.

1 MIDI = Musical Instrument Digital Interface, a standard protocol for communication
between electronic instruments and computers.

Virtualizing Real-World Objects in FRP 229

2. Transparency. From the type of a signal function, we can determine imme-
diately all of the resources that it consumes. In particular, this means that
we know all the resources that a complete program uses (with monads, all
we know is that some kind of I/O is being performed).

3. Safety. As long as each resource is uniquely assigned, a signal function en-
gaged in I/O or non-local effects is safe – despite the side effects, equational
reasoning is preserved.

4. Modularity. Certain non-local effects – the lack of which is often cited as a
lack of moduarity in functional languages – can be handled safely.

5. Extensibility. A user can define his or her own resource type and signal
function that capture a new I/O device or some kind of non-local effect.

In the remainder of this paper we first introduce arrow syntax and the basis of
our language design. In Section 3, we present our main ideas and the purpose of
resource types and then show the type inference rules for them in Section 4. We
next work through a number of examples in Section 5 before delving into the
implementation details in Section 6. Finally, we discuss limitations and future
work in Section 7 and related work in Section 8.

2 A Signal-Processing Language

The simplest way to understand our language is to think of it as a language for
expressing signal processing diagrams. We refer to the lines in such a diagram as
signals, and the boxes (that convert one signal into another) as signal functions.
Conceptually, signals are continuous, time-varying quantities, but, they can also
be streams of events.

For example, this very simple diagram has two signals, an input x and an
output y, and one signal function, sigfun :

sigfun xy

This is written as a code fragment in our framework as:

y ← sigfun −≺ x

using Haskell’s arrow syntax [18]. The above program fragment cannot appear
alone, but rather must be part of a proc construct, much like a do construct for
monads. The expression on the left must be a variable, whereas the expression
on the right can be any well-typed expression that matches the signal function’s
input type. Signal functions such as sigfun have a type of the form SF T1 T2,
for some types T1 and T2; subsequently, x must have type T1 and y must have
type T2. Although signal functions act on signals, the arrow notation allows one
to manipulate the instantaneous values of the signals. For example, here is a
definition for sigfun that integrates a signal that is one greater than its input:

230 D. Winograd-Cort, H. Liu, and P. Hudak

sigfun :: SF Double Double
sigfun = proc x → do

y ← integral −≺ x + 1
returnA−≺ y

The first line declares sigfun to be a signal function that converts a time-varying
value of type Double into a time-varying value of type Double. The notation
“proc x → do...” introduces a signal function, binding the name x to the
instantaneous values of the input. The third line adds one to each instantaneous
value and sends the resulting signal to an integrator, whose output is named y.
Finally, we specify the output by feeding y into returnA, a special signal function
that returns the result.

Streams of Events. With respect to I/O, continuous signals can be useful in
many contexts, such as the position of a mouse (as input to a program) or the
voltage to a robot motor (as output from a program). However, there are many
applications where instead we are interested in streams of events. We represent
event streams in our language as continuous signals that only contain data at
discrete points in time. A signal that periodically carries information of some
type T has type Event T , whose values are either NoEvent or Event x , where
x :: T .2 For example, a signal function that converts an event stream carrying
values of type M1 into an event stream carrying values of type M2 has type
SF (Event M1) (Event M2).

3 Resource Types

The Problem. As mentioned earlier, we wish to treat I/O devices as signal
functions. Consider, for example, a MIDI sound synthesizer with type:

midiSynth :: SF (Event Notes) ()
midiSynth takes a stream of Notes3 events as input, synthesizes the appropriate
sound of those simultaneous notes, and returns unit values. Now consider this
code fragment:

← midiSynth −≺ notes1

← midiSynth −≺ notes2

We intend for midiSynth to represent a single real-world device, but here we
have two occurrences – so what is the effect? Are the event streams notes1 and
notes2 somehow interleaved or non-deterministically joined together?

Likewise, suppose randomSF is intended to be a random number generator
initialized with a random seed from the OS:

randomSF :: SF () Double

2 The name Event is overloaded as both the type and data constructor.
3 The Notes type represents a set of simultaneously sounding notes such as a chord

or just a single note.

Virtualizing Real-World Objects in FRP 231

Now consider this code fragment:

rands1 ← randomSF −≺ ()
rands2 ← randomSF −≺ ()

What is the relationship between rands1 and rands2? Do they share the same
result, or are they different? If they are the same, what if we want them to be
different?

A Solution. Our solution to these problems consists of four parts. First, to
prevent duplication of signal functions, we introduce the notion of a resource
type. There may be many resource types in a program, and, as we shall see, the
user can easily define new ones. For example, in the cases above, we introduce
the resource types MidiSynthRT and RandomRT (by convention, we always use
RT as the suffix for resource type names).

Second, to keep track of resource types, we introduce three type-level con-
structors: Empty , S and ∪. Empty is the empty set of resource types; the type
S MidiSynthRT is the singleton set containing only MidiSynthRT ; and the bi-
nary operator ∪ constructs the union of two sets of resource types.

Third, we add a “phantom” type parameter to each signal function that cap-
tures the set of resource types that it uses. A signal function of type SF r a b
accesses the resources represented by r , while converting a signal of type a into
a signal of type b. Following the examples above, this leads to:

midiSynth :: SF (S MidiSynthRT) (Event Notes) ()
randomSF :: SF (S RandomRT) () Double

Finally, to facilitate working with resource types, we provide three functions to
convert monadic I/O actions into signal functions tagged with the appropriate
resource type:

source :: IO c → SF (S r) () c
sink :: (b → IO ()) → SF (S r) b ()
pipe :: (b → IO c) → SF (S r) b c

In each case, the resultant signal function has a singleton resource type because
it is expected to be applied to a monadic I/O action of a single I/O device, thus
consuming a single resource.

For event-based signal functions (as described in Section 2) we provide three
analagous functions: sourceE , sinkE , and pipeE with the expected types.

Running Examples. Continuing with our running examples, suppose that:
midiSynthM :: Notes → IO () is the monadic action that sends a set of notes to
the synthesizer. We can then define midiSynth as follows:

data MidiSynthRT
midiSynth :: SF (S MidiSynthRT) (Event Notes) ()
midiSynth = sinkE midiSynthM

232 D. Winograd-Cort, H. Liu, and P. Hudak

Note that MidiSynthRT is an empty data type – all we need is the type name –
and that midiSynth is an event-based signal function.

Similarly, although randomSF does not access an I/O device, it is a source of
non-local effects from the OS. We can define it from scratch using the randomIO ::
IO Double function from Haskell’s Random library:

data RandomRT
randomSF :: SF (S RandomRT) () Double
randomSF = source randomIO

We treat randomSF as a continuous signal function, and its range, inherited
from randomIO , is the semi-closed interval [0, 1).

Redefining the Arrow Class. Our key technical result is that, because we
are using arrows, we can now re-type each of the combinators in the Arrow class
in such a way that the problematical code fragments given earlier will not type
check. The details of how this is done are described in the next Section, but for
now the key intuition is that whenever two signal functions, say sf 1 :: SF r1 a b
and sf 2 :: SF r2 b c are composed, we require that r1 and r2 be disjoint –
otherwise, they may compete for the same resource. Both of the problematical
code fragments given earlier fall into this category. For example:

← midiSynth −≺ notes1

← midiSynth −≺ notes2

is essentially the composition of two instances of midiSynth – but each of them
has the same set of resource types, namely S MidiSynthRT ; thus they are not
disjoint, and not well typed. One way to fix this is to explicitly merge notes1

and notes2:

← midiSynth −≺ noteMerge notes1 notes2

Now there is one occurence of midiSynth , and all is well.
The problematical example involving random numbers leads to a more inter-

esting result if we wish to have two independent random number generators. We
achieve this by defining two different resource types, and two different versions
of randomSF :

data RandomRT 1

data RandomRT 2

randomSF 1 :: SF (S RandomRT 1) () Double
randomSF 1 = source randomIO
randomSF 2 :: SF (S RandomRT 2) () Double
randomSF 2 = source randomIO

A slight variation of the problematical code yields the desired well-typed result:
rands1 ← randomSF 1 −≺ ()
rands2 ← randomSF 2 −≺ ()

(Because each element produced by randomIO is independently random, mul-
tiple calls will not interfere with each other. Therefore, we can use alternating
calls to randomIO to produce two independent random streams.)

Virtualizing Real-World Objects in FRP 233

(arr)
� E : α → β

� arr E : SF ∅ α β

(first)
� E : SF τ α β

� first E : SF τ (α, γ) (β, γ)

(>>>)

� E1 : SF τ ′ α β
� E2 : SF τ ′′ β γ

∅ = τ ′ ∩ τ ′′

τ = τ ′ ∪ τ ′′

� E1 >>> E2 : SF τ α γ

(loop)
� E : SF τ (α, γ) (β, γ)

� loop E : SF τ α β

(init)
� E : α

� init E : SF ∅ α α

(|||)

� E1 : SF τ ′ α γ
� E2 : SF τ ′′ β γ

τ = τ ′ ∪ τ ′′

� E1|||E2 : SF τ (α + β) γ

Fig. 1. Resource Type Inference Rules

4 Type Inference Rules

In Haskell, the arrow syntax is translated into a set of combinators that are
captured by the type classes Arrow , ArrowLoop, ArrowChoice , and ArrowInit .
Space limitations preclude a detailed discussion of this translation process (see
[18]). Once translated, the type inference rules that form the basis of our imple-
mentation are shown in Figure 1. There is one rule for each of the operators in
the above type classes. The + symbol denotes the disjoint (i.e. discriminated)
sum type. Set intersection is denoted by ∩ and set union by ∪. Let’s examine
each of the rules in turn:

1. The (arr) rule states that the set of resource types for a pure function lifted
to the arrow level is empty.

2. The (first) rule states that transforming a signal function using first does
not alter the resource type.

3. The (>>>) rule is perhaps the most important; it states that when two sig-
nal functions are composed, their resource types must be disjoint, and the
resulting resource type is the union of the two.

4. The (loop) rule states that the loop combinator must pass the resource type
unchanged (i.e. as a loop invariant), reflecting the fact that in a recursively
defined signal function, the resource type must be the same at every level of
recursion.

5. The (init) rule states that the set of resource types for the init operator
(from the ArrowInit class) is empty.

6. The final rule is for the choice operator (|||) in the ArrowChoice class. The
resulting resource type is the union of those of its inputs, which are not
required to be disjoint (as discussed in Section 5).

Note that the new signal functions created by init and arr have empty resource
types. But when defining a new signal function, we need a way to specify its
resource type. Thus, we define a function tag , whose type inference rule is:

234 D. Winograd-Cort, H. Liu, and P. Hudak

(tag)

� E : SF τ α β
τ ⊆ τ ′

� tag E : SF τ ′ α β

The tag function has no run-time effect; it merely adds resource types to the
signal function it acts upon.

5 More Examples

Recursion. A MIDI keyboard is a stream transformer that adds the notes
played on the keyboard in real time to the stream it operates on. It has the
type:

midiKB :: SF (S MidiKBRT) (Event Notes) (Event Notes)
We can define a signal function that creates an “echo” effect for notes played
on the keyboard by delaying and looping them through the keyboard itself,
attenuating each note by some percentage on each loop:

echo :: SF (S MidiKBRT) (Double,Double) (Event Notes)
echo = proc (rate, freq) → do

rec notesOut ← midiKB −≺ notes
notes ← delayt −≺ (1.0/freq , decay rate notesOut)

returnA−≺ notesOut
Note the use of the rec keyword – this will induce the loop rule from Section 4,
and everything is well typed.

echo is a signal function that takes a decay rate and frequency as time varying
arguments and uses them to add an echo to the notes played on the MIDI
keyboard. It uses two helper functions: decay rate ns attenuates each note in ns
by rate, and delayt −≺ (t ,ns) delays each event in ns by the time t .

Conditionals. As discussed earlier, signal function composition requires that
the resource types of the arguments be disjoint. However, for conditionals (i.e.
case statements), the proper semantics is to take the natural union of the re-
source types. Consider the following functions for sending sound data to speakers:

playLeft :: SF (S LeftRT) Sound ()
playRight :: SF (S RightRT) Sound ()
playStereo :: SF (S LeftRT ∪ S RightRT) Sound ()

We can use these to define a signal function for routing sound to the proper
speaker (often called a demultiplexer):

data SpeakerChoice = Left | Right | Stereo
routeSound :: SF (S LeftRT ∪ S RightRT) (SpeakerChoice ,Sound) ()
routeSound = proc (sc, sound) → do

Virtualizing Real-World Objects in FRP 235

case sc of
Left → playLeft −≺ sound
Right → playRight −≺ sound
Stereo → playStereo −≺ sound

This is well typed, since the case statement in arrow syntax invokes the inference
rule for the choice operator (|||) in the ArrowChoice class given in Section 4.

Virtual Objects. Virtual (GUI) components can be treated the same as con-
crete devices in our framework. In this section we extend the echo example given
earlier to allow the user to pick the decay rate and frequency using GUI “sliders”
and for the echo result to be graphed in real time.

To write this program, we use a different type of signal function than used
previously. The type UISF r a b is designed especially for GUIs, and we can lift
ordinary SF s to UISFs by using the function toUISF . In addition, we use two
built-in GUI functions: (1) Given a range and initial value, hslider creates a hori-
zontal slider; (2) Given some step parameters, a size, and a color, realTimeGraph
creates a graph that varies in real-time as its input changes. We begin by defining
three signal functions for the three widgets we use:

decSlider :: UISF (S DSlider) () Double
freqSlider :: UISF (S FSlider) () Double
graph :: UISF (S Graph) Double ()
decSlider = title "Decay Rate" $ hSlider (0, 0.9) 0.5
freqSlider = title "Frequency" $ hSlider (1, 10) 10
graph = realtimeGraph (400, 300) 400 20 Black

We also require renderNotes ::SF Empty (Event Notes) Double, a signal function
that transforms our Notes events into sound data. With these functions we can
define our main application:

echoGUI :: UISF (S MidiKBRT ∪ S DSlider ∪ S FSlider ∪ S Graph) () ()
echoGUI = proc → do

rate ← decSlider −≺ ()
freq ← freqSlider −≺ ()
notes ← toUISF echo −≺ (rate, freq)
sound ← toUISF renderNotes −≺ notes

← graph −≺ sound
returnA−≺ ()

Note that the type of echoGUI lists all of the resources that it uses: both the
physical MIDI keyboard as well as the virtual sliders and graph. If one were to
use this module in another GUI, it would be clear from the type what the major
components would be. Figure 2a at the end of this section shows a screenshot of
the program in action.

Wormholes. Resource types allow us to safely perform I/O actions within sig-
nal functions, and although they were designed with physical resources in mind,
the idea extends to other kinds of effectful computation as well. For example,

236 D. Winograd-Cort, H. Liu, and P. Hudak

(a) echoGUI (b) echoGUIWithDebug

Fig. 2. Screenshots of the GUI signal functions from Section 5 just after a note has
been played on the MIDI keyboard

mutation and direct memory access, techniques that are typically plagued by
difficult-to-find bugs, can be made safe. We begin by defining:

data Wormhole r1 r2 a = Wormhole {whitehole :: SF (S r1) () a,
blackhole :: SF (S r2) a ()}

makeWormhole :: a → Wormhole r1 r2 a
makeWormhole takes an initial value for the hidden mutable variable and returns
a pair of signal functions, the first for reading and the second for writing, with
each independently typed.

Continuing with our echo example from previous sections, suppose we want to
add debugging information. There were two values we created in echo – notesOut
and notes – but we only return the former. However, if we try to change echo
to return both note streams, then we need to adjust echoGUI and any other
functions that rely on echo to match. So instead, we use a wormhole:

wormhole :: Wormhole DebugW DebugB (Event Notes)
wormhole = makeWormhole Nothing
echo :: SF (S MidiKBRT ∪ S DebugB) (Double,Double) (Event Notes)
echo = proc (rate, freq) → do

rec notesOut ← midiKB −≺ notes
notes ← delayt −≺ (1.0/freq , decay rate notesOut)

← blackhole wormhole −≺ notes
returnA−≺ notesOut

The set of resource types for echo changes to include S DebugB ; the set of
resource types for echoGUI changes similarly, but its implementation remains
the same.

Now, we can define a new echoGUI that uses the debug info. Because of the
nature of signal functions, this is quite easy:

debugGraph :: UISF (S DebugGraph) Double ()
debugGraph = title "Debug" $ realtimeGraph (400, 300) 400 20 Red
echoGUIWithDebug = proc → do

Virtualizing Real-World Objects in FRP 237

← echoGUI −≺ ()
debugVal ← toUISF (whitehole wormhole) −≺ ()
rendered ← toUISF renderNotes −≺ debugVal

← debugGraph −≺ rendered
returnA−≺ ()

Figure 2b shows a screenshot of the program in action.

6 Implementation

Implementing Resource Types. To implement resource types in Haskell we
need a way to represent sets of resource types, integrate them appropriately
with our signal functions, and make them consistent with the type inference
rules given earlier. Our implementation is inspired by Haskell’s HList library
[14] for heterogeneous lists.

We lack the space to show the complete code, but here we show the most
relevant type class, Disjoint :

class Disjoint xs ys
instance Disjoint Empty ys
instance (NotElemOf x ys HTrue) ⇒ Disjoint (S x) ys
instance (Disjoint xs1 ys ,Disjoint xs2 ys) ⇒ Disjoint (xs1 ∪ xs2) ys

Disjoint s1 s2 declares that s1 and s2 are disjoint sets (of resource types). The
first instance of the Disjoint class declares that the empty set is disjoint from all
other sets. The second instance says that if x is not an element of ys , then the
singleton set containing x is disjoint from ys . And the final instance says that if
both xs1 and xs2 are disjoint from ys , then their union is also disjoint from ys .

Re-Typing the Arrow Operators. We now have a method to represent sets
of types as well as type classes for combining them. What remains is to use these
types in the typing of the arrow operators, as we did in Section 4.

class Arrow a where
arr :: (b → c) → a Empty b c
first :: a r b c → a r (b, d) (c, d)
(>>>) :: (Disjoint r1 r2,Union r1 r2 r3) ⇒ a r1 b c → a r2 c d → a r3 b d
tag :: Subset r1 r2 ⇒ a r1 b c → a r2 b c

arr and first are easily adapted, as the resource types do not actually affect
their behavior. The (>>>) operator is more complex as it needs to perform a
disjoint union on the resource types of its arguments. The Disjoint type class
from the previous section assures the arguments are well-typed, and the Union
type class behaves like the ∪ operator except that it simplifies degenerate cases
like r ∪ Empty to just r . Lastly, we add the tag operator to the class as well.

Monadic Signal Functions. With the types prepared, we can instantiate the
Arrow class. We begin with a standard implementation of a signal function, such
as from Yampa [15], but with an additional resource type parameter:

238 D. Winograd-Cort, H. Liu, and P. Hudak

data SigF r a b = SigF {sfFunction :: a → (b,SigF r a b)}
Here, a signal function consumes a value of its input type and produces a value
of its output type along with a new function for the next input value.

However, this definition does not allow us to perform monadic IO actions
within the signal function. Although our newly adopted model of program ex-
ecution is based on signal functions, we still have to implement everything in
Haskell, which is based on monadic I/O. To address this, we add a monad pa-
rameter to the signal function data type. This leads to the following design:

data SFM m r a b = SFM {sfmFun :: a → m (b,SFM m r a b)}
Note that this is the automaton arrow transformer specialized to the Kleisli
arrow, with an added resource type parameter. The instances for Arrow , etc.
follow directly. For example, for the Arrow class:

instance Arrow (SFM m) where
arr f = SFM h where h x = return (f x ,SFM h)
first (SFM f) = SFM (h f)

where h f (x , z) = do (y,SFM f ′) ← f x
return ((y, z),SFM (h f ′))

SFM f >>> SFM g = SFM (h f g)
where h f g x = do (y,SFM f ′) ← f x

(z , SFM g ′) ← g y
return (z ,SFM (h f ′ g ′))

tag (SFM f) = SFM h where h x = do (y, sf ′) ← f x
return (y, tag sf ′)

At this point, the astute reader may guess the definition of SF that we introduced
in Section 3:

newtype SF = SFM IO

Auxiliary Functions. Now that we have a complete description of SF , we can
easily show the definitions of source, sink , and pipe from Section 3:

source f = SF h where h = f >>= return ◦ (λ x → (x ,SF h))
sink f = SF h where h x = f x >> return ((),SF h)
pipe f = SF h where h x = f x >>= return ◦ (λ x → (x ,SF h))

7 Limitations and Future Work

Reusing Resource Types. The benefits of resource types rely on their proper
assignment to actual resources, which is not something we can enforce. Even
assuming that the user marks every appropriate signal function with a resource
type, he or she may still accidentally use the same resource type for different
signal functions that don’t share a resource. This will not cause a program to
be unsafe, but it might prevent perfectly safe programs from type-checking.
Alternatively (and more dangerously), the user could use different resource types
for signal functions that access the same resource. This would allow one to use

Virtualizing Real-World Objects in FRP 239

the same resource multiple times without the type-checker complaining. We have
no easy way to detect or dissuade this behavior; we simply demand that the
programmer take care when assigning resource types.

We should point out that this “flaw” is also a “feature,” in that it is what al-
lows us to instantiate the two independent random number generators described
in Section 3. In general, if two signal functions will not interfere with each other,
even if they access the same resource, then they can have different resource types.

Dynamically Created Types. It is very likely, especially when dealing with
virtual objects like widgets, that one would want to create a dynamic number of
signal functions each with its own resource. For example, a program could present
some variable number of sliders to a user depending on user input. However,
despite the fact that any number of signal functions can be created, only the
limited number of types declared at compile time are available as resource types.

Of course, one could create a compound signal function that displays an ar-
bitrary number of sliders yet only has one resource type. Although this is a
practical way to deal with the problem, it reduces the effectiveness of resource
typing, so we are exploring alternative solutions.

Type Explosion. Although resource types provide an elegant means to man-
aging resources, lengthy programs making use of many resources can become
unwieldy. Ideally, we would have some way to hide particular “sets” of types
from being displayed, so that, for example, a fully-used wormhole’s types would
not appear in the signal function’s type. Currently, the best way to do this is to
group the set of unwanted resource types into a type synonym like so:

type ExtraRTs = S Blackhole1 ∪ S Whitehole1 ∪ S Blackhole2 ∪ ...
mySF :: SF (S Resource1 ∪ S DebugB ∪ ExtraRTs) a b

Here, mySF uses Resource1 and a debugging black hole and hides the rest of
its internal resource types in ExtraRTs. However, a more desirable method to
achieve this would be to have locally-scoped types that could only be used with
similarly scoped signal functions.

