
Visibly Pushdown Transducers with Look-Ahead�

Emmanuel Filiot1 and Frédéric Servais2

1 Université Libre de Bruxelles
2 Hasselt University and Transnational University of Limburg

Abstract. Visibly Pushdown Transducers (VPT) form a subclass of pushdown
transducers. In this paper, we investigate the extension of VPT with visibly push-
down look-ahead (VPTla). Their transitions are guarded by visibly pushdown
automata that can check whether the well-nested subword starting at the cur-
rent position belongs to the language they define. First, we show that VPTla are
not more expressive than VPT, but are exponentially more succinct. Second, we
show that the class of deterministic VPTla corresponds exactly to the class of
functional VPT, yielding a simple characterization of functional VPT. Finally,
we show that while VPTla are exponentially more succinct than VPT, checking
equivalence of functional VPTla is, as for VPT, EXPT-C. As a consequence, we
show that any functional VPT is equivalent to an unambiguous one.

1 Introduction

Visibly pushdown transducers (VPT) [17,9] form an interesting subclass of pushdown
transducers (PT). Several problems that are undecidable for PT are decidable for VPT,
noticeably: functionality is decidable in PTIME, k-valuedness in NPTIME and equiva-
lence of functional VPT is EXPT-C [9].

Visibly pushdown machines [1], automata (VPA) or transducers, are pushdown ma-
chines such that the behavior of the stack, i.e. whether it pushes or pops, is visible in the
input word. Technically, the input alphabet is partitioned into call, return and internal
symbols. When reading a call the machine must push a symbol on the stack, when read-
ing a return symbol it must pop and when reading an internal symbol it cannot touch
the stack. The partitioning of the input alphabet induces a nesting structure of the input
words [2]. A call symbol delimits an additional level of nesting, while a return symbol
is a position in the word that ends a level of nesting. A word is well-nested if each call,
respectively each return, has a matching return, respectively a matching call. Visibly
pushdown transductions are transductions that can be defined by VPT.

Unranked trees in their linear form (such as XML documents) can be viewed as
well-nested words. VPT are therefore a suitable formalism for unranked tree transfor-
mations. In particular, they can express operations such as node deletion, renaming and

� This research was supported by the projects: Gasics: “Games for Analysis and Synthesis
of Interactive Computational Systems”, http://www.ulb.ac.be/di/gasics/, and Moves: “Funda-
mental Issues in Modelling, Verification and Evolution of Software”, http://moves.ulb.ac.be,
a PAI program funded by the Federal Belgian Government. Partially funded by the Future
and Emerging Technologies (FET) programme within the Seventh Framework Programme for
Research of the European Commission, under the FET-Open grant agreement FOX, No. FP7-
ICT-233599.

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 251–263, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



252 E. Filiot and F. Servais

insertion. Furthermore, over well-nested words, a simple and expressive subclass of
VPT, the class of well-nested VPT [9], is closed under composition and has a decid-
able type checking problem. In the setting of XML documents, VPA, as they read the
tree in a left-to-right depth-first traversal manner, are well-suited for streaming vali-
dation [11,15] or streaming XML queries [10]. In the same way well-nested VPT are
amenable to define streaming transformations.

In this paper, one of our motivations is to give a simple characterization of func-
tional VPT that can be checked easily. Deterministic VPT are not expressive enough
to capture all functional VPT, as for instance swapping the first and last letters of a
word cannot be done deterministically. Instead of non-determinism, we show that some
limited inspection of the longest well-nested subword starting at the current position
(called the current well-nested prefix) is required to capture (non-deterministic) func-
tional VPT. More precisely, we show that functional VPT-transductions are captured
by deterministic VPT extended with visibly pushdown look-aheads that inspect the cur-
rent well-nested prefix. Moreover, inspecting the current well-nested prefix is somehow
the minimal necessary information to capture all functional VPT.

In this paper, we therefore introduce and investigate the class of VPT with visibly
pushdown look-ahead. A VPT with visibly pushdown look-ahead (VPTla) is a VPT
such that call transitions are guarded with visibly pushdown automata (VPA). When
reading a call at position i, a VPTla can apply a call transition provided the longest
well-nested word starting at position i is included in the language of the VPA of the
transition. In the same way one can define VPA with look-ahead (VPAla). Our main
contributions are the following:

1. VPTla (resp. VPAla) are as expressive as VPT (resp. VPA), but exponentially more
succinct.

For this we present an exponential construction that shows how a VPT can simulate
look-aheads. Moreover we show this exponential blow-up is unavoidable.

2. Deterministic VPTla and functional VPT are equally expressive.

This equivalence is obtained by a construction (which is also exponential) that replaces
the non-determinism of the functional VPT with deterministic look-ahead. This also
yields a simple characterization of functional VPT.

3. Functional VPT and unambiguous VPT are equally expressive.

As an application of look-aheads, we show that a nice consequence of the constructions
involved in contributions 1 and 2 is that functional VPT are effectively characterized by
unambiguous VPT. This result was already known for finite-state transducers [4,14,5]
and here we extend it to VPT with rather simple constructions based on the concept of
look-aheads. This characterization of functional finite-state transducers has been gen-
eralized to k-valued and k-ambiguous finite-state transducers [18] and recently with a
better upper-bound [13] based on lexicographic decomposition of transducers.

