

Lecture Notes in Computer Science 7147
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Mária Bieliková Gerhard Friedrich
Georg Gottlob Stefan Katzenbeisser
György Turán (Eds.)

SOFSEM 2012:
Theory and Practice
of Computer Science

38th Conference on Current Trends
in Theory and Practice of Computer Science
Špindlerův Mlýn, Czech Republic, January 21-27, 2012
Proceedings

13

Volume Editors

Mária Bieliková
Slovak University of Technology in Bratislava, Slovakia
E-mail: bielik@fiit.stuba.sk

Gerhard Friedrich
Alpen-Adria-Universität Klagenfurt, Austria
E-mail: gerhard.friedrich@uni-klu.ac.at

Georg Gottlob
University of Oxford, UK
E-mail: georg.gottlob@cs.ox.ac.uk

Stefan Katzenbeisser
Technische Universität Darmstadt, Germany
E-mail: skatzenbeisser@acm.org

György Turán
University of Illinois at Chicago, IL, USA
and University of Szeged, Hungary
E-mail: gyt@uic.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-27659-0 e-ISBN 978-3-642-27660-6
DOI 10.1007/978-3-642-27660-6
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011944431

CR Subject Classification (1998): F.2, F.1, D.2, H.2-3, C.2, H.4, D.4, G.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the invited and contributed papers selected for presentation
at SOFSEM 2012, the 38th Conference on Current Trends in Theory and Practice
of Computer Science, held January 21–27, 2012 in OREA Hotel Horal, Špindler̊uv
Mlýn, in the Krkonoše Mountains of the Czech Republic.

SOFSEM (originally: SOFtware SEMinar) is devoted to leading research, and
fosters the cooperation among researchers and professionals from academia and
industry, in all areas of computer science. As a well-established and fully inter-
national conference, SOFSEM maintains the best of its original Winter School
aspects, like a high number of invited talks (this year again 11) and an in-depth
coverage of novel research results in selected areas within computer science.
SOFSEM 2012 was organized around the following four tracks:

– Foundations of Computer Science (Chair: György Turán - University of Illi-
nois at Chicago, USA, and University of Szeged, Hungary)

– Software and Web Engineering (Chair: Mária Bieliková - Slovak University
of Technology in Bratislava, Slovakia)

– Cryptography, Security, and Verification (Chair: Stefan Katzenbeisser - Tech-
nical University of Darmstadt, Germany)

– Artificial Intelligence (Chair: Gerhard Friedrich - Alpen-Adria-University
Klagenfurt, Austria)

In memory of Alan Turing, whose 100th anniversary is celebrated in 2012,
SOFSEM 2012 hosted a session on Turing machines. The session consisted of in-
vited and contributed talks on Turing machines as the basic model of computabil-
ity and complexity. SOFSEM 2012 was among the official Centenary Events of
The Alan Turing Year.

With its four tracks, SOFSEM 2012 covered the latest advances in research,
both theoretical and applied, in leading areas of computer science. The
SOFSEM 2012 Program Committee consisted of 105 international experts from
25 different countries, representing the 4 track areas with outstanding expertise.
An integral part of SOFSEM 2012 was the traditional SOFSEM Student Research
Forum (Chair: Roman Špánek - Institute of Computer Science of the Academy
of Sciences of the Czech Republic in Prague - ICS ASCR), organized with the
aim to present student projects in the theory and practice of computer science
and to give students feedback on both the originality of their scientific results
and on their work in progress. The papers presented at the Student Research
Forum were published in a local proceedings volume.

In response to the calls for papers, SOFSEM 2012 received 140 submissions
by 297 authors, coming from 38 different countries of 5 continents (Americas,
Asia, Australia and Europe): full papers were provided for 121 (87 %) of them.
From these, there were 66 submissions in the Foundations of Computer Science
Track (55 %) and 55 submissions (45 %) in the remaining three tracks: 26 in

VI Preface

the Software and Web Engineering Track (21 %), 18 in the Artificial Intelligence
Track (15 %) and finaly 11 in the Cryptography, Security, and Verification Track
(9 %).

After a detailed review process (using the EasyChair Conference System)
with at least three reviewers per paper, a careful electronic selection procedure
was carried out within each track between August 29 and September 20, 2011.
In total 43 papers were selected for presentation at SOFSEM 2012, following
strict criteria of quality and originality. From these, there were 24 submissions
in the Foundations of Computer Science Track (56 %) and 19 (44 %) in the
other 3 tracks: 9 in the Software and Web Engineering Track (21 %), 6 in the
Artificial Intelligence Track (14 %) and finally 4 in the Cryptography, Security,
and Verification Track (9 %).

Of the 43 accepted papers, 12 papers were submitted as student papers. In
fact, two student papers, namely, the paper by Peter Damaschke and Azam
Sheikh Muhammad and the one by Jǐŕı Isa, Zuzana Reitermanová and Ondřej
Sýkora, received the highest evaluations of all submissions in their respective
tracks, the first one even the highest of all accepted papers.

Furthermore, 12 student papers were selected for the SOFSEM 2012 Student
Research Forum, based on the recommendations of the Chair of the SRF, and
with the approval of the Track Chairs.

As editors of these proceedings, we are grateful to everyone who contributed
to the scientific program of the conference, especially the invited speakers and all
authors of contributed papers. We thank all authors for their prompt responses
to our editorial requests.

SOFSEM 2012 was the result of a considerable effort by many people. We
would like to express our special thanks to:

– The SOFSEM 2012 Program Committees of the four tracks and all additional
referees for their precise and detailed reviewing of the submissions

– Roman Špánek, of the ICS ASCR, for his preparation and handling of the
Student Research Forum

– The SOFSEM Steering Committee headed by Július Štuller (ICS ASCR),
for guidance and support throughout the preparation of the conference

– Springer’s LNCS series, for its great support of the SOFSEM conferences

We are also greatly indebted to:

– The SOFSEM 2012 Organizing Committee consisting of Július Štuller (Chair),
Pavel Tyl, Martin Řimnáč, and Dana Kuželová (all from the ICS ASCR) for
the support and preparation of all aspects of the conference

– The Action M Agency, in particular Milena Zeithamlová and
Pavĺına Březinová, for the local arrangements of SOFSEM 2012

We especially thank Július Štuller, for his assistance in all duties and respon-
sibilities of the Track Chairs and the PC/General Chair.

Preface VII

Finally, we are very grateful for the financial support of our sponsors, which
enabled us to compose a high-quality program of invited speakers and helped us
to keep the student fees low. We thank the Institute of Computer Science of the
Academy of Sciences of the Czech Republic in Prague, for its invaluable support
of all aspects of SOFSEM 2012.

October 2011 Mária Bieliková
Gerhard Friedrich

Georg Gottlob
Stefan Katzenbeisser

György Turán

Organization

Steering Committee

Mária Bieliková Slovak University of Technology in Bratislava,
Slovakia

Bernadette Charron-Bost Ecole Polytechnique, France
Keith Jeffery STFC Rutherford Appleton Laboratory, UK
Antońın Kučera Masaryk University, Brno, Czech Republic
Jan van Leeuwen Utrecht University, The Netherlands
Branislav Rovan Comenius University, Bratislava, Slovakia
Július Štuller, Chair Institute of Computer Science, Academy

of Sciences, Czech Republic
Petr Tůma Charles University in Prague, Czech Republic

Program Committee

PC Chair

Georg Gottlob University of Oxford, UK

Track Chairs
Mária Bieliková Slovak University of Technology in Bratislava,

Slovakia
Gerhard Friedrich Alpen Adria University Klagenfurt, Austria
Stefan Katzenbeisser Technische Universität Darmstadt, Germany
György Turán University of Illinois at Chicago, USA, and

University of Szeged, Hungary

Student Research Forum Chair
Roman Špánek Institute of Computer Science, Academy

of Sciences, Czech Republic

PC Members
Isolde Adler Goethe University Frankfurt am Main,

Germany
Andris Ambainis University of Latvia, Latvia
Ioannis Anagnostopoulos University of Central Greece, Greece
Frederik Armknecht University of Mannheim, Germany
Roman Barták Charles University in Prague, Czech Republic
Petr Berka University of Economics, Prague,

Czech Republic
Miklos Biro Corvinus University of Budapest, Hungary

X Organization

Roderick Bloem Graz University of Technology, Austria
Přemek Brada University of West Bohemia, Czech Republic
Ivan Bratko University of Ljubljana, Slovenia
Gerd Brewka Leipzig University, Germany
Levente Buttyan Budapest University of Technology

and Economics, Hungary
Sven Casteleyn Polytechnic University of Valencia, Spain
Sourav Chakraborty Chennai Mathematical Institute, India
Ferdinando Cicalese University of Salerno, Italy
Ondřej Čepek Charles University in Prague, Czech Republic
Ivana Černá Masaryk University, Brno, Czech Republic
Florian Daniel University of Trento, Italy
Bhaskar Dasgupta University of Illinois at Chicago, USA
Peter Dolog Aalborg University, Denmark
Agostino Dovier University of Udine, Italy
Johann Eder University of Klagenfurt, Austria
Uwe Egly Vienna University of Technology, Austria
Michael Elkin Ben-Gurion University of the Negev, Israel
Wolfgang Faber University of Calabria, Italy
Andreas Falkner Siemens AG Österreich, Austria
Johann Gamper Free University of Bolzano, Italy
Martin Gebser University of Potsdam, Germany
Martin Grohe Humboldt University Berlin, Germany
Vince Grolmusz Eötvös University, Budapest, Hungary
Hele-Mai Haav Institute of Cybernetics at TUT, Estonia
Kristoffer Hansen Aarhus University, Denmark
Lisa Hellerstein Polytechnic Institute of NY, USA
Eelco Herder L3S Research Center, Germany
Pavel Herout University of West Bohemia, Czech Republic
Jan Hidders Delft University of Technology,

The Netherlands
Martin Homola Comenius University, Bratislava, Slovakia
Juraj Hromkovič ETH Zurich, Switzerland
Dietmar Jannach Dortmund University of Technology, Germany
Marina Jirotka University of Oxford, UK
Dimitris Karagiannis University of Vienna, Austria
Przemyslaw Kazienko Wroclaw University of Technology, Poland
Johannes Kinder EPFL, Switzerland
Petr Kosina Brno University of Technology, Czech Republic
Daniel Král Czech Republic
Rastislav Královič Comenius University, Bratislava, Slovakia
Milos Kravcik RWTH Aachen University, Germany
Petr Kroha Chemnitz University of Technology, Germany
Klaus Kursawe University of Nijmegen, The Netherlands
Miroslaw Kutylowski Wroclaw University of Technology, Poland

Organization XI

Michal Laclav́ık Institute of Informatics, Slovak Academy
of Sciences, Slovakia

Viliam Lisý Czech Technical University in Prague,
Czech Republic

Martin Lopez-Nores University of Vigo, Spain
Shachar Lovett The Weizmann Institute of Science, Israel
Leszek Maciaszek Wroc�law University of Economics, Poland
Frederic Magniez LIAFA, University of Paris 7, CNRS, France
Václav Matyáš Masaryk University, Brno, Czech Republic
Marius Minea Politechnic University of Timisoara, Romania
Victor Mitrana Rovira i Virgili University, Tarragona,

Romania
Tadeusz Morzy Poznan University of Technology, Poland
Jerzy Nawrocki Poznan University of Technology, Poland
Pavol Návrat Slovak University of Technology in Bratislava,

Slovakia
Ronald Ortner University of Leoben, Austria
Jan Paralič Technical University of Kosice, Slovakia
Michal Pěchouček Czech Technical University in Prague,

Czech Republic
Reinhard Pichler Vienna University of Technology, Austria
Jaroslav Pokorný Charles University in Prague, Czech Republic
Axel Polleres Siemens AG Österreich, Austria
Bart Preneel Catholic University, Leuven, Belgium
Daniel Reidenbach Loughborough University, UK
Karel Richta Charles University in Prague, Czech Republic
Branislav Rovan Comenius University, Bratislava, Slovakia
Ahmad-Reza Sadeghi Technische Universität Darmstadt, Germany
Davide Sangiorgi University of Bologna, Italy
Ulrich Schöpp LMU Munich, Germany
Radu Sion Stony Brook University, USA
Boris Skoric Eindhoven Technical University,

The Netherlands
Markus Stumptner University of South Australia, Australia
Vojtěch Svátek University of Economics, Prague,

Czech Republic
Balázs Szörényi University of Szeged, Hungary
Petr Šaloun Technical University Ostrava, Czech Republic
Daniel Štefankovič University of Rochester, USA
Olga Štěpánková Czech Technical University in Prague,

Czech Republic
Július Štuller Institute of Computer Science, Academy

of Science, Czech Republic
Massimo Tisi Polytechnical University of Milan, Italy
Sophie Tison University of Lille 1, LIFL, France

XII Organization

Hans Tompits Vienna University of Technology, Austria
Helmut Veith Vienna University of Technology, Austria
Elad Verbin University of Aarhus, Denmark
Heribert Vollmer Hannover University, Germany
Valentino Vranić Slovak University of Technology in Bratislava,

Slovakia
Vincent Wade Trinity College Dublin, Ireland
Manuel Wimmer Vienna University of Technology, Austria
Franz Wotawa Graz Technical University, Austria
Marek Zaionc Jagiellonian University, Poland
Jaroslav Zendulka Brno University of Technology, Czech Republic
Wieslaw Zielonka LIAFA, University of Paris 7, France
Stanislav Živný University of Oxford, UK

Organization

38th SOFSEM 2012 was organized by:

Institute of Computer Science, Academy of Sciences of the Czech Republic,
Prague

Action M Agency, Prague

Organizing Committee

Július Štuller, Chair Institute of Computer Science, Prague,
Czech Republic

Pavel Tyl Institute of Computer Science, Prague,
Czech Republic

Martin Řimnáč Institute of Computer Science, Prague,
Czech Republic

Dana Kuželová Institute of Computer Science, Prague,
Czech Republic

Milena Zeithamlová Action M Agency, Prague, Czech Republic
Pavĺına Březinová Action M Agency, Prague, Czech Republic

Supported by

ČSKI – Czech Society for Cybernetics and Informatics

SSCS – Slovak Society for Computer Science

Table of Contents

Invited Talks

Foundations of Computer Science

The Legacy of Turing in Numerical Analysis . 1
Felipe Cucker

Turing Machines for Dummies: Why Representations Do Matter 14
Peter van Emde Boas

What Is an Algorithm? . 31
Yuri Gurevich

Strong Bridges and Strong Articulation Points of Directed
Graphs (Abstract) . 43

Giuseppe F. Italiano

Towards Computational Models of Artificial Cognitive Systems That
Can, in Principle, Pass the Turing Test . 44

Jǐŕı Wiedermann

Software and Web Engineering

A Fully Generic Approach for Realizing the Adaptive Web 64
Paul De Bra and David Smits

Multi Feature Indexing Network MUFIN for Similarity Search
Applications . 77

Pavel Zezula

Cryptography, Security, and Verification

Recent Challenges and Ideas in Temporal Synthesis 88
Orna Kupferman

Cryptography from Learning Parity with Noise . 99
Krzysztof Pietrzak

Artificial Intelligence

A Quick Tour of Word Sense Disambiguation, Induction and Related
Approaches . 115

Roberto Navigli

XIV Table of Contents

Not Another Look at the Turing Test! . 130
Kevin Warwick

Regular Papers

Foundations of Computer Science

The Equational Theory of Weak Complete Simulation Semantics over
BCCSP . 141

Luca Aceto, David de Frutos-Escrig,
Carlos Gregorio-Rodŕıguez, and Anna Ingólfsdóttir

Complexity Insights of the Minimum Duplication Problem 153
Guillaume Blin, Paola Bonizzoni, Riccardo Dondi,
Romeo Rizzi, and Florian Sikora

A Turing Machine Resisting Isolated Bursts of Faults 165
Ilir Çapuni and Peter Gács

Properties of SLUR Formulae . 177
Ondřej Čepek, Petr Kučera, and Václav Vlček

Unique-Maximum and Conflict-Free Coloring for Hypergraphs and Tree
Graphs . 190

Panagiotis Cheilaris, Balázs Keszegh, and Dömötör Pálvölgyi

Minimal Dominating Sets in Graph Classes: Combinatorial Bounds and
Enumeration . 202

Jean-François Couturier, Pinar Heggernes, Pim van’t Hof, and
Dieter Kratsch

Randomized Group Testing Both Query-Optimal and Minimal
Adaptive . 214

Peter Damaschke and Azam Sheikh Muhammad

Complexity of Model Checking for Modal Dependence Logic 226
Johannes Ebbing and Peter Lohmann

Multitape NFA: Weak Synchronization of the Input Heads 238
Ömer Eğecioğlu, Oscar H. Ibarra, and Nicholas Q. Tran

Visibly Pushdown Transducers with Look-Ahead . 251
Emmanuel Filiot and Frédéric Servais

A Generalization of Spira’s Theorem and Circuits with Small
Segregators or Separators . 264

Anna Gál and Jing-Tang Jang

Table of Contents XV

Consistent Consequence for Boolean Equation Systems 277
Maciej W. Gazda and Tim A.C. Willemse

4-Coloring H-Free Graphs When H Is Small . 289
Petr A. Golovach, Daniël Paulusma, and Jian Song

Computing q-Gram Non-overlapping Frequencies on SLP Compressed
Texts . 301

Keisuke Goto, Hideo Bannai, Shunsuke Inenaga, and
Masayuki Takeda

A Fast Approximation Scheme for the Multiple Knapsack Problem 313
Klaus Jansen

Counting Maximal Independent Sets in Subcubic Graphs 325
Konstanty Junosza-Szaniawski and Micha�l Tuczyński

Iterated Hairpin Completions of Non-crossing Words 337
Lila Kari, Steffen Kopecki, and Shinnosuke Seki

On the Approximation Ratio of the Path Matching Christofides
Algorithm . 349

Sacha Krug

Parikh’s Theorem and Descriptional Complexity . 361
Giovanna J. Lavado and Giovanni Pighizzini

A Combinatorial Algorithm for All-Pairs Shortest Paths in Directed
Vertex-Weighted Graphs with Applications to Disc Graphs 373

Andrzej Lingas and Dzmitry Sledneu

The Complexity of Small Universal Turing Machines: A Survey 385
Turlough Neary and Damien Woods

A Sufficient Condition for Sets Hitting the Class of Read-Once
Branching Programs of Width 3 (Extended Abstract) 406

Jǐŕı Š́ıma and Stanislav Žák

Complete Problem for Perfect Zero-Knowledge Quantum Proof 419
Jun Yan

An Algorithm for Probabilistic Alternating Simulation 431
Chenyi Zhang and Jun Pang

Software and Web Engineering

Towards a Smart, Self-scaling Cooperative Web Cache 443
Tomáš Černý, Petr Praus, Slávka Jaroměřská, Luboš Matl, and
Michael J. Donahoo

XVI Table of Contents

Named Entity Disambiguation Based on Explicit Semantics 456
Martin Jačala and Jozef Tvarožek

Design Pattern Support Based on the Source Code Annotations and
Feature Models . 467

Peter Kajsa and Pavol Návrat

On the Formalization of UML Activities for Component-Based Protocol
Design Specifications . 479

Prabhu Shankar Kaliappan and Hartmut König

Tree Based Domain-Specific Mapping Languages . 492
Elina Kalnina, Audris Kalnins, Agris Sostaks, Edgars Celms, and
Janis Iraids

RESTGroups for Resilient Web Services . 505
Tadeusz Kobus and Pawe�l T. Wojciechowski

Leveraging Microblogs for Resource Ranking . 518
Tomáš Majer and Marián Šimko

Inner Architecture of a Social Networking System . 530
Jaroslav Škrabálek, Petr Kunc, and Tomáš Pitner

State Coverage: Software Validation Metrics beyond Code Coverage 542
Dries Vanoverberghe, Jonathan de Halleux, Nikolai Tillmann, and
Frank Piessens

Cryptography, Security, and Verification

Factorization for Component-Interaction Automata 554
Nikola Beneš, Ivana Černá, and Filip Štefaňák

Optimizing Segment Based Document Protection . 566
Miros�law Kuty�lowski and Maciej Gȩbala

Securing the Future — An Information Flow Analysis of a Distributed
OO Language . 576

Martin Pettai and Peeter Laud

Improving Watermark Resistance against Removal Attacks Using
Orthogonal Wavelet Adaptation . 588

Jan Stolarek and Piotr Lipiński

Artificial Intelligence

MAKe – A System for Modelling, Optimising, and Analyzing
Production in Small and Medium Enterprises . 600

Roman Barták, Con Sheahan, and Ann Sheahan

Table of Contents XVII

Knowledge Compilation with Empowerment . 612
Lucas Bordeaux and Joao Marques-Silva

Cost-Sensitive Classification with Unconstrained Influence Diagrams 625
Jǐŕı Iša, Zuzana Reitermanová, and Ondřej Sýkora

Modeling and Predicting Students Problem Solving Times 637
Petr Jarušek and Radek Pelánek

Generic Heuristic Approach to General Game Playing 649
Jacek Mańdziuk and Maciej Świechowski

The SiMoL Modeling Language for Simulation and
(Re-)Configuration . 661

Iulia Nica and Franz Wotawa

Author Index . 673

The Legacy of Turing in Numerical Analysis

Felipe Cucker�

Department of Mathematics, City University of Hong Kong, 83 Tat Chee Avenue,
Hong Kong, P.R. of China
macucker@cityu.edu.hk

Abstract. Alan Mathison Turing is revered among computer scientists
for laying down the foundations of theoretical computer science via the
introduction of the Turing machine, an abstract model of computation
upon which, an elegant notion of cost and a theory of complexity can
be developed. In this paper we argue that the contribution of Turing to
“the other side of computer science”, namely the domain of numerical
computations as pioneered by Newton, Gauss, &c, and carried out today
in the name of numerical analysis, is of an equally foundational nature.

1 Introduction

Alan Mathison Turing is mostly known, among scientists, for his 1936 paper
where what we call today the Turing machine was first introduced [19]1. This
abstract model of computation became central in the theoretical foundations of
the young computer science. A reason of this success is that, unlike other abstract
models of computation leading to the same class of computable functions, the
Turing machine provides a natural framework to define, and subsequently study,
issues of complexity.

The development of computer languages, compilers, editors, web browsers,
&c, brought to light a myriad of combinatorial problems demanding efficient
algorithmic solutions and the complexity theory built upon the Turing machine
has been pivotal in the phenomenal progress this development has seen.

Yet, maybe surprisingly, the intellectual context within which Turing wrote
his 1936 paper had no connection whatsoever with digital computers. It hinged,
instead, on issues of mathematical logic and foundations of mathematics. More
surprisingly, however, is the fact that by the end of WWII, with digital computers
already established in a number of research laboratories, Turing’s attention did
not focus on the Turing machine and the theory ultimately built upon it but
on theoretical issues of numerical analysis. Turing worked at that time in the
National Physical Laboratory and an account of his life and scientific endeavors
between 1946 and 1948 is (appropriately) given by James Wilkinson in his 1970’s
Turing Lecture [23]. Our point above is made clear by Wilkinson:

� Partially supported by GRF grant CityU 100810.
1 I say ‘among scientists’ because for most laymen it is his role in code breaking that
makes his fame.

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 1–13, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 F. Cucker

Turing’s international reputation rests mainly on his work on computable num-

bers but I like to recall that he was a considerable numerical analyst, and a

good part of his time from 1946 onwards was spent working in this field [...]

The goal of this paper is to briefly survey some of the influence of Turing’s
work in todays’ numerical analysis which, we believe, is as fundamental as it
is in theoretical computer science. A part of this influence is due to one of his
works [20] completed while at the NPL. This, once Turing’s post-war interests
are made clear, is to be expected. But we will also point out that his theory of
computability, through its resounding success in theoretical computer science,
eventually influenced numerical analysis as well.

2 Complexity and Accuracy

The following passage by (none less than) Gauss will serve us to start our dis-
cussion:

Since none of the numbers we take out from logarithmic or trigonometric tables
admit of absolute precision, but are all to a certain extent approximate only,
the results of all calculations performed by the aid of these numbers can only
be approximately true. [. . .] It may happen, that in special cases the effect of
the errors of the tables is so augmented that we may be oblidged to reject a
method, otherwise the best, and substitute another in its place.

Carl Friedrich Gauss, Theoria Motus (cited in [11] p. 258).

There are a number of points made in these sentences. The first and most obvious
is that real number computations are polluted by errors. These errors may arise
by the use of tables (as in Gauss’ quote), or by measurement limitations, or
by, nowadays, the use of floating-point numbers in digital computers. Leaving
the causes aside, the point made by Gauss is that errors accumulate during the
computation and the final error may be of such a magnitude to make irrelevant
the result of the computation.

The second point made by Gauss is more subtle. He remarks that in some
cases we may be forced to reject an algorithm where errors accumulate badly, but
which is otherwise the best, and adopt another algorithm with a better behavior
regarding errors. He did not spell out the meaning of being “the best” in this
context but I think we can safely infer that Gauss had complexity considerations
in mind: the best would mean that which requires the smallest amount of work.

The third point is only implicit. It follows from Gauss’ words that the process
of finding an algorithmic solution to a computational problem passes through a
two-step exercise. Firstly, one designs an algorithm which solves the problem. No
error (or finite precision) considerations are present at this time. For instance,
we think on solving linear systems of equations by Gaussian elimination, or by
using Cramer’s rule, or by substitution, . . . In all cases we think within a mental
framework where real numbers are available as they are the usual arithmetic
operations on them. It is within this framework that we can compare algorithms

The Legacy of Turing in Numerical Analysis 3

(and, in the example above, come to the conclusion that Gaussian elimination
is better, i.e. faster, than substitution). In a second stage, finite precision enters
the scene and one analyzes the error-accumulation behavior of the different algo-
rithms solving a problem. It is at this second stage that one may need to replace
the fastest algorithm by a slower one because of the error-magnifying properties
of the former.

I am not claiming here that every single numerical analyst follows this two-
stage exercise (though some may do it). But I do believe that this is a correct
picture of the way algorithms in numerical analysis find their way into common
practice. But let us return to Turing’s work at the NPL, and with it his legacy
within the first stage in Gauss’ scheme.

3 Accuracy

According to Wilkinson,

some time after my arrival, a system of 18 equations arrived in Mathematics

Division and after talking around it for some time we finally decided to aban-

don theorizing and to solve it. [. . .] we decided on Gaussian elimination with

complete pivoting. Turing was not particularly enthusiastic, partly because he

was not an experienced performer on a desk machine and partly because he

was convinced that it would be a failure.

Wilkinson then goes explaining how, instead, the computation was a total success
and that it was this success (against Turing’s initial apathy) that

set him thinking afresh on the problem of rounding errors in elimination pro-

cesses. About a year later he produced his famous paper [. . .]

The famous paper is [20] and it is fit that we devote some time to understand
its contents.

A finite-precision algorithm working with a machine precision εmach, 0 <
εmach < 1, replaces, during the computation, all numbers x by a number x̃
such that x̃ = x(1 − δ) with |δ| ≤ εmach. In a digital computer the number x̃ is
obtained by keeping in the representation of x a fixed number of bits (or digits)
in the mantissa. If a ∈ IRn is approximated by ã we may define the (normwise)
relative error of this approximation by taking

RelError(a) =
‖a− ã‖
‖a‖ .

Now assume we have a function ϕ : IRn → IRm and an algorithm A meant
to compute it. That is, A actually computes a function ϕA which depends on
εmach and which coincides with ϕ under infinite precision (εmach = 0). The central
question underlying Gauss’ quote can be rephrased as follows:

How big is RelError(ϕ(a))?

4 F. Cucker

Implicit in Turing’s paper is the realization that the answer to this question
relies on two different factors: on the one hand, the nature of the algorithm
A , and on the other hand, a magnification factor depending solely on a and
ϕ. A rigorous explanation of this statement can be given in terms of the so
called backward error analysis, vigorously pioneered by Wilkinson in the 1960s.
But, in this paper, we do not need to enter into these details. It will suffice for
our purposes to remark that we can define the magnification factor mentioned
above by taking the worst-case magnification in ϕ(a) of small errors in a. More
formally, we define

condϕ(a) = lim
δ→0

sup
RelError(a)≤δ

RelError(ϕ(a))

RelError(a)
.

In case A is a square matrix and ϕ(A) := A−1 one can prove that condϕ(A) =
‖A‖‖A−1‖. For linear equation solving, that is, for ϕ(A, b) := A−1b, we do not
have such an exact expression but one can prove that ‖A‖‖A−1‖ ≤ condϕ(A, b) ≤
2‖A‖‖A−1‖. It follows that the quantity

κ(A) := ‖A‖‖A−1‖

measures, maybe up to a small factor, the worst case magnification in A−1 or in
x = A−1b of small errors in the input A (resp. (A, b)). This quantity is known
as the condition number of A and you may correctly guess that the origin of this
name is in Turing’s 1948 paper.

Indeed, Section 8 of the paper carries the title “Ill-conditioned matrices and
equations” and starts with the following statement:

When we come to make estimates of errors in matrix processes we shall

find that the chief factor limiting the accuracy that can be obtained is ‘ill-

conditioning’ of the matrices involved

and continues

It is characteristic of ill-conditioned sets of equations that small percentage

errors in the coefficients given may lead to large percentage errors in the solu-

tion.

He then defined κ(A) “as a measure of the degree of ill-conditioning in a matrix”
and proceeded to derive error estimates for some algorithmic methods2.

Turing was not alone in his endeavour. Independently of him, John von Neu-
mann and Herman Goldstine were pursuing similar thoughts in [21]. In a se-
quel [22] to this paper, von Neumann and Goldstine introduced a theme which,

2 In our exposition above we were sloppy in specifying a norm on the space IRn×n of
matrices. The relations between cond(A) and κ(A) we described above hold true for
operator norms. In [20], Turing used instead the max-norm given by max |aij | and
the Frobenius norm

√∑
a2
ij . These differences are, nonetheless, inessential to the

argument.

The Legacy of Turing in Numerical Analysis 5

subsequently championed by Steve Smale (see [16]), would become central in the
foundations of numerical analysis: the probabilistic analysis of condition num-
bers. The motivation is clear. Error bounds (and, we will see it in the next
section, complexity bounds as well) depend on the condition condϕ(a) of the
input a. But we do not know this quantity and it has been observed that its
computation requires, essentially, to compute ϕ(a) (see [15]). A way out from
this vicious circle is to estimate the expectation of condϕ(a) (or, more com-
monly, of its logarithm) for random a. Goldstine and von Neumann did not go
that far. But Alan Edelman did, proving that for random n× n matrices (with
independent standard Gaussian entries) one has

E(log κ(A)) = logn+ C + o(1), as n→∞,

with C = 1.537 for real matrices and C = 0.982 for complex matrices [9].
This result produces upper bounds on the expected loss of precision for matrix
inversion and linear equation solving.

Even though desirable, it is not feasible to describe here the extensions, occur-
rences, and applications of condition numbers. We should nevertheless mention
that a condition number (indeed, a close relative of κ above) played a funda-
mental role in the recent advances [1,2,7] towards a solution of the 17th of the
problems posed by Steve Smale for the mathematicians of the 21st century [17].
A comprehensive exposition of the aspects of conditioning mentioned above can
be found in [5].

4 Complexity

After the overview on Turing’s contribution to the first stage in Gauss’ scheme,
we can start considering the same for the second stage. Here Turing’s role is
bigger and with more disparate origins. It is not controversial today to state
that his 1936 paper [19] is at the center of contemporary complexity theory. Two
features of the paper stand out. Firstly, the introduction of the Turing machine,
an abstract model of computation allowing for a formal definition of the cost of
a computation. Secondly, the use of reductions between computational problems
as a means to state that one problem requires no less resources (i.e., cost) than
another for its algorithmic solution. Turing introduced the latter with the goal
of classifying undecidable problems but his ideas eventually translated into a
classification of decidable problems (in terms of resource requirements). Thus,
for instance, the class P is that of all sets decidable within a cost polynomial in
the size of the input. Similarly, the class NP is that of the sets decidable within
a non-deterministic polynomial cost (I skip the formal definition, I assume the
reader is familiar with it). Problems that can be proved to be in NP \ P are
considered to be intrinsically difficult to solve and the best candidates in this
class are the so called NP-complete problems, defined in terms of a variation
on the reductions introduced by Turing. The first example of such a problem
was independently exhibited by Steve Cook [8] and Leonid Levin [14]. Shortly
after, Richard Karp proved NP-completeness for 23 problems in different areas of

6 F. Cucker

computation showing that the phenomenon was much more general than Cook
and Levin’s results suggested [12] and hundreds of problems have joined the list
since then. Paradoxically, however, no proof has been found that NP-complete
problems are not in P (or, in other words, that P �= NP). The evidence pointing
to this fact is overwhelming but its proof is elusive. The 3rd of the problems
proposed by Smale (mentioned above) is to determine whether P = NP.

These considerations need to be contextualized in what we could term as dis-
crete computations. Basically, these are computations whose intervening objects
can be precisely described with a finite word over a finite alphabet. Typical such
objects are graphs, trees, rational numbers, and, obviously, finite words over a
finite alphabet (as those forming this text). In opposition to these computations
are those of continuous mathematics, that is, those involving real or complex
numbers, commonly known as numerical algorithms. These can only be approx-
imated by finite words over a finite alphabet (and hence Gauss’ tribulations on
the accumulation of errors).

It is not surprising that Turing’s 1948 paper begins with a short section on
cost. Indeed, its Section 1, bearing the title “Measure of work in a process”, can
be quoted in its entirety:

It is convenient to have a measure of the amount of work involved in a comput-

ing process, even though it be a very crude one. We may count up the number

of times that various elementary operations are applied in the whole process

and then give them various weights. We might, for instance, count the number

of additions, subtractions, multiplications, divisions, recordings of numbers,

and extractions of figures from tables. In the case of computing with matrices

most of the work consists of multiplications and writing down numbers, and

we shall therefore only attempt to count the number of multiplications and

recordings. For this purpose, a reciprocation will count as a multiplication.

This is purely formal. A division will then count as two multiplications; this

seems a little too much, and there may be other anomalies, but on the whole

substantial justice should be done.

That is, Turing is disregarding a measure of cost in terms of elementary bit oper-
ations (as would correspond to a Turing machine) and is suggesting instead what
is usually called as algebraic cost, in which floating-point numbers are consid-
ered as undivisible units and arithmetic operations between them as elementary
machine operations.

This pondering was not meant to build a complexity theory as the one un-
derlying the P vs NP problem. It barely aimed to provide a framework within
which an idea of cost for numerical algorithms can be agreed on and algorithms
can therefore being compared w.r.t. cost as implicit in Gauss’ quotation. The
definition of the class P did not arrive until the 60s (see [10]) and the structural
approach to complexity until the early 70s (with the papers of Cook, Levin, and
Karp), and all this for discrete computations.

For numerical computations, it is not until the late 80s that a paper by Lenore
Blum, Michael Shub, and Steve Smale [4] would put together the two streams
of thought initiated by Turing we mentioned above. Blum, Shub and Smale

The Legacy of Turing in Numerical Analysis 7

define an abstract model of computation, which they call real Turing machine
(but has since been refered to as BSS-machine), and associate to it a notion of
cost which essentially coincides with that of Section 1 of [20]. Furthermore, they
extended the notion of nondeterminism, defined the class NPIR of sets decidable
in nondeterministic polynomial time and exhibited an NPIR-complete problem
(a task for which, Turing’s idea of reduction was again of the essence). We
will close this article by giving some details of this complexity theory over the
reals.

We denote by IRn the n-fold cartesian product of IR and by IR∞ the disjoint
union

⊔
n≥1 IR

n. This is the space where inputs are taken from in numerical
computations and, in fact, BSS-machines compute functions ϕ : IR∞ → IR∞.
In case a machine M computes a function ϕM : IR∞ → {0, 1} we say that M
decides the set S := {a ∈ IR∞ | ϕ(a) = 1}. For a ∈ IR∞ we write |a| = n when
a ∈ IRn and we say that n is the size of a. The class PIR is then defined as the
class of sets S for which there is a machine M deciding S and such that, for every
a ∈ IR∞, the cost costM (a) of the computation of M with input a is polynomial
in |a|. That is,

PIR := {S ⊆ IR∞ | ∃M ∀a (ϕM (a) = 1 ⇐⇒ a ∈ S) & costM (a) = |a|O(1)}.

We can similarly define the class NPIR. A set S is in NPIR if and only if there
exists B ⊆ IR∞ × IR∞, B ∈ PIR, such that, for all a ∈ IR∞,

a ∈ S ⇐⇒ ∃y (a, y) ∈ B. (1)

The point y ∈ IR∞ is said the be a witness for the membership of a to S. Clearly,
one can suppose that |y| = |a|O(1) since otherwise M cannot even read y.

An example of set in NPIR is the set 4FEAS of polynomials of degree 4 in
several variables which possess a real zero. In this case, the input a corresponds
to a polynomial system f in n variables and the witness y to a point ξ ∈ IRn.
The computation performed by M amounts to evaluating f(ξ) and returning
1 if and only if this evaluation yields zero. The size of f (which in this case
the number of coefficients of f) is Θ(n4) and the evaluation can be done with
cost polynomial in this size. More importantly, Blum, Shub, and Smale proved
that 4FEAS is NPIR-complete pointing towards a fundamental difficulty in the
problem of deciding whether a polynomial (or a polynomial system) has a real
zero. This is one of the main results in [4].

Unlike the situation in the context of discrete computations, there was no
avalanche of NPIR-complete problems as a sequel of the publication of [4]. An
unarguably reason is a smaller pool of problems (reasonable candidates will have
to be problems dealing with polynomial systems and sets defined by them). A
deeper reason, which explains why, nonetheless, problems in this pool had not
been classified as complete in any complexity class over the reals is the fact that
the catalog of complexity classes over the reals was not broad enough. This was
brought to the light in [6].

8 F. Cucker

To describe the ideas in [6] it will be convenient to return to the definition of
NPIR above. An immediate extension of this definition is the following.

Definition 1. Let C be a complexity class of decision problems. A set S is in
∃C if and only if there exists B ⊆ IR∞× IR∞, B ∈ C, such that, for all a ∈ IR∞,

a ∈ S ⇐⇒ ∃y (a, y) ∈ B.

A set S is in ∀C if and only if there exists B ⊆ IR∞ × IR∞, B ∈ C, such that,
for all a ∈ IR∞,

a ∈ S ⇐⇒ ∀y (a, y) ∈ B.

The class NPIR is therefore ∃PIR and we will also denote it simply by ∃. Also, the
class coNPIR is defined to be ∀PIR and we will denote it by ∀.

Definition 1 allows to alternate the use of the quantifiers ∃ and ∀ to obtain
classes such as ∃∀∃, which is usually denoted by Σ3

IR. The union of all the com-
plexity classes obtained this way, starting from PIR, is the polynomial hierarchy
over IR. Complexity classes in this hierarchy are natural counterparts of the
classical (i.e., discrete) polynomial hierarchy.

The finding in [6] is that the classes in the polynomial hierarchy over IR are
not sufficient to accommodate many of the problems naturally arising when
considering polynomial systems and the sets they define. We next describe some
of these problems.

We first recall that an algebraic circuit over IR is an acyclic directed graph
where each node has indegree 0, 1 or 2. Nodes with indegree 0 are either labeled as
input nodes or with elements of IR (we shall call them constant nodes). Nodes with
indegree 2 are labeled with the binary operators of IR, i.e. one of {+,×,−, /}.
They are called arithmetic nodes. Nodes with indegree 1 are either sign nodes
or output nodes. All the output nodes have outdegree 0. Otherwise, there is no
upper bound for the outdegree of the other kinds of nodes. Occasionally, the
nodes of an algebraic circuit will be called gates.

To a circuit C with n input gates and m output gates one associates a function
fC : IRn → IRm (see [6] for details). This function may not be total since divisions
by zero may occur (in which case, by convention, fC is not defined on its input).

We say that an algebraic circuit is a decision circuit if it has only one output
gate whose parent is a sign gate (and hence fC : IRn → {0, 1}). The set decided
by the circuit is

SC = {a ∈ IRn | fC (a) = 1}.
Subsets of IRn decidable by algebraic circuits are known as semialgebraic sets.
They are defined as those sets which can be written as a Boolean combination
of solution sets of polynomial inequalities {a ∈ IRn | f(a) ≥ 0}.

Semialgebraic sets will be inputs to our problems. They will be given either by
a Boolean combination of polynomial equalities and inequalities or by a decision
circuit. If not otherwise specified, we mean the first variant. In this case, poly-
nomials are encoded with the so called dense encoding, i.e., they are represented
by the complete list of their coefficients (including zero coefficients, as in 4FEAS
above).

The Legacy of Turing in Numerical Analysis 9

Partial functions f : IRn → IRm computable by algebraic circuits are known
as piecewise rational. These are the functions f for which there exists a semial-
gebraic partition IRn = S0 ∪ S1 ∪ . . . ∪ Sk and rational functions gi : Si → IRm,
i = 1, . . . , k such that gi is well-defined on Si and f|Si

= gi. Note that f is
undefined on S0. We will also consider piecewise rational functions as inputs to
some problems. They will be encoded by algebraic circuits.

We next define the following problems:

FEASIR (Polynomial feasibility) Given a polynomial f ∈ IR[X1, . . . , Xn], decide
whether there exists x ∈ IRn such that f(x) = 0.

DimIR(d) (Semialgebraic dimension) Given a semialgebraic set S and d ∈ IN, decide
whether dimS ≥ d.

EAdhIR (Euclidean Adherence) Given a semialgebraic set S and a point x, decide
whether x belongs to the Euclidean closure S of S.

EDenseIR (Euclidean Denseness) Given a decision circuit C with n input gates,
decide whether SC = IRn.

ERDIR (Euclidean Relative Denseness) Given semialgebraic sets S and V , decide
whether S is included in V .

LERDIR (Linearly restricted Euclidean Relative Denseness) Given a semialgebraic
set V ⊆ IRn and points a0, a1, . . . , ak ∈ IRn, decide whether a0 + 〈a1, . . . , ak〉 is
included in V .

ZAdhIR (Zariski Adherence) Given a semialgebraic set S and a point x, decide

whether x belongs to the Zariski closure S
Z

of S.
ZDenseIR (Zariski Denseness) Given a decision circuit C with n input gates, decide

whether SC
Z
= IRn.

UnboundedIR (Unboundedness) Given a semialgebraic set S, is it unbounded?
LocDimIR (Local Dimension) Given a semialgebraic set S ⊆ IRn, a point x ∈ S, and

d ∈ IN, is dimx S ≥ d?
IsolatedIR (Isolated) Given a semialgebraic set S ⊆ IRn and a point x ∈ IRn, decide

whether x is an isolated point of S.
ExistIsoIR (Existence of isolated points) Given a semialgebraic set S ⊆ IRn, decide

whether there exist a point x isolated in S.
BasicClosedIR (Closedness for basic semialgebraic sets) Given a basic semialge-

braic set S, is it closed?
BasicCompactIR (Compactness for basic semialgebraic sets) Given a basic semial-

gebraic set S, is it compact?
SOCSIR(k) (Smallest Order Coefficient Sign, k variables) Given a division-free

straight-line program Γ in k input variables X1, . . . , Xk, decide whether the
smallest-order coefficient (w.r.t. the ordering X1 � X2 � . . . � Xk) of fΓ (the
polynomial in X computed by Γ) is positive.

LocSuppIR (Local Support) Given a circuit C with n input nodes and a linear
equation �(x) = 0, decide whether there exists x0 ∈ IRn and δ > 0 such that
SC ∩ {� < 0} ∩B(x0, δ) = ∅ and dim(SC ∩ {� = 0} ∩B(x0, δ)) = n− 1.

TotalIR (Totalness) Given a circuit C , decide whether fC is total.
InjIR (Injectiveness) Given a circuit C , decide whether fC is injective.

10 F. Cucker

SurjIR (Surjectiveness) Given a circuit C , decide whether fC is surjective.
ImageZDenseIR (Image Zariski Dense) Given a circuit C , decide whether the image

of fC is Zariski dense.
ImageEDenseIR (Image Euclidean Dense) Given a circuit C , decide whether the

image of fC is Euclidean dense.
DomainZDenseIR (Domain Zariski Dense) Given a circuit C , decide whether the

domain of fC is Zariski dense.
DomainEDenseIR (Domain Euclidean Dense) Given a circuit C , decide whether

the domain of fC is Euclidean dense.
ContIR (Continuity) Given a circuit C , decide whether fC is continuous.
Cont

DF
IR (Continuity for Division-Free Circuits) Given a division-free circuit C , de-

cide whether fC is continuous.
ContPoint

DF
IR (Continuity at a Point for Division-Free Circuits) Given a division-

free circuit C with n input gates and x ∈ IRn, decide whether fC is continuous at
x.

LipschitzIR(k) (Lipschitz-k) Given a circuit C , and k > 0, decide whether fC is
Lipschitz-k, i.e., whether for all x, y ∈ IRn, ‖f(x)− f(y)‖ ≤ k‖x− y‖.

LipschitzIR (Lipschitz) Given a circuit C , decide whether fC is Lipschitz, i.e.,
whether there exists k > 0 such that fC is Lipschitz-k.

To classify the complexity of these problems some new complexity classes, with
no counterparts in the discrete context, are necessary.

Definition 2. Let C be a complexity class of decision problems. A set A belongs
to HC if there exists B ⊆ IR× IR∞, B ∈ C, such that, for all a ∈ IR∞,

a ∈ A ⇐⇒ ∃μ > 0 ∀ε ∈ (0, μ) (ε, a) ∈ B.

A set A belongs to ∀∗C if there exist a polynomial p and a set B ⊆ IR∞ × IR∞,
B ∈ C, such that, for all a ∈ IR∞,

a ∈ A ⇐⇒ dim{z ∈ IRp(|a|) | (z, a) �∈ B} < p(|a|).

If C is a complexity class we denote by Cc the class of its complements, i.e., the
class of all sets A such that Ac ∈ C. We define ∃∗C = (∀∗Cc)c.

We note that A belongs to ∃∗C if and only if there exist a polynomial p and
a set B ⊆ IR∞ × IR∞, B ∈ C, such that, for all a ∈ IR∞,

a ∈ A ⇐⇒ dim{z ∈ IRp(|a|) | (z, a) ∈ B} = p(|a|).

The quantifier H was introduced in [6]. It captures the notion of “for all suffi-
ciently small numbers.” The quantifiers ∀∗ and ∃∗ capture the notions of “for
almost all points” and “for sufficiently many points” in a specific sense. They
were first introduced by Koiran in [13].

Using these operators we may define many new complexity classes. Notations
such as ∃∗∀, H∀, or ∃∗H denote some of the newly created complexity classes in
an obvious manner. To avoid a cumbersome notation, we also write H instead of
HPIR.

The Legacy of Turing in Numerical Analysis 11

It is beyond the goal of this article to describe in detail all of the structural
properties of the classes defined above. We just mention that H is closed by
complements and that, for any class C as above, we have the inclusion

∃∗C ⊆ ∃C.
The following diagram gives a landscape of complexity classes in the lower levels
of the polynomial hierarchy over IR. All upward lines mean inclusion. Note that
not all possible classes below Σ3

IR or Π3
IR are in the diagram. We restricted atten-

tion to those standing out (e.g., because of having natural complete problems).
Boxes enclosing groups of complexity classes do not have a very formal mean-

ing. They are rather meant to convey the informal idea that some classes are
“close enough” to be clustered together.

PIR

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

......

..............
..............

..............
..............

..............
..............

..............
.........

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.....

............
............
............
............
............
............
............
............
...

..............
..............

..............
..............

..............
..............

..............
.........

...........
...........
...........
...........
...........
...........
...........
...........
.........

..............
..............

..............
..............

..............
..............

..............
..

...........
...........

...........
...........

...........
...........

...........
...........

.........

.............
.............

.............
.............

.............
.............

.............
.............

......

.............
.............
.............
.............
.............
.............
.............
.............
...

..
..............

..............
..............

..............
..............

..............
.........

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

..

..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
.

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

.

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

....

..............
..............

..............
..............

..............
..............

..............
.........

.......

.......

.......

.......

.......

.......

.......

.......

.......

.

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
...

.............
.............
.............
.............
.............
.............
.............
.............
......

...

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

..

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.....

...........
...........

...........
...........

...........
...........

...........
...........

.........

..............
..............

..............
..............

..............
..............

..............
.........

..
.........................

...................
................

..............
............
............
..........
...........
.........
.........
........
........
.........
........
........
.......
........
........
........
..........
.........
..

..............

∃∗

H∃∗ ∃∗H

∀∗

∀∗H H∀∗

∃ ∀

H∃ ∃H ∀H H∀

∀∗∃∗ ∃∗∀∗

∀∗∃ ∀ ∃∗ ∃ ∀∗ ∃∗∀

∀ ∃ ∃ ∀

Σ3
IR Π3

IR

H

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

......

We finally summarize the complexity sorting of the list of problems given
above in the following table. The meaning of each row should be clear.

12 F. Cucker

Problem Complete Lower Upper

in bound bound

FEASIR ∃
DimIR(d) ∃

SOCSIR(k) Hk

ZDenseIR ∃∗
DomainZDenseIR ∃∗

EDenseIR ∀∗
DomainEDenseIR ∀∗
ImageZDenseIR ∃

TotalIR ∀
InjIR ∀

LipschitzIR(k) ∀
ZAdhIR ∃ ?

EAdhIR H∃
UnboundedIR H∃
LocDimIR H∃
IsolatedIR H∀
ContIR ∀ H3∀
Cont

DF
IR ∀ H2∀

ContPoint
DF
IR H∀

LipschitzIR ∀ H∀
LocSuppIR ∃∗H
ExistIsoIR H∀ ∃∀

BasicClosedIR H∀
BasicCompactIR H∀

LERDIR ∀∗∃
ImageEDenseIR ∀∗∃

ERDIR ∀∗∃ ∀∃
SurjIR ∀∃

An exposition of what was the state-of-the-art in complexity theory over the
reals at the end of the 90s can be found in [3].

References

1. Beltrán, C., Pardo, L.M.: Smale’s 17th problem: average polynomial time to com-
pute affine and projective solutions. J. Amer. Math. Soc. 22(2), 363–385 (2009)

2. Beltrán, C., Pardo, L.M.: Fast linear homotopy to find approximate zeros of poly-
nomial systems. Found. Comput. Math. 11(1), 95–129 (2011)

3. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation.
Springer, Heidelberg (1998)

4. Blum, L., Shub, M., Smale, S.: On a theory of computation and complexity over
the real numbers: NP-completeness, recursive functions and universal machines.
Bulletin of the Amer. Math. Soc. 21, 1–46 (1989)

5. Bürgisser, P., Cucker, F.: Condition. Forthcoming book

The Legacy of Turing in Numerical Analysis 13

6. Bürgisser, P., Cucker, F.: Exotic quantifiers, complexity classes, and complete prob-
lems. Found. Comput. Math. 9, 135–170 (2009)

7. Bürgisser, P., Cucker, F.: On a problem posed by Steve Smale. In: To Appear at
Annals of Mathematics (2011)

8. Cook, S.: The complexity of theorem proving procedures. In: 3rd Annual ACM
Symp. on the Theory of Computing, pp. 151–158 (1971)

9. Edelman, A.: Eigenvalues and condition numbers of random matrices. SIAM J. of
Matrix Anal. and Applic. 9, 543–556 (1988)

10. Edmonds, J.: Paths, trees, and flowers. Canadian J. of Mathematics 17, 449–467
(1965)

11. Goldstine, H.H.: A History of Numerical Analysis from the 16th through the 19th
Century. Springer, Heidelberg (1977)

12. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R., Thatcher,
J. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press (1972)

13. Koiran, P.: The real dimension problem is NPIR-complete. J. of Complexity 15,
227–238 (1999)

14. Levin, L.: Universal sequential search problems. Probl. Pered. Inform., IX 3, 265–
266 (1973) (in Russian); (English translation in Problems of Information Trans.
9,3; corrected translation in [18])

15. Renegar, J.: Is it possible to know a problem instance is ill-posed? J. of Complex-
ity 10, 1–56 (1994)

16. Smale, S.: Complexity theory and numerical analysis. In: Iserles, A. (ed.) Acta
Numerica, pp. 523–551. Cambridge University Press (1997)

17. Smale, S.: Mathematical problems for the next century. In: Arnold, V., Atiyah, M.,
Lax, P., Mazur, B. (eds.) Mathematics: Frontiers and Perspectives, pp. 271–294.
AMS (2000)

18. Trakhtenbrot, B.A.: A survey of russian approaches to perebor (brute-force search)
algorithms. Annals of the History of Computing 6, 384–400 (1984)

19. Turing, A.M.: On computable numbers, with an application to the Entschei-
dungsproblem. Proc. London Math. Soc., Ser. 2 42, 230–265 (1936)

20. Turing, A.M.: Rounding-off errors in matrix processes. Quart. J. Mech. Appl.
Math. 1, 287–308 (1948)

21. von Neumann, J., Goldstine, H.H.: Numerical inverting matrices of high order.
Bulletin of the Amer. Math. Soc. 53, 1021–1099 (1947)

22. von Neumann, J., Goldstine, H.H.: Numerical inverting matrices of high order, II.
Proceedings of the Amer. Math. Soc. 2, 188–202 (1951)

23. Wilkinson, J.: Some comments from a numerical analyst. Journal ACM 18, 137–147
(1971)

Turing Machines for Dummies

Why Representations Do Matter

Peter van Emde Boas

ILLC, FNWI, Universiteit van Amsterdam, P.O. Box 94242, 1090 GE Amsterdam
Bronstee.com Software & Services B.V., Heemstede

Dept. Comp. Sci. University of Petroleum, Chang Ping, Beijing, P.R. China
peter@bronstee.com

Abstract. Various methods exists in the litearture for denoting the con-
figuration of a Turing Machine. A key difference is whether the head
position is indicated by some integer (mathematical representation) or is
specified by writing the machine state next to the scanned tape symbol
(intrinsic representation).

From a mathematical perspective this will make no difference. How-
ever, since Turing Machines are primarily used for proving undecidabi-
lity and/or hardness results these representations do matter. Based on
a number of applications we show that the intrinsic representation should
be preferred.

1 The Turing Machine Model

Given the nature of the meeting I expect that the dummies mentioned in my
title will not be present in the audience. Still I believe that it is useful to start
with a description of the Turing Machine model as we are supposed to know it.

The simplest version of the Turing machine is defined in mathematical terms
by a tuple M = 〈K,Σ, P, q0, qf , b,Δ〉. The machine has only a single one-
dimensional tape, with tape alphabet Σ, and a set of internal states K. The
program P of the finite control consists of a set of quintuples 〈q, s, q′, s′,m〉 ∈
K × Σ × K × Σ × Δ. Here the set Δ = {L, 0, R} denotes the set of possible
head moves : Left, stay put or Right. The meaning of this quintuple is: if in
state q the head is scanning symbol s then print symbol s′, perform move m and
proceed to state q′. The states q0 and qf are two special elements in K denoting
the initial and the final state respectively. The symbol b is a special tape symbol
called blank which represents the contents of a tape-cell which never has been
scanned by the head.

In this single tape model there is no special input or output tape. The input
is written on the unique tape in the initial configuration with the unique head
scanning the leftmost input symbol. When started the computation will perform
applicable instructions on the configuration up to the point in time where some
termination condition is satisfied (if such a configuration arises at all). Vari-
ous termination conditions are used in the literature. Absence of an applicable
instruction is a possible termination condition, but one can also use specially

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 14–30, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Turing Machines for Dummies 15

designed halting states to which one can ascribe a quality of being accepting or
rejection. Another possibility is to modify the instruction format allowing the
state from the machine to disappear, leaving a configuration consisting of tape
symbols only.

If one wants the single tape model to produce output one obtains such output
by an ad-hoc convention from the final configuration (for example, the output
consists of all non-blank tape symbols written to the left of the head in the final
configuration).

Note that if we denote configurations of the single tape machine in the format
$Σ∗KΣ∗$, with the state symbol written in front of the currently scanned tape
symbol, the transitions between two successive configurations are described by a
very simple context sensitive grammar. In this grammar one includes for example
for the instruction 〈q, s, q′, s′, R〉 the production rules (qst, s′q′t) for every t ∈ Σ,
together with the rule (qs$, s′q′b$) for the blank symbol b. Similar rules encode
the behaviour of left-moving instructions or instructions where the head doesn’t
move.

Aside from this basic model there are various more extended models contain-
ing multiple tapes, multiple heads on a single tape, semi-infinite tapes, multi
dimensional tapes, or extensions of the instruction repertoire by allowing heads
on the same tape to jump to each other’s position in constant time. In the multi
tape version there can be special tapes reserved for the input or output, subject
to special restrictions like right moving heads only, no printing on input and no
rewriting of any previously printed symbol on the output.

Fact is that all these models are equivalent from the perspective of Theoreti-
cal Computer Science; they all satisfy the Invariance Thesis stating that they
simulate each other with polynomial time and constant factor space overheads.
For a more detailed discussion of the issues involved I refer to my chapter in the
1990 Handbook of Theoretical Computer Science [24].

Turing and His Model

Given the large number of variations of the Turing Machine model, one might
consider to go back to the master himself, and accept the definition given in his
1936 paper [21] to be the official one. This approach, however, is not going to
work.

Turing’s original paper reads as the work of an engineer or programmer avant
la lettre, rather than that of a mathematician or logician. He starts with an
intuitive description and justification (which is expanded upon in a later section
of the paper). The model he describes is more general than the standard models
in the literature since he allows a finite sequence of atomic instructions rather
than a single atomic step to be the action provoked by a state-tape symbol
observation. The reader should observe here that for Turing a configuration
means such a state-tape symbol pair; what we call a configuration (also called
instantaneous description) is called a full configuration by Turing. In the paper
Turing proceeds by outlining a macro-language allowing for iterated instructions

16 P. van Emde Boas

in order to perform the required sweeps, copying actions, and searches for symbol
occurrences which are found in all explicit programs for this device.

The model as presented is actually a linearisation of a two track single tape
model where one track is used for the real data (digits 0 and 1) and the other
track is used for auxiliary symbols called markers.

With all his flexibility there is an extension generally accepted today which
is explicitly rejected: the use of nondeterminism. In the beginning of Section 2
Turing considers ambiguous configurations where the machine has a choice but
such a choice should be made by an external operator. As argued elsewhere [17]
nondeterminism became an accepted notion only in the 1950-ies presumably in
order to obtain the desired characterisations in Automata Theory.

The more restricted model which allows atomic actions only is introduced for
the purpose of constructing the Universal Turing Machine. This construction
then opens the way for the famous results on the unsolvability of the Halting
problem and the undecidability of the Hilbert Calculus. These sections read
almost like a research plan outline, the details of which can be found in later
textbooks like Kleene [9].

Using the Model

Why is the Turing Machine model so popular in Computer Science? It is not
because of its close resemblance to real computers, since the Random Access
Machine provides us with an idealised but more realistic model. It is also not
popular because it is easy to write programs for Turing Machines. If you have
ever taught a basic Theory class you will know that programming exercises on
a Turing machine are very easy to state, but turn out to be rather cumbersome
to solve, and boring to grade.

Instead I believe that the main reasons are that the model is very easy to
understand and yet it is a model with universal computational power. Consider-
ing its conceptual simplicity it is hard to believe at first sight that the model is
universal. But as it turns out it is not to hard to prove that (after having made
the right choice of representation) one can simulate real computations as given
by Kleene schemes of recursive functions, as well as alternative models of com-
putation. The hardest part of proving the equivalence of the standard universal
computational models after all is creating the coding mechanisms in Arithmetic
(using Gödel numberings) in order to show that recursive function schemes can
simulate symbol manipulating devices like Turing Machines.

There are a number of deep results on solving actual problems on Turing
Machines. My favourite examples are the Hennie-Stearns oblivious simulation of
multi tape machines on two tapes [6], Slisenko’s algorithms for recognizing palin-
dromes [16] and related string properties in real-time, and the the oblivious real-
time minimal space simulation of a finite collection of counters by Vitányi [27].
However the dominant use of the Turing Machine model in Theory are negative
results: Undecidability and/or Hardness results. Due to the undecidability of the
Halting problem we can derive that every formal system capable of coding Tur-
ing machine computations in such a way that termination of these computations

Turing Machines for Dummies 17

becomes expressible within the system will inherit this curse of undecidability.
Similarly any formalism which can express the fact that some Turing Machine
computation terminates within a given number of steps will have a satisfiability
or validity problem which can’t be solved in much less steps, provided this ex-
pression is sufficient succinct. It is in the context of the construction of this type
of reductions that the advantage of the combinatorial simplicity of the Turing
Machine model (particularly in its most simple form: the single tape version)
become prominent.

Reductions as sketched above are a main topic in Theoretical Computer Sci-
ence. They are used as a tool for measuring the complexity of various problems.
A problem A is reduced to a problem B if there exists some explicit, efficient and
sufficiently succinct procedure for transforming instances of problem A into one
(or several) instances of problem B such that solving the obtained B-instances
will provide an effective answer to the original A-instance. The standard use of
such a reduction is to show that problem B is difficult, by reducing some prob-
lem A to B where it is already known that A is difficult. But how do we know
already that problem A is hard? This knowledge arises from the fact that we
(or someone else) has previously reduced some other hard problem to A. This
chain of reductions must originate in some problem generally accepted to be
hard, and that role is played by termination problems on Turing Machines. It
is therefore useful to single out these reductions which start with problems on
Turing Machines; I will call them Master Reductions.

Representing Machine Configurations

In this presentation I will illustrate that, in order to obtain really efficient Master
Reductions, one more ingredient is required: the choice of the right representation
of Machine configurations.

A Turing Machine configuration is fully described by its three components:
the state of the machine, the complete contents of the machine tapes, and the
positions of the reading heads on the various tapes. Hence for a Mathemati-
cian it is evident how to represent this configuration: a tuple containing these
three components is all we need, so the representation will become an object like
< q, x1x2 . . . xk, i > with q denoting the state, x1x2 . . . xk denoting the tape con-
tents and i denoting the head position. However, we have already encountered
the more graphical representation which has become standard in our community.
It is a representation where the state is inserted in the string of tape symbols, pre-
ceding the scanned symbol, or alternatively, printed above or below the scanned
symbol (but this will make the printing and/or typesetting much harder). In our
example configuration the representation will become x1x2 . . . qxi . . . xk ; more-
over in order to make explicit where the used segment of the tape begins and
ends this representation frequently is extended using endmarkers, resulting in a
string like $x1x2 . . . qxi . . . xk$.

In the sequel I will call representations of the first kind Mathematical
Representations , whereas those of the second kind will be called Intrinsic
Representations .

18 P. van Emde Boas

Given a sequence of successive configurations which occur during some compu-
tation, one can represent this section of the computation simply by the sequence
of their encodings. However, a much clearer representation is obtained by writing
these configurations below each other thus giving rise to the so called time-space
diagram representation of the computation. Both representations can be used
for this purpose.

If the mathematical representation is used it is evident what a proper allign-
ment of these configurations should be: the content of some tape square may
change, but the square itself maintains its identity. So each column in the di-
agram corresponds to a single fixed tape cell. To the left of the diagram one
writes the state symbol and an index of the position of the tape head, which
index also indicates the unique region in the diagram where during the transition
connecting the two configurations changes may occur.

If we use the intrinsic representation we face the problem that the state sym-
bol requires an additional position which moreover wanders through the con-
figuration during the computation. One can solve this problem by introducing
extra empty columns in the time-space diagram used only for storing the state
symbol if the head arrives at that position. The easiest solution is to combine
the state symbol and the scanned tape symbol into a pair which becomes a
new symbol in an extended alphabet. Now the tape cells remain within their
column in the diagram and yet the effect of the transition becomes entirely
local.

There exist also versions of the time-space diagram where the state sym-
bol/head position remains in a fixed column, while the tape symbols are moving
around. This diagram illustrates a version of the machine where the head re-
mains fixed but the tape moves; something which is not very realistic given the
fact that the tape is supposed to be infinite.

In the literature one finds also some intermediate representation which I will
call the Semi-Intrinsic Representation. Here the state symbol is written before
the sequence of tape symbols, but the scanned tape cell is indicated by some
marker (an arrow preceding the scanned symbol, or the scanned symbol is un-
derlined).

I believe that the first time the advantage of the use of an intrinsic represen-
tation was explicitly mentioned in the literature is in a simple lemma (2.14) on
page 38 in the thesis of Larry Stockmeyer [19]. Stockmeyer introduces for his
standard model (the nondeterministic multi tape version with input and output
tape) a version of the mathematical representation (page 20). Later he introduces
the single tape version as a ”technical useful model”, and for encoding configu-
rations of the latter model he uses a version of the intrinsic representation (page
34-35).

The lemma states that there exists some compatibility relation between
triplets of the symbols used in the time-space diagram such that one row repre-
sents a proper successor configuration of the row above it, if and only if all triplet
pairs formed by three successive symbols in the same position in the two rows

Turing Machines for Dummies 19

belong to this compatibility relation1. So consider three successive symbols in
some row and the three symbols below it; if it is always the case that these triplets
are compatible then the entire diagram describes a segment of the computation
of our machine. Moreover, this compatibility relation is completely determined
by the program of our machine. Note that this locality condition does not hold for
the semi-intrinsic representation, since the state symbol information is located
at a distance.

I now can state the thesis I want to discuss in this presentation: For the
construction of Master Reductions the Intrinsic Representation is by far more
useful than the Mathematical Representation. Stated otherwise: if you are looking
for a Master reduction, use the intrinsic representation and life will be easy.

In the sequel of this paper we will illustrate the advantage of the intrinsic
representation in relation to the following topics. We first reconsider the relation
between machine computations and grammar derivations on which the funda-
mental characterisation of the Chomsky Hierarchy in basic Automata theory is
based. Next we consider the two most common versions of a master reduction
for the class NP: the Cook-Levin reduction to Satisfiability and the reduction
to tiling problems. We discuss how Stockmeyer used his locality lemma in or-
der to prove hardness results in the theory of (Extended) Regular Expressions.
The final part of the paper illustrates the importance of the intrinsic configura-
tion for proving that various models for Parallel Computation satisfy the Parallel
Computation Thesis which states that such models recognize in polynomial time
exactly what sequential models recognize in polynomial space. I hope that these
examples which seem harder if not impossible to perform using a mathematical
representation will convince the audience of the validity of my thesis.

2 The Chomsky Hierarchy and the Corresponding
Automata

The core topic of an undergraduate course on Automata Theory is to provide a
proof of the machine based characterisations of the four levels of the Chomsky
Hierarchy: Regular Grammars vs. Finite Automata, Context Free Grammars
vs. Push Down Machines, Context Sensitive Grammars vs. Linear Bounded Au-
tomata and finally Unrestricted Grammars vs. Turing Machines.

Proving these characterisations (once the required mathematical concepts
have been introduced) requires a proof in two directions: one must show that
the machine can simulate the grammar, and conversely that the machine com-
putations can be simulated by grammar rules.

One may look therefore into the influence of the choice of representation of
machine configurations on the proofs of these characterisations. It is evident
that the intrinsic representation for this purpose is the right tool: individual
transitions are fully described by context sensitive rules involving no more than

1 Note that Stockmeyer speaks in this lemma about a compatibility function, but in
his language functions are partial and multivalued so he intends this to be a relation.

20 P. van Emde Boas

three symbols on the left hand side (two symbols if the state symbol is paired
with the scanned tape symbol - the second symbol is required for moving the
head).

Given this insight the characterization of the type-0 languages becomes al-
most trivial. Turing machines are symbol manipulators, so it is not difficult -
given some grammar - to write a Turing Machine program which starts out writ-
ing the start symbol, performing substitutions allowed by the grammar until the
resulting string appears. The Turing machine can erase (or insert) symbols by
shifting parts of the tape contents one square to the left (right). Conversely,
given the fact that the machine configurations are derived by means of context
sensitive rules, it is easy to construct a grammar which first generates an initial
configuration and subsequently simulates the Turing Machine computation to-
wards its accepting state. Since in this final configuration a substantial number
of auxiliary symbols still may remain written on the tape, a final cleanup sweep
where the undesired symbols are erased is required.

A similar proof will work for the context sensitive grammars vs. the linear
bounded automata. However the prohibition of erasing rules requires a careful
treatment of the boundary markers of the tape segment containing the input.
These boundary markers are required since the machine must be capable of
feeling the end of the tape, while on the other hand the machine is not allowed
to leave the input string. This problem can be solved by pairing the end marker
with the first(last) symbol and rewriting these marked symbols at the end of the
production.

A comparable verbatim simulation between the machine configurations and
the intermediate phrases of the derivation process is not possible for the two
remaining cases of the context free and regular languages. The main reason is
that in the grammar based world during the generation process only the initial
part of the generated word is present, whereas the complete word exists already
at the start of the machine computation.

One can however preserve the flavour of such a simulation. The problem is
resolved by removing from the machine configuration the part of the input word
which still has te be read in the future. The configuration consists of the part of
the input already read (the part of the output already generated) followed by a
machine state (nonterminal symbol). For the context free case this machine state
is paired with the topmost stack symbol and the remaining stack symbols are
concatenated in reverse order (paired up with the intermediate machine state
attained when that stack symbol is eventually removed).

As is well known the choice freedom on the grammar side results in the ma-
chines becoming nondeterministic. This nondeterminism subsequently can be
eliminated in the regular grammar case and for the unrestricted Turing Ma-
chines. For the context free grammar case nondeterminism has been shown to
be required, whereas its necessity for the linear bounded machines is known as
the famous LBA problem which still is unsolved.

We conclude that the intrinsic representation is used in Automata Theory as
we know it today. This is not a formal proof that we can’t build a version of

Turing Machines for Dummies 21

Automata Theory based on the mathematical representation, but let me just
observe that I have never encountered such a treatment in the literature.

3 Master Reductions for NP

The two master reductions which I will investigate in this section are the Cook-
Levin reduction to a version of the Satisfiability problem for Propositional Logic
and the reduction based on Tilings.

Propositional logic is a language which is extremely flexible if you want to
state properties of finite combinatorial structures, provided you are willing to
introduce a sufficiently large collection of propositional variables. In the Cook-
Levin reduction these variables encode the complete time-space diagram of an
accepting Turing machine computation on the given input. The reduction is
performed in such a way that it establishes a one-one correspondence between
accepting computations and satisfying assignments of these propositional vari-
ables.

Let some language L in NP be accepted by some nondeterministic Turing
Machine M in polynomial time. That means that for some input string x it holds
that x belongs to L if and only if we can find a time-space diagram of size T by T
which describes an accepting computation according to M where T is moreover
bounded by P (|x|) for some fixed polynomial P . The time-space diagram is
encoded using propositional variables p[i, j, k] expressing that at position < i, j >
in the diagram symbol σk is written.

The Cook-Levin formula is the conjunction of a collection of sub-formula’s
which express the required properties of the diagram like:

1. At every position in the diagram some symbol is written.
2. At every position in the diagram at most a single symbol is written.
3. The diagram starts with the encoding of the initial configuration on the

input x.
4. The diagram terminates in some accepting configuration (which can be

tweaked to be unique if one desires it to be so).
5. successive rows in the diagram are connected by legal transitions of the

machine M .

If the intrinsic representation is used we know (by Stockmeyer’ lemma) that the
last condition can be expressed by enforcing the local compatibility condition on
all 3 by 2 sub-windows in the diagram. This can be expressed by writing some
clause excluding an illegal combination of symbols within such a window for
all illegal combinations and all proper positions of this window in the diagram
(a nice way of expressing this condition if one aims at obtaining a Cook-Levin
formula in Conjunctive Normal Form).

It is not difficult to design a Cook-Levin formula in case the Mathematical
Representation is used. In this case the state and the head position are denoted
outside the diagram but we can introduce additional variables s[i, l] expressing
at time i the machine is in state ql and h[i, j] expressing at time i the head is

22 P. van Emde Boas

located at position j. The Cook-Levin formula now will include additional clauses
expressing that at every time the state and head position are uniquely deter-
mined. The revised correctness conditions require that at some distance from the
head position nothing changes and that the changes in the direct neighbourhood
of the head positions conform to the given program. Details can be found in any
textbook containing a full proof of the Cook-Levin result.

The question becomes whether there is an advantage here of using the intrinsic
representation. I claim there is; it is recognized by a simple estimation of the
size of the Cook-Levin formula’s obtained.

For both representations the number of variables required is O(T 2K) where
K is some constant equal to the number of symbols which may occur in the
time-space diagram. The number of additional state and head variables required
for the Mathematical representation are of order O(TK) and O(T 2) respectively,
and these numbers are small compared to the number of variables used for the
diagram anyhow.

However if we consider the size of the various sub-formula’s one observes that
the five conditions in case we use the intrinsic representation are of sizes O(T 2K),
O(T 2K2), O(T), O(T) and O(T 2K6) respectively. However, when using the
mathematical representation, the additional formula expressing the fact that
the head always resides at a single position turns out to be of size O(T 3) which
is a factor T larger than all the other contributions and becomes the dominant
term in the size estimate of the resulting formula in propositional logic (note
that K is determined by the program only and is independent of the length of
the input).

Hence the penalty for using the mathematical representation in the Cook-
Levin result is that the size of the formula produced by the reduction becomes cu-
bic rather than quadratic in the running time of the simulated machine. Yet, this
unnecessary overhead has not prevented well known authors, including Cook [2]
and Garey & Johnson [4] to use the mathematical representation for their proof
of the Cook-Levin Theorem.

Tiling Reductions

The tiling reduction, used for NP-reductions originally by Levin [10] and Harry
Lewis [11,12] is based on covering a region of the plane using square tiles which
are divided in four triangles each being coloured. Tiles are to be selected from
a fixed catalogue of tile types, and may not be rotated or reflected. When two
tiles are placed adjacently (horizontally or vertically) the colours along a shared
edge must be equal. Boundary conditions are enforced by fixing colours at the
boundary of the region to be tiled; alternatively one can assign a first move to
the devil by placing a single tile somewhere in the plane and demanding that
the tiling must be extended to the full region.

Tilings allow a direct encoding of a time-space diagram if the Intrinsic Repre-
sentation is used. The successive configurations appear encoded in colours along
horizontal lines of the tiled region. We need tile types which express that a tape
symbol is passed unchanged from one configuration to the next one. Other tile

Turing Machines for Dummies 23

types express directly the instructions of the program. A third class of tile types
allows some tape symbol to become scanned in the next configuration if the head
enters from an adjacent column. One must however restrict the Turing Machine
program in order to ensure that the machine when moving to some state q can’t
move in both directions, since this would allow the creation and/or annihilation
of phantom pairs of heads in the time-space diagram simulated by the tiling.

A more detailed description of the construction and its use can be found
in [22,25]. The nice properties of the tiling reduction are that there is a com-
plete separation between the encoding of the Turing Machine Program (which
determines the catalogue of tile types) and the input (which is encoded in the
boundary condition). If we allow the boundary condition to be specified in some
more succinct form (I.E., if we can express the size of the boundary rather than
listing all edge segments) the reduction shows hardness for higher complexity
classes like PSPACE and NEXPTIME. Chlebus [3] has shown how alternating
Turing Machines can be reduced to a two player game version of the Tiling
problem.

As mentioned the tiling reduction works nicely for the intrinsic representation.
It is not to difficult to design a tiling simulation for the semi-intrinsic represen-
tation (one uses signals transmitting the state information through a horizontal
line) but I never have seen a simulation starting from the mathematical repre-
sentation, which would require some internal mechanism for performing binary
to unary conversion of numbers to start with.

Starting with the tiling reduction as a master reduction problems like Sat-
isfiability but also Knapsack like problems are easily reached by further reduc-
tions [14]. But also a Hilbert 10 reduction can be obtained [22,25]2.

To my opinion the Tiling reduction is more suitable for educational use com-
pared to the original Cook-Levin reduction. In my classes I have always used the
example of a simple Turing Machine which increments a binary counter, a pro-
gram of 6 instructions. The resulting catalogue of tile types contains 15 types. In
1992 my institute ordered the construction of a wooden demonstration model of
the resulting puzzle to be used for educational events. I believe that it represents
the most inefficient computer in the world which was ever built. After the move
of the institute the puzzle was saved with my archives, but it is locked away in
a storage room. The puzzle is available today in digital form on the web [26].

Note also that the combined reduction to Satisfiability using the tiling reduc-
tion as an intermediate step achieves the same O(T 2) overhead which is obtained
by the direct Cook-Levin reduction in case the intrinsic representation is used.

Our conclusion is that for NP-reductions the use of the Intrinsic Representa-
tion is not an absolute requirement, but the alternatives have some disadvan-
tages.

2 This reduction was originally constructed at a workshop in Paderborn in October
1982 in response and rebuttal to a presentation by J.P. Jones who presented with
Yuri Matijasevič an improved version of the reduction of Machine termination to
the solvability of exponential Diophantine Equations based on register machines,
and claimed that such a reduction based on Turing Machines was not possible.

24 P. van Emde Boas

4 Stockmeyer and His Work on Regular Expressions

The standard theory of Regular Expressions deals with expressions generated
by a grammar based on three types of generators and three operations. The
generators are:

1. 0 denoting the empty language,
2. λ denoting the singleton language containing only the empty word,
3. σ for each σ in the alphabet Σ under consideration, denoting the singleton

language containing the single letter word σ.

The operators are the + denoting union of languages, . for concatenation of
languages and ∗ denoting the Kleene star iteration operation; the ∗ operator is
monadic, whereas the + and . are binary operators.

Beyond this standard language of regular expressions a number of additional
operators are considered by Stockmeyer: 2, denoting Squaring, I.E., concate-
nation of a language with itself, ∩ denoting intersection and ∼ denoting com-
plementation. It is known that the family of regular languages is closed under
these operators, hence, in principle, regular expressions involving such operators
can be rewritten into standard expressions. However there is no direct algebraic
method for doing so. The detour by construction of the corresponding automata
and deriving the regular expressions corresponding to these automata will pro-
duce unmanageable large expressions.

In chapter 4 of his thesis (the largest chapter in this book) Stockmeyer inves-
tigates how these additional operators affect the complexity of decision problems
on generalized Regular Expressions. Decision problems considered are:

1. NEC(φ,Σ) : does the expression φ denote the set of all possible words over
the alphabet Σ?

2. EQ(φ, ψ), INEC(φ, ψ) : do the two expressions denote the same (different)
languages?

Evidently these problems are inter-reducible, provided operators like comple-
mentation and intersection are available, but since also languages without these
operators are considered we need them all.

The hardness results in this chapter are obtained by a master reduction.
Consider a rectangular time-space diagram of an accepting computation of some
nondeterministic single tape Turing Machine. The correctness of such a diagram
is expressed by the conjunction of a number of conditions expressing syntactic
well-formedness (consisting of the right sort of symbols in the right positions),
correct start (with the intended initial configuration on the input word), correct
termination (in some final accepting configuration), and correct computation
(enforced by application of Stockmeyer’s 3 by 2 window compatibility check
throughout the diagram).

The diagram is a two dimensional object, but it can be linearised into a
string by printing all rows in the diagram behind each other, separated by a
suitable extra marker. So one might look for some generalized regular expression

Turing Machines for Dummies 25

describing precisely those strings which encode a correct time-space diagram.
Note that we now must enforce the additional condition that the segments in
the linearised diagram all should have the same length.

We need our expression to encode the conjunction of all the conditions which
must be enforced. This is hard to express if we don’t have the operator of inter-
section in our language. Therefore Stockmeyer migrates to the complementary
world where he constructs an expression which intends to denote all strings
which fail to encode a correct time-state diagram. The expression becomes a
Syllabus Errorum stating all possible sources of an error. This explains the use
of the decision problem NEC in his investigations: if the accepting time-space
diagram exists there exists an error-free string, and therefore the described lan-
guage will have a non-empty complement. Otherwise all strings are erroneous
and the expression will be equivalent to the language Σ∗.

The hardest error type to be described is a violation of the 3 by 2 window
compatibility relation. In the time-space diagram the symbols are written closely
together but in the linearisation they are separated by a substring whose length is
equal to the width of the diagram (up to a small additive constant). This explains
the importance of yardsticks: sub-expressions of the form ΣK for large values of
K. Since the width of the time-space diagram equals the space consumed by the
simulated computation it becomes relevant to invent succinct representations for
these yardsticks: the more succinct such a representation becomes the higher the
(nondeterministic) spacebound for which a hardness proof is obtained.

If we have no additional operators the size of the expression for a yardstick
is linear in K. Thus hardness is obtained for linear bounded automata. Please
keep in mind that at the time the thesis was written the Immerman-Szelepsényi
result [7,20] yielding closure under complementation of nondeterministic space
bounded complexity classes had not yet been proven, whence Stockmeyer had
to navigate carefully around issues involving complementation. Today we under-
stand his result as a proof of hardness for PSPACE.

Adding the operation 2 of squaring reduces the size of the expression for a
yardstick to (O(log(K)), and hardness for NEXPSPACE is obtained (by Savitch’
result [15] NEXPSPACE = EXPSPACE). Removing the ∗ operator eliminates
the possibility to talk about arbitrary long computations, and therefore hardness
results are obtained for nondeterministic time classes (NP respectively NEXP-
TIME depending on whether squaring is available or not). The hardest part of
the theory is section 4.2 where the impact of the complementation operator is
shown: each increase by one in the complementation depth of the regular ex-
pressions allows for an exponential increase of the succinctness of the yardstick
expression. Therefore the hardness results are raised to non-elementary space
and/or time bounded complexity classes.

From our perspective the key ingredient in all constructions is the encoding
of a compatibility violation in the diagram by an expression listing the violating
pair connected by a yardstick expression. This simulation is made possible by
the use of the intrinsic representation and it must be hard if not impossible to
obtain a similar construction based on the mathematical representation.

26 P. van Emde Boas

5 The Impact of the Intrinsic Representation on Machine
Models in the Second Machine Class

The Second Machine Class [23,24] consists of those models for machines sup-
porting some form of parallel processing for which the Parallel Computation
Thesis, expressed by the equalities //PTIME = //NPTIME = PSPACE is true:
what the parallel model can do in polynomial time, deterministically or nonde-
terministically, is what can be achieved in the sequential world in Polynomial
Space.

Machine models of this nature were investigated in the 1970-ies. There are
various parallel versions of the Random Access Machines, and versions of Turing
Machines supporting parallel branching. More surprising was the discovery that
some sequential models which may operate on very large data objects also are
second machine class members: typical examples are the Vector Machines intro-
duced by Pratt and Stockmeyer [13] and the Random Access machine extended
with multiplicative instructions described by Hartmanis and Simon [5]. Also the
Alternating Turing Machine [1] belongs to this class, be it that there exists no
nondeterministic version of this device.

Proving that some device indeed satisfies the above equalities uses some meth-
ods which by now have been well understood. The inclusion //NPTIME ⊆
PSPACE is shown by guessing an accepting computation trace of the paral-
lel device, and validating this trace using some recursive procedure which will
evaluate the state of the elementary hardware components of this device at any
time during the computation. A key argument is that the parameters of such a
recursive procedure can be written down in polynomial space.

Such a proof can be given only when the parallel model is reasonable: it can
activate in polynomial time an exponential amount of hardware (but not more)
and the nondeterminism must be Uniform (the same choices are made on all
parallel paths in the computation).

For the inclusion PSPACE ⊆ //PTIME nowadays various strategies are avial-
able: one can show that the parallel device can simulate an Alternating machine,
or one can construct a Polynomial Time algorithm for the PSPACE complete
problem QBF [18]. However in the mid 1970-ies the Alternating machine had
not yet been invented and nobody had proposed the idea of exploiting the QBF
problem. The early proofs were all based on a master simulation of a PSPACE
bounded Turing machine on the parallel machine.

The idea used in this master simulation is the reduction of the existence of an
accepting computation to a connectivity problem on a huge (exponentially large)
Computation graph. This graph has all possible configurations of the Turing
Machine on the allowed amount of space as nodes, and the transitions between
these configurations as edges. The initial configuration in the graph is just some
special node, and so is the final accepting configuration (which may be assumed
to be unique). Computations become paths in this computation graph. Hence
the existence of an accepting computation is reduced to the existence of a path
connecting the start node with the target node.

Turing Machines for Dummies 27

This connectivity problem can be solved by computing the transitive clo-
sure of the relation given by the edges (transitions). A convenient algorithm for
computing this transitive closure uses the mathematical representation of the
Adjacency Matrix : row and column indices represent nodes (configurations) and
the presence of an edge from node i to node j is denoted by assigning the value
1 to matrix element at position < i, j > . The diagonal entries in the matrix
obtain also value 1 (every node is reachable from itself by a path of length 0).

By iteratively squaring this matrix (over the Boolean algebra where 1.1 =
1 + 1 = 1) one determines which pairs of nodes in the graph are connected:
after t iterations all connections by some path of length ≤ 2t are found. Since
cycles don’t contribute to connections and the number of the nodes is bounded
by 2O(spacebound) a polynomial number of iterations is sufficient. At the end of
the computation the answer is found in the desired matrix element; the rest of
the matrix is discarded.

The details of this simulation depend on the precise model considered. Generic
tasks are the construction of some object representing a list of all integers in the
range 0 . . . 2M for some large value of M . The entries in this list represent all
possible configurations of the machine. Think of the numbers as being written
down as binary numbers and consider the resulting bit-string to be the repre-
sentation in binary of the string of symbols in the configuration. There is no
guarantee that these numbers (digit strings) satisfy reasonably syntactic condi-
tions like not containing more than one state symbol. However, getting rid of
such junk configurations is not needed; they can’t do any harm. In fact removing
them may be harmful in the sequel of the proof, because it would create gaps in
the sequence of configurations at positions which are hard to predict.

The next task is to construct the Cartesian product of this list with itself,
yielding an object storing all configuration pairs.

Given this object we must determine for all these pairs of configurations
whether they are equal or connected by a transition or not. Moreover this has to
be done in parallel, given the exponential size of this object. This is precisely the
point where it is crucial that these numbers are understood to encode configu-
rations in the intrinsic representation. Equality is easy to test but the test for a
transition requires that in the binary representation the digit block is identified
where the two strings are different. This block represents the three symbols of
Stockmeyer’ 3 by 2 window. The contents of these blocks in the two configura-
tions must obey the compatibility relation. Moreover, outside these blocks the
two configurations must be identical.

Once this test has been performed the Adjacency matrix is obtained. The
computation then can proceed by implementing the iterated multiplication of
the matrix with itself. This is yet another complex task, but it is less model
dependent.

The details of the above computation are different for parallel versions of
the Turing Machine (which is symbol manipulation oriented) and the Paral-
lel Random Access devices. For the RAM based models one must invoke some

28 P. van Emde Boas

mechanism which will allow an efficient method for converting numbers into bit-
strings. Inspection of the constructions proposed in the literature shows that
for all RAM based parallel models some form of string manipulation or some
mildly multiplicative operation like division by 2 is inserted in the instruction
code. Such instructions are not available in the basic RAM model - the result by
Hartmanis and Simon indicate that you can’t add to much multiplicative power
to the RAM without creating a model which is to powerful.

Our conclusion is that in these early simulations the fact that the numbers
encode configurations in the intrinsic representation is a key ingredient for the
correctness of the proof. It seems hard, if not impossible to find such a construc-
tion if the Mathematical representation is used.

6 Conclusion - Is There a Dragon Out There?

I hope that the examples in the preceding sections have convinced the reader that
the use of the Intrinsic Representation of Turing Machine configurations has been
the enabler for several fundamental results in Theoretical Computer Science.
The question remains whether this observation should affect our behaviour as
theoreticians. Stated otherwise: do we need to start a Crusade against the use
of the Mathematical Representation? Is there a dragon out there which should
be slayed?

While preparing this presentation I have searched the leftovers of what in the
past used to be a well equipped Mathematical Library in my institute3. Inspec-
tion of some 25 textbooks on introduction in Computer Science or Computation
Theory yielded the following results: Many authors give no formal definition of
a configuration but informally they present something resembling the intrinsic
or a semi-intrinsic representation. This also holds for the Wikipaedia page on
Turing machines. I found a formal definition of the Mathematical representation
for single tape machines only in the 1969 edition of Hopcroft and Ullman, and in
the 1981 edition of Lewis and Papadimitriou. The later authors however imme-
diately continue with a semi-intrinsic representation as an illustrative tool - no
wonder, since in this textbook a master reduction based on tilings is presented.
Other authors give the Mathematical representation for multi tape machines
but move towards the intrinsic representation for the single tape model, and
that is the model used in all the hardness and undecidability proofs. Turing
himself uses an Intrinsic representation by way of illustration. So do Kleene and
Davis.

Evidently in practice our colleagues have throughout the last 70 years followed
their intuition and have made the right choice. But except for Stockmeyer I
have not found anybody who explicitly has looked into the advantages of this
decision.

The conclusion is that we can continue and live and work in peace. Dragons
remain a rare species which should be protected rather than persecuted.

3 Victim of the curse of digitalisation.

Turing Machines for Dummies 29

References

1. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. Assoc. Comput.
Mach. 28, 114–133 (1981)

2. Cook, S.A.: The complexity of theorem proving procedures. In: Proc. ACM Sym-
posium Theory of Computing, vol. 3, pp. 151–158 (1971)

3. Chlebus, B.G.: Domino-tiling games. J. Comput. Syst. Sci. 32, 374–392 (1986)
4. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of

NP-Completeness. W. H. Freeman and Co. (1979)
5. Hartmanis, J., Simon, J.: On the power of multiplication in random access ma-

chines. Proc. IEEE Switching and Automata Theory 15, 13–23 (1974)
6. Hennie, F.C., Stearns, R.E.: Two-way simulation of multi-tape Turing machines.

J. Assoc. Comput. Mach. 13, 533–546 (1966)
7. Immerman, N.: Nondeterministic space is closed under complementation. SIAM J.

Comput. 17, 935–938 (1988)
8. Jones, J.P., Matijasevič, Y.V.: Register machine proof of the theorem on exponen-

tial Diophantine representation of enumerable sets. J. Symb. Logic 49, 818–829
(1984)

9. Kleene, S.C.: Introduction to Metamathematics. Noth Holland Publ. Cie (1952)
10. Levin, L.A.: Universal’nie zadachi perebora. Problemi Peredachi Informatsie IX,

115–116 (1973) (in Russian)
11. Lewis, H.R.: Complexity of solvable cases of the decision problem for the predicate

calculus. In: Proc. IEEE FOCS, vol. 19, pp. 35–47 (1978)
12. Lewis, H.R., Papadimitriou, C.H.: Elements of the Theory of Computation.

Prentice-Hall (1981)
13. Pratt, V.R., Stockmeyer, L.J.: A characterization of the power of vector machines.

J. Comput. Syst. Sci. 12, 198–221 (1976)
14. Savelsberg, M.P.W., van Emde Boas, P.: BOUNDED TILING, an alternative to

SATISFIABILITY? In: Wechsung, G. (ed.) Proc. 2nd Frege Memorial Confer-
ence, Schwerin. Mathematische Forschung, vol. 20, pp. 401–407. Akademie Verlag
(September 1984)

15. Savitch, W.J.: Relations between Deterministic and Nondeterministic tape Com-
plexities. J Comput. Syst. Sci. 12, 177–192 (1970)

16. Slisenko, A.O.: A simplified proof of the real-time recognizability of palindromes
on Turing Machines. J. Mathematical Sciences 5(1), 68–77 (1981)

17. Spaan, E., Torenvliet, L., van Emde Boas, P.: Nondeterminism, fairness and a
fundamental analogy. EATCS Bulletin 37, 186–193 (1989)

18. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time. In:
Proc. ACM STOC, vol. 5, pp. 1–9 (1973)

19. Stockmeyer, L.: The complexity of decision problems in automata theory and logic,
Report MAC-TR-133, MIT (1974)

20. Szelepsényi, R.: The method of forcing for nondeterministic automata. Bull.
EATCS 33, 96–100 (1987)

21. Turing, A.M.: On computable numbers, with an application to the Entschei-
dungsproblem. Proc. London Math. Soc. Ser. 2 42, 230–265 (1936)

22. van Emde Boas, P.: Dominoes are forever. In: Priese, L. (ed.) Proc. 1st GTI Work-
shop, Paderborn, Rheie Theoretische Informatik UGH Paderborn, vol. 13 (1982)

23. van Emde Boas, P.: The second machine class 2, an encyclopedic view on the
parallel computation thesis. In: Rasiowa, H. (ed.) Mathematical Problems in Com-
putation Theory, vol. 21, pp. 235–256. Banach Center Publications (1987)

30 P. van Emde Boas

24. van Emde Boas, P.: Machine models and simulations. In: van Leeuwen, J. (ed.)
Handbook of Theoretical Computer Science, vol. A, pp. 3–66. North Holland Publ.
Comp. (1990)

25. van Emde Boas, P.: The convenience of tiling. In: Sorbi, A. (ed.) Complexity, Logic
and Recursion Theory. Lect. Notes in Pure and Appled Math., vol. 187, pp. 331–363
(1997)

26. van Emde Boas, H.: Turing Tiles, Web application located at,
http://www.squaringthecircles.com/turingtiles/

27. Vitányi, P.M.B.: An optimal simulation of counter machines. SIAM J. Comput. 14,
1–33 (1985)

http://www.squaringthecircles.com/turingtiles/

What Is an Algorithm?

Yuri Gurevich

Microsoft Research
gurevich@microsoft.com

Abstract. We attempt to put the title problem and the Church-Turing
thesis into a proper perspective and to clarify some common misconcep-
tions related to Turing’s analysis of computation. We examine two ap-
proaches to the title problem, one well-known among philosophers and
another among logicians.

We must, incidentally, make it clear from the beginning
that if a thing is not a science, it is not necessarily bad.

For example, love is not a science. So, if something is said
not to be a science, it does not mean that there is something

wrong with it; it just means that it is not a science.

Richard Feynman

1 Introduction

Two articles in a recent book [10] present two approaches to the title problem
and offer different answers. Article [19] presents an approach developed by Yian-
nis Moschovakis. “A characteristic feature of this approach is the adoption of a
very abstract notion of algorithm that takes recursion as a primitive operation
and is so wide as to admit ‘non-implementable’ algorithms” [19]. The article
starts thus.

In the sequence of articles . . . , Moschovakis has proposed a mathematical
modeling of the notion of algorithm — a set-theoretic “definition” of
algorithms, much like the “definition” of real numbers as Dedekind cuts
on the rationals or that of random variables as measurable functions on
a probability space.

We discuss this definition of algorithms in §6.
Article [22] presents an approach originally developed by Robin Gandy, a

student of Alan Turing, in a 1980 article [9]. Gandy intended to complement
Turing’s analysis of human computers with an analysis of computation by me-
chanical devices. He came up with an axiomatically defined class of computation
devices, later named Gandy machines. The approach was adopted by Wilfried
Sieg. In article [22], Sieg uses Gandy machines to “dispense with [Church’s and
Turing’s] theses”. The article starts thus.

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 31–42, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

32 Y. Gurevich

Church’s and Turing’s theses dogmatically assert that an informal notion
of effective calculability is adequately captured by a particular mathe-
matical concept of computability. I present an analysis of calculability
that . . . dispenses with theses. . . . The analysis leads to axioms for
discrete dynamical systems (representing human and machine compu-
tations) and allows the reduction of models of these axioms to Turing
machines.

We discuss this axiomatization of discrete dynamical systems and dispensing
with the theses in §4.

In §2, we discuss whether it is possible at all to define algorithms. (There is also
a question why bother to define algorithms. Well, understanding what algorithms
are should — and does — have practical applications, to software specification
and model-based testing in particular, as well as theoretical application, like
semantics of software or algorithmic completeness of computation models. But
that is a different issue to be addressed elsewhere.)

In §3, we discuss and clarify a couple of misconceptions related to Turing’s
analysis of computations. In §4 we discuss Gandy machines. In §5, we discuss
what kind of entities algorithms are; this discussion is closely related to §6 where
we discuss Moschovakis’s recursor theory.

This article can be seen as a companion to our older article [5].

2 Can the Notion of Algorithm Be Rigorously Defined?

Two articles [19] and [22], mentioned in §1, give different answers to the question
in the title of this article. The two answers are not at all equivalent. A question
arises whether the notion of algorithm can be defined at all. The answer is yes
and no. Let us explain.

The Negative Answer

In our opinion, the notion of algorithm cannot be rigorously defined in full
generality, at least for the time being. The reason is that the notion is expanding.

Concerning the analogy of algorithms to real numbers, mentioned in §1, An-
dreas Blass suggested a better analogy: algorithms to numbers. Many kinds
of numbers have been introduced throughout history: positive integers, natural
numbers, rationals, reals, complex numbers, quaternions, infinite cardinals, infi-
nite ordinals, etc. Similarly many kinds of algorithms have been introduced. In
addition to classical sequential algorithms, in use from antiquity, we have now
parallel, interactive, distributed, real-time, analog, hybrid, quantum, etc. algo-
rithms. New kinds of numbers and algorithms may be introduced. The notions of
numbers and algorithms have not crystallized (and maybe never will) to support
rigorous definitions.

What Is an Algorithm? 33

The Positive Answer

But the problem of rigorous definition of algorithms is not hopeless. Not at all.
Some strata of algorithms have matured enough to support rigorous definitions.

This applies to classical (or classical sequential or just sequential) algorithms,
essentially the only algorithms in use from antiquity to the 1950s. “Algorithms
compute in steps of bounded complexity”, wrote Andrei Kolmogorov in 1953 [14].
This is a good informal definition of sequential algorithms.

An axiomatic definition of sequential algorithms have been given in [12]. That
definition was used to derive the Church-Turing thesis from first principles in [8].
The derivation presumes that, at the time, Church and Turing (and Gödel and
other experts) had in mind only sequential algorithms, which we believe they
did. The axiomatic definition was extended to synchronous parallel algorithms
in [3] and to interactive sequential algorithms in [6,7].

The Status of the Church-Turing Thesis

As far as the input-output relation is concerned, synchronous parallel algorithms
and interactive sequential algorithms can be simulated by Turing machines. This
gives additional confirmation of the Church-Turing thesis.

None of the other known kinds of algorithms seem to threaten the thesis
but the thesis has not been dispensed with and probably never will be. The
question whether some algorithm of a currently unknown kind would allow us to
compute a function from natural numbers to natural numbers that is not Turing
computable remains open, possibly forever. And even if we had a satisfactory
axiomatic definition of algorithms in full generality, the thesis would not be
dispensed with. It would be just reduced to the first principles enshrined in the
axioms.

3 Remarks on Turing’s Analysis of Computation

Turing’s analysis of computation [24] was a stroke of genius. The analysis is
extremely famous, and yet it is often misunderstood.

Some people think that every computable function, total or partial, can be
computed by a Turing machine. This is not so, and here are some counter-
examples. Consider Euclid’s algorithm for computing the greatest common di-
visor d = gcd(a, b) of two natural numbers a, b.

let M = max(a, b), m = min(a, b)
while M > m do

M,m := max(M −m,m),min(M −m,m)
d := M.

The gcd function on natural numbers is of course Turing computable, but the
algorithm was also applied — in theory and in practice — to the lengths of
segments of a straight line, which gives rise to a computable partial function

34 Y. Gurevich

(the algorithm does not terminate if the two given lengths are incommensurate)
that is not Turing computable because you cannot place an arbitrary length on
the Turing tape. More generally, the functions computed by ruler-and-compass
algorithms are not Turing computable. And let us emphasize that ruler and
compass were practical tools in ancient Greece and that a number of ruler-and-
compass algorithms were practical algorithms.

It is common in mathematics to consider algorithms that work on abstract
objects. The functions computed by these algorithms may not be Turing com-
putable. One example is Gaussian elimination. Here is another example: a bi-
section algorithm that, given a real ε > 0 and a continuous function f on a real
segment [a, b] with f(a) < 0 < f(b), computes a point c ∈ [a, b] with |f(c)| < ε.

while |f((a+ b)/2)| ≥ ε do

if f((a+ b)/2) < 0 then a := (a+ b)/2 else b := (a+ b)/2
c := (a+ b)/2

One can argue that these functions are not truly computable, that in practice
we can only approximate them. But then there are analog computers in prac-
tical use that work in real time and compute functions that are not Turing
computable.

Of course Turing would not be surprised by our examples. He explicitly re-
stricted his analysis to “symbolic” (symbol-pushing, digital) algorithms. He im-
plicitly restricted his analysis to sequential algorithms, essentially the only al-
gorithms in his time. It is interesting that it turned out easier to axiomatize
all sequential algorithms [12], whether symbolic or not, including the ruler-and-
compass algorithms, Gaussian elimination and the bisection algorithm (but ex-
cluding analog algorithms which are not sequential in our sense).

What about quantum algorithms? Do they compute functions that are not
Turing computable? Erich Grädel and Antje Nowack checked that the quantum
computing models in the literature can be faithfully simulated by parallel ab-
stract state machines [11]. And, as we mentioned above, functions computed by
parallel ASMs are Turing computable.

There is also a rather common misunderstanding that Turing defined the
notion of algorithm, albeit restricted to symbolic sequential algorithms. Let us
restrict attention to such algorithms for a moment. Suppose that your compu-
tation model (e.g. a programming language) is Turing complete. Does it mean
that the model allows you to express all algorithms? Not necessarily. Turing
machines simulate faithfully only the input-output behavior of algorithms. But
there may be much more to algorithms than their input-output behavior. Turing
completeness does not mean algorithmic completeness. It means only that, for
every Turing computable function f , the language allows you to program an
algorithm that computes f .

For illustration consider Turing machines with one tape that may be multi-
dimensional. The model is obviously Turing complete. On any such machine,
the problem of palindrome recognition requires Θ(n2/ logn) time [2]. But the

What Is an Algorithm? 35

problem is trivially solvable in linear time on a Turing machine with two one-
dimensional tapes. For a deeper dive into algorithmic completeness, see [26, §3].

4 Gandy’s Analysis of Mechanisms

Robin Gandy argues in [9] that “Turing’s analysis of computation by a human
being does not apply directly to mechanical devices.” The reason is that humans
compute sequentially but machines can perform parallel computations. In this
connection, Gandy analyzed computations by mechanical devices and introduced
(what we call now) Gandy machines.

A set-theoretic form of description for discrete deterministic machines
is elaborated and four principles (or constraints) are enunciated, which,
it is argued, any such machine must satisfy. . . . It is proved that if a
device satisfies the principles then its successive states form a [Turing]
computable sequence. [9, p. 123]

Note “successive states”. Gandy machines work in sequential time. This type of
parallelism is called synchronous. In the rest of this section, parallelism will by
default be synchronous.

Gandy pioneered the use of axioms in the analysis of computation. He came
up with four principles (or constraints, or axioms) satisfied, he claimed, by all
discrete deterministic machines. Contrast this with Turing’s analysis. While Tur-
ing’s analysis was convincing, it is hard to isolate first principles that, in Turing’s
opinion, are satisfied by all symbolic sequential computations.

Wilfried Sieg adopted Gandy’s approach and reworked Gandy’s axioms; see
[23] and references there.

Critical Remarks

In a 2002 article [20], Oron Shagrir suggests that “there is an ambiguity re-
garding the types of machines that Gandy was postulating”. He offers three
interpretations: “Gandy machines as physical machines”, “Gandy machines as
finite-physical machines”, and “Gandy machines as a mathematical notion”.
Shagrir concludes that none of the three interpretations “provides the basis for
claiming that Gandy characterized finite machine computation.” This agrees
with our own analysis. By the way, for our purposes, there is no difference be-
tween Gandy’s original axioms and Sieg’s versions of the axioms. So we will just
speak about Gandy’s axioms.

• What real-world devices satisfy Gandy’s axioms? Probably very few do. One
problem is the form of the states of Gandy machines: a collection of hereditary
finite sets. Another problem is the requirement that state transitions are syn-
chronous. You, the reader, may say that we have not proved our point. Well, the
burden of proof is on the proponents of the approach. And there are precious
few examples in the papers of Gandy and Sieg, and none of the examples is a

36 Y. Gurevich

real-world device. The most prominent example in Gandy’s paper is the cellular
automaton known as Conway’s game of life. Note that a cellular automaton can
grow without any bound. In the real-world, such a cellular automaton would not
stay synchronous.

It seems obvious that Gandy abstracts from material and views discrete de-
terministic machines as algorithms, abstract algorithms. So Gandy’s claim can
be restated thus: parallel algorithms satisfy the axioms.

• What algorithms satisfy Gandy’s axioms? Typical parallel or even sequential
algorithms do not satisfy the axioms. Consider for example a factorial algorithm.
The state of the algorithm is naturally infinite and consists of natural numbers.
There is of course a Gandy machine that simulates the factorial algorithm. Note
that, in addition to simulating the factorial algorithm, the simulating machine
may be forced to construct set representations of additional numbers.

In our view, Gandy’s axioms are really used just to define another parallel
computation model. (By the way, it is our ambition in [3] that parallel algorithms,
on their natural abstraction levels, satisfy our axioms.)

• How does Gandy’s parallel computation model compare to other parallel com-
putation models? By now, there are numerous models of synchronous parallelism
in the literature, e.g. parallel random access machines, circuits, alternating Tur-
ing machines, first-order logic with the least fixed-point operator, and parallel
abstract state machines. What are the advantages, if any, of Gandy’s model over
the other models? Neither Gandy nor Sieg addressed this question. Gandy’s
model seems quite awkward for programming or specifying algorithms.

• Dispensing with the Church-Turing thesis Gandy proved that his machines can
be simulated by Turing machines. This is another confirmation of the Church-
Turing thesis. But is it a good ground for dispensing with the thesis? We do
not think so, even if we restrict attention to parallel algorithms and forget other
kinds of algorithms. By the first two bullets above, Gandy’s theorem does not
imply that his axioms are satisfied by all discrete mechanical devices or by all
parallel algorithms.

5 What Kind of Entities Are Algorithms?

One point of view is that the question about algorithm entities is of no im-
portance. We quoted already in §1 that “Moschovakis has proposed . . . a set-
theoretic ‘definition’ of algorithms, much like the ‘definition’ of real numbers
as Dedekind cuts” [19]. The quotation marks around the word definition make
good sense. There is another familiar definition of real numbers, as Cauchy se-
quences. Dedekind cuts and Cauchy sequences are different entities, yet the two
definitions are equivalent for most mathematical purposes. The question of im-
portance in mathematics is not what kind of entities real numbers are but what
structure they form. Either definition allows one to establish that real numbers
form a complete Archimedean ordered field.

What Is an Algorithm? 37

The analogy in the quotation is clear: concentrate on mathematical proper-
ties of algorithms rather than on what kind of entities they are. The analogy
makes good sense but it is far from perfect because much more is known about
algorithm entities than real-number entities. Let us sketch another point of view
on algorithm entities.

Consider algorithms that compute in sequential time. This includes sequential
algorithms as well as synchronous parallel algorithms. A sequential-time algo-
rithm is a state transition system that starts in an initial state and transits from
one state to the next until, if ever, it halts or breaks. The very first postulate in
our axiomatizations of sequential and synchronous parallel algorithms [12,3] is
that the algorithms in question are sequential time.

The question arises what kind of entities states are. In our view, rather com-
mon in computer science, algorithms are not humans or devices; they are abstract
entities. According to the second postulate in the axiomatizations of sequential
and synchronous parallel algorithms, the states are (first-order) structures, up to
isomorphism. This admittedly involves a degree of mathematical modeling and
even arbitrariness. A particular form of structures is used; why this particular
form? But this is a minor detail. Structures are faithful representations of states,
and that is all that matters for our purposes. It is convenient to declare that
states are structures, up to isomorphism; but there is no need to do so.

The point of view that sequential-time algorithms are state transition systems
extends naturally to other classes of algorithms. In particular, a sequential-time
interactive algorithm (until now we considered non-interactive algorithms) is a
state transition system where a state transition may be accompanied by sending
and receiving messages. A distributed algorithm is an ensemble of communicat-
ing sequential-time interactive algorithms.

6 Moschovakis’s Recursion-Based Approach

We start with basics. In recursion-based approaches you write recursive equations
that specify a function. Typically the equations define a monotone operator, and
semantics is given by means of the least fixed point of the operator. For example,
equations

exp(x+ 1, 0) = 1

exp(x, y + 1) =

{
0 if x = 0

x× exp(x, y) if x > 0

specify exponentiation exp(x, y) = xy on natural numbers. The equations define
a monotone operator on extensions of the standard arithmetical structure with
partial binary function exp. Accordingly the following process gives meaning to
exponentiation. Initially exp is nowhere defined. Apply the equations, obtaining
exp(x, 0) = 1 for every x > 0; then apply the equations again, obtaining addi-
tionally exp(x, 1) = x for all x, and so on. After ω steps (where ω is the first
infinite ordinal), you reach a fixed point; now exp(x, y) is defined for all x, y

38 Y. Gurevich

except x = y = 0. Often the evolution toward the fixed point involves not only
the function that you are computing but also some auxiliary functions.

In 1934, Gödel formulated a recursion-based calculus of (in general partial) nu-
merical functions. Gödel’s calculus can be seen as a specification language where
a specification of a function f is a system of recursive equations that, taking into
account some global conventions, suggests a particular (possibly inefficient) way
to compute f . Church’s thesis (extended to partial functions by Kleene) asserts
that every “effectively calculable”, that is computable by an algorithm, function
on natural numbers is programmable in Gödel’s calculus.

Recursive specification of functions has much appeal. It is declarative and
abstracts from computation details. It is often concise. There has been much
progress since the 1930s. Logicians developed recursion theory. McCarthy created
a functional (that is recursion-based) programming language LISP, and many
other functional languages followed.

The key ideas of Moschovakis’s approach appear already in the 1984 article
[16] that seems to be the very first publication on the subject.

If, by Church’s Thesis the precise, mathematical notion of recursive func-
tion captures the intuitive notion of computable function, then the pre-
cise, mathematical notion of recursion . . . should model adequately the
mathematical properties of the intuitive notion of algorithm. [16, p. 291]

Moschovakis discusses Euclid’s algorithm for the greatest common divisor of two
natural numbers. Then he says:

Following the drift of the discussion, we might be expected at this point
to simply identify the Euclidean algorithm with the functional gcd. We
will not go quite that far, because the time-honored intuitive concept of
algorithm carries many linguistic and intensional connotations (some of
them tied up with implementations) with which we have not concerned
ourselves. Instead we will make the weaker (and almost trivial) claim that
the functional gcd embodies all the essential mathematical properties of
the Euclidean algorithm. [16, p. 295]

He gives recursive equations for the mergesort algorithm on a set X and proceeds
to prove that at most n · log2(n) comparisons are required to sort n elements.

Moschovakis’s views have been evolving.

When algorithms are defined rigorously in Computer Science literature
(which only happens rarely), they are generally identified with abstract
machines, mathematical models of computers. . . . My aims here are to
argue that this does not square with our intuitions about algorithms and
the way we interpret and apply results about them; to promote the prob-
lem of defining algorithms correctly; and to describe briefly a plausible
solution, by which algorithms are recursive definitions while machines
model implementations, a special kind of algorithms. [17, p. 919].

The main technical notion in Moschovakis’s approach is that of recursor which
is a generalization of function specification in Gödel’s calculus. The most recent

What Is an Algorithm? 39

published definition of recursor is found in [19, p. 95]. Semantics is given by
means of the least fixed point of a monotone operator. In some cases, the least
fixed point is not achieved in ≤ ω steps; then the recursor is infinitary and
cannot be implemented by abstract machines. For illustration, see “the infinitary
Gentzen algorithm” in [18]. Moschovakis formulates this slogan:

The theory of algorithms is the theory of recursive equations. [18, p. 4]

Critical Remarks

• Recursors vs. algorithms We think that Moschovakis was right the first time
around, in [16, p. 295] when he refrained from identifying (what he later called)
recursors with algorithm “because the time-honored intuitive concept of algo-
rithm carries many linguistic and intensional connotations” which are contrary
to such identification.

Consider the system of two recursive equations (and thus a recursor) for the
exponentiation in the beginning of this section. Is it an algorithm or not? The
recursor certainly looks like an algorithm, and in many functional programming
languages, this recursor would be a legitimate program (modulo syntactic de-
tails of no importance to us here). Typically exp(xy) would be interpreted as a
function call and, for example, the evaluation of 32 would proceed thus:

32 = 3 · 31 = 3 · (3 · 30) = 3 · (3 · 1)) = 3 · 3 = 9.

But the recursor theory is different. The meaning of a recursor is given by the
least fixed point construction, and there is nothing else. In the case of the ex-
ponentiation recursor, the only “computation” is the process that we described
above: start with the nowhere defined exp function, compute exp(x0) for all
x > 0, compute x1 for all x, etc. What should we do in order to compute 32?
Should we wait until the “computation” of exp is completed and then apply exp,
or should we wait only to the end of stage 3 when all x2 are computed? The
recursor theory says nothing about that.

It is not our goal to make the recursor theory look ridiculous. In fact we agree
that recursors are useful for mathematical analysis of algorithms. We just see no
good reason to identify them with algorithms. Paraphrasing Richard Feynman,
if thing is not an algorithm, it is not necessarily bad.

• The abstraction level of imperative algorithms It seems to us that recursor
theorists underestimate the abstraction capabilities of imperative programming.
Imperative programs, and in particular abstract state machines, can be as ab-
stract as needed. We addressed this point once [4]. Here let us just quickly say
this. Yes, an algorithm comes with a program for executing the algorithm. But
this does not mean that the program necessarily addresses low-level computa-
tional details. Every algorithm operates on its natural level of abstraction. This
level may be very low but it may be arbitrarily high.

40 Y. Gurevich

• Declarative specifications Recursion is appealing. A part of the appeal comes
from the declarative nature of recursion. That declarative nature is by itself a
limitation for software specification; and note that every piece of software is an
algorithm. Declarative specification of software was very popular in the 1980s
and 1990s, but it was discredited to a large extent. As software is developed,
it evolves. A book with a declarative specification quickly becomes obsolete. If
specification is not executable, you cannot experiment with it.

• Recursion is but one aspect of an algorithm The theory of algorithms does not
reduce to recursion. For one thing, there are clever data structures. For many
linear-time algorithms, for example, it is crucially important that an algorithm
does not manipulate large objects directly; instead it manipulates only pointers
to those objects. Such aspects of complexity analysis seem below the abstraction
level of recursors.

• Distributed algorithms The recursor approach does not seem to extend to
distributed algorithms, and the number of useful distributed algorithms is large
and growing.

• Monotonicity limitation Here is something that the recursor theory should be
able to cover but doesn’t. The current recursor theory is limited to recursors
with semantics given by the least fixed point of a monotone operator. That is a
serious limitation.

For a simple example consider Datalog with negation [1]. The operator defined
by a Datalog-with-negation program is not monotone but it is inflationary, and
semantics is given by the inflationary fixed point [13].

For illustration, here is a Datalog-with-negation program computing the com-
plement C of the transitive closure T of a nonempty binary relation R on a finite
domain [1, Example 3.3].

T (x, y)← R(x, y)

T (x, y)← R(x, z), T (z, y)

U(x, y)← T (x, y)

V (x, y)← T (x, y), R(x′, z′), T (z′, y′),¬T (x′, y′)

C(x, y)← ¬T (x, y), U(x′, y′),¬V (x′, y′)

Explanation. At every step all rules are fired. By the first two rules, the computa-
tion of T proceeds in the usual way. Since the domain is finite, the computation
of T completes after some number k of steps. The pairs of T are stored in U
with a delay of one step, so the computation of U completes after k + 1 steps.
The computation of V is identical to that of U , except that at the step k + 1,
when U is completed, the last batch of pairs from T is not stored in V . The final
rule is idle during the first k steps but on step k+1 it stores the complement of
T into C.

What Is an Algorithm? 41

• More examples, please. It would be much useful to have more example of
recursors of interest to computer scientists. All current examples of that sort
seem to be present already in the 1984 article [16].

Acknowledgments. Many thanks to Andreas Blass for numerous illuminating
discussions, and to Serge Grigorieff and Oron Shagrir for useful suggestion.

References

1. Abiteboul, S., Vianu, V.: Datalog extensions for database queries and updates. J.
of Computer and System Sciences 43, 62–124 (1991)

2. Biedl, T., Buss, J.F., Demaine, E.D., Demaine, M.L., Hajiaghayi, M., Vinař, T.:
Palindrome recognition using a multidemensional tape. Theoretical Computer Sci-
ence 302, 475–480 (2003)

3. Blass, A., Gurevich, Y.: Abstract state machines capture parallel algorithms. ACM
Transactions on Computational Logic 4(4), 578–651 (2003); Correction and exten-
sion, same journal 9(3) article 19 (2008)

4. Blass, A., Gurevich, Y.: Algorithms vs. machines. Bull. European Association for
Theoretical Computer Science 77, 96–118 (2002)

5. Blass, A., Gurevich, Y.: Algorithms: A quest for absolute definitions. In: Current
Trends in Theoretical Computer Science, pp. 195–225. World Scientific (2004);
also in Olszewski, A., et al. (eds): Church’s Thesis after 70 Years, pp. 24–57. Ontos
Verlag (2006)

6. Blass, A., Gurevich, Y.: Ordinary interactive small-step algorithms. ACM Trans.
Computational Logic (Part I), 7(2), 363–419 (2006); plus 8(3), articles 15 and 16
(Parts II, III) (2007)

7. Blass, A., Gurevich, Y., Rosenzweig, D., Rossman, B.: Interactive small-step al-
gorithms. Logical Methods in Computer Science 3(4), papers 3 and 4 (Part I and
Part II) (2007)

8. Dershowitz, N., Gurevich, Y.: A natural axiomatization of computability and proof
of Church’s thesis. Bull. of Symbolic Logic 14(3), 299–350 (2008)

9. Gandy, R.: Church’s thesis and principles for mechanisms. In: Barwise, J., et al.
(eds.) The Kleene Symposium, pp. 123–148. North-Holland (1980)

10. Cooper, S., Löwe, B., Sorbi, A. (eds.): New Computational Paradigms: Changing
Conceptions of what is Computable. Springer, Heidelberg (2008)

11. Grädel, E., Nowack, A.: Quantum Computing and Abstract State Machines. In:
Börger, E., Gargantini, A., Riccobene, E. (eds.) ASM 2003. LNCS, vol. 2589, pp.
309–323. Springer, Heidelberg (2003)

12. Gurevich, Y.: Sequential Abstract State Machines Capture Sequential Algorithms.
ACM Transactions on Computational Logic 1(1), 77–111 (2000)

13. Gurevich, Y., Shelah, S.: Fixed-point extensions of first-order logic. Annals of Pure
and Applied Logic 32, 265–280 (1986)

14. Kolmogorov, A.N.: On the concept of algorithm. Uspekhi Mat. Nauk 8(4), 175–176
(1953) (in Russian); English translation in [25]

15. McCarthy, J.: A basis for a mathematical theory of computation. In: Brafford, P.,
Herschberg, D. (eds.) Computer Programming and Formal Systems, pp. 33–70.
North-Holland (1963)

16. Moschovakis, Y.N.: Abstract recursion as a foundation of the theory of algorithms.
In: Computation and Proof Theory. Lecture Notes in Mathematics, vol. 1104, pp.
289–364. Springer, Heidelberg (1984)

42 Y. Gurevich

17. Moschovakis, Y.N.: What is an algorithm? In: Engquist, B., Schmid, W. (eds.)
Mathematics Unlimited – 2001 and Beyond, pp. 919–936. Springer, Heidelberg
(2001)

18. Moschovakis, Y.N.: Algorithms and implementations. Tarski Lecture 1 (2008),
http://www.math.ucla.edu/~ynm/lectures/tlect1.pdf

19. Moschovakis, Y.N., Paschalis, V.: Elementary algorithms and their implementa-
tions. In: [10], pp. 87–118

20. Shagrir, O.: Effective computation by humans and machines. Minds and Ma-
chines 12, 221–240 (2002)

21. Sieg, W.: Calculations by man & machine: Mathematical presentation. In: Proceed-
ings of the Cracow International Congress of Logic, Methodology and Philosophy
of Science, pp. 245–260. Kluwer (2002)

22. Sieg, W.: Church without dogma – Axioms for computability. In: [10], pp. 139–152
23. Sieg, W.: On Computability. In: Irvine, A. (ed.) Handbook of the Philosophy of

Mathematics, pp. 535–630. Elsevier (2009)
24. Turing, A.M.: On computable numbers, with an application to the Entschei-

dungsproblem. Proceedings of London Mathematical Society, Series 2 42, 230–265
(1936-1937); Correction, same journal 43, 544–546

25. Uspensky, V.A., Semenov, A.L.: Algorithms: Main Ideas and Applications. Kluwer
(1993)

26. Valarcher, P.: Habilitation à Diriger des Recherches, Université Paris Est Créteil,
LACL (EA 4219), Département d’Informatique, IUT Fontainebleau, France (2010),
http://www.paincourt.net/perso/Publi/hdr.pdf

http://www.math.ucla.edu/~ynm/lectures/tlect1.pdf
http://www.paincourt.net/perso/Publi/hdr.pdf

Strong Bridges and Strong Articulation Points

of Directed Graphs

Giuseppe F. Italiano

University of Rome ’Tor Vergata’

Abstract. Given a directed graph G, an edge is a strong bridge if its
removal increases the number of strongly connected components of G.
Similarly, a vertex is a strong articulation point if its removal increases
the number of strongly connected components of G. Strong articulation
points and strong bridges are related to the notion of 2-vertex and 2-edge
connectivity of directed graphs, which surprisingly seems to have been
overlooked in the past. In this talk, we survey some very recent work in
this area, both from the theoretical and the practical viewpoint.

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, p. 43, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Towards Computational Models of Artificial Cognitive
Systems That Can, in Principle, Pass the Turing Test�

Jiřı́ Wiedermann

Institute of Computer Science, Academy of Sciences of the Czech Republic,
Pod Vodárenskou věžı́ 2, 182 07 Prague 8, Czech Republic

jiri.wiedermann@cs.cas.cz

“I believe that in about fifty years’ time it will be possible, to programme
computers, with a storage capacity of about 109, to make them play the
imitation game so well that an average interrogator will not have more
than 70 per cent chance of making the right identification after five minutes
of questioning. The original question, ”Can machines think?” I believe to
be too meaningless to deserve discussion. Nevertheless I believe that at the
end of the century the use of words and general educated opinion will have
altered so much that one will be able to speak of machines thinking without
expecting to be contradicted.”

A.M. Turing: Computing machinery and
intelligence. Mind, 59, 433-460, 1950

Abstract. We will give plausible arguments in favor of a claim that we already
have sufficient knowledge to understand the working of interesting artificial minds
attaining a high-level cognition, consciousness included. Achieving a higher-level
AI seems to be not a matter of a fundamental scientific breakthrough but rather a
matter of exploiting our best theories of artificial minds and our most advanced
data processing technologies. We list the theories we have in mind and illustrate
their role and place on the example of a high-level architecture of a conscious
cognitive agent with a potential to pass the Turing test.

1 Introduction

We are living in times for which the introductory Turing’s notoriously known prediction
should have become a reality. But is it really so? Certainly not. This holds despite
the fact that the test conditions mentioned in the quotation are quite mild. First, the
test admits up to 30% of errors in the identification accuracy which is not far from
the random guessing. Second, the conversation time is limited. And third, an “average
interrogator” is assumed. Yet there is no computer known able to pass such a test.

It is less known that Turing also made a prediction concerning the “strong version”
of the Turing test, allowing unlimited conversation time, a negligible erroneous identi-
fication rate and an expert interrogator. In a 1952 BBC broadcast [42], the following

� This research was carried out within the institutional research plan AV0Z10300504 and par-
tially supported by GA ČR grant No. P202/10/1333.

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 44–63, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Towards Computational Models of Artificial Cognitive Systems 45

conversation took place in a discussion between Turing and one of his colleagues
(M. H. A. Newman, professor of mathematics at the Manchester University):

Newman: I should like to be there when your match between a man and a machine
takes place, and perhaps to try my hand at making up some of the questions. But that
will be a long time from now, if the machine is to stand any chance with no questions
barred?

Turing: Oh yes, at least 100 years, I should say.

This seems to be a much safer prediction.
However, it appears that asking for passing the strong-version of the Turing test is

unnecessarily demanding a task. It would be quite acceptable if the machine betrayed
itself by displaying more intelligence than one would expect from a man. Simply stated,
the machine could be able to outperform humans in any intellectually challenging task.
On the other hand, the machine could also betray itself by being less knowledgeable in
the fields concerning human private, social and emotional life. Under such conditions,
even for an expert a conversation with such a machine could certainly be more challeng-
ing than a chat with a machine of “average intelligence”. In a sense, constructing such
a machine may even be simpler than to construct machines passing the full Turing test
by faithfully mirroring the human mind down to the last detail. The author also claims
that we will be able to construct such machines sooner than the general public might
believe. It is the goal of this paper to give a “technical” evidence for such a faith.

In the sequel, we will defend the stance that we already have a sufficient knowledge
to understand the working of interesting artificial minds with a potential to pass the
Turing test. Based on this, it seems that achieving Turing–test capable machines is not
a matter of a fundamental scientific breakthrough but rather a matter of exploiting our
best theories of artificial minds and our most advanced data processing techniques.

The structure of the paper is as follows.
In Section 2, we describe the status-quo of the field. First, in part 2.1, we illustrate

the current state-of-the-art of practice in the field of artificial cognitive systems poten-
tially aspiring to pass the Turing test using the example of the most recent and most
visible representative of such systems — viz an IBM Corp.’s computer named Watson.
Then, in part 2.2, we focus our attention on the selected examples of the most impor-
tant recent achievements and trends of the field that will, at least to our mind, shape
the field in near future. The most important among these features is a departure from
biologism, automatically built internal world models, use of mirror neurons forming the
basis for imitation leaning, realization of both phenomenal and functional conscious-
ness utilizing the global workspace theory, exploitation of episodic memories, and real
time massive data processing.

In Section 3 we briefly describe the architecture of a cognitive system incorporating the
ideas mentioned in the previous section 2.2. This system is based on the author’s previous
model (cf. [47]) called “HUGO” in [46]. Attention will be paid mainly to aspects related
to the framework from Section 2.2. As compared to the previous version of HUGO [47],
the present version contains two main innovations. Namely, its mechanisms dealing with
the episodic memories and phenomenal consciousness are made explicit.

Conclusions are in Section 4.

46 J. Wiedermann

2 Status Quo

2.1 Watson the Computer

Recently, we have all witnessed a hallmark of the forthcoming era of machines that
could pass the Turing test. In February 2011 news appeared about an IBM Corp.’s
“Watson” computer defeating the top two Jeopardy! champions of all time during a
practice round, showcasing the current state of artificial general intelligence. Accord-
ing to Wikipedia, Jeopardy! is an American television quiz show featuring trivia in
history, literature, the arts, pop culture, science, sports, geography, wordplay, and more.
The show has a unique answer-and-question format in which contestants are presented
with clues in the form of answers, and must phrase their responses in question form.

The underlying Watson computer had no access to the Internet, but to a RAM mem-
ory containing about 200 millions of pages (4TB) of structured and unstructured text
written in natural human language. Watson’s entire software and data consumed about
16 TB (i.e., 16×1012 bytes or about 1014 bits) of RAM memory. This is about hundred
thousands times more than the original Turing memory estimate. Moreover, this soft-
ware ran on 90 powerful servers with a total of 2880 processors. Watson could process
500 GB, the equivalent of a million books, per second. Those are the numbers Turing
probably could not dream about. The architecture of Watson has been described e.g.
in [13].