Parallelism and Asynchrony. Because resource types clearly show where par-
ticular resources are being used and assure that resources will not be accidentally
touched in other places, they provide a great setting for safely parallelizing pro-
grams. Furthermore, constructs like wormholes (but made thread-safe) could
provide an easy way for parallel threads to communicate. In addition to paral-
lelism, resource types allow for elegant asynchronous computation. Rather than
the typical parallel synchronous model, where each input correspdons to one out-
put, we can allow slow performing signal functions to run as event-based ones
in separate threads that only supply data when their computations complete.

8 Related Work

The idea of using continuous modeling for dynamic, reactive behavior (now often
referred to as “functional reactive programming”) is due to Elliott, beginning

240 D. Winograd-Cort, H. Liu, and P. Hudak

with early work on TBAG, a C++ based model for animation [6]. Subsequent
work on Fran (“functional reactive animation”) embedded the ideas in Haskell
[5,9]. The design of Yampa [3,12] adopted arrows as the basis for FRP, an ap-
proach that is used in most of our research today, including Euterpea. The use of
Yampa to program GUI components was explored in [2,1], which relates to our
work in the use of signal functions to represent GUI widgets. So, for example, in
Fruit, a model very similar to our UISF was proposed, but it does not require
resource types. They avoid the problem of reource duplicaton by making their
“widgets” essentially pure functions with well defined but restricted output (e.g.
Picture). Our work allows us to lift this restriction as we address the duplication
problem through resource types. Also related is Elliott’s recent work on Eros [4].

There is a long history of programming languages designed specifically for
audio processing and computer music applications – indeed, the Wikipedia entry
for “Audio Programming Language” currently lists 34 languages, including our
original work on Haskore [10]. Obviously we cannot mention every language.
It is worth noting that, except for our recent work on Euterpea, none of these
efforts attempt to address the safe virtualization of devices.

With regard to types, the idea of linear typing is somewhat similar to our
work. For example, the language Clean [21] has a notion of uniqueness types.
In Clean, when an I/O operation is performed on a device, a value is returned
that represents a new instantiation of that device; this value, in turn, must be
threaded as an argument to the next I/O operation, and so on. This single-
threadedness can also be tackled using linear logic [7]. In fact, various authors
have proposed language extensions to incorporate linear types, such as [24,8].
In contrast, we do not concern ourselves with single-threadedness since we only
have one signal function to represent any particular I/O device. Our focus is on
ensuring that resource types do not conflict.

It seems clear that a language with dependent types, such as Agda [16], could
easily encode the resource type constraints that we showed in this paper. How-
ever, Agda and related proof assistants (Coq, Epigram, etc.) are aimed primarily
at verification, and not general programming as Haskell is.

Separation logic [17,22] is also relevant, in which specifications and proofs
of a program component refer only to the portion of memory used by that
component, and not the entire global state. An extension of this idea might
provide a theoretical basis for our work, although we have yet to explore it.

Acknowledgements. This research was supported in part by a gift from
Microsoft Research and a grant from the National Science Foundation (CCF-
0811665).

References

1. Courtney, A.: Modelling User Interfaces in a Functional Language. Ph.D. thesis,
Department of Computer Science, Yale University (May 2004)

2. Courtney, A., Elliott, C.: Genuinely functional user interfaces. In: 2001 Haskell
Workshop (September 2001)

Virtualizing Real-World Objects in FRP 241

3. Courtney, A., Nilsson, H., Peterson, J.: The Yampa arcade. In: Proceedings of the
2003 ACM SIGPLAN Haskell Workshop (Haskell 2003), pp. 7–18. ACM Press,
Uppsala (2003)

4. Elliott, C.: Tangible functional programming. In: International Conference on
Functional Programming (2007), http://conal.net/papers/Eros/

5. Elliott, C., Hudak, P.: Functional reactive animation. In: International Conference
on Functional Programming, pp. 263–273 (June 1997)

6. Elliott, C., Schechter, G., Yeung, R., Abi-Ezzi, S.: Tbag: A high level framework
for interactive, animated 3d graphics applications. In: Proceedings of SIGGRAPH
1994, pp. 421–434. ACM SIGGRAPH (July 1994)

7. Girard, J.Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)
8. Hawblitzel, C.: Linear types for aliased resources (extended version). Tech. Rep.

MSR-TR-2005-141, Microsoft Research, Redmond, WA (October 2005)
9. Hudak, P.: The Haskell School of Expression – Learning Functional Programming

through Multimedia. Cambridge University Press, New York (2000)
10. Hudak, P.: Describing and interpreting music in Haskell. In: The Fun of Program-

ming, ch. 4. Palgrave (2003)
11. Hudak, P.: The Haskell School of Music – from Signals to Symphonies (Version 2.0)

(January 2011), http://haskell.cs.yale.edu/?post_type=publication&p=112
12. Hudak, P., Courtney, A., Nilsson, H., Peterson, J.: Arrows, Robots, and Functional

Reactive Programming. In: Jeuring, J., Jones, S.L.P. (eds.) AFP 2002. LNCS,
vol. 2638, pp. 159–187. Springer, Heidelberg (2003)

13. Hughes, J.: Generalising monads to arrows. Science of Computer Programming 37,
67–111 (2000)

14. Kiselyov, O., Lämmel, R., Schupke, K.: Strongly typed heterogeneous collections.
In: Haskell 2004: Proceedings of the ACM SIGPLAN Workshop on Haskell, pp.
96–107. ACM Press (2004)

15. Nilsson, H., Courtney, A., Peterson, J.: Functional Reactive Programming, contin-
ued. In: ACM SIGPLAN 2002 Haskell Workshop (October 2002)

16. Norell, U.: Dependently Typed Programming in Agda. In: Koopman, P., Plasmei-
jer, R., Swierstra, D. (eds.) AFP 2008. LNCS, vol. 5832, pp. 230–266. Springer,
Heidelberg (2009)

17. OHearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter
data structures. Computer Science Logic, p. 1

18. Paterson, R.: A new notation for arrows. In: ICFP 2001: International Conference
on Functional Programming, Firenze, Italy, pp. 229–240 (2001)

19. Peyton Jones, S., Wadler, P.: Imperative functional programming. In: Proceed-
ings 20th Symposium on Principles of Programming Languages, pp. 71–84. ACM
(January 1993)

20. Peyton Jones, S., et al.: The Haskell 98 language and libraries: The revised report.
Journal of Functional Programming 13(1), 0–255 (January 2003)

21. Plasmeijer, R., van Eekelen, M.: Clean – version 2.1 language report. Tech. rep.,
Department of Software Technology, University of Nijmegen (November 2002)

22. Reynolds, J.: Separation logic: A logic for shared mutable data structures. In: Proc.
Logic in Computer Science (LICS 2002), pp. 55–74 (July 2002)

23. Voellmy, A., Hudak, P.: Nettle: Taking the Sting Out of Programming Network
Routers. In: Rocha, R., Launchbury, J. (eds.) PADL 2011. LNCS, vol. 6539, pp.
235–249. Springer, Heidelberg (2011)

24. Wadler, P.: Is there a use for linear logic? In: Symposium on Partial Evaluation
and Semantics Based Program Manipulation, pp. 255–273. ACM/IFIP (1991)

http://conal.net/papers/Eros/
http://haskell.cs.yale.edu/?post_type=publication&p=112

Resource-Safe Systems Programming
with Embedded Domain Specific Languages

Edwin Brady and Kevin Hammond

University of St Andrews, KY16 9SX, Scotland/UK
{eb,kh}@cs.st-andrews.ac.uk

Abstract. We introduce a new overloading notation that facilitates pro-
gramming, modularity and reuse in Embedded Domain Specific Lan-
guages (EDSLs), and use it to reason about safe resource usage and
state management. We separate the structural language constructs from
our primitive operations, and show how precisely-typed functions can be
lifted into the EDSL. In this way, we implement a generic framework for
constructing state-aware EDSLs for systems programming.

Keywords: Dependent Types, Resource Usage, (Embedded) Domain-
Specific Languages, Program Verification.

1 Introduction

Domain Specific Languages (DSLs) are designed to solve problems in specific do-
mains (e.g. Matlab/Simulink for real-time systems or SQL for database queries).
One popular implementation technique is to embed a DSL in a host language, so
creating an Embedded Domain Specific Language (EDSL) [12]. This allows rapid
development of a DSL by exploiting host language features, such as parsing/code
generation. However, host-language specific information, such as details of host
language constructs, often “leaks” into the DSL, inhibiting usability and reduc-
ing abstraction. In order to be truly practical, we must address such issues so that
our EDSL is modular, composable and reusable. This paper introduces a new
overloading notation that allows EDSLs to be more easily used in practice, and
shows how it can be used to develop an EDSL for reasoning about safe resource
usage and state management. We make the following specific contributions:

1. We present the dsl construct, a modest extension to the dependently-typed
language Idris that allows host language syntax, in particular variable bind-
ing, to be overloaded by an Embedded DSL (Section 3).

2. Using the dsl construct, we show how to embed languages with alternative
forms of binding: we embed an imperative language, which manages mutable
local variables in a type-safe way, and extend this to a state-aware language
which manages linear resources (Section 4).

3. We show how to convert a protocol described by state transitions into a
verified implementation (Sections 5 and 6).

C. Russo and N.-F. Zhou (Eds.): PADL 2012, LNCS 7149, pp. 242–257, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Resource-Safe Systems Programming 243

By embedding the DSL within a dependently-typed language, we obtain the key
advantage of correctness by construction: the host language type system auto-
matically verifies the required DSL properties without needing to first translate
into an equivalent set of state transitions and subsequently checking these. As
Landin said, “Most programming languages are partly a way of expressing things
in terms of other things, and partly a basic set of given things” [14]. In our state-
aware DSL, the basic set of given things explains how resources are created and
how states interact. Like Landin’s Iswim, this DSL can be problem-oriented by
providing functions for creating, updating and using primitive values. The em-
bedding then composes these constructs into a complete and verifiable EDSL.
Example code for the resource language presented in this paper is available from
http://idris-lang.org/code/padl12-resources.tgz.

2 The Well-Typed Interpreter

Dependent types, in which types may be predicated on values, allow us to express
a program’s specification and constraints precisely. In the context of EDSLs, this
allows us to express a precise type system, describing the exact properties that
EDSL programs must satisfy, and have the host language check those properties.
The well-typed interpreter [1,6,20] for a simple functional language is commonly
used to illustrate the key concepts of dependently-typed programming. Here, the
type system ensures that only well-typed source programs can be represented
and interpreted. In this section, we use the well-typed interpreter example to
introduce Domain Specific Language implementation in Idris. Idris [5] is an
experimental functional programming language with dependent types, similar
to Agda [19] or Epigram [9,16]. It is eagerly evaluated and compiles to C via the
Epic compiler library [4]. It is implemented on top of the Ivor theorem proving
library [3], giving direct access to an interactive tactic-based theorem prover. A
full tutorial is available online at http://idris-lang.org/tutorial/.

2.1 Language Definition

Figure 1 defines a simple functional expression language, Expr, with integer
values and operators. The using notation means that wherever G is used it
can be treated as an implicit argument with type Vect Ty n. Terms of type
Expr are indexed by i) a context (of type Vect Ty n), which records types for
the variables that are in scope; and ii) the type of the term (of type Ty). The
valid types (Ty) are integers (TyInt) or functions (TyFun). We define terms
to represent variables (Var), integer values (Val), lambda-abstractions (Lam),
function calls (App), and binary operators (Op). Types may either be integers
(TyInt) or functions (TyFun), and are translated to Idris types using interpTy.
Our definition of Expr also states its typing rules, in some context, by showing
how the type of each term is constructed. For example:

Val : (x:Int) -> Expr G TyInt

Var : (i:Fin n) -> Expr G (vlookup i G)

http://idris-lang.org/code/padl12-resources.tgz
http://idris-lang.org/tutorial/

244 E. Brady and K. Hammond

data Ty = TyInt | TyFun Ty Ty;

interpTy : Ty -> Set;

interpTy TyInt = Int;

interpTy (TyFun A T) = interpTy A -> interpTy T;

data Fin : Nat -> Set where

fO : Fin (S k)

| fS : Fin k -> Fin (S k);

using (G:Vect Ty n) {

data Expr : Vect Ty n -> Ty -> Set where

Var : (i:Fin n) -> Expr G (vlookup i G)

| Val : (x:Int) -> Expr G TyInt

| Lam : Expr (A::G) T -> Expr G (TyFun A T)

| App : Expr G (TyFun A T) -> Expr G A -> Expr G T

| Op : (interpTy A -> interpTy B -> interpTy C) ->

Expr G A -> Expr G B -> Expr G C;

}

Fig. 1. The Simple Functional Expression Language, Expr

The type of Val indicates that values have integer types (TyInt), and the type
of Var indicates that the type of a variable is obtained by looking up i in context
G. For any term, x, we can read x : Expr G T as meaning “x has type T in the
context G”. Expressions in this representation are well-scoped, as well as well-
typed. Variables are represented by de Bruijn indices, which are guaranteed to
be bounded by the size of the context, using i:Fin n in the definition of Var.
A value of type Fin n is an element of a finite set of n elements, which we use
as a reference to one of n variables. Evaluation is via an interpretation function,
which takes an expression and and environment corresponding to the context in
which that expression is defined. The definition can be found in [8].

interp : Env G -> Expr G T -> interpTy T;

We can now define some simple example functions. We define each function to
work in an arbitrary context G, which allows it to be applied in any subexpression
in any context. Our first example function adds its integer inputs:

add : Expr G (TyFun TyInt (TyFun TyInt TyInt));

add = Lam (Lam (Op (+) (Var (fS fO)) (Var fO)));

We can use add to define the double function:
double : Expr G (TyFun TyInt TyInt);

double = Lam (App (App add (Var fO)) (Var fO));

2.2 Control Structures and Recursion

To make Expr more realistic, we add boolean values and an If construct. These
extensions are shown in Figure 2. Using these extensions, we can define a (re-
cursive) factorial function:

Resource-Safe Systems Programming 245

data Ty = TyInt | TyBool | TyFun Ty Ty;

interpTy TyBool = Bool;

data Expr : (Vect Ty n) -> Ty -> Set where

...

| If : Expr G TyBool -> Expr G A -> Expr G A -> Expr G A;

Fig. 2. Booleans and If construct

fact : Expr G (TyFun TyInt TyInt);

fact = Lam (If (Op (==) (Val 0) (Var fO)) (Val 1)

(Op (*) (Var fO)

(App fact (Op (-) (Var fO) (Val 1)))));

We have all the fundamental features of a full programming language here: a type
system, variables, functions and control structures. While Expr itself is clearly
too limited to be of practical use, we could use similar methods to represent more
complex systems, e.g. capturing sizes, resource usage or linearity constraints. In
the rest of this paper, we will explore how to achieve this.

3 Syntax Overloading

We would like to use the well-typed interpreter approach to implement domain
specific type systems capturing important properties of a particular problem
domain, such as resource correctness. Unfortunately, this at first appears to
be impractical because of the need to write programs as syntax trees, and in
particular the need to represent variables as de Bruijn indices. In this section,
we present a new host language construct that allows host language syntax to
be used when constructing programs in the EDSL, and use it to implement a
practical embedded DSL for resource- and state-aware programs.

3.1 do-Notation

In Haskell, we can overload do-notation to give alternative interpretations of
variable binding in monadic code. We have implemented a similar notation in
Idris using syntactic overloading. For example, we can use do-notation for Maybe
by declaring which bind and return operators to use:

data Maybe a = Nothing | Just a;

maybeBind : Maybe a -> (a -> Maybe b) -> Maybe b;

do using (maybeBind, Just) {

m_add : Maybe Int -> Maybe Int -> Maybe Int;

m_add x y = do { x’ <- x;

y’ <- y;

return (x’ + y’); };

}

246 E. Brady and K. Hammond

dsl expr {

lambda = Lam, variable = Var,

index_first = fO, index_next = fS,

apply = App, pure = id

}

Fig. 3. Overloading syntax for Expr

add = expr (\x, y => Op (+) x y);

double = expr (\x => [| add x x |]);

fact : Expr G (TyFun TyInt TyInt);

fact = expr (\x => If (Op (==) x (Val 0)) (Val 1)

(Op (*) x [| fact (Op (-) x (Val 1)) |]));

Fig. 4. Expr programs after overloading

Overloading do-notation is useful for EDSL implementation, in that it allows us
to use a different binding construct provided by the EDSL. However, do-notation
provides only one kind of binding. What if we need e.g. λ and let binding? What
if we need a different notion of application, for example with effects [17]?

3.2 The dsl Construct

In order to allow multiple kinds of binding and application, we introduce a new
construct to Idris. A dsl declaration gives a name for a language and explains
how each host language construct is translated into the required EDSL con-
struct. Figure 3 shows, for example, how Idris’s binding syntax is overloaded
for Expr. We give a language name, expr, and say that Idris lambdas cor-
respond to Lam, and that variables correspond to Var applied to a de Bruijn
index, which is constructed from fO and fS. Applications are built using App,
with the pure, functional part of the application built using id. The programs
that we presented in the previous section can now be written using Idris’s
binding construct, as in Figure 4. Since we called the DSL expr, an expression
expr e applies the syntactic overloading to the sub-expression e. Application
overloading applies only under explicit “idiom brackets” [17]. Intuitively, expr
e translates e according to the following rules:

– Any expression \x => a is translated to Lam a’, where a’ is a with instances
of the variable x is translated to a de Bruijn indexed Var i. The index i is
built from fO and fS counting the number of names bound since x.

– Any application under idiom brackets [| f a1 a2 ... an |]is translated
to App (App (App (id f) a1) a2) ... an

Within a dsl declaration, we can provide several overloadings:

– bind and return, for overloading do-notation.
– pure and apply, for overloading application under idiom brackets.

Resource-Safe Systems Programming 247

e ::= x (Variable) | e e (Application)
| \ x => e (lambda binding) | let x = e1 in e2 (let binding)
| [| e |] (Idiomatic application) | do { ds } (do block)
| return (return keyword) | dsl e (Overloaded expression)

d ::= x <- e (Binding) ds ::= d ; ds | e
| e (Expression)

Fig. 5. Core Idris expressions

– lambda, let, variable, index first and index next, for overloading
lambda and let bindings.

It is not necessary to define all of these overloadings. However, if either lambda or
let is defined, all of variable, index first and index next must be defined,
otherwise there is no valid translation for the bound variable.

3.3 Formal Definition

To give a precise definition of the dsl construct, we define four translation
schemes on core Idris expressions as defined in Figure 5.

– D�·� dsl , defined in Figure 6, transforms an Idris expression by a given set
of overloadings dsl .

– V�·� x i , defined in Figure 7, converts a variable name x to de Bruijn index
i in an expression.

– I�·�, defined in Figure 8, converts an application under idiom brackets
– M�·�, also defined in Figure 8, converts a do-block.

Mostly, these schemes are a straightforward traversal of the structure of Idris

expressions. In D�·� , we can nest dsl declarations, updating the set of overload-
ings. We leave the overloading parameter o implicit in V�·� , I�·� and M�·�. The
definition of each of the overloadable names is extracted from this parameter.
Note that D�·� combines the other translation schemes, which each do a spe-
cific job. This means in particular that lambda bindings generated by M�·� can
further be translated to an overloaded lambda.

4 Resource Management

In a typical file management API, such as that in Haskell, we might find the
following typed operations:

open : String -> Purpose -> IO File;

read : File -> IO String;

close : File -> IO ();

248 E. Brady and K. Hammond

D�x� o �→ x
D�e1 e2� o �→ (D�e1� o) (D�e2� o)
D�\ x => e� o �→ D�lambda (V�e� x 0)� o (if lambda defined)

�→ \ x =>D�e� o (otherwise)
D�let x = e1 in e2� o �→ D�let e1 (V�e2� x 0)� o (if let defined)

�→ let x =D�e1� o inD�e2� o (otherwise)
D�[| e |]� o �→ D�I�e�� o
D�do { ds }� o �→ D�M�ds�� o
D�return� o �→ return

D�dsl e� o �→ D�e� dsl

Fig. 6. The D�·� translation schemes

V�x1� x2 i �→ variable (MkVar i) (if x1 = x2)
�→ x1 (otherwise)

V�e1 e2� x i �→ (V�e1� x i) (V�e2� x i)
V�\ x1 => e� x2 i �→ \ x1 => V�e� x2 (i + 1) (if lambda defined)

�→ \ x1 => V�e� x2 i (otherwise)
V�let x1 = e1 in e2� x2 i �→ let x1 = V�e1� x2 i in V�e2� x2 (i + 1) (if let defined)

�→ let x1 = V�e1� x2 i in V�e2� x2 i (otherwise)
V�[| e |]� x i �→ [| V�e� x i |]
V�do { ds }� x i �→ do { V�ds� x i }
V�return� x i �→ return
V�dsl e� x i �→ dsl (V�e� x i)

MkVar 0 �→ index first

MkVar (n + 1) �→ index next (MkVar n)

Fig. 7. The V�·� translation scheme

Unfortunately, it is easy to construct programs which are well-typed, but never-
theless fail at run-time, for example, if we read from a file opened for writing:

fprog filename = do { h <- open filename Writing;

content <- read h;

close h; };

If we make the types more precise, parameterising open files by purpose, fprog
is no longer well-typed, and will therefore be rejected at compile-time.

data Purpose = Reading | Writing;

open : String -> (p:Purpose) -> IO (File p);

read : File Reading -> IO String;

close : File p -> IO ();

However, there is still a problem. The following program is well-typed, but fails
at run-time — although the file has been closed, the handle h is still in scope:

Resource-Safe Systems Programming 249

I�e1 e2� �→ apply (I�e1�) e2 (top level application)
I�e� �→ pure e (all other expressions)

M�x <- e; ds� �→ bind e (\ x =>M�ds�)
M�e; ds� �→ bind e (\ =>M�ds�)
M�e� �→ e

Fig. 8. The I�·� and M�·� translation schemes

fprog filename = do { h <- open filename Reading;

content <- read h;

close h; read h; };

Furthermore, we did not check whether the handle h was created successfully.
Resource management problems such as this are common in systems program-
ming — we need to deal with files, memory, network handles, etc, ensuring that
operations are executed only when valid and errors are handled appropriately.