4. Equivalence of functional VPTla (resp VPAla) is, as for VPT (resp VPA), EXPT-C.

Therefore even though VPTla are exponentially more succinct than VPT, testing equiv-
alence of functional VPTla is not harder than for functional VPT. This is done in two
steps. First one checks equivalence of the domains. Then one checks that the union of
the two transducers is still functional. We show that testing functionality is EXPT-C

for VPTla: get rid of the look-aheads with an exponential blow-up and test in PTIME



Visibly Pushdown Transducers with Look-Ahead 253

Table 1. Decision Problems for VPA,VPAla,VPT,VPTla

VPA [1] VPAla VPT [9] VPTla

Emptiness PTIME EXPT-C PTIME EXPT-C

Universality EXPT-C EXPT-C NA NA
Inclusion EXPT-C EXPT-C EXPT-C EXPT-C

Equivalence EXPT-C EXPT-C EXPT-C (for fVPT) EXPT-C (for fVPT)
Functionality NA NA PTIME EXPT-C

the functionality of the constructed VPT. To verify that the domains are equivalent,
the naive technique (removing the look-aheads and then verifying the mutual inclusion
of the domains) yields a doubly exponential algorithm. Instead, we show that the do-
mains of VPTla are linearly reducible to alternating top-down tree automata. Testing
the equivalence of such automata can be done in EXPT [3].

Table 1 summarizes the complexity of decision problems for VPAla and VPTla.

Variants of look-ahead. We discuss in [16] some variants of look-ahead. The closure
by look-ahead (Theorem 1) and the equivalence between deterministic VPTla and func-
tional VPT (Theorem 2) still hold when the look-ahead can inspect the whole suffix and
can also be triggered on return transitions. However, when the look-ahead can inspect
only the current well-nested prefix of the form cwr (corresponding to the first subtree
of the current hedge in a tree), it is not sufficient to express all functional VPT with
determinism.

Related Works. Regular look-aheads have been mainly considered for classes of tree
transducers, where a transition can be fired provided the current subtree belongs to some
regular tree language. For instance, regular look-aheads have been added to top-down
(ranked) tree transducers in order to obtain a robust class of tree transducers that enjoys
good closure properties wrt composition [6], or to macro tree transducers (MTT) [8].
For top-down tree transducers, adding regular look-ahead strictly increases their ex-
pressive power while MTT are closed by regular look-ahead [8]. Another strong result
shows that every functional top-down tree transduction can be defined by a determinis-
tic top-down tree transducer with look-ahead [7].

Trees over an alphabet Σ can be linearized as well-nested words over the structured
alphabet Σc = {ca | a ∈ Σ}, Σr = {ra | a ∈ Σ}. It is well-known that unranked trees
can be represented by binary trees via the classical first-child next-sibling encoding
(fcns). Top-down (ranked) tree transducers can thus be used as unranked tree transduc-
ers on fcns encodings of unranked trees. Inspecting a subtree in the fcns encoding cor-
responds to inspecting the first subtree and its next-sibling subtrees in an unranked tree,
which in turn corresponds to inspecting the current longest well-nested prefix in their
linearization. However top-down tree transducers and VPT are incomparable: top-down
tree transducers can copy subtrees while VPT cannot, and VPT support concatenation
of tree sequences while top-down tree transducers cannot. For example, the transfor-
mation that removes the g node in unranked trees of the form f(g(a, . . . , a), b, b, . . . b)
produces trees of the form f(a, a, . . . , a, b, . . . b). This transformation can easily be
defined by a VPT, but not by a top-down ranked tree transducers with the fcns encod-
ing [12,9]. Indeed, in the fcns encoding, this transformation maps any tree of the form
f(g(ta, tb),⊥) to f(ta.tb,⊥), where ta, tb, ta.tb are the binary encodings of the hedges



254 E. Filiot and F. Servais

(a, . . . , a), (b, . . . , b), (a, . . . , a, b, . . . , b) respectively:

ta = a(⊥, a(⊥, . . . a(⊥,⊥) . . . )) tb = b(⊥, b(⊥, . . . b(⊥,⊥) . . . ))
ta.tb = a(⊥, a(⊥, . . . a(⊥, b(⊥, b(⊥, . . . b(⊥,⊥) . . . )))))

Therefore, this transformation requires to move the subtree tb (whose size may be un-
bounded) as a leaf of the subtree ta (whose size may also be unbounded). This cannot be
done by a top-down tree transducer, but can be defined by some MTT thanks to param-
eters (some parameter will store the entire subtree tb while evaluating ta). A detailed
comparison of VPT and tree transducers can be found in [16].

Modulo the former encodings, MTT subsume VPT [9] and as we said before, there
is a correspondence between the two notions of look-aheads, for VPT and MTT respec-
tively. However it is not clear how to derive our results on closure by look-aheads from
the same result on MTT, as the latter highly relies on parameters and it would require
back-and-forth encodings between the two models. The direct construction we give in
this paper is self-contained and allows one to derive the characterization of functional
VPT as unambiguous VPT by a careful analysis of the construction.

An extended version of the paper with all proofs can be found in [16].