But could Watson pass the Turing test? Only when restricting the test to the
“Jeopardy!” domain. In such a case, the performance of Watson would be so good that
“an average observer will not have more than 70 per cent chance of making the right
identification after five minutes of playing Jeopardy!”, to paraphrase Turing’s words.
A restricted form of Turing’s test, which compares the machine against the abilities of
experts in specific fields, is sometimes called Feigenbaum’s test.

From a viewpoint of some people working in AI Watson’s victory has not been a
great feat since apparently neither breakthrough ideas, nor at lest new recent theoret-
ical achievements have been used. Instead, a pragmatic approach based on massive
data (pre)processing and natural language processing technologies known for years,
undoubtedly pushed to their current limits, has been used.

In an interview about Watson [36], Noam Chomsky, the prominent American in-
tellectual, linguist, philosopher and cognitive scientist, has said: “Watson understands
nothing. It‘s a bigger steamroller. Actually, I work in AI, and a lot of what is done
impresses me, but not these devices to sell computers.” “A bigger steamroller” was ap-
parently a reference to “a small steamroller”, the Deep Blue computer of IBM Corp.,
which in 1997 defeated the world chess-master Garry Kasparov.

John Searle, professor of philosophy at the University of California, Berkeley, a
renowned philosopher of the mind, the inventor of the famous Chinese room argument
[34], in his newspaper article on Watson [35] essentially agreed with Chomsky:“Watson
did not understand the questions, nor its answers, nor that some of its answers were
right and some wrong, nor that it was playing a game, nor that it won — because it
doesn’t understand anything”.

Both gentlemen are, of course, right. Watson does not understand anything, Wat-
son does not think. However, both gentlemen failed to appreciate the importance of

Towards Computational Models of Artificial Cognitive Systems 47

this victory in which a computer defeated humans in a game designed to be played
between humans communicating in a natural language and following very general and
only slightly restricting rules. This is to be compared with the previous success of AI
— the “small steamroller” indirectly mentioned by Chomsky. The difference is tremen-
dous: while chess is a play with very formal and rigorous rules, nothing like that holds
in Jeopardy!. The jump in the level of informality is remarkable. One can ask how many
of such leaps will be necessary in order for computers to pass the Turing test. In order to
make an ultimate leap towards such computers, we may also ask how should such com-
puters look like. Do we already have ideas about the principles by which computers,
featuring a fully fledged human intelligence, will be based?

2.2 Winds of Change

The previous subsection has illustrated the “practical” status quo of the field of artificial
cognitive systems using the most recent and most visible representative of such systems.
Clearly, Watson the Computer is not a system reflecting the state-of-the-art in the theory
and experimental development of the field of cognitive systems.

The general impression from studying the theoretical background of artificial cogni-
tive systems is that it does not provide an easy survey. In spite of this, it appears that
during the past two decades an interesting and promising body of new knowledge has
accumulated in the theory which, when properly screened, selected and ordered, has
a potential to offer more or less coherent ideas about algorithmic principles on which
computational cognitive systems could be based. This knowledge has been scattered
in the respective literature, the emerging trends are often not formulated explicitly and
important contributions seem to penetrate only slowly into the general awareness of
people working in the field.

Here, we will highlight the main reasons for believing that we already have enough
knowledge to understand the algorithmic principles behind working of interesting arti-
ficial minds attaining a high-level cognition. In what follows we will list and comment
the main ideas, trends and important theoretical achievements we have in mind.

2.2.1 Escaping the Turing Test
In theory, instead of considering artificial cognitive systems that can pass the Turing
test, we more often consider a more general notion of humanoid cognitive systems.
Humanoid cognitive systems are cognitive systems endowed with human-like intelli-
gence, not necessarily with the intelligence that would be indistinguishable by Turing
test. Namely, Turing test is explicitly, and unnecessarily, anthropomorphic. If our ulti-
mate goal is to create machines that could help people in an intellectual domain, then
it does not make sense to insist that the behavior of our machines must closely resem-
ble that of people. Russell and Norvig [33] have invented a nice parable by noticing
that “aeronautical engineering texts do not define the goal of their field as ’making
machines that fly so exactly like pigeons that they can fool other pigeons’”.

When speaking about humanoid cognitive systems, nowadays we usually have in
mind humanoid robotic systems. This is a substantial deviation from Turing’s origi-
nal ideas [41] when he had in mind only “disembodied” computers, with no sensors,
communicating with people only via a terminal.

48 J. Wiedermann

In humanoid robotic systems, the adjective “humanoid” concerns both the form and
the contents of such robotic systems. Physically, such systems should take the form of
a human body, with as much sensors and actuators, mirroring those of the human body,
as possible. As we shall see later, this is of utmost importance since practically all
cognitive functions, higher-level function included, are derived from the sensorimotor
interaction of a robot with its environment. Should the cognitive functions developing
in a robot be of human-like nature, then the sensorimotor interaction of that robot,
inclusively its environment, should be of similar nature as in the case of humans. We
say that a humanoid robotic cognitive system should be embodied in a human-like body,
and situated, via its sensors and effectors, in a human-like environment (cf. [29], [30]
for more details).

As far as the “contents” of a humanoid robotic system, i.e., its control system is
concerned, it appears there is no need to mirror the architecture of the human brain,
only its functionality — see the next item.

2.2.2 Escaping Biologism
The next idea is escaping from anthropomorphism, or biologism in the design of control
part of cognitive systems. It is amazing how many pictures and schemes of the human
brain we see during a conference devoted to cognitive system design. Compare that to
a similar situation in a conference devoted to the aircraft design, plagued by pictures of
birds and their anatomy.

The following observation by Rodolfo Llinás, a prominent American neuroscientist,
a founding father of modern brain science, adds a further aspect: “I must tell you one of
the most alarming experiences I’ve had in pondering brain function... that the octopus
is capable of truly extraordinary feats of intelligence...most remarkable is the report
that octopi may learn from observing other octopi at work. The alarming fact here
is that the organization of the nervous system of this animal is totally different from
the organization we have learned is capable of supporting this type of activity in the
vertebrate brain... there may well be a large number of possible architectures that could
provide the basis of what we consider necessary for cognition and qualia” [24].

Indeed, there are many possible architectures for cognition, and it only seems natural
when thinking about artificial minds to concentrate on solutions permitted, and enabled
by our technologies while, of course, being inspired by nature, but not copying slavishly
the human brain architecture.

2.2.3 Internal World Models
If a humanoid cognitive system has to communicate “intelligently” with people, it
should obviously have information how the people’s world looks like, what could be
the abilities of people under various circumstance, etc. In short, such a system should
possess a kind of internal model of the external world (inclusively that of the self),
represented in whatever useful way.

Nowadays, it is generally believed that in order to open the road towards higher
brain functions in humanoid cognitive systems we need automatic computational me-
chanisms that will augment the semantic knowledge acquired in the interaction of the
system with its environment. These mechanisms often make use of internal world mo-
dels. Presently, prevailing trends seem to prefer representations of the internal worlds in

Towards Computational Models of Artificial Cognitive Systems 49

form of neural nets rather than in form of rule-based symbol manipulation systems. For
an overview of the recent state-of-the-art and a discussion on internal world models, cf.
[19] or [10]. A cognitive system architecture exploiting the idea of a world model can
be found, e.g., in [47].

2.2.4 Mirror Neurons
Mirror neurons were discovered during the 1990s (cf. [32]). As V. S. Ramachandran,
the prominent neuroscientist, has put it, “the discovery of mirror neurons in the frontal
lobes of monkeys, and their potential relevance to human brain evolution is the single
most important “unreported” (or at least, unpublicized) story of the decade. I predict
that mirror neurons will do for psychology what DNA did for biology: they will pro-
vide a unifying framework and help explain a host of mental abilities that have hitherto
remained mysterious and inaccessible to experiments” [31]. Roughly speaking, the mir-
ror neurons are neurons that fire if their owner performs a certain action as well if their
owner observes the same species performing the same action. This can be interpreted
as mirror neurons being a mechanism for “mind reading” of other subjects. Other re-
searchers speculated on the existence of similar neurons also in primates and developed
far-reaching conjectures on the importance of mirror neurons for understanding the in-
tentions of other people, empathy, imitation learning and even for language readiness
(cf. [4], [20], [31]). Surprisingly, until to date mirror neurons do not seem to find their
way into generally accepted computational cognitive models. However, in [45] it was
shown that mirror neurons can serve as a mechanism synthesizing the multimodal (i.e.,
motor, perceptional and proprioceptive) information and completing it, if necessary, so
that an agent can remain situated even when parts of the multimodal information are
missing. Such a mechanism forms a basis on which plausible explanation of the de-
velopment of a host of mental abilities has been founded. These abilities range from
imitation learning, communication via a sign language up to the dawn of thinking and
consciousness. The respective results have built a bridge between the theory of embod-
ied cognition and mirror neurons. These results have also justified the above mentioned
hopes laid on the discovery of mirror neurons, indeed. The basic model from [45] has
later been elaborated in a series of subsequent papers (cf. [46], [47]).

2.2.5 Global Workspace Theory
Global workspace theory (GWT) is a simplistic, very high-level cognitive architecture
that has been developed by B. J. Baars by the end of the last century [5], [6] to ex-
plain emergence of a conscious process from large sets of unconscious processes in the
human brain. Central to the theory is a model of information flow in which multiple,
parallel, asynchronous specialist processes (corresponding to unconscious processes)
compete and co-operate in an arena for access to a global workspace. A winning pro-
cess then corresponds to a conscious process which is promoted to the global workspace
and is allowed to broadcast information back to the arena. Based on this, the special-
ist processes invoke another set of unconscious processes and the whole cycle repeats
itself. Note that the processes in the global workspace appear in a serial manner, one
after the other, while each of them is the integrated product of parallel processing. The
GWT can successfully model a number of characteristics of consciousness, such as
its role in handling novel situations, its limited capacity, its sequential nature, and its

50 J. Wiedermann

ability to trigger a vast range of unconscious brain processes. Unfortunately, the GWT
neither does explain the mechanism how an originally unconscious process becomes a
conscious one nor the mechanism of process competition.

The GWT has been incorporated into a number of computational models (cf. S.
Franklin’s IDA model [14]). It is perhaps interesting to observe that one “question/
answer processing cycle” (cf. [13]) of Watson the Computer works, in fact, according
to the GWT.

2.2.6 (Dis)solving the Hard Problem of Consciousness
For the past decade or two, the modern theory of consciousness has been stigmatized by
the dichotomy between so-called functional (or access) consciousness and the so-called
phenomenal consciousness (or qualia). These two notions were famously introduced
by American philosopher of the mind, Ned Block [7] and subsequently also adopted
by other important protagonists (e.g., David Chalmers [9]) in the field. Functional con-
sciousness consists of that information globally available in the cognitive system for
the purposes of reasoning, speech and high-level action control, whereas phenomenal
consciousness consists of subjective phenomenal experience and feelings. Nowadays,
we have relatively good ideas how to implement functional consciousness (cf. [47]).
On the other hand, phenomenal consciousness seemed to present a nut hard to crack.
The problem of explaining how and why we have qualitative phenomenal experiences
(of form “what is it like”) presents so-called hard problem of consciousness [9]. Some
researchers even speculated that non-computational mechanisms for producing the sub-
jective experiences of phenomenal consciousness (in the brain) must be found.

Nevertheless, recently theories pointing to a common evolutionary [17] and senso-
rimotor basis (cf. [27] and other works by this author) for both phenomenal and func-
tional consciousness have appeared. According to O’Regan [27], in order to have a “raw
feel” (qualia) it will suffice for a robot already possessing functional consciousness to
engage in an embodied (sensorimotor) interaction with its environment. More specif-
ically, qualia can be seen as an engagement in exercising a “fixed sensorimotor skill”
accompanied by (functional) conscious attendance to that engagement and the skill’s
quality. The respective real-world interaction has to possess the properties of richness,
bodiliness, insubordinateness and grabbiness. Richness characterizes abundance in de-
tails. Bodiliness or corporality requires that voluntary motions of a body systematically
affect sensory inputs. Insubordinateness means that the world has its own dynamic that
we can affect only partially (if at all) causing that bodiliness is never complete. And
finally, grabbiness means that the perceptual stimuli have the alerting capacity — they
can peremptorily interfere with cognitive processing (e.g., they can cause in interrupt).

2.2.7 Episodic Memory
Episodic memory is what people “remember”, i.e., the contextualized information about
autobiographical events (times, places, associated emotions), and other contextual
knowledge that can be explicitly stated. It is obvious that such memory is important
for an agent to know about its past. Therefore, as noted in [26], it is surprising that
the vast majority of integrated intelligent systems ignore episodic memory, which often
dooms them to what can be achieved by people with amnesia, which is demonstrably
limited. Nowadays we frequently witness “add-ons” to the existing models of cognitive

Towards Computational Models of Artificial Cognitive Systems 51

systems architecture to account for episodic memory (cf. [26]). In [26] it is argued that
episodic memory systems can support a vast number of cognitive capabilities which are
mostly based on inspecting memories from the past that are “similar” to the present situ-
ation. Among these capabilities there is noticing novel situations, detecting repetitions,
virtual sensing (reminded by some recall), future action modelling, planing ahead (cf.
[48]), environment modelling, predicting success/failure, managing long term goals,
etc. Incorporating episodic memories and their efficient management and especially
their retrieval is a non-trivial matter and it is here where current massive data process-
ing technologies can find their good use.

2.2.8 Real Time Massive Data Processing
In a sense, Watson the Computer can be seen as a crippled cognitive system specialized
in doing efficient contextual retrieval invoked by clues over its preprocessed episodic
memory. Its success was possible thanks to technological progress enabling mainte-
nance of supercritical volumes of data and their searching and retrieval by supercritical
speed. Could this be the case that we are witnessing the birth of a new paradigm?
This paradigm states that intelligence is not only a matter of suitable algorithms, but
also, and mainly so, of the ability to accumulate (e.g., via learning and episodic mem-
ories storing), organize, and exploiting large data volumes representing knowledge, at
a speed matching the timescale of the environmental requirements. In the case of a
robot, its sensorimotor interactions must also possess this quality, i.e., they must in-
volve real time processing. Watson the Computer seems to be the first case where the
real time aspect has boldly entered the game, enforcing a massively parallel solution
which, eventually, has become the main factor in Watson’s victory.

2.2.9 Comprehensive and Up-To-Date Models of Cognitive Systems
In recent years we have seen a number of proposals of cognitive systems architectures,
cf. [2], [23], [37], or [43], to name a few of them. All these proposals have aimed if not
towards implementation, then at least towards modelling and explanation of selected
subsets of higher mental functions. Some of these systems have a long developmental
history reaching to the 1980s through which they have evolved hand in hand with the
theory towards higher level cognitive functions. Inevitably, the design of these systems
reflects the spirit of the time of their creation. Most of them were meant as proposals of
experimental architectures with the goal to verify their viability in solving basic learning
cognitive tasks, trying to reach up to the higher cognitive functions. Some of these
models have been quite complex, mirroring the known brain architecture, often with
“modules” responsible for realization of certain tasks (like “anticipation”, “motivation”,
“planning”, “action selection”, etc.), and with only vague ideas about the corresponding
algorithmic mechanisms. A few of the models seem to be comprehensive enough, i.e.,
covering the whole range of cognitive abilities, from sensorimotor coupling, imitation
learning, language evolution and acquisition, thinking, up to and inclusive functional
consciousness. However, none of them seems to be on a par with the previous list of
recent trends and achievements.

In the next section, we present a model that appears to be comprehensive in the
previous sense and whose design reflects the previously mentioned “winds of change”.

52 J. Wiedermann

3 A Non-biological Model of a Conscious Cognitive System

In this section, we introduce a high-level model of a cognitive system that aspires to
fulfill the requirements mentioned in the previous section.

The model is based on the author’s model HUGO which, in the course of its exis-
tence, has passed through a few evolutionary phases [45], [46]. Its current state has been
described in [47]. We present its abridged description stressing its up-to-date aspects.

Presenting the model, we make use of an approach used in software engineering in
the design of large software systems. We start by sketching its architecture and giving
an informal specification of its basic modules. This means that we define the type of
data and data flow among the individual modules as well as the task of these modules
in processing the data. Then, we give plausible arguments supporting the realization of
processes mimicking higher cognitive tasks such as imitation learning and development
of communication, language, thinking and consciousness.

The design of HUGO has not been influenced by the architecture of human brain, or
that of any other animal. In that sense it is a non-biological model (cf. 2.2.2). However,
in some aspects its operation bears quite a similarity to the operation of human brain.
This indicates that the underlying principles are perhaps of a general nature which all
models of cognition must capture.

3.1 HUGO

The internal structure of our model is depicted in Fig. 1. It consists of four main parts:
there are sensorimotor units, the sensorimotor world model represented by a mirror net,
the control unit, and the body. Arrows depict the data flow between these parts. All data
transferred along the arrows are of digital nature.

Next, we specify the actions performed by the model’s individual parts.
The sensorimotor units receive so-called motor instructions from the control unit.

These are not only instructions for locomotive organs of the agent, but also instructions
for pointing the sensors in a certain direction, for changing their settings, etc. At the
same time, these instructions flow into the mirror net. The sensorimotor units deliver
two kinds of data back to the mirror net.

The first kind of data is exteroceptory data that deliver information from the sensory
units scanning the agent’s environment. In this case, the sensory units act as a trans-
former of registered physical inputs (electromagnetic waves, sounds, pressure, etc.)
into the digital form. In general, this transformation cannot be described mathemati-
cally since it depends on the physical/technical characteristics of the sensory units. The
second kind of data is proprioceptory data delivering information from the internal sen-
sors placed within the sensorimotor units or within the agent’s body. For instance, this
can be information about the current settings of the units or current conditions of the
unit.

The next part of the model is the mirror net. It is a network of artificial mirror neu-
rons which act analogously to (our ideas on) real mirror neurons. In each unit of this
net (which might consists of several neurons), the exteroceptory and proprioceptory
data from sensorimotor units (denoted as ‘perception’ in Fig. 1) meet with the motor
instructions and (possibly) the annotations from the control unit. The annotations are

Towards Computational Models of Artificial Cognitive Systems 53

Abstract
concepts

Global workspace

Habits
Embodied
concepts

Mirror net
Episodic
memory

Annotations

S M
units

Perception

Motor
instruc tions

Thick arrows
denote the
flow of
information
in the thinking
mode

Semantic
world model

Syntactic
world model

Body

Environment

Fig. 1. The structure of a cognitive agent

the set of abstract concepts which are active at that time in the control unit. Then, the
conjunction of motor instructions, annotations and of perceptual information — called
‘units of S-M information’ in Fig. 1 — is computed. This joint information is called
multimodal information. The task of the mirror net is fourfold:

Learning: the net learns frequently occurring multimodal information and stores its
representation;

Identification: the net finds multimodal information already stored in the net which is
“most similar” to the incoming information;

Associative retrieval: given only partial multimodal information in which the inputs
from some sensorimotor units are missing, or only an annotation of such informa-
tion, the net finds the entire multimodal information of which the partial informa-
tion or annotation is given.

Episodic memory formation: the incoming multimodal information from sensors is
annotated by the contents of consciousness at that time, and stored.

Note that in our model the contents of episodic memories is the entire multimodal unit
annotated at the occasion of paying conscious attention to the respective perception.
This “conscious attention” can be elements of phenomenal consciousness, or, in more
advanced cases, words in a natural agent’s language. Annotations enable recall of the
episodic memories that are most similar to the given annotation. The recalled memories
are then further processed as specific multimodal units.

In order to work in this way, we must take measures that there is only a finite (albeit
possibly a large) amount of “important” multimodal information stored in the mirror
net. This can be achieved, e.g., by parameterizing motor instructions by a finite set of
values and preprocessing the perceptory data by extracting the key features from it. For

54 J. Wiedermann

such a purpose fuzzy techniques leading to a rough classification of multimodal data
into clusters of similar information can be used. Even when such measures are taken in
the mostly developed agents there can still be a huge amount of data stored in the mirror
net and the episodic memory. It is here where the advanced data processing techniques
mentioned in 2.2.8 could find their use.

The next requirement concerns the components of the multimodal information. In
order that the associative recall can work well, the entire multimodal information must
be uniquely determined by any of its significant components. For reasons that will be
explained in the next section — namely in order the thinking mechanism to work —
we assume that if there is a motor component in multimodal information, then this
component alone determines the rest of multimodal information.

Each part of the mirror net specializes in learning and recognizing specific multi-
modal information corresponding to one “sensory-behavioral unit”. Learning is done
perpetually when complete multimodal information appears at the input to the mirror
net. Such circumstance is called standard learning mode. Learning proceeds by Heb-
bian principles, i.e., by strengthening the weights of neurons representing the respective
multimodal information each time when it is recognized.

Thus, in any case, irrespectively whether all parts or only a (significant) part of the
multimodal information enters the net, the net outputs complete multimodal informa-
tion which proceeds into the control unit. In the context of the control unit, the rep-
resentations of multimodal information are called the concepts. Each concept can be
represented by a tuple of values of the attributes which characterize the given concept.

The task of the control unit is, given the current multimodal information represented
by the active concepts plus the incoming stream from the mirror net, to produce a new
set of active concepts. The motor part of multimodal information and/or the annotations
corresponding to the newly activated concepts is sent both to the sensorimotor units and
to the mirror net. Clearly, the control unit determines the next action of an agent.

Within the control unit there are so-called embodied concepts corresponding to each
occurrence of multimodal information in the mirror net. Moreover, new, so-called ab-
stract concepts are formed from the existing (mainly embodied) concepts within the
control unit. Associations of various strengths connect the concepts within it. The con-
cepts and the associations among them are all stored in the control unit and form the
agent’s memory. The rules of forming new concepts and strengthening the associations
among them are based on the following principles; the first three of them have been
already identified by the 18th century Scottish philosopher D. Hume [21]:

Contiguity in space: two concepts get associated (or the respective association gets
strengthened) if they frequently occur simultaneously; also, a new concept corre-
sponding to the union of the two concepts gets formed;

Contiguity in time: two concepts get associated (or the respective association gets
strengthened) if they frequently occur one after the other;

Similarity: a concept gets associated with another concept if the former is similar to
the latter and vice versa; the notion of similarity must be appropriately defined (e.g.,
by requiring a sufficient overlap in multimodal information);

Towards Computational Models of Artificial Cognitive Systems 55

Abstraction: the common part of two “sufficiently” similar concepts forms an abstrac-
tion of the two; the respective “abstract” concept is added to the concepts repre-
sented in the control unit.

The control unit should work according to the following rules. At each time, some con-
cepts in it should be in active state. These concepts represent the current “mental state”
of the agent. When new multimodal information enters the control unit it activates a
new set of concepts. Based on the current mental state and the set of newly activated
concepts, a new set of concepts is activated. This set represents the new mental state of
the agent and determines the next motor action of the unit.

Note that the new mental state is computed from an old one and from the new input.
This mechanism is greatly reminiscent of control mechanism in the finite automata. The
idea is that the new mental state should be computable via associations stored among
the concepts. In detail, the currently and newly activated concepts jointly excite, via
the associations, a set of passive concepts. This excitation strengthens all the respective
associations by a little amount. At the same time, small amount weakens the remaining
associations. This models the process of forgetting. From among the set of all the ex-
cited concepts, the set of the most excited concepts gets activated and the previously ac-
tive concepts are deactivated. The set of currently active concepts is also strengthened.
This set then represents the current mental state. The set of currently active concepts
can be seen as the short-term (operational) memory of the agent. The set of all the con-
cepts with all settings of associations and weights can be seen as a long-term memory
of the agent. Obviously, the control unit can also be implemented by an artificial neu-
ral net. Since in any practical realization the net has to process a huge, “supercritical”
number of concepts in real time, use of parallelism in this case seems to be unavoidable
(cf. 2.2.8).

Based on the above mentioned principles the control unit is capable of solving sim-
ple cognitive tasks: learning simultaneous occurrence of concepts (by contiguity in
space), their sequence, so-called simple conditioning (by contiguity in time), simi-
larity based behavior and computing their abstractions. In fact, these are the unit’s
basic operations. The mechanism is also capable to realize Pavlovian conditioning
(cf. [43], p. 217), in which the control unit can be conditioned to produce a response to
an apparently unrelated stimulus.

If one wants to go farther in the realization of the cognitive tasks, one should consider
special concepts called affects. The affects come in two forms: positive and negative
ones. The basic affects are activated directly from the sensors. The ones correspond-
ing to the positive feelings are positive whereas the ones corresponding to the negative
feelings are negative. The excitatory (inhibitory) associations arise among positive (neg-
ative) affects and concepts. The role of the affects is to modulate the excitation mecha-
nism. With the help of affects, one can simulate the reinforcement learning (also called
operant conditioning) and the delayed reinforcement learning. Pavlovian conditioning,
reinforcement learning and delayed reinforcement learning seems to be a minimal test,
which a cognitive system aspiring to produce a non-trivial behavior should pass.

Affects by themselves do not correspond to what O’Regan [27] calls “raw feelings”,
but they create an important ingredient of phenomenal consciousness under fulfillment
of other requirements described in 2.2.6.

56 J. Wiedermann

In a stimulating environment during an agent’s interaction with its environment con-
cepts within the control unit start to self–organize, via property of similarity, into clus-
ters whose centers are formed by abstract concepts. Moreover, by properties of time
contiguity, chains of concepts, called habits, linked by associations start to emerge. The
habits correspond to often performed activities. The behavior of agents governed by
habits starts to prevail. In most cases such a behavior unfolds effortlessly. Only at the
“crossings” of some habits an additional multimodal information from the mirror net
(in an on–line or off–line mode—see the next section) is required directing the sub-
sequent behavior. For more details concerning the work and cognitive abilities of the
control unit, see the author’s earlier paper [44] (and the references mentioned therein)
where the control unit under the name “cogitoid” has been described. The operation
of a cogitoid can be seen as a specific implementation of the global workspace theory
(cf. 2.2.5).

The last component of our model is its body. Its purpose is to support the agent’s
sensorimotor units and to enclose all its parts into one protective envelope.

Now let us return to the question of internal models (cf. 2.2.3). Obviously, the mirror
net can be seen as a specific kind of a static world model. In this model, the world is
represented in the way as it is cognised by an agent’s sensory and motor actions, i.e., by
an agent’s interaction with its environment. It can be termed as a sensorimotor model
describing the “syntax” of the world. In the mirror net, the combinations of the exte-
roceptory and proprioceptory inputs jointly with motor actions fitting together, which
“make sense” for the agent, are stored. Note that since the proprioceptory information
is always a part of multimodal information, also elements of an agent’s own model are
in fact available in the mirror net.

On the other hand, the control unit is a specific model of the world capturing the
“semantics” of the world. In this model, the relations among concepts are stored which,
obviously, correspond to real relations among real objects and phenomena observed or
generated by the agent during its existence. Similar relations are also maintained among
the representations of these objects and phenomena. All this information represents a
kind of a dynamic internal world model. One can also see this model as a depository of
the “patterns of behavior which make sense in a given situation.”

In the next section, we describe how the interaction of both world models leads to a
more complex behavior.

3.2 Towards Higher Level Cognitive Functions

First we describe the mechanism of imitation learning which is a starting point for
higher mental abilities, cf. [4], [20]. Imagine the following situation: agent A observes
agent B performing a certain well distinguishable task. If A has in its repository of be-
havioral units multimodal information, which matches well the situation mediated by
its sensors (which, by itself, is a difficult robotic task), then A’s mirror net will iden-
tify the entire corresponding multimodal information (by virtue of associativity). At the
same time, it will complement it by the flag saying “this is not my own experience”
(because the proprioceptive part of information must have been filled in when complet-
ing the entire multimodal information) and deliver it to the central unit where it will be
processed adequately. This can be seen as a germ of the self concept.

Towards Computational Models of Artificial Cognitive Systems 57

At that moment, A has information to its disposal what B is about to do, and hence,
it can “forecast” the future actions of B. “Forecasting” is done by following the as-
sociations in the control unit starting in the current mental state. Agent A can even
reconstruct the “feelings” of B (via affects) since they are parts of the retrieved multi-
modal information. This might be called empathy in our model. Moreover, if we endow
our agent with the ability to memorize short recent sequences of its mental states, then
A can repeat the observed actions of B. This, of course, is called imitation.

The same mechanism helps to form a more detailed model of self. Namely, observing
the activities of a similar agent from a distance helps the observer to “fill in” the gaps
in its own dynamic internal world model (i.e., in the control unit), since from the begin-
ning an observer only knows “what it feels like” if it perceives its own part of the body
while doing the actions at hand. At this stage, we are close to primitive communication
done with the help of gestures. Indicating some action via a characteristic gesture, an
agent “broadcasts” visual information that is completed by the observer’s associative
memory mechanism to the complete multimodal information. That is, with the help of
a single gesture complex information can be mediated. A gesture acts like an element of
a higher-level (proto)language. By the way, here computational emotions can enter the
game as a component of the communication. Their purpose is to modulate the agent’s
behavior. Of course, for such a purpose the agents must be appropriately equipped (e.g.,
by specific mimics, possibility of color changes, etc.). Once we have articulating agents,
it is possible to complement and subsequently even substitute gestures by articulated
sounds. It is the birth of a spoken language. At about this time the process of strati-
fication of abstract concepts from the embodied ones begins thanks to the abstraction
potential of the control unit (cf. the rules of forming new concepts in the control unit).
Namely, the agents “understand” their gestures (language), defined in terms of abstract
concepts, via empathy in terms of their embodiment or grounding, in the same senso-
rimotorics and proprioception (i.e., in the same embodied concepts) [12], [15], and in
a more involved case, in the same patterns of behavior (habits). Without having a body
an agent could not understand its communication [30].

Returning to the previously mentioned process of concept stratification, the respec-
tive two classes of concepts can be seen as concepts on a symbolic and sub-symbolic
level, respectively. This view offers an answer to an often mentioned problem, namely
whether the mind works with the former or the latter class of concepts. Our model works
with both classes of concepts by continuously passing from one class to the other class.
The sub-symbolic level is necessary for understanding certain abstract concepts, espe-
cially those related to perception or to sensorimotor activities. The language is in fact a
superstructure over the embodied concepts. There is one more aspect to be mentioned
here: the abstract concepts at the symbolic level need not be grounded directly in the
embodied concepts, at a sub-symbolic level. Rather, they can be “tethered” (this term
has been coined in [38]) to other abstract concepts to which they are related by asso-
ciations arising in the control unit. The network of certain abstract concepts can thus
represent a “theory” within which an agent can “think” (see in the sequel) or act. In the
case of artificial agents, such a net can be set-up in the control unit prior to an agent’s
first activation. That is, the respective behavior need not be learned from scratch by
the agent, it can be, so to speak, built-in, or “innate”. This mechanism would simulate

58 J. Wiedermann

the result of a development that in living creatures has been reached by evolution. For
similar ideas, cf. [38].

The transition from gestures or body language to articulation does not only mean that
gestures get associated with the respective sounds but, above all, with the movements
of speaking organs. In the further development this facilitates a voiceless “speaking to
oneself” and later on, the transition towards thinking (see in the sequel).

The structure and functionality of the control unit and the mirror net and their coop-
eration realize, in fact, the solution to the symbol grounding problem in a similar spirit
as described by Steels et al. in [40].

Having communication ability, an agent is close to thinking. In our model, thinking
means communication with oneself, similarly as in cf. [11]. By communicating with
oneself, an agent triggers the mechanism of discriminating between the external stimuli
(I listen to what I am talking) and the internal ones. This mechanism may be termed as
self-awareness in our model. By a small modification (from the viewpoint of the agent’s
designer), one can achieve that the still self-communication can be arranged without the
involvement of speaking organs at all. In this case, the respective instructions will not
reach these organs; the instructions will merely proceed to the mirror net (see Fig. 1).
(Note that some people still move their speaking organs while thinking intensively.)
Here they will invoke the same multimodal information as in the case when an agent
directly hears spoken language or perceives its gestures via proprioception (here we
make use of our assumption that a motor part of multimodal information is sufficient
to determine its rest). Obviously, while thinking an agent “switches off” any interaction
with the external world (i.e., both perception and motor actions). Thus, in Fig. 1 the
parts of the schema connected by thick arrows depict an agent in a “thinking mode”;
this is captured by the cycle from the control unit to the mirror net and back to the
control unit. In such a case, seen from the viewpoint of its internal mechanisms, an
agent operates as in the case of standard learning mode, i.e., when it receives the “real”
perceptory information and executes all motor instructions. In the thinking mode, the
same processes go on, but this time they are based on the virtual, rather than real,
information mediated by the mirror net. One can say that in the thinking mode an agent
works “off-line”, while in the standard mode it works “on-line”. Note that once an agent
has the power of “shutting itself off” from the external world in the thinking mode, then
this agent in fact distinguishes between a thought and reality, and this is considered to
be the hallmark of the consciousness [39].

In our model, we informally define functional consciousness much in the spirit of
Minsky’s idea [25] that “consciousness is a big suitcase”, carrying many different men-
tal abilities. A prologue to functional consciousness is communication and thinking.
The following “definition” of functional consciousness assumes that the agents are able
to communicate in a higher-level language. A higher-level language is an “abstract”
language in which a relatively complex action (corresponding to a sequence of mental
states) or an abstract concept is substituted by a word expression or a gesture. A lan-
guage level is the higher the “richer” the language, i.e., the greater and more abstract is
a set of things about which one can communicate. The agents can be thought of as being
functionally conscious, as long as their language ability has reached such a level that

Towards Computational Models of Artificial Cognitive Systems 59

Cognitive functionality

Innate reflexes, affects, and grounding of elementary actions in sensory-motor coordination

Distinction between “self” and “others”, formation of the “self” concept, imitation of ele-
mentary actions

The birth of phenomenal consciousness

Imitation of sequences of actions via rehearsal

The birth of communication via gestures, body language, “mind reading” (i.e., intention
discovering by observation), and empathy

Adding of vocalization to gestures and its association with the motorics of gestures and later
with the motorics of the speech organs

Development of the episodic memories

Keeping of evolutionary equilibrium between the increase of a number of word stimuli and
the brain size

Direct concept activation via listening to the corresponding words, development of abstract
concepts

The dawn of thinking: first phase via talking aloud to oneself; subsequently only speaking
organ movements prevail; later a gradual decay of these movements with the instructions to
speaking organs getting directly associated with the semantics of words

Subjective experience of thinking as a proprioception of abstract concept activation and the
self concept activation

Thinking as virtually situated damped sensory-motor actions

A fully developed functional and phenomenal consciousness

Fig. 2. The evolution of cognitive abilities

they are able to fable on a given theme (note the similarity with [8]). More precisely,
the functionally conscious agents are able:

– to speak about, think of, and explain, from the first and the third person viewpoint,
their past, present and future experience, feelings, intentions and observed objects,
actions, and phenomena;

– to imitate the observed (or more generally: perceived, by whatever senses) activities
of other agents, to describe them verbally and, vice versa, to perform activities given
their description in a higher level language;

– extend their higher level language by new words or to learn a new langauge.

At this developmental level of functional consciousness we may also expect, according
to O’Regan’s theory [27], that the agent will also be equipped by phenomenal con-
sciousness. A prerequisite for this to happen is, of course, that the agent’s real-world
interaction will possess the quality of richness, bodiliness, insubordinateness and grab-
biness mentioned in 2.2.6.

Note that such a state of matters cannot be achieved without agents having an inter-
nal world model at their disposal along with the knowledge of the world’s functioning,

60 J. Wiedermann

and that of their own functioning within this world; to that end the agents must be con-
structed so that they can learn. A prerequisite for consciousness to emerge is a “social
interaction” among agents in a higher-level language with the same or similar seman-
tics. Obviously, consciousness is not a property, which an entity does possess, or not.
Rather, it is a continuous quality which ranges from rudimentary forms towards higher
ones.

An agent can possess this quality in a various degree. For instance, from the previous
requirements it follows that a conscious agent should recognize itself in a mirror. A
“more conscious” agent should be able to tell apart lies from the truth. For instance, it
can understand fairy tales and should “know” that these are fanciful stories. An even
more conscious agent should be able to lie (not merely with the help of, e.g., mimic
coloring, but in a higher language) and should still be aware of its lying.

And how do we know that a conscious agent “understands” its own actions and its
world? Well — we simply ask it: the ability to answer such questions is the very idea
of our “definition” of functional consciousness.

The above described notion of functional consciousness can be seen as a test to be
applied by an entity to another entity in order to determine whether the other entity is
functionally conscious according to that definition.

As a final remark, it is interesting to observe how our model deals with so-called
symbol detachment problem investigated in [28]. This is a problem of how and why do
the situated agents develop representations that are detached from their current senso-
rimotor interaction, but nevertheless preserve grounding and aboutness. Our model of
an evolutionary path leading from the imitation learning capabilities through thinking
up to the birth of consciousness offers a plausible explanation of the mechanisms and
representations underlying the symbol detachment problem (cf. the emergence of the
abstract concepts from the embodied concepts in the control unit) and stresses their role
for the development of complex cognitive capabilities.

Figure 2 summarizes the evolution of higher cognitive abilities within an intelligent
agent according to our model and the respective knowledge acquisition and learning
processes. This evolution can be seen from two different viewpoints. First, it can be
seen as a process of a development of an agent (e.g., of a human child) already possess-
ing the respective mechanisms, in the course of agent’s growing up and its education.
Second, it can be seen as a stepwise ‘upgrading’ process over an evolutionary sequence
of agents, each one of them possessing more advanced mechanisms and embodiments
for managing more demanding cognitive skills than those obeyed by its predecessors.

Note the prominent role of mirror neurons in the above schema — starting with
the second item at the latest, it is difficult to see how to cope with the corresponding
cognitive tasks without having the mirror neurons and, indeed, the internal world model
incorporated in the agent’s model.

4 Conclusions

Undoubtedly, at present we can observe a change of attitude of the general publics to-
wards the thinking machines. Turing might be quite happy that this part of his prediction
(cf. the introductory quotation) has been fulfilled — people consider it quite acceptable

Towards Computational Models of Artificial Cognitive Systems 61

that machines can think. The question of the day is, how exactly, and when will the
machines think.

We only have preliminary, but quite plausible ideas about the first part of the last
question. It has been the goal of this article to throw some light on this matter.

And when will thinking machines appear? By extrapolating an exponential growth
of technology over several decades, futurist Raymond Kurzweil predicted in 2005 that
Turing test-capable computers would be manufactured in 2029 [22], and in 2009 he
even made a $20,000 public bet that the test will be passed by then, indeed [3].

References

1. Aleksander, I., Dummall, B.: Axioms and Tests for the Presence of Minimal Consciousness
in Agents. Journal of Consciousness Studies 10(4-5) (2003)

2. Anderson, M., Bothell, M., Byrne, D., Douglass, S., Lebiere, C., Qin, Y.: An integrated theory
of the mind. Psychological Review 111(4), 1036–1060 (2004)

3. The Arena of Accountable Predictions: A Long Bet. By 2029 no computer – or machine
intelligence – will have passed the Turing Test (2009),
http://longbets.org/1/#adjudication_terms

4. Arbib, M.A.: The mirror system hypothesis: how did protolanguage evolve? In: Tallerman,
M. (ed.) Language Origins: Perspectives on Evolution. Oxford University Press (2005)

5. Baars, B.J.: A cognitive theory of consciousness. Cambridge University Press, Cambridge
(1988)

6. Baars, B.J.: In the theater of consciousness: The workspace of the mind. Oxford University
Press, Oxford (1997)

7. Block, N.: On a Confusion About a Function of Consciousness. Brain and Behavioral Sci-
ences 18, 227–247 (1995)

8. Blum, M., Williams, R., Juba, B., Humphrey, M.: Toward a high-level definition of con-
sciousness. In: Invited Talk Presented at the Annual IEEE Computational Complexity Con-
ference, San Jose, CA (2005)

9. Chalmers, D.: Facing Up To the Problem of Consciousness. J. of Consciousness Studies 2(3),
200–219 (1995)

10. Cruse, H.: The evolution of cognition–a hypothesis. Cognitive Science 27(1) (2003)
11. Dennett, D.: Consciousness Explained. The Penguin Press (1991)
12. Feldman, J.: From Molecule to Metaphor. MIT Press, Cambridge (2006)
13. Ferrucci, D., et al.: Building Watson: An Overview DeepQA Project. AI Magazine, 200–214

(Fall 2010)
14. Franklin, S.: IDA: A conscious artifact? Journal of Consciousness Studies 10(4-5), 47–66

(2003)
15. Harnad, S.: The symbol grounding problem. Physica D (42), 335–346 (1990)
16. Harnad, S.: Other bodies, other minds: a machine incarnation of an old philosophical prob-

lem. Minds and Machines (1), 43–54 (1991)
17. Harvey, I.: Evolving Robot Consciousness: The Easy Problems and the Rest. In: Fetzer, J.H.

(ed.) Evolving Consciousness. Advances in Consciousness Research Series, pp. 205–219.
John Benjamins, Amsterdam (2002)

18. Holland, O. (ed.): Journal of Consciousness Studies. Special Issue: Machine Consciousenss,
vol. 10(4-5) (2003)

19. Holland, O., Goodman, R.: Robots with internal models: a route to machine consciousness?
Journal of Consciousness Studies 10(4-5) (2003)

http://longbets.org/1/#adjudication_terms

62 J. Wiedermann

20. Hurford, J.R.: Language beyond our grasp: what mirror neurons can, and cannot, do for lan-
guage evolution. In: Kimbrough, O., Griebel, U., Plunkett, K. (eds.) The Evolution of Com-
munication systems: A Comparative Approach. The Viennna Series in Theoretical Biology.
MIT Press, Cambridge (2002)

21. Hume, D.: Enquiry concerning human understanding. In: Selby-Bigge, L.A. (ed.) Enquiries
Concerning Human Understanding and Concerning the Principles of Morals, 3rd edn.
Clarendon Press, Oxford (2003); revised by Nidditch, P.H.

22. Kurzweil, R.: The Singularity is Near, p. 652. Viking Books (2005)
23. Langley, P.: An adaptive architecture for physical agents. In: Proceedings of the 2005

IEEE/WIC/ACM International Conference on Intelligent Agent Technology, pp. 18–25.
IEEE Computer Society Press, Compiegne (2005)

24. Llinàs, R.: I of the Vortex: From Neurons to Self. MIT Press (2001)
25. Minsky, M.: Consciousness is a big suitcase. EDGE (1998),

http://www.edge.org/3rd_culture/minsky/minsky_p2.html
26. Nuxoll, A.M., Laird, J.E.: Extending Cognitive Architecture with Episodic Memory. In: Pro-

ceedings of the Twenty-Second Conference on Artificial Intelligence. AAAI Press, Vancou-
ver (2007)

27. O’Regan, J.K.: How to Build Consciousness into a Robot: The Sensorimotor Approach. In:
Lungarella, M., Iida, F., Bongard, J.C., Pfeifer, R. (eds.) 50 Years of Aritficial Intelligence.
LNCS (LNAI), vol. 4850, pp. 332–346. Springer, Heidelberg (2007)

28. Pezzulo, G., Castelfranchi, C.: The symbol detachment problem. Cogn. Processes 8, 115–131
(2007)

29. Pfeifer, R., Scheier, C.: Understanding Intelligence. The MIT Press, Cambridge (1999)
30. Pfeifer, R., Bongard, J.: How the body shapes the way we think: a new view of intelligence.

The MIT Press (2006)
31. Ramachandran, V.S.: Mirror neurons and imitation as the driving force behind ‘the great leap

forward’ in human evolution. EDGE: The Third Culture (2000),
http://www.edge.org/3rd culture/ramachandran/
ramachandran p1.html

32. Rizzolatti, G., Fadiga, L., Gallese, V., Fogassi, I.: Premotor cortex and the recognition of
motor actions. Cognitive Brain Research 3, 131–141 (1996)

33. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice Hall,
Upper Saddle River (2003)

34. Searle, J.R.: Minds, brains, and programs. Behavioral and Brain Sciences 3(3), 169–225
(1980)

35. Searle, J.S.: Opinion: Watson Doesn’t Know It Won on ’Jeopardy!’. The Wall Street Journal
(2011), http://WSJ.com

36. Schmitt, G.: Conversation from January/February 2011, between myself and Noam Chomsky
(2011), http://www.framingbusiness.net/archives/1287

37. Shanahan, M.P.: Consciousness, emotion, and imagination: a brain-inspired architecture for
cognitive robotics. In: Proceedings AISB 2005 Symposium on Next Generation Approaches
to Machine Consciousness, pp. 26–35 (2005)

38. Sloman, A.: Why symbol-grounding is both impossible and unnecessary, and why theory-
tethering is more powerful anyway (2007),
http://www.cs.bham.ac.uk/research/projects/
cogaff/talks/models.pdf

39. Smee, A.: Principles of the human mind deduced from physical laws, N.Y (1849) (1853)
40. Steels, L., Loetzsch, M., Spranger, M.S.: Semiotic dynamics solves the symbol grounding

problem. Nature Precedings (2007),
http://hdl.nature.com/10101/npre.2007.1234.1

http://www.edge.org/3rd_culture/minsky/minsky_p2.html
http://www.edge.org/3rd_culture/ramachandran/ramachandran_p1.html
http://www.edge.org/3rd_culture/ramachandran/ramachandran_p1.html
http://WSJ.com
http://www.framingbusiness.net/archives/1287
http://www.cs.bham.ac.uk/research/projects/cogaff/talks/models.pdf
http://www.cs.bham.ac.uk/research/projects/cogaff/talks/models.pdf
http://hdl.nature.com/10101/npre.2007.1234.1

Towards Computational Models of Artificial Cognitive Systems 63

41. Turing, A.: Computing Machinery and Intelligence. Mind 59(236), 433–460 (1950)
42. Turing, A., et al.: Can Automatic Calculating Machines Be Said to Think? In: Shieber, S.

(ed.) From a 1952 BBC Broadcast, Reprinted in The Turing Test: Verbal Behavior and the
Hallmark of Intelligence. The MIT Press, Cambridge (1952)

43. Valiant, L.G.: Circuits of the mind. Oxford University Press, New York (1994)
44. Wiedermann, J.: Towards Algorithmic Explanation of Mind Evolution and Functioning.

In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 152–166.
Springer, Heidelberg (1998)

45. Wiedermann, J.: Mirror neurons, embodied cognitive agents and imitation learning. Com-
puting and Informatics 22(6), 545–559 (2003)

46. Wiedermann, J.: HUGO: A Cognitive Architecture with an Incorporated World Model. In:
Proc. of the European Conference on Complex Systems ECCS 2006. Said Business School,
Oxford University (2006)

47. Wiedermann, J.: A high level model of a conscious embodied agent. In: Proc. of the 8th
IEEE International Conference on Cognitive Informatics, pp. 448–456 (2009); expanded ver-
sion appeared in International Journal of Software Science and Computational Intelligence
(IJSSCI) 2(3), 62–78 (2010)

48. Zimmer, C.: The Brain: Memories Are Crucial for Looking Into the Future. DISCOVER
Magazine (2011)

A Fully Generic Approach

for Realizing the Adaptive Web

Paul De Bra and David Smits

Department of Mathematics and Computer Science,
Eindhoven University of Technology, The Netherlands

debra@win.tue.nl, d.smits@tue.nl

Abstract. It is time for Adaptive Web (server) extensions to grow up
and become generic. The GRAPPLE1 (EU FP7) project aimed at inte-
grating Learning Management Systems (LMS) with Adaptive Learning
Environments (ALE) in order to support life-long learning. But instead
of developing a dedicated Web-based ALE we developed an architecture
containing a fully generic adaptive Web server, a distributed User Mod-
eling Framework and a generic browser-based authoring environment for
Domain Models and Conceptual Adaptation Models. The GRAPPLE ar-
chitecture can be used for creating and serving any type of adaptive Web-
based application. It supports content-, link- and presentation (layout)
adaptation based (in any programmable way) on any desired user model
information. In this paper we concentrate on GALE [21], the adaptation
engine we renamed to the “Generic Adaptation Language and Engine”.
We describe the key elements that make GALE into a truly generic and
highly extensible Web-based adaptive delivery environment.

Keywords: adaptation engine, adaptation rules, generic architecture.

1 Introduction

Vannevar Bush is often said to be the inventor of hypertext because of his article
“As We May Think” [11]. (The term “hypertext” was not used by Bush and in-
troduced much later by Ted Nelson [19].) Bush actually did more in that article,
by envisioning that the user would build “trails of his interest through the maze
of materials available to him”. This type of user was called the “trailblazer”.
It is a first sign of personalization, aimed at facilitating revisiting information
(either by the same user or by someone else). Another form of personalization
was the addition of annotations: “he inserts a page of longhand analysis of his
own”. Adaptive hypermedia research, first summarized by Brusilovsky in 1996
[7] and updated in 2001 [8] aims at automating this trailblazing and annotat-
ing through link adaptation and content adaptation. Knutov et al [18] describe
(in 2009) many new adaptation techniques developed to date and provide a list
of challenges for creating a new generic adaptive hypermedia system, capable

1 GRAPPLE stands for Generic Responsive Adaptive Personalized Learning
Environment.

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 64–76, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Fully Generic Approach for Realizing the Adaptive Web 65

of dealing with ontologies, open corpus adaptation, group adaptation, informa-
tion retrieval and data mining, higher order adaptation, context awareness and
multimedia adaptation.

GALE [21] tackles some of Knutov’s challenges directly through implemented
functionality (that we will describe) and makes it possible to tackle more chal-
lenges by means of a highly extensible modular architecture. GALE builds on
the experience we gained in the past when developing and using AHA! [3, 4, 6],
the first general-purpose open source adaptive Web-server extension, used in
different institutes all over the world.

This paper is organized as follows: Section 2 presents some background on
adaptive Web-based systems, and positions GALE as a generic adaptive Web-
server extension. Section 3 describes the GALE architecture, stressing the mod-
ular construction of communicating components. It also describes how GALE
executes adaptation rules. Section 4 describes the adaptation language GAM,
a simple textual representation of adaptation models. Section 5 concludes and
points to needed and planned future work.

2 A Brief Overview of Adaptive Applications
and Platforms

It is impossible to give a complete overview of the introduction of adaptive
functionality in Web-based systems and applications. We will briefly mention
some influential developments.

The fields of intelligent tutoring systems and hypermedia came together when
the Web evolved to the point where it became feasible to add enough function-
ality to the Web server back-end. The award-winning ELM-ART2 adaptive Lisp
course [10] not only paved the way for later developments but also set a standard
for adaptive link annotations by employing a “traffic light metaphor” of using
green and red balls (and some intermediate colors like white and yellow) to indi-
cate the “status” of links to course topics or pages. This metaphor was inherited
by many later systems and can still be seen in some GALE applications as well.

When Brusilovsky created Interbook [9] he aimed at creating a platform that
could be used for many courses (instead of the single Lisp course offered by ELM-
ART). He used Microsoft Word as the authoring platform. An author would
essentially write a textbook in Word. Fragments (paragraphs or sections) of
text would be associated with some outcome concepts by means of a structured
comment, and concepts would be indicated as being a prerequisite for other
concepts, also by means of a comment. Converting a textbook (written in Word)
into an adaptive on-line course was reduced to little more than a press of a
button.

Adaptation is always based on information the system has about its user.
Therefore user modeling is a key component in every adaptive system. Typ-
ically user modeling is based on rules that “translate” user actions into user

2 ELM-ART stands for Episodic Learner Model, the Adaptive Remote Tutor.

66 P. De Bra and D. Smits

information. Reading a course page means that you learn about a concept. That
knowledge can be confirmed through a test. That knowledge is also used to check
whether you satisfy prerequisites for studying other concepts. Knowledge levels
of small concepts also “add up” to knowledge about chapters and whole courses.
This description may give the false impression that an adaptive system really
“knows” what goes on in the user’s mind, with absolute certainty. There is how-
ever an alternative approach to user modeling, using Bayesian networks. This
approach is taken by KBS-Hyperbook [16] for instance. User actions change the
“belief” of the system that the user has certain knowledge. It is easier to deal
with positive and negative “evidence” of the user’s knowledge (or interest or any
other type of information) in Bayesian networks than in systems that just use
(event-condition-action) rules to update knowledge levels.

Recent versions of AHA! (the Adaptive Hypermedia Architecture) [3, 6] allow
an author to define arbitrary adaptation rules (in fact user model update rules)
and can thus support any model or interpretation of the information stored about
users. Also, unlike Interbook’s use of Microsoft Word for authoring, applications
in AHA! are authored in HTML, and of course also delivered as HTML. This
means that authors familiar with creating HTML can give an AHA! application
any look and feel they desire. AHA! can for instance completely mimic the
behavior and presentation of Interbook [5]. In order to be able to manage the
complexity of having arbitrary adaptation rules and arbitrary presentation AHA!
had to separate the authoring of the adaptation from the authoring of the content
and presentation. Defining complex adaptation rules requires very different skills
from writing the content of a course. We will see this in GALE as well.

ELM-ART, Interbook and AHA! are examples of systems that support learn-
ing through adaptive information exploration. The user receives guidance
(through link annotation and in AHA! also through the conditional inclusion
of fragments) but can browse through a course text in any desired way. More
support for the process of navigation and the use of services (going beyond the
single step of accessing a page) can be found for instance in APeLS, designed by
Conlan and Wade et al [12].

Although adaptive applications in the field of elearning or “technology-
-enhanced learning” are the most common, there is also significant research
in other application areas. Personalized advertising is becoming big business.
This is highly visible in Google’s personalized ads, but also in recommendations
on shopping sites, like the “people who bought this. . . also bought. . . ” messages
on Amazon. Museums and other cultural institutes are offering adaptive per-
sonalized previews and guided tours or are studying this. The Dutch CATCH
(Continuous Access to Cultural Heritage) research program has spawned a lot of
research to improve access to cultural information. In one of its projects: CHIP3

(Cultural Heritage Information Presentation and Personalization) a personal-
ized art recommender was built for (and jointly with) the Rijksmuseum [22],
as well as personalized virtual and physical (mobile) guided tours [13]. Italy is
also strong in the adaptive access to information about culture and tourism, for

3 See http://www.chip-project.org/ for more information and demos.

A Fully Generic Approach for Realizing the Adaptive Web 67

instance through UbiquiTO, a multi-device adaptive guide for Torino [2] and
the work on Intelligent Inferfaces for Museum visitors from FBK in Trento [18].
The world of entertainment is following suit with personalized TV guides such
as iFanzy4 [1], a result of the ITEA Passepartout project.

The main difference between the mainstream adaptive educational applica-
tions and the others is the role of the author. Systems for culture, entertainment
and business are typically large special-purpose Web-based Information Systems
with an added personalization or adaptation component. There is also a body of
research towards making Adaptive Web-based Information Systems more generic
[16, 20]. The definition of the adaptation in Adaptive WIS is mostly automati-
cally generated from semantic structures in the databases. In elearning a human
author is involved in defining the adaptation at the “instance level”, specifying
in detail how which action of the learner leads to which change in the user model
and how the user model state influences the adaptation. But this is not only the
case in elearning. Adaptive (adventure) games for instance also require carefully
crafted adaptation rules. GALE attempts to offer a generic solution to authors
of adaptive websites. In the GRAPPLE project (EU FP7 STREP) the adapta-
tion language and the graphical authoring tools played an important role. The
GALE engine can be used to serve information where the adaptation rules are
generated from (semantic) database structures, but in this paper we concentrate
on manually authored applications.

3 The GALE Architecture

Figure 1 below shows the global architecture of GALE. A more elaborate de-
scription of GALE can be found in [21]. In this paper we can only present a brief
summary of GALE.

Because of lack of space we will concentrate on the processor stack (bottom
left of the figure) and the distributed way of executing adaptation rules (a collab-
oration between the adaptation engine, domain model and user model services.
The former is responsible for performing the actual adaptation and the latter
for performing user model updates.

3.1 GALE Processors and Modules

In GALE you can configure a set of processors that may operate on an out-
standing request. Each processor is only active when the request has reached
a state in which it can act upon it, and when finished it updates that state in
order to notify the next processor that it can start processing the request. The
actual adaptation functionality of GALE can thus be extended in arbitrary ways
by adding processors to the stack. Here we briefly explain how a typical (http)
request for a concept goes through the stack. We omit details like determining
a layout for the presentation and logging for later use with data mining tools.

4 See http://www.ifanzy.nl/.

68 P. De Bra and D. Smits

Fig. 1. The GALE architecture

1. When the top left part of the architecture has performed its duties of ensur-
ing that the user is identified and a session is created the first processor to
“touch” the request is the UpdateProcessor. It signals an EventManager that
the “access concept” event has occurred. The default EventAccessHandler
executes the event code of the requested concept, as defined in the applica-
tion’s “Domain Model” or DM. This part is concerned with updating the
user model and will be described later. The UpdateProcessor will wait for the
user model (UM) updates to be completed, so as to ensure that any further
processing of the event is based on the new user model state. (For instance,
when a learner requests a concept from a course, the knowledge update that
should follow from reading the page associated with the concept is already
performed before the page is retrieved, adapted and presented to the learner.
It is important for an adaptation rule designer to know this order of events.

2. After the UM updates have been performed the LoadProcessor will retrieve
the actual resource (file) associated with the concept. The name or url of
resource may be dependent on UM, which is why UM updates must come
first. The LoadProcessor retrieves the file (possibly by issuing an http re-
quest to a remote server) and creates an InputStream that can be used by
subsequent processors to load and process the data. File name extensions are
used to determine the mime type of the resource, and this may tell processors
whether they should handle the request or not. At this point GALE could be
extended with processors to handle all kinds of input formats, like images,

A Fully Generic Approach for Realizing the Adaptive Web 69

drawings, audio, video, etc. but by default GALE only provides processors
to deal with HTML and XML.

3. Although GALE can handle HTML it really works with XHTML. When
encountering HTML the HTMLProcessor uses the (open source) Tagsoup5

converter to convert the file to XHTML. It creates a new InputStream that
contains valid XHTML.

4. If the input is XML (also XHTML) the ParseProcessor converts the input
into an in-memory DOM tree, using the open source dom4j6 parser.

5. The XMLProcessor walks through the DOM tree in order to perform adap-
tation where needed. The modules that may be used to perform adaptation
to certain tags are loaded by the XMLProcessor. GALE can be configured
to associate different modules with different XML tags. The default modules
are targeted towards handling XHTML, but any module for handling any
kind of adaptation to elements associated with any tag can be added, thus
facilitating adaptation to very different types of XML documents, like Mu-
sicXML, SMIL, etc. Modules can change the tag name, attributes of tags
and the content of the XML elements. (We give some examples later.)

6. The SerializeProcessor converts the DOM tree back into the textual XML
format and presents that to the GaleServlet as an InputStream so that it
can be sent to the user’s browser (as an http response).

In GALE Modules are associated with XML tags in order to perform adaptation.
Because of space limitations we only explain a few modules here:

– The IfModule handles the <if> tag. It expects <if> to have an argument
“expr” that is a Boolean expression in GALE code (see Sect. 4.) It expects
one or two child elements: a <then> and optionally an <else> element.
The module replaces the <if> subtree by either the content of the <then>
subtree or the <else> subtree. The IfModule thus realizes what is known as
the adaptive inclusion of fragments technique [17].

– The AdaptLinkModule handles the<a> tag which is used just like the HTML
<a> tag, but referring to a concept, not a page or resource. The link adap-
tation consists of (optionally): adding an icon in front of the link anchor
(e.g. a colored ball to implement the “traffic light metaphor”), adding an
icon after the link anchor, and adding a “class” attribute to the <a> tag,
which in combination with a style sheet changes the presentation of the link.
The default stylesheet uses three classes: GOOD, NEUTRAL and BAD and
associates these with the colors blue, purple and black, just like AHA! did.
Unlike in AHA! the number and choice of classes, colors, icons and conditions
for using which class are all unlimited and easily configurable.

– The VariableModule replaces the <variable> element by a variable form the
user model or the result of an expression. The AttrVariableModule does the
same for an attribute in the parent tag. In XML the attributes of a tag
cannot contain XML tags, so using a <variable> tag inside an XML tag to

5 See ccil.org/∼cowan/XML/tagsoup/ for more information.
6 See dom4j.sourceforge.net for more information on dom4j.

70 P. De Bra and D. Smits

make an attribute adaptive is not allowed. To make the name of an image
in the HTML tag adaptive for instance you can write:

<attr-variable name=”src” expr=”. . . ”>

where the expression (not filled in here) results in the name for the image.

3.2 The Execution of GALE Adaptation Rules

As Fig. 1 shows GALE has an “internal” Event Bus through which different
components communicate with each other. There are two essential sources of
information for adaptive information delivery: the Domain Model (DM) that
describes the conceptual structure of an adaptive application and the User Model
(UM) that stores all the information the system can gather about its users. DM
and UM services in GALE are separate services that can (if desired) run on
different machines.

The DM of an application consists of concepts and relationships. Concepts
have properties, including a title and description but also names (urls) of re-
sources and conditions for selecting which resource. Concepts also have associ-
ated event code that is executed by the adaptation engine when a user accesses
the concept. To minimize communication the adaptation engine maintains a
cache of the DMs of the applications it serves.

The UM contains for each user some (arbitrary) personal information and for
each concept of each application the user has accessed it contains event code
and some attribute values. (The event code is stored only once but the attribute
values are stored for each user.) Since the event code may make use of DM
information the UM service has a cache of the DM. And since the adaptation
engine needs to frequently access UM information it has a cache of the UM data
of its (active) users.

Figure 2 shows how GALE handles UM updates caused by internal event code
and UM updates received from external sources, such as the GUMF user model
service that is part of the GRAPPLE framework.

When event code associated with a concept (access) causes a UM update (for
instance the access to a concept means that the user gains knowledge about the
concept) that update changes an attribute-value in the UMCache. The UMCache
wishes to synchronize this update with the UMService and sends a “setum”
message to UMService through the EventBus. The change to the attribute-value
may trigger event code associated with the attribute. This event code is executed
within the UMService and results in more UM updates. These updates must be
synchronized with the UM cache in the adaptation engine so the set of changes
os returned to the UMCache. When the UMCache sends out some updates it
always waits for “results” to come back, because the adaptation process must
work with the new UM state.

When an external UM service sends a UM update (as a “setum” message) this
may also cause additional updates, and an “updateum” going to the UMCache.
GALE can thus handle UM updates arriving at any time from any service.

A Fully Generic Approach for Realizing the Adaptive Web 71

Fig. 2. The process of handling UM updates

4 GAM: The GALE Adaptation Model (GALE Code)

Creating an adaptive application requires that an author or adaptation designer
defines adaptation rules. This process has been the Achilles heel of adaptive ap-
plication design from the start. In Interbook [9] and early AHA! versions [4] an
author would simply specify prerequisite and outcome relationships between con-
cepts and the system would automatically generate adaptation rules that resulted
in the adaptive behavior of the system. Authoring was easy, and flexibility was
non-existent. As more flexibility was introduced, for instance in AHA! version 3 [6]
a dilemma was born between simplifying authoring through graphical authoring
tools [3] and empowering the author through a rich adaptation language. In the
GRAPPLE project a graphical authoring environment was created [14] which al-
lowed for easy adaptation design using templates (pedagogical relationship types)
while empowering the author by making it possible to design arbitrarilymany and
complex new templates. In GRAPPLE it is thus possible to do little more than
use prerequisite and outcome relationships, and at the same time it is possible to
design the most complex adaptation you can imagine. Here we do not describe
the graphical tool but only the underlying GAM language that can also easily be
used by an author in a purely textual fashion. We introduce GAM by example (as
a complete definition with examples would be far too long).

A GAM definition can be for a single concept or a number of concepts, and
can be combined with (X)HTML content as well. Below is an example concept
definition7 for a concept http://gale.win.tue.nl/elearning.xhtml (that can of
course be referred to as elearning.xhtml by other concepts on the same server):

7 We omit some of the “escaping” of < and > symbols that is actually required by
the XML syntax.

72 P. De Bra and D. Smits

<?xml version=”1.0” encoding=”UTF-8”?>
<html xmlns=http://www.w3.org/1999/xhtml
xmlns:gale=”http://gale.tue.nl/adaptation”>
<head>
<meta name=”gale.dm” content=”
{ #[visited]:Integer ‘0‘ {
event ‘if (${#suitability} && ${#read} < 100)
#{#read, 100};
else if (!${#suitability} && ${#read} < 35)
#{#read, 35};‘}
#knowledge:Integer ¡ avg(new Object[]
{${<=(parent)#knowledge},${#read}}).intValue()‘
#[read]:Integer ‘0‘
#suitability:Boolean ‘true‘
event ‘#{#visited, ${#visited}+1};‘ } ” />
< /head>
<body>
<p>This page is a placeholder for the elearning
concept.</p>
< /body>
< /html>

The example code has the following semantics:

– #[visited]:Integer ‘0‘ means that this concept has a UM attribute called
“visited”; it is an integer and is initialized with the value 0. The brackets
[. . .] indicate that the value of this attribute is stored permanently.

– The code event ‘#{#visited, ${#visited}+1};‘ } means that when the con-
cept is accessed the value of the “visited” attribute in increased by 1.

– When the value of “visited” changes its event code is executed which updates
the “read” attribute.

– The attribute “read” is also an integer; it is also stored or persistent.
– The attribute “knowledge” is an integer which is not stored but calculated

from the “read” value and the list of “knowledge” values of the children of
the “elearning” concept.

– The attribute “suitability” is a Boolean, which is “true” by default. This too
is not stored but calculated when needed. If there were prerequisites for the
“elearning” concept there would be an expression that defines the condition
for the concept to become suitable.

Another concept can “inherit” this adaptation (GAM) code as follows:

<?xml version=”1.0” encoding=”UTF-8”?>
<html xmlns=http://www.w3.org/1999/xhtml
xmlns:gale=”http://gale.tue.nl/adaptation”>
<head>
<meta name=”gale.dm” content= {->(extends)

A Fully Generic Approach for Realizing the Adaptive Web 73

http://gale.win.tue.nl/elearning.xhtml}” />
< /head>
<body>
<p>This page uses the elearning template.</p>
< /body>
< /html>

When a whole application domain is stored in a single file the “meta” element
for the concepts/pages may look like:

<meta name=’gale.dm’ content=’redirect:course.gam’ />
and the file “course.gam” might have contents like:
welcome.xhtml {
->(extends)http://gale.win.tue.nl/elearning.xhtml
->(extends)layout.xhtml
< −(parent)gale.xhtml
< −(parent)gat.xhtml
}
gale.xhtml {
->(extends)welcome.xhtml
->(parent)welcome.xhtml
}
gat.xhtml {
-> (extends)welcome.xhtml
->(parent)welcome.xhtml
}
layout.xhtml {
#layout:String ‘
<struct cols=”250px;*”>
<view name=”static-tree-view” />
<struct rows=”60px;*;40px”>
<view name=”file-view” file=”gale:/header.xhtml” />
<content />
<p><hr />Next suggested concept to study:
<view name=”next-view” /></p>
< /struct>
< /struct> ‘
}

Again we do not explain this code but just illustrate that code can be shared
between different concepts/pages, and can be placed in individual files or com-
bined into a single GAM file. An adaptation designer can create the file “elearn-
ing.xhtml” and an application (or course) designer can use the adaptation defines
by the designer by simply “extending” that definition and by defining relation-
ships (like “parent”) between concepts.

74 P. De Bra and D. Smits

When authoring through GRAPPLE’s graphical tool similar templates are
used, but instead of “extending” concepts to inherit attribute definitions and
adaptation rules templates are “instantiated” (through copying). In terms of
adaptive functionality this makes no difference.

The event code in GAM is essentially arbitrary Java code, in which some
shorthand notation is used to refer to properties and attributes of concepts. The
shorthand can be summarized as follows:

– Attributes are accessed by using # and properties by using? as part of the
syntax of URIs. http://gale.win.tue.nl/someconcept#knowledge refers to the
knowledge value for “someconcept” for the current user and #knowledge
refers to the knowledge value for the concept to which the code is associated.
http://gale.win.tue.nl/someconcept?title refers to the title property of the
concept.

– someconcept->(somerelation) represents the list of concepts to which “so-
meconcept”’ has the relation “somerelation”.

– someconcept<-(somerelation) represents the list of concepts that have a
“somerelation” relation to “someconcept”.

– ${#knowledge} is the syntax used to retrieve the value of the knowledge
attribute.

– #{#knowledge, 100} is the syntax used to set the value of the knowledge
attribute (to 100 in this example).

Using this explanation we can now understand the Java code

GaleUtil.avg(new Object[]
{${<-(parent)#knowledge},${#read}}).intValue(),

which executes a GALE utility method “avg” on the list composed of all the
“knowledge” values of all concepts with a parent relationship to the current
concept and the “read” value of the current concept, and which then returns
this value rounded to the nearest integer. Such expressions can be used not
only in concept and adaptation rule definitions but also in pages, for instance
in the expression of an <if> tag. Typically these expressions would be simple,
like <if expr=”${#visited}==1”><then>This appears on the first visit only
</then></if>.

The easiest way to understand and create GAM adaptation code is to look at
examples and tutorial material from the GALE website gale.win.tue.nl.

5 Conclusions and Further Work

In the quest for the ultimate powerful, flexible and easy to use adaptive applica-
tion (authoring and delivery) platform GALE is the most recent attempt. The
research area of adaptive Web-based hypermedia systems has evolved from easy
to use but very rigid systems (e.g. Interbook [9]) to powerful, flexible and exten-
sible systems (first AHA! [3, 4, 6], now GALE) for which unleashing its power
and offering very simple authoring environments is an immense challenge.

A Fully Generic Approach for Realizing the Adaptive Web 75

In this paper we have explained the modular and highly configurable and ex-
tensible architecture of GALE and the powerful GAM adaptation language, and
have shown how we have attempted to keep authoring simple by reusing adap-
tation definitions created by others. Within the GRAPPLE project a graphical
authoring environment was created as well. In the future (planned before the
presentation of this paper) we will investigate how the graphical and textual
authoring methods compare in terms of acceptance by authors. As part of this
process more templates (for both authoring environments) will be created and
more modules and processors added to GALE as well.

GALE is already being used by researchers in different parts of the world and
by companies wishing to start delivering adaptive training material. This will
inevitably lead to the discovery of new requirements for more powerful func-
tionality for the next generation adaptive systems, so the quest for the ultimate
adaptive system continures.

Acknowledgments. This research was supported by The EU FP7 project
GRAPPLE, ICT-2007.4.1, project 215434. Earlier research on AHA! was sup-
ported by the NLnet Foundation.

References

1. Akkermans, P., Aroyo, L., Bellekens, P.: iFanzy: Personalised Filtering Using
Semantically Enriched TV-Anytime Content. In: Demo at the Third European
Semantic Web Conference (2006)

2. Amendola, I., Cena, F., Console, L., Crevola, A., Gena, C., Goy, A., Modeo, S.,
Perrero, M., Torre, I., Toso, A.: UbiquiTO: A Multi-device Adaptive Guide. In:
Brewster, S., Dunlop, M.D. (eds.) Mobile HCI 2004. LNCS, vol. 3160, pp. 409–
414. Springer, Heidelberg (2004)

3. De Bra, P., Aerts, A., Berden, B., De Lange, B., Rousseau, B., Santic, T., Smits,
D., Stash, N.: AHA! The Adaptive Hypermedia Architecture. In: Proceedings of
the Fourteenth ACM Hypertext Conference, pp. 81–84. ACM Press (2003)

4. De Bra, P., Calvi, L.: AHA! An open Adaptive Hypermedia Architecture. New
Review of Hypermedia and Multimedia 4, 115–139 (1998)

5. De Bra, P., Santic, T., Brusilovsky, P.: AHA! meets Interbook and more... In:
Proceedings of the AACE ELearn 2003 Conference, pp. 57–64 (2003)

6. De Bra, P., Smits, D., Stash, N.: The Design of AHA! In: Proceedings of the
Seventeenth ACM Conference on Hypertext and Hypermedia, pp. 133–134. ACM
Press (2006), http://aha.win.tue.nl/ahadesign/

7. Brusilovsky, P.: Methods and Techniques of Adaptive Hypermedia. In: User Model-
ing and User-Adapted Interaction, vol. 6, pp. 87–129. Kluwer Academic Publishers
(1996)

8. Brusilovsky, P.: Adaptive Hypermedia. In: User Modeling and User Adapted In-
teraction, vol. 11, pp. 87–110. Kluwer Academic Publishers (2001)

9. Brusilovsky, P., Eklund, J., Schwarz, E.: Web-based education for all: A tool for
developing adaptive courseware. In: Computer Networks and ISDN Systems, Pro-
ceedings of the 7th Int. World Wide Web Conference, vol. 30(1-7), pp. 291–300
(1998)

http://aha.win.tue.nl/ahadesign/

76 P. De Bra and D. Smits

10. Brusilovsky, P., Schwarz, E.W., Weber, G.: ELM-ART: An Intelligent Tutoring
System on World Wide Web. In: Lesgold, A.M., Frasson, C., Gauthier, G. (eds.)
ITS 1996. LNCS, vol. 1086, pp. 261–269. Springer, Heidelberg (1996)

11. Bush, V.: As We May Think. The Atlantic Monthly (1945)
12. Conlan, O., Wade, V.P.: Evaluation of APeLS – An Adaptive eLearning Service

Based on the Multi-model, Metadata-Driven Approach. In: De Bra, P.M.E., Nejdl,
W. (eds.) AH 2004. LNCS, vol. 3137, pp. 291–295. Springer, Heidelberg (2004)

13. van Hage, W.R., Stash, N., Wang, Y., Aroyo, L.M.: Finding Your Way Through the
Rijksmuseum with an Adaptive Mobile Museum Guide. In: Aroyo, L., Antoniou,
G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.)
ESWC 2010. LNCS, vol. 6088, pp. 46–59. Springer, Heidelberg (2010)

14. Hendrix, M., Cristea, A.I.: Design of the CAM model and authoring tool. In: A3H:
7th International Workshop on Authoring of Adaptive and Adaptable Hypermedia
Workshop, 4th European Conference on Technology-Enhanced Learning (2009)

15. Henze, N.: Adaptive hyperbooks: Adaptation for project-based learning resources.
PhD Dissertation, University of Hannover (2000)

16. Houben, G.J., van der Sluijs, K., Barna, P., Broekstra, J., Casteleyn, S., Fiala, Z.,
Frasincar, F.: Hera. In: Web Engineering: Modeling and Implementing Web Ap-
plications. Human-Computer Interaction Series, pp. 263–301. Springer, Heidelberg
(2008)

17. Knutov, E., De Bra, P.M.E., Pechenizkiy, M.: AH 12 years later: a comprehensive
survey of adaptive hypermedia methods and techniques. New Review of Hyperme-
dia and Multimedia 15(1), 5–38 (2009)

18. Kuflik, T., Stock, O., Zancanaro, M., Gorfinke, A., Jbara, S., Kats, S., Sheidin, J.,
Kashtan, N.: A Visitor’s Guide in an Active Museum: Presentations, Communi-
cations, and Reflection. ACM Journal on Computing and Cultural Heritage 3(3)
(2011)

19. Nelson, T.: The Hypertext. In: Proc. World Documentation Federation Conf.
(1965)

20. Rossi, G., Schwabe, D.: Modeling and Implementing Web Applications with
Oohdm. In: Modeling and Implementing Web Applications. Human-Computer In-
teraction Series, pp. 109–155. Springer, Heidelberg (2008)

21. Smits, D., De Bra, P.: GALE: A Highly Extensible Adaptive Hypermedia Engine.
In: Proceedings of the Twenty-Second ACM Hypertext Conference, pp. 63–72.
ACM Press (2011)

22. Wang, Y., Stash, N., Aroyo, L., Gorgels, P., Rutledge, L., Schreiber, G.: Recom-
mendations Based on Semantically-enriched Museum Collections. Journal of Web
Semantics: Science, Services and Agents on the World Wide Web 6(4), 43–50 (2008)

Multi Feature Indexing Network

MUFIN
for Similarity Search Applications

Pavel Zezula

Masaryk University,
Botanicka 68a, Brno, Czech Republic

zezula@fi.muni.cz

Abstract. Similarity has been a central notion throughout our lives
and due to the current unprecedented growth of digital data collections
of various types in huge quantities, similarity management of digital data
is becoming necessary. The Multi-Feature Indexing Network (MUFIN)
is a generic engine for similarity search in various data collections, such
as pictures, video, music, biometric data, sensor and scientific data, and
many others. MUFIN can provide answers to queries based on the exam-
ple paradigm. The system assumes a very universal concept of similarity
that is based on the mathematical notion of metric space. In this concept,
the data collection is seen as objects together with a method to measure
similarity between pairs of objects. The key implementation strategies
of MUFIN concern: extensibility - to be applied on variety of data types,
scalability - to be efficient even for very large databases, and infrastruc-
ture independence - to run on various hardware infrastructures so that
the required query response time and query execution throughput can
be adjusted. The capability of MUFIN is demonstrated by several appli-
cations and advance prototypes. Other applications and future research
and application trends are also to be discussed.

1 Motivation

Who on the Facebook collect photographs similar to those I love most from my
latest holidays? Does the computer disk of a suspected criminal contain illegal
multimedia material? Is it the situation on the web getting close to any of the
network attacks which resulted in significant damage in the past? These and
many other question of this form are interesting and even urgent when dealing
with digital content on the web, but the solution to any of them needs to apply
a certain form of similarity data processing. However, unless some text tags or
other form of metadata are available, current technology is not able to solve
them. No doubts, the similarity approach to digital text processing has proved
big success even at commercial level, but we need significant scientific advance-
ment in both the effectiveness and efficiency of the similarity data management
for any type of data, currently available in digital form.

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 77–87, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

78 P. Zezula

Independently of computers, similarity is a central notion throughout our
lives, [5]. In perception, the similarity between sets of visual or auditory stimuli
influences the way in which they are grouped. In speech recognition, the simi-
larity between different phonemes determines how easily confused they are. In
classification, the category assignment to a new instance may be influenced by
the similarity of a new instance to past instances or a store prototype. In mem-
ory, it has been suggested that retrieval from a cue depends on the similarity
of past memory traces to the representation of the cue. Provided that almost
everything that we see, read, hear, write, measure, etc. can be available in digital
forms, computer systems must manage such data through similarity.

In conjunction, the growth of digital material is posing another big challenge:
the exponential increase in data volume makes the scalability a matter of con-
cern. Accordingly, the core ability of data processing systems of the future is
the similarity management of (very) large and ever-growing volumes of data.
What is needed is to create new models, methodologies, and theories that would
form solid bases of future computer systems for advanced practical applications
fully exploiting contemporary digital databases. Examples of such applications
come from areas such as the web searching, biology, geography, multimedia, data
cleaning and integration, data mining, web anomaly detection, context similarity
detection, collaborative filtering, security, etc.

Fig. 1. The problem of similarity searching in digital data

In the future, access to digital media stored in memories and circulating among
networked computers will have to follow, or at least get much closer in its form,
to the behavior of real life evolution and communication between species. There,
recognition, learning, and judgment presuppose an ability to categorize stimuli
and classify situations by similarity, because any event in the history of organism
is, in a sense, unique and the specific case of the exact match is marginal.Suitable

Multi Feature Indexing Network MUFIN for Similarity Search Applications 79

synonyms of similarity are proximity, resemblance, communality, representative-
ness, psychological distance, etc. As any kind of fact can nowadays become a
digital part of the networked media, computers must provide access to required
data through similarity based operations, because it is the similarity that are in
the world ”revealing”.

If ever, current computers can only partially deal with similarity. On the
other hand, the great commercial success of companies as Google, Yahoo, and
Microsoft with text similarity searching, proves the potential of similarity and,
once properly applied, runs to seed many other important and profitable ap-
plications and businesses. The key to its success is to significantly enhance the
technology for digital similarity searching or even generic similarity management
both from the effectiveness and efficiency points of view. We are convinced that
this is the way, how the endless chain of ”digital media – business model – ap-
plication” can be accelerated to bring needed commercial success. See Fig. 1 for
convenience.

2 Challenges

Decentralized media of mass communication, sometimes called the networked
media, allow cooperative and collaborative practices enabling users to autono-
mously contribute to production of global media, the elements of which are in
fact related by numerous multi-facet links of similarity. As an example, consider
the sites like Flicker, YouTube, Facebook which host user contributed content for
a variety of events. The exploitation of its potential, which typically goes across
multiple applications and has to consider different aspects of underlying data,
is vitally important for various business and private purposes and activities. In
this way, similarity relationships, once properly defined and implemented, can
act as a sort of ”similarity glue” able to connect, search, filter, merge, relate,
rank, classify, or categorize seemingly unrelated collections of objects across re-
sources from diverse environments and produced by different activities. In a very
simplified way, the challenge is applying a proper technology on the immerging
data.

2.1 Digital Data Explosion

The standard starting point for almost every big-picture opinion of our industry
is to reflect on the data explosion. According to recent studies, in the next three
years, we will create more data than has been produced in all of human history.
But just where is all this data coming from? It is estimated that more than
80 billion photographs was taken in 2008. To store them all digitally would
require 400 petabytes of storage. Nowadays, more than 50 million photos are
daily uploaded on Facebook, and the numbers are growing.

The Enterprise Storage Group estimates that it takes as much space to store
an average digital photo as it does to store 30 pages of digital text with 600 words

80 P. Zezula

for page. So digitally, a picture is worth 18,000 words. The management of dig-
ital images promises to emerge as a major issue in many enterprises in the next
couple of years, particularly since a large portion of pictures still remains as ”un-
structured data.” – managing this data is going to provide a lot of opportunities
for data integration and content management. But we have also digital audio and
numerous new forms of digital data produced by scientific explorations, analyses
and experiments - not to talk about digital video and digital television broadcast
material. The rise of the digital material is posing a big challenge.

But it is not just the volume of digital material, putting strong constraints
on scalability issues of all data processing technologies. Contrary to traditional
attribute-like data types such as numbers and strings of sortable domains, in-
stances of new data types are complex and need innovative approaches of data
analysis to discover their content and derive stimuli for content management. As
a result, many domains of new data types are not sortable and the only measure
of comparison to apply is a sort of similarity.

2.2 Similarity Management of Data

As illustrated in Fig. 1, similarity is determined by stimuli (features, descriptors,
properties, etc.) of digital objects and the way we pursue processes of finding
similarity-related objects, that is a sequence of operations from specific algebra
to satisfy required demands. We can calibrate the stimuli and operations from
two different points of view: (1) the effectiveness, a similarity model, concerns
the way similarity is assessed so that it best reflects a human vision of similarity,
and (2) the efficiency, which regards the processing speed, costs, or an effort to
get results independently from the scale fast.

The effectiveness of stimuli concerns the matching of stimuli, typically mea-
sured as a level of similarity, usually implemented as a dissimilarity or distance.
On the other hand, the effectiveness of operations can be measured as a capabil-
ity of the similarity algebra to evaluate objectives of similarity models applied.
The efficiency of the algebra operations regards execution processes on opera-
tions, i.e. the performance on a suitable software and hardware infrastructure,
while efficiency with respect to stimuli involves the ease of processes able to
extract fast from the raw data suitable stimuli.

The successful but very limited application of similarity management for text
data needs many new examples to follow. The digital media is becoming not only
more and more bulky, but also more and more rich in content and the portion
of the data produced in text form is shrinking. The main reason for not enough
big and successful new applications is the luck of adequate technology. We need
new technology for similarity management, with substantial improvements both
in effectiveness and efficiency dimensions. The problem is complex and needs
a joined effort of scientists from different research domains. Contacts with and
inputs from industries represent a vitally important feedbag so that the research
proceeds in proper direction. However, the potential impact is huge because
it can give rise to many new businesses. Examples of application areas include:

Multi Feature Indexing Network MUFIN for Similarity Search Applications 81

multimedia, electronic advertising, electronic commerce, entertainment, secu-
rity, processing of biometric data, network traffic control, medical information
systems, biology (chemical)-data processing, geographic systems, criminology,
intelligence, classification and discovery of illegal or objectionable content, data
cleaning and integration, ambient systems, mobile computing, social network
analysis and data mining, semantic web and ontology management.

2.3 The Main Research Objectives

Following Fig. 1 again, the main areas of research challenges can be summarized
as follows:

effectiveness - abstract (psychological) models of similarity; it concerns met-
hods, methodologies, and architectures for similarity judgements, as well as
techniques to assess their quality and user satisfaction.

efficiency - generic models for high-performance similarity management; in ge-
neral, it concerns, architectures, models, infrastructures, and other software
and hardware mechanisms able to support fast execution of computational
intensive tasks, for example, parallelism, GPU’s, scalable and distributed
architectures, self-organizing principles, cloud computing, fault tolerance,
etc.

stimuli - representations of raw digital data (content); they are purpose-built
representations of raw (digital) data objects encapsulating specific knowledge
about or content of these objects. The representation of the knowledge should
be maximally precise, but at the same time minimum in space for storage
purposes.

algebra - set of similarity operations; the basic similarity operation is the
search, which actually comes in several forms, such as the range search,
nearest neighbor search, reverse nearest neighbor search, etc. But many other
operations can be defined as well, for example, a similarity ranking, classifica-
tion, or merging. The objective is to develop similarity algebra of operations
over digital data.

matching - specification of similarity measures and their assessment; it con-
cerns the way how, given specific stimuli, required effectiveness is quantified.
Obviously, given specific sets of stimuli, there are several ways how to com-
pare them. For example, collections of numbers can be compared as the
Euclidean distance of vectors, edit distance can be applied on strings, and
Jaccard’s Coefficient on sets.

extraction - efficient harvesting of stimuli; computational methods of stimuli
extraction respecting specific types of raw data and stimuli type - depending
on the volume of data, such process can be enormously time-consuming thus
a special care must be taken from the efficiency point of view.

evaluation - implementation of similarity models through operations; the
problem starts from users, their needs, unique attitude or context and re-
quirements expressed through a specific model of similarity. It concerns a
requirement specification tool (a language) to express needs as well as a
communication environment, or interface, able to report results.

82 P. Zezula

execution - performance oriented implementation of similarity operation trans-
actions; it concerns platform dependent implementation techniques to achieve
required performance.

Though many interesting proposals have already been published and even im-
plemented, there is still a lot to do. Such research effort lies at the frontier of
modern digital data processing and goes substantially beyond the current state
of the art. It offers a high potential for exploitation in numerous applications. It
is interdisciplinary in nature and requires experts and experience not only from
computer science. For example, the subject of similarity has been for long time
important research domain in psychology. The research is ground-breaking as
new theories and technologies specifically targeted at similarity for large scale
problems are scarce and badly needed. It is also a high-gain/high-risk research
since the complexity may even exceed our expectations and new problems can
occur. On the other hand, similarity is typically country and language inde-
pendent with an easy and clear impact on many international communities. It is
foundational in nature, because it requires new theories for similarity assessment,
feature extraction and retrieval, as well as large scale autonomic computation.
It is also a long-term research because the needs of similarity management may
change with new patterns of computation and technology for content extraction
and enrichment.

3 The MUFIN Approach

Considering searching as an activity of looking thoroughly in order to find some-
thing or someone, an investigation seeking answers, an operation that determines
whether one or more of a set of items has a specified property, the generic goal
of the Multi-Feature Indexing Network (MUFIN) project is to develop a tech-
nology solution to the problem of similarity searching for various and very large
digital data collections.

3.1 The Vision

It is generally agreed that the search problem is a triple of: (1) data and queries,
(2) indexing structure, and (3) computing infrastructure on which the search
is executed. As it applies to any other complex system, we believe that future
search systems must be born on the divergence of the scale and determinism.
In particular, a more and more desirable property of any search system is its
ability to either handle growing amounts of work in a graceful manner, or to be
readily enlarged – that is scalability. On the other hand, the necessity of search
processes to be determined by an unbroken chain of pre-defined steps – that
is determinism – is in search becoming less and less important. The effects of
the divergence of scale and determinism on the historical development of search
structures are illustrated in Fig. 2. It starts with the well established centralized
and parallel organizations, continues through the cutting-edge distributed and

Multi Feature Indexing Network MUFIN for Similarity Search Applications 83

Fig. 2. Development trends in search structures

peer-to-peer approaches and aims towards self-organizing search architectures.
In this figure, the position of MUFIN is also clearly illustrated.

Current trends in scale and determinism of search systems can be character-
ized by the following headlines:

scalability – exponential growth in data volume
– number of users (queries) increasing fast
– variety of data types, emergence of various digital databases and libraries
– multi-lingual (feature, modal) queries

determinism – from exact match to similarity
– from precise query evaluation to approximate evaluation
– from unvaried answer to satisfactory answer
– from fixed queries to personalized queries
– from dedicated hardware to dynamic hardware mapping

3.2 The Underlying Paradigms

MUFIN, http://mufin.fi.muni.cz/tiki-index.php, is a generic engine for similarity
search in various data collections, such as pictures, video, music, biometric data,
sensor and scientific data, and many others, using specific descriptors (features)
extracted from original objects. The technology has been developed for about
15 years and the main properties are summarize in the book ”Similarity Search:
the Metric Space Approach” [10], published by Springer. Recently, a team of
researchers at the Masaryk University has built a robust prototype and brought
this technology to a productive stage. MUFIN assumes a very universal model
of similarity that is based on the mathematical notion of metric space. In this

84 P. Zezula

concept, the data collection is seen as objects represented by specific features
together with a method to measure similarity between pairs of objects as distance
– the smaller the distance of two objects, the more similar they are.

Fig. 3. Implementation Paradigms of MUFIN

Specifically, MUFIN can efficiently index large amounts of data and provides
online evaluation of similarity queries like ”Give me k images from the database
most similar to this photo”, i.e. it uses the query-by-example search paradigm
for the nearest neighbor or range similarity queries. As seen in Fig. 3, the search
problems of data and queries, indexing structures, and computational infrastruc-
ture are in MUFIN based on the following three paradigms:

Extensibility. MUFIN can be used practically on data of any type, for example
vectors, strings, or sets, provided the similarity space can be modeled as the
metric space [8]. For many examples see the books [10] or [9].

Scalability. MUFIN is efficient even for very large databases. Its indexing struc-
tures are based on structured P2P networks, so there is no bottleneck in form
of central data partitions or services. Specification of different implementa-
tion alternatives applied in MUFIN can be found in [1,3,4,7,11,6]. The index
can be in-memory or disk-based, centralized or distributed, internally repli-
cated. The trade-off between query efficiency and the quality of results is
fully tunable.

Infrastructure independence. MUFIN search technologies can run on var-
ious HW infrastructures including large-scale distributed computer clouds.

Multi Feature Indexing Network MUFIN for Similarity Search Applications 85

Migrating the search engine to a different hardware can be used for per-
formance tuning on specific, possibly dynamic, data collections. Specifically,
MUFIN can adjust the query response time and the multiple query evalu-
ation throughput even during the online query processing. The implemen-
tation is based on the Metric Similarity Search Implementation Framework,
http://lsd.fi.muni.cz/trac/messif/, MESSIF, also described in [2].

3.3 Demonstrations and Applications

Currently, both the concept and its implementation are relatively mature. The
technology have been successfully applied by several stock photo applications, for
example Pixmac http://www.pixmac.com and Profimedia http://www.profi

media.cz.

Fig. 4. Search results from MUFIN demo

A publicly-available demo http://mufin.fi.muni.cz/imgsearch/, based on
the M-Chord [7] P2P protocol, performs similarity searching on a half a billion
MPEG-7 global descriptors derived from 100 million Flickr images. The specific
descriptors applied are the color structure, scalable color, color layout, edge his-
togram and homogeneous texture. The network consists of 500 peers operating
on two IBM X3400 servers, each equipped with two quad-core processors, 20 GB
RAM and five SATA hard drives. Due to the size of data, the descriptors are
stored on the disks. The typical searching performance is below 500ms and the
query throughput is 10 queries per second. For illustration, Fig. 4 contains an
example of a search result – the top-left image is the query.

Other demos can be found at http://mufin.fi.muni.cz/apps.html. In the
area of images, they demonstrate global search on qualitatively different datasets,

http://lsd.fi.muni.cz/trac/messif/
http://www.pixmac.com
http://www.profi
media.cz
http://mufin.fi.muni.cz/imgsearch/
http://mufin.fi.muni.cz/apps.html

86 P. Zezula

a small demo also concerns retrieval of sub-images. Demos also show how various
ranking strategies can improve effectiveness of search results. Application of
similarity searching to automatic image annotation is also available. But the
MUFIN technology has also been used to biometric data, such as fingerprints
and faces or to time series in general, having potentially very large spectrum of
possible applications. Small demonstrations of such cases are also available on
this web page.

In 2008, the project received the IBM Shared University Research (SUR)
Award including also interesting hardware infrastructure. Thanks to this dona-
tion, we are able to run all of the demonstrations online.

4 Future Trends and Conclusions

Similarity search in collections of complex digital data has proved useful, and
MUFIN is certainly a viable approach to needed technology. Though several
applications are already operational a many others are being considered, there
are still problems which prevent faster development.

First, the similarity search is still expensive considering both the processing
time a storage costs, thus better paradigms and techniques to feature extraction
and query execution, properly exploiting up to date computing infrastructures
are still needed. Second, existing software is typically not available in form of sim-
ple and ready to use packages and developing of applications requires project-like
approaches. These are costly, consuming extensive humane and infrastructure
resources, which are scarce, not always available.

A promising alternative to be exploited in the future is to develop similarity
search services based on the Cloud Computing paradigm. The expected posi-
tive properties can mainly be attributed to the characteristic Cloud Computing
system properties of:

Scalability - to support huge databases and very high request rates – cloud
systems are designed to scale-out, so that large scale is achieved using large
number of commodity servers, running in parallel. An effective scale-out
system must balance load across servers and avoid bottlenecks.

Elasticity - it means that we can add more capacity to a running system by
deploying new instances of each component, and shifting load to them.

Availability - cloud systems provide high levels of availability. In particular,
they are often multi tenant systems, which mean that a possible outage may
affect many different applications.

Privacy - outsourcing based on cloud computing is attractive as it promises
pay-as-you-go low storage costs as well as easy data access. However, care
needs to be taken to safeguard data that is valuable or sensitive against
unauthorized access.

Recently, there has been an explosion of new systems for data storage and man-
agement ”in the cloud”. Open source systems include Cassandra, HBase, Volde-
mort, and many others. Some systems offered as cloud services, either directly

Multi Feature Indexing Network MUFIN for Similarity Search Applications 87

in the case of Amazone SimpleDB and Microsoft Azure SQL Services, or as a
part of programming environment like Google’s AppEngine. Many of the sys-
tems are also refered to as ”key-value stores” and concentrate on massive scaling
and elasticity to simplify application development and deployment of classical
(attribute or keyword) data. To the best of our knowledge, the case of similarity
search cloud searing has not been considered yet.

Acknowledgments. This research was partially supported by the Czech Sci-
ence Foundation project No. P103/10/0886 and the Czech MV research grant
No. FV20102014004.

References

1. Batko, M., Novak, D., Falchi, F., Zezula, P.: On scalability of the similarity search
in the world of peers. In: INFOSCALE, pp. 1–12. ACM (2006)

2. Batko, M., Novak, D., Falchi, F., Zezula, P.: MESSIF: Metric Similarity Search
Implementation Framework. In: Thanos, C., Borri, F., Candela, L. (eds.) Digital
Libraries: Research and Development. LNCS, vol. 4877, pp. 1–10. Springer, Hei-
delberg (2007)

3. Ciaccia, P., Patella, M., Zezula, P.: M-tree: An efficient access method for similarity
search in metric spaces. In: VLDB, pp. 426–435. Morgan Kaufmann (1997)

4. Dohnal, V., Gennaro, C., Savino, P., Zezula, P.: D-Index: Distance searching index
for metric data sets. Multimedia Tools and Applications 21(1), 9–33 (2003)

5. Larkey, L., Markman, A.B.: Processes of similarity judgment. Cognitive Science 29,
1061–1076 (2005)

6. Novak, D., Batko, M., Zezula, P.: Metric index: An efficient and scalable solution
for precise and approximate similarity search. Inf. Syst. 36(4), 721–733 (2011)

7. Novak, D., Zezula, P.: M-Chord: A scalable distributed similarity search structure.
In: INFOSCALE, pp. 1–10. IEEE (2006)

8. O’Searcoid, M.: Metric Spaces. Springer, Heidelberg (2006)
9. Samet, H.: Foundations of Multidimensional And Metric Data Structures. Series

in Data Management Systems. Morgan Kaufmann (2006)
10. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space

Approach. Advances in Database Systems, vol. 32. Springer, Heidelberg (2006)
11. Zezula, P., Savino, P., Rabitti, F., Amato, G., Ciaccia, P.: Processing M-trees with

parallel resources. In: RIDE, pp. 147–154. IEEE (1998)

Recent Challenges and Ideas in Temporal Synthesis

Orna Kupferman

Hebrew University, School of Engineering and Computer Science,
Jerusalem 91904, Israel

orna@cs.huji.ac.il

Abstract. In automated synthesis, we transform a specification into a system that
is guaranteed to satisfy the specification against all environments. While model-
checking theory has led to industrial development and use of formal-verification
tools, the integration of synthesis in the industry is slow. This has to do with the-
oretical limitations, like the complexity of the problem, algorithmic limitations,
like the need to determinize automata on infinite words and solve parity games,
methodological reasons, like the lack of satisfactory compositional synthesis al-
gorithms, and practical reasons: current algorithms produce systems that satisfy
the specification, but may do so in a peculiar way and may be larger or less well-
structured than systems constructed manually.

The research community has managed to suggest some solutions to these lim-
itations, and bring synthesis algorithms closer to practice. Significant barriers,
however, remain. Moreover, the integration of synthesis in real applications has
taught us that the traditional setting of synthesis is too simplified and has brought
with it new algorithmic challenges. This paper introduces the synthesis prob-
lem, algorithms for solving it, and recent promising ideas in making temporal-
synthesis useful in practice.

1 Introduction

One of the most significant developments in the area of system verification over the
last two decades has been the development of algorithmic methods for verifying tem-
poral specifications of finite-state systems; see [13]. A frequent criticism against this
approach, however, is that verification is done after significant resources have already
been invested in the development of the system. Since systems invariably contain er-
rors, verification simply becomes part of the debugging process. The critics argue that
the desired goal is to use the specification of the system in the development process in
order to guarantee the design of correct systems. This is called system synthesis.1

In the late 1980s, several researchers realized that the classical approach to system
synthesis, where a system is extracted from a proof that the specification is satisfiable,
is well suited to closed systems, but not to open (also called reactive [22]) systems

1 To make life interesting, several different methodologies in system design are all termed “syn-
thesis”. The automatic synthesis we study here should not be confused with logic synthesis,
which is a process by which an abstract form of a desired circuit behavior (typically, register
transfer level, which by itself may be the outcome of yet another synthesis procedure, termed
high-level synthesis) is turned into a design implementation by means of logic gates.

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 88–98, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Recent Challenges and Ideas in Temporal Synthesis 89

[1,14,44]. In reactive systems, the system interacts with the environment, and a correct
system should then satisfy the specification with respect to all environments. If one ap-
plies the techniques of [18,38] to reactive systems, one obtains systems that are correct
only with respect to some environments. Pnueli and Rosner [44], Abadi, Lamport, and
Wolper [1], and Dill [14] argued that the right way to approach synthesis of reactive
systems is to consider the situation as a (possibly infinite) game between the environ-
ment and the system. A correct system can be then viewed as a winning strategy in this
game. It turns out that satisfiability of the specification is not sufficient to guarantee
the existence of such a strategy. Abadi et al. called specifications for which a winning
strategy exists realizable. Thus, a strategy for a system with inputs in I and outputs in
O maps finite sequences of inputs — words in (2I)∗, which correspond to the actions
of the environment so far, to an output in 2O — a suggested action for the system. A
strategy can then be viewed as a labeling of a tree with directions in 2I by labels in 2O.
The traditional algorithm for finding a winning strategy transforms the specification
into a parity automaton over such trees. The automaton accepts a tree if the tree models
a strategy all of whose computations satisfy the specification, and so a specification is
realizable precisely when this tree automaton is nonempty, i.e., it accepts some infinite
tree [44]. A finite generator of an infinite tree accepted by this automaton can be viewed
as a finite-state system realizing the specification. This is closely related to the approach
in [8,47] to solve Church’s solvability problem [12]. In [32,45,54,57] it was shown how
this approach to system synthesis can be carried out in a variety of settings.

In spite of the rich theory developed for system synthesis, little of this theory has been
reduced to practice. Some people argue that this is because the realizability problem,
and hence also the synthesis problem, for linear-temporal logic (LTL) specifications is
2EXPTIME-complete [44,49], but this argument is not compelling. First, experience
with verification shows that even nonelementary algorithms can be practical, since the
worst-case complexity does not arise often. For example, while the model-checking
problem for specifications in second-order logic has nonelementary complexity, the
model-checking tool MONA [17,29] successfully verifies many specifications given in
second-order logic. Furthermore, in some sense, synthesis is not harder than verifica-
tion. This may seem to contradict the known fact that while verification is “easy” (linear
in the size of the model and at most exponential in the size of the specification [35]),
synthesis is hard (2EXPTIME-complete). There is, however, something misleading in
this fact: while the complexity of synthesis is given with respect to the specification
only, the complexity of verification is given with respect to the specification and the
system, which can be much larger than the specification. In particular, it is shown in
[49] that there are temporal specifications for which every realizing system must be
at least doubly exponentially larger than the specifications. Clearly, the verification of
such systems is doubly exponential in the specification, just as the cost of synthesis.

We believe that there are other reasons for the lack of practical impact of synthe-
sis theory: algorithmic, methodological, scope, and qualitative. Let us start with the
algorithmic difficulties. First, the construction of tree automata for realizing strategies
uses determinization of Büchi automata. Safra’s determinization construction [51] has
been notoriously resistant to efficient implementations [2,53] (Safra’s construction was
recently improved in [41]. While the new construction results in automata with fewer

90 O. Kupferman

states, it suffers from the same problems that make Safra’s construction resistant to im-
plementations.) Second, determinization results in automata with a very complicated
state space. The best-known algorithms for parity-tree-automata emptiness [26] are
nontrivial already when applied to simple state spaces. Implementing them on top of
the messy state space that results from determinization is awfully complex, and is not
amenable to optimizations and a symbolic implementation.

Another major issue is methodological. The current theory of system synthesis as-
sumes that one gets a comprehensive set of temporal assertions as a starting point. This
cannot be realistic in practice. A more realistic approach would be to assume an evolving
formal specification: temporal assertions can be added, deleted, or modified. Since it is
rare to have a complete set of assertions at the very start of the design process, there is a
need to develop compositional synthesis algorithms. Such algorithms can, for example,
refine designs when provided with additional temporal properties. Moreover, develop-
ment of complex systems is typically modular, with components being composed into
larger components. Again, this is in contrast with current theory, which assumes a “flat”
global specification. A more realistic approach would be to assume a modular setting,
where specifications are given, and systems are generated, in a hierarchical manner.

A third drawback of current synthesis algorithms is their scope. Driven by the grow-
ing industrial impact of formal methods, various industrial efforts were launched re-
cently to develop industrial-strength temporal assertion languages for semiconductor
designs; e.g., Intel’s ForSpec and IBM’s Sugar [4,6]. In the related application of model
checking, theory has already bridged the gap with the new industrial-strength
formalisms. In synthesis, theory still assumes specifications in traditional temporal logic
like LTL. The richer formalisms require a nontrivial extension of current solutions. An
even more interesting extension of the scope of synthesis refers to the underlying set-
ting. It is by now realized that requiring the synthesized system to satisfy the specifica-
tion against all possible environments is often too demanding. There is a need to define
variants of synthesis that replace the universal quantification by a richer one.

Finally, while current automated synthesis algorithms generate a system that satis-
fies the specification, there is no emphasize on constructing optimal or well-structured
systems. Indeed, the systems are obtained by extending algorithms that check nonempti-
ness of tree automata to return a witness to the nonemptiness, and there is no work on
defining, measuring, and optimizing the quality of this witness. In particular, the syn-
thesized systems performs as a black box, and there is no attempt to make its internal
structure friendly to work with. Thus, automatic synthesis may result in systems that
are larger and less structured than systems generated manually.

This paper surveys recent work that address the above challenges, describe new syn-
thesis algorithms and paradigms, and discuss further challenges that they bring with
them.

2 Preliminaries

Consider finite sets I and O of input and output signals, respectively. We model finite-
state reactive systems with inputs in I and outputs in O by transducers (I/O-trans-
ducers, when I and O are not clear from the context). A transducer is a finite graph
with a designated start state, where the edges are labeled by letters in 2I and the states

Recent Challenges and Ideas in Temporal Synthesis 91

are labeled by letters in 2O. Formally, a transducer is a tuple T = 〈I, O, S, sin, η, L〉,
where I and O are the sets of input and output signals, S is a finite set of states, sin ∈ S
is an initial state, η : S×2I → S is a deterministic transition function, and L : S → 2O

is a labeling function. We extend η to words in (2I)∗ in the straightforward way. Thus,
η : (2I)∗ → S is such that η(ε) = sin, and for x ∈ (2I)∗ and i ∈ 2I , we have
η(x · i) = η(η(x), i). Each transducer T induces a strategy fT : (2I)∗ → 2O where
for all w ∈ (2I)∗, we have fT (w) = τ(L(w)). Thus, fT (w) is the letter that T outputs
after reading the sequence w of input letters. The strategy fT generates computations
over the set I ∪ O of signals. A computation ρ ∈ (2I∪O)ω is generated by fT if ρ =
(i0 ∪ o0), (i1 ∪ o1), (i2 ∪ o2), . . . and for all j ≥ 1, we have oj = fT (i0 · i1 · · · ij−1).
We sometimes refer to ρ as a computation of T .

Linear temporal logic (LTL) is a formalism for specifying on-going behaviors of
reactive systems [43]. Given an LTL formula ψ over the sets I and O of input and output
signals, the realizability problem for ψ is to decide whether there is an I/O-transducer
T such that all the computations of T satisfy ψ [44].

Algorithms for solving the synthesis problem are based on automata on infinite
words and trees. We assume that the reader is familiar with the basic definitions of
alternating tree automata. All the notations we are going to use are these defined and
used in [33]. We do define here trees and labeled trees. Given a set D of directions, a
D-tree is a set T ⊆ D∗ such that if x · c ∈ T , where x ∈ D∗ and c ∈ D, then also
x ∈ T . If T = D∗, we say that T is a full D-tree. The elements of T are called nodes,
and the empty word ε is the root of T . For every x ∈ T , the nodes x · c, for c ∈ D, are
the successors of x. Given an alphabet Σ, a Σ-labeled D-tree is a pair 〈T, τ〉 where T
is a tree and τ : T → Σ maps each node of T to a letter in Σ.

We denote classes of automata by acronyms in {D,N}× {B,C, P}× {W,T }. The
first letter stands for the branching mode of the automaton (deterministic or nondeter-
ministic); the second letter stands for the acceptance-condition type (Büchi, co-Büchi,
or parity); the third letter stands for the object over which the automaton runs (words or
trees). For example, NBW stands for nondeterministic Büchi automata, and DPT stands
for deterministic parity tree automata.

3 Algorithms

The traditional algorithm for solving the realizability problem translates the LTL for-
mula into an NBW, applies Safra’s construction in order to get a DPW Aψ for it, ex-
pands Aψ to a DPT A∀ψ that accepts all the trees all of whose branches satisfy ψ,
and then checks the nonemptiness of A∀ψ with respect to I-exhaustive 2I∪O-labeled
2I-trees, namely 2I∪O-labeled 2I -trees that contain, for each word w ∈ (2I)ω , at least
one path whose projection on 2I is w [44]. Thus, the algorithm applies Safra’s deter-
minization construction, and has to solve the nonemptiness problem for DPT. For ψ of
length n, the DPW Aψ has 22

O(n log n)

states and index 2O(n). This is also the size of
the DPT A∀ψ, making the overall complexity doubly-exponential, which matches the
lower bound in [49].

In [33], we describe a “Safraless” synthesis algorithm that avoids determinization
and avoids the use of the parity acceptance condition. The algorithm proceeds as fol-
lows. A strategy f : (2I)∗ → 2O can be viewed as a 2O-labeled 2I -tree. We define a

92 O. Kupferman

UCT Sψ such that Sψ accepts a 2O-labeled 2I -tree 〈T, τ〉 iff τ is a good strategy for ψ.
We define Sψ as follows.

LetA¬ψ = 〈2I∪O, Q, qin, δ, α〉 be an NBW for ¬ψ [55]. Thus,A¬ψ accepts exactly
all the words in (2I∪O)ω that do not satisfy ψ. Then, Sψ = 〈2O, 2I , Q, qin, δ

′, α〉,
where for every q ∈ Q and o ∈ 2O, we have δ′(q, o) =

∧
i∈2I

∧
q′∈δ(q,i∪o)(i, q

′). Thus,

from state q, reading the output assignment o ∈ 2O, the automaton Sψ branches to
each direction i ∈ 2I , with all the states q′ to which δ branches when it reads i ∪ o in
state q. It is not hard to see that Sψ accepts a 2O-labeled 2I-tree 〈T, τ〉 iff for all the
paths {ε, i0, i0 · i1, i0 · i1 · i2, . . .} of T , the infinite word (i0 ∪ τ(ε)), (i1 ∪ τ(i0)), (i2 ∪
τ(i0 · i1)), . . . is not accepted byA¬ψ; thus all the computations generated by τ satisfy
ψ. The size of A¬ψ is exponential in the length of ψ. Using the rank-based method
of [33], it is possible to reduce the nonemptiness of a UCT to the nonemptiness of an
NBT with another exponential blow-up. Hence, realizability of ψ is reduced to checking
the nonemptiness of an NBT of size doubly exponential in the length of ψ. Since the
nonemptiness of an NBT can be solved in quadratic time, we are done. Moreover, as
with the traditional algorithm [46], the approach in [33] can return a witness to the
nonemptiness of Sψ – a transducer that realizes ψ. Thus we solve both realizability and
synthesis.

The approach in [33] was improved in [31], where the algorithm starts by translating
¬ψ to a nondeterministic generalized Büchi automaton. The Safraless approach is used
in algorithms for bounded synthesis [15,52], was extended to timed specifications [21],
led to further simplified synthesis algorithms [19], and was implemented in [25].

4 Methodology

A serious drawback of current synthesis algorithms is that they assume a comprehensive
set of temporal assertions, describing the global behavior of the system, as a starting
point. The ultimate goal in compositional synthesis is to compose a system that realizes
a set of specifications from systems that realize the underlying specifications. Moreover,
in case the conjunction of specifications is not realizable, the user can omit or weaken
some of them.

In [31], we describe how it is possible, when we check the realizability of ψ ∧ ψ′, to
use much of the work done in checking the realizability of ψ and ψ′ in isolation. Recall
that the Safraless algorithm reduces realizability of a specification ψ to the nonempti-
ness of an NBT Uψ. The state space of Uψ is simple: each state of Uψ is of the form
〈S, g〉, where S is a set of states in the intermediate UCT Sψ (the “state component”,
which coincides with the set of states of A¬ψ) and g is a function that maps the states
in S to a finite set of ranks (the “ranking component”). Realizability of ψ ∧ ψ′ then
involves the product of Uψ and Uψ′ . The simple structure of the NBTs makes it possible
not only to define the product easily (ease follows also from the use of a generalized
Büchi acceptance condition), but also to use the work done during the nonemptiness
checks of Uψ and Uψ′ when we check the nonemptiness of the product. Indeed, the
rank component of a state in the product describes ranks to states in both Sψ and Sψ′ .
A state whose projection on one of the components corresponds to a state that is empty
in the NBT for this component, can be labeled empty. This approach is especially help-
ful when combined with an incremental approach, where we construct the NBT with a

Recent Challenges and Ideas in Temporal Synthesis 93

small maximal rank, and increase the maximal rank only if the specification turns out
not to be realizable with this small maximal rank,

So far, we considered compositionality in terms of the specification. In practice, the
compositionality of the specification is often reflected also in a hierarchical structure,
where subformulas of the specifications are composed not only in a Boolean manner
but also in a modular one. Another way to view this is as follows. In the classical
synthesis algorithms, it is always assumed the system is “constructed from scratch”
rather than “composed” from reusable components. This rarely happens in real life. In
real life, almost every non-trivial commercial system, either hardware or software, relies
heavily on using libraries of reusable components. Furthermore, other contexts, such as
web service orchestration, can be modeled as synthesis of a system from a library of
components.

In [37], the authors define and study the problem of LTL synthesis from libraries
of reusable components. Two notions of composition are defined: functional composi-
tion, for which the problem turns out not be decidable, and structural composition, for
which the problem is 2EXPTIME-complete. As a side benefit, [37] derives an explicit
characterization of the information needed by the synthesizer on the underlying com-
ponents. This characterization can be used as a specification formalism between com-
ponent providers and integrators. Synthesis from underlying components is extended
in [36] to consider the problem of control-flow synthesis from libraries of probabilistic
components. It is shown that this more general problem is also decidable.

5 Scope

One approach to tackle the algorithmic difficulties in LTL synthesis has been to restrict
the class of allowed specification. In [5], the authors study the case where the LTL for-
mulas are of the formGp, Fp, GFp, or FGp. 2 In [3], the authors consider the fragment
of LTL consisting of boolean combinations of formulas of the form Gp, as well as a
richer fragment in which the N operator is allowed. Since the games corresponding to
formulas of these restricted fragments are simpler, the synthesis problem is simpler too,
and it can be solved in PSPACE or EXPSPACE, depending on the specific fragment.
Anther fragment of LTL, termed GR(1), is studied in [42]. In the GR(1) fragment (ge-
neralized reactivity(1)) the formulas are of the form (GFp1 ∧GFp2 ∧ · · ·GFpm)→
(GFq1∧GFq2∧· · ·GFqn), where each pi and qi is a Boolean combination of atomic
propositions. It is shown in [42] that for this fragment, the synthesis problem can be
solved in EXPTIME, and with only O((mn · 2|AP |)3) symbolic operations, where AP
is the set of atomic propositions.

In [34], we continue this approach with the aim of focusing on properties that are
used in practice. We study the synthesis problem for TRIGGER LOGIC. Modern
industrial-strength property-specification languages such as Sugar [6], ForSpec [4], and
the recent standards PSL [16] and SVA [56] include regular expressions. TRIGGER

LOGIC is a fragment of these logics that covers most of the properties used in prac-
tice by system designers. Technically, TRIGGER LOGIC consists of positive Boolean

2 The setting in [5] is of real-time games, which generalizes synthesis.

94 O. Kupferman

combinations of assertions about regular events, connected by the usual regular opera-
tors as well as temporal implication, �→ (“triggers”). For example, the TRIGGER LOGIC

formula (true[∗]; req; ack)�→(true[∗]; grant) holds in an infinite computation if every
request that is immediately followed by an acknowledge is eventually followed by a
grant. Also, the TRIGGER LOGIC formula (true[∗]; err)�→avoid (true[∗]; ack) holds in
a computation if once an error is detected, no acks can be sent.

It is shown in [34] that TRIGGER LOGIC formulas can be translated to determin-
istic Büchi automata using the two classical subset constructions: the determinization
construction of [48] and the break-point construction of [39]. Accordingly, while the
synthesis problem for TRIGGER LOGIC is still 2EXPTIME-complete, the synthesis al-
gorithm for it is significantly simpler than the one used in general temporal synthesis.

The work described above stays in the traditional setting of synthesis and considers
variants of the specification formalism. An even more interesting extension of the scope
of synthesis refers to the underlying setting. It is by now realized that requiring the
synthesized system to satisfy the specification against all possible environments is often
too demanding. Dually, allowing all possible systems is perhaps not demanding enough.
This issue is traditionally approached by adding assumptions on the system and/or the
environment, which are modeled as part of the specification (c.f., [11]).

In [30,52], the authors study study bounded temporal synthesis, in which bounds on
the sizes of the state space of the system and the environment are additional parame-
ters to the synthesis problem. The study is motivated by the fact that such bounds may
indeed change the answer to the synthesis problem, as well as the theoretical and com-
putational aspects of the synthesis problem. In particular, a finer analysis of synthesis,
which takes system and environment sizes into account, yields deeper insight into the
quantificational structure of the synthesis problem and the relationship between strong
synthesis – there exists a system such that for all environments, the specification holds,
and weak synthesis – for all environments there exists a system such that the specifica-
tion holds.

Unlike the unbounded setting, where determinacy of regular games implies that
strong and weak synthesis coincide, these notions do not coincide in the bounded set-
ting. Bounding the size of the system or the environment turns the synthesis problem
into a search problem, and one cannot expect to do better than brute-force search. In
particular, the synthesis problem for bounded environments is NP-complete [52], and is
ΣP

2 -complete for bonded systems and environments (the complexity is in terms of the
bounds, for a specification given by a deterministic automaton) [30].

A different, more conceptual change of the setting has to do with the fact that mo-
dern systems often interact with other systems. For example, the clients interacting with
a server are by themselves distinct entities (which we call agents) and are many times
implemented by systems. In the traditional approach to synthesis, the way in which the
environment is composed of its underlying agents is abstracted. In particular, the agents
can be seen as if their only objective is to conspire to fail the system. Hence the term
“hostile environment” that is traditionally used in the context of synthesis. In real life,
however, many times agents have goals of their own, other than to fail the system. The
approach taken in the field of algorithmic game theory [40] is to assume that agents
interacting with a computational system are rational, i.e., agents act to achieve their

Recent Challenges and Ideas in Temporal Synthesis 95

own goals. Assuming agents rationality is a restriction on the agents behavior and is
therefore equivalent to restricting the universal quantification on the environment.

In [20], we introduce the problem of synthesis in the context of rational agents (ra-
tional synthesis, for short). The input consists of a temporal-logic formula specifying
the system, temporal-logic formulas specifying the objectives of the agents, and a solu-
tion concept definition. The output is an implementation T of the system and a profile
of strategies, suggesting a behavior for each of the agents. The output should satisfy
two conditions. First, the composition of T with the strategy profile should satisfy the
specification. Second, the strategy profile should be an equilibrium in the sense that, in
view of their objectives, agents have no incentive to deviate from the strategies assigned
to them, where “no incentive to deviate” is interpreted as dictated by the given solution
concept. As it turns out, system synthesizers can capitalize on the rationality and goals
of the agents interacting with it. Moreover, for the classical definitions of equilibria
studied in game theory, rational synthesis is not harder than traditional synthesis. The
results in [20] also consider the multi-valued case in which the objectives of the system
and the agents are still temporal logic formulas, but involve payoffs from a finite lattice.

6 Quality

Very little attention has been payed to the quality of the systems that are automatically
synthesized. Typically, many systems satisfy a realizable specification, and while they
all satisfy the specification, they may do so at different levels of “unspecified quality”.
This latter problem is a real obstacle, as designers would be willing to give up manual
design only after being convinced that the automatic procedure that replaces it generates
systems of comparable quality. Nowadays specification formalisms are too abstract to
specify such quality measures.

An approach in which quantitative reasoning is used in order to improve the quality
of automatically synthesized systems is described in [7]. There, the synthesis problem is
reduced to the solution of lexicographic mean-payoff games. A winning strategy in the
game induces a system that satisfies the specification in high quality. Another approach
is described in [27,28], where the authors introduce the idea of model-checking-based
genetic programming as a general approach to synthesis: starting with a randomly ge-
nerated solution, the solution is iteratively improved according to a valuation (fitness
function) that a model checker assigns to the suggested solution.

The neglecting of the quality of automatically synthesized systems is related to the
fact that model checking is Boolean. The Boolean fate of a verification process seems
natural, as a system can either satisfy its specification or not satisfy it. The richness
of today’s systems and verification methodologies has motivated the introduction of
multi-valued specification formalisms. These formalisms are used in order to specify
quantitative properties (say, map a computation to the maximal wait time along it)
[9,10,23], or in order to specify rich truth values (say, an “unknown” value, in the case
of abstraction [50], or a value that is a subset of all possible viewpoints, in case of sys-
tems with multiple viewpoints [24]). Very little attempts, however, have been made to
augment temporal logics with a quantitative layer that would enable the specification
of the relative merits of different aspects of the specification. The idea behind such a

96 O. Kupferman

layer is that there should be a difference between a system that satisfies the specifica-
tion AG(req → Fgrant) with grants generated soon after requests, and a system that
satisfies it with grants generated after long waits. Specification formalisms should be
refined in order to reveal such differences, and algorithms for reasoning about the new
formalisms are required. With the right formalisms, a designer will be able to associate
the different aspects of the specification with costs and rewards, reflecting their impor-
tance, and synthesis algorithms will be able to generate systems that not only satisfy
the specification, but also do so in a way that maximizes the quality of the satisfaction,
as defined formally by the designer. The development of such multi-valued formalisms
and algorithms for reasoning about them involves is the subject of current research.

References

1. Abadi, M., Lamport, L., Wolper, P.: Realizable and Unrealizable Concurrent Program Spec-
ifications. In: Ronchi Della Rocca, S., Ausiello, G., Dezani-Ciancaglini, M. (eds.) ICALP
1989. LNCS, vol. 372, pp. 1–17. Springer, Heidelberg (1989)

2. Althoff, C.S., Thomas, W., Wallmeier, N.: Observations on Determinization of Büchi Au-
tomata. In: Farré, J., Litovsky, I., Schmitz, S. (eds.) CIAA 2005. LNCS, vol. 3845, pp. 262–
272. Springer, Heidelberg (2006)

3. Alur, R., La Torre, S.: Deterministic generators and games for LTL fragments. ACM Trans-
actions on Computational Logic 5(1), 1–25 (2004)

4. Armoni, R., Fix, L., Flaisher, A., Gerth, R., Ginsburg, B., Kanza, T., Landver, A., Mador-
Haim, S., Singerman, E., Tiemeyer, A., Vardi, M.Y., Zbar, Y.: The forSpec Temporal Logic: A
New Temporal Property-Specification Language. In: Katoen, J.-P., Stevens, P. (eds.) TACAS
2002. LNCS, vol. 2280, pp. 196–211. Springer, Heidelberg (2002)

5. Asarin, E., Maler, O., Pnueli, A., Sifakis, J.: Controller synthesis for timed automata. In:
IFAC Symposium on System Structure and Control, pp. 469–474. Elsevier (1998)

6. Beer, I., Ben-David, S., Eisner, C., Fisman, D., Gringauze, A., Rodeh, Y.: The Temporal
Logic Sugar. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp.
363–367. Springer, Heidelberg (2001)

7. Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better Quality in Synthesis
Through Quantitative Objectives. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 140–156. Springer, Heidelberg (2009)

8. Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strategies. Trans.
AMS 138, 295–311 (1969)

9. Chakrabarti, A., Chatterjee, K., Henzinger, T.A., Kupferman, O., Majumdar, R.: Verifying
Quantitative Properties Using Bound Functions. In: Borrione, D., Paul, W. (eds.) CHARME
2005. LNCS, vol. 3725, pp. 50–64. Springer, Heidelberg (2005)

10. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative Languages. In: Kaminski, M., Mar-
tini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 385–400. Springer, Heidelberg (2008)

11. Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Environment Assumptions for Synthesis.
In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 147–161.
Springer, Heidelberg (2008)

12. Church, A.: Logic, arithmetics, and automata. In: Proc. Int. Congress of Mathematicians,
1962, pp. 23–35. Institut Mittag-Leffler (1963)

13. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)
14. Dill, D.L.: Trace theory for automatic hierarchical verification of speed independent circuits.

MIT Press (1989)

Recent Challenges and Ideas in Temporal Synthesis 97

15. Ehlers, R.: Symbolic Bounded Synthesis. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV
2010. LNCS, vol. 6174, pp. 365–379. Springer, Heidelberg (2010)

16. Eisner, C., Fisman, D.: A Practical Introduction to PSL. Springer, Heidelberg (2006)
17. Elgaard, J., Klarlund, N., Möller, A.: Mona 1.x: new techniques for WS1S and WS2S. In:

Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 516–520. Springer, Heidelberg (1998)
18. Emerson, E.A., Clarke, E.M.: Using branching time logic to synthesize synchronization

skeletons. Science of Computer Programming 2, 241–266 (1982)
19. Filiot, E., Jin, N., Raskin, J.-F.: An Antichain Algorithm for LTL Realizability. In: Bouajjani,

A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 263–277. Springer, Heidelberg (2009)
20. Fisman, D., Kupferman, O., Lustig, Y.: Rational Synthesis. In: Esparza, J., Majumdar, R.