4.1 An EDSL for Generic Resource Correctness

To tackle this problem, we present an EDSL which tracks the state of resources
at any point during program execution, and ensures that any resource protocol
is correctly executed. We begin by categorising resource operations into creation,
update and usage operations, by lifting them from IO. We illustrate this using
Creator; Updater and Reader can be defined similarly.

data Creator a = MkCreator (IO a);

ioc : IO a -> Creator a;

ioc = MkCreator;

The MkCreator constructor is left abstract, so that a programmer can lift an
operation into Creator using ioc, but cannot run it directly. IO operations can
be converted into resource operations, tagging them appropriately:

open : String -> (p:Purpose) -> Creator (Either () (File p));

close : File p -> Updater ();

read : File Reading -> Reader String;

Here: open creates a resource, which may be either an error (represented by ()) or
a file handle that has been opened for the appropriate purpose; close updates a
resource from a File p to a () (i.e., it makes the resource unavailable); and read
accesses a resource (i.e., it reads from it, and the resource remains available).
They are implemented using the relevant (unsafe) IO functions from the Idris

library. Resource operations are executed via a resource management EDSL,
Res, with resource constructs (Figure 9), and control constructs (Figure 10).

As we did with Expr in Section 2, we index Res over the variables in scope
(which represent resources), and the type of the expression. This means that
firstly we can refer to resources by de Bruijn indices, and secondly we can express
precisely how operations may be combined. Unlike Expr, however, we allow

250 E. Brady and K. Hammond

data Res : Vect Ty n -> Vect Ty n -> Ty -> Set where

Let : Creator (interpTy a) ->

Res (a :: gam) (Val () :: gam’) (R t) -> Res gam gam’ (R t)

| Update : (a -> Updater b) -> (p:HasType gam i (Val a)) ->

Res gam (update gam p (Val b)) (R ())

| Use : (a -> Reader b) -> HasType gam i (Val a) ->

Res gam gam (R b)

...

Fig. 9. Resource constructs

data Res : Vect Ty n -> Vect Ty n -> Ty -> Set where

...

| Check : (p:HasType gam i (Choice (interpTy a) (interpTy b))) ->

(failure:Res (update gam p a) (update gam p c) T) ->

(success:Res (update gam p b) (update gam p c) T) ->

Res gam (update gam p c) T

| While : Res gam gam (R Bool) ->

Res gam gam (R ()) -> Res gam gam (R ())

| Lift : IO a -> Res gam gam (R a)

| Return : a -> Res gam gam (R a)

| Bind : Res gam gam’ (R a) -> (a -> Res gam’ gam’’ (R t)) ->

Res gam gam’’ (R t);

Fig. 10. Control constructs

types of variables to be updated. Therefore, we index over the input set of
resource states, and the output set:

data Res : Vect Ty n -> Vect Ty n -> Ty -> Set

We can read Res gam gam’ T as, “an expression of type T, with input resource
states gam and output resource states gam’”. Expression types can be resources,
values, or a choice type:

data Ty = R Set | Val Set | Choice Set Set;

The distinction between resource types, R a, and value types, Val a, is that
resource types arise from IO operations. A choice type corresponds to Either —
we use Either rather than Maybe as this leaves open the possibility of returning
informative error codes:

interpTy : Ty -> Set;

interpTy (R t) = IO t;

interpTy (Val t) = t;

interpTy (Choice x y) = Either x y;

We represent variables by proofs of context membership, rather than directly by
de Bruijn indices. As we will see shortly, this allows a neater representation of
some language constructs:

Resource-Safe Systems Programming 251

data HasType : Vect Ty n -> Fin n -> Ty -> Set where

stop : HasType (a :: gam) fO a

| pop : HasType gam i b -> HasType (a :: gam) (fS i) b;

envLookup : HasType gam i a -> Env gam -> interpTy a;

envUpdate : (p:HasType gam i a) -> (val:interpTy b) ->

Env gam -> Env (update gam p b);

The type of the Let construct explicitly shows that, in the scope of the Let
expression a new resource of type a is added to the set, having been made by
a Creator operation. Furthermore, by the end of the scope, this resource must
have been consumed (i.e. its type must have been updated to Val ()):

Let : Creator (interpTy a) ->

Res (a :: gam) (Val () :: gam’) (R t) -> Res gam gam’ (R t)

The Update construct applies an Updater operation, changing the type of a
resource in the context. Here, using HasType to represent resource variables
allows us to write the required type of the update operation simply as a ->
Updater b, and put the operation first, rather than the variable.

Update : (a -> Updater b) -> (p:HasType gam i (Val a)) ->

Res gam (update gam p (Val b)) (R ())

The Use construct simply executes an operation without updating the context,
provided that the operation is well-typed:

Use : (a -> Reader b) -> HasType gam i (Val a) ->

Res gam gam (R b)

Finally, we provide a small set of control structures: Check, a branching construct
that guarantees that resources are correctly defined in each branch; While, a loop
construct that guarantees that there are no state changes during the loop; Lift, a
lifting operator for IO functions1; and Bind and Return to support do-notation.
The type of Bind captures updates in the resource set. We use dsl-notation
to overload the Idris syntax, in particular providing a let-binding to bind a
resource and give it a human-readable name:

dsl res {

let = Let, variable = id,

bind = Bind, return = Return,

index_first = stop, index_next = pop

}

The interpreter for Res is written in continuation-passing style, where each
operation passes on a result and an updated environment (containing resources):

interp : Env gam -> Res gam gam’ t ->

(Env gam’ -> interpTy t -> IO u) -> IO u;

run : Res VNil VNil (R t) -> IO t;

run prog = interp Empty prog (\env, res => res);

1 This requires us to hide the resource operations, e.g. in a module.

252 E. Brady and K. Hammond

5 First Example: File Management

We can use Res to implement a safe file-management protocol, where each file
must be opened before use, opening a file must be checked, and files must be
closed on exit. We define the following operations for opening, closing, reading
a line2, and testing for the end of file.

open : String -> (p:Purpose) -> Creator (Either () (File p));

close : File p -> Updater ();

read : File Reading -> Reader String;

eof : File Reading -> Reader Bool;

Simple example. Returning to our simple example from Section 4, we now
write the file-reading program as follows:

fprog : {gam:Vect Ty n} -> String -> Res gam gam (R String);

fprog filename =

res do { let h = open filename Reading;

Check h

(Lift (putStrLn "File error"))

(do { content <- Use read h;

Update close h; }); };

This is well-typed because the file is opened for reading, and by the end of the
scope, the file has been closed. Syntax overloading allows us to name the resource
h rather than using a de Bruijn index or context membership proof. Although
this is a big improvement, the syntax is still somewhat unsatisfactory:

– The type of fprog is hard to read and write (and for practical use, we need
programmers to write these signatures!)

– The need to apply Use, Read and Lift explicitly is a little ugly.

Fortunately, both problems can be addressed using Idris’s syntax macros:
syntax RES x = {gam:Vect Ty n} -> Res gam gam (R x);

syntax rclose h = Update close h;

syntax rread h = Use read h;

syntax reof h = Use eof h;

syntax rputStrLn x = Lift putStrLn x;

We use macros rather than functions, as the types of Update and Use are context
dependent. We now use RES x as the type of any resource safe program which
returns an x, and rclose and rread as the file operations:

2 Reading a line may fail, but we consider this harmless and return an empty string.

Resource-Safe Systems Programming 253

fprog : String -> RES String;

fprog filename =

res do { let h = open filename Reading;

Check h

(rputStrLn "File error")

(do { content <- rread h;

rclose h; }) };

Using loops. In the following program, we open a file, read each line of the file
and output it using a While loop, then close it:

dump : String -> RES String;

dump filename =

res do { let h = open filename Reading;

Check h

(rputStrLn "File error")

(do { While (do { end <- reof h;

return (not end); })

(do { str <- rread h;

rputStrLn str; });

rclose h; }) };

This program has a similar structure to the equivalent Haskell program written
using the IO monad However, here the Idris type system guarantees that each
operation is executed only when it is valid. We cannot, for instance, close the
file during the loop, or try to read from the file in the branch where opening
has failed. We have achieved this by writing ordinary monadic IO functions and
lifting them intro a general framework which guarantees linear use of resources.

Embedding functions. We can improve the program by lifting out the While
loop into a function. Since this is an EDSL, we can use a host language function,
but its type must refer to the EDSL’s context. A Res function which uses a
resource a but does not update it, and returns a value b is denoted by a :-> b:

syntax (:->) a b = {gam:Vect Ty n} ->

HasType gam i (Val a) -> Res gam gam b;

readFile : File Reading :-> R ();

readFile h = res (While (do { end <- reof h;

return (not end); })

(do { str <- rreadLine h;

rputStrLn str; }));

We can use this function directly in a Res program:
dump filename = res do { let h = open filename Reading;

Check h

(rputStrLn "File error")

(do { readFile h; rclose h; }) };

Correspondingly, updating a resource variable is denoted by a |-> b:
syntax (|->) a b = {gam:Vect Ty n} ->

(p:HasType gam i (Val a)) -> Res gam (update gam p b) (R ()) ;

254 E. Brady and K. Hammond

6 Second Example: Network Transport

As well as defining high-level APIs, we can also use Res to implement low-level
operating systems components such as reliable network transport. Let us briefly
consider a simple automatic repeat request (ARQ) protocol, in which a machine
S attempts to send packets reliably to a machine R.

1. S opens a connection to R and waits for R to acknowledge the connection.
2. For each packet, with a sequence number n:

(a) S sends a packet with sequence number n, and waits for an acknowl-
edgement from R.

(b) If an acknowledgement is not received within a timeout period, retry.
3. S requests that the connection be closed.

Each operation may have pre-/post-conditions on the state of the connection.
connect : Receiver -> Creator (Either () (Net (Ready O)));

send : Net (Ready n) -> Updater (Net (Waiting n));

recvAck : Net (Waiting n) -> Updater (Either (Net (Ready n))

(Net (Ready (S n))));

disconnect : Net (Ready n) -> Updater ();

We implement the protocol by lifting these functions into Res, defining a func-
tion sendList which iterates across a list of packets, either sending them suc-
cessfully or timing out:

sendList : List Packet -> (Net (Ready n) |-> R ());

arq : Receiver -> List Packet -> RES ();

arq r pkts = res do { let h = connect r;

Check h (rputStrLn "Couldn’t open connection")

(do { sendList pkts h; }); };

Note that sendList’s type requires that it also closes the connection. It is written
as a combination of send and recvAck, retrying if an acknowledgement is not
received. As before, the primitives are composed using the constructs in Res to
guarantee that resources are managed according to the protocol.

7 Related Work

We have previously explored the use of Idris for implementing EDSLs in do-
mains such as networking [2,5] and concurrency [7]. The work described here is
similar to that of [7]. However, by using de Bruijn indices we obtain the key
advantage of compositionality, a neat way to build contexts, etc. Unlike other
approaches to resource usage verification based on e.g. model-checking [13,15,21],
which translate the program into a (hopefully) equivalent set of state transitions
that can subsequently be checked, the EDSL approach we have used here relates
the actual program to the abstract state machine model, so guaranteeing cor-
rectness by construction. Res is inspired by work on linear types for resource

Resource-Safe Systems Programming 255

management [10,11], and an alternative approach would have been to add lin-
ear types to Idris’s type system. We have avoided this for two reasons: firstly,
we prefer to keep the core type theory of Idris as small and as easy to reason
about as possible; secondly, as Res demonstrates, dependent types alone are
strong enough to capture the linearity property. Finally, Hoare Type Theory
has also been used in the Ynot system [18] to reason about imperative pro-
grams with side effects, as we have done in Res. However, our approach is much
lighter weight: it involves writing the state transition functions directly, as nor-
mal Idris functions, then “promoting” them into the resource language. This
makes it much easier to plug in new functionality, for example, in our system.

8 Conclusion

We have shown a new way to write resource-safe systems programs using domain-
specific languages embedded in a dependently-typed host language. The dsl-
notation introduced in this paper raises the abstraction level when programming
EDSLs, adding the important properties of compositionality and modularity over
previous approaches. The notation captures common patterns in EDSL imple-
mentation, in particular variable binding and function application, and can easily
be extended to overload other language features, for example literal values. Using
this notation over a dependently-typed host language, we are able to produce au-
tomatically verified EDSL programs, provided the primitive state transitions are
correctly written. We have also demonstrated the applicability and generality of
the notation by developing a generic resource usage framework and applying it
to two realistic systems programming scenarios. Like Landin’s Iswim, the EDSL
can be problem-oriented, providing functions for creating, updating and using
primitive values. These primitives are then embedded into a generic composition
framework, here exemplified by Res. Although not shown here, the approach can
easily handle other constructs such as (higher-order) functions, further extend-
ing its applicability. We have not considered how to e.g. embed resources within
data structures, although we expect this to be achievable by indexing larger data
structures over a resource context. This may be important for some examples,
particularly where we have long-lived resources, or a collection of live resources
such as a list of open file handles.

There are a number of obvious future applications of this work in systems
programming. In particular, we intend to study larger applications in network
protocols, and consider how to capture and reason about security issues. The
use of dependent types simplifies the task of producing verifiable systems pro-
grams as EDSLs, providing a lightweight, extensible and composable framework
that is tightly integrated with the actual systems program. The dsl-notation
itself also deserves further study. At present it provides straightforward syntac-
tic overloadings, but there is no checking of whether the overloadings interact
safely and reliably other than by type checking the resulting term. It would be
interesting to investigate whether they can be give a more theoretically sound
presentation, for example using type classes.

256 E. Brady and K. Hammond

Acknowledgments. This work was partly funded by the Scottish Informat-
ics and Computer Science Alliance (SICSA), by EPSRC grant EP/F030592/1
(Islay), and by EU Framework 7 Project No. 248828 (ADVANCE).

References

1. Augustsson, L., Carlsson, M.: An exercise in dependent types: A well-typed inter-
preter (1999)

2. Bhatti, S., Brady, E., Hammond, K., McKinna, J.: Domain specific languages
(DSLs) for network protocols. In: International Workshop on Next Generation
Network Architecture, NGNA 2009 (2009)

3. Brady, E.: Ivor, a Proof Engine. In: Horváth, Z., Zsók, V., Butterfield, A. (eds.)
IFL 2006. LNCS, vol. 4449, pp. 145–162. Springer, Heidelberg (2007)

4. Brady, E.: Epic — a library for generating compilers. In: Trends in Functional
Programming, TFP 2011 (to appear, 2011)

5. Brady, E.: Idris — systems programming meets full dependent types. In: Program-
ming Languages meets Program Verification (PLPV 2011), pp. 43–54 (2011)

6. Brady, E., Hammond, K.: A Verified Staged Interpreter is a Verified Compiler. In:
Proc. GPCE 2006: Conf. on Generative Prog. and Component Eng. (2006)

7. Brady, E., Hammond, K.: Correct-by-construction concurrency: Using dependent
types to verify implementations of effectful resource usage protocols. Fundamenta
Informaticae 102(2), 145–176 (2010)

8. Brady, E., Hammond, K.: Scrapping your Inefficient Engine: using Partial Evalua-
tion to Improve Domain-Specific Language Implementation. In: Proc. ICFP 2010:
ACM Intl. Conf. on Functional Programming, pp. 297–308 (2010)

9. Chapman, J., Dagand, P.-E., McBride, C., Morris, P.: The Gentle Art of Levitation.
In: Proc. ICFP 2010: ACM Intl. Conf. on Funct. Prog., pp. 3–14 (2010)

10. Hawblitzel, C.: Linear types for aliased resources. Technical Report MSR-TR-2005-
141, Microsoft Research (2005)

11. Hofmann, M., Jost, S.: Static prediction of heap space usage for first-order function
al programs. In: Proc. POPL 2003 — 2003 ACM Symp. on Principles of Program-
ming La nguages, pp. 185–197. ACM (2003)

12. Hudak, P.: Building domain-specific embedded languages. ACM Computing Sur-
veys 28A(4) (December 1996)

13. Igarashi, A., Kobayashi, N.: Resource usage analysis. ACM Trans. Program. Lang.
Syst. 27, 264–313 (2005)

14. Landin, P.: The next 700 programming languages. Communications of the
ACM 9(3) (March 1966)

15. Marriott, K., Stuckey, P., Sulzmann, M.: Resource Usage Verification. In: Ohori,
A. (ed.) APLAS 2003. LNCS, vol. 2895, pp. 212–229. Springer, Heidelberg (2003)

16. McBride, C., McKinna, J.: The view from the left. Journal of Functional Program-
ming 14(1), 69–111 (2004)

17. McBride, C., Paterson, R.: Applicative programming with effects. J. Funct. Pro-
gram. 18, 1–13 (2008)

18. Nanevski, A., Morrisett, G., Shinnar, A., Govereau, P., Birkedal, L.: Ynot: Rea-
soning with the Awkward Squad. In: Proc. ICFP 2008: 2008 ACM Intl. Conf. on
Functional Programming, pp. 229–240. ACM (2008)

Resource-Safe Systems Programming 257

19. Norell, U.: Towards a practical programming language based on dependent type
theory. PhD thesis, Chalmers University of Technology (September 2007)

20. Pašaĺıc, E., Taha, W., Sheard, T.: Tagless Staged Interpreters for Typed Languages.
In: Proc. ICFP 2002: Intl. Conf. on Functional Programming. ACM (2002)

21. Walker, D.: A Type System for Expressive Security Policies. In: Proc. POPL 2000:
ACM Intl. Symp. on Principles of Programming Languages, pp. 254–267 (2000)

Node-Based Connection Semantics
for Equation-Based Object-Oriented Modeling

Languages

David Broman1 and Henrik Nilsson2

1 Department of Computer and Information Science, Linköping University, Sweden
david.broman@liu.se

2 School of Computer Science, University of Nottingham, United Kingdom
nhn@cs.nott.ac.uk

Abstract. Declarative, Equation-Based Object-Oriented (EOO) mod-
eling languages, like Modelica, support modeling of physical systems by
composition of reusable component models. An important application
area is modeling of cyber-physical systems. EOO languages typically fea-
ture a connection construct allowing component models to be assembled
into systems much like physical components are. Different designs are
possible. This paper introduces, formalizes, and validates an approach
based on explicit nodes that expressly is designed to work for functional
EOO languages supporting higher-order modeling. The paper also con-
siders Modelica-style connections and explains why that design does not
work for functional EOO languages, thus mapping out the design space.

Keywords: Declarative Languages, Modeling, and Simulation.

1 Introduction

Equation-based Object-Oriented (EOO) languages is an emerging class of declar-
ative Domain-Specific Languages (DSLs) for modeling the dynamic aspects of
systems using (primarily) differential equations [6]. These languages are charac-
terized by acausal modeling of individual objects in the domain(s) of interest and
composition of such object models into a complete system model1. Acausal mod-
eling means there is no a priori assumption about the directionality of equations
(known vs. unknown variables). This greatly facilitates reuse and composition
[10], a crucial advantage for large models that can consist of thousands of equa-
tions. Moreover, EOO languages are typically capable of expressing models from
arbitrary physical domains (e.g., mechanical, electrical, hydraulic) and of sup-
porting hybrid modeling: modeling of both continuous-time and discrete-time as-
pects. State-of-the-art EOO languages include Modelica [11,19], VHDL-AMS [15]
1 Some of these languages share typical traits of object-oriented programming lan-

guages, such as a class system, but this is not essential: object-oriented here refers
to the focus on composition of reusable models that have a direct correspondence
to objects in the physical world. Also, note that, unlike (imperative) object-oriented
programming languages, EOO languages have no notion of mutable state.

C. Russo and N.-F. Zhou (Eds.): PADL 2012, LNCS 7149, pp. 258–272, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

david.broman@liu.se
nhn@cs.nott.ac.uk

Node-Based Connection Semantics for EOO Modeling Languages 259

and Verilog-AMS [1]. Taken together, the characteristics of EOO languages make
them particularly suitable for modeling Cyber-Physical Systems: complex sys-
tems that combine embedded computers and networks (the cyber) with physical
processes [17]. Examples include cars, aircraft, and power plants.

Most EOO languages provide a mechanism to connect component models to-
gether in a way that mimics how physical components may be interconnected.
To obtain a purely mathematical model, these connections have to be translated
into equations. This translation is the connection semantics. Unsurprisingly, the
connection semantics is grounded in physical reality, such as the conservation
principles of various physical domains. Because these principles share a common
mathematical structure, it is possible to formulate the connection semantics in
a domain-neutral way. To that end, two kinds of physical quantities are dis-
tinguished: flow quantities and potential quantities. Connected flow quantities
are translated into sum-to-zero equations, as a connection point itself does not
provide any capability of storing the flowing quantity, while connected poten-
tial quantities are translated into equality constraints, as there can only be one
potential at a connection point. Modelica is one language taking this approach.

While state-of-the-art EOO languages like Modelica are highly successful, they
do have acknowledged weaknesses, including limited support for structurally
dynamic systems and limited meta-modeling capabilities per se [20,26]. These
and other considerations have led researchers to investigate a different approach
to EOO language design that supports higher-order modeling. The common idea
is to make models first class entities in the setting of a functional language and
using pure functions as the central abstraction mechanism [6,14,20].

Unfortunately, the connection semantics of Modelica-like languages is predi-
cated on specific design aspects of such languages and does not readily carry over
to a functional setting with first-class models. Moreover, at least the Modelica
connection semantics is complex and has not been fully formalized, making it
difficult to understand it precisely (for end users as well as for implementors).

In this paper we propose an alternative approach to specifying the connection
semantics based on explicit connection points, from now on nodes. The idea of
explicit nodes is not new; for example, it is used in VHDL-AMS, Verilog-AMS,
and other hardware description languages. The novel insight demonstrated in
this paper is how a node-based approach solves the problem of defining the
connection semantics in functional EOO languages. The resulting semantics is
also pleasingly clear. In more detail, our specific contributions are:

– We relate Modelica-style connection semantics (Section 2) and the node-
based approach (Section 3), thus mapping out part of the design space, and
we explain why the former approach does not work in a functional setting.

– We formalize the semantics of the node-based approach (Section 4).
– We describe and validate a prototype implementation of the node-based

approach in the Modeling Kernel Language (MKL) [6] (Section 5). (Note
that MKL is just a vehicle: the approach as such is language-independent.)

260 D. Broman and H. Nilsson

2 Modelica-Style Approach

This section gives an informal overview of Modelica-style connection semantics
and explains why this approach does not work in a functional setting. Our exam-
ples are from the analog electrical domain. However, we re-iterate that connection
semantics in this paper is domain-neutral unless stated otherwise [8].