2 Visibly Pushdown Languages and Transductions

All over this paper, Σ denotes a finite alphabet partitioned into two disjoint sets Σc, Σr,
denoting respectively the call and return alphabets. We denote by Σ∗ the set of (finite)
words over Σ and by ε the empty word. The length of a word u is denoted by |u|. The
set of well-nested words Σ∗

wn is the smallest subset of Σ∗ such that ε ∈ Σ∗
wn and for all

c ∈ Σc, all r ∈ Σr, all u, v ∈ Σ∗
wn, cur ∈ Σ∗

wn and uv ∈ Σ∗
wn.

A visibly pushdown automaton (VPA) [1] on finite words over Σ is a tuple A =
(Q, I, F, Γ, δ) where Q is a finite set of states, I ⊆ Q the set of initial states, F ⊆ Q
the set of final states, Γ the (finite) stack alphabet, and δ = δc � δr where δc ⊆ Q ×
Σc × Γ ×Q are the call transitions, δr ⊆ Q×Σr × Γ ×Q are the return transitions1.

On a call transition (q, a, γ, q′) ∈ δc, γ is pushed onto the stack and the control goes
from q to q′. On a return transition (q, a, γ, q′) ∈ δr, γ is popped from the stack.

A configuration of a VPA is a pair (q, σ) ∈ Q × Γ ∗. A run of T on a word u =
a1 . . . al ∈ Σ∗ from a configuration (q, σ) to a configuration (q′, σ′) is a finite sequence
ρ = {(qk, σk)}0≤k≤l such that q0 = q, σ0 = σ, ql = q′, σl = σ′ and for each 1 ≤
k ≤ l, there exists γk ∈ Γ such that either (qk−1, ak, γk, qk) ∈ δc and σk = σk−1γk or
(qk−1, ak, γk, qk) ∈ δr and σk−1 = σkγk. The run ρ is accepting if q0 ∈ I , ql ∈ F and
σ0 = σl = ⊥ A word w is accepted by A if there exists an accepting run of A over w.
L(A), the language of A, is the set of words accepted by A. A language L over Σ is a
visibly pushdown language if there is a VPA A over Σ such that L(A) = L.

As finite-state transducers extend finite-state automata with outputs, visibly push-
down transducers extend visibly pushdown automata with outputs [9]. To simplify nota-
tions, we suppose that the output alphabet is Σ, but our results still hold for an arbitrary

1 In contrast to [1], we do not consider internal symbols i, as they can be simulated by a (unique)
call ci followed by a (unique) return ri. We make this assumption to simplify proofs and
notations. Moreover, we do not allow return transition on ⊥ and we require the final stack to
be empty. This implies that all accepted words are well-nested. All our results extend easily to
alphabets with internal symbols and to VPT that accept by final state only.



Visibly Pushdown Transducers with Look-Ahead 255

output alphabet. Informally, the stack behavior of a VPT is similar to the stack behavior
of visibly pushdown automata (VPA). On a call symbol, the VPT pushes a symbol on
the stack and produces some output word (possibly empty and not necessarily well-
nested), on a return symbol, it must pop the top symbol of the stack and produce some
output word (possibly empty) and on an internal symbol, the stack remains unchanged
and it produces some output word.

Definition 1. A visibly pushdown transducer (VPT) on finite words over Σ is a tuple
T = (Q, I, F, Γ, δ) where Q is a finite set of states, I ⊆ Q is the set of initial states,
F ⊆ Q the set of final states, Γ is the stack alphabet, δ = δc � δr the (finite) transition
relation, with δc ⊆ Q×Σc ×Σ∗ × Γ ×Q, δr ⊆ Q×Σr ×Σ∗ × Γ ×Q.

Configurations and runs are defined similarly as VPA. Given a word u = a1 . . . al ∈
Σ∗ and a word v ∈ Σ∗, v is an output of u by T if there exists an accepting run
ρ = {(qk, σk)}0≤k≤l on u and l words v1, . . . , vl such that v = v1 . . . vl and for all
0 ≤ k < l, there is a transition of T from (qk, σk) to (qk+1, σk+1) that produces the

output vk+1 on input letter ak+1. We write (q, σ)
u/v−−→ (q′, σ′) when there exists a run

on u from (q, σ) to (q′, σ′) producing v as output. A transducer T defines the binary

word relation �T � = {(u, v) | ∃q ∈ I, q′ ∈ F, (q,⊥)
u/v−−→ (q′,⊥)}.

A transduction is a binary relation R ⊆ Σ∗ × Σ∗. We say that a transduction R
is a VPT-transduction if there exists a VPT T such that R = �T �. A transduction R
is functional if for all u ∈ Σ∗, there exists at most one v ∈ Σ∗ such that (u, v) ∈
R. A VPT T is functional if �T � is functional, and we denote by fVPT the class of
functional VPT. Two transducers T1, T2 are equivalent if �T1� = �T2�. It is known [9]
that functionality is decidable in PTIME for VPT and equivalence of functional VPT is
EXPT-C. Finally, a VPT is unambiguous if there is at most one accepting run per input
word. In particular, any unambiguous VPT is functional. Unambiguity can be checked
in PTIME [9].