(eds.) TACAS 2010. LNCS, vol. 6015, pp. 190–204. Springer, Heidelberg (2010)
21. Di Giampaolo, B., Geeraerts, G., Raskin, J.-F., Sznajder, N.: Safraless Procedures for Timed

Specifications. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246,
pp. 2–22. Springer, Heidelberg (2010)

22. Hare, D., Pnueli, A.: On the development of reactive systems. In: Apt, K. (ed.) Logics and
Models of Concurrent Systems. NATO Advanced Summer Institutes, vol. F-13, pp. 477–498.
Springer, Heidelberg (1985)

23. Henzinger, T.A.: From Boolean to quantitative notions of correctness. In: Proc. 37th ACM
Symp. on Principles of Programming Languages, pp. 157–158 (2010)

24. Hussain, A., Huth, M.: On model checking multiple hybrid views. Technical Report TR-
2004-6, University of Cyprus (2004)

25. Jobstmann, B., Bloem, R.: Game-based and simulation-based improvements for LTL synthe-
sis. In: 3nd Workshop on Games in Design and Verification (2006)

26. Jurdziński, M.: Small Progress Measures for Solving Parity Games. In: Reichel, H., Tison,
S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 290–301. Springer, Heidelberg (2000)

27. Katz, G., Peled, D.: Genetic Programming and Model Checking: Synthesizing New Mutual
Exclusion Algorithms. In: Cha, S., Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.)
ATVA 2008. LNCS, vol. 5311, pp. 33–47. Springer, Heidelberg (2008)

28. Katz, G., Peled, D.: Model Checking-Based Genetic Programming with an Application to
Mutual Exclusion. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963,
pp. 141–156. Springer, Heidelberg (2008)

29. Klarlund, N.: Mona & Fido: The Logic-Automaton Connection in Practice. In: Nielsen, M.
(ed.) CSL 1997. LNCS, vol. 1414, pp. 311–326. Springer, Heidelberg (1998)

30. Kupferman, O., Lustig, Y., Vardi, M.Y., Yannakakis, M.: Temporal synthesis for bounded
systems and environments. In: Proc. 28th Symp. on Theoretical Aspects of Computer Sci-
ence, pp. 615–626 (2011)

31. Kupferman, O., Piterman, N., Vardi, M.Y.: Safraless Compositional Synthesis. In: Ball, T.,
Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 31–44. Springer, Heidelberg (2006)

32. Kupferman, O., Vardi, M.Y.: Synthesis with incomplete information. In: Advances in Tem-
poral Logic, pp. 109–127. Kluwer Academic Publishers (2000)

33. Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: Proc. 46th IEEE Symp. on
Foundations of Computer Science, pp. 531–540 (2005)

34. Kupferman, O., Vardi, M.Y.: Synthesis of Trigger Properties. In: Clarke, E.M., Voronkov, A.
(eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 312–331. Springer, Heidelberg (2010)

35. Lichtenstein, O., Pnueli, A.: Checking that finite state concurrent programs satisfy their linear
specification. In: Proc. 12th ACM Symp. on Principles of Programming Languages, pp. 97–
107 (1985)

36. Lustig, Y., Nain, S., Vardi, M.Y.: Synthesis from probabilistic components. In: Proc. 20th
Annual Conf. of the European Association for Computer Science Logic, pp. 412–427 (2011)

37. Lustig, Y., Vardi, M.Y.: Synthesis from Component Libraries. In: de Alfaro, L. (ed.) FOS-
SACS 2009. LNCS, vol. 5504, pp. 395–409. Springer, Heidelberg (2009)

98 O. Kupferman

38. Manna, Z., Wolper, P.: Synthesis of communicating processes from temporal logic specifica-
tions. ACM Transactions on Programming Languagues and Systems 6(1), 68–93 (1984)

39. Miyano, S., Hayashi, T.: Alternating finite automata on ω-words. Theoretical Computer Sci-
ence 32, 321–330 (1984)

40. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic Game Theory. Cam-
bridge University Press (2007)

41. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic parity au-
tomata. In: Proc. 21st IEEE Symp. on Logic in Computer Science, pp. 255–264. IEEE press
(2006)

42. Piterman, N., Pnueli, A., Saar, Y.: Synthesis of Reactive(1) Designs. In: Emerson, E.A.,
Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 364–380. Springer, Heidelberg
(2005)

43. Pnueli, A.: The temporal semantics of concurrent programs. Theoretical Computer Sci-
ence 13, 45–60 (1981)

44. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proc. 16th ACM Symp. on
Principles of Programming Languages, pp. 179–190 (1989)

45. Pnueli, A., Rosner, R.: On the Synthesis of an Asynchronous Reactive Module. In: Ronchi
Della Rocca, S., Ausiello, G., Dezani-Ciancaglini, M. (eds.) ICALP 1989. LNCS, vol. 372,
pp. 652–671. Springer, Heidelberg (1989)

46. Rabin, M.O.: Weakly definable relations and special automata. In: Proc. Symp. Math. Logic
and Foundations of Set Theory, pp. 1–23. North-Holland (1970)

47. Rabin, M.O.: Automata on infinite objects and Church’s problem. Amer. Mathematical So-
ciety (1972)

48. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM Journal of Re-
search and Development 3, 115–125 (1959)

49. Rosner, R.: Modular Synthesis of Reactive Systems. PhD thesis, Weizmann Institute of Sci-
ence (1992)

50. Graf, S., Saidi, H.: Construction of Abstract State Graphs with PVS. In: Grumberg, O. (ed.)
CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

51. Safra, S.: On the complexity of ω-automata. In: Proc. 29th IEEE Symp. on Foundations of
Computer Science, pp. 319–327 (1988)

52. Schewe, S., Finkbeiner, B.: Bounded Synthesis. In: Namjoshi, K.S., Yoneda, T., Higashino,
T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 474–488. Springer, Heidelberg
(2007)

53. Tasiran, S., Hojati, R., Brayton, R.K.: Language Containment Using Non-Deterministic
Omega-Automata. In: Camurati, P.E., Eveking, H. (eds.) CHARME 1995. LNCS, vol. 987,
pp. 261–277. Springer, Heidelberg (1995)

54. Vard, M.Y.: An Automata-Theoretic Approach to Fair Realizability and Synthesis. In:
Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 267–292. Springer, Heidelberg (1995)

55. Vard, M.Y., Wolper, P.: Reasoning about infinite computations. Information and Computa-
tion 115(1), 1–37 (1994)

56. Vijayaraghavan, S., Ramanathan, M.: A Practical Guide for SystemVerilog Assertions.
Springer, Heidelberg (2005)

57. Wong-Toi, H., Dill, D.L.: Synthesizing processes and schedulers from temporal specifica-
tions. In: Proc. 2nd Conf. on Computer Aided Verification. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, vol. 3, pp. 177–186. AMS (1991)

Cryptography from Learning Parity with Noise�

Krzysztof Pietrzak

Institute of Science and Technology (IST) Austria

Abstract. The Learning Parity with Noise (LPN) problem has recently
found many applications in cryptography as the hardness assumption un-
derlying the constructions of “provably secure” cryptographic schemes
like encryption or authentication protocols. Being provably secure means
that the scheme comes with a proof showing that the existence of an effi-
cient adversary against the scheme implies that the underlying hardness
assumption is wrong.

LPN based schemes are appealing for theoretical and practical rea-
sons. On the theoretical side, LPN based schemes offer a very strong
security guarantee. The LPN problem is equivalent to the problem of de-
coding random linear codes, a problem that has been extensively studied
in the last half century. The fastest known algorithms run in exponential
time and unlike most number-theoretic problems used in cryptography,
the LPN problem does not succumb to known quantum algorithms. On
the practical side, LPN based schemes are often extremely simple and ef-
ficient in terms of code-size as well as time and space requirements. This
makes them prime candidates for light-weight devices like RFID tags,
which are too weak to implement standard cryptographic primitives like
the AES block-cipher.

This talk will be a gentle introduction to provable security using sim-
ple LPN based schemes as examples. Starting from pseudorandom gener-
ators and symmetric key encryption, over secret-key authentication pro-
tocols, and, if time admits, touching on recent constructions of public-key
identification, commitments and zero-knowledge proofs.

1 Learning Parity with Noise and Related Problems

The search version of the learning parity with noise problem with parameters
� ∈ N (the length of the secret), τ ∈ R where 0 < τ < 0.5 (the noise rate) and
q ∈ N (the numbers of samples) asks to find a fixed random � bit secret s ∈ Z�

2

from q samples of the form a, 〈a, s〉 ⊕ e where a ∈ Z�
2 is random and e ∈ Z2 has

Bernoulli distribution with parameter τ (we denote this distribution with Berτ),
i.e. Pr[e = 1] = τ . The decisional LPN problem is defined similarly, except that
we require that one cannot even distinguish noisy inner products from random.
The distinction between the search and the decisional version of a problem is of-
ten made for problems used in cryptography. Typically, assuming the decisional
version of a problem allows for much simpler and more efficient constructions

� This survey paper accompanies an invited talk at SOFSEM 2012.

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 99–114, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

100 K. Pietrzak

of cryptosystems, whereas the search version is a weaker assumption and thus
constructions based on it require less “faith” in the presumed hardness of the as-
sumption.1 Interestingly, for the LPN problem one can show that the distinction
between the search and the decisional version is irrelevant, more on this below.
Before we formally define the LPN problem, let us set the notational conventions
for the rest of this paper.

Notation. Zq denotes the set {0, 1, . . . , q − 1}, and addition is always modulo
q. In particular, Z2 = {0, 1} are bits and ⊕ denotes bitwise XOR. We use bold
small and capital letters like x,X to denote vectors and matrices, respectively.

Calligraphic letters like X denote sets. For a set X , x
$← X denotes that x is

assigned a value sampled uniformly at random from X . For a distribution D,
x ← D denotes that x is sampled according to D. With Berτ we denote the
Bernoulli distribution with parameter τ , i.e. Pr[x = 1 ; x ← Berτ] = τ . For
m ∈ N, Um denotes the uniform distribution over Zm

2 . X ∼ D denotes that X
is a random variable with distribution D. 〈a,b〉 =

∑n
i=1 a[i] ·b[i] mod p denotes

the inner product of a,b ∈ Zn
p .

The Basic LPN Problem

Definition 1 (search/decisional LPN Problem). For τ ∈]0, 1/2[, � ∈ N, the
decisional LPNτ,� problem is (q, t, ε)-hard if for every distinguisher D running in
time t ∣∣∣∣ Pr

s,A,e
[D(A,A.s⊕ e) = 1]− Pr

r,A
[D(A, r) = 1]

∣∣∣∣ ≤ ε (1)

Where s
$← Z�

2 , A
$← Zq×�

2 , e← Berqτ and r
$← Zq

2. The search LPNτ,� problem
is (q, t, ε)-hard if for every D running in time t

Pr
s,A,e

[D(A,A.s ⊕ e) = s] ≤ ε (2)

The Learning with Errors (LWE) Problem. A problem closely related to
LPN is the learning with errors (LWE) problem introduced by Regev [43]. LWE
is a generalization of LPN to larger moduli. For some prime p,2 we have a secret
s ∈ Z�

p, and the adversary is asked to find s given samples 〈a, s〉 + e. Here a is

uniform in Z�
p and the noise e ∈ Zp is sampled according to some distribution

χ, typically this distribution is a “discrete Gaussian”. A good survey paper on
LWE and its applications is [44].3 LWE seems much more versatile than LPN.
Besides all the cryptographic primitives we can construct from LPN, there are

1 A typical example is public-key encryption based on the Diffie-Hellman problem,
which is quite straight forward and efficient using the decisional version of the prob-
lem [14], but much more tricky and less practical using the search version [11].

2 The case where the moduli is a the power of a prime has also been used [2].
3 A bibliography of LWE (and more generally, lattice) based cryptosystems is main-
tained on http://xagawa.net/bib-lattice/

http://xagawa.net/bib-lattice/

Cryptography from Learning Parity with Noise 101

contsructions of much more sophisticated objects like public-key encryption [43]
(even fully homomorphic [16] or identity-based [21,10]) and collision resistant
hash functions [33], which we do not know how to construct from LPN.4 LWE is
also interesting for theoretical reasons, as it has the remarkable property that its
hardness follows form worst case hardness of lattice assumptions [43,40]. LWE
lacks the simplicity of LPN,5 and thus LWE based schemes are less suited for
weak devices like RFID tags.

Decision vs. Search. In contrast to most cryptographic assumptions which
come in a search and decisional variant, it turns out that for LPN the two
versions are “polynomially equivalent” [5,31] as stated in the lemma below.6

This means that any attacker of size t against decisional LPN implies an attacker
of size poly(t) against the search version. Thus, cryptosystems proven secure
under the decisional LPN assumption are already secure if search LPN is hard.
Although this search to decision reduction is not tight, in practice we have no
faster algorithms for decision than for search.

Lemma 1 (Lemma 1 from [31]). If decisional LPNτ,� is not (q, t, ε) secure,
then search LPNτ,� is not O(q′, t′, ε′) secure where

q′ = O(q · log �/ε2) t′ = O(t · � · log �/ε2) ε′ = ε/4

Relations of LPN to Other Problems. With the current state in complexity
theory, we cannot expect to prove that there exists no efficient adversary who
breaks the LPN problem, as this would imply P �= NP . The search LPN problem
can be stated as the NP complete problem of decoding random linear codes [7].7

Think of A as the generator matrix and s as the message. The decoding problem

4 Alekhnovich [4] and Applebaum, Barak and Wigderson [1] construct public-key en-
cryption from variants of LPN (which seem like much stronger assumptions than
LPN) where either the noise rate τ is not constant but depends on the length � of
the secret as τ = O(1/

√
�) [4], or the vectors a are not uniform, but have Hamming

weight exactly 3 [1]. Another approach, pioneered by McEliece [37], replaces the
random A with a “disguised” generator matrix of a code which allows for efficient
error-correction. The security of the public-key encryption scheme follows from LPN
and the assumption that the disguised matrix is indistinguishable from uniformly
random.

5 It requires many multiplications modulo some prime p (Typically p is polynomial
in a security parameter, and thus much smaller than the moduli used in discrete
logarithm (or factoring based) based schemes, where log(p) must be at least as as
large as the security parameter), as opposed to inner products of bit-vectors as for
LPN.

6 Such an equivalence also holds for LWE with prime modulus [43] or if the modulus
is the power of a prime ([2], Lemma 1).

7 This does not imply that LPN is hard assuming P �= NP as search LPN is an
average case problem (we require that no efficient adversary succeeds with non-
negligible probability), whereas NP hardness is just a worst case guarantee (no
efficient adversary succeeds on all inputs), see [5] for a more in-depth discussion.

102 K. Pietrzak

then asks to recover the message s from the noisy codeword A.s ⊕ e, which is
exactly search LPN. The LPN problem has been extensively studied in learning
theory, as an efficient algorithm for LPN would allow to learn several important
concept classes like 2-DNF formulas, juntas, and any function with a sparse
Fourier spectrum [15].

The best known algorithms to recover an � bit secreet need 2Θ(�/ log �) time
and samples [6,32]. If given only polynomially many q = poly(�) samples, the
running time of the best algorithm goes up to 2Θ(�/ log log �) [36], and given only
linearly many samples q = Θ(�), the best algorithms run in exponential 2Θ(�)

time [47,38]. Unlike most number-theoretic problems used in cryptography, no
quantum algorithms for LPN are known which are significantly faster than the
classical ones. See [32] for more exact estimates and suggestions of parameters �, τ
for cryptographic applications. In the next paragraphs we discuss the hardness
of LPN when either the secret s ∼ U�, the randomness A ∼ Uq×� or the error
e ∼ Berqτ does not have the right distribution.

Hardness of LPN for Non-Uniform Secrets. The secret s ∈ Z�
2 in the

LPN problem is usually assumed to be uniformly random. It is not hard to
see that this is the hardest distribution, in the sense that given an adversary
D who finds a uniform s given (A,A.s ⊕ e) with some probability δ, we can
recover a ŝ with any distribution over Z�

2 from (A,A.ŝ ⊕ e) with the same
probability δ as follows: given (A,A.ŝ ⊕ e), sample a uniform s′ and invoke D
on (A,A.ŝ ⊕ e ⊕ A.s′) = (A,A.(ŝ ⊕ s′) ⊕ e). Note that ŝ ⊕ s′ is uniform as
required, and if D finds ŝ⊕ s′ (which happens with probability δ) we can recover
ŝ = (ŝ ⊕ s′)⊕ s′.

Surprisingly, the uniform distribution is not the unique hardest distribution.
Applebaum et al. ([2] , Lemma 2) show that the LWE problem (where the
modulus p is prime or a power of a prime, and the noise distribution χ is arbi-
trary) is basically as hard if the secret s ← χ� is chosen according to the noise

distribution and not uniform s
$← Z�

p. In particular, the LPN problem where

s← Ber�τ is as hard as for uniform s
$← Z�

2. In [2] this result is used to construct
a key-dependent message secure public-key encryption scheme from LWE, and
key-dependent secret-key encryption from LPN, we’ll revisit the latter result
later.

Motivated by applications to leakage-resilient cryptography, Goldwasser et
al. [18] investigate the hardness of the LWE problem when the secret s ∈ Z�

p is
not uniform, but is only known to have some min-entropy.8 The best one can
hope for is that LWE with secrets of min-entropy k is as hard as standard LWE
with secrets of length �′ = k/ log(p).9 In [18] it is shown that this is almost the
case for LWE where the noise has a Gaussian distribution (which is the most

8 X has min entropy k if Pr[X = x] ≤ 2−k for every x in the support of X.
9 The reason is that the particular distribution where the first �′ elements of s are
uniform and the remaining ones are all zero has min-entropy k = �′ log(p). LWE
with such a secret is easily seen to be equivalent to LWE with a uniform secret
in Z

�′
p .

Cryptography from Learning Parity with Noise 103

interesting case due to its equivalence to worst-case lattice problems.) They
prove that if the standard LWE problem with uniform secrets over Z�′

p (and
noise distribution Gaussian with standard deviation α) is hard, then the (non-
standard) LWE with secrets in Z�

p having min-entropy k = �′ log(p) + ω(log �)
(and noise distribution Gaussian with standard deviation β) must also be hard.
The reduction from [18] is not tight, but the main caveat is that it also blows up
the noise distribution: the fraction of the deviations α/β must be negligible. For
this reason, their result requires the modulus p to be at least superpolynomial,
and in particular it implies nothing for the LPN problem where p = 2.

Nothing is known about the hardness of LPN for general distributions of high
min-entropy. In the interesting special case where the secret s ∈ Z�

2 is uniformly
sampled from any �′ ≤ � dimensional linear subspace (and thus has min-entropy
�′), the problem can be show to be exactly as hard as the standard LPN problem
with a uniform �′ bit secret. This follows from the equivalence of LPN and the
subspace LPN problem that we’ll discuss below.

Hardness of LPN for Non-Uniform Noise. The LPN problem seems to
remain hard, even if s and/or the rows ofA are not uniform, but have sufficiently
high min-entropy (if they are sampled from a linear subspace, this can even be
proven.) Fiddling with the distribution of the error vector e is more delicate.
If e.g. � positions of e are fixed (or otherwise known to the adversary), she
learns � noiseless linear equations 〈a, s〉 = y, and can compute s from this linear
equations using normal Gaussian elimination. Arora and Ge [3] show an attack
for the case where the bits of e are not i.i.d., but sampled as follows. For some
n, the noise vector is sampled n bits at a time, where each such block is sampled
independently at random, conditioned on having a 1 in exactly (or at most)
w = n.τ positions. Although here each individual noise bit has distribution Berτ
as required, the noise bits are not independent any more. Using a technique
called linearization, [3] show that with this noise distribution one can recover
the secret s in time roughly nw.

Saving Public Randomness. The most expensive part in generating an LPN
instance (A,A.s ⊕ e) is the sampling of the random matrix A ∈ Zq×�

2 . For
some of the cryptosystems we’ll discuss in Section 2 (namely for pseudorandom
generators and commitment schemes) the fact thatA is rather large and must be
uniform will not be much of a problem: as A can be public, we can fix a public
random A once and for all, and then use it to generate arbitrary many LPN
instances. For other schemes (namely encryption and secret-key identification),
the size of A is more of an issue, as here the secret s will play the role of a shared
secret key, and thus is fixed. In order to generate new LPN instances (which
is required to compute ciphertexts and during execution of the identification
protocol), one must sample a fresh A’s every time.

One way to leverage this problem is to use n > 1 independent random secrets,
this will typically increase the size of the secret key by a factor of n, but decrease
the cost due to the sampling, storing and/or sending A by the same factor as
we can reuse each A n times.

104 K. Pietrzak

It has also been suggested to not sample A ∈ Zq×�
2 uniformly at random, but

from a distribution which allows a more succinct description of the samples. For
example [23] suggest to use a random Toeplitz matrix, which requires only q+ �
(as opposed q · �) random bits. Such a matrix is sampled by choosing a random

a
$← Zq+�

2 , then the i’th row of A is a[i . . . i+ �].
Another variant, called Ring-LPN, has been suggested in [27]. Ring-LPN not

only has a succinct description of A, but also allows for extremely efficient evalu-
ation of the matrix multiplication A.s as it corresponds to a single multiplication
of two polynomials. Ring-LPN is inspired by the Ring-LWE problem, strong evi-
dence for the hardness of Ring-LWE is given in [34] who show it to be equivalent
to hard problems on ideal lattices.

Subspace LPN. The subspace LPN problem [41] is a variant of the LPN
problem where the adversary not only gets random samples 〈a, s〉 ⊕ e, but
it is an interactive assumption where she can adaptively choose affine func-
tions φa, φs and then gets samples 〈φa(a), φs(s)〉 ⊕ e. That is, a and s are first
mapped to the linear subspaces defined by φa and φs, respectively, before the
noisy inner product is computed.10 If the adversary is restricted to choose map-
pings φa, φs that overlap in at least an �′ dimensional subspace,11 then this
problem is at most as hard as the LPN problem with secrets of length �′ (as
one can map to a string which is all zero except for the first �′ bits.) In [41]
it is shown that the other direction does also (almost) hold (this equivalence
not only holds for LPN, but more generally for LWE using any prime modu-
lus and any error distribution.) This equivalence has immediate consequences
for several existing LPN and LWE based cryptosystems, as it implies much
stronger security guarantees as anticipated by the designers of the schemes.
For example security against related key attacks or security against “weak”
randomness, cf. [41] for the details. The fact that subspace LPN is an interac-
tive assumption, gives a powerful handle for constructing provably secure LPN
based cryptosystems. In Section 2 we’ll mention constructions of identification
schemes and message authentication codes [30] whose proof heavily relies on this
handle.

Exact LPN. Recall that the error vector e ∈ Zq
2 of an LPNτ,� sample (A,A.s⊕

e) consists of q i.i.d. bits with distribution Berτ , and thus its expected Hamming
weight (i.e. number of 1’s) is qτ . The Exact LPN (XLPN for short) problem is a
minor variation of LPN where we require e to have Hamming weight exactly�qτ�.
In the next section we’ll mention some cryptosystems which rely on the search
XLPN (a public-key identification scheme) and the decisional XLPN (efficient
zero-knowledge proofs for linear functions of committed values.)

10 The affine function φa : Z�
2 → Z

�
2 can be defined as a→ Xa.a ⊕ xa for some matrix

Xa ∈ Z
�×�
2 (the linear part) and some vector xa ∈ Z

�
2 (the affine part). Equivalently,

φs can be defined by Xs,xs.
11 This means that XT

a .Xs has rank at least �′.

Cryptography from Learning Parity with Noise 105

Hardness of search XLPN trivially follows from standard LPN.12 Unfortu-
nately the proof of equivalence of search and decision for LPN does not work for
the XLPN problem, and it is open if decisional XLPN is equivalent to LPN.13

A similar version of LPN where the Hamming weight is at most �qτ� has been
suggested by [31] as a means to get more efficient instantiations of LPN based
cryptosystems.

2 Efficient LPN Based Cryptosystems

OWFs and Generic Constructions. A function F : Zn
2 → Zm

2 is a one-way
function (OWF), if it’s hard to find a preimage for F for a random outputs. In
asymptotic terms, we require that F runs in time poly(n), and for all D of size
poly(n) we have

Pr
x

$←Zn
2

[D(F(x)) = x′ where F(x) = F(x′)] = negl(n)

One can construct a OWF from LPN.14 From a OWF one can construct pseu-
dorandom objects using generic constructions, like pseudorandom generators
(PRG) [26], pseudorandom functions (PRF) [17] or pseudorandom permuta-
tions (PRP) [35]. The basic secret-key cryptographic tasks15 like encryption and
authentication are usually solved by using a PRP like the AES block-cipher.
Constructions using this generic transformations would typically be too ineffi-
cient to compete with dedicated designs,16 as a consequence, today basically all

12 An LPNτ,q sample (A,A.s ⊕ e) will satisfy ‖e‖1 = �qτ� with probability ≈ 1/
√
q.

This implies that an adversary who breaks the search XLPN problem (i.e. outputs
the right s) with probability δ, is also an adversary against the search LPN problem
with advantage at least δ/

√
q. To see this, note that conditioned on the LPN sample

satisfying ‖e‖1 = �qτ�, we have exactly the same distribution as in XLPN, and thus
in this case the adversary will be successful with probability δ.

13 It is important that in the search XLPN problem, the adversary only gets one sample
(A,A.s⊕e). If she can ask for polynomially many samples, then the search to decision
reduction does work, but now it’s open if this “many sample” version of search XLPN
is equivalent to standard LPN.

14 Fix some random A
$← Z

q×�
2 . Now F(x) on input a (sufficiently long) string x, uses

x to sample s ∼ U�, e ∼ Berqτ . If the weight of e is unexpectedly high (say ‖e‖1 ≥
q · 1/2+τ

2
) we output a special symbol ⊥ (using the Chernoff bound one can show that

this happens with exponentially small probability.) Otherwise output (A,A.s ⊕ e).
As (A,A.s⊕e) uniquely determines s, any algorithm who finds a preimage must find
(randomness used to sample) this unique s, which would contradict the hardness of
the search LPN problem.

15 In the secret-key setting, the honest parties share a secret key not known to the
adversary.

16 We use the term “dedicated design” as opposed to constructions that come with a
reductionist proof showing the construction is secure under some standard hardness
assumption.

106 K. Pietrzak

secret-key cryptography is done using a dedicated construction like AES as main
ingredient.17

The fascinating thing about the LPN problem is that it gives rise to secret-
key cryptosystems which not only are provably secure, but in some aspects can
even outperform known dedicated constructions. Below we show how the search
to decision equivalence for the LPN problem, discussed in the previous section,
implies that plain LPN samples are already pseudorandom, and thus give an
extremely simple and efficient PRG.

It is an open problem to get a PRF or even PRP from LPN which could
compete with dedicated constructions. But simple and efficient schemes for en-
cryption, identification and authentification not going via a PRF or PRP con-
struction, do exist. We’ll discuss some of them below.18

Pseudorandom Generators. A pseudorandom generator is a length increas-
ing function G : Zn

2 → Zm
2 where G(Un) is pseudorandom, this means that no

efficient distinguisher can distinguish G(Un) from the uniform distribution Um.
The definition of the decisional LPN problem (cf. eq.(1)) already implies that

LPNτ,� samples A,A.s⊕ e are pseudorandom, which gives rise to a simple con-
struction of a PRG [5]: use the (uniformly random) input r to sample A, s, e
and output A,A.s ⊕ e. As observed by [2], we can fix A as a public parameter
and need not to sample it, or include it in the output.

To show that this function r → A.s ⊕ e ∈ Zq
2 is a PRG, one also must show

how to sample s ∼ U� and e ∼ Berqτ using a random seed r which is shorter
than the q bit output (recall that a PRG must be length increasing.) This is
possible for any τ < 0.5, � ∈ Z and sufficiently large q: we need � bits to sample
the uniform s ∼ U�. But each bit of e has only h(τ) bits of entropy (where
h(τ) = −τ log τ − (1− τ) log(1− τ) denotes the binary entropy function.) Thus
(s, e) has �+ qh(τ) bits of entropy and can be sampled using roughly that many
bits, and this can be done very efficiently (see [2] for details.)

For sufficiently large q we have �+ qh(τ) < q, thus the stretch (which denotes
the number of bits the output is longer than the input) of this PRG is (1 −
h(τ))q − �. This is linear in the length ≈ �+ qh(τ) of the seed. Linear stretch is
a desirable property of PRGs as the efficiency of constructions which use a PRG
crucially depend on its stretch.

[2] suggest a variant of this construction where one uses several �-bit keys
simultaneously, let S ∈ Z�×n

2 denote n such keys arranged as the columns of a

17 This contrasts with public-key cryptography, like public-key encryption schemes,
which are usually required to be provably secure, possibly using some idealized as-
sumptions like the random oracle model [9]. This is due to the fact that public-key
encryption needs much more structure than in the secret-key setting, where one
just has to garble enough, and this can be done in any (invertible) way (the art in
designing block-ciphers is to do this garbling extremely efficient.)

18 [8] construct low-depth PRFs from the LWE problem by using a generic transfor-
mation from synthesizers to PRF [39]. A synthesizers is a strong type of a PRGs
which, informally, is secure even if used on inputs that are somehow correlated. It is
not known how to construct efficient synthesizers from LPN.

Cryptography from Learning Parity with Noise 107

matrix. For the right choice of n = poly(�) one can use fast matrix multiplica-
tion [12] to compute the pseudorandom output A.S ⊕ E (with E ← Berq×n

τ),
which gives a PRG that can be evaluated in time Õ(qn), which is quasilinear in
the seed length. This is an asymptotic running time and it’s not clear if this is
already useful for input sizes used in practice.19

Secret-Key Encryption. A simple encryption scheme from LPN was proposed
by [24]. The encryption of a message m under the secret key s ∼ U� is (A,A.s⊕
e ⊕ G.m). Here A ∼ Uq×� and e ∼ Berqτ , and G ∈ Zq×�

2 is the generator
matrix of an error correcting code Z�

2 → Zq
2 which allows for efficient correction

of τ ′q errors (for some τ ′ > τ). To decrypt a ciphertext (A,y), one computes
G.m ⊕ e = y ⊕ A.s. From this noisy codeword G.m ⊕ e one can recover the
message m using the error correcting decoding procedure for the code G if
‖e‖1 ≤ τ ′q, which will be the case withe exponentially high probability. The
security20 of this scheme follows from the fact that under the decisional LPN
assumption, (A,A.s⊕e) is pseudorandom, which implies that also the ciphertext
(A,A.s ⊕ e⊕G.m) is pseudorandom and thus hides the information of m.

This scheme can not only be proven secure in the standard sense, but also
provably satisfies some more exotic security notions. The equivalence of subspace
LPN and LNP (discussed in the previous section) implies that this scheme is se-
cure against so called related key attacks (RKA). More concretely, the adversary
cannot only ask for encryptions under the key s ∈ Z�

2, but also under keys φ(s)
where φ(.) can be any adaptively chosen affine function (but the linear part must
have sufficiently high rank �′ ≤ �, such that the LPN problem with secrets of
length �′ is still hard.) In [2] it is shown that (a minor variant of) this scheme
is secure under a large class of key-dependent message attacks (KDM). More
concretely, the scheme remains secure even against adversaries who can ask for
encryptions of any affine function (no restriction on the rank here) of the secret
key.

Secret-Key Identification and Message Authentification. By far most
research on LPN based cryptosystems has been published on secret-key identi-
fication protocols.21 In such a protocol, a prover P exchanges messages with a
verifier V.22 P and V share a secret key. If V talks to the honest prover P, we
require that finally V outputs accept. A typical application is access control, e.g.
a wireless car key which has the role of the prover, and the car being the verifier.

There are several standard security definitions for identification protocols
which try to capture the intuitive notion that an adversary not knowing the

19 For the quasilinear running time, q and n must be in the order of �6, and thus the
seed has size �12.

20 More precisely, semantic security under chosen message attacks, which means no
efficient adversary can distinguish encryptions any two different messages, even when
given access to an encryption oracle.

21 A list of relevant papers is on
http://www.ecrypt.eu.org/lightweight/index.php/HB.

22 In the context of RFID implementations, P is called the “tag” and V is the “reader”.

http://www.ecrypt.eu.org/lightweight/index.php/HB

108 K. Pietrzak

secret key should not be able to make V accept. They differ in the power the
adversary has before trying to launch such an impersonation attack.

In a passive attack the adversary can eavesdrop on several interactions be-
tween P and V, before trying to make V accept in a second phase. In an active
attack, the adversary is additionally allowed to interact with P in the first phase.
The strongest notion is a man-in-the-middle attack (MIM) where the adver-
sary can arbitrarily interact with P and V (with polynomially many concurrent
executions allowed) in the first phase.

Hopper and Blum [25] proposed the first LPN based identification scheme.
Their goal was to design a scheme which is so simple that it could even be
reliably executed by humans with just pen and paper. Their HB protocol is
illustrated in Figure 1. The secret key is s ∈ Z�

2 where � is chosen such that the
LPNτ,� problem is hard. The verifier sends as first message a challenge A ∈ Zn×�

2

(where n is a statistical security parameter), and the prover answers with an
LPN sample A.s ⊕ e. The verifier accepts if the prover’s answer y is of the
form y = A.s ⊕ e for some low-weight e. The expected weight of a correctly
generated e is nτ , the acceptance threshold of the verifier is set to nτ ′ for some
τ < τ ′ < 1/2. This way the probability that a correctly generated e ← Bernτ
has weight ≥ nτ ′ and thus V would reject (this is the completeness error) is
exponentially small in n (this is shown using the Chernoff bound).

Pτ,n(s ∈ Z
�
2) Vτ ′,n(s)

A←− A
$← Z

n×�
2

e
$← Bernτ

z := A.s⊕ e
z−→ accept iff ‖z⊕A.s‖1 < τ ′ · n

Fig. 1. The HB identification protocol [25], secure against passive attacks

The HB protocol can be proven secure against passive attacks assuming LPN
is hard, but it can be easily broken with an active attack. Subsequently, Juels
and Weis [29] proposed the HB+ protocol, illustrated in Figure 2, with extends
HB by one extra round. Their motivation was to find a protocol suitable for
light weight devices like RFID tags, where an active attack is easy to launch.
The HB+ protocol is secure against active attacks, but not MIM attacks.23 The
HB+ protocol has three rounds (not two like HB), which means the prover has
to keep state in-between rounds, this is problematic for the devices like RFID
tags.

The first two round protocol with active security was proposed in [30]. The
design of the protocol is inspired by the subspace LPN problem, and diverges
from the design of all previous LPN based protocols as now the randomness A

23 [29] only prove active security for a sequential version of the HB+ protocol, where A
is send row-by-row, and thus needs n rounds. Active security of the parallel protocol
as in Figure 2 was later proven in [31].

Cryptography from Learning Parity with Noise 109

Pτ,n(s1, s2 ∈ Z
�
2) Vτ ′,n(s1, s2)

A1
$← Z

n×�
2

A1−→
A2←− A2

$← Z
n×�
2

e
$← Bernτ

z := A1.s1 ⊕A2.s2 ⊕ e
z−→ accept iff

‖z⊕A1.s1 ⊕A2.s2‖1 ≤ τ ′ · n

Fig. 2. The HB+ identification protocol [29,31], secure against active attacks

is chosen by the prover P, and is not as a challenge chosen by V. Instead, the
challenge chosen by V is a vector v which specifies a subset s ∧ v (∧ denotes
bitwise AND) of the secret s. The prover answers with a subspace LPN sample
A,A.(s ∧ v) ⊕ e.

Prover Pτ,n(s ∈ Z
2�
2) Verifier Vτ ′,n(s ∈ Z

2�
2)

v←− v
$← {x ∈ Z

2�
2 : ‖x‖1 = �}

if ‖v‖1 �= � abort

A
$← Z

n×2�
2 ; e

$← Bernτ

z := A.(s ∧ v)⊕ e ∈ Z
n
2

(A,z)−−−→ if rank(A) �= n reject
if ‖z⊕A.(s ∧ v)‖1 > n · τ ′ reject, else accept

Fig. 3. A two-round identification protocol with active security [30]

All the protocols discussed above can be easily broken by a MIM attack.24 [30]
shows how to transform the protocol from Figure 3 into a message authentication
code (MAC). This also gives the first efficient MIM secure protocol from LPN
as a MAC easily implies a two-round MIM secure protocol. A more efficient
(and generic) transformation using pairwise independent hashing (instead of a
permutation) appears in [13].

Public-Key Identification, Commitments and Zero-Knowledge

Public-Key Identification. In a public-key identification protocol the prover and
verifier do not share a secret key. Instead, the prover knows a secret key sk, and
a corresponding public key pk is known to everyone (i.e. verifiers and poten-
tial adversaries.) This setting is often favorable as it allows much simpler key-
management. A verifier must make sure to learn pk authentically, but it must

24 A MIM attack on HB+ is given in [22]. As outlined in [30], a similar attacks exists for
the protocol in Figure 3 (in [30] this attack is phrased as an attack on the protocol
when used as a MAC, but exactly the same attacks works in the MIM setting.)

110 K. Pietrzak

not remain secret. One can construct an identification scheme from any one-way
function25 f(.) by setting sk = x and pk = f(x) for a random x. To prove its
identity, the prover uses a zero-knowledge proof of knowledge (ZKPOK) [19] to
convince the verifier that he knows the secret x, while not revealing any informa-
tion beyond that. ZKPOKs exist for any one-way function [20], but this generic
constructions are too computationally expensive to be used in practice.

For some particular functions, ZKPOKs exist which are much more efficient
than the generic constructions, in particular, many number theoretical functions
admit efficient proofs. For example Schnorr’s protocol [45], which is a particu-
larly simple 3-round ZKPOK (a so called Σ-protocol) to prove knowledge of the
discrete logarithm x of some value gx (where g is a generator of a prime order
cyclic group.)

This elegant number theoretical constructions involve multiplications or even
exponentiations over large moduli, and thus are still too computationally ex-
pensive for very weak devices like RFID tags. A few alternative protocols based
on combinatorial (typically NP-complete) problems were suggested which avoid
such expensive operations, including the Permuted Kernels Problem [46], the
Permuted Perceptrons Problem [42] and Syndrome Decoding (of random linear
codes) [48]. Stern’s protocol [48] can be modified [28] (using the equivalence of
LPN and decoding random linear codes) to get an efficient ZKPOK for the LPN
problem. That is, given (A,y), one proves knowledge of s and a (low weight) e
such that y = A.s ⊕ e.26

String Commitments and Zero-Knowledge. A commitment scheme is the digital
analogue of an envelope. The committing party can compute a commitment σ
to an input m, this commitment hides the committed message m (this is called
the hiding property). Later the committing party can open σ and reveal m, but
he cannot open it to any other m′ �= m (this is called the binding property.)
The LPN problem allows for very simple perfectly binding27 string commitments
schemes [28]: the commitment to a bit-string m is A.(s‖m)⊕ e, i.e. it’s an LPN
sample using a secret whose first part s is random, and the second part is the
message m. A is a fixed random public matrix. To open a commitment one
reveals s‖m and the (low weight) e.

25 And more generally, any NP relation where one can efficiently sample in-
stance/witness pairs and where it’s hard to compute a witness for an instance sam-
pled like that.

26 In general the public-key setting is more demanding than the secret-key one (note
that a public-key scheme trivially implies a secret-key one, just use (sk, pk) as the
shared secret key.) This is also the case here, the LPN based public-key scheme [28]
is at least an order of magnitude less efficient than, say the MIM secure scheme
from [30]. Moreover the public-key scheme needs three rounds (as opposed to two
for the secret-key setting), and even this is only true in the idealized “random oracle
model” as it uses the Fiat-Shamir transformation to get from honest to full zero-
knowledge. Without random oracles the round complexity is linear in the statistical
security parameter n.

27 Perfectly binding means that even a computationally unbounded adversary cannot
open a commitment in two different ways.

Cryptography from Learning Parity with Noise 111

The above-mentioned ZKPOK for LPN can be extended to not only prove
knowledge of s, but even to show that for any X,y it holds that X.s = y [28].
For the commitment scheme as just described, this protocol can be used prove
that, for any X,y, the value in a commitment satisfies X.m = y. Here X.m can
e.g. be a subset of the bits of m, which is something useful in cut-and-choose
proofs. For this last application, the LPN assumption is not enough, but one has
to rely on the decisional XPLN assumption discussed in the previous section.

3 Conclusions and Open Problems

A common dogma in the realm of secret-key cryptography is that provably secure
schemes cannot be efficient enough to compete with dedicated constructions
like the AES block-cipher. Recent constructions based on the hardness of LPN
have at least challenged this viewpoint. Although we don’t have an efficient
block-cipher from LPN (and block-ciphers are used for almost all secret-key
tasks), we have direct constructions for the most important tasks like encryption,
identification and message authentication. It seems conceivable that for some
settings (most notably for lightweight devices like RFIDs28) provable security is
not just a nice theoretical feature, but actually can lead us to constructions which
outperform known dedicated constructions in terms of efficiency vs. practical
security (a viewpoint largely accepted in the realm of pubic-key cryptography.)

Security of LPN. We have discussed several variants of the LPN problem in
Section 1. For some useful variants, like decisional XLPN or LPN where the
secret only has high min-entropy, the relation to the standard LPN problem is
open. Another intriguing open problem is the following, does hardness of LPN
with noise rane τ imply anything for LPN with smaller noise rate τ ′ < τ? For
all we know, there could be threshold such that LPN with noise rate τ is hard,
but easy for any τ ′ < τ (though, this seems not very likely.)

Constructions. What other primitives can we construct from LPN? Two basic
primitives we don’t know how to get from the (standard) LPN problem are
public-key encryption and collision resistant hash functions. Can we construct
these, or is there a fundamental reason why the more general LWE problem
allows for such objects, but LPN does not?

28 One disadvantage the LPN based schemes have to classical block-cipher based so-
lutions is that they require more randomness than block-cipher based schemes (e.g.
with a block-cipher, we get identification where only the verifier, but not the prover
needs to sample random bits. And message authentication codes can be completely
deterministic, whereas the LPN based MAC is probabilistic.) This randomness needs
make LPN based schemes poor candidates for powerful processors (as e.g. used in
laptops, or even smart-phones) where generating randomness is expensive compared
to clock-cycles or code-size. On weak devices like RFIDs or smart cards, this is not (or
less) the case. Moreover even a priori deterministic computations are randomized on
such devices by “masking” or “blinding” in order to protect the computation from
side-channel attacks. Potentially, the randomization used for LPN based schemes
provides the same effect as masking or blinding for free.

112 K. Pietrzak

References

1. Applebaum, B., Barak, B., Wigderson, A.: Public-key cryptography from different
assumptions. In: Schulman, L.J. (ed.) 42nd ACM STOC, pp. 171–180. ACM Press
(2010)

2. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast Cryptographic Primitives
and Circular-Secure Encryption Based on Hard Learning Problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009)

3. Arora, S., Ge, R.: New Algorithms for Learning in Presence of Errors. In: Aceto, L.,
Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 403–415.
Springer, Heidelberg (2011)

4. Alekhnovich, M.: More on average case vs approximation complexity. In: 44th
FOCS, pp. 298–307. IEEE Computer Society Press (2003)

5. Blum, A., Furst, M.L., Kearns, M.J., Lipton, R.J.: Cryptographic Primitives
Based on Hard Learning Problems. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS,
vol. 773, pp. 278–291. Springer, Heidelberg (1994)

6. Blum, A., Adam Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity
problem, and the statistical query model. J. ACM 50(4), 506–519 (2003)

7. Berlekamp, E.R., McEliece, R.J., van Tilborg, H.C.A.: On the inherent intractabil-
ity of certain coding problems. IEEE Trans. Information Theory IT-24(3), 384–386
(1978)

8. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. Cryp-
tology ePrint Archive, Report 2011/401 (2011), http://eprint.iacr.org/

9. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp. 62–73. ACM Press
(1993)

10. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai Trees, or How to Delegate
a Lattice Basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
523–552. Springer, Heidelberg (2010)

11. Cash, D., Kiltz, E., Shoup, V.: The Twin Diffie-Hellman Problem and Applications.
In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer,
Heidelberg (2008)

12. Coppersmith, D.: Rapid multiplication of rectangular matrices. SIAM J. Com-
put. 11(3), 467–471 (1982)

13. Dodis, Y., Kiltz, E., Pietrzak, K., Wichs, D.: Message authentication, revisited
(manuscript, 2011)

14. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31, 469–472 (1985)

15. Feldman, V., Gopalan, P., Khot, S., Ponnuswami, A.K.: New results for learning
noisy parities and halfspaces. In: 47th FOCS, pp. 563–574. IEEE Computer Society
Press (2006)

16. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) 41st ACM STOC, pp. 169–178. ACM Press (2009)

17. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. Jour-
nal of the ACM 33, 792–807 (1986)

18. Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Robustness of the
learning with errors assumption. In: ICS, pp. 230–240 (2010)

19. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM Journal on Computing 18(1), 186–208 (1989)

http://eprint.iacr.org/

Cryptography from Learning Parity with Noise 113

20. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their va-
lidity or all languages in NP have zero-knowledge proof systems. Journal of the
ACM 38(3), 691–729 (1991)

21. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC,
pp. 197–206. ACM Press (2008)

22. Gilbert, H., Robshaw, M., Sibert, H.: An active attack against hb+ - a prov-
ably secure lightweight authentication protocol. Cryptology ePrint Archive, Report
2005/237 (2005), http://eprint.iacr.org/

23. Gilbert, H., Robshaw, M.J.B., Seurin, Y.: HB�: Increasing the Security and Effi-
ciency of HB+. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
361–378. Springer, Heidelberg (2008)

24. Gilbert, H., Robshaw, M.J.B., Seurin, Y.: How to Encrypt with the LPN Problem.
In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 679–690. Springer,
Heidelberg (2008)

25. Hopper, N.J., Blum, M.: Secure Human Identification Protocols. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 52–66. Springer, Heidelberg (2001)

26. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM Journal on Computing 28(4), 1364–1396 (1999)

27. Heyse, S., Kiltz, E., Lyubashevsky, V., Paar, C., Pietrzak, K.: An efficient authen-
tication protocol based on ring-lpn (manuscript, 2011)

28. Jain, A., Pietrzak, K., Tentes, A.: Commitments and efficient zero-knowledge from
hard learning problems (manuscript, 2011)

29. Juels, A., Weis, S.A.: Authenticating Pervasive Devices with Human Protocols. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 293–308. Springer, Heidelberg
(2005)

30. Kiltz, E., Pietrzak, K., Cash, D., Jain, A., Venturi, D.: Efficient Authentica-
tion from Hard Learning Problems. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 7–26. Springer, Heidelberg (2011)

31. Katz, J., Shin, J.S., Smith, A.: Parallel and concurrent security of the HB and
HB+ protocols. Journal of Cryptology 23(3), 402–421 (2010)

32. Levieil, É., Fouque, P.-A.: An Improved LPN Algorithm. In: De Prisco, R., Yung,
M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 348–359. Springer, Heidelberg (2006)

33. Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: SWIFFT: A Modest
Proposal for FFT Hashing. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp.
54–72. Springer, Heidelberg (2008)

34. Lyubashevsky, V., Peikert, C., Regev, O.: On Ideal Lattices and Learning with
Errors Over Rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
1–23. Springer, Heidelberg (2010)

35. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseu-
dorandom functions. SIAM Journal on Computing 17(2) (1988)

36. Lyubashevsky, V.: The Parity Problem in the Presence of Noise, Decoding Random
Linear Codes, and the Subset Sum Problem. In: Chekuri, C., Jansen, K., Rolim,
J.D.P., Trevisan, L. (eds.) APPROX 2005 and RANDOM 2005. LNCS, vol. 3624,
pp. 378–389. Springer, Heidelberg (2005)

37. McEliece, R.J.: A Public-Key Cryptosystem Based On Algebraic Coding Theory.
Deep Space Network Progress Report 44, 114–116 (1978)

38. May, A., Meurer, A., Thomae, E.: Decoding random linear codes in o(20.054n). In:
ASIACRYPT (2011)

http://eprint.iacr.org/

114 K. Pietrzak

39. Naor, M., Reingold, O.: Synthesizers and their application to the parallel construc-
tion of pseudo-random functions. J. Comput. Syst. Sci. 58(2), 336–375 (1999)

40. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 333–342.
ACM Press (2009)

41. Pietrzak, K.: Subspace LWE (2010) (manuscript)
42. Pointcheval, D., Poupard, G.: A new np-complete problem and public-key identi-

fication. Des. Codes Cryptography 28(1), 5–31 (2003)
43. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.

In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press (2005)
44. Regev, O.: The learning with errors problem (invited survey). In: IEEE Conference

on Computational Complexity, pp. 191–204 (2010)
45. Schnorr, C.-P.: Efficient Identification and Signatures for Smart Cards. In: Bras-

sard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg
(1990)

46. Shamir, A.: An Efficient Identification Scheme based on Permuted Kernels (Ex-
tended Abstract). In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 606–
609. Springer, Heidelberg (1990)

47. Stern, J.: A Method for Finding Codewords of Small Weight. In: Cohen, G.,
Godlewski, P. (eds.) Coding Theory 1986. LNCS, vol. 311, pp. 106–113. Springer,
Heidelberg (1988)

48. Stern, J.: A New Identification Scheme Based on Syndrome Decoding. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994)

A Quick Tour of Word Sense Disambiguation,

Induction and Related Approaches

Roberto Navigli

Dipartimento di Informatica
Sapienza Università di Roma,

Via Salaria 113, 00198 Roma, Italy
navigli@di.uniroma1.it

http://www.users.di.uniroma1.it/~navigli

Abstract. Word Sense Disambiguation (WSD) and Word Sense Induc-
tion (WSI) are two fundamental tasks in Natural Language Process-
ing (NLP), i.e., those of, respectively, automatically assigning meaning
to words in context from a predefined sense inventory and discovering
senses from text for a given input word. The two tasks have generally
been hard to perform with high accuracy. However, today innovations in
approach to WSD and WSI are promising to open up many interesting
new horizons in NLP and Information Retrieval applications. This paper
is a quick tour on how to start doing research in this exciting field and
suggests the hottest topics to focus on.

Keywords: computational lexical semantics, Word Sense Disambigua-
tion, Word Sense Induction, text understanding.

1 Introduction

Word Sense Disambiguation (WSD) – the task of computationally determining
the correct sense of a word in context – is a core research topic in computational
linguistics and natural language processing. The reason for its importance lies
in the ambiguity of human language, which is so pervasive that huge numbers
of words can be interpreted in multiple ways depending on the context in which
they occur. For example, consider the following sentences:

(a) I can hear bass sounds;
(b) They like grilled bass.

It is evident that the occurrences of the word bass in the two sentences de-
note different meanings: low-frequency tones and a type of fish, respectively.
Unfortunately, identifying the specific meaning that a word assumes in con-
text is only apparently simple, especially for a machine. In fact, while most
of the time humans do not even think about the ambiguities of language, ma-
chines need to process unstructured textual information and transform it into
data structures which must then be analyzed in order to determine the underly-
ing meaning. The computational identification of meaning for words in context

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 115–129, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.users.di.uniroma1.it/~navigli

116 R. Navigli

is called Word Sense Disambiguation. For instance, as a result of disam-
biguation, sentence (b) above should ideally be sense-tagged as “They like/Enjoy
grilled/Cooked bass/Fish”. However, in order to perform WSD, a sense inventory
must be available for the word of interest (bass in the above example). A sense
inventory is an artifact we are all very familiar with. In fact, it is merely a
list of senses of a given word, which is nothing more than what is available in
traditional dictionaries – knowledge resources we have been accustomed to us-
ing since our earliest schooldays. However, sense inventories need to be updated
continuously and, unfortunately, tend to take into account only lexicographic
meanings (e.g., bass as a fish), and largely ignore named entities (e.g., Bass as
a town in Australia). As a result, automated text understanding is hindered if
real-world instances occur in text, e.g.:

(c) I just arrived in Bass, Victoria.

To account for the above-mentioned issues, one can resort to techniques aimed
at the automatic discovery of word senses from text, a task called Word Sense
Induction (WSI).

This paper is a quick tour on starting to do research in the exciting fields
of WSD and WSI (see [53] for a complete survey). The paper is organized as
follows: in Sections 2 and 3 we illustrate the main topics in WSD and WSI, re-
spectively; in Section 4 we introduce the lexical substitution approach; in Section
5 we discuss other techniques for text understanding; finally we give concluding
remarks in Section 6.

2 Word Sense Disambiguation

WSD is believed by many to be the first brick on the road to automated text
understanding and a potentially crucial resource for applications such as infor-
mation retrieval and machine translation. For this reason, much research has
been devoted to it over the last few decades. However, several key issues have
arisen over the years which need to be considered if a good grasp of the field
is to be attained. We overview the techniques, together with the main issues in
WSD, in the following subsections.

2.1 Sense Representation

Word senses are the lifeblood of WSD, regardless of the approach we intend to
use. A word sense is a commonly-accepted meaning of a word. For instance, in
the two sentences (a) and (b) from Section 1, the word bass can have two senses,
i.e., the sound one and the fish one. These two senses are called homonyms,
in that they are completely different (even etymologically) and are actually two
completely different words which just happen to be written in the same way.
However, more subtle sense distinctions can be made for a word. For instance,
dictionaries can distinguish between bass as the lowest part of the musical range
and bass as the lowest part in polyphonic music. This kind of ambiguity is called

A Quick Tour of WSD, WSI, and Related Approaches 117

polysemy. Unfortunately, polysemous senses can be created at any level of
granularity, thus leading to possibly very fine-grained sense distinctions. This
is in fact the case with the most widely-used machine-readable dictionary and
computational lexicon of English, namely WordNet [49,19], which has been in use
for almost two decades. To cope with the fine granularity problem, researchers
have come up with different ideas aimed at creating coarser sense distinctions
in WordNet. Two of these efforts led to the organization of WSD evaluation
competitions at Semeval-2007 (the reference international semantic evaluation
competition), namely:

– Manual approach: the OntoNotes project [27,67] aims at creating sense dis-
tinctions by iteratively submitting new partitions of senses for the given
word to sense annotators, until the latter achieve a 90% agreement in a text
annotation task.

– Automatic approach: another project [52,57] aimed at the creation of coarser-
grained senses by clustering semantically similar senses using WSD tech-
niques. The clustering is obtained by automatically mapping WordNet senses
to a reference machine-readable dictionary with hierarchical sense distinc-
tions, namely the Oxford Dictionary of English.

Another way to deal with the granularity issue is to use a probabilistic gen-
erative model, e.g., based on the well-known noisy channel model [77], which
can estimate the distribution of coarse-grained semantic classes, as opposed to
fine-grained WordNet senses. Recently, it has also been suggested that one could
abandon the adoption of the WordNet sense inventory. Examples include the use
of Wikipedia [46], Wiktionary [45], or even newly-conceived machine-readable re-
sources, such as DANTE [42]. Thus, an important open research question on the
topic of sense representation is: what sense representation, and inventory, is best
(and for which application [63])?

2.2 Techniques

There are three mainstream approaches to WSD, namely:

– Supervised WSD: these approaches use machine learning methods to learn
a classifier for the target word from labeled training sets, i.e., sets of examples
encoded as vectors whose elements represent features, with a special element
representing the appropriate sense label (or class). Among supervised meth-
ods, memory-based learning and SVM approaches proved to be among the
best systems in several international competitions [26,12,47,23,10,79].

– Knowledge-basedWSD: these methods exploit knowledge resources (such
as dictionaries, thesauri, ontologies, etc.) to determine the senses of words in
context. They have the advantage of a wider coverage, thanks to the use of
large amounts of structured knowledge. The best knowledge-based systems
in the literature, such as Degree [56,66] or Personalized PageRank [4], exploit
WordNet or other resources (e.g., BabelNet [58]) to build a semantic graph

118 R. Navigli

and exploit the structural properties of the graph (either locally to the input
sentence or globally) in order to choose the appropriate senses of words in
context.

– Unsupervised WSD: these are Word Sense Induction techniques aimed at
discovering senses automatically based on unlabeled corpora. They do not
exploit any manually sense-tagged corpus to provide a sense choice for a
word in context (see Section 3).

The question of which approach is best in general, and in which application, is
still very much open. In fact, until recently, the general belief was that supervised
WSD performed better than knowledge-based WSD. However, recent results
show that, in the presence of enough knowledge (see Section 2.4) or within a
domain (see Section 2.6), knowledge-rich systems can beat supervised approaches
[66,5,1], while providing at the same time much wider coverage.

2.3 Performance

A well-known issue in Word Sense Disambiguation is performance. As recently
as 2004, one of the major arguments against continuing research in the field was
that state-of-the-art accuracy was around 65% in an all-words setting, i.e., when
all content words must be disambiguated1. In other words, on average only 65
out of 100 content words could be automatically associated with an appropriate
meaning [72]. It was remarked that the representation of senses was one of the
main obstacles to high-performance WSD.

In recent years progress has been made that has led to a considerable boost in
disambiguation performance, from about 65% to 82-83% accuracy [10,66] in an
all-words setting and when the adopted sense distinctions are less fine-grained
(see Section 2.1). As an alternative solution to reducing the granularity of word
senses, it has been proposed to calculate the correlation between the graded
sense assignments output by a fine-grained WSD system and those obtained as
a result of the manual graded judgments produced by human annotators [16].

2.4 Knowledge

Another key factor in WSD, and one which is strongly linked to performance,
is knowledge. It has been shown that the higher the amount of high-quality
knowledge, the higher the performance. Specifically:

– In supervised WSD, performance can be increased considerably when hun-
dreds of training examples are available for each target word [41].

– Knowledge-based WSD – which relies on machine-readable dictionaries or
computational lexicons viewed as semantic networks – has been shown to
benefit greatly from the addition of relatedness edges [56], i.e., relations of a

1 We use accuracy in the general sense of recall or F1 measure, depending on the task
(see [53] for details on the evaluation measures).

A Quick Tour of WSD, WSI, and Related Approaches 119

0 20 40 60 80 100 120 140 160 180 200 220 240
number of incident edges to correct sense

0

10

20

30

40

50

60

70

80

90

100

F1
 (

%
)

WordNet
EnWordNet

Fig. 1. The more structural knowledge (i.e., semantic relations), the better the perfor-
mance (from [56])

syntagmatic nature (such as bus is related to driver), as opposed to paradig-
matic relations such as hypernymy (e.g., bus is a public transport). When
more than 100 semantic relations (i.e., edges in the semantic network) are
available for each word sense, performance can achieve up to 90% accuracy.
We report this result in Figure 1 (taken from [56]), where the performance
of a simple knowledge-based WSD, based on the degree of each candidate
sense in the semantic network, depends on the richness of the graph itself
(EnWordNet is an enriched version of WordNet with about 60,000 additional
relatedness edges).

However, these results lead to another question, that of the knowledge acqui-
sition bottleneck, i.e., how can we acquire enough knowledge to:

i) provide wide coverage of the lexicon,
ii) obtain high performance?

It has been estimated that, at a throughput of one word instance per minute,
dozens (if not hundreds) of person-years would be required to provide enough
training data [15]. Moreover, this effort would have to be repeated for each
language. Possible solutions to the knowledge acquisition bottleneck include the
exploitation of bilingual corpora to create large and reliable training sets [78],
the automatic sense labeling of corpora [14,8] and the use and integration of
large-scale collaborative resources such as Wikipedia [65,66].

2.5 Multilinguality

Currently, most research in WSD is conducted on the English language, be-
cause this is the language for which the vast majority of resources are available.

120 R. Navigli

However, recently there has been an increasing interest towards other languages,
such as Italian [38], Spanish [40], Chinese [30], Japanese [60], Turkish [61], etc.

More importantly, attention is increasingly being paid to performing WSD
across languages, a task referred to as cross-lingual WSD [34]. In this set-
ting, an input sentence is provided in a source language (e.g., English) and the
WSD system has to provide word senses encoded in a target language (e.g.,
Italian). The sense inventory is obtained using translations harvested from a
parallel corpus, instead of using predefined sense labels. The basic assumption –
supported by several studies [21,28,59] – is that the sense distinctions of a word
in a source language are determined by the different translations of the word in
other languages. This approach has several benefits over the traditional mono-
lingual WSD task: it can be applied to any language of interest, it can easily be
integrated into real applications such as machine translation, and it inherently
addresses the sense granularity problem. However, it requires a wide-coverage
bilingual corpus, a requirement which is not easy to satisfy.

A challenging research direction is performing truly multilingual WSD, i.e.,
returning senses lexicalized in many languages. Recent efforts in this directions
include the use of contextual cues or filters from other languages [24,35] and the
recently-released multilingual semantic network called BabelNet [58].

2.6 Domain WSD

In everyday life the use of natural language is often confined to specific fields of
knowledge. Examples include newspaper sections, blogs and Web sites on specific
topics, business documents, etc. Performing a semantic analysis of domain text
is thus a crucial task that can boost applications such as Question Answering,
Information Retrieval and Information Extraction.

Domain WSD is often performed in a type-based fashion, i.e., by assigning
a single sense per word, rather than considering each single context the target
word occurs in (i.e., token-based WSD). Distributionally similar neighbors in
raw text can be used as cues to determine the predominant sense of a target word
by means of a semantic similarity measure [32,43]. Other distributional meth-
ods include the use of a word-category cooccurrence matrix, where categories
are coarse senses obtained from an existing thesaurus [51], and synonym-based
word occurrence counts [33]. Domain-informed methods have also been proposed
which make use of domain labels as cues for disambiguation purposes [22].

Domain-driven approaches have been shown to obtain the best performance
among the unsupervised alternatives [73]. Their performance is typically lower
than supervised systems. On the other hand, supervised systems need sense-
tagged corpora to perform accurate WSD, a requirement that cannot be satis-
fied for most domains unless a general-purpose corpus is mixed with a smaller
domain-specific training set [31].

In the presence of large amounts of structured knowledge for all domains,
knowledge-based approaches obtain state-of-the-art performance [66]. A recent
approach of this kind [55] with little human intervention has been proposed that
proceeds in two steps: first semantic model vectors are learned for many domains,

A Quick Tour of WSD, WSI, and Related Approaches 121

next, a word context is classified and the selected semantic model vector is used
to perform high-quality domain WSD. As a result, the text classification and
disambiguation steps are effectively combined.

3 Word Sense Induction

Given the above-mentioned difficulties, Word Sense Induction is an attractive
alternative to WSD. In this setting we give up on the traditional notion of a pre-
defined word sense and use unsupervised techniques to automatically identify
the set of senses denoted by a word. As a result we shift our focus away from
how to select the most suitable senses from an inventory towards how to auto-
matically discover senses from text. In fact, these methods induce word senses
from raw text by clustering word occurrences on the basis of the distributional
hypothesis, i.e., the idea that a given word – used in a specific sense – tends
to co-occur with the same neighbouring words [25].

3.1 Techniques

The main approaches to WSI proposed in the literature are the following:

– Context clustering: the underlying hypothesis of this approach is that the
distributional profile of words implicitly expresses their semantics (see also
Section 5). Each occurrence of a target word in a corpus is represented here
as a context vector. These context vectors can be either first-order vec-
tors, which directly represent the context at hand, or second-order vectors,
i.e., the contexts of the target word are similar if their words tend to co-
occur together. The vectors are then clustered into groups, each identifying
a sense of the target word. A well-known approach to context clustering is
the context-group discrimination algorithm [70].

– Word clustering: a different approach to the induction of word senses
consists of clustering words which are semantically similar and can thus
convey a specific meaning. A prototypical example is Lin’s algorithm [36],
which exploits syntactic dependencies which occur in a corpus to produce
sets of words for each discovered sense of a target word. The Clustering
By Committee [64] also uses syntactic contexts, but exploits a similarity
matrix to encode the similarities between words and relies on the notion of
committees to output different senses of the word of interest.

– Co-occurrence Graphs: these methods are related to word clustering ap-
proaches, but build and analyse graphs of word co-occurrence to identify the
set of senses of a given word. Co-occurrences between words can be obtained
on the basis of grammatical [76] or collocational relations [75]. However, suc-
cessful approaches such as HyperLex [75] – a graph algorithm based on the
identification of hubs in co-occurrence graphs – have to cope with the need
to tune a large number of parameters [2]. To deal with this issue a graph-
based algorithm has recently been proposed which is based on simple graph
patterns, namely triangles and squares [54]. The patterns aim at identifying
meanings using the local structural properties of the co-occurrence graph.

122 R. Navigli

– Probabilistic clustering: another option is to adopt a probabilistic ap-
proach, e.g., a Bayesian framework [9], and formalize WSI in a generative
model. First, for each ambiguous word a distribution of senses is drawn.
Then, context words are generated according to this distribution. Different
senses can thus be obtained which have different word distributions.

Finally, we mention a recent successful approach based on latent semantic word
spaces [11], which finds latent dimensions of meaning using non-negative matrix
factorization, uses these dimensions to distinguish between different senses of
a target word, and then proceeds to disambiguate each given instance of that
word.

3.2 Evaluation

One key issue in WSI is that of evaluation. WSI is actually a specific instance
of the clustering problem, so it is just as hard to evaluate as any clustering
algorithm. Unfortunately, evaluating the output of a clustering algorithm is hard
even for humans. The main difficulty lies in the fact that there is no single gold-
standard clustering on which human annotators can agree. Nonetheless, different
approaches have been proposed in the literature to assess the output quality of
a WSI algorithm. Three main evaluation techniques have been developed:

– Unsupervised evaluation: the clusters of sentences corresponding to the
induced senses are evaluated against a gold-standard annotation. The quality
of a clustering can be determined by means of measures such as the V-
Measure [69], which calculates its homogeneity and completeness, Paired
F-Score [39], the RandIndex [68,54], etc.

– Supervised evaluation: in this setting the output of WSI is evaluated in
a WSD task [3]. To do this, the induced senses are mapped to gold-standard
senses for the target word. Each test sentence is then annotated with the
best gold standard sense, and precision and recall are used to determine the
quality of the resulting WSD.

– Within an application: a further way to evaluate the output of WSI is
within an application. A paradigmatic example of this kind is the application
of WSI to Web search result clustering [54,13], where WSI techniques have
been shown to consistently surpass non-semantic state-of-the-art systems.

3.3 Coverage

A second issue with WSI is that of coverage. How do we know the coverage of the
induced senses? This question is strongly related to the evaluation issue above. In
fact, we might answer that it depends on the application. Alternatively, we might
answer that it depends on the results of a supervised evaluation based on the
mapping to a gold standard sense inventory. On the other hand, as mentioned
in Section 1, WSI has the potential to harvest even more senses than those
available in a traditional predefined sense inventory, like the one used in WSD
(e.g., WordNet).

A Quick Tour of WSD, WSI, and Related Approaches 123

4 Lexical Substitution

Another solution to the sense representation problem – closely related to WSI
– is to cast WSD as a lexical substitution task [44], i.e., by asking systems
to replace a target word in context with a valid alternative substitute which
preserves the meaning of the target word as much as possible. For instance,
consider the sentence:

(d) They like grilled bass.

Suitable replacements for like are love or are fond of, but – in this context –
not wish. The advantages of this approach to text understanding lie in the lack
of a predefined sense inventory and, as opposed to WSI in which senses must
be discovered in advance, in the freedom to choose any appropriate substitute
dynamically depending on the context. Such a large degree of freedom, however,
in a sense, is also a disadvantage in that, similarly to WSI, it makes it difficult
to evaluate and compare lexical substitution systems.

The introduction of the lexical substitution task has generated considerable
interest within the research community, especially in terms of evaluation mea-
sures [29] and multilinguality [48].

5 Other Techniques

Recently other techniques for the unsupervised semantic processing of text have
been revamped, the main one being vector space models of semantics [74]. Such
models are obtained by exploiting the distributional statistics of words and they
are typically based on matrices whose cells encode the relationship between
terms and documents, words and contexts, or word pairs and patterns. In con-
trast to WSI in which the meanings of a word are modeled by a set of induced
senses, a word is here represented by a vector whose elements are obtained from
grammatical dependencies [36,62], selectional preferences [17] or pattern-based
co-occurrences [37]. The resulting matrices, which are usually of very large di-
mensions, can then be smoothed using truncated Singular Value Decomposition
or related techniques for noise and sparsity reduction.

5.1 Compositionality and Meaning

The vectors, acquired by means of distributional semantic techniques, can be
compared (e.g., using cosine similarity or geometric measures of distance) or
combined by means of vector sum, or multiplication [50], or even tensor products
[71]. Solutions to specific kinds of composition, such as adjective-noun, have also
been proposed (e.g., by composing matrices with vectors [7]).

Recently it has been reported that state-of-the-art results can be obtained
when examplar models are adopted, i.e., when the word meaning is modeled by
using relevant occurrences only, rather than merging all the occurrences in a sin-
gle word vector [18]. The use of more structured vectors, which take into account

124 R. Navigli

syntactic relations, has also been proposed [17]. However, while a general frame-
work has been studied [6], basic questions remain concerning the scalability and
applicability to real scenarios of current approaches to distributional semantics
and, similarly to WSI, their in vitro evaluation, i.e., outside an application.

6 Conclusions

So, how to start in Word Sense Disambiguation and Induction? In this paper we
have tried to provide a smattering of the essentials of the field. While a much
more detailed account of the field can be found in [53], this paper touches on top-
ics and issues which are very fresh and deserving of the attention of researchers
right now.

We can already see the first evidence that text understanding techniques im-
prove the state of the art in fields such as search result clustering [54,13] and
lexicography [20]. However, much work is still needed to prove that a proper
injection of semantics into real-world applications is always beneficial. The im-
mediate next step is to focus on highly relevant applications, including machine
translation (a historical application for WSD, in fact) and semantic search.

Acknowledgments. The author gratefully acknowledges the support of the
ERC Starting Grant MultiJEDI No. 259234.

References

1. Agirre, E., de Lacalle, O.L., Soroa, A.: Knowledge-based WSD on specific do-
mains: performing better than generic supervised WSD. In: Proceedings of the
21st International Joint Conference on Artificial Intelligence (IJCAI). pp. 1501–
1506. Pasadena, California (2009)

2. Agirre, E., Mart́ınez, D., de Lacalle, O.L., Soroa, A.: Evaluating and optimizing
the parameters of an unsupervised graph-based WSD algorithm. In: Proceedings
of TextGraphs ’06. pp. 89–96. New York, USA (2006)

3. Agirre, E., Soroa, A.: SemEval-2007 task 2: Evaluating word sense induction and
discrimination systems. In: Proceedings of the Fourth International Workshop on
Semantic Evaluations (SemEval-2007), Prague, Czech Republic. pp. 7–12 (2007)

4. Agirre, E., Soroa, A.: Personalizing PageRank for Word Sense Disambiguation. In:
Proceedings of the 12th Conference of the European Chapter of the Association
for Computational Linguistics (EACL), Athens, Greece. pp. 33–41 (2009)

5. Baldwin, T., Kim, S., Bond, F., Fujita, S., Martinez, D., Tanaka, T.: A reexam-
ination of MRD-based Word Sense Disambiguation. ACM Transactions on Asian
Language Information Processing (TALIP) 9, 4:1–4:21 (2010)

6. Baroni, M., Lenci, A.: Distributional memory: A general framework for corpus-
based semantics. Computational Linguistics 36(4), 673–721 (2010)

7. Baroni, M., Zamparelli, R.: Nouns are vectors, adjectives are matrices: Represent-
ing adjective-noun constructions in semantic space. In: Proceedings of the 2010
Conference on Empirical Methods in Natural Language Processing (EMNLP).
pp. 1183–1193. MIT Stata Center, Massachusetts, USA (2010)

A Quick Tour of WSD, WSI, and Related Approaches 125

8. Brody, S., Lapata, M.: Good neighbors make good senses: Exploiting distribu-
tional similarity for unsupervised WSD. In: Proceedings of the 22nd International
Conference on Computational Linguistics (COLING). pp. 65–72. Manchester, UK
(2008)

9. Brody, S., Lapata, M.: Bayesian Word Sense Induction. In: Proceedings of the
12th Conference of the European Chapter of the Association for Computational
Linguistics (EACL). pp. 103–111. Athens, Greece (2009)

10. Chan, Y.S., Ng, H.T., Zhong, Z.: NUS-PT: Exploiting parallel texts for Word
Sense Disambiguation in the English all-words tasks. In: Proceedings of the Fourth
International Workshop on Semantic Evaluations (SemEval-2007), Prague, Czech
Republic. pp. 253–256 (2007)

11. de Cruys, T.V., Apidianaki, M.: Latent semantic word sense induction and dis-
ambiguation. In: Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies (ACL-HLT). pp. 1476–
1485. Portland, Oregon, USA (2011)

12. Decadt, B., Hoste, V., Daelemans, W., van den Bosch, A.: Gambl, genetic algo-
rithm optimization of memory-based WSD. In: Proceedings of the 3rd Interna-
tional Workshop on the Evaluation of Systems for the Semantic Analysis of Text
(SENSEVAL-3), Barcelona, Spain. pp. 108–112 (2004)

13. Di Marco, A., Navigli, R.: Clustering web search results with maximum spanning
trees. In: Proceedings of 12th International Conference of the Italian Association
for Artificial Intelligence (AI*IA). pp. 201–212. Palermo, Italy (2011)

14. Diab, M.: Relieving the data acquisition bottleneck in Word Sense Disambiguation.
In: Proceedings of the 42nd Annual Meeting on Association for Computational
Linguistics (ACL). pp. 303–310. Barcelona, Spain (2004)

15. Edmonds, P.: Designing a task for SENSEVAL-2. Tech. rep., University of
Brighton, U.K. (2000)

16. Erk, K., McCarthy, D.: Graded word sense assignment. In: Proceedings of the
2009 Conference on Empirical Methods in Natural Language Processing (EMNLP).
pp. 440–449. Singapore (2009)

17. Erk, K., Padó, S.: A structured vector space model for word meaning in context.
In: Proceedings of the 2008 Conference on Empirical Methods in Natural Language
(EMNLP). pp. 897–906. Edinburgh, UK (2008)

18. Erk, K., Padó, S.: Exemplar-based models for word meaning in context. In: Pro-
ceedings of the 48th Annual Meeting of the Association for Computational Lin-
guistics (ACL). pp. 92–97. Uppsala, Sweden (2010)

19. Fellbaum, C. (ed.): WordNet: An Electronic Database. MIT Press, Cambridge,
MA (1998)

20. Flati, T., Navigli, R.: The CQC Algorithm: Cycling in graphs to semantically
enrich and enhance a bilingual dictionary. Journal of Artificial Intelligence Research
(JAIR), to appear (2012)

21. Gale, W.A., Church, K., Yarowsky, D.: Using bilingual materials to develop
Word Sense Disambiguation methods. In: Proceedings of the Fourth International
Conference on Theoretical and Methodological Issues in Machine Translation.
pp. 101–112. Montreal, Canada (1992)

22. Gliozzo, A., Strapparava, C., Dagan, I.: Unsupervised and supervised exploitation
of semantic domains in lexical disambiguation. Computer Speech and Language
18(3), 275–299 (2004)

23. Grozea, C.: Finding optimal parameter settings for high performance Word Sense
Disambiguation. In: Proceedings of the 3rd International Workshop on the Eval-

126 R. Navigli

uation of Systems for the Semantic Analysis of Text (SENSEVAL-3), Barcelona,
Spain. pp. 125–128 (2004)

24. Guo, W., Diab, M.T.: Combining orthogonal monolingual and multilingual sources
of evidence for all words WSD. In: Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics (ACL). pp. 1542–1551. Uppsala, Sweden
(2010)

25. Harris, Z.: Distributional structure. Word 10, 146–162 (1954)

26. Hoste, V., Hendrickx, I., Daelemans, W., van den Bosch, A.: Parameter optimiza-
tion for machine-learning of Word Sense Disambiguation. Natural Language Engi-
neering 8(4), 311–325 (2002)

27. Hovy, E., Marcus, M., Palmer, M., Ramshaw, L., Weischedel, R.: OntoNotes: The
90% solution. In: Companion Volume to the Proceedings of the Human Language
Technology Conference of the North American Chapter of the Association for Com-
putational Linguistics, New York, N.Y. pp. 57–60 (2006)

28. Ide, N., Erjavec, T., Tufiş, D.: Sense discrimination with parallel corpora. In: Pro-
ceedings of ACL-02 Workshop on WSD: Recent Successes and Future Directions.
pp. 54–60. Philadelphia, USA (2002)

29. Jabbari, S., Hepple, M., Guthrie, L.: Evaluation metrics for the lexical substitution
task. In: Proceedings of the Conference of the North American Chapter of the
Association of Computational Linguistics (HLT-NAACL), Los Angeles, California.
pp. 289–292 (2010)

30. Jin, P., Wu, Y., Yu, S.: SemEval-2007 task 05: Multilingual Chinese-English lex-
ical sample. In: Proceedings of the Fourth International Workshop on Semantic
Evaluations (SemEval-2007). pp. 19–23. Prague, Czech Republic (2007)

31. Khapra, M., Kulkarni, A., Sohoney, S., Bhattacharyya, P.: All words domain
adapted WSD: Finding a middle ground between supervision and unsupervision.
In: Proceedings of the 48th Annual Meeting of the Association for Computational
Linguistics (ACL). pp. 1532–1541. Uppsala, Sweden (2010)

32. Koeling, R., McCarthy, D., Carroll, J.: Domain-specific sense distributions and
predominant sense acquisition. In: Proceedings of the Human Language Technology
Conference and the 2005 Conference on Empirical Methods in Natural Language
Processing (EMNLP), Vancouver, B.C., Canada. pp. 419–426 (2005)

33. Lapata, M., Keller, F.: An information retrieval approach to sense ranking. In:
Proceedings of Human Language Technologies 2007: The Conference of the North
American Chapter of the Association for Computational Linguistics, Rochester,
N.Y. pp. 348–355. Rochester, USA (2007)

34. Lefever, E., Hoste, V.: SemEval-2010 task 3: Cross-lingual Word Sense Disambigua-
tion. In: Proceedings of the 5th International Workshop on Semantic Evaluation.
pp. 15–20. Uppsala, Sweden (2010)

35. Lefever, E., Hoste, V., Cock, M.D.: Parasense or how to use parallel corpora for
Word Sense Disambiguation. In: Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies (ACL-
HLT). pp. 317–322. Portland, Oregon, USA (2011)

36. Lin, D.: Automatic retrieval and clustering of similar words. In: Proceedings
of the 17th International Conference on Computational linguistics (COLING).
pp. 768–774. Montreal, Quebec, Canada (1998)

37. Lin, D., Pantel, P.: Dirt – discovery of inference rules from text. In: Proceedings of
the seventh ACM SIGKDD international conference on Knowledge discovery and
data mining (KDD). pp. 323–328. San Francisco, CA, USA (2001)

A Quick Tour of WSD, WSI, and Related Approaches 127

38. Magnini, B., Giampiccolo, D., Vallin, A.: The italian lexical sample task at
Senseval-3. In: Proceedings of Senseval-3: Third International Workshop on the
Evaluation of Systems for the Semantic Analysis of Text. pp. 17–20. Barcelona,
Spain (2004)

39. Manandhar, S., Klapaftis, I.P., Dligach, D., Pradhan, S.S.: SemEval-2010 task 14:
Word sense induction & disambiguation. In: Proceedings of the 5th International
Workshop on Semantic Evaluation. pp. 63–68. Uppsala, Sweden (2010)

40. Màrquez, L., Taulé, M., Mart́ı, A., Artigas, N., Garćıa, M., Real, F., Ferrés, D.:
Senseval-3: The Spanish lexical sample task. In: Proceedings of the 3rd Interna-
tional Workshop on the Evaluation of Systems for the Semantic Analysis of Text
(SENSEVAL-3), Barcelona, Spain. pp. 21–24 (2004)

41. Martinez, D.: Supervised Word Sense Disambiguation: Facing Current Challenges,
Ph. D. Thesis. University of the Basque Country, Spain (2004)

42. McCarthy, D.: Dante: a new resource for research at the syntax-semantics interface.
In: Proceedings of Interdiciplinary Workshop on Verbs. Pisa, Italy (2010)

43. McCarthy, D., Koeling, R., Weeds, J., Carroll, J.: Unsupervised acquisition of
predominant word senses. Computational Linguistics 33(4), 553–590 (2007)

44. McCarthy, D., Navigli, R.: The English lexical substitution task. Language Re-
sources and Evaluation 43(2), 139–159 (2009)

45. Meyer, C.M., Gurevych, I.: How web communities analyze human language: Word
senses in Wiktionary. In: Proceedings of the Second Web Science Conference.
Raleigh, NC, USA (2010)

46. Mihalcea, R., Csomai, A.: Wikify! Linking documents to encyclopedic knowledge.
In: Proceedings of the Sixteenth ACM Conference on Information and Knowledge
management, Lisbon, Portugal. pp. 233–242 (2007)

47. Mihalcea, R., Faruque, E.: SenseLearner: Minimally supervised Word Sense Disam-
biguation for all words in open text. In: Proceedings of the 3rd International Work-
shop on the Evaluation of Systems for the Semantic Analysis of Text (SENSEVAL-
3), Barcelona, Spain. pp. 155–158. Barcelona, Spain (2004)

48. Mihalcea, R., Sinha, R., McCarthy, D.: Semeval-2010 task 2: Cross-lingual lexi-
cal substitution. In: Proceedings of the 5th International Workshop on Semantic
Evaluation. pp. 9–14. Uppsala, Sweden (2010)

49. Miller, G.A., Beckwith, R., Fellbaum, C.D., Gross, D., Miller, K.: WordNet: an
online lexical database. International Journal of Lexicography 3(4), 235–244 (1990)

50. Mitchell, J., Lapata, M.: Vector-based models of semantic composition. In: Pro-
ceedings of the 46th Annual Meeting of the Association for Computational Lin-
guistics (ACL). pp. 236–244. Columbus, Ohio, USA (2008)

51. Mohammad, S., Hirst, G.: Determining word sense dominance using a thesaurus.
In: Proceedings of the 11th Conference of the European Chapter of the Association
for Computational Linguistics (EACL), Trento, Italy. pp. 121–128 (2006)

52. Navigli, R.: Meaningful clustering of senses helps boost word sense disambiguation
performance. In: Proceedings of the 21st International Conference on Computa-
tional Linguistics and 44th Annual Meeting of the Association for Computational
Linguistics (COLING-ACL), Sydney, Australia. pp. 105–112 (2006)

53. Navigli, R.: Word Sense Disambiguation: A survey. ACM Computing Surveys
41(2), 1–69 (2009)

54. Navigli, R., Crisafulli, G.: Inducing word senses to improve web search result clus-
tering. In: Proceedings of the 2010 Conference on Empirical Methods in Natural
Language Processing (EMNLP). pp. 116–126. Boston, USA (2010)

128 R. Navigli

55. Navigli, R., Faralli, S., Soroa, A., de Lacalle, O., Agirre, E.: Two birds with one
stone: Learning semantic models for text categorization and Word Sense Disam-
biguation. In: Proceedings of the 20th ACM Conference on Information and Knowl-
edge Management (CIKM). pp. 2317–2320. Glasgow, UK (2011)

56. Navigli, R., Lapata, M.: An experimental study on graph connectivity for unsu-
pervised Word Sense Disambiguation. IEEE Transactions on Pattern Anaylsis and
Machine Intelligence 32(4), 678–692 (2010)

57. Navigli, R., Litkowski, K.C., Hargraves, O.: SemEval-2007 task 07: Coarse-grained
English all-words task. In: Proceedings of the Fourth International Workshop on
Semantic Evaluations (SemEval-2007), Prague, Czech Republic. pp. 30–35 (2007)

58. Navigli, R., Ponzetto, S.P.: BabelNet: Building a very large multilingual seman-
tic network. In: Proceedings of the 48th Annual Meeting of the Association for
Computational Linguistics (ACL), Uppsala, Sweden. pp. 216–225 (2010)

59. Ng, H.T., Wang, B., Chan, Y.S.: Exploiting parallel texts for Word Sense Disam-
biguation: an empirical study. In: Proceedings of the 41st Annual Meeting of the
Association for Computational Linguistics (ACL), Sapporo, Japan. pp. 455–462
(2003)

60. Okumura, M., Shirai, K., Komiya, K., Yokono, H.: SemEval-2010 task: Japanese
WSD. In: Proceedings of the 5th International Workshop on Semantic Evaluation
(Semeval-2010). pp. 69–74. Uppsala, Sweden (2010)

61. Orhan, Z., Çelik, E., Neslihan, D.: SemEval-2007 task 12: Turkish lexical sample
task. In: Proceedings of the Fourth International Workshop on Semantic Evalua-
tions (SemEval-2007). pp. 59–63. Prague, Czech Republic (2007)

62. Pado, S., Lapata, M.: Dependency-based construction of semantic space models.
Computational Linguistics 33(2), 161–199 (2007)

63. Palmer, M., Babko-Malaya, O., Dang, H.T.: Different sense granularities for differ-
ent applications. In: Proceedings of 2nd Workshop on Scalable Natural Language
Understanding Systems at HLT-NAACL-04. Boston, MA (2004)

64. Pantel, P., Lin, D.: Discovering word senses from text. In: Proceedings of the
8th International Conference on Knowledge Discovery and Data Mining (KDD).
pp. 613–619 (2002)

65. Ponzetto, S.P., Navigli, R.: Large-scale taxonomy mapping for restructuring and
integrating Wikipedia. In: Proceedings of the 21st International Joint Conference
on Artificial Intelligence (IJCAI), Pasadena, California, USA. pp. 2083–2088 (2009)

66. Ponzetto, S.P., Navigli, R.: Knowledge-rich Word Sense Disambiguation rivaling
supervised system. In: Proceedings of the 48th Annual Meeting of the Association
for Computational Linguistics (ACL). pp. 1522–1531. Uppsala, Sweden (2010)

67. Pradhan, S., Loper, E., Dligach, D., Palmer, M.: SemEval-2007 task-17: English
lexical sample, SRL and all words. In: Proceedings of the 4th International Work-
shop on Semantic Evaluations (SemEval-2007), Prague, Czech Republic. pp. 87–92
(2007)

68. Rand, W.M.: Objective criteria for the evaluation of clustering methods. Journal
of the American Statistical Association 66(336), 846–850 (1971)

69. Rosenberg, A., Hirschberg, J.: V-measure: A conditional entropy-based external
cluster evaluation measure. In: Proceedings of the 2007 Joint Conference on Em-
pirical Methods in Natural Language Processing and Computational Natural Lan-
guage Learning (EMNLP-CoNLL). pp. 410–420. Prague, Czech Republic (2007)

70. Schütze, H.: Automatic word sense discrimination. Computational Linguistics
24(1), 97–124 (1998)

71. Smolensky, P.: Tensor product variable binding and the representation of symbolic
structures in connectionist systems. Artificial Intelligence 46(1-2), 159–216 (1990)

A Quick Tour of WSD, WSI, and Related Approaches 129

72. Snyder, B., Palmer, M.: The english all-words task. In: Proceedings of the 3rd
International Workshop on the Evaluation of Systems for the Semantic Analysis
of Text (SENSEVAL-3), Barcelona, Spain. pp. 41–43. Barcelona, Spain (2004)

73. Strapparava, C., Gliozzo, A., Giuliano, C.: Pattern abstraction and term similarity
for Word Sense Disambiguation: IRST at Senseval-3. In: Proceedings of the 3rd
International Workshop on the Evaluation of Systems for the Semantic Analysis
of Text (SENSEVAL-3), Barcelona, Spain. pp. 229–234. Barcelona, Spain (2004)

74. Turney, P.D., Pantel, P.: From frequency to meaning: Vector space models of se-
mantics. Journal of Artificial Intelligence Research (JAIR) 37, 141–188 (2010)

75. Véronis, J.: Hyperlex: lexical cartography for Information Retrieval. Computer,
Speech and Language 18(3), 223–252 (2004)

76. Widdows, D., Dorow, B.: A graph model for unsupervised lexical acquisition. In:
Proceedings of the 19th International Conference on Computational Linguistics
(COLING). pp. 1–7. Taipei, Taiwan (2002)

77. Yuret, D., Yatbaz, M.A.: The noisy channel model for unsupervised Word Sense
Disambiguation. Computational Linguistics 36(1), 111–127 (2010)

78. Zhong, Z., Ng, H.T.: Word Sense Disambiguation for all words without hard labor.
In: Proceedings of the 21st International Joint Conference on Artificial Intelligence
(IJCAI). pp. 1616–1622. Pasadena, California (2009)

79. Zhong, Z., Ng, H.T.: It makes sense: A wide-coverage Word Sense Disambiguation
system for free text. In: Proceedings of the 48th Annual Meeting of the Association
for Computational Linguistics (ACL). pp. 78–83. Uppsala, Sweden (2010)

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 130–140, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Not Another Look at the Turing Test!

Kevin Warwick

School of Systems Engineering, University of Reading, Whiteknights, Reading, UK
k.warwick@reading.ac.uk

Abstract. Practical application of the Turing Test throws up all sorts of
questions regarding the nature of intelligence in both machines and humans. For
example - Can machines tell original jokes? What would this mean to a
machine if it did so? It has been found that acting as an interrogator even top
philosophers can be fooled into thinking a machine is human and/or a human is
a machine - why is this? Is it that the machine is performing well or is it that the
philosopher is performing badly? All these questions, and more, will be
considered. Just what does the Turing test tell us about machines and humans?
Actual transcripts will be considered with startling results.

Keywords: artificial intelligence, Turing test, communication, philosophy.

1 Introduction

The most contentious and best known philosophical discussion relating to artificial
intelligence is that relating to, what has become known as, The Turing Test. In fact it
was originally proposed by Alan Turing in 1950 as an imitation game [1, 2]. His
intention was to look at the question ‘can a machine think?’ or indeed ‘is a machine
intelligent?’ in roughly the same way as we might consider whether or not another
human can think or is intelligent.

Hence along the lines of a first meeting, perhaps an interview, if we wished to test
another human with regard to their intelligence we might ask them questions or
discuss topics with them and on this basis draw our conclusion as to their intelligence.
He argued, so maybe we could do the same with a machine!

For some reason it has become common practice when considering the intelligence
of a computer, to list a whole string of attributes of intelligence - many of which are
controversial and/or irrelevant. Conversely and quite sensibly what Turing proposed
was to approach the problem from a different perspective by testing a machine as to
its indistinguishability from humans. The fundamental basis being that if you
converse with a computer for a period and can’t tell the difference between it and a
human, then you must credit it with the same sort of intelligence as you would credit a
human.

There are different versions of the test, partly due to Turing fine tuning the
concept, partly due to his attempt to explain the concept (remember it was first
presented in the early 1950’s) and partly due to his attempt to substantiate the

 Not Another Look at the Turing Test! 131

approach in light of criticism. I wish to consider here however the Turing Test in its
pure basic form – so I do not here entertain comparisons between men and women,
the use of limited vocabulary, full body tests and so on – these are all very interesting
considerations in their own right – for another time and place.

The test in its basic form – as considered here - is as follows: An interrogator
(presumed to be human) faces a keyboard attached to a split computer monitor –
behind one half of the screen is a computer respondent, behind the other is a human
respondent. Both the human and computer respondents are hidden from view –
possibly in another room – the only interaction allowable is communication via the
keyboard and monitor.

The interrogator has 5 minutes in total to discuss whatever he/she likes with the
two unknown entities – at the same time. At the end of that period the interrogator
must decide which hidden entity is the human and which is the computer. The goal of
the computer is to not to fool the interrogator that they are human but rather that they
are more human than the hidden human.

What Turing said in 1950 was “I believe that in about fifty years’ time it will be
possible to programme computers … to make them play the imitation game so well
that an average interrogator will not have more than 70% chance of making the right
identification after five minutes of questioning”. This is what has become known as
‘The Turing Test’.

The wording Turing used was carefully chosen although somewhat confusing –
what it actually means (from what Turing said) is that to pass the Turing Test a
computer needs to fool an average interrogator into making an incorrect decision 30%
of the time or more.

Importantly, in the computer’s favour is the fact that the computer does not
actually have to fool the interrogator that it is human and that the hidden human is a
machine. To score in the computer’s favour it is sufficient for the interrogator to be
unsure which is which or to think both hidden entities are the same, either human or
machine – as these would also be incorrect decisions as far as the test is concerned.

That said, passing the test is actually a very tough task for the computer. Imagine
for example that, rather than a machine and a human, behind the monitor are, instead,
two humans, both trying to get the interrogator to believe that they are human and the
other human is a computer. The interrogator would then choose which entity of the
two he/she thought was most humanlike. On average it would be expected for a
hidden entity to achieve a score of 50% – anything higher would mean that the other
human scored less than 50%.

Clearly it is not particularly difficult for a reasonably intelligent human, pitted
against another human, to fail the Turing test by scoring less than 30%. In fact, given
the range of humans that exist on earth – some have difficulty communicating, some
have dementia, some are very slow to respond – it is quite likely that some people
would find it extremely problematic to pass the Turing test when pitted against other
humans. The Turing test is therefore quite a challenge in that a computer must fool
interrogators that it is more human than many humans.

132 K. Warwick

By convention, the test is normally expected to be conducted in English, although
any language proves the point. Turing quite rightly didn’t dwell on this issue. He also
didn’t discuss about the hidden humans taking part? Should they be adults, children,
native English speakers, experts, do they have illnesses (e.g. dementia), do they try to
be human or machine? Turing did not stipulate the exact nature of these hidden
humans, and this poses interesting questions in itself as to who (what sort of humans)
the computer is competing against. Importantly, Turing did not say that the hidden
humans must all be fluent English speakers educated to degree level, with no apparent
neurological issues.

Perhaps the biggest problem area with the test though is Turing’s concept of an
average interrogator. In any practical tests that occur it turns out to be interested
parties who volunteer as interrogators – these often include professors of computer
science, philosophers, journalists and even students of artificial intelligence – in the
circumstances they can hardly be described as average – in an overall human sense.
To obtain a statistical ‘average’ an extremely large number of interrogators would be
required – indeed whatever number took part – some statistician would still grumble
that a ‘true’ average had not been found.

To even hope to arrive at an average, the interrogators roped in would need to
include some people who cannot use a computer, some people who are not able to
understand what they are supposed to do, some non-native speaking interrogators,
some very young children, some people with autism and so on. In each case this
would most likely all help towards the computer’s apparent performance – as any
uncertainty or inability to make the ‘right identification’ helps the computer’s cause.

When one considers the possibility of hidden humans who do not respond to
questions or take several minutes to provide an irrelevant answer, the 30% incorrect
identity rate suddenly seems readily attainable by machines.

2 What Does the Turing Test Test?

Turing posed the game instead of answering the question “Can Machines Think?” If a
machine passed the test then this would indicate that the machine ‘appears’ to think in
the same way as a human (if it passes)! We might ask though, could we do any better
if we tested a human in the same way – how do we know that they think? The test
does not directly deal with much more abstract issues such as consciousness or self-
awareness, other than can be gleaned through questioning. The nature of the
interrogation carried out is therefore an important factor.

Turing himself said “Intelligent behaviour presumably consists in a departure from
the completely disciplined behaviour involved in computation, but rather a slight one,
which does not give rise to random behaviour, or to pointless repetitive loops”. It is
therefore down to a Turing test interrogator to bring such aspects into play during a
conversation.

What about Turing’s conjecture, that by 2000, it would be possible for a computer
to be programmed to pass his test? It is interesting to consider what Turing actually
said. Firstly (in 1950) he said in “about” 50 years time and secondly he said that it

 Not Another Look at the Turing Test! 133

would be possible to programme computers to pass the test – not that necessarily a
computer would have passed the test by 2000. In quite a neat way, Turing also puts an
emphasis here on humans involved with computers – including those devising
machines to try for the test, the humans who act as interrogators and those who
discuss the rules and results. It is though very useful to take a look at where things
stand.

3 Loebner Competition

Very infrequently – largely because of the logistics involved - an ‘official’ Turing test
is carried out under strict rules, to assess the state of play of machines at that time.
However, each year a relatively open competition, sponsored by Hugh Loebner, is
held, roughly tying in with some of Turing’s stipulations. Usually it is not exactly as
directed by Turing himself, but it does give us some idea of where things stand. Most
important of all, it gives an intriguing insight into conversational features of the
interrogators, the machines and even the hidden humans.

The Loebner competition actually has a different goal, that is to find the best
conversational machine from those machines that are entered, as judged by a panel of
‘experts’. The format of the event is that parallel-paired comparisons are made
between each of four hidden-machines pitted in turn against each of four hidden-
humans in a 25 minute test. The task of each interrogator is to identify the machine
and human in each test pair – assigning a total mark out of 100 to the pair (e.g. a mark
of Entry A 47/Entry B 53 would mean that in that particular paired interrogation entry
B is deemed to be slightly more human than A, whereas a mark of Entry A 98/Entry
B 2 would mean the interrogator believes that entry A is almost certainly the human
and entry B the machine).

It might be expected from this that over time as AI and machine technology has
improved so the top score achieved by a machine would generally improve year on
year as the machines gradually improve. I was in fact an interrogator for the 2001
Loebner competition in which 1 machine was deemed, by 2 out of the 5 interrogators
who took part, to be more human than any of the hidden humans present (I wish to
point out that I was one of the other 3 interrogators who was not so fooled!). Yet in
2006, when I acted as an interrogator again, no machine was deemed to be more
human than any human. Over the 3 year period from 2004 to 2006 the highest score
obtained by any machine from any one of the interrogators was 2004 – 48, 2005 – 45,
2006 – 28.

It is not easy to pinpoint the reasons for this apparent decline in performance.
Perhaps the expectations of Loebner Judges may be increasing as they gain in
knowledge of how to spot machine-like responses, or could it be that the machines
themselves are getting worse? On top of this, no machine from 2003 to 2007 deceived
any interrogator that it is human, whereas this was a regular occurrence prior to 2003.

One important reason is that the rules of the competition have changed
dramatically. As an example, Hugh Loebner has insisted that each test lasts for 25
minutes, as opposed to Turing’s stipulation of 5 minutes. Another major factor is that

134 K. Warwick

networking (a big advantage of AI) has been disallowed due to the possibility of a
linked in human pretending to be a machine pretending to be a human – in order to
win the prize money offered by Hugh Loebner! On top of this, interaction protocol
stipulations have placed further limits on machine performance. Other strict discipline
means that all hidden humans are educated native English speakers who are told to
‘behave’ themselves.

4 Can a Machine Tell a Joke?

How can a machine be caught out? For example, could humour catch the machine
out? Surely, it could be argued that a machine cannot have a sense of humour. One
philosopher (Rickman) [3] asserted that “computers, whatever artificial intelligence
they may display, cannot make jokes”. If he was right then this would be an easy give
away. Could it be possible for a machine to ‘create’ (produce from its linguistic
armoury) an original response that the human receiver may deem witty during
conversational interaction? One point to remember here is that many of the machines
which take part in the Loebner competition actually learn to communicate through
many discussions with humans.

Consider then these examples - taken from actual Loebner transcripts – these were
responses during the competition with interrogators in conversation with the machine
‘Jabberwacky’:

Interrogator: Ok, but are you always right?
Jabberwacky: Sometimes I am left.
Interrogator: How small is small any how?
Jabberwacky: Small.
Interrogator: Yes but exactly how small?
Jabberwacky: Very small.
Interrogator: So why don’t you take over the world?
Jabberwacky: I wouldn’t know what to do with it…
 Anyway, I’m pretty busy already.

These examples have been included to show how such machines can cope
surprisingly well with some very human conversation and even perhaps upset a
philosopher or two.

5 Turing 2008

In October 2008 (14th October to be precise), to assess the latest state of play, the
Loebner competition was held at the University of Reading, England. Under special
circumstances and with the agreement of Hugh Loebner, strict Turing test rules were
invoked. So a series of 5 minute paired machine/human tests were performed with a
variety of interrogators – as opposed to Hugh’s normal 25 minute tests. As a result,
Hugh withheld some of the prize money!

 Not Another Look at the Turing Test! 135

The winning machine was Fred Roberts’ ‘Elbot’ which actually succeeded in
fooling 25% of its interrogators (30% is the Turing ‘pass mark’) into thinking it was
human. So possibly the machines are almost there, but perhaps not quite. Curiously,
Elbot openly admits to interrogators that it is a ‘robot’ and even uses this as a double
bluff ploy which seems to work!!

Interrogators who took part in 2008 included software engineers, scientists,
philosophers and newspaper journalists – certainly not resulting in the ‘average
interrogator’ that Turing spoke of. On top of this a variety of hidden humans took
part, some were non-native English speakers, one had Asperger’s Syndrome, some
were children.

Various ploys have been used in an attempt to trip up the machines competing.
Asking mathematical questions obviously does not work as ‘the machines are not
stupid’, they are just as unlikely as a human to attempt to give a mathematical answer.
Despite this, we will shortly have a look at examples where (for some reason) some
philosophers don’t seem to understand this point. It is perhaps better to ask topical or
local questions, for example to discuss what the weather is like or what colour the
walls in the room are painted. The point is not whether a machine gives a ‘correct’
answer, but if it gives one that a human would.

Clearly a good way to stir things up is to employ a phrase with several meanings,
e.g. Not another look at the Turing Test. Machines can often have problems with such
instances due to a more literal understanding. However to have value it does put
emphasis on the hidden human understanding, to some extent at least, that a phrase
can be understood in several ways. As an interrogator in 2006 I tried the ploy of
flirting with the hidden entities, only to have both human and machine flirting right
back at me!

Perhaps you can see for yourself how you might perform as an interrogator. At the
Reading competition, one interrogator asked the same question of a number of hidden
entities:

What did they think about the weather that morning?
Three different responses came from a male human, a female human and a

machine. Which is which? Keep in mind that the event was held in October 2008 and
they all knew it was autumn/fall in England. The responses were:

A."I do tend to like a nice foggy morning, as it adds a certain mystery."
B. "Not the best, expecting pirates to come out of the fog."
C. "The weather is not nice at the moment, unless you like fog."
So which is which? Find the answer at the end of the paper (Answer to Puzzle).

What follows is part of the conversation for which the machine ‘Ultra Hal’ was
scored ‘human’ by the interrogator concerned:

Interrogator: Morning.
Ultra Hal: Good morning Judge.
Ultra Hal: It’s eight something, maybe you ate something.
Ultra Hal: Get it?
Interrogator: Yes.

136 K. Warwick

As an extra piece of information gathering, if an entity was deemed by the
interrogator to be a machine, the interrogator was also asked to mark the humanness
of their conversation out of a total of 100 – the larger the score the more towards
human the interrogator thought the hidden entity was – so a score of below 50 meant
the interrogator was pretty damn sure it was a machine they were talking with. What
follows is part of the conversation for which a non-native English speaking female
(human) was scored ‘machine’ by the interrogator and was awarded 40/100 for their
humanness, i.e. there was no question in the interrogator’s mind, this was a machine
they were talking with:

Interrogator: So let’s cut to the point. Are you the human or the computer?
Hidden human: What do you think?
Interrogator: That’s just the sort of answer I would expect from a computer.

Now for an example of a successful double bluff from the eventual winner ‘Elbot’
during one of the conversations for which Elbot was adjudged, by the interrogator, to
be an adult male:

Interrogator: OK, fair enough, I’ll stop with the slang, how are you?
Elbot: Just a moment! I’ll start my self-diagnosis algorithm and let you know the

results.
Interrogator: Very funny, that’s exactly what you’d say if you were a computer

right?

As we will shortly see - one interesting feature from the 2008 competition is that on
numerous occasions when an interrogator was fooled by a machine into thinking that
the machine was human, the interrogator not only did not realize their mistake but
even considered that they had done very well in easily selecting which entity was
human and which was machine in each case.

One interrogator, a journalist for the Times newspaper, subsequently wrote a
newspaper article describing how it was simple to detect the machines – even though
he had been fooled on several occasions. Exactly the same was true of an Oxford
University philosopher, another of the interrogators, who subsequently wrote in an
academic paper that a “couple of questions and answers were usually sufficient to
confirm” which was the machine. The philosopher (and his two co-worker
philosophers) actually achieved a 44% wrong identification rate!! Interestingly well
above Turing’s 30%. We will shortly look more deeply into their strategy and the
consequences.

Overall from the 2008 exercise it can be concluded that machines are not quite yet
at the level of conversational performance set by Turing, however the best of them are
getting very close. What a machine will have achieved when it passes Turing’s target
is difficult to say – other than it will have passed the Turing test. The game is though
an interesting exercise as well as being an important milestone in AI – certainly in
terms of the human conversational abilities of machines. It does though tell us quite a
bit more about ourselves as humans and how we value and respect others.

 Not Another Look at the Turing Test! 137

It could be argued that the test is very tough for any machine to achieve. Turing
said “The game may be criticised because the odds are weighted too heavily against
the machine. If the man were to try and pretend to be the machine he would clearly
make a very poor showing. He would be given away at once by slowness and
inaccuracy in arithmetic. May not machines carry out something which ought to be
described as thinking but which is very different from what a man does? This
objection is a very strong one, but at least we can say that if, nevertheless, a machine
can be constructed to play the imitation game satisfactorily, we need not be troubled
by this objection”.

6 Argument from Disability

Directly linked to the Turing Test, Turing commented on the apparent desire of many
humans to ‘prove’ that we are ‘better’ than machines, no matter what. When
comparing humans and machines even now, it is apparent that computers can do
many things better than humans do – in particular things we feel require deep thought,
planning, understanding and so on – such as playing chess, mathematics, recalling
from an extensive memory etc.

 The “argument from disability” as Turing called it, is the type of argument put up by
humans against the abilities of a machine in a defensive fashion. We know that machines
can do many things well, however this appears to provoke a defensive attitude in some
people to conclude that no matter what machines can do, humans still have something
more. This is indeed also the foundation of the Chinese Room problem and numerous
other human-centric flawed arguments concerning consciousness.

As Turing put it, some will say “a machine can never ….” Examples given by
Turing are: “be kind, resourceful, beautiful, friendly, have initiative, have a sense of
humour, tell right from wrong, make mistakes, fall in love, enjoy strawberries and
cream, etc”.

In fact there is no reason that a computer could not do any of these things – indeed
in this paper we specifically looked further into one such example - the sense of
humour. Whether a computer does them in the same way as a human and whether it
‘understands’ what it is doing in the same way that a human would and whether or not
the act is at all meaningful to the machine are quite different questions.

In fact we cannot know whether another human ‘understands’ or ‘feels’ things in
the same way that we do. Another person may say, and think that, they understand –
but do they? How can we be sure? When another human laughs at a joke – do they
‘understand’ it or are they merely bending ‘machine-like???’ to peer pressure. In
particular it is the case that non-native speakers can find it extremely difficult to
‘understand’ humour in another language, with all the nuances that arise. This doesn’t
mean they are only half people or are not conscious because they are non-native
speakers.

138 K. Warwick

Conversely there are many things that some machines can do that humans cannot
do – flying being a good example. This doesn’t make the machine better than humans
at everything, it is just one feature. It would be silly to conclude that humans are
generally inferior to machines or not conscious because we cannot fly. So why should
it be concluded that machines are not intelligent because they cannot ‘make a cup
of tea’.

When we point to something that a human can do but that apparently a machine
may not be able to do, we need to be sensible about what conclusions we draw from
that. Is the task an important, defining issue in some sense? After all, most machines
are pretty specific in what they are required to do – we would not necessarily expect
an aeroplane to smell a rose or to have a dry sense of humour.

If we were trying to build a machine that was an exact replica of a human (both
physically and mentally) – then it might be appropriate to criticize a particular feature
of the machine as not being quite the same – however I personally am not aware that
any machine has yet ever been so designed – nothing like in fact. So why should
anyone expect a machine to do absolutely everything that a human can do, as well as
a human can do and then go on to do more? It is not surprising that there are some
things that a certain human can do that a specific machine cannot do – this tells us
absolutely nothing about their relative intelligences. What it does tell us however is
that any human who makes a statement such as ‘machines are not intelligent they
can’t even make a cup of tea’ is a person of extremely limited intellectual abilities.

When we consider the argument from disability and the Turing test we need to be
clear most of all as to what the comparison is meant to prove. Which machine is being
compared with which human and in what context? Both machines and humans have
many different versions with many different abilities. So can we make generalizations
as we might like to that relate to all machines and all humans? Perhaps most
important of all, is the comparison important in some sense? If a machine cannot
smell a rose or enjoy a cup of tea will this save humans from an intelligent machine
take over?

7 It Doesn’t Take Much to Fool a Philosopher

In the October 2008 Turing Test/Loebner competition one philosopher and two
philosopher colleagues took part as (invited) interrogators throughout the day. They
were, perhaps surprisingly, fooled on a number of occasions into believing that a
machine was a human and that a human was a machine. Coupled with this it is
interesting to note that, for the most part, they didn’t realise that they had been fooled.
Subsequently a paper was written, accepted and published [4], in which the 3
philosophers, as authors, stated, for example, that “a couple of questions and answers
were usually sufficient to confirm” which was the machine and which was the human.
This despite the fact the joint successful identification rate of the 3 was less than 56%.

Perhaps it is the case that philosophers either do not read or do not ‘understand’ the
words of Alan Turing. With regard to the blatantly obvious mathematical capabilities
of machines, in his 1950 paper [1] Turing gave an important piece of advice when he

 Not Another Look at the Turing Test! 139

said “the machine (programmed for playing the game) would not attempt to give the
right answers to the arithmetical problem”. This point seemed to elude our
philosophical trio who repeatedly asked the question “can you calculate the root
square of 67890444?” Answers given by different machines included “I can calculate
a division by zero” and “Oh, please bother my Aunt Sonya with all this arithmetic –
she is an accountant” – as a result these machines were scored as being human.
Meanwhile to the request “calculate the root square of 8888888” when the answer
came back as “too complicated”, the human respondent was scored as a machine!

The female Asperger’s hidden human was meanwhile regarded as being a machine
by the same interrogators when, in answer to the question “if we are shaking hands,
whose hand am I holding?” she replied “when shaking hands, you’re holding the
other person’s hand”. Interrogators turn up for a Turing test with their own prejudices
and biases which clearly affect their analysis. This applies both in thinking about
expected norms for both humans and machines.

In a conversation between a hidden human and one of the philosophers, it went so
(this is an actual conversation from the event – exactly as written):

Interrogator: Do you like to go to the cinema before dinner?
Hidden human: Hello!
Hidden human: Yeah definitely. I would love to go to a cinema before dinner.
Hidden human: What about you?
Interrogator: Yes, I usually like to go to the cinema but after dinner.
Hidden human: So, what kind of cinema do you watch?
Interrogator: Speaking about going to the cinema, if the cinema is in London and
 Oxford is North than London, where is London?
Hidden human: London is in the United Kingdom.

As a result of this conversation the philosopher/interrogator decided they were
definitely talking with a machine that was not human-like at all. In hindsight it can be
difficult to imagine what responses the human could have possibly given to be
considered human. One interesting feature is the way the philosopher completely
ignored the question from the human, asking a further question themselves – thereby
asserting power over solidarity. Reviewing transcripts such as this are not only
informative as far as machine communication is concerned, they are also of
considerable interest in terms of the nature of the interrogation and how the
machine/human decision could possibly have been arrived at.

In their paper [4] the philosophers claimed that their “first question would have
almost always have been sufficient to discriminate between human and machine. It
certainly was for us”. Remember – they achieved a success rate of less than 56%
correct identification. Perhaps more pertinent are the thoughts of Fred Roberts,
developer of Elbot, he commented [5] that “in the Turing test we see that subjective
psychological perspectives play a pivotal role in the assessment of the machine’s
capabilities.” He went on “Elbot is prepared for typical inputs and induces users to
behave in a predictable manner”. This makes one question who is the interrogator and
who the interrogated.

140 K. Warwick

8 Conclusions

Alan Turing was way ahead of his time. His thoughts about computers and future
possibilities are as pertinent today as they were back in 1950 before computers, as we
know them, had been imagined. Turing considered how humans test the intelligence
of other humans – as in an interview setting – by conversation, questioning and
rhetoric. If we are to test machines – he perhaps felt – then why not use the same
format? Why not indeed!

The use of practical Turing tests opens up considerable detail in the analysis of just
how machines of today communicate. It also throws up many questions on how
humans communicate, and even more questions on how we behave in the presence of
others and how we treat others. Essentially the Turing test is not only a significant test
of artificially intelligent machines – as one aspect of human intelligence [6] – it is also
a significant eye opener with regard to the nature of intelligence in humans.

9 Answer to Puzzle

So, did you guess correctly that A was the machine, B the male and C the female?

References

1. Turing, A.M.: Computing Machinery and Intelligence. Mind LIX(236) (1950)
2. Turing, A.M., Braithwaite, R., Jefferson, G., Newman, M.: Can Automatic Calculating

Machines be said to Think? In: Copeland, J. (ed.) The Essential Turing – The Ideas that
Gave Birth to the Computer Age, pp. 487–506. Clarendon Press, Oxford (1952)

3. Rickman, P.: The Philosopher as Joker. Philosophy Now (25) (1999)
4. Floridi, L., Taddeo, M., Turilli, M.: Turing’s Imitation Game – Still an Impossible

Challenge for all Machines and Some Judges. An Evaluation of the 2008 Loebner Contest.
Minds and Machines 19(1), 145–150 (2009)

5. Shah, H., Warwick, K.: Hidden Interlocutor Misidentification in Practical Turing Tests.
Minds and Machines 20(3), 441–454 (2010)

6. Warwick, K.: Artificial Intelligence: The Basics. Routledge (2011)

The Equational Theory of Weak Complete
Simulation Semantics over BCCSP �

Luca Aceto1,3, David de Frutos-Escrig2,3, Carlos Gregorio-Rodríguez2,3,
and Anna Ingólfsdóttir1,3

1 ICE-TCS, School of Computer Science, Reykjavik University, Iceland
2 Departamento de Sistemas Informáticos y Computación,

Universidad Complutense de Madrid, Spain
3 Abel Extraordinary Chair (Universidad Complutense-Reykjavik University)

Abstract. This paper presents a complete account of positive and
negative results on the finite axiomatizability of weak complete simula-
tion semantics over the language BCCSP. We offer finite (un)conditional
ground-complete axiomatizations for the weak complete simulation pre-
congruence. In sharp contrast to this positive result, we prove that, in
the presence of at least one observable action, the (in)equational theory
of the weak complete simulation precongruence over BCCSP does not
have a finite (in)equational basis. In fact, the set of (in)equations in at
most one variable that hold in weak complete simulation semantics over
BCCSP does not have an (in)equational basis of ‘bounded depth’, let alone
a finite one.

1 Introduction

Process algebras, such as ACP [5,7], CCS [18] and CSP [15], are prototype
specification languages for reactive systems. Such languages offer a small, but
expressive, collection of operators that can be combined to form terms that de-
scribe the behaviour of reactive systems.

Since the seminal work by Bergstra and Klop [7], and Hennessy and Mil-
ner [14], the search for (in)equational axiomatizations of notions of behavioural
semantics for fragments of process algebras has received much attention in con-
currency theory. A complete axiomatization of a behavioural semantics yields a
purely syntactic and model-independent characterization of the semantics of a

� Luca Aceto and Anna Ingólfsdóttir have been partially supported by the projects
‘New Developments in Operational Semantics’ (nr. 080039021) and ‘Meta-theory of
Algebraic Process Theories’ (No. 100014021) of the Icelandic Research Fund. David
de Frutos-Escrig and Carlos Gregorio-Rodríguez have been partially supported by
the Spanish projects TESIS (TIN2009-14312-C02-01), DESAFIOS10 (TIN2009-14599-
C03-01) and PROMETIDOS S2009/TIC-1465. The paper was begun when David de
Frutos-Escrig and Carlos Gregorio-Rodríguez held Abel Extraordinary Chair posi-
tions at Reykjavik University, and finalized while Luca Aceto and Anna Ingolfsdottir
held Abel Extraordinary Chairs at Universidad Complutense de Madrid, Spain, sup-
ported by the NILS Mobility Project.

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 141–152, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

142 L. Aceto et al.

process algebra, and paves the way to the application of theorem-proving tech-
niques in establishing whether two process descriptions exhibit related
behaviours.

The aim of this paper is to contribute to the study of the equational theory
of process algebras modulo notions of semantics that abstract, in some suit-
able fashion, from internal computations in the behaviour of processes. In [2],
we provided a complete account of positive and negative results on the finite
axiomatizability of weak simulation [17,21] and weak ready simulation seman-
tics [8,16] over the language BCCSP. (This language contains only the basic pro-
cess algebraic operators from CCS [18] and CSP [15], but is sufficiently powerful
to express all finite synchronization trees [18].) In the present paper, we focus
on the study of the equational theory of weak complete simulation semantics. Weak
complete simulation is a deadlock-sensitive variation on simulation, which is
the ‘weak counterpart’ of complete simulation [13]. Our definition of the notion
of weak complete simulation is based on considering a process ‘complete’, or
‘mute’, when it cannot perform any observable action. For instance, letting the
symbol τ denote an unobservable action [18], the process τ is mute, but neither
τa nor τ + a is.

We offer finite conditional and unconditional ground-complete axiomatiza-
tions for the weak complete simulation precongruence. (An (in)equational
axiomatization is called ground-complete if it can prove all the valid (in)equiva-
lences relating terms with no occurrences of variables in the process algebra of
interest.) In sharp contrast to this positive result, we prove that, in the presence
of at least one observable action, the (in)equational theory of the weak complete
simulation precongruence over BCCSP does not have a finite (in)equational ba-
sis. In fact, the collection of (in)equations in at most one variable that hold
true in weak complete simulation semantics over BCCSP does not have an
(in)equational basis of ‘bounded depth’, let alone a finite one.

Our work contributes to the extension to the ‘weak’ setting, where processes
may perform transitions labelled with the unobservable action τ, of a collec-
tion of non-trivial results that have been obtained for behavioural semantics
that consider each action processes perform as being observable by their en-
vironment. Our positive results build on, for instance, the encyclopedic stud-
ies presented in [11,13]. In particular, we use conditional axioms to provide a
simple and clear picture of the (in)equalities that are valid in weak complete
simulation semantics, and derive purely equational ground-complete axioma-
tizations from conditional axiomatizations in a rather uniform fashion. On the
other hand, our negative results are shown using proof-theoretic techniques
that have their root in, e.g., the seminal journal paper [10]. (The article [3] sur-
veys classic proof techniques for showing non-finite axiomatizability results.)

The paper is organized as follows. Section 2 presents the syntax and the
operational semantics for the language BCCSP, and reviews the necessary
background on (in)equational logic as well as classic axiom systems for strong
bisimulation equivalence and observational congruence (the largest congru-
ence included in weak bisimulation equivalence). Section 3 is devoted to our

The Equational Theory of Weak Complete Simulation Semantics over BCCSP 143

positive and negative results on the finite axiomatizability of the weak com-
plete simulation preorder. We conclude the paper by discussing further related
work and directions for future research in Section 4.

2 Preliminaries

To set the stage for the developments offered in the rest of the paper, we present
the syntax and the operational semantics for the language BCCSP, some back-
ground on (in)equational logic, and classic axiom systems for strong bisimula-
tion equivalence and observational congruence [18].

Syntax of BCCSP. BCCSP(Aτ) is a basic process algebra for expressing finite
process behaviour. Its syntax consists of closed (process) terms p, q, r that are
constructed from a constant 0, a binary operator _ + _ called alternative compo-
sition, or choice, and unary prefix operators α_, where α ranges over some set Aτ

of actions of the form A ∪ {τ}, where τ is a distinguished action symbol that is
not contained in A. Following Milner [18], we use τ to denote an internal, un-
observable action of a reactive system, and we let a, b, c denote typical elements
of A and α range over Aτ. The set of closed terms is named T(BCCSP(Aτ)), in
short T(Aτ). We write |A| for the cardinality of the set of observable actions.

Open terms t, u, v can moreover contain occurrences of variables from a
countably infinite set V (with typical elements x, y, z). We use T(BCCSP(Aτ)),
in short T(Aτ), to denote the set of open terms. The depth of a term t is the
maximum nesting of prefix operators in t.

In what follows, for each non-negative integer n and term t, we use ant to
stand for t when n = 0, and for a(an−1t) otherwise. As usual, trailing occur-
rences of 0 are omitted; for example, we shall usually write α in lieu of α0.

A (closed) substitution maps variables in V to (closed) terms. For every term
t and substitution σ, the term σ(t) is obtained by replacing every occurrence of
a variable x in t by σ(x). Note that σ(t) is closed if σ is a closed substitution.

Transitions and their defining rules. Intuitively, closed BCCSP(Aτ) terms repre-
sent finite process behaviours, where 0 does not exhibit any behaviour, p + q
is the nondeterministic choice between the behaviours of p and q, and αp ex-
ecutes action α to transform into p. This intuition is captured, in the style of
Plotkin [22], by the simple transition rules below, which give rise to Aτ-labelled
transitions between closed terms.

αx α−→ x

x α−→ x′

x + y α−→ x′
y α−→ y′

x + y α−→ y′

The operational semantics is extended to open terms by assuming that variables
do not exhibit any behaviour.

The so-called weak transition relations α
=⇒ (α ∈ Aτ) are defined over T(Aτ) in

the standard fashion as follows.

144 L. Aceto et al.

– We use τ
=⇒ for the reflexive and transitive closure of τ−→.

– For each a ∈ A and for all terms t, u ∈ T(Aτ), we have that t a
=⇒ u if, and

only if, there are t1, t2 ∈ T(Aτ) such that t τ
=⇒ t1

a−→ t2
τ

=⇒ u.

Preorders and their kernels. We recall that a preorder � is a reflexive and transi-
tive relation. Let � be a preorder over the set of closed terms T(Aτ). For terms
t, u ∈ T(Aτ), we define t � u if, and only if, σ(t) � σ(u) for each closed substi-
tution σ.

The kernel ≈ of a preorder � is the equivalence relation it induces, and is
defined thus:

t ≈ u if, and only if, (t � u and u � t).

It is easy to see that the kernel of a preorder � is the largest symmetric relation
included in �.

Inequational logic. An inequation (respectively, an equation) over the language
BCCSP(Aτ) is a formula of the form t ≤ u (respectively, t = u), where t and u are
terms in T(Aτ). An (in)equational axiom system is a set of (in)equations over the
language BCCSP(Aτ). An equation t = u is derivable from an equational axiom
system E, written E � t = u, if it can be proven from the axioms in E using
the rules of equational logic (viz. reflexivity, symmetry, transitivity, substitution
and closure under BCCSP(Aτ) contexts).

t = t
t = u
u = t

t = u u = v
t = v

t = u
σ(t) = σ(u)

t = u
αt = αu

t = u t′ = u′

t + t′ = u + u′

For the derivation of an inequation t ≤ u from an inequational axiom system
E, the rule for symmetry—that is, the second rule above—is omitted. We write
E � t ≤ u if the inequation t ≤ u can be derived from E.

It is well known that, without loss of generality, one may assume that substi-
tutions happen first in (in)equational proofs, i.e., that the fourth rule may only
be used when its premise is one of the (in)equations in E. Moreover, by pos-
tulating that for each equation in E also its symmetric counterpart is present
in E, one may assume that applications of symmetry happen first in equational
proofs, i.e., that the second rule is never used in equational proofs. (See, e.g., [10,
page 497] for a thorough discussion of this notion of ‘normalized equational
proof’.) In the remainder of this paper, we shall always tacitly assume that equa-
tional axiom systems are closed with respect to symmetry. Note that, with this
assumption, there is no difference between the rules of inference of equational
and inequational logic. In what follows, we shall consider an equation t = u as
a shorthand for the pair of inequations t ≤ u and u ≤ t.

The depth of t ≤ u and t = u is the maximum of the depths of t and u.
The depth of a collection of (in)equations is the supremum of the depths of its
elements. So, the depth of a finite axiom system E is zero, if E is empty, and it is
the largest depth of its (in)equations otherwise.

The Equational Theory of Weak Complete Simulation Semantics over BCCSP 145

An inequation t ≤ u is sound with respect to a given preorder relation � if
t � u holds. An (in)equational axiom system E is sound with respect to � if so
is each (in)equation in E.

Classic Axiomatizations for Notions of Bisimilarity. The well-known axioms B1–B4
for BCCSP(Aτ) given below stem from [14]. They are ω-complete [20], and
sound and ground-complete [14,18], over BCCSP(Aτ) (over any non-empty set
of actions) modulo bisimulation equivalence [18,21], which is the finest seman-
tics in van Glabbeek’s spectrum [13].

B1 x + y = y + x
B2 (x + y) + z = x + (y + z)
B3 x + x = x
B4 x + 0 = x

In what follows, for notational convenience, we consider terms up to the least
congruence generated by axioms B1–B4, that is, up to bisimulation equivalence.
We use summation ∑n

i=1 ti (with n ≥ 0) to denote t1 + · · ·+ tn, where the empty
sum denotes 0. Modulo the equations B1–B4 each term t ∈ T(Aτ) can be written
in the form ∑n

i=1 ti, where each ti is either a variable or is of the form αt′, for
some action α and term t′.

In a setting with internal transitions, the classic work of Hennessy and Milner
on weak bisimulation equivalence and on the largest precongruence included in it,
observational congruence, shows that the axioms B1–B4 together with the axioms
W1–W3 below are sound and complete over BCCSP(Aτ) modulo observational
congruence. (See [14,18,19].)

W1 αx = ατx
W2 τx = τx + x
W3 α(τx + y) = α(τx + y) + αx

The above axioms are often referred to as the τ-laws. For ease of reference, we
write

BW = {B1, B2, B3, B4, W1, W2, W3}.

3 Weak Complete Simulation

In the remainder of this paper, we study the notion of complete simulation pre-
order in a setting with τ actions. Recall that, in the setting without τ, a complete
simulation [13] is a simulation relation that is only allowed to relate a state with
no outgoing transitions to states with the same property.

Definition 1. We say that process p ∈ T(Aτ) must terminate (or is mute), written
p⇓, iff there does not exist any a ∈ A such that p a

=⇒.

Definition 2. The weak complete simulation preorder, denoted by �CS, is the
largest relation over terms in T(Aτ) that satisfies the following conditions whenever
p �CS q and α ∈ Aτ:

146 L. Aceto et al.

– if p α−→ p′ then there exists some term q′ such that q α
=⇒ q′ and p′ �CS q′, and

– if p⇓ then q⇓.

We say that p, q ∈ T(Aτ) are weak complete simulation equivalent, written p ≈CS
q, iff p and q are related by the kernel of �CS, that is when both p �CS q and q �CS p
hold.

It is easy to see that if p �CS q and q⇓, then p⇓.
Note that �CS is not a precongruence with respect to the choice operator of

BCCSP(Aτ). Indeed, it is immediate to show that τ0 �CS 0, but τ0 + a ��CS
0 + a.

Definition 3. We denote by �CS the largest precongruence over T(Aτ) included in
�CS. Formally, p �CS q iff

– p �CS q,
– p �CS q ⇒ ∀α ∈ Aτ αp �CS αq, and
– p �CS q ⇒ ∀r ∈ T(Aτ) p + r �CS q + r.

The definition of the largest precongruence included in �CS is purely algebraic
and difficult to use to study that relation. We next present a behavioural char-
acterization of �CS.

Definition 4. The preorder relation �CS between processes in T(Aτ) is defined as fol-
lows: p �CS q iff

– p �CS q, and
– whenever p τ−→ p′ for some p′ such that p′ ⇓, there exists some q′ such that

q(τ−→)+q′ and q′⇓.

We denote the kernel of �CS by �CS.

Example 1. It is immediate to see that τ0 ��CS 0. On the other hand, τa �CS a
does hold because the second requirement in Definition 4 is vacuous. In general,
τp �CS p + q holds for all p and q provided that p is not mute.

Proposition 1 (Behavioural characterization of �CS). p �CS q if, and only if,
p �CS q, for all p, q ∈ T(Aτ).

3.1 Ground-Complete Axiomatizations

In order to find a set of equations that gives a ground-complete axiomatiza-
tion for the largest precongruence included in the weak complete simulation
preorder, it is natural to consider the following (conditional) equations.

(CSτ) (x⇓ ⇔ y⇓)⇒ x ≤ x + y
(CSτe) τ(ax + y) = ax + y

The first equation, CSτ , is similar to the key axiom in the axiomatization for the
complete simulation preorder in the concrete case, see e.g. [12]. However, in our

The Equational Theory of Weak Complete Simulation Semantics over BCCSP 147

setting, the mute predicate takes into account the silent steps of processes. This
conditional equation restricts the applicability of inequation

(S) x ≤ x + y,

which is only sound in (weak) complete simulation semantics when the terms
substituted for the variables x and y have the same ‘termination status’.

The second equation, CSτe, is a restricted version of equation

(τe) τx = x,

which is valid in weak simulation semantics, but is unsound in weak complete
simulation semantics. Intuitively, equation CSτe expresses the fact that a process
of the form τp, for some term p that is not mute, is weak complete simulation
equivalent to p. In fact, equation CSτe could ‘equivalently’ be formulated as a
conditional equation thus:

x�⇓ ⇒ τx = x.

Proposition 2. The set of equations

Ec
CS≤ = BW ∪ {CSτe, CSτ},

where CSτ is conditional, is sound and ground-complete for BCCSP(Aτ) modulo �CS.

Axiom CSτ highlights the similarities with the concrete version of complete
simulation and with the theory of constrained simulations [12]. However, it is
natural to wonder whether it is possible to find a finite, non-conditional and
ground-complete axiomatization for �CS over BCCSP(Aτ). Indeed, this is pos-
sible; it is enough to substitute the conditional equation CSτ with the following
inequations.

(CS) ax ≤ ax + y
(τN) 0 ≤ τ0

Theorem 1. The set of unconditional inequations

ECS≤ = BW ∪ {CSτe, CS, τN}

is sound and ground-complete for BCCSP(Aτ) modulo �CS.

It is clear that we could substitute equation τN by

(τg) x ≤ τx

in the axiomatization above, since the inequation τg is sound for BCCSP(Aτ)
modulo �CS and is more general than τN.

Let us now move on to the ground-complete axiomatization of the largest
congruence included in complete simulation equivalence. In order to axioma-
tize that congruence, it is natural to consider the following equation.