2.1 Models and Equation Generation

Fig. 1(a) depicts a graphical model of a simple electrical circuit. The model
consists of five component models, in this case a voltage source VS, a resistor R,
a capacitor C, an inductor L, and a ground G. At the lowest level of abstraction,
a model consists of a set of Differential-Algebraic Equations (DAEs) [16]. For
example, the behavior of resistor R is expressed declaratively by the algebraic
equation R*i = v (Ohm’s law) and the inductor’s behavior is stated using the
differential equation L*der(i) = v, where der(i) is the time derivative of i.

Each component model has one or more ports (or connectors) specifying its
connection points. For example, the negative ports (white boxes) of the capacitor
C and the inductor L are connected to the positive port (black box) of resistor R.
In the analog electrical domain, each port has two variable instances, a potential
variable v and a flow variable i, representing voltage and current respectively.

The connection semantics specifies how a set of connected ports is translated
into equations over their instance variables. Two kinds of equations are gener-
ated: pairwise equalities among the potential variables, and a sum-to-zero equa-
tion for the flow variables. We use Modelica’s dot-notation to refer to variables;
e.g, C.n.v refers to v of the negative port n of the capacitor C. As an example,
the port set {G.p, R.n, VS.n} (node a3) is translated into the two equations
R.n.v = G.p.v and VS.n.v = G.p.v for the potential variables and the sum-
to-zero equation G.p.i + R.n.i + VS.n.i = 0 for the flow variables.

2.2 Abstraction and Composition

In an EOO language, such as Modelica, a model is fundamentally a DAE sys-
tem. However, to promote reuse and facilitate construction, models are usually

R

C

L

VS

G
a3a2a1

R

C

L b2b1 b3

(a) (b)
VS

G
c2

(c)

SCc1

Fig. 1. Example of how parts of a circuit can be composed into a new model abstrac-
tion. Figure (a) shows the full circuit and (b) shows how three of the components are
composed into a new model. Figure (c) shows how the model in (b) is used.

Node-Based Connection Semantics for EOO Modeling Languages 261

constructed hierarchically: related equations are grouped into models of physical
components; such models can then be instantiated any number of times and fur-
ther grouped into models of systems at progressively higher levels of abstraction.

For example, the model in Fig. 1(b) represents an abstraction of the compo-
nents R, C, and L from Fig. 1(a). The dashed box represents the outside border
of the abstracted model. Fig. 1(c) shows another way to model the circuit in (a),
this time as a composed model using the sub-circuit in (b) (named SC) as one
of the components. Hence, (a) and (c) model the exact same system, the only
difference being that (c) introduces one more hierarchical level of abstraction.

The question is how to define connection semantics for composed models
with several hierarchical levels of abstraction. In the Modelica-style, each port is
considered either an outside or an inside port, depending on whether the current
viewpoint is inside or outside a model. For example, in Fig. 1(b), when generating
the sum-to-zero equation for the connection b3, SC.n is considered an outside port
and SC.R.n an inside port. The Modelica specification [19] states that outside
connectors shall have a negative sign in sum-to-zero equations. The sum-to-zero
equation at node b3 is thus -SC.n.i + SC.R.n.i = 0. On the other hand, in
model (c), port SC.n is considered an inside port, hence the resulting sum-to-
zero equation for c2 is VS.n.i + SC.n.i + G.p.i = 0. Information about the
hierarchical structure is thus exploited when generating the equations.

2.3 Problems in a Functional Setting

In the Modelica-style approach, models have ports that define instance variables.
A port is a part of the model it belongs to, and as such, its position in a compo-
sitional hierarchy becomes unambiguously determined; in particular, each port
can be classified as inside or outside with respect to a specific model context and
then treated accordingly for connection purposes.

In contrast, a functional EOO language uses function abstraction (or some
variant thereof) for expressing model abstractions, with “ports” becoming formal
parameters. As a result, a port is no longer per se a part with an implied position
that can inform the generation of sum-to-zero equations. We can attempt to
overcome this by introducing connection nodes as an independent notion. A
model abstraction is then seen as a function mapping nodes to equations. But a
node is just a node, a value like any other, without any special relation to specific
abstractions, meaning that the notions inside and outside become meaningless.
For example, assume that the model SC is defined as a function with two formal
parameters. A function call SC(c1,c2) results in the nodes c1 and c2 being
substituted into the function body of SC, yielding a collapsed hierarchy without
any possibility to say whether a port is inside or outside.

Thus, the Modelica-style connection semantics does not carry over to a func-
tional setting essentially because it is predicated on exploiting contextual in-
formation alien to this setting. To address this, we develop in the following an
alternative approach that is suitable, based on nodes and branches (Electrical
Engineering terminology; here essentially a directed edge annotated with vari-
ables) forming an explicit graph. Other possibilities are discussed in Sec. 6.3.

262 D. Broman and H. Nilsson

3 Node-Based Approach

This section informally describes the node-based approach to connection seman-
tics. It has two phases: (1) Collapsing the hierarchical model structure into a
directed graph of nodes, branches, and equations; (2) Translation of nodes and
branches into additional equations, yielding a pure system of equations; i.e.,
the connection semantics proper. The approach is demonstrated using a small
research language called the Modeling Kernel Language (MKL) [6]: a typed func-
tional language specifically designed for embedding equation-based DSLs. How-
ever, note that the approach as such is language-independent.

3.1 Phase 1: Collapsing the Model Hierarchy

In an functional EOO-language, functions are used as the abstraction mecha-
nism for describing composed models. For example, consider the following MKL
model, which is the textual representation of Fig. 1(a):

def CircuitA () = {
def a1 ,a2 ,a3:Electrical ;
SineVoltage (220,50,a1 ,a3);
Capacitor (0.02 ,a1 ,a2);
Inductor (0.1,a1 ,a2);
Resistor (200,a2 ,a3);
Ground(a3);

}

The model CircuitA is defined as a function without parameters. Three nodes
a1, a2, and a3 of type Electrical are defined. The five component mod-
els of the circuit are instantiated using function application; e.g., the applica-
tion Capacitor(0.02,a1,a2) instantiates a capacitor of 0.02 F. The connection
topology is defined by supplying the electrical nodes to the components; e.g.,
Capacitor is applied to nodes a1 and a2. Note how both parallel and serial
connections are expressed in this way (cf. Fig. 1(a)). The Capacitor model

def Capacitor (C:Real ,p:Electrical ,n:Electrical) = {
def i:Current ;
def v:Voltage ;
Branch(i,v,p,n);
C * der(v) = i;

}

has parameters C (capacitance) p (positive port), and n (negative port). Two
unknown continuous-time signals i (current) and v (voltage) are defined inside
the body. The third line in the body instantiates a Branch with four elements.
Conceptually, a branch is a path between two nodes through a component model.
Branches are essential for the translational connection semantics because they
capture information necessary to generate correct signs in sum-to-zero equations.

Fig. 2 shows the resulting graph from evaluating the expression CircuitA().
Filled black arrows represent the branches (labeled edges). The nodes a1, a2,

Node-Based Connection Semantics for EOO Modeling Languages 263

d1 d2 d3

iVC vVC

iC vC

iL vL
iR vR

iG vG

vVC = 220 ∗ sin(2 ∗ π ∗ 50 ∗ time)

0.02 ∗ der(vC) = iC

0.1 ∗ der(iL) = vL
200 ∗ iR = vR

vG = 0

Fig. 2. The connection graph after collapsing the model hierarchy of CircuitA or
CircuitC

and a3 maps to d1, d2, and d3 respectively. The graph is directed where the
arrow head represents the positive position (the third element of a branch-
instantiation) and the tail the negative position (forth element). The unknowns
for a specific component are listed above each arrow. For example, iR is the
current flowing through the resistor branch and vR is the voltage drop across the
branch. The behavior equation for a specific component model is given below
the arrow; e.g., Ohm’s law in the resistor case. The unfilled arrow represents a
reference branch (RefBranch) as used in the Ground model, for example:

def Ground(p:Electrical) = {
def i:Current ;
def v:Voltage ;
RefBranch (i,v,p);
v = 0;

}

Note that the RefBranch is only connected to one node. The intuition is that
a reference branch makes the absolute values for a specific node accessible; i.e.,
the absolute potential value in relation to a global implicit reference value. The
ground model states that the potential in the ground node is zero (v = 0).

So far we have only used basic components, such as Resistor and Capacitor.
We now consider a model where one of the components itself is a composite
model. The following is an MKL model of the sub-circuit from Fig. 1(b):

def SubCircuit (p:Electrical ,n:Electrical) = {
def b2: Electrical ;
Capacitor (0.02,p,b2);
Inductor (0.1,p,b2);
Resistor (200,b2 ,n);

}

The SubCircuit model is a function with two parameters p and n, both of type
Electrical. A minor difference compared with Fig. 1(b) is that only node b2
is defined inside the model: because a user of SubCircuit will supply the nodes
between which it is going to be connected via parameters p and n (nodes being
first-class), those nodes should not be defined inside SubCircuit. The model

264 D. Broman and H. Nilsson

def CircuitC (SC:TwoPin) = {
def c1 ,c2:Electrical ;
SineVoltage (220,50,c1 ,c2);
SC(c1 ,c2);
Ground(c2);

}

is the MKL version of Fig. 1(c). It has one parameter SC of type TwoPin. This
is an example where Higher-Order Acausal Models (HOAMs) [7] is used, i.e.,
where a model is parametrized with another model. The type TwoPin,

type TwoPin = Electrical -> Electrical -> Equations

is defined as a curried function2 from nodes (type Electrical) to a system
of equations (type Equations). Because SubCircuit is of type TwoPin, the
expression CircuitC(SubCircuit) is well-typed and evaluating it results in a
connection graph. During evaluation, SC is replaced with SubCircuit, meaning
SubCircuit gets applied to the nodes c1 and c2. Hence c1 and c2 are substi-
tuted for the formal parameters p and n respectively. The resulting connection
graph for CircuitC(SubCircuit) is the same as that for Fig. 1(a), up to re-
naming of nodes. Thus, for CircuitA() the following holds: d1 = a1, d2 = a2,
and d3 = a3, while for CircuitC(SubCircuit): d1 = c1, d2 = b2, and d3 = c2.

3.2 Phase 2: The Connection Semantics

In the second phase, we translate the connection graph into a set of equations.
We describe this translation process by defining three translation rules.

In contrast to the Modelica semantics, ports do not define instance variables.
Nodes are instead defined explicitly in the model (e.g., d1, d2, and d3 in Fig. 2),
with each node corresponding to a set of connected ports in the Modelica ap-
proach. Instead of enforcing the equality of all potential variables of a port set
by generating equality constraints, we apply the following rule:

Rule 1 - Potential variables: Associate a distinct variable with each
node in the system representing the potential in that node.

Three new distinct continuous-time variables vp1, vp2, and vp3 are thus associated
with nodes d1, d2, and d3 respectively.

A sum-to-zero equation must be created for each node and the signs in the
equation must be chosen appropriately. This is where the information captured
by branches comes into play. Consider the definition of Capacitor again. The
first argument to Branch is the flow variable representing the current i through
the branch, the second argument the relative potential variable representing the
voltage v across the branch, the third argument the positive node p, and the
fourth argument the negative node n. We can now define the second rule:
2 All functions are curried in MKL even though the syntax of function definitions and

applications uses parentheses. This design choice was made to make the functional
style of programming more familiar to engineers used to the syntax of main-stream
programming and modeling languages.

Node-Based Connection Semantics for EOO Modeling Languages 265

Rule 2 - Sum-to-zero equations: For each node n in the circuit, create
a sum-to-zero equation, such that the flow variables for the branches
connected to node n get a positive sign if the branch is pointing towards
the node, and a negative sign if it is pointing away from the node. For
reference branches, the positive sign is always used.

Rule 2 results in the sum-to-zero equations iVC + iC + iL = 0, iR − iC − iL = 0,
and iG − iR − iVC = 0 for nodes d1, d2, and d3 respectively.

The last translation rule defines the voltage across components:

Rule 3 - Branch equations: For each branch in the model, create an
equation stating that the relative potential across a branch is equal to
the difference between the potential variable of the positive node and the
one of the negative node. For a reference branch the relative potential is
equal to the potential variable of the associated node.

Rule 3 results in one equation for each component; i.e., vVC = vp1 − vp3, vC =
vp1 − vp2, vL = vp1 − vp2, vR = vp2 − vp3, and vG = vp3.

In the example, there are 13 variables in total: 10 variables originate from
the potential and flow variables of each component, while 3 are generated from
the nodes by rule 1. 5 behavior equations are explicitly stated for the model,
3 further equations are generated by rule 2 (sum-to-zero), and 5 more by rule
3. There are thus 13 equations and 13 variables: a necessary but not sufficient
condition for solving a set of independent equations.

We note the following invariants. First, for each node, rule 1 adds one variable
and rule 2 adds one equation. Second, two variables are always defined for each
component: one flow variable and one relative potential variable. There are also
always two equations for each component: one behavior equation defined in the
original component model, and one branch equation generated by rule 3.

These invariants make it clear that the balance between the number of vari-
ables and equations is preserved under interconnection of correctly defined com-
ponents. The approach is thus correct in that sense. However, the number of
generated equations is not minimal; for example, a sum-to-zero equation can
always be eliminated by using it to solve for one variable and substitute the re-
sult into other equations. However, we are not concerned with such issues here as
that has to do with solving the equations, not with the semantics of connections.

4 Formalization of the Connection Semantics

In this section we formalize the node-based connection semantics. Note that the
formalization is independent of MKL.

4.1 Notation and Syntax

Let N be a finite set of nodes and n ∈ N denote a node element. Let V be
a finite set of variables and v ∈ V a variable. Let Bbin be the set of binary

266 D. Broman and H. Nilsson

branches and Bref be the set of unary reference branches. A binary branch is
a quadruple (vf , vrp, n1, n2) ∈ Bbin, where vf is a flow variable, vrp a relative
potential variable, n1 a first and n2 a second node connected to the branch. A
reference branch is a triple (vf , vrp, n1) ∈ Bref , where vf is the flow variable, vrp

a relative potential variable, n1 a connected node. Let B = Bbin ∪ Bref be the
set of all branches. The syntax of expressions e is given by the grammar rules

e ::= e + e | e - e | 0 | v

where + and - are the plus and minus operators, 0 the value zero, and v a
variable. The syntax for an equation is e1 = e2, where e1 and e2 are expressions.
Let E be a multiset of equations. A multiset is needed as equations could be
repeated in a model3.

We use braces to denote sets and square brackets to denote multisets. When
pattern matching on sets, the pattern A ∪ {a} matches a non-empty set with a
being bound to an arbitrary element of the set and A being bound to the rest
of the set, not including a.

We postulate an overloaded function vars that returns the set of variables
occurring in a branch, an expression, or a (multi)set of branches or expressions.
Similarly, we postulate an overloaded function nodes that returns the set of
nodes occurring in a branch or set of branches.

4.2 Semantics of Rules

Fig. 3 defines the connection semantics using (recursive) function definitions. The
functions are categorized according to the informal rules in previous section.

Rule 1 associates a new potential variable with each node. The function potvar
returns a bijective function pv mapping each node to a corresponding potential
variable, distinct from any of the existing variables VBE .

Rule 2 describes the generation of the multiset of sum-to-zero equations. The
rule defines one main function sumzeroeqns and one auxiliary function sumexpr.
The function sumezeroeqns takes two arguments, where the first argument N is
the set of nodes and the second argument B the set of branches. For each n ∈ N ,
the function creates the corresponding sum-to-zero expression using set-builder
notation for multisets together with calling sumexpr. The first three cases of
sumexpr concern binary branches by matching on the quadruple (vf , vrp, n1, n2).
Only branches directly connected to the node under consideration contribute to
the expression. The last two cases handle reference branches in the same manner.
Note that a literal 0 is inserted at the end of the recursion. This zero could easily
be eliminated by introducing unary minus in the expression syntax. However,
this would make the formalization less readable.

Rule 3 describes the generation of the multiset of relative potential equations.
The rule defines a function brancheqns that takes two arguments. The first ar-
gument pv is the mapping between nodes and potential variables (see Rule 1).
3 We do not wish to eliminate redundant equations here, and we note that syntactic

equality on equations would not suffice for this purpose anyway.

Node-Based Connection Semantics for EOO Modeling Languages 267

The second argument B is the set of branches. Different equations are generated
depending on whether a branch is a binary branch or a reference branch.

The last function definition consem takes the set B of branches and multiset
E of equations that already exists in the model (i.e, the behavior equations) as
arguments. The function returns the final multiset of model equations; i.e., the
initial equations along with all generated equations.

A branch starting and ending at the same node is a bit of a special case. The
relative potential across such a branch is, of course, 0, and no special consid-
eration is needed in rule 3 for the associated potential variable. However, such
a branch in itself imposes no constraints on the flow through it. Rule 2 thus

Rule 1 - Potential variables potvar(N, VBE)

potvar(N, VBE) = pv where pv : N → VP is bijective, VP ⊆ V, and VP ∩ VBE =∅

Rule 2 - Sum-to-zero equations sumzeroeqns(N, B)

sumzeroeqns(N, B) = [sumexpr(n, B) = 0 | n ∈ N]

sumexpr(n, B)

sumexpr(n, ∅) = 0

sumexpr(n, B ∪ {b}) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sumexpr(n, B) + vf if (vf , vrp, n1, n2) = b and
n = n1 and n
= n2

sumexpr(n, B) - vf if (vf , vrp, n1, n2) = b and
n
= n1 and n = n2

sumexpr(n, B) if (vf , vrp, n1, n2) = b and
((n
= n1 and n
= n2) or
(n = n1 and n = n2))

sumexpr(n, B) + vf if (vf , vrp, n1) = b and n = n1

sumexpr(n, B) if (vf , vrp, n1) = b and n
= n1

Rule 3 - Branch equations brancheqns(pv , B)

brancheqns(pv , B) = [eqn(b) | b ∈ B] where

eqn(b) =

{
vrp = pv(n1) - pv(n2) if b = (vf , vrp, n1, n2)
vrp = pv(n1) if b = (vf , vrp, n1)

Translational connection semantics consem(B, E)

consem(B, E) = E ∪ sumzeroeqns(N, B) ∪ brancheqns(pv , B) where

N = nodes(B)

VBE = vars(B) ∪ vars(E)

pv = potvar(N, VBE)

Fig. 3. Formalization of the node-based connection semantics

268 D. Broman and H. Nilsson

carefully ignores any such branch, meaning that the associated flow variable will
not appear in any sum-to-zero equation. (Of course, it would usually appear
in other equations, like component equations relating the relative potential and
flow.)

5 Implementation and Evaluation

We have developed a prototype implementation of the node-base connection
semantics as a functional EOO DSL in MKL. The prototype has three parts:

– Libraries for defining the elaboration semantics of a functional EOO DSL
supporting acausal modeling in the continuous-time domain. The connection
semantics that is part of the elaboration semantics was implemented accord-
ing to the formalization presented in this paper, with certain optimizations
together with more efficient data structures.

– Libraries for defining reusable components (models of physical objects) with-
in the analog electrical domain, the rotational mechanical domain, and au-
tomatic control domain.

– Test models that use the modeling libraries.

The evaluation of the prototype so far was concerned with testing the correctness
of the node-based approach compared to Modelica’s approach. The selected test
models were chosen according to the following criteria:

– Size of the model, where the largest model contained more than 1000 equa-
tions after translation.

– Combination of and interaction between different physical domains, like elec-
trical, mechanical, and control, to ensure domain-neutrality.

– Modeling abstraction and generation mechanisms, such as higher-order mod-
els and recursively defined models.

The test procedure was as follows:

1. The model was created in Modelica using standard components in Modelica
standard library.

2. The same model was created by using components from MKL’s standard
library. This library has been modeled according to the Modelica library.

3. The Modelica model was simulated using Dymola 6 [9], a Modelica environ-
ment. Data from the sensors was plotted and visualized.

4. The MKL model was translated into flat equations by the prototype imple-
mentation following the connection semantics defined in this paper. Dymola
6 was then used as a simulation backend to simulate and plot these flat
equations. Using the same simulation backend for both the model expressed
in Modelica and for the model expressed in MKL eliminates the risk of dif-
ferences in the results due to differences in employed simulation methods.

5. The plotted results from the Modelica model and the MKL model were
visually compared.

Node-Based Connection Semantics for EOO Modeling Languages 269

In all cases the simulation result from the Modelica models were found to coincide
with the results from the corresponding MKL version of the model; i.e., the
results were the same. This confirms the described approach works as intended,
in a functional setting, and is applicable for multi-physical modeling. Moreover,
preliminary performance measurements of the translational semantics show that
the approach can scale up to hundreds of thousands equations. Our approach
has not yet been evaluated for structurally dynamic systems, which we see as
the next step of future work.

6 Related Work

6.1 Modelica

The work most closely related to the node-based approach is the connection se-
mantics for Modelica [11,19]. As we saw (Sec. 2), Modelica lets the modeler spec-
ify sets of interconnected component ports. Each such set corresponds to a node
and is translated into connection equations by taking the context-dependent clas-
sification of individual ports as being outside or inside into account. However,
nodes are not an explicit notion. In contrast, to provide connection function-
ality without relying on specific language design aspects (beyond the standard
notion of functions), nodes along with branches are made explicit notions in the
node-based approach and used to construct an explicit interconnection graph
containing all necessary information for subsequent translation into connection
equations. This approach is thus a good fit for e.g. functional EOO languages as
the kind of contextual information used in Modelica is not available (Sec. 2.3).

Furic [12] proposes an alternative connection semantics for Modelica. The
main objective is to make models compose better and to support structural dy-
namism. For example, in Modelica, missing or “duplicated” ground references
in electrical models typically lead to under- and over-constrained systems of
equations respectively, and ideal switches might mean there is no one way of
“grounding” the model that works for all structural configurations. Furic’s ap-
proach is based on nodes, like our approach, but, following VHDL-AMS, it em-
ploys relative potentials across branches between nodes, referred to as effort,
while absolute potentials at nodes are of no concern, unlike in our approach and
the standard Modelica approach. The end result is an explicit representation of
the model topology in the form of a graph, like in our case, which suggests that it
may be possible to adapt Furic’s approach to a functional setting. However, like
for VHDL-AMS, special source and sensor constructs are necessary to mediate
between the “effort/flow world” and the “signal world”, e.g. to feed in external
stimuli or make observations. This is more direct in our setting. Furic’s work has
not yet been formalized or thoroughly evaluated outside the electrical domain,
but constitute another interesting node-based approach.