For any input word u ∈ Σ∗, we denote by R(u) the set {v | (u, v) ∈ R}. Similarly,
for a VPT T , we denote by T (u) the set �T �(u). If R is functional, we confound R(u)
(which is at most of cardinality 1) and the unique image of u if it exists. The domain of
T (denoted by Dom(T )) is the domain of �T �. Note that the domain of T contains only
well-nested words, which is not necessarily the case of the codomain.
Example 1. Let Σc = {c, a}, Σr = {r} be the call and return symbols of the alphabet.
The following VPT T transforms a word as follows: (i) a and r are mapped to a and
r respectively; (ii) c is mapped either to c if no a appears in the longest well-nested
word starting at c, and to a if an a appears. E.g. ccrrarcr is mapped to acrrarcr, and
cccrrcrcarrr to aacrraraarrr.

The VPT T = (Q, I, F, Γ, δ) is defined by Q = {q, qa, q¬a}, I = {q}, F = Q,
Γ = {γ, γa, γ¬a} and δ contains the following transitions:

q or qa
c/a,γ−−−→ qa q or qa

c/a,γa−−−−→ q q
c/c,γ¬a−−−−−→ q¬a

q or qa
a/a,γ−−−→ q q¬a

c/c,γ¬a−−−−−→ q¬a

q or q¬a
r/r,γa−−−−→ qa q or q¬a

r/r,γ−−−→ q q¬a
r/r,γ¬a−−−−−→ q¬a

The state qa, resp. q¬a, means that there is, resp. is not, an a in the longest well-
nested word that starts at the current position. The state q indicates that there is no



256 E. Filiot and F. Servais

constraints on the appearance of a. If T is in state q and reads a c, there are two cases:
it outputs an a or a c. If it chooses to output an a, then it must check that an a occurs
later. There are again two cases: either T guesses there is an a in the well-nested word

that starts just after c and takes the transitions q
c/a,γ−−−→ qa, or it guesses an a appears in

the well-nested word that starts after the matching return of c, in that latter case it takes

the transition q
c/a,γa−−−−→ q and uses the stack symbol γa to carry over this information. If

on c it chooses to output c, it must check that there is no a later by using the transition

q
c/a,γ¬a−−−−−→ q¬a. Other cases are similar.

3 VPT with Visibly Pushdown Look-Ahead

Given a wordw overΣ we denote by prefwn(w) the longest well-nested prefix of w. E.g.
prefwn(ccrcr) = ε and prefwn(crc) = cr. We define a VPT T with visibly pushdown
look-ahead (simply called look-ahead in the sequel) informally as follows. The look-
ahead is given by a VPA A without initial state. On a call symbol c, T can trigger the
look-ahead from a state p of the VPA (which depends on the call transition). The look-
ahead tests membership of the longest well-nested prefix of the current suffix (that starts
by the letter c) to L(A, p), where (A, p) is the VPA A with initial state p. If the prefix
is in L(A, p) then the transition of T can be fired. When we consider nested words that
encode trees, look-aheads correspond to inspecting the subtree rooted at the current
node and all right sibling subtrees (in other words, the current hedge). Formally:

Definition 2. A VPT with look-ahead (VPTla) is a pair Tla = (T,A) where A is a VPA
A = (Qla, F la, Γ la, δla) without initial state and T is a tuple T = (Q, q0, F, Γ, δ)
such that Q is a finite set of states, q0 ∈ Q is an initial state, F ⊆ Q is a set of
final states, Γ is a stack alphabet, and δ = δc � δr is a transition relation such that
δc ⊆ Q×Σc ×Σ∗ ×Qla × Γ ×Q and δr ⊆ Q×Σr ×Σ∗ × Γ ×Q.

A VPA with look-ahead (VPAla) is defined similarly.

Let u ∈ Σ∗. A run of Tla on u = a1 . . . al is a sequence of configurations ρ =
{(qk, σk)}0≤k≤l such that, for all k < l, there exist γ ∈ Γ and vk+1 ∈ Σ∗ such that (i)
if ak+1 ∈ Σr, then σk+1γ = σk and (qk, ak+1, vk+1, γ, qk+1) ∈ δr; (ii) if ak+1 ∈ Σc,
then σk+1 = σkγ, and there exists p ∈ Qla such that (qk, ak+1, vk+1, p, γ, qk+1) ∈ δc
and prefwn(ak+1 . . . al) ∈ L(A, p). The run ρ is accepting if σ0 = σl =⊥ and ql ∈ F .
The word v1 . . . vl is an output of u.

The VPTla Tla is deterministic if for all transitions (q, c, v1, p1, γ1, q1) ∈ δc and
(q, c, v2, p2, γ2, q2) ∈ δc, if v1 	= v2 or γ1 	= γ2 or q1 	= q2 or p1 	= p2, then L(A, p1)∩
L(A, p2) = ∅; and for all transitions (q, r, v1, γ1, q1) ∈ δr and (q, r, v2, γ2, q2) ∈ δr
we have v1 = v2, γ1 = γ2 and q1 = q2. Note that deciding whether some VPTla is
deterministic can be done in PTIME. One has to check that for each state q and each
call symbol c, the VPL guarding transitions from state q and reading c are pairwise
disjoint. The number of states of a VPTla is the number of states of the transducer plus
the number of states of the look-ahead.