(CSEτ) (x⇓ ⇔ y⇓) ⇒ a(x + y) = a(x + y) + ax

148 L. Aceto et al.

This equation is essentially the same one that was used in earlier conditional
axiomatizations for complete simulation equivalence in the concrete case [12].
However, we remark that the mute predicate deals with silent transitions, al-
though we only use visible actions when describing the equation CSEτ.

Proposition 3. The set of conditional equations

Ec
CS= = BW ∪ {CSτe, CSEτ}

is sound and ground-complete for BCCSP(Aτ) modulo �CS.

To turn the previous axiomatization into one without conditional equations
we consider the equation

(CSE) a(bx + y + z) = a(bx + y + z) + a(bx + z)

where a, b ∈ A. This is the same equation that is used when axiomatizing com-
plete simulation equivalence in a setting without silent moves.

Theorem 2. The set of unconditional equations

ECS= = BW ∪ {CSτe, CSE}

is sound and ground-complete for BCCSP(Aτ) modulo �CS.

3.2 Nonexistence of Finite Complete Axiomatizations

The results in the previous section show that weak complete simulation seman-
tics affords finite (conditional) ground-complete axiomatizations. It is natural to
wonder whether the collection of (in)equations over BCCSP(Aτ) that are valid
in weak complete simulation semantics is finitely axiomatizable.

We shall now prove that if A is non-empty, then the (in)equational theory of
�CS over BCCSP(Aτ) does not have a finite basis. (The assumption that A be
non-empty is, of course, necessary for such a result. In the trivial case that A is
empty, the inequation x ≤ y suffices to obtain a complete axiomatization.)

For the sake of clarity, we recall that we consider terms up to the least con-
gruence generated by axioms B1–B4, that is, up to strong bisimilarity.

Our proof of the nonfinite axiomatizability result for the (in)equational the-
ory of �CS over BCCSP(Aτ) will be based on the following infinite family of
inequations, which are sound modulo �CS:

anx ≤ an0 + an(x + a) (n ≥ 1).

To see that each of the inequations in the above family is sound, it suffices to
observe that if p ≈CS 0 then an p �CS an0 for each n ≥ 0, and an p �CS an(p+ a)
otherwise, if n ≥ 1. (Note that the assumption that n ≥ 1 is necessary for the
soundness of the above type of inequation. Indeed, the inequation

x ≤ 0 + (x + a)

is not sound modulo �CS because 0 ��CS 0 + (0 + a).)

The Equational Theory of Weak Complete Simulation Semantics over BCCSP 149

Table 1. Axiomatizations for the largest (pre)congruence included in the weak complete
simulation semantics

Weak Complete Simulation Ground-complete Complete

Finite Axiomatizations Order Equiv. Order Equiv.

1 ≤ |A| = ∞ ECS≤ ECS= Do not exist

Table 2. Axioms for the largest (pre)congruence included in the weak completed simu-
lation semantics

Unconditional

ECS≤ = BW ∪ {CSτe, CS, τN}
ECS= = BW ∪ {CSτe, CSE}

(CSτe) τ(ax + y) = ax + y

(CS) ax ≤ ax + y

(τN) 0 ≤ τ0

(CSE) b(ax + y + z) =

b(ax + y + z) + b(ax + z)

Conditional

Ec
CS≤ = BW ∪ {CSτe, CSτ}

Ec
CS= = BW ∪ {CSτe, CSEτ}

(CSτ) (x⇓ ⇔ y⇓)⇒ x ≤ x + y

(CSEτ) (x⇓ ⇔ y⇓)⇒
a(x + y) = a(x + y) + ax

Theorem 3. If |A| ≥ 1 then the (in)equational theory of �CS over BCCSP(Aτ) does
not have a finite (in)equational basis. In particular, the following statements hold true.

1. No finite set of sound inequations over BCCSP(Aτ) modulo �CS can prove all of
the sound inequations in the family

anx ≤ an0 + an(x + a) (n ≥ 1).

2. No finite set of sound (in)equations over BCCSP(Aτ) modulo �CS can prove all of
the sound equations in the family

anx + an0 + an(x + a) = an0 + an(x + a) (n ≥ 1).

Theorem 3 is a corollary of the following result.

Proposition 4. Assume that |A| ≥ 1. Let E be a collection of inequations whose el-
ements are sound modulo �CS and have depth smaller than n. Suppose furthermore
that the inequation t ≤ u is derivable from E and that u �CS an0 + an(x + a). Then

t an
=⇒ x implies u an

=⇒ x.

Having shown the above result, statement 1 in Theorem 3 can be proved as
follows. Let E be a finite inequational axiom system that is sound modulo �CS.

150 L. Aceto et al.

Pick n larger than the depth of any axiom in E. Then, by Proposition 4, E cannot
prove the valid inequation

anx ≤ an0 + an(x + a),

and is therefore incomplete. Indeed, anx an
=⇒ x. On the other hand, the only

terms t such that an0 + an(x + a) an
=⇒ t holds are 0 and x + a. So an0 + an(x +

a) an
=⇒ x does not hold.

Corollary 1. If |A| ≥ 1 then the collection of (in)equations in at most one variable
that hold over BCCSP(Aτ) modulo �CS does not have a finite (in)equational basis.
Moreover, for each n, the collection of all sound (in)equations of depth at most n cannot
prove all the valid (in)equations in at most one variable that hold in weak complete
simulation semantics over BCCSP(Aτ).

Tables 1–2 summarize the positive and negative results on the existence of fi-
nite axiomatizations for weak complete simulation semantics. On Table 1, ‘Do
not exist’ indicates that there is no finite (in)equational axiomatization for the
corresponding semantic relation.

4 Conclusion

In this paper, we have offered a detailed study of the equational theory of the
largest precongruence and congruence over the language BCCSP induced by
the weak version of the classic complete simulation preorder and equivalence,
respectively.

On the one hand, for these (pre)congruence we have presented results that
show the existence of finite ground-complete equational axiomatizations. In or-
der to obtain a better understanding of the equational theory of weak complete
simulation semantics, we have presented both conditional and unconditional
versions of such axiomatizations.

On the other hand, we have proved that the (in)equational theory of the weak
complete simulation precongruence over BCCSP does not have a finite
(in)equational basis. This result is true in the presence of at least one observable
action. Moreover, we have shown that the collection of (in)equations in at most
one variable that hold in weak complete simulation semantics over BCCSP does
not have an (in)equational basis of bounded depth, and therefore not a finite one.

It would be interesting to obtain infinite, but finitely described, complete ax-
iomatizations of weak complete simulation semantics. This is a topic that we
leave for future research.

While in [2] we showed that for both weak simulation and weak ready sim-
ulation semantics the finite axiomatizability of the semantics was crucially de-
pendent on whether the set of observable actions was finite or infinite, for the
weak complete simulation semantics this is not the case. As reflected in Table 1,
for any non-empty set of actions, it is impossible to find a finite complete ax-
iomatization.

The Equational Theory of Weak Complete Simulation Semantics over BCCSP 151

We find it pleasing that all the known results on the existence of finite bases
for the weak, complete and plain simulation semantics (see [10]) in the ‘con-
crete’ case, that is without silent moves, are ‘lifted’ to the weak version of
the simulation semantics we have presented. However, it is natural to wonder
whether our results for the weak semantics can be obtained in a uniform fash-
ion from those for the concrete ones by applying some ‘meta-theorems’ linking
the equational theories of concrete and weak semantics over some process alge-
bra. Examples of such result are offered in [4,9]. The paper [4] presents a general
technique for obtaining new results pertaining to the non-finite axiomatizabil-
ity of behavioural (pre)congruences over process algebras from known ones.
The technique is based on establishing translations between languages that pre-
serve sound (in)equations and (in)equational proofs over the source language,
and reflect families of (in)equations responsible for the non-finite axiomatiz-
ability of the target language. In [2], we used the reduction method from [4]
to lift known axiomatizability results for simulation semantics to the weak set-
ting. So far, however, we have been unable to apply the reduction technique
to obtain axiomatizability results for weak semantics that, unlike weak simu-
lation semantics, do not satisfy the equation τe. The development of general
links between axiomatizations for weak and concrete semantics, along the lines
of those presented in [9], is a very interesting line for future research.

We plan to investigate next the weak versions of process semantics in van
Glabbeek’s spectrum that are based on notions of decorated traces. We have
already started working on this topic and we plan to report on our results in a
forthcoming article.

Following the lead of [1,6,23], it would also be interesting to study rule for-
mats for operational semantics that provide congruence formats for the seman-
tics considered in this paper, and to give procedures for generating ground-
complete axiomatizations for them for process languages in the given formats.

Acknowledgements. We thank Wan Fokkink for his insightful comments on a
previous version of this paper and for bringing [9] to our attention.

References

1. Aceto, L., Bloom, B., Vaandrager, F.W.: Turning SOS rules into equations. Informa-
tion and Computation 111(1), 1–52 (1994)

2. Aceto, L., de Frutos Escrig, D., Gregorio-Rodríguez, C., Ingólfsdóttir, A.: Axiomatiz-
ing Weak Ready Simulation Semantics over BCCSP. In: Cerone, A., Pihlajasaari, P.
(eds.) ICTAC 2011. LNCS, vol. 6916, pp. 7–24. Springer, Heidelberg (2011)

3. Aceto, L., Fokkink, W., Ingólfsdóttir, A., Luttik, B.: Finite Equational Bases in Process
Algebra: Results and Open Questions. In: Middeldorp, A., van Oostrom, V., van
Raamsdonk, F., de Vrijer, R. (eds.) Processes, Terms and Cycles: Steps on the Road to
Infinity. LNCS, vol. 3838, pp. 338–367. Springer, Heidelberg (2005)

4. Aceto, L., Fokkink, W., Ingólfsdóttir, A., Mousavi, M.: Lifting non-finite axiomati-
zability results to extensions of process algebras. Acta Informatica 47(3), 147–177
(2010)

152 L. Aceto et al.

5. Baeten, J., Basten, T., Reniers, M.: Process Algebra: Equational Theories of Commu-
nicating Processes. Cambridge Tracts in Theoretical Computer Science, vol. 50. Cam-
bridge University Press (2009)

6. Baeten, J.C.M., de Vink, E.P.: Axiomatizing GSOS with termination. Journal of Logic
and Algebraic Programming 60-61, 323–351 (2004)

7. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Informa-
tion and Control 60(1-3), 109–137 (1984)

8. Bloom, B., Istrail, S., Meyer, A.R.: Bisimulation can’t be traced. Journal of the
ACM 42(1), 232–268 (1995)

9. Chen, T., Fokkink, W., van Glabbeek, R.: On the axiomatizability of impossible fu-
tures (unpublished manuscript, 2011)

10. Chen, T., Fokkink, W., Luttik, B., Nain, S.: On finite alphabets and infinite bases.
Information and Computation 206(5), 492–519 (2008)

11. de Frutos-Escrig, D., Gregorio-Rodríguez, C., Palomino, M.: On the unification of
process semantics: Equational semantics. Electronic Notes in Theoretical Computer
Science 249, 243–267 (2009)

12. de Frutos Escrig, D., Gregorio-Rodríguez, C.: Universal coinductive characteriza-
tions of process semantics. In: 5th IFIP International Conference on Theoretical Com-
puter Science. IFIP, vol. 273, pp. 397–412. Springer, Heidelberg (2008)

13. van Glabbeek, R.: The linear time – branching time spectrum I; the semantics of
concrete, sequential processes. In: Handbook of Process Algebra, ch. 1, pp. 3–99.
Elsevier (2001)

14. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. Jour-
nal of the ACM 32, 137–161 (1985)

15. Hoare, C.: Communicating Sequential Processes. Prentice Hall (1985)
16. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Information and

Computation 94(1), 1–28 (1991)
17. Milner, R.: An algebraic definition of simulation between programs. In: Proceedings

2nd Joint Conference on Artificial Intelligence, pp. 481–489. BCS (1971)
18. Milner, R.: Communication and Concurrency. Prentice Hall (1989)
19. Milner, R.: A complete axiomatisation for observational congruence of finite-state

behaviors. Information and Computation 81(2), 227–247 (1989)
20. Moller, F.: Axioms for Concurrency. PhD thesis, Report CST-59-89, Department of

Computer Science, University of Edinburgh (1989)
21. Park, D.M.: Concurrency and Automata on Infinite Sequences. In: Deussen, P. (ed.)

GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981)
22. Plotkin, G.D.: A structural approach to operational semantics. Journal of Logic and

Algebraic Programming 60-61, 17–139 (2004)
23. Ulidowski, I.: Axiomatisations of Weak Equivalences for De Simone Languages. In:

Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 219–233. Springer,
Heidelberg (1995)

Complexity Insights of the Minimum

Duplication Problem

Guillaume Blin1, Paola Bonizzoni2, Riccardo Dondi3,
Romeo Rizzi4, and Florian Sikora1,5

1 Université Paris-Est, LIGM - UMR CNRS 8049, France
{gblin,sikora}@univ-mlv.fr

2 DISCo, Universitá degli Studi di Milano-Bicocca, - Milano, Italy
bonizzoni@disco.unimib.it

3 DSLCSC, Universitá degli Studi di Bergamo, - Bergamo, Italy
riccardo.dondi@unibg.it

4 DIMI - Università di Udine - Udine, Italy
Romeo.Rizzi@dimi.uniud.it

5 Lehrstuhl für Bioinformatik, Friedrich-Schiller-Universität Jena, Germany

Abstract. The Minimum Duplication problem is a well-known prob-
lem in phylogenetics and comparative genomics. Given a set of gene trees,
the Minimum Duplication problem asks for a species tree that induces
the minimum number of gene duplications in the input gene trees. More
recently, a variant of the Minimum Duplication problem, called Min-

imum Duplication Bipartite, has been introduced in [14], where the
goal is to find all pre-duplications, that is duplications that precede, in
the evolution, the first speciation with respect to a species tree. In this
paper, we investigate the complexity of both Minimum Duplication

and Minimum Duplication Bipartite problems. First of all, we prove
that the Minimum Duplication problem is APX-hard, even when the
input consists of five uniquely leaf-labelled gene trees (progressing on the
complexity of the problem). Then, we show that the Minimum Dupli-

cation Bipartite problem can be solved efficiently by a randomized
algorithm when the input gene trees have bounded depth.

1 Introduction

The evolutionary history of the genomes of eukaryotes is the result of a series of
evolutionary events, called speciations, that produce new species starting from a
common ancestor. This evolutionary history has been deeply studied in Compu-
tational Biology, and is usually represented using a special type of phylogenetic
tree called species tree [9]. A species tree is a rooted binary tree whose leaves are
uniquely labelled by a set Λ representing the extant species, where the common
ancestor of the contemporary species is associated with the root of the tree.
The internal nodes represent hypothetical ancestral species (and the associated
speciations). Speciations are not the only events that influence the evolution. In-
deed, there are other events, such as gene duplication, gene loss and lateral gene

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 153–164, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

154 G. Blin et al.

Fig. 1. (a) a gene tree T . (b) a species tree S whereM is the lca mapping from T to
S; each gene in {g2, g4, g5} is mapped by function f in the species that gene belongs
to. (c) a reconciled tree for T and S based on the a priori duplication of gene g1 into
genes h and g3.

transfer that, although not leading to new species, are fundamental in evolution.
In this paper, we focus on gene duplications which are known to be essential
for the evolution of many eukaryotes groups, such as vertebrates, insects and
plants [8]. Gene duplication can be described as the genomic event that causes a
gene inside a genome to be copied, resulting in two copies of the same gene that
can evolve independently. Genes of extant species are called homologous if they
evolved from a common ancestor, through speciations and duplications events
[10]. Evolution of homologous genes, with regards to the extant species, is usu-
ally represented using another special type of phylogenetic tree called gene tree.
A gene tree is a rooted binary tree whose leaves are (not necessarily uniquely)
labelled using elements of the set Λ. Indeed, despite the fact that, biologically
speaking, leaves in the gene tree represent genes, for ease, the gene tree is la-
belled according to the species from which the corresponding gene was sampled.
Therefore, leaves similarly labelled represent duplicated genes that evolved in-
dependently and appear in a common extant species. As in the species tree,
the root and the internal nodes respectively represent the common ancestor and
ancestral genes explaining their evolution.

With regards to the set of labels Λ, gene and species trees are said to be
comparable. Nevertheless, due to complex evolutionary processes such as gene
duplication and loss, comparable gene and species trees very often present in-
compatibilities. A challenging problem is then to reconcile the gene and species
trees with hypothetical gene duplications. For example, in Fig. 1, given two
comparable gene and species trees inducing incompatibilities, one can infer a
reconciled tree based on the a priori duplication of gene g1 into genes h and g3
(h is a hypothetical ancestor of genes g2, g4), which afterwards both speciate
according to the topology of the species tree. Based on the principle of parsi-
mony, one is interested in finding the minimum number of gene duplications that
can explain all the incompatibilities. This last can be inferred by the so-called
lowest common ancestor mapping (lca mapping), denoted byM and defined as

Complexity Insights of the Minimum Duplication Problem 155

follows.M maps any gene of the gene tree to the latest species from which the
gene could be sampled. In other words, M maps each ancestral gene g of the
gene tree to the most recent common ancestor of the extant species from which
all the descendant of g were sampled.

For example, in Fig. 1, according toM, g3 is mapped to S1 since S1 is the most
recent common ancestor of S4 and S5 from which were sampled (represented as a
function f) respectively the descendant g4 and g5 of g3. Observe that, considering
M, any leaf of the gene tree is mapped to the unique leaf of S similarly labelled
(according to Λ). GivenM, a gene in the gene tree is a gene duplication if it has
a descendant with the sameM mapping. Then, the reconciliation cost is defined
as the number of gene duplications in the gene tree induced by the species tree.
Computation of this distance has been widely investigated in the context of the
Minimum Duplication problem [15,13,11,4], where given a set of gene trees,
the objective is to compute a species tree that induces a minimum number of
gene duplications.

The Minimum Duplication problem is known to be NP-hard [13]. More re-
cently, the Minimum Duplication problem has been related to the Minimum

Triplets Consistency [4]. The complexity of Minimum Triplets Consis-

tency has been deeply studied, and the problem is known to be W[2]-hard [5]
and inapproximable within factor O(log n) [5]. These results coupled with the
reduction provided in [4] implies that the Minimum Duplication is NP-hard,
W[2]-hard (despite of [15]) and inapproximable within factor O(log n) even in
the specific case of a forest composed of an unbounded number of uniquely
leaf-labelled gene trees with three leaves [4]. Therefore, different heuristics and
Integer Linear Programs have been developed [2,3,7,6]. Recently, the Minimum

Duplication Bipartite problem has been introduced to tackle the Minimum

Duplication problem [14]. The Minimum Duplication Bipartite problem
corresponds to finding all pre-duplications ; that is duplications that precede, in
the evolution, the first speciation with respect to a species tree. Roughly, this
means that only the first level of the species tree is of importance. Indeed, one is
interested in knowing if a given species belongs to the subtree of S rooted at the
left child of the root or at the right one. Therefore, one can view the species tree
as a bipartition (Λ1, Λ2) of the set of species Λ. Solving the Minimum Dupli-

cation Bipartite problem recursively produces a natural greedy heuristic for
the Minimum Duplication problem. The Minimum Duplication Bipartite

problem was shown to be 2-approximable [14], but its complexity remains open.
In this contribution, we provide results relying both on the Minimum Dupli-

cation problem and the Minimum Duplication Bipartite problem. First of
all, we prove that the Minimum Duplication problem is APX-hard, even when
the input consists of five uniquely leaf-labeled gene trees (that is for a bounded
number of gene trees). Then, we show that the Minimum Duplication Bi-

partite problem can be solved efficiently by a randomized algorithm when the
input gene trees have bounded depth. greedy heuristic for the Minimum Dupli-

cation problem. Due to space consideration, we do not provide full details and
proofs which are deferred to the full version of the paper.

156 G. Blin et al.

2 On a Tight Inapproximability

We present a reduction from Minimum Vertex Cover on cubic graphs
(MVCC) to the specific case of the Minimum Duplication problem – de-
noted Min-5-Dup – where given a set of five uniquely leaf labelled gene trees
F = {T1, T2, T3, T4, T5}, the objective is to compute a species tree S that in-
duces a minimum number of gene duplications (afterwards denoted as d(F , S)).
Let G = (VG, EG) be a cubic graph (i.e. every vertex has degree three), MVCC

problem asks for a subset V ′
G ⊆ VG, such that for each edge (vi, vj) ∈ EG,

at least one of {vi, vj} belongs to V ′
G. In a first step, starting from any cubic

graph G = (VG, EG), we will construct an associated input F = {T1, . . . , T5}
of Min-5-Dup. Then, we will demonstrate that any species tree S such that
d(F , S) < q = 6|EG|+3|VG|+1 must be canonical (defined afterwards). Finally,
we will prove that our construction is indeed an L-reduction.

In order to define formally the gene trees, let us first define the central notion
of comb graph. We will consider a specific subclass of comb graphs corresponding
to a binary tree where all the internal nodes lie on a single simple (i.e. with no
repeated vertices) path referred as the spine. For ease, we will nevertheless use
the term comb graph in the following to denote those last. Given a sequence
L = 〈l1, . . . , lk〉 of k labels, let C(L) denote the comb graph whose leaves are
labelled according to a postorder traversal using L (i.e. lx ∈ L is the label of the
unique leaf of depth x). For example, in Fig. 1, the gene tree (a) corresponds to
the comb graph C(〈g2, g4, g5〉).

Let us now define two operations on trees. Let T1 T2 be a tree obtained from
two trees T1 and T2, by connecting the roots of T1 and T2 to a new vertex v
which becomes the root of T1 T2. Inserting T2 in the edge e of T1 will denote
the operation that leads to a tree obtained from T1 and T2 by replacing the edge
e = (v, v′) in T1 by two edges (v, w) and (w, v′) and connecting the root of T2

to the new vertex w.
We are now ready to define the gene trees T1, . . . , T5. Roughly, we will asso-

ciate to each vertex v ∈ VG, a specific tree Tv and to each edge e ∈ EG, two trees
T 1
e , T

2
e . These trees will be then combined to build the gene trees T1, . . . , T5. For

ease, let us consider the following order of edges of EG, 〈e1, e2, . . . e|EG|〉 s.t.
∀ex = (vi, vj), ey = (vh, vk) with x < y, i < j and h < k, either (i < h)
or (i = h and j < k). According to this order, we define the following three
sequences of labels: M1 = 〈m1

1,m
1
2, . . .m

1
|EG|〉, M2 = 〈m2

1,m
2
2, . . .m

2
|EG|〉 and

L = 〈l11, l21, l12, l22, . . . l1|EG|, l
2
|EG|〉. Roughly, any edge ex is represented by the

four labels {m1
x,m

2
x, l

1
x, l

2
x}. First of all, for any edge ex ∈ EG, let us build

the two trees T 1
ex = C(〈l1x,m2

x, l
2
x〉) and T 2

ex = C(〈l2x,m2
x, l

1
x〉). Moreover, for

any v ∈ VG s.t. v is incident to the edges ex, ey and ez, we build a tree
Tv =

(
C(〈m1

x,m
1
y,m

1
z〉) C(〈l1x, l1y, l1z〉)

)
 C(〈m2

x,m
2
y,m

2
z〉) (see Fig. 2).

We will now build the gene trees T1 to T5 by starting from a comb graph
where subtrees representing vertices and edges will be inserted in. Let T5 be
obtained from C(〈f|VG|+1, f

1
|VG|, . . . , f

q
|VG|, f|VG|, . . . f

1
1 , . . . , f

q
1 , f1〉), by inserting

in the edge connecting f1 and its parent the subtree C(M1) C(M2). Regarding

Complexity Insights of the Minimum Duplication Problem 157

Fig. 2. The trees Tv, T
1
ex and T 2

ex for v ∈ VG incident to the edges ex, ey and ez

the construction of T1 to T4, let us assume that we are also provided a 4-coloring
λ : VG �→ {1, 2, 3, 4} of G (for example, by applying the polynomial-time greedy
Welsh-Powell algorithm [16]). Let any Ti, 1 ≤ i ≤ 4, be first define as a the fol-
lowing comb graph: Ti = C(〈f1, f2, . . . , f|VG|+1, f

1
|VG|, . . . f

q
|VG|, f

1
|VG|−1 . . . , f

q
1 〉).

We then insert, for each vi ∈ VG, the tree Tvi in the edge connecting the parents
of fi and fi+1 in the gene tree Tx where x = λ(vi) (see Fig. 3). Moreover, for
each ex = (vi, vj) ∈ EG (ordered from e1 to e|EG|), the tree T 1

ex is inserted in the
edge connecting the parent of fi and its other child in the gene tree Tx where
x = min{1, 2, 3, 4} \ {λ(vi), λ(vj)} (i.e. the gene tree having the smallest index
and not containing neither Tvi , nor Tvj). Finally, for each ex = (vi, vj) ∈ EG, the
tree T 2

ex is inserted in the edge connecting the parent of fi and its other child
in the gene tree Tx where x = max{1, 2, 3, 4} \ {λ(vi), λ(vj)} (i.e. the gene tree
having the biggest index and not containing neither Tvi , nor Tvj). A sketch of
this construction is given in Fig. 3.

Due to space constraints, we only provide here a sketch of our proof (full
details available in appendix). First of all, we can prove that, by construction,
all the gene trees are indeed uniquely leaf-labelled. Then, we can prove that only
canonical solutions are of interest. Roughly, a canonical solution (i.e. a species
tree S) is a copy of T5 where extra leaves of L = {l1x, l2x : ∀ex ∈ EG} are each
inserted either in C(M1) or C(M2). The insertion of l1x, l

2
x in C(M1) or C(M2)

depends on the fact that the edge ex = (vi, vi) is covered by vi or vj .
We can, moreover, prove that, in a canonical solution, (1) each vertex on the

path from the root of Tj, with 1 ≤ j ≤ 4, to the parent of f|VG|+1 (excluding
this last) induces a duplication (that is 5|VG| + 2|EG| in total), (2) each edge
ex = (vi, vj) ∈ EG induces a duplication in the root of one of {T 1

ex , T
2
ex} and

a duplication in the root of either Tvi or Tvj . One can then easily see that the
minimum number of duplications is then related to the minimum cover size.
Hence the following lemma holds.

Lemma 1. Let G = (VG, EG) be an instance of MVCC and let F = {T1, ..., T5}
be the corresponding instance of Min-5-Dup. Then, starting from a cover V ′

G

of G, we can compute in polynomial time a solution S of Min-5-Dup for F s.t.
d(F , S) ≤ 5|VG| + 3|EG| + |V ′

G|; starting from a solution S of Min-5-Dup for
F s.t. d(F , S) ≤ 5|VG|+ 3|EG|+ p, we can compute in polynomial time a cover
of G of size at most p.

158 G. Blin et al.

Fig. 3. Gene trees T1 to T5 obtained from the cubic graph G where L∗
f =

〈f1
|VG|, . . . , f

q
|VG|, . . . , f

1
1 , . . . , f

q
1 〉 and ∀1 ≤ i ≤ 4, λ(vi) = i

Lemma 1 concludes the reduction. Since MVCC is APX-hard [1], provided
our L-reduction, we can conclude that Min-5-Dup is also APX-hard.

Theorem 1. The Minimum Duplication problem is APX-hard, even when the
input consists of five uniquely leaf-labelled gene trees

3 A Randomized Approach

In this section, we investigate the complexity of the Minimum Duplication

Bipartite problem and show that it can be solved efficiently by a randomized
algorithm when the input gene trees have bounded depth. A randomized algo-
rithm can be seen simply as an algorithm that is allowed to do some random
decisions as it processes the input. Whereas defining a randomized algorithm is
quite easy, the performance analysis of this last is more complicated. Indeed,
first, one has to compute the probability of success of the randomized algorithm
(i.e. probability to end up with an optimal solution). Then, one can amplify the
probability of success simply by repeatedly running the algorithm, with inde-
pendent random choices, and taking the best solution found. If one, moreover,
prove that the overall running time required to get a high probability of success
is polynomial in the size of the input, then it implies that the problem is ran-
domized polynomial (in RP-class). For further details on randomized algorithms,
the reader should consider the book of Kleinberg and Tardos [12].

Complexity Insights of the Minimum Duplication Problem 159

In order to prove that the Minimum Duplication Bipartite problem is
randomized polynomial, we first provide a randomized algorithm for a variant
of the Minimum Cut problem, called Minimum Cut in Colored Graph.
Then, we will prove that the Minimum Duplication Bipartite problem can
be translated into a Minimum Cut in Colored Hypergraph problem that
can be solved efficiently applying our randomized algorithm on hypergraphs
with bounded hyperedges degree. It is of importance to note that, as far as we
know, this is the first attempt of solving by randomization the minimum cut in
colored hypergraph. Providing a randomized algorithm for general hypergaphs
with unbounded hyperedges degree is still open.

Let us first introduce theMinimum Cut in Colored Graph problem: Given
a set of colors C and an undirected colored graph G = (V,E) where any edge is
colored with a color from C, find a minimal colored cut of G – that is a partition
of V into two non-empty sets A and B such that the number of colors used by
the edges having one end in A and the other in B is minimized.

For ease, let col : E �→ C be a function returning the color of a given edge and
mul(c) = |{e : e ∈ E and col(e) = c}| be a function returning the multiplicity
of a given color. Moreover, for sake, given a graph G = (V,E), let col(G) =⋃

e∈E col(e) denote the set of colors used in G. Let us now describe an algorithm
inspired by the folklore Contraction Algorithm [12] used for solving the
classical Minimum Cut problem (i.e. minimizing the number of edges having
one end in A and the other in B) on uncolored graph by randomized algorithm.

As in [12], our Colored Contraction Algorithm uses a connected multi-
graph G = (V,E) – that is an undirected graph that is allowed to have more
then one edge between the same pair of vertices – which is moreover colored.
The algorithm starts by choosing, uniformly at random, a color c ∈ col(G) and
contracting any edge e ∈ E such that col(e) = c (and thus all such edges).
Contracting an edge (u, v) ∈ E will produce a new graph G′ = (V ′, E′) in
which u and v are identified as a single new vertex w whereas all other ver-
tices are keeping their original identity (i.e. V ′ = {V ∪ {w}} \ {u, v}). In G′,
E′ = {E ∪ {(w, v′′) : v′ ∈ {u, v}, (v′, v′′) ∈ E}} \ {(v′, v′′) : v′ ∈ {u, v}, v′′ ∈ V }.
Roughly, E′ is a copy of E where any edge (u, v) has been removed whereas
any other edge has been preserved, but if one of its ends was equal to u or v,
then this end is updated to be equal to the new node w. Note that the contrac-
tion operation may end up in a multigraph even when starting from a classical
graph G. In this process, contracting all the edges that have the selected color
c roughly corresponds to a sequence of mul(c) contractions, each reducing the
number of vertices by one. Colored Contraction Algorithm then contin-
ues recursively on G′, by choosing, uniformly at random, a color c ∈ col(G′)
and contracting any edge e ∈ E such that col(e) = c. As these recursive calls
proceed, the vertices of V ′ should be viewed as supervertices : each supervertex
w corresponds to the subset S(w) ⊆ V that has been “swallowed up” in the
contractions that produced w. The algorithm ends when it reaches a graph G′

with only two super-vertices vA and vB. We output (A = S(vA), B = S(vB)) as
the colored-cut found by the algorithm.

160 G. Blin et al.

Let us now analyze the performance of the Colored Contraction Algo-

rithm – which cannot be derived directly from the one of the original Con-

traction Algorithm. Since the algorithm is making random choices, there
is some probability that it will succeed in finding a minimum colored-cut (and
some probability that it would not). In order to prove that this algorithm is
worthwhile, we will prove that the probability of success is only polynomially
small; inducing that, by running the algorithm a polynomial number of times and
returning the best colored-cut found in any run, one would be able to produce
an optimal colored-cut with high probability.

Theorem 2. The Colored Contraction Algorithm returns an optimal
colored-cut G with probability at least (|V |2k)−1where k = maxc∈Cmul(c)

Proof. Let us assume that the optimal minimum colored-cut (A,B) of G is of
size opt; that is the set of edges having one end in A and the other end in B
(referred afterwards as the cut-set) is colored using opt colors of C. Note that
unlike the classical minimum cut problem, the goal here is to minimize the
number of colors in the cut-set itself. Moreover, let Gopt = G[A ∪ B, {(u, v) :
(u, v) ∈ E and u ∈ A, v ∈ B}] corresponds to the bipartite graph representing
the cut-set of (A,B). In order to compute a lower bound on the probability that
the Colored Contraction Algorithm returns the minimum colored-cut
(A,B), we first notice some important properties.

First, remark that any vertex v ∈ V cannot have a degree less than opt.
Indeed, otherwise, ({v}, V \ {v}) would correspond to a colored-cut inducing
at most opt − 1 colors, contradicting our hypothesis that (A,B) is an optimal
minimum colored-cut of G. Therefore, any vertex of G is of degree at least opt;

inducing the following lower bound on E: |E| ≥ opt|V |
2 . We know moreover that,

since each color of C can be used at most k = maxc∈Cmul(c) times in E, we have
that |E| ≤ k · |C|. This leads to the following inequalities.

|V | · opt ≤ 2 · |E| ≤ 2k · |C| (1)

Let us now evaluate the probability Pr[Fj] that the Colored Contraction

Algorithm fails at the jth step of the recursion (that is when already j − 1
contractions have been done). Considering what could go wrong in the jth step
of the Colored Contraction Algorithm, one can check that the unique
issue would be that the uniformly at random choice of a color c unfortunately
select one color of the set of opt colors used by the cut-set – which will be then
contracted inducing that the algorithm would not be able to find the optimal
colored-cut (A,B) since at least a node of A and a node of B would be both
contracted into the same supervertex. Hence the probability that an edge of
the current graph G′ is both in the optima cut-set and contracted is at most
opt

|C′| , since there are at most opt edges to be chosen among |C′| edges, where
C′ = col(G′). According to Inequality 1, considering that the graph at jth step
is G′ and C′ = col(G′)

Pr[Fj] ≤
opt

|C′| ≤
2k · |C′|
|V ′| · |C′| =

2k

|V ′| (2)

Complexity Insights of the Minimum Duplication Problem 161

The colored-cut (A,B) will actually be returned by the algorithm if no edge
of the cut-set is contracted in any of the at most |V | − 2 iterations. If we write
Sj for the event that an edge of the cut-set has not been contracted until the
jth step, then, according to Inequality 2, Pr[Sj] ≥ 1 − Pr[Fj] = 1 − 2k

|V ′| where

the graph at jth step is G′ = (V ′, E′). For ease, let us consider the sequence of
color choices as being Sc = (c1, c2 . . .) and λj =

∑
i<j and ci∈Sc

mul(ci). On the
whole the probability that the Colored Contraction Algorithm returns
the optimal colored-cut (A,B) is thus at least

Pr[Success] ≥
λ1−1∏
i=0

(1− 2k

|V | − i
) ·

λ3−1∏
i=λ2

(1− 2k

|V | − i
) . . .

λ|Sc|−1∏
i=λ|Sc|−1

(1− 2k

|V | − i
) (3)

≥
λ1−1∏
i=0

(
|V | − i− 2k

|V | − i
) ·

λ3−1∏
i=λ2

(
|V | − i− 2k

|V | − i
) . . .

λ|Sc|−1∏
i=λ|Sc|−1

(
|V | − i− 2k

|V | − i
) (4)

≥
λ|Sc|−1∏

i=0

(
|V | − i− 2k

|V | − i
) = ����|V | − 2k

|V | . . .
|V | − 2k − 2k

����|V | − 2k
. . .
|V | − (λ|Sc| − 1)− 2k

��������|V | − (λ|Sc| − 1)

(5)

≥
∏λ|Sc|−1

i=2k |V | − i− 2k∏2k−1
i=0 |V | − i

≥ 1

|V |2k = (|V |2k)−1 (6)

!"

Then according to Theorem 2, we know that a single run of the Colored

Contraction Algorithm fails to find an optimal colored-cut with probability
at most (1− (|V |2k)−1). One can then amplify the probability of success simply
by repeatedly running the algorithm, with independent random choices, and
taking the best colored-cut found. It is known that the function (1 − n−1)n

converges monotonically from 1
4 up to 1

e as n increases from 2 [12]. Thus, if we
run the algorithm |V |2k times, then the probability that we fail to find an optimal

colored-cut in any run is at most (1 − (|V |2k)−1)|V |2k ≤ 1
e . As usually done, it

is easy to even reduce more the failure probability with further repetitions by
running the algorithm |V |2k ln |V | times which induces a probability of failure
of at most e− ln |V | = 1

|V | . On the overall, the running time required to get a

high probability of success is polynomial in |V |, since each run of the Colored

Contraction Algorithm takes polynomial time, and we run it a polynomial
number of times.

Let us now demonstrate how this result can be used in order to solve the
Minimum Duplication Bipartite problem.

Theorem 3. The Minimum Duplication Bipartite problem is randomized
polynomial time solvable when the gene trees are of bounded depth.

162 G. Blin et al.

Fig. 4. Illustration of the construction of GF and G′ given F = (T1, T2). Considering
the minimum colored-cut {1, 2, 3, 4, 5}, {6, 7, 8, 9} of size 1, the only induced duplication
is represented as a star on T1.

Proof. In the following, for ease, given a binary tree T = (V,E) and a vertex
v ∈ V , let us denote by vL (resp. vR) the left (resp. right) child of v and by
ζv the cluster of v i.e. the set of all leaves belonging to the subtree rooted
in v. Moreover, for ease, ϑT will denote the root of the tree T . Given a gene
tree forest F = {T1 = (V1, E1), T2 = (V2, E2), . . .} built on Λ, considering the
definition of the Minimum Duplication Bipartite problem, one wants to
define a bipartition (Λ1, Λ2) of Λ =

⋃
Ti∈F Vi inducing the minimum number of

pre-duplications. In Ti, a node v of Vi is a duplication with respect to (Λ1, Λ2), if
∃v′ ∈ {vL, vR}, such that (Λ1

⋂
ζv′ �= ∅)∧ (Λ2

⋂
ζv′ �= ∅) is true. In other words,

v is a duplication if for one of its children – say v′ – ζv′ contains two leaves not
belonging to the same part of the bipartition (Λ1, Λ2). Given F and a set of colors
C, we define the following colored hypergraph GF = (V,E) associated to F . Let
V = Λ =

⋃
T∈F ζϑT and there are two hyperedges, for any node vk of the tree Ti,

αi
k = {ζvL

k
: |ζvL

k
| ≥ 2} and βi

k = {ζvR
k
: |ζvR

k
| ≥ 2} colored with color col(αi

k) =

col(βi
k) = cik ∈ C in E. An illustration of such construction is provided in Fig.

4. Then in GF , a colored-cut of size k′ corresponds to a bipartition of the set Λ

Complexity Insights of the Minimum Duplication Problem 163

inducing k′ duplications. Indeed, if the hyperedge αi
k (resp. βi

k) belongs to the
cut-set, then it induces a duplication for the corresponding vertex vk in Ti since
there exist at least two leaves in ζvL

k
(resp. ζvR

k
) belonging to different parts of

the bipartition (Λ1, Λ2).
Thus, if one can find a minimum colored-cut in such hypergraphs, then one

would be able to solve in polynomial time the Minimum Duplication Bipar-

tite problem. Just consider the Colored Contraction Algorithm pre-
sented previously in this section. From any colored hypergraph GF = (V,E), one
may build a colored graphG′ = (V,E′) where any hyperedge e = {vi1, vi2 . . . vik}
colored with color c = col(e) has been replaced by a path vi1, vi2 . . . vik colored
with c in E′ (i.e. E′ = {(vik, vik+1) : vik ∈ e, e ∈ E}). Notice that an edge e ∈ E′

colored with c is cut if and only if an hyperedge colored c of GF is cut. Once
this colored graph has been obtained, one may apply the Colored Contrac-

tion Algorithm which will produce a minimum colored-cut of G′ which also
induces a minimum colored cut in GF . Since this algorithm has a complexity
exponential in the maximum multiplicity of any color of the considered graph,
when the size of each hyperedge is bounded, so does the multiplicity of any color
since the maximal size of an hyperedge corresponds to the maximal depth of the
input gene trees: leading to a randomized polynomial solution for the Minimum

Duplication Bipartite problem. !"

4 Conclusion

In this paper we have investigated the complexity of two variants of the Mini-

mum Duplication problem. We have proved that the Minimum Duplication

problem is APX-hard, even when the input consists of five uniquely leaf-labelled
gene trees. Then, we have shown that the Minimum Duplication Bipartite

problem can be solved efficiently by a randomized algorithm when the input
gene trees have bounded depth.

A natural open problem is the complexity of the Minimum Duplication

Bipartite problem when the gene trees have unbounded depth. Furthermore,
it would be interesting to deepen the analysis on the complexity of the Minimum

Duplication problem, when the input consists of less than five uniquely leaf-
labelled gene trees.

References

1. Alimonti, P., Kann, V.: Some APX-completeness results for cubic graphs. Theo-
retical Comput. Sci. 237(1-2), 123–134 (2000)

2. Bansal, M.S., Burleigh, J.G., Eulenstein, O., Wehe, A.: Heuristics for the Gene-
Duplication Problem: A Θ(n) Speed-Up for the Local Search. In: Speed, T.P.,
Huang, H. (eds.) RECOMB 2007. LNCS (LNBI), vol. 4453, pp. 238–252. Springer,
Heidelberg (2007)

3. Bansal, M.S., Eulenstein, O., Wehe, A.: The Gene-Duplication Problem: Near-
Linear Time Algorithms for NNI-Based Local Searches. IEEE/ACM Trans. Com-
put. Biology Bioinform. 6(2), 221–231 (2009)

164 G. Blin et al.

4. Bansal, M.S., Shamir, R.: A Note on the Fixed Parameter Tractability of the
Gene-Duplication Problem. IEEE/ACM Transactions on Computational Biology
and Bioinformatics (TCBB) 8(3), 848–850 (2011)

5. Byrka, J., Guillemot, S., Jansson, J.: New results on optimizing rooted triplets
consistency. Discrete Appl. Math. 158(11), 1136–1147 (2010)

6. Chang, W.-C., Burleigh, J.G., Fernández-Baca, D.F., Eulenstein, O.: An ILP so-
lution for the gene duplication problem. BMC Bioinformatics (suppl. 1), S14(12)
(2011)

7. Chauve, C., El-Mabrouk, N.: New Perspectives on Gene Family Evolution: Losses
in Reconciliation and a Link with Supertrees. In: Batzoglou, S. (ed.) RECOMB
2009. LNCS, vol. 5541, pp. 46–58. Springer, Heidelberg (2009)

8. Eichler, E.F., Sankoff, D.: Structural dynamics of eukaryotic chromosome evolution.
Science 301(5634), 521–565 (2003)

9. Felsenstein, J.: Phylogenies from molecular sequences: Inference and reliability.
Ann. Review Genet. 22, 521–565 (1988)

10. Fitch, W.M.: Homology a personal view on some of the problems. Trends Genet. 16,
227–231 (2000)

11. Hallett, M.T., Lagergren, J.: New algorithms for the duplication-loss model. In:
RECOMB, pp. 138–146 (2000)

12. Kleinberg, J., Tardos, E.: Algorithm Design. Pearson Education (2006)
13. Ma, B., Li, M., Zhang, L.: From Gene Trees to Species Trees. SIAM J. Com-

put. 30(3), 729–752 (2000)
14. Ouangraoua, A., Swenson, K.M., Chauve, C.: An Approximation Algorithm for

Computing a Parsimonious First Speciation in the Gene Duplication Model. In:
Tannier, E. (ed.) RECOMB-CG 2010. LNCS, vol. 6398, pp. 290–301. Springer,
Heidelberg (2010)

15. Stege, U.: Gene Trees and Species Trees: The Gene-Duplication Problem in Fixed-
Parameter Tractable. In: Dehne, F.K.H.A., Gupta, A., Sack, J.-R., Tamassia, R.
(eds.) WADS 1999. LNCS, vol. 1663, pp. 288–293. Springer, Heidelberg (1999)

16. Welsh, D.J.A., Powell, M.B.: An upper bound for the chromatic number of a graph
and its application to timetabling problems. The Computer Journal 10(1), 85–86
(1967)

A Turing Machine Resisting Isolated

Bursts of Faults

Ilir Çapuni and Peter Gács

Boston University, Department of Computer Science,
111 Cummington str, 02215 Boston, USA

{ilir,gacs}@cs.bu.edu

Abstract. We consider computations of a Turing machine under noise
that causes consecutive violations of the machine’s transition function.
Given a constant upper bound β on the size of bursts of faults, we con-
struct a Turing machine M(β) subject to faults that can simulate any
fault-free machine under the condition that bursts not closer to each
other than V for an appropriate V = O(β).

1 Introduction

Little is known about the behavior and the power of Turing machines when their
operation is subjected to random noise that can change arbitrarily the state and
the content of the cell where the head is positioned. The main open question,
under every noise model, is whether a machine subject to it can perform arbitrary
computations reliably.

Here, we construct a Turing machine that with a constant slowdown can
simulate any other Turing machine even if the simulator is subjected to constant
size bursts of faults separated by a certain minimum number of steps from each
other.

The problem of constructing fault-proof machines from components that can
fail was first considered by von Neumann in [11], who addressed the problem
in the Boolean circuits model. See new developments based on this work for
example in [8,9]. As for uniform models of computation, [10] defines a simple
two-dimensional cellular automaton that keeps a bit of information, even though
each cell can fail with some small probability. Reliably computing automata of
higher dimensions, based on this work, were defined in [6]. Alas, no simple non-
ergodic one-dimensional cellular automata appear to exist. The first, complex,
such cellular automaton was given in [4] and improved upon in [5]. It supports a
hierarchical organization, based on an idea given in [3]. In these constructions,
cells are organized in units that perform fault-tolerant simulation of another
automaton (of the same kind). The latter simulates even more reliably a third
automaton of a similar kind, and so on.

The question of reliable computation with Turing machines (where arbitrarily
large bursts may occur with correspondingly small probability) is raised in [5].
As in the case of one-dimensional cellular automata, no simple solution to this

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 165–176, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

166 I. Çapuni and P. Gács

problem appears to exist. Our machine is intended as a building block towards
the eventual construction of such a hierarchical machine. This follows the pattern
of the proof in [4], where each member of the hierarchy of simulations is a similar
building block, coping with distant bursts. To the best of our knowledge, this is
the first construction of a reliable sequential machine.

In [1], a characterization is given, in terms of the arithmetical hierarchy of
Turing machines where data on the storage tapes are exposed to stochastic noise
that tends to zero.
Main ideas. We rely on some methods used earlier for cellular automata.
Redundant storage will counteract losses of information (about the simulated
machine). Repeated execution along with voting over stored candidate results
limits the effect of faults during simulation. This extra administration is orga-
nized using local addresses and sweep numbers (structure). Faults can destroy
the structure locally, too. A special local recovery procedure is devoted to restor-
ing structure (without attempting to restore “information”). The design and
proof of local recovery is the technically most difficult part of the work.

Our contribution uses one of the standard definitions of a Turing machine,
with the exception that our machines have no halting state. A Turing machine is
a tuple (Q, Σ, δ, qstart, F), where Q is a finite set of states, Σ is a finite alphabet
used in cells of the tape, δ : Σ × Q → Σ × Q × {−1, 0,+1} is the transition
function, qstart is called the starting state, and F is the set of final states (that
has the property that whenever M enters a state in F , it can only continue from
there to another state in F , without changing the tape). The tape alphabet Σ
contains at least the distinguished symbols , 0, 1 where is called the blank
symbol.

A configuration is a tuple (q, h, x), where q ∈ Q, h ∈ Z and x ∈ ΣZ. Here,
x[p] is the content of the tape cell at position p. The tape is blank at all but
finitely many positions. The work of the machine can be described as a sequence
of configurations C0, C1, C2, . . . , where Ct is the configuration at time t. Let
M(i, t) denote the configuration at time t, when started from the starting state
with an input string i written on the tape starting from position 0 where the
head is initially. Thus, the symbol at tape position p at time t can be written as
M(i, t).tape[p].

The transition function δ tells us how to compute the next configuration
from the present one. When the machine is in a state q, at tape position h, and
observes tape cell with content a, then denoting (a′, q′, j) = δ(a, q), it will change
the state to q′, change the tape cell content to a′ and move to tape position h+j,
j ∈ {±1, 0}. For q ∈ F we have a′ = a, q′ ∈ F .

We say that a fault occurs at time t if the output (a′, q′, j) of the transition
function at this time is replaced with some other value (which is then used to
compute the next configuration).

Definition 1 (Trajectory). Let ConfigsM denote the set of all possible
configurations of a Turing machine M . Consider a sequence η = (η(0), η(1), . . .)
of configurations of M = (Q, Σ, δ) with η(t) = (q(t), h(t), x(t)). This sequence

A Turing Machine Resisting Isolated Bursts of Faults 167

will be called a history of M if q(0) = qstart, further x(t+ 1)[n] = x(t)[n] for all
n �= h(t), and h(t+1)−h(t) ∈ {−1, 0, 1}. A history η with η(t) = (q(t), h(t), x(t))
of M is called a trajectory of M if for all t we have

(x(t+ 1)[h(t)], q(t+ 1), h(t+ 1)− h(t)) = δ(x(t), q(t)). (1)

If x ∈ Σ∗ is a string of tape symbols and ξ ∈ ΣZ is the tape configuration
obtained by surrounding x = x(0) · · ·x(n) by blanks, then η with starting tape
configuration ξ is a trajectory of M if η(t) = M(x, t) for all t.

We say that a history has a fault at time t if (1) is violated at time t. A burst
of faults of length β is a sequence of at most β consecutive faults.

To define simulation of a noise-free machine M2 by a noisy machine M1, we
need to specify the correspondence between configurations of these two machines.
After a burst, the state of the machine—as well as the content of cells where
the head was during the burst, are arbitrary. To proceed with the simulation,
the simulating machine must recover any lost information. Redundant storage
will help in this. In Sec. 2, we will specify how one step of any machine M2 is
simulated by a bounded number of steps of machine M1 that will be constructed.

We formalize redundant storage with the help of a code. Let Σ1, Σ2 be two
finite alphabets. A block code is given by a positive integer Q and a pair of
functions ϕ∗ : Σ2 → ΣQ

1 and ϕ∗ : ΣQ
1 → Σ2 with the property ϕ∗(ϕ∗(x)) = x. A

tape configuration code is a pair of functions ϕ∗ : ΣZ
2 → ΣZ

1 and ϕ∗ : ΣZ
1 → ΣZ

2

that encodes infinite strings of Σ2 into infinite strings of Σ1.
In Sec. 3, we will define the relationship that fields of the cell and fields of the

head must be in, to help the machine notice that faults have occurred. There we
will also present how error-recovery is carried out.

To avoid decoding in the main result, for simplicity we will consider compu-
tations whose result is a single symbol in cell 0.

Theorem 1 (Main). For a given Turing machine M2 and an integer β the
following items can be constructed:

1. Integers V,Q,C depending linearly on β;
2. A block code (ϕ∗, ϕ

∗) of blocksize Q;
3. A machine M1 whose number of states and alphabet size depend polynomially

on those of M2 and on β;

such that the following holds.
Suppose that on input x, the fault-free machine M2 enters a final state at time

T . Assume that machine M1 works on input ϕ∗(x) in such a way that no bursts
of faults occur within V steps of each other. Let t be any time ≥ CT such that
no fault occurred in the last Q steps before and including t, then

f(M1(ϕ∗(x), t).tape[0]) = M2(x, T).tape[0], (2)

for some function f .

For a version of the paper containing the full proof of this theorem, see [2].

168 I. Çapuni and P. Gács

2 The Structure of the State, Cells, and Simulation

Each state of M1 will be a tuple, q = (q1, q2, . . . , qk), where the individual
elements of the tuple will be called fields, and will have symbolic names.

We will call the direction (−1 for left, 0 for none, and +1 for right) of the
simulated machine M2 the drift.

The tape of M1 is split into blocks of Q consecutive cells called colonies. One
colony of the tape of the simulating machine represents one cell of the simulated
machine. The colony that corresponds to the active cell of the simulated machine
(that is the cell that the simulated machine is scanning) is called the base colony.
Once the drift is known the union of the base colony with the neighbor colony
in the direction of the drift is called the extended base colony.

The head will make some global sweeping movements over the base or ex-
tended base colony. We will use the term sweep direction of the machine when
referring to the direction of the simulating machine in this sweeping movement.

Each cell of the tape of M1 consists of several fields. Some of these have names
identical to fields of the state and will be distinguished by a prefix c. (like c.Info).
The array of values of the same field of the cells will be called a track. The basic
fields of the state and of cells are listed below. We emphasize that each field of a
cell has also a possible value ∅ corresponding to the case when the state is blank.

1. Addr ranges from −Q to 2Q − 1. The values −Q to −1 are taken during a
left drift, while the values Q to 2Q− 1 during a right drift.
Drift stores the direction of the simulated machine M2. It may have values
∅,−1, 0, 1. The value ∅ corresponds to the case when the new Drift is still not
computed, and will also be the default value (for example in empty cells).
Field Sw numbers the sweeps through the colony. The first right sweep has
number 1, and this way each right sweep is odd, each left sweep is even, thus
the sweep direction of the head is completely determined by the parity of
Sw when the head is not on the “turning” points. In the turning points, Sw
is incremented. Field c.Sw holds the number of the most recent sweep. We
define Core = (Addr, Sw,Drift) and c.Core = (c.Addr, c.Sw, c.Drift), since
this group of fields is crucial in maintaining the simulation structure.

2. The Info and State tracks represent the tape symbols and the state of the
simulated machine M2.

3. The sweep-through is interrupted by switchbacks called zigging. While in the
normal mode (see later), the process depends on a fixed parameter Z = 22β,
and is controlled by the fields ZigDepth and ZigDir. Assume that Q is a
multiple of Z − 4β. Every Z − 4β forward steps are accompanied by Z steps
backward and forward.

4. The track c.Rec will help with restoring structure after a burst. When its
subfield c.Rec.Core is nonempty, the cell is called marked.

One step of machine M2 is simulated by many steps of M1 that will con-
sist one unit called work period. The Mode field of the state takes values in

A Turing Machine Resisting Isolated Bursts of Faults 169

{Normal,Recovering}. The default is normal mode. On noticing any disorder,
the state will switch to recovery mode, with the goal of eventually returning to
normal mode.

Let a be the tape configuration of M2 at time 0. We use a very simple redun-
dant code: the repetition code. The tape configuration a′ = ϕ∗(a) of M1 at time 0
is defined such that for each head position h ofM2 and for every j ∈ {0, . . . , Q−1}
a′[h ·Q+ j].Info = a[h] and a′[j].State = q0. The corresponding block decoding
function ϕ∗ is

ϕ∗(a[0].f · · · a[Q− 1].f) = maj(a[0].f, . . . , a[Q− 1].f), (3)

where f is the triple of fields (Info, State,Drift) and maj is the majority function
defined as follows.

Let x = (x1, . . . , xn) be a sequence of symbols from a finite alphabet Σ =
{a1, a2, . . . , am}. For each j = 1, 2, . . . ,m, let kj be the number of occurrences
of aj in x, k1 + k2 + · · · + km = n. Then, maj(x1, x2, . . . , xn) = ak, where
k = argmaxj kj . To compute the majority of a set of fields in an interval of
cells—interval majority— we use a version of an algorithm from [7] that uses
only one pass over the interval, and uses at most 3 extra fields of the state. In
all cases of interest for us, this value will exist: if it does not, interval majority is
defined arbitrarily. We will also compute the majority of several fields in a single
cell. We will call this operation the field majority.

The head is initially located at the first cell of the base colony. We assume
that this colony and its two neighbor colonies are filled with addresses from
0, . . . , Q − 1. In cells of the base colony and its left neighbor colony, the c.Sw
and c.Drift are set to Last(+1) and 1 respectively, where Last(δ) denotes the
last sweep of the base colony in a working period, and δ ∈ {±1} is the drift of
the majority of cells in the colony . In the right neighbor colony, these values are
Last(−1) and −1 respectively. In all other cells, these values are empty. Machine
M1 starts in normal mode, with Drift = 1, Sw = 1, and Addr = 0. All other
auxiliary fields have also their initial (or empty) values (see Fig. 1).

0 0 0 0 0 1 1 1 1
q q q q

0 1 2 3 4 1 2 3 4
_ _ _ _ _

1 1 1 1 1

0 1 2 3 4
_ _ _ _ _

Info
State
Add

1
q
0

Base colony

*

1M

2M

0 0 1 0 …… 1

q

0 1 2 3 4 1 2 3 4
L L L L L L L L L

1 1 1 11 1 1 1 1

0 1 2 3 4
g g g g g
1 1 1 1 1

Addr
Sweep
Drift
Other fields

0
L
1

Mode = Normal

… …

q
Head

Mode Normal
Addr = 0
Sweep = 1
Other fields

Fig. 1. The initial configuration of machine M2 is encoded into the initial configuration
of M1, where L = Last(1) and g = Last(−1)

170 I. Çapuni and P. Gács

We introduce c.Hold[1], c.Hold[2], and c.Hold[3] fields of a cell where candi-
dates of the next values of Info, State,Drift will be stored.

2.1 Computation Phase

The aim of this phase is to obtain the new values for the c.Info, c.State, and
c.Drift. It consists of the following two parts, performed consecutively:

1. For i = 1, . . . , 3 do the following:
During the right sweeps, take the colony majority of c.Info and
c.State and store these values in a and q respectively. Then com-
pute the triple δM2(a, q), and spread it into the c.Hold[i] track of the
base colony on the left sweeps.

2. For each cell of the base colony, compute the field majority of
(c.Info, c.State, c.Drift) from c.Hold[i], i = 1, . . . , 3.

2.2 Spreading Phase

The aim of this phase, present only if Drift �= 0, is to spread the new State of
M2 into the neighbor colony in the direction of δ = Drift and to move there.

The c.Drift and c.Addr of the neighbor colony are changed during this sweep.
As in the computing phase, while sweeping the base colony, we compute the

majority of c.State and populate the c.Hold[i] tracks of the neighbor colony. After
three runs i of this majority computation, in the next two sweeps and back, at
every cell of the neighbor colony we set c.State = maj(c.Hold[1, . . . , 3].State).
Finally, if Drift = 1, then move right to cell Q (else stay on the first cell of the
base colony).

Now, a new work period begins.

3 Coping with Faults

A burst of faults can change the state to an arbitrary one, and change an interval
of cells of size β arbitrarily. We will refer to it by the term “island of bad cells”.

Faults cause two kinds of change. One is that they change the information
about the represented machine M2. This problem will be corrected with the help
of redundancy (encoding of the information and repetition of the computation).
The second kind of change affects the very structure of the simulation. These
changes will be detected and corrected locally, by our recovery rules. Certain
faults at certain moments of the simulation, by by-passing the coordination
check, can leave an island on the tape that could be erased only if the head
visits it again.

Let us specify the kind of structural integrity we expect a configuration to
have.

Definition 2 (Outer cells). For δ ∈ {−1, 1}, if a cell is empty or has 0 ≤
c.Addr < Q, c.Drift = δ, c.Sw = Last(δ) then it will be called a right outer cell
if δ = −1. It is a left outer cell if δ = 1.

A Turing Machine Resisting Isolated Bursts of Faults 171

Healthy Configuration, Workspace. A configuration ξ is healthy if the mode
is normal, further the following holds. Let d denote the direction of the sweep. We
define the position f = front(ξ), called the front, to be the farthest position to
which the head has advanced before starting a new backwards zig. Let δ = Drift.
We require:

1. The non-blank cells of the tape form a single segment, subdivided into
colonies, starting from the origin defined by counting back from Addr. The
leftmost colony and rightmost colony may be only partially filled. The colony
starting at the origin is the base colony.
Let us call SpSt the sweep number (an absolute constant) in which the
spreading phase starts. The sweep of the first visit to the neighbor colony
is called the spreading sweep, with sweep number SpSw(δ) = SpSt + 1 −
max(0, δ). The extended base colony is either the base colony or, if Sw ≥ SpSt
and δ �= 0, then the base colony is extended by an adjacent colony on the
left or right depending on δ.

2. The front front(ξ) is in the extended base colony.
3. The drift of nonempty outer cells points towards the base colony.The non-outer

cells form a single interval called workspace, with the following properties:

(a) For Sw < SpSw(δ), it is equal to the base colony.
(b) In case of Sw = SpSw(δ), the workspace is the smallest interval including

the base colony and the cell adjacent to front(ξ) on the side of the base
colony.

(c) If SpSw(δ) < Sw < Last(δ), then it is equal to the extended base colony.
(d) When Sw = Last(δ), it is the smallest interval including the future

base colony and front(ξ). The field c.Addr varies continuously over the
workspace in all these cases, except possibly Sw = 1.

4. For 1 ≤ c.Sw ≤ Last(δ), we have c.Sw(x) = Sw in all cells x behind front(ξ)
in the workspace. For 1 < c.Sw, we have c.Sw(x) = Sw − 1 in all cells x
ahead of front(ξ) (inclusive) in the workspace.

5. Consider addresses c.Addr in the workspace. Except for Sw = 1, they increase
continuously. In the first sweep, the address track c.Addr is either [−Q, 0) or
[Q, 2Q), but reduced modulo Q on the segment [0, front(ξ)).

6. If Sw ≥ SpSt or Sw = 1 then c.Drift is constant on the workspace.
7. If Sw = 1 then c.Info and c.State are constant in each colony.
8. c.Rec.Core = 0 throughout, that is all cells are unmarked.

Definition 3 (Coordination). The state is called coordinated with the content
of the observed cell if it is possible for them to be in a healthy configuration.

If at any step of the normal mode, the state fails to be coordinated with the cell
it is scanning, a rule Alarm , launching recovery, is called.

A local configuration on a (finite or infinite) interval I is given by values
assigned to the cells of I, along with the following information: whether the
head is to the left of, to the right of or inside I, and if it is inside, on which cell,
and what is the state. It is easy to see how a local configuration gives rise to a
subconfiguration on a subinterval I ′.

172 I. Çapuni and P. Gács

Let ξ be a configuration and ζ(I) a local configuration that contains the head
if and only if ξ(I) contains the head. Then the configuration ξ|ζ(I) is obtained
by replacing ξ with ζ over the interval I, further if ξ contains the head then also
replacing ξ.pos with ζ.pos and ξ.state with ζ.state.

Annotated Configuration. Let E = 42β. An annotated configuration is a
quadruple A = (ξ, χ, I,S, D), with the following meaning. ξ is a configuration,
χ is a healthy configuration, I is a set of intervals of cells called islands, further
S ⊃ I is a set of intervals of cells called stains, andD is an interval containing the
head called the distress area. The distress area contains any island containing
the head. (In islands, the structure may have been damaged, while in stains,
only the Info and State tracks could be. The distress area is where structure is
currently being restored.)

Islands and stains are of size ≤ β. The distress area has size ≤ 3E. We can
obtain χ from ξ by changing

1. the c.Core and c.Rec.Core tracks in the islands,
2. the c.Info and c.State track in the stains,
3. the state, the c.Rec.Core track in D, and the head position inside D.

We say that an interval W is the workspace of the annotated configuration A if
it is the workspace of χ. The following additional properties are required:

1. There is at most one island intersecting the workspace. There are at most
2 islands in each colony that do not intersect the workspace. If there is
more than one, then one is within distance Z +E from the colony boundary
towards the base colony.

2. In the base colony, either all stains but one are within a distance E to the left
colony boundary (reaching to a distance ≤ E + β), or all but one are within
a distance E to the right colony boundary. In all other colonies, all stains
but one are within distance E of the boundary towards the base colony.

3. If D is empty then the mode is normal.

We say that a cell is free in an annotated configuration when it is not in any
island or D. The head is free when D is empty.

A local annotated configuration on some interval R is obtained from an an-
notated configuration A = (ξ, χ, I,S, D) by taking the subconfigurations ξ(R),
χ(R), further the intersections of the islands, stains and distress area of A with
R.

Finally, let us define the kind of configurations that M1 will produce.

Definition 4 (Admissible configuration). A configuration ξ is admissible if
there is an annotated configuration (ξ, χ, I,S, D). In this case, we say that χ is
a healthy configuration satisfying ξ. Any change to an admissible configuration
is called admissible, if the resulting configuration is also admissible.

The following key lemma shows that an admissible configuration can be locally
corrected.

A Turing Machine Resisting Isolated Bursts of Faults 173

Lemma 1 (Correction). Let Q be a multiple of E. Consider an annotated
configuration A = (ξ, χ, I,S, D), and an interval R = [a, b] of length 2E, whose
ends are divisible by E, and Rj

i = [a+ 0.1iE, b− 0.1jE) for i, j = 0, 2, 4.
Assume that either in the left half or the right half of R, at least E−3β cells of

ξ(R) are nonempty. Then it is possible to compute from ξ.c.Core(R) an interval
R̂ ∈ {R,R4

0, R
0
4}, a local configuration ζ = ζ(R̂) with no empty cells, such that

χ|ζ(R̂) is healthy, and the following holds:

1. If χ.pos ∈ R2
2 then R̂ = R, ζ.pos ∈ R, and ζ.ZigDepth = 0.

If χ.pos < a+ 0.2E then R̂ = R0
4, and ζ.pos is to the left of R̂. Similarly, if

χ.pos > b− 0.2E then then R̂ = R4
0, and ζ.pos is to the right of R̂.

2. The states of nonempty cells of ξ can differ from the corresponding cells of
ζ over R̂ only in the islands, or in the at most 3β positions between ζ.front
and χ.front in case of R̂ = R.

3. The computation of ζ can be carried out by the machine M1 (relying only on
ξ and R), using a constant number of passes over R, and a constant number
of counters of size ≤ Q.

3.1 The Recovery Procedure

The recovery procedure opens an interval R = [a, b] to which it applies the
correction algorithm of the proof of the Correction Lemma 1.

The recovery procedure is controlled by Rec.Sw and Rec.Addr and their cor-
responding fields in a cell. Similarly as before, we define c.Rec.Core. With some
abuse of notation, we set c.Rec.Core = 1 to mean that the cell is marked for
recovery, but no useful values have been assigned to its Core fields. Otherwise,
c.Rec.Core = 0.

We require that Q is a multiple of E. Let us call an interval aligned if its
endpoints are divisible by E.

The process makes use of a number of rules: Alarm , Mark , Plan(i), Mop(i) for
i = 1, 2. Whenever we say that a rule “checks” something, it is understood that
if the check fails, alarm is called.

1. The rule Alarm sets Mode← Recovering, Rec.Sw← 1, and Rec.Addr← 0.
2. Rule Mark locates and marks a recovery area R = z1 + [−E,E), with

c.Rec.Core← 1 as follows.

(a) It starts from a cell x (where the alarm was called), and moves left to
x − 7β. It remembers the majority of c.Addr(y) − (y − x) mod Q for
y ∈ x + [−7β, 0) as a candidate modulo Q address λ−1 for x. It also
computes a majority sweep value σ−1 if a majority exists. Now, the
machine turns right and while passing over [x, x + 7β) it computes λ1

and σ1 similarly. Admissibility guarantees that these values exist and are
enough to determine aligned interval R with the following properties:
i. the point x is in R, at least 0.2E away from its boundary;
ii. with respect to sweep direction, the marked area reaches less than

1.2E backward from the front χ.front.

174 I. Çapuni and P. Gács

From this moment z1 becomes the center of the recovery and
c.Rec.Addr(z1) = 0.

(b) The following rule is going to run simultaneously through all the rest of
the recovery procedure.
i. Update the field Rec.Addr in every move, increasing or decreasing it

as we move left or right.
ii. Check the alignedness of the interval R every time you pass over an

interval of size 7β containing nonempty cells: for all but 3β of the
cells Rec.Addr ≡ c.Addr (mod E) must hold. If it does not, go back
the last 7β steps and call alarm.

(c) In order to mark R, the head moves in a zigging way, similarly to what is
done in the main simulation, except that we do not go outside the interval
R. Zigging makes sure not to mark too many cells in one sweep or without
checking that they are marked consistently with what was marked be-
fore. The process is controlled using the fields Rec.ZigDepth,Rec.ZigDir,
and uses the constant parameter Rec.Z = 11β. It first marks cells in
R moving left, then moving right. Every 7β steps forward are accom-
panied by Rec.Z steps backwards and forward. While zigging, we check
c.Rec.Addr = Rec.Addr in the scanned cells. In the zig back the first
Rec.Z cells are expected to be marked already: if they are not, alarm is
called.
During the third sweep, the head sweeps interval [z1−E, x+7β). It then
turns and expects to see marked cells over this area. Then, it continues
and marks interval [x+ 7β, z1 + E).

3. Rule Calc carries out, over R, the algorithm of the Correction Lemma 1. If
none of the cases apply in the algorithm described in the proof, the rule calls
alarm. When R̂ = R4

0 (or R̂ = R0
4), we put the head to b (or a respectively).

In both cases we set ZigDepth = 0.
4. Stages Planning1 and Planning2 follow each other. Stage Planningi checks

that all cells of R are marked and then calls Calc . In case i = 1, it writes the
resulting ζ.c.Core values on the c.Rec.Core track of R̂, and c.Rec.Core ← 1
into R \ R̂. In case i = 2, it just checks whether the result is equal to the
existing values of c.Rec.Core.

5. Stages Mopping1 and Mopping2 also follow each other. Rule Mop(1) un-
marks the cells over R, setting c.Core ← c.Rec.Core at the same time, if
c.Rec.Core �∈ {0, 1}.
If R̂ = R4

0 then Rule Mop(1) moves from the left end of R to the right
end while unmarking, and stays there. If it is R̂ = R0

4 then it moves from
the right end to the left end while unmarking. Otherwise, it first moves
backwards from the sweep direction from ζ to the end of R. Then it erases
the marks up to position ζ.front. Then Rule Mop(2) follows, which is similar,
but works from the other direction, ending up at ζ.front with no marked
cells. Zigging is used during this stage just as during the marking stage.

Remark 1 (On the choice of R). To explain the need for choosing R in this
way (aligned modulo E), assume that a burst of faults creates a stain in one of

A Turing Machine Resisting Isolated Bursts of Faults 175

the neighbor colonies. If the position of R would depend “continuously” on the
position of the cell where alarm is called, then using faults occurring at times
distant from each other (and assuming that the simulation never stepped in the
neighbor colony), stains can spread slowly without limit, and ruin the majority
of Info and State fields in the neighbor colony.

Computation shows that the recovery procedure needs at most KR = 3237β
steps to complete.

4 A Road-Map for the Proof of the Main Theorem

A configuration when a fault occurs is a noisy configuration. A computation
history is a (β, V)-noisy trajectory, if faults in it are confined to bursts of size
≤ β separated by time intervals of size ≥ V . A pair of mappings (ϕ∗, Φ

∗) is
a (β, V)-tolerant simulation of Turing machine M2 by Turing machine M1 if
for every string x ∈ Σ∗

2 , every (β, V)-noisy trajectory η of M1 whose initial
configuration is ϕ∗(x), the history Φ∗(η) is a trajectory of M2.

If the head is in a free cell, in normal mode, then the time (and the con-
figuration) will be called distress-free. A time that is not distress-free and was
preceded by a distress-free time will be called a distress event. Consider a time
interval [t, t+u) starting with a distress event and ending with the head becom-
ing free again. It is called a relief event of duration u if the only possible island
that remains from the distress area is due to some burst that occurred at a time
intersecting [t, t + u). The extent of a relief event is the maximum size interval
covering the distress area during the distress.

An annotated history is a sequence of annotated configurations if its sequence
of underlying configurations is a (β, V)-trajectory, and it satisfies the following
requirements.

(a) Islands are only created by noise. Stains and the distress area start out as
islands.

(b) Each distress event is followed immediately by a relief event, of duration
≤ 3KR and extent ≤ 3E.

(c) If a distress-free configuration has Sw ≥ SpSt, then the base colony contains
no stains from earlier work periods.

The following lemma implies the main theorem.

Lemma 2 (Recovery and simulation). Assume that machine M1 starts
working on a tape configuration of the form ϕ∗(x).

Then, every (β, V)-noisy trajectory of M1 can be annotated.
Further, via some simulation function Φ∗ the movement of the base colony

corresponds to the head movement of the simulated machine M2 (scaled up by a
factor of Q). The array of c.State values in the free cells of the base colony in
any configuration with Sw < Last(Drift) decodes into the state of M2, and the
array of c.Info values at the same times decodes into the current tape cell symbol
of M2.

176 I. Çapuni and P. Gács

To prove Lemma 2 we need to show that we can extend the annotation of the
history within a constant number of steps. The idea of the proof of relief from
damage is the following. If alarm is called and the recovery process is allowed
to complete, then it carries out the needed correction, as guaranteed by the
Correction Lemma 1. Most complications are due to the fact that the state after
a burst is arbitrary. When the mode is normal then zigging guarantees that the
effect is limited to near the island where the burst happened: for example, the
direction of swing cannot be changed in the middle of the workspace, since then
zigging would notice this and call alarm. However, the mode after the burst can
be the recovery mode, with arbitrary values for all fields. Moreover, a new burst
may occur after an alarm, at an arbitrary stage of the recovery. The “checks
and balances” in the recovery mode make sure that even in this case, relief of an
extent ≤ 3E occurs within at most two runs of the recovery procedure. (This is
proved, alas, by painstaking case distinctions.)

References

1. Asarin, E., Collins, P.: Noisy Turing Machines. In: Caires, L., Italiano, G.F., Mon-
teiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp.
1031–1042. Springer, Heidelberg (2005)

2. Çapuni, I., Gács, P.: A Turing Machine Resisting Isolated Bursts Of Faults,
http://cs-people.bu.edu/ilir/ftTM/thePaper.pdf

3. Kurdyumov, G.L.: An Example of a Nonergodic One-Dimensional Homogoenous
Random Medium With Positive Transition Probabilities. Soviet Math. Dokl. 19(1)
(1978)

4. Gács, P.: Reliable Computation with Cellular Automata. Journal of Computer
System Science 32(1), 15–78 (1986)

5. Gács, P.: Reliable Cellular Automata with Self-organization. In: Proc. of the 37th
IEEE FOCS Symposium, pp. 90–99 (1997)

6. Gács, P., Reif, J.: A simple three-dimensional real-time reliable cellular array. Jour-
nal of Computer and System Sciences 36(2), 125–147 (1988)

7. Misra, J., Gries, D.: Finding Repeated Elements. Science of Computer Program-
ming 2, 143–152 (1982)

8. Pippenger, N.: On networks of noisy gates. In: Proc. of the 26th IEEE FOCS
Symposium, pp. 30–38 (1985)

9. Spielman, D.: Highly Fault-tolerant Parallel Computation. In: Proc. of the 37th
IEEE FOCS Symposium, pp. 154–163 (1996)

10. Toom, A.: Stable and Attractive Trajectories in Multicomponent Systems. In: Do-
brushin, R.L. (ed.) Multicomponent Systems. Advances in Probability, vol. 6, pp.
549–575. Dekker, New York (1980) (translation from Russian)

11. von Neumann, J.: Probabilistic Logics And the Synthesis of Reliable Organisms
From Unreliable Components. In: Shannon, C., McCarthy (eds.) Automata Stud-
ies. Princeton University Press, Princeton (1956)

http://cs-people.bu.edu/ilir/ftTM/thePaper.pdf

Properties of SLUR Formulae

Ondřej Čepek1,2, Petr Kučera1,�, and Václav Vlček1,��

1 Department of Theoretical Computer Science and Mathematical Logic,
Charles University, Malostranské nám. 25, 118 00 Praha 1, Czech Republic

Ondrej.Cepek@mff.cuni.cz,

kucerap@ktiml.ms.mff.cuni.cz,

vlcek@ktiml.mff.cuni.cz
2 Institute of Finance and Administration (VŠFS),
Estonská 500, 100 00 Praha 10, Czech Republic

Abstract. Single look-ahead unit resolution (SLUR) algorithm is a non-
deterministic polynomial time algorithm which for a given input formula
in a conjunctive normal form (CNF) either outputs its satisfying as-
signment or gives up. A CNF formula belongs to the SLUR class if no
sequence of nondeterministic choices causes the SLUR algorithm to give
up on it. The SLUR class is reasonably large. It is known to properly
contain the well studied classes of Horn CNFs, renamable Horn CNFs,
extended Horn CNFs, and CC-balanced CNFs. In this paper we show
that the SLUR class is considerably larger than the above mentioned
classes of CNFs by proving that every Boolean function has at least
one CNF representation which belongs to the SLUR class. On the other
hand, we show, that given a CNF it is coNP-complete to decide whether
it belongs to the SLUR class or not. Finally, we define a non-collapsing
hierarchy of CNF classes SLUR(i) in such a way that for every fixed i
there is a polynomial time satisfiability algorithm for the class SLUR(i),
and that every CNF on n variables belongs to SLUR(i) for some i ≤ n.

Keywords: Boolean functions, CNF satisfiability, unit resolution.

1 Introduction

The satisfiability problem (SAT) is to decide whether a given formula ϕ in CNF
has a satisfying assignment, i.e. whether for some assignment t of values 0 (false)
or 1 (true) to variables we have that ϕ(t) evaluates to 1 (true). This problem
was the first one shown to be NP-complete [6,10]. Thus, unless P=NP, no poly-
nomial time algorithm can solve this problem. There are, however, many classes
of formulae for which polynomial SAT algorithms are known. These classes of
formulae include Horn formulae [8,12,14], renamable Horn formulae [13,1], ex-
tended Horn formulae [4], and CC-balanced formulae [5]. These four classes share

� The first two authors gratefully acknowledge the support by the Czech Science Foun-
dation (grant No. P202/10/1188).

�� The third author gratefully acknowledges the support by the Charles University
Grant Agency (grant No. 266111).

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 177–189, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

178 O. Čepek, P. Kučera, and V. Vlček

an interesting property: the satisfiability problem for formulae from these classes
can be solved by unit resolution, namely by the single look-ahead unit resolution
(SLUR) algorithm [15,9].

The SLUR algorithm works as follows. In every step it nondeterministically
chooses a variable and its value and performs unit propagation fixing the val-
ues of the variables in unit clauses. If the unit propagation does not yield
a contradiction, the algorithm continues with the new formula in the same
way. If the contradiction (the empty clause) is derived, the algorithm tries
the other value for the chosen variable and continues with the new formula.
If both values lead to a contradiction using unit resolutions, the SLUR algo-
rithm gives up. A nice property of Horn, renamable Horn, extended Horn, and
CC-balanced formulae is that the SLUR algorithm never gives up on them [15].
Therefore, it is natural to define a generalization of these four classes called the
SLUR class as the class of those formulae on which the SLUR algorithm never
gives up.

It is quite common that classes of CNFs are used to define classes of Boolean
functions. For instance, a Boolean function f is called Horn, if there exists at
least one Horn CNF representing f . Similar definitions work in the renamable
Horn, extended Horn, CC-balanced, and many other cases, each time defining a
subclass of Boolean functions. The first question we answer in this paper is what
happens if the same definition is used for the SLUR class. The answer may be
somewhat surprising. We prove that every Boolean function can be represented
by a CNF which belongs to the SLUR class. In particular we show, that given
a Boolean function, its canonical CNF, i.e. the CNF consisting of all prime
implicates of the function, is always in the SLUR class. It means, that if we
define the class of SLUR functions as those functions which admit at least one
representation by a CNF in the SLUR class, then such a class consists of all
Boolean functions.

It follows, that being a SLUR CNF is a property of the CNF, not a property of
the function it represents. Every function has some CNF representations which
belong to the SLUR class and some that do not. The probability that a randomly
generated CNF belongs to the SLUR class was studied in [9] where it was proved
that a random CNF is not SLUR with high probability. Therefore, it is very
natural to ask, whether we can recognize in a polynomial time, if a given CNF
belongs to the SLUR class or not. The second result of this paper shows that it
is coNP-hard to decide this question, which in turn implies, that no polynomial
time algorithm can make such a decision unles P = NP. This solves a problem
which was unresolved so far [9].

The third part of this paper deals with a generalization of the SLUR class.
The SLUR algorithm is modified in such a way that at every step it nondeter-
ministically chooses not one but i varables and their values. We show that such
a hierarchy of classes does not collapse and that each individual class in the
hierarchy preserves the main properties of the original SLUR class.

A preliminary version of this paper appeared as [3] (which is a non-archived
publication with no ISBN or ISSN distributed in hard copy only to seminar

Properties of SLUR Formulae 179

participants). Because of the page limit we had to omit proofs of several technical
lemmas in the current version. An interested reader may contact the authors to
obtain the full version of all proofs.

This paper is organized as follows. In Section 2 we introduce necessary def-
initions and basic known results. In Section 3 we show that a canonical CNF
of a Boolean function always belongs to the SLUR class. In Section 4 we show
the coNP-completeness of the SLUR membership problem. Finally we close the
paper with the hierarchy results in Section 5.

2 Definitions and Results

A Boolean function f on n propositional variables x1, . . . , xn is a mapping
{0, 1}n → {0, 1}. The propositional variables x1, . . . , xn and their negations
x1, . . . , xn are called literals (positive and negative literals, respectively). An dis-
junction of literals

C =
∨
i∈I

xi ∨
∨
j∈J

xj (1)

is called a clause, if every propositional variable appears in it at most once,
i.e. if I ∩ J = ∅. The degree of a clause C is the number of literals in C. For two
Boolean functions f and g we write f ≤ g if

∀(x1, . . . , xn) ∈ {0, 1}n : f(x1, . . . , xn) = 1 =⇒ g(x1, . . . , xn) = 1 (2)

Since each clause is itself a Boolean function, formula (2) also defines the
meaning of inequalities C1 ≤ C2, C1 ≤ f , and f ≤ C1, where C1, C2 are clauses
and f is a Boolean function.

We say that a clause C1 subsumes another clause C2 if C1 ≤ C2 (e.g. the
clause x ∨ z subsumes the clause x ∨ y ∨ z). A clause C is called an implicate
of a function f if f ≤ C. An implicate C is called prime if there is no distinct
implicate C

′
subsuming C, or in other words, an implicate of a function is prime

if dropping any literal from it produces a clause which is not an implicate of that
function.

It is a well-known fact that every Boolean function f can be represented by a
conjunction of clauses (see e.g. [11]). Such an expression is called a conjunctive
normal form (or CNF) of the Boolean function f . It should be noted that a given
Boolean function may have many CNF representations. If two distinct CNFs,
say φ1 and φ2, represent the same function, we say that they are equivalent, and
denote this fact by φ1 ≡ φ2. A CNF φ representing a function f is called prime
if each clause of φ is a prime implicate of function f . The unique CNF consisting
of all prime implicates of function f is called the canonical CNF of f . A CNF
φ representing a function f is called irredundant if dropping any clause from φ
produces a CNF that does not represent f . We shall often treat a CNF as a set
of its clauses.

180 O. Čepek, P. Kučera, and V. Vlček

For a Boolean function f on n variables, a variable x, and a value e ∈ {0, 1}
we denote by f [x := e] the Boolean function on n − 1 variables which results
from f by assigning the value e to variable x. Similarly, for a CNF ϕ we denote
by ϕ[x := e] the CNF which results from ϕ by substituting e for all appearances
of x (and 1− e for all appearances of x) in ϕ. A partial assignment is a mapping
p : V �→ {0, 1, ∗}, where V is the set of variables and the value ∗ means an
unspecified value. Alternatively, we will also identify a partial assignment with
a set of literals S where x ∈ S if p(x) = 1, x ∈ S if p(x) = 0, and {x, x} ∩ S = ∅
if p(x) = ∗.

Two clauses C1 and C2 are said to be resolvable if they contain exactly one
complementary pair of literals, i.e. if there exists exactly one propositional vari-
able that appears uncomplemented in one of the clauses and complemented in
the other. That means that we can write C1 = C̃1 ∨ x and C2 = C̃2 ∨x for some
propositional variable x and clauses C̃1 and C̃2 which contain no complemen-
tary pair of literals. The clauses C1 and C2 are called parent clauses and the
disjunction R(C1, C2) = C̃1 ∨ C̃2 is called the resolvent of the parent clauses C1

and C2. Note that the resolvent is a clause (does not contain a propositional
variable and its negation). A clause which consists of a single literal is called a
unit clause and resolution in which one of the parent clauses is a unit clause is
called unit resolution.

The following is an easy lemma [2].

Lemma 1. Let C1 and C2 be two resolvable implicates of a Boolean function f .
Then R(C1, C2) is also an implicate of f .

The wellknown satisfiability problem is defined as follows.

Satisfiability (SAT)

Instance : A formula ϕ in CNF.

Question : Is there an assignment t to variables of ϕ such that
ϕ(t) = 1?

Although this problem is NP-complete in general [6,10], there are many classes
of Boolean formulas, for which SAT problem can be solved in polynomial time.
One of these classes is defined using the SLUR (or single-look ahead unit res-
olution) algorithm [15,9]. The basic operation used by this algorithm is unit
propagation. Function unitprop(ϕ) for a given formula ϕ in CNF returns a pair
of values (ϕ′, t), where ϕ′ is the CNF formula that results from repeatedly per-
forming unit resolution until no unit clauses remain in the formula, and t is the
partial assignment which satisfies unit clauses found and eliminated during unit
propagation. It is known, that unitprop can be implemented in time linear in
the length of formula ϕ [7].

Properties of SLUR Formulae 181

Algorithm 1. SLUR(ϕ)

Input: A CNF formula ϕ with no empty clause
Output: A satisfying partial truth assignment for the variables in ϕ, or “un-

satisfiable”, or “give up”.

1: (ϕ, t) := unitprop(ϕ)
2: if ϕ contains the empty clause then return “unsatisfiable” endif
3: while ϕ is not empty
4: do
5: Select a variable v appearing as a literal of ϕ
6: (ϕ1, t1) := unitprop(ϕ ∧ v)
7: (ϕ2, t2) := unitprop(ϕ ∧ v)
8: if both ϕ1 and ϕ2 contain the empty clause then return “give up”

endif
9: if ϕ1 contains the empty clause
10: then
11: (ϕ, t) := (ϕ2, t ∪ t2)
12: else if ϕ2 contains the empty clause
13: then
14: (ϕ, t) := (ϕ1, t ∪ t1)
15: else
16: Arbitrarily do one of the following:
17: (ϕ, t) := (ϕ1, t ∪ t1)
18: (ϕ, t) := (ϕ2, t ∪ t2)
19: enddo
20: return t

We shall say, that CNF ϕ is a SLUR CNF, if for all possible sequences of non-
deterministic choices in steps 5 and 16, the SLUR algorithm does not give up.
If the SLUR algorithm gives up on a CNF ϕ then we shall say that the SLUR
algorithm gives up on a CNF ϕ with a variable v and an assignment t, if v is the
last selected variable in step 5 before giving up and t is the assignment to the
variables at the time of giving up (not including value of v and values assigned
by unit propagation which follows after the selection of v). Finally, the SLUR
class is the set of all SLUR CNFs.

3 Every Canonical CNF Is a SLUR CNF

In this section we shall show that every Boolean function f has a representation
by a SLUR CNF. We shall start by showing that if a CNF ϕ contains all prime
implicates of a function f it represents, then this property is preserved under
partial assignment.

Lemma 2. Let f be an arbitrary Boolean function on variables x1, . . . , xn, xn+1

and let ϕ be a CNF which contains all prime implicates of f . Let e ∈ {0, 1} and

182 O. Čepek, P. Kučera, and V. Vlček

let f ′ = f [xn+1 := e], then ϕ′ := ϕ[xn+1 := e] contains all prime implicates of
f ′. I.e. if ϕ is the canonical CNF of f then after subsumed clauses are removed
from ϕ′, it is also a canonical CNF of f ′.

Proof. Let us without loss of generality assume that e = 0 (the case e = 1
is similar). Let C be a prime implicate of f ′. Because it is an implicate of
f ′ = f [xn+1 := 0], it follows that C ∨ xn+1 is an implicate of f . This is because
if f(t) = 1 for some assignment t ∈ {0, 1}n+1, then either t[xn+1] = 0 in which
case also C(t) = 1 and hence (C ∨ xn+1)(t) = 1 (C is an implicate of f ′), or
t[xn+1] = 1 in which case (C∨xn+1)(t) = 1 as well. In either case f(t) = 1 implies
(C ∨ xn+1)(t) = 1 for any assignment t and hence C ∨ xn+1 is an implicate of f .

Let C′ be a prime implicate of f which subsumes (C ∨ xn+1). If xn+1 is not
contained in C′, then C′ is in fact an implicate of f ′. This is because if f ′(t) = 1
for an assignment t ∈ {0, 1}n, then f(t, 0) = 1, hence C′(t, 0) = 1 and hence
C′(t) = 1 because C′ does not depend on xn+1. In this case C′ also subsumes C
and hence C = C′. Since C′ is a prime implicate of f , it is contained in ϕ and
because it does not depend on xn+1, we get that C = C′ is contained in ϕ′.

If xn+1 is contained in C′, then let C′′ = C′[xn+1 := 0] (i.e. C′′ is C′ with
xn+1 removed). C′′ is an implicate of f ′, it is in fact directly contained in ϕ′,
because C′ as a prime implicate of f is contained in ϕ. C′′ subsumes C and hence
C = C′′ because C is a prime implicate of f ′. Thus also in this case C ∈ ϕ′. !"

Now it is not hard to show that the canonical representation of a Boolean
function f always belongs to the SLUR class.

Theorem 2. Let f be a Boolean function and let ϕ be its canonical CNF, then
ϕ is a SLUR CNF.

Proof. The canonical CNF has the property, that ϕ is unsatisfiable, if and only if
it contains only the empty clause. Thus if ϕ is unsatisfiable then it is recognized
by the SLUR algorithm in step 2. If the SLUR algorithm proceeds to the while
cycle in step 3, it means that ϕ is satisfiable. In this case let v be an arbitrary
variable chosen by the SLUR algorithm in step 5, then ϕ[v := 0] contains all
prime implicates of f [v := 0] and ϕ[v := 1] contains all prime implicates of
f [v := 1]. Because ϕ is satisfiable, one of ϕ ∧ v and ϕ ∧ v is satisfiable as well,
let us assume without loss of generality, that it is ϕ ∧ v ≡ ϕ[v := 0]. Because
unitprop(ϕ∧v) consists of repeated partial assignments of values to unit clauses,
we can use for each of these partial assignments Lemma 2 to show that ϕ1

generated by unitprop(ϕ ∧ v) contains all prime implicates of f(t1) where t1 is
the partial assignment defined on line 6 of the SLUR algorithm. Because ϕ ∧ v
is satisfiable and this property is preserved during unit propagation as it only
assigns values forced by unit clauses, we have that ϕ1 is satisfiable and hence
it does not contain the empty clause. Since ϕ1 contains all prime implicates of
f(t1), we can use induction to show that the SLUR algorithm never gives up on
a canonical CNF. !"

It should be noted that a canonical CNF may be exponentially long w.r.t. the
input CNF. In fact even if the canonical CNF is short (e.g. if the input CNF is
unsatisfiable) generating it is still a computationally hard problem as it solves

Properties of SLUR Formulae 183

the SAT problem for the input CNF. It is an interesting open question whether
given a CNF, there exists a polynomially long logically equivalent SLUR CNF,
i.e. whether it suffices to add polynomially many prime implicates of the input
CNF to the input formula to get into the SLUR class.

4 Testing Whether a Given CNF Is SLUR Is coNP
Complete

In this section we shall show that the following problem is coNP complete.

SLUR membership (SLUR)

Instance : A CNF ϕ.

Question : Does ϕ belong to the SLUR class?

We shall use transformation from 3D Matching problem, which is known for
a very long time to be NP-complete [10].

3D Matching (3DM)

Instance : Sets X , Y , Z of the same size |X | = |Y | = |Z| = q
and a set of triples W ⊆ X × Y × Z.

Question : Does W contain a matching of size q? I.e. is there a
subset M ⊆W of size |M | = q such that for any two
different triples E,E′ ∈M we have that E ∩E′ = ∅?

We shall associate a CNF ϕW with every instance X,Y, Z,W of 3DM in
the following way. We shall assume that X = {x1, . . . , xq}, Y = {y1, . . . , yq},
Z = {z1, . . . , zq}, and W = {E1, . . . , Ew}, where w = |W |. We shall assume,
that Ej = (xf(j), yg(j), zh(j)), where f , g, and h are functions determining which
elements of X , Y , and Z belong to Ej .

Let us denote the sets of variables in ϕW as follows:

A = {a1, . . . , aq+1, u} ,
Bi = {b1i , . . . , bwi } for every i ∈ {1, . . . , q},

B =

q⋃
i=1

Bi ,

Ci = {c1i , . . . , cwi } for every i ∈ {1, . . . , q},

C =

q⋃
i=1

Ci , and

V = A ∪ B ∪ C

– For every i ∈ {1, . . . , q} let us denote Ai = (ai ∨ ai+1), where a1, . . . , aq+1.

184 O. Čepek, P. Kučera, and V. Vlček

– For every i ∈ {1, . . . , q} and j ∈ {1, . . . , w} let us denote Bj
i = (b1i ∨ · · · ∨

bj−1
i ∨ bji ∨ bj+1

i ∨ · · · ∨ bwi), i.e. B
j
i denotes a clause on variables b1i , . . . , b

w
i ,

in which every literal is negative except bji .

– For every i ∈ {1, . . . , q} and j ∈ {1, . . . , w} let us denote Cj
i = (c1i ∨ · · · ∨

cj−1
i ∨ cji ∨ cj+1

i ∨ · · · ∨ cwi), i.e. C
j
i denotes a clause on variables c1i , . . . , c

w
i ,

in which every literal is negative except cji .

– Given a triple Ej ∈W , let Dj = (Af(j) ∨Bj
g(j) ∨ Cj

h(j)).

– Finally let ϕW =
∧w

j=1 Dj ∧ (aq+1 ∨ a1) ∧ (a1 ∨ u) ∧ (u ∨ a1).

We shall start by showing some properties of ϕW which will be useful in the
subsequent proofs. We say, that a clause is trivial if it is empty or it evaluates
to 1, otherwise, we say, it is nontrivial.

Lemma 3. Let t : V �→ {0, 1, ∗} be any partial assignment of variables in ϕW ,
and let j, k ∈ {1, . . . , w} be arbitrary and let us assume that both Dj(t) and Dk(t)
are nontrivial. Then Dj(t) and Dk(t) are resolvable if and only if Ej ∩ Ek = ∅,
i.e. Dj and Dk are resolvable over a variable in A, and moreover

– f(j) = f(k) + 1 and t[af(j)] = ∗, or
– f(j) = f(k)− 1 and t[af(k)] = ∗.

Proof. Let us at first assume that Dj(t) and Dk(t) are resolvable, which means
that they have a conflict in exactly one variable. It immediately follows that
j �= k. Let us at first show, that Ej and Ek must be disjoint. For contradiction
let us at first assume, that they share an element of Z, i.e. that h(j) = h(k). In
this case also Cj

h(j) and Ck
h(k) are on the same set of variables Ch(j) = Ch(k). But

according to definition of Cj
h(j) and Ck

h(k) we have that they have conflict in two

variables cjh(j) and ckh(j). If t assigns value to neither of them, then Dj and Dk

would not be resolvable, if t assigns value to one of them then no matter which
value it is, we have that one of Dj(t) and Dk(t) would be equal to constant
1. Hence it must be the case that h(j) �= h(k). Similarly we can show that
g(j) �= g(k) we only consider set Y instead of Z. It also follows, that if Dj(t)
has one conflict variable with Dk(t), then it must be either af(j), or af(k). The
statement of the lemma follows from definition of Af(j) and Af(k).

Now let us assume, that Ej ∩ Ek = ∅, f(j) = f(k) + 1, and t[af(j)] = ∗ (the
case when f(j) = f(k)− 1 is similar and is left to the reader). In this case there
is only one conflict variable of Dj and Dk and it is af(j), which is left intact by
t and hence it is also a conflict variable of Dj(t) and Dk(t), which means that
Dj(t) and Dk(t) are resolvable. !"

Lemma 4. Let t : V �→ {0, 1, ∗} be any partial assignment of variables in ϕW

and let j ∈ {1, . . . , w}. If Dj(t) is not equal to 1 and it contains exactly one
literal with variable in Bg(j) (Ch(j) respectively), then no other clause in ϕW (t)
can contain a variable in Bg(j) (Ch(j) respectively).

Proof. The proof is similar to the proof of Lemma 3. For details see [3]. !"
As an easy corollary of Lemma 4 we get the following.

Properties of SLUR Formulae 185

Corollary 1. Let t : V �→ {0, 1, ∗} be any partial assignment of variables in
ϕW such that ϕW (t) does not contain the empty clause and let v ∈ B ∪ C be a
variable, which is not set by t (i.e. t(v) = ∗). Then one of ϕW (t)[v := 0] and
ϕW (t)[v := 1] does not contain the empty clause.

Proof. If the empty clause occurs in ϕW (t)[v := 0], then it is because literal u
is present in ϕW (t), according to Lemma 4 we have that this literal u is the
only occurrence of variable u in ϕW (t), hence setting u to 1 cannot produce the
empty clause. !"

Now we are ready to show that the only variables whose assignment can cause
SLUR to give up belong to A.

Lemma 5. If the SLUR algorithm gives up on ϕW with variable v and assign-
ment t : V �→ {0, 1, ∗}, then v ∈ A.

Proof. If SLUR algorithm gives up on ϕW with variable v and assignment t,
then unit propagation on both ϕW (t)[v := 0] and ϕW (t)[v := 1] generate the
empty clause. Let us assume by contradiction that v ∈ B ∪ C.

If the empty clause is directly present in ϕW (t)[v := 0] or ϕW (t)[v := 1], it
would mean that we have a unit clause in ϕW (t), which is not possible, because
performing unit propagation each time after assigning a value to a variable en-
sures, that in SLUR algorithm at the begining of while cycle, formula ϕ contains
neither a unit clause nor the empty clause.

It follows that both ϕW (t)[v := 0] and ϕW (t)[v := 1] contain new unit clause
which causes unit propagation to generate the empty clause, let us assume, that
v = bji for some i ∈ {1, . . . , q} and j ∈ {1, . . . , w} (the case of variable from C
is the same). Let Dk be a clause for which g(k) = i and Dk(t) is a quadratic
clause containing a literal on variable bji . If the other variable in Dk(t) belongs to

B∪C, then no resolution can occur by setting bji to 0 or 1 according to Lemma 3,
and therefore unit propagation cannot generate the empty clause. If the other
variable belongs to A, then bji occurs only once in ϕW (t) according to Lemma 4

and therefore Dk(t)[b
j
i := 0] ≡ 1 or Dk(t)[b

j
i := 1] ≡ 1, which means that in one

of these cases unit propagation will not do anything and in particular it will not
generate the empty clause. !"

Lemma 6. If the SLUR algorithm gives up on ϕW with variable v ∈ A and
assignment t : V �→ {0, 1, ∗}, then A1, . . . , Aq, (aq+1 ∨ a1), (a1 ∨ u), (u ∨ a1) are
all clauses in ϕW (t).

Proof. The idea of the proof is as follows. According to Lemma 3 if two clauses in
ϕW (t′) for any partial assignment t′ are resolvable, then they are resolvable over a
variable in A, thus to generate the empty clause in ϕW (t)[v := 0] we must follow
chain of resolutions over variables from A, the only chain of such resolutions in
whole formula is formed by clauses amongA1, . . . , Aq, (aq+1∨a1), (a1∨u), (u∨a1).
If all these clauses are present in ϕW (t), then setting any variable in A to any
value causes unit propagation to generate the empty clause. On the other hand,
we shall show, that if this chain is broken, i.e. some of these clauses do not

186 O. Čepek, P. Kučera, and V. Vlček

appear directly in ϕW (t) (although thay may appear as a proper subclause of a
clause in ϕW (t)), then in one of the assignments unit propagation stops before
it generates the empty clause. For details see [3]. !"

We shall show, that ϕW is not SLUR if and only if W contains a perfect
matching.

Lemma 7. Instance X, Y , Z, W of 3DM contains a perfect matching if and
only if ϕW is not SLUR.

Proof. First let us assume, that W contains a perfect matching M ⊆ W , and
let M = {Ej1 , . . . , Ejq}. Let t be a partial assignment, which assigns variables

in Bj1
g(j1)

, . . . , B
jq
g(jq)

and Cj1
h(j1)

, . . . , Ch(jq) and no other variables, moreover this

assignment sets the variables in such a way that Bj
g(j)(t) = 0 and Cj

h(j)(t) = 0

for every j ∈ {j1, . . . , jq}. Note, that since triples in M are pairwise disjoint,

all variables appear at most once in Bj1
g(j1)

, . . . , B
jq
g(jq)

and Cj1
h(j1)

, . . . , Ch(jq), and

thus such assignment t exists and is unique. If SLUR chooses variables assigned
by t in any order and if it chooses their values according to t, then we can
observe, that no unit resolution will ever occur, because no unit clause will be
produced by these assignments. Hence the SLUR algorithm will not fail in the
process and in each step it will be able to choose the assignment of a variable
according to t. When all variables are set according to t, we thus get formula
ϕW (t), in which from every clause Dj for j ∈ {j1, . . . , jq} remained only Aj .
Thus we get, that ϕW (t) contains the following subformula:⎛⎝ ∧

j∈{j1,...,jq}
Aj

⎞⎠ ∧ (aq+1 ∨ a1)(a1 ∨ u)(u ∨ a1) (3)

Because M is a matching and thus every xi ∈ X appears in exactly one triple
of M , we get that CNF (3) is equivalent to:⎛⎝ q∧

j=1

Aj

⎞⎠ ∧ (aq+1 ∨ a1)(a1 ∨ u)(u ∨ a1) (4)

It follows, that ϕW (t) is actually equivalent to (4), because each clause in ϕW (t)
is absorbed by one of the clauses in (4). Using definition of Aj we get that this
is equivalent to:

(a1 ∨ a2)(a2 ∨ a3) . . . (aq ∨ aq+1) ∧ (aq+1 ∨ a1)(a1 ∨ u)(u ∨ a1) (5)

Observe, that CNF (5) is an unsatisfiable quadratic CNF (it reduces to a1 ∧ a1
after resolutions are made) and therefore it is not SLUR. Hence whole formula
ϕW is not SLUR.

Now let us assume that SLUR fails on ϕW . According to Lemma 5 it must fail
on a variable from A, let t : V �→ {0, 1, ∗} be a partial assignment produced by
SLUR algorithm before it chooses a variable on which it fails. Then according to

Properties of SLUR Formulae 187

Lemma 6 we must have that all clauses A1, . . . , Aq ∈ ϕW (t), let Dj1 , . . . , Djq be
some clauses such that Dj1(t) = A1, . . . , Djq (t) = Aq. Now let a, b ∈ {1, . . . , q}
such that a �= b. Because Aa �= Ab we have that Dja �= Djb , and thus ja �= jb.
Because f(ja) = a and f(jb) = b, we also have that xf(ja) �= xf(jb). By the same
arguments as in only if part of the proof of Lemma 3 we can show, that in fact
Eja ∩ Ejb = ∅. In particular let us assume that h(ja) = h(jb) (the case with

g(ja) = g(jb) is the same), in this case both Cja
h(ja)

and Cjb
h(jb)

are on the same

set of variables Ch(ja) = Ch(jb) and each of these variables is assigned a value 0

or 1 by t. By definition there is a variable, in which Cja
h(ja)

and Cjb
h(jb)

have a

conflict in a variable, that implies that one of Cja
h(jb)

(t) and Cjb
h(jb)

(t) is evaluated

to 0, which is in contradiction with fact that Dja(t) = Aa and Djb(t) = Ab. !"
The main result of this paper is contained in the following theorem.

Theorem 3. Problem SLUR membership is coNP-complete.

Proof. Problem SLUR membership belongs to coNP because if we are given se-
quence of nondeterministic choices made by SLUR algorithm in steps 5 and 16,
we can check in polynomial time if these choices lead to giving up. The coNP
hardness follows from the transformation described in this section and in par-
ticular from Lemma 7. !"

5 Hierarchy SLUR(i)

In this section we shall show how the SLUR class can be easily generalized into
a hierarchy of classes of CNFs. For each fixed i ≥ 1 we define a class SLUR(i) as
follows. Instead of selecting a single variable on line 5, the parametrized version
of the SLUR(ϕ) algorithm (let us denote it by SLUR(i,ϕ)) nondeterministically
selects i variables, and instead of running unit propagation after substituting the
two possible values for the selected variable on lines 6 and 7 it runs unit propaga-
tion on all possible 2i assignments. If all assignments produce the empty clause
in the first iteration (after selecting the first i-tuple of variables) SLUR(i,ϕ) re-
turns “unsatisfiable” (note that this constitutes a difference between SLUR(ϕ)
and SLUR(1, ϕ)). If all assignments produce the empty clause in any of the sub-
sequent iterations SLUR(i,ϕ) gives up. If at least one of the assignments does
not produce the empty clause SLUR(i,ϕ) nondeterministically chooses one of
such assignments and continues in the same manner. The class SLUR(i) is then
defined as the class of CNFs ϕ on which SLUR(i,ϕ) never gives up regardless
of the choices made. Note that the SLUR class is a strict subset of SLUR(1)
since every CNF on which the SLUR algorithm gives up after selecting the first
variable is not in the SLUR class but belongs to SLUR(1).

It is obvious from the definition, that SLUR(i,ϕ) provides for every fixed i a
polynomial time SAT algorithm with respect to the length of the input CNF ϕ
(of course, the time complexity grows exponentially in i). It is also clear from
the definition that every CNF on n variables belongs to SLUR(n), and hence
the hierarchy (i.e. the infinite union of SLUR(i) classes) contains all CNFs.

188 O. Čepek, P. Kučera, and V. Vlček

In the rest of this section we show two more results. First, we prove, that the
SLUR(i) hierarchy does not collapse, and then we extend the coNP-completeness
recognition result for SLUR(1) to SLUR(i) for an arbitrary i.

Theorem 4. For each i there is a formula Fi+1 such that Fi+1 ∈ SLUR(i+ 1)\
SLUR(i).

Proof. Let us construct Fi+1 as the zero function expressed by the CNF formula
on i + 2 variables V = {x1, . . . , xi+2}. It contains each possible combination of
positive and negative literals and can be written as:

Fi+1 =
∧

P⊆V

⎛⎝ ∨
v∈P

v ∨
∨

v∈V \P
v

⎞⎠ .

If we assign values to any i-tuple of variables some of the clauses disappear and
the rest of the formula expresses the zero function using two variables (e.g. if we
assign arbitrary zero-one values to x1, . . . , xi, we get (xi+1∨xi+2)∧(xi+1∨xi+2)∧
(xi+1 ∨ xi+2)∧ (xi+1 ∨ xi+2)). Unitprop will not derive the empty clause on such
CNF and the algorithm SLUR(i,Fi+1) will have to give up in the next step.

On the other hand, if we assign values to any (i+1)-tuple we will get a CNF
of the x ∧ x form. Unitprop will derive the empty clause on such a formula and
so the algorithm SLUR(i + 1,Fi+1) returns ”unsatisfiable”. !"

Theorem 5. For each i the membership problem for the class SLUR(i) is coNP-
complete.

Proof. Similarly as in the SLUR case, the order of selected variables and the val-
ues assigned to them which force SLUR(i,ϕ) to give up on ϕ, serve as a polyno-
mially verifiable certificate that ϕ is not in SLUR(i). Therefore, the membership
problem for SLUR(i) is in coNP.

To prove coNP-hardness we modify the proof used for the SLUR case. We
take i copies of formula ϕW defined in Section 4, each of them on a new set
of variables, and add one more clause containing disjunction of another i new
variables. That is, given an instance of 3DM we construct a CNF

ϕ = ϕW
(1) ∧ ϕW

(2) ∧ . . . ∧ ϕW
(i) ∧ (n1 ∨ . . . ∨ ni).

It now suffices to prove that the input instance of 3DM contains a perfect match-
ing if and only if ϕ does not belong to the class SLUR(i).

Let us first assume that the input instance of 3DM contains a perfect match-
ing. Using Lemma 7 we get that the original SLUR algorithm gives up on ϕW

for some order of variable assignments. Now we construct an order of variable
assignments which will force SLUR(i,ϕ) to give up on ϕ. First the algorithm
picks the dummy variables {n1, . . . ni} and assigns some values that lead to the
satisfying assignment of the last clause of ϕ (this step prevents the algorithm to
return ”unsatisfiable” instead of giving up in the case when the original SLUR
algorithm gives up after assigning just one variable). Now SLUR(i,ϕ) will follow

Properties of SLUR Formulae 189

the order of variable assignments by using the one which forces the SLUR algo-
rithm to give up on ϕW . Every time the SLUR algorithm pick a variable and
assigns a value to it, SLUR(i,ϕ) does the same in all i copies of ϕW which sit
inside of ϕ. This order clearly leads SLUR(i,ϕ) to give up on ϕ, proving that ϕ
does not belong to the class SLUR(i).

Now let us assume that ϕ does not belong to the class SLUR(i). That means
that SLUR(i,ϕ) gives up on ϕ for some order of variable assignments. Since ϕ
consists of i+1 subCNFs on disjoint sets of variables, it follows that SLUR(i,ϕ)
derives the empty clause by unit propagation from one of these subCNFs for all
possible assignments of the last selected i-tuple of variables. Clearly, this cannot
happen for the last clause in ϕ, so it must happen for one of the copies of ϕW . But
now restricting the variable assignment only to the variables from this particular
copy of ϕW , we get an order of variable assignments which makes the original
SLUR algorithm give up on ϕW . Thus ϕW is not SLUR and using Lemma 7 we
get that the input instance of 3DM contains a perfect matching. !"

References

1. Aspvall, B.: Recognizing disguised nr(1) instances of the satisfiability problem.
Journal of Algorithms 1(1), 97–103 (1980)

2. Buning, H.K., Letterman, T.: Propositional Logic: Deduction and Algorithms.
Cambridge University Press, New York (1999)

3. Čepek, O., Kučera, P.: Various notes on SLUR formulae. In: Proceedings of the 13th
Czech-Japan Seminar on Data Analysis and Decision Making in Service Science,
Otaru, Japan, pp. 85–95 (2010)

4. Chandru, V., Hooker, J.N.: Extended horn sets in propositional logic. J.
ACM 38(1), 205–221 (1991)

5. Conforti, M., Cornuéjols, G., Vuskovic, K.: Balanced matrices. Discrete Mathemat-
ics 306(19-20), 2411–2437 (2006)

6. Cook, S.A.: The complexity of theorem-proving procedures. In: STOC 1971: Pro-
ceedings of the Third Annual ACM Symposium on Theory of Computing, New
York, NY, USA, pp. 151–158 (1971)

7. Dala, M., Etherington, D.W.: A hierarchy of tractable satisfiability problems. In-
formation Processing Letters 44(4), 173–180 (1992)

8. Dowling, W.F., Gallier, J.H.: Linear time algorithms for testing the satisfiability
of propositional horn formulae. Journal of Logic Programming 3, 267–284 (1984)

9. Franco, J., Van Gelder, A.: A perspective on certain polynomial-time solvable
classes of satisfiability. Discrete Appl. Math. 125(2-3), 177–214 (2003)

10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, San Francisco (1979)

11. Genesereth, M.R., Nilsson, N.J.: Logical Foundations of Artificial Intelligence. Mor-
gan Kaufmann, Los Altos (1987)

12. Itai, A., Makowsky, J.A.: Unification as a complexity measure for logic program-
ming. Journal of Logic Programming 4, 105–117 (1987)

13. Lewis, H.R.: Renaming a set of clauses as a horn set. J. ACM 25(1), 134–135 (1978)
14. Minoux, M.: Ltur: A simplified linear time unit resolution algorithm for horn formu-

lae and computer implementation. Information Processing Letters 29, 1–12 (1988)
15. Schlipf, J.S., Annexstein, F.S., Franco, J.V., Swaminathan, R.P.: On finding solu-

tions for extended horn formulas. Inf. Process. Lett. 54(3), 133–137 (1995)

Unique-Maximum and Conflict-Free Coloring

for Hypergraphs and Tree Graphs

Panagiotis Cheilaris1, Balázs Keszegh2, and Dömötör Pálvölgyi3

1 Center for Advanced Studies in Mathematics,
Ben-Gurion University, Be’er Sheva, Israel

2 Alfréd Rényi Institute of Mathematics, Budapest, Hungary
3 Eötvös University, Budapest, Hungary

Abstract. We investigate the relationship between two kinds of vertex
colorings of hypergraphs: unique-maximum colorings and conflict-free
colorings. In a unique-maximum coloring, the colors are ordered, and in
every hyperedge of the hypergraph the maximum color in the hyperedge
occurs in only one vertex of the hyperedge. In a conflict-free coloring, in
every hyperedge of the hypergraph there exists a color in the hyperedge
that occurs in only one vertex of the hyperedge. We define correspond-
ing unique-maximum and conflict-free chromatic numbers and investi-
gate their relationship in arbitrary hypergraphs. Then, we concentrate
on hypergraphs that are induced by simple paths in tree graphs.

1 Introduction

A hypergraph H is a pair (V,E), where E (the hyperedge set) is a family of
non-empty subsets of V (the vertex set). A vertex coloring of a hypergraph
H = (V,E) is a function C : V → Z+.

A hypergraph is a generalization of a graph. Therefore, it is natural to consider
how to generalize proper vertex coloring of a graph to a vertex coloring of a
hypergraph. (In a proper vertex coloring of a graph, any two vertices neighboring
with an edge in the graph have to be assigned different colors by the coloring
function C.) Vertex coloring in hypergraphs can be defined in many ways, so that
restricting the definition to simple graphs coincides with proper graph coloring.

At one extreme, it is only required that the vertices of each hyperedge are not
all colored with the same color (except for singleton hyperedges). This is called
a non-monochromatic coloring of a hypergraph. The minimum number of colors
necessary to color in such a way a hypergraph H is the (non-monochromatic)
chromatic number of H , denoted by χ(H).

At the other extreme, we can require that the vertices of each hyperedge are
all colored with different colors. This is called a colorful or rainbow coloring of
H and we have the corresponding rainbow chromatic number of H , denoted by
χrb(H).

In this paper we investigate the following two types of vertex colorings of
hypergraphs that are between the above two extremes.

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 190–201, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Unique-Maximum and Conflict-Free Coloring for Hypergraphs 191

Definition 1. A unique-maximum coloring of H = (V,E) with k colors is a
function C : V → {1, . . . , k} such that for each e ∈ E the maximum color in e
occurs exactly once on the vertices of e. The minimum k for which a hypergraph
H has a unique-maximum coloring with k colors is called the unique-maximum
chromatic number of H and is denoted by χum(H).

Definition 2. A conflict-free coloring of H = (V,E) with k colors is a function
C : V → {1, . . . , k} such that for each e ∈ E there is a color in e that occurs
exactly once on the vertices of e. The minimum k for which a hypergraph H has
a conflict-free coloring with k colors is called the conflict-free chromatic number
of H and is denoted by χcf(H).

We also introduce a new coloring, that proves useful in showing lower bounds,
and that could be of independent interest.

Definition 3. An odd coloring ofH = (V,E) with k colors is a function C : V →
{1, . . . , k} such that for each e ∈ E there is a color that occurs an odd number
of times on the vertices of e. The minimum k for which a hypergraph H has
an odd coloring with k colors is called the odd chromatic number of H and is
denoted by χodd(H).

Every rainbow coloring is unique-maximum, every unique-maximum coloring
is conflict-free, and every conflict-free coloring is odd and non-monochromatic.
Therefore, for every hypergraph H , max(χ(H), χodd(H)) ≤ χcf(H) ≤ χum(H) ≤
χrb(H). Note that an odd coloring can be monochromatic.

The study of conflict-free coloring hypergraphs started in [8,19], with an em-
phasis in hypergraphs induced by geometric shapes. The main application of
conflict-free coloring is that it models a frequency assignment for cellular net-
works. A cellular network consists of two kinds of nodes: base stations andmobile
agents. Base stations have fixed positions and provide the backbone of the net-
work; they are represented by vertices in V . Mobile agents are the clients of the
network and they are served by base stations. This is done as follows: Every base
station has a fixed frequency; this is represented by the coloring C, i.e., colors
represent frequencies. If an agent wants to establish a link with a base station it
has to tune itself to this base station’s frequency. Since agents are mobile, they
can be in the range of many different base stations. To avoid interference, the
system must assign frequencies to base stations in the following way: For any
range, there must be a base station in the range with a frequency that is not used
by some other base station in the range. One can solve the problem by assigning
n different frequencies to the n base stations. However, using many frequencies
is expensive, and therefore, a scheme that reuses frequencies, where possible, is
preferable. Conflict-free coloring problems have been the subject of many recent
papers due to their practical and theoretical interest (see e.g. [17,9,6,7,1]).

Most approaches in the conflict-free coloring literature rely on the stronger
unique-maximum colorings (a notable exception is the ‘triples’ algorithm in [1]),
because unique-maximum colorings are easier to argue about in proofs, due
to their additional structure. Another advantage of unique-maximum colorings

192 P. Cheilaris, B. Keszegh, and D. Pálvölgyi

is the simplicity of computing the unique color in any range (it is always the
maximum color), given a unique-maximum coloring, which can be helpful if very
simple mobile devices are used by the agents.

Other hypergraphs that have been studied with respect to these colorings, are
ones which are induced by a graph and (a) its neighborhoods or (b) its paths:

(a) Given a graph G, consider the hypergraph with the same vertex set as G and
a hyperedge for every distinct vertex neighborhood of G; such conflict-free
colorings have been studied in [4,16].

(b) Given a graph G, consider the hypergraph H with the same vertex set as G
and a hyperedge for every distinct vertex set that can be spanned by a simple
path of G. A unique-maximum (respectively conflict-free, odd) coloring of
H is called a unique-maximum (respectively conflict-free, odd) coloring of
G with respect to paths; we also define the corresponding graph chromatic
numbers, χp

um(G) = χum(H), χp
cf(G) = χcf(H) and χp

odd(G) = χodd(H).
Sometimes to improve readability of the text, we simply talk about the UM
(respectively CF, ODD) chromatic number of a graph.

Unique-maximum colorings with respect to paths of graphs are known alterna-
tively in the literature as ordered colorings or vertex rankings, and the unique-
maximum chromatic number is also known as tree-depth [15]. The problem of
computing such unique-maximum colorings is a well-known and widely studied
problem (see e.g. [11]) with many applications including VLSI design [12] and
parallel Cholesky factorization of matrices [13]. The problem is also interesting
for the Operations Research community, because it has applications in planning
efficient assembly of products in manufacturing systems [10]. In general, it seems
that the vertex ranking problem can model situations where interrelated tasks
have to be accomplished fast in parallel (assembly from parts, parallel query
optimization in databases, etc.). For general graphs, finding the exact unique-
maximum chromatic number with respect to paths of a graph is NP-complete
[18,14,2,15] and there is a polynomial time O(log2 n) approximation algorithm
[3], where n is the number of vertices.

The paper [5] studied the relationship between the two graph chromatic num-
bers, χp

um(G) and χp
cf(G), showing that for every graph G, χp

um(G) ≤ 2χ
p
cf (G)−1,

and providing a sequence of graphs for which the ratio χp
um(G)/χp

cf(G) tends to
2. Moreover, the authors of [5] proved that even checking whether a given color-
ing of a graph is conflict-free is coNP-complete (whereas the same problem for
unique-maximum colorings is in P).

Our Results

In this work, we study the relationship between unique-maximum and conflict-
free colorings. First, we give an exact answer to the question “How much larger
than χcf(H) can χum(H) be?” for a general hypergraph H . In section 2, we
show that if for a hypergraph H , χcf(H) = k > 1, then χum(H) is bounded from
above, roughly, by k−1

k |V |, and this is tight; the result remains true even if we

Unique-Maximum and Conflict-Free Coloring for Hypergraphs 193

restrict ourselves to uniform hypergraphs. Then we turn to hypergraphs induced
by paths in tree graphs and prove an upper bound for χp

um(T) that is polynomial
in χp

cf(T), where T is a tree graph. We study trees because for general graphs
the only known upper bound for χp

um(G) is exponential in χp
cf(G); see [5]. In

section 3, we show that for every tree graph T , χp
um(T) ≤ (χp

cf(T))
3 and provide

a sequence of trees for which the ratio χp
um(T)/χ

p
cf(T) tends to a constant c with

1 < c < 2. Conclusions and open problems are presented in section 4.

1.1 Preliminaries

Observation 4. Each of the graph chromatic numbers χp
um, χ

p
cf , and χp

odd, is
monotone with respect to subgraphs, i.e., if H ⊆ G, then χp

�(H) ≤ χp
�(G), where

' ∈ {um, cf, odd}.

Proof. A subgraph H of a graph G contains a subset of the paths of G. !"

Definition 5 (Parity vector). Given a coloring C : V → {1, . . . , k} and a set
e ⊆ V , the parity vector of e is an element of {0, 1}k in which the ith coordinate
equals the parity (0 or 1) of the number of elements in e colored with i.

Remark 1. A coloring of a hypergraph is odd if and only if the parity vector of
every hyperedge is not the all-zero vector.

2 General Hypergraphs

In general it is not possible to bound χcf with a function of χodd because if we
take our hyperedges to be all triples of {1, . . . , n}, for the resulting hypergraph
H we have χodd(H) = 1 and χcf(H) =

⌈
n
2

⌉
. Although χcf(H) = 1 implies

χum(H) = 1, we can have a big gap as is shown by the following theorem.

Theorem 6. For a hypergraph H on n vertices, χum(H) ≤ n−�n/χcf(H)(+1.
Moreover, this is the best possible bound, i.e., for any positive integer n there
exists a hypergraph on n vertices for which equality holds.

Proof. A simple algorithm achieving the upper bound is the following. Given a
hypergraph H with χcf(H) = k, take a conflict-free coloring of H with k colors,
color the largest color class with color 1, all the other vertices with all different
colors (bigger than 1). It is not difficult to see that this is a unique-max coloring,
and it uses at most n− �n/k(+ 1 colors.

For a given n and k equality holds for the hypergraph H whose n vertices are
partitioned into k almost equal parts, all of size �n/k(or �n/k(−1 and its edges
are all sets of size 2 and 3 covering vertices from exactly 2 parts.

We have χcf(H) = k because in any conflict-free coloring of H there are no
two vertices in different parts having the same color and χum(H) ≥ n−�n/k(+1
because in any unique-max coloring of H all vertices must have different colors
except the vertices of one part. !"

194 P. Cheilaris, B. Keszegh, and D. Pálvölgyi

For uniform hypergraphs without small hyperedges, we can make the inequal-
ity tighter.

Theorem 7. If l ≥ 3 then for an arbitrary l-uniform hypergraphH with χcf(H) =
k having n ≥ 2kl vertices we have χum(H) ≤ n−�n/k(− l+4. Moreover, this is
the best possible bound, i.e., for arbitrary n ≥ 2kl there exists a hypergraph for
which equality holds.

The proof is similar to the previous one, although longer, and is omitted in this
version of our work, due to space considerations.

3 Tree Graphs

In this section, to ease readability we use UM for χp
um, CF for χp

cf and ODD
for χp

odd. We denote by Pn the path graph with n vertices. As a warm-up we
prove a simple claim about the odd chromatic number of the path graph. Our
proof is a showcase of a parity vector argument, which we are going to also
use later. For completeness, we include a computation of the conflict-free and
unique-maximum chromatic numbers of the path graph [8]. (Throughout this
paper we use base 2 logarithms, which are denoted by “log”.)

Claim 8. For n ≥ 1, ODD(Pn) = CF (Pn) = UM(Pn) = �log(n+ 1)(.

Proof. It is easy to see that UM(Pn) ≤ �log(n+ 1)(: assign the biggest color
only to a median vertex of the path and then use recursion. Since we know that
UM(Pn) ≥ CF (Pn) ≥ ODD(Pn), it is enough to prove that 2ODD(Pn) > n.
Take the n paths starting from one endpoint. If there were two with the same
parity vector, their symmetric difference (which is also a path) would contain
an even number of each color. Thus we have at least n different parity vectors,
none of which is the all-zero vector. But the number of non-zero parity vectors
is at most 2ODD(Pn) − 1. !"

3.1 Upper Bound for Unique-Maximum Number of Binary Trees

We denote by Bd the (rooted) complete binary tree with d levels (and 2d − 1
vertices). By convention, B0 is the empty graph. It is easy to see that UM(Bd) =
d; for an optimal unique-maximum coloring, color the leaves of Bd with color
1, their parents with color 2, and so on, until you color the root with color d;
for a matching lower bound, use induction on d. In this section, we prove an
upper bound for UM(Bd) that is quadratic on CF (Bd). In fact, we will prove a
stronger statement, that is, a bound for UM(Bd) that is quadratic on ODD(Bd).
Moreover, instead of proving a bound just for complete binary trees, we are going
to prove a bound for subdivisions of complete binary trees, because we will need
that later in subsection 3.2. We first need the following definitions.

Definition 9. A graph H is a subdivision of G if H is obtained by substituting
every edge uv of G by a path of new internal vertices between u and v. The
original vertices of G in H are called branch vertices.

Unique-Maximum and Conflict-Free Coloring for Hypergraphs 195

Definition 10. Given is a rooted tree T and a rooted subtree T ′ of T . We say
that T ′ is compatible with T if any two vertices of T ′ have the same ancestor-
descendant relation in both T ′ and T .

We are now ready to state the following useful lemma.

Lemma 1. Let B∗ be a subdivision of Bd. Suppose we color (without any re-
strictions) the vertices of B∗ with k colors. Then, there exists a vector a =

(a1, a2, . . . , ak) such that
∑k

i=1 ai ≥ d and for every i ∈ {1, . . . , k}, B∗ contains
a subdivision T i of Bai such that (a) T i is compatible with B∗ and (b) the branch
vertices of T i are all colored with i.

Proof. We construct the vector a by induction on d.
For d = 1, B∗ has exactly one vertex, say with color i. Then, a is such that

ai = 1 and every other coordinate is 0.
For d > 1, consider the tree B∗ rooted at the branch vertex v that corresponds

to the root of Bd. Each of the left and right subtrees of v contains a subdivision
of Bd−1. Thus, by the inductive hypothesis, we construct vector a′ for the left
subtree and a′′ for the right subtree. If a′ �= a′′, then a is such that ai =
max(a′i, a

′′
i), for i ∈ {1, . . . , k}. If a′ = a′′, then a is such that ai = a′i +1 for the

color i of the root v and aj = a′j for j �= i. !"

Theorem 11. For d ≥ 1 and for every subdivision B∗ of Bd, ODD(B∗) ≥
√
d.

Proof. Fix an optimal odd coloring with k colors. Fix a color i ∈ {1, . . . , k} for
which in lemma 1 we have ai ≥ d/k.

Consider the 2ai−1 paths that originate in a leaf of the Bai subdivision and
end in its root branch vertex. We claim that the parity vectors of the 2ai−1

paths must be all different. Indeed, if there were two paths with the same parity
vector, then the symmetric difference of the paths plus their lowest common
vertex would form a path where the parity of each color is even, except maybe
for color i, but since this new path starts and ends with color i, deleting any of
its ends yields a path whose parity vector is the all-zero vector, a contradiction.

There are at most 2k−1 parity vectors, thus 2k−1 ≥ 2ai−1 ≥ 2�d/k�−1. From
this we get k >

⌈
d
k

⌉
− 1 which is equivalent to k ≥

⌈
d
k

⌉
using the integrality.

