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Abstract. The main purpose of this paper is to prove that (promise)
problem Quantum State Identicalness (abbreviated QSI) is essentially
complete for perfect zero-knowledge quantum interactive proof (QPZK).
Loosely speaking, problem QSI is to decide whether two efficiently
preparable quantum states (captured by quantum circuit of polynomial
size) are identical or far apart (in trace distance). It is worthy noting
that our result does not have classical counterpart yet; natural com-
plete problem for perfect zero-knowledge interactive proof (PZK) is still
unknown. Our proof generalizes Watrous’ completeness proof for statis-
tical zero-knowledge quantum interactive proof (QSZK), with an extra
idea inspired by Malka to deal with completeness error. With complete
problem at our disposal, we can immediately prove (and reprove) several
interesting facts about QPZK.

Keywords: Quantum zero-knowledge proof, perfect zero-knowledge,
complete problem, quantum complexity, quantum cryptography.

1 Introduction

Zero-knowledge proof has been a hot topic and played an important role in com-
plexity and cryptography research since it was introduced by Goldwasser, Micali,
and Rackoff in [11]. Zero-knowledge proof is an intriguing notion, from which
verifier ”learns” nothing but the truth of the assertion. Recall that in canonical
proof system represented by complexity class NP, prover just sends witness as
the proof for the verifier to check. Intuitively, a canonical proof system cannot
be zero-knowledge, for it also reveals the witness to the verifier other than the
truth of the assertion. To construct zero-knowledge proof system, we have to
generalize the notion of canonical proof. Such generalization turns out to be of
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two folds: First, we allow the proof to be probabilistic, with a slight of com-
pleteness and soundness errors. Second, we allow the proof to be interactive, in
the sense that prover and verifier can exchange messages. The resulting proof
system is known as interactive proof system. An alternative way which preserves
non-interactiveness of the canonical proof is to let prover and verifier share a ran-
dom string a prior, resulting in a proof system known as non-interactive proof
system. There is a protocol associated with each interactive and non-interactive
proof system, describing (honest) prover’s and (honest) verifier’s strategies. The
formulation of the zero-knowledge property of a proof system follows simula-
tion paradigm; loosely speaking, we says verifier ”learns nothing” from a proof
if the proof itself (a probability distribution) can be approximately generated
without prover. According to the ”quality” of approximation, we have perfect,
statistical, and computational zero-knowledge proofs (denoted by PZK, SZK,
and ZK in the interactive model, and NIPZK, NISZK, and NIZK in the non-
interactive model, respectively). The formal definition and more details about
zero-knowledge proof can be found in standard textbooks such as [8, Chapter
9], [7, Chapter 4].

Quantum proof system is a generalization of classical proof system in the
quantum world. In the past decade, a variety of computational models of quan-
tum proof system (see [23,1,12,17,15,4]) were proposed and studied. Since quan-
tumness is a phenomenan, for good or bad, that exists in nature, we cannot
help considering the possibility of zero-knowledge quantum proof1, which may
play an important role in quantum cryptography (like its classical counterpart in
classical cryptography). As a natural generalization of classical zero-knowledge
proof, we can define QPZK, QSZK, and QZK in the interactive model, and
NIQPZK, NIQSZK, and NIQZK in the non-interactive model, respectively
(see [24,27,15,4]).

Two Generic Approaches

To study properties of zero-knowledge proof, there are two generic approaches.
The first one is via (black-box) transformation. That is, given a zero-knowledge
proof system, we construct a new one for which prover’s and verifier’s strategies
are constructed using original prover’s strategy, original verifier’s strategy, plus
original simulator, as black-boxes. For example, one can transform an honest-
verifier statistical zero-knowledge interactive proof system with completeness
error into another one with perfect completeness [6].

In this paper, we are more interested in the second approach to study zero-
knowledge proof, namely, via complete problem. This approach is in the same
spirit as we study complexity class NP via various NP-complete problems. Sa-
hai and Vadhan [19] initialized this approach. In particular, they found problems
Statistical Difference (SD) and its complement SD are complete for statistical
zero-knowledge interactive proof (SZK). Follow-up works include [10], [21], [9],

1 Some researchers may use term ”quantum zero-knowledge proof”, but we choose to
follow Watrous [26].
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among others. Using complete problems, many interesting facts about statistical
zero-knowledge (interactive and non-interactive) proof are proved uncondition-
ally (in contrast to those proved based on complexity assumption such as exis-
tence of one-way function). Refer to [22] for a survey on the study of statistical
zero-knowledge proof via complete problem.