6.2 Hardware Description Languages

Hardware Description Languages, such as VHDL and Verilog, are primarily used
for describing digital electrical circuits. However, there exist analog and mixed

270 D. Broman and H. Nilsson

signal (AMS) extensions to both these languages: VHDL-AMS [2] and Verilog-
AMS [1] respectively. These variants allow modeling of continuous systems from
various physical domains. Both VHDL-AMS and Verilog-AMS have a node-based
connection semantics, where nodes connect components together via ports. How-
ever, in contrast to the work presented in this paper, neither language has a
formally specified semantics for connections. The VHDL-AMS specification [15]
describes the connection semantics informally as part of the elaboration phase of
the language. Similarly, Verilog-AMS definition states that DAE equations are
generated according to Kirchhoff’s laws, but does not specify how.

Lava [4] is a tool for specifying and verifying hardware circuits. It is em-
bedded in Haskell and makes use of higher-order functions and combinators for
composing circuits. Wired [3] is a relational language that is based on Lava, but
also models the layout of a circuit, including the wires. Both Lava and Wired
are used for describing digital circuits; the kind of connections discussed here
grounded in abstraction over phenomena from continuous physics is thus not
relevant. However, both employ a notion of explicit nodes for describing circuits.

SPICE [23] is a circuit simulation program originally developed at UC Berke-
ley in the 1970s. Circuits are defined using netlists, a textual description where
electrical components are connected together using nodes. SPICE uses a modified
nodal analysis method with special treatment for voltage sources to enable nu-
merical approximation. In contrast, our approach generates DAEs as output and
relies on symbolic/numerical methods developed in the 1980s-1990s for solving
DAEs [18,21,22]. Also, SPICE is designed for analog circuit simulation, whereas
our approach is based on ideas from Modelica and is domain-neutral.

6.3 Functional Acausal Languages

The Flow λ-calculus [5] is a minimal EOO language developed by the first author.
It is an extension of the λ-calculus with primitives for generating flow equations.
The approach to connections taken by the Flow λ-calculus inspired the node-
based approach presented here, but its semantics was more complex.

Functional Hybrid Modeling (FHM) [20] combines functional programming
and acausal modeling. It can be seen as a generalization of causal Functional
Reactive Programming (FRP) [25]. Hydra is a DSL within the FHM paradigm
developed by Giorgidze and Nilsson [14]. At present, the language is realized as
an embedding in Haskell [24], with just-in-time compilation of simulation code
for speed. FHM supports highly structurally dynamic systems and it makes a
strict distinction between time-invariant and time-varying entities, relegating
the latter to secondary status. The central FHM modeling-specific abstraction
is the signal relation. It is similar to model abstraction in MKL, but formally
parametrized on signals, time-varying values, not nodes.

Modelica-style connections are not applicable to FHM for the reasons outlined
in Sec. 2.3. Instead, a scheme is adopted with one connect-specification per
node enumerating all variables related by that node [13]. By assuming that flow
is always directed into a signal relation, the signs of the flow variables in the
generated sum-to-zero equations are always positive, independent of context.

Node-Based Connection Semantics for EOO Modeling Languages 271

Signal relation application then takes care of the necessary sign-reversal for flow
quantities (what flows into one signal relation, flows out of another).

While this scheme is simple and quite effective, it does require connections
to be expressed in a particular way. For example, and perhaps unexpectedly,
connection by transitivity does not work. While static checks can be employed
to catch mistakes, the node-based approach would be an interesting alternative.

7 Conclusions

We presented and formalized a new, node-based approach to specifying model
composition through connections in the context of equation-based, acausal lan-
guages for modeling of physical systems. The main benefit compared to the
connect-based approach used in Modelica is that it does not assume much about
the language design. Thus it works well for, for example, functional EOO lan-
guages, which, indeed, was the goal of the design. Additional advantages include
its simplicity and clarity, as evidenced by the formalization.

Acknowledgements. The authors would like to thank Peter Fritzson and John
Capper for useful comments. The first author was funded by the ELLIIT project.

References

1. Accellera Organization. Verilog-AMS Language Reference Manual - Analog &
Mixed-Signal Extensions to Verilog HDL Version 2.3.1 (2009)

2. Ashenden, P.J., Peterson, G.D., Teegarden, D.A.: The System Designer’s Guide
to VHDL-AMS: Analog, Mixed-Signal, and Mixed-Technology Modeling. Morgan
Kaufmann Publishers, USA (2002)

3. Axelsson, E., Claessen, K., Sheeran, M.: Wired: Wire-Aware Circuit Design. In:
Borrione, D., Paul, W. (eds.) CHARME 2005. LNCS, vol. 3725, pp. 5–19. Springer,
Heidelberg (2005)

4. Bjesse, P., Claessen, K., Sheeran, M., Singh, S.: Lava: hardware design in Haskell.
In: Proceedings of the Third ACM SIGPLAN International Conference on Func-
tional Programming, pp. 174–184. ACM Press, New York (1998)

5. Broman, D.: Flow Lambda Calculus for Declarative Physical Connection Seman-
tics. Technical Reports in Computer and Information Science No. 1. LiU Electronic
Press (2007)

6. Broman, D.: Meta-Languages and Semantics for Equation-Based Modeling and
Simulation. PhD thesis, Department of Computer and Information Science,
Linköping University, Sweden (2010)

7. Broman, D., Fritzson, P.: Higher-Order Acausal Models. Simulation News Eu-
rope 19(1), 5–16 (2009)

8. Cellier, F.E.: Continuous System Modeling. Springer, New York (1991)
9. Dassault Systems. Multi-Engineering Modeling and Simulation - Dymola - CATIA

- Dassault Systemes, http://www.dymola.com (last accessed: September 16, 2011)
10. Elmqvist, H., Mattsson, S.E., Otter, M.: Modelica - A Language for Physical Sys-

tem Modeling, Visualization and Interaction. In: Proceedings of the IEEE Inter-
national Symposium on Computer Aided Control System Design (1999)

http://www.dymola.com

272 D. Broman and H. Nilsson

11. Fritzson, P.: Principles of Object-Oriented Modeling and Simulation with Modelica
2.1. Wiley-IEEE Press, New York (2004)

12. Furic, S.: Enforcing model composability in Modelica. In: Proceedings of the 7th
International Modelica Conference, Como, Italy, pp. 868–879 (2009)

13. Giorgidze, G., Nilsson, H.: Embedding a Functional Hybrid Modelling Language in
Haskell. In: Scholz, S.-B., Chitil, O. (eds.) IFL 2008. LNCS, vol. 5836, pp. 138–155.
Springer, Heidelberg (2011)

14. Giorgidze, G., Nilsson, H.: Higher-Order Non-Causal Modelling and Simulation of
Structurally Dynamic Systems. In: Proceedings of the 7th International Modelica
Conference, Como, Italy, pp. 208–218. LiU Electronic Press (September 2009)

15. IEEE Std 1076.1-2007. IEEE Standard VHDL Analog and Mixed-Signal Exten-
sions. IEEE Press (2007)

16. Kunkel, P., Mehrmann, V.: Differential-Algebraic Equations Analysis and Numer-
ical Solution. European Mathematical Society (2006)

17. Lee, E.A.: CPS foundations. In: Proceedings of the 47th Design Automation Con-
ference, DAC 2010, pp. 737–742. ACM Press, New York (2010)

18. Mattsson, S.E., Söderlind, G.: Index reduction in differential-algebraic equations
using dummy derivatives. SIAM Journal on Scientific Computing 14(3), 677–692
(1993)

19. Modelica Association. Modelica - A Unified Object-Oriented Language for
Physical Systems Modeling - Language Specification Version 3.2 (2010),
http://www.modelica.org

20. Nilsson, H., Peterson, J., Hudak, P.: Functional Hybrid Modeling. In: Dahl, V.
(ed.) PADL 2003. LNCS, vol. 2562, pp. 376–390. Springer, Heidelberg (2002)

21. Pantelides, C.C.: The Consistent Initialization of Differential-Algebraic Systems.
SIAM Journal on Scientific and Statistical Computing 9(2), 213–231 (1988)

22. Petzold, L.R.: A Description of DASSL: A Differential/Algebraic System Solver.
In: IMACS Trans. on Scientific Comp., 10th IMACS World Congress on Systems
Simulation and Scientific Comp., Montreal, Canada (1982)

23. Quarles, T.L., Newton, A.R., Pedersen, D.O., Sangiovanni-Vincentelli, A.: SPICE3
Version 3f3 User’s Manual. Technical report, Department of Electrical Engineering
and Computer Sciences, University of California, Berkeley (1993)

24. Jones, S.P.: Haskell 98 Language and Libraries – The Revised Report. Cambridge
University Press (2003)

25. Wan, Z., Hudak, P.: Functional reactive programming from first principles. In:
PLDI 2000: Proceedings of the ACM SIGPLAN 2000 Conference on Programming
Language Design and Implementation, pp. 242–252. ACM Press, New York (2000)

26. Zimmer, D.: Enhancing Modelica towards variable structure systems. In: Proceed-
ings of the 1st International Workshop on Equation-Based Object-Oriented Lan-
guages and Tools, Berlin, Germany, pp. 61–70. LiU Electronic Press (2007)

http://www.modelica.org

A Declarative Specification of Tree-Based

Symbolic Arithmetic Computations

Paul Tarau

Department of Computer Science and Engineering
University of North Texas

tarau@cs.unt.edu

Abstract. We use Prolog as a flexible meta-language to provide exe-
cutable specifications of some interesting mathematical objects and their
operations. In the process, isomorphisms are unraveled between natu-
ral numbers and rooted ordered trees representing hereditarily finite se-
quences and rooted ordered binary trees representing Gödel’s System T
types. Our isomorphisms result in an interesting “paradigm shift”: we
provide recursive definitions that perform the equivalent of arbitrary-
length integer computations directly on rooted ordered trees. Besides
the theoretically interesting fact of “breaking the arithmetic/symbolic
barrier”, our arithmetic operations performed with symbolic objects like
trees or types turn out to be genuinely efficient – we derive implementa-
tions with asymptotic performance comparable to ordinary
bitstring implementations of arbitrary-length integer arithmetic. The
Prolog code of the paper, organized as a literate program, is available at
http://logic.cse.unt.edu/tarau/research/2012/padl12.pl

Keywords: modeling finite mathematics in logic programming, sym-
bolic arbitrary precision arithmetic, ranking/unranking of hereditarily
finite sequences, balanced parenthesis languages.

1 Introduction

This paper exhibits a creative use of logic programming as a modeling tool
for several interesting concepts at the intersection of combinatorics, formal lan-
guages, foundation of mathematics and coding theory. It builds on the declar-
ative data transformation framework introduced in [1,2], where we introduce
a methodology to derive bijective mappings between fundamental data types
used in programming languages (sets, multisets, sequences to graphs, digraphs,
DAGs, hypergraphs etc.)

At the same time, with practical uses for arbitrary size integer arithmetic
in mind, we focus on keeping the asymptotic complexity of various operations
similar to that of operations on conventional bitstrings.

Like [1], this paper is organized as a literate Prolog program. This means that
our “lingua franca” is logic programming rather than the usual mathematical
notation.

C. Russo and N.-F. Zhou (Eds.): PADL 2012, LNCS 7149, pp. 273–288, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://logic.cse.unt.edu/tarau/research/2012/padl12.pl

274 P. Tarau

It has been a long tradition in logic programming to model program prop-
erties and behaviors in terms of mathematical reasoning. We pay it back this
time, and model mathematical concepts as logic programs. The paper is orga-
nized as follows. Section 2 overviews, following [1], a bijection between natural
numbers and sequences that is extended in section 3, by recursive application,
to hereditarily finite sequences. Section 4 describes a novel way to perform arbi-
trary length arithmetic computations using ordered rooted tree representations
of hereditarily finite sequences and discusses some potential applications for im-
plementation of arithmetic operations with numbers that do not fit in computer
memory with conventional binary encodings. It is followed by a sketch of a simi-
lar mechanism in section 5 for the type language of Gödel’s system T. Section 6
introduces a bijection between hereditarily finite sequences and balanced paren-
thesis languages providing a succinct representation for them. Sections 7 and 8
discuss related work and conclude the paper.

2 A Bijection between Finite Sequences and Natural
Numbers

Let N be the set of natural numbers and [N] the set of finite sequences of natural
numbers (that can also be seen as the set of functions from an initial segment of
N to N - or even more generally, as finite functions). We first derive, following
[1] a bijection N → [N].

We define the following predicates working on natural numbers:

cons(X,Y,XY):-X>=0,Y>=0,XY is (1+(Y<<1))<<X.

hd(XY,X):-XY>0,P is XY /\ 1,hd1(P,XY,X).

hd1(1,_,0).

hd1(0,XY,X):-Z is XY>>1,hd(Z,H),X is H+1.

tl(XY,Y):-hd(XY,X),Y is XY>>(X+1).

null(0).

After observing that the relations cons(X,Y,Z), hd(Z,X), tl(Z,Y) hold if and
only if Z = 2X(2Y + 1), it can be proven by structural induction that:

Proposition 1. The predicates cons/3, hd/2, tl/2, null/1 emulate the list
functions CONS,CAR,CDR,NIL as defined in [3] (see proof in [1]).

Note also that hd/2 implements the 2-adic valuation function ν2(z) i.e. it com-
putes the largest exponent x of 2 such that 2x divides z.

Using these predicates we define a bijection between finite sequences repre-
sented as lists of their values and natural numbers, described by the predicates
list2nat/2 and nat2list/2.

Tree-Based Symbolic Arithmetic Computations 275

list2nat([],0).

list2nat([X |Xs],N):-list2nat(Xs,N1),cons(X,N1,N).

nat2list(0,[]).

nat2list(N,[X |Xs]):-N>0,hd(N,X),tl(N,T),nat2list(T,Xs).

The following example shows this bijection at work:

?- nat2list(2012,Ns),list2nat(Ns,N).
Ns = [2, 0, 0, 1, 0, 0, 0, 0],
N = 2012

3 Ranking Hereditarily Finite Sequences

Definition 1. The ranking problem for a family of combinatorial objects is find-
ing a unique natural number associated to each object, called its rank. The in-
verse unranking problem consists of generating a unique combinatorial object
associated to each natural number.

Definition 2. A hereditarily finite sequence is [] or a finite sequence of hered-
itarily finite sequences.

We describe, by instantiating the data type transformation described in [1], how
to extend a bijection N → [N] to trees representing hereditarily finite sequences.
The two sides of the bijection are expressed as two higher order predicates rank
and unrank parameterized by two transformations F and G:

unrank(F,N,Rs):-call(F,N,Ns),maplist(unrank(F),Ns,Rs).

rank(G,Ts,Rs):-maplist(rank(G),Ts,Xs),call(G,Xs,Rs).

These predicates can be seen as a form of “structured recursion” that propagate a
simpler operation (F and G) guided by the structure of the underlying data type.
We can instantiate this mechanism to derive a bijection between natural numbers
and trees representing hereditarily finite sequences using rank and unrank as:

nat2hfseq(N,T):-unrank(nat2list,N,T).

hfseq2nat(T,N):-rank(list2nat,T,N).

They work as follows:

?- nat2hfseq(2012,HFSEQ),hfseq2nat(HFSEQ,N).
HFSEQ = [[[[]]], [], [], [[]], [], [], [], []],
N = 2012

One can represent the recursive unfolding of a natural number into a hereditar-
ily finite sequence as a directed ordered multigraph (Fig. 1). Note that as the
mapping nat2list generates a sequence where the order of the edges matters,
this order is indicated with integers starting from 0 labeling the edges.

276 P. Tarau

0

1

0

2

0

2012

7 6 5 4 2 1

3

0

Fig. 1. 2012 as a HFSEQ

4 Computing with Hereditarily Finite Sequences

This section describes a surprising possibility derived from the existence of bijec-
tions between various data types and natural numbers. It answers positively the
following question: can we turn such bijections into actual isomorphisms such
that operations like additions or multiplications defined on symbolic objects
(e.g. trees or parenthesis languages) mimic their natural number equivalents?
Moreover, we want a genuinely constructive proof that this can be done, which
means that we need to build inductive definitions, starting with successor and
predecessor and then extend them to implement everything else.

We build these operations incrementally. We start with successor/predecessor
operations and simple (but slow) mappings to natural numbers. We then provide
efficient implementations, working, like in the case of bitstring representations,
in time proportional to the size of the operands.

4.1 Successor and Predecessor

To derive efficient successor and predecessor operations we recall that the equa-
tion Z=[X|Y] on hereditarily finite sequences corresponds bijectively to the equa-
tion

Z = 2X(2Y + 1) (1)

on natural numbers. Successor and predecessor predicates s/2 and p/2 are de-
fined as:

s([],[[]]).

s([[K |Ks] |Xs],[[],K1 |Xs]):-p([K |Ks],K1).
s([[] |Xs],[[K1 |Ks] |Ys]):-s(Xs,[K |Ys]),s(K,[K1 |Ks]).

p([[]],[]).

p([[],K |Xs],[[K1 |Ks] |Xs]):-s(K,[K1 |Ks]).
p([[K |Ks] |Xs],[[] |Zs]):-p([K |Ks],K1),p([K1 |Xs],Zs).

Tree-Based Symbolic Arithmetic Computations 277

The two predicates are deterministic and implement functions when their first
arguments are ground, given that the patterns used in the heads of the rules
share no instances. If executed under a breadth-first evaluation rule (or if impure
Prolog operations are used) the two predicates can be merged into a single
reversible predicate. We have preferred pure Horn clause definitions, however,
and reordered the goals in the clause bodies as needed. However, the fact that s
and p are defined by the same Prolog predicate except for a reordering in their
3-rd clause has the following immediate consequence.

Proposition 2. If fs and fp are the functions defined as the result computed
by the second argument of s and respectively p, given their first argument, then
∀x, fp(fs(x)) = x and ∀x <>[], fs(fp(x)) = x.

It follows from this that HFSEQ is a model of (second order) Peano’s axioms.
Given that all such models are isomorphic to N, one could “non-constructively”
conclude that fs provides an implementation of the successor function on N.

However, we will prefer to derive a constructive proof of this equivalence based
on our direct transformations between HFSEQ and N. The following propositions
hold:

Proposition 3. If T is such that hfseq2nat(T,N), s(T,T1) and hfseq2nat
(T1,N1) hold, then N1=N+1.

Proposition 4. If T (assumed different from []) is such that hfseq2nat(T,N),
p(T,T1) and hfseq2nat(T1,N1) hold, then N1=N-1.

This means that the pair hfseq2nat and nat2hfseq acts as an isofunctor that
transports successor and predecessor operations between natural numbers and
hereditarily finite sequences. A proof is obtained by structural induction on the
first argument of the two predicates, after defining a mapping between an ordered
rooted tree type and a natural number type supporting an axiomatization of
Peano arithmetic. After

1. replacing [] by 0
2. replacing each relation of the form [X|Y]=Z in the inductive definition of s

and t with equations of the form 2X ∗ (2 ∗ Y + 1) = Z,

one can obtain arithmetic formulas equivalent to the usual arithmetic relations
defining s and p. This means that we can prove correctness of s and p with
respect to the corresponding successor and predecessor operations on N, by ver-
ifying that, when interpreting each constructor in terms of equation (1) on N,
the resulting formulas become identities.

For instance, s([],[[]]) becomes s(0, 20 ∗ (2 ∗ 0 + 1)) and then s(0, 1) which
states that the successor of 0 is 1.

On the other hand the second and third recursive equations in the definitions
of s and p become logical implications between arithmetic identities, relatively
easy to prove through a sequence of simplifications.

For instance, the second equation in the definition of s/2 becomes, after
putting [K|Ks] → x,Xs → y, K1 → z with x, y, z ∈ N.

s([x|y], [0, z|y]) : −p(x, z). (2)

278 P. Tarau

After interpreting :- as inverse logical implication ⇐ we obtain

s(2x ∗ (2 ∗ y + 1), 20 ∗ 2 ∗ (2z ∗ (2 ∗ y + 1)) + 1) ⇐ p(x, z). (3)

After interpreting s and p as successor and predecessor on N we obtain:

1 + (2x ∗ (2 ∗ y + 1) = 2 ∗ 2z ∗ (2 ∗ y + 1) + 1 ⇐ (x = z + 1). (4)

After replacing x by z + 1 on the left side we obtain:

2z+1 ∗ (2 ∗ y + 1) = 2z+1 ∗ (2 ∗ y + 1) (5)

which is clearly an identity in N.
Note that the ability to reason about the correctness of our programs is clearly

facilitated by the declarative semantics of Prolog, for instance when interpreting
:- as reverse logical implication.

After defining a generator for the infinite stream of hereditarily finite se-
quences mapped to successive natural numbers

n([]).

n(S):-n(P),s(P,S).

one can confirm empirically that our two symbolic s/2 and p/2 operations pro-
vide indeed emulations of their standard counterparts:

?- n(X),hfseq2nat(X,N).
X = [], N = 0 ;
X = [[]], N = 1 ;
X = [[[]]], N = 2 ;
X = [[], []], N = 3 ;
.......

4.2 Simple Arithmetic Operations in Terms of Successor and
Predecessor

The s/2 and p/2 predicate pair can be used to implement the usual arithmetic
operations in time O(N) where N is the natural number corresponding to the first
operand. For instance, addition can be defined as follows:

slow_add([],X,X).

slow_add([X |Xs],Y,Z):-p([X |Xs],P),s(Y,Y1),slow_add(P,Y1,Z).

It works indeed as expected:

?- nat2hfseq(42,T),slow_add(T,T,R),hfseq2nat(R,N).
T = [[[]], [[]], [[]]], R = [[[[]]], [[]], [[]]], N = 84

We next define efficient operations, with asymptotic complexity comparable to
typical bignum packages provided by various languages.

Tree-Based Symbolic Arithmetic Computations 279

4.3 Basic Recognizers and Constructors

We start with recognizers for odd numbers o /2, strictly positive even numbers
i /2 and zero e /1.

o_([[] |_]).
i_([[_ |_] |_]).
e_([]).

Next, we define our constructors. The first one, o/2 builds odd numbers, as
if provided by the leftshift+increment operation 2*X+1. The second one, i/2,
applies the successor predicate to the result of the first, as if provided by the
2*X+2 operation.

o(X,[[] |X]).
i(X,Y):-s([[] |X],Y).

The predicate e /1 can also be seen as a constructor for the empty list repre-
senting 0.

Note that by interpreting o and i as the two successors in WS2S arithmetic
one can obtain a decision procedure on HFSEQ similar to that of [4].

4.4 Arithmetic Operations with Hereditarily Finite Sequences –
Efficiently

To provide efficient, possibly practical implementations of arithmetic operations,
we need a few more steps towards emulating binary representations including
variants of left and right shifting operations.