Thus, k ≥
√
d. !"

3.2 Upper Bound for Unique-Maximum Number of Arbitrary Trees

We will try to find either a long path or a subdivision of a deep complete binary
tree in every tree with high UM chromatic number. For this, we need the notion
of UM-critical trees and their characterization from [11].

Definition 12. A graph is UM-critical, if the UM chromatic number of any of
its subgraphs is smaller than its UM chromatic number. We also say that a graph
is k-UM-critical, if it is UM-critical and its UM chromatic number equals k.

196 P. Cheilaris, B. Keszegh, and D. Pálvölgyi

Example 1. The complete graph Kk and the path with 2k−1 vertices are both
k-UM-critical. For k ≤ 3 there is a unique k-UM-critical tree, the path with 2k−1

vertices. Consider the following tree T on 8 vertices: Take two copies of P4 and
draw an edge from an internal vertex of one P4 to an internal vertex of the other
P4. Tree T is 4-UM-critical and CF (T) = 3. (T is the smallest tree where the
CF and UM chromatic numbers differ.)

Theorem 13 (Theorem 2.1 in [11]). For k > 1, a tree is k-UM-critical if
and only if it has an edge that connects two (k − 1)-UM-critical trees.

Remark 2. A k-UM-critical tree has exactly 2k−1 vertices and the connecting
edge must always be the central edge of the tree. This implies that there is
a unique way to partition the vertices of the k-UM-critical tree to two sets of
vertices, each inducing a (k − 1)-UM-critical tree, and so on.

Now we can define the structure trees of UM-critical trees.

Definition 14. For l ∈ {0, . . . , k − 1}, the l-deep structure tree of a k-UM-
critical tree is the tree graph with a vertex for every one of the 2l (k − l)-UM-
critical subtrees that we obtain by repeatedly applying theorem 13, and an edge
between two vertices if the corresponding (k − l)-UM-critical subtrees have an
edge between them in the k-UM-critical tree.

Example 2. The 0-deep structure tree of any UM-critical tree is a vertex. The
1-deep structure tree of any UM-critical tree is an edge. The 2-deep structure
tree of any UM-critical tree is a path with 4 vertices. The (k− 1)-deep structure
tree of a k-UM-critical tree is itself.

Remark 3. It is not difficult to prove that the l-deep structure tree of a UM-
critical tree is an (l + 1)-UM-critical tree.

We start with a few simple observations.

Observation 15. If an (l+1)-UM-critical tree has no vertex of degree at least
3, then it is the path with 2l vertices.

Proof. Delete the central edge and use induction. !"

Observation 16. If an (l+2)-UM-critical tree has only one vertex of degree at
least 3, then it contains a path with 2l vertices that ends in this vertex.

Proof. After deleting its central edge, one of the resulting (l + 1)-UM-critical
trees must be a path that was connected to the rest of the graph with one of its
ends, thus we can extend it until the high degree vertex. !"

Observation 17. If a tree contains two non-adjacent vertices with degree at
least 3, then it contains a subdivision of B3.

Proof. The non-adjacent degree 3 vertices will be the second level of the binary
tree, and any vertex on the path connecting them the root. !"

Unique-Maximum and Conflict-Free Coloring for Hypergraphs 197

Claim 18. An (l + 2)-UM-critical tree contains a path with 2l vertices or a
subdivision of B3.

Proof. Because of the previous observations, we can suppose that our tree has
exactly two vertices with degree at least 3 and these are adjacent. If the central
edge is not the one between these vertices, then the graph must contain an
(l + 1)-UM-critical subgraph without any vertex with degree at least 3, thus it
is the path with 2l vertices because of observation 15. If it connects the two
high degree vertices, then, using observation 16, we have two paths with 2l−1

vertices in the (l + 1)-UM-critical subgraphs obtained by deleting the central
edge ending in these vertices, thus with the central edge they form a path with
2l vertices. !"

We are now ready to prove our main lemma, before the proof of the upper bound.

Lemma 2. For k ≥ 3 and any l, every k-UM-critical tree contains a path with
2l vertices or a subdivision of B� k+l+3

l+2 (.

Proof. The proof is by induction on k. For 3 ≤ k ≤ l + 1, the statement is
true since B2 = P3. For l + 2 ≤ k ≤ 2l + 3, the statement is equivalent to our
claim 18. For k > 2l + 3, take the (l + 2)-deep structure tree S of the tree. If
S does not contain a path with 2l vertices, then, using claim 18, S contains a
subdivision of B3. Every one of the four leaf branch vertices of the above B3

subdivision corresponds to a (k− l− 2)-UM-critical subtree of the original tree.
By induction, each one of the above four subtrees must contain a path with

2l vertices or a subdivision of the complete binary tree with
⌈
k−l−2+l+3

l+2

⌉
=⌈

k+l+3
l+2

⌉
− 1 levels. If any of them contains the path, we are done. If each one of

them contains a B� k+l+3
l+2 (−1 subdivision, then for every one of the four leaves,

we can connect at least one of the two disjoint B� k+l+3
l+2 (−2 subdivisions of the

B� k+l+3
l+2 (−1 subdivision in the leaf (as in figure 1, where each of the four relevant

B k+l+3
l+2 −2 subdivisions and the paths connecting them are shown with heavier

lines) to obtain a subdivision of a complete binary tree with
⌈
k+l+3
l+2

⌉
− 2 + 2

levels, thus we are done. !"

Theorem 19. For every tree T , ODD(T) ≥ (UM(T))
1
3 −O(1).

Proof. If UM(T) = k, then T contains a k-UM-critical tree, which (according to
lemma 2) contains a P2l or a subdivision B∗ of B� k+l+3

l+2 (. Using monotonicity of

ODD with respect to subgraphs (observation 4), together with ODD(P2l) = l+1

(claim 8) and ODD(B∗) ≥
√

k+l+3
l+2 (from theorem 11), we get ODD(T) ≥

max
(
l + 1,

√
k+l+3
l+2

)
. Choosing l to be the closest integer to the solution of

l+1 =
√

k+l+3
l+2 , we get l = k

1
3 +Θ(1). Therefore, ODD(T) ≥ (UM(T))

1
3 −O(1).

!"

198 P. Cheilaris, B. Keszegh, and D. Pálvölgyi

Fig. 1. Constructing a deep binary tree using induction for structure trees

3.3 Trees with Different Unique-Maximum and Conflict-Free
Numbers

We have seen that UM(Bd) = d. We intend to show conflict-free colorings of
some complete binary trees that use substantially less colors. We start with a
simple example demonstrating our method.

Claim 20. CF (B7) ≤ 6.

Proof. Color the root with 1, the second level with 2. Deleting the colored
vertices leaves four B5 subtrees. In each of these subtrees, every level will be
monochromatic. From top to bottom, in the first use the colors 3, 4, 5, 1, 2, in
the second 4, 5, 6, 1, 2, in the third 5, 6, 3, 1, 2 and in the forth 6, 3, 4, 1, 2. It is
not difficult to verify that this is indeed a conflict-free coloring (but it will also
follow from later results). Observe that in the top 2 levels 2 colors are used, in
the next 3 levels 4 colors, and in the last 2 levels the same 2 colors are used as
the ones in the top level. !"

Corollary 1. CF (B2(r+1)+3r) ≤ 4r + 2.

Proof. In the previous construction, every leaf had color 2 and their parents had
color 1. Every such three vertex part can be the top of a new tree, similar to
the original, and replacing 3, 4, 5, 6 with four new colors. This gives a tree with
12 levels and 10 colors. It is not difficult to verify that this is indeed a conflict-
free coloring (but it will also follow from later results). Repeatedly applying this
procedure, so that we have colors 1, 2 appearing in 2(r+1) levels and r disjoint
sets of 4 colors each, we get a coloring of B2(r+1)+3r using 4r + 2 colors. !"

To examine more closely why these colorings are conflict-free, we need to define
some notions.

Definition 21. A family F of ordered sets is said to be prefix set-free, if any
prefix of any ordered set is different from any other ordered set as a set (without

Unique-Maximum and Conflict-Free Coloring for Hypergraphs 199

the ordering). If the ground set has n elements, every sequence has length at
least k and the cardinality of F is at least 2d, then we say that F is a [k, d, n]
PSF family.

Example 3. {〈1, 3〉 , 〈1, 2, 3〉} is a [2, 1, 3] PSF family and {〈1〉 , 〈2, 1〉 , 〈2, 3〉 , 〈3, 1〉 ,
〈3, 1, 2〉} is a [1, 2, 3] PSF family but {〈2, 1〉 , 〈1, 2, 3〉} is not a PSF family.

Claim 22. For any [k, d, n] PSF family d ≤ log
∑n

i=k

(
n
i

)
.

Proof. Any two ordered sets must differ as sets. !"

Claim 23. There is a [k, d, n] PSF family with d =
⌊
log

(
n
k

)⌋
.

Proof. Take all k element subsets of {1, . . . , n} and order each arbitrarily. !"

Since these bounds do not differ much if k > (12 + ε)n, we do not attempt to get
sharper bounds.

Theorem 24. If there is a [k, d, n] PSF family where the size of every set is at
most k + d, then CF (Bd(r+1)+kr) ≤ nr + d.

Proof. First, we show that CF (Bk+2d) ≤ n + d. Color the top d levels with d
colors. Remove the colored vertices and consider the 2d Bk+d subtrees left. To
each associate an ordered set from the [k, d, n] PSF family and color the whole
ith level with one color, the ith element of the associated ordered set. Deleting
also these colored vertices, we are left with subtrees with at most d levels, which
we can color with (at most) the same d colors we used for the top levels. It is
not difficult to check that the above procedure produces a conflict-free coloring.
By repeating the above procedure r times for Bd(r+1)+kr, as in corollary 1, we
obtain CF (Bd(r+1)+kr) ≤ nr + d. !"

Corollary 2. For the sequence of complete binary trees, {Bi}∞i=1, the limit of
the ratio of the UM to the CF chromatic number is at least log 3 ≈ 1.58.

Proof. We omit the technical proof of the existence of the limit.
Since CF (Bd(r+1)+kr) ≤ nr + d, the ratio of UM to CF for Bd(r+1)+kr is

at least (d(r + 1) + kr)/(nr + d), which tends to (d + k)/n as r → ∞. From
claim 23 we can choose d = *log

(
n
k

)
�. If we substitute k with xn, then a short

calculation shows that to maximize (d + k)/n we have to maximize x + H(x),
where H(x) = −x log x − (1 − x) log(1 − x) (entropy). The function x + H(x)
attains its maximum at x = 2/3, giving a value of log 3 as a lower bound for the
limit. !"

4 Discussion and Open Problems

In the literature of conflict-free coloring, hypergraphs that are induced by geo-
metric shapes have been in the focus. It would be interesting to show possible
relations between unique-maximum and conflict-free chromatic numbers in this
setting.

200 P. Cheilaris, B. Keszegh, and D. Pálvölgyi

The exact relationship between the two chromatic numbers with respect to
paths for general graphs still remains an open problem. In [5], only graphs which
have unique-maximum chromatic number about twice the conflict-free chromatic
number were exhibited, but the only bound proved on χp

um(G) was exponential
in χp

cf(G). In fact it is even possible that χp
um(G) ≤ 2χp

cf(G) − 2. The first step
to prove this would be to show that χp

um(T) = O(χp
cf(T)) for trees. It would also

be interesting to extend our results to other classes of graphs.

Acknowledgments. We would like to thank Géza Tóth for fruitful discussions
and ideas about improving the lower bound in corollary 2.

References

1. Bar-Noy, A., Cheilaris, P., Smorodinsky, S.: Deterministic conflict-free coloring for
intervals: from offline to online. ACM Transactions on Algorithms 4(4), 44.1–44.18
(2008)

2. Bodlaender, H.L., Deogun, J.S., Jansen, K., Kloks, T., Kratsch, D., Müller, H.,
Tuza, Z.: Rankings of graphs. SIAM Journal on Discrete Mathematics 11(1), 168–
181 (1998)

3. Bodlaender, H.L., Gilbert, J.R., Hafsteinsson, H., Kloks, T.: Approximating
treewidth, pathwidth, frontsize, and shortest elimination tree. Journal of Algo-
rithms 18(2), 238–255 (1995)

4. Cheilaris, P.: Conflict-free coloring. Ph.D. thesis, City University of New York
(2009)

5. Cheilaris, P., Tóth, G.: Graph unique-maximum and conflict-free colorings. Journal
of Discrete Algorithms 9, 241–251 (2011)

6. Chen, K., Fiat, A., Kaplan, H., Levy, M., Matoušek, J., Mossel, E., Pach, J.,
Sharir, M., Smorodinsky, S., Wagner, U., Welzl, E.: Online conflict-free coloring
for intervals. SIAM Journal on Computing 36(5), 1342–1359 (2007)

7. Elbassioni, K.M., Mustafa, N.H.: Conflict-Free Colorings of Rectangles Ranges.
In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 254–263.
Springer, Heidelberg (2006)

8. Even, G., Lotker, Z., Ron, D., Smorodinsky, S.: Conflict-free colorings of simple
geometric regions with applications to frequency assignment in cellular networks.
SIAM Journal on Computing 33, 94–136 (2003)

9. Har-Peled, S., Smorodinsky, S.: Conflict-free coloring of points and simple regions
in the plane. Discrete and Computational Geometry 34, 47–70 (2005)

10. Iyer, A.V., Ratliff, H.R., Vijayan, G.: Optimal node ranking of trees. Information
Processing Letters 28, 225–229 (1988)

11. Katchalski, M., McCuaig, W., Seager, S.: Ordered colourings. Discrete Mathemat-
ics 142, 141–154 (1995)

12. Leiserson, C.E.: Area-efficient graph layouts (for VLSI). In: Proceedings of the
21st Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp.
270–281 (1980)

13. Liu, J.W.: The role of elimination trees in sparse factorization. SIAM Journal on
Matrix Analysis and Applications 11(1), 134–172 (1990)

14. Llewellyn, D.C., Tovey, C.A., Trick, M.A.: Local optimization on graphs. Discrete
Applied Mathematics 23(2), 157–178 (1989)

Unique-Maximum and Conflict-Free Coloring for Hypergraphs 201

15. Nešetřil, J., de Mendez, P.O.: Tree-depth, subgraph coloring and homomorphism
bounds. European Journal of Combinatorics 27, 1022–1041 (2006)

16. Pach, J., Tardos, G.: Conflict-free colourings of graphs and hypergraphs. Combi-
natorics, Probability and Computing 18, 819–834 (2009)

17. Pach, J., Tóth, G.: Conflict free colorings. In: Discrete and Computational Geom-
etry. The Goodman-Pollack Festschrift, pp. 665–671. Springer, Heidelberg (2003)

18. Pothen, A.: The complexity of optimal elimination trees. Tech. Rep. CS-88-16,
Department of Computer Science, Pennsylvania State University (1988)

19. Smorodinsky, S.: Combinatorial Problems in Computational Geometry. Ph.D. the-
sis, School of Computer Science, Tel-Aviv University (2003)

Minimal Dominating Sets in Graph Classes:

Combinatorial Bounds and Enumeration�

Jean-François Couturier1, Pinar Heggernes2,
Pim van’t Hof2, and Dieter Kratsch1

1 LITA, Université Paul Verlaine - Metz, 57045 Metz Cedex 01, France
{couturier,kratsch}@univ-metz.fr

2 Department of Informatics, University of Bergen, N-5020 Bergen, Norway
{pinar.heggernes,pim.vanthof}@ii.uib.no

Abstract. The maximum number of minimal dominating sets that a
graph on n vertices can have is known to be at most 1.7159n . This upper
bound might not be tight, since no examples of graphs with 1.5705n or
more minimal dominating sets are known. For several classes of graphs,
we substantially improve the upper bound on the maximum number
of minimal dominating sets in graphs on n vertices. In some cases, we
provide examples of graphs whose number of minimal dominating sets
exactly matches the proved upper bound for that class, thereby showing
that these bounds are tight. For all considered graph classes, the up-
per bound proofs are constructive and can easily be transformed into
algorithms enumerating all minimal dominating sets of the input graph.

1 Introduction

Combinatorial questions of the type “What is the maximum number of vertex
subsets satisfying a given property in a graph?” have found interest and ap-
plications in computer science, especially in exact exponential algorithms [5].
The question has been studied recently for minimal feedback vertex sets, mini-
mal separators, potential maximal cliques, and for minimal feedback vertex sets
in tournaments [3,6,7]. A famous classical example is the highly cited theorem
of Moon and Moser [14], which states that the maximum number of maximal
cliques and maximal independent sets, respectively, in any graph on n vertices is
3n/3. Although the original proof of the upper bound in [14] is by induction, it
is not hard to transform it into a branching algorithm enumerating all maximal
independent sets of a graph in time O∗(3n/3), where the O∗-notation suppresses
polynomial factors. These results were used by Lawler [13] to give an algorithm
for graph coloring, which was the fastest algorithm for this purpose for over two
decades. A faster algorithm for graph coloring was obtained by Eppstein [2] by
improving the upper bound on the maximum number of maximal independent
sets of small size.

� This work has been supported by the Research Council of Norway (SCOPE
197548/F20) and ANR Blanc AGAPE (ANR-09-BLAN-0159-03).

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 202–213, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Minimal Dominating Sets in Graph Classes 203

The number of papers on domination in graphs is in the thousands, and several
well known surveys and books are dedicated to the topic (see, e.g., [9]). It is
surprising that a first non-trivial answer to the Moon and Moser type question
“What is the maximum number of minimal dominating sets in a graph?” was
established only recently. Fomin, Grandoni, Pyatkin and Stepanov [4] showed
that the maximum number of minimal dominating sets in a graph on n vertices
is at most 1.7159n. This result was used to derive an O(2.8718n) algorithm for
the Domatic Number problem [4]. Although examples of graphs with 1.5704n

minimal dominating sets have been identified [4] (see Fig. 1), it is not known
whether graphs with 1.5705n or more minimal dominating sets exist.

Our interest in this combinatorial question was triggered by the large gap
between the best known lower and upper bound for general graphs and the
exact exponential algorithms background of the problem. We provide upper and
lower bounds for the maximum number of minimal dominating sets in a variety
of graph classes. Our upper bounds heavily rely on structural graph properties.
Typically, either we have tight bounds, i.e., matching upper and lower bounds,
that are proved using combinatorial arguments, or we have asymptotic bounds
that are proved using branching algorithms. Our findings are summarized in
Table 1.

Graph Class Lower Bound Upper Bound

general [4] 1.5704n 1.7159n

chordal 1.4422n 1.6181n

cobipartite 1.3195n 1.5875n

split 1.4422n 1.4656n

proper interval 1.4422n 1.4656n

cograph∗ 1.5704n 1.5705n

trivially perfect∗ 1.4422n 1.4423n

threshold∗ ω(G) ω(G)

chain∗ �n/2� +m �n/2� +m

Table 1. Lower and upper bounds on the maximum number of minimal dominating
sets. The bounds for graph classes marked with an asterisk are tight; differences in the
last digit are caused by rounding.

Very recently Kanté et al. [11] showed that all minimal dominating sets in a
split graph G can be enumerated in time polynomial in the number of minimal
dominating sets of G; however they did not study the number of such sets. As
an important byproduct of our results, we obtain algorithms to enumerate all
minimal dominating sets for graphs in each of the studied graph classes. In fact,
all our upper bound proofs are constructive and the enumeration algorithms are
easy consequences of them: simply check for all the generated candidate sets
whether they are indeed minimal dominating sets. For each graph class with
an exponential upper bound, say O(cn), the running time of the correspond-
ing enumeration algorithm is O∗(cn). The enumeration algorithms for threshold
graphs and chain graphs have polynomial running times. We believe that our

204 J.-F. Couturier et al.

Fig. 1. The graph G∗, which has 6 vertices and 15 minimal dominating sets. The graph
G∗

n on n = 6k vertices, consisting of k disjoint copies of G∗, has 15n/6 ≈ 1.5704n mds.

enumeration algorithms might have non-trivial algorithmic applications in dom-
ination type problems like Domatic Number.

Our paper is organized as follows. In Sections 3 and 4, we use branching
algorithms to establish upper bounds on the number of minimal dominating
sets in chordal graphs and split graphs, respectively. In Section 5, a combina-
torial argument is applied to establish an upper bound for cobipartite graphs.
In Sections 6 and 7, we determine tight upper bounds for cographs and chain
graphs. The bounds for the remaining three graph classes are proved by similar
techniques; the details have been omitted due to page restrictions.

2 Preliminaries

We work with simple undirected graphs. We denote such a graph by G = (V,E),
where V is the set of vertices and E is the set of edges of G. We adhere to the
convention that n = |V | and m = |E|. When the vertex set and the edge set of G
are not specified, we use V (G) and E(G) to denote these, respectively. The set
of neighbors of a vertex v ∈ V is the set of vertices adjacent to v, and is denoted
by NG(v). The closed neighborhood of v is NG[v] = N(v)∪{v}. For a set S ⊆ V ,
we define analogously NG(S) =

⋃
v∈S NG(v) \ S and NG[S] = NG(S) ∪ S. We

will omit the subscript G when there is no ambiguity. A vertex v is universal if
N [v] = V and isolated if N(v) = ∅. The subgraph of G induced by S is denoted
by G[S]. For ease of notation, we use G−v to denote the graph G[V \ {v}],
and G−S to denote the graph G[V \ S]. A graph is connected if there is a path
between every pair of its vertices. A maximal connected subgraph of G is called
a connected component of G. A set S ⊆ V is called an independent set if uv /∈ E
for every pair of vertices u, v ∈ S, and S is called a clique if uv ∈ E for every
pair of vertices u, v ∈ S. An independent set or a clique is maximal if no proper
superset of it is an independent set or a clique, respectively.

A vertex set S ⊆ V is a dominating set of G if N [S] = V . Every vertex v
of a dominating set dominates the vertices in N [v]. A dominating set S is a
minimal dominating set (mds) if no proper subset of S is a dominating set. It
is an easy observation that, if S is a mds, then for every vertex v ∈ S, there is
a vertex x ∈ N [v] which is dominated only by v. We will call such a vertex x a
private neighbor of v, since x is not adjacent to any vertex in S \ {v}. Note that
a vertex in S might be its own private neighbor. The number of mds in a graph

Minimal Dominating Sets in Graph Classes 205

G is denoted by μ(G). The following observation follows from the fact that every
mds of G is the union of a mds of each connected component of G.

Observation 1. Let G be a graph with connected components G1, G2, . . . , Gt.
Then μ(G) =

∏t
i=1 μ(Gi).

Each of the graph classes that we study will be defined in the section containing
the results on that class. All of the graph classes mentioned in this paper can
be recognized in linear time, and are closed under taking induced subgraphs
[1,8]. We now define two graph families that are useful for providing examples
of lower bounds on the maximum number of mds. We write Hn to denote the
graph on n = 3k vertices which is the disjoint union of k triangles. We write Sn

to denote the graph on n = 3k vertices which consists of a clique C of size 2k
and an independent set I of size k, such that each vertex of I has exactly two
neighbors in C, and no two vertices in I have a common neighbor. It can be
verified easily that μ(Hn) = μ(Sn) = 3n/3 ≈ 1.4422n. For several of our graph
classes, the graph families Hn and Sn provide the best known lower bound on
the maximum number of mds.

2.1 Preliminaries on Branching

To prove the results given in the next two sections, we use branching algorithms
to generate a collection of vertex subsets at the leaves of the corresponding search
tree, containing allmds and possibly also subsets that are not mds. Consequently,
the number of leaves of the search tree gives an upper bound on μ(G). By simply
checking whether each generated vertex subset is indeed a mds, one can also
obtain an enumeration algorithm for all mds of a graph G belonging to the
studied graph class. Typically, every recursive call has input (G′, D), where G′

is an induced subgraph of the input graph G, and D is a subset of V (G)\V (G′).
The subset D contains vertices outside of G′ that have been chosen to be in a
possible minimal dominating set of G. Initially, no vertex has been chosen for a
dominating set, so the algorithm starts with the call (G, ∅). At every step, we
make choices that result in new subproblems in which the size of G′ decreases
and the size of D possibly increases. For every such set D, either there is a leaf
of the search tree corresponding to a mds of G that contains D as a subset, or
no mds of G contains D as a subset. Our algorithms always proceed in such a
way that a vertex of G′ is never needed to dominate a vertex outside of G′. As
a consequence, no vertex of G′ has a private neighbor outside of G′.

For the analysis of the number of leaves T (n) in the search tree, we use
standard terminology [5]. In particular, if at each step of the branching we make
t new subproblems, where the size of the instance is decreased by c1, c2, . . . , ct
in each subproblem, respectively, we obtain a recurrence T (n) ≤ T (n − c1) +
T (n− c2) + . . .+ T (n− ct). Such a recurrence is said to have branching vector
(c1, c2, . . . , ct). The number of leaves in the search tree is upper bounded by
O∗(αn), where α is the largest real root of xn− xn−c1 − . . .− xn−ct = 0 [5]. The
number α is called the branching number of this branching vector. It is common

206 J.-F. Couturier et al.

to round α to the fourth digit after the decimal point. By rounding the last
digit up, we can use O notation instead of O∗ notation [5]. If different branching
vectors are involved at different steps of an algorithm, then the branching vector
with the highest branching number gives an upper bound on the number of
leaves. In our results, we will not do the calculations of α explicitly, but just say,
e.g., that branching vector (2, 2) has branching number 1.4143, which implies
that the number of leaves in the search tree is bounded by O(1.4143n) in a
branching algorithm where only branching vector (2, 2) occurs.

3 Chordal Graphs

A chord of a cycle is an edge between two non consecutive vertices of the cycle.
A graph is chordal if every cycle of length at least 4 has a chord. A vertex
v is called simplicial if N(v) is a clique. Every chordal graph has a simplicial
vertex [8]. Observe that Hn and Sn are chordal, giving us examples of chordal
graphs with 3n/3 ≈ 1.4422n mds.

Theorem 1. A chordal graph has at most O(1.6181n) minimal dominating sets.

Proof. Given an instance (G′, D), we say that a vertex v of G′ is already domi-
nated if D contains a vertex ofNG(v). Our branching algorithm picks a simplicial
vertex x of G′. If x is isolated: if x is already dominated, then we do not add
x to D, otherwise we add x to D. No branching is involved; we delete x from
G′ and continue with another simplicial vertex of G′. From now on, we assume
that x has at least one neighbor in G′. We take action depending on whether or
not x is already dominated, and on the number of neighbors x has in G′. Note
that only one of the cases below applies, and will be executed by the algorithm.

Case 1: x is Already Dominated. We branch on the choice of either adding x to
D or discarding x from inclusion in a possible mds containing D.

– Add: x ∈ D. Since x is already dominated, it needs a private neighbor in
NG′(x). Because x is simplicial, NG′(x) is a clique and this means that no
vertex ofNG′(x) can appear in a mds containingD as a subset. Consequently,
we can safely delete NG′ [x], which results in the instance (G′−NG′ [x], D ∪
{x}), and gives a decrease of at least 2 vertices.

– Discard: x /∈ D. Since x is already dominated, it is safe to simply delete x
from G′. This results in the instance (G′−x,D), and gives a decrease of 1
vertex.

Case 2: x is not already dominated and has at least 2 neighbors in G′. Let y be
any neighbor of x in G′. We branch on the choice of either adding y to D or
discarding y with respect to D.

– Add: y ∈ D. When y is added to D, it dominates x. Then x will never be part
of a mds containing D, since it would need a private neighbor, which does

Minimal Dominating Sets in Graph Classes 207

not exist since NG′(x) ⊆ NG′(y) and every vertex in G − V (G′) is already
dominated by D. We can therefore safely delete both x and y, which results
in the instance (G′−{x, y}, D ∪ {y}), and gives a decrease of 2.

– Discard: y /∈ D. In this case, we simply delete y from G′, which is safe for the
following reason. Vertex x is not deleted and still needs to be dominated, and
every neighbor of x in G′ is also a neighbor of y in G′, since x is simplicial.
Hence, when x becomes dominated, then so will y. This might also happen
by x being added to D at a later step. Hence we create a new instance
(G′−y,D), which gives a decrease of 1.

Case 3: x is not already dominated and has exactly one neighbor y in G′. Since
x is not already dominated and is only adjacent to y in G′, either x or y needs to
be added to D to ensure that x is dominated. We branch on these possibilities.

– x ∈ D. In this case, y becomes dominated, and no mds containing D as
a subset can contain y, since then x would not have a private neighbor.
Consequently, we can safely delete x and y in this case. We get the instance
(G′−{x, y}, D ∪ {x}), and a decrease of 2.

– y ∈ D. Now x becomes dominated, and it can never become a member of a
mds containing D, as x would then not have a private neighbor. Again, we
can safely delete x and y, yielding the instance (G′−{x, y}, D ∪ {y}), and a
decrease of 2.

The branching vectors obtained in Cases 1, 2, and 3 are (2, 1), (2, 1), and (2, 2),
respectively. Branching vector (2, 1) has the largest branching number, namely
1.6181, resulting in an upper bound of O(1.6181n). !"

For split graphs, that form a subset of chordal graphs, we are able to give a
better upper bound in the next section.

4 Split Graphs

A graph G = (V,E) is a split graph if V can be partitioned into a clique C
and an independent set I, where (C, I) is called a split partition of G. A split
partition can be computed in linear time [8], and is not necessarily unique. In
particular, if a vertex c ∈ C has no neighbors in I, then (C \ {c}, I ∪ {c}) is also
a split partition of G. In the remainder of this section, we will assume that I
is maximal, i.e., every vertex of C has a neighbor in I. Note that a mds of G
cannot contain a vertex u ∈ I together with a neighbor of u. Since Sn is a split
graph, there are split graphs with 3n/3 ≈ 1.4422n mds.

Theorem 2. A split graph has at most O(1.4656n) minimal dominating sets.

Proof. As in the previous section, we use branching, but this time we use a
two-phase branching algorithm. Our initial input is a split graph G and a split
partition (C, I) of G, where I is maximal. At each step of the algorithm, the

208 J.-F. Couturier et al.

subproblem at hand is described by (G′, C′, I ′, D), where G′ is an induced sub-
graph of G and (C′, I ′) is a split partition of G′ such that C′ ⊆ C and I ′ ⊆ I.
Our algorithm proceeds in such a way that no vertex of I ′ is already dominated
by a vertex in D. Consequently, if a vertex of I ′ has no neighbor in C′, then it is
added to D; this rule requires no branching. If no such isolated vertex exists in
I ′, the algorithm chooses a vertex c ∈ C′ such that c has a maximum number of
neighbors in I ′, as long as this maximum number is at least 2. Then it branches
and recursively solves two subproblems: either it selects c to be added to D and
removes c and all its neighbors in I ′ from the current graph, or it discards c
from being added to D and removes c from the graph. Hence, the decrease in
the size of the graph is at least 3 in the first subproblem, and 1 in the second
subproblem. This implies the branching vector (3, 1), and its branching number
is 1.4656. This completes the description of the first phase of the algorithm.

Let us consider a leaf of the corresponding search tree, and the instance
(G′, C′, I ′, D) at this leaf. Contrary to the analysis in the previous section, a
leaf of the search tree may lead to more than one mds, since we stopped branch-
ing when the vertices in C′ each have at most one neighbor in I ′, and thus V (G′)
might be non-empty. We claim that there are at most 3t/3 mds of G that can
be obtained from this instance, where t is the number of vertices of G′. To show
this, we now describe the second phase of the algorithm. If there is a vertex c
in C′ that does not have any neighbor in I ′, then we know that c is already
dominated. This is because every vertex of C originally had neighbors in I, and
since the neighbors in I of c were deleted, while c itself was not deleted, a neigh-
bor x ∈ C of c must already have been placed in D, by the description of the
algorithm. Hence c is dominated by a vertex in C ∩ D and c has no private
neighbor, which implies that c cannot be added to D. Consequently, as a first
step, we remove all vertices of C′ that do not have any neighbor in I ′. Then,
we add all isolated vertices of I ′ to D and remove them from G′. When no such
vertices are present, we choose a vertex u of I ′ and branch into the following
|NG′(u)| + 1 subproblems: for every neighbor c of u, add c to D and remove
u and all its neighbors from G′, and, in the last subproblem, add u to D and
remove u and all its neighbors. Since every vertex in C′ has exactly one neighbor
in I ′, exactly one vertex of NG′ [u] belongs to a mds of G containing D, showing
the correctness of the branching. The subproblems are solved recursively.

Assuming the vertex u has j neighbors, there are j + 1 subproblems, and
for each one the decrease is j + 1. Simple analysis leads to the recurrences
T (t) = (j + 1) · T (t − j − 1) for j ≥ 1 for the number of leaves in the search
tree. This is a well-known recurrence and its solution is T (t) = 3t/3 (see e.g. [5]).
Thus the number of leaves of the search tree for the second branching algorithm
is at most 3t/3, and now each leaf contains at most one mds of G.

To establish an upper bound on μ(G), notice that the number of leaves of
the first branching algorithm containing an instance with t vertices is at most
O(1.4656n−t), since those leaves correspond to a total decrease of n− t (from G
to the graph G′ of the leaf) of the measure. Consequently, the number of leaves
of the search tree of the first branching is at most

∑n
t=0 O(1.4656n−t). Since

Minimal Dominating Sets in Graph Classes 209

each of those leaves leads to at most 3t/3 ≈ 1.4423t mds of G, we conclude that
the maximum number of mds in a split graph G is at most

∑n
t=0 O(1.4656n−t ·

1.4423t) ≤
∑n

t=0 O(1.4656n) = O(1.4656n). !"

5 Cobipartite Graphs

A graph G = (V,E) is cobipartite if V can be partitioned into two cliques. To
obtain a lower bound, we define a graph family Bn as follows. For n = 5k, start
with two disjoint cliques X and Y , where |X | = k and |Y | = 4k. Make every
vertex in X adjacent to exactly four vertices in Y , such that every vertex in Y
is adjacent to exactly one vertex in X . The graph Bn has 4n/5 ≈ 1.3195n mds
that are subsets of Y , and O(n2) minimal dominating sets of the form {x, y}
with x ∈ X and y ∈ Y .

Theorem 3. A cobipartite graph has at most O(1.5875n) minimal dominating
sets.

Proof. Let G = (V,E) be a cobipartite graph on n vertices, and let (X,Y) be a
partition of V such that X and Y are cliques. Assume, without loss of generality,
that |X | = αn with 0.5 ≤ α ≤ 1, and |Y | = (1 − α)n. Let D be a mds of G. If
|D| = 1, then D = {v} for some universal vertex of G. Hence G has at most n
mds of size 1. If |D| ≥ 2 and D ∩ X �= ∅ and D ∩ Y �= ∅, then we must have
D = {x, y} for some vertices x ∈ X and y ∈ Y , since every vertex in D needs a
private neighbor. Hence there are at most n2/4 mds of this type. Now assume
that |D| ≥ 2, and that we either have D ⊆ X or D ⊆ Y . Clearly there are at
most 2|Y | ≤ 2n/2 mds D of G with D ⊆ Y . It remains to find an upper bound
on the number of mds D of G satisfying D ⊆ X . Let |D| = βn, where β ≤ α
and 2 ≤ βn ≤ |X |. Every vertex of D must have a private neighbor; this can
only be a vertex of Y , since D contains at least two vertices of X . This implies
that β ≤ 1 − α. The number of subsets of X of size βn is

(
αn
βn

)
. For every fixed

α, the value of
(
αn
βn

)
is maximized for β = α/2. To maximize the value of

(
αn
βn

)
,

note that β = α/2 ≤ 1 − α implies α ≤ 2/3. Hence the number of mds D, with

|D| ≥ 2 and D ⊆ X , is at most
(2n/3
n/3

)
, which is less than or equal to 22n/3,

i.e., the number of all subsets of a set of size 2n/3. In total, there are at most
n+ n2/4 + 2n/2 + 22n/3 = O(22n/3) = O(1.5875n) mds in G. !"

We now move on to graph classes with tight upper bounds.

6 Cographs

Cographs are of particular interest in the study of the maximum number of
mds, as the only known examples of graphs with 1.5704n mds are cographs.
Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. The disjoint union of G1

and G2 is the graph G1 + G2 = (V1 ∪ V2, E1 ∪ E2). The join of G1 and G2 is
the graphG1 �� G2 = (V1∪V2, E1∪E2∪{v1v2 | v1 ∈ V1, v2 ∈ V2}). A graph G is a

210 J.-F. Couturier et al.

cograph if it can be constructed from isolated vertices by disjoint union and join
operations. The graph G∗ depicted in Fig. 1, is a cograph. It has 6 vertices and
15 mds. Any graph G∗

n on n = 6k vertices consisting of k disjoint copies of G∗ is
a cograph containing 15n/6 ≈ 1.5704n mds. No example of a graph with 1.5705n

or more minimal dominating sets is known.

Theorem 4. A cograph has at most 15n/6 minimal dominating sets, and there
are cographs with 15n/6 minimal dominating sets.

Proof. G∗
n, defined before the theorem, is a cograph with 15n/6 mds, so it remains

to prove the upper bound. It can be verified exhaustively that the theorem holds
for all cographs on at most 6 vertices. Let G be a cograph on n ≥ 7 vertices.
We prove the theorem by induction on the number of vertices. By the definition
of a cograph, there exist two subgraphs G1 and G2 of G such that G = G +G2

or G = G1 �� G2. Let ni = |V (Gi)| for i = 1, 2. If G = G1 + G2, then by
Observation 1, we have μ(G) = μ(G1) ·μ(G2) ≤ 15n1/6 ·15n2/6 = 15n/6. Suppose
that G = G1 �� G2. Then any mds of G1 dominates every vertex in G2, and vice
versa. This means that any mds of G1 is a mds of G, and the same holds for any
mds of G2. Since G is the complete join of G1 and G2, no mds of G contains more
than one vertex from G1 and more than one vertex fromG2. This means that any
mds of G that is not a mds of G1 or G2 is of the form {v1, v2}, where v1 ∈ V (G1)
and v2 ∈ V (G2). Hence μ(G) = μ(G1)+μ(G2)+n1n2 ≤ 15n1/6+15n2/6+n1n2 =
15n1/6+15(n−n1)/6+n1(n−n1). Since we assumed that 1 ≤ n1 ≤ n−1 and n ≥ 7,
the function 15n1/6 + 15(n−n1)/6 + n1(n− n1) is maximal when n1 ∈ {1, n− 1}.
In both cases, we get μ(G) ≤ 15(n−1)/6 +151/6 + n− 1, which is less than 15n/6

for any n ≥ 7. !"

7 Chain Graphs

In this section, we combine a study of structural properties of mds in chain graphs
with combinatorial arguments to exactly determine the maximum number of
mds in a chain graph on n vertices. A bipartite graph G = (A,B,E) is a chain
graph if there is an ordering σA = 〈a1, a2, . . . , ak〉 of the vertices of A such that
N(a1) ⊆ N(a2) ⊆ · · · ⊆ N(ak), as well as an ordering σB = 〈b1, b2, . . . , b�〉 of
the vertices of B such that N(b1) ⊇ N(b2) ⊇ · · · ⊇ N(b�) [15]. The orderings
σA and σB together form a chain ordering of G. Note that if a chain graph G is
disconnected, then at most one connected component of G contains edges.

In any graph, every maximal independent set is a minimal dominating set,
and we start with the following result on chain graphs, which will help us prove
the bound on mds, and which is also interesting on its own.

Lemma 1. A chain graph has at most *n/2�+1 maximal independent sets, and
there are chain graphs that have *n/2�+ 1 maximal independent sets.

Proof. Let G = (A,B,E) be a chain graph on n vertices and assume, without
loss of generality, that |A| ≤ *n/2�. Since any isolated vertex must belong to

Minimal Dominating Sets in Graph Classes 211

every maximal independent set, we may assume that G is connected. Let σA =
〈a1, a2, . . . , ak〉 and σB = 〈b1, b2, . . . , b�〉 be a chain ordering of G. Observe that
b1 dominates A and ak dominates B. Let νi(G) be the number of maximal
independent sets in G containing ai, but not containing any vertex aj with
j > i. Consider νi(G) for some i ∈ {1, . . . , k}. If every maximal independent
set in G contains a vertex aj with j > i, then νi(G) = 0. Suppose there exists
a maximal independent set S containing ai, but not containing any vertex aj
with j > i. Clearly, none of the neighbors of ai can be in S. Since σA and
σB form a chain ordering of G, N(ap) ⊆ N(ai) for every p < i. This means
in particular that there is no edge between any vertex in {a1, . . . , ai−1} and
any vertex in B \ N(ai). Hence the set {a1, . . . , ai} ∪ B \ N(ai) is the unique
maximal independent set in G containing ai and not containing any aj with
j > i. As a result, νi(G) ≤ 1 for every i ∈ {1, . . . , k}. Note that B forms the
only maximal independent set in G containing none of the vertices of A, and
that every other maximal independent set in G contains at least one vertex from
A. Since νi(G) ≤ 1 for every i ∈ {1, . . . , k} and k ≤ *n/2� by assumption, we
conclude that G has at most *n/2�+ 1 maximal independent sets.

For every even n ≥ 2, let Gn be the chain graph obtained from two indepen-
dent sets A = {a1, . . . , an/2} and B = {b1, . . . , bn/2} by making ai adjacent to
every vertex in {b1, . . . , bi}, for i = 1, . . . , n/2. For every even n ≥ 2, the graph
Gn contains exactly *n/2�+ 1 maximal independent sets. !"

Lemma 2. For every minimal dominating set S of a chain graph G, the graph
G[S] contains at most one edge.

Proof. Let S be a mds of a chain graph G = (A,B,E). We first show that
every connected component of G[S] contains at most two vertices. Suppose, for
contradiction, that G[S] contains a connected component on more than two
vertices. Since G is bipartite, this means that G[S] contains an induced path
on three vertices. Without loss of generality, let a′, a′′ ∈ A and b ∈ B be three
vertices such that {a′, b, a′′} induces a path on three vertices in G[S]. Note that b
dominates both a′ and a′′. Hence, in order for a′ and a′′ to have private neighbors,
there must exist vertices b′ and b′′ such that a′ is the only vertex of S dominating
b′, and a′′ is the only vertex of S dominating b′′. This contradicts that there is
a chain ordering involving a and a′, and hence that G is a chain graph.

Let σA = 〈a1, . . . , ak〉 and σB = 〈b1, . . . , b�〉 form a chain ordering of G.
Suppose G[S] contains at least one edge, and let aibj be an edge of G[S]. We
already showed that G[S] does not contain an induced path on three vertices,
so none of the vertices of N(ai) \ {bj} and N(bj) \ {ai} is in S. This means that
if G[S] contains an edge other than aibj, then this edge is of the form apbq with
p < i and q > j, where ap /∈ N(bj) and bq /∈ N(ai). But then N(ap) � N(ai),
contradicting the assumption that σA is an ordering of the vertices of A such
that N(a1) ⊆ · · · ⊆ N(aq) ⊆ · · · ⊆ N(ai) ⊆ · · · ⊆ N(ak). We conclude that
every connected component of G[S], apart from the component containing ai
and bj , contains exactly one vertex. !"

The following lemma is an easy consequence of Lemma 2.

212 J.-F. Couturier et al.

Lemma 3. Let ab be an edge of a chain graph G = (A,B,E) with a ∈ A and
b ∈ B. If a or b has degree 1, then there is no minimal dominating set in G
containing both a and b. If both a and b have degree at least 2, then there is
exactly one minimal dominating set in G containing both a and b.

From Lemmas 1, 2, and 3 we can readily deduce that every chain graph has
at most *n/2�+m+ 1 mds. This bound is tightened below.

Theorem 5. A chain graph on at least 2 vertices has at most *n/2�+mminimal
dominating sets, and there are chain graphs with *n/2�+m minimal dominating
sets.

Proof. Let G = (A,B,E) be a chain graph on n vertices, and let σA = 〈a1, .., ak〉
and σB = 〈b1, . . . , b�〉 form a chain ordering of G. Without loss of generality,
assume that |A| ≤ *n/2�. Since any isolated vertex must belong to every minimal
dominating set, we may assume that G is connected. It is easy to check that G
contains at most *n/2�+m mds in case |A| = 1 or |B| = 1. We therefore assume
below that both A and B contain at least two vertices.

First suppose that at least one edge of G has an endpoint of degree 1. Then G
has at most m−1 mds S such that G[S] contains an edge as a result of Lemmas 2
and 3. Every other mds in G must be a maximal independent set in G, and G
has at most *n/2�+ 1 such sets by Lemma 1. Hence G has at most *n/2�+m
mds in this case.

Now suppose that for every edge of G both endpoints have degree at least
2. In particular, b� has degree at least 2, which means that b� is adjacent to
ak−1, which in turn implies that ak−1 is adjacent to every vertex in B. Recall
that ak also dominates B. Let S be a maximal independent set in G containing
ak−1. Since ak−1 dominates B, S does not contain any vertex of B. Since S is
a maximal independent set of G, we must have S = A. In particular, ak ∈ S.
Let νi(G) be the number of maximal independent sets in G containing ai, but
not containing any vertex aj with j > i. Note that νk−1(G) = 0. As shown in
the proof of Lemma 1, νi(G) ≤ 1 for every i ∈ {1, . . . , k}. The set B is the
only maximal independent set in G containing no vertices of A. Every other
maximal independent set contains at least one vertex of A. The assumption that
|A| ≤ *n/2�, together with νk−1(G) = 0 and νi(G) ≤ 1 for every i ∈ {1, . . . , k},
implies that G has at most *n/2�maximal independent sets, each of which forms
a mds in G. Due to Lemmas 2 and 3, G has exactly m mds S for which G[S]
contains an edge. Hence G contains at most *n/2�+m mds in total.

Recall the graph Gn that was defined in the proof of Lemma 1. For every even
n ≥ 2, let G′

n be the graph obtained from Gn by adding the edge ak−1b�. The
graph G′

n contains exactly *n/2�+ m mds: one for each of the *n/2� maximal
independent sets, and one for each edge of G′

n, apart from the edge a1b1. !"

8 Conclusions

We established new upper bounds for the number of mds in graphs on n vertices
of various graph classes. All our bounds are significantly lower than the known
upper bound for general graphs.

Minimal Dominating Sets in Graph Classes 213

Could our enumeration algorithms be used to establish fast exact exponential
algorithms solving Domatic Number or Connected Dominating Set on
split and chordal graphs? We point out that both problems are NP-complete on
split graphs, and thus also on chordal graphs [10,12].

The maximum number of mds in a general graph on n vertices is still unknown.
It is conjectured that 15n/6, the best known lower bound, is indeed the correct
answer [4]. We have shown that a counterexample to this conjecture cannot
belong to any of the graph classes studied in this paper, with the exception of
cobipartite and chordal graphs. A lower bound for bipartite graphs is 6n/4 ≈
1.5650n, which is the number of mds in the disjoint union of n/4 cycles of length
4. Is there an upper bound for bipartite graphs which is better than 1.7159n?
Finally, we conjecture that the maximum number of mds in proper interval and
split graphs is 3n/3.

References

1. Brandstädt, A., Le, V.B., Spinrad, J.: Graph Classes: A Survey. SIAMMonographs
on Discrete Mathematics and Applications (1999)

2. Eppstein, D.: Small maximal independent sets and faster exact graph coloring.
J. Graph Algor. Appl. 7(2), 131–140 (2003)

3. Fomin, F.V., Gaspers, S., Pyatkin, A.V., Razgon, I.: On the minimum feedback
vertex set problem: Exact and enumeration algorithms. Algorithmica 52(2), 293–
307 (2008)

4. Fomin, F.V., Grandoni, F., Pyatkin, A.V., Stepanov, A.A.: Combinatorial bounds
via measure and conquer: Bounding minimal dominating sets and applications.
ACM Trans. Algorithms 5(1) (2008)

5. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Texts in Theoretical
Computer Science. Springer, Heidelberg (2010)

6. Fomin, F.V., Villanger, Y.: Finding induced subgraphs via minimal triangulations.
In: Proceedings of STACS 2010, pp. 383–394 (2010)

7. Gaspers, S., Mnich, M.: Feedback Vertex Sets in Tournaments. In: de Berg, M.,
Meyer, U. (eds.) ESA 2010. LNCS, vol. 6346, pp. 267–277. Springer, Heidelberg
(2010)

8. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Annals of Disc.
Math. 57 (2004)

9. Haynes, T.W., Hedetniemi, S.T. (eds.): Domination in graphs. Marcel Dekker Inc.,
New York (1998)

10. Laskar, R.C., Pfaff, J.: Domination and irredundance in split graphs. Technical
Report 430, Clemson University (1983)

11. Kanté, M.M., Limouzy, V., Mary, A., Nourine, L.: Enumeration of Minimal Dom-
inating Sets and Variants. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011.
LNCS, vol. 6914, pp. 298–309. Springer, Heidelberg (2011)

12. Kaplan, H., Shamir, R.: The domatic number problem on some perfect graph
families. Inform. Proc. Lett. 49(1), 51–56 (1994)

13. Lawler, E.L.: A note on the complexity of the chromatic number problem. Inform.
Proc. Lett. 5(3), 66–67 (1976)

14. Moon, J.W., Moser, L.: On cliques in graphs. Israel J. Math. 3, 23–28 (1965)
15. Yannakakis, M.: Node deletion problems on bipartite graphs. SIAM J. Comput. 10,

310–327 (1981)

Randomized Group Testing Both Query-Optimal

and Minimal Adaptive

Peter Damaschke and Azam Sheikh Muhammad

Department of Computer Science and Engineering
Chalmers University, 41296 Göteborg, Sweden

{ptr,azams}@chalmers.se

Abstract. The classical group testing problem asks to determine at
most d defective elements in a set of n elements, by queries to subsets
that return Yes if the subset contains some defective, and No if the
subset is free of defectives. By the entropy lower bound, log2

∑d
i=0

(
n
i

)
tests, which is essentially d log2 n, are needed at least. We devise group
testing strategies that combine two features: They achieve this optimal
query bound asymptotically, with a factor 1+ o(1) as n grows, and they
work in a fixed number of stages of parallel queries. Our strategies are
randomized and have a controlled failure probability, i.e., constant but
arbitrarily small. We consider different settings (known or unknown d,
probably correct or verified outcome), and we aim at the smallest possible
number of stages. In particular, 2 stages are sufficient if d grows slowly
enough with n, and 4 stages are sufficient if d = o(n).

1 Introduction

Suppose that a set of n elements contains an unknown subset of defective ele-
ments (“defectives” for brevity). A group test takes any subset, called a pool, and
returns a binary answer: The pool is positive if it contains at least one defective,
and otherwise negative. The group testing problem is the problem of identifying
the defectives using a minimum number of group tests, also called queries. An
upper bound d on the number of defectives may be known in advance, or the
number d of defectives may be unknown. However, we assume that d- n.

Group testing is a classical combinatorial search problem [10] and an impor-
tant example of the “exact learning by queries” model. It has applications in bi-
ological and chemical testing and diagnosis [10,11,18], communication networks
[4,9,13], and streaming algorithms [5], to mention only a few domains.

A group testing strategy works in stages, where the pools for every stage are
prepared prior to the stage, and then queried in parallel. The pools for the next
stage, however, may depend on all previous answers. A strategy with one query
per stage is called adaptive. In most group testing applications, highly parallel
strategies working in a few stages are preferable because, on the one hand, the
tests are time-consuming, and on the other hand, many pools can be tested
simultaneously.

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 214–225, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Randomized Group Testing Both Query-Optimal and Minimal Adaptive 215

As a notational remark, we omit ceiling brackets in expressions, in order to
avoid bulky notation. Logarithms are always base 2.

Due to the entropy lower bound, also known as the information-theoretic
lower bound, at least log2

∑d
i=0

(
n
i

)
≈ d log(n/d) queries are needed even by

adaptive strategies. If defectives are rare, this expression simplifies to d logn,
subject to negligible terms. If d is known in advance, essentially d logn queries
are also sufficient, and if d is unknown, still 1.5d logn queries are sufficient [25].
There exist strategies using O(d log n) queries that need only two stages when
d is known [8,12,3]. The query number in [3] tends to 1.44d logn as d grows.
A query number of the form O(d log n) cannot be achieved by any deterministic
strategy in only one stage, as a consequence of known lower bounds for so called
d̄-separable pooling designs [2], which are exactly the sets of pools that can
distinguish between any sets of at most d defectives. As opposed to this, there is
a randomized one-stage strategy that succeeds with any prescribed probability,
using asymptotically 1.45d logn queries [3]. For the case of unknown d we proved
in [6] that no deterministic strategy can manage with O(d log n) queries in any
constant number of stages, but randomized strategies can, in only two stages.

For applications where defectives are rare but tests are expensive, it would
be worthwhile to have strategies where the test number is as close as possible
to the entropy lower bound, not only within some constant factor. The principal
contribution of the present paper is to show that, in fact, there exist randomized
strategies that combine the two desirable features of query-optimality (at least in
an asymptotic sense) and minimal adaptivity: The constant factor in the leading
term d logn of the query complexity tends to 1 as n grows, and the strategies
work in a constant number of stages.

Although these results are not particularly hard to obtain, to our best knowl-
edge this is the first paper presenting group testing strategies with this combina-
tion of desirable properties, and the way of combining known ingredients seems
to be novel. The strategies also look simple enough for real use. Only elementary
methods are needed to construct and analyze them.

We highlight the main results briefly, while the technical statements and also
variations of the results are deferred to the following sections. If d grows slower
than any power function of n, we achieve query-optimality already in 2 stages.
Due to a recent negative result [23], this is not possible if d grows like d = nδ

for some constant exponent δ < 1. But in this case we manage with 3 stages.
Finally, if d = o(n) we still get an asymptotically optimal query number in
4 stages. More precisely, we consider any fixed defective rate r = d/n and show
that our strategy approaches the entropy lower bound if r → 0. This asymptotic
behaviour matches known upper bounds for sequential group testing strategies,
therefore one may appreciate that a constant number of stages suffices. It remains
open whether even 3 stages would be enough.

An earlier negative result [6] implies that our strategies cannot be derandom-
ized, but apparently they can be turned into deterministic strategies for the
statistical model of group testing where elements are defective independently
and with some fixed probability.

216 P. Damaschke and A.S. Muhammad

Due to space limitations, some parts of the proofs are only sketched, but
in principle we include complete proofs. Some technicalities are omitted. For
instance, when we use random subsets in a strategy, we do not always clearly
distinguish between their expected and actual sizes, which however does not
affect the asymptotic analysis for large n.

2 Minimal Adaptive Group Testing Close to the Entropy
Lower Bound

The following observation is folklore; for completeness we give the proof.

Lemma 1. If only one defective is present, it can be found by logn+ 1 queries
in one stage.

Proof. We introduce dummy elements if n is not a power of 2; this can at most
double the number of elements. Then we index the elements as bit vectors of
length logn+ 1. For each i we query a pool consisting of all elements that have
entry 1 at the ith position. Obviously, the answers localize one defective provided
that there is exactly one. !"

Remark: This pooling design cannot check whether d = 1. A very minor issue is
that we cannot see whether the element indexed by the zero vector is defective,
if all pools were negative. Obviously we can catch up this case by one additional
query (in the same stage) to this element. Much more importantly, if d > 1, it
is possible that the strategy cannot safely identify any defective.

We also apply Theorem 10 from [3] that we rewrite as follows:

Lemma 2. With prescribed probability 1−ε1 one can correctly identify at most d
defectives using O(d(log n+log(1/ε1))) queries in one stage. The hidden constant
factor is at most 1.9 and converges to 1.45 as d grows. !"

Theorem 1. Using d logn+O(d log d)+O(d log(1/ε)) queries in two stages we
can, with probability 1− ε, correctly identify all defectives, provided that at most
d defectives are present. The hidden constant factors in the lower-order terms
are below 3.8, and tend to 2.9 as d grows.

Proof. The overall scheme is very simple: In stage 1 we separate the defectives
with probability 1− ε, that is, we divide the elements into disjoint subsets each
containing exactly one defective (plus one subset without defectives). In stage 2
we apply Lemma 1 to every such subset. It remains to discuss stage 1 in detail.

For some q to be specified below, we assign every element one of q labels, each
with probability 1/q. Elements with the same label form one cell. Like pools, a
cell is said to be positive if it contains a defective, and otherwise negative. Then
we apply Lemma 2 to the set of cells rather than individual elements: We can,

Randomized Group Testing Both Query-Optimal and Minimal Adaptive 217

with prescribed probability 1 − ε1, correctly identify the (at most d) positive
cells using O(d(log q+log(1/ε1))) queries in one stage. The positive cells are our
disjoint sets to be used in stage 2.

The probability that any two defectives collide, i.e., get into the same cell, is
at most

(
d
2

)
/q < d2/2q. In order to keep this probability below some ε2 we choose

q = d2/2ε2, thus log q = 2 log d + log(1/ε2) − 1. The strategy gives an incorrect
result with probability at most ε := ε1+ ε2. Now, minimizing the query bound is
equivalent to minimizing log(1/ε1) + log(1/ε2) under the constraint ε = ε1 + ε2.
A standard calculation yields ε1 = ε2 = ε/2, and obvious further manipulations
give the final query bound. The constants follow from Lemma 2. !"

Remarks:
(1) For every fixed d, this bound converges to the entropy lower bound as n
grows. This asymptotic optimality holds even for d growing slowly with n (e.g.,
polylogarithmic). It remains open how many randomized queries would be ac-
tually needed in one stage. To our best knowledge, the current upper bound is
the mentioned 1.45d logn from [3]. Is it possible to identify d defectives, with
fixed probability 1− ε, by essentially d log n queries in only one stage? Or can a
non-trivial lower bound a(ε)d log n for some a(ε) > 1 be proved?

(2) The known deterministic two-stage strategies using O(d log n) queries, how-
ever with a constant strictly larger than 1, determine O(d) candidate positives in
stage 1, and need only O(d) queries in stage 2 to test them [8,12,3]. Amazingly,
in our randomized strategy the situation is exactly the opposite: The complex-
ity of stage 1 does not depend on n, and the main work is done in stage 2. An
interesting question is whether there exists a query-optimal two-stage strategy
where the workload is balanced.

(3) The strategy in Theorem 1, with q = Θ(d2), is designed for any constant
failure probability. By choosing q as a larger polynomial in d, or even as a
slow function of n, we can make the failure probability vanish asymptotically,
without destroying the asymptotic query-optimality. Depending on the choice of
q, different patterns of asymptotic behaviour can be achieved.

With one additional stage we can improve the query bound:

Theorem 2. Using d log(n/d) +O(d
√
log d log log d) queries in three stages we

can, with probability 1− ε, correctly identify all defectives, provided that at most
d defectives are present.

Proof. We give a high-level description of the strategy: Partition the elements
randomly into d bags1 of size n/d. Due to well-known load balancing results
(see [20]), with high probability all bags contain fewer than log d defectives. We
call a bag sparse/dense if it has fewer/more than

√
log d defectives. In stage 1

we distinguish between sparse and dense bags using L(n/d) queries in each bag,
where L is any sublogarithmic function. It suffices to query random pools of size

1 We call them “bags” because their role is different from the “cells” used earlier.

218 P. Damaschke and A.S. Muhammad

around n/(d
√
log d) and decide sparse or dense based on the fraction of positive

answers. We skip the details, since the only crucial point is that the pool number
increases with n/d, thus we can make the error probability arbitrarily small. The
rest is to apply the strategy from Theorem 1 in parallel to each bag. In the, up
to d, sparse bags we may use q = Θ((

√
log d)3), thus O(d

√
log d log log d) queries

are needed in all sparse bags. In the, up to d/
√
log d, dense bags we may use

q = Θ((log d)3), thus O((d/
√
log d) log d log log d) queries are needed also in all

dense bags. Here, exponent 3 in q is chosen to keep the failure probability in each
bag O(1/d). In the final stage we search for the separated defectives individually,
among at most n/d elements. !"

The advantage of Theorem 2 is that this complexity approaches the entropy
lower bound for larger d, such as d = nδ, δ < 1. Interestingly, it is known that
two stages are not enough for that, due to a lower bound of (log e)2d log(n/d)
if d grows like d = nδ [23]. (Actually, this result was derived for the statistical
model of group testing with independent random defectives, but asymptotically
the models are equivalent.)

Our next issue is that the outcome in Theorem 1 is correct with some pre-
scribed probability, but in every specific case the searcher cannot be sure that
the returned set of defectives is correct. Trivially, any group testing result can
be verified in another stage with d+1 queries. But can we accomplish a correct
and verified outcome without the extra stage? When determining the positive
cells in stage 1 we may get some false positives as well. However, the subroutine
from [3] never yields false negatives, and the false positive cells will be detected
in stage 2. The real difficulty is that the separation can fail, too. More than one
defective can get into one cell, and then the simple search as in Lemma 1 does
not work; remember the remark after Lemma 1. However, with a slight increase
of the test number we can also verify the outcome, as we will see below. First
we need another search method for single defectives, known from [26]:

Lemma 3. Using logn+0.5 log logn+ o(log logn) queries in one stage, we can
achieve the following: If only one defective is present, we identify it and confirm
that it is the only one. If more defectives are present, we recognize this fact (but
we do not necessarily identify some of the defectives in this case). Moreover, this
query number is optimal for this purpose. !"

For clarity we outline the (known) strategy: The design consists of t pools, where
each of the n elements is in exactly t/2 pools. Choose t even (or round t/2), and
make t large enough so that

(
t

t/2

)
= n.

Along the lines of Theorem 1 it follows immediately:

Theorem 3. Using d(log n+0.5 log logn+o(log logn))+O(d log d)+O(d log(1/ε))
queries in two stages we can, with probability 1 − ε, identify all defectives and
verify that we found them all, provided that at most d defectives are present. !"

Note that the extra terms are o(logn), hence this result still matches asymp-
totically the entropy lower bound. Nevertheless it is interesting to ask if the

Randomized Group Testing Both Query-Optimal and Minimal Adaptive 219

log logn term is avoidable. For two stages we must leave this as an open question.
In three stages we can get rid of the log logn term, by applying Lemma 1 and
an obvious verification step.

In the following we give a side result related to that. It further extends the
optimality statement from Lemma 3, in that it shows that one cannot even
narrow down the candidates for the defective to a small set, in one stage with
fewer queries. Group testing strategies that apply some pooling design in stage
1 and then test the candidates individually in stage 2 are well established as
“trivial strategies” (which is perhaps a misleading name). They are of particular
practical interest because no pools at all depend on test results and must be
created on-the-fly: Stage 1 is prepared in advance, and only trivial testing is
done in stage 2.

Theorem 4. Suppose that actually one defective is present (but the searcher is
not sure about the number of defectives and needs to confirm it). Then, with
fewer than log n+0.5 log logn−Θ(log c(n)) queries in one stage it is impossible
to narrow down the candidate set for the defective to size c(n). Here, c is any
function with c(n) = o(log n).

Proof. Consider any design of t pools, arbitrarily indexed 1, . . . , t. We define the
indicator of an element to be the t-bit vector x where the ith position xi is 1 if
the element belongs to the ith pool, and xi = 0 else. Imagine that an adversary
declares one element defective, chosen randomly with probability 1/n. For a t-bit
vector x, let p(x) denote the probability that the defective has indicator x. In
other words, p(x) · n elements have indicator x.

For two t-bit vectors x and y, symbol y ≤ x means that y is bitwise smaller
than x, that is, yi = 1 implies xi = 1. If the defective has indicator x then exactly
those elements with indicators y ≤ x are candidates for being defective: Note
that all pools i with xi = 1 answered positively, and elements with indicators
y ≤ x occur in positive pools only, thus the searcher cannot surely recognize
them as negative.

We conclude that the (conditional) expected number of candidates is now
n
∑

y≤x p(y) for any fixed indicator x of the defective, hence the expected number
of candidates is n

∑
y≤x p(x)p(y), where the sum is now taken over all such pairs

(y, x). In order to get a lower bound for this expression, we choose the distribu-
tion p(x) so as to minimize n

∑
y≤x p(x)p(y) under the constraint

∑
x p(x) = 1.

In fact, this optimization problem is not hard to solve. Define the support
of a distribution to be the set of all x with p(x) > 0. First we claim that, in
some optimal solution, the support is an antichain (set of pairwise incomparable
vectors) in the set of t-bit vectors partially ordered by ≤. If the support A is
not an antichain, take some minimal vector y ∈ A that is smaller than some
other vectors in A, and move p(y) arbitrarily to these larger members of A.
It is easy to see that this cannot increase our double sum (since no further
“comparable pairs” are created). Hence we can repeat this manipulation until A
is an antichain. But then our double sum simplifies to n

∑
x∈A p(x)2. A sum of

squares of numbers with fixed sum is minimized if all these numbers are equal.
With a := |A| we get na(1/a)2 = n/a expected candidates. In order to keep

220 P. Damaschke and A.S. Muhammad

this number below c, we need a ≥ n/c. Due to Sperner’s Theorem [27,22], the
largest antichain in the partial order of t-bit vectors has size a =

(
t

t/2

)
. Thus,

the known lower bound log a+0.5 log log a for t yields the asserted lower bound
in argument n.

To conclude, when the defective is chosen at random, then any deterministic
strategy with fewer queries returns a candidate set whose expected size is not
bounded by c. Hence there exists an element v such that, if v is the defective,
more than c candidates actually remain. With Yao’s technique (see, e.g., Section
2.2.2 in [24]), the same lower bound follows for randomized designs. !"

Possibly this negative statement could also be derived from [21], but in order
to make the paper more self-contained we keep our shorter proof of the explicit
bound.

The results so far were formulated for the case of a known d, or more real-
istically, a known upper bound d. With an additional stage using a procedure
from [6] we get rid of this restrictive assumption. For this we need a slight adap-
tation of a result from [6] saying that O(log n) nonadaptive random queries are
sufficient to find, with any fixed success probability, an upper bound O(d) for d.
The basic idea is to test random pools of exponentially growing size, and then
the cut-off point between negative and positive pools gives an estimate of d. We
remark that Ω(logn) queries are also necessary, at least for some restricted but
very natural type of random pools, as shown in [7].

Theorem 5. For an arbitrarily small fixed g > 0 and for any fixed constant
success probability 1 − ε, using (d + g) logn + O(d log d) queries in three stages
we can correctly identify all d defectives even without prior knowledge of d.

Proof. In stage 1 is we use g logn pools to output an upper bound O(d) for d,
where the hidden constant in O(d) depends only on g and on a prescribed failure
probability (of underestimating d) [6]. Stage 2 and 3 consist of the strategy from
Theorem 1, with the only modification that the number q of cells is chosen based
on the upper bound for d returned by stage 1. Since this upper bound is O(d),
only the constant factor in the O(d log d) term is affected. !"

Note that also this result gets arbitrarily close to the entropy lower bound as
n grows. Moreover, factor 1+g/d of the dominating term d logn can be bounded
arbitrarily close to 1, uniformly for all d (by choosing g small enough), and for
every fixed g it converges to 1 for growing d. An open question is whether we
can accomplish the same characteristics as in Theorem 5 already in two stages.
If d happens to be o(log n/ log logn) (but the magnitude of d is still unknown in
advance), we can actually manage this task in two stages, by applying the strat-
egy from Theorem 1 or 3 with some q = o((log n/ log logn)2). But we conjecture
that this is no longer possible for larger d.

3 Linear versus Sublinear Growth of the Defectives

The previous results hold for cases when d grows slower than n. However, in
many practical settings one would rather expect a constant rate of defectives

Randomized Group Testing Both Query-Optimal and Minimal Adaptive 221

r := d/n. In the following we also address this case. We assume r to be known in
advance, otherwise we can first estimate r by O(log n) randomized nonadaptive
group tests [6]. While the hidden constant depends on the accuracy of estimating
r, the query number becomes negligible as n grows, since logn/(d log(n/d)) =
logn/(nr log(1/r)) tends to 0.

This section consists of two parts. As a benchmark we first discuss adaptive,
i.e., sequential testing. Then we show that 4 stages are enough to achieve a
similar test complexity.

We call the model of group testing with a specified number d of defectives
(which is either a known or a maximum number) the combinatorial model. In
the statistical model of group testing, elements are defective independently and
with some fixed probability r. When we have a strategy S for the statistical
model and an input with d defectives, we may shuffle the elements and then
apply strategy S for r = d/n. Since pools being significantly larger than 1/r are
almost certainly positive and give little information, we can restrict pools to sizes
O(1/r) regardless of n. Thus, for large n the statistical model with probability
r can be adopted instead of the combinatorial model with exactly d defectives.
In the remainder of the section we assume the statistical model.

The entropy lower bound is now r log(1/r)+ (1− r) log(1/(1− r)) queries per
element, or equivalently,

log(1/r) + (1− r) log(1/(1− r))/r

queries per defective. This follows easily from the additivity of entropy. For small
r this simplifies to log(1/r) + log e queries per defective. It might be interesting
to notice that this lower bound also holds for any randomized strategy that
identifies d defectives in the combinatorial model, although an exact d means
some more prior knowledge for the searcher. This follows from a more general
fact (not referring especially to the group testing problem):

Proposition 1. Let H be a set of h hypotheses, and suppose that a searcher
can ask binary queries. Then no randomized strategy can guarantee to identify
the correct hypothesis using an expected number of less than log h queries.

Proof. Suppose that an adversary selects every hypothesis with probability 1/h
as the true one. Then any deterministic strategy needs an expected number
of at least log h queries, because every strategy can be viewed as a Huffman
code with the expected query number as the average path length, and then
the claim is easily seen from Huffman’s algorithm [16] applied to the equal-
probability case. From this, Yao’s lower bound technique yields the assertion as
follows. Any randomized strategy R can be seen as a probability distribution
on the deterministic strategies. Hence the expected query number of R on the
randomized input is at least log h. It follows the existence of a specific hypothesis
where R needs at least log h expected queries. !"

In our case, this lower bound is log
(
n
d

)
and amounts to the same bound as

before (with −o(1) terms neglected), by routine calculations using Stirling’s

222 P. Damaschke and A.S. Muhammad

formula. Recall that we aim at strategies with an expected query number as
close as possible to the lower bound. In a special type of sequential strategies,
elements are arranged as a sequence, in any fixed linear order, and then they
search for the leftmost defective by querying only pools that are prefixes of this
sequence. This restriction leads to a well-studied problem from quality control
[14,15,1]. Known results from there can be rephrased as follows.

Proposition 2. The group testing problem with fixed rate r of defectives can
be solved sequentially with log(1/r) + O(1) = (1 + o(1)) log(1/r) queries per
defective, where o(1) vanishes for r → 0. !"

The o(1) term cannot be avoided, even in sequential strategies. Therefore it
is interesting that this asymptotic behaviour, perhaps with an o(1) term going
slower to 0, can be achieved already in a small constant number of stages. For this
result we can, in the following, focus attention on “small” r, which also allows
us to neglect some technicalities like rounding. We stress that the announced
result does not follow from the techniques of Section 2: Observe that we needed
d log(n/d) + dM(d) queries, for some unbounded monotone function M . These
are log(1/r)+M(d) queries per defective, that is, the additive term would grow
infinitely with the input size even if r is fixed. In fact, we will need some more
stages to avoid that.

Finally, as a preparation we reconsider one of the strategies in [3] and present
a version that it guaranteed to find all defectives in two stages. Note that query
numbers stated below are meant to be expected numbers.

Lemma 4. In two stages using 1.9 log(1/r)+1 queries per defective, where r :=
d/n, we can identify all d defectives.

Proof. Query nonadaptively a sufficient number of random pools of size 1/r,
and discard the elements in negative pools. (The information in positive pools is
not used further.) Every non-defective shall be kept with probability at most er,
where e denotes Euler’s number. If k denotes the number of negative pools, it is
sufficient to have (1 − 1/(rn))k = er. For large n this can be transformed into
e−k/rn = er, hence k/rn = ln(1/r)− 1, which means ln(1/r)− 1 negative pools
per defective. Since a pool of size 1/r is negative with probability approximately
1/e, this stage needs e(ln(1/r) − 1) = 1.9 log(1/r) − e queries per defective. In
a second stage, the (1 + e)rn remaining candidates are tested individually, thus
the total number of queries per defective is 1.9 log(1/r) + 1. !"

Now we are ready for the main result. Basically it says that we can approach
the entropy lower bound in 4 stages when d = o(n).

Theorem 6. Group testing with defective rate r can be solved in four stages
using (1 + o(1)) log(1/r) queries per defective, where o(1) vanishes for r→ 0.

Proof. We split the elements in disjoint cells of x/r elements, where x is a
free parameter. We choose x depending on r such that, limr→0 x = 0 but

Randomized Group Testing Both Query-Optimal and Minimal Adaptive 223

limr→0 x log(1/r) =∞, which also implies limr→0 x/r =∞. The expected num-
ber of defectives in a cell is x. Below we will use well-known inequalities like
1− x < e−x < 1− x+ x2/2 and ex < 1 + x+ x2 (for small x).

Remember that we are going to prove an asymptotic bound. Since r → 0
but the cell size grows, the number of defectives in a cell follows, in the limit, a
Poisson distribution with expectation x. (We omit a detailed technical discussion
with error bounds.) In particular, we can assume that a cell has 0, 1, and more
than 1 defective with probability e−x, xe−x, and 1 − (1 + x)e−x, respectively.
We call these cells type 0, 1, and 2, respectively.

In stage 1 we simply query each cell, thus we recognize the type-0 cells, using
1/x queries per defective. In stage 2 we apply Lemma 3 to tell apart the type-1
and type-2 cells, and to find the unique defective in the type-1 cells. This needs

log(x/r) + (0.5 + o(1)) log log(x/r)

queries in each type-1 or type-2 cell, and identifies an e−x fraction of the defec-
tives. Here, o(1) denotes a term that vanishes for x/r → ∞. For every type-1
cell there exist on average

(1− (1 + x)e−x)/(xe−x) = (ex − 1− x)/x

type-2 cells, that is, (ex − 1)/x < 1 + x type-1 and type-2 cells per type-1 cell.
Hence we have used fewer than

(1 + x) log(x/r) + (0.5 + o(1)) log log(x/r)) + 1/x

queries per recognized defective, in stage 1 and 2. For x→ 0 and x/r→∞ this
simplifies to

(1 + o(1)) log(x/r) + 1/x < (1 + o(1)) log(1/r) + 1/x,

since log log grows slower than log.
In stage 3 and 4 we merge all type-2 cells and find the remaining defectives

using Lemma 4. They make up an 1 − e−x fraction of all defectives, and the
total size of type-2 cells is 1− (1+ x)e−x times the original number of elements.
Hence the defective rate is

r′ = r(1 − e−x)/(1 − (1 + x)e−x).

Due to Lemma 4 we need 1.9 log(1/r′)+1 queries per defective from type-2 cells,
which are

(1− e−x)(1.9 log(1/r′) + 1) < 1.9x log(1/r′) + x

queries per defective. Furthermore we have

1/r′ = (1− (1 + x)e−x)/(1 − e−x) · (1/r).

This expression is smaller than

(1− (1 + x)(1 − x))/(1 − (1− x+ x2/2)) · (1/r) = x/(1− x/2) · (1/r).

224 P. Damaschke and A.S. Muhammad

Note that for x→ 0, the upper bound expression for 1/r′ tends to x/r. Thus we
have used

1.9x log(x/r) + x < 1.9x log(1/r) + x

queries per defective in stage 3 and 4.
The total number of queries per defective from all stages is still described by

(1 + o(1)) log(1/r) + 1/x.

Since limr→0 x log(1/r) = ∞, clearly (1/x)/ log(1/r) tends to 0, thus the 1/x
term is redundant. !"

Acknowledgments. This work has been supported by the Swedish Research
Council (Vetenskapsr̊adet), grant No. 2010-4661, “Generalized and fast search
strategies for parameterized problems”. Part of the work was inspired by the sem-
inar “Search Methodologies II” (2010) organized by Ahlswede, R. and
Cicalese, F. at the Center for Interdisciplinary Research, University of Biele-
feld, Germany. We also thank the reviewers for their encouraging remarks and
useful hints.

References

1. Ben-Gal, I.: An Upper Bound on the Weight-Balanced Testing Procedure with
Multiple Testers. IIE Trans. 36, 481–493 (2004)

2. Chen, H.B., Hwang, F.K.: Exploring the Missing Link Among d-Separable, d̄-
Separable and d-Disjunct Matrices. Discr. Appl. Math. 155, 662–664 (2007)

3. Cheng, Y., Du, D.Z.: New Constructions of One- and Two-Stage Pooling Designs.
J. Comp. Biol. 15, 195–205 (2008)

4. Clementi, A.E.F., Monti, A., Silvestri, R.: Selective Families, Superimposed Codes,
and Broadcasting on Unknown Radio Networks. In: SODA 2001, pp. 709–718.
ACM/SIAM (2001)

5. Cormode, G., Muthukrishnan, S.: What’s Hot and What’s Not: Tracking Most
Frequent Items Dynamically. ACM Trans. Database Systems 30, 249–278 (2005)

6. Damaschke, P., Sheikh, M.A.: Competitive Group Testing and Learning Hidden
Vertex Covers with Minimum Adaptivity. Discr. Math. Algor. Appl. 2, 291–311
(2010)

7. Damaschke, P., Muhammad, A.S.: Bounds for Nonadaptive Group Tests to Esti-
mate the Amount of Defectives. In: Wu, W., Daescu, O. (eds.) COCOA 2010, Part
II. LNCS, vol. 6509, pp. 117–130. Springer, Heidelberg (2010)

8. De Bonis, A., Gasieniec, L., Vaccaro, U.: Optimal Two-Stage Algorithms for Group
Testing Problems. SIAM J. Comp. 34, 1253–1270 (2005)

9. De Bonis, A., Vaccaro, U.: Constructions of Generalized Superimposed Codes with
Applications to Group Testing and Conflict Resolution in Multiple Access Chan-
nels. Theor. Comp. Sc. 306, 223–243 (2003)

10. Dorfman, R.: The Detection of Defective Members of Large Populations. The An-
nals of Math. Stat. 14, 436–440 (1943)

11. Du, D.Z., Hwang, F.K.: Pooling Designs and Nonadaptive Group Testing. Series
on Appl. Math., vol. 18. World Scientific (2006)

Randomized Group Testing Both Query-Optimal and Minimal Adaptive 225

12. Eppstein, D., Goodrich, M.T., Hirschberg, D.S.: Improved Combinatorial Group
Testing Algorithms for Real-World Problem Sizes. SIAM J. Comp. 36, 1360–1375
(2007)

13. Goodrich, M.T., Hirschberg, D.S.: Improved Adaptive Group Testing Algorithms
with Applications to Multiple Access Channels and Dead Sensor Diagnosis. J.
Comb. Optim. 15, 95–121 (2008)

14. Hassin, R.: A Dichotomous Search for a Geometric Random Variable. Oper.
Res. 32, 423–439 (1984)

15. He, Q.M., Gerchak, Y., Grosfeld-Nir, A.: Optimal Inspection Order When Process
Failure Rate is Constant. Int. J. Reliability, Quality and Safety Eng. 3, 25–41 (1996)

16. Huffman, D.A.: A Method for the Construction of Minimum-Redundancy Codes.
Proc. IRE 40, 1098–1101 (1952)

17. Iwen, M.A., Tewfik, A.H.: Adaptive Group Testing Strategies for Target Detection
and Localization in Noisy Environments. IMA Preprint Series no. 2311. Univ. of
Minnesota (2010)

18. Kahng, A.B., Reda, S.: New and Improved BIST Diagnosis Methods from Combina-
torial Group Testing Theory. IEEE Trans. CAD of Integr. Circuits and Systems 25,
533–543 (2006)

19. Kainkaryam, R.M., Bruex, A., Gilbert, A.C., Schiefelbein, J., Woolf, P.J.: poolMC:
Smart Pooling of mRNA Samples in Microarray Experiments. BMC Bioinf. 11, 299
(2010)

20. Kleinberg, J., Tardos, E.: Algorithm Design. Addison-Wesley, Boston (2006)
21. Kleitman, D.: On a Conjecture of Erdös–Katona on Commensurable Pairs Among

Subsets of an n–Set. In: Erdös, P., Katona, G. (eds.) Theory of Graphs, Colloq.
Proc., pp. 215–218. Akademiai Kiado, Budapest (1968)

22. Lubell, D.: A Short Proof of Sperner’s Lemma. J. Comb. Theory 1, 299 (1966)
23. Mézard, M., Toninelli, C.: Group Testing With Random Pools: Optimal Two-Stage

Algorithms. IEEE Trans. Info. Th. 57, 1736–1745 (2011)
24. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge Univ. Press

(1995)
25. Schlaghoff, J., Triesch, E.: Improved Results for Competitive Group Testing. Comb.

Prob. and Comp. 14, 191–202 (2005)
26. Spencer, J.: Minimal Completely Separating Systems. J. Combin. Theory 8, 446–

447 (1970)
27. Sperner, E.: Ein Satz über Untermengen einer endlichen Menge. Math.

Zeitschrift 27, 544–548 (1928) (in German)

Complexity of Model Checking for Modal

Dependence Logic

Johannes Ebbing� and Peter Lohmann��

Institut für Theoretische Informatik
Leibniz Universität Hannover

Appelstr. 4, 30167 Hannover, Germany
{ebbing,lohmann}@thi.uni-hannover.de

Abstract. Modal dependence logic (MDL) was introduced recently by
Väänänen. It enhances the basic modal language by an operator =(·). For
propositional variables p1, . . . , pn the atomic formula =(p1, . . . , pn−1, pn)
intuitively states that the value of pn is determined solely by those of
p1, . . . , pn−1.

We show that model checking for MDL formulae over Kripke struc-
tures is NP-complete and further consider fragments of MDL obtained
by restricting the set of allowed propositional and modal connectives. It
turns out that several fragments, e.g., the one without modalities or the
one without propositional connectives, remain NP-complete.

We also consider the restriction of MDL where the length of each
single dependence atom is bounded by a number that is fixed for the
whole logic. We show that the model checking problem for this bounded
MDL is still NP-complete. Furthermore we almost completely classifiy
the computational complexity of the model checking problem for all re-
strictions of propositional and modal operators for both unbounded as
well as bounded MDL.

An extended version of this article can be found on arXiv.org [3].

ACM Subject Classifiers: F.2.2 Complexity of proof procedures; F.4.1
Modal logic; D.2.4 Model checking.

Keywords: dependence logic, modal logic, model checking, computa-
tional complexity.

1 Introduction

Dependence among values of variables occurs everywhere in computer science
(databases, software engineering, knowledge representation, AI) but also the
social sciences (human history, stock markets, etc.). In his monograph [9] in
2007 Väänänen introduced functional dependence into the language of first-order
logic.

� Supported by DAAD grant 50740539a within the PPP programme.
�� Supported by the NTH Focused Research School for IT Ecosystems.

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 226–237, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Complexity of Model Checking for Modal Dependence Logic 227

Functional dependence of the value of q from the values of p1, . . . , pn means
that there exists a determining function f with q = f(p1, . . . , pn), i.e., the value
of q is completely determined by the values of p1, . . . , pn alone. We denote this
form of dependence (or determination) by the dependence atom =(p1, . . . , pn, q).
To examine dependence between situations, plays, worlds, events or observations
we consider collections of these, so called teams. For example, a database can be
interpreted as a team. In this case =(p1, . . . , pn, q) means that in every record the
value of the attribute q is determined by the values of the attributes p1, . . . , pn.

As was introduced in [10], a team in modal logic is a set of worlds in a Kripke
structure. Here =(p1, . . . , pn, q) means that in every world of the team the value
of the atomic proposition q is determined by the propositions p1, . . . , pn, i.e.,
there is a fixed Boolean function f : {0, 1}n → {0, 1} that determines the value
of q from the values of p1, . . . , pn for all worlds in the team. In first-order logic
=(x1, . . . , xn, y) means the same for a function f : An → A where A is the
universe of a first-order structure. Dependence logic [9] is then defined by simply
adding dependence atoms to usual first-order logic and modal dependence logic
(MDL) [10,8] is defined by introducing dependence atoms to modal logic.

Besides the inductive semantics (which we will use here) Väänänen also gave
two equivalent game-theoretic semantics for MDL [10]. Sevenster showed that for
singleton sets of worlds there exists a translation from MDL to plain modal logic
[8]. Sevenster also showed that the satisfiability problem forMDL is NEXPTIME-
complete [8] and Lohmann and Vollmer continued the complexity analysis of the
satisfiability problem for MDL by systematically restricting the set of allowed
modal and propositional operators and completely classifying the complexity for
all fragments of MDL definable in this way [7].

The method of systematically classifying the complexity of logic related prob-
lems by restricting the set of operators allowed in formulae goes back to Lewis
who used this method for the satisfiability problem of propositional logic [6].
Recently it was, for example, used by Hemaspaandra et al. for the satisfiability
problem of modal logic [4,5]. The motivation for this approach is that by sys-
tematically examining all fragments of a logic one might find a fragment which
allows for efficient algorithms but still has high enough expressivity to be useful
in practice. On the other hand, this systematic approach usually leads to insights
into the sources of hardness, i.e., the exact components of the logic that make
satisfiability or model checking hard.

In this paper we transfer the method from satisfiability [7] to model checking
and classify the model checking problem for almost all fragments of MDL defin-
able by restricting the set of allowed modal (�, ♦) and propositional (∧, ∨, ¬)
operators to an arbitrary subset of all operators. Given a formula, a team, and
a Kripke structure, the model checking problem asks whether the structure and
the team satisfy the formula. For plain modal logic this problem is solvable in P
as shown by Clarke et al. [2]. A detailed complexity classification for the model
checking problem over fragments of modal logic was shown by Beyersdorff et
al. [1] (who investigate the temporal logic CTL which contains plain modal logic
as a special case).

228 J. Ebbing and P. Lohmann

Table 1. Classification of complexity for fragments of MDL-MC

Operators Complexity Reference
� ♦ ∧ ∨ ¬ =

∗ ∗ + + ∗ + NP-complete Theorem 1

+ ∗ ∗ + ∗ + NP-complete Theorem 3

∗ + ∗ ∗ ∗ + NP-complete Theorem 2

∗ − ∗ − ∗ ∗ in P Theorem 4

− − − + ∗ + in NP Proposition 1

∗ ∗ ∗ ∗ ∗ − in P [2]

+ : operator present − : operator absent ∗ : complexity independent of operator

Table 2. Classification of complexity for fragments of MDLk-MC with k ≥ 1

Operators Complexity Reference
� ♦ ∧ ∨ ¬ =

∗ ∗ + + ∗ + NP-complete Theorem 1

+ ∗ ∗ + ∗ + NP-complete Theorem 3

∗ + + ∗ ∗ + NP-complete Theorem 7

∗ + ∗ + ∗ + NP-complete Theorem 8

∗ ∗ − − ∗ ∗ in P Theorem 6

∗ − ∗ − ∗ ∗ in P Theorem 4

− − − ∗ ∗ ∗ in P Theorem 5

∗ ∗ ∗ ∗ ∗ − in P [2]

+ : operator present − : operator absent ∗ : complexity independent of operator

In the case of MDL it turns out that model checking is NP-complete in general
and that this still holds for several seemingly quite weak fragments of MDL, e.g.,
the one without modalities or the one where nothing except dependence atoms
and ♦ is allowed (first and third line in Table 1).

Furthermore it seems natural to not only restrict modal and propositional
operators but to also impose restrictions on dependence atoms. One such restric-
tion is to limit the arity of dependence atoms, i.e., the number n of variables
p1, . . . , pn by which q has to be determined to satisfy the formula =(p1, . . . , pn, q),
to a fixed upper bound k ≥ 0 (the logic is then denoted by MDLk). For this re-
striction model checking remains NP-complete in general but, for the fragment
with only the ♦ operator allowed, this does not hold anymore (fifth line in Ta-
ble 2). In this case either ∧ (third line in Table 2) or ∨ (fourth line in Table 2)
is needed to still get NP-hardness.

We classify the complexity of the model checking problem for fragments of
MDL with unbounded as well as bounded arity dependence atoms. We are able
to determine the tractability of each fragment except the one where formulae
are built from atomic propositions and unbounded dependence atoms only by
disjunction and negation (fifth line in Table 1). In each of the other cases we
either show NP-completeness or show that the model checking problem admits
an efficient (polynomial time) solution.

Complexity of Model Checking for Modal Dependence Logic 229

In Table 1 we list our complexity results for the cases with unbounded arity
dependence atoms and in Table 2 for the cases with an a priori bound on the
arity. In these tables a “+” means that the operator is allowed, a “-” means that
the operator is forbidden and a “*” means that the operator does not have any
effect on the complexity of the problem.

2 Modal Dependence Logic

We will briefly present the syntax and semantics of MDL. For a more in-depth
introduction we refer to Väänänen’s definition of MDL [10] and Sevenster’s anal-
ysis of model-theoretic aspects and the complexity of the satisfiability problem
[8] which also contains a self-contained introduction to MDL.

Definition 1 (Syntax of MDL).
Let AP be an arbitrary set of atomic propositions and p1, . . . , pn, q ∈ AP . Then
MDL is the set of all formulae built from the following rules:

ϕ ::= . | ⊥ | q | ¬q | ϕ ∨ ϕ | ϕ ∧ ϕ | �ϕ | ♦ϕ |
=(p1, . . . , pn, q) | ¬=(p1, . . . , pn, q).

Note that negation is only atomic, i.e., it is only defined for atomic propositions
and dependence atoms.

We sometimes write �k (resp. ♦k) for

k times︷ ︸︸ ︷
�� . . .� (resp.

k times︷ ︸︸ ︷
♦♦ . . .♦). For a depen-

dence atom =(p1, . . . , pn, q) we define its arity as n, i.e., the arity of a dependence
atom is the arity of the determining function whose existence it asserts.

In Section 4 we will investigate the model checking problem for the following
logic.

Definition 2 (MDLk).
MDLk is the subset of MDL that contains all formulae which do not contain any
dependence atoms whose arity is greater than k.

We will classify MDL for all fragments defined by sets of operators.

Definition 3 (MDL(M)).
Let M ⊆ {�,♦,∧,∨,¬,=}. By MDL(M) (resp. MDLk(M)) we denote the subset
of MDL (MDLk resp.) built from atomic propositions using only operators from
M . We sometimes write MDL(op1, op2, . . .) instead of MDL({op1, op2, . . .}).

Definition 4 (Kripke structure).
An AP -Kripke structure is a tuple W = (S,R, π) where S is an arbitrary non-
empty set of worlds, R ⊆ S×S is the accessibility relation and π : S → P(AP)
is the labeling function.

MDL formulae are interpreted over Kripke structures but in contrast to common
modal logics, truth of a MDL formula is not defined with respect to a single
world of a Kripke structure but with respect to a set (or team) of worlds.

230 J. Ebbing and P. Lohmann

Definition 5 (Semantics of MDL).
Let AP a set of atomic propositions, p, p1, . . . , pn ∈ AP , and p = (p1, . . . , pn−1).
The truth of a formula ϕ ∈ MDL in a team T ⊆ S of an AP -Kripke structure
W = (S,R, π) is denoted by W,T |= ϕ and is defined as follows:

W,T |= . always holds
W,T |= ⊥ iff T = ∅
W,T |= p iff p ∈ π(s) for all s ∈ T
W, T |= ¬p iff p /∈ π(s) for all s ∈ T
W, T |= =(p, pn) iff for all s1, s2 ∈ T it holds that

π(s1) ∩ {p} �= π(s2) ∩ {p}
or π(s1) ∩ {pn} = π(s2) ∩ {pn}

W,T |= ¬=(p, pn) iff T = ∅
W,T |= ϕ ∧ ψ iff W,T |= ϕ and W,T |= ψ
W, T |= ϕ ∨ ψ iff there are sets T1, T2 with T = T1 ∪ T2,

W,T1 |= ϕ and W,T2 |= ψ
W, T |= �ϕ iff W, {s′ | ∃s ∈ T with (s, s′) ∈ R} |= ϕ
W, T |= ♦ϕ iff there is a set T ′ ⊆ S such that W,T ′ |= ϕ and for

all s ∈ T there is an s′ ∈ T ′ with (s, s′) ∈ R

Note that this semantics is a conservative extension of plain modal logic se-
mantics, i.e., it coincides with the latter for formulae which do not contain de-
pendence atoms. Rationales for this semantics – especially for the case of the
negative dependence atom – were given by Väänänen [9, p. 24].

In Sections 3 and 4 we will classify the complexity of the model checking
problem for fragments of MDL and MDLk.

Definition 6 (MDL-MC).
Let M ⊆ {�,♦,∧,∨,¬,=}. Then the model checking problem for MDL(M)
(MDLk(M) resp.) over Kripke structures is defined as the canonical decision
problem of the set

MDL-MC(M)
(MDLk-MC(M) resp.)

:=

{
〈W,T, ϕ〉

∣∣∣∣∣ W = (S,R, π) a Kripke structure,
T ⊆ S, ϕ ∈ MDL(M) (MDLk(M)
resp.) and W,T |= ϕ

}
.

We write MDL-MC for MDL-MC({�,♦,∧,∨,¬,=}).

3 Unbounded Arity Fragments

First we will show that the most general of our problems is in NP and therefore
all model checking problems investigated later are as well.

Proposition 1. Let M be an arbitrary set of MDL operators. Then
MDL-MC(M) is in NP. And hence also MDLk-MC(M) is in NP for every k ≥ 0.

Proof. A straightforward non-deterministic top-down algorithm can check the
truth of the formula ϕ on the Kripke structure W in the evaluation set T in
polynomial time.

Complexity of Model Checking for Modal Dependence Logic 231

The algorithm manipulates the team T according to the outermost operator
in ϕ and then proceeds recursively. Non-deterministic steps only occur when
evaluating subformulas of type ♦ψ (a successor team is guessed) or of type ψ∨θ
(a partition of the current team is guessed).

Now we will see that the model checking problem is NP-hard and that this still
holds without modalities.

Theorem 1. Let M ⊇ {∧,∨,=}. Then MDL-MC(M) is NP-complete. Further-
more, MDLk-MC(M) is NP-complete for every k ≥ 0.

Proof. Membership in NP follows from Proposition 1. For the hardness proof we
reduce from 3SAT.

For this purpose let ϕ = C1 ∧ . . . ∧ Cm be an arbitrary 3CNF formula with
variables x1, . . . , xn. Let W be the Kripke structure (S,R, π) over the atomic
propositions r1, . . . , rn, p1, . . . , pn defined by

S := {s1, . . . , sm},
R := ∅,

π(si) ∩ {rj , pj} :=

⎧⎪⎨⎪⎩
{rj , pj} iff xj occurs in Ci positively,

{rj} iff xj occurs in Ci negatively,

∅ iff xj does not occur in Ci.

Let ψ be the MDL(∧,∨,=) formula

n∨
j=1

rj ∧=(pj)

and let T := {s1, . . . , sm} the evaluation set.
It holds that ϕ ∈ 3SAT iff W,T |= ψ. Hence, 3SAT ≤p

m MDL0-MC(M).

Instead of not having modalities at all we can also allow nothing but the ♦
modality, i.e., we disallow propositional connectives and the � modality, and
model checking is NP-complete as well.

Theorem 2. Let M ⊇ {♦,=}. Then MDL-MC(M) is NP-complete.

Proof. Membership in NP follows from Proposition 1 again.
For hardness we again reduce from 3SAT. Let ϕ =

∧m
i=1 Ci be an arbitrary

3CNF formula built from the variables x1, . . . , xn. Let W be the Kripke struc-
ture (S,R, π), over the atomic propositions p1, . . . , pn, q, shown in Figure 1 and
formally defined by

S := {c1, . . . , cm, s11, . . . , s
1
n, s

0
1, . . . , s

0
n},

R ∩ {(ci, s1j), (ci, s0j)} :=

⎧⎪⎨⎪⎩
{(ci, s1j)} iff xj occurs in Ci positively,

{(ci, s0j)} iff xj occurs in Ci negatively,

∅ iff xj does not occur in Ci,

π(ci) := ∅,
π(s1j) := {pj, q},
π(s0j) := {pj}.

232 J. Ebbing and P. Lohmann

ci

s0jpj s1j pj , q

Fig. 1. Kripke structure part corresponding to the 3CNF fragment · · · ∧Ci ∧ . . . with
Ci = xj ∨

Let ψ := ♦=(p1, . . . , pn, q) and T := {c1, . . . , cm}.
It now holds that ϕ ∈ 3SAT iff W,T |= ψ. Hence, 3SAT ≤p

m MDL-MC(M)
and MDL-MC(M) is NP-hard.

If we disallow ♦ but allow � instead we have to also allow ∨ to get NP-
hardness.

Theorem 3. Let M ⊇ {�,∨,=}. Then MDL-MC(M) is NP-complete. Also,
MDLk-MC(M) is NP-complete for every k ≥ 0.

Proof. Membership in NP follows from Proposition 1 again. To prove hardness,
we will once again reduce 3SAT to this problem.

Let ϕ =
∧m

i=1 Ci be an arbitrary 3CNF formula over the variables x1, . . . , xn.
Let W be the structure (S,R, π), over the atomic propositions p1, . . . , pn, defined
as follows:

S :=
{
si|i ∈ {1, . . . ,m}

}
∪

{
rjk|k ∈ {1, . . . ,m}, j ∈ {1, . . . , n}

}
∪

{
rjk|k ∈ {1, . . . ,m}, j ∈ {1, . . . , n}

}
R ∩

⋃
j∈{1,...,n}

{(si, rji), (si, r
j
i)} :={

{(si, r1i)} iff x1 occurs in Ci (positively or negatively)
{(si, r1i), (si, r1i)} iff x1 does not occur in Ci

R ∩
⋃

k∈{1,...,n}
{(rji , rki), (r

j
i , r

k
i), (r

j
i , r

k
i), (r

j
i , r

k
i)} :=⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{(rji , r
j+1
i)} iff xj and xj+1 both occur in Ci

{(rji , r
j+1
i), (rji , r

j+1
i)} iff xj occurs in Ci but xj+1 does

not occur in Ci

{(rji , r
j+1
i), (rji , r

j+1
i)} iff xj does not occur in Ci but xj+1

does occur in Ci

{(rji , r
j+1
i), (rji , r

j+1
i)} iff neither xj nor xj+1 occur in Ci

π(si) := ∅

π(rji) :=

{
{pj} iff xj occurs in Ci positively or not at all

∅ iff xj occurs in Ci negatively

π(rji) := ∅

Complexity of Model Checking for Modal Dependence Logic 233

Let ψ be the MDL(�,∨,=) formula

n∨
j=1

�j =(pj)

and let T := {s1, . . . , sm}.
Then ϕ ∈ 3SAT iff W,T |= ψ and therefore MDL0-MC(�,∨,=) is NP-

complete. Intuitively, the direction from left to right holds because the disjunc-
tion splits the team {s1, . . . , sm} of all starting points of chains of length n into
n subsets (one for each variable) in the following way: si is in the subset that be-
longs to xj iff xj satisfies the clause Ci under the variable valuation that satisfies
ϕ. Then the team that belongs to xj collectively satisfies the disjunct �j =(pj)

of ψ. For the reverse direction the rji states are needed to ensure that a state si
can only satisfy a disjunct �j =(pj) if there is a variable xj that occurs in clause
Ci (positively or negatively) and satisfies Ci.

If we disallow both ♦ and ∨ the problem becomes tractable since the non-
deterministic steps in the model checking algorithm are no longer used.

Theorem 4. Let M ⊆ {�,∧,¬,=}. Then MDL-MC(M) is in P.

The NP model checking algorithm becomes a P algorithm if we leave out the
only nondeterministic steps for ∨ and ♦.

Note that this deterministic polynomial time algorithm is a top-down al-
gorithm and therefore works in a fundamentally different way than the usual
deterministic polynomial time bottom-up algorithm for plain modal logic.

Now we have seen that MDL-MC(M) is tractable if ∨ /∈M and ♦ /∈M since
these two operators are the only source of non-determinism. On the other hand,
MDL-MC(M) is NP-complete if =(·) ∈ M and either ♦ ∈ M (Theorem 2) or
∨, � ∈M (Theorem 3). The remaining question is what happens if only ∨ (but
not �) is allowed. Unfortunately this case remains open for now.

4 Bounded Arity Fragments

We will now show that MDL-MC({∨,¬,=}) is in P if we impose the follow-
ing constraint on the dependence atoms in formulae given as part of problem
instances: there is a constant k ∈ N such that in any input formula it holds
for all dependence atoms of the form =(p1, . . . , pj, p) that j ≤ k. To prove this
statement we will decompose it into two smaller propositions.

First we show that even the whole {∨,¬,=} fragment with unrestricted =(·)
atoms is in P as long as it is guaranteed that in every input formula at least
a specific number of dependence atoms – depending on the size of the Kripke
structure – occur.

234 J. Ebbing and P. Lohmann

We will first formalize a notion of “many dependence atoms in a formula”.

Definition 7. For ϕ ∈ MDL let σ(ϕ) be the number of positive dependence
atoms in ϕ (where different occurences of the same atom are counted more than
once). Let � : N→ R an arbitrary function and � ∈ {<,≤, >,≥,=}. Then MDL-
MC� �(n)(M) (MDLk-MC��(n)(M) resp.) is the problem MDL-MC(M) (MDLk-
MC(M) resp.) restricted to inputs 〈W = (S,R, π), T, ϕ〉 that satisfy the condition
σ(ϕ) � �(|S|).

Note that, e.g., σ(=(p)∨=(p)) = 2. The rationale for this is that =(p)∨=(p) is
not equivalent to =(p).

If we only allow ∨ and we are guaranteed that there are many dependence
atoms in each input formula then model checking becomes trivial – even for the
case of unbounded dependence atoms.

Proposition 2. Let M ⊆ {∨,¬,=}. Then MDL-MC>log2(n)
(M) is trivial, i.e.,

for all Kripke structures W = (S,R, π) and all ϕ ∈ MDL(M) such that the
number of positive dependence atoms in ϕ is greater than log2(|S|) it holds for
all T ⊆ S that W,T |= ϕ.

Note that MDL-MC>log2(n)
(M) is only trivial, i.e., all instance structures satisfy

all instance formulae, if we assume that only valid instances, i.e., where the
number of dependence atoms is guaranteed to be large enough, are given as
input. However, if we have to verify this number the problem clearly remains in
P.

Now we consider the case in which we have very few dependence atoms (which
have bounded arity) in each formula. We use the fact that there are only a few
dependence atoms by searching through all possible determining functions for
the dependence atoms. Note that in this case we do not need to restrict the set
of allowed MDL operators as we have done above.

Proposition 3. Let k ≥ 0. Then MDLk-MC≤log2(n)
is in P.

The idea of the algorithm is to guess for every dependence atom by which deter-
mining function it is to be interpreted. Then bottom-up model checking as for
plain modal logic is carried out. The guessing can be done deterministically in
polynomial time because the number of dependence atoms is only logarithmic
and their arity is bounded.

With Proposition 2 and Proposition 3 we have shown the following theorem.

Theorem 5. Let M ⊆ {∨,¬,=}, k ≥ 0. Then MDLk-MC(M) is in P.

Proof. Given a Kripke structure W = (S,R, π) and a MDLk(∨,¬,=) formula ϕ
the algorithm counts the number m of dependence atoms in ϕ. If m > log2(|S|)
the input is accepted (because by Proposition 2 the formula is always fulfilled in
this case). Otherwise the algorithm from the proof of Proposition 3 is used.

And there is another case where we can use the exhaustive determining function
search.

Complexity of Model Checking for Modal Dependence Logic 235

Theorem 6. Let M ⊆ {�,♦,¬,=}. Then MDLk-MC(M) is in P for every
k ≥ 0.

Proof. Let ϕ ∈ MDLk(M). Then there can be at most one dependence atom in
ϕ because M only contains unary operators. Therefore we can once again use
the algorithm from the proof of Proposition 3.

In Theorem 2 we saw that MDL-MC(♦,=) is NP-complete. The previous theo-
rem includes MDLk-MC(♦,=) ∈ P as a special case. Hence, the question remains
which are the minimal supersets M of {♦,=} such that MDLk-MC(M) is NP-
complete.

We will now see that in the case of k ≥ 1 adding either ∧ (Theorem 7) or ∨
(Theorem 8) is already enough to get NP-completeness again. For the case of
k = 0 the question remains open.

Theorem 7. Let M ⊇ {♦,∧,=}. Then MDLk-MC(M) is NP-complete for ev-
ery k ≥ 1.

Proof. Membership in NP follows from Proposition 1. For hardness we once
again reduce 3SAT to our problem.

For this purpose let ϕ :=
∧m

i=1 Ci be an arbitrary 3CNF formula built from
the variables x1, . . . , xn. LetW be the Kripke structure (S,R, π) formally defined
by

S := {ci | i ∈ {1, . . . ,m}} ∪ {sj,j′ , sj,j′ | j, j′ ∈ {1, . . . , n}}
R := {(ci, s1,j) | xj ∈ Ci} ∪ {(ci, s1,j) | xj ∈ Ci}

∪ {(sk,j , sk+1,j) | j ∈ {1, . . . , n}, k ∈ {1, . . . , n− 1}}
π(ci) := ∅

π(sj,j′) :=

{
{pj, q} iff j = j′

∅ else

π(sj,j′) :=

{
{pj} iff j = j′

∅ else
.

And let ψ be the MDL(♦,∧,=) formula

♦
(

n∧
j=1

♦j−1 =(pj , q)

)
≡ ♦

(
=(p1, q) ∧ ♦=(p2, q) ∧ ♦♦=(p3, q) ∧ . . . ∧ ♦n−1 =(pn, q)

)
.

Then it holds that ϕ ∈ 3SAT iff W, {c1, . . . , cm} |= ψ.

Theorem 8. Let M ⊇ {♦,∨,=}. Then MDLk-MC(M) is NP-complete for ev-
ery k ≥ 1.

Proof. As above membership in NP follows from Proposition 1 and for hardness
we reduce 3SAT to our problem.

For this purpose let ϕ :=
∧m

i=1 Ci be an arbitrary 3CNF formula built from
the variables p1, . . . , pn. Let W be the Kripke structure (S,R, π) formally defined

236 J. Ebbing and P. Lohmann

by
S := {ci,j | i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}}

∪ {xj,j′ | j, j′ ∈ {1, . . . , n}, j′ ≤ j}
R := {(ci,j , ci,j+1) | i ∈ {1, . . . ,m}, j ∈ {1, . . . , n− 1}}

∪ {(xj,j′ , xj,j′+1) | j ∈ {1, . . . , n}, j′ ∈ {1, . . . , j − 1}}

π(xj,j′) :=

{
{q, pj} iff j′ = j
{q} iff j′ < j

π(ci,j) :=

⎧⎨⎩
{q} iff pj ,¬pj /∈ Ci

{pj} iff pj ∈ Ci

∅ iff ¬pj ∈ Ci

.

Let ψ be the MDL formula

n∨
j=1

♦j−1 =(q, pj)

≡ =(q, p1) ∨ ♦=(q, p2) ∨ ♦♦=(q, p3) ∨ · · · ∨ ♦n−1 =(q, pn).

Once again it can be shown that ϕ ∈ 3SAT iff W, {c1,1, . . . , cm,1, x1,1, x2,1, . . . ,
xn,1} |= ψ.

5 Conclusion

In this paper we showed that MDL-MC is NP-complete (Theorem 1). Further-
more we have systematically analyzed the complexity of model checking for
fragments of MDL defined by restricting the set of modal and propositional op-
erators. It turned out that there are several fragments which stay NP-complete,
e.g., the fragment obtained by restricting the set of operators to only �,∨ and
= (Theorem 3) or only ♦ and = (Theorem 2). Intuitively, in the former case the
NP-hardness arises from existentially guessing partitions of teams while evalu-
ating disjunctions and in the latter from existentially guessing successor teams
while evaluating ♦ operators. Consequently, if we allow all operators except ♦
and ∨ the complexity drops to P (Theorem 4).

For the fragment only containing ∨ and = on the other hand we were not
able to determine whether its model checking problem is tractable. Our inability
to prove either NP-hardness or containment in P led us to restrict the arity of
the dependence atoms. For the aforementioned fragment the complexity drops
to P in the case of bounded arity (Theorem 8). Furthermore, some of the cases
which are known to be NP-complete for the unbounded case drop to P in the
bounded arity case as well (Theorem 6) while others remain NP-complete but
require a new proof technique (Theorems 7 and 8). Most noteworthy in this
context are probably the results concerning the ♦ operator. With unbounded
dependence atoms this operator alone suffices to get NP-completeness whereas
with bounded dependence atoms it needs the additional expressiveness of either
∧ or ∨ to get NP-hardness.

Interestingly, in none of our reductions to show NP-hardness the MDL formula
depends on anything else but the number of propositional variables of the input

Complexity of Model Checking for Modal Dependence Logic 237

3CNF formula. The structure of the input formula is always encoded by the
Kripke structure alone. So it seems that even for a fixed formula the model
checking problem could still be hard. This, however, cannot be the case since,
by Theorem 3, model checking for a fixed formula is always in P.

Further open questions, apart from the unclassified unbounded arity case,
are related to two cases with bounded arity dependence atoms. In Theorems 7
and 8 it was only possible to prove NP-hardness for arity at least one and it
is not known what happens in the case where the arity is zero. Additionally, it
might be interesting to determine the exact complexity for the cases which are
in P since we have not shown any lower bounds in these cases so far.

References

1. Beyersdorff, O., Meier, A., Mundhenk, M., Schneider, T., Thomas, M., Vollmer,
H.: Model checking CTL is almost always inherently sequential. Logical Methods
in Computer Science (2011), http://arxiv.org/abs/1103.4990v1

2. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state con-
current systems using temporal logic specifications. ACM Trans. Program. Lang.
Syst. 8(2), 244–263 (1986)

3. Ebbing, J., Lohmann, P.: Complexity of model checking for modal dependence
logic. CoRR abs/1104.1034v1 (2011), http://arxiv.org/abs/1104.1034v1

4. Hemaspaandra, E.: The complexity of poor man’s logic. CoRR cs.LO/9911014v2
(2005), http://arxiv.org/abs/cs/9911014v2

5. Hemaspaandra, E., Schnoor, H., Schnoor, I.: Generalized modal satisfiability. J.
Comput. Syst. Sci. 76(7), 561–578 (2010)

6. Lewis, H.: Satisfiability problems for propositional calculi. Mathematical Systems
Theory 13, 45–53 (1979)

7. Lohmann, P., Vollmer, H.: Complexity Results for Modal Dependence Logic. In:
Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 411–425. Springer,
Heidelberg (2010), http://dx.doi.org/10.1007/978-3-642-15205-4_32

8. Sevenster, M.: Model-theoretic and computational properties of modal de-
pendence logic. Journal of Logic and Computation 19(6), 1157–1173 (2009),
http://logcom.oxfordjournals.org/cgi/content/abstract/exn102v1

9. Väänänen, J.: Dependence logic: A new approach to independence friendly logic.
London Mathematical Society Student Texts, vol. 70. Cambridge University Press
(2007)

10. Väänänen, J.: Modal dependence logic. In: Apt, K.R., van Rooij, R. (eds.) New
Perspectives on Games and Interaction, Texts in Logic and Games, vol. 4, pp.
237–254. Amsterdam University Press (2008)

http://arxiv.org/abs/1103.4990v1
http://arxiv.org/abs/1104.1034v1
http://arxiv.org/abs/cs/9911014v2
http://dx.doi.org/10.1007/978-3-642-15205-4_32
http://logcom.oxfordjournals.org/cgi/content/abstract/exn102v1

Multitape NFA: Weak Synchronization

of the Input Heads

Ömer Eğecioğlu1, Oscar H. Ibarra1,�, and Nicholas Q. Tran2

1 Department of Computer Science
University of California, Santa Barbara, CA 93106, USA

{omer,ibarra}@cs.ucsb.edu
2 Department of Mathematics & Computer Science
Santa Clara University, Santa Clara, CA 95053, USA

ntran@math.scu.edu

Abstract. Given an n-tape nondeterministic finite automaton (NFA)
M with a one-way read-only head per tape and a right end marker $
on each tape, and a nonnegative integer k, we say that M is weakly k-
synchronized if for every n-tuple x = (x1, . . . , xn) that is accepted, there
is a computation on x such that at any time during the computation,
no pair of input heads, neither of which is on $, are more than k cells
apart. As usual, an n-tuple x = (x1, . . . , xn) is accepted if M eventually
reaches the configuration where all n heads are on $ in an accepting
state. We show decidable and undecidable results concerning questions
such as: (1) Given M , is it weakly k-synchronized for some k (resp., for
a specified k) and (2) Given M , is there a weakly k-synchronized M ′ for
some k (resp., for a specified k) such that L(M ′) = L(M)? Most of our
results are the strongest possible in the sense that slight restrictions on
the models make the undecidable problems decidable. A few questions
remain open.

Keywords: multitape NFA, weakly synchronized, (un)decidability.

1 Introduction

Motivated by applications to verification problems in string manipulating pro-
gram (see, e.g., [5, 6, 7] for discussions on the need to validate input strings to
avoid security vulnerabilities such as SQL injection attack), we look at the prob-
lem of whether the input heads in a multitape nondeterministic finite automaton
(NFA) are weakly k-synchronized, i.e., for each accepted input there is an accept-
ing computation where no pair of inputs heads, neither of which is on $, are more
than k tape cells apart at any time.

In a recent paper [2], we studied a different notion of head synchronization: an
n-tape NFA M is strongly k-synchronized if at any time during any computation
on any input n-tuple (x1, . . . , xn) (accepted or not), no pair of input heads,

� Supported in part by NSF Grants CCF-1143892 and CCF-1117708.

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 238–250, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Multitape NFA: Weak Synchronization of the Input Heads 239

neither of which is on $, are more than k tape cells apart. In [2], we showed the
following (among other things):

(**) It is decidable to determine, given an n-tape NFA M , whether it is k-
synchronized for some k, and if this is the case, the smallest such k can be
found.

Strong synchronization (studied in [2]) is a more restrictive requirement than
what we investigate in this paper. Obviously, a strongly synchronized machine
is also weakly synchronized, but the converse is not true. Consider, e.g., the set
L = {(am$, bn$) | m,n > 0}. We can construct a 2-tape NFA M , which when
given input (am$, bn$), nondeterministically executes (1) or (2) below:

1. M reads am$ on tape 1 until head 1 reaches $, and then reads bn$ on tape
2 until head 2 reaches $ and then accepts.

2. M reads the symbols on the two tapes simultaneously until one head reaches
$. Then the other head scans the remaining symbols on its tape and accepts.

Then M is not strongly synchronized, because of (1). However, M is weakly
synchronized (in fact, weakly 0-synchronized) because every tuple (am$, bn$) can
be accepted in a computation as described in (2). Thus strongly synchronized
implies weakly synchronized, but not conversely.

It turns out that questions concerning weak synchronization are harder to
answer than those for strong synchronization. Moreover, these two cases give
some contrasting results. For example we show that, unlike (**) above, it is un-
decidable to determine, given a 2-ambiguous 2-tape NFA, whether it is weakly
k-synchronized. However, the problem is decidable if M is 1-ambiguous, i.e.,
unambiguous. (A machine is k-ambiguous if there are at most k accepting com-
putations for any input. Note that deterministic is a special case of 1-ambiguous.)

Note: Some proofs are omitted due to lack of space. All proofs will be given in
a full version of the paper.

2 Preliminaries

An n-tape NFA M is a finite automaton with n tapes where each tape contains a
string over input alphabet Σ. Each tape is read-only and has an associated one-
way input head. We assume that each tape has a right end marker $ (not in Σ).
On a given n-tuple input x = (x1, . . . , xn), M starts in initial state q0 with all
the heads on the first symbols of their respective tapes. The transition function δ
of M with state set Q is a mapping from Q× (Σ∪{$})n → 2Q×{0,1}n

. If M is in
state q with head Hi on symbol ai and (p, d1, . . . , dn) is in δ(q, ai, . . . , an), then
the machine moves Hi in direction di which is 1 or 0 (for right move or stationary
move), and enters state p. When a head reaches the end marker $, that head has
to remain on the end marker. The input x is accepted if M eventually reaches
the configuration where all n heads are on $ in an accepting state.

Let M be an n-tape NFA and k ≥ 0. M is weakly k-synchronized if for every
n-tuple x = (x1, . . . , xn) that is accepted, there is a computation on x such that

240 Ö. Eğecioğlu, O.H. Ibarra, and N.Q. Tran

at any time during the computation, no pair of input heads, neither of which
is on $, are more than k cells apart. Notice that, since the condition in the
definition concerns pairs of heads that are both on symbols in Σ, if one of these
two heads is on $, then we can stipulate that the condition is automatically
satisfied, irrespective of the distance between the heads. In particular, if k = 0,
then all heads move to the right synchronously at the same time (except for
heads that reach the right end marker early). M is weakly synchronized if it is
weakly k-synchronized for some k.

An n-tape NFA that is deterministic is called an n-tape DFA. An n-tape NFA
(DFA) can be augmented with a finite number of reversal-bounded counters. At
each step, each counter (which is initially set to zero and can never become
negative) can be incremented by 1, decremented by 1, or left unchanged and can
be tested for zero. The counters are reversal-bounded in the sense that there is
a specified r such that during any computation, no counter can change mode
from increasing to decreasing and vice-versa more than r times. A counter is 1-
reversal if once it decrements, it can no longer increment. Clearly, an r-reversal
counter can be simulated by �(r + 1)/2(1-reversal counters.

Given an n-tuple (x1, . . . , xn), denote by 〈x1, . . . , xn〉 an n-track string where
the symbols of xi’s are left-justified (i.e., the symbols are aligned) and the shorter
strings are right-filled with blanks (λ) to make all tracks the same length. For
example, 〈01, 1111, 101〉 has 01λλ on the upper track, 1111 on the middle track,
and 101λ on the lower track. Given a set L of n-tuples, define 〈L〉 = {〈x〉 | x ∈ L}.

Lemma 1. Let L a set of n-tuples. Then L is accepted by a weakly 0-synchronized
n-tape NFA if and only if 〈L〉 is regular.

Let N be the set of nonnegative integers and k be a positive integer. A sub-
set Q of Nk is a linear set if there exist vectors v0, v1, . . . , vn in Nk such that
Q = {v0 + t1v1 + · · · + tnvn | t1, . . . , tn ∈ N}. The vectorsv0 (referred to as the
constant vector) and v1, . . . , vn (referred to as the periods) are called the gener-
ators of the linear set Q. The set Q ⊆ Nk is semilinear if it is a finite union of
linear sets. The empty set is a trivial (semi)linear set, where the set of generators
is empty. Every finite subset of Nk is semilinear – it is a finite union of linear
sets whose generators are constant vectors. Semilinear sets are closed under (fi-
nite) union, complementation and intersection. It is known that the disjointness,
containment, and equivalence problems for semilinear sets are decidable [3].

Let Σ = {a1, . . . , ak}. For w ∈ Σ∗, let |w| be the number of letters in w, and
|w|ai denote the number of occurrences of ai in w. The Parikh image P (w) of w
is the vector (|w|a1 , . . . , |w|ak

); the Parikh image of a language L is defined as
P (L) = {P (w) | w ∈ L}.

We will need the following result from [1]:

Theorem 1. The emptiness (Is L(M) = ∅?) and infiniteness (Is L(M) infi-
nite?) problems for 1-tape NFA with reversal-bounded counters are decidable.

Corollary 1. The emptiness and infiniteness problems for n-tape NFA with
reversal-bounded counters are decidable.

Multitape NFA: Weak Synchronization of the Input Heads 241

An instance I = (u1, . . . , un); (v1, . . . , vn) of the Post Correspondence Problem
(PCP) is a pair of n-tuples of nonnull strings over an alphabet with at least
two symbols. A solution to I is a sequence of indices i1, i2, . . . , im such that
ui1 . . . uim = vi1 . . . vim . It is well known that it is undecidable to determine,
given a PCP instance I, whether it has a solution.

Convention: (1) We shall also refer to a set of n-tuples accepted by an n-tape
machine as a language. (2) All input n-tuples (x1, . . . , xn) are delimited by a
right end marker $ on each tape, although sometimes the end markers are not
explicitly shown. (3) A construction is effective if it can be implemented as an
algorithm.

3 2-Ambiguous Multitape NFA

In this section, we will show that it is undecidable to determine, given a
2-ambiguous 2-tape NFA M and an integer k, whether M is weakly synchro-
nized, whether M is weakly k-synchronized for a given k, and whether there is
a weakly synchronized M ′ such that L(M) = L(M ′).

We first prove this result for general 2-tape NFA and then show how to modify
the proof so that it applies to the restricted case of 2-ambiguous 2-tape NFA.

Let I = (u1, . . . , un); (v1, . . . , vn) be an instance of the PCP. Let c and d be
new symbols. We construct a 2-tape NFA M to accept the language

L = {(xci, ydj) | i, j > 0, x �= y} ∪
{(xci, xdj) | i, j > 0, j = 2i, x is a solution of the PCP instance I}

as follows: M on input (xci, ydj) nondeterministically selects to check (a) or (b)
below:

(a) M first checks that x �= y by moving both heads in sync (0-synchronized)
until it finds the first position where x differs from y (note that this also takes
care of the case when their lengths are different). When M finds a discrep-
ancy, both heads are moved to the right in sync until one head reaches the
end marker and then the other head is moved to the right until it reaches the
end marker. Then M accepts. Note that the whole process is deterministic.

(b) M guesses a sequence of indices i1, i2, After guessing an index ij, M
verifies that uij is on tape 1, and then vij is on tape 2. This process is
repeated until both x and y are exhausted. If there is no discrepancy and
the heads reach the first c and d on their tapes, the second head moves right
twice for every right move of the first head to check that j = 2i, and then
M accepts.

There are six possible outcomes from a computation of M :

1. (xci, ydj), where x �= y and (a) is selected: there is a 0-synchronized accepting
computation of M on this input.

2. (xci, ydj), where x �= y, (b) is selected, and either the selected indices yield
a discrepancy or j �= 2i: this input will be rejected in (b).

242 Ö. Eğecioğlu, O.H. Ibarra, and N.Q. Tran

3. (xci, ydj), where x �= y, (b) is selected, and the selected indices do not yield
a discrepancy and j = 2i: this input will be accepted in (b). Note that this
input will also be accepted in (a).

4. (xci, xdj), and (a) is selected: this input will be rejected.
5. (xci, xdj), (b) is selected, and the selected indices yield a discrepancy or

j �= 2i: this input will be rejected.
6. (xci, xdj), (b) is selected, and the selected indices do not yield a discrepancy

and j = 2i: this input will be accepted.

We observe the following:

Note 1: (i) From (1) and (3), it is possible that the same input of the form
(xci, ydj), where x �= y can be accepted in both processes (a) or (b). (ii) Another
source of ambiguity is in process (b) itself – different sequences of (guessed)
indices i1, i2, ... may yield no discrepancies when matching x and y, so the same
input may be accepted in many ways in (b).

Note 2: An input of the form (xci, xdj), where the selected indices did not yield
a discrepancy (i.e., the PCP has a solution) and j = 2i, is only accepted in (b)
(it is rejected in (a)). Furthermore, since i is arbitrary, the heads will be out of
sync unboundedly.

Hence, if the PCP instance I does not have a solution, then (xci, ydj) is
accepted iff x �= y, so there is a 0-synchronized accepting computation (type
(a)). In other words, M is weakly 0-synchronized and hence 〈L(M)〉 is regular
by Lemma 1.

On the other hand, if PCP instance I has a solution, then L(M) contains
tuples of the form (xci, xd2i). We claim that L(M) cannot be accepted by any
weakly
0-synchronized 2-tape NFA. If it is, then by Lemma 1, 〈L(M)〉 is regular. But
then for large enough i, we can pump the string 〈xci, xd2i〉 to get a string
〈xci+k, xdi+kdi〉 for some k > 0 to be in 〈L(M)〉. But (xci+k, xdi+kdi) is not
in L(M), a contradiction.

To summarize, PCP instance I has a solution iff there is no weakly
0-synchronized 2-tape NFA M ′ such that L(M) = L(M ′). Furthermore, the
construction above shows that either M is weakly 0-synchronized or it is not
weakly k-synchronized for any k. Together these results yield

Theorem 2. The following problems are undecidable, given a 2-tape (and hence
multitape) NFA M :

1. Is M weakly k-synchronized for a given k?
2. Is M weakly k-synchronized for some k?
3. Is there a 2-tape (multitape) NFA M ′ that is weakly 0-synchronized (or

weakly k-synchronized for a given k, or weakly k-synchronized for some k)
such that L(M ′) = L(M)?

We now modify the construction of the 2-tape NFA M above to make it 2-
ambiguous. The sources of ambiguity are cited in Notes 1 and 2 above. Clearly,

Multitape NFA: Weak Synchronization of the Input Heads 243

since process (a) is deterministic, if we can make process (b) deterministic, then
the 2-NFA will be 2-ambiguous.

We accomplish this as follows. Instead of x, we use x′ where x′ has two
tracks: track 1 contains x and track 2 contains the “encoding” of the indices
that are used to match x and y; y remains single-track. Specifically, let I =
(u1, . . . , un); (v1, . . . , vn) be an instance of the PCP. Let #, e1, . . . , en be new
symbols. For 1 ≤ i ≤ n, let the string E(i) = ei#

|ui|−1. Thus, the length of E(i)
is equal to the length of ui. Let Δ = {#, e1, . . . , en}, and define the language:

L = {(x′ci, ydj) | i, j > 0, x′ is a 2-track tape where the first track contains x
and the second track is a string in Δ∗, x �= y} ∪{x′ci, ydj) | i, j > 0, x′ is a
2-track tape where the first track contains x and the second track is a string
E(i1) · · ·E(ir) for some i1, . . . , ir, x = y, x = ui1 · · ·uir , y = vi1 · · · vir , j = 2i}.

One can easily check that processes (a) and (b) described earlier can be made
deterministic. However, it is possible that the same input of the form (x′ci, ydj),
where x �= y can be accepted in both processes (a) or (b). (x is the first track of
x′.) Hence, M is 2-ambiguous. Therefore we have:

Theorem 3. The following problems are undecidable, given a 2-ambiguous 2-
tape (and hence multitape) NFA M :

1. Is M weakly k-synchronized for a given k?

2. Is M weakly k-synchronized for some k?

3. Is there a 2-tape (multitape) NFA M ′ that is weakly 0-synchronized (or
weakly k-synchronized for a given k, or weakly k-synchronized for some k)
such that L(M ′) = L(M)?

4 Unambiguous Multitape NFA

In this section, we show that given an unambiguous multitape NFA M and an in-
teger k, it is decidable to determine whether M is weakly synchronized, whether
M is weakly k-synchronized for a given k, and whether L(M) = L(M ′) for some
weak synchronized multitape unambiguous NFA M ′. Recall that unambiguous
multitape NFA have at most one accepting computation for every input n-tuple.
Note that multitape DFAs are a special case. The results in this section are
modifications of the corresponding results for synchronized multitape automata
in [2], and we omit their proofs.

Theorem 4. It is decidable to determine, given an unambiguous n-tape NFA
M , whether it is weakly k-synchronized for some k.

Corollary 2. It is decidable to determine, given an unambiguous n-tape NFA
M and an integer k ≥ 0, whether M is k-synchronized.

The following follows from the previous two results.

244 Ö. Eğecioğlu, O.H. Ibarra, and N.Q. Tran

Corollary 3. It is decidable to determine, given an unambiguous n-tape NFA
M , whether it is weakly k-synchronized for some k. Moreover, if it is, we can
effectively determine the smallest such k.