In quantum case, we can also study zero-knowledge quantum proof via both
transformation and complete problem. Interested readers are referred to [12],
[17], [14], et al., for the first approach. With respect to complete problem,
Watrous [24] was the first to extend the idea of [19] to study statistical zero-
knowledge quantum interactive proof (QSZK). Specifically, in [24] two promise
problems, Quantum State Distinguishability (QSD) and its complement Quantum
State Closeness (QSC), were shown to be QSZK-complete, where problem QSD
can be viewed as the quantum analog of SZK-complete problem SD. Later, in
the same spirit, Kobayashi [15] (implicitly) found a problem named Quantum
State Closeness to Identity (QSCI) that is complete for statistical zero-knowledge
quantum non-interactive proof (NIQSZK). More recently, using quantum ex-
tractor, complete problems for QSZK and NIQSZK about (von Neumann)
entropy difference were found; see [3,4]. Thus far, almost all complete problems
for statistical zero-knowledge (classical) proof find their quantum counterparts.

Motivation and Related Work

Note that in either classical or quantum cases, only complete problems for sta-
tistical zero-knowledge proof are found. Naturally we shall ask, what about com-
plete problems for perfect and computational zero-knowledge proof, in classical
and quantum cases, respectively? In this paper, we shall focus on perfect zero-
knowledge proof.

Let us first review some prior related works. In his thesis [22, section 4.7],
Vadhan fully discussed the extension of SZK completeness proof to PZK. In
particular, he found that the straightforward adaption of his proof only gives
hard problems for a restriction of PZK. Since then, there have been no progress
towards complete problems for perfect zero-knowledge proof until recently, when
Malka [16] constructed a (comparably natural) complete problem for perfect
zero-knowledge non-interactive proof (NIPZK) and a hard problem for public-
coin PZK. The genesis of Malka’s construction is a way to deal with complete-
ness error.

In quantum case, up until now, nearly nothing is known about the complete
problem for QPZK. Instead, Kobayashi [14] proved several impressing proper-
ties about QPZK via transformations, while remarking that the finding of nat-
ural complete problem for QPZK are definitely helpful. As for non-interactive
model, Kobayashi [15] constructed a complete problem for NIQPZK1

(NIQPZK with perfect completeness).
In this paper, we try to answer the following question: can we apply Malka’s [16]

idea in classical case to construct complete problem for perfect zero-knowledge
quantum proof?
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Our Contribution

The main result of this paper is to give a (comparably) natural (promise) problem
that is complete for QPZK. To our knowledge, this is the first time that some
natural (not involving computation of universal model of computation) complete
problem is found for general perfect zero-knowledge interactive proof (in both
classical and quantum case). We can also carry the same study in non-interactive
model, obtaining a NIQPZK-complete problem.

To get a taste of our QPZK-complete problem, it would be beneficial to
first recall the QSZK-complete problem QSC. Loosely speaking, instances of
problem QSC consist of a pair of efficiently preparable quantum states (captured
by quantum circuit of polynomial size; see section 3 for detail), where for yes
instance these two states are close (in trace distance), while for no instance
they are far apart. Our QPZK-complete problem is essentially (not exactly) a
special case of problem QSC as follows: the no instance is the same as problem
QSC, whereas the yes instance now is restricted to a pair of efficiently preparable
quantum states that are identical; we call this special problem Quantum State
Identicalness (QSI). Roughly, our actual QPZK-complete problem adds a BQP
instance to each instance of problem QSI; the formal definition is referred to
Definition 2.

With complete problems at our disposal, we can immediately prove (and re-
prove) several interesting facts about perfect zero-knowledge quantum (interac-
tive and non-interactive) proof as follows.

1. Every problem possessing perfect zero-knowledge quantum interactive proof
has a two-message honest-verifier perfect zero-knowledge quantum interac-
tive proof, with exponentially small completeness and soundness error; it
also has a three-message public-coin honest-verifier perfect zero-knowledge
quantum interactive proof, in which verifier’s message consists of a single
coin flip.