Deconstructing. Let us first build a deconstructor r/2, working as a decrement
+ rightshift operation on bitstrings such that it maps both 2*X+1 and 2*X+2 to
X, i.e. such that it reverses the action of the constructors o/2 and i/2.

r([[] |Xs],Xs).
r([[X |Xs] |Ys],Rs):-p([[X |Xs] |Ys],[[] |Rs]).

Note that the first clause maps to n a term corresponding to an odd number
of the form 2*n+1, while the second applies the predecessor to an even number
while trimming the result (an odd number) in a similar way to the first clause.

Converting back and forth. Given the deconstructor r/2 and the construc-
tors o/2 and i/2, we can empirically validate the intuitions behind our symbolic
representations, by mapping them one-to-one to conventional natural numbers.

We first define a converter s2n/2, mapping tree representations of hereditarily
finite sequences to conventional natural numbers:

s2n([],0).

s2n(X,R):-o_(X),r(X,S),s2n(S,N),R is 1+2∗N.
s2n(X,R):-i_(X),r(X,S),s2n(S,N),R is 2+2∗N.

then a converter n2s/2 from natural numbers to our symbolic representations:

280 P. Tarau

n2s(0,[]).

n2s(N,R):-N>0,P is N mod 2,N1 is (N-1) // 2,

n2s(N1,X),

(P=:=0→i(X,R)

; o(X,R)

).

They work as expected, and s2n can be seen as enumerating the stream of
natural numbers correctly.

?-n(X),s2n(X,N).
X = [], N = 0 ;
X = [[]], N = 1 ;
X = [[[]]], N = 2 ;
X = [[], []], N = 3 ;
.......

Note also that they work in time proportional to the size of the representations.

Efficient Addition. Guided by this mapping, that sees our symbolic repre-
sentations as if they were bitstrings in bijective base-2, we can implement an
addition operation working in time proportional to the size of the operands:

a([],Y,Y).

a([X |Xs],[],[X |Xs]).
a(X,Y,Z):-o_(X),o_(Y),a1(X,Y,R), i(R,Z).

a(X,Y,Z):-o_(X),i_(Y),a1(X,Y,R), a2(R,Z).

a(X,Y,Z):-i_(X),o_(Y),a1(X,Y,R), a2(R,Z).

a(X,Y,Z):-i_(X),i_(Y),a1(X,Y,R), s(R,S),i(S,Z).

a1(X,Y,R):-r(X,RX),r(Y,RY),a(RX,RY,R).

a2(R,Z):-s(R,S),o(S,Z).

To validate the intuitions behind the algorithm one can interpret o and i as
tests for odd and even natural numbers, o(A,B) as B=2*A+1, i(A,B) as B=2*A+2
and r(A,B) as B = (A-1) // 2. After simplifications, one can observe that the
relation Z=X+Y holds for each of the clauses. A test on large natural numbers
illustrates the fact that its asymptotic efficiency is comparable to its conventional
bitstring counterpart.

?-n2s(12345678901234567890,A),n2s(10000000000000000000,B),a(A,B,S),s2n(S,N).
A = [[[]], [[[]]], [[]], [], [[]], [[]], [[[...]]], [], []|...],
B = [[[], [], [[[]]]], [[]], [], [], [], [[[]]], [[], []], [[...]]...|...],
S = [[[]], [[[]]], [[]], [], [[]], [[]], [[[...]]], [], []|...],
N = 22345678901234567890 .

One can observe that this property holds because each recursive rule reduces its
operands to less then “half” (a seen through their mapping to N) and that s
and p are asymptotically equivalent to their bitstring counterparts.

Tree-Based Symbolic Arithmetic Computations 281

Efficient Multiplication. We can implement efficient multiplication guided by
intuitions about binary multiplication in base 2 and bijective-base 2 as follows:

m([],_,[]).

m(_,[],[]).

m(X,Y,Z):-p(X,X1),p(Y,Y1),m0(X1,Y1,Z1),s(Z1,Z).

m0([],Y,Y).

m0([[] |X],Y,[[] |Z]):- m0(X,Y,Z).

m0(X,Y, Z):-i_(X),r(X,X1),m0(X1,Y,Z1),a(Y,[[] |Z1],Y1),s(Y1,Z).

One can see that it handles easily large numbers (the googol= 10100 included!):

?-n2s(12345678901234567890,A),n2s(10000000000000000000,B),m(A,B,S),s2n(S,N).
A = [[[]], [[[]]], [[]], [], [[]], [[]], [[[...]]], [], []|...],
B = [[[], [], [[[]]]], [[]], [], [], [], [[[]]], [[], []], [[...]]|...],
S = [[[[[]]], [[]]], [[]], [[], [[]]], [], [[[[]]]], [[]], []|...],
N = 123456789012345678900000000000000000000 .

?- n2s((10^100),Googol),m(Googol,Googol,S),s2n(S,N).
Googol = [[[[[]]], [[[]]], []], [[], []], [], [], [], [[], []], [[]] |...],
S = [[[[], []], [[[]]], []], [[[[]]]], [], [], [[]], [[[]]], [] |...],
N = 100000000................00000000000000000000000000000000

Let < T, a, m > denote the algebraic structure induced by the operations a and
m on the set of ordered rooted trees representing hereditarily finite sequences
and < N, +, ∗ > the corresponding algebraic structure on natural numbers with
addition and multiplication. The following holds:

Proposition 5. The addition and multiplication operations a/3 and m/3 in-
duce an isomorphism between the semirings with commutative multiplication
< N, +, ∗ > and < T, a, m >.

We conclude this first part of the paper by confessing that inventing (the asymp-
totically efficient) Horn clause definitions of various arithmetic operations would
not have been possible without the “reverse engineering” capabilities provided by
the data transformation framework in [1], which has enabled us to move at will
between representations like bijective base-2 binary numbers, bit-stacks, hered-
itarily finite sets, hereditarily finite sequences and watch the internal workings
of ordinary operations through functors defined between these domains.

While page limits do not allow us to describe this process in full detail, we have
extended these operations to cover, with asymptotic complexity comparable to
standard bignum packages, to comparaisons, subtraction, division, powers etc.

5 Computing with Binary Trees Representing Gödel’s
System T Types

Definition 3. In Gödel’s System T [5] a type is either N or t → s where t and
s are types.

282 P. Tarau

The basic type N usually stands for the type of natural numbers. We briefly
show here that natural numbers can be emulated directly with types, by using
a single constant e as basic type, representing 0.

First,weobserve that, guidedby theknown isomorphismbetweenordered rooted
trees and ordered rooted binary trees1, we can bring with a functor defined from
hereditarily finite sequences to rooted binary trees the definitions of s/2 and p/2
into corresponding definitions in the language of system T types, s /2 and p /2.

s_(e, (e→e)).

s_(((K→Ks)→Xs), (e→(K1→Xs))) :- p_((K→Ks), K1).

s_((e→Xs), ((K1→Ks)→Ys)) :- s_(Xs, (K→Ys)), s_(K, (K1→Ks)).

p_((e→e), e).

p_((e→(K→Xs)), ((K1→Ks)→Xs)) :- s_(K, (K1→Ks)).

p_(((K→Ks)→Xs), (e→Zs)) :- p_((K→Ks), K1), p_((K1→Xs), Zs).

The following example illustrates that s and p work as expected:

?- s_(e,One),s_(One,Two),s_(Two,Three),s_(Three,Four),p_(Four,Three).
One = (e->e),
Two = ((e->e)->e),
Three = (e->e->e),
Four = (((e->e)->e)->e)

We only give here the code of a generator n /1 for the infinite stream of natural
numbers represented as types in system T, and a simple converter to usual
natural numbers t2n, modeled after tree2nat/2.

n_(e).

n_(S):-n_(P),s_(P,S).

t2n(e,0).

t2n((T→S),N):-p_((T→S),U),t2n(U,M),N is M+1.

confirming empirically that our computations mimic the usual ones:

?- n_(T),t2n(T,N).
T = e, N = 0 ;
T = (e->e), N = 1 ;
T = ((e->e)->e), N = 2 ;
T = (e->e->e), N = 3 ;
...

Fast arithmetic computations, operating directly on types, can be derived using
the corresponding code for hereditarily finite sequences as “boilerplate”.

Deriving a bidirectional successor/predecessor predicate. The predicates s and
p are mutually recursive and structurally similar. Moreover, each of them would

1 That manifests itself in languages like Prolog or LISP as the dual view of lists as a
representation of sequences or binary CONS-cell trees.

Tree-Based Symbolic Arithmetic Computations 283

run reversibly under a breadth-first evaluation order. An interesting challenge
is to derive a bidirectional variant replacing both predicates. One could achieve
this by using impure operations like nonvar/1 to check which argument is in-
stantiated or, equivalently, checking the instantiation of the arguments using
negation as failure. We proceed by merging the two predicates’ shared clauses
and adding an extra argument taking the values up or down to indicate which
way the the computation goes.

sp(e, (e->e), _).

sp(((K->Ks)->Xs), (e->(K1->Xs)),Dir) :- flip(Dir,Other),

sp(K1,(K->Ks), Other).

sp((e->Xs), ((K1->Ks)->Ys), up) :-

sp(Xs, (K->Ys) ,up),

sp(K, (K1->Ks), up).

sp((e->Xs), ((K1->Ks)->Ys), down) :-

sp(K, (K1->Ks), down),

sp(Xs, (K->Ys) ,down).

flip(up,down).

flip(down,up).

up_or_down(_X,Y,down):- \+(Y=other).

up_or_down(X,_Y,up):- \+(X=other).

sp(X,Y):-up_or_down(X,Y,Dir),sp(X,Y,Dir).

Note also the auxiliary predicate flip/2, which indicates a change of direction,
and the auxiliary predicate up or down, that choses among the two possible
directions, based on the instantiation of at least one of the arguments of sp/2.
We detect instantiation of the arguments testing them against the atom other,
assumed not to be part of the Herbrand Universe of our program.

One step further, we push the call to sp/3 into flip/2 (as it is the only
continuation of flip/2), and merge the last two clauses, while delegating the
ordering of the recursive calls to the auxiliary predicate order sp. Note that we
also fold up or down as part of the definition of sp/2.

sp(e, (e→e), _).

sp(((K→Ks)→Xs), (e→(K1→Xs)), Dir):-flip_sp(Dir, K1, (K→Ks)).

sp((e→Xs), ((K1→Ks)→Ys), Dir):-order_sp(Dir, Xs, (K→Ys), K, (K1→Ks)).

flip_sp(up,X,Y) :- sp(X,Y,down).

flip_sp(down,X,Y) :- sp(X,Y,up).

order_sp(up,A,B,C,D) :- sp(A,B,up), sp(C,D,up).

order_sp(down,A,B,C,D) :- sp(C,D,down), sp(A,B,down).

sp(X,Y) :- \+(X=other), sp(X,Y,up).

sp(X,Y) :- \+(Y=other), sp(X,Y,down).

284 P. Tarau

One can try out sp/2 working as a bidirectional successor/predecessor predicate
when at least one of its arguments is instantiated:

?- sp(Pred,((e->e)->e)).
Pred = (e->e) .

?- sp((e->e),Succ).
Succ = ((e->e)->e) .

6 Mapping Hereditarily Finite Sequences to Parenthesis
languages

We next explore the bijection between hereditarily finite sequences and the lan-
guage of balanced parenthesis, known to combinatorialists [6,7,8] as a member
of the Catalan family, which also includes the ordered rooted binary trees rep-
resenting System T types.

An encoder for the balanced parenthesis language is obtained by combining a
parser and a writer, which, with some ingenuity, can be made one and the same
in a language like Prolog.

As hereditarily finite sequences naturally map one-to-one to parenthesis ex-
pressions expressed as bitstrings, we choose them as target of the transformers.
Our parser recurses over a bitstring (encoding balanced parentheses ’[’ as 0,
’]’ as 1) and builds a HFSEQ tree T:

pars_hfseq(Xs,T):-pars2term(0,1,T,Xs,[]).

pars2term(L,R,Xs) −→ [L],pars2args(L,R,Xs).

pars2args(_,R,[]) −→ [R].

pars2args(L,R,[X |Xs])−→pars2term(L,R,X),pars2args(L,R,Xs).

Note that pars hfseq is bidirectional i.e. it works both as an encoder and a
decoder:

?- pars_hfseq([0,0,1,0,1,1],T),pars_hfseq(Ps,T).
T = [[], []],
Ps = [0, 0, 1, 0, 1, 1]

One can see the bijection defined by pars hfseq as a bridge between a family of
formal languages and hereditarily finite sequences, represented as ordered rooted
trees.

Kraft’s inequality. As the sequences computed by pars hfseq are elements of
the balanced parenthesis language (also called Dyck primes) [9], they implement
uniquely decodable self-delimiting codes. Moreover, each of them is also a prefix
code, i.e. there’s no way to add a string made of any combination of balanced left
or right parenthesis at the end of a code and obtain another code. For a similar

Tree-Based Symbolic Arithmetic Computations 285

reason, each of them is also a suffix code. Such codes are known in the literature
under a variety of different names i.e. as reversible variable-length codes, bifix
codes or fix-free codes2.

In particular, given that they are uniquely decodable codes, it follows that the
Kraft inequality [10] holds for them, i.e. if l0, l1 . . . lk . . . denote the length of the
codes, then ∑

k≥0

2−lk ≤ 1 (6)

We define the function computing the left side of the Kraft inequality (called
Kraft-sum), and the corresponding test as follows.

kraft_sum(M,S):- M1 is M-1, numlist(0,M1,Ns),

maplist(kraft_term,Ns,Ls),

sumlist(Ls,S).

kraft_term(N,X):-parsize(N,L), X is 1/2^L.

parsize(N,L):- nat2hfseq(N,HFSEQ), pars_hfseq(Xs,HFSEQ), length(Xs,L).

kraft_inequality(M):-kraft_sum(M,S),S=<1.

The following example illustrates that the Kraft’s inequality holds and it is likely
that the Kraft-sum converges to a value below 0.5:

?- maplist(kraft_sum,[10,100,1000,2000,3000,4000],R).
R = [0.364258, 0.382935, 0.390383, 0.391615, 0.392292, 0.392598]

The bijection between hereditarily finite sequences and balanced parenthesis
languages provides a succinct alternative representation for purposes of efficient
arithmetic operations using bitvector operations – by encoding the two parenthe-
sis as 0 and 1. As a possible practical application, this allows building in Prolog,
at source level, a library supporting arbitrary length arithmetic operations.

7 Related Work

A version of this paper has been presented at the CICLOPS’2011 workshop with
only informal proceedings at the arxiv.org repository.

Ranking functions can be traced back to Gödel numberings [11,12] associated
to formulae. Together with their inverse unranking functions they are also used
in combinatorial generation algorithms [13,14]. Natural number encodings of
hereditarily finite sets have triggered the interest of researchers in fields ranging
from Axiomatic Set Theory and Foundations of Logic to Complexity Theory and
Combinatorics [15,16,17].

2 A nice property of such codes is that parallel bidirectional decoding is possible. Also,
the ability to decode from either the beginning or the end makes them suitable for
encoding media streams.

arxiv.org

286 P. Tarau

The encodings of hereditarily finite sets and sequences described in this paper
originate in [1,18,19,20]. The key difference is that while in our previous work
we use pairs of bijections encapsulated as higher order predicates/functions to
define various isomorphisms directly, here we provide actual algorithms for arith-
metic operations, ordering etc. while in our previous work the existence of such
algorithms was only implied “non-constructively”.

In [21] ordered multiway trees and binary trees are used to describe compu-
tations with countable ordinals as well as applications to termination analysis.
While [21] has a very different focus from our paper, it would be interesting to
study in depth the connection between the total order induced by our successor
and predecessor functions and ordinal theory.

An emulation of Peano and conventional binary arithmetic operations in Pro-
log, is described in [22]. Their approach is similar as far as a symbolic represen-
tation is used. The key difference with this paper is that our operations work on
tree structures, and as such, they are not based on previously known algorithms.
Our tree-based algorithms are also likely to support parallel execution in a way
similar to the powerlists of [23]. Arithmetic computations with types expressed
as C++ templates are described in [24] and in online articles by Oleg Kiselyov
using Haskell’s type inference mechanism. However, the mechanism advocated
there is basically the same as [22], focusing on Peano and binary arithmetics.
The connection between hereditarily finite sequences and balanced parenthesis
languages places them the context of Catalan families [6,7,8], the well known to
combinatorialists.

8 Conclusion

We have derived a few algorithms expressing arithmetic computations symboli-
cally, in terms of hereditarily finite sequences and types in Gödel’s system T.

This has been made possible by extending the techniques introduced in [1] that
allow observing the internal working of intricate mathematical concepts through
isomorphisms transporting operations between fundamental data types.

At the same time, we have shown that logic programming provides a flex-
ible framework for modeling mathematical concepts from fields as diverse as
combinatorics, formal languages, type theory and coding theory.

Arithmetic operations with hereditarily finite sequences are likely to be inter-
esting for hardware (FPGA) implementations of large integer operations used
in cryptography. They are also subject to parallelization by adapting techniques
introduced by Misra’s powerlists [23] and can provide computations with giant
numbers that do not fit in any computer memory with a flat bitstring represen-
tation3.

Reversible variable length (bifix) codes like the ones we derived in section 6
have found uses in image and video coding [25] (including MPEG4!). Prefix codes

3 Something as simple as [[[[[[[[[]]]]]]]]] expresses a very large number - as such

numbers correspond to towers of exponents of the form 2..2
2

.

Tree-Based Symbolic Arithmetic Computations 287

are used in defining modern versions of Kolmogorov complexity [26]. The fact
that this property holds, recursively, for arbitrary parts of the code, combined
with their ability to express programming language constructs, as shown in [1],
makes them an interesting alternative to the Elias codes [27] typically used in
the field.

Acknowledgment. We thank NSF (research grant 1018172) for support.

References

1. Tarau, P.: An Embedded Declarative Data Transformation Language. In: Pro-
ceedings of 11th International ACM SIGPLAN Symposium PPDP 2009, Coimbra,
Portugal, pp. 171–182. ACM (September 2009)

2. Tarau, P.: Everything Is Everything Revisited: Shapeshifting Data Types with
Isomorphisms and Hylomorphisms. Complex Systems (18) (2010)

3. McCarthy, J.: Recursive functions of symbolic expressions and their computation
by machine, part i. Commun. ACM 3(4), 184–195 (1960)

4. Rabin, M.O.: Decidability of second-order theories and automata on infinite trees.
Transactions of the American Mathematical Society 141, 1–35 (1969)

5. Gödel, K.: Über eine bisher noch nicht benützte Erweiterung des finiten Stand-
punktes. Dialectica 12, 280–287 (1958)

6. Berstel, J., Boasson, L.: Formal properties of XML grammars and languages. Acta
Informatica 38(9), 649–671 (2002)

7. Liebehenschel, J.: Ranking and unranking of a generalized Dyck language and the
application to the generation of random trees. Séminaire Lotharingien de Combi-
natoire 43, 19 (2000)

8. Bertoni, A., Choffrut, C., Palano, B.: Context-Free Grammars and XML Lan-
guages. In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 108–119.
Springer, Heidelberg (2006)

9. Berstel, J., Boasson, L.: Balanced Grammars and Their Languages. In: Brauer,
W., Ehrig, H., Karhumäki, J., Salomaa, A. (eds.) Formal and Natural Computing.
LNCS, vol. 2300, pp. 3–25. Springer, Heidelberg (2002)

10. Kraft, L.: A device for quantizing, grouping, and coding amplitude-modulated
pulses. Master’s thesis, Massachusetts Institute of Technology. Dept. of Electri-
cal Engineering (1949)

11. Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme I. Monatshefte für Mathematik und Physik 38, 173–198 (1931)

12. Hartmanis, J., Baker, T.P.: On Simple Goedel Numberings and Translations. In:
Loeckx, J. (ed.) ICALP 1974. LNCS, vol. 14, pp. 301–316. Springer, Heidelberg
(1974)

13. Mart́ınez, C., Molinero, X.: Generic Algorithms for the Generation of Combina-
torial Objects. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp.
572–581. Springer, Heidelberg (2003)

14. Knuth, D.E.: The Art of Computer Programming. Fascicle 1: Bitwise Tricks &
Techniques; Binary Decision Diagrams, vol. 4. Addison-Wesley Professional (2009)

15. Takahashi, M.O.: A Foundation of Finite Mathematics. Publ. Res. Inst. Math.
Sci. 12(3), 577–708 (1976)

288 P. Tarau

16. Kaye, R., Wong, T.L.: On Interpretations of Arithmetic and Set Theory. Notre
Dame J. Formal Logic 48(4), 497–510 (2007)

17. Kirby, L.: Addition and multiplication of sets. Math. Log. Q. 53(1), 52–65 (2007)
18. Tarau, P.: A Groupoid of Isomorphic Data Transformations. In: Carette, J., Dixon,

L., Coen, C.S., Watt, S.M. (eds.) Calculemus/MKM 2009. LNCS (LNAI), vol. 5625,
pp. 170–185. Springer, Heidelberg (2009)

19. Tarau, P.: Isomorphisms, Hylomorphisms and Hereditarily Finite Data Types in
Haskell. In: Proceedings of ACM SAC 2009, Honolulu, Hawaii, pp. 1898–1903.
ACM (March 2009)

20. Tarau, P.: Declarative Combinatorics: Isomorphisms, Hylomorphisms and Heredi-
tarily Finite Data Types in Haskell, pages 150 (January 2009), unpublished draft,
http://arXiv.org/abs/0808.2953, updated version at
http://logic.cse.unt.edu/tarau/research/2010/ISO.pdf

21. Dershowitz, N.: Trees, Ordinals and Termination. In: Gaudel, M., Jouannaud, J.
(eds.) CAAP 1993, FASE 1993, and TAPSOFT 1993. LNCS, vol. 668, pp. 243–250.
Springer, Heidelberg (1993)

22. Kiselyov, O., Byrd, W.E., Shan, C.-c.: Pure, Declarative, and Constructive Arith-
metic Relations (Declarative Pearl). In: Garrigue, J., Hermenegildo, M. (eds.)
FLOPS 2008. LNCS, vol. 4989, pp. 64–80. Springer, Heidelberg (2008)

23. Misra, J.: Powerlist: a structure for parallel recursion. ACM Transactions on Pro-
gramming Languages and Systems 16, 1737–1767 (1994)

24. Kiselyov, O.: Type arithmetics: Computation based on the theory of types. CoRR
cs.CL/0104010 (2001)

25. Wen, J., Villasenor, J.: Reversible variable length codes for efficient and robust
image and video coding. In: Proceedings Data Compression Conference, pp. 471–
480 (1998)

26. Li, M., Vitányi, P.: An introduction to Kolmogorov complexity and its applications.
Springer-Verlag New York, Inc., New York (1993)

27. Elias, P.: Universal codeword sets and representations of the integers. IEEE Trans-
actions on Information Theory 21(2), 194–203 (1975)

http://arXiv.org/abs/0808.2953
http://logic.cse.unt.edu/tarau/research/2010/ISO.pdf

Typing the Numeric Tower

Vincent St-Amour1, Sam Tobin-Hochstadt1, Matthew Flatt2, and Matthias Felleisen1

1 Northeastern University
{stamourv,samth,matthias}@ccs.neu.edu

2 University of Utah
mflatt@cs.utah.edu

Abstract. In the past, the creators of numerical programs had to choose between
simple expression of mathematical formulas and static type checking. While the
Lisp family and its dynamically typed relatives support the straightforward
expression via a rich numeric tower, existing statically typed languages force
programmers to pollute textbook formulas with explicit coercions or unwieldy
notation. In this paper, we demonstrate how the type system of Typed Racket ac-
commodates both a textbook programming style and expressive static checking.
The type system provides a hierarchy of numeric types that can be freely mixed as
well as precise specifications of sign, representation, and range information—all
while supporting generic operations. In addition, the type system provides infor-
mation to the compiler so that it can perform standard numeric optimizations.