Example 2. A VPTla is represented in Figure 1. The look-ahead automaton is depicted
on the right, while the transducer in itself is on the left. It defines the transduction



Visibly Pushdown Transducers with Look-Ahead 257

q0

c|a, qa, γ

c|c, q¬a, γ

a|a, qf , γ

r|r, γ

qa qf

q¬a

c, γ

r, γ
a, γ

c, γ

r, γ

a, γ

c, γ

r, γ

Fig. 1. A VPTla (left) and its look-ahead (right) on Σc = {c, a} and Σr = {r}

of Example 1. When starting in state qa, respectively q¬a, the look-ahead automaton
accepts well-nested words that contains an a, respectively does not contain any a. When
starting in state qf it accepts any well-nested word. The transducer rewrites c symbols
into a if the well-nested word starting at c contains an a (transition on the top), otherwise
it just copy a c (transition on the right). This is achieved using the qa and q¬a states of
the look-ahead automaton. Other input symbols, i.e. a and r, are just copied to the
output (left and bottom transitions).

The next theorem states that adding look-aheads to VPT does not add expressiveness.
The main difficulty is to simulate an unbounded number of look-aheads at the same
time. Indeed, a look-ahead is triggered at each call and is alive until the end of the well-
nested subword starting at this call. To handle the simulation of the look-aheads that
started at a strictly less deeper nesting level we use the notion of summaries. Recall
that summaries were introduced in the context of the determinization of VPA ([1]), they
are pairs of states. More precisely, for a given VPA, a pair (p, q) is a summary if there
exists a well-nested word w such that the configuration (q,⊥) is accessible from (p,⊥)
by reading w. We use a classical subset construction for the look-aheads that started at
the same nesting level.

Theorem 1. For any VPTla, resp. VPAla, Tla with n states, one can construct an equiv-
alent VPT, resp. VPA, T ′ with O(n2n

2+1) states. Moreover, if Tla is deterministic, then
T ′ is unambiguous.

Proof. We prove the result for VPTla only, this trivially implies the result for VPAla.
Let Tla = (T,A) with T = (Q, q0, F, Γ, δ) and A = (Qla, F la, Γ la, δla). We construct
T ′ = (Q′, q′0, F

′, Γ ′, δ′) as follows (where IdQla denotes the identity relation on Qla):

Q′ = Q × 2Q
la×Qla × 2Q

la

, q′0 = (q0, IdQla ,∅), F ′ = {(q, R, L) ∈ Q′ | q ∈ F,L ⊆
F la}, Γ ′ = Γ × 2Q

la×Qla × 2Q
la ×Σc.

The transducer T ′ simulates T and its running look-aheads. A state of T ′ is a triple
(q, R, L). The first component is the state of T . The second and third components are
used to simulate the running look-aheads. When taking a call c, T ′ non-deterministically
chooses a new look-ahead triggered by T . This look-ahead is added to all running look-
aheads that started at the same nesting level. T ′ ensures that the run will fail if the



258 E. Filiot and F. Servais

longest well-nested prefix starting at c is not in the language of the triggered look-
ahead. The L component contains the states of all running look-aheads triggered at the
current nesting level. The R component is the summary necessary to update the L-
component. When reading a call the L component is put on the stack. When reading a
return, T ′ must check that all look-ahead states in L are final, i.e. T ′ ensures that the
chosen look-aheads are successful.

After reading a well-nested word w if T ′ is in state (q, R, L), with q ∈ Q, R ⊆
Qla × Qla and L ⊆ Qla, we have the following properties. The pair (p, p′) ∈ R iff
there exists a run of A from p to p′ on w. If some p′′ is in L, there exists a run of a
look-ahead that started when reading a call symbol of w at depth 0 which is now in
state p′′. Conversely, for all look-aheads that started when reading a call symbol of w at
depth 0, there exists a state p′′ ∈ L and a run of this look-ahead that is in state p′′.

w c w′ r

L
new l-a p0

push c, R, L ∪ {p0} pop c,R, L ∪ {p0}
R L′′ ⊆ F la

R′′

L′

R′

Fig. 2.

Let us consider a word wcw′r for some well-nested words w,w′ (depicted on Fig.
2). Assume that T ′ is in state (q, R, L) after reading w (on the figure, the relation R
is represented by dashed arrows and the set L by big points, and other states by small
points). We do not represent the T -component of the states on the figure but rather focus
on R and L. The information that we push on the stack when reading c is the necessary
information to compute a state (q′, R′, L′) of T ′ reached after reading wcw′r. After
reading the call symbol c, we go in state (q′, IdQla ,∅) and produce the output v for

some q′, v such that q
c|v,p0,γ−−−−−→ q′ ∈ δc, where p0 ∈ Qla is the starting state of a new

look-ahead. Note that determinism of T is preserved. On the stack we put the tuple
(γ,R, L ∪ {p0}, c) where γ,R, L, p0, c have been defined before.

Now, suppose that after reading wcw′ the transducer T ′ is in state (q′′, R′′, L′′). It
means that T is in state q′′ after reading wcw′, and (p, p′) ∈ R′′ iff there exists a
run of A from p to p′ on w′, and L′′ is some set of states reached by the look-aheads
that started at the same depth as w′. Therefore we first impose that any transition from
(q′′, R′′, L′′) reading r must satisfy L′′ ⊆ F la. Clearly, R′ can be constructed from c,
R and R′′. Finally, L′ is a set which satisfies for all p ∈ L ∪ {p0}, there exists p′ ∈ L′

such that there exists a run of A from p to p′ on cw′r. If such an L′ does not exist, there
is no transition on r. The set L′ can be constructed from L ∪ {p0} and R′′.