2. HVQPZK = QPZK. That is, from complexity view, the restriction to
honest verifier does not change the class of problems possessing perfect zero-
knowledge quantum interactive proof.

3. QPZK ⊆ BQPQPZK1 , NIQPZK ⊆ BQPNIQPZK1 , where the sub-
script ”1” stands for with perfect completeness. This implies that allowing
completeness error essentially does not increase the complexity of perfect
zero-knowledge quantum proof.

4. NIQPZKh = QPZK = QPZKh, where subscript ”h” indicates the help
model [4] (a model lying between standard interactive and non-interactive
models).

5. QPZK1 is closed under monotone boolean formula. This result can be
viewed as quantum analog of results in [20] and [5], where boolean closure
property for some special cases of PZK is established.

We remark that among the facts listed above, only the second part of item 1
and item 2 are previously known, which were proved by Kobayashi [14] through
a series of transformations. In comparison, our proof via complete problem is
almost straightforward.
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Main Idea

The main idea of our construction of QPZK-complete problem is from Watrous
[24] and Malka [16]: we almost follow [24] to do simulator analysis, with only one
difference that is similar to [16] to deal with completeness error. Roughly speak-
ing, the difference is that now we no longer move the completeness error into
the simulation. This difference will result in the instance of our complete prob-
lem having an extra quantum circuit (compared with QSZK-complete problem
QSC) to encode the acceptance probability of simulator. More detail is referred
to section 4. We remark that due to the quantum nature, our construction of
QPZK-complete problem is different from [16]; indeed, it is simpler and more
straightforward.

Our NIQPZK-complete problem is obtained by the same idea, except that
now the simulator analysis follows Kobayashi [15].

Comparing with Results in Classical Case

Problem QSI can be viewed as the quantum analog of problem SD1/2,0 introduced
in [22, section 4.7], whose instances consist of a pair of efficiently samplable
probability distributions, where for yes instance these two distributions are close
(in statistical difference), while for no instance they are far apart. As a special
case of SZK-complete problem SD, it is tempting to prove that problem SD1/2,0

is PZK-complete. But whether this is true is still open: we only know that
this problem is hard for public-coin PZK with respect to honest verifier and
with perfect completeness. Malka [16] modified problem SD1/2,0 to get a hard
problem for public-coin PZK with respect to honest verifier, removing perfect
completeness restriction. In comparison, our quantum result is much stronger: it
does not suffer any restrictions, giving a complete problem for general QPZK.

Organization

In this extended abstract, we shall highlight the specification of our QPZK-
complete problem and the idea of its construction. The technical detail of the
proof, as well as the completeness theorem in non-interactive model, and applica-
tions of complete problems, are all referred to the full version of this paper [28].

The remainder of this paper is organized as follows. In section 2 we review
some background materials. Section 3 is devoted to the formal definition of our
complete problems. Section 4 contains the sketch of the proof of completeness
theorem for QPZK. We conclude with section 5.

2 Preliminaries

We assume readers are familiar with basic quantum computation and informa-
tion (see [18,13]), as well as basic notion of zero-knowledge (classical) interactive
proof system (see [2,7,8]).
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2.1 Quantum Circuit Model

In this paper, we shall restrict our attention to unitary quantum circuit model,
where the choice of universal gate set could be arbitrary2. In particular, one can
choose Shor basis: Toffoli gate, Hadamard gate, and Phase-shift gate. Measure-
ment of a qubit is with respect to computational basis {|0〉, |1〉}, described by
{Π0, Π1}.

We formalize efficient quantum algorithm Q in terms of polynomial-time uni-
formly generated family of quantum circuits {Qx}, where by ”polynomial-time
uniformly generated” we mean there is a (classical) Turing machine which on
input x, outputs a description of quantum circuits Qx in time polynomial of |x|.

2.2 Efficiently Preparable Quantum State

An efficiently preparable quantum state is encoded by a quantum circuit Q of
polynomial size in the following way: apply Q on quantum registers denoted
by (O, G) that are initialized in state |0〉, where registers O and G correspond
to the output and non-output (garbage) qubits, respectively. That is, quantum
state encoded by quantum circuit Q, which we denote by ρQ, is TrG

(
Q|0〉〈0|Q∗),

where partial trace TrG(·) is tracing out qubits corresponding to register G.
Efficiently preparable quantum state can be viewed as quantum analog of

efficiently samplable probability distribution [22, Definition 3.1.1].