1 Designing the Numeric Tower

From the classic two-line factorial program to financial applications to scientific com-
putation to graphics software, programs rely on numbers and numeric computations.
Because of this spectrum of numeric applications, programmers wish to use a wide vari-
ety of numbers: the inductively defined natural numbers, fixed-width integers, floating-
point numbers, complex numbers, etc. Supporting this variety demands careful attention
to the design of programming languages that manipulate numbers.

Most languages have taken one of two approaches to numbers. Many untyped lan-
guages, drawing on the tradition of Lisp and Smalltalk, provide a hierarchy of numbers
whose various levels can be freely used together, known as the numeric tower. For ex-
ample, the following Racket expression mixes arbitrary precision integers with inexact
floating-point numbers and produces a complex result:

(sqrt (/ 3.14159 (- (expt 2 32))))

That is, the numeric tower supports concise expression of mathematical formulas.
Other languages provide static checking of various numeric operations, ensuring

that results conform to machine representations of numbers. Static checking helps pro-
grammers reason about the requirements, behavior, and performance of their programs.
Some languages also provide a limited ability to combine different forms of numbers
together in arithmetic operations for a small set of numeric representations. No existing
typed language provides as rich a numeric hierarchy nor as many generic operations as
those found in Smalltalk, Scheme, or Racket.

C. Russo and N.-F. Zhou (Eds.): PADL 2012, LNCS 7149, pp. 289–303, 2012.
© Springer-Verlag Berlin Heidelberg 2012

290 V. St-Amour et al.

In this paper, we describe the design of the numeric tower in Typed Racket (Tobin-
Hochstadt and Felleisen 2008), which combines expressiveness with static checking.
Typed Racket is an explicitly and statically typed sister language to Racket, a mostly-
functional language (Flatt and PLT 2010). Using Typed Racket, programmers may
convert untyped Racket programs by adding explicit type declarations. In the exist-
ing type system, we can encode fine distinctions in the hierarchy of numeric types and
express numerous mathematical properties of numeric operations in their types. Com-
bining these features allows programmers to state and enforce static properties about
their numeric programs while maintaining the concise mathematical expression of un-
typed Racket. Furthermore, we can reuse standard optimization techniques to reap the
performance benefits of static typing.

Three features of Typed Racket support this design. Due to true union types
(Buneman and Pierce 1999) the choices of numeric types do not need to reflect the
underlying runtime representation of numbers nor do they affect the representation. For
example, Integer is the union of positive and negative integers, yet Racket’s run-time
representation has no knowledge of this division. Due to overloading with intersection
types (Coppo and Dezani-Ciancaglini 1978; Reynolds 1988) the type system supports
precise specification of the behavior of numeric operations such as + without necessi-
tating multiple implementations. Thus it can express that adding two positive integers
produces a positive integer and adding a negative integer to a negative floating point
number produces a negative floating point value. Due to occurrence typing (Tobin-
Hochstadt and Felleisen 2008, 2010) the type checker can “lower” the numeric types of
variables based on dynamic tests including predicates and numeric comparisons.

The remainder of the paper begins with a series of examples that illustrate Typed
Racket’s approach to numeric computations. We then describe the encoding of the type
hierarchy in section 3, the typing of numeric operations using overloading in section 4,
and the use of occurrence typing to refine types in section 5. Finally, in section 6, we
describe our implementation, focusing on challenges concerning usability.

2 A Rich Numeric Tower

We introduce Typed Racket and its approach to numeric programming with a series of
small examples. The mathematical absolute value function, | − |, takes real numbers to
non-negative real numbers. As figure 1 shows, a programmer can naturally express this
simple fact via types. Furthermore, the function definition itself transliterates the text-
book definition of abs into the concrete syntax of a functional programming language;
Typed Racket’s type system accomplishes the rest.

The pythagorean function also benefits from encoding sign information in the type
system. Racket’s sqrt function, like its mathematical counterpart, optionally may yield
complex numbers. Programmers often write programs, however, that depend on real-
valued results from sqrt. To accommodate the latter, the type of sqrt in Typed Racket
maps non-negative reals to non-negative reals. Because the square of any real number
is provably always non-negative and the sum of two non-negative numbers is also non-
negative, the type system can validate that the length of the hypotenuse of any right
triangle is non-negative. See the type of the pythagorean function in figure 1.

Typing the Numeric Tower 291

(: abs : Real → Nonnegative-Real)
(define (abs x) (if (> x 0) x (- x)))

(: pythagorean : Real Real → Nonnegative-Real)
(define (pythagorean a b) (sqrt (+ (sqr a) (sqr b))))

(: nat->hex : Natural → (Listof Byte))
(define (nat->hex n)

(cond [(= n 0) ’()]
[else (cons (modulo n 16) (nat->hex (quotient n 16)))]))

(: sum-vector : (Vectorof Integer) → Integer)
(define (sum-vector v)

(define n (vector-length v))
(let loop ([i 0] [sum 0])

(if (< i n) (loop (+ i 1) (+ sum (vector-ref v i))) sum)))

(: gen-random : Float Float → Float)
(define (gen-random min max)

(next) (+ min (/ (* (- max min) x) p)))
(define p (- (expt 2 31) 1))
(define A (expt 7 5))
(define x 42) ; state of the PRNG
(define (next) (set! x (modulo (* A x) p))) ; xi+1 ≡ A · xi (mod p)

Fig. 1. Numeric programs in Typed Racket

Sign properties are a special case of range properties, another common set of proper-
ties that programmers want to establish. For instance, two program fragments may need
to communicate via a protocol that limits the range of encoded values. A type system
that supports subtyping and overloading makes it possible to mix and match fixed-width
and unbounded integers, both widely used by Racket programmers. Hence, program-
mers can have the mathematically correct behavior of unbounded integers as the default
and may still enforce range properties when desired, without explicit coercions.

In the third example of figure 1, Typed Racket’s type system guarantees that the re-
sult of (modulo n 16) fits within a byte. Arguments to nat->hex can be unbounded
integers, and the range properties still hold. Similarly, in the fourth example, the type
system guarantees that i is of type Index, which is bounded by the maximum length of
Racket vectors. This ensures that vector index computations are performed directly us-
ing machine arithmetic instead of costly arbitrary precision operations; all index compu-
tations in sum-vector use machine integers directly. Furthermore, the results of these
functions can be freely mixed with unbounded integers in subsequent computations,
without introducing explicit coercions.

292 V. St-Amour et al.

The ability to freely mix numbers from different levels of the numeric tower in arith-
metic expressions is another convenience of blackboard mathematics that is important
for programmers. Again, many type systems require explicit coercions for mixed value
expressions, as in Standard ML, Ocaml or Haskell, or provide a limited set of built-in
implicit coercions, as in C or Java. A type system that can encode the promotion rules
of arithmetic operations when used on operands of mixed types saves the programmer
from having to repeatedly encode these rules in his programs in an ad-hoc manner.

The last example in figure 1 presents an implementation of Lewis et al. (1969)’s
multiplicative congruential pseudo-random number generator that features mixed-type
arithmetic with integer and floating-point numbers. Local type inference (Pierce and
Turner 2000) determines that p, A and x are of type Integer and both arguments to
gen-random (min and max) are of type Float. In the boldface section, the result of
the subtraction, a floating-point number, is multiplied by an integer, which results in a
floating-point number. This implementation is structurally that of a textbook; the actual
mathematical operations are unobscured by coercions or other artifacts.

3 Encoding the Numeric Hierarchy

To encode arithmetic specifications, a type system must classify numbers. For exam-
ple, if a type system is to encode specifications involving sign properties, it needs to
distinguish between positive and negative numbers at the type level. To reason about
exactness of results, a type system needs to encode exactness of numbers as part of
their type. We express distinctions along these axes using true unions and subtyping.

3.1 Union Types

Typed Racket provides general union types. For example, (U Integer Float) con-
tains all integers as well as all floating-point numbers. Subtyping follows the usual rules
for union types, e.g., both the Integer type and Float type are subtypes of (U In-
teger Float). It thus is possible to use either an integer or a floating-point number
as a value of the union without injection.

Since true unions do not add tags to the values of their constituents, they do not
impose constraints on the underlying machine-level representation of data, which has
several benefits. First, we can overlay a type hierarchy on top of Racket’s existing rep-
resentations, without requiring changes to the compiler and runtime. Second, we can
make finer-grained distinctions at the type level than at the representation level. For
example, while Racket uses the same IEEE 754 floating-point representation scheme
for positive and negative floating-point numbers, Typed Racket distinguishes the two
at the type level by providing both a Positive-Float and a Negative-Float type.
Finally, because we build our numeric types as unions of non-overlapping base types,
the intersection of any two numeric types is necessarily a union of some of those non-
overlapping base types and thus denotes a valid type. Therefore, we reap some of the
benefits of useful intersection types without the need for general intersection types.

Typing the Numeric Tower 293

3.2 Layers of Numbers

Figure 2 shows Typed Racket’s layers of the numeric hierarchy. Most layers corre-
spond to well-known sets, such as integers, rationals, and complex numbers. Others
correspond to numbers with specific machine representations, such as floating-point.

These layers are similar to the numeric types offered by most programming lan-
guages. In addition to the usual integer and floating-point layers, Typed Racket offers
exact rationals and both exact and floating-point complex numbers. Members of these
layers are integrated with the rest of the numeric tower: operations on numbers from
other layers of the tower can produce rationals or complex numbers. For example, the
result of dividing 2 by 5 is the fraction 2

5 . Rationals and complex numbers can also be
mixed freely with numbers from the other layers of the tower; e.g., the addition of the
rational 2

5 and the integer 3 yields the rational 17
5 .

Fig. 2. Typed Racket’s numeric type hierarchy, with signs

Layers are related by subtyping in the expected fashion; Integer is a subtype of
Rational, which is a subtype of Real. Float is also a subtype of Real. All numeric
types in Typed Racket are subtypes of Complex. For convenience, Typed Racket pro-
vides a Number type as a synonym for Complex; we use the two interchangeably.

3.3 Signed Types

As a refinement of layers, Typed Racket distinguishes numbers based on their sign.
Typed Racket offers positive and negative subdivisions of all layers except Complex,
as well as types for integer zero and for both of the floating-point zeroes, producing
types such as Positive-Integer and Negative-Rational.

In addition, unions can express types such as Natural, which corresponds to the
union of Positive-Integer and Zero, the type of the integer zero. It would be pos-
sible to subdivide the Complex layer into quadrants to achieve a similar effect.

The different zero types are singleton types that contain only the appropriate zero.
Singleton types for first-order values are straightforward, and fit nicely in our subtyping

294 V. St-Amour et al.

hierarchy. For convenience, a Float-Zero type containing both floating-point zeroes is
provided, as well as a Real-Zero type that also includes the integer zero. Since these
different zero values cause distinct behavior when used as arguments, we distinguish
them both at the type level as well as at the value level. As explained in section 5, zero
types are most useful for comparisons. Since comparisons are not defined on complex
numbers, complex zero types are of limited usefulness and are not provided.

As expected, the sign distinctions preserve the subtyping of layers: Positive-
Integer is a subtype of Positive-Rational. In addition, signed subsets are sub-
types of their parent layer: Positive-Integer is also a subtype of Integer. In fact,
Integer is the union of Positive-Integer, Negative-Integer and Zero. Simi-
larly, the Positive type is the union of the “positive” types. Figure 2 shows how sign
distinctions refine the numeric hierarchy; see the dotted lines.

3.4 Encoding Range Information

The integer layer is further subdivided into fixed-width integer types, corresponding to
different ranges. The Byte type contains the integers from 0 to 255, the Index type is
bounded by zero and the length of the longest possible Racket vector. The Fixnum type
contains all integers that Racket stores as tagged machine integers on every platform.1

Those ranges capture a large number of use cases in existing Racket programs. Other
ranges could be provided as needed. To prevent base types from overlapping, we fix
the ranges when implementing the type system. In addition, bounds on range types are
static; bounds cannot depend on values, unlike in dependently-typed systems.

Sign distinctions can also apply to these types to express types such as Positive-
Byte or Negative-Fixnum. These types are also related by subtyping: Byte is a
subtype of Index, which is a subtype of Nonnegative-Fixnum. Figure 2 shows a
close-up view of the subdivisions of the integer layer.

4 Typing Operations

To exploit our numeric tower, we need type signatures for primitive operations that are
generic and yet as tightly specified as possible. For example, if x and y are Integers,
then (+ x y) is also an Integer, yet if x and y are Float-Complex numbers, then
that should be the result type as well. In this section, we present both the properties of
our basic type environment and the mechanisms for expressing such properties.

4.1 Overloading with Ordered Intersection Types

Untyped Racket already provides overloading for numeric operations. The function +
produces exact results when given exact inputs, and otherwise produces inexact results.
The challenge for Typed Racket is to represent these overloadings in the type system
and to refine them using the distinctions that only exist in the type environment.

We use ordered intersection types to express the multiple possible behaviors of nu-
meric operations. Intersection types (Coppo and Dezani-Ciancaglini 1978; Reynolds

1 This last point is discussed further in section 6.4.

Typing the Numeric Tower 295

1988) are well known in the type system literature and have been extensively studied
in many contexts. In their most general form, intersection types are too expressive and
undecidable. Typed Racket instead offers a pragmatic flavor of intersections of function
types.2 To increase the predictability of the system for programmers, intersections of
function types are considered in order, with earlier types taking precedence over later
types.3 Thus, the following types are equivalent in Typed Racket:

� → � (� → �) ∧ (Integer → Integer)

because � is a supertype of Integer, and thus the first conjunct applies in all possible
cases. Typed Racket provides the case→ type constructor to build function intersection
types. Using this type constructor, we can express this fragment of the type of +:

(: + (case→ (Integer Integer → Integer)
(Float Float → Float)
(Number Number → Number)))

Although intersection types are useful for functions that branch based on their input
type, conditionals are not required. For example, this program type checks:

(: f (case→ (Number → Number) (String → Number))
(define (f x) 0))

A function definition with an intersection type must check properly for each branch in
the intersection, but no other restrictions are imposed.

In the remainder of this section, we consider several varieties of numeric operations,
and show how fine-grained numeric types and overloading via ordered intersections
help us express a variety of semantic properties in our type system.

4.2 Simple Numeric Operations

The most basic use of overloading for numeric operations is to express the closure
properties of arithmetic operations such as + and *. For example, the type of + includes
conjuncts specifying that the sum of two Integers is an Integer, and that the sum of
two Real numbers is also Real. These properties hold for * as well.

Signed types provide scope for expressing useful mathematical properties. For ex-
ample, the type fragment

(Negative-Real Negative-Real → Positive-Real)

expresses that * produces positive real numbers when given negative inputs. Using over-
loading, the types of *, /, and other operations can express these properties precisely.

Range-bounded types are trickier, because they enjoy fewer closure properties. For
example, the sum of two Indexes may not be an Index itself, because integer addition

2 Intersections of function types are especially interesting because they reify overloading.
3 The need for ordered intersection types is further motivated by Racket’s case-lambda con-

struct whose operational behavior calls for an ordered execution of clauses.

296 V. St-Amour et al.

in Racket can exceed the length of the largest possible vector. However, the sum of two
Indexes is a Fixnum.

Further, Racket and Typed Racket support mixed-typed arithmetic. Hence, the types
of primitive operations must describe this behavior as well. For example, the sum of a
Float and an Integer is a Float by the promotion rules for addition.

4.3 Other Operations

Many numeric operations in Racket have semantic properties that are expressible us-
ing the combination of overloading and our numeric type hierarchy. For example, the
modulo operation, when given a bounded modulus, produces a bounded result. This
property is key to typing the nat->hex function in figure 1. Other operations that are
given similarly expressive types include floor, ceiling, and round.

Coercion operators can also be precisely typed using overloading. The function
exact->inexact, which converts exact integers and rationals to floating point val-
ues, comes with a type that includes the clauses Real → Float and Complex →
Float-Complex.

Finally, some operations have special properties on parts of their domain. The sqrt
function potentially produces Complex results, but it produces Nonnegative-Reals
for non-negative inputs. The pythagorean function in figure 1 relies on this overload-
ing to prove that the third side of a right triangle always has non-negative length.

5 Refining Types with Dynamic Tests

In many cases programs use dynamic tests to determine properties of numeric values.
The Typed Racket type system uses occurrence typing (Tobin-Hochstadt and Felleisen
2008, 2010) to refine the types in the program using dynamic type tests such as exact-
integer? and positive?. In addition, we can also express useful properties of com-
parison operators using occurrence typing, thus refining types even further.

5.1 Numeric Predicates

The key idea of occurrence typing is expressed with the abs function from figure 1:

(: abs : Real → Nonnegative-Real)
(define (abs x) (if (positive? x) x (- x)))

To check this function, the type checker proceeds as follows.

– The function signature assigns Real to x.
– Based on (positive? x), the type system determines that if the condition holds,
x must have the type Positive in the then branch.

– Since restricting Real to Positive produces a subtype of Nonnegative-Real,
the then branch type checks correctly.

– In the else branch, the type of x must be both a Real and not Positive, yielding
the Nonpositive-Real type, which via negation yields the Nonnegative-Real
type, as desired.

Typing the Numeric Tower 297

To express that positive? determines whether its argument has type Positive,
its type is

positive? :
(

x : Real
Positivex−−−−−−→ Boolean

)

The annotation above the arrow is a proposition about the parameter x. Specifically, it
says that x is positive if the result is true and it is not positive otherwise. With types
such as this one, Typed Racket understands many more numeric predicates than simply
positive?, including real?, inexact?, fixnum? and others.

Because Typed Racket has a precise type hierarchy, a wide variety of predicates can
refine types. For example, Positive is a union of positive integers represented both as
machine integers and bignums, as well as positive exact rationals and positive floating
point numbers. A type hierarchy with coarser-grained distinctions would sacrifice some
of the precision available for describing the behavior of positive?.

Another advantage of occurrence typing in combination with numeric predicates is
that it greatly reduces the need for explicit downward coercions within the numeric
hierarchy. For example, the following function verifies that its input is an exact integer:

(: assert-exact-integer : Any → Integer)
(define (assert-exact-integer in)

(if (exact-integer? input) in (error "not an integer")))

Without occurrence typing, this program would require an explicit injection into the ex-
act integer type. Instead, we leverage both the untagged union representation of Racket
numbers and the handling of predicates by the type system to avoid coercions.

5.2 Comparison Operators

While occurrence typing is useful for predicates, programmers are more likely to em-
ploy comparison operators than predicates in numerical programs. Returning to the abs
function, we can rewrite its body to use a comparison and it still type checks:

(if (> x 0) x (- x))

From the programmer’s perspective, the two versions of the function are identical.
The > function is not a predicate, however. We can still use the expressiveness of the
types to encode this information in the type of >, leading to (among other overloadings):

> :
(

x : Real y : Zero
Positivex−−−−−−→ Boolean

)

That is, when the second argument (y) of > is Zero, the result of the comparison is true
only if the first argument (x) is Positive.

Comparison with distinguished integer literals is a special case that appears only in
a few types of the base environment. More commonly, comparison operators are used
as in the sum-vector function given in figure 1. Its definition is

298 V. St-Amour et al.

(define (sum-vector v)
(define n (vector-length v))
(let loop ([i 0] [sum 0])

(if (< i n) (loop (+ i 1) (+ sum (vector-ref v i))) sum)))

There are several aspects of this definition to note. First, n is the result of vector-
length, which must be of type Index. Second, i is initially 0 and it is only
incremented, classifying it as a Natural. Now, when we consider the comparison op-
eration, we see that if (< i n) is true, then i must be both greater than 0 and smaller
than the largest possible vector, meaning that i must be an Index itself in the then
branch. This is exactly the needed information to prove that i is always a Fixnum, al-
lowing the compiler to optimize both the addition and comparison to use simple and
efficient machine instructions.

To express this information, we again use the mechanism of associating propositions
about argument types with the boolean result of functions:

< :
(

x : Natural y : Index
Indexx−−−−→ Boolean

)

Further, this technique applies to comparison operators for all range-bounded types,
such as Fixnum, as well as signed types such as Negative.

Using occurrence typing in conjunction with overloadings of comparison operators,
Typed Racket can automatically prove tight bounds on numeric types based solely on
the dynamic checks already present in programs. This supports both optimization and
static checking for programs such as sum-vector.

6 Implementation

Over the past year, we implemented the type environment of sections 3 through 5 in
Typed Racket without changing the basic type system. More precisely, the type assign-
ment for the primitive operations now encodes basic mathematical theorems. Building
a practical type system from these encodings has posed some challenges, however. We
discuss the interesting ones in this section.

6.1 Precise Types and Invariance

While it is generally desirable to assign precise types that include sign and range infor-
mation, doing so can sometimes lead to unexpected behavior. Consider the program

(define x (box 3))
(set-box! x 2000)

This program defines a mutable box that contains the integer 3. The most precise type
we can locally infer for 3 is Positive-Byte, and if we were willing to use this type, x
could be assigned the type (Boxof Positive-Byte). This type assignment implies,
however, that attempting to set the contents of x to 2000 is a type error. Similar issues
arise with any invariant type constructor.

Typing the Numeric Tower 299

Although this behavior is perfectly correct from a theoretical perspective, it has se-
vere usability drawbacks. In the code bases we studied, initializing a box with a small
integer, often zero, and later assigning significantly larger ones is a common occurrence.
We therefore make this common case the default.