Visibly Pushdown Transducers with Look-Ahead 259

We now define the transitions formally. First, for all q, R, L, c, γ, we have:

(q, R, L)
c|u,(γ,R,L∪{p0},c)−−−−−−−−−−−−→ (q′, IdQla ,∅) ∈ δ′c whenever q

c|u,p0,γ−−−−−→ q′ ∈ δc

Then, for all R,L, r, γ, q′′, R′′, L′′, q′, R′, L′ we have:

(q′′, R′′, L′′)
r|u,(γ,R,L,c)−−−−−−−−→ (q′, R′, L′) ∈ δ′r if the following conditions hold:

(i) q′′
r|u,γ−−−→ q′ ∈ δr, (ii) L′′ ⊆ F la

(iii) R′ = {(p, p′) | ∃s c,γ−−→ s′ ∈ δlac · ∃(s′, s′′) ∈ R′′ · (p, s) ∈ R and s′′
r,γ−−→ p′ ∈ δlar }

(iv) for all p ∈ L, there exist p′ ∈ L′, γ ∈ Γ , s, s′ ∈ Qla such that (s, s′) ∈ R′′,
p

c,γ−−→ s ∈ δlac , s′
r,γ−−→ p′ ∈ δlar .

If T is deterministic, then T ′ is unambigous. Indeed, it is deterministic on return tran-

sitions. If there are two possible transitions q
c|u1,p1,γ1−−−−−−→ q1 and q

c|u2,p2,γ2−−−−−−→ q2 on a
call symbol c, as T is deterministic, we know that either the look-ahead starting in p1
or the look-ahead starting in p2 will fail. In T ′, there will be two transitions that will
simulate both look-aheads respectively, and therefore at least one continuation of the
two transitions will fail as well. Therefore there is at most one accepting computation
per input word in T . �


Succinctness. The exponential blow-up in the construction of Theorem 1 is unavoid-
able. Indeed, it is obviously already the case for finite state automata with regular look-
ahead. These finite state automata can be easily simulated by VPA on flat words (in
(ΣcΣr)

∗) (in that case the stack is useless). For example, consider for all n the lan-
guage Ln = {vuv | |v| = n}. One can construct a finite state automaton with regular
look-ahead with O(n) states that recognizes Ln. It is done by using look-aheads that
check for all a ∈ Σ and i ≤ n that the m − (n − i)-th letter is equal to a, where m
is the length of the word. Without a regular look-ahead, any automaton has to store the
n-th first letters of w in its states, then it guesses the m− n-th position and checks that
the prefix of size n is equal to the suffix of size n. A simple pumping argument shows
that the automaton needs at least |Σ|n states.

4 Functional VPT and VPTla

While there is no known syntactic restriction on VPT that captures all functional VPT,
we show that the class of deterministicVPTla captures all functionalVPT. As there may
be an unbounded number of accepting runs, the equivalent VPTla has to choose only
one of them by using look-aheads. This is done by ordering the states and extending
this order to runs. Similar ideas have been used in [7] to show the same result for
top-down tree transducers. The main new difficulty with VPT is to cope with nesting.
Indeed, when the transducer enters an additional level of nesting, its look-ahead cannot
inspect the entire suffix but is limited to the current nesting level. When reading a call,
choosing (thanks to some look-ahead) the smallest run on the current well-nested prefix
is not correct because it may not be possible to extend this run to an accepting run on
the entire word. Therefore the transducer has to pass some information from one to the



260 E. Filiot and F. Servais

next level of nesting about the chosen global run, while for top-down tree transducers,
as the evaluation is top-down, the transformation of the current subtree is independent
of the transition choices that have been made at upper levels.

Theorem 2. For all VPT T , one can construct a deterministic VPTla Tla with at most
exponentially many more states such that �Tla� ⊆ �T � and Dom(Tla) = Dom(T ). If T
is functional, then �Tla� = �T �.

Proof. We order the states of T and use look-aheads to choose the smallest runs wrt to
an order on runs that depends on the structure of the word. Let T = (Q, q0, F, Γ, δ) be
a VPT. Wlog we assume that for all q, q′ ∈ Q, all α ∈ Σ, there is at most one u ∈ Σ∗

and one γ ∈ Γ such that (q, α, u, γ, q′) ∈ δ. A transducer satisfying this property can
be obtained by duplicating the states with transitions, i.e. by taking the set of states
Q×Δ.

We construct a deterministic VPTla Tla = (T ′, A) such that �Tla� ⊆ �T � and
Dom(Tla) = Dom(T ) and where T ′ = (Q′, q0, F ′, Γ ′, δ′) with Q′ = {q0} ∪ Q2,
F ′ = F ×Q if q0 	∈ F otherwise F ′ = (F ×Q) ∪ {q0}. The look-ahead A is defined
later. Before defining δ′ formally, let us explain it informally. There might be several ac-
cepting runs on an input word w, Tla has to choose exactly one. Furthermore, to ensure
determinism, when reading a symbol, Tla has to choose exactly one transition. The idea
is to order the states by a total order<Q and to extend this order to runs. The look-ahead
will be used to choose the next transition of T that has to be fired, so that the choice
will ensure that T follows the smallest accepting run on w. However the look-ahead can
only visit the current longest well-nested prefix, and not the entire word. Therefore the
“parent” of the call c has to pass some information about the global run to its child c. In
particular, when T ′ is in state (q, q′) for some state q′, it means that T is in state q and
the state reached after reading the last return symbol of the longest-well nested current
prefix must be q′.