2.3 Perfect Zero-Knowledge Quantum Interactive Proof

Quantum interactive proof system [12] generalizes classical interactive proof
system by allowing prover, verifier, as well as communication channel, to use
quantumness. To formally define perfect zero-knowledge property of quantum
interactive proof system, we need first to introduce the notion of verifier’s view.

Suppose (P,V) is an m-message quantum interactive proof system. Following
[24], we define verifier’s view immediately after the i-th message is sent, denoted
by viewP,V(x, i), as the joint quantum state of all qubits other than those at
prover’s hand at that moment. For our convenience, we also define viewP,V(x, 0)
and viewP,V(x, m + 1) as the initial (before the running) and final (after the
running) views of verifier, respectively.

Following [24], we say quantum interactive proof system (P,V) has perfect zero-
knowledge property with respect to honest verifier if there exists a collection of
efficiently preparable quantum states {σx,i} such that for each input x ∈ Ayes,
and for each i ∈ {0, 1, . . . , m + 1},

viewP,V(x, i) = σx,i. (1)

2 We remark that our complete theorems are insensible to the choice of universal
unitary quantum gate set. However, to prove HVQPZK = QPZK, we need re-
versible computation and phase-flip be implemented without error (this is required
in quantum rewinding lemma [24] that will be applied).
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In other words, there is a simulator which on input x ∈ Ayes, runs in polynomial
time and outputs viewP,V(x, i) for each i.

We shall denote by HVQPZK the class of promise problems possessing
honest-verifier perfect zero-knowledge quantum interactive proof. Though per-
fect zero-knowledge property only with respect to honest-verifier seems a little
bit weak in practice, class HVQPZK is nevertheless suitable for complexity
study. In this paper, we actually prove completeness theorem for HVQPZK;
it turns out that with our HVQPZK-complete problem, we immediately have
HVQPZK = QPZK by calling quantum rewinding lemma [27]. The equiva-
lence of HVQPZK and QPZK in turn justifies that our focus on HVQPZK
does not lose any generality. Thus, here we even choose not to give formal defi-
nition of QPZK, which requires more setup that is not relevant to the focus of
this paper; the formal definition of QPZK can be found in [27,14].

As a remark about the definition of perfect zero-knowledge quantum interac-
tive proof, note that the generally accepted definition for perfect zero-knowledge
(classical) proof allows simulator to fail with some probability. In spite of this,
it turns out that such relaxation does not change the corresponding complexity
classes induced by perfect zero-knowledge proof, either in classical or quantum
cases (see [16] and [14], respectively). These facts once again illustrate the ro-
bustness of complexity classes PZK and QPZK.

2.4 Perfect Zero-Knowledge Quantum Non-interactive Proof

Recall that in classical case, non-interactive proof consists of only one message
which is sent from prover to verifier; moreover, prover and verifier share a prior
a uniformly distributed random string known as common reference string [7]. In
quantum case, Kobayashi [15] suggested replacing the random string with EPR
pairs such that prover and verifier keep one qubit of each EPR pair privately
before the execution of the protocol.

3 Complete Problems

In this section, we shall introduce several promise problems concerning about
efficiently preparable quantum state. Before giving formal definition, we need
first introduce the notion of trace distance between two quantum states. Specif-
ically, the trace distance between two quantum states ρ and ξ, which we denote
by δ(ρ, ξ), is equal to ‖ρ − ξ‖1 /2, where ‖·‖1 is the trace norm, or 1-norm (see
[25]). The trace distance can be viewed as the quantum analog of statistical
difference between two probability distributions.

The first problem we are to introduce is problem Quantum State Identicalness
(abbreviated QSI).

Definition 1. The specification of problem QSI is as follows.

Input: description of a pair of quantum circuits (Q0, Q1), which encode two
quantum states, respectively.
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Promise: Circuits Q0 and Q1 act on, and output, the same number of qubits.
Moreover, either of the following two conditions hold:
(1) δ(ρQ0 , ρQ1) = 0,
(2) δ(ρQ0 , ρQ1) ≥ 2/3.

Output: Accept in case (1) and reject in case (2).