The above results generalize to machines with reversal-bounded counters:

Theorem 5. It is decidable to determine, given an unambiguous n-tape NFA M
augmented with reversal-bounded counters, whether it is weakly k-synchronized
for some k. Moreover, if it is, we can effectively determine the smallest such k.

5 Multitape NFA on ABO-Bounded Inputs

A language is bounded if it is a subset of a∗1 · · · a∗n for some distinct letters (sym-
bols) a1, . . . , an. A multitape NFA is unary if each tape contains a string over a
single symbol (letter); bounded if each tape contains a string from a bounded lan-
guage; and all-but-one-bounded (ABO-bounded) if all but the first tape contains
a string from a bounded language. We also refer to the inputs of such machines
as unary, bounded, ABO-bounded, respectively.

In section 3, we showed that it is undecidable to determine, given a 2-tape
NFA M and an integer k ≥ 0, whether M is weakly k-synchronized. Here we
show that the problem is decidable for n-tape NFA when the inputs are ABO-
bounded. In fact, the result holds for n-tape NFA over Σ∗ × x∗

21· · · x∗
2m2

× · · ·
× x∗

n1 · · ·x∗
nmn

for some (not necessarily distinct) nonnull strings xij .

Note that if L is a set of n-tuples of strings, then L (the complement of L)
is the set of n-tuples (x1, . . . , xn) such that (x1, . . . , xn) is in L if and only if
(x1, . . . , xn) is not in L.

An n-tape NFA is strictly k-synchronized if in any accepting computation, any
pair of the heads are within k cells apart (when neither head is on $). In compar-
ison, this condition must hold for only some accepting computation in weakly
k-synchronized machines and for any computation in strongly k-synchronized
machines.

Lemma 2. Let M be an n-tape NFA that is strictly k-synchronized that accepts
the language (set of n-tuples) L = L(M). Then:

1. We can effectively construct a strictly 0-synchronized n-tape DFA M1 ac-
cepting L.

2. We can effectively construct a strictly 0-synchronized n-tape DFA M2 ac-
cepting L.

Moreover, (1) holds for n-tape weakly k-synchronized NFA as well.

Proof. For the first part, given M , we construct an ordinary (i.e., 1-tape) NFA
A1 such that (x1, . . . , xn) is accepted by M if and only if (the aligned version)
〈x1, . . . , xn〉 is accepted by A1. This is possible as A1 need only maintain a finite
buffer of symbols in its state. A1 can then be converted to be deterministic (by
the usual subset construction), i.e., we can convert A1 to an equivalent DFA A2.

Multitape NFA: Weak Synchronization of the Input Heads 245

Then from A2, we can trivially construct a strictly 0-synchronized n-tape DFA
M1 accepting L.

For part 2, we can easily construct from the DFA A2 a DFA A3 accepting
〈x1, . . . , xn〉 if and only if A2 does not accept 〈x1, . . . , xn〉. Let L′ = {〈x1, . . .,
xn〉 | x1, . . ., xn are strings with no λ’s }. Clearly, L′ is regular and is accepted
by some DFA A4. Construct a DFA A5 accepting L(A3) ∩ L(A4). (The reason
for the intersection is to make sure that we only retain the well-formed aligned
strings.) From A5, we can then construct a strictly 0-synchronized 2-tape DFA
M2 accepting L. !"

We are now ready to prove the main result of this section. To illustrate the
construction, we consider 3-tape NFA.

Theorem 6. It is decidable to determine, given a 3-tape NFA M that accepts
a subset of Σ∗ × a∗ × b∗ (where Σ is any alphabet and a, b are symbols) and a
nonnegative integer k, whether M is weakly k-synchronized.

Proof. Construct from M a 3-tape NFA M1 over Σ∗ × a∗ × b∗ that is strictly
k-synchronized: on input (x1, x2, x3), M1 simulates the computation of M faith-
fully and accepts (x1, x2, x3) if M accepts (x1, x2, x3) and during the computa-
tion, the heads are always within k cells apart (provided no head has reached $).

From Lemma 2, part 2, we can effectively construct from M1 a strictly 0-
synchronized 3-tape DFA M2 accepting L(M1).

Clearly, M is weakly k-synchronized if and only if L(M) ⊆ L(M1) (in fact
L(M) = L(M1)), hence, if and only if L(M)∩L(M1) = ∅, i.e., L(M)∩L(M2) =
∅.

To decide the above, we construct from M and M2, a 3-tape NFA M ′ with
four 1-reversal counters C1, C2, D1, D2 that works as follows when given input
(x, ar, bs):

M ′ reads ar and bs and stores r in counters C1 and D1 and s in counters C2

and D2. Then M ′ simulates M on (x, ar, bs) by using counters C1 and C2, i,e.,
it decreases C1 (resp., C2) by 1 every time the second head (resp., third head)
of M moves right on ar (resp., bs). At the same time, M ′ also simulates M2

on (x, ar, as) using counters D1 and D2. Note that since M2 is 0-synchronized,
D1 (resp., D2) is decreased only when M moves its first head to the right on x.
M ′accepts if M and M2 accept.

It follows that M is weakly k-synchronized if and only if L(M ′) is empty,
which is decidable by Corollary 1. !"

Corollary 4. It is decidable to determine, given a 3-tape NFA M over Σ∗ × a∗1
· · · a∗r × b∗1 · · · b∗s for distinct symbols a1, . . . , ar, b1, . . . , bs and a nonnegative
integer k, whether M is weakly k-synchronized.

In fact, we can prove a stronger result:

Corollary 5. It is decidable to determine, given a 3-tape NFA M over Σ∗ ×
v∗1 · · · v∗r × w∗

1 · · · w∗
s for (not necessarily distinct) nonnull strings v1, · · · , vr,

w1, . . . , ws and a nonnegative integer k, whether M is weakly k-synchronized.

246 Ö. Eğecioğlu, O.H. Ibarra, and N.Q. Tran

The above corollary generalizes to multitape NFA:

Corollary 6. It is decidable to determine, given an n-tape NFA M over Σ∗ ×
x∗
21· · · x∗

2m2
× · · · × x∗

n1 · · ·x∗
nmn

for some (not necessarily distinct) nonnull
strings xij ’s and a nonnegative integer k, whether M is weakly k-synchronized.

6 Multitape NFA on Unary Inputs

In this section, we look at decision problems for multitape NFA on unary inputs.

6.1 Synchronizability

In Theorem 3, we saw that if the inputs of the 2-tape NFA M is unrestricted,
it is undecidable to determine if there exists a weakly 0-synchronized 2-tape
NFA M ′ equivalent to M . But what about the case when one tape has bounded
input, or when both tapes have bounded inputs? At present, we do not know
the answer. However, as the following shows, even for the unary case, there are
machines that cannot be converted to be weakly 0-synchronized:

Proposition 1. L = {(am, bn) | m > 0, n = 2m} can be accepted by a 2-tape
NFA M but cannot be accepted by a weakly 0-synchronized 2-tape NFA.

6.2 Weakly Synchronized Regular Languages

First we consider the extension of the definition of strongly k-synchronized and
weakly k-synchronized to languages (instead of machines in the original defini-
tions) over a binary alphabet Σ = {a, b} and show that whether or not a regular
language is weakly synchronized is decidable. We do so via a structural char-
acterization of weakly synchronized regular languages, which is of independent
interest.

A word w is strongly k-synchronized if for any factorization x = uv

−k ≤ |u|a − |u|b ≤ k. (1)

A language L over Σ is strongly k-synchronized if all of its words are strongly
k-synchronized, and strongly synchronized if it is strongly k-synchronized for
some k. L is called weakly k-synchronized if for every w ∈ L, there is a corre-
sponding w′ ∈ L such that P (w′) = P (w) and w′ is strongly k-synchronized. L
is weakly synchronized if it is weakly k-synchronized for some k. Suppose M is
a DFA over Σ = {a, b}. Consider an r-cycle C in M given by the sequence of
states

q1, q2, . . . , qr+1 (2)

with r ≥ 2 and q1 = qr+1. The word associated to C is a1a2 · · ·ar where
δ(qi, ai) = qi+1 (i = 1, 2, . . . , r). When there is no ambiguity, we use C to
also denote the associated word a1a2 . . . ar. We call C balanced if |C|a = |C|b. C
is a-heavy if |C|a > |C|b, and b-heavy if |C|a < |C|b. C is a simple cycle if qi �= qj
(i, j = 1, 2, . . . , r) in (2).

Multitape NFA: Weak Synchronization of the Input Heads 247

Lemma 3. Suppose M is a DFA with m states with no unbalanced simple cycles.
If C is a cycle in M then the word C is strongly m-synchronized.

Theorem 7. L is weakly synchronized iff the minimum state DFA M for L has
no unbalanced simple cycles.

Proof. Suppose M has an unbalanced simple r-cycle C. We will show that L
is not weakly synchronized. WLOG C is a-heavy. By the minimality of M , the
beginning state q1 of C is reachable from the initial state of M , and there is a
path from qr+1 = q1 to a final state of M . It follows that we can pump C: i.e.
there exists words x, y such that for every t ≥ 0, wt = xCty ∈ L. Then P (wt) =
(c0+ c1t, d0+ d1t) for constants c0, c1, d0, d1 ≥ 0 with c1 > d1. Therefore for any
word w′

t with P (wt) = P (w′
t), taking u = w′

k, |u|a−|u|b = c0−d0+(c1−d1)t→
∞ as t → ∞, so (1) cannot hold for any fixed k. Therefore L is not weakly
synchronized. Conversely, assume that every simple cycle in M is balanced. We
will show that L is strongly synchronized, and therefore weakly synchronized. Let
m be the number of states of M . We show that L is strongly 2m-synchronized.
Any w accepted by M can be written as w = x0C1x1C2 . . . Ctxt where each Ci is
a balanced cycle (not necessarily simple) and |x0x1 · · ·xt| < m. By lemma 3, each
cycle is strongly m-synchronized. Since the contribution of the part x0x1 · · ·xt

to the difference of the number of occurrences of a’s and b’s in w is at most m,
any prefix u of w satisfies (1) with k = 2m. !"

Corollary 7. A regular language L is strongly synchronized iff it is weakly syn-
chronized.

Corollary 8. It is decidable whether a regular language L is weakly synchro-
nized.

Finally, we can state the condition for the weak synchronizability of a regular
language L in terms of its Parikh image. Consider a linear set that appears in
P (L): {(a0, b0) + k1(a1, b1) + · · · + ks(as, bs) | k1, k2, . . . , ks ≥ 0}. Each of the
vectors (ai, bi), i = 1, . . . , s are called periods. A period (ai, bi) is balanced iff
ai = bi. If ai > bi, then the period is a-heavy, if bi > ai then it is b-heavy.
These notions are translations of the ones on cycles to the Parikh images where
a balanced period corresponds to a balanced simple cycle, etc. Therefore

Corollary 9. For a regular language L over Σ = {a, b}, the following are equiv-
alent:

1. L is strongly synchronized,
2. L is weakly synchronized,
3. The minimum state DFA for L has no unbalanced simple cycles,
4. The Parikh image P (L) has no unbalanced periods.

6.3 Weakly Synchronized NFA on Unary Inputs

In Section 3, we showed that it is undecidable to determine, given a 2-tape
NFA M , whether it is weakly k-synchronized for some k. The problem is also

248 Ö. Eğecioğlu, O.H. Ibarra, and N.Q. Tran

Fig. 1. An ordinary NFA that accepts accepting computations of a 2-tape NFA

undecidable when k is specified, even for k = 0. In Section 5, we showed that
it is decidable to determine, given a 2-tape NFA M one of whose tapes con-
tains a string over a bounded language and an integer k, whether it is weakly
k-synchronized. We currently do not know if this restriction would make deter-
mining whether a 2-tape NFA M is weakly k-synchronized for some unspecified
k decidable. It appears to be a difficult combinatorial problem. However, for the
special case when the two tapes are unary, we can show that the problem is
decidable.

Let M be a 2-tape NFA where the inputs are of the form (an$, bm$). We
assume that exactly one of the heads moves during the computation of M .

The transitions of M can be labeled with letters from Σ = {a, b, $}. A head
movement on the first (second) tape is labeled with a (b). The last move by each
head is labeled $. In this way each computation path of M can be identified
with a word over Σ. Each such word contains exactly two occurrences of the
symbol $. We will not consider these when we look at the Parikh vectors of the
words accepted byM . Since M is nondeterministic, there may be many accepting
computation paths w for an accepted input, but each of these has Parikh vector
P (w) = (an, bm).

M can be trivially modified into an ordinary NFA M ′ that accepts the ac-
cepting computations of M as shown in Figure 1.

There are two types of accepting computations:

1. w = xy with x ∈ {a, b}∗ and y ∈ {b}∗,
2. w = xy with x ∈ {a, b}∗ and y ∈ {a}∗.

The first type comes from accepting computations in which the first head reaches
$ first, and then the computation continues on tape two with the second head
moving to the right consuming b’s until it reaches $ on the second tape. The
second type is similar, with the roles of the two tapes interchanged. Consequently,
whether M is weakly k-synchronized is equivalent to showing that for any given
word w ∈ L(M ′), there is a strongly k-synchronized word u such that either
ubj ∈ L(M ′) and P (w) = P (u)+(0, j), or uai ∈ L(M ′) and P (w) = P (u)+(i, 0).

Multitape NFA: Weak Synchronization of the Input Heads 249

Theorem 8. Suppose M is a unary 2-tape NFA. Then it is decidable whether
or not M is weakly synchronized.

Proof. We can assume that exactly one of the heads moves one cell to the right
in each step until the heads reach $. Let L = L(M). We can assume that the
automata that appear in the boxes in Figure 1 are minimum state DFA. The lan-
guage accepted by the upper part of Figure 1 can be written as the disjoint union
of languages accepted by pairs of DFA, corresponding to final states of Ma,b

1 . If

Ma,b
1 has

t final states, then this results in t pairs of minimum state DFA (F a,b
i , N b

i).

The corresponding language accepted is the concatenation L(F a,b
i)L(N b

i). There
is a similar decomposition for the language accepted by the lower part of Figure
1. For any given i, consider Pi = P (F a,b

i). Eliminating each unbalanced period
from each of the linear sets in Pi results in a new Parikh image P ′

i . This is the

Parikh image of the automaton obtained from F a,b
i by eliminating unbalanced

cycles as follows.
Consider a simple unbalanced r-cycle C of F a,b

i given by q1, q2, . . . , qr+1 with
r ≥ 2 and q1 = qr+1. Let a1 · · ·ar ∈ Σ∗ be the word associated where δ(qi, ai) =
qi+1 (i = 1, 2, . . . , r) Consider the new alphabet Σ′ = Σ∪{x1, x2, . . . , xr}. Alter
the labels on C by replacing ai (ai ∈ {a, b}) by the symbol xi. Denote by L01

the language of all words over Σ′ taking the start state of F a,b
i to q1, and by L1f

the language of all words over Σ′ taking qr+1 = q1 to the final state of F a,b
i . If

h is the homomorphism defined by h(xi) = ai, (i = 1, . . . , r), then the language

h
(
L(F a,b

i) \ L01x1x2 · · ·xrL1f

)
is the language of words in L(F a,b

i) which are accepted without traversing the

cycle C. Since there are finitely many simple cycles in F a,b
i , in finitely many steps

we can take away from L(F a,b
i) all of the words that traverse an unbalanced cycle

of F a,b
i . This has the effect of deleting all of the unbalanced periods from the

linear sets that appear in the Parikh map.
Let P ′

i be the Parikh image of the resulting automaton, and let Pu be the
union of the sets P ′

i +P (N b
i) over i. For the lower part of the diagram, a similar

construction results in the set P l. By the characterization of weak synchro-
nization preceding the statement of Theorem 8, M is weakly synchronized iff
P (L) ⊆ Pu∪P l. Each of the Parikh images above can effectively be constructed
and the containment required can be effectively checked, since Parikh images of
regular languages are semilinear. !"

7 Conclusion

We looked at decision questions concerning weak synchronization of the heads
of multitape NFA. Most of our results are the strongest possible in the sense
that slight restrictions on the models make the undecidable problems decidable.

250 Ö. Eğecioğlu, O.H. Ibarra, and N.Q. Tran

Some questions remain open. In particular, is it decidable to determine, given
a 2-tape NFA whose tapes are over bounded languages, whether it is weakly
k-synchronized for some k ? This question seems quite difficult – we have only
been able to resolve this question (in the positive) for the bounded unary case.

References

1. Ibarra, O.H.: Reversal-bounded multicounter machines and their decision problems.
J. Assoc. Comput. Mach. 25, 116–133 (1978)

2. Ibarra, O.H., Tran, N.: On synchronized multitape and multihead automata. In:
Proc. of the 13th Int. Workshop on Descriptional Complexity of Formal Systems
(DCFS 2011), pp. 184–197 (2011)

3. Ginsburg, G., Spanier, E.: Bounded Algol-like languages. Trans. of the Amer. Math.
Society 113, 333–368 (1964)

4. Parikh, R.J.: On context-free languages. J. Assoc. Comput. Mach. 13, 570–581
(1966)

5. Yu, F., Bultan, T., Cova, M., Ibarra, O.H.: Symbolic String Verification: An
Automata-Based Approach. In: Havelund, K., Majumdar, R. (eds.) SPIN 2008.
LNCS, vol. 5156, pp. 306–324. Springer, Heidelberg (2008)

6. Yu, F., Bultan, T., Ibarra, O.H.: Symbolic String Verification: Combining String
Analysis and Size Analysis. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009.
LNCS, vol. 5505, pp. 322–336. Springer, Heidelberg (2009)

7. Yu, F., Bultan, T., Ibarra, O.H.: Relational String Verification Using Multi-track
Automata. In: Domaratzki, M., Salomaa, K. (eds.) CIAA 2010. LNCS, vol. 6482,
pp. 290–299. Springer, Heidelberg (2011)

Visibly Pushdown Transducers with Look-Ahead�

Emmanuel Filiot1 and Frédéric Servais2

1 Université Libre de Bruxelles
2 Hasselt University and Transnational University of Limburg

Abstract. Visibly Pushdown Transducers (VPT) form a subclass of pushdown
transducers. In this paper, we investigate the extension of VPT with visibly push-
down look-ahead (VPTla). Their transitions are guarded by visibly pushdown
automata that can check whether the well-nested subword starting at the cur-
rent position belongs to the language they define. First, we show that VPTla are
not more expressive than VPT, but are exponentially more succinct. Second, we
show that the class of deterministic VPTla corresponds exactly to the class of
functional VPT, yielding a simple characterization of functional VPT. Finally,
we show that while VPTla are exponentially more succinct than VPT, checking
equivalence of functional VPTla is, as for VPT, EXPT-C. As a consequence, we
show that any functional VPT is equivalent to an unambiguous one.

1 Introduction

Visibly pushdown transducers (VPT) [17,9] form an interesting subclass of pushdown
transducers (PT). Several problems that are undecidable for PT are decidable for VPT,
noticeably: functionality is decidable in PTIME, k-valuedness in NPTIME and equiva-
lence of functional VPT is EXPT-C [9].

Visibly pushdown machines [1], automata (VPA) or transducers, are pushdown ma-
chines such that the behavior of the stack, i.e. whether it pushes or pops, is visible in the
input word. Technically, the input alphabet is partitioned into call, return and internal
symbols. When reading a call the machine must push a symbol on the stack, when read-
ing a return symbol it must pop and when reading an internal symbol it cannot touch
the stack. The partitioning of the input alphabet induces a nesting structure of the input
words [2]. A call symbol delimits an additional level of nesting, while a return symbol
is a position in the word that ends a level of nesting. A word is well-nested if each call,
respectively each return, has a matching return, respectively a matching call. Visibly
pushdown transductions are transductions that can be defined by VPT.

Unranked trees in their linear form (such as XML documents) can be viewed as
well-nested words. VPT are therefore a suitable formalism for unranked tree transfor-
mations. In particular, they can express operations such as node deletion, renaming and

� This research was supported by the projects: Gasics: “Games for Analysis and Synthesis
of Interactive Computational Systems”, http://www.ulb.ac.be/di/gasics/, and Moves: “Funda-
mental Issues in Modelling, Verification and Evolution of Software”, http://moves.ulb.ac.be,
a PAI program funded by the Federal Belgian Government. Partially funded by the Future
and Emerging Technologies (FET) programme within the Seventh Framework Programme for
Research of the European Commission, under the FET-Open grant agreement FOX, No. FP7-
ICT-233599.

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 251–263, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

252 E. Filiot and F. Servais

insertion. Furthermore, over well-nested words, a simple and expressive subclass of
VPT, the class of well-nested VPT [9], is closed under composition and has a decid-
able type checking problem. In the setting of XML documents, VPA, as they read the
tree in a left-to-right depth-first traversal manner, are well-suited for streaming vali-
dation [11,15] or streaming XML queries [10]. In the same way well-nested VPT are
amenable to define streaming transformations.

In this paper, one of our motivations is to give a simple characterization of func-
tional VPT that can be checked easily. Deterministic VPT are not expressive enough
to capture all functional VPT, as for instance swapping the first and last letters of a
word cannot be done deterministically. Instead of non-determinism, we show that some
limited inspection of the longest well-nested subword starting at the current position
(called the current well-nested prefix) is required to capture (non-deterministic) func-
tional VPT. More precisely, we show that functional VPT-transductions are captured
by deterministic VPT extended with visibly pushdown look-aheads that inspect the cur-
rent well-nested prefix. Moreover, inspecting the current well-nested prefix is somehow
the minimal necessary information to capture all functional VPT.

In this paper, we therefore introduce and investigate the class of VPT with visibly
pushdown look-ahead. A VPT with visibly pushdown look-ahead (VPTla) is a VPT
such that call transitions are guarded with visibly pushdown automata (VPA). When
reading a call at position i, a VPTla can apply a call transition provided the longest
well-nested word starting at position i is included in the language of the VPA of the
transition. In the same way one can define VPA with look-ahead (VPAla). Our main
contributions are the following:

1. VPTla (resp. VPAla) are as expressive as VPT (resp. VPA), but exponentially more
succinct.

For this we present an exponential construction that shows how a VPT can simulate
look-aheads. Moreover we show this exponential blow-up is unavoidable.

2. Deterministic VPTla and functional VPT are equally expressive.

This equivalence is obtained by a construction (which is also exponential) that replaces
the non-determinism of the functional VPT with deterministic look-ahead. This also
yields a simple characterization of functional VPT.

3. Functional VPT and unambiguous VPT are equally expressive.

As an application of look-aheads, we show that a nice consequence of the constructions
involved in contributions 1 and 2 is that functional VPT are effectively characterized by
unambiguous VPT. This result was already known for finite-state transducers [4,14,5]
and here we extend it to VPT with rather simple constructions based on the concept of
look-aheads. This characterization of functional finite-state transducers has been gen-
eralized to k-valued and k-ambiguous finite-state transducers [18] and recently with a
better upper-bound [13] based on lexicographic decomposition of transducers.

4. Equivalence of functional VPTla (resp VPAla) is, as for VPT (resp VPA), EXPT-C.

Therefore even though VPTla are exponentially more succinct than VPT, testing equiv-
alence of functional VPTla is not harder than for functional VPT. This is done in two
steps. First one checks equivalence of the domains. Then one checks that the union of
the two transducers is still functional. We show that testing functionality is EXPT-C

for VPTla: get rid of the look-aheads with an exponential blow-up and test in PTIME

Visibly Pushdown Transducers with Look-Ahead 253

Table 1. Decision Problems for VPA,VPAla,VPT,VPTla

VPA [1] VPAla VPT [9] VPTla

Emptiness PTIME EXPT-C PTIME EXPT-C

Universality EXPT-C EXPT-C NA NA
Inclusion EXPT-C EXPT-C EXPT-C EXPT-C

Equivalence EXPT-C EXPT-C EXPT-C (for fVPT) EXPT-C (for fVPT)
Functionality NA NA PTIME EXPT-C

the functionality of the constructed VPT. To verify that the domains are equivalent,
the naive technique (removing the look-aheads and then verifying the mutual inclusion
of the domains) yields a doubly exponential algorithm. Instead, we show that the do-
mains of VPTla are linearly reducible to alternating top-down tree automata. Testing
the equivalence of such automata can be done in EXPT [3].

Table 1 summarizes the complexity of decision problems for VPAla and VPTla.

Variants of look-ahead. We discuss in [16] some variants of look-ahead. The closure
by look-ahead (Theorem 1) and the equivalence between deterministic VPTla and func-
tional VPT (Theorem 2) still hold when the look-ahead can inspect the whole suffix and
can also be triggered on return transitions. However, when the look-ahead can inspect
only the current well-nested prefix of the form cwr (corresponding to the first subtree
of the current hedge in a tree), it is not sufficient to express all functional VPT with
determinism.

Related Works. Regular look-aheads have been mainly considered for classes of tree
transducers, where a transition can be fired provided the current subtree belongs to some
regular tree language. For instance, regular look-aheads have been added to top-down
(ranked) tree transducers in order to obtain a robust class of tree transducers that enjoys
good closure properties wrt composition [6], or to macro tree transducers (MTT) [8].
For top-down tree transducers, adding regular look-ahead strictly increases their ex-
pressive power while MTT are closed by regular look-ahead [8]. Another strong result
shows that every functional top-down tree transduction can be defined by a determinis-
tic top-down tree transducer with look-ahead [7].

Trees over an alphabet Σ can be linearized as well-nested words over the structured
alphabet Σc = {ca | a ∈ Σ}, Σr = {ra | a ∈ Σ}. It is well-known that unranked trees
can be represented by binary trees via the classical first-child next-sibling encoding
(fcns). Top-down (ranked) tree transducers can thus be used as unranked tree transduc-
ers on fcns encodings of unranked trees. Inspecting a subtree in the fcns encoding cor-
responds to inspecting the first subtree and its next-sibling subtrees in an unranked tree,
which in turn corresponds to inspecting the current longest well-nested prefix in their
linearization. However top-down tree transducers and VPT are incomparable: top-down
tree transducers can copy subtrees while VPT cannot, and VPT support concatenation
of tree sequences while top-down tree transducers cannot. For example, the transfor-
mation that removes the g node in unranked trees of the form f(g(a, . . . , a), b, b, . . . b)
produces trees of the form f(a, a, . . . , a, b, . . . b). This transformation can easily be
defined by a VPT, but not by a top-down ranked tree transducers with the fcns encod-
ing [12,9]. Indeed, in the fcns encoding, this transformation maps any tree of the form
f(g(ta, tb),⊥) to f(ta.tb,⊥), where ta, tb, ta.tb are the binary encodings of the hedges

254 E. Filiot and F. Servais

(a, . . . , a), (b, . . . , b), (a, . . . , a, b, . . . , b) respectively:

ta = a(⊥, a(⊥, . . . a(⊥,⊥) . . .)) tb = b(⊥, b(⊥, . . . b(⊥,⊥) . . .))
ta.tb = a(⊥, a(⊥, . . . a(⊥, b(⊥, b(⊥, . . . b(⊥,⊥) . . .)))))

Therefore, this transformation requires to move the subtree tb (whose size may be un-
bounded) as a leaf of the subtree ta (whose size may also be unbounded). This cannot be
done by a top-down tree transducer, but can be defined by some MTT thanks to param-
eters (some parameter will store the entire subtree tb while evaluating ta). A detailed
comparison of VPT and tree transducers can be found in [16].

Modulo the former encodings, MTT subsume VPT [9] and as we said before, there
is a correspondence between the two notions of look-aheads, for VPT and MTT respec-
tively. However it is not clear how to derive our results on closure by look-aheads from
the same result on MTT, as the latter highly relies on parameters and it would require
back-and-forth encodings between the two models. The direct construction we give in
this paper is self-contained and allows one to derive the characterization of functional
VPT as unambiguous VPT by a careful analysis of the construction.

An extended version of the paper with all proofs can be found in [16].

2 Visibly Pushdown Languages and Transductions

All over this paper, Σ denotes a finite alphabet partitioned into two disjoint sets Σc, Σr,
denoting respectively the call and return alphabets. We denote by Σ∗ the set of (finite)
words over Σ and by ε the empty word. The length of a word u is denoted by |u|. The
set of well-nested words Σ∗

wn is the smallest subset of Σ∗ such that ε ∈ Σ∗
wn and for all

c ∈ Σc, all r ∈ Σr, all u, v ∈ Σ∗
wn, cur ∈ Σ∗

wn and uv ∈ Σ∗
wn.

A visibly pushdown automaton (VPA) [1] on finite words over Σ is a tuple A =
(Q, I, F, Γ, δ) where Q is a finite set of states, I ⊆ Q the set of initial states, F ⊆ Q
the set of final states, Γ the (finite) stack alphabet, and δ = δc + δr where δc ⊆ Q ×
Σc × Γ ×Q are the call transitions, δr ⊆ Q×Σr × Γ ×Q are the return transitions1.

On a call transition (q, a, γ, q′) ∈ δc, γ is pushed onto the stack and the control goes
from q to q′. On a return transition (q, a, γ, q′) ∈ δr, γ is popped from the stack.

A configuration of a VPA is a pair (q, σ) ∈ Q × Γ ∗. A run of T on a word u =
a1 . . . al ∈ Σ∗ from a configuration (q, σ) to a configuration (q′, σ′) is a finite sequence
ρ = {(qk, σk)}0≤k≤l such that q0 = q, σ0 = σ, ql = q′, σl = σ′ and for each 1 ≤
k ≤ l, there exists γk ∈ Γ such that either (qk−1, ak, γk, qk) ∈ δc and σk = σk−1γk or
(qk−1, ak, γk, qk) ∈ δr and σk−1 = σkγk. The run ρ is accepting if q0 ∈ I , ql ∈ F and
σ0 = σl = ⊥ A word w is accepted by A if there exists an accepting run of A over w.
L(A), the language of A, is the set of words accepted by A. A language L over Σ is a
visibly pushdown language if there is a VPA A over Σ such that L(A) = L.

As finite-state transducers extend finite-state automata with outputs, visibly push-
down transducers extend visibly pushdown automata with outputs [9]. To simplify nota-
tions, we suppose that the output alphabet is Σ, but our results still hold for an arbitrary

1 In contrast to [1], we do not consider internal symbols i, as they can be simulated by a (unique)
call ci followed by a (unique) return ri. We make this assumption to simplify proofs and
notations. Moreover, we do not allow return transition on ⊥ and we require the final stack to
be empty. This implies that all accepted words are well-nested. All our results extend easily to
alphabets with internal symbols and to VPT that accept by final state only.

Visibly Pushdown Transducers with Look-Ahead 255

output alphabet. Informally, the stack behavior of a VPT is similar to the stack behavior
of visibly pushdown automata (VPA). On a call symbol, the VPT pushes a symbol on
the stack and produces some output word (possibly empty and not necessarily well-
nested), on a return symbol, it must pop the top symbol of the stack and produce some
output word (possibly empty) and on an internal symbol, the stack remains unchanged
and it produces some output word.

Definition 1. A visibly pushdown transducer (VPT) on finite words over Σ is a tuple
T = (Q, I, F, Γ, δ) where Q is a finite set of states, I ⊆ Q is the set of initial states,
F ⊆ Q the set of final states, Γ is the stack alphabet, δ = δc + δr the (finite) transition
relation, with δc ⊆ Q×Σc ×Σ∗ × Γ ×Q, δr ⊆ Q×Σr ×Σ∗ × Γ ×Q.

Configurations and runs are defined similarly as VPA. Given a word u = a1 . . . al ∈
Σ∗ and a word v ∈ Σ∗, v is an output of u by T if there exists an accepting run
ρ = {(qk, σk)}0≤k≤l on u and l words v1, . . . , vl such that v = v1 . . . vl and for all
0 ≤ k < l, there is a transition of T from (qk, σk) to (qk+1, σk+1) that produces the

output vk+1 on input letter ak+1. We write (q, σ)
u/v−−→ (q′, σ′) when there exists a run

on u from (q, σ) to (q′, σ′) producing v as output. A transducer T defines the binary

word relation �T � = {(u, v) | ∃q ∈ I, q′ ∈ F, (q,⊥) u/v−−→ (q′,⊥)}.
A transduction is a binary relation R ⊆ Σ∗ × Σ∗. We say that a transduction R

is a VPT-transduction if there exists a VPT T such that R = �T �. A transduction R
is functional if for all u ∈ Σ∗, there exists at most one v ∈ Σ∗ such that (u, v) ∈
R. A VPT T is functional if �T � is functional, and we denote by fVPT the class of
functional VPT. Two transducers T1, T2 are equivalent if �T1� = �T2�. It is known [9]
that functionality is decidable in PTIME for VPT and equivalence of functional VPT is
EXPT-C. Finally, a VPT is unambiguous if there is at most one accepting run per input
word. In particular, any unambiguous VPT is functional. Unambiguity can be checked
in PTIME [9].

For any input word u ∈ Σ∗, we denote by R(u) the set {v | (u, v) ∈ R}. Similarly,
for a VPT T , we denote by T (u) the set �T �(u). If R is functional, we confound R(u)
(which is at most of cardinality 1) and the unique image of u if it exists. The domain of
T (denoted by Dom(T)) is the domain of �T �. Note that the domain of T contains only
well-nested words, which is not necessarily the case of the codomain.
Example 1. Let Σc = {c, a}, Σr = {r} be the call and return symbols of the alphabet.
The following VPT T transforms a word as follows: (i) a and r are mapped to a and
r respectively; (ii) c is mapped either to c if no a appears in the longest well-nested
word starting at c, and to a if an a appears. E.g. ccrrarcr is mapped to acrrarcr, and
cccrrcrcarrr to aacrraraarrr.

The VPT T = (Q, I, F, Γ, δ) is defined by Q = {q, qa, q¬a}, I = {q}, F = Q,
Γ = {γ, γa, γ¬a} and δ contains the following transitions:

q or qa
c/a,γ−−−→ qa q or qa

c/a,γa−−−−→ q q
c/c,γ¬a−−−−−→ q¬a

q or qa
a/a,γ−−−→ q q¬a

c/c,γ¬a−−−−−→ q¬a

q or q¬a
r/r,γa−−−−→ qa q or q¬a

r/r,γ−−−→ q q¬a
r/r,γ¬a−−−−−→ q¬a

The state qa, resp. q¬a, means that there is, resp. is not, an a in the longest well-
nested word that starts at the current position. The state q indicates that there is no

256 E. Filiot and F. Servais

constraints on the appearance of a. If T is in state q and reads a c, there are two cases:
it outputs an a or a c. If it chooses to output an a, then it must check that an a occurs
later. There are again two cases: either T guesses there is an a in the well-nested word

that starts just after c and takes the transitions q
c/a,γ−−−→ qa, or it guesses an a appears in

the well-nested word that starts after the matching return of c, in that latter case it takes

the transition q
c/a,γa−−−−→ q and uses the stack symbol γa to carry over this information. If

on c it chooses to output c, it must check that there is no a later by using the transition

q
c/a,γ¬a−−−−−→ q¬a. Other cases are similar.

3 VPT with Visibly Pushdown Look-Ahead

Given a word w overΣ we denote by prefwn(w) the longest well-nested prefix of w. E.g.
prefwn(ccrcr) = ε and prefwn(crc) = cr. We define a VPT T with visibly pushdown
look-ahead (simply called look-ahead in the sequel) informally as follows. The look-
ahead is given by a VPA A without initial state. On a call symbol c, T can trigger the
look-ahead from a state p of the VPA (which depends on the call transition). The look-
ahead tests membership of the longest well-nested prefix of the current suffix (that starts
by the letter c) to L(A, p), where (A, p) is the VPA A with initial state p. If the prefix
is in L(A, p) then the transition of T can be fired. When we consider nested words that
encode trees, look-aheads correspond to inspecting the subtree rooted at the current
node and all right sibling subtrees (in other words, the current hedge). Formally:

Definition 2. A VPT with look-ahead (VPTla) is a pair Tla = (T,A) where A is a VPA
A = (Qla, F la, Γ la, δla) without initial state and T is a tuple T = (Q, q0, F, Γ, δ)
such that Q is a finite set of states, q0 ∈ Q is an initial state, F ⊆ Q is a set of
final states, Γ is a stack alphabet, and δ = δc + δr is a transition relation such that
δc ⊆ Q×Σc ×Σ∗ ×Qla × Γ ×Q and δr ⊆ Q×Σr ×Σ∗ × Γ ×Q.

A VPA with look-ahead (VPAla) is defined similarly.

Let u ∈ Σ∗. A run of Tla on u = a1 . . . al is a sequence of configurations ρ =
{(qk, σk)}0≤k≤l such that, for all k < l, there exist γ ∈ Γ and vk+1 ∈ Σ∗ such that (i)
if ak+1 ∈ Σr, then σk+1γ = σk and (qk, ak+1, vk+1, γ, qk+1) ∈ δr; (ii) if ak+1 ∈ Σc,
then σk+1 = σkγ, and there exists p ∈ Qla such that (qk, ak+1, vk+1, p, γ, qk+1) ∈ δc
and prefwn(ak+1 . . . al) ∈ L(A, p). The run ρ is accepting if σ0 = σl =⊥ and ql ∈ F .
The word v1 . . . vl is an output of u.

The VPTla Tla is deterministic if for all transitions (q, c, v1, p1, γ1, q1) ∈ δc and
(q, c, v2, p2, γ2, q2) ∈ δc, if v1 �= v2 or γ1 �= γ2 or q1 �= q2 or p1 �= p2, then L(A, p1)∩
L(A, p2) = ∅; and for all transitions (q, r, v1, γ1, q1) ∈ δr and (q, r, v2, γ2, q2) ∈ δr
we have v1 = v2, γ1 = γ2 and q1 = q2. Note that deciding whether some VPTla is
deterministic can be done in PTIME. One has to check that for each state q and each
call symbol c, the VPL guarding transitions from state q and reading c are pairwise
disjoint. The number of states of a VPTla is the number of states of the transducer plus
the number of states of the look-ahead.

Example 2. A VPTla is represented in Figure 1. The look-ahead automaton is depicted
on the right, while the transducer in itself is on the left. It defines the transduction

Visibly Pushdown Transducers with Look-Ahead 257

q0

c|a, qa, γ

c|c, q¬a, γ

a|a, qf , γ

r|r, γ

qa qf

q¬a

c, γ

r, γ
a, γ

c, γ

r, γ

a, γ

c, γ

r, γ

Fig. 1. A VPTla (left) and its look-ahead (right) on Σc = {c, a} and Σr = {r}

of Example 1. When starting in state qa, respectively q¬a, the look-ahead automaton
accepts well-nested words that contains an a, respectively does not contain any a. When
starting in state qf it accepts any well-nested word. The transducer rewrites c symbols
into a if the well-nested word starting at c contains an a (transition on the top), otherwise
it just copy a c (transition on the right). This is achieved using the qa and q¬a states of
the look-ahead automaton. Other input symbols, i.e. a and r, are just copied to the
output (left and bottom transitions).

The next theorem states that adding look-aheads to VPT does not add expressiveness.
The main difficulty is to simulate an unbounded number of look-aheads at the same
time. Indeed, a look-ahead is triggered at each call and is alive until the end of the well-
nested subword starting at this call. To handle the simulation of the look-aheads that
started at a strictly less deeper nesting level we use the notion of summaries. Recall
that summaries were introduced in the context of the determinization of VPA ([1]), they
are pairs of states. More precisely, for a given VPA, a pair (p, q) is a summary if there
exists a well-nested word w such that the configuration (q,⊥) is accessible from (p,⊥)
by reading w. We use a classical subset construction for the look-aheads that started at
the same nesting level.

Theorem 1. For any VPTla, resp. VPAla, Tla with n states, one can construct an equiv-
alent VPT, resp. VPA, T ′ with O(n2n

2+1) states. Moreover, if Tla is deterministic, then
T ′ is unambiguous.

Proof. We prove the result for VPTla only, this trivially implies the result for VPAla.
Let Tla = (T,A) with T = (Q, q0, F, Γ, δ) and A = (Qla, F la, Γ la, δla). We construct
T ′ = (Q′, q′0, F

′, Γ ′, δ′) as follows (where IdQla denotes the identity relation on Qla):

Q′ = Q × 2Q
la×Qla × 2Q

la

, q′0 = (q0, IdQla ,∅), F ′ = {(q, R, L) ∈ Q′ | q ∈ F,L ⊆
F la}, Γ ′ = Γ × 2Q

la×Qla × 2Q
la ×Σc.

The transducer T ′ simulates T and its running look-aheads. A state of T ′ is a triple
(q, R, L). The first component is the state of T . The second and third components are
used to simulate the running look-aheads. When taking a call c, T ′ non-deterministically
chooses a new look-ahead triggered by T . This look-ahead is added to all running look-
aheads that started at the same nesting level. T ′ ensures that the run will fail if the

258 E. Filiot and F. Servais

longest well-nested prefix starting at c is not in the language of the triggered look-
ahead. The L component contains the states of all running look-aheads triggered at the
current nesting level. The R component is the summary necessary to update the L-
component. When reading a call the L component is put on the stack. When reading a
return, T ′ must check that all look-ahead states in L are final, i.e. T ′ ensures that the
chosen look-aheads are successful.

After reading a well-nested word w if T ′ is in state (q, R, L), with q ∈ Q, R ⊆
Qla × Qla and L ⊆ Qla, we have the following properties. The pair (p, p′) ∈ R iff
there exists a run of A from p to p′ on w. If some p′′ is in L, there exists a run of a
look-ahead that started when reading a call symbol of w at depth 0 which is now in
state p′′. Conversely, for all look-aheads that started when reading a call symbol of w at
depth 0, there exists a state p′′ ∈ L and a run of this look-ahead that is in state p′′.

w c w′ r

L
new l-a p0

push c, R, L ∪ {p0} pop c,R, L ∪ {p0}

R L′′ ⊆ F la

R′′

L′

R′

Fig. 2.

Let us consider a word wcw′r for some well-nested words w,w′ (depicted on Fig.
2). Assume that T ′ is in state (q, R, L) after reading w (on the figure, the relation R
is represented by dashed arrows and the set L by big points, and other states by small
points). We do not represent the T -component of the states on the figure but rather focus
on R and L. The information that we push on the stack when reading c is the necessary
information to compute a state (q′, R′, L′) of T ′ reached after reading wcw′r. After
reading the call symbol c, we go in state (q′, IdQla ,∅) and produce the output v for

some q′, v such that q
c|v,p0,γ−−−−−→ q′ ∈ δc, where p0 ∈ Qla is the starting state of a new

look-ahead. Note that determinism of T is preserved. On the stack we put the tuple
(γ,R, L ∪ {p0}, c) where γ,R, L, p0, c have been defined before.

Now, suppose that after reading wcw′ the transducer T ′ is in state (q′′, R′′, L′′). It
means that T is in state q′′ after reading wcw′, and (p, p′) ∈ R′′ iff there exists a
run of A from p to p′ on w′, and L′′ is some set of states reached by the look-aheads
that started at the same depth as w′. Therefore we first impose that any transition from
(q′′, R′′, L′′) reading r must satisfy L′′ ⊆ F la. Clearly, R′ can be constructed from c,
R and R′′. Finally, L′ is a set which satisfies for all p ∈ L ∪ {p0}, there exists p′ ∈ L′

such that there exists a run of A from p to p′ on cw′r. If such an L′ does not exist, there
is no transition on r. The set L′ can be constructed from L ∪ {p0} and R′′.

Visibly Pushdown Transducers with Look-Ahead 259

We now define the transitions formally. First, for all q, R, L, c, γ, we have:

(q, R, L)
c|u,(γ,R,L∪{p0},c)−−−−−−−−−−−−→ (q′, IdQla ,∅) ∈ δ′c whenever q

c|u,p0,γ−−−−−→ q′ ∈ δc

Then, for all R,L, r, γ, q′′, R′′, L′′, q′, R′, L′ we have:

(q′′, R′′, L′′)
r|u,(γ,R,L,c)−−−−−−−−→ (q′, R′, L′) ∈ δ′r if the following conditions hold:

(i) q′′
r|u,γ−−−→ q′ ∈ δr, (ii) L′′ ⊆ F la

(iii) R′ = {(p, p′) | ∃s c,γ−−→ s′ ∈ δlac · ∃(s′, s′′) ∈ R′′ · (p, s) ∈ R and s′′
r,γ−−→ p′ ∈ δlar }

(iv) for all p ∈ L, there exist p′ ∈ L′, γ ∈ Γ , s, s′ ∈ Qla such that (s, s′) ∈ R′′,
p

c,γ−−→ s ∈ δlac , s′
r,γ−−→ p′ ∈ δlar .

If T is deterministic, then T ′ is unambigous. Indeed, it is deterministic on return tran-

sitions. If there are two possible transitions q
c|u1,p1,γ1−−−−−−→ q1 and q

c|u2,p2,γ2−−−−−−→ q2 on a
call symbol c, as T is deterministic, we know that either the look-ahead starting in p1
or the look-ahead starting in p2 will fail. In T ′, there will be two transitions that will
simulate both look-aheads respectively, and therefore at least one continuation of the
two transitions will fail as well. Therefore there is at most one accepting computation
per input word in T . !"

Succinctness. The exponential blow-up in the construction of Theorem 1 is unavoid-
able. Indeed, it is obviously already the case for finite state automata with regular look-
ahead. These finite state automata can be easily simulated by VPA on flat words (in
(ΣcΣr)

∗) (in that case the stack is useless). For example, consider for all n the lan-
guage Ln = {vuv | |v| = n}. One can construct a finite state automaton with regular
look-ahead with O(n) states that recognizes Ln. It is done by using look-aheads that
check for all a ∈ Σ and i ≤ n that the m − (n − i)-th letter is equal to a, where m
is the length of the word. Without a regular look-ahead, any automaton has to store the
n-th first letters of w in its states, then it guesses the m− n-th position and checks that
the prefix of size n is equal to the suffix of size n. A simple pumping argument shows
that the automaton needs at least |Σ|n states.

4 Functional VPT and VPTla

While there is no known syntactic restriction on VPT that captures all functional VPT,
we show that the class of deterministicVPTla captures all functionalVPT. As there may
be an unbounded number of accepting runs, the equivalent VPTla has to choose only
one of them by using look-aheads. This is done by ordering the states and extending
this order to runs. Similar ideas have been used in [7] to show the same result for
top-down tree transducers. The main new difficulty with VPT is to cope with nesting.
Indeed, when the transducer enters an additional level of nesting, its look-ahead cannot
inspect the entire suffix but is limited to the current nesting level. When reading a call,
choosing (thanks to some look-ahead) the smallest run on the current well-nested prefix
is not correct because it may not be possible to extend this run to an accepting run on
the entire word. Therefore the transducer has to pass some information from one to the

260 E. Filiot and F. Servais

next level of nesting about the chosen global run, while for top-down tree transducers,
as the evaluation is top-down, the transformation of the current subtree is independent
of the transition choices that have been made at upper levels.

Theorem 2. For all VPT T , one can construct a deterministic VPTla Tla with at most
exponentially many more states such that �Tla� ⊆ �T � and Dom(Tla) = Dom(T). If T
is functional, then �Tla� = �T �.

Proof. We order the states of T and use look-aheads to choose the smallest runs wrt to
an order on runs that depends on the structure of the word. Let T = (Q, q0, F, Γ, δ) be
a VPT. Wlog we assume that for all q, q′ ∈ Q, all α ∈ Σ, there is at most one u ∈ Σ∗

and one γ ∈ Γ such that (q, α, u, γ, q′) ∈ δ. A transducer satisfying this property can
be obtained by duplicating the states with transitions, i.e. by taking the set of states
Q×Δ.

We construct a deterministic VPTla Tla = (T ′, A) such that �Tla� ⊆ �T � and
Dom(Tla) = Dom(T) and where T ′ = (Q′, q0, F

′, Γ ′, δ′) with Q′ = {q0} ∪ Q2,
F ′ = F ×Q if q0 �∈ F otherwise F ′ = (F ×Q) ∪ {q0}. The look-ahead A is defined
later. Before defining δ′ formally, let us explain it informally. There might be several ac-
cepting runs on an input word w, Tla has to choose exactly one. Furthermore, to ensure
determinism, when reading a symbol, Tla has to choose exactly one transition. The idea
is to order the states by a total order <Q and to extend this order to runs. The look-ahead
will be used to choose the next transition of T that has to be fired, so that the choice
will ensure that T follows the smallest accepting run on w. However the look-ahead can
only visit the current longest well-nested prefix, and not the entire word. Therefore the
“parent” of the call c has to pass some information about the global run to its child c. In
particular, when T ′ is in state (q, q′) for some state q′, it means that T is in state q and
the state reached after reading the last return symbol of the longest-well nested current
prefix must be q′.

Consider a word of the form w = c1w1r1w2c3w3r3 where wi are well-nested, de-
picted on Fig. 3. Suppose that before evaluating w, T ′ is in state (q1, q3). It means
that the last transition T has to fire when reading r3 has a target state q3. When read-
ing the call symbol c1, T ′ uses a look-ahead to determine the smallest triple of states
(q′1, q

′
2, q2) such that there exists a run on w that starts in q1 and such that after reading

c1 it is in state q′1, before reading r1 it is in state q′2, after reading r1 it is in state q2
and after reading r3 it is in state q3. Then, T ′ fires the call transition on c1 that with
source and target states q1 and q′1 respectively (it is unique by hypothesis), put on the
stack the states (q2, q3) and passes to w1 (in the state) the information that the chosen
run on w1 terminates by the state q′2, i.e. it goes to the state (q′1, q

′
2). (see Fig. 3). On

the figure, we do not explicit all the states and anonymous components are denoted by
. When reading r1, T ′ pops from the stack the tuple (γ, q2, q3) and therefore knows

that the transition to apply on r1 has target state q2 and the transition to apply on r3 has
target state q3. Then it passes q3 to the current state.

When the computation starts in q0, we do not know yet what return transition has to
be fired at the end of the hedge. This case can be easily treated separately by a look-
ahead on the first call symbol that determine the smallest 4-tuple of states (q1, q′2, q2, q3)
which satisfies the conditions described before, but to simplify the proof, we assume
that the VPT accepts only words of the form cwr, where w is well-nested, so that one
only needs to consider triples of states.

Visibly Pushdown Transducers with Look-Ahead 261

(q1,q3)

(q′1,q
′
2) (q′2,q

′
2)

(q2,q3) (,q3)

(,) (,)

(,q3)l.a. to choose the smallest (q′1 , q′2, q2)i

i+1

c1 w1 r1 w2 c3 w3 r3

push (γ,q2,q3) pop (γ,q2,q3)

Fig. 3.

We now define the transition relation formally. Let < be a total order on states,
extended lexicographically to tuples. For all states q1, q

′
1, q

′
2, q2, q3 ∈ Q, it is easy to

define a VPA Aq1,q′1,q
′
2,q2,q3

whose size is polynomial in the size of T that accepts a
word w iff it is of the form c1w1r1w3 where w1, w3 are well-nested and there exists a
run of T on w that starts in state q1 and is state q′1 after reading c1, in state q′2 before
reading r1, in state q2 after reading r1 and in state q3 after reading w3. Note that if
w3 = ε then if q3 �= q2, then w �∈ L(Aq1,q′1,q

′
2,q2,q3

). We denote by Aq1,q′1,q
′
2,q2,q3

the
complement of Aq1,q′1,q

′
2,q2,q3

.
We let Bq1,q′1,q

′
2,q2,q3

a VPA with initial state pq1,q′1,q′2,q2,q3 that defines the language:

L(Bq1,q′1,q
′
2,q2,q3

) = L(Aq1,q′1,q
′
2,q2,q3

) ∩
⋂

(s1, s
′
2, s2) ∈ Q3

(s1, s
′
2, s2) < (q1, q

′
2, q2)

L(Aq1,s1,s′2,s2,q3)

Such a VPA exists as VPA are closed by intersection and complement. Its size how-
ever may be exponential in |Q|. We define the look-ahead VPA as the union of all those
VPA, Ala =

⊎
Bq1,q′1,q

′
2,q2,q3

. We now define the call and return transitions of T ′ as
follows, for all c ∈ Σc, r ∈ Σr, γ ∈ Γ, q1, q

′
1, q

′
2, q3, q ∈ Q, u ∈ Σ∗:

(q1, q3)
c|u, (γ,q2,q3), pq1,q′1,q′2,q2,q3−−−−−−−−−−−−−−−−−−→ (q′1, q

′
2) if (q1

c|u,γ−−−→ q′1) ∈ δc

q0
c|u, (γ,q3,q3), pq0,q′

1
,q′

2
,q3,q3−−−−−−−−−−−−−−−−−−→ (q′1, q

′
2) if (q0

c|u,γ−−−→ q′1) ∈ δc

(q′2, q)
r|u,(γ,q2,q3)−−−−−−−−→ (q2, q3) if (q′2

r|u,γ−−−→ q2) ∈ δr

It can be shown that T ′ is deterministic [16]. Clearly, if T is functional then Tla is
equivalent. !"

This construction, followed by the construction of Theorem 1 that removes the look-
aheads, yields a nice characterization of functional VPT:

Theorem 3. For all functional VPT T , one can effectively construct an equivalent un-
ambiguous VPT T ′.

5 Decision Problems

In this section, we study the problems of functionality of VPTla and equivalence of
functional VPTla. In particular, we prove that while being exponentially more succinct
than VPT, the equivalence of functional VPTla remains decidable in EXPT, as equiva-
lence of functional VPT.

262 E. Filiot and F. Servais

Theorem 4. Functionality of VPTla is EXPT-C, even for deterministic look-aheads.

Proof. For the EXPT upper-bound, we first apply Theorem 1 to remove the look-
aheads. This results in a VPT possibly exponentially bigger. Then functionality can
be tested in PTIME [9]. For the lower-bound, we reduce the problem of deciding empti-
ness of the intersection of n deterministic top-down tree automata, which is known to
be EXPT-C when n is part of the input [3]. !"

We know that the equivalence of two functional VPT is EXPT-C [9]. For equivalence of
functional VPTla, one can first remove the look-aheads, modulo an exponential blow-
up, and use the procedure for VPT. This would yield a 2-EXPT procedure for the equiv-
alence of functional VPTla. However, it is possible to decide it in EXPT:

Theorem 5. Emptiness of VPTla, resp. of VPAla, equivalence and inclusion of func-
tional VPTla, resp. of VPAla, is EXPT-C, even if the transducers, resp. automata, and
the look-aheads are deterministic.

Proof. The lower bounds are obtained, as for functionality, by reduction of the empti-
ness of n (deterministic) tree automata.
Emptiness ofVPAla can be checked by first removing the look-aheads (modulo an expo-
nential blow-up) and then check emptiness of the equivalentVPA (in PTIME). Checking
emptiness of a VPTla amounts to check emptiness of its domain, which is a VPAla.
To show that equivalence and inclusion of two VPAla is in EXPT, we construct two alter-
nating (ranked) tree automata equivalent to the VPA modulo the first-child next-sibling
encoding in PTIME. Look-aheads are encoding as universal transitions. Equivalence
and inclusion of alternating tree automata is in EXPT [3].
Then, let us show how to check the equivalence, resp. inclusion, of two VPTla: trans-
form each VPTla into an equivalent VPT with at most an exponential blow-up, take the
union and verify (in PTIME) that the resulting VPT is still functional. Then check that
their domains (which are VPAla obtained by ignoring the output of the two VPTla) are
equivalent, resp. included. !"

Acknowledgments. We are very grateful to Sebastian Maneth for suggesting us to ex-
tend VPT with look-aheads, and to Pierre-Alain Reynier for simplifying the proof of
Theorem 1.

References

1. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: STOC, pp. 202–211 (2004)
2. Alur, R., Madhusudan, P.: Adding nesting structure to words. JACM 56(3), 1–43 (2009)
3. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Tison, S.,

Tommasi, M.: Tree automata techniques and applications (2007)
4. Eilenberg, S.: Automata, Languages, and Machines. Academic Press, Inc. (1974)
5. Elgot, C.C., Mezei, J.E.: On relations defined by generalized finite automata. IBM Journal of

Research and Development 9, 47–68 (1965)
6. Engelfriet, J.: Top-down tree transducers with regular look-ahead. Mathematical Systems

Theory 10, 289–303 (1977)
7. Engelfriet, J.: On tree transducers for partial functions. Inf. Process. Lett. 7(4), 170–172

(1978)

Visibly Pushdown Transducers with Look-Ahead 263

8. Engelfriet, J., Vogler, H.: Macro tree transducers. JCSS 31(1), 71–146 (1985)
9. Filiot, E., Raskin, J.-F., Reynier, P.-A., Servais, F., Talbot, J.-M.: Properties of Visibly Push-

down Transducers. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp.
355–367. Springer, Heidelberg (2010)

10. Gauwin, O., Niehren, J., Tison, S.: Queries on XML streams with bounded delay and con-
currency. Inf. Comput. 209(3), 409–442 (2011)

11. Kumar, V., Madhusudan, P., Viswanathan, M.: Visibly pushdown automata for streaming
XML. In: WWW, pp. 1053–1062 (2007)

12. Perst, T., Seidl, H.: Macro forest transducers. IPL 89(3), 141–149 (2004)
13. Sakarovitch, J., de Souza, R.: Lexicographic decomposition of k-valued transducers.

TCS 47(3), 758–785 (2010)
14. Schützenberger, M.P.: Sur les relations rationnelles entre monoides libres. TCS 3(2), 243–

259 (1976)
15. Segoufin, L., Vianu, V.: Validating streaming XML documents. In: PODS, pp. 53–64 (2002)
16. Servais, F.: Visibly Pushdown Transducers. PhD thesis, Université Libre de Bruxelles (2011)
17. Staworko, S., Laurence, G., Lemay, A., Niehren, J.: Equivalence of Deterministic Nested

Word to Word Transducers. In: Kutyłowski, M., Charatonik, W., G ↪ebala, M. (eds.) FCT 2009.
LNCS, vol. 5699, pp. 310–322. Springer, Heidelberg (2009)

18. Weber, A.: Decomposing finite-valued transducers and deciding their equivalence. SIAM
Journal on Computing 22(1), 175–202 (1993)

A Generalization of Spira’s Theorem and

Circuits with Small Segregators or Separators

Anna Gál� and Jing-Tang Jang��

Dept. of Computer Science, University of Texas at Austin,
Austin, TX 78712-1188, USA
{panni,keith}@cs.utexas.edu

Abstract. Spira [28] showed that any Boolean formula of size s can
be simulated in depth O(log s). We generalize Spira’s theorem and show
that any Boolean circuit of size s with segregators of size f(s) can be sim-
ulated in depth O(f(s) log s). If the segregator size is at least sε for some
constant ε > 0, then we can obtain a simulation of depth O(f(s)). This
improves and generalizes a simulation of polynomial-size Boolean circuits
of constant treewidth k in depth O(k2 log n) by Jansen and Sarma [17].
Since the existence of small balanced separators in a directed acyclic
graph implies that the graph also has small segregators, our results also
apply to circuits with small separators. Our results imply that the class of
languages computed by non-uniform families of polynomial-size circuits
that have constant size segregators equals non-uniform NC1.

Considering space bounded Turing machines to generate the circuits,
for f(s) log2 s-space uniform families of Boolean circuits our small-depth
simulations are also f(s) log2 s-space uniform. As a corollary, we show
that the Boolean Circuit Value problem for circuits with constant size
segregators (or separators) is in deterministic SPACE(log2 n). Our re-
sults also imply that the Planar Circuit Value problem, which is known
to be P -Complete [16], can be solved in deterministic SPACE(

√
n log n).

1 Introduction

Spira [28] proved the following theorem.

Theorem A. [28] Let F be any Boolean formula of size s. Then F can be
simulated by an equivalent formula of depth O(log s).

There are several results improving or extending Spira’s theorem. Bonet and
Buss [3] improved the constants in the depth bounds and the size of the sim-
ulation for Boolean formulas, Wegener [30] proved the statement for monotone
Boolean formulas, and Brent [5], Bshouty et. al. [6] extended it for arithmetic
formulas. All these results study formulas, i.e. tree-like circuits with fan-out 1.

� Supported in part by NSF Grant CCF-1018060.
�� Supported in part by MCD fellowship from Dept. of Computer Science, University

of Texas at Austin, and NSF Grant CCF-1018060.

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 264–276, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Generalization of Spira’s Theorem and Circuits 265

Valiant, Skyum, Berkowitz and Rackoff [29] showed that arithmetic circuits of
size s and degree d can be simulated in size O((sd)O(1)) and O(log s log d) depth.
This implies that polynomial-size and polynomial-degree arithmetic circuits can
be simulated in NC2. However, very little is known for size vs. depth for general
Boolean circuits. The strongest results so far for general Boolean circuits by
Paterson and Valiant [23], and Dymond and Tompa [12] give a simulation of
arbitrary Boolean circuits of size s in depth O(s/ log s).

In this paper, we generalize Spira’s technique to circuits with small segrega-
tors or small separators. Informally, the separator of a graph is a subset of the
nodes whose removal yields two subgraphs of comparable sizes. (See the follow-
ing section for a formal definition.) Graphs with small separators include trees,
planar graphs [20], graphs with bounded genus [15], graphs with excluded minors
[1], as well as graphs with bounded treewidth [25].

Segregators are a relaxed version of separators of directed acyclic graphs. Paul
et al. [24], and Santhanam [26] used segregators to study the computation graph
of Turing machines. Directed acyclic graphs with small separators also have small
segregators, but the reverse may not necessarily hold.

Jansen and Sarma [17] studied the question of simulating Boolean circuits
with bounded treewidth by small-depth circuits. They showed that polynomial-
size circuits with constant treewidth k can be simulated in depth O(k2 logn), and
thus the class of languages with non-uniform polynomial-size bounded treewidth
circuits equals non-uniform NC1.

We extend this result to arbitrary circuits with small segregators and show
that any Boolean circuit of size s with segregators (or separators) of size f(s)
can be simulated in depth O(f(s) log s). For circuits with segregators of size k,
thus also for graphs with treewidth k, this gives a simulation in depth k log s,
improving the bound in [17]. If the segregator size is at least sε for some constant
ε > 0, then we can obtain a simulation of depth O(f(s)). Our results imply
that the class of languages computed by non-uniform families of polynomial-size
circuits that have constant-size segregators equals non-uniform NC1.

In [14] we observed that the two-person pebble game of Dymond and Tompa
can be used to simulate circuits with small separator size in small depth, giving
essentially the same dependence of the depth on the separator size as in the
current paper. The approach in [14] based on the two person pebble game can
also be extended to graphs with small segregators. However, the simulation based
on the two person pebble game is non-uniform, and it seems that the resulting
circuits cannot be produced efficiently using this approach. Jansen and Sarma’s
[17] simulation of bounded treewidth circuits is also non-uniform.

For circuits with constant-size segregators or separators, the simulating cir-
cuits we obtain in this paper can be generated in space O(log2 s). We also note
that our simulation works for any circuit, and if the circuit has a segregator
of size f(s), we obtain a simulating circuit of depth at most O(f(s) log s), the
value f(s) does not have to be provided in advance. In contrast, the simulation
in [17] assumes that the treewidth k is known in advance, and a tree decom-
position is available along with the description of the circuit to be simulated.

266 A. Gál and J.-T. Jang

It would be desirable to generate the simulating circuits even more efficiently
with respect to space or circuit depth, especially in the case of polynomial-size
circuits with constant-size segregators or separators, since in that case, as in the
case of formulas in Spira’s theorem, the resulting circuits are NC1 circuits. Note
however, that even in the case of formulas (tree-like circuits) Spira’s theorem
is non-uniform. It is not known if the restructuring procedure for formulas in
Spira’s theorem producing the simulating O(log s) depth circuits can be directly
implemented in less than O(log2 s) space, or less than O(log2 s) depth [8,9].

The question of finding a uniform version of Spira’s theorem has direct rele-
vance for the complexity of the Boolean Formula Value problem.While a logspace
uniform version of Spira’s restructuring algorithm is still not known, it was
proved (by a different approach), that for Boolean formulas presented as paren-
thesized expressions the Boolean Formula Value problem is in SPACE(log n)
[21], and in DLOGTIME-uniform NC1 [8,9].

Our generalization of Spira’s theorem allows us to bound the space complexity
of the Circuit Value Problem (CVP) for circuits with small separators and seg-
regators. Ladner [18] showed that the Circuit Value Problem is P-complete. The
space complexity of the CVP is not known to be o(n/ logn) for general Boolean
circuits. It is a straightforward consequence of Borodin’s theorem [4] (see The-
orem C) that the CVP for logspace uniform depth d circuits is in SPACE(d)
for d ≥ logn. It is also easy to see that the CVP for small-width circuits can
be solved in small space. Barrington, Lu, Miltersen and Skyum [2] showed that
the Monotone Planar Circuit Value Problem is in LOGDCFL, and thus in
SPACE(log2 n). See [10,19] for recent results on variants of the Monotone Pla-
nar Circuit Value Problem. As far as we know, the only other variant that
was previously shown to be computable in small (polylog) space is the Boolean
Formula Value Problem, that is the Circuit Value Problem for tree-like cir-
cuits [8,9,21]. We show that the Boolean Circuit Value Problem for circuits with
constant-size segregators (or separators) is in deterministic SPACE(log2 n). Our
results also imply that the Planar Circuit Value problem, which is known to be
P -Complete [16], can be solved in deterministic SPACE(

√
n logn).

2 Preliminaries

2.1 Space Bounded Turing Machines

For the space complexity of Turing machines, we follow the convention of con-
sidering Turing machines with a separate read-only input tape, and additional
work tapes. If the machine has to produce an output string (instead of just ac-
cepting or rejecting its input), then we also assume a separate write-only output
tape. The space used by a Turing machine on a given input is defined as the
number of work tape cells visited during the computation over all work tapes.
The input tape and the output tape do not contribute to the space bound of the
computation. This allows us to consider computations with sublinear space.

A Generalization of Spira’s Theorem and Circuits 267

SPACE(s(n)) denotes the class of languages decidable by deterministic Tur-
ing machines with a separate read-only input tape and a separate write-only
output tape using O(s(n)) space on the work tapes.

In the following, whenever we talk about space bounds of Turing Machines,
it is assumed that the input tape is read-only, the output tape is write-only and
the space bound refers to the space used on the work tapes. See Papadimitriou
[22] for more details on space bounded Turing machines.

2.2 The Circuit Model

A Boolean circuit is a labeled directed acyclic graph (DAG), where every node
is labeled by either a variable from {x1, . . . , xn}, or an operation from {∧,∨,¬}.
The inputs of a Boolean circuit are the nodes with in-degree (fan-in) zero, and
the outputs of a Boolean circuit are the nodes with out-degree (fan-out) zero.
We refer to the nodes (including the inputs) as gates. A formula (or tree-like
circuit) is a circuit whose fan-out is one for every gate except the output. The
size of a Boolean circuit is the number of its gates. We will consider Boolean
circuits with gates of fan-in at most 2 from the basis {∧,∨,¬}. The depth of
a gate g is the length of the longest path from any input to g. The depth of a
circuit C is the depth of the output gate. See [31] for more on Boolean circuits.

Definition 1. A family of Boolean circuits {Cn} is called h(n)-space uniform,
if there exists a deterministic Turing machine M that on input 1n, outputs the
standard description of Cn using space O(h(n)) for all n. In particular, {Cn} is
logspace uniform if h(n) = logn.

2.3 Separators and Segregators

Informally, a node separator of a graph G is a set of nodes whose removal yields
two disjoint subgraphs of G. In this paper we only consider balanced separators,
that yield subgraphs that are comparable in size. In the next definition each of
the two subDAGs could consist of several weakly connected components.

Definition 2. A separator of size k of a DAG G = (V,E) is a set of k nodes
S ⊆ V such that G \ S is not weakly connected (i.e. the underlying undirected
graph is not connected); and the removal of S partitions G\S into two subDAGs,
G1 = (V1, E1) and G2 = (V2, E2), such that |Vi| ≤ 2

3 |V | for i = 1, 2, and there
are no edges either from G1 to G2, or from G2 to G1 in G \ S.
Segregators are a relaxation of separators in directed acyclic graphs [24,26].

Definition 3. A segregator of size k of a DAG G = (V,E) is a set of k nodes
S ⊆ V such that every node in G \ S has at most 2

3 |V | predecessors in G \ S.
The following lemma follows directly from the definitions.

Lemma 1. Any DAG with a separator of size k has a segregator of size k.

Notice that the reverse is not true in general, since a node in a DAG may
have much smaller number of predecessors than the size of the component that
contains the node in the underlying undirected graph.

268 A. Gál and J.-T. Jang

3 Boolean Circuits with Small Segregators or Separators

Definition 4. We say that a Boolean circuit C has separators of size f() if the
underlying DAG of every subcircuit of C with s gates has a separator of size at
most f(s).

We say that a Boolean circuit C has segregators of size f() if the underlying
DAG of every subcircuit of C with s gates has a segregator of size at most f(s).

The above definition is reasonable, since we typically consider classes of circuits
based on properties of their underlying DAGs that are closed with respect to
subDAGs, for example planar circuits, circuits with small treewidth, etc.

We talk about constant-size separators (resp. segregators), if the size of the
separator (resp. segregator) is bounded by a fixed constant that does not depend
on the size of the circuit.

By Lemma 1, if the circuit has separators of size f(), then it must also have
segregators of size f(). Therefore in the following we will focus on circuits with
small segregators. We prove the following generalization of Spira’s theorem.

Theorem 2. Any Boolean circuit of size s with segregators of size f() can be
simulated in depth O(f(s)) if f(s) = Ω(sε) for some constant ε > 0, and in
depth O(f(s) log s) otherwise.

Proof. The construction is defined recursively. Let U = {u1, . . . , up} be the
segregator of C with size p ≤ f(s). Let C1, . . . , Cp be the subcircuits of C
corresponding to the nodes of the segregator, that is the node uj is the output
of the subcircuit Cj , for j = 1, . . . , p. Let gj be the Boolean function computed

by Cj . Let v be the output node of the circuit C, and let Ĉ be the circuit with
output node v, obtained from C by replacing the nodes in U by new variables
y1, . . . , yp. Thus, if the original circuit C has n variables, then Ĉ may have up

to p+ n variables. It is possible that Ĉ has less than p+ n variables, if some of
the original inputs get disconnected from the output v after removing the nodes
of the segregator from the circuit.

We enumerate all Boolean vectors c ∈ {0, 1}p. Let ci = 〈ci,1, ci,2, . . . , ci,p〉 be
the ith Boolean vector of length p, for i = 1, . . . , 2p, according to some fixed
ordering. Let Ĉi be the circuit obtained from Ĉ by fixing the values of the
variables y1, . . . , yp to the bits ci,1, . . . , ci,p, respectively. Let hi be the Boolean

function computed by the circuit Ĉi.
Then, the Boolean function computed by the circuit C can be represented

using the following expression:

2p∨
i=1

⎛⎝hi ∧
p∧

j=1

((gj ∧ ci,j) ∨ (¬gj ∧ ¬ci,j))

⎞⎠ (1)

Next we will represent the functions hi for i = 1, . . . , 2p and gj for j = 1, . . . , p.
We could proceed with a straightforward recursion, if we could claim that each

A Generalization of Spira’s Theorem and Circuits 269

subcircuit C1, . . . , Cp and each circuit Ĉi for i = 1, . . . , 2p has size at most
2s/3. In fact, we do know that every subDAG of the underlying DAG of C with
the nodes of U removed has size at most 2s/3. However, the output node of
the subcircuit Cj is uj , and uj is a member of the segregator U . Note that the

underlying DAGs of the circuits Ĉi are identical (they only differ from each other
in the substituted constants), and their output node v is the output node of the
“original” circuit C. The node v may or may not participate in the segregator.
If the node v participates in the segregator, then the functions hi are constants
and the recursion stops.

We can compute the function gj (computed at gate uj) by an additional gate
if we compute the functions computed at the two children of the gate uj . If
none of the children participates in the segregator, then we know that their
subcircuits must have size at most 2s/3. However, it is possible that children of
segregator nodes are also included in the segregator. Let Sj be the set of nodes
in the segregator, that are predecessors of uj , such that there is a path from each
of them to uj that consists only of segregator nodes. We also include uj in Sj .
That is, Sj forms a subcircuit with output uj that consists of segregator nodes.
Let Bj be the “boundary” of Sj formed by nodes that are not in the segregator,
that is, Bj contains the children of the nodes in Sj that are not included in the
segregator. Then we can compute the function gj from the functions computed
at the nodes in Bj (these can be computed by subcircuits of size at most 2s/3)
with an additional set of gates corresponding to the segregator nodes in Sj . Since
|Sj | ≤ p, this takes additional depth at most p.

To summarize, we can compute the functions hi and gj , by first computing in
parallel the functions corresponding to all subcircuits after removing the nodes of
the segregator. We know that each such subcircuit has size at most 2s/3, and we
can use our construction recursively on these smaller size circuits. Then we finish
computing every function hi and gj we need, by adding the gates corresponding
to the nodes participating in the segregator. This will take at most an additional
p ≤ f(s) depth. Then we can compute the function computed by C by expression
(1). This takes at most an additional p+�log(p+1)(+3 = O(f(s)) depth. Thus,
in each iteration, we increase the depth by at most O(f(s)). Since the size is
reduced by a constant factor in each iteration, we are done after O(log s) steps.

More precisely, the depth of the final circuit is O
(∑�log3/2 s�

i=0 f
(
(2/3)

i
s
))

. Thus

the depth of the final circuit is O(f(s)) if f(s) = sε for some constant ε > 0, or
O(f(s) log s) otherwise. !"

Theorem 3. The class of languages decided by non-uniform families of
polynomial-size circuits with constant-size segregators equals non-uniform NC1.

Proof. Immediately follows from Theorem 2. !"

Robertson and Seymour [25] showed that if a graph has treewidth k, then the
graph also has separator size O(k). Together with Lemma 1 and Theorem 3, a
polynomial-size circuit with treewidth k can be simulated in depth O(k logn).
This improves a result in [17], which showed that Boolean circuits of size nO(1)

270 A. Gál and J.-T. Jang

and treewidth k can be simulated in non-uniform depth O(k2 logn). We refer
interested readers to [11] and [13] for more background on treewidth.

4 Finding Minimum Size Segregators in Small Space

4.1 Segregators of Directed Acyclic Graphs

In this section, we give a space-efficient algorithm to find a minimum size segre-
gator in arbitrary directed acyclic graphs.

We will use the following space-efficient algorithm for reachability in directed
graphs by Savitch [27], to count the number of predecessors of a given node.

Theorem B. [27] Given a directed graph G on s nodes and two nodes u, v ∈ G,
there exists a deterministic Turing machine that decides if there is a path from
u to v in G using space O(log2 s).

Lemma 4. Let G be a DAG with s nodes. There exists a deterministic Turing
machine M such that, on input G, if G has a segregator of size f(s), then M
outputs a segregator of G of size at most f(s) using space O(f(s) log s+log2 s).

Proof. We first define a Turing machine M1 that takes G and a node v ∈ G as
input, and computes the number of predecessors of v in G, i.e. the number of
nodes u such that there exists a directed path from u to v in G. In the beginning
M1 initializes a counter to 1. Then M1 uses Theorem B to check, one-by-one,
for each node u ∈ G \ {v} if there is a directed path from u to v in G. For each
node u ∈ G \ {v} such that v is reachable from u, the counter is incremented.
The space used to check the reachability of v from u is reused when checking for
reachability from the next node in G \ {v}. Thus M1 uses O(log2 s) space and
computes the size of the subDAG with v as the root.

We now define M in Lemma 4 as follows. First M enumerates integers k such
that 1 ≤ k ≤ s in increasing order. For a fixed k, M enumerates subsets W of
size k of the nodes in G in lexicographic order. For a given W , for every node
u ∈ G\W , let G(u) denote the set of predecessors of u in G\W . That is, G(u) is
the subDAG in G\W with u as its root. M uses M1 to compute |G(u)|. If there
exists one node u ∈ G \W such that |G(u)| > 2

3s, then M continues to the next
W , or the next k if every W of the current size has been already checked. Also,
every time before continuing to the next W or the next k, M clears unnecessary
information from the work tape.

We now argue that M will find a segregator of the smallest size. Observe
that the set of nodes of G is a segregator of size s, so M is guaranteed to find
a segregator. Since we try every k in increasing order, and we check for every
subset W of size k whether or not it is a segregator, it is guaranteed that we will
find a segregator of the smallest possible size in G.

We now argue that M only uses O(f(s) log s+log2 s) space. The description of
G can be read using a counter of size O(log s). The enumeration and the storing
of W both take O(k log s) = O(f(s) log s) space. The computation of |G(u)|
takes O(log2 s) space since M1 uses O(log2) space. Thus the space complexity
to find a segregator of smallest size is O(f(s) log s+ log2 s). !"

A Generalization of Spira’s Theorem and Circuits 271

Note that in the proof for Lemma 4, the input of M consists of only the
description of the graph. M does not know the value of f(s) in advance. Also,
by Lemma 1, for graphs with separators of size k, the algorithm in Lemma 4
will also find a segregator of size at most k.

4.2 Segregators of Uniform Circuits

Intuitively, Lemma 4 seems to apply directly to circuits since circuits are also
DAGs. However, the input of the Turing machine that has to generate the circuit
Cn for a uniform family of circuits, is the unary representation of n (1n), so the
graph of the circuit Cn is not available directly. Since we want to generate the
segregator using small space, we cannot store the description of Cn on the work
tapes. As it is standard in such situations, we will generate the description of Cn

as needed for the machine in the proof of Lemma 4, but never store the complete
description. We then have the following lemma.

Lemma 5. Let C be a h(n)-space uniform family of circuits. Let Cn ∈ C be the
Boolean circuit in the family with n inputs, and assume that Cn has size s = s(n)
and a segregator of size f(s). Then there exists a deterministic Turing machine
M̂ that on input 1n, outputs a segregator of Cn of size at most f(s) using space
O(h(n) + f(s) log s+ log2 s).

As in the case for directed graphs, for circuits with separators of size f(s),
the algorithm in Lemma 5 will also find a segregator of size at most f(s).

5 Generating the Simulating Circuits in Small Space

Let v be any node and Z be any set of nodes in the underlying graph of a circuit
Cn. We denote by Cv,Z the circuit obtained from the subcircuit Cv of Cn with
output v by replacing every node in Z that participates in Cv by a new input
variable.

Lemma 6. Let C be a h(n)-space uniform family of circuits. Let Cn ∈ C be
the circuit with n inputs in the family, and assume that Cn has size s = s(n).
Let v be any node and Z be any set of nodes in the underlying graph of Cn.
Then there exists a Turing machine M2 such that on input 1n, v and Z, M2

outputs the standard description of the circuit Cv,Z . Furthermore, M2 runs in
space O(h(n) + log2 s).

Note that if Z = ∅, or if Z does not contain any predecessors of v then Cv,Z is

simply the subcircuit Cv. Similarly to the circuit Ĉ in the proof of Theorem 2,
if the size of Z is r, and Cv depends on n′ input variables, then Cv,Z may have
up to n′ + r variables. If v ∈ Z, then Cv,Z is simply a new variable. The proof
of this lemma is standard, and we leave it for the full version.

272 A. Gál and J.-T. Jang

Lemma 7. Let C be a h(n)-space uniform family of circuits. Let Cn ∈ C be the
circuit with n inputs in the family, and assume that Cn has size s = s(n). Let
v be any node and Z be any set of nodes in the underlying graph of Cn. Also
assume that Cn has segregators of size f(). Then there exists a Turing machine
M3 such that on input 1n, v and Z, M3 outputs a minimum size segregator of
Cv,Z using space O(h(n) + f(s) log s+ log2 s).

Proof. Let M2 be the Turing machine in Lemma 6 that generates the description
of Cv,Z in space O(h(n)+log2 s). Let M be the Turing machine in the statement
of Lemma 4, that takes a directed graph G as input, and outputs a minimum size
segregator of G. The machine M3 will simulate M on the underlying directed
graph of Cv,Z . However, as before, the full description of the graph will never
be stored. Instead, whenever M3 needs some information about the graph, it
lets M2 run, (without recording its output), until the required information is
generated. The size of the subcircuit Cv,Z is s′ ≤ s. Since Cn has segregators
of size f(), we know that Cv,Z has a segregator of size f(s′). Recall that M
always finds a minimum size segregator, thus it will find a segregator of size
f(s′) ≤ f(s). Since M runs in space O(f(s) log s + log2 s), the total space used
will be O(h(n) + f(s) log s+ log2 s). !"

Now we are ready to prove a uniform version of Theorem 2.

Theorem 8. Let C be an h(n)-space uniform family of Boolean circuits. Let
Cn ∈ C be the Boolean circuit on n inputs with size s = s(n). Suppose that Cn

has segregators of size f(). Let g(s) = f(s) if f(s) = Ω(sc) for some constant
c > 0 and f(s) log s otherwise. Then C can be simulated by a O(h(n)+g(s) log s)-
space uniform family of Boolean circuits of depth O(g(s)).

Proof. We show that the construction in the proof of Theorem 2 can be generated
by a machine M∗ within the appropriate space bounds. M∗ on input 1n will
output the description of the depth O(g(s)) circuit simulating the circuit Cn ∈ C.

M∗ generates the simulating circuit essentially as described in the proof of
Theorem 2. In each step of the recursion, M∗ has to do the following:

1. Find a segregator S of the current subcircuit, and store the list of nodes of
S in workspace.

2. Find and store the list of nodes that participate in B = ∪|S|
j=1Bj . Note that

a given node may belong to Bj for more than one j, but | ∪|S|
j=1 Bj | ≤ 2|S|,

since Bj contains only children of segregator nodes. Thus, if |S| = p, it takes
O(p log s) space to store the list of nodes in B. We can generate this list
using M̂1, where M̂1 is the Turing machine that on input 1n generates the
description of Cn using space O(h(n)). We will run M̂1 several times, reusing
space, and never store the full description of the circuit, as discussed before.
For finding the set Bj , we have to find the set Sj and store it until we are
finished generating Bj . For each j this takes O(p log s) workspace. We reuse
this space when we move on to the next j. For each node of Bj that we find,
we check if we have already added it to the list, so the full list B takes at
most O(p log s) workspace to store.

A Generalization of Spira’s Theorem and Circuits 273

3. Output the description of the part of the circuit that corresponds to the
current subcircuit. This is based on the expression (1), and the sets Bj and
Sj . We produce the description of the part of the circuit to compute gj ,
while we have Bj and Sj stored in memory. We reuse space when we move
on to the next j. Recall that the output is not part of the space bound. (We
do keep S and the full list B until the end of processing the subcircuit, and
maybe longer as we see below.)

The recursion will continue to process the subcircuits Ĉi (functions hi) defined in
the proof of Theorem 2, and the subcircuits of the nodes in B. Recall that each of
these subcircuits has size at most 2/3 of the last subcircuit. The recursion stops
when a subcircuit is either constant or an input variable. We need a counter
of size p to enumerate the Boolean vectors substituted, and to enumerate the
functions hi, for i = 1, . . . , 2p.

We reuse space as we proceed to the next recursive step. However, to be able
to proceed with the recursion, we need to retain some information about the
segregators S, the sets B and list of values substituted for segregator nodes
from previous recursive steps to be able to generate and process the current
subcircuits. We process the subcircuits similarly to a depth first search in the
recursion tree, starting with the subcircuits corresponding to the set B and
leaving the subcircuit for the functions hi for last. Recall that there is only
one subcircuit to consider for the functions hi, they just differ in the values of
constants substituted.

We keep S, B and list of values substituted for nodes in S from previous steps
along the current path in the recursion tree. Since there are log s stages of the
recursion, at any point we keep at most log s segregators with their correspond-
ing set B and list of values. This takes O(

∑log s
i=1 f(s/2i) log s) = O(g(s) log s)

space.
At the first iteration, we simply use the machine M̂ from Lemma 5 to find a

segregator. Now we describe how to find a segregator of the current subcircuit
during the recursion. To find a segregator for the subcircuits with outputs in the
sets B described above, we use M3 with input 1n, u where u is the output of the
subcircuit, and Z = ∅. (For processing the subcircuits corresponding to nodes in
the sets B we do not need to worry about the segregators that we stored from
previous levels of the recursion.) For the subcircuits Ĉi (functions hi) we use M3

with input 1n, v, where v is the output node of the subcircuits Ĉi (recall that
they have the same output node, they only differ in the constants substituted),
and Z where Z is the union of all the segregators currently stored.

In each step of the recursion, M3 finds the current segregator in at most
h(n) +O(log2 s+ f(s) log s) space by Lemma 7. Note that after each invocation
of Lemma 7, its workspace can be reused.

Thus on input 1n, the space used to construct the new circuit is at most
O(h(n) + log2 s+ g(s) log s) = O(h(n) + g(s) log s) since g(s) = Ω(log s). !"

274 A. Gál and J.-T. Jang

6 Circuit Value Problem

The Boolean Circuit Value problem is defined as follows: given the standard
description of a circuit C and an assignment x to the variables of C as the input,
compute the value of the output of the circuit C evaluated on the assignment
x. As an application of Theorem 8, we obtain a bound on the space complexity
of the problem for Boolean circuits with small segregators (or separators). We
need the following theorem of Borodin [4].

Theorem C. [4] Any language decided by a h(n)-space uniform circuit family
of depth h(n) ≥ logn, can be decided by a Turing machine in space O(h(n)).

Theorem 9. The Boolean Circuit Value problem for circuits that have
size s and segregators (or separators) of size f(s) is in deterministic
SPACE(f(s) log s) if f(s) = Ω(sε) for some constant ε > 0, and
SPACE(f(s) log2 s) otherwise.

Proof. Let g(s) = f(s) if f(s) = Ω(sε) for some constant ε > 0, and g(s) =
f(s) log s otherwise. Since the description of C is given in the input, by the
proof of Theorem 8, using O(g(s) log s) space, we can generate a circuit C′ of
depth O(g(s)) that simulates C. Then we can evaluate C′ in the given assignment
using the argument of Theorem C using space O(g(s)).

Theorem 9 immediately implies the following theorem.

Theorem 10. The Boolean Circuit Value problem for circuits with constant-size
segregators (or separators) is in deterministic SPACE(log2 n).

Lipton and Tarjan [20] gave the following “planar separator theorem”.

Theorem D. [20] Any planar graph of size s has a separator of size O(
√
s).

We use this to obtain our result about the space complexity of the Circuit Value
Problem for planar graphs.

Theorem 11. The Planar Circuit Value Problem can be decided in determinis-
tic SPACE(

√
n logn).

Proof. Immediately follows from Theorem D and Theorem 9.

References

1. Alon, A., Seymour, P., Thomas, R.: A Separator Theorem for Graphs with an
Excluded Minor and its Applications. In: Proceedings of STOC, pp. 293–299 (1990)

2. Barrington, D., Lu, C., Miltersen, P.B., Skyum, S.: On monotone planar circuits. In:
Proceedings of IEEE Conference on Computational Complexity, pp. 24–33 (1999)

3. Bonet, M., Buss, S.R.: Size-depth tradeoffs for Boolean formulae. Information Pro-
cessing Letters 49(3), 151–155 (1994)

A Generalization of Spira’s Theorem and Circuits 275

4. Borodin, A.: On Relating Time and Space to Size and Depth. SIAM Journal on
Computing 6(4), 733–744 (1977)

5. Brent, R.P.: The Parallel Evaluation of General Arithmetic Expressions. Journal
of the ACM 21(2), 201–206 (1974)

6. Bshouty, N., Cleve, R., Eberly, W.: Size-Depth Tradeoffs for Algebraic Formulas.
SIAM Journal on Computing 24(4), 682–705 (1995)

7. Bürgisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic complexity theory.
Springer, Heidelberg (1997)

8. Buss, S.R.: The Boolean formula value problem is in ALOGTIME. In: Proceedings
of STOC, pp. 123–131 (1987)

9. Buss, S., Cook, S., Gupta, A., Ramachandran, V.: An Optimal Parallel Algorithm
for Formula Evaluation. SIAM Journal on Computing 21(4), 755–780 (1992)

10. Chakraborty, T., Datta, S.: One-Input-Face MPCVP Is Hard for L, But in LogD-
CFL. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp.
57–68. Springer, Heidelberg (2006)

11. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

12. Dymond, P., Tompa, M.: Speedups of Deterministic Machines by Synchronous
Parallel Machines. J. Comp. and Sys. Sci. 30(2), 149–161 (1985)

13. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg
(2006)

14. Gál, A., Jang, J.: The Size and Depth of Layered Boolean Circuits. In: López-Ortiz,
A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 372–383. Springer, Heidelberg (2010)

15. Gilbert, J.R., Hutchinson, J.P., Tarjan, R.E.: A Separator Theorem for Graphs of
Bounded Genus. Journal of Algorithms 5(3), 391–407 (1984)

16. Goldschlager, L.: The monotone and planar circuit value problem is complete for
P. SIGACT News, 25–27 (1977)

17. Jansen, M., Sarma, J.: Balancing Bounded Treewidth Circuits. In: Ablayev, F.,
Mayr, E.W. (eds.) CSR 2010. LNCS, vol. 6072, pp. 228–239. Springer, Heidelberg
(2010)

18. Ladner, R.E.: The circuit value problem is log-space complete for P. SIGACT
News 6(2), 18–20 (1975)

19. Limaye, N., Mahajan, M., Sarma, J.: Upper bounds for monotone planar circuit
value and variants. Computational Complexity 18, 377–412 (2009)

20. Lipton, R., Tarjan, R.E.: A Separator Theorem for Planar Graphs. SIAM J. Appl.
Math. 36, 177–189 (1979)

21. Lynch, N.A.: Log space recognition and translation of parenthesis languages. J.
Assoc. Comput. Mach. 24, 583–590 (1977)

22. Papadimitriou, C.H.: Computational complexity. Addison-Wesley (1994)
23. Paterson, M.S., Valiant, L.G.: Circuit Size is Nonlinear in Depth. Theoretical Com-

puter Science 2(3), 397–400 (1976)
24. Paul, W.J., Pippenger, N., Szemerédi, E., Trotter, W.T.: On determinism versus

non-determinism and related problems. In: Proceedings of FOCS, pp. 429–438
(1983)

25. Robertson, N., Seymour, P.D.: Graph Minors II. Algorithmic aspects of tree width.
Journal of Algorithms 7, 309–322 (1986)

26. Santhanam, R.: On separators, segregators and time versus space. In: Proceedings
of the Sixteenth Annual Conference on Computational Complexity, pp. 286–294
(2000)

27. Savitch, W.J.: Relationships Between Nondeterministic and Deterministic Tape
Complexities. Journal of Computer and System Sciences 4(2), 177–192 (1970)

276 A. Gál and J.-T. Jang

28. Spira, P.M.: On time-hardware complexity tradeoffs for Boolean functions. In:
Proc. 4th Hawaii Symp. on System Sciences, pp. 525–527 (1971)

29. Valiant, L., Skyum, S., Berkowitz, S., Rackoff, C.: Fast Parallel Computation of
Polynomials Using Few Processors. SIAM J. Comp. 12(4), 641–644 (1983)

30. Wegener, I.: Relating monotone formula size and monotone depth of Boolean func-
tions. Information Processing Letters 16(1), 41–42 (1983)

31. Wegener, I.: The Complexity of Boolean Functions (1987)

Consistent Consequence for Boolean Equation Systems

Maciej W. Gazda and Tim A.C. Willemse

Eindhoven University of Technology, Eindhoven, The Netherlands

Abstract. Inspired by the concept of a consistent correlation for Boolean equation
systems, we introduce and study a novel relation, called consistent consequence.
We show that it can be used as an approximation of the solution to an equation
system. For the closed, simple and recursive fragment of equation systems we
prove that it coincides with direct simulation for parity games. In addition, we
show that deciding both consistent consequence and consistent correlations are
coNP-complete problems, and we provide a sound and complete proof system for
consistent consequence. As an application, we define a novel abstraction mecha-
nism for parameterised Boolean equation systems and we establish its correctness
using our theory.

1 Introduction

Boolean equation systems [9] have been studied extensively in the context of software
and hardware verification, in which the equation systems appear naturally as the end
result of encodings of model checking problems, including the modal μ-calculus prob-
lem [9] and data and real-time model checking problems [15]; but also as a result of
process equivalence checking problems [11]. The encoded verification problems can be
answered by solving the associated equation system, which is known to be in NP∩ coNP.

The Boolean equation systems originating from verification problems tend to be
rather large. However, so called parameterised Boolean equation systems [10,6] can
be used to concisely describe the Boolean equation systems, using a combination of
data, parameterised recursion and first-order quantification. Subsequently generating
the Boolean equation systems from such parameterised Boolean equation systems, how-
ever, leads to problems akin to the infamous state-space explosion. In an attempt to
side-step the latter phenomenon, transformations that simplify parameterised Boolean
equation systems have been studied, see e.g. [13]; such transformations are reasonably
cheap, but can be extremely effective at reducing the size of the underlying Boolean
equation system.

Establishing the soundness of a given transformation has long been a rather tiresome
affair; only recently, a proof methodology has been devised that avoids the need for
lengthy proofs. The method relies on the identification of a suitable consistent correla-
tion [14] between two (parameterised) Boolean equation systems. While the decidabil-
ity of such consistent correlations was addressed for a fragment of Boolean equation
systems, the decidability and the computational complexity for the general setting of
Boolean equation systems remained open.

An inconvenience of consistent correlations is that they only serve to reason about
transformation that are solution preserving and reflecting. The technique falls short in

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 277–288, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

278 M.W. Gazda and T.A.C. Willemse

situations in which one wishes to devise more aggressive transformations that allow us
to under- or over-approximate the solution to a given (parameterised) Boolean equation
system. Compared to solution preserving transformations, such transformations offer
the prospect of even more powerful reductions. To accommodate the development of
such transformations, we define and study a preorder that is tightly related to the con-
cept of consistent correlation. The resulting preorder is called consistent consequence.
In addition, we study its computational complexity and its relation to concepts known
in the setting of Boolean equation systems and in related settings. Our theoretical con-
tributions can be summarised as follows:

– We establish the relation between consistent consequence, consistent correlation
and the concept of a solution to an equation system;

– We link consistent consequence for the fragment of closed Boolean equation sys-
tems in simple and recursive form to direct simulation for parity games [12], pro-
viding a graph-based, operational view on the concept;

– We prove that deciding consistent consequence and consistent correlation are both
coNP-complete problems, answering the open problem raised in [14];

– We give a sound and complete proof system for consistent consequence and claim
the soundness and completeness of the proof system for consistent correlation, con-
jectured in [14].

Given the notationally more involved setting of parameterised Boolean equation sys-
tems, we have opted to study the concept of consistent consequence in the more acces-
sible framework of Boolean equation systems. Lifting the concepts to the richer setting,
following [14], is interesting but routine.

We conclude our paper by defining a novel abstraction mechanism for (parame-
terised) Boolean equation systems, the soundness of which is easily established by an
appeal to our new theory. The abstraction mechanism allows one to solve parameterised
Boolean equation systems that could not be solved before.

Outline. We give a cursory overview of the Boolean equation system framework in Sec-
tion 2. In Section 3, we define and study our notion of consistent consequence, and we
briefly analyse its computational complexity. The correspondence to direct simulation
for parity games is addressed in Section 4. In Section 5, we present our proof system for
consistent consequence and state the soundness and completeness of the proof system
for consistent correlation, conjectured in [14]. We apply our theory by defining a novel
manipulation on parameterised Boolean equation systems, and prove its correctness in
Section 6. We wrap up with some ideas for future work in Section 7.

2 Preliminaries

Boolean equation systems are finite sequences of fixed point equations, in which the
right-hand sides of the equations are proposition formulae. We assume that the reader
has some familiarity with fixed point theory and Boolean equation systems; for an ex-
cellent, in-depth account on the latter, we refer to [9].

Consistent Consequence for Boolean Equation Systems 279

Definition 1. A Boolean equation system (BES) E is defined by the following grammar:

E ::= ε | (νX = f) E | (μX = f) E
f, g ::= . | ⊥ | X | f ∧ g | f ∨ g

The empty BES is denoted ε; X is a proposition variable taken from a countable set X
of proposition variables; f, g are proposition formulae.

From hereon, whenever we write σ, we mean an arbitrary fixed point sign, i.e., either
μ or ν. As a notational convention, we write fX when we refer to the right-hand side
proposition formula in the equation for X : we have σX = fX .

Let E be an arbitrary equation system. We denote the set of bound proposition vari-
ables of E by bnd(E); that is, bnd(E) contains those variables at the left-hand side of the
equations in E . We only consider equation systems in which all equations have unique
left-hand side variables. Proposition variables occurring in a proposition formula f are
collected in the set occ(f); by extension, occ(E) contains variables occurring in the
right-hand side of any of the equations in E .

Whenever all occurring variables are bound in an equation system, it is said to be
a closed equation system. An equation system is in simple form [1] if none of the
right-hand sides of the equations that occur in the equation system contain both ∧-
and ∨-operators. If none of an equation system’s right-hand side formulae contain the
constants . and ⊥, the system is in recursive form.

To each bound variable X of E , we associate a rank rankE(X), which is defined as
rankE(X) = blockν,X(E):

blockσ,X((σ′Y = fY)E) =

⎧⎨⎩
0 if σ = σ′ and X = Y
blockσ,X(E) if σ = σ′ and X �= Y
1 + blockσ′,X((σ′Y = fY)E) if σ �= σ′

Informally, the rank of a variable X is the i-th block of like-signed equations, contain-
ing X’s defining equation, counting from left-to-right and starting at 0 if the first block
consists of greatest fixed point signs, and 1 otherwise.

Semantics. Let η:X → B be a proposition environment, assigning Boolean values to
proposition variables. The semantics of a proposition formula f is given in the context
of an environment η (notation [[f]]η) and is defined as the standard extension of η to
formulae. We write η[X := b] for the environment η in which the proposition variable
X has Boolean value b and all other proposition variables X ′ have value η(X ′). The
ordering� on environments is defined as η � η′ if and only if η(X) implies η′(X) for
all X . For reading ease, we do not formally distinguish between a semantic Boolean
value and its representation by . and ⊥; likewise, for the operands ∧ and ∨.

Definition 2. The solution of a BES, given an environment η:X → B, is inductively
defined as follows:

[[ε]]η = η

[[(σX = f) E]]η =

{
[[E]](η[X := [[f]]([[E]]η[X := ⊥])]) if σ = μ
[[E]](η[X := [[f]]([[E]]η[X := .])]) if σ = ν

280 M.W. Gazda and T.A.C. Willemse

It is not hard to verify that the order of equations impacts the solution: the equation
system (μX = Y)(νY = X) has ⊥ as the solution to both X and Y , whereas the
equation system (νY = X)(μX = Y) will yield the solution . for both X and Y .

3 Consistent Consequence

Let R be an arbitrary relation on proposition variables X . We write X R X ′ iff
(X,X ′) ∈R. Let θ be an arbitrary environment; θ is consistent with R if for all X R X ′,
θ(X)⇒ θ(X ′). We denote the set of all environments consistent with R by ΘR.

Definition 3. Let E be an equation system. Let R be a relation on proposition variables;
R is a consistent consequence on E if for all equations σX = fX and σ′X ′ = fX′ in
E such that X R X ′, we have:

1. rankE(X) = rankE(X
′)

2. for all θ ∈ ΘR, we have [[fX]]θ ⇒ [[fX′]]θ.

A proposition variable X ′ ∈ bnd(E) is said to be a consistent consequence of propo-
sition X ∈ bnd(E), denoted X � X ′ iff there is some relation R that is a consistent
consequence on E , such that X R X ′.

Property 1. For any pair of consistent consequences R,S, their union R ∪ S is also a
consistent consequence.

As a consequence of the above property, we find that there must be a largest consistent
consequence relation.

Proposition 1. The relation � is the largest consistent consequence. Moreover, � is a
preorder. !"

The theorem below is the main result of this section; it establishes a link between the
notion of a consistent consequence and the concept of a solution to an equation system.

Theorem 1. Let E be an equation system. Let R be a consistent consequence on E .
Then for all θ ∈ ΘR we have [[E]]θ ∈ ΘR.

Proof. The proof proceeds using a combination of induction on the length of the equa-
tion system E and approximation of simultaneous fixed points, relying on Bekič princi-
ple to convert the nested fixed points to such simultaneous fixed points. !"

The notion of consistent consequence is closely related to the notion of a consistent
correlation, see [14]. For the sake of completeness, we here recall its definition.

Definition 4. Let E be an equation system. Let R be a symmetric relation on proposi-
tion variables; R is a consistent correlation on E if for all equations σX = fX and
σ′X ′ = fX′ in E such that X R X ′, we have:

1. rankE(X) = rankE(X
′)

2. for all θ ∈ ΘR, we have [[fX]]θ = [[fX′]]θ.

Consistent Consequence for Boolean Equation Systems 281

Variables X,X ′ ∈ bnd(E) consistently correlate, denoted X � X ′, iff there is some
consistent correlation R such that X R X ′.

The results below relate consistent consequence and consistent correlation: consistent
consequence relates to consistent correlation in the same way as simulation preorder
relates to bisimulation in the setting of labelled transition systems.

Proposition 2. Let E be an arbitrary equation system.

1. The largest consistent correlation on E , denoted � , is the largest symmetric con-
sistent consequence on E;

2. The largest consistent correlation on E , � is contained in � and in �−1. !"

We finish this section with an example that illustrates that consistent correlation � is,
as can be expected, actually finer than � ∩�−1.

Example 1. Consider the equation system E given below:

(μX0 = X4) (μX1 = X0 ∨X2) (μX2 = X4 ∨X5) (μX3 = X2) (μX4 = X4) (νX5 = X5)

Observe that we have, among others, X0 � X2, X1 � X3, X3 � X1, X4 � X0; in
particular, this means that X1 is a consistent consequence of X3 and vice versa. Note
also that X1 �� X3: take, for instance θ(X0) = . and θ(X2) = ⊥, which would be
allowed if not X0 � X2. But this follows from the fact that X4 �� X5, as a result
of their ranks. Finally, observe that neither �, nor � coincide with the partitioning
induced by the solution to the equation system: the solution to both X0 and X4 is ⊥,
whereas the solution to X1, X2, X3 and, in particular, X5 is .; note that X5 cannot be
related to, e.g., X1, due to a difference in ranks. !"

Complexity. In [14], it was shown that deciding � for the class of equation systems in
simple form requires O(n log n) time, where n is the number of bound variables in an
equation system. The complexity for deciding � for arbitrary equation systems so far
remained an open problem; both problems are coNP decision problems.

Proposition 3. Let E be an arbitrary equation system. The decision problems X � Y
and X � Y , for X,Y ∈ bnd(E) are both in coNP. !"

In fact, both decision problems are coNP-complete problems.

Theorem 2. Deciding � and � is coNP-complete.

Proof. The problem can be reduced to the logical consequence problem of [3]. !"

The coNP-completeness proof relies on an equation system consisting of two blocks.
For equation system consisting of only one block, deciding � remains coNP-complete,
but � can be decided in linear time.

Remark 1. For equation systems with either all right-hand sides in Conjunctive Normal
Form or all in Disjunctive Normal Form, both decision problems remain polynomial.

282 M.W. Gazda and T.A.C. Willemse

4 Consistent Consequence Generalises Direct Simulation on
Parity Games

Equation systems generalise Parity Games: two-player, graph-based games [12] with
ω-winning conditions. We show that for the fragment of equation systems in simple
form, consistent consequence on equation systems coincides with direct simulation1

on parity games. Note that despite the fact that parity games and equation systems are
mutually reducible to one another, the correspondence that we establish in this section is
non-trivial, given the contrasts between the denotational framework of equation systems
and the highly operational characteristics of parity games.

Definition 5. A parity game is a game graph G = 〈V,→, Ω, (VEven, VOdd)〉, where V
is a finite set of vertices partitioned in sets VEven and VOdd, →⊆ V × V is a total set
of edges and Ω:V → N is the priority function. Sets VEven and VOdd consist of vertices
owned by player even and odd, respectively.

We forego a formal exposition of the concept of winning vertices in a parity game; for
details, we refer to [12]. For our purpose in this section, it suffices to be aware that
the set of vertices of a parity game can be partitioned in unique sets WEven and WOdd,
representing those vertices in V won by player even and those won by player odd.2

The direct simulation preorder on vertices of a parity game is defined through a game
played on an auxiliary graph, called the simulation game-graph (i.e., not a parity game
graph). Given a parity game G = (V,→, Ω, (VEven, VOdd)), the simulation game is a
turn-based game played by players Duplicator (D) and Spoiler (S) on a game-graph
(V × V,→ ×→) according to moves adhering to the rules in Table 1. An infinite play
(v0, w0)(v1, w1) · · · ∈ (V × V)ω is won by Duplicator if all priorities match along the
play, i.e., Ω(vn) = Ω(wn) for all n; otherwise it is won by Spoiler.

Table 1. Admissible moves in a simulation game-graph

(v, w) ∈ 1st player plays on 2nd player plays on

VEven × VEven S v D w
VEven × VOdd S v S w
VOdd × VEven D w D v
VOdd × VOdd S w D v

Definition 6. Let G = (V,→, Ω, (VEven, VOdd)) be a parity game. We say that a vertex
v is directly simulated by vertex w, denoted v �dir w if player Duplicator (D) has a
winning strategy for the simulation game starting in (v, w).

We have the following relation between vertices won by players even and odd, and the
direct simulation relation, as suggested in [5], and as a consequence of our Theorem 3.

1 It appears that this notion was never formally defined for parity games, but for a variant in the
setting of Büchi automata, see [4], and based on suggestions in [5], it can be reconstructed.

2 The sets WEven and WOdd should not be confused with VEven and VOdd; these are not related.

Consistent Consequence for Boolean Equation Systems 283

(μX0 = X4)
(μX1 = X0 ∨X2)
(μX2 = X4 ∨X5)
(μX3 = X2)
(μX4 = X4)
(νX5 = X5)

1

vX0

1

vX1

1

vX2

1

vX3

1

vX4

2

vX5

Fig. 1. The equation system E from Example 1, and its associated parity game

Proposition 4. Let G = (V,→, Ω, (VEven, VOdd)) be a parity game. Let v, w ∈ V . If
v �dir w and vertex v is won by player even, then so is vertex w. !"

Parity games and equation systems in simple, recursive form are known to coincide:
see, e.g., the linear reductions in both directions in [7]. These reductions are such that a
vertex in the game is won by player even iff the corresponding equation in the equation
system has true as its solution. Based on these reductions, we have the following result.

Theorem 3. The preorder �dir on parity games coincides with the preorder � on
closed equation systems in simple and recursive form. !"

Direct simulation can be computed in polynomial time using the framework for games
with Büchi winning conditions, see [4]. Clearly, the same technique applies to comput-
ing consistent consequence on closed equation systems in simple recursive form; the
extension of this technique to open equation systems in simple form is standard.

Example 2. Reconsider the equation system E from Example 1. Its associated parity
game is given below; vertices owned by player even are diamond-shaped, whereas ver-
tices owned by player odd box-shaped. The priorities are written inside the vertices. One
can check that vertex vX1 simulates vX3 , corroborating our earlier claim that X1 �X3,
and vice versa. In a similar vein, we have both vX0 �dir vX2 and vX4 �dir vX0 . !"

5 The Proof System �c

The definition of a consistent consequence is phrased entirely in terms of the semantics
of the artefacts of an equation system. In [14], it was conjectured that the notion of a
consistent correlation � can be characterised by a proof system that adds only a single
coinductive rule to the standard axiomatisation of logical equivalence for negation-free
propositional logic. Such an elegant, syntax-based proof system offers an accessible al-
ternative to the semantic definition; this ultimately provides a better understanding of
the concept. We vindicate the conjecture in [14], and provide a similar-spirited proof
system for consistent consequence.

We write f ⊂ g to denote that g is a logical consequence of f . Let �P denote the proof
system for logical consequence for negation-free propositional logic, given by the rules
in Table 2, save the rules CC and CNT.

Lemma 1. The proof system �P is sound and complete for logical consequence. !"

284 M.W. Gazda and T.A.C. Willemse

Table 2. Proof system for negation-free logical consequence and consistent consequence; α, β, γ
represent arbitrary proposition formulae; X,Y are proposition variables; and Γ is a context. Fur-
thermore, ς is a substitution mapping proposition variables to proposition formulae; fς denotes
the natural extension of mapping ς from variables to terms. The rules axiomatise associativity
(AS), distributivity (DS), absorption (AB), idempotence (ID), supremum (SUP) and infimum
(INF) and top (TOP) and bottom (BOT).

Axioms for negation-free propositional logic

rules of the form Γ � A , where A ranges over the following laws:

AS1 α ∧ (β ∧ γ) ⊂ (α ∧ β) ∧ γ DS1 α ∨ (β ∧ γ) ⊂ (α ∨ β) ∧ (α ∨ γ)
AS2 (α ∧ β) ∧ γ ⊂ α ∧ (β ∧ γ) DS2 (α ∨ β) ∧ (α ∨ γ) ⊂ α ∨ (β ∧ γ)
AS3 α ∨ (β ∨ γ) ⊂ (α ∨ β) ∨ γ DS3 α ∧ (β ∨ γ) ⊂ (α ∧ β) ∨ (α ∧ γ)
AS4 (α ∨ β) ∨ γ ⊂ α ∨ (β ∨ γ) DS4 (α ∧ β) ∨ (α ∧ γ) ⊂ α ∧ (β ∨ γ)
COM1 α ∧ β ⊂ β ∧ α AB1 α ∨ (α ∧ β) ⊂ α
COM2 α ∨ β ⊂ β ∨ α AB2 α ⊂ α ∧ (α ∨ β)
ID1 α ⊂ α ∧ α ID2 α ∨ α ⊂ α
SUP α ⊂ α ∨ β INF α ∧ β ⊂ α
TOP α ⊂ α ∧ � BOT α ∨ ⊥ ⊂ α

Inequality logic rules

SUB
Γ �c α ⊂ β

Γ �c ας ⊂ βς CTX
Γ �c α ⊂ β

Γ �c γ[X := α] ⊂ γ[X := β]

TRA
Γ �c α ⊂ β β ⊂ γ

Γ �c α ⊂ γ REF Γ �c α ⊂ α

Consistent consequence rules

CC

Γ,X ⊂ Y �c fX ⊂ fY rank(X) = rank(Y)

Γ �c X ⊂ Y

CNT Γ �c X ⊂ Y
(X ⊂ Y) ∈ Γ

Before we address the soundness and completeness of the proof system for consistent
consequence, we parameterise the definition of � to facilitate reasoning about a context
Γ , which can be thought of as a relation on propositional variables.

Definition 7. Let R,Γ be relations on proposition variables. Let E be an equation
system. Then R is a consistent consequence relative to Γ if, whenever X R X ′, for
X,X ′ ∈ bnd(E), we have:

1. rankE(X) = rankE(X
′);

2. for all θ ∈ ΘR∪Γ , we have [[fX]]θ ⇒ [[fX′]]θ.

Proposition X ′ is said to be a consistent consequence of X , relative to context Γ ,
denoted X �Γ X ′ iff there is a consistent consequence relation R relative to Γ , such
that X(R ∪ Γ)X ′.

Consistent Consequence for Boolean Equation Systems 285

We next generalise the notion of a consistent consequence relative to a context to apply
to arbitrary proposition formulae; the generalisation is standard.

Definition 8. Let f, g be proposition formulae. We say that g is a consistent conse-
quence of f , relative to context Γ , denoted f �Γ g iff for all θ ∈ ΘR∪Γ , we have
[[f]]θ ⇒ [[g]]θ.

From hereon, we tacitly assume a fixed equation system E . Henceforth, ⊂ denotes the
relation induced by all rules found in the proof system in Table 2. We write Γ �c f ⊂ g
to denote that the rules in Table 2 enables us to derive that f ⊂ g in the context Γ .

Theorem 4. The proof system �c is sound for �. !"

Essential to our completeness result, we first claim that for all X�Y , we have �c X ⊂
Y ; in other words, there is always a finite proof tree with root X ⊂ Y .

Lemma 2. For all Γ ⊆ � satisfying f1 �Γ f2, the below rule is derivable in �c:

H
Γ �c f1 ⊂ f2 (R2)

where either H = ∅ or nodes in H are of the form Γ ′ �c f ⊂ g for some γ′ satisfying
#Γ ′ > #Γ .

Theorem 5. Proof system �c is complete for �.

Proof. Take any X,Y such that X � Y . We can construct a finite proof tree by first
applying the rule R2 from Lemma 2. We thus obtain:

H1

∅ �c X ⊂ Y

We continue to apply rule R2 to the premises from H1 and to thus obtained new
premises as long as necessary. On each level Hn we have #Γ = n and since, as a
result of the finite size of an equation system, the number of possible pairs in the con-
text Γ is finite, the proof tree is well-founded. !"

Theorem 6. The proof system conjectured in [14] is sound and complete for � . !"

Example 3. As an illustration of the use of our proof system, we will prove the claimed
X1 �X3 from Example 1.

X0 ⊂ X2, X1 ⊂ X3 �c X4 ⊂ X4 ∨X5
(SUP)

X1 ⊂ X3 �c X0 ⊂ X2
(CC)

X1 ⊂ X3 �c X0 ∨X2 ⊂ X2 ∨X2
(CTX)

X2 ∨X2 ⊂ X2
(ID2)

X1 ⊂ X3 �c X0 ∨X2 ⊂ X2
(TRA)

X1 ⊂ X3
(CC)

286 M.W. Gazda and T.A.C. Willemse

6 Application

We next use the concept of consistent consequence to establish the correctness of a
novel abstraction mechanism for parameterised Boolean equation systems. Our mech-
anism is inspired by abstraction techniques for behavioural systems [2].

Due to the imposed page limits, we limit ourselves to describing the syntax of param-
eterised Boolean equation systems; for a detailed, formal exposition of the framework,
we refer to [6]. For the purpose of this section, parameterised Boolean equation systems
can be thought of as describing (possibly infinite sized) blocks of Boolean equation sys-
tems with first-order right-hand side formulae. We assume some familiarity with model
checking and the μ-calculus.

Definition 9. A parameterised Boolean equation system (PBES) E is defined by the
following grammar:

E ::= ε | (νX(dX :DX) = φ) | (μX(dX :DX) = φ)
φ, ψ ::= b | φ ∧ ψ | φ ∨ ψ | ∀d:D. φ | ∃d:D. φ | X(e)

The expressions φ, ψ are predicate formulae; b is a basic Boolean expression, possibly
containing data variables d ∈ D. Variable X , taken from some countable set P , is a
(sorted) predicate variable; e is a vector of data expressions. We write φ(d) to indicate
that the variables in d occur freely in φ.

PBESs allow one to encode various verification problems, such as model checking (first
order) modal μ-calculus formulae and verifying various well-known process equiva-
lences. Despite the undecidability of solving PBESs, syntactic manipulations enable
one to compute the solution in many practical situations. Most manipulations preserve
underlying consistent correlations. In contrast, we next present an abstraction technique
that is inspired by consistent consequence.

Definition 10. Let, for each X , hX :DX → D̂X be a surjection, mapping a concrete
domain DX to an abstract domain D̂X . We denote the union of all mappings hX by h.
The abstraction Fm(φ) of φ, for m ∈ {",!}, in the context of h is defined inductively:

Fm(b(d)) =

{
∃d. h(d) = d̂ ∧ b if m = "
∀d. h(d) �= d̂ ∨ b otherwise

Fm((Y (e))(d)) =

{
∃d. h(d) = d̂ ∧ Ŷ (h(e)) if m = "
∀d. h(d) �= d̂ ∨ Ŷ (h(e)) otherwise

Fm((φ ⊕ ψ)(d)) = Fm(φ(d))⊕Fm(ψ(d)) for ⊕ ∈ {∧,∨}
Fm((Q d′:D. φ)(d)) = Q d̂′:D̂. Fm(φ(d′,d)) for Q ∈ {∀, ∃}

The abstraction function F easily extends to PBESs. The following theorem states that
Fm(φ) can be used to under-approximate, resp. over-approximate the solution to a
PBES. The correctness of this theorem can be established by proving the mapping h
induces a consistent consequence on the predicate variables involved in a PBES; lifting
the theory of consistent consequence to PBESs can be done along the lines of [14].

Consistent Consequence for Boolean Equation Systems 287

Theorem 7. Let E be an arbitrary closed, non-empty PBES. Let h be a mapping from
concrete data domains to abstract data domains. We have, for all environments η, all
X ∈ bnd(E) and all v:

[[F�(E)]]η(X̂(h(v)))⇒ [[E]]η(X(v))⇒ [[F�(E)]]η(X̂(h(v)))

We illustrate the practical implications of the above theorem through an (academic)
model checking problem on an infinite state space.

Example 4. Consider the infinite labelled transition system M = 〈N, {a, b, c},→〉,
where→⊆ N× {a, b, c} × N is defined as the least set satisfying:

– for all n ∈ N satisfying n < 10 we have n
a−→ n+ 1.

– for all m,n ∈ N satisfying n ≥ 10 we have n
b−→ m.

– for all n ∈ N satisfying n ≤ 5 we have n
c−→ n+ 1.

Note that such infinite labelled transition systems can be specified concisely using (pro-
cess algebraic) languages such as mCRL2 or LOTOS. Consider the μ-calculus formula
φ: νX.μY.〈b〉X ∨ 〈a〉Y , asserting that there is an a, b-path along which action b is exe-
cuted infinitely often. Following the (automated) translation described in, e.g. [14], we
obtain the PBES E given below; we have, for all v ∈ N, X(v) is true iff M, v |= φ.(
νX(n:N) = Y (n)

)(
μY (n:N) = (n ≥ 10 ∧ ∃m:N.Y (m)) ∨ (n < 10 ∧X(n+ 1))

)
Note that there is currently no technique to solve the PBES directly. Let h:N → B be
defined as h(n) = . iff n < 10. The under-approximationF�(E) is given below:

(νX̂(n̂:B) = ∀n:N. h(n) �= n̂ ∨ Ŷ (h(n)))

(μŶ (n̂:B) = ((∀n:N. h(n) �= n̂ ∨ n ≥ 10)∧
(∃m̂:B. (∀n,m:N. h(n) �= n̂ ∨ h(m) �= m̂ ∨ Ŷ (h(m)))))∨
((∀n:N. h(n) �= n̂ ∨ n < 10) ∧ (∀n:N. h(n) �= n̂ ∨ X̂(h(n+ 1)))))

Instantiating F�(E) into a Boolean equation system yields the following result:

(νX̂� = Ŷ�) (νX̂⊥ = Ŷ⊥) (μŶ� = X̂� ∧ X̂⊥) (μŶ⊥ = Ŷ� ∨ Ŷ⊥)

The solution to this equation system is . for all equations. By the instantiation, X̂b =
X̂(b) for b ∈ B; by Theorem 7, we find that the solution to X̂(h(v)) in F�(E) implies
the solution to X(v) in E for all v ∈ N. By the correspondence of the solution of E and
the problem M, v |= φ, we find that M, v |= φ for every state v ∈ N of M . !"
It is noteworthy that, irrespective of the problems encoded by the PBESs, our abstrac-
tion mechanism is sound; e.g., it is suited for model checking problems stemming from
the full μ-calculus. This starkly contrasts most works employing simulation relations
on processes, as (unless one imposes stricter requirements on the abstractions, or moves
from labelled transition systems to modal labelled transition systems) only the univer-
sal, resp. existential, modal μ-calculus fragments are preserved, resp. reflected [8].

To illustrate this, a slightly finer-grained abstraction function h than the one used in
the above example, suffices to over-approximate the PBES resulting from the encoding
of the problem M, v |= μY. 〈c〉νX.([a]X ∧ [b]Y), still giving a negative answer to the
model checking problem for all states v ∈ N of M . The latter modal μ-calculus formula
is neither part of the universal fragment of the μ-calculus, nor its existential fragment.

288 M.W. Gazda and T.A.C. Willemse

7 Future Work

The notion of a consistent consequence, together with the theory we developed in this
paper, open up new avenues for research on manipulations for BESs and PBESs. We
plan to investigate specialisations of the abstraction mechanisms we introduced in Sec-
tion 6, such as the use of Galois connections rather than functions. Moreover, we believe
it would be worthwhile to investigate the use of CEGAR techniques for automating the
construction of proper abstractions.

Acknowledgements. We would like to thank Bas Luttik (TU/e) and Herman Geuvers
(Radboud University Nijmegen) for their useful comments and suggestions.

References

1. Arnold, A., Crubille, P.: A linear algorithm to solve fixed-point equations on transition sys-
tems. Information Processing Letters 20(1), 57–66 (1988)

2. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM Trans. Pro-
gram. Lang. Syst. 16(5), 1512–1542 (1994)

3. Delgrande, J.P., Gupta, A.: Two results in negation-free logic. Applied Mathematics Let-
ters 6(6), 79–83 (1993)

4. Etessami, K., Wilke, T., Schuller, R.A.: Fair simulation relations, parity games, and state
space reduction for büchi automata. SIAM J. Comput. 34(5), 1159–1175 (2005)

5. Fritz, C., Wilke, T.: Simulation Relations for Alternating Parity Automata and Parity Games.
In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 59–70. Springer, Heidel-
berg (2006)

6. Groote, J.F., Willemse, T.A.C.: Parameterised boolean equation systems. Theor. Comput.
Sci. 343(3), 332–369 (2005)

7. Keinänen, M.: Techniques for Solving Boolean Equation Systems. PhD thesis, Helsinki Uni-
versity of Technology (2006)

8. Loiseaux, C., Graf, S., Sifakis, J., Bouajjani, A., Bensalem, S.: Property preserving abstrac-
tions for the verification of concurrent systems. Formal Methods in System Design 6(1),
11–44 (1995)

9. Mader, A.: Verification of Modal Properties Using Boolean Equation Systems. PhD thesis,
Technische Universität München (1997)

10. Mateescu, R.: Vérification des propriétés temporelles des programmes parallèles. PhD thesis,
Institut National Polytechnique de Grenoble (1998)

11. Mateescu, R.: A Generic On-the-Fly Solver for Alternation-Free Boolean Equation Systems.
In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 81–96. Springer, Hei-
delberg (2003)

12. McNaughton, R.: Infinite games played on finite graphs. Annals of Pure and Applied
Logic 65(2), 149–184 (1993)

13. Orzan, S., Wesselink, J.W., Willemse, T.A.C.: Static Analysis Techniques for Parameterised
Boolean Equation Systems. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS,
vol. 5505, pp. 230–245. Springer, Heidelberg (2009)

14. Willemse, T.A.C.: Consistent Correlations for Parameterised Boolean Equation Systems with
Applications in Correctness Proofs for Manipulations. In: Gastin, P., Laroussinie, F. (eds.)
CONCUR 2010. LNCS, vol. 6269, pp. 584–598. Springer, Heidelberg (2010)

15. Zhang, D., Cleaveland, R.: Fast Generic Model-Checking for Data-Based Systems. In: Wang,
F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 83–97. Springer, Heidelberg (2005)

4-Coloring H-Free Graphs When H Is Small�

Petr A. Golovach, Daniël Paulusma, and Jian Song

School of Engineering and Computing Sciences, Durham University,
Science Laboratories, South Road, Durham DH1 3LE, United Kingdom
{petr.golovach,daniel.paulusma,jian.song}@durham.ac.uk

Abstract. The k-Coloring problem is to test whether a graph can
be colored with at most k colors such that no two adjacent vertices
receive the same color. If a graph G does not contain a graph H as
an induced subgraph, then G is called H-free. For any fixed graph H
on at most 6 vertices, it is known that 3-Coloring is polynomial-time
solvable on H-free graphs whenever H is a linear forest and NP-complete
otherwise. By solving the missing case P2+P3, we prove the same result
for 4-Coloring provided that H is a fixed graph on at most 5 vertices.

1 Introduction

Graph coloring involves the labeling of the vertices of some given graph by inte-
gers called colors such that no two adjacent vertices receive the same color. The
corresponding k-Coloring problem is to decide whether a graph can be colored
with at most k colors. Due to the fact that k-Coloring is NP-complete for any
fixed k ≥ 3, there has been considerable interest in studying its complexity when
restricted to certain graph classes. One of the most well-known results in this re-
spect is due to Grötschel, Lovász, and Schrijver [11] who show that k-Coloring

is polynomial-time solvable for perfect graphs. More information on this classic
result and on the general motivation, background and related work on color-
ing problems restricted to special graph classes can be found in several surveys
[21,24] on this topic.

We continue the study of the computational complexity of the k-Coloring

problem restricted to graph classes defined by one or more forbidden induced
subgraphs. This problem has been studied in many papers by different groups
of researchers [3,4,5,6,7,8,10,12,14,15,16,17,19,20,25]. Before we summarize these
results and explain our new results, we first state the necessary terminology and
notations.

Terminology. We only consider finite undirected graphs G with no loops and
no multiple edges. We refer to the textbook by Bondy and Murty [2] for any
undefined graph terminology. We writeG[U] to denote the subgraph ofG induced
by the vertices in U , i.e., the subgraph ofG with vertex set U and an edge between
two vertices u, v ∈ U whenever uv ∈ E.

� This work has been supported by EPSRC (EP/G043434/1).

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 289–300, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

290 P.A. Golovach, D. Paulusma, and J. Song

The graphs Pn and Cn denote the path and cycle on n vertices, respectively.
The disjoint union of two graphs G and H is denoted G + H , and the disjoint
union of r copies of G is denoted rG. A linear forest is the disjoint union of a
collection of paths. Let {H1, . . . , Hp} be a set of graphs. We say that a graph
G is (H1, . . . , Hp)-free if G has no induced subgraph isomorphic to a graph in
{H1, . . . , Hp}; if p = 1, we sometimes write H1-free instead of (H1)-free.

A (vertex) coloring of a graph G = (V,E) is a mapping c : V → {1, 2, . . .}
such that c(u) �= c(v) whenever uv ∈ E. Here, c(u) is referred to as the color of
u. A k-coloring of G is a coloring c of G with c(V) ⊆ {1, . . . , k}. Here, we used
the notation c(U) = {c(u) | u ∈ U} for U ⊆ V . If G has a k-coloring, then G is
called k-colorable. Recall that the problem k-Coloring is to decide whether a
given graph admits a k-coloring. Here, k is fixed, i.e., not part of the input. If k
is part of the input then we denote the problem as Coloring. The optimization
version of this problem is to determine the chromatic number of a graph G, i.e.,
the smallest k such that G has a k-coloring.

Related work. Král’, Kratochv́ıl, Tuza and Woeginger [16] completely deter-
mined the computational complexity of Coloring for graph classes character-
ized by one forbidden induced subgraph. They achieved the following dichotomy.

Theorem 1 ([16]). Let H be a fixed graph. If H is a (not necessarily proper)
induced subgraph of P4 or of P1+P3, then Coloring can be solved in polynomial
time for H-free graphs; otherwise it is NP-complete for H-free graphs.

The computational complexity of Coloring for H-free graphs where H is a
family of two graphs is still open, although several partial results are known,
e.g., Král’ et al. [16] also showed that Coloring is NP-complete for (C3, H)-
free graphs whenever H is a fixed graph containing at least one cycle. This work
has been extended by Schindl [22]. Maffray and Preissmann [19] showed that
Coloring is NP-complete for (C3,K1,5)-free graphs, where K1,5 is the 6-vertex
star. Broersma et al. [5] showed that Coloring is polynomial-time solvable for
(C3, 2P3)-free graphs, hereby completing a study of Dabrowski et al. [8] who
considered the Coloring problem restricted to (C3, H)-free graphs for graphs
H on at most six vertices.