Consider a word of the form w = c1w1r1w2c3w3r3 where wi are well-nested, de-
picted on Fig. 3. Suppose that before evaluating w, T ′ is in state (q1, q3). It means
that the last transition T has to fire when reading r3 has a target state q3. When read-
ing the call symbol c1, T ′ uses a look-ahead to determine the smallest triple of states
(q′1, q

′
2, q2) such that there exists a run on w that starts in q1 and such that after reading

c1 it is in state q′1, before reading r1 it is in state q′2, after reading r1 it is in state q2
and after reading r3 it is in state q3. Then, T ′ fires the call transition on c1 that with
source and target states q1 and q′1 respectively (it is unique by hypothesis), put on the
stack the states (q2, q3) and passes to w1 (in the state) the information that the chosen
run on w1 terminates by the state q′2, i.e. it goes to the state (q′1, q

′
2). (see Fig. 3). On

the figure, we do not explicit all the states and anonymous components are denoted by
. When reading r1, T ′ pops from the stack the tuple (γ, q2, q3) and therefore knows

that the transition to apply on r1 has target state q2 and the transition to apply on r3 has
target state q3. Then it passes q3 to the current state.

When the computation starts in q0, we do not know yet what return transition has to
be fired at the end of the hedge. This case can be easily treated separately by a look-
ahead on the first call symbol that determine the smallest 4-tuple of states (q1, q′2, q2, q3)
which satisfies the conditions described before, but to simplify the proof, we assume
that the VPT accepts only words of the form cwr, where w is well-nested, so that one
only needs to consider triples of states.



Visibly Pushdown Transducers with Look-Ahead 261

(q1,q3)

(q′1,q
′
2) (q′2,q

′
2)

(q2,q3) ( ,q3)

( , ) ( , )

( ,q3)l.a. to choose the smallest (q′1 , q′2, q2)i

i+1

c1 w1 r1 w2 c3 w3 r3

push (γ,q2,q3) pop (γ,q2,q3)

Fig. 3.

We now define the transition relation formally. Let < be a total order on states,
extended lexicographically to tuples. For all states q1, q

′
1, q

′
2, q2, q3 ∈ Q, it is easy to

define a VPA Aq1,q′1,q
′
2,q2,q3

whose size is polynomial in the size of T that accepts a
word w iff it is of the form c1w1r1w3 where w1, w3 are well-nested and there exists a
run of T on w that starts in state q1 and is state q′1 after reading c1, in state q′2 before
reading r1, in state q2 after reading r1 and in state q3 after reading w3. Note that if
w3 = ε then if q3 	= q2, then w 	∈ L(Aq1,q′1,q

′
2,q2,q3

). We denote by Aq1,q′1,q
′
2,q2,q3

the
complement of Aq1,q′1,q

′
2,q2,q3

.
We let Bq1,q′1,q

′
2,q2,q3

a VPA with initial state pq1,q′1,q′2,q2,q3 that defines the language:

L(Bq1,q′1,q
′
2,q2,q3

) = L(Aq1,q′1,q
′
2,q2,q3

) ∩
⋂

(s1, s
′
2, s2) ∈ Q3

(s1, s
′
2, s2) < (q1, q

′
2, q2)

L(Aq1,s1,s′2,s2,q3)

Such a VPA exists as VPA are closed by intersection and complement. Its size how-
ever may be exponential in |Q|. We define the look-ahead VPA as the union of all those
VPA, Ala =

⊎
Bq1,q′1,q

′
2,q2,q3

. We now define the call and return transitions of T ′ as
follows, for all c ∈ Σc, r ∈ Σr, γ ∈ Γ, q1, q

′
1, q

′
2, q3, q ∈ Q, u ∈ Σ∗:

(q1, q3)
c|u, (γ,q2,q3), pq1,q′1,q′2,q2,q3−−−−−−−−−−−−−−−−−−→ (q′1, q

′
2) if (q1

c|u,γ−−−→ q′1) ∈ δc

q0
c|u, (γ,q3,q3), pq0,q′

1
,q′

2
,q3,q3−−−−−−−−−−−−−−−−−−→ (q′1, q

′
2) if (q0

c|u,γ−−−→ q′1) ∈ δc

(q′2, q)
r|u,(γ,q2,q3)−−−−−−−−→ (q2, q3) if (q′2

r|u,γ−−−→ q2) ∈ δr

It can be shown that T ′ is deterministic [16]. Clearly, if T is functional then Tla is
equivalent. �


This construction, followed by the construction of Theorem 1 that removes the look-
aheads, yields a nice characterization of functional VPT:

Theorem 3. For all functional VPT T , one can effectively construct an equivalent un-
ambiguous VPT T ′.