We point out that problem QSI can be viewed as a special case problem QSC, in
which the yes instance is relaxed to be δ(ρQ0 , ρQ1) ≤ 1/3. We are interested in
problem QSI because later in this paper we shall show its QPZK1-completeness
(QPZK with perfect completeness); moreover, our QPZK-complete problem is
just a slight variant of problem QSI, as described below.

Definition 2. The specification of problem QSI′ is as follows.

Input: description of a triple of quantum circuits (Q0, Q1, Q2), which encode
three quantum states, respectively.

Promise: Circuits Q0 and Q1 act on, and output, the same number of qubits;
circuit Q2 outputs one qubit. Moreover, either of the following two conditions
hold:
(1) δ(ρQ0 , ρQ1) = 0 and Tr(Π1ρ

Q2) ≥ 2/3;
(2) δ(ρQ0 , ρQ1) ≥ 1/2 or Tr(Π1ρ

Q2) ≤ 1/3.
Output: Accept in case (1) and reject in case (2).

Compared with problem QSI, the instance of problem QSI′ has an extra quantum
circuit Q2, which induces a BQP instance; the motivation of its construction is
referred to section 4.

We remark that the choice of constants in the definitions above is arbitrary,
due to a straightforward polarization lemma.

Next, we are going to introduce two additional problems concerning about
efficiently preparable quantum state. Actually, these two problems can be viewed
as special cases of the two problems defined above respectively: if we fix quantum
circuit Q0 to encode maximally mixed state (represented by density operator
�/2k, where integer k is the number of qubits designated as output) in the
definitions of problem QSI and QSI′ , then we obtain problems that we shall
denote by QSII (Quantum State Identicalness to Identity) and QSII′ , respectively.
Kobayashi [15] proved that problem QSII is NIQPZK1-complete; we can extend
this result to show that problem QSII′ is NIQPZK-complete.

4 The Completeness Theorem

In this section, we shall sketch the completeness proof for HVQPZK, with the
focus on the idea of the construction of our complete problem QSI′ . The proof
itself is adapted from Watrous’ completeness proof for HVQSZK [24], with a
new idea inspired by Malka [16] to deal with completeness error. We shall also
give the statement of complete theorem for NIQPZK without proof.
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Theorem 1. Problem QSI′ is HVQPZK-complete.

Proof. We only sketch the proof here, highlighting the main idea.
A HVQPZK protocol for problem QSI′ is as follows. On input (Q0, Q1, Q2),

we let verifier first run a procedure resembling BQP error reduction: apply many
copies of Q2 on qubits in state |0〉, and then measure the output qubits of all
these copies: reject immediately if less than a half of outcomes are one. Then
conditioned on verifier does not reject, we let prover and verifier execute either
of two identicalness tests, which are adapted from closeness tests given in [24],
on input (Q0, Q1). This will establish that problem QSI′ belongs to HVQPZK.

Next, we give a reduction from an arbitrary problem A ∈ HVQPZK to
problem QSI′ .

Suppose (P,V) is an m-message honest-verifier perfect zero-knowledge quan-
tum interactive proof system for problem A. Following [12] and [24], we can
formalize the running of (P,V) on input x ∈ Ayes ∪Ano in terms of quantum cir-
cuits. Specifically, the workspace of (P,V) is divided into three parts of quantum
registers P, M and V, corresponding to prover’s private workspace, communica-
tion channel, and verifier’s private workspace, respectively. At the beginning, all
qubits of the workspace are initialized to be in state |0〉. Then prover and veri-
fier take in turns to apply their operations (represented by quantum circuits) on
quantum register (P, M) and (M, V), respectively. Since in this paper we restrict
to unitary quantum circuit model, all these operations are unitary. One qubit,
say the first qubit of register V, is designated as the output of the whole proof
system.

We introduce some notations that are consistent with [24]. Let n = |x|. With-
out loss of generality, assume m is even (thus, verifier sends the first message);
let k = m/2+1. Suppose prover’s and verifier’s operations are P1, . . . , Pk−1 and
V1, . . . , Vk, respectively. Suppose the simulator for (P,V) outputs a collection of
quantum states, {ρj} and {ξj}, to approximate verifier’s views. The case for
m = 4 is illustrated in Figure 1.