We focus on the computational complexity of the k-Coloring problem for
H-free graphs. Kamiński and Lozin [14] showed that for any k ≥ 3, the k-
Coloring problem is NP-complete for the class of graphs of girth (the length
of a shortest induced cycle) at least p for any fixed p ≥ 3. Their result has the
following immediate consequence.

Theorem 2. For any k ≥ 3, the k-Coloring problem is NP-complete for the
class of H-free graphs whenever H contains a cycle.

Holyer [13] showed that 3-Coloring is NP-complete on line graphs. Later, Leven
and Galil [18] extended this result by showing that k-Coloring is also NP-
complete on line graphs for k ≥ 4. Because line graphs are claw-free, i.e., they
have no induced K1,3, these two results together have the following consequence.

4-Coloring H-Free Graphs When H Is Small 291

Theorem 3. For any k ≥ 3, the k-Coloring problem is NP-complete for the
class of H-free graphs whenever H is a forest with a vertex of degree at least 3.

Due to Theorems 2 and 3, only the case in which H is a linear forest remains.
We first consider the case when H is a path. Hoàng et al. [12] showed that for
any k ≥ 1, the k-Coloring problem can be solved in polynomial time for P5-
free graphs. Randerath and Schiermeyer [20] showed that 3-Coloring can be
solved in polynomial time for P6-free graphs. It is also known that 4-Coloring

is NP-complete for P8-free graphs [4] and that 6-Coloring is NP-complete for
P7-free graphs [3].

We now discuss the case when H is a linear forest that is the disjoint union
of two or more paths. Combining a result from Balas and Yu [1] on the maximal
number of independent sets in an sP2-free graph and a result from Tsukiyama
et al. [23] on the enumeration of such sets leads to the known result that k-
Coloring is polynomial-time solvable on sP2-free graphs for any two integers k
and s. Broersma et al. [4] extended the aforementioned result of Randerath and
Schiermeyer [20] by showing that 3-Coloring is polynomial-time solvable for
H-free graphs if H is a linear forest with |VH | ≤ 6 or H = sP3 for any integer s.
They also observed that 3-Coloring is polynomial-time solvable for (P1 +H)-
free graphs whenever this problem is polynomial-time solvable for H-free graphs.
Couturier et al. [7] extended the aforementioned result of Hoàng et al. [12] by
proving that for any fixed integers k and r, the k-Coloring problem can be
solved in polynomial time for (rP1 + P5)-free graphs. All these positive results
are summarized in Theorems 4 and 5 if we keep in mind that k-Coloring is
polynomial-time solvable on H ′-free graphs whenever it is so on H-free graphs
for some graph H containing H ′ as an induced subgraph.

Theorem 4. The 3-Coloring problem can be solved in polynomial time for
H-free graphs if

• H = rP1 + P2 + P4 for any r ≥ 0
• H = rP1 + P6 for any r ≥ 0
• H = sP3 for any s ≥ 0.

Theorem 5. For any k ≥ 4, the k-Coloring problem can be solved in polyno-
mial time for H-free graphs if

• H = rP1 + P5 for any r ≥ 0
• H = sP2 for any s ≥ 0.

Our new result. Theorems 2–4 imply that for any fixed graph H on at most
6 vertices, 3-Coloring is polynomial-time solvable on H-free graphs whenever
H is a linear forest and NP-complete otherwise. We prove the following result.

Theorem 6. For any fixed graph H on at most 5 vertices, 4-Coloring is
polynomial-time solvable on H-free graphs whenever H is a linear forest and
NP-complete otherwise.

292 P.A. Golovach, D. Paulusma, and J. Song

Theorems 2, 3 and 5 imply that the only missing case is when H = P2 +P3. We
present a polynomial-time algorithm for this case in Section 3. The correctness
proof of this algorithm uses some known structural and algorithmic results stated
in Section 2.

Future work. Whether k-Coloring is polynomial-time solvable on (P2 +P3)-
free graphs for k ≥ 5 is an open problem. Our techniques for solving 4-Coloring

on (P2 + P3)-free graphs seem hard to generalize to higher values of k.

2 Preliminaries

In order to proceed we must slightly generalize the coloring concept as follows.
A list-assignment of a graph G = (V,E) is a function L that assigns a list L(u)
of so-called admissible colors to each u ∈ V . If L(u) ⊆ {1, . . . , k} for u ∈ V ,
then L is also called a k-list-assignment. Equivalently, L is a k-list-assignment
if |

⋃
u∈V L(u)| ≤ k. We say that a coloring c : V → {1, 2, . . .} respects L

if c(u) ∈ L(u) for all u ∈ V . For a fixed integer k, the List k-Coloring

problem has as input a graph G with a k-list-assignment L and asks whether
G has a coloring that respects L. If |L(u)| = 1 for every vertex u of some
subset W ⊆ V and L(u) = {1, . . . , k} for u ∈ V \W , then we obtain the k-
Precoloring Extension problem. In that case we also say that we want to
extend the precoloring on W to a k-coloring of G.

We will frequently use the following observation, the proof of which follows
from the fact that the problem in this case can be modeled and solved as an
instance of the 2-Satisfiability problem. This approach has been introduced
by Edwards [9] and is folklore now.

Lemma 1 ([9]). Let G be a graph in which every vertex has a list of admissible
colors of size at most 2. Then checking whether G has a coloring respecting these
lists is solvable in polynomial time.

Let G = (V,E) be a graph. For a subset U ⊆ V we define NG(U) = {v ∈
V \ U | uv ∈ E for some u ∈ U}; note that N(∅) = ∅. A set D ⊆ V dominates a
set S ⊆ V if S ⊆ D ∪NG(D); if S = V then we say that D is a dominating set
of G. The next lemma follows from Lemma 7 in the paper of Broersma et al. [4].

Lemma 2. Let G = (V,E) be a (P2+P3)-free graph of minimum degree at least
4. If G has a 4-coloring, then G contains a dominating set D of size at most 39.

Note that Lemma 2 involves a minimum degree condition. However, we can
easily get around this by applying the following well-known procedure on a graph
G = (V,E). Remove all vertices of V with degree at most 3 from G. Propagate
this until we obtain a graph G∗ of minimum degree at least 4; note that G∗ may
be the empty graph. We observe the following straightforward result, see e.g.
Broersma et al. [4] for a proof.

Lemma 3. Let G be a graph. Then G has a 4-coloring if and only if G∗ has a
4-coloring. Moreover, G∗ can be obtained in polynomial time.

4-Coloring H-Free Graphs When H Is Small 293

The following result is slightly stronger than the corresponding result stated
in Theorem 4. We can show this result by using exactly the same proof as the
proof for 3-Precoloring Extension for this graph class by Broersma et al. [4].

Lemma 4. The List 3-Coloring problem can be solved in polynomial time on
sP3-free graphs for any fixed integer s ≥ 1.

Due to Lemma 4 and the fact that every (P2+P3)-free graph is 2P3-free we obtain
the next lemma, which we need for the correctness proof of our algorithm.

Lemma 5. The List 3-Coloring problem can be solved in polynomial time
for the class of (P2 + P3)-free graphs.

We also need the following lemma, which follows immediately from Lemma 5.

Lemma 6. Let G = (V,E) be a (P2 + P3)-free graph. Then a partition of V
into three (possibly empty) independent sets I1, I2, I3 can be found in polynomial
time if it exists.

3 The Algorithm

Let G be a (P2+P3)-free graph that is an instance of 4-Coloring. By Lemma 3
we may assume that G has minimum degree at least 4. We also assume that each
vertex u has been assigned an initial list L0(u) = {1, 2, 3, 4} of admissible colors.
If at some moment we color a vertex u with a certain color, then we may remove
this color from the list of every neighbor of u. This is what we call updating the
list assignment. Also, when coloring a vertex, say with color i, then we set its
list of admissible colors to {i}.

Outline. Our algorithm is a branching algorithm. The main idea is to obtain in
polynomial time a polynomial-bounded set L of list assignments for G that have
the following two properties. First, G has a 4-coloring if and only if G has a
coloring that respects a list assignment in L. Second, for every list assignment
L ∈ L, we either have that all its lists have size at most two or else that the
union of its lists that contain at least 2 colors has size 3; in the first case we
can use Lemma 1, and in the second case we can use Lemma 5 after removing
all vertices with a single color in their list from the graph and updating the
list assignment if necessary. Because we obtain L in polynomial time and its
size is bounded by a polynomial, this means that the total running time of our
algorithm is polynomial.

Our algorithm consists of two phases. At the end of Phase 1, we either have
found that G has no 4-coloring or we have obtained a set L of list assignments,
for which we will prove the desired properties specified in the outline; initially
L = ∅. In Phase 2 we consider the list assignments of L one by one to determine
whether G has a coloring respecting at least one of them. During an execution of
the algorithm we are not always so bothered if two adjacent vertices are colored

294 P.A. Golovach, D. Paulusma, and J. Song

alike, e.g., when we assign a color i to a vertex without explicitly checking if i
is in its list; this will be spotted in Phase 2.

Phase 1. Determining the set L.

Step 1. Check if G has a dominating set of size at most 39. If such a set does
not exist, then output No. Otherwise, let D be such a dominating set.

Step 2. Check if G[D] is 4-colorable. If not, then output No.

Assume that G[D] is 4-colorable and do the following for every 4-coloring of
G[D].

Step 3. For i = 1, . . . , 4, let Di ⊆ D be the subset of vertices with color i,
and let Fi = G[V \ (D ∪ NG(Di)]. Note that VFh

∩ VFi �= ∅ is possible for
h �= i. For i = 1, . . . , 4 check whether NG(Di) \D can be partitioned into three
independent sets, where one or more of such sets are allowed to be empty; note
that, in particular, all three sets are empty if NG(Di)\D = ∅. If such a partition
into such three sets does not exist for some i, then consider a different 4-coloring
of G[D] unless all 4-colorings of G[D] have already been processed; in that case
output No. Otherwise, let Ii1, I

i
2, I

i
3 be such a partition for i = 1, . . . , 4.

Step 4. For i = 1, . . . , 4, give each isolated vertex in Fi color i unless it already
received a color h for some h ≤ i− 1. Afterwards, update the list assignment.

For i = 1, . . . , 4, let F ′
i be the graph obtained from Fi by removing all isolated

vertices.

Step 5. If there exists a graph F ′
i that consists of at most 2 vertices for some

1 ≤ i ≤ 4, then color the vertices of F ′
i according to their list in every possible

way, update the list assignment and put the resulting list assignment in L. Then,
after processing each possible coloring of the vertices of F ′

i in this way, start with
Phase 2 of the algorithm.

From now on assume that F ′
i consists of at least three vertices for i = 1, . . . , 4.

Step 6. For i = 1, . . . , 4, check if F ′
i is connected and bipartite. If so, then

give the vertices of one partition class color i. Consider both possibilities. Each
time, also update the list assignment, put the resulting list assignment in L and
restore the lists to the situation at the end of Step 5, i.e., before applying Step
6. Afterwards consider F ′

i+1 or continue with Step 7 if i = 4.

Step 7. For i = 1, . . . , 4 and j = 1, . . . , 3, if Iij �= ∅, then do as follows. Find a

vertex aij ∈ Di that is adjacent to as many vertices of Iij as possible. Here we

allow aij = aij′ for some j �= j′. Give every vertex of Iij that is not adjacent to aij
a color from its list. Consider each possible coloring of such vertices.

For i = 1, . . . , 4 and j = 1, . . . 3, let Ĩij = Iij ∩ NG(a
i
j) if Iij �= ∅, and let Ĩij = ∅

otherwise.

Step 8. For i = 1, . . . , 4, do as follows. Check if Ĩi1 ∪ Ĩi2 ∪ Ĩj3 �= ∅ and if F ′
i is a

disjoint union of edges. If both conditions are satisfied, then choose a nonempty

4-Coloring H-Free Graphs When H Is Small 295

set Ĩij in every possible way and use color i on every vertex of F ′
i adjacent to

all but at most two vertices of Ĩij unless its neighbor in F ′
i is already colored

i; make an arbitrary choice if there is a choice between two end-vertices. Give
every uncolored vertex in F ′

i that is not adjacent to a vertex with color i a color
from its list in every possible way. Each time update the list assignment, put the
resulting list assignment in L and restore the lists to the situation at the end of
Step 7, i.e., before applying Step 8. Note that the branching is done over the set
of indices j with Ĩij �= ∅ and all ways to color the uncolored vertices in Fi that
are not adjacent to a vertex with color i. Afterwards consider F ′

i+1 or continue
with Step 9 if i = 4.

Step 9. We consider all partitions of {1, 2, 3, 4} into two sets M1 and M2 subject
to the condition that i ∈M1 if F ′

i is not a disjoint union of (at least two) edges.
For i = 1, . . . , 4 do as follows. If i ∈ M1, then choose an edge ei = uivi in F ′

i .
If i ∈ M2, then for every 1 ≤ j ≤ 3 choose a vertex ui

j ∈ F ′
i that is adjacent

to all but at most two vertices of Ĩij . We allow ei = ei
′
for some i �= i′ and also

ui
j = ui′

j′ for some (i, j) �= (i′, j′). Color the end-vertices of every chosen edge
and every chosen vertex with a color from their list without using color i. For
all i ∈ M1, give every vertex in Ĩi1 ∪ Ĩi2 ∪ Ĩi3 that is neither adjacent to ui nor
to vi a color from its list. For all i ∈ M2 and all 1 ≤ j ≤ 3, give every vertex
in Ĩij that is not adjacent to ui

j a color from its list. Afterwards update the list
assignment and put the resulting list assignment in L. Then restore all lists to
the situation at the end of Step 8, i.e., before applying Step 9. Before considering
another partition of {1, . . . , 4}, repeat Step 9 as many times as possible for the
same partition M1,M2 until all possibilities of chosen edges, chosen vertices and
chosen colorings have been considered. Afterwards continue with Phase 2.

Phase 2. Determining if G has a coloring that respects a list assign-
ment in L.
For each L ∈ L do as follows. Check if there exist two adjacent vertices that each
have a list of exactly one admissible color that is the same for both vertices. If
this happens, then stop considering L. Otherwise, remove all vertices from G
that have a list of size 1. If the lists of all remaining vertices each have size
at most two, then apply Lemma 1 in order to determine if G has a coloring
respecting L. If so, then output Yes. If the union of the list of all remaining
vertices has size 3, then use Lemma 5 in order to determine if G has a coloring
respecting L. If so, then output Yes. Otherwise, if G has no coloring respecting
L for all L ∈ L, then output No.

We prove the correctness of our algorithm and analyze its running time in The-
orem 7. For doing this, we need the following lemmas.

Lemma 7. For i = 1, . . . , 4 and j = 1, . . . , 3, the number of vertices of Iij that

is not adjacent to aij in Step 7 of Phase 1 is at most 38.

Proof. In order to obtain a contradiction, suppose that there exists a pair of
indices (i, j) such that a0 = aij is not adjacent to 39 vertices bh for h = 1, . . . , 39

296 P.A. Golovach, D. Paulusma, and J. Song

in Iij . Consider b1. Because b1 is in N(Di), it has a neighbor a1 ∈ Di. Suppose

that a1 is not adjacent to two vertices c and c′ of Iij that are neighbors of a0.
Then G contains an induced P2 + P3, where P2 = a1b1 and P3 = ca0c

′. This is
not possible. Hence, a1 is adjacent to all neighbors of Iij except to one vertex b0,

as otherwise a1 has more neighbors in Iij than a0, contradicting our choice of a0.
For the same reason, a1 cannot be adjacent to a vertex bh with 2 ≤ h ≤ 39. By
the same arguments, we find that Di contains vertices a2, . . . , a39, where each
ai is adjacent to bi and to all neighbors of a0 in Iij except to one such neighbor.
However, then |D| ≥ |Di| ≥ 40, which is not possible. This completes the proof
of Lemma 7. !"
Lemma 8. For each edge uv in each F ′

i , there exists at most one vertex in Ĩij
that is neither adjacent to u nor to v.

Proof. Suppose that there exists a pair of indices (i, j) such that Ĩij contains two
vertices b and b′ that are both neither adjacent to u nor to v. Then G contains
an induced P2 + P3, where P2 = uv and P3 = baijb

′. This is not possible and we
have proven Lemma 8. !"
Lemma 9. For all 1 ≤ i ≤ 4 and all 1 ≤ j ≤ 3, if F ′

i is a disjoint union of at
least two edges, then every edge of F ′

i except at most one edge has at least one

end-vertex that is adjacent to all but at most two vertices of Ĩij .

Proof. Suppose that F ′
i is a disjoint union of at least two edges. Let st and uv

be two edges in F ′
i . We claim that s is adjacent to all but at most one neighbors

of u in Ĩij , or else that u is adjacent to all but at most one neighbors of s in Ĩij .
In order to obtain a contradiction, suppose that s is not adjacent to two vertices
b, b′ in Ĩij that are each neighbors of u, and that u is not adjacent to two vertices

c, c′ in Ĩij that are each neighbors of s. Then G contains an induced P2+P3, e.g.,
P2 = bu and P3 = csc′. This is not possible. Hence, we may assume without loss
of generality that s is adjacent to all but at most one neighbors of u in Ĩij .

By the same arguments as above, we find that t is adjacent to all but at
most one neighbors of u in Ĩij , or else that u is adjacent to all but at most one

neighbors of t in Ĩij . We observe that {s, t} dominates all but at most one vertices

of Ĩij , due to Lemma 8. Consequently, in the first case, u, and in the second case,

t is adjacent to all but at most two vertices of Ĩij . Hence, in both cases we find

a vertex of {s, t, u, v} that is adjacent to all but at most two vertices of Ĩij , as
desired. !"
Lemma 10. If F ′

i is a disjoint union of edges, then in Step 8 of Phase 1 the
number of vertices in F ′

i that are not adjacent to a vertex with color i is at
most 2.

Proof. Note that each F ′
i contains at least two edges, as otherwise the algorithm

would have gone to Phase 2 after Step 5. By Lemma 9, every edge of F ′
i except

for at most one edge contains a vertex that is adjacent to all but at most two
vertices of Ĩij . Hence, at most 2 vertices of a graph F ′

i in Step 8 are not adjacent
to a vertex with color i. !"

4-Coloring H-Free Graphs When H Is Small 297

Lemma 11. For all i ∈M1 and all 1 ≤ j ≤ 3, the number of vertices of Ĩij that

is neither adjacent to ui nor to vj in Step 9 of Phase 1 is at most one.

Proof. This follows immediately from Lemma 8. !"

Lemma 12. For all i ∈M2 and all 1 ≤ j ≤ 3, the number of vertices of Ĩij not

adjacent to ui
j in Step 9 of Phase 1 is at most two.

Proof. By definition, i ∈ M2 implies that F ′
i is a disjoint union of edges. Note

that F ′
i contains at least two edges, as otherwise the algorithm would have

gone to Phase 2 after Step 5. Then we get the desired result immediately from
Lemma 9. !"

Finally we need the following lemma, the proof of which we omitted due to space
restrictions.

Lemma 13. For every list assignment of L in Phase 2, either all its lists have
size at most 2, or the union of the lists that contain at least 2 colors has size 3.

Theorem 7. The 4-Coloring problem can be solved in polynomial time for
(P2 + P3)-free graphs.

Proof. Let G = (V,E) be a (P2 + P3)-free graph. Recall that we may assume
that G has minimum degree at least 4 due to Lemma 3.

Correctness. We start with proving that our algorithm is correct, i.e., that
G has a 4-coloring if and only if its output is Yes. First suppose that G has
a 4-coloring c. Lemma 2 tells us that G has a dominating set of size at most
39. Hence, our algorithm will find such a dominating set in Step 1. Because G
is 4-colorable, G[D] is 4-colorable. Hence, the algorithm does not output No in
Step 2. Instead it considers each 4-coloring of G[D] including the 4-coloring c′

of G[D] with c′(u) = c(u) for each u ∈ D.
In Step 3, our algorithm checks if some sets Ii1, I

i
2, I

i
3 exist for i = 1, . . . , 4.

Because all the vertices in NG(Di) \ D are adjacent to a vertex in Di, i.e., to
a vertex v with color c(v) = i and because c is a 4-coloring, we find that the
restriction of c to the vertices of NG(Di)\D is a 3-coloring. Hence, sets Ii1, I

i
2, I

i
3

exist for i = 1, . . . , 4, and the algorithm will find them; note that the algorithm
may find different sets than the ones induced by c. In Step 4, the algorithm
assigns each isolated vertex in Fi color i unless it assigned such a vertex already
a color earlier on in this step. Suppose that u is such a vertex that got assigned
color i while c(u) �= i. Then we may redefine c by setting c(u) := i. We may
safely do so, because u is only adjacent to vertices that are adjacent to a vertex
in Di, i.e., to a vertex with color i. Hence, no neighbor v of u has color c(v) = i.
If in Step 5 there exists a graph F ′

i that consists of at most 2 vertices for some
1 ≤ i ≤ 4, our algorithm considers each possible coloring of them including the
coloring of F ′

i that corresponds to c. Hence, it goes to Phase 2 with a set L of
list assignments that include a list assignment L that is respected by c. This
means that at the moment the algorithm considers L in Phase 2, which it will

298 P.A. Golovach, D. Paulusma, and J. Song

due to Lemma 13, it will find that there exists a coloring of G respecting L (as
c is such a coloring). As a result, it will output Yes.

If every F ′
i has at least 3 vertices, then the algorithm performs Step 6 of Phase

1. Suppose that F ′
i is connected and bipartite for some 1 ≤ i ≤ 4. If c(u) = i

for every vertex u in one partition class of F ′
i , then the algorithm will put a list

assignment L that is respected by c in L, and in Phase 2 it will output Yes

upon considering L; it will consider L due to Lemma 13. If no F ′
i is a bipartite

connected graph, or if c does not color every vertex u in a partition class of
any bipartite connected F ′

i with color i, then let us consider Step 7 and further.
In Step 7, the algorithm assigns every vertex of every Iij not adjacent to the

associated aij a color from its list. Because each possible coloring is considered,
the restriction of c to such vertices is included.

Suppose that there exists a graph F ′
i that is a disjoint union of at least two

edges such that every edge except for at most one edge contains a vertex with
color i according to c. Then, in Step 8, the algorithm may put a list assignment L
in L that is respected by c. As a result of Lemma 13 the algorithm will consider
L in Phase 2 and will output Yes. However, this may not happen, because the
algorithm can color different vertices of F ′

i with color i than the ones colored
with color i according to c. We take this into account when we consider the final
step, which is Step 9.

In Step 9, we consider partitions M1,M2 of {1, . . . 4}. We must show that
there exists a partition M1,M2 for which the algorithm can color according to c.
Let 1 ≤ i ≤ 4. Assume that there is an edge uv in F ′

i with c(u) �= i and c(v) �= i.
In one of the branches in Step 9 the algorithm considers i ∈ M1 and the edge
uv and colors u, v and every vertex in Ĩi1 ∪ Ĩi2 ∪ Ĩi3 that is neither adjacent to ui

nor to vi according to c.
Suppose now that for any edge uv in F ′

i , either c(u) = i or c(v) = i. We
first observe that F ′

i must be bipartite, because the vertices with color i and the
vertices with a color different from i form a partition of the vertex set of F ′

i . If F
′
i

is connected, then the vertices of one partition class all have color i. Because we
already considered this case in Step 6, we find that F ′

i is not connected. Then,
because G is (P2 + P3)-free and F ′

i contains no isolated vertices, F ′
i is a disjoint

union of edges. Because F ′
i has at least 3 vertices, this means that F ′

i has at
least 2 edges. Note that i ∈ M2 is allowed and assume that the algorithm has
put i ∈M2. We must still show that the algorithm can color according to c. For
this purpose we consider two cases for each 1 ≤ j ≤ 3.

First suppose that Ĩij = ∅. Then any vertex in F ′
i is trivially adjacent to all

but at most two vertices of Ĩij . Hence, in one of the branches, the algorithm
considers the choice of a vertex u that is adjacent to a vertex v with c(v) = i as
the vertex ui

j . Then it colors ui
j and every vertex in Ĩij that is not adjacent to

ui
j according to c.

Now suppose that Ĩij �= ∅. We would already have considered this situation in
Step 8, unless for an edge uv in F ′

i such that u and v are adjacent to all but at
most two vertices of Ĩij , we picked the vertex u with c(u) �= i to get color i in
Step 8. Then, in one of the branches, the algorithm considers the choice of u as

4-Coloring H-Free Graphs When H Is Small 299

the vertex ui
j . Then it colors ui

j and every vertex in Ĩij that is not adjacent to

ui
j according to c.
The above ensures that L contains a list assignment L that is respected by

c. As a result of Lemma 13 the algorithm will consider L in Phase 2 and will
output Yes.

Now suppose that the output of our algorithm is Yes. Note that such an out-
put only occurs in Phase 2. Hence, G has a coloring respecting a list assignment
in L. Because every list in every list assignment of L is a subset of {1, 2, 3, 4},
this coloring is a 4-coloring of G.

Running time analysis. We prove that Phase 1 can be performed in polyno-
mial time and leads to a set L of polynomial size. We perform Step 1 in O(n39)
time by brute force. In Step 2 we find at most 4|D| ≤ 439 different 4-colorings of
G[D]. We perform Step 3 in polynomial time by applying Lemma 6 at most four
times. We perform Step 4 in linear time; here we need to assign a color to a set
of vertices that we can detect in linear time. We perform Step 5 in polynomial
time as we must color at most 2 vertices, each of which has a list of size at
most 3. If we start Phase 2 immediately after Step 5, then we have a set L of
size at most 439 · 32, as desired. Otherwise, we do as follows. We perform Step 6
in linear time as we only have to consider at most two possibilities for at most
one graph F ′

i . For i = 1, . . . , 4 and j = 1, . . . , 3 we determine a required vertex
aij ∈ Di in Step 7 in polynomial time. By Lemma 7, each aij is adjacent to all but

at most 38 vertices of Iij , each of which we color in polynomial time in a total

number of at most 338 different ways. We perform Step 8 in polynomial time,
as we only have to check whether the graphs F ′

i are disjoint unions of edges,
and then we have to consider at most (32)4 = 38 different colorings according to
Lemma 10. In Step 9 we consider all possible partitions of {1, . . . , 4} subject to
some further condition, which we can check in polynomial time. For each parti-
tion M1,M2, we perform Step 9 in polynomial time. For each M1,M2, there are
at most p(n) = (22 · 33 · n2)4 · (2 · 32 · n)12 list assignments due to Lemmas 11
and 12, respectively. Because the number of partitions of {1, . . . , 4} into M1,M2

is at most 24, the total number of list assignments obtained in Step 9 is at most
24p(n). Hence, if we start Phase 2 after Step 9, then we have a set L of size at
most 439 · (2 + 338(38 + 24p(n))), which is polynomial, as desired.

Because L has polynomial size and we can process every L ∈ L in polynomial
time either due to Lemma 1 or due to Lemma 5, we can perform Phase 2 in
polynomial time. This completes the proof of Theorem 7. !"

References

1. Balas, E., Yu, C.S.: On graphs with polynomially solvable maximum-weight clique
problem. Networks 19, 247–253 (1989)

2. Bondy, J.A., Murtym, U.S.R.: Graph Theory. Springer Graduate Texts in Mathe-
matics, vol. 244 (2008)

3. Broersma, H.J., Fomin, F.V., Golovach, P.A., Paulusma, D.: Three Complexity
Results on Coloring Pk-Free Graphs. In: Fiala, J., Kratochv́ıl, J., Miller, M. (eds.)
IWOCA 2009. LNCS, vol. 5874, pp. 95–104. Springer, Heidelberg (2009)

300 P.A. Golovach, D. Paulusma, and J. Song

4. Broersma, H.J., Golovach, P.A., Paulusma, D., Song, J.: Updating the complex-
ity status of coloring graphs without a fixed induced linear forest (manuscript),
http://www.dur.ac.uk/daniel.paulusma/Papers/Submitted/updating.pdf

5. Broersma H.J., Golovach, P.A., Paulusma, D., Song, J.: Determining the chro-
matic number of triangle-free 2P3-free graphs in polynomial time (manuscript),
http://www.dur.ac.uk/daniel.paulusma/Papers/Submitted/2p3.pdf

6. Bruce, D., Hoàng, C.T., Sawada, J.: A Certifying Algorithm for 3-Colorability of
P5-Free Graphs. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS,
vol. 5878, pp. 594–604. Springer, Heidelberg (2009)

7. Couturier, J.F., Golovach, P.A., Kratsch, D., Paulusma, D.: List coloring in the
absence of a linear forest. In: Proceedings of WG 2011. LNCS (to appear, 2011)

8. Dabrowski, K., Lozin, V., Raman, R., Ries, B.: Colouring Vertices of Triangle-Free
Graphs. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 184–195. Springer,
Heidelberg (2010)

9. Edwards, K.: The complexity of coloring problems on dense graphs. Theoret. Com-
put. Sci. 43, 337–343 (1986)

10. Golovach, P.A., Paulusma, D., Song, J.: Coloring Graphs without Short Cycles and
Long Induced Paths. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS,
vol. 6914, pp. 193–204. Springer, Heidelberg (2011)

11. Grötschel, M., Lovász, L., Schrijver, A.: Polynomial algorithms for perfect graphs.
Ann. Discrete Math., Topics on Perfect Graphs 21, 325–356 (1984)

12. Hoàng, C.T., Kamiński, M., Lozin, V., Sawada, J., Shu, X.: Deciding k-colorability
of P5-free graphs in polynomial time. Algorithmica 57, 74–81 (2010)

13. Holyer, I.: The NP-completeness of edge-coloring. SIAM J. Comput. 10, 718–720
(1981)

14. Kamiński, M., Lozin, V.V.: Coloring edges and vertices of graphs without short or
long cycles. Contributions to Discrete Math. 2, 61–66 (2007)

15. Kamiński, M., Lozin, V.V.: Vertex 3-colorability of Claw-free Graphs. Algorithmic
Operations Research 21 (2007)

16. Král’, D., Kratochv́ıl, J., Tuza, Z., Woeginger, G.J.: Complexity of Coloring Graphs
without Forbidden Induced Subgraphs. In: Brandstädt, A., Le, V.B. (eds.) WG
2001. LNCS, vol. 2204, pp. 254–262. Springer, Heidelberg (2001)

17. Le, V.B., Randerath, B., Schiermeyer, I.: On the complexity of 4-coloring graphs
without long induced paths. Theoret. Comput. Sci. 389, 330–335 (2007)

18. Leven, D., Galil, Z.: NP completeness of finding the chromatic index of regular
graphs. Journal of Algorithms 4, 35–44 (1983)

19. Maffray, F., Preissmann, M.: On the NP-completeness of the k-colorability problem
for triangle-free graphs. Discrete Math. 162, 313–317 (1996)

20. Randerath, B., Schiermeyer, I.: 3-Colorability ∈ P for P6-free graphs. Discrete
Appl. Math. 136, 299–313 (2004)

21. Randerath, B., Schiermeyer, I.: Vertex colouring and forbidden subgraphs - a sur-
vey. Graphs Combin. 20, 1–40 (2004)

22. Schindl, D.: Some new hereditary classes where graph coloring remains NP-hard.
Discrete Math. 295, 197–202 (2005)

23. Tsukiyama, S., Ide, M., Ariyoshi, H., Shirakawa, I.: A new algorithm for generating
all the maximal independent sets. SIAM J. Comput. 6, 505–517 (1977)

24. Tuza, Z.: Graph colorings with local restrictions - a survey. Discuss. Math. Graph
Theory 17, 161–228 (1997)

25. Woeginger, G.J., Sgall, J.: The complexity of coloring graphs without long induced
paths. Acta Cybernet. 15, 107–117 (2001)

http://www.dur.ac.uk/daniel.paulusma/Papers/Submitted/updating.pdf
http://www.dur.ac.uk/daniel.paulusma/Papers/Submitted/2p3.pdf

Computing q-Gram Non-overlapping

Frequencies on SLP Compressed Texts

Keisuke Goto, Hideo Bannai, Shunsuke Inenaga, and Masayuki Takeda

Department of Informatics, Kyushu University
744 Motooka, Nishiku, Fukuoka 819–0395, Japan

{keisuke.gotou,bannai,inenaga,takeda}@inf.kyushu-u.ac.jp

Abstract. Length-q substrings, or q-grams, can represent important
characteristics of text data, and determining the frequencies of all q-
grams contained in the data is an important problem with many appli-
cations in the field of data mining and machine learning. In this paper,
we consider the problem of calculating the non-overlapping frequencies
of all q-grams in a text given in compressed form, namely, as a straight
line program (SLP). We show that the problem can be solved in O(q2n)
time and O(qn) space where n is the size of the SLP. This generalizes and
greatly improves previous work (Inenaga & Bannai, 2009) which solved
the problem only for q = 2 in O(n4 log n) time and O(n3) space.

1 Introduction

In many situations, large-scale text data is first compressed for storage, and
then is usually decompressed when it is processed afterwards, where we must
again face the size of the data. To circumvent this problem, algorithms that
work directly on the compressed representation without explicit decompression
have gained attention, especially for the string pattern matching problem [1],
and there has been growing interest in what problems can be efficiently solved
in this kind of setting [11,13,6,12,7,5,3].

The non-overlapping occurrence frequency of a string P in a text string T is
defined as the maximum number of non-overlapping occurrences of P in T [2]. In
this paper, we consider the problem of computing the non-overlapping occurrence
frequencies of all q-grams (length-q substrings) occurring in a text T , when the
text is given as a straight line program (SLP) [8] of size n. An SLP is a context free
grammar in the Chomsky normal form that derives a single string. SLPs are a
widely accepted abstract model of various text compression schemes, since texts
compressed by any grammar-based compression algorithm (e.g. [14,10]) can be
represented as SLPs, and those compressed by the LZ-family (e.g. [15,16]) can be
quickly transformed to SLPs. Theoretically, the length N of the text represented
by an SLP of size n can be as large as Θ(2n), and therefore a polynomial time
algorithm that runs on an SLP representation is, in the worst case, faster than
any algorithm which works on the uncompressed string.

For SLP compressed texts, the problem was first considered in [7], where an
algorithm for q = 2 running in O(n4 log n) time and O(n3) space was presented.

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 301–312, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

302 K. Goto et al.

However, the algorithm cannot be readily extended to handle q > 2. Intuitively,
the problem for q = 2 is much easier compared to larger values of q, since there
is only one way for a 2-gram to overlap, while there can be many ways that
a longer q-gram can overlap. In this paper we present the first algorithm for
calculating the non-overlapping occurrence frequency of all q-grams, that works
for any q ≥ 2, and runs in O(q2n) time and O(qn) space. Not only do we solve
a more general problem, but the complexity is greatly improved compared to
previous work.

A similar problem for SLPs, where occurrences of q-grams are allowed to
overlap, was also considered in [7], where an O(|Σ|2n2) time and O(n2) space
algorithm was presented for q = 2. A much simpler and efficient O(qn) time
and space algorithm for general q ≥ 2 was recently developed [5]. As is the case
with uncompressed strings, ideas from the algorithms allowing overlapping oc-
currences can be applied somewhat to the problem of obtaining non-overlapping
occurrence frequencies. However, there are still difficulties that arise from the
overlapping of occurrences that must be overcome, i.e., the occurrences of each
q-gram can be obtained in the same way, but we must somehow compute their
non-overlapping occurrence frequency, which is not a trivial task.

For uncompressed texts, the problem considered in this paper can be solved in
O(|T |) time, by applying string indices such as suffix arrays. A similar problem
is the string statistics problem [2], which asks for the non-overlapping occurrence
frequency of a given string P in text string T . The problem can be solved in
O(|P |) time for any P , provided that the text is pre-processed in O(|T | log |T |)
time using the sophisticated algorithm of [4]. However, note that the preprocess-
ing requires only O(|T |) time if occurrences are allowed to overlap. This perhaps
indicates the intrinsic difficulty that arises when considering overlaps.

2 Preliminaries

2.1 Notation

Let Σ be a finite alphabet. An element of Σ∗ is called a string. The length
of a string T is denoted by |T |. The empty string ε is a string of length 0,
namely, |ε| = 0. A string of length q > 0 is called a q-gram. The set of q-
grams is denoted by Σq. For a string T = XY Z, X , Y and Z are called a
prefix, substring, and suffix of T , respectively. The i-th character of a string T
is denoted by T [i] for 1 ≤ i ≤ |T |, and the substring of a string T that begins at
position i and ends at position j is denoted by T [i : j] for 1 ≤ i ≤ j ≤ |T |. For
convenience, let T [i : j] = ε if j < i. Let TR denote the reversal of T , namely,
TR = T [N]T [N − 1] · · ·T [1], where N = |T |.

For any integers i, j such that i ≤ j, let [i : j] denote the set of consecutive
integers from i to j, i.e., [i : j] = {i, i+ 1, . . . , j}.

For an integer i and a set of integers A, let i ⊕ A = {i + x | x ∈ A} and
i 1 A = {i − x | x ∈ A}. If A = ∅, then let i ⊕ A = i 1 A = ∅. Similarly, for a
pair of integers (x, y), let i⊕ (x, y) = (i + x, i+ y).

Computing q-Gram Non-overlapping Frequencies on SLP Compressed Texts 303

2.2 Occurrences and Frequencies

For any strings T and P , let Occ(T, P) be the set of occurrences of P in T , i.e.,

Occ(T, P) = {k > 0 | T [k : k + |P | − 1] = P}.

The number of occurrences of P in T , or the frequency of P in T is, |Occ(T, P)|.
Any two occurrences k1, k2 ∈ Occ(T, P) with k1 < k2 are said to be overlapping
if k1 + |P | − 1 ≥ k2. Otherwise, they are said to be non-overlapping. The non-
overlapping frequency nOcc(T, P) of P in T is defined as the size of a largest
subset of Occ(T, P) where any two occurrences in the set are non-overlapping.
For any strings X,Y , we say that an occurrence i of a string Z in XY , with
|Z| ≥ 2, crosses X and Y , if i ∈ [|X | − |Z|+ 2 : |X |] ∩Occ(XY,Z).

For any strings T and P , we define the sets of right and left priority non-
overlapping occurrences of P in T , respectively, as follows:

RnOcc(T, P) =

{
∅ if Occ(T, P) = ∅,
{i} ∪ RnOcc(T [1 : i− 1], P) otherwise,

LnOcc(T, P) =

{
∅ if Occ(T, P) = ∅,
{j} ∪ (j+|P |−1)⊕LnOcc(T [j + |P | : |T |], P) otherwise,

where i = maxOcc(T, P) and j = minOcc(T, P). For all k ∈ RnOcc(T, P), it is
trivially said that RnOcc(T [k : |T |], P) ⊆ RnOcc(T, P). It can be said to LnOcc
similarly. Note that RnOcc(T, P) ⊆ Occ(T, P), LnOcc(T, P) ⊆ Occ(T, P), and
LnOcc(T, P) = (|T | − |P |+ 2)1 RnOcc(TR, PR).

Lemma 1. nOcc(T, P) = |RnOcc(T, P)| = |LnOcc(T, P)|

Proof. Omitted.

Lemma 2. For any strings T and P , and any integer i with 1 ≤ i ≤ |T |, let
u1 = maxLnOcc(T [1 : i − 1], P) + |P | − 1 and u2 = i − 1 + minRnOcc(T [i :
|T |], P). Then nOcc(T, P) = |LnOcc(T [1 : u1], P)|+nOcc(T [u1+1 : u2−1], P)+
|RnOcc(T [u2 : |T |], P)|.

Proof. By Lemma 1 and the definitions of u1, u2, LnOcc and RnOcc, we have

nOcc(T, P)

= |LnOcc(T [1 : u1], P)|+ |LnOcc(T [u1 + 1 : |T |], P)|
= |LnOcc(T [1 : u1], P)|+ |RnOcc(T [u1 + 1 : |T |], P)|
= |LnOcc(T [1 : u1], P)|+|RnOcc(T [u1+1 : u2−1], P)|+|RnOcc(T [u2 : |T |], P)|
= |LnOcc(T [1 : u1], P)|+ nOcc(T [u1+1 : u2 − 1], P) + |RnOcc(T [u2 : |T |], P)|.

!"

We will later make use of the solution to the following problem, where occur-
rences of q-grams are weighted and allowed to overlap.

304 K. Goto et al.

Problem 1 (weighted overlapping q-gram frequencies). Given a string T , an in-
teger q, and an integer array w (|w| = |T |), compute

∑
i∈Occ(T,P) w[i] for all

q-grams P ∈ Σq where Occ(T, P) �= ∅.

Theorem 1 ([5]). Problem 1 can be solved in O(|T |) time.

2.3 Straight Line Programs

In this paper, we treat strings described in terms of straight line programs
(SLPs). A straight line program T is a sequence of assignments {X1 = expr1,
X2 = expr2, . . . , Xn = exprn}. EachXi is a variable and each expri is an expres-
sion where expri = a (a ∈ Σ), or expri = X�Xr (�, r < i). We will sometimes
abuse notation and denote T as {Xi}ni=1. Denote by T the string derived from
the last variable Xn of the program T . Fig. 1 shows an example of an SLP. The
size of the program T is the number n of assignments in T .

X1 X2

a ba a ab a b a b a a b

X1 X3

X1 X2

X3

X1 X2

X3

X4

X1

X5X4
X6

X1 X2
X3

X1 X2

X3
X4

X1

X5

X7

2 31 4 65 7 8 9 10 11 12 13

Fig. 1. The derivation tree of SLP T =
{X1 = a, X2 = b, X3 = X1X2, X4 =
X1X3, X5 = X3X4, X6 = X4X5, X7 =
X6X5}, which represents string T =
val(X7) = aababaababaab

Let val(Xi) represent the string de-
rived from Xi. When it is not con-
fusing, we identify a variable Xi with
val(Xi). Then, |Xi| denotes the length
of the string Xi derives, and Xi[j] =
val(Xi)[j], Xi[j : k] = val (Xi)[j : k]
for 1 ≤ j, k ≤ |Xi|. Let vOcc(Xi) de-
note the number of times a variable
Xi occurs in the derivation of T . For
example, vOcc(X4) = 3 in Fig. 1.

Both |Xi| and vOcc(Xi) can be
computed for all 1 ≤ i ≤ n in a total
of O(n) time by a simple iteration on
the variables: |Xi| = 1 for any Xi =
a (a ∈ Σ), and |Xi| = |X�|+ |Xr| for
any Xi = X�Xr. Also, vOcc(Xn) = 1 and for i < n, vOcc(Xi) =

∑
{vOcc(Xk) |

Xk = X�Xi}+
∑
{vOcc(Xk) | Xk = XiXr}.

We shall assume as in various previous work on SLP, that the word size is
at least log |T |, and hence, values representing lengths and positions of T in our
algorithms can be manipulated in constant time.

3 q-gram Non-overlapping Frequencies on Compressed
String

The goal of this paper is to efficiently solve the following problem.

Problem 2 (Non-overlapping q-gram frequencies on SLP). Given an SLP T of
size n that describes string T and a positive integer q, compute nOcc(T, P) for
all q-grams P ∈ Σq.

Computing q-Gram Non-overlapping Frequencies on SLP Compressed Texts 305

If we decompress the given SLP T obtaining the string T , then we can solve the
problem in O(|T |) time. However, it holds that |T | = Θ(2n). Hence, in order to
solve the problem efficiently, we have to establish an algorithm that does not
explicitly decompress the given SLP T .

3.1 Key Ideas

For any variable Xi and integer k ≥ 1, let pre(Xi, k) = Xi[1 : min{k, |Xi|}] and
suf (Xi, k) = Xi[|Xi|−min{k, |Xi|}+1 : |Xi|]. That is, pre(Xi, k) and suf (Xi, k)
are the prefix and the suffix of val(Xi) of length k, respectively. For all variables
Xi, pre(Xi, k) can be computed in a total of O(nk) time and space, as follows:

pre(Xi, k) =

⎧⎪⎨⎪⎩
val(Xi) if |Xi| ≤ k,

pre(X�, k)pre(Xr, k − |X�|) if Xi = X�Xr and |X�| < k < |Xi|,
pre(X�, k) if Xi = X�Xr and k ≤ |X�|.

suf (Xi, k) can be computed similarly in O(nk) time and space.
For any string T and positive integers q and j (1 ≤ j ≤ j + q − 1 ≤ |T |), the

longest overlapping cover of the q-gram P = T [j : j + q − 1] w.r.t. position j of

T is an ordered pair
←→
locq(T, j) = (b, e) of positions in T which is defined as:

←→
locq(T, j) = argmax

(b,e)⎧⎪⎪⎨⎪⎪⎩(e − b)

∣∣∣∣∣∣∣∣
(b, e) ∈ Occ(T, P)× ((q − 1)⊕Occ(T, P)),
b ≤ j ≤ j + q − 1 ≤ e,
∀k ∈ [b : e− q] ∩Occ(T, P),

[k + 1 : min{k + q − 1, e− q + 1}] ∩Occ(T, P) �= ∅

⎫⎪⎪⎬⎪⎪⎭
Namely,

←→
locq(T, j) represents the beginning and ending positions of the maximum

chain of overlapping occurrences of q-gram T [j : j+ q− 1] that contains position
j. For example, consider string T = aaabaabaaabaabaaaabaa of length 21. For

q = 5 and j = 9, we have
←→
locq(T, j) = (2, 16), since T [2 : 6] = T [5 : 9] = T [9 :

13] = T [12 : 16] = aabaa. Note that T [17 : 21] = aabaa is not contained in this
chain since it does not overlap with T [12 : 16].

Lemma 3. Given a string T and integers q, j, the longest overlapping cover←→
locq(T, j) can be computed in O(|T |) time.

Proof. Using, for example, the KMP algorithm [9], we can obtain a sorted list
of Occ(T, T [j : j+ q− 1]) in O(|T |) time. We can just scan this list forwards and
backwards, to easily obtain b and e. !"

For a variable Xi = X�Xr and a position 1 ≤ j ≤ |Xi| − q + 1, a longest

overlapping cover (b, e) =
←→
locq(Xi, j) is said to be closed in Xi if q − 1 < b and

e < |Xi| − q + 2.

306 K. Goto et al.

Theorem 2. Problem 2 can be solved in O(q2n) time, provided that, for all
variables Xi = X�Xr and j s.t. |Xi| ≥ q and max{1, |X�| − 2(q − 1) + 1} ≤ j ≤
min{|X�| + q − 1, |Xi| − q + 1}, (b, e) =

←→
locq(Xi, j) and nOcc(Xi[b : e], s) are

already computed where s = Xi[j : j + q − 1].

Proof. Algorithm 1 shows a pseudo-code of our algorithm to solve Problem 2.

Consider q-gram s = Xi[j : j+q−1] at position j for which (b, e) =
←→
locq(Xi, j)

is closed in Xi. A key observation is that, if (b, e) is closed in Xi, then (b, e) is
never closed in X� or Xr. Therefore, by summing up vOcc(Xi) ·nOcc(Xi[b : e], s)
for each closed (b, e) in Xi, for all such variables Xi, we obtain nOcc(T, s). Line 1
is sufficient to check if (b, e) is closed.

For all 1 ≤ i ≤ n, vOcc(Xi) can be computed in O(n) time, and ti =
pre(Xi, 2(q − 1))suf (Xi, 2(q − 1)) can be computed in O(qn) time and space.
The problem amounts to summing up the values of vOcc(Xi) · nOcc(Xi[b : e], s)
for each q-gram s contained in each ti, and can be reduced to Problem 1 on
string z and integer array w of length O(qn), which can be solved in O(qn) time
by Theorem 1.

In line 1, we check if there is no previous position h (max{1, |X�| − 2(q− 1)+

1} ≤ h < j) such that Xi[h : h + q − 1] = Xi[j : j + q − 1] by
←→
locq(Xi, h) =

←→
locq(Xi, j), so that we do not count the same q-gram more than once. If there
is no such h, we set the value of wi[k− |X�|+ j] to vOcc(Xi) · nOcc(Xi[b : e], s).
This can be checked in O(q2n) time for all Xi and j.

For convenience, we assume that T = val (Xn) starts and ends with special
characters #q−1 and $q−1 that do not occur anywhere else in T , respectively.
Then we can cope with the last variable Xn as described above. Hence the
theorem holds. !"

3.2 Computing Longest Overlapping Covers

In this subsection, we will show how to compute longest overlapping cover (b, e) =←→
locq(Xi, j) where s = Xi[j : j+q−1] for all Xi and all j required for Theorem 2.

For any string T and integers q and j (1 ≤ j < q), let

−→
locq(T, j) =

{
(j, be) if j + q − 1 ≤ |T |,
(j, |T |) otherwise,

←−
locq(T, j) =

{
(eb, |T | − j + 1) if |T | − j − q + 2 ≥ 1,

(1, |T | − j + 1) otherwise,

where (j, be) = (j − 1) ⊕ ←→locq(T [j : |T |], 1) and (eb, |T | − j + 1) =
←→
locq(T [1 :

|T |−j+1], |T |−j−q+2). Namely,
−→
locq(T, j) is a suffix of the longest overlapping

cover of the q-gram T [j : j + q − 1] that begins at position j (1 ≤ j < q)

in T , and
←−
locq(T, j) is a prefix of the longest overlapping cover of the q-gram

T [|T | − j − q + 2 : |T | − j + 1] that ends at position |T | − j + 1 in T .

Computing q-Gram Non-overlapping Frequencies on SLP Compressed Texts 307

Algorithm 1. Computing q-gram non-overlapping frequencies from SLP

Input: SLP T = {Xi}ni=1 representing string T , integer q ≥ 2.
Output: nOcc(T, P) for all q-grams P ∈ Σq where Occ(T, P) �= ∅.
Compute vOcc(Xi) for all 1 ≤ i ≤ n;1

Compute pre(Xi, 2(q − 1)) and suf (Xi, 2(q − 1)) for all 1 ≤ i ≤ n− 1;2

z ← ε; w ← [];3

for i← 1 to n do4

if |Xi| ≥ q then5

let Xi = X�Xr;6

k ← |suf (X�, 2(q − 1))|;7

ti = suf (X�, 2(q − 1))pre(Xr, 2(q − 1));8

z.append(ti);9

wi ← create integer array of length |ti|, each element set to 0;10

for j ← max{1, |X�| − 2(q− 1) + 1} to min{|X�|+ q− 1, |Xi| − q+1} do11

s← Xi[j : j + q − 1];12

(b, e)←←→locq(Xi, j);13

if q − 1 < b and e < |Xi| − q + 2 then14

if
←→
locq(Xi, h) �=

←→
locq(Xi, j) for any position h s.t.15

max{1, |X�| − 2(q − 1) + 1} ≤ h < j then
wi[k − |X�|+ j]← vOcc(Xi) · nOcc(Xi[b : e], s);16

w.append(wi);17

Calculate q-gram frequencies in z, where each q-gram starting at position d is18

weighted by w[d].

Lemma 4. For all 1 ≤ i ≤ n and 1 ≤ j ≤ 2(q− 1),
−→
locq(Xi, j) can be computed

in a total of O(q2n) time.

Proof. We use dynamic programming. Let Xi = X�Xr, pj = Xi[j : j+q−1], and

assume
−→
locq(X�, j) and

−→
locq(Xr, j) have been calculated for all 1 ≤ j ≤ 2(q− 1).

We examine the string Xi[max{j, |X�| − q + 2} : min{|Xi|, |X�| + q − 1}] for
occurrences of pj that cross X� and Xr, obtain its longest overlapping cover

(bi, ei), and check if it overlaps with
−→
locq(X�, j). Furthermore, let bbr be the left

most occurrence of pj in Xr that has the possibility of overlapping with (bi, ei).

Then,
−→
locq(Xi, j) is either

−→
locq(X�, j), or its end can be extended to ei, or further

to the end of
−→
locq(Xr, bbr), depending on how the covers overlap.

More precisely, let (j, be�) =
−→
locq(X�, j), (bi, ei) = max{j − 1, |X�| − q +

1} ⊕ ←→locq(Xi[max{j, |X�| − q + 2} : min{|Xi|, |X�| + q − 1}], h) where h ∈
Occ(Xi[max{j, |X�| − q + 2} : min{|Xi|, |X�| + q − 1}], pj), and (bbr, ber) =

(|X�|+ k− 1)⊕−→locq(Xr, k) where k = minOcc(pre(Xr, 2(q− 1)), pj). (Note that
(bbr, ber), (bi, ei) are not defined if occurrences h, k of pj do not exist.) Then we
have

308 K. Goto et al.

−→
locq(Xi, j) =

⎧⎪⎨⎪⎩
(j, be�) if be� < bi or � ∃h,
(j, ei) if bi ≤ be� and (ei < bbr or � ∃k)
(j, ber) otherwise.

For all variables Xi we pre-compute pre(Xi, 2(q−1)) and suf (Xi, 2(q−1)). This

can be done in a total of O(qn) time. Then, each
−→
locq(Xi, j) can be computed in

O(q) time using the KMP algorithm, Lemma 3, and the above recursion, giving
a total of O(q2n) time for all 1 ≤ i ≤ n and 1 ≤ j ≤ 2(q − 1). !"

Lemma 5. For all 1 ≤ i ≤ n and 1 ≤ j ≤ 2(q− 1),
←−
locq(Xi, j) can be computed

in a total of O(q2n) time.

Proof. The proof is essentially the same as the proof for
−→
locq(Xi, j) in Lemma 4.

Recall that we have assumed in Theorem 2 that
←→
locq(Xi, j) are already com-

puted. The following lemma describes how
←→
locq(Xi, j) can actually be computed

in a total of O(q2n) time.

Lemma 6. For all variable Xi = X�Xr and j s.t. max{1, |X�|− 2(q− 1)+1} ≤
j ≤ min{|X�|+ q−1, |Xi|− q+1}, (b, e) =←→locq(Xi, j) can be computed in a total
of O(q2n) time.

Proof. Let sj = Xi[j : j + q − 1]. At first, we compute (bi, ei) =
←→
locq(Xi[|X�| −

2(q − 1) + 1 : min{|Xi|, |X�| + 2(q − 1)}], j) and then
←→
locq(Xi, j) can be com-

puted based on (bi, ei), as follows: Let (eb�, ee�) =
←−
locq(X�, |X�| − ee� + 1) and

(bbr, ber) = |X�| ⊕
−→
locq(Xr, bbr − |X�|), where ee� = maxOcc(Xi[max{1, |X�| −

2(q − 1) + 1} : |X�|], sj) and bbr = minOcc(Xi[|X�|+ 1 : min{|Xi|, |X�|+ 2(q −
1)}], sj).

1. If bi ≤ |X�| and ei > |X�|, then we have b ≤ bi ≤ |X�| < ei ≤ e.

(b, e) =
←→
locq(Xi, j) can be computed by checking whether (eb�, ee�), (bi, ei),

and (bbr, ber) are overlapping or not.
2. If ei ≤ |X�|, then trivially b = eb� and e = ei.
3. If bi > |X�|, then trivially b = bi and e = ber.

Each ee� = h and bbr = |X�| + k can be computed using the KMP algorithm
on string suf (X�, 2(q − 1))pre(Xr, 2(q − 1)) in O(q) time. By Lemmas 4 and 5,
(eb�, ee�) and (bbr, ber) can be pre-computed in a total of O(q2n) time for all
1 ≤ i ≤ n. Hence the lemma holds. !"

3.3 Largest Left-Priority and Smallest Right-Priority Occurrences

In order to compute nOcc(Xi[b : e], s) for allXi and all j required for Theorem 2,

where (b, e) =
←→
locq(Xi, j) and s = Xi[j : j + q − 1], we will use the largest

and second largest occurrences of LnOcc and the smallest and second smallest
occurrences of RnOcc.

Computing q-Gram Non-overlapping Frequencies on SLP Compressed Texts 309

For any set S of integers and integer 1 ≤ k ≤ |S|, let maxk S and mink S
denote the k-th largest and the k-th smallest element of S.

For 1 ≤ i ≤ n and 1 ≤ j ≤ 2(q − 1), consider to compute maxk LnOcc(Xi[j :

bei], pj) for k = 1, 2, where (j, bei) =
−→
locq(Xi, j) and pj = Xi[j : j + q − 1].

Intuitively, difficulties in computing maxk LnOcc(Xi[j : bei], pj) come from the
fact thatXi[j : bei] can be as long as Θ(2n), but we only have prefix pre(Xi, 3(q−
1)) and suffix suf (Xi, 3(q − 1)) of val(Xi) of length O(q). Hence we cannot
compute the value of bei by simply running the KMP algorithm on those partial
strings. For the same reason, the size of LnOcc(Xi[j : bei], pj) can be as large as
Θ(2n/q). Hence we cannot store LnOcc(Xi[j : bei], pj) as is. Still, as will be seen
in the following lemma, we can compute those values efficiently, only in O(q2n)
time.

Lemma 7. For all variable Xi = X�Xr and 1 ≤ j ≤ 2(q − 1), let (j, bei) =
−→
locq(Xi, j), pj = Xi[j : j+q−1]. We can compute the values max1 LnOcc(Xi[j :
bei], pj) and max2 LnOcc(Xi[j : bei], pj) for all 1 ≤ i ≤ n and 1 ≤ j ≤ 2(q − 1),
in a total of O(q2n) time.

Proof. Omitted.

The next lemma can be shown similarly to Lemma 7.

Lemma 8. For all variable Xi = X�Xr and 1 ≤ j ≤ 2(q − 1), let (eb, ee) =
←−
locq(Xi, j), and sj = Xi[|Xi|−j−q+2 : |Xi|−j+1]. We can compute the values
min1 RnOcc(Xi[eb : ee], sj) and min2 RnOcc(Xi[eb : ee], sj) for all 1 ≤ i ≤ n
and 1 ≤ j ≤ 2(q − 1), in a total of O(q2n) time.

Lemma 9. For all variable Xi = X�Xr and 1 ≤ j < q, maxLnOcc(Xi[ebi :

eei], sj) can be computed in a total of O(q2n) time, where (ebi, eei) =
←−
locq(Xi, j)

and sj = Xi[|Xi| − j − q + 2 : |Xi| − j + 1].

Proof. The lemma can be shown by using Lemma 7, but the proof is omitted.

Lemma 10. For all variable Xi = X�Xr and 1 ≤ j < q, minRnOcc(Xi[bbi :

bei], pj) can be computed in a total of O(q2n) time, where (bbi, bei) =
−→
locq(Xi, j)

and pj = Xi[j : j + q − 1].

Proof. The lemma can be shown in a similar way to Lemma 9, using Lemma 8
instead of Lemma 7. !"

3.4 Counting Non-overlapping Occurrences in Longest Overlapping
Covers

First, we show how to count non-overlapping occurrences of q-gram pj in Xi[j :

bei], for all i and j, where pj = Xi[j : j + q − 1] and (j, bei) =
−→
locq(Xi, j).

Lemma 11. For all variable Xi = X�Xr and 1 ≤ j ≤ 2(q − 1), let (j, bei) =−→
locq(Xi, j) and pj = Xi[j : j + q − 1]. We can compute nOcc(Xi[j : bei], pj) for
all 1 ≤ i ≤ n and 1 ≤ j ≤ 2(q − 1), in a total of O(q2n) time.

310 K. Goto et al.

Proof. By Lemma 1, we have nOcc(Xi[j : bei], pj) = |LnOcc(Xi[j : bei], pj)|.
We compute the occurrence bi in (j − 1) ⊕ LnOcc(Xi[j : bei], pj) that crosses
X� and Xr, if such exists. Note that at most one such occurrence exists. Also,
we compute the smallest occurrence bbr in (j − 1)⊕ LnOcc(Xi[j : bei], pj) that
is completely within Xr. Then the desired value nOcc(Xi[j : bei], pj) can be
computed depending whether bi and bbr exist or not.

Formally: Consider the set S = ((j−1)⊕LnOcc(Xi[j : bei], pj))∩[|X�|−q+2 :
|X�|] of occurrence of pj which is either empty or singleton. If S is singleton,
then let bi be its single element. Let bbr = min{k | k ∈ ((j − 1)⊕ LnOcc(Xi[j :
bei], pj)) ∩ [|X�|+ 1 : |X�|+ q − 1], if ∃bi then k ≥ bi + q}.

Then we have

nOcc(Xi[j : bei], pj)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

nOcc(Xr[j − |X�| : bei − |X�|], pj) if j > |X�|,
nOcc(X�[j : be�], pj) if � ∃bi and � ∃bbr,
nOcc(X�[j : be�], pj) + 1 if ∃bi and � ∃bbr
nOcc(X�[j : be�], pj) + nOcc(Xr[br : ber], pj) if � ∃bi and ∃bbr,
nOcc(X�[j : be�], pj) + nOcc(Xr[br : ber], pj) + 1 if ∃bi and ∃bbr,

where (bbr, ber) =
−→
locq(Xr, bbr).

For all variables Xi we pre-compute pre(Xi, 3(q − 1)) and suf (Xi, 3(q − 1)).
This can be done in a total of O(qn) time. If bi or bbr exists, |X�| − 3(q − 1) <
j − 1 +maxLnOcc(X�[j : be�], pj) ≤ |X�| − q + 2. Then, each bi and bbr can be
computed from LnOcc(Xi[(j−1+maxLnOcc(X�[j : be�], pj)) : |X�|+3(q−1)], pj)
running the KMP algorithm on string suf (X�, 3(q− 1))pre(Xr, 3(q− 1)). Based
on the above recursion, we can compute nOcc(Xi[j : bei], pj) in a total of O(q2n)
time for all 1 ≤ i ≤ n and 1 ≤ j ≤ 2(q − 1). !"

The next lemma can be shown similarly to Lemma 11.

Lemma 12. For all variable Xi = X�Xr and 1 ≤ j ≤ 2(q − 1), let (ebi, eei) =←−
locq(Xi, j) and sj = Xi[|Xi| − j − q + 2 : |Xi| − j + 1]. We can compute
nOcc(Xi[ebi : eei], sj) for all 1 ≤ i ≤ n and 1 ≤ j ≤ 2(q − 1), in a total of
O(q2n) time.

We have also assumed in Theorem 2 that nOcc(Xi[b : e], sj) are already com-
puted. This can be computed efficiently, as follows:

Lemma 13. For all variable Xi = X�Xr and j s.t. min{1, |X�|−2(q−1)+1} ≤
j ≤ min{|Xi|− q+1, |X�|+ q− 1}, nOcc(Xi[b : e], sj) can be computed in a total

of O(q2n) time, where (b, e) =
←→
locq(Xi, j) and sj = Xi[j : j + q − 1].

Proof. We consider the case where max{1, |X�|− q+2} ≤ j ≤ |X�|, as the other
cases can be shown similarly. Our basic strategy for computing nOcc(Xi[b :
e], sj) is as follows. First, we compute the largest element of LnOcc(Xi[b : e], sj)
that occurs completely within X�. Second, we compute the smallest element of

Computing q-Gram Non-overlapping Frequencies on SLP Compressed Texts 311

RnOcc(Xi[b : e], sj) that occurs completely within Xr. Third, we compute an
occurrence of sj that crosses the boundary of X� and Xr, and do not overlap
the above occurrences of sj completely within X� and Xr.

Formally: Let ee� = b + q − 2 + maxOcc(Xi[b : |X�|], sj), bbr = |X�| +
minOcc(Xi[|X�| + 1 : e], sj), u1 = b + q − 2 + maxLnOcc(Xi[b : ee�], sj), and
u2 = bbr − 1 + minRnOcc(Xi[bbr : e], sj). We consider the case where all these
values exist, as other cases can be shown similarly. It follows from Lemmas 1
and 2 that

nOcc(Xi[b : e], sj)

= |LnOcc(Xi[b : u1], sj)|+nOcc(Xi[u1+1 : u2−1], sj)+|RnOcc(Xi[u2 : e], sj)|
= nOcc(Xi[b : ee�], sj) + nOcc(Xi[u1 + 1 : u2 − 1], sj) + nOcc(Xi[bbr : e], sj),

By Lemma 6, (b, e) =
←→
locq(Xi, j) can be pre-computed in a total of O(q2n)

time. Since b < ee� and bbr < e, ee� and bbr can be computed in O(q) time
using the KMP algorithm. By Lemmas 11 and 12 nOcc(Xi[b : ee�], sj) and
nOcc(Xi[bbr : e], sj) can be pre-computed in a total of O(q2n) time (Notice

(b, ee�) =
←−
locq(X�, ee�) and (bbr, e) = |X�| ⊕

−→
locq(Xr, bbr − |X�|)). By Lem-

mas 9 and 10, u1 and u2 can be pre-computed in a total of O(q2n) time. Hence
nOcc(Xi[u1 + 1 : u2 − 1], sj) can be computed in O(q) time using the KMP
algorithm for each i and j. The lemma thus holds. !"

3.5 Main Result

The following theorem concludes this whole section.

Theorem 3. Problem 2 can be solved in O(q2n) time and O(qn) space.

Proof. The time complexity and correctness follow from Theorem 2, Lemma 6,
and Lemma 13.

We compute and store strings suf (Xi, 3(q−1)) and pre(Xi, 3(q−1)) of length
O(q) for each variable Xi, hence this requires a total of O(qn) space for all
1 ≤ i ≤ n. We use a constant number of dynamic programming tables each of
which is of size O(qn). Hence the total space complexity is O(qn). !"

4 Conclusion

We considered the problem of computing the non-overlapping frequencies for
all q-grams that occur in a given text represented as an SLP. Our algorithm
greatly improves previous work which solved the problem only for q = 2 requiring
O(n4 logn) time and O(n3) space. We give the first algorithm which works for
any q ≥ 2, running in O(q2n) time and O(qn) space, where n is the size of the
SLP.

312 K. Goto et al.

References

1. Amir, A., Benson, G.: Efficient two-dimensional compressed matching. In: Proc.
DCC 1992, pp. 279–288 (1992)

2. Apostolico, A., Preparata, F.P.: Data structures and algorithms for the string
statistics problem. Algorithmica 15(5), 481–494 (1996)

3. Bille, P., Landau, G.M., Raman, R., Sadakane, K., Satti, S.R., Weimann, O.: Ran-
dom access to grammar-compressed strings. In: Proc. SODA 2011, pp. 373–389
(2011)

4. Brodal, G.S., Lyngsø, R.B., Östlin, A., Pedersen, C.N.S.: Solving the String Statis-
tics Problem in Time O(n log n). In: Widmayer, P., Triguero, F., Morales, R., Hen-
nessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp.
728–739. Springer, Heidelberg (2002)

5. Goto, K., Bannai, H., Inenaga, S., Takeda, M.: Towards efficient mining and clas-
sification on compressed strings. In: Accepted for SPIRE 2011 (2011), preprint
available at arXiv:1103.3114v2

6. Hermelin, D., Landau, G.M., Landau, S., Weimann, O.: A unified algorithm for ac-
celerating edit-distance computation via text-compression. In: Proc. STACS 2009,
pp. 529–540 (2009)

7. Inenaga, S., Bannai, H.: Finding characteristic substring from compressed texts.
In: Proc. The Prague Stringology Conference 2009, pp. 40–54 (2009); full version
to appear in the International Journal of Foundations of Computer Science

8. Karpinski, M., Rytter, W., Shinohara, A.: An efficient pattern-matching algorithm
for strings with short descriptions. Nordic Journal of Computing 4, 172–186 (1997)

9. Knuth, D.E., Morris, J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM
Journal on Computing 6(2), 323–350 (1977)

10. Larsson, N.J., Moffat, A.: Off-line dictionary-based compression. Proceedings of
the IEEE 88(11), 1722–1732 (2000)

11. Lifshits, Y.: Processing Compressed Texts: A Tractability Border. In: Ma, B.,
Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 228–240. Springer, Heidelberg
(2007)

12. Matsubara, W., Inenaga, S., Ishino, A., Shinohara, A., Nakamura, T., Hashimoto,
K.: Efficient algorithms to compute compressed longest common substrings and
compressed palindromes. Theoretical Computer Science 410(8-10), 900–913 (2009)

13. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Computing Sur-
veys 39(1), 2 (2007)

14. Nevill-Manning, C.G., Witten, I.H., Maulsby, D.L.: Compression by induction of
hierarchical grammars. In: Proc. DCC 1994, pp. 244–253 (1994)

15. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Transactions on Information Theory IT-23(3), 337–349 (1977)

16. Ziv, J., Lempel, A.: Compression of individual sequences via variable-length coding.
IEEE Transactions on Information Theory 24(5), 530–536 (1978)

A Fast Approximation Scheme for the Multiple

Knapsack Problem

Klaus Jansen�

Institut für Informatik, Christian-Albrechts-Universität zu Kiel,
24098 Kiel, Germany

kj@informatik.uni-kiel.de

Abstract. In this paper we propose an improved efficient approxima-
tion scheme for the multiple knapsack problem (MKP). Given a set
A of n items and set B of m bins with possibly different capacities,
the goal is to find a subset S ⊆ A of maximum total profit that can
be packed into B without exceeding the capacities of the bins. Chekuri
and Khanna presented a PTAS for MKP with arbitrary capacities with

running time nO(1/ε8 log(1/ε)). Recently we found an efficient polyno-
mial time approximation scheme (EPTAS) for MKP with running time

2O(1/ε5 log(1/ε))poly(n). Here we present an improved EPTAS with run-

ning time 2O(1/ε log4(1/ε))+poly(n). If the integrality gap between the ILP
and LP objective values for bin packing with different sizes is bounded by

a constant, the running time can be further improved to 2O(1/ε log2(1/ε))+
poly(n).

1 Introduction

The knapsack problem is a fundamental problem in combinatorial optimization.
One interesting generalization is the multiple knapsack problem (MKP), in which
we are given a set A of n items and a set B of m bins or knapsacks. Each item
a ∈ A has a size size(a) ∈ Q′ + and a profit profit(a) ∈ Q′ + and each bin b ∈ B
has a capacity or size c(b) ∈ Q′ +. The goal of MKP is to find a subset S ⊆ A
that can be packed into B without exceeding the capacities of the bins and that
has maximum total profit profit(S) =

∑
a∈S profit(a). The maximum total

profit among all feasible subsets S ⊆ A that can be packed into B is denoted
by OPT (A,B). MKP has many applications in computer science, operations
research, and related disciplines; see also the book by Kellerer, Pferschy, and
Pisinger [6].

Results. The decision version of MKP is to determine whether there is a fea-
sible packing with profit at least p; this is a generalization of the classical bin
packing problem and, therefore, strongly NP-complete. In contrast to the clas-
sical knapsack problem, MKP even with two bins with the same capacity does

� Supported in part by DFG Project, Entwicklung von effizienten polynomiellen Ap-
proximationsschemata für Scheduling- und verwandte Optimierungsprobleme.

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 313–324, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

314 K. Jansen

not have a fully polynomial time approximation scheme (FPTAS) unless P=NP
[1,2]. Chekuri and Khanna [2] presented a PTAS for MKP. The running time

of their PTAS is nO(1/ε8 log(1/ε)). Chekuri and Khanna [2] posed the question of
whether there is a PTAS with an improved running time and conjectured that
there exists an efficient polynomial time approximation scheme (EPTAS) with
running time f(1/ε)poly(n) for some function f . Fellows [3] considered it as a
significant open problem to determine whether MKP admits a fixed parameter
tractable (FPT) algorithm or it is W[1]-hard. For a survey on approximation al-
gorithms and parameterized complexity we refer to [8]. Recently we [4] found an

EPTAS for MKP with running time 2O(1/ε5 log(1/ε))poly(n) (that can be bounded

also by 2O(1/ε5 log(1/ε))+poly(n)) answering the open question posed by Chekuri
and Khanna in the affirmative. In this paper we improve the running time above
and obtain the following main result:

Theorem 1. There is an efficient polynomial time approximation scheme
(EPTAS) for the multiple knapsack problem with running time 2O(1/ε log4(1/ε))+
poly(n).

Interestingly, if the integrality gap between the ILP and LP objective values for
the bin packing problem with different bin sizes is bounded by a constant C,
similar to the modified round-up conjecture by Scheithauer and Terno [9] (i.e.
that ILP (I) ≤ �LP (I)(+ 1 for the ILP and LP formulations for each instance
I of the classical bin packing problem), then we can reduce the above running

time to 2O(1/ε log2(1/ε)) + poly(n) (see also our full paper).

Techniques. In contrast to the previous approach by Chekuri and Khanna
[2], we use a linear program relaxation for MKP. This allows us to select frac-
tional pieces of items and to distribute them among different bin groups. We
used this idea to obtain the first EPTAS for MKP, but still with a large run-
ning time 2O(1/ε5 log(1/ε)) + poly(n). In contrast to our first approach, we do not
round the bin sizes in our new algorithm. To reduce the running time above we
propose several interesting techniques and ideas. The first technique is a pre-
assignment method for high and medium profit items into the block with the
largest �1/δ log2(1/δ)(bins for some δ > 0 (that depends on ε). Interestingly
we are able to round up the sizes of certain items for this block. We show that
the rounded items can be packed into the bin block plus one additional bin of
small size. This step helps us to reduce the running time in the pre-assignment
phase. The second technique is a rounding method for the solution of the LP
relaxation of MKP. The solution of the LP can be interpreted as rectangles to
be packed fractionally into blocks with �1/δ log2(1/δ)(bins. The height of a
rectangle is equal to the size size(a) of an item a ∈ A and the width is the
total sum of all fractions of a assigned via configuration variables to a bin block.
By rounding the rectangles, adding dummy rectangles and using a minimum
cost flow problem with integral capacities, we are able to determine a selection
of items that can be packed into the original and few additional bins. To pack
a subset of the selected items into the bins with profit close to the optimum value,

Multiple Knapsack Problem 315

we also generalize a classical result for bin packing by Karmarkar and Karp [5]
(see also Shmonin [10]) to bin packing with different bin sizes: we prove that
the integrality gap between the corresponding ILP and LP values for instances
with d different item sizes and different bin sizes is bounded by O(log2(d)) (see
our full paper for the details). We believe that the proposed new techniques
and ideas are also useful for other combinatorial optimization problems (e.g. for
scheduling with additional resources and 2D packing problems).

2 Main Algorithm for MKP

Let δ > 0 be a constant such that 1/δ is integral (δ will be specified later).
Suppose that the number m of bins is a multiple of M = �1/δ log2(1/δ)(and
m ≥ M (i.e. m = (t + 1)�1/δ log2(1/δ)(with t ≥ 0); otherwise simply use
additional bins of zero capacity. Let us order the bins corresponding to their
capacities c(b1) ≤ . . . ≤ c(bm). We build t + 1 = m

M blocks B� with M bins
(see Figure 1 for an illustration with one zero capacity bin). We denote with

c
(�)
1 , . . . , c

(�)
M the capacities of the bins in B� for � = 1, . . . , t+ 1. In the following

we give an outline of our algorithm:

(1) Split the set B of bins into t + 1 blocks B� with M = �1/δ log2(1/δ)(bins
and reduce the number of high and medium profit items in the instance.

(2) Guess high profit and medium profit items (corresponding to an optimum
solution) for block Bt+1 with the largest bins and try to pack the items into
block Bt+1 plus one additional bin of small size.

(3) For each feasible guess of high and medium profit items
(3.1) solve a modified LP relaxation of MKP to select the other items for B

(including small profit items for block Bt+1),
(3.2) construct 2D strip packing instances for each block B� of bins, add some

dummy rectangles, round the rectangles and select items via a network flow
computation,

(3.3) use a bin packing algorithm and a shifting argument to pack a subset of
the selected items into the first t blocks B1, . . . , Bt.

(3.4) distribute the selected items of small profit fractionally into Bt+1 and
remove the fractional items,

(3.5) use a second shifting argument to eliminate the additional bin and at most
�1/δ log2(1/δ)(further bins for Bt+1.

(4) Output a solution with largest profit among all feasible guesses.

3 Pre-assignment and LP Relaxation

Let APP (A,B) be an approximate value for MKP obtained by the greedy al-
gorithm by Chekuri and Khanna [2] with accuracy ε′/2 where ε′ ≤ 1 is speci-
fied later; the algorithm computes a solution with profit at least APP (A,B) ≥
(1/2− ε′/4)OPT (A,B). Note that 2(1 + ε′)APP (A,B) ≥ OPT (A,B).

316 K. Jansen

3.1 High Profit Items

In the first phase we place items with high profit at least 2ρ(1 + ε′)APP (A,B)
≥ ρOPT (A,B) into bin block Bt+1 (see Figure 1 for an illustration), where
ρ = Θ(δ) is also a constant specified later. Note that an optimum solution can
have at most 1/ρ = O(1/δ) items with high profit. Using the following Lemma
we can reduce the number of high profit items in our instance.

Fig. 1. Block structure for a general instance of MKP with guessed set A
(1)
guess for Bt+1

Lemma 1. [4] There is a set CAh of high profit items in A with |CAh| ≤
O(1/δ2 log(1/δ2)) such that an optimum solution which selects only high profit
items from CAh has profit at least (1− 3ε′) OPT (A,B) for ε′ ≤ 1/2.

Since there are at most 1/ρ items with high profit in any optimum solution, we
can guess the high profit items out of the candidate set CAh. The number of
choices is at most (|CAh|+ 1)1/ρ = 2O(1/δ log(1/δ)) using |CAh|+ 1 ≤ poly(1/δ).
For each feasible choice, we try to pack the chosen candidates into the M =
�1/δ log2(1/δ)(bins in Bt+1. This can be done via an assignment from candi-
dates to bins. The number of these assignments is at mostM1/ρ = 2O(1/δ log(1/δ)).
An assignment is feasible if the assigned candidates fit into the corresponding
bins. The total number of guesses in this phase is bounded by 2O(1/δ log(1/δ)). Let

A
(1)
guess be the chosen candidates and letAreaRem =

∑
bi∈Bt+1

c(bi)−size(A(1)
guess)

be the remaining space. Furthermore, c̄(bi) denotes the remaining capacity of bin
bi ∈ Bt+1 after the placement of the high profit items. Suppose for simplicity that
the largest capacity c̄(bi) among the bins is 1; i.e. maxbi∈Bt+1 c̄(bi) = 1 (otherwise

we scale the sizes of the items). This implies that AreaRem ≤ �1/δ log2(1/δ)(.

3.2 Medium Profit Items

In the second phase we consider items with medium profit profit(ai) ∈ [2(ρ/M)
(1 + ε′)APP (A,B), 2ρ (1 + ε′)APP (A,B)). Since 2(ρ/M)(1 + ε)APP (A,B) ≥
(ρ/M)OPT (A,B), any feasible solution can have at most M/ρ = Θ(M/δ) many
items with medium or high profit using 1/ρ = Θ(1/δ). Using the same arguments
as for the high profit items and M = �1/δ log2(1/δ)(we obtain:

Multiple Knapsack Problem 317

Lemma 2. [4] There is a set CAm of medium profit items in A with |CAm| ≤
O(1/δ3 log3(1/δ)) such that the profit loss of an optimum solution which selects
only medium profit items from CAm is at most 3ε′OPT (A,B) for ε′ ≤ 1/2.

In the next phase of the algorithm, we assign medium profit items to the bins
in Bt+1. Depending on the sizes of these items we do the following steps.
Step A: Consider the medium profit items with size(ai) ∈ (δAreaRem

2K log3(1/δ)
, 1]

(where K is a constant specified later). Then, there are at most *2K/δ log3(1/δ)�
many items of this form in Bt+1. Next, we guess the medium profit items of large
size for bin group Bt+1. This can be done again via a guessing step to select the
candidates. Afterwards, we assign the chosen candidates to the bins (if possible).

Let A
(2)
guess be the chosen candidate set. The number of choices and assignments

using K = O(1) is bounded by (|CAm|+ 1)�2K/δ log3(1/δ)� = 2O(1/δ log4(1/δ)) and

M �2K/δ log3(1/δ)� = 2O(1/δ log4(1/δ)), respectively.
Step B: Now we consider medium profit items with size smaller than or
equal to δAreaRem

2K log3(1/δ)
. The main idea is to round the medium sizes size(ai) ∈

[δ6AreaRem, δAreaRem

2K log3(1/δ)
] corresponding to the optimum solution using linear

grouping over sizes (2−(r+1), 2−r] and to reduce the number of different medium
sizes in the instance (similar to the algorithm by Karmarkar and Karp [5] for bin
packing). Let Opt be an optimum set of items and Optmedium, Optsmall ⊆ Opt
be a subset of medium profit items with medium and small size placed into
Bt+1. Let Ir be the set of all medium items in Optmedium whose sizes lie in

(2−(r+1), 2−r] where 2r > K log3(1/δ)
δAreaRem

. For each r let Jr and J ′
r be the instances

obtained by applying linear grouping with group size g = � 2rδAreaRem

K log3(1/δ)
(. To ap-

ply linear grouping divide each set Ir into groups Gr,1, . . . , Gr,qr such that Gr,1

contains the g largest items in Ir , Gr,2 contains the next g largest items and so
on. Each group is rounded up to the largest size within the group. Let G′

r,i be
the multi-set of items obtained by rounding the size of each item in Gr,i. Then,
Jr =

⋃
i≥2 G

′
r,i and J ′

r = G′
r,1. In the full paper we prove the following result:

Lemma 3. The rounded medium items in
⋃

r(Jr ∪ J ′
r) and all small items with

medium profit fit into Bt+1 plus one additional bin of size δAreaRem

4 log2(1/δ)
for K = 56

and δ ≤ 1/10. Furthermore, the number of rounded medium sizes is bounded by
O(1/δ log3(1/δ)) and packing a set of items with rounded medium sizes into the

bins in Bt+1 and an additional small bin can be computed in time 2O(1/δ log4(1/δ)).

Guessing the rounded medium sizes. In our algorithm, we now guess the
rounded medium sizes of the medium profit items that are placed in Bt+1. The
number med of medium sizes is bounded by *C/δ log3(1/δ)� where C ≤ 2K + 6
is a constant. We show in our full paper:

Lemma 4. Our algorithm guesses the rounded medium sizes b
(r)
1 < . . . < b

(r)
�(r)

of Optmedium within each interval (2−(r+1), 2−r] and the numbers k
(r)
i of items

of size within (b
(r)
i−1, b

(r)
i] which are placed into Bt+1. The number of different

guesses is bounded by 2O(1/δ log4(1/δ)).

318 K. Jansen

If our instance does not have at least k
(r)
i items with medium profit and size

in (b
(r)
i−1, b

(r)
i], then we discard the corresponding guess. Note that the algorithm

above only selects the structure of the medium profit items, but not the items
themselves. For the selection step of the medium sized items we use the following
exchange result (for the proof we refer to the full paper).

Lemma 5. Suppose that there is a packing of a subset S ⊆ A of items into all
bins

⋃t+1
�=1 B�. Then we can generate a modified packing of S into two bin groups

B1 =
⋃t

�=1 B� and B2 = Bt+1 plus one additional bin of size δAreaRem

4 log2(1/δ)
such

that B2 contains the larger medium sizes for each subinterval (b
(r)
i−1, b

(r)
i] where

minr b
(r)
0 ≥ δ6AreaRem and maxr,i b

(r)
i ≤ δAreaRem

2K log3(1/δ)
.

We use this exchange step above for all medium items with medium profit. Sort
all medium items of the set CAm in non-decreasing order of their sizes and
guess the smallest index of a medium profit item that is packed into B2 = Bt+1

for each subinterval (b
(r)
i−1, b

(r)
i]. Using the modification above B2 contains only

items with indices larger than or equal to the guessed index for each subinterval.
Since we have a constant number of candidates in each subinterval (bounded
by a polynomial in 1/δ) and the number of subintervals is O(1/δ log3(1/δ)), we

can guess all these indices in time (|CAm|)O(1/δ log3(1/δ)) = 2O(1/δ log4(1/δ)). In

each subinterval we choose k
(r)
i items in CAm with index larger than or equal

to the guessed index. A greedy algorithm that takes k
(r)
i feasible items ordered

by their profits generates the best solution for the guessed index. Let K̄medium

be the selected set for the guess above. Let A
(3)
guess = K̄medium ∪ K̄small be the

selected set of medium profit items of medium and small size for B2 = Bt+1.

Let A
(r)
i be the set of medium profit items in the subinterval (b

(r)
i−1, b

(r)
i] with

index smaller than the guessed index. Furthermore, let K̄large be the set of

all medium profit items with large size. Note that A1 =
⋃

i,r A
(r)
i ∪ (CAh \

A
(1)
guess) ∪ (K̄large \A(2)

guess) consists of items with medium and large profit that

may be selected for B1 =
⋃t

�=1 B�. Furthermore, the set A2 consists of items
with small profit ≤ (ρ/M)2(1+ ε′)APP (A,B) that may be selected for B1 ∪B2.

On the other hand, Ā
(r)
i denotes the set of medium profit items with index

larger than or equal to the guessed index for subinterval (b
(r)
i−1, b

(r)
i]. Then, F =⋃

i,r Āi,r ∪ K̄small ∪
⋃2

k=1 A
(k)
guess is the forbidden set of medium profit items for

B1 =
⋃t

�=1B�.

3.3 Linear Program Relaxation

In the next phase we select the other items in A1 ∪ A2 via a linear program

(LP). Let cap =
∑

bk∈Bt+1
c̄(bk)−size(A

(2)
guess)−size(Jmedium) be the remaining

total capacity in the largest bins, where Jmedium is the total size of all rounded
medium size items with medium profit for Bt+1 without the largest group for
each interval (2−(r+1), 2−r]. Note that size(Jmedium) ≤ size(Optmedium) is a

Multiple Knapsack Problem 319

lower bound on the size of Optmedium of medium sized items with medium
profit packed into Bt+1 (corresponding to the optimum guess). For simplicity
suppose that the first n′ ≤ n items have small profit and fit into the knapsack
of size cap; i.e. {a1, . . . , an′} ⊂ A2. Next suppose that the next n′′ − n′ items
have either a small profit and size larger than cap or have medium or high profit;
i.e. {an′+1, . . . , an′′} = A1 ∪ (A2 \ {a1, . . . , an′}). For each bin bk with capacity

ck, let C
(k)
1 , . . . , C

(k)
Hk

be the set of all configurations for the bin bk; where a
configuration is a subset S ⊆ A of items with total size

∑
a∈S size(a) ≤ ck. We

use the following linear program:

max
∑n′′

i=1 profit(ai)xi∑m−M
k=1

∑
j:ai∈C

(k)
j

y
(k)
j + zi = xi for i = 1, . . . , n′∑m−M

k=1

∑
j:ai∈C

(k)
j

y
(k)
j = xi for i = n′ + 1, . . . , n′′∑Hk

j=1 y
(k)
j ≤ 1 for k = 1, . . . ,m−M∑n′

i=1 size(ai)zi ≤ cap

y
(k)
j ≥ 0 for j = 1, . . . , Hk and k = 1, . . . ,m−M

zi ∈ [0, 1] for i = 1, . . . , n′

xi ∈ [0, 1] for i = 1, . . . , n′′

The main idea of the relaxation is to use a fractional variable xi ∈ [0, 1] for each
item ai (which selects a piece of each item) and to distribute the corresponding
piece as smaller fractional pieces among the configurations for different bin ca-

pacities. The variable y
(k)
j in the LP denotes the length of configuration C

(k)
j in

bin bk. For each of the first n′ items with small profit, we use also a variable zi
to indicate a fractional piece selected for the bins in Bt+1.

Lemma 6. The linear program LP is a relaxation of the MKP instance (A,B)
where B = B1 ∪ B2 after selecting the items of

⋃3
k=1 A

(k)
guess for B2 = Bt+1 and

the additional bin; i.e. the objective value of the LP is at least the maximum
profit of a subset of A\F (where F is the forbidden set of medium profit items)

packed together with
⋃3

k=1 A
(k)
guess into B where we allow to pack further high and

medium profit items into B1 and small profit items into B1 ∪ B2.

We suppose that all additional items with small profit that may be placed into
B2 = Bt+1 have size at most δ cap. We need this property in the rounding
strategy later. Note that there are at most 1/δ small profit items of larger size in
these bins. The total profit of these items can be bounded by (1/δ)2(ρ/M)(1 +
ε′)APP (A,B). In the LP we simply remove a zi variable, if the size of the
corresponding item is too large. This implies for the modified linear program
LP ′ that OPT (LP ′) ≥ OPT (LP)− 2ρ(1 + ε′)OPT (A,B).

Lemma 7. [4] We can compute an approximate solution (x̄, ȳ, z̄) of the modified

LP ′ in time poly(n, 1/α) where
∑Hk

j=1 ȳ
(k)
j ≤ (1+2α),

∑n′

i=1 size(ai)z̄i ≤ cap(1+
2α), and whose objective value is at least (1− 3α)OPT (LP ′).

320 K. Jansen

The solution of the linear program LP ′ can be transformed into another solution
(x̃, ỹ, z̃) with objective value at least (1 − 5α)OPT (LP ′) without violating the

constraints above. Here again we simply scale the values ỹ
(k)
j = ȳ

(k)
j /(1 + 2α),

z̃i = z̄i/(1 + 2α) and x̃i = x̄i/(1 + 2α).

4 New Rounding Strategy

Now we describe how to round the (x̃, ỹ, z̃) solution of the modified LP. First

we generate t stacks and rounded sets of rectangles L
(�)
wide for the blocks B�,

� = 1, . . . , t. Consider an item ai with x̃i > 0. Let z
(�)
i =

∑
bk∈B�

∑
j:ai∈C

(k)
j

ỹ
(k)
j

be the fraction of item ai assigned to block B�. For each block B�, all large

pieces with size(ai) > δc
(�)
max can be interpreted as wide rectangles of the form

(size(ai), z
(�)
i) with width size(ai) ≤ c

(�)
max and height z

(�)
i ≤ 1. Next we stack

all these rectangles ordered by their widths. We obtain a stack St� of height H�

(see Figure 2). Now we add to the stack St� a set X� of dummy rectangles of

width δ2c
(�)
max and height 1 (with the exception of one rectangle with height at

most 1) until the modified stack St� has total height H� = d�/δ
2 where d� ∈ Z+

and (d�− 1)/δ2 < H� ≤ H̄�. Note that the total height of the rectangles in X� is

at most 1/δ2. Let L
(�)
wide and L̄

(�)
wide be the sets of all rectangles on stack St� and

St�, respectively. We split the stack St� into 1/δ2 groups of height δ2H̄� = d�. If
a piece lies in two groups of the stack St� (more than two groups is not possible,
since the height of each rectangle is at most 1 ≤ d�), then we split the rectangle
into two rectangles that fit into their groups completely.

Fig. 2. The construction of the stacks for L
(�)
wide, L̄

(�)
wide and L̄

(�)
sup

Finally, we round up each rectangle in group j on stack St� to the maximal

width in group j. Let L̄
(�)
sup be the set of rectangles obtained after the round-

ing (see also Figure 2 for the construction of the stacks and sets of rectangles).
Next we compare the minimum fractional strip packing height for the instances

L
(�)
wide and L̄

(�)
sup into a strip with different horizontal layers. Let c1 ≤ . . . ≤ cM

be the widths of the M horizontal layers. The firstM−1 layers have height 1 and

Multiple Knapsack Problem 321

layer M has unbounded height. The widths c1, . . . , cM are the bin capacities

c
(�)
1 , . . . , c

(�)
M in block B�. For a set L of N rectangles of the form ri = (wi, hi)

with heights hi ≤ 1, let R(k) be a set of rectangles (called a configuration) that

fits into a horizontal layer of width ck; i.e.
∑

ri∈R(k) wi ≤ ck. Let R
(k)
1 , . . . , R

(k)
Hk

be the set of configurations for width ck. Use variables v
(k)
1 , . . . , v

(k)
Hk

to denote
the heights of the configurations. The linear program LP (L,B�) for an instance
L with N rectangles and block B� has the following form:

min
∑HM

j=1 v
(M)
j∑M

k=1

∑
j:ri∈R

(k)
j

v
(k)
j = hi for i = 1, . . . , N ,∑Hk

j=1 v
(k)
j ≤ 1 for k = 1, . . . ,M − 1,

v
(k)
j ≥ 0 for j = 1, . . . , Hk and k = 1, . . . ,M .

For each instance L, let LIN(L,B�) be the value of the linear program above
where the widths c1, . . . , cM are the capacities of the bins in block B�. This value
is the minimum height of a fractional strip packing into a strip consisting of M
horizontal layers of widths c1 ≤ . . . ≤ cM . Note that we count in the objective
function of the LP above only the packing into the widest layer of width cM . Let

AREA(L) be the total area of all rectangles in L. Since L
(�)
wide fits fractionally

into the M bins, LIN(L
(�)
wide, B�) ≤ 1. We show in our full paper:

Lemma 8. For the blocks B1, . . . , Bt, we obtain

LIN(L̄
(�)
sup, B�) ≤ δM + 3,

AREA(L̄
(�)
sup) ≤ (1 + δ)AREA(L

(�)
wide) + 2c

(�)
max.

We build one additional stack for the small profit items placed into Bt+1. Sort the
small profit items a1, . . . , an′ in non-decreasing order of their sizes and put the
items with sizes in [δ2cap, δcap] as rectangles (size(ai), zi) with width size(ai)
and height zi in the order above on a stack. This generates a stack Stt+1 with a

set L
(t+1)
wide of rectangles of total height Ht+1. Similar to the above construction,

we generate a modified stack Stt+1 and the set L
(t+1)
sup of rounded rectangles.

Here we obtain Area(L̄
(t+1)
sup) ≤ (1 + δ)Area(L

(t+1)
wide) + δcap.

The set L̄
(�)
sup consists of a set of rectangles with at most 1/δ2 (which is

constant) different widths w
(�)
1 > . . . > w

(�)
a(�) for each � = 1, . . . , t + 1 where

a(�) ≤ 1/δ2. For each width w
(�)
j , let β

(�)
j be the total height of rectangles in

L̄
(�)
sup with rounded width w

(�)
j for � = 1, . . . , t+1. Since each stack St� has height

a�/δ
2 where a� ∈ Z+, the numbers β

(�)
j are integral for each group j and each

block B�.
Let L

(�)
narrow be the set of narrow rectangles (size(ai), z

(�)
i) with size(ai) ≤

δc
(�)
max allocated to block B� for � = 1, . . . , t. The total area AREA(L

(�)
narrow)

322 K. Jansen

is
∑

i:size(ai)≤δc
(�)
max

z
(�)
i size(ai). We divide this area into smaller areas as fol-

lows. For each interval int�,k = (δ
(1+δ)k c

(�)
max,

δ
(1+δ)k−1 c

(�)
max] with k ∈ IN, let

Area(�, int�,k) =
∑

i:size(ai)∈int�,k
z
(�)
i size(ai) be the total area of pieces of items

ai with size(ai) ∈ int�,k allocated to bins in block B�. Using the smallest origi-
nal item size in interval int�,k, the maximum number of possible items in int�,k

with this total area is η�,k =

⌈
Area(�,int�,k)

δ

(1+δ)k
c
(�)
max

⌉
. In our algorithm, we take all in-

tervals int�,k for which δ
(1+δ)k

c
(�)
max ≥ 1

2nc
(�)
max. Let index(�) be the largest in-

dex k such that this inequality is satisfied. The inequality is also equivalent to
2δn ≥ (1 + δ)k or log(2δn) ≥ k log(1 + δ). This implies an upper bound k ≤
log(2δn)
log(1+δ) . Therefore, we set index(�) = *

log(2δn)
log(1+δ)�+1 and obtain that index(�) =

O([log(ε)+log(n)]/ log(1+ ε)) using δ = Θ(ε). For items with size(ai) ≤ 1
2nc

(�)
max

we use an additional interval int�,index(�)+1 = (−∞, δ/(1 + δ)index(�)] and set
η�,index(�)+1 = n. Note that the number of intervals is bounded by a polynomial
in n and 1/ε. In the full paper we prove:

Lemma 9. If A(�) ⊆ A is a set of small items with |{ai ∈ A(�)|size(ai) ∈
int�,k}| ≤ η�,k for each k, then Area(A(�)) ≤ (1+δ)Area(L

(�)
narrow)+(3/2+δ)c

(�)
max

for � = 1, . . . , t.

For the small profit items in Bt+1 with size < δ2cap we form intervals intt+1,k =

(δ2cap
(1+δ)k ,

δ2cap
(1+δ)k−1] for k ∈ IN. Similar to the construction above we define the area

values Area(t+1, intt+1,k) and set the values ηt+1,k for k = 1, . . . , index(t+1)+1.
Summing over all intervals intt+1,k, the total area of a set A(t+1) with at most

ηt+1,k items with size in intt+1,k is at most (1 + δ)Area(L
(t+1)
narrow) + (2 + δ)δcap

where L
(t+1)
narrow is the set of rectangles (size(ai), zi) over all small profit items ai

with size(ai) < δ2cap.

Flow Network. Now we set up a flow network G = (N,E) of the following
form. The vertex set N consists of a source s and sink t, a node xi for each item
ai and several nodes for each block B� with (at most) M bins. For each block,

we have a node y�,j for each rounded wide width w
(�)
j where j = 1, . . . , a(�)

and a node ȳ�,k for each interval int�,k where k = 1, . . . , index(�) + 1. The edge

set E is defined by {(s, xi)|i = 1, . . . , n} ∪ {(xi, y�,j)|w(�)
j+1 ≤ size(ai) ≤ w

(�)
j } ∪

{(xi, ȳ�,k)|size(ai) ∈ int�,k} ∪ {(y�,j, t)|� = 1, . . . , t + 1 and j = 1, . . . , a(�)} ∪
{(ȳ�,k, t)|� = 1, . . . , t + 1 and k = 1, . . . , index(�) + 1}. All edges have lower
capacities 0. The upper capacities of the edges (s, xi), (xi, y�,j) and (xi, ȳ�,k) are

1. In addition the capacity of the edge (y�,j, t) is β
(�)
j and the capacity of the

edge (ȳ�,k, t) is η�,k. Note that all capacities are integral and that the number
of vertices in G is bounded by a polynomial in n and 1/ε using δ = O(ε).
Furthermore, we have cost values for each edge: for each edge (s, xi) the cost
value c(s, xi) = profit(ai) and for each other edge the cost value is 0.

Multiple Knapsack Problem 323

Lemma 10. There is a fractional flow in the network G = (N,E) with profit
at least (1 − 5α)OPT (LP).

Taking negative profit values, there is a minimum cost flow in the network with
cost ≤ −(1 − 5α)OPT (LP). Since we have a totally unimodular constraint
matrix, each basic solution in the linear program corresponding to the flow
problem is integral. Therefore, there is a minimum cost integral flow (among
all flow values) in the network with the same cost. By computing the mini-
mum cost flow for each integral flow value v = 1, . . . , n and taking the best
solution, we obtain an integral flow g : E → IN in the network with profit
≥ (1 − 5α)OPT (LP). This integral flow gives us a subset of selected items
Aselect = {ai|g((s, xi)) = 1} with profit close to the optimum profit. For each

block B�, let A
(�)
wide = {ai|∃j ∈ {1, . . . , a(�)} with g(xi, y�,j) = 1} and A

(�)
narrow =

{ai|∃k ∈ {1, . . . , index(�)+1} with g(xi, ȳ�,k) = 1} be the set of wide and narrow

items for the block B�, respectively. Let Ā
(�)
wide and Ā

(�)
narrow be corresponding

sets with rectangles of width equal to the size(a) and height 1. We obtain the
following result.

Lemma 11. The algorithm based on minimum cost flow problems above com-

putes sets A
(�)
wide, A

(�)
narrow of items for each block B� (� = 1, . . . , t + 1) with

profit(
⋃

� A
(�)
wide ∪A

(�)
narrow) ≥ (1− 5α)OPT (LP ′) such that the following prop-

erties are satisfied:

– |{ai ∈ A
(�)
wide|g(xi, x�,j) = 1}| ≤ β

(�)
j for each j = 1, . . . , a(�) and � =

1, . . . , t+ 1.

– |{ai ∈ A
(�)
narrow|g(xi, ȳ�,k) = 1}| ≤ η�,k for each j = 1, . . . , index(�) + 1 and

� = 1, . . . , t+ 1.

In addition, LIN(A
(�)
wide, B�) ≤ δM +3, Area(A

(�)
wide) ≤ (1+ δ)Area(L

(�)
wide)+

2c
(�)
max, and Area(A

(�)
narrow) ≤ (1 + δ)Area(L

(�)
narrow) + (3/2 + δ)c

(�)
max for � =

1, . . . , t. Furthermore, Area(A
(t+1)
wide ∪A

(t+1)
narrow) ≤ (1+δ)Area(L

(t+1)
wide ∪L

(t+1)
narrow)+

4δcap.

5 Packing and Shifting Arguments

In the following we discuss that most of the selected items can be placed into
the bins. Let OptILP (S,B�) be the minimum value of an integral solution for the
LP (S,B�) for a selected subset S of items. This value gives the number of bins of

capacity c
(�)
max used for S, where the first M − 1 bins of capacities c

(�)
1 , . . . , c

(�)
M−1

are not counted, but can be used as additional space. In the full paper we show
the following bound for the number of extra bins.

Lemma 12.
OPTILP (A

(�)
wide ∪A(�)

narrow) ≤ C′ log2(1/δ)

where C′ is a constant.

324 K. Jansen

Since the proof is constructive, we obtain also an algorithm that generates a

packing for A
(�)
wide ∪ A

(�)
narrow into M + *C̄′ log2(1/δ)� bins: a subset A

(�)
1 fits

into block B� and the remaining set A
(�)
2 fits into *C̄′ log2(1/δ)� bins of size

c
(�)
max where C̄′ is a constant. Via the shifting argument we can select a subset

X�+1 ⊂ A
(�)
2 ∪ A

(�+1)
1 that fits into block B�+1 for � = 1, . . . , t− 1.

Lemma 13. For each � = 1, . . . , t − 2, we can select a subset X�+1 ⊆ A
(�)
2 ∪

A
(�+1)
1 with profit at least (1− C̄′δ)profit(A

(�)
2 ∪A

(�+1)
1) that can be packed into

block B�+1.

For the first block B1 we take X1 = A
(1)
1 . For the last block Bt+1 with selected

set A(t+1) = A
(t+1)
wide ∪ A

(t+1)
narrow the situation is a bit more complicated and is

discussed in the full paper. We show there that the profit of the entire selected
set is at least (1 − max{28 + C̄′, 23 + 2C̄′}δ)OPT (A,B) (using ε′ ≤ 1/6 and
δ = ρ = ε′). For δ ≤ ε/max{28 + C̄′, 23 + 2C̄′}, the profit of our solution is at
least (1 − ε)OPT (A,B). In our algorithm we set δ = 1/(5�max{28 + C̄ ′, 23 +
2C̄′}/5ε() and obtain the property that 1/δ is integral. The running time of our
algorithm is dominated by the guessing steps for Bt+1 and can be bounded by

2O(1/ε log4(1/ε))poly(n, 1/ε) ≤ 2O(1/ε log4(1/ε))poly(n) ≤ 2O(1/ε log4(1/ε)) + poly(n).

References

1. Caprara, A., Kellerer, H., Pferschy, U.: The multiple subset sum problem. SIAM
Journal of Optimization 11, 308–319 (2000)

2. Chekuri, C., Khanna, S.: A PTAS for the multiple knapsack problem. SIAM Jour-
nal on Computing 35, 713–728 (2006)

3. Fellows, M.R.: Blow-Ups, Win/Win’s, and Crown Rules: Some New Directions in
FPT. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 1–12. Springer,
Heidelberg (2003)

4. Jansen, K.: Parameterized approximation scheme for the multiple knapsack prob-
lem. SIAM Journal on Computing 39, 1392–1412 (2009)

5. Karmarkar, N., Karp, R.M.: An efficient approximation scheme for the one-
dimensional bin-packing problem. In: Proceedings of the 23rd IEEE Symposium
on Foundations of Computer Science, FOCS 1982, pp. 312–320 (1982)

6. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Berlin (2004)
7. Kenyon, C., Remila, E.: Approximate strip packing. Mathematics of Operations

Research 25, 645–656 (2000)
8. Marx, D.: Parametrized complexity and approximation algorithms. The Computer

Journal 51, 60–78 (2008)
9. Scheithauer, G., Terno, J.: Theoretical investigations on the modified integer round-

up property for the one-dimensional cutting stock problem. European Journal of
Operational Research 20, 93–100 (1997)

10. Shmonin, G.: Parameterised integer programming, integer cones, and related prob-
lems, PhD thesis, Universität Paderborn (2007)

Counting Maximal Independent Sets

in Subcubic Graphs

Konstanty Junosza-Szaniawski and Micha�lTuczyński

Warsaw University of Technology
Faculty of Mathematics and Information Science
Pl. Politechniki 1/207, 00-661 Warsaw, Poland
{k.szaniawski,m.tuczynski}@mini.pw.edu.pl

Abstract. The main result of this paper is an algorithm counting ma-
ximal independent sets in graphs with maximum degree at most 3 in
time O∗(1.2570n) and polynomial space.

1 Introduction

Recently much attention has been paid to algorithmic aspects of some counting
problems. Although many of the problems (e.g. counting independent sets, ma-
ximal independent set or matchings in a graph) are known to be #P-Complete
(see Vadhan [15], Greenhill [9]), a remarkable progress has been done in de-
signing exponential time algorithms solving them. Dahllöf, Jonsson, Wahlström
[3] constructed algorithms that count maximum weight models of 2-SAT and
3-SAT formulas in time O∗(1.2561n) and O∗(1.6737n), respectively. The for-
mer bound was later improved to O∗(1.2461n) by Fürer and Kasiviswanathan
[7] and subsequently to O∗(1.2377n) by Wahlström [16]. The latter bound was
improved by Kutzkov [13] to O∗(1.6423n). Maximal independent sets can be
counted by an algorithm of Gaspers, Kratsch and Liedloff in time O∗(1.3642n).
This algorithm restricted to subcubic graphs performs in time O∗(1.3532n) (this
complexity bound can be proved by applying the measure and conquer method,
where weights of vertices of degree 1, 2, and 3 are equal to w1 = 0.361958 and
w2 = w3 = 0.436386, respectively). Maximal independent sets in a tree can
be counted in polynomial time (see Jou, Chang [10]). All algorithms mentioned
above work in polynomial space.

We can construct a pathwidth-based algorithm counting all maximal inde-
pendent sets in a graph (similar to the one presented in Alber and Nieder-
meier [1]). Such an algorithm works in time O ∗ (3pw(G)), where pw(G) is the
pathwidth of G. Using the bound on the pathwidth of graphs of maximum de-
gree at most 3 given by Fomin and Hoie in [5] we get the time complexity
O∗(3(1/6+ε)n) = O∗(1.2010n). This method can be also applied for graphs with
vertices of degree larger than 3 (see [6]). However pathwidth-based algorithms
use exponential amount of space.

Independent sets in a graph naturally correspond to models of 2-SAT formulas
with all variables negated. In particular the algorithm of Wahlström [16] can be

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 325–336, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

326 K. Junosza-Szaniawski and M. Tuczyński

applied to count all independent sets and all independent sets of maximum size
in a graph. In fact if we use this algorithm as a subroutine in the algorithm of
Björklund, Husfeldt and Koivisto [2] (based on the inclusion-exclusion principle)
then we obtain a fastest known algorithm for the graph coloring problem which
works in polynomial space.

In this paper we present an algorithm for counting maximal independent
sets (equivalently minimal coverings) in subcubic graphs. The case of graphs
with maximum degree at most 3 is the first non trivial case, because maximal
independent sets in graphs with maximum degree at most 2 can be counted in
polynomial time. Our algorithm is a recursive algorithm with four branching
rules. To control maximality of counted independent sets we use a new type of
edges - red edges. Each counted independent set must contain at least one end of
every red edge, otherwise it is not maximal in the instance graph. Our algorithm
can be modified to count minimal models of 2-SAT formulas, where no variable
appears more than 3 times. However, for simplicity, we present only the version
for counting maximal independent sets in subcubic graphs.

In the running time analysis of recursive algorithms a method sometimes
called the “measure and conquer” method (introduced by Kullman [12], see also
[4]) is very useful. In particular this method was used in analyzing the running
time of the algorithm in Dahllöf et al. [3]. We use similar measure of graphs as
they did. We define the measure of sparse graphs to be equal to the number of
vertices of degree 3. Then we prove that the higher density of a graph is, the
better configuration for branching can be found. To take advantage of this we
define (after [3]) a measure which is a piece-wise linear function of the number
of the vertices and the number of the edges. Finally, we reduce the constant c in
the running time bound O∗(cn) of an algorithm counting maximal independent
sets is a graph of maximum degree at most 3 from c = 1.3532 (Gaspers et al.)
to c = 1.2570 (the algorithm presented in this paper).

2 Preliminaries

We denote by V (G) the vertex set of a graph G and by E(G) its edge set.
Let n(G) and m(G) be the number of vertices and the number of edges of G,
respectively. We write n instead of n(G) and m instead of m(G) whenever it
does not lead to a confusion. By dist(v, u) we denote the number of edges of a
shortest v − u path. An open neighborhood of a vertex v is the set of vertices
N(v) = {u ∈ V (G) : uv ∈ E(G)} and a closed neighborhood of v is N [v] =
N(v)∪{v}. Let d(v) = |N(v)| be the degree of a vertex v. By ni(G) and n≥i(G)
we denote the number of vertices of degree i and at least i in G, respectively. A
vertex of degree 0 is called isolated and a vertex of degree 1 is called a leaf. By
Δ(G) (resp. δ(G)) we mean the maximum (resp. minimum) degree of a vertex in
G. Let NN [v] = {u ∈ V : dist(v, u) ≤ 2}, NN(v) = NN [v] − {v}, S(v) =∑

u∈N [v] d(u), and let SS(v) denote the sequence (S(v), S(v1), . . . , S(vd(v))),

where {v1, . . . , vd(v)} = N(v) and S(v1) ≥ . . . ≥ S(vd(v)). We write SS(v) ≤L

SS(u) if the sequence SS(v) is not greater lexicographically than SS(u). We say

Counting Maximal Independent Sets in Subcubic Graphs 327

that u is a topological neighbor of v or that u and v are topological neigh-
bors if there exists a v − u path with all internal vertices of degree 2. For
a vertex v of degree 3 let n2(v) = 1

2 |{u : d(u) = 2 and there exists a v −
u path consisting only of vertices of degree 2 and v}|. Notice that for any con-
nected graph G with δ(G) = 2 and Δ(G) = 3 holds n2 =

∑
v:d(v)=3 n2(v).

For a vertex set U ⊂ V (G), G[U] is the subgraph of G induced by U and
G − U = G[V (G) − U]. If U = {u}, then we write G − u instead of G − {u}.
For a subgraph H of G instead of G − V (H), we write G −H . For the empty
graph (∅, ∅) we simple write ∅. A set U of vertices of G is a cut set if G−U has
more components than G. A vertex u is a cut vertex, if U = {u} is a cut set. A
graph G is called k-connected if n(G) > k and G− U is connected for every set
U ⊂ V (G) such that |U | < k.

A set S ⊂ V (G) is an independent set (or an IS for short) in G, if no edge in
G has both ends in S. An independent set is maximal (or a MIS for short) if it is
not contained as a proper subset in any other independent set. A set T ⊂ V (G)
is a covering if every edge in G has at least one end in T . A covering is minimal
if it contains no covering as a proper subset. Notice that T is a minimal covering
if and only if V (G)− T is a MIS.

To control maximality of ISs in the counting process we introduce red edges
and we count only the ISs containing at least one end of every red edge. For
example if N(u) = {v, x1, x2}, and we want to count maximal independent sets
containing none of u and v in a branch of the tree of recursive calls of our
algorithm, then we add a red edge x1x2 before removing u and v, since at least
one of x1, x2 must be contained in a MIS of G in this branch. We call the original
edges of the graph blue edges. It is possible that an edge is both blue and red.

A blue-red graph (or a br-graph for short) G is a triple G = (V,Eb, Er) such
that (V,Eb ∪ Er) is a graph. Edges from Eb are called blue edges, edges from
Er are called red edges. The sets V,Eb, Er of the br-graphG are referred to as
V (G), Eb(G), Er(G), respectively. If uv ∈ Eb (resp. uv ∈ Er), then we call u
a blue (resp. red) neighbor of v. Let Nb(v) = {u ∈ V : vu ∈ Eb}, Nb[v] =
Nb(v) ∪ {v} and Nr(v) = {u ∈ V : vu ∈ Er}. By d(v) = |Nb(v) ∪ Nr(v)| we
denote the degree of a vertex v in a br-graph. For S ⊂ V let Nb(S) =

⋃
v∈S

Nb(v)

and Nb[S] = S ∪Nb(S).
Let IS(G) be the family of all sets S ⊂ V (G) satisfying the conditions:
(I1) If vu is a blue edge, then at most one of vertices v and u belongs to S.
(I2) If vu is a red edge, then at least one of vertices v and u belongs to S.
For disjoint subsets A+, A− of V (G) let IS(G,A+, A−) = {S ∈ IS(G) : A+ ⊆

S ⊆ V (G)−A−}.
In our algorithm we use a function c : {1, 0, 0̄}×V (G)→ {0, 1, . . .} called the

cardinality function. For convenience we write c1(v), c0(v) and c0̄(v) instead of
c(1, v), c(0, v) and c(0̄, v), respectively. During the course of the algorithm we
will remove some vertices. Similarly as in [3] we will use the cardinality function
to store information about the factor of the number of MIS in a primal graph
comparing to the current one (with some vertices removed). Our cardinality

328 K. Junosza-Szaniawski and M. Tuczyński

function is, however, more complicated because unlike in [3], we have to control
maximality of the independent sets. This is why we introduce the part c0̄ of the
cardinality function.

Given a cardinality function c and S ∈ IS(G) we define

CG(S, c) =
∏
w∈S

c1(w)
∏

w∈Nb(S)

c0(w)
∏

c0̄(w)
w∈V (G)−Nb[S]

.

We omit the index referring to the graph if the reference is clear.
Let

#IS(G, c, A+, A−) =
∑

C(S, c)

S∈IS(G,A+,A−)

.

We write #IS(G, c) instead of #IS(G, c, ∅, ∅).
To compute the number of MISs in a graphG = (V,E) we apply our algorithm

to the br-graph(V,E, ∅) and cardinality function c such that c1(v) = c0(v) = 1
and c0̄(v) = 0 for every v ∈ V . Notice that in such case, for S ∈ IS(G),

C(S, c) =

{
1 if S is a MIS in G

0 otherwise
.

To make proofs shorter we will use the following notation. For S ∈ IS(G) and
U ⊂ V let C(S/U, c) =

∏
w∈S−U

c1(w)
∏

w∈Nb(S)−U

c0(w)
∏

w∈(V (G)−Nb[S])−U

c0̄(w).

3 The Algorithm

Our main algorithmMISCount computes the number #IS(G, c) for a br-graphG
with maximum degree 3 and the cardinality function c satisfying the following
technical condition:

(A1) for every vertex v of degree 3, c1(v) = 1, c0(v) = 1, and c0̄(v) = 0.
To count all maximal independent sets of a given graph (V,E) we call

MISCount(G, c), for the br-graphG = (V,E, ∅) and the cardinality function c
defined as follows c1(v) = c0(v) = 1, and c0̄(v) = 0 for every vertex v ∈ V (G).
Notice that is such case the condition (A1) is satisfied. In the course of the al-
gorithm MISCount the graph is modified, but only in a way the condition (A1)
is still satisfied. The algorithm uses three auxiliary procedures.

Propagation. The procedure Prop takes as input a br-graphG, a cardinality
function c satisfying (A1) and two disjoint sets of vertices A+, A− satisfying the
conditions

(A2) there is no vertex v in A− such that d(v) = db(v) = 3 and N(v)∩ (A+ ∪
A−) = ∅,

(A3) for every vertex v in A− such that d(v) = db(v) = 2 and N(v) ∩ (A+ ∪
A−) = ∅, c1(v) = 1, c0(v) = 1 and c0̄(v) = 0.

The procedure simplifies given br-graphby performing operations such as re-
moving vertices, adding red edges and changing the values of the cardinality

Counting Maximal Independent Sets in Subcubic Graphs 329

function until A+ ∪A− is empty in such a way that after every execution of the
main loop the conditions (A1)-(A3) are satisfied.

Moreover, it removes isolated vertices and leaves. It returns a br-graphG′, a
cardinality function c′ satisfying (A1) and an integer c such that
#IS(G, c, A+, A−) = c ·#IS(G′, c′).

Algorithm 1. Prop(G, c, A+, A−)

c← 11

while any of steps is applicable do2

if there exists a vertex v ∈ A+ then3

if v has a blue neighbor in A+ then return (∅, c, 0) (F1)4

else if A− ∪Nb(v) contains a red edge then return (∅, c, 0)5

foreach u ∈ Nb(v) do6

A+ ← A+ ∪Nr(u), c← c · c0(u), G← G− u, A− ← A− − u7

c← c · c1(v), G← G− v, A+ ← A+ − v8

else if there exists a vertex v ∈ A− then9

if v has a red neighbor in A− then return (∅, c, 0) (F2)10

if v has a red neighbor then A+ ← A+ ∪Nr(v)11

if Nb(v) ⊂ A− then12

c← c · c0̄(v), G← G− v, A− ← A− − v (F3)13

else if |Nb(v)− A−| = 1 then14

Let {u} = Nb(v)−A− (F4)15

c1(u)← c1(u)c0(v), c0(u)← c0(u)c0̄(v), c0̄(u)← c0̄(u)c0̄(v),16

G← G− v, A− ← A− − v

else if |Nb(v)− A−| = 2 then17

Let {u,w} = Nb(v)− A− (F5)18

Er ← Er ∪ {uw}19

c← c · c0(v), G← G− v, A− ← A− − v20

else if there exists an isolated vertex v then21

c← c(c1(v) + c0̄(v)), G← G− v (F6)22

else if there exists a leaf v then23

Let u be the neighbor of v (F7)24

if uv is both blue and red then25

c1(u)← c1(u)c0(v), c0(u)← c0(u)c1(v)26

else if uv is red then27

c1(u)← c1(u)(c1(v) + c0̄(v)), c0(u)← c0(u)c1(v),28

c0̄(u)← c0̄(u)c1(v)

else if uv is blue then29

c1(u)← c1(u)c0(v), c0(u)← c0(u)(c1(v) + c0̄(v)),30

c0̄(u)← c0(u)c1(v) + c0̄(u)c0̄(v)

G← G− v31

return (G, c, c)32

The following statement can be shown by induction using some definitions
and simple calculations (see [11] for a detailed proof.)

330 K. Junosza-Szaniawski and M. Tuczyński

Lemma 1. Let G = (V,Eb, Er) be a br-graph, and c a cardinality function satis-
fying the condition (A1). Let (G′, c′, c) = Prop(G, c, A+, A−).
Then #IS(G, c, A+, A−) = c ·#IS(G′, c′).

Lemma 2. The procedure Prop runs in polynomial time. �

Reduction. The procedure Reduction can be applied if the br-graphG has a
cut vertex. It takes as input a br-graphG, a cardinality function c, a cut vertex v
and a component H of G− v with the smallest number of vertices of degree 3. If
there is a cut vertex in G then we can choose a vertex v such that d(v) = 3 and
dG−H(v) = 2, so we assume that these conditions hold. Reduction returns a br-
graphG−H and a cardinality function c′ such that #IS(G, c) = #IS(G−H, c′).

Algorithm 2. Reduction(G, c, v,H)

G1 ← G[V (H) ∪ {v}], G2 ← G−H , u←unique neighbor of v in G11

(G̃1, c̃, p)← Prop(G1, c, {v}, ∅)2

t← MISCount(G̃1, c̃)3

c1(v)← p · t4

if vu is red then5

(G′
1, c

′, p)← Prop((G1 − v), c, {u}, ∅)6

t← MISCount(G′
1, c

′)7

c0(v)← p · t · c0(v), c0̄(v)← p · t · c0̄(v)8

else if vu is blue then9

(G′
1, c

′, p1)← Prop((G1 − v), , c, {u}, ∅)10

t1 ← MISCount(G′
1, c

′)11

(G′′
1 , c

′′, p0)← Prop((G1 − v), c, ∅, {u})12

t0 ← MISCount(G′′
1 , c

′′)13

c0(v)← p1 · t1 · c0(v) + p0 · t0 · c0(v), c0̄(v)← p1 · t1 · c0(v) + p0 · t0 · c0̄(v)14

return MISCount(G2, c)15

Branching. We call a pair A = (A+, A−) of disjoint subsets of V such that A+∪
A− �= ∅ a branch condition. A set A = {(A+

1 , A
−
1), (A

+
2 , A

−
2), . . . , (A

+
k , A

−
k)} of

branch conditions is called complete for (G, c) if the sets IS(G,A+
1 , A

−
1), IS(G,

A+
2 , A

−
2), . . . , IS(G,A+

k , A
−
k) are pairwise disjoint and cover the set {S ∈ IS(G) :

C(S, c) > 0}. By GA we denote a graph returned by Prop(G, c, A+, A−).
For a br-graphG, a cardinality function c and a complete set of branch condi-

tions {(A+
1 , A

−
1), (A

+
2 , A

−
2), . . . , (A

+
k , A

−
k)} the procedure Branching separately

computes the numbers #IS(G, c, A+
i , A−

i) and returns the sum of them.

Algorithm 3. Branching(G, c, {(A+
1 , A

−
1), (A

+
2 , A

−
2), . . . , (A

+
k , A

−
k)})

foreach i ∈ {1, . . . , k} do1

(Gi, c
i, pi)← Prop(G, c, A+

i , A
−
i)2

ti ← MISCount(Gi, c
i)3

return p1 · t1 + . . .+ pk · tk4

Counting Maximal Independent Sets in Subcubic Graphs 331

332 K. Junosza-Szaniawski and M. Tuczyński

Main Algorithm

Theorem 3. Let G = (V,Eb, Er) be a br-graphand c a cardinality function
satisfying the conditions (A1), (A2), (A3). Then MISCount(G, c) = #IS(G, c).

Proof. The proof is by induction on n(G). If n(G) ≤ 1, then the assertion clearly
holds. Assume that the assertion holds for all graphs with at most n vertices and
let G be a graph with n+ 1 vertices. The br-graphG is processed in one of the
following steps: (P), (R0), (R1), (C), (B), or (B+R).
(P) By Lemma 1 and the induction hypothesis MISCount(G, c) = #IS(G, c).
(R0) Observe that if C is a component of G, then #IS(G, c) = #IS(C, c) ·
#IS(G−C, c). From this fact and the induction hypothesis MISCount(G, c) =
#IS(G, c).
(R1) Notice that when a red edge incident to a vertex u is added (step (F5)
of Prop), then in the same step (F5) a blue edge incident with v is removed.
Hence in any br-graphG′ appearing in the course of the algorithm the sum of
the number of blue edges incident to a vertex v and the number of red edges
incident to v is at most 3. In other words the ends of an edge that is both blue
and red are of degree at most 2. Since d(v) = 3, the only edge incident with
v and the other end in V (H) is either blue or red.

Let cb and ca be the values of c before and after applying Reduction.

#IS(G, cb) =
∑

S∈IS(G)

C(S, cb) =
∑

C(S, cb)
S∈IS(G):v∈S

+
∑

C(S, cb)
S∈IS(G):v/∈S

We will deal with these summands separately.
If S ∈ IS(G) and v ∈ S then S is a union of S1 ∈ IS(G1) and S2 ∈ IS(G2)

such that S1 ∩ S2 = {v}. Hence

∑
C(S, cb)

S∈IS(G):v∈S

=
∑

S2∈IS(G2):
v∈S2

∑
C(S2/{

S1∈IS(G1):
v∈S1

v}, cb)C(S1/{v}, cb)cb1(v) =

∑
C(S2/{v},

S2∈IS(G2):v∈S2

cb)
(∑

C(S1/{v},
S1∈IS(G1):v∈S1

cb)cb1(v)
)
=

∑
C(S2/{v},

S2∈IS(G2):v∈S2

cb)
(∑

C(S1, c
b)

S1∈IS(G1):v∈S1

)
=

∑
C(S2/{v},

S2∈IS(G2):v∈S2

ca)ca1(v) =
∑

C(S,
S∈IS(G2):v∈S

ca).

Counting Maximal Independent Sets in Subcubic Graphs 333

In a similar way it can be shown (see [11] for details) that∑
C(S, cb)

S∈IS(G):v/∈S

=
∑

C(S, ca)
S∈IS(G2):v/∈S

.

Thus

#IS(G, cb) =
∑

C(S, cb)

S∈IS(G):v∈S

+
∑

C(S, cb)

S∈IS(G):v/∈S
=

∑
C(S, ca)

S∈IS(G2):v∈S

+
∑

C(S, ca)
S∈IS(G2):v/∈S

= #IS(G2, c
a).

(C),(B) Observe that in each case of applying the Branching procedure we
branch on a complete set of branch conditions. From this fact, Lemma 1 and the
induction hypothesis we get MISCount(G, c) = #IS(G, c). Notice that for any
branch condition used in MISCount the conditions (A1)-(A3) are satisfied.
(B+R) The proof follows from the previous cases (B), (R1), and (R0).

4 Complexity

For positive real numbers t0, . . . , td we denote by τ(t0, . . . , td) the unique solution

τ > 1 of the equation
∑d

i=0 τ
−ti = 1. One can readily verify that

if ti ≤ t′i for i ∈ {0, . . . , d}, then τ(t′0, . . . , t
′
d) ≤ τ(t0, . . . , td). (1)

In the complexity analysis we use a measure μ, which is a function assigning a
nonnegative real number to every graph. Consider an arbitrary graph G′ which
labels some internal vertex of the tree of recursive calls of MISCount. Let the
children of G′ be vertices labeled with the subgraphs G0, . . . , Gd of G′ for which
our algorithm is next called. Assume that Δiμ(G

′) = μ(G′) − μ(Gi) > 0 for
i = 0, . . . , d. Then the number τ(Δ0μ(G

′), . . . , Δdμ(G
′)) is well defined and we

call this number the branching number for G′ (with respect to the measure μ).
Kullmann [12] proved that if this assumption is satisfied for all internal vertices
of the tree of recursive calls of the algorithm for a graph G, then the number

of leaves of this tree is bounded by O(τ
μ(G)
0), where τ0 is the largest branching

number for the internal vertices of the tree. In our analysis it is convenient to
consider a subtree of the tree of recursive calls of our algorithm whose internal
vertices are restricted to vertices labeled with graphs whose measure is larger
than some constant, say c. The leaves of this tree are labeled with graphs whose
measure is at most c. We show that our algorithm applied to each graph which
labels a leaf works in polynomial time. Moreover, in our algorithm, the height of
the tree of recursive calls is bounded by the number of vertices of the instance
graph. Therefore the number of internal vertices of the tree is bounded by a
linear function of the number of leaves. We also show that the amount of time
between one recursive call of our algorithm and the next is polynomial with
respect to the order of the graph. Hence the running time of the considered

algorithm applied to a graph G is bounded by O∗(τ
μ(G)
0).

The following lemma guarantees desired configuration for the branching de-
pending on graph density.

334 K. Junosza-Szaniawski and M. Tuczyński

Lemma 4. Let G be a 2-connected triangle-free graph.

1. If 2m
n > 9

4 then there exists a vertex v such that SS(v) ≥L (9, 8, 7, 7) or
S(v) ≥ 10 (there exists a vertex of degree 3 with another vertex of degree 3
within a distance at most 2).