This decision means that the typechecker generalizes types that are used as argu-
ments to invariant type constructors. In the above example, Positive-Byte would be
generalized to Natural, and x would be of type (Boxof Natural), which is more
broadly useful. Generalization requires balancing of course. For example, we could use
Complex instead of Natural, but doing so would discard all the information contained
in the original type. The generalization function takes into account heuristics inspired
by our corpus of numeric Racket programs as well as feedback from users of Typed
Racket.

Finally, programmers can override the results of local type inference with explicit
annotations to assign more permissive or restrictive types.

6.2 Precise Types and Arguments

Precise types make it possible to enforce interesting numerical properties, but it may be
inconvenient to enforce them at all times. For example, we could restrict vector-ref,
which indexes into a vector, to accept only indices of type Index, which are guaranteed
to not exceed the length of the longest possible vector.

An experiment with this choice indicates, however, that it leads to severe usability
issues in practice. Consider this variant of sum-vector from figure 1:

(define (sum-vector v)
(define n (vector-length v))
(let loop ([i (- n 1)] [sum 0])

(if (> i -1) (loop (- i 1) (+ sum (vector-ref v i))) sum)))

This loop should produce identical results to the original version of sum-vector, de-
spite iterating backwards over the input vector. In this case though, the index i cannot
be assigned the Index type, since its value is -1 for the last iteration of the loop. If we
enforce that vector-ref can only accept indices of type Index, this program would
not type check and the programmer would have to rewrite the loop to appease the type
checker. Our experience suggests that this typechecking failure is both confusing and
frustrating to programmers.

To avoid such usability problems, our type system abides by Postel’s law (Postel
1980) as a guiding principle for the types of the Typed Racket standard library. Li-
brary functions typically feature somewhat permissive argument types—vector-ref
accepts Integer as an index, and errors if necessary—and the most precise return type
possible. That way, the proof obligations do not overwhelm the programmer. And yet,
programmers can benefit from precise return types when they do want to enforce stricter
properties in their own code.

Thus, if a program wants to communicate that vector indices can only be of type
Index, it is possible:

300 V. St-Amour et al.

(: picky-vector-ref : (∀ (X) (Vectorof X) Index → X))
(define picky-vector-ref vector-ref)

Since the new restrictive type is a subtype of the original type of vector-ref, the
program typechecks just fine. This technique could also be used to statically enforce
that the second argument of the division operator cannot be zero.

6.3 Printing Types

Encoding properties in types means types become large. Although manipulating, and
operating on, such large types intuitively impacts type-checking time, we have not no-
ticed a significant impact in practice. The large size of these types is problematic, how-
ever, when a programmer must see them.

Error reporting is the most important point of contact between programmers and the
types of primitives. If a function is given arguments of the wrong type, an error message
is displayed, along with the valid argument types of this function. By displaying the
domains of the function, the error informs the programmer of what constitutes a valid
argument to the function. As such, this type is useful information.

Unfortunately, the large number of cases in some numeric types causes an explosion
in the size of error messages. An example of such an error message is shown in the
left column of figure 3. Each of these domains are associated to a different return type:
adding two Bytes results in an Index, adding two Floats results in a Float, and so
on. It makes sense to have all these domains as part of the type, but this information
does not belong in error messages. If a programmer passes a string to the + function,
the error message should merely say that + accepts only numbers.

To reduce the extraneous information in error messages, the type checker filters out
domains that are subtypes of other domains. In the above example, since all domains
are subtypes of Number, only this last one is displayed, as shown in the right column
of figure 3. The error message is just as informative and much easier to digest than the
original. This heuristic also ensures that the type checker does not discard unrelated do-
mains. For example, if a function has just two domains, Integer and Float, both are
present in the error message because they are unrelated by subtyping. This is desirable
because both branches carry useful information.

In addition, before filtering subsumed domains, we remove any domains that would
lead to results that are inconsistent with the expected return type. For example, if the
type checker expects an Integer as the result of an application of +, it can safely
discard domains involving Float and Complex. After this initial filtering, it can re-
move subsumed domains as before. As a result, the error message that is shown when
applying + with an expected type of Integer mentions only Integer.

The same techniques are used when printing types at the REPL, which is the other
important point of contact between programmers and types. Full types can be displayed
on demand if programmers want to explore them.

Typing the Numeric Tower 301

> (+ 1 "A")
Type Checker: No function domains

matched in function application:
Domains:

Zero Zero
Zero Positive-Byte
Byte Positive-Byte
Byte Byte

... <snip 58 lines> ...
Real Real
Float-Complex Number
Number Float-Complex
Number Number

Arguments: Positive-Byte String
in: (+ 1 "A")

> (+ 1 "A")
Type Checker: No function domains

matched in function application:
Domains: Number Number
Arguments: Positive-Byte String
in: (+ 1 "A")

Fig. 3. Original typechecking error message versus simplified error message

6.4 Typechecking Literals

Finally, the fine-grained distinctions among types affect the type-checking of literals.
When assigning a type to a literal, the typechecker needs to know where that literal falls
with regards to the divisions discussed previously. Since the typechecker has access
to the value of literals, this is for the most part straightforward. Portability between
platforms complicates matters, however, and compiled Racket programs are portable.
In particular, it is possible to typecheck and compile a program on one architecture and
to run it on a different one. While the range of integers that fit within a byte is constant,
the range of numbers that Racket stores as tagged machine integers is architecture-
dependent. Hence, the typechecker must make conservative assumptions and assigns
fixed-width integer types only if it is correct to do so on all architectures supported by
Racket. For this reason, the Index type is limited to the closed interval [0, 228 − 1] and
Fixnum is limited to [−230, 230 − 1].

6.5 Optimization

Numeric types guide compiler optimizations, and the Typed Racket compiler (Tobin-
Hochstadt et al. 2011) is no exception. It reuses existing optimization technology with
few major changes. Most of the time, the optimizer ignores the fine-grained distinctions,
for example, the distinctions among the various subtypes of Float. Doing so gives the
compiler a view similar to what optimizers would see in other typed languages, making
the reuse of existing optimization techniques straightforward. Examples of numeric op-
timizations performed by the Typed Racket compiler are dispatch elimination, unboxing
and arity-raising of complex number operations.4

4 Wright and Cartwright (1997)’s typing efforts for Scheme-like languages, as well as those of
others, lacked the expressive power to distinguish between different classes of numbers and to
optimize numeric code in this fashion.

302 V. St-Amour et al.

7 Related Work

Many dynamic languages, such as Common Lisp (Steele Jr. 1994), Scheme (Sperber et
al. 2009) and Smalltalk (Goldberg and Robson 1983) provide numeric towers. They also
allow for mixed-type arithmetic and dynamically moving from one level of the tower to
another. As far as programmer convenience is concerned, they offer most of the benefits
of Typed Racket. Due to their dynamic nature, however, these languages provide little in
terms of static checking. Other dynamic languages such as Python, and Ruby provide
mixed type arithmetic and a numeric tower, but with fewer types, typically omitting
exact rationals, complex numbers, and sometimes arbitary size integers as well.

Languages in the SIMULA 67 (Dahl 1968) tradition such as Java (Gosling et al.
2005), C (ISO 1999) and C++ (Stroustrup 2000) provide static checking, but let pro-
grammers escape the type system. These languages provide mixed-type arithmetic for a
small number of specific cases, but beyond that, programmers have to rely on labor-
intensive operator overloading tricks in C++ or settle for an inconvenient notation.
Typed functional languages, such as Haskell (Marlow 2010), Standard ML (Milner et
al. 1997) and Ocaml (Leroy et al. 2010) provide static checking equivalent to numeric
layers alone without subtyping. Haskell provides a large and extensible set of layers, but
it does not support the sign and range properties of Typed Racket. Also, each of these
languages have different stances on overloading. Ocaml does not provide any overload-
ing for numeric operations. Programmers must choose between the + and +. operators
depending on whether they are adding integers or floating-point numbers respectively.
SML provides overloading in a small number of cases in the same way Java does. Fi-
nally, Haskell’s type classes provide overloading, but disallow mixed-type arithmetic.
Special handling of literals makes mixed-type arithmetic unnecessary in some cases,
but in general explicit coercions between numeric types are necessary.

Finally, the Habit (Jones 2010) language is a dialect of Haskell for systems program-
ming. Its type system enforces arithmetic properties about integers, provides a large
variety of fixed-width integer types and aims to provide a large array of strong static
guarantees. However, this significantly increases the proof obligation on the program-
mer. Although the kinds of guarantees Habit provides are valuable when writing highly
reliable systems software, the costs of these guarantees are inconvenient for a general-
purpose language. In addition, Habit focuses on integers and does not seem to provide
support for interesting properties of other numeric layers.

8 Conclusion

To facilitate numeric programming in Typed Racket, we have supplemented an existing
practical type system with a base type environment that supports rich specification,
concise expression, static checking and effective optimization. The environment makes
crucial use of several existing Typed Racket features: union types for defining a precise
numeric hierarchy, function overloading via intersection types for expressing properties
of operations, and occurrence typing for reasoning about predicates and comparisons.

Our design supports both the convenience of a numeric tower as found in untyped
languages as well as the static checking available with modern typed languages. Addi-
tionally, we support strong specifications expressing sign, range, and layer information

Typing the Numeric Tower 303

about numeric values. Our Typed Racket implementation demonstrates the effective-
ness of the approach both in typechecking existing code as well as providing static
information for effective optimizations of numeric programs.

References

1. Buneman, P., Pierce, B.: Union types for semistructured data. In: Proc. Works. On Database
Programming Languages, pp. 184–207 (1999)

2. Coppo, M., Dezani-Ciancaglin, M.: A new type assignment for λ-terms. Archiv Math.
Logik 19, 139–156 (1978)

3. Dahl, O.-J.: SIMULA 67 Common Base Language. Norwegian Computing Center (1968)
4. Flatt, M., PLT.: Reference: Racket. PLT Inc., PLT-TR-2010-1 (2010),

http://racket-lang.org/tr1/
5. Goldberg, A., Robson, D.: Smalltalk-80: the Language and its Implementation. Addison-

Wesley (1983)
6. Gosling, J., Joy, B., Steele Jr., G.L., Bracha, G.: The Java™ Language Specification, 4th edn.

Addison-Wesley (2005)
7. ISO. ISO C Standard 1999 (1999)
8. Jones, M.P.: The Habit programming language: the revised preliminary report (2010)
9. Leroy, X., Doligez, D., Frisch, A., Garrigue, J., Rémy, D., Vouillon, J.: The Objective Caml

system, Documentation and user’s manual (2010)
10. Lewis, P.A.W., Goodman, A.S., Miller, J.M.: A pseudo-random number generator for the

System/360. IBM Systems Journal 8(2), 136–146 (1969)
11. Marlow, S. (ed.): Haskell 2010 Language Report (2010)
12. Milner, R., Tofte, M., Harper, R., MacQueen, D.: The Definition of Standard ML, Revised

edn. MIT Press (1997)
13. Pierce, B.C., Turner, D.N.: Local type inference. ACM Transactions on ProgrammingLan-

guages and Systems 22(1), 1–44 (2000)
14. Postel, J.: DoD standard Transmission control protocol. IETF RFC 761 (1980)
15. Reynolds, J.C.: Preliminary design of the programming language Forsythe. Technical report

CMU-CS-88-159, Carnegie-Mellon University (1988)
16. Sperber, M., Flatt, M., Van Straaten, A., Kent Dybvig, R., Findler, R.B., Matthews, J.:

Revised6 report on the algorithmic language Scheme. J. of Functional Programming 19(S1),
1–301 (2009)

17. Steele Jr., G.L.: Common Lisp: the Language, 2nd edn. Digital Press (1994)
18. Stroustrup, B.: The C++ Programming Language, 3rd edn. Addison-Wesley (2000)
19. Tobin-Hochstadt, S., Felleisen, M.: The design and implementation of Typed Scheme. In:

Proc. Symp. on Principles of Programming Languages, pp. 395–406 (2008)
20. Tobin-Hochstadt, S., Felleisen, M.: Logical types for untyped languages. In: Proc. Interna-

tional Conf. on Functional Programming, pp. 117–128 (2010)
21. Tobin-Hochstadt, S., St-Amour, V., Culpepper, R., Flatt, M., Felleisen, M.: Languages as

libraries. In: Proc. Programming Language Design and Implementation, pp. 132–141 (2011)
22. Wright, A.K., Cartwright, R.: A practical soft type system for Scheme. ACM Transactions

on Programming Languages and Systems 19(1), 87–152 (1997)

http://racket-lang.org/tr1/

Author Index

Albert, Elvira 123
Antoy, Sergio 33
Arenas, Puri 123

Balduccini, Marcello 78
Brady, Edwin 242
Bransen, Jeroen 183
Broman, David 258

Campagna, Dario 108
Carro, Manuel 138
Casas, Amadeo 138
Chico de Guzmán, Pablo 138
Christiansen, Henning 93
Coleman, Nicholas 198

Dijkstra, Atze 183

Eisenbach, Susan 48

Felleisen, Matthias 289
Fisher, Kathleen 168
Flatt, Matthew 289

Gill, Andy 212
Gill, Harjot 1
Goldberg, Mayer 18
Gómez-Zamalloa, Miguel 123

Hammond, Kevin 242
Hanus, Michael 33
Hermenegildo, Manuel V. 138
Hudak, Paul 227

Lesniak, Michael 153
Lierler, Yuliya 63, 78
Liu, Changbin 1
Liu, Hai 227
Loo, Boon Thau 1

Mao, Yun 1
Marczak, William R. 1
Martins, Pedro M. 48
McCann, Julie A. 48
Middelkoop, Arie 183

Neuenschwander, Bowe 212
Nilsson, Henrik 258

Sarna-Starosta, Beata 108
Schrijvers, Tom 108
Sherr, Micah 1
Smith, Shaden 63
St-Amour, Vincent 289
Stewart, Don 17
Swierstra, S. Doaitse 183

Tarau, Paul 273
Theil Have, Christian 93
Tobin-Hochstadt, Sam 289
Truszczynski, Miroslaw 63

Walker, David 168
Wang, Anduo 1
Westlund, Alex 63
Wiener, Guy 18
Winograd-Cort, Daniel 227

Zhou, Wenchao 1
Zhu, Kenny Q. 168

	Title page
	Preface
	Organization
	Table of Contents
	Recent Advances in Declarative Networking
	Introduction
	Background
	Query Evaluation
	Language Extensions

	Generating Safe Routing Implementations
	Formally Safe Routing Toolkit
	Declarative Network Verification

	Securing Distributed Systems
	Secure Network Datalog
	Reconfigurable Security
	Application-Aware Anonymity

	Debugging Distributed Systems
	Network Provenance Model
	Distributed Maintenance and Querying
	Security and Temporal Extensions

	Optimizing Distributed Systems
	Use Cases: PUMA and COPE
	Colog Language and Compilation

	References

	Make Things Now! Pragmatic Functional Programming in Haskell
	A Declarative Approach for Software Modeling
	Introduction
	Background
	Prolog
	JTransformer

	Model Encoding
	Encoding a Single Client-Story
	Encoding Several Stories
	The Structure of the Model

	Traceability
	Code Generation
	Changing the Granularity of the Interpreter

	Heuristic Code Generation
	An Example of Heuristics Code Generation

	Related Works
	Limitations and Future Work
	Summary
	Explanatory Interpretation
	Partial Evaluation

	Contracts and Specifications for Functional Logic Programming
	Introduction
	Functional Logic Programming and Curry
	Specifications and Contracts
	Tool Support
	Conclusions and Related Work
	References

	The Environment as an Argument Context-Aware Functional Programming
	Introduction
	An Example Application
	A DSL for Context-Aware Programming
	Context-Aware Computations
	Application over Context-Aware Values
	Abstract Knowledge Bases
	Managing a Global Knowledge Base
	Automatically Satisfying Contextual Dependencies

	Evaluation
	Presence Board
	Mailing List

	Related Work
	Future Work
	Conclusion
	References

	Weighted-Sequence Problem: ASP vs CASP and Declarative vs Problem-Oriented Solving
	Introduction
	Problem Statement
	ASP: Generate and Test Methodology
	Encodings
	Experimental Analysis
	Conclusions and Future Work
	References

	Practical and Methodological Aspects of the Use of Cutting-Edge ASP Tools
	Introduction
	Background
	Weight-Assignment Benchmark
	Reverse-Folding Benchmark
	Hydraulic-System-Planning Benchmark
	Airport-Pickup Benchmark
	Performance Assessment
	Conclusions
	References

	Efficient Tabling of Structured Data Using Indexing and Program Transformation
	Introduction
	The Trouble with Tabling Structured Data
	A Workaround and Its Implementation in Prolog
	Examples
	Example: Edit Distance
	Example: Hidden Markov Model in PRISM

	Automatic Program Transformation
	Limitations
	Related Work
	Conclusion
	References

	Optimizing Inequality Joins in Datalog with Approximated Constraint Propagation
	Introduction
	DatalogLB
	The Filter Predicates Transformation
	Non-recursive Programs
	Recursive Programs

	Implementation
	LogicBlox/SWI-Prolog Interface
	The Transformation

	Evaluation
	Non-recursive Programs
	Recursive Programs

	Conclusion and Future Work
	References

	Symbolic Execution of Concurrent Objects in CLP
	Introduction
	An Overview of Concurrent Objects
	CLP-Translated Programs
	Syntax of CLP-Translated Programs
	The Global State

	Symbolic Execution of Concurrent Objects
	Asynchronous Calls
	Implementation of Distribution and Concurrency
	Synchronization: Future Variables, Await, Get and Return

	Experimental Results in aPET
	Conclusions and Related Work
	References

	A Segment-Swapping Approach for Executing Trapped Computations
	Introduction
	The Trapped Goal Problem
	Reordering Stacks to Free Trapped Goals
	An Example of Stack Reordering
	Stack Reordering Algorithm
	Some Low Level Details

	Dealing with Garbage Slots
	Performance Evaluation
	Deterministic and Non-deterministic Benchmarks
	Avoiding Trapped Goals: The Impact of Goal Precedence

	Other Applications for Stack Reordering
	Conclusions
	References

	Palovca: Describing and Executing Graph Algorithms in Haskell
	Introduction
	Palovca's Computational Model
	An EDSL for Vertex-Centric Graph Algorithms
	The Palovca Language
	Examples

	Implementation
	Implementing Palovca in Haskell
	Dynamic Arrays and Parallelizing Vertex Evaluation

	Benchmarks
	Related Work
	Conclusion and Future Work
	References

	LearnPADS++: Incremental Inference of Ad Hoc Data Formats
	Introduction
	Main Algorithm
	Preliminaries
	Incremental Learning Step
	Parsing
	An Example of Parsing and Aggregation
	Description Rewriting
	Optimizations

	Experimental Results
	Related Work
	Conclusion
	References

	The Kennedy-Warren Algorithm Revisited:
Ordering Attribute Grammars
	Introduction
	Overview

	A Motivating Example
	Induced Cycles
	Fake Dependencies

	Dependency Graphs
	Production Dependency Graphs
	Nonterminal Dependency Graphs
	Representation
	Derived Edges
	Worklist Algorithm

	Visit Graph
	Representation
	Initial Configuration
	Handling Pending Edges
	Dependency Graph Marks
	Extra Synthesized Attributes
	Difference to Original Algorithm
	Execution Plans

	Code Generation
	Related Work
	Results and Discussion
	Compile Time
	Runtime
	AG Extensions

	Conclusion
	References

	Distributed Policy Specification and Interpretation with Classified Advertisements
	Introduction
	The ClassAd Language and Gangmatching
	SPKI/SDSI
	Gangmatching Structures and Concepts
	Gangmatching Algorithm
	Gangmatching Analysis
	Related Work
	Conclusions
	References

	Handshaking in Kansas Lava Using Patch Logic
	Introduction
	Kansas Lava
	Protocols
	The Enabled Protocol
	Handshaking

	Patches
	Multi-protocol Patches
	Patches for Kansas Lava Sequences
	Chaining Together Patches

	Patch Logic
	Case Study: LCD Driver
	Description of the Sitronix ST7066U
	LCD Driver Design
	LCD Bus Driver
	LCD Instruction Compiler
	LCD Instruction Boot Sequence
	Memory-Mapped LCD Interface

	Discussion
	References

	Virtualizing Real-World Objects in FRP
	Introduction
	A Signal-Processing Language
	Resource Types
	Type Inference Rules
	More Examples
	Implementation
	Limitations and Future Work
	Related Work
	References

	Resource-Safe Systems Programming with Embedded Domain Specific Languages
	Introduction
	The Well-Typed Interpreter
	Language Definition
	Control Structures and Recursion

	Syntax Overloading
	do-Notation
	The dsl Construct
	Formal Definition

	Resource Management
	An EDSL for Generic Resource Correctness

	First Example: File Management
	Second Example: Network Transport
	Related Work
	Conclusion
	References

	Node-Based Connection Semantics for Equation-Based Object-Oriented Modeling Languages
	Introduction
	Modelica-Style Approach
	Models and Equation Generation
	Abstraction and Composition
	Problems in a Functional Setting

	Node-Based Approach
	Phase 1: Collapsing the Model Hierarc
	Phase 2: The Connection Semantics

	Formalization of the Connection Semantics
	Notation and Syntax
	Semantics of Rules

	Implementation and Evaluation
	Related Work
	Modelica
	Hardware Description Languages
	Functional Acausal Languages

	Conclusions
	References

	A Declarative Specification of Tree-Based Symbolic Arithmetic Computations
	Introduction
	A Bijection between Finite Sequences and Natural Numbers
	Ranking Hereditarily Finite Sequences
	Computing with Hereditarily Finite Sequences
	Successor and Predecessor
	Simple Arithmetic Operations in Terms of Successor and Predecessor
	Basic Recognizers and Constructors
	Arithmetic Operations with Hereditarily Finite Sequences – Efficiently

	Computing with Binary Trees Representing Gödel's System T Types
	Mapping Hereditarily Finite Sequences to Parenthesis languages
	Related Work
	Conclusion
	References

	Typing the Numeric Tower
	Designing the Numeric Tower
	A Rich Numeric Tower
	Encoding the Numeric Hierarchy
	Union types
	Layers of Numbers
	Signed Types
	Encoding Range Information

	Typing Operations
	Overloading with Ordered Intersection Types
	Simple Numeric Operations
	Other Operations

	Refining Types with Dynamic Tests
	Numeric Predicates
	Comparison Operators

	Implementation
	Precise Types and Invariance
	Precise Types and Arguments
	Printing Types
	Typechecking Literals
	Optimization

	Related Work
	Conclusion
	References

	Author Index