ρ0 ξ1 ρ1 ξ2 ρ2 ξ3

V1 V2 V3

← output

V |0〉

P1 P2

M |0〉

P |0〉

⎧⎨
⎩

⎧
⎨
⎩

⎧⎨
⎩

Fig. 1. A 4-message perfect zero-knowledge quantum interactive proof system
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Without loss of generality, we can assume that the collection of quantum states
{ρj} and {ξj} satisfy (whether x ∈ Ayes or x ∈ Ano) the following properties:

1. ρ0 = |0〉〈0|;
2. Vjρj−1V

∗
j = ξj , for j = 1, . . . , k.

These can be achieved by a simple modification of the simulator as [24].
It turns out that whether x ∈ Ayes or x ∈ Ano can be based on the simulator

analysis as below:

1. If input x ∈ Ayes, then by completeness and honest-verifier perfect zero-
knowledge property of the protocol, we have TrM(ξj) = TrM(ρj), j =
1, . . . , k − 1, and Tr

(
Π1ξk

) ≥ 1 − 2n.
2. If input x ∈ Ano, then by soundness of the protocol, either for some j,

δ(TrM(ξj), TrM(ρj)) is ”noticeable”, or Tr
(
Π1ξk

)
is ”negligible”. For oth-

erwise, prover can use a simulator-based strategy to cheat verifier to accept
with a noticeable amount of probability.

We highlight that compared with the simulator analysis for HVQSZK in Wa-
trous’ proof, here we have an extra term Tr

(
Π1ξk

)
, which is used to capture the

acceptance probability of the final state output by the simulator (probability
that the final state will cause verifier to accept). In Watrous’ proof, this term is
not needed because in case of HVQSZK, one can assume, also by a simple mod-
ification of simulator, that the resulting simulator always outputs a final state
which will cause verifier to accept with certainty. However, this modification
moves completeness error into the simulation. Note that this error of simulation
is allowable in case of statistical zero-knowledge, which can tolerate exponen-
tially small error. But in case of perfect zero-knowledge, we cannot do this. So
in our reduction, we do not do this modification of simulator; instead, we use an
extra quantum circuit to capture the acceptance probability of the final state.
This will cause the resulting complete problem (QSI′ ) a bit more complex (hav-
ing an extra quantum circuit to capture Tr

(
Π1ξk

)
) than HVQSZK-complete

problem QSC. Actually, this is exactly quantum analog of Malka’s idea [16] in
classical case.

Now we describe the instance of problem QSI′ to which input x is reduced:

- Q0: quantum circuit which encodes quantum state TrM(ρ1)⊗· · ·⊗TrM(ρk−1).
- Q1: quantum circuit which encodes quantum state TrM(ξ1)⊗· · ·⊗TrM(ξk−1).
- Q2: quantum circuit which encodes quantum state ξk, with the output re-

designated as the qubit intended as the approximation of the first qubit of
register V.

Clearly, the description of quantum circuits Q0, Q1, Q2 can be computed in poly-
nomial time given the simulator (which runs in polynomial time). ��
We observe that for HVQPZK1, a special case of HVQPZK with perfect
completeness, quantum circuit Q2 in our reduction above can be discarded by
the same modification of simulator as Watrous [24]. We thus have the following
completeness theorem for HVQPZK1.
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Theorem 2. Problem QSI is HVQPZK1-complete.

We note that complete problems for HVQPZK and HVQPZK1 only differ
up to a BQP instance. Does HVQPZK = HVQPZK1? This is an interesting
open problem. It is worthy noting that Kobayashi [14] showed that HVQSZK =
HVQSZK1 by giving a transformation. However, this transformation cannot
be applied directly to perfect zero-knowledge quantum proof, because it will
introduce an additional message which may not be perfectly output by simulator
(though it can be approximated with exponentially small error).

In non-interactive model, we can also prove a completeness theorem with the
same strategy as in interactive model, except that now the proof is adapted from
Kobayashi [15].

Theorem 3. Problem QSII′ is NIQPZK-complete.

5 Conclusion

Combining our results with [24] and [14], we can draw a table as below to
summerize all complete problems we known for statistical and perfect zero-know-
ledge quantum proofs.

Complexity class QSZK QPZK1 QPZK NIQSZK NIQPZK1 NIQPZK

Complete problem QSC QSI QSI′ QSCI QSII QSII′

We note that all these complete problems can be viewed as derived from
problem QSC, comparing them may reveal the relationship among corresponding
complexity classes.
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