5 Decision Problems

In this section, we study the problems of functionality of VPTla and equivalence of
functional VPTla. In particular, we prove that while being exponentially more succinct
than VPT, the equivalence of functional VPTla remains decidable in EXPT, as equiva-
lence of functional VPT.



262 E. Filiot and F. Servais

Theorem 4. Functionality of VPTla is EXPT-C, even for deterministic look-aheads.

Proof. For the EXPT upper-bound, we first apply Theorem 1 to remove the look-
aheads. This results in a VPT possibly exponentially bigger. Then functionality can
be tested in PTIME [9]. For the lower-bound, we reduce the problem of deciding empti-
ness of the intersection of n deterministic top-down tree automata, which is known to
be EXPT-C when n is part of the input [3]. �

We know that the equivalence of two functional VPT is EXPT-C [9]. For equivalence of
functional VPTla, one can first remove the look-aheads, modulo an exponential blow-
up, and use the procedure for VPT. This would yield a 2-EXPT procedure for the equiv-
alence of functional VPTla. However, it is possible to decide it in EXPT:

Theorem 5. Emptiness of VPTla, resp. of VPAla, equivalence and inclusion of func-
tional VPTla, resp. of VPAla, is EXPT-C, even if the transducers, resp. automata, and
the look-aheads are deterministic.

Proof. The lower bounds are obtained, as for functionality, by reduction of the empti-
ness of n (deterministic) tree automata.
Emptiness ofVPAla can be checked by first removing the look-aheads (modulo an expo-
nential blow-up) and then check emptiness of the equivalentVPA (in PTIME). Checking
emptiness of a VPTla amounts to check emptiness of its domain, which is a VPAla.
To show that equivalence and inclusion of two VPAla is in EXPT, we construct two alter-
nating (ranked) tree automata equivalent to the VPA modulo the first-child next-sibling
encoding in PTIME. Look-aheads are encoding as universal transitions. Equivalence
and inclusion of alternating tree automata is in EXPT [3].
Then, let us show how to check the equivalence, resp. inclusion, of two VPTla: trans-
form each VPTla into an equivalent VPT with at most an exponential blow-up, take the
union and verify (in PTIME) that the resulting VPT is still functional. Then check that
their domains (which are VPAla obtained by ignoring the output of the two VPTla) are
equivalent, resp. included. �

Acknowledgments. We are very grateful to Sebastian Maneth for suggesting us to ex-
tend VPT with look-aheads, and to Pierre-Alain Reynier for simplifying the proof of
Theorem 1.

References

1. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: STOC, pp. 202–211 (2004)
2. Alur, R., Madhusudan, P.: Adding nesting structure to words. JACM 56(3), 1–43 (2009)
3. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Tison, S.,

Tommasi, M.: Tree automata techniques and applications (2007)
4. Eilenberg, S.: Automata, Languages, and Machines. Academic Press, Inc. (1974)
5. Elgot, C.C., Mezei, J.E.: On relations defined by generalized finite automata. IBM Journal of

Research and Development 9, 47–68 (1965)
6. Engelfriet, J.: Top-down tree transducers with regular look-ahead. Mathematical Systems

Theory 10, 289–303 (1977)
7. Engelfriet, J.: On tree transducers for partial functions. Inf. Process. Lett. 7(4), 170–172

(1978)



Visibly Pushdown Transducers with Look-Ahead 263

8. Engelfriet, J., Vogler, H.: Macro tree transducers. JCSS 31(1), 71–146 (1985)
9. Filiot, E., Raskin, J.-F., Reynier, P.-A., Servais, F., Talbot, J.-M.: Properties of Visibly Push-

down Transducers. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp.
355–367. Springer, Heidelberg (2010)

10. Gauwin, O., Niehren, J., Tison, S.: Queries on XML streams with bounded delay and con-
currency. Inf. Comput. 209(3), 409–442 (2011)

11. Kumar, V., Madhusudan, P., Viswanathan, M.: Visibly pushdown automata for streaming
XML. In: WWW, pp. 1053–1062 (2007)

12. Perst, T., Seidl, H.: Macro forest transducers. IPL 89(3), 141–149 (2004)
13. Sakarovitch, J., de Souza, R.: Lexicographic decomposition of k-valued transducers.

TCS 47(3), 758–785 (2010)
14. Schützenberger, M.P.: Sur les relations rationnelles entre monoides libres. TCS 3(2), 243–

259 (1976)
15. Segoufin, L., Vianu, V.: Validating streaming XML documents. In: PODS, pp. 53–64 (2002)
16. Servais, F.: Visibly Pushdown Transducers. PhD thesis, Université Libre de Bruxelles (2011)
17. Staworko, S., Laurence, G., Lemay, A., Niehren, J.: Equivalence of Deterministic Nested

Word to Word Transducers. In: Kutyłowski, M., Charatonik, W., G ↪ebala, M. (eds.) FCT 2009.
LNCS, vol. 5699, pp. 310–322. Springer, Heidelberg (2009)

18. Weber, A.: Decomposing finite-valued transducers and deciding their equivalence. SIAM
Journal on Computing 22(1), 175–202 (1993)


	Visibly Pushdown Transducers with Look-Ahead

	Introduction
	Visibly Pushdown Languages and Transductions
	VPT with Visibly Pushdown Look-Ahead
	Functional VPT and VPTla
	Decision Problems
	References