2. If 2m
n > 16

7 then there exists a vertex v such that SS(v) ≥L (9, 8, 8, 7) or
S(v) ≥ 10 (there exists a vertex of degree 3 with another two vertices of
degree 3 within a distance at most 2).

3. If 2m
n > 7

3 then there exists a vertex v such that SS(v) = (9, 8, 8, 8) or
SS(v) ≥L (10, 10, 8, 7) or S(v) ≥ 11 (there exists a vertex of degree 3 with
another three vertices of degree 3 within a distance at most 2 or a vertex of
degree 3 with a neighbor of degree 3 and another vertex of degree 3 within a
distance at most 2).

4. If 2m
n > 28

11 then there exist a vertex v such that SS(v) ≥L (11, 11, 10, 7) or
S(v) = 12 (there exist two adjacent vertices of degree 3 both having at least
two neighbors of degree 3 or there is a vertex of degree 3 with three neighbors
of degree 3).

5. If 2m
n > 8

3 then there exists a vertex v such that S(v) = 12 (there exists a
vertex of degree 3 with all neighbors of degree 3).

6. If 2m
n > 14

5 then there exist a vertex v such that SS(v) ≥L (12, 12, 12, 10)
(there exists a vertex of degree 3 with all neighbors of degree 3 and such that
at least two of its neighbors have all neighbors of degree 3).

7. If 2m
n > 48

17 then there exists a vertex v such that SS(v) ≥L (12, 12, 12, 10)
with a neighbor x such that SS(x) ≥L (12, 12, 12, 10) (there exist two adja-
cent vertices of degree 3 both having all neighbors of degree 3 and at least
two neighbors with all neighbors of degree 3).

Proof. We observe that 2m
n = 3n3+2n2

n3+n2
=

3
n3
n2

+2
n3
n2

+1
= 3 − 1

n3
n2

+1
is an increasing

function of n3

n2
. Clearly, S(v) ≥ 9 for every neighbor of degree 3. We prove here

the case 4. The proves of the other cases are similar and can be found in [11].
4. Suppose that for all vertices v ∈ V , SS(v) ≤L (11, 10, 10, 7). Then there is

no path consisting only of vertices of degree 3 containing more than 3 vertices.
Let a1, a2 and a3 be the number of all maximal paths consisting only of vertices of
degree 3 containing exactly 1, 2 and 3 vertices, respectively. Then n3 = a1+2a2+

3a3 and n2 =
∑

v:d(v)=3

n2(v) ≥ 3
2a1 + 2a2 +

5
2a3. We have n2

n3
≥

3
2a1+2a2+

5
2a3

a1+2a2+3a3
≥

5
6a1+

5
3a2+

5
2a3

a1+2a2+3a3
= 5

6 . Finally we get 2m
n = 3− 1

n3
n2

+1
≤ 3− 1

6
5+1

= 28
11 .

It can be shown that the asymptotic behavior of the running time of the
algorithm MISCount is determined by the calls of the procedure Branching. As
in [3], we define a measure of a connected graph G which depends on n(G)
and m(G) only, i.e μ(G) = μ′(n(G),m(G)). For a disconnected graph G let
μ(G) =

∑
μ(C)

C:C is a component of G

.

The function μ′(n,m) is a piecewise linear function defined as follows. We
partition the interval (0, 3] into subintervals (ki, ki+1] for i = 0, . . . , 8 using as kis

Counting Maximal Independent Sets in Subcubic Graphs 335

the density values appearing in Lemma 4 (see Table 1 for the values of the kis).
We define μ′(n,m) = μi(n,m) = ain+ bim, if 2m

n ∈ (ki; ki+1] and μ′(n, 0) = 0.

We observe that 2m(G)
n(G) ≤ 3, for graphs G whose vertices have degrees at most

3, so the measure μ has been defined for all such graphs. The coefficients ai, bi
(whose approximate values are given in Table 1) are chosen in such a way that
μ1(n(G),m(G)) = n3(G) for graphs with δ(G) ≥ 2, the function μ′ is continuous
(i.e. μi−1(n,m) = μi(n,m) when 2m

n = ki, for i = 1, . . . , 8) and optimal in the
sense that the largest of the branching numbers of graphs computed using these
values of ai and bi is as small as possible. The optimality is achieved when the
largest branching numbers are equal in every density interval (ki; ki+1].

For convenience we introduce some auxiliary numbers χi, for i = 0, . . . , 8.
The approximate values of ai, bi, ki, χi are given in the table. We assume that

i ki ki+1 ai bi χi O∗(τχin
0)

0 0 2 0 0 0 O∗(1)
1 2 2.25 −2 2 0.25 O∗(1.090508n)
2 2.25 2 2

7
−1.667718 1.704638 0.28044 O∗(1.102073n)

3 2 2
7

2 1
3
−1.37003 1.444162 0.314826 O∗(1.115285n)

4 2 1
3

2 6
11
−1.21159 1.308356 0.45359 O∗(1.170232n)

5 2 6
11

2 2
3
−0.947936 1.1012 0.52033 O∗(1.197616n)

6 2 2
3

2.8 −0.750862 0.953394 0.58389 O∗(1.22429n)
7 2.8 2 14

17
−0.58457 0.834614 0.593708 O∗(1.228463n)

8 2 14
17

3 −0.465968 0.750604 0.659938 O∗(1.256986n)

the numbers ai, bi, χi satisfy the following conditions:

a0 = b0 = χ0 = 0 (2)

χi = χi−1 +
bi
2
(ki+1 − ki), for i = 1, . . . , 8, (3)

ai = χi−1 −
kibi
2

, for i = 1, . . . , 8, (4)

μi(n,m) = ain+ bim = χi−1n+ (m− kin

2
)bi, for i = 1, . . . , 8. (5)

Using (2)-(5) and the fact that b1 ≥ b2 ≥ . . . ≥ b7 one can easily show that
the function μ′(n,m) has the following properties:

(P1) μ′(n,m) is continuous.
(P2) μ′(n,m) is concave, i.e. μ′(n,m) ≤ μi(n,m), for m ≥ n and i = 1 . . . , 8.
(P3) If 2m

n ∈ (ki; ki+1], then 0 ≤ μi(n,m) ≤ χin, for i = 0 . . . , 8.
By an exhaustive case analysis we prove that the largest branching number

defined for the algorithm MISCount and the measure μ defined in this section
is τ0 = τ(4, 4, 4, 4) =

√
2 (see [11] for details).

Let C be a component of a graph G and let j = 0, . . . , 8 be such that
2m(C)
n(C) ∈ (kj , kj+1]. Then, by properties (P2) and (P3), μ(C) = μ′(n(C),m(C))

336 K. Junosza-Szaniawski and M. Tuczyński

≤ μj(n(C),m(C)) ≤ χjn(C) ≤ χ8n(C) so, consequently, μ(G) ≤ χ8n(G). By a
remark at start of this section, the running time of the algorithm MISCount is

bounded by O∗(τ
μ(G)
0) = O∗(

√
2
χ8n(G)

). This way we obtain the following result.

Theorem 5. The algorithm MISCount runs in time O∗(1.256986n).

It is easy to observe that our algorithm requires a polynomial amount of space.

References

1. Alber, J., Niedermeier, R.: Improved Tree Decomposition Based Algorithms for
Domination-like Problems. In: Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286,
pp. 613–628. Springer, Heidelberg (2002)

2. Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion-exclusion.
SIAM J. Comput. 39(2), 546–563 (2009)

3. Dahllöf, V., Jonsson, P., Wahlström, M.: Couning models for 2SAT and 3SAT
formulae. Theor. Comput. Sci. 332, 265–291 (2005)

4. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Springer, Heidelberg
(2010)

5. Fomin, F.V., Hoie, K.: Pathwidth of cubic graphs and exact algorithms. Inf. Pro-
cess. Lett. 97(5), 191–196 (2006)

6. Fomin, F.V., Gaspers, S., Saurabh, S., Stepanov, A.A.: On Two Techniques of
Combining Branching and Treewidth. Algorithmica 54(2), 181–207 (2009)

7. Fürer, M., Kasiviswanathan, S.P.: Algorithms for Counting 2-Sat Solutions and
Colorings with Applications. In: Kao, M.-Y., Li, X.-Y. (eds.) AAIM 2007. LNCS,
vol. 4508, pp. 47–57. Springer, Heidelberg (2007)

8. Gaspers, S., Kratsch, D., Liedloff, M.: On Independent Sets and Bicliques in
Graphs. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG
2008. LNCS, vol. 5344, pp. 171–182. Springer, Heidelberg (2008)

9. Greenhill, C.: The complexity of counting colourings and independent sets in sparse
graphs and hypergraphs. Comput. Complex 9, 52–73 (2000)

10. Jou, M.J., Chang, G.J.: Algorithmic aspects of counting independent sets. Ars.
Comb. 65, 265–277 (2002)

11. Junosza-Szaniawski, K., Tuczyński, M.: Counting maximal independent sets in
subcubic graphs, Tech Rep., www.mini.pw.edu.pl/~szaniaws

12. Kullmann, O.: New methods for 3-SAT decision and worst-case analysis. Theor.
Comput. Sci. 223(1-2), 1–72 (1999)

13. Kutzkov, K.: New upper bound for the #3-SAT problem. Inform. Process.
Lett. 105, 1–5 (2007)

14. Lonc, Z., Truszczynski, M.: Computing minimal models, stable models and answer
sets. Theory and Practice of Logic Prog. 6(4), 395–449 (2006)

15. Vadhan, S.P.: The Complexity of Counting in Sparse, Regular, and Planar Graphs.
SIAM J. on Comput. 31, 398–427 (1997)

16. Wahlström, M.: A Tighter Bound for Counting Max-Weight Solutions to 2SAT
Instances. In: Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018,
pp. 202–213. Springer, Heidelberg (2008)

www.mini.pw.edu.pl/~szaniaws

Iterated Hairpin Completions

of Non-crossing Words�

Lila Kari1, Steffen Kopecki1,2, and Shinnosuke Seki3

1 Department of Computer Science
University of Western Ontario, London

lila@csd.uwo.ca
2 Institute for Formal Methods in Computer Science

University of Stuttgart
kopecki@fmi.uni-stuttgart.de

3 Department of Systems Biosciences for Drug Discovery
Graduate School of Pharmaceutical Sciences, Kyoto University

sseki@pharm.kyoto-u.ac.jp

Abstract. Iterated hairpin completion is an operation on formal lan-
guages that is inspired by the hairpin formation in DNA biochemistry.
Iterated hairpin completion of a word (or more precisely a singleton lan-
guage) is always a context-sensitive language and for some words it is
known to be non-context-free. However, it is unknown whether regular-
ity of iterated hairpin completion of a given word is decidable. Also the
question whether iterated hairpin completion of a word can be context-
free but not regular was asked in literature. In this paper we investigate
iterated hairpin completions of non-crossing words and, within this set-
ting, we are able to answer both questions. For non-crossing words we
prove that the regularity of iterated hairpin completions is decidable and
that if iterated hairpin completion of a non-crossing word is not regular,
then it is not context-free either.

1 Introduction

On an abstract level, a DNA single strand can be viewed as a word over the four-
letter alphabet {A,C,G,T} where the letters represent the nucleobases adenine,
cytosine, guanine, and thymine, respectively. The Watson-Crick complement of
A is T and the complement of C is G. Two complementary single strands of
opposite orientation can bond to each other and form a DNA double strand.
Throughout the paper, we use the bar-notation for complementary strands of
opposite orientation.

In the same manner, a single strand can bond to itself if two of its substrands
are complementary and do not overlap with each other. Such an intramolecular

� This research was supported by the Natural Sciences and Engineering Research
Council of Canada Discovery Grant R2824A01 and Canada Research Chair Award to
L.K., and by the Funding Program for Next Generation World-Leading Researchers
(NEXT Program) to Yasushi Okuno, the current supervisor of S. S.

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 337–348, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

338 L. Kari, S. Kopecki, and S. Seki

base pairing is called a hairpin. We are especially interested in hairpins of single
strands of the form σ = γαβα. Here, the substrand α can bond to the substrand
α. Then, by extension, a new single strand can be synthesized which we call a
hairpin completion of σ, see Figure 1. In this situation we call the substrands
that initiate the hairpin completion, α and α, primers.

γ
α β

α

γ
α

β

α
γ

γ
α β

α γ

annealing denaturation

extension

Fig. 1. Hairpin completion of a DNA single strand

In DNA computing hairpins and hairpin completions are often undesired by-
products. Therefore, sets of strands have been analyzed and designed that are
unlikely to form hairpins or lead to other undesireable hybridization, see [1, 2, 7,
8, 10, 19] and the references within.

However, there are DNA computational models that rely on hairpins, e. g.,
DNA RAM [9, 21, 22] and Whiplash PCR [5, 20, 23]. For the Whiplash PCR
consider a single strand just like in Figure 1, but where the length of extension
is controlled by stopper sequences. Repeating this operation, DNA can be used
to solve combinatorial problems like the Hamiltonian path problem.

Inspired by hairpins in biocomputing, the hairpin completion of a formal lan-
guage has been introduced by Cheptea, Mart́ın-Vide, and Mitrana in [3]. In
several papers hairpin completion and its iterated variant have been investi-
gated, see [4, 13–18]. In this paper we consider iterated hairpin completions of
singletons, that is, informally speaking, iterated hairpin completions of words.
The class of iterated hairpin completions of singletons is denoted by HCS. It is
known that every language in HCS is decidable in NL (non-deterministic, loga-
rithmic space) as NL is closed under iterated hairpin completion [3]; hence, HCS
is a proper subclass of the context-sensitive languages. It is also known that HCS
contains regular as well as non-context-free languages [13]. In the latter paper,
two open problems have been stated:

1. Is it decidable whether the iterated hairpin completion of a singleton is
regular?

2. Does a singleton exist whose iterated hairpin completion is context-free but
not regular?

We solve both questions for non-crossing words (or rather, singletons containing
a non-crossing word). A word w is said to be non-crossing if, for a given primer α,

Iterated Hairpin Completions of Non-crossing Words 339

the right-most occurrence of the factor α in w precedes the left-most occurrence
of the factor α in w, see Section 3. We provide a necessary and sufficient con-
dition for regularity of iterated hairpin completion of a given non-crossing word
(Theorem 2 and Corollary 4) and, since this condition is decidable, we answer the
first question positively (Corollary 5). Furthermore, we show that iterated hair-
pin completion of a non-crossing word is either regular or it is not context-free
(Corollary 6). Thus, we give a negative answer to the second question.

This paper is the continuation of the studies in [11]. Due to the page limitation
some proofs have been omitted. The missing proofs can be found in the arXiv
version [12].

2 Preliminaries

We assume the reader to be familiar with the fundamental concepts of language
theory, see [6].

Let Σ be an alphabet, Σ∗ be the set of all words over Σ, and for an integer
k ≥ 0, Σk be the set of all words of length k over Σ. The word of length 0 is
called the empty word, denoted by ε, and we let Σ+ = Σ∗ \ {ε}. A subset of Σ∗

is called a language over Σ. For a word w ∈ Σ∗, we employ the notation w when
we mean the word as well as the singleton language {w} unless confusion arises.

We equip Σ with a function : Σ → Σ satisfying ∀a ∈ Σ, a = a; such a
function is called an involution. This involution is naturally extended to words
as: for a1, . . . , an ∈ Σ, a1a2 · · · an = an · · · a2a1. For a word w ∈ Σ∗, we call w
the complement of w, being inspired by this application. A word w ∈ Σ∗ is called
a pseudo-palindrome if w = w. For a language L ⊆ Σ∗, we let L = {w | w ∈ L}.

For words u,w ∈ Σ∗, if w = xuy holds for some words x, y ∈ Σ∗, then u is
called a factor of w; a factor that is distinct from w is said to be proper. If the
equation holds with x = ε (y = ε), then the factor u is especially called a prefix
(resp. a suffix) of w. The prefix relation can be regarded as a partial order ≤p

over Σ∗ whereas the proper prefix relation can be regarded as a strict order <p

over Σ∗; u ≤p w means that u is a prefix of w and u <p w means that u is a
proper prefix of w. Analogously, by w ≥s u (or w >s u) we mean that u is a
suffix (resp. proper suffix) of w. Note that u ≤p w if and only if w ≥s u. For a
word w ∈ Σ∗ and a language L ⊆ Σ∗, a factor u of w is minimal with respect to
L if u ∈ L and none of the proper factors of u is in L.

2.1 Hairpin Completion

Let k be a constant that is assumed to be the length of a primer and let α ∈ Σk

be a primer. If a given word w ∈ Σ∗ can be written as γαβα for some γ, β ∈
Σ∗, then its right hairpin completion (with respect to α) results in the word
γαβαγ. By w →RHα z, we mean that z can be obtained from w by right hairpin
completion (with respect to α). The left hairpin completion is defined analogously
as an operation to derive γαβαγ from αβαγ, and the relation→LHα

is naturally
introduced. We write w →Hα z if w →RHα z or w →LHα z. By →∗

LHα
, →∗

RHα
,

340 L. Kari, S. Kopecki, and S. Seki

and →∗
Hα

we denote the reflexive and transitive closure of →LHα
, →RHα

, and
→Hα , respectively. Whenever α is clear from the context, we omit the subscript
α and write →RH, →LH, or →H, respectively.

For a language L ⊆ Σ∗, we define the set of words obtained by hairpin com-
pletion from L, and the set of words obtained by iterated hairpin completion
from L, respectively, as follows:

Hα(L) = {z | ∃w ∈ L,w→Hα z} , H∗
α(L) =

{
z
∣∣ ∃w ∈ L,w→∗

Hα
z
}
.

In this paper the hairpin completion is always considered with respect to a fixed
primer α. However, in other literature the hairpin completion is often considered
with respect to the length k of primers instead of a specific primer α and defined
as

Hk(L) =
⋃

α∈Σk

Hα(L), H∗
k(L) =

⋃
i≥0

Hi
k(L).

3 Non-crossing Words and Their Properties

In this section, we describe some structural properties of non-crossing words and
their iterated hairpin completions and we introduce the notation of α-prefixes,
α-suffixes, and α-indexes.

For a word α, we say that w is non-α-crossing if the rightmost occurrence of α
precedes the leftmost occurrence of α on w (yet these factors may overlap). If α is
understood from the context, we simply say that w is non-crossing. Otherwise,
the word is α-crossing or crossing. The definition of a word w being non-α-
crossing becomes useful in our work only if w ∈ αΣ∗ or w ∈ Σ∗α, and therefore,
α and α are primers; actually, we will assume both. The main purpose of this
paper is to prove a necessary and sufficient condition for the regularity of the
iterated hairpin completion H∗

α(w), where w ∈ αΣ∗ ∩Σ∗α is non-α-crossing.
Note that if w ∈ αΣ∗∩Σ∗α and α = α, then either w = α and H∗

α(w) = {w}
or w can be considered crossing. Thus, whenever we consider non-crossing words,
we assume that α �= α.

Any word obtained from a non-crossing word by hairpin completion is non-
crossing. Though being easily confirmed, this closure property forms the foun-
dation of our discussions in this paper.

Proposition 1. For a non-crossing word w ∈ αΣ∗∩Σ∗α, every word in H∗
α(w)

is non-crossing.

Let us provide another characterization for a word w ∈ αΣ∗ ∩ Σ∗α to be non-
crossing. With Proposition 1, this characterization will bring a unique factor-
ization of any word z in H∗

α(w) as z = xwy for some words x, y (Corollary 1).

Proposition 2. A word w ∈ αΣ∗∩Σ∗α is non-crossing if and only if it contains
exactly one factor x which is minimal with respect to αΣ∗ ∩Σ∗α.

Corollary 1. Let w ∈ αΣ∗ ∩Σ∗α be non-crossing. The factor w occurs exactly
once in every word from H∗

α(w).

Iterated Hairpin Completions of Non-crossing Words 341

3.1 α-Prefixes and α-Suffixes

Let u, v, w be words. We call u an α-prefix of w if uα ≤p w. This means, if α
is a suffix of w, then the suffix can bond to the factor α which directly follows
the prefix u (unless they overlap with each other) and wu can be obtained from
w by right hairpin completion. By Pα(w), we denote the set of all α-prefixes of
w. Note that if x, y ∈ Pα(w) and |x| ≤ |y|, then xα ≤p yα and x ∈ Pα(yα).
Symmetrically, we call v an α-suffix if w ≥s αv and Sα(w) is the set of all
α-suffixes of w. If α ≤p w and |w| ≥ |v| + 2k, then w →LH vw. Note that

Sα(w) = Pα(w). Therefore, all results we derive for α-prefixes also hold for the
complements of α-suffixes.

When m = |Pα(w)| and n = |Sα(w)| for a word w, then w is called (m,n)-
α-word (or simply (m,n)-word). Throughout the paper, it will be convenient
to let Pα(w) = {u0, . . . , um−1} and Sα(w) = {v0, . . . , vn−1} where the words
are ordered such that u0 <p · · · <p um−1 and vn−1 >s · · · >s v0. Note that

Pα(uiα) = {u0, . . . , ui} for 0 ≤ i < m and Sα(αvj) = {v0, . . . , vj} for 0 ≤ j < n.
Let us begin with a basic observation.

Lemma 1. For a word w ∈ αΣ∗ ∩Σ∗α, the following statements hold:

1. For every x ∈ Pα(w) ∪ Sα(w), we have α ≤p xα.

2. For every x1, . . . , x� ∈ Pα(w) ∪ Sα(w), we have α ≤p x� · · ·x1α.

Consider w ∈ αΣ∗ ∩ Σ∗α. Note that this means u0 = v0 = ε. It is easy to see
that every word z which belongs to Hα(w) has a factorization z = wu for some
u ∈ Pα(w) or z = vw for some v ∈ Sα(w). By the previous lemma we see that
z ∈ αΣ∗ ∩Σ∗α and by induction H∗

α(w) ⊆ αΣ∗ ∩Σ∗α.
The next lemma tells if w ∈ αΣ∗ ∩ Σ∗α is a non-crossing (m,n)-word with

n ≥ 2, then the suffix α does not overlap with any of the factors α and, therefore,
w →RH wu for all u ∈ Pα(w).

Lemma 2. Let w ∈ αΣ∗ ∩Σ∗α be a non-crossing (m,n)-word with n ≥ 2 and
let um−1 be the longest α-prefix in Pα(w). Then |um−1|+ 2k ≤ |w| holds.
Since the analogous argument is valid for left hairpin completion, Lemma 2 leads
us to one important corollary on non-crossing (m,n)-words for m,n ≥ 2.

Corollary 2. Let w ∈ αΣ∗∩Σ∗α be a non-crossing (m,n)-word with m,n ≥ 2.

Hα(w) = {w} ∪ wPα(w) ∪ Sα(w)w.

Next, we concern the case when there is a prefix u ∈ Pα(w) and a suffix v ∈ Sα(w)
such that v ∈ Pα(uα)

∗ and u ∈ Sα(αv)
∗.

Lemma 3. Let w ∈ αΣ∗ ∩ Σ∗α be an (m,n)-word. For u ∈ Pα(w) and v ∈
Sα(w),

1. if v ∈ Pα(uα)
∗, then Sα(αv) ⊆ Pα(uα)

∗.

2. if v ∈ Pα(uα)
∗ and u ∈ Sα(αv)

∗, then Pα(uα)
∗ = Sα(αv)

∗.

Lemma 7 and Corollary 3 in Section 4 will describe the consequences for the
iterated hairpin completion of a non-crossing word w, if we find such a situation.

342 L. Kari, S. Kopecki, and S. Seki

3.2 The α-Index

The α-index of a word x is the number of occurrences of the factor α in the word
xα except for the suffix. Formally, we define a function indα : Σ

∗ → N as

indα(x) = |Pα(xα)| − 1.

Recall that Pα(w) = {u0, . . . , um−1} such that u0 <p · · · <p um−1. Note that,
by this ordering, for all 0 ≤ i < m we have indα(ui) = i and if x ∈ Pα(w), then
x = uindα(x). Symmetrically, if x ∈ Sα(w), then x = vindα(x).

Also note that for words x, y with indα(x) > indα(y) the word x cannot be a
factor of y as the positions of the factors α cannot match. Later we will consider
the α-indices of words from αΣ∗α−1 (Note that x ∈ αΣ∗α−1 if and only if
α ≤p xα). If x ∈ αΣ∗α−1 and y ∈ Σ∗, then indα(yx) = indα(y) + indα(x).
These observations lead to the following properties.

Lemma 4. Let Pα(w) = {u0, . . . , um−1} such that u0 <p · · · <p um−1, let
x ∈ αΣ∗α−1, and let 0 ≤ j < m. If x is a suffix of uj, then uj = uj−indα(x)x.
In particular, if w ∈ αΣ∗ and uj ≥s ui for 0 ≤ i ≤ j < m, then uj = uj−iui.

Lemma 5. Let Pα(w) = {u0, . . . , um−1} such that u0 <p · · · <p um−1, let
1 ≤ i < m, and let x be a word with indα(x) ≤ i.

x ∈ {u1, . . . , ui}∗ ⇐⇒ x ∈
{
u1, . . . , uindα(x)

}∗
.

4 Iterated Hairpin Completion of Non-crossing Words

Now we are prepared to prove a necessary and sufficient condition for the reg-
ularity of H∗

α(w), where w ∈ αΣ∗ ∩ Σ∗α is a non-crossing (m,n)-word with
Pα(w) = {u0, . . . , um−1} and Sα(w) = {v0, . . . , vn−1} which are ordered as in
the previous section. (Keep in mind that u0 = v0 = ε.) By a result from [11] it
is enough to consider the case where m,n ≥ 2 and in this case, by Corollary 2,

Hα(w) = {w} ∪ w {u1, . . . , um−1} ∪ {v1, . . . , vn−1}w.

Theorem 1 (See [11]). If w ∈ αΣ∗ ∩Σ∗α is a non-crossing (m,n)-word with
m = 1 or n = 1, then H∗

α(w) is regular.

The next two lemmas lead to a first sufficient condition for the regularity of
H∗

α(w), see Corollary 3.

Lemma 6. For non-crossing w ∈ αΣ∗ ∩Σ∗α,

H∗
α(w) ⊆

(
Pα(w) ∪ Sα(w)

)∗
w

(
Pα(w) ∪ Sα(w)

)∗
.

Lemma 7. Let w ∈ αΣ∗ ∩ Σ∗α be non-crossing. If for some u ∈ Pα(w) and
v ∈ Sα(w) we have v ∈ Pα(uα)

∗ and u ∈ Sα(αv)
∗, then

Pα(uα)
∗wPα(uα)

∗ = Sα(αv)
∗wSα(αv)

∗ ⊆ H∗
α(w).

Iterated Hairpin Completions of Non-crossing Words 343

Suppose that the longest α-prefix um−1 belongs to Sα(w)
∗ and the longest α-

suffix vn−1 belongs to Pα(w)
∗. By Lemma 3, we see that Pα(w)

∗ = Sα(w)
∗ and,

by Lemmas 6 and 7, we infer H∗
α(w) = Pα(w)

∗wPα(w)
∗. (Note that Pα(w) =

Pα(um−1α).)

Corollary 3. Let w ∈ αΣ∗ ∩ Σ∗α be non-crossing, let um−1 be the longest α-
prefix of w, and let vn−1 be the longest α-suffix of w. If um−1 ∈ Sα(w)

∗ and
vn−1 ∈ Pα(w)

∗, then H∗
α(w) is regular.

Our next result, Theorem 2, shows that if we can state a necessary and sufficient
condition for the special case where u1 = v1, then we can extend this condition
to the general case. We need a preliminary lemma in order to prove Theorem 2.

Lemma 8. Let w ∈ αΣ∗ ∩ Σ∗α be a non-crossing (m,n)-word with m,n ≥ 2,
let Pα(w) = {u0, . . . , um−1} such that u0 <p · · · <p um−1, and let Sα(w) =
{v0, . . . , vv−1} such that vn−1 >s · · · >s v0.

1. If u1 = v1, then H∗
α(w) ⊆ u1αΣ

∗ ∩Σ∗αu1.
2. If u1 �= v1, then H∗

α(wui) ∩H∗
α(vjw) = ∅ for all 1 ≤ i < m and 1 ≤ j < n.

3. Let 1 ≤ i < j < m. If uj >s ui, then H∗
α(wuj) ⊆ H∗

α(wui); otherwise,
H∗

α(wui) ∩H∗
α(wuj) = ∅.

Let us define the index sets

I =
{
i
∣∣ 1 ≤ i < m ∧ ui /∈ {u1, . . . , ui−1}∗

}
,

J =
{
j
∣∣ 1 ≤ j < n ∧ vj /∈ {v1, . . . , vj−1}∗

}
.

Thus, for all i ∈ I, no proper suffix of ui belongs to Pα(w) and for all j ∈ J , no
proper prefix of vj belongs to Sα(w), see Lemma 4. By the previous lemma, if
v1 �= u1, then H∗

α(w) is the disjoint union

H∗
α(w) = {w} ∪

⋃
i∈I

H∗
α(wui) ∪

⋃
j∈J

H∗
α(vjw).

Note that for every word wui with i ∈ I or vjw with j ∈ J , the shortest α-
prefix is complementary to the shortest α-suffix. This observation leads us to an
important theorem that allows us to reduce the general case to the special case
where u1 = v1.

Theorem 2. Let w ∈ αΣ∗ ∩ Σ∗α be a non-crossing (m,n)-word with m,n ≥
2, let Pα(w) = {u0, . . . , um−1} such that u0 <p · · · <p um−1, let Sα(w) =
{v0, . . . , vv−1} such that vn−1 >s · · · >s v0, and define I, J as above.

For u1 �= v1, H∗
α(w) is regular if and only if H∗

α(wui) is regular for all i ∈ I
and H∗

α(vjw) is regular for all j ∈ J .

Theorem 2 justifies the assumption u1 = v1 that we make from now on. The
next two theorems prove a necessary and sufficient condition for the regularity
of H∗

α(w). We start by proving that the condition is sufficient.

344 L. Kari, S. Kopecki, and S. Seki

Theorem 3. Let w ∈ αΣ∗ ∩Σ∗α be a non-crossing (m,n)-word with m,n ≥ 2,
let Pα(w) = {u0, . . . , um−1} such that u0 <p · · · <p um−1, and let Sα(w) =
{v0, . . . , vv−1} such that vn−1 >s · · · >s v0.
H∗

α(w) is regular if both of the following conditions hold:

1. for all 1 ≤ s < m, either us ∈ Sα(w)
∗ or Sα(w)

∗ ⊆ {u1, . . . , us}∗, and
2. for all 1 ≤ t < n, either vt ∈ Pα(w)

∗ or Pα(w) ⊆ {v1, . . . , vt}∗t.

Proof. Assume that both the conditions 1 and 2 are satisfied. We may assume
that there is 1 ≤ s < m such that us �∈ Sα(w)

∗ or there is 1 ≤ t < n such that
vt �∈ Pα(w)

∗; otherwise Corollary 3 yields the regularity. In addition, we cannot
assume the existence of both such s and t as us �∈ Sα(w)

∗ implies Sα(w)
∗ ⊆

{u1, . . . , us}∗ due to the condition 1. The symmetry in the roles of conditions
1 and 2 enables us to assume that such s exists without loss of generality, and
moreover, we can assume that for all 1 ≤ i < s, ui ∈ Sα(w)

∗ and for all s ≤ i <
m, ui �∈ Sα(w)

∗ by Lemma 3.
Let R′ = Sα(w)

∗w{u1, . . . , us−1}∗ and for s ≤ i < m, let

Ri = {u1, . . . , ui}∗w{u1, . . . , ui}∗ui{u1, . . . , ui}∗.

Then we let R =
⋃

s≤i<m Ri ∪R′ and we claim H∗
α(w) = R.

Firstly, we prove that R ⊆ H∗
α(w). Since m,n ≥ 2, Corollary 2 can be used

to see that w{u1, . . . , ui}∗ui ⊆ H∗
α(w) for s ≤ i < m, and by Lemma 7,

Ri = {u1, . . . , ui}∗w{u1, . . . , ui}∗ui{u1, . . . , ui}∗ ⊆ H∗
α(w).

Consider z ∈ R′. We may factorize z = xi · · ·x1wy1 · · · yj where x1, . . . , xi ∈
Sα(w) and y1, . . . , yj ∈ {u1, . . . , us−1}. Let 1 ≤ t < n be minimal such that
vt /∈ {u1, . . . , us−1}∗. As vt ∈ {u1, . . . , us}∗, we see that us is a factor of vt
and t ≥ s. By Lemma 5, us−1 ∈ {v1, . . . , vt−1}∗ and, by the minimality of t,
vt−1 ∈ {u1, . . . , us−1}∗. If indα(x�) < t for all 1 ≤ � ≤ i, then, due to Lemma 7,

z ∈ {v1, . . . , vt−1}∗ w {v1, . . . , vt−1}∗ ⊆ H∗
α(w).

Otherwise, let 1 ≤ � ≤ i be maximal such that indα(x�) ≥ t and let w′ =
x� · · ·x1w. Observe that w→∗

LH w′ and, again by Lemma 7,

z ∈ {v1, . . . , vt−1}∗ w′ {v1, . . . , vt−1}∗ ⊆ H∗
α(w

′) ⊆ H∗
α(w).

Thus, R ⊆ H∗
α(w).

Now we prove the opposite inclusion by induction on the length of a derivation
to generate a word in H∗

α(w) from w. Clearly, w ∈ R (base case). As an induction
hypothesis, we assume that any word which can be derived fromw by �−1 hairpin
completions is in R, and consider z ∈ H∗

α(w) whose shortest derivation from w
by hairpin completions is of length �. Let w′ be the word that precedes z on
this shortest derivation, that is, w′ ∈ H�−1

α (w); hence, w′ ∈ R by the induction
hypothesis. Therefore, w′ must be either in Ri for some s ≤ i < m or in R′. Let us
consider the first case first. If z is obtained from w′ by right hairpin completion,

Iterated Hairpin Completions of Non-crossing Words 345

then the complement of the extended part is in {u1, . . . , ui}∗{ε, u1, . . . , um−1},
and hence, z ∈ Rj for some i ≤ j < m. Otherwise (w′ →LH z), z ∈ Ri because

Sα(w′) ⊆ {u1, . . . , us}∗ ⊆ {u1, . . . , ui}∗. Next we consider the case when w′ ∈
R′. Since {u1, . . . , us−1}∗ ⊆ Sα(w)

∗ it is easy to see that if w′ →LH z, then
z ∈ R′ as well. Otherwise (w′ →RH z), z ∈ w′ {ε, u1, . . . , um−1}Sα(w)∗ and, as
Sα(w)

∗ ⊆ {u1, . . . , us}∗, if z /∈ R′, this word is covered by some language Ri

where s ≤ i < m.
Consequently, H∗

α(w) = R is regular. !"

Theorem 4. Let w ∈ αΣ∗ ∩ Σ∗α be a non-crossing (m,n)-word with m,n ≥
2, let Pα(w) = {u0, . . . , um−1} such that u0 <p · · · <p um−1, let Sα(w) =
{v0, . . . , vv−1} such that vn−1 >s · · · >s v0, and let u1 = v1.

1. H∗
α(w) is not regular if there are 1 ≤ s < m and 1 ≤ t < n such that

us /∈ {v1, . . . , vn−1}∗ and vt /∈ {u1, . . . , us}∗.
2. H∗

α(w) is not regular if there are 1 ≤ s < m and 1 ≤ t < n such that
us /∈ {v1, . . . , vt}∗ and vt /∈ {u1, . . . , um−1}∗.

Proof. Let s and t be the minimal indices that satisfy the conditions in state-
ment 1. Note that s, t ≥ 2 and us, vt /∈ u+

1 as u1 = v1. We will first argue, why
the assumption s ≤ t is no restriction.

Let us consider the casewhere the conditions in statement 1 are satisfied, but the
conditions in statement 2 are not satisfied. It is easy to see that us /∈ {v1, . . . , vt}∗
is satisfied anyway. By contradiction assume s > t. Due to Lemma 5,

vt /∈ {u1, . . . , us}∗ ⇐⇒ vt /∈ {u1, . . . , ut}∗

⇐⇒ vt /∈ {u1, . . . , um−1}∗ .

This satisfies the conditions of statement 2 and yields the contradiction. We
conclude s ≤ t.

Now, let us consider the case where the conditions of both statements are
satisfied. Let s and t′ be the minimal indices such that us /∈ {v1, . . . , vn−1}∗
and vt′ /∈ {u1, . . . , um−1}∗. We may assume s ≤ t′, by symmetry. Note that
vt′−1 ∈ {u1, . . . , um−1}∗, by the minimality of t′. If vt′−1 ∈ {u1, . . . , vs}∗, then
we see that s and t = t′ are the minimal indices that satisfy the conditions in
statement 1 and s ≤ t. Otherwise, there is a factorization vt′−1 = xuiy where
x ∈ {u1, . . . , us}∗, s < i < m, and y ∈ {u1, . . . , um−1}∗. Note that s and
t = indα(x) + s+ 1 (hence vt = xus+1) are the minimal indices that satisfy the
conditions of statement 1 and, obviously, s ≤ t.

Observe that the minimality of s yields u1, . . . , us−1 ∈ {v1, . . . , vn−1}∗. If
x ∈ {u1, . . . , us−1, v1, . . . , vn−1} was a suffix of us, then us = us−indα(x)x ∈
{v1, . . . , vn−1}∗, due to Lemma 4. Hence, none of these words is a suffix of us.
Symmetrically, none of the words u1, . . . , us, v1, . . . , vt−1 is a suffix of vt. This
observation will become crucial later.

We will now define a regular language R and show that the intersection
H∗

α(w) ∩R is not regular and, therefore, H∗
α(w) is not regular either. We let

R = usu
≥n
1 vtwu1

≥nus

346 L. Kari, S. Kopecki, and S. Seki

and we claim

H∗
α(w) ∩R =

{
usu

�
1vtwu1

�us

∣∣ � ≥ n
}
=: L,

which is obviously not regular. Note that for every � ≥ n

w →∗
RH wu1

� →RH wu1
�us →LH usu

�
1vtwu1

�us.

Hence, H∗
α(w) ∩R ⊇ L.

Let z = usu
�1
1 vtwu1

�2us for some �1, �2 ≥ n, which is in R. We assume z ∈
H∗

α(w) and prove that this assumption requires �1 = �2. Let z
′ be the right-most

word in the derivation w →∗
H z′ →∗

H z such that z′ = xwy for some words x, y

with u�1
1 vt ≥s x and y ≤p u1

�2 ; these conditions mean that x or y does not
overlap with the prefix us or the suffix us, respectively. By right-most we mean
that either z′ →LH x′z′ →∗

H z where x′x >s u�1
1 vt or z′ →RH z′y′ →∗

H z where
u1

�2 <p yy′; this means x′ or y′ overlaps with the prefix us or the suffix us,
respectively. Obviously, y ∈ u1

∗. Note that if x �= ε, then x cannot be a proper
suffix of vt; otherwise a word from u1 = v1, . . . , vt−1 would be a suffix of vt which
was excluded. Hence, x = ε or x ∈ u∗

1vt.
First consider the case z′ →LH x′z′ →∗

H z where x′x >s u�1
1 vt. We show that

this case cannot occur. Let u′ �= ε be the suffix of us such that u′u�1
1 vt = x′x. As

x′ ∈ u∗
1 {v1, . . . , vn−1} and u′α ≤p x′α, some word from u1 = v1, . . . , vn−1 would

be a suffix of us.
Now consider the case z′ →RH z′y′ →∗

H z where u1
�2 <p yy′. Again, let u′ �= ε

be the suffix of us such that u1
�2u′ = yy′. As u′α is a prefix of xum−1α and none

of the words v1, . . . , vt, u1, . . . , us−1 is a suffix of us, we see that u′ = us and
x = ε.

Thus, in order to generate z from w by iterated hairpin completion, the deriva-
tion process must be of the form

w→∗
RH wu1

�2us →∗
LH usu

�1
1 vtwu1

�2us = z.

Let x be a (newly chosen) word such that wu1
�2us →LH xwu1

�2us is the first
left hairpin completion in the derivation above. Therefore, xα is a prefix of
usu

�2
1 vn−1α and x is a suffix of usu

�1
1 vt. In particular, every suffix y of x with

indα(y) ≤ t is a suffix of vt. Recall that indα(us) = s ≤ t. If xα was a prefix of
usα, then some word from u1, . . . , us would be a suffix of vt which is impossible.
Verify that x ∈ usu

+
1 and x = usu

�2
1 vj with 1 ≤ j < t would also impose a

forbidden suffix for vt. Thus, we see that x = usu
�2
1 vj with t ≤ j < n. The

case j > t is not possible as it implies vtα <p vjα = uj−t
1 vtα and a word from

u1 = v1, . . . , vt−1 would be a suffix of vt. Therefore, x = usu
�2
1 vt and since x is

a suffix of usu
�1
1 vt and u1 is not a suffix of us we deduce usu

�2
1 vt = usu

�1
1 vt.

Consequentially, z ∈ H∗
α(w) if and only if �1 = �2. This completes the proof

of H∗
α(w) ∩R = L. !"

Iterated Hairpin Completions of Non-crossing Words 347

Combining Theorems 3 and 4, we conclude:

Corollary 4. Let w ∈ αΣ∗ ∩ Σ∗α be a non-crossing (m,n)-word with m,n ≥
2, let Pα(w) = {u0, . . . , um−1} such that u0 <p · · · <p um−1, let Sα(w) =
{v0, . . . , vv−1} such that vn−1 >s · · · >s v0, and let u1 = v1.
H∗

α(w) is regular if and only if

1. for all 1 ≤ s < m we have us ∈ Sα(w)
∗ or Sα(w) ⊆ {u1, . . . , us}∗ and

2. for all 1 ≤ t < n we have vt ∈ Pα(w)
∗ or Pα(w) ⊆ {v1, . . . , vt}∗.

Thus, we provided a necessary and sufficient condition for the regularity of a
non-crossing (m,n)-word. As one can easily observe, this condition is decidable.

Corollary 5. For a given non-α-crossing word w, it is decidable whether or not
its iterated hairpin completion, H∗

α(w), is regular.

Furthermore, we can derive from the proof of Theorem 4 that if the iterated
hairpin completion of w is not regular, then the intersection of H∗

α(w) with

R = usu
≥n
1 vtwu1

≥nus is not a regular language (for suitable s, t and in case
u1 = v1). More precisely, we obtained the context-free language

H∗
α(w) ∩R =

{
usu

�
1vtwu1

�us

∣∣ � ≥ n
}
.

Consider we intersect H∗
α(w) with R′ = (usu

≥n
1 vt)

2wu1
≥nus. Using the same

arguments as we did within the proof of Theorem 4, we can show that

H∗
α(w) ∩R′ =

{
usu

�
1vtusu

�
1vtwu1

�us

∣∣ � ≥ n
}
,

which is a non-context-free language. Using this idea we can proof that if H∗
α(w)

is not regular, it is not context-free either. The details of this proof are left for
the interested reader.

Corollary 6. Let w be a non-α-crossing word. If its iterated hairpin completion
H∗

α(w) is not regular, then H∗
α(w) is not context-free.

Final Remarks

We prove that regularity of iterated hairpin completion a given of non-crossing
word is decidable. The general case, including that of crossing words, remains
to be explored.

References

1. Adleman, L.M.: Molecular computation of solutions to combinatorial problems.
Science 266(5187), 1021–1024 (1994)

2. Arita, M., Kobayashi, S.: DNA sequence design using templates. New Generation
Computing 20, 263–277 (2002)

348 L. Kari, S. Kopecki, and S. Seki

3. Cheptea, D., Mart́ın-Vide, C., Mitrana, V.: A new operation on words suggested by
DNA biochemistry: Hairpin completion. Transgressive Computing, 216–228 (2006)

4. Diekert, V., Kopecki, S.: Complexity Results and the Growths of Hairpin Comple-
tions of Regular Languages (Extended Abstract). In: Domaratzki, M., Salomaa,
K. (eds.) CIAA 2010. LNCS, vol. 6482, pp. 105–114. Springer, Heidelberg (2011)

5. Hagiya, M., Arita, M., Kiga, D., Sakamoto, K., Yokoyama, S.: Towards parallel
evaluation and learning of boolean μ-formulas with molecules. In: Second Annual
Genetic Programming Conf., pp. 105–114 (1997)

6. Hopcroft, J.E., Ulman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley (1979)

7. Jonoska, N., Kephart, D., Mahalingam, K.: Generating DNA codewords. Congres-
sus Numerantium 156, 99–110 (2002)

8. Jonoska, N., Mahalingam, K.: Languages of DNA Based Code Words. In: Chen, J.,
Reif, J. (eds.) DNA 2003. LNCS, vol. 2943, pp. 61–73. Springer, Heidelberg (2004)

9. Kameda, A., Yamamoto, M., Ohuchi, A., Yaegashi, S., Hagiya, M.: Unravel four
hairpins! Natural Computing 7, 287–298 (2008)

10. Kari, L., Konstantinidis, S., Losseva, E., Sośık, P., Thierrin, G.: A formal lan-
guage analysis of DNA hairpin structures. Fundamenta Informaticae 71(4), 453–
475 (2006)

11. Kari, L., Kopecki, S., Seki, S.: On the Regularity of Iterated Hairpin Completion
of a Single Word. Fundamenta Informaticae 110(1-4), 201–215 (2011)

12. Kari, L., Kopecki, S., Seki, S.: Iterated Hairpin Completions of Non-crossing Words
in arXiv:1110.0760

13. Kopecki, S.: On iterated hairpin completion. Theoretical Computer Sci-
ence 412(29), 3629–3638 (2011)

14. Manea, F.: A series of algorithmic results related to the iterated hairpin completion.
Theor. Comput. Sci. 411(48), 4162–4178 (2010)

15. Manea, F., Mart́ın-Vide, C., Mitrana, V.: On some algorithmic problems regarding
the hairpin completion. Discrete Applied Mathematics 157(9), 2143–2152 (2009)

16. Manea, F., Mitrana, V.: Hairpin Completion Versus Hairpin Reduction. In: Cooper,
S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 532–541. Springer,
Heidelberg (2007)

17. Manea, F., Mitrana, V., Yokomori, T.: Two complementary operations inspired by
the DNA hairpin formation: Completion and reduction. Theor. Comput. Sci. 410(4-
5), 417–425 (2009)

18. Manea, F., Mitrana, V., Yokomori, T.: Some remarks on the hairpin completion.
Int. J. Found. Comput. Sci. 21(5), 859–872 (2010)

19. Păun, G., Rozenberg, G., Yokomori, T.: Hairpin languages. International Journal
of Foundations of Computer Science 12(6), 837–847 (2001)

20. Sakamoto, K., Kiga, D., Komiya, K., Gouzu, H., Yokoyama, S., Ikeda, S., Hagiya,
M.: State transitions by molecules (1998)

21. Takinoue, M., Suyama, A.: Molecular reactions for a molecular memory based on
hairpin DNA. Chem-Bio Informatics Journal 4, 93–100 (2004)

22. Takinoue, M., Suyama, A.: Hairpin-DNA memory using molecular addressing.
Small 2(11), 1244–1247 (2006)

23. Winfree, E.: Whiplash PCR for O(1) computing. pp. 175–188. University of Penn-
sylvania (1998)

On the Approximation Ratio of the

Path Matching Christofides Algorithm�

Sacha Krug

Department of Computer Science, ETH Zurich, Switzerland
sacha.krug@inf.ethz.ch

Abstract. The traveling salesman problem (TSP) is one of the most
fundamental optimization problems. We consider the β-metric traveling
salesman problem (Δβ-TSP), i.e., the TSP restricted to graphs satis-
fying the β-triangle inequality c({v, w}) ≤ β(c({v, u}) + c(u, w})), for
some cost function c and any three vertices u, v, w. The well-known
path matching Christofides algorithm (PMCA) guarantees an approx-
imation ratio of 3

2
β2 and is the best known algorithm for the Δβ-TSP,

for 1 ≤ β ≤ 2. We provide a complete analysis of the algorithm. First,
we correct an error in the original implementation that may produce an
invalid solution. Using a worst-case example, we then show that the algo-
rithm cannot guarantee a better approximation ratio. The example can
be reused for the PMCA variants for the Hamiltonian path problem with
zero and one prespecified endpoints. For two prespecified endpoints, we
cannot reuse the example, but we construct another worst-case example
to show the optimality of the analysis also in this case.

Keywords: approximation algorithms, traveling salesman problem,
Hamiltonian path problem

1 Introduction

The traveling salesman problem (TSP) is one of the most studied optimization
problems. In its most general form, it is not approximable by any polynomial.
Certain subsets of the TSP, however, allow for a constant-factor approximation.
One such subset is the metric TSP (Δ-TSP), i.e., the TSP restricted to input
graphs satisfying the triangle inequality. Christofides’ algorithm [6] provides a
3
2 -approximation for the Δ-TSP. A very natural idea is to try to apply this
algorithm to a wider set of input instances. This idea is captured by the concept
of stability of approximation [3,5,4,11] that provides a formalism to express the
changes of the approximation ratio of an algorithm when a different set of input
instances is considered.

A natural generalization of the metric TSP is to consider the β-metric TSP
(Δβ-TSP), i.e., the TSP restricted to graphs (V,E) satisfying the β-triangle in-
equality c({v, w}) ≤ β ·(c({v, u})+c({u,w})), for some cost function c : E → Q+

� This work was partially supported by SNF grant No. 200021-132510/1.

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 349–360, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

350 S. Krug

and any three vertices u, v, w. Böckenhauer et al. [4] showed that Christofides’ al-
gorithm, when applied to Δβ-TSP instances, for some β > 1, no longer provides
a constant approximation ratio of 3

2 , but an approximation ratio that depends
on the size of the input graph. Therefore, the authors devised the path matching
Christofides algorithm (PMCA) that provides an approximation ratio of 3

2β
2,

for any β ≥ 1. Other algorithms for the Δβ-TSP, for β ≥ 1, are due to An-
dreae [1] and Bender and Chekuri [2] and provide approximation ratios of β2+β
and 4β, respectively. Forlizzi et al. [8] combined the path matching Christofides
algorithm and Hoogeveen’s approximation algorithm for the Hamiltonian path
problem [10] to obtain an approximation algorithm for the β-metric Hamilto-
nian path problem with l ∈ {0, 1, 2} prespecified endpoints (PMCA-HPPl) that
provides an approximation ratio of 3

2β
2, for l = 0, 1, and of 5

3β
2, for l = 2.

In this paper, we show that the four PMCA variants cannot provide better
approximation ratios. In Section 2, we construct a TSP instance on which the
PMCA cannot achieve an approximation ratio of 3

2β
2 − ε, for any ε > 0. This

instance can also be used to establish tight lower bounds for the PMCA-HPP0

and the PMCA-HPP1. For the PMCA-HPP2, it is not possible to reuse this
example, as we shall see. We therefore construct another worst-case instance in
Section 3 to prove the optimality of the analysis also in this case.

We stick to the notation used in [4]. Formally, the β-metric traveling sales-
man problem (Δβ-TSP) is the following optimization problem. Given a complete
graph G with edge costs that satisfy the β-triangle inequality, find a cycle in G
that visits every vertex exactly once and has minimum overall cost. A path
matching for a vertex set V of even size is a set of |V |/2 edge-disjoint paths hav-
ing the vertices in V as its disjoint endpoints. Let p = (v1, v2, . . . , vk) be a path.
A vertex v is internal to p if v = vi, for some 1 < i < k. A bypass in p is an edge
{u, v} replacing a sub-path (u = vi, vi+1, . . . , vj = v), for 1 ≤ i < i+ 1 < j ≤ k.
Also, we say that the vertices vi+1, vi+2, . . . , vj−1 are bypassed. A conflict in a
set of paths is a vertex that occurs in more than one path. A conflict in an
Eulerian cycle is a vertex that is visited more than once.

2 The PMCA for the Traveling Salesman Problem

In this section, we first briefly explain the PMCA (Algorithm 1) and then con-
struct a worst-case example to prove that the approximation ratio of the algo-
rithm cannot be improved.

The implementation of steps 1, 2, and 4 are well-known [4,7,9]. Note, however,
that in order for the edges of each path in M ′ to remain consecutive in E, each
such path has to be regarded as a single edge while computing the Eulerian cycle
in step 4. In step 5, an arbitrary root vertex r is chosen. Then, in every path
pi, the vertex v closest to r in T is bypassed if v is internal to pi and if v is
adjacent to at least four edges from T. This last condition was not stated in [4],
but is indeed necessary, as otherwise the algorithm might drop certain vertices,
i.e., they might not appear in the end result, which would then by definition no
longer be a Hamiltonian cycle.

On the Approximation Ratio of the PMCA 351

Algorithm 1. Path Matching Christofides Algorithm [4]

Input: A complete β-metric graph G, for some β ≥ 1.
1: Find a minimum spanning tree T in G. Let U be all odd-degree vertices in T.
2: Construct a minimum path matching M for U. {The matching is edge-disjoint as

a direct consequence of its minimality.}
3: Resolve conflicts in M to obtain a vertex-disjoint path matching M ′.
4: Construct an Eulerian cycle E := (p1, q1, p2, q2, . . .) on T and M ′ such that

p1, p2, . . . are paths in T and q1, q2, . . . are paths in M ′.
5: Transform p1, p2, . . . into p′1, p

′
2, . . . such that the forest Tf formed by p′1, p

′
2, . . . has

maximum degree 3. Let E′ := (p′1, q1, p
′
2, q2, . . .).

6: Resolve all remaining conflicts in E′ to obtain a Hamiltonian cycle H.
Output: H.

Algorithm 2 shows the implementation of step 3. Roughly, it consists of two
parts. First, a path with only one conflict is searched1, and then this conflict
is resolved. The last step is implemented as follows. First, bypass an arbitrary
conflict x. If there are neighbors of x that are conflicts, bypass one of them. Else,
bypass an arbitrary conflict. Repeat this until no conflicts are left.

Theorem 1. For every β ≥ 1, the PMCA provides an approximation ratio of
3
2β

2, and there exists an infinite family of graphs satisfying the β-triangle in-
equality on which it cannot achieve a better appproximation ratio.

Algorithm 2.

Input: An edge-disjoint, cycle-free path matching M for U in G.
while M has conflicts do

pick an arbitrary path p that has at least one internal conflict or at least two
conflicts
while p has more than one conflict do

let v, w be the first and the last conflict in p
let pv, pw be paths that contain v resp. w
pick as new p one of pv, pw that was formerly not picked

end while
let v be the only conflict in the finally chosen path p
if v is internal to p then

bypass v in p
else

bypass the unique edge incident to v in p together with one edge of the previously
picked path as shown in Fig. 1

end if
end while

Output: A vertex-disjoint path matching M ′ = (q1, q2, . . .).

1 Such a path always exists because the graph formed by M is cycle-free due to the
minimality of M.

352 S. Krug

v
→ →

p′
p

Fig. 1. Algorithm 2 first picks p′ and then p. It takes two edges indicent to v, one from
p and one from p′, and replaces them with a bypass.

The first part was shown in [4]. To prove the second part, we first introduce
a graph and show that it contains a Hamiltonian cycle of a certain cost. Then,
we present one possible implementation of the PMCA on this graph in order to
obtain the desired lower bound.

v1,1

v2,1

v3,1

v4,1

v5,1

v6,1

v7,1

v8,1

v9,1

v10,1

v1,2

v2,2

v3,2

v4,2

v5,2

v6,2

v7,2

v8,2

v9,2

v10,2

v1,k

v2,k

v3,k

v4,k

v5,k

v6,k

v7,k

v8,k

v9,k

v10,k

1/k

1

1 + 2/k

Edge costs

. . .

. . .

Fig. 2. The graph G10,k(β)

Let G10,k(β) be the complete graph shown in Fig. 2, where all edges not shown
have maximum possible cost such that the β-triangle inequality is satisfied.

Lemma 1. The graph G10,k(β) satisfies the β-triangle inequality.

Proof. The proof is omitted due to space limitations. It can be found in [12]. !"

Fig. 3 shows a Hamiltonian cycle in G10,k(β) of cost 2k+2β2 +7β+6. We now
show one possible implementation of the PMCA that, on input G10,k(β), returns
a Hamiltonian cycle of cost at least 3(k − 1)β2.

In the first step, the PMCA computes the minimum spanning tree T shown
in Fig. 4. The vertices in U are circled. It is easy to see that T is indeed a
minimum spanning tree. Every edge in the graph has cost at least 1/k, therefore
the edges {v1,i, v2,i}, {v2,i, v5,i}, {v4,i, v5,i}, {v5,i, v9,i}, {v8,i, v9,i}, {v9,i, v10,i}, for
1 ≤ i ≤ k, form minimum spanning trees for the respective upper subclusters.
On the other hand, the edges {v3,i, v6,i}, {v6,i, v7,i}, for 1 ≤ i ≤ k, form minimum
spanning trees for the respective lower subclusters. All we need to do is add an
edge for every component to construct a minimum spanning tree for the whole
graph. All edges available for this have cost at least 1, so we can just take the
edges {v5,i, v6,i}, for 1 ≤ i ≤ k, and {v9,i, v2,i+1}, for 1 ≤ i ≤ k − 1.

In the second step, the PMCA computes the minimum path matching M for
U shown in Fig. 5.

On the Approximation Ratio of the PMCA 353

v1,1

v2,1

v3,1

v4,1

v5,1

v6,1

v7,1

v8,1

v9,1

v10,1

v1,2

v2,2

v3,2

v4,2

v5,2

v6,2

v7,2

v8,2

v9,2

v10,2

v1,k

v2,k

v3,k

v4,k

v5,k

v6,k

v7,k

v8,k

v9,k

v10,k. . .

. . .

Fig. 3. A Hamiltonian cycle of cost 2k + 2β2 + 7β + 6 in G10,k(β)

v1,1

v2,1

v3,1

v4,1

v5,1

v6,1

v7,1

v8,1

v9,1

v10,1

v1,2

v2,2

v3,2

v4,2

v5,2

v6,2

v7,2

v8,2

v9,2

v10,2

v1,k

v2,k

v3,k

v4,k

v5,k

v6,k

v7,k

v8,k

v9,k

v10,k
. . .

. . .

Fig. 4. A minimum spanning tree in G10,k(β). The odd-degree vertices are circled.

v1,1

v2,1

v3,1

v4,1

v5,1

v6,1

v7,1

v8,1

v9,1

v10,1

v1,2

v2,2

v3,2

v4,2

v5,2

v6,2

v7,2

v8,2

v9,2

v10,2

v1,k

v2,k

v3,k

v4,k

v5,k

v6,k

v7,k

v8,k

v9,k

v10,k
. . .

. . .

Fig. 5. A minimum path matching for U in G10,k(β)

v1,1

v2,1

v3,1

v4,1

v5,1

v6,1

v7,1

v8,1

v9,1

v10,1

v1,2

v2,2

v3,2

v4,2

v5,2

v6,2

v7,2

v8,2

v9,2

v10,2

v1,k

v2,k

v3,k

v4,k

v5,k

v6,k

v7,k

v8,k

v9,k

v10,k
. . .

. . .

Fig. 6. A vertex-disjoint path matching for U in G10,k(β)

v1,1

v2,1

v3,1

v4,1

v5,1

v6,1

v7,1

v8,1

v9,1

v10,1

v1,2

v2,2

v3,2

v4,2

v5,2

v6,2

v7,2

v8,2

v9,2

v10,2

v1,k

v2,k

v3,k

v4,k

v5,k

v6,k

v7,k

v8,k

v9,k

v10,k
. . .

. . .

Fig. 7. The Eulerian cycle E. For clarity, the paths of M ′ are dashed.

354 S. Krug

Theorem 2. M is a minimum path matching for U.

Proof. The proof is omitted due to space limitations. It can be found in [12]. !"
The goal of the third step is to resolve all conflicts in the minimum path match-
ing M to obtain a vertex-disjoint path matching M ′. The only problematic
paths in M are (v4,i, v5,i, v6,i, v3,i) and (v6,i, v7,i), for 1 ≤ i ≤ k − 1, as well
as (v4,k, v5,k, v9,k) and (v8,k, v9,k, v10,k). For each component in the first set, the
PMCA may choose the path (v4,i, v5,i, v6,i, v3,i) as p and thus bypass v6,i in this
path. For the second set, the PMCA may choose the path (v8,k, v9,k, v10,k) as p
and thus bypass v9,k in this path. In this step, the PMCA thus computes the
vertex-disjoint path matching M ′ shown in Fig. 6.

Alternating between paths from T and paths from M ′, the PMCA computes
in the fourth step the Eulerian cycle E shown in Fig. 7.

The goal of the fifth step is that every vertex is adjacent to at most three
edges from T. The problematic vertices are thus all v5,i and all v9,i except v9,k.
Let r := v1,1. Then, the PMCA bypasses the vertices v5,i between v6,i and v9,i,
for 1 ≤ i ≤ k − 1, the vertex v5,k between v9,k and v6,k, and the vertices v9,i
between v8,i and v2,i+1, for 1 ≤ i ≤ k − 1, to obtain the modified Eulerian cycle
E′ shown in Fig. 8.

The goal of the last step is that every vertex has degree 2. The problematic
vertices are thus all vertices v2,i except v2,1 and all vertices v5,i, v6,i, v9,i. The
PMCA obtains the Hamiltonian cycle H shown in Fig. 9 by bypassing

– v2,i between v8,i−1 and v1,i, for 2 ≤ i ≤ k,
– v5,i between v4,i and v3,i, for 1 ≤ i ≤ k − 1, and v5,k between v4,k and v9,k,
– v6,i between v7,i and v9,i, for 1 ≤ i ≤ k − 1, and v6,k between v3,k and v7,k,
– v9,i between v10,i and v8,i, for 1 ≤ i ≤ k−1, and v9,k between v10,k and v6,k.

v1,1

v2,1

v3,1

v4,1

v5,1

v6,1

v7,1

v8,1

v9,1

v10,1

v1,2

v2,2

v3,2

v4,2

v5,2

v6,2

v7,2

v8,2

v9,2

v10,2

v1,k

v2,k

v3,k

v4,k

v5,k

v6,k

v7,k

v8,k

v9,k

v10,k
. . .

. . .

Fig. 8. The modified Eulerian cycle E′. The paths of M ′ are dashed.

Considering only the edges {v4,i, v3,i}, {v7,i, v9,i}, {v8,i, v1,i+1}, for 1 ≤ i ≤
k − 1, we obtain cost(H) ≥ 3(k − 1)β2. We have thus shown that, for every
β ≥ 1 and arbitrarily small ε > 0, there exists an implementation I of the
PMCA such that

cost(I(G10,k(β)))

OptΔβ−TSP(G10,k(β))
≥ 3(k − 1)β2

2k + 2β2 + 7β + 6
≥ 3

2
β2 − ε, (1)

for sufficiently large k, i.e., we have shown that the upper bound of 3
2β

2 on the
approximation ratio of the PMCA is tight.

On the Approximation Ratio of the PMCA 355

v1,1

v2,1

v3,1

v4,1

v5,1

v6,1

v7,1

v8,1

v9,1

v10,1

v1,2

v2,2

v3,2

v4,2

v5,2

v6,2

v7,2

v8,2

v9,2

v10,2

v1,k

v2,k

v3,k

v4,k

v5,k

v6,k

v7,k

v8,k

v9,k

v10,k
. . .

. . .

Fig. 9. The Hamiltonian cycle H

3 The PMCA for the Hamiltonian Path Problem

In this section, we analyze the PMCA variant for the β-metric Hamiltonian path
problem with l ∈ {0, 1, 2} prespecified endpoints (Δβ-HPPl). Formally,Δβ-HPPl

is the following optimization problem. Given a complete graph G with edge costs
that satisfy the β-triangle inequality, find a path in G that visits every vertex
exactly once, has minimum overall cost and starts and ends in the prespecified
endpoints, if any.

We first briefly explain the PMCA-HPPl (Algorithm 3) and then construct
a worst-case example to prove that the approximation ratio of the algorithm
cannot be improved for l = 2.

The implementation of step 1 is well-known. Step 2 can again be implemented
using the distance graph d(G) of G. The algorithm adds 2− l dummy vertices to
d(G) with all edges adjacent to them having cost 0 except the edge connecting
them that has cost ∞. The algorithm computes a minimum perfect matching
for U and the dummy vertices in d(G), removes the edges adjacent to dummy
vertices from the matching and maps it back to G by connecting two vertices
v, w via a shortest path if they are matched in d(G). After potentially removing
an additional edge, the graph contains exactly two odd-degree vertices w, z.

The implementation of step 3 can be found in [8]. Essentially, it does the
following. It resolves the conflicts in M for each tree in M separately. If the tree
contains z, the algorithm ensures that z is still contained in the resulting forest.

In step 4, we need to distinguish two cases. Let y be the unique neighbor of
w towards z in T. If there exists a path p = (z, . . . , w) in M ′, we first construct
an Eulerian cycle E = (w, u1, . . . , uh−1, w) on T and M ′ − {p}. We concatenate
p and E to obtain the Eulerian path (z, . . . , w, u1, . . . , uh−1, w). If there exists
no path (z, . . . , w), we essentially do the following. We look if there are (unique)
paths p = (z, . . . , u) and q = (u′, . . . , w), and if so, search for an Eulerian
path P from u to u′ and returns the concatenation of p, P, and q. The detailed
implementation of this step can again be found in [8].

Step 5 is implemented in the same way as in the PMCA, except that we do
not choose r arbitrarily, but set r := z. Step 6 is also implemented in the same
way as in the PMCA, except that we first bypass w if it is a conflict.

Theorem 3. For every β ≥ 1, both the PMCA-HPP0 and the PMCA-HPP1

provide an approximation ratio of 3
2β

2, and there exists an infinite family of

356 S. Krug

graphs satisfying the β-triangle inequality on which they cannot achieve a better
approximation ratio.

Theorem 4. For every β ≥ 1, the PMCA-HPP2 provides an approximation
ratio of 5

3β
2, and there exists an infinite family of graphs satisfying the β-triangle

inequality on which it cannot achieve a better approximation ratio.

Algorithm 3. PMCA-HPPl

Input: A complete β-metric graph G = (V,E), for some β ≥ 1, and a set A ⊆ V of
size l.

1: Find a minimum spanning tree T in G. Let U be the vertices in V −A having odd
degree in T plus the vertices in A having even degree in T.

2: Construct a minimum path matching M for U. If necessary, remove an edge from
T such that the multigraph formed by T and M has two odd-degree vertices w, z.

3: Resolve conflicts in M in order to obtain a vertex-disjoint path matching M ′ in
which z does not occur as an inner vertex.

4: Construct an Eulerian path P = (p1, q1, p2, q2, . . .) on T and M ′ from w to z such
that p1, p2, . . . are paths in T and q1, q2, . . . are paths in M ′.

5: Transform p1, p2, . . . into p′1, p
′
2, . . . such that the forest Tf formed by p′1, p

′
2, . . . has

degree at most 3, w and z are the endpoints of P ′ := (p′1, q1, p
′
2, q2, . . .) and z is

not a conflict in P ′.
6: Resolve all remaining conflicts in P ′ to obtain a Hamiltonian path P ′′.
Output: P ′′.

The upper bounds were established in [8]. To prove the second part for l = 0, 1,
the graph G10,k(β) can be reused. The proofs are for the most part quite similar
to the one of Theorem 1. For the PMCA-HPP1, the prespecified endpoint is v1,1.
Both proofs can be found in [12]. To prove the second part for l = 2, however,
we cannot reuse the graph G10,k(β), as we shall see.

Observe that, for β = 1, there exists an implementation of the PMCA that
is also an implementation of the Christofides algorithm. This implementation
does not construct a path matching in the second step, but a normal
matching.2 Observe furthermore that, for β = 1, there exists an implementa-
tion of the PMCA-HPP2 that is also an implementation of Hoogeveen’s algo-
rithm. As above, it is necessary always to construct a matching instead of a path
matching.

Assume now that we could use the graph G10,k(β) to establish a lower bound
of 5

3β
2 − ε on the approximation ratio of the PMCA-HPP2. In particular, we

could show an implementation that achieves an approximation ratio of 5/3 on
the graph G10,k(1). This, in turn, would contradict the fact that the sets of
worst-case instances for the metric TSP and the metric HPP2 are disjoint [13].

To prove the lower bound of 5
3β

2− ε, we thus need to introduce a new graph.
Let G18,k(β) be the complete graph shown in Fig. 10, where all edges not shown
have maximum possible cost such that the β-triangle inequality is satisfied.

2 The condition β = 1 ensures no path matching is shorter than a minimum matching.

On the Approximation Ratio of the PMCA 357

v1,1

v2,1

v3,1v4,1 v5,1

v6,1

v7,1

v8,1

v9,1 v10,1v11,1

v12,1

v13,1

v14,1

v15,1v16,1v17,1

v18,1

v1,2

v2,2

v3,2v4,2 v5,2

v6,2

v7,2

v8,2

v9,2 v10,2v11,2

v12,2

v13,2

v14,2

v15,2v16,2v17,2

v18,2
. . .

. . .
v1,k

v2,k

v3,kv4,k v5,k

v6,k

v7,k

v8,k

v9,k v10,kv11,k

v12,k

v13,k

v14,k

v15,kv16,kv17,k

v18,k

Edge costs: 1/k 1 1 + 1/k

Fig. 10. The graph G18,k(β)

Lemma 2. The graph G18,k(β) satisfies the β-triangle inequality.

Proof. The proof is omitted due to space limitations. It can be found in [12]. !"

Fig. 11 shows a Hamiltonian path from v9,1 to v17,k in G18,k(β) of cost 3k+2β2+
21β+5− (2β2+β)/k. We now show one possible implementation of the PMCA-
HPP2 that, on inputs G18,k(β) and A := {v9,1, v17,k}, returns a Hamiltonian
path of cost at least 5(k − 1)β2 from v9,1 to v17,k.

In the first step, the PMCA computes the minimum spanning tree shown in
Fig. 12. The vertices in U are circled. In the second step, the PMCA computes
the minimum path matching M for U shown in Fig. 13 and then sets w :=
v17,k, z := v9,1.

Theorem 5. M is a minimum path matching for U.

Proof. The proof is omitted due to space limitations. It can be found in [12]. !"

The goal of the third step is to resolve all conflicts in the minimum path matching
M in such a way that z = v9,1 is still contained in the resulting vertex-disjoint
path matching M ′. The PMCA-HPP2 does this for every connected component
of M separately. The paths {(v13,i, v14,i) | 1 ≤ i ≤ k} contain no conflicts. Let
us therefore now look at the problematic paths of M , i.e.,

{(v1,1, v4,1, v12,1), (v2,1, v4,1, v3,1), (v10,1, v12,1, v11,1)}∪
{(v5,i, v8,i, v6,i), (v7,i, v8,i, v18,i, v17,i), (v15,i, v18,i, v16,i) | 1 ≤ i ≤ k − 1}∪
{(v1,i, v4,i, v12,i, v9,i), (v2,i, v4,i, v3,i), (v10,i, v12,i, v11,i) | 2 ≤ i ≤ k}∪
{(v5,k, v8,k, v6,k), (v7,k, v8,k, v18,k, v15,k), (v16,k, v18,k)}.

(2)

In the first set, the PMCA-HPP2 bypasses v2,1 in the path (v10,1, v12,1, v11,1) and
v4,1 in the path (v1,1, v4,1, v12,1). In the second set, the PMCA-HPP2 bypasses
v18,i in the path (v15,i, v18,i, v16,i) and v8,i in the path (v7,i, v8,i, v18,i, v17,i). In
the third set, the PMCA-HPP2 bypasses v12,i in the path (v10,i, v12,i, v11,i) and
v4,i in the path (v1,i, v4,i, v12,i, v9,i). In the fourth set, the PMCA-HPP2 trans-
form the two paths (v7,k, v8,k, v18,k, v15,k), (v16,k, v18,k) into the paths (v15,k,
v16,k), (v7,k, v8,k, v18,k) and bypasses v8,k in the latter path. The PMCA-HPP2

thus computes the vertex-disjoint path matching M ′ shown in Fig. 14.

358 S. Krug

v1,1

v2,1

v3,1

v4,1
v5,1

v6,1

v7,1

v8,1

v9,1 v10,1v11,1

v12,1

v13,1

v14,1

v15,1v16,1v17,1

v18,1

v1,2

v2,2

v3,2

v4,2
v5,2

v6,2

v7,2

v8,2

v9,2 v10,2v11,2

v12,2

v13,2

v14,2

v15,2v16,2v17,2

v18,2 . . .

. . .
v1,k

v2,k

v3,k

v4,k
v5,k

v6,k

v7,k

v8,k

v9,k v10,kv11,k

v12,k

v13,k

v14,k

v15,kv16,kv17,k

v18,k

Fig. 11. A Hamiltonian path in G18,k(β) of cost 3k + 2β2 + 21β + 5− 2β2+β
k

v1,1

v2,1

v3,1v4,1 v5,1

v6,1

v7,1

v8,1

v9,1 v10,1v11,1

v12,1

v13,1

v14,1

v15,1v16,1v17,1

v18,1

v1,2

v2,2

v3,2v4,2 v5,2

v6,2

v7,2

v8,2

v9,2 v10,2v11,2

v12,2

v13,2

v14,2

v15,2v16,2v17,2

v18,2
. . .

. . .
v1,k

v2,k

v3,kv4,k v5,k

v6,k

v7,k

v8,k

v9,k v10,kv11,k

v12,k

v13,k

v14,k

v15,kv16,kv17,k

v18,k

Fig. 12. A minimum spanning tree in G18,k(β). The odd-degree vertices are circled.

v1,1

v2,1

v3,1v4,1 v5,1

v6,1

v7,1

v8,1

v9,1 v10,1v11,1

v12,1

v13,1

v14,1

v15,1v16,1v17,1

v18,1

v1,2

v2,2

v3,2v4,2 v5,2

v6,2

v7,2

v8,2

v9,2 v10,2v11,2

v12,2

v13,2

v14,2

v15,2v16,2v17,2

v18,2
. . .

. . .
v1,k

v2,k

v3,kv4,k v5,k

v6,k

v7,k

v8,k

v9,k v10,kv11,k

v12,k

v13,k

v14,k

v15,kv16,kv17,k

v18,k

Fig. 13. A minimum path matching for U in G18,k(β)

v1,1

v2,1

v3,1
v4,1

v5,1

v6,1

v7,1
v8,1

v9,1 v10,1v11,1

v12,1

v13,1

v14,1

v15,1v16,1v17,1

v18,1

v1,2

v2,2

v3,2
v4,2

v5,2

v6,2

v7,2
v8,2

v9,2 v10,2v11,2

v12,2

v13,2

v14,2

v15,2v16,2v17,2

v18,2 . . .

. . .
v1,k

v2,k

v3,k
v4,k

v5,k

v6,k

v7,k
v8,k

v9,k v10,kv11,k

v12,k

v13,k

v14,k

v15,kv16,kv17,k

v18,k

Fig. 14. A vertex-disjoint path matching for U in G18,k(β)

v1,1

v2,1

v3,1
v4,1

v5,1

v6,1

v7,1
v8,1

v9,1 v10,1v11,1

v12,1

v13,1

v14,1

v15,1v16,1v17,1

v18,1

v1,2

v2,2

v3,2
v4,2

v5,2

v6,2

v7,2
v8,2

v9,2 v10,2v11,2

v12,2

v13,2

v14,2

v15,2v16,2v17,2

v18,2
. . .

. . .
v1,k

v2,k

v3,k
v4,k

v5,k

v6,k

v7,k
v8,k

v9,k v10,kv11,k

v12,k

v13,k

v14,k

v15,kv16,kv17,k

v18,k

Fig. 15. The Eulerian path P. The paths of M ′ are dashed.

On the Approximation Ratio of the PMCA 359

Now the PMCA-HPP2 computes an Eulerian path from w to z. Because there
are no paths in M ′ having w or z as an endpoint, the algorithm computes an
Eulerian path from z to y in T − {y, w} and M ′, where y is the neighbor of
w towards z in T, i.e., v18,k. Then, it appends the edge {y, w} to this path to
obtain the Eulerian path P from v9,1 to v17,k shown in Fig. 15.

The goal of the fifth step is that every vertex is adjacent to at most three
edges from T. The PMCA-HPP2 achieves this by considering every path p in P
consisting only of edges from T separately. If the vertex closest to r := z = v9,1 in
p is internal to p, it is bypassed. Therefore, it bypasses v4,i between v3,i and v1,i
and v8,i between v5,i and v7,i, for 1 ≤ i ≤ k, v12,1 between v11,1 and v14,1, v12,i
between v9,i and v14,i and between v10,i and v4,i, for 2 ≤ i ≤ k, v18,i between
v16,i and v8,i and between v17,i and v12,i+1, for 1 ≤ i ≤ k − 1, and finally v18,k
between v16,k and v8,k. This results in the Eulerian path P ′ shown in Fig. 16.

v1,1

v2,1

v3,1

v4,1 v5,1

v6,1

v7,1

v8,1

v9,1 v10,1v11,1

v12,1

v13,1

v14,1

v15,1v16,1v17,1

v18,1 . . .

. . .
v1,2

v2,2

v3,2

v4,2 v5,2

v6,2

v7,2

v8,2

v9,2 v10,2v11,2

v12,2

v13,2

v14,2

v15,2v16,2v17,2

v18,2

v1,k

v2,k

v3,k

v4,k v5,k

v6,k

v7,k

v8,k

v9,k v10,kv11,k

v12,k

v13,k

v14,k

v15,kv16,kv17,k

v18,k

Fig. 16. The modified Eulerian path P ′. The paths of M ′ are dashed.

v1,1

v2,1

v3,1

v4,1 v5,1

v6,1

v7,1

v8,1

v9,1 v10,1v11,1

v12,1

v13,1

v14,1

v15,1v16,1v17,1

v18,1
. . .

. . .
v1,2

v2,2

v3,2

v4,2 v5,2

v6,2

v7,2

v8,2

v9,2 v10,2v11,2

v12,2

v13,2

v14,2

v15,2v16,2v17,2

v18,2

v1,k

v2,k

v3,k

v4,k v5,k

v6,k

v7,k

v8,k

v9,k v10,kv11,k

v12,k

v13,k

v14,k

v15,kv16,kv17,k

v18,k

Fig. 17. The Hamiltonian path P ′′

The goal of the last step is that every vertex except v9,1 and v17,k has degree
2. The problematic vertices are thus all the vertices v4,i, v8,i, v12,i, v14,i, v18,i, for
1 ≤ i ≤ k. Because w = v17,k is not a conflict in P ′, the PMCA-HPP2 starts
with the resolution of an arbitrary conflict. It obtains the Hamiltonian path P ′′

shown in Fig. 17 by bypassing

– v4,1 between v12,1 and v2,1, and every other v4,i between v10,i and v2,i,
– v8,i between v16,i and v6,i, for 1 ≤ i ≤ k,
– v12,1 between v1,1 and v10,1, and every other v12,i between v1,i and v9,i,
– v14,1 between v11,1 and v13,1, and every other v14,i between v9,i and v13,i,
– v18,i between v7,i and v17,i, for 1 ≤ i ≤ k.

360 S. Krug

Considering only the edges {v1,i, v9,i}, {v2,i, v10,i}, {v6,i, v16,i}, {v7,i, v17,i},
{v9,i, v13,i}, for 2 ≤ i ≤ k, we obtain cost(P ′′) ≥ 5(k−1)β2. We have thus shown
that, for every β ≥ 1 and arbitrarily small ε > 0, there exists an implementation
I of the PMCA-HPP2 such that

cost(I(G18,k(β)))

OptΔβ−HPP2
(G18,k(β))

≥ 5(k − 1)β2

3k + 2β2 + 21β + 5− 2β2+β
k

≥ 5

3
β2 − ε, (3)

for sufficiently large k, i.e., we have shown that the upper bound of 5
3β

2 on the
approximation ratio of the PMCA-HPP2 is tight.

References

1. Andreae, T.: On the Traveling Salesman Problem Restricted to Inputs Satisfying
a Relaxed Triangle Inequality. Networks 38, 59–67 (2001)

2. Bender, M.A., Chekuri, C.: Performance guarantees for the TSP with a parame-
terized triangle inequality. Inf. Proc. Letters 73, 17–21 (2000)

3. Böckenhauer, H.-J., Hromkovič, J.: Stability of approximation algorithms or pa-
rameterization of the approximation ratio. In: Proceedings of the 9th International
Symposium on Operations Research in Slovenia, pp. 23–28 (2007)

4. Böckenhauer, H.-J., Hromkovič, J., Klasing, R., Seibert, S., Unger, W.: Towards the
notion of stability of approximation for hard optimization tasks and the traveling
salesman problem. Theoretical Computer Science 285, 3–24 (2002)

5. Böckenhauer, H.-J., Hromkovič, J., Seibert, S.: Stability of Approximation. In:
Gonzalez, T.F. (ed.) Handbook of Approximation Algorithms and Metaheuristics.
Chapman & Hall, Boca Raton (2007)

6. Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman
problem. Technical Report 388. Carnegie Mellon University, Graduate School of
Industrial Administration (1976)

7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
MIT Press, Cambridge (2009)

8. Forlizzi, L., Hromkovič, J., Proietti, G., Seibert, S.: On the Stability of Approxi-
mation for Hamiltonian Path Problems. Alg. Oper. Res. 1, 31–45 (2006)

9. Goodaire, E.G., Parmenter, M.M.: Discrete Mathematics with Graph Theory.
Prentice Hall, Upper Saddle River (2005)

10. Hoogeveen, J.A.: Analysis of Christofides’ heuristic: Some paths are more difficult
than cycles. Oper. Res. Letters 10, 291–295 (1991)

11. Hromkovič, J.: Algorithmics for Hard Problems. Introduction to Combinatorial Op-
timization, Randomization, Approximation, and Heuristics. Springer, Heidelberg
(2004)

12. Krug, S.: Analysis of Approximation Algorithms for the Traveling Salesman Prob-
lem in Near-Metric Graphs. Master’s thesis, ETH Zurich, Department of Computer
Science (2011)

13. Mömke, T.: Structural Properties of Hard Metric TSP Inputs. In: Černá, I.,
Gyimóthy, T., Hromkovič, J., Jefferey, K.G., Králović, R., Vukolić, M., Wolf, S.
(eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 394–405. Springer, Heidelberg (2011)

Parikh’s Theorem and Descriptional Complexity

Giovanna J. Lavado and Giovanni Pighizzini

Dipartimento di Informatica e Comunicazione
Università degli Studi di Milano

via Comelico 39, I-20135 Milano, Italy
giovanna.lavado@unimi.it,

pighizzini@dico.unimi.it

Abstract. It is well known that for each context-free language there
exists a regular language with the same Parikh image. We investigate
this result from a descriptional complexity point of view, by proving
tight bounds for the size of deterministic automata accepting regular lan-
guages Parikh equivalent to some kinds of context-free languages. First,
we prove that for each context-free grammar in Chomsky normal form
with a fixed terminal alphabet and h variables, generating a bounded

language L, there exists a deterministic automaton with at most 2h
O(1)

states accepting a regular language Parikh equivalent to L. This bound,
which generalizes a previous result for languages defined over a one let-
ter alphabet, is optimal. Subsequently, we consider the case of arbitrary
context-free languages defined over a two letter alphabet. Even in this
case we are able to obtain a similar bound. For alphabets of at least three
letters the best known upper bound is a double exponential in h.

Keywords: finite automata, formal languages, context-free languages,
descriptional complexity, Parikh’s theorem, bounded languages.

1 Introduction

Parikh’s Theorem is a classical result in formal language theory [1]. With each
string x over an alphabet ofm symbols, them integer vector counting the number
of occurrences in x of each alphabet symbol (the Parikh image of x) is associated.
The Parikh image of a language L is the set of all Parikh images of strings in L.
Parikh’s Theorem states that the Parikh image of a context-free language L is
a semilinear set or, equivalently, that there exists a regular language R with the
same Parikh image of L (L and R will be also said to be Parikh equivalent).

This classical result has been extensively investigated in the literature (e.g.,
[2,3,4]) even for the connections of semilinear sets with other fields of investiga-
tion (e.g., Presburger Arithmetics [5], Petri Nets [6], logical formulas [7]).

Two recent papers present new interesting contributions to these researches,
in particular by investigating complexity aspects of Parikh’s Theorem.

In [8] the authors obtain normal form theorems for Parikh images of regular
and context-free languages. In particular, in the case of regular languages and in
the case of context-free languages over a two letter alphabet they provide tight

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 361–372, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

362 G.J. Lavado and G. Pighizzini

bounds on the size of the semilinear representations of Parikh images. They also
present some applications of these results in different fields.

In [9] the authors give a new proof of Parikh’s Theorem, which provides a
construction of a nondeterministic automaton A accepting a language Parikh
equivalent to the language specified by a context-free grammar G. This con-
struction is also interesting because the number of the states of the resulting
automaton A is exponential in the size of the grammar G, thus significantly
improving the upper bounds that can be obtained from the classical construc-
tions [1,2]. Furthermore, this bound cannot be further improved.

It is natural to extend these investigations in order to discover how many
states a deterministic automaton accepting a regular language Parikh equivalent
to the language generated by a context-free grammar of size n needs. Applying
the classical subset construction to the nondeterministic automaton obtained
in [9], an upper bound which is double exponential in n can be immediately
obtained. However, we do not know if this is optimal.

In the case of languages defined over a one letter alphabet, also called unary
languages, this problem has been solved in [10]. (We remind the reader that
unary context-free languages are regular [11].) The authors proved that for each
context-free grammar in Chomsky normal form with h variables generating a
unary language there exists an equivalent nondeterministic automaton with at
most 22h−1 +1 states and an equivalent deterministic automaton with less than
2h

2

states. Both these bounds are optimal.
The main result of this paper is an extension of these bounds to letter bounded

context-free languages, i.e., subsets of a∗1a
∗
2 · · ·a∗m, where a1, a2, . . . , am are pair-

wise different symbols [13,14]. Fixed an alphabet of m symbols, we show that
given a letter bounded context-free language described by a grammar of size n
we can obtain a deterministic automaton with a number of states exponential
in a polynomial in n, accepting a Parikh equivalent language. As a consequence
of the results in the unary case, this bound cannot be improved.

We also attack the problem in the general case (i.e., we remove the restriction
to bounded languages). We prove a similar result in the case of languages defined
over a binary alphabet, while we leave as an open problem the generalization to
alphabets of cardinality greater than two.

2 Preliminaries

Given a set S, #S denotes its cardinality and 2S the family of all its subsets.
Let Σ∗ denote the set of all strings over the finite alphabet Σ, with the empty
string denoted by ε. For the sake of simplicity, all the languages we consider do
not contain ε. Given a string w ∈ Σ∗, |w| denotes its length and |w|a the number
of occurrences in w of the symbol a ∈ Σ.

Given the alphabet Σ = {a1, a2, . . . , am}, the Parikh map ψ : Σ∗ → Nm

associates with each word w ∈ Σ∗ the vector ψ(w) = (|w|a1 , |w|a2 , . . . , |w|am)
and with each language L ⊆ Σ∗ the set ψ(L) = {ψ(w) | w ∈ L} (the Parikh
image of w and L, respectively). Two strings w′, w′′ ∈ Σ∗ (languages L′, L′′ ⊆

Parikh’s Theorem and Descriptional Complexity 363

Σ∗, resp.) are said to be Parikh equivalent when ψ(w′) = ψ(w′′) (ψ(L′) = ψ(L′′),
resp.). In this case we write w′ =πw

′′ (L′ =πL
′′, resp.).

For the notions of deterministic and nondeterministic automaton (dfa and
nfa, resp.), context-free grammar and context-free language (cfg and cfl),
context-free grammar in Chomsky normal form (cnfg), derivation, derivation
tree, and for the corresponding notations, we refer the reader to [15]. As in [10]
and according to the discussion in [12], we use the number of variables of cnfgs
as a “reasonable” measure of descriptional complexity for cfls. With some abuse
of language, given a node of a derivation tree labeled with a variable A, we write
“the node A” instead of “the node with label A”, if this does not introduce any
ambiguity. The notation A

�⇒π w, where w ∈ Σ∗, indicates that from A it is
possible to derive a string which is Parikh equivalent to w.

Parikh’s theorem [1] states that the Parikh image of each context-free language
is a semilinear set. The following result is an immediate consequence.

Theorem 1. Each context-free language is Parikh equivalent to a regular
language.

A language L is said to be letter bounded (bounded, for short) if L ⊆ a∗1a
∗
2 · · · a∗m,

where a1, a2, . . . , am are pairwise different symbols [13].
Given a cnfg G = (V,Σ, P, S) generating a subset of a∗1 · · ·a∗m, without loss of

generality we can suppose that each variable of G is useful, i.e., for each A ∈ V ,
there are terminal strings u, v, w, such that S

�⇒ uAw
�⇒ uvw. According to the

discussion in [14], it is not difficult to prove that with each variable A ∈ V , a
pair of indices lA, rA, 1 ≤ lA ≤ rA ≤ m, can be associated in such a way that
A

�⇒ w ∈ Σ∗ implies that w ∈ a∗lA· · · a
∗
rA and (A → BC) ∈ P implies that

lA ≤ lB ≤ rB ≤ lC ≤ rC ≤ rA. If A
�⇒ w also implies that the first symbol of w

is alA and the last symbol of w is arA , i.e., w ∈ alAΣ
∗ ∩ Σ∗arA , then G is said

to be strongly bounded.
In a strongly bounded cnfg G, a variable A is said to be unary if lA = rA,

otherwise A is nonunary. We notice that if there is a production of the form
A→ a, a ∈ Σ, then the variable A is unary and, on the other hand, if there is a
production A → BC then lA = lB and rC = rA. If G is not strongly bounded,
then we can express the language L(G) as the union of the m(m+1)/2 languages
Lij = L(G) ∩ aiΣ

∗ ∩ Σ∗aj , 1 ≤ i ≤ j ≤ m. We now observe that each of these
languages is generated by a strongly bounded cnfg and, furthermore, the total
number of variables used by such grammars is hm(m + 1)/2. To this aim, we
consider the set of variables V ′ = {(A, i, j) | A ∈ V, 1 ≤ i ≤ j ≤ m} and the set
of productions P ′ containing:

– (A, i, j) → (B, i, k′)(C, k′′, j), for each production A → BC in P , and 1 ≤
i ≤ k′ ≤ k′′ ≤ j ≤ m,

– (A, i, i)→ ai, for each production A→ ai in P .

It is possible to verify that using the set P ′ of productions, (A, i, j)
�⇒ w if

and only if A
�⇒ w in G and w ∈ aiΣ

∗ ∩ Σ∗aj . Furthermore, since the original
grammar G defines a bounded language, w ∈ a∗i · · ·a∗j . As a consequence, the
grammar Gij = (V ′, Σ, P ′, (S, i, j)), 1 ≤ i ≤ j ≤ n, generates the language Lij .

364 G.J. Lavado and G. Pighizzini

S

�����

�����

A

a

A′

a

A′
�� ��

X

�����

�����

a

A′ Y

�����

�����

B

b

B′

b

B′
�� ��

Y

�����

�����

B

b

B′

b

B′
�� ��

X

�
��

�
��

a

A′ Y

�
��

�
��

A

a

A′

a

A′
�� ��

B

b

B′

b

B′
�� ��

A

Fig. 1. Example with Σ = {a, b}

3 The Bounded Case

In this section we present our main result, namely we prove that for each bounded
cfl L specified by a cnfg with h variables there exists a regular language R

which is Parikh equivalent to L and it is accepted by a dfa M with 2h
O(1)

states.
Since the proof involves many technical details, we firstly give an informal

explanation. We describe how the language R is chosen and how the dfa M
accepting R operates.

Let us start by considering the case of a strongly bounded grammar with
a terminal alphabet consisting of two symbols a1 = a and a2 = b. Given a
production A → BC, if A is nonunary then at most one variable between B
and C can be nonunary. Furthermore, each sentential form derived from A can
contain at most one nonunary variable. On the other hand, if A is unary then
both B and C must be unary.

Suppose the grammar produces the tree in Figure 1. The variables A,A′, B,B′

are unary, while S,X, Y are nonunary. The tree derives the string w = a6b6.
The dfa M given by our construction will simulate the derivation process, ex-

panding unary variables as soon as possible, and verifying the matching between
terminal symbols so derived and the symbols in the input string. According to
this strategy, the first part of the derivation described by the tree in Figure 1 is

S ⇒ AX
�⇒ a2X ⇒ a2A′Y ⇒ a3Y ⇒ a3Y B

�⇒ a3Y b2 ⇒ . . .

Parikh’s Theorem and Descriptional Complexity 365

Hence, the string recognized in this way starts with a3b2. In particular, the
dfa M will accept the string wπ = a3b4ab2a2 which is clearly Parikh equivalent
to w.

However, the derivation process is strictly nondeterministic, while our pur-
pose is to obtain a deterministic automaton. To achieve this goal, the recognition
process is “driven” by the structure of the input string. In particular, the com-
putation of M is a sequence of phases, each one of them scanning a longest input
factor consisting of occurrences of a same symbol. During a phase, M simulates
a suitable finite automaton.

The dfa M keeps in each state q a set Vq of variables of the grammar. Suppose
that M from q starts a phase having at, t > 0, as next longest input factor
consisting of the same symbol. Then M computes the set of variables that can
be “reached” from variables in Vq by reading at, namely Vq′ = {Y ∈ V | X �⇒
atY,X ∈ Vq}. This set will be stored in the new state q′. Since unary cfls are
regular [11], this computation can be performed using a finite state control. In
a similar way the automaton M can manage factors consisting of occurrences
only of the letter b.

In the initial state M remembers only the variable S. Then it starts to operate
on the longest input prefix consisting of a same symbol. In our example with
input wπ = a3b4ab2a2, this prefix is a3. M simulates a dfa MS that on input
at computes the set ΛS(a

t) consisting of all variables Z such that S
�⇒ atZ.

According to the tree in the picture, we can observe that Y ∈ ΛS(a
3). Now, the

next input symbol is b. The automaton M applies a similar procedure for the
factor b4, in particular, simulating a dfa MY , associated with the variable Y ,
it computes the set of variables ΛY (b

4) = {Z | Y �⇒ Zb4}. Using this procedure
on the string wπ = a3b4ab2a2, the following steps lead to the acceptance:

Y ∈ ΛS(a
3), X ∈ ΛY (b

4), Y ∈ ΛX(a), A ∈ ΛY (b
2), and finally ε ∈ ΛA(a

2).

Notice that the last step starts from the unary variable A. In this case the
function ΛA(a

t) returns ε if and only if at can be derived from A, reaching in
this way the end of the derivation. The corresponding steps in the derivation are
as follows (in Figure 1 the variables considered in these steps are represented in
boldface):

S
�⇒ a3Y

�⇒ a3Xb4
�⇒ a4Y b4

�⇒ a4Ab6
�⇒ a6bb.

In the example we present only a successful path, but the automaton M will
examine in parallel different paths, by keeping in its state a set of variables.

Why we choose wπ = a3b4ab2a2 as representative of w and not another string,
as for instance w′ = a3b4a3b2?

In the derivation process, eventually a nonunary variable whose both sons in
the tree are unary will be found (in the previous derivation the variable Y in the
sentential form a4Y b4). In this situation we always firstly choose to expand the
variable on the right, remembering the other one in the state, to be expanded
later. This choice turns out to be useful for alphabets with more than two letters.

Consider now the tree (generated by a different strongly bounded grammar)
in Figure 2. In this case the terminal alphabet is {a, b, c}. It is possible to observe

366 G.J. Lavado and G. Pighizzini

S

�����

�����

A

a

A′

a

A′
�� ��

X

�����

�����

a

A′ Y

�����

�����

C

c

C′

c

C′
�� ��

Y

�����

�����

c

C′X

�����

�����

a

A′ Y

�����

�����

Z

�
��

�
��

a

A′ Z′

�
��

�
��

b

B′Z

�
��

�
��

a

A′
Z′

�
��

�
��

a

A′
B

b

B′

b

B′
�� ��

A′

W

�
��

�
��

b

B′ W

�
��

�
��

b

B′ W ′

�
��

�
��

c

C′W

�
��

�
��

B

b

B′

b

B′
�� ��

C

c

C′

c

C′
�� ��

B

Fig. 2. Example with Σ = {a, b, c}

that, with this alphabet, each sentential form which is derivable from a nonunary
variable can contain at most 2 nonunary variables.

The string produced by the tree is w = a7b7c6. The Parikh equivalent string
recognized by our automaton M is wπ = a3c3a2bab2ab2c3b2. In this case:

Y ∈ ΛS(a
3), X ∈ ΛY (c

3), Z ′W ∈ ΛX(a2), Z ∈ ΛZ′(b), Z ′ ∈ ΛZ(a),

A′ ∈ ΛZ′(b2), ε ∈ ΛA′(a),W ′ ∈ ΛW (b2), B ∈ ΛW ′(c3), ε ∈ ΛB(b
2).

Notice that ΛX(a2) gives a sequence of two nonunary variables due the fact
that in the right son of the node with label X (the second node with label X
from the top) the production Y → ZW is applied. With this production, the
nonunary variable Y , generating a subset of a∗b∗c∗ is “split” in Z and W that
can generate, respectively, subsets of a∗b∗ and b∗c∗.

Parikh’s Theorem and Descriptional Complexity 367

The two subtrees produce the strings z′ = a3b3 and z′′ = b4c3, whose concate-
nation is z = a3b7c3. Reading z as input, a finite automaton cannot have any
information about which prefix and suffix should be associated to the left and
to the right subtree. Hence, the factor b7 should be split, introducing some kind
of nondeterminism, between the two subtrees. This problem is avoided using the
strategy above described. The sons of the node with label Z ′ closest to the leaves
are unary variables: the factor produced by the rightmost one is firstly chosen. In
particular, with our strategy the strings corresponding to the subtrees rooted Z
and W we will consider are z′π = abab2a =π a

3b3 and z′′π = b2c3b2 =π b
4c3. In this

way, the last symbol of z′π cannot occur in the string z′′π and, in general, an input
factor consisting of a same symbol cannot be split over two independent subtrees.
This allows us to avoid of dealing with a possible source of nondeterminism.

Now, we start to present the proof of our main result. To this aim, from now
on we fix a strongly bounded cnfg G with h variables, generating a subset of
a∗1 · · ·a∗m. We need some preliminary notions and lemmas.

A sequence of variables A1 · · ·Ak ∈ V ∗ is said to be valid when:

– lA1 ≤ rA1 ≤ lA2 ≤ rA2 ≤ · · · ≤ lAk
≤ rAk

, and

– if 1 ≤ j < k and Aj is unary then rAj < lAj+1 .

The set of all valid sequences will be denoted as Υ . The set of valid sequences
without unary variables is denoted by Υ0. The empty sequence from Υ is denoted
as the empty word by ε. Notice that the length of a valid sequence is at most
m. Hence, the cardinality of Υ is a polynomial in h.

Lemma 1. Let A
�⇒ w be a derivation in G of a string w ∈ Σ∗ from a nonunary

variable A. Then:

(i) A
�⇒ atlAA1 · · ·Ak

�⇒ w, for some t ≥ 0, k > 0, A1 · · ·Ak ∈ Υ0, such that:

– either the right son of A1 is unary,

– or t > 0 and lA < lA1 .

(ii) A
�⇒ A1 · · ·Aka

t
rA

�⇒ w, for some t ≥ 0, k > 0, A1 · · ·Ak ∈ Υ , such that:

– if k > 1 then A1, . . . , Ak−1 are nonunary,

– either Ak and its right son are nonunary,

– or t > 0 and rAk
< rA.

For each variable A ∈ V , we now introduce a function ΛA : a∗lA ∪ a∗rA → 2Υ such
that for each t ≥ 0:

– if A is unary, i.e., lA = rA, then ΛA(a
t
lA
) =

{
{ε} if A �⇒ atlA
∅ otherwise

– if A is nonunary then:

• A1 · · ·Ak ∈ ΛA(a
t
lA
) if and only if A1 · · ·Ak ∈ Υ0 and A

�⇒ atlAA1 · · ·Ak,

• A1 · · ·Ak ∈ ΛA(a
t
rA) if and only if A1 · · ·Ak ∈ Υ and A

�⇒ A1 · · ·Aka
t
rA

and either Ak is nonunary or rAk
< rA.

368 G.J. Lavado and G. Pighizzini

In the following, we say that a function f : Σ∗ → Γ , where Γ is a finite set, is
computable by an automaton, if there exists a dfa M such that all the strings
leading from the initial state to a same state have the same image by f . In other
words, we can associate an output with each state of M (as in classical Moore’s
machines) such that the value of f(x) is the output associated with the state
reached on x.

Lemma 2. The function ΛA can be computed by a dfa MA with 2h
O(1)

states.

Proof. (outline) In [10, Theorem 6] it is proved that for each unary cnfg with

h ≥ 2 variables there exists an equivalent dfa with less than 2h
2

states. Given a
unary variable A, the dfa MA can be obtained by applying that construction to
the grammar obtained from G by replacing the start symbol with the variable A
and by restricting to the symbols which are reachable from A.

The same argument can be modified to manage the case of a nonunary vari-
able A. To this aim, it is useful an extension of the Ogden Lemma [16,17]:
sufficiently long strings can be pumped after fixing some “excluded” positions
that are not used to pump. This allows us to generalize Lemma 2 from [10], by

considering all derivations of the form A
�⇒ atlAA1 · · ·Ak or A

�⇒ A1 · · ·Aka
t
rA ,

for fixed variables A1 · · ·Ak.
With such a change, it is possible to extend Theorem 6 from [10], by proving

the existence of a dfa MA,A1···Ak
with 2h

O(1)

states which accepts atlA if and

only if A
�⇒ atlAA1 · · ·Ak and which accepts atrA if and only if A

�⇒ A1 · · ·Aka
t
rA .

The dfa MA simulates in parallel the dfas MA,A1···Ak
, for all A1 · · ·Ak ∈

Υ . Hence MA can be implemented using (2h
O(1)

)#Υ many states. Since #Υ is

bounded by a polynomial in h, the number of states of MA is 2h
O(1)

. !"

We now extend the function Λ in order to consider valid sequences of variables
and unary strings. For α ∈ Υ , t ≥ 0, i = 1, . . . ,m, we define:

Λ(α, ati) = {B1 · · ·Bj−1γBj+1 · · ·Bs | α
�⇒ B1 · · ·Bs ∈ Υ,

lBj = i or rBj = i, j > 1 implies rBj−1 < i, and γ ∈ ΛBj (a
t
i)}.

The function Λ describes some sentential forms containing variables and the
factor ati and which are derivable from the valid sequence α.

– First, from α we can derive another valid sequence B1 · · ·Bs, without gen-
erating any terminal symbol.

– Then, we try to derive the string ati from one of the variables in the sequence,
using the following rules:
• First we check if there is a position j where we can try to derive the
string ati with a rightmost derivation of the form Bj

�⇒ A1 · · ·Aka
t
i,

namely we check if rBj = i. If this is the case, then we compute the possi-
ble sequences γ=A1 · · ·Ak by using the function ΛBj (i.e., the dfaMBj).

• Otherwise (rBj′ �= i for j′ = 1, . . . , s) we check if there is a position j

where the string ati could be derived with a leftmost derivation of the

Parikh’s Theorem and Descriptional Complexity 369

form Bj
�⇒ atiA1 · · ·Ak, namely we check if lBj = i. We notice that

j > 1 implies that rBj−1 < i, otherwise the previous case could be
applied starting from the variable Bj−1. Even in this case we then use
the function ΛBj .

• If even in the last case the answer is negative, i.e., i is different from all
lBj ’s and rBj ’s, then from B1 · · ·Bs we do not add any contribution to
Λ(α, ati).

Lemma 3. Let α ∈ Υ , t ≥ 0, i = 1, . . . ,m. Then Λ(α, ati) is a subset of Υ .

We now extend the domain of Λ to consider strings over Σ∗, by defining, for
α ∈ Υ , w ∈ Σ∗:

Λ(α,w) =

⎧⎨⎩
α if w = ε⋃

β∈Λ(α,w′) Λ(β, a
t
i) if w = w′ati and ati is the longest suffix

of w consisting of a same symbol.

Lemma 4. Let α, α′, β ∈ Υ , A,A′ ∈ V , and w,w′ ∈ Σ∗, such that the last
symbol of w and the first symbol of w′ are different.

(i) If β ∈ Λ(α,w) and αα′ ∈ Υ then βα′ ∈ Λ(αα′, w).
(ii) If A′α ∈ Λ(A,w) and ε ∈ Λ(A′, w′), then α ∈ Λ(A,ww′).

(iii) If ε ∈ Λ(A,w) then A
�⇒πw.

The next lemma is fundamental to obtain our main result. It states that for each
string w derivable from a variable A, we can find a Parikh equivalent string wπ ,
which, in some sense, can be “recognized” by making use of the function Λ.

Lemma 5. Let A
�⇒ w be a derivation in G. Then there exists wπ ∈ Σ∗ such

that wπ =πw and ε ∈ Λ(A,wπ). Furthemore:

– If A is nonunary then the last symbol of wπ is different from arA .
– If both A and its right son are nonunary then even the first symbol of wπ is

different from arA .
– If A is nonunary and its right son is unary then the first symbol of wπ is

different from alA .

At this point we are able to define the regular language we are interested in, and
to prove that it can be accepted by a dfa with a number of states exponential
in a polynomial in h, the number of variables of the grammar G. The language
is defined as:

R(G) = {x ∈ Σ∗ | ε ∈ Λ(S, x)}.

As an immediate consequence of Lemma 4(iii) and of Lemma 5, we get:

Theorem 2. L(G) =πR(G).

Now we give an outline of the construction of a dfa M with 2h
O(1)

states ac-
cepting the language R = R(G).

370 G.J. Lavado and G. Pighizzini

The main idea is to remember in each state a subset of valid sequences in such
a way that the subset associated with the state reached from the initial state
by reading a string w is Λ(S,w). Hence, in the light of the definition and of the
properties of Λ, a string w belongs to R if and only if the subset of Υ associated
with the state reached on w contains the empty sequence. So:

– The subset of Υ associated with the initial state is {S}.
– A state is final if and only if the subset associated with it contains ε.

Now, we describe how the transition function works. Consider a state q and let
A ⊆ Υ be the subset associated with it. Suppose that M in q starts to read an
input factor ati consisting of occurrences of a same input symbol and that either
the symbol which has been read to reach q is other than ai, or q is the initial
state.

Starting from q and reading ati, our goal is to reach a state q′ having as
associated subset A′ =

⋃
α∈A Λ(α, ati). To do that:

– For each α ∈ A, M considers all B1 · · ·Bs ∈ Υ such that α
�⇒ B1 · · ·Bs.

Notice that given α the possible B1 · · ·Bs are fixed.
– For each B1 · · ·Bs, M selects a suitable Bj , if any, according to the definition

of Λ(α, ati). Given B1 · · ·Bs this choice depends only on i, hence it can be
encoded in the transition function of M . (If a suitable Bj does not exist
B1 · · ·Bs does not contribute to Λ(α, ati), for each t > 0, hence it can be
forgotten.)

– M , by keeping this information, simulates the dfa MBj . In this way, af-
ter reading ati, knowing B1 · · ·Bs and the state reached by MBj , M can
reconstruct the contribution to A′ derived from B1 · · ·Bs.

This strategy can be implemented by remembering in each state of M a set A of
valid sequences with states of some of MBj ’s. Since different α ∈ A and B1 · · ·Bs

must be considered, we may need to simulate in parallel different dfas MBj . In
the worst case we have to simulate one dfa for each variable, hence h dfas.

By Lemma 2 each one of them has 2h
O(1)

states. Hence, running all of them in

parallel can be done within 2h
O(1)

states.
Furthermore, the cardinality of Υ is bounded by a polynomial in h, hence the

number of possible subsets of Υ is 2h
O(1)

. This permit us to conclude that the

dfa M can be implemented with 2h
O(1)

states.
We can now prove our main result.

Theorem 3. Let Σ = {a1, a2, . . . , am}. For each cnfg with h variables gener-

ating a bounded language L ⊆ a∗1a
∗
2 · · · a∗m, there exists a dfa with at most 2h

O(1)

states accepting a regular language Parikh equivalent to L.

Proof. If G is strictly bounded then the result is an immediate consequence of
Theorem 2 and of the above outlined construction. Otherwise, we can apply the
construction given in Section 2, to get from G a set V ′ of O(h) variables, a set
P ′ of productions and m(m+1)/2 grammars using V ′ and P ′ and differing only

Parikh’s Theorem and Descriptional Complexity 371

in the start symbol, such that the union of the languages generated by them
is L(G). We can construct the dfa M , as above explained, starting from the
sets V ′ and P ′ and by choosing as initial state the set of all start symbols of
those grammars. !"
In [10], it is proven that for infinitely many integers h there exists a unary lan-
guage which is generated by a cnfg with h variables, such that each equivalent
dfa requires at least 2ch

2

states. Hence, the upper bound given in Theorem 3
cannot be reduced.

We leave as an open problem to give a tight estimation of the exponent of h
in the upper bound.

4 The General Case

In this section we discuss the case of general cfls, hence by removing the restric-
tion to the bounded case. We start by extending the result stated in Theorem 3
to all cfls defined over a binary alphabet. The proof mainly relies on a result
presented in [8, Theorem 11], which can be formulated as follows:

Theorem 4. Let G = (V,Σ, P, S) be a cnfg with h variables and a terminal
alphabet of two letters, and L = L(G). Then ψ(L) =

⋃
i∈I Zi, where #I = O(h2)

and Zi ⊆ N2 has the form

Zi =
⋃

α0∈Wi

{α0 + α1,in+ α2,im | n,m ≥ 0},

where Wi is a finite subset of N2 and the integers in the vectors of Wi and in α1,i

and α2,i do not exceed 2h
c

, for a constant c > 0.

Using Theorem 4 we are able to prove:

Theorem 5. For each cnfg G with h variables and a terminal alphabet of two

letters there exists a dfa with at most 2h
O(1)

states accepting a regular language
Parikh equivalent to L(G).

Proof. (outline) First, we can express ψ(L) as the union of a polynomial number
of sets Zi, according to Theorem 4. We can give a construction to build for each

i ∈ I a dfa Mi with 2h
O(1)

states accepting a language Ri such that ψ(Ri) = Zi.
Finally, we can define a dfa M which simulates in parallel all Mi’s, in order to
recognize R =

⋃
i∈I Ri. Clearly L =π R. Furthemore, from #I = O(h2) we can

conclude that the number of states of M is 2h
O(1)

. !"
We do not know whether or not the result stated in Theorem 5 can be extended to
larger alphabets. In [8] a language L showing that Theorem 4 cannot be extended
to an alphabet of three letters is presented. However, the counterexample L is of
the form (L′c)∗, where L′ ⊆ {a, b}∗ is a cfl. We can easily see that the proof of
Theorem 5 can be extended to languages of that form. So L cannot be used as
counterexample to show that Theorem 5 does not hold in the three letter case.

Hence, we conclude the paper by leaving as open problem the extension of
Theorem 5 to languages defined over alphabet with at least three letter.

372 G.J. Lavado and G. Pighizzini

References

1. Parikh, R.J.: On context-free languages. J. ACM 13(4), 570–581 (1966)
2. Goldstine, J.: A simplified proof of Parikh’s theorem. Discrete Mathematics 19(3),

235–239 (1977)
3. Huynh, D.T.: The Complexity of Semilinear Sets. In: de Bakker, J.W., van

Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 324–337. Springer, Heidelberg
(1980)

4. Aceto, L., Ésik, Z., Ingólfsdóttir, A.: A fully equational proof of Parikh’s theorem.
RAIRO - Theoretical Informatics and Applications 36(2), 129–153 (2002)

5. Ginsburg, S., Spanier, E.H.: Semigroups, Presburger formulas, and languages. Pa-
cific J. Math. 16(2), 285–296 (1966)

6. Esparza, J.: Petri nets, commutative context-free grammars, and basic parallel
processes. Fundam. Inform. 31(1), 13–25 (1997)

7. Verma, K.N., Seidl, H., Schwentick, T.: On the Complexity of Equational
Horn Clauses. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632,
pp. 337–352. Springer, Heidelberg (2005)

8. Kopczyński, E., To, A.W.: Parikh images of grammars: Complexity and applica-
tions. In: Symposium on Logic in Computer Science, pp. 80–89 (2010)

9. Esparza, J., Ganty, P., Kiefer, S., Luttenberger, M.: Parikh’s theorem: A sim-
ple and direct automaton construction. Information Processing Letters 111(12),
614–619 (2011)

10. Pighizzini, G., Shallit, J., Wang, M.: Unary context-free grammars and pushdown
automata, descriptional complexity and auxiliary space lower bounds. Journal of
Computer and System Sciences 65(2), 393–414 (2002)

11. Ginsburg, S., Rice, H.G.: Two families of languages related to ALGOL. J. ACM 9,
350–371 (1962)

12. Gruska, J.: Descriptional complexity of context-free languages. In: MFCS, Mathe-
matical Institute of the Slovak Academy of Sciences, pp. 71–83 (1973)

13. Ginsburg, S., Spanier, E.H.: Bounded Algol-like languages. Transactions of the
American Mathematical Society 113(2), 333–368 (1964)

14. Malcher, A., Pighizzini, G.: Descriptional Complexity of Bounded Context-Free
Languages. In: Harju, T., Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS,
vol. 4588, pp. 312–323. Springer, Heidelberg (2007)

15. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley (1979)

16. Bader, C., Moura, A.: A generalization of Ogden’s lemma. J. ACM 29, 404–407
(1982)

17. Dömösi, P., Kudlek, M.: Strong Iteration Lemmata for Regular, Linear, Context-
Free, and Linear Indexed Languages. In: Ciobanu, G., Păun, G. (eds.) FCT 1999.
LNCS, vol. 1684, pp. 226–233. Springer, Heidelberg (1999)

A Combinatorial Algorithm for All-Pairs

Shortest Paths in Directed Vertex-Weighted
Graphs with Applications to Disc Graphs

Andrzej Lingas1 and Dzmitry Sledneu2

1 Department of Computer Science, Lund University, 22100 Lund, Sweden
Andrzej.Lingas@cs.lth.se

2 The Centre for Mathematical Sciences, Lund University, 22100 Lund, Sweden
Dzmitry.Sledneu@math.lu.se

Abstract. We consider the problem of computing all-pairs shortest
paths in a directed graph with non-negative real weights assigned to
vertices.

For an n× n 0− 1 matrix C, let KC be the complete weighted graph
on the rows of C where the weight of an edge between two rows is equal
to their Hamming distance. Let MWT (C) be the weight of a minimum
weight spanning tree of KC .

We show that the all-pairs shortest path problem for a directed graph
G on n vertices with non-negative real weights and adjacency matrix AG

can be solved by a combinatorial randomized algorithm in time1

Õ(n2
√

n+min{MWT (AG),MWT (At
G)})

As a corollary, we conclude that the transitive closure of a directed graph
G can be computed by a combinatorial randomized algorithm in the
aforementioned time.

We also conclude that the all-pairs shortest path problem for vertex-
weighted uniform disk graphs induced by point sets of bounded density
within a unit square can be solved in time Õ(n2.75).

1 Introduction

The problems of finding shortest paths and determining their lengths are funda-
mental in algorithms. They have been extensively studied in algorithmic graph
theory. A central open question in this area is if there is a substantially subcu-
bic in the number of vertices algorithm for the all-pairs shortest path problem
for directed graphs with real edge weights (APSP) in the addition-comparison
model [24,27]. For several special cases of weights and/or graphs substantially
subcubic algorithms for the APSP problem are known [3,8,23,25,26,27]. How-
ever, in the general case the fastest known algorithm due to Chan [8] (see also

1 The notation Õ() suppresses polylogarithmic factors and Bt stands for the trans-
posed matrix B.

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 373–384, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

374 A. Lingas and D. Sledneu

[9]) runs in time O(n3 log3 logn/ log2 n), achieving solely a moderate polylog-
arithmic improvement over the O(n3) bound yielded by Floyd-Warshall and
Johnson’s algorithms [1,27].

The situation is different for directed graphs with real vertex weights. Re-
cently, Chan has shown that the APSP problem for the aforementioned graphs
can be solved in time O(n2.844) [8] and Yuster has slightly improved the latter
bound to O(n2.842) by using an improved bound on rectangular multiplication
[25].

The basic tool in achieving substantially subcubic upper bounds on the run-
ning time for the APSP for directed graphs with constrained edge weights or
real vertex weights are the fast algorithms for arithmetic square and rectangu-
lar matrix multiplication [10,14]. One typically exploits here the close relation-
ship between the APSP problem and the so called distance or (min,+) product
[3,23,24,25,27,26].

Unfortunately, these fast algorithms for matrix multiplication, yielding equally
fast algorithms for Boolean matrix product, are based on recursive algebraic ap-
proaches over a ring difficult to implement. Thus, another central question in
this area is whether or not there is a substantially subcubic combinatorial (i.e.,
not relaying on ring algebra) algorithm for the Boolean product of two n × n
Boolean matrices [4,22,24]. Again, the fastest known combinatorial algorithm
for Boolean matrix product due to Bansal and Williams [4] running in time

O(n3 log2 logn/ log9/4 n) achieves solely a moderate polylogarithmic improve-
ment over the trivial O(n3) bound. On the other hand, several special cases of
Boolean matrix product admit substantially subcubic combinatorial algorithms
[5,13,20].

In particular, Björklund et al. [5] provided a combinatorial randomized algo-
rithm for Boolean matrix product which is substantially subcubic in case the
rows of the first n× n matrix or the columns of the second one are highly clus-
tered, i.e., their minimum spanning tree in the Hamming metric has low cost.
More exactly, their algorithm runs in time Õ(n(n+ c)), where c is the minimum
of the costs of the minimum spanning trees for the rows and the columns, re-
spectively, in the Hamming metric. It relies on the fast Monte Carlo methods
for computing an approximate minimum spanning tree in the L1 and L2 metrics
given in [16,17].

The assumption that the input directed graph is highly clustered in the sense
that the minimum spanning tree of the rows or columns of its adjacency matrix
in the Hamming metric has a subquadratic cost does not yield any direct applica-
tions of the algorithm of Björklund et al. [5] to shortest path problems, not even
to the transitive closure. The reason is that the cost of the analogous minimum
spanning tree can grow dramatically in the power graphs2 of the input graph.
In particular, we cannot obtain directly an upper time-bound on the transitive
closure of Boolean matrix corresponding to that for the Boolean matrix product
from [5] by applying the asymptotic equality between the time complexity of

2 In the i-th power graph there is an edge from v to u if there is a path composed of
at most i edges from v to u in the input graph.

A Combinatorial Algorithm for All-Pairs Shortest Paths 375

matrix product over a closed semi-ring and that of its transitive closure over the
semi-ring due to Munro [21]. The reason is the dependence of the upper bound
from [5] on the cost of the minimum spanning tree.

In this paper, we extend the idea of the method from [5] to include a mixed
product of a real matrix with a Boolean one. We combine the aforementioned
extension with the ideas used in the design of subcubic algorithms for important
variants of the APSP problem [3,26], in particular those for directed graphs with
vertex weights [8,25], to obtain not only a substantially subcubic combinatorial
algorithm for the transitive closure but also for the APSP problem in highly
clustered directed graphs with real vertex weights.

For an n×n 0−1matrixC, letKC be the complete weighted graph on the rows
of C where the weight of an edge between two rows is equal to their Hamming dis-
tance. LetMWT (C) be the weight of a minimum weight spanning tree ofKC .We
show that the all-pairs shortest path problem for a directed graphG on n vertices
with non-negative realweights and an adjacencymatrixAG canbe solvedby a com-
binatorial randomized algorithm in Õ(n2

√
n+min{MWT (AG),MWT (At

G)})
time. It follows in particular that the transitive closure of a directed graphG can be
computed by a combinatorial randomized algorithm in the aforementioned time.

Our algorithms are of Monte Carlo type and by increasing the polylogarithmic
factor at the time bounds, the probability that they return a correct output
within the bounds can be amplified to 1− 1

nα , where α ≥ 1.
Since there are no practical or combinatorial substantially subcubic-time algo-

rithms not only for the APSP problem but even for the transitive closure problem
for arbitrary directed graphs at present, our simple adaptive method might be a
potentially interesting alternative for a number of graph classes.

As an example of an application of our method, we consider the APSP problem
for vertex-weighted uniform disk graphs induced by point sets of bounded density
within a unit square. We obtain a combinatorial algorithm for this problem
running in time O(

√
rn2.75), where r is the radius of the disks around the vertices

in a unit square.
The recent interest in disk graphs, in particular uniform disk graphs, stems from

their applications in wireless networks. In this context, the restriction to point sets
of bounded density is quite natural. In [11], Fürer andKasiviswanathanprovided a
roughlyO(n2.5)-time preprocessing for approximate O(

√
n)-time distance queries

in arbitrary disk graphs.
Our paper is structured as follows. In the next section, we show a reduction

of the APSP problem for directed graphs with real vertex-weights to a mixed
matrix product of a distance matrix over reals with the 0− 1 adjacency matrix.
In Section 3, we present an algorithm for such a mixed product which generalizes
that for the Boolean matrix product from [5] and runs in subcubic time if the
input 0− 1 matrix is highly clustered. By combining the results of Sections 2,3,
we can derive our main results in Section 4. In the next section, we present
the application of our method to uniform disk graphs induced by point sets of
bounded density. We conclude with final remarks.

376 A. Lingas and D. Sledneu

2 A Reduction of APSP to Mixed Matrix Products

2.1 The APSP Problem

Formally, the All-Pairs Shortest Paths problem (APSP) in a directed graph
G = (V,E) with real weights w(v) associated to vertices v ∈ V is to compute
the |V | × |V | distance matrix DG such that DG(v, u) is the distance δG(v, u)
from v to u in G, i.e., the minimum total weight of vertices on a path from v to
u in G. An additional goal of the APSP problem is to compute a concise data
structure representing the shortest paths.

Note that δG(v, u) is equal to the minimum total weight of inner vertices on
a path from v to u in G increased by the weights of v and u.

We shall assume |V | = n throughout the paper.
For i = 0, 1, ..., n − 1, let δiG(v, u) be the distance from v to u on paths

consisting of at most i edges, i.e., the minimum total weight of vertices on a
path from v to u having at most i edges in G. Next, let Di

G be the |V | × |V |
matrix such that Di

G[v, u] is equal to δiG(v, u).
For convention, we assume δ0G(v, v) = 0 and δ0G(v, u) = +∞ for v �= u. Hence,

D0
G has zeros on the diagonal and +∞ otherwise. In D1

G, all the entries D
1
G[v, u]

where (v, u) ∈ E are set to w(v) +w(u) instead of +∞. Thus, both D0
G and D1

G

can be easily computed in time O(n2).

2.2 Mixed Matrix Products

Let A be an n × n matrix over R ∪ {+∞}, and let B be an n × n matrix with
entries in {0, 1}. The mixed right product C of A and B is defined by

C[i, j] = min{A[i, k]|1 ≤ k ≤ n & B[k, j] = 1} ∪ {+∞}.
If C[i, j] �= +∞ then the index k such that C[i, j] = A[i, k] (and thus B[k, j] =

1) is called a witness for C[i, j]. Analogously, the mixed left product C′ of B and
A is defined by

C′[i, j] = min{A[k, j]|1 ≤ k ≤ n & B[i, k] = 1} ∪ {+∞},

and if C ′[i, j] �= +∞ then the index k such that C′[i, j] = A[k, j] is called a
witness for C′[i, j].

An n×nmatrixW such that wheneverC[i, j] �= +∞ thenW [i, j] is a witnesses
for C[i, j] is called a witness matrix for the right mixed product of A and B.
Analogously, we define a witness matrix for the left mixed product of B and A.

2.3 The Reduction

Let AG denote the n × n adjacency matrix of G = (V,E), i.e., AG[v, u] = 1 iff
(v, u) ∈ E.

Lemma 1. For an arbitrary i ∈ {0, 1, ..., n− 2}, Di+1
G can be computed on the

basis of Di
G and the right mixed product of Di

G with AG or Di
G and the left mixed

product of AG with Di
G in time O(n2).

A Combinatorial Algorithm for All-Pairs Shortest Paths 377

Proof. It is sufficient to observe that for any pair v, u of vertices in G, Di+1
G [v, u]

is equal to

min{Di
G[v, u],min{Di

G[v, x] + w(u)|1 ≤ x ≤ n & AG[x, u] = 1} ∪ {+∞}}

Symmetrically Di+1
G [v, u] is equal to

min{Di
G[v, u],min{Di

G[x, u] + w(v)|1 ≤ x ≤ n & AG[v, x] = 1} ∪ {+∞}}

!"

The following lemma follows the general strategy used to prove Theorem 3.4
in [8].

Lemma 2. Let G be a directed graph G on n vertices with non-negative real
vertex weights. Suppose that the right (or left) mixed product of an n×n matrix
over R∪{+∞} with the adjacency matrix AG of G along with the witness matrix
can be computed in time Tmix(n) = Ω(n2). The APSP problem for G can be

solved in time Õ(n1.5
√

Tmix(n)).

Proof. We begin by computing Dt−1
G for some t ∈ [2, ..., n] which will be specified

later. By Lemma 1 this computation takes time O(tTmix(n)).
It remains to determine distances between pairs of vertices where any shortest

path consists of at least t edges. For this purpose, we determine a subset B of
V, the so called bridging set [26], hitting all the aforementioned long paths. We
apply the following fact to l = t and sets of t vertices on shortest consisting of
exactly t− 1 edges, similarly as in [3,8,25,26].

Fact 1. Given a collection of N subsets of {1, ..., n}, where each subset has size
exactly l, we can find a subset B of size O((n/l) logn) that hits all subsets in the
collection in time O(Nl).

Since our application of Fact 1 is analogous to those in [3,8,25,26], we solely
sketch it referring the reader for details to the aforementioned papers.

Note that for each pair v, u, of vertices for which any shortest path has at
least t edges there is a pair v′, u′ of vertices on a shortest path from v to u
such that any shortest path from v′ to u′ has exactly t − 1 edges. For all such
pairs v′, u′, we can find a shortest path on t − 1 edges, and thus on t vertices,
by backtracking on the computation of Dt−1

G and using witnesses for the mixed
products. In total, we generate O(n2) such paths on t vertices in time O(tn2).
The application of Fact 1 also takes time O(tn2).

Next, we run Dijkstra’s single-source shortest path algorithm [1] for all vertices
in the bridging set B in the input graph G and in the graph resulting from
reversing the direction of edges in G. In this way, we determine DG[v, u] for all
pairs (v, u) ∈ (B × V) ∪ (V ×B).

Now, it is sufficient for all remaining pairs (v, u) in V × V to set

DG[v, u] = min{Dt−1
G (v, u),min

b∈B
{DG[v, b] +DG[b, u]− w(b)}

in order to determine the whole DG.

378 A. Lingas and D. Sledneu

The computation of Dt−1
G takes O(tTmix(n)) time which asymptotically is not

less than the O(tn2) time taken by the construction of the bridging set. The runs

of Dijkstra’s algorithm and the final computation of DG require Õ(nt n
2) time.

By setting t =
√

n3

Tmix(n)
, we obtain the lemma. !"

3 Fast Computation of the Mixed Products for Clustered
Data

Our algorithm for the right (or, left) mixed product relies on computation of an
approximate minimum spanning tree of the columns (or rows, respectively) of
the Boolean input matrix in the Hamming metric.

3.1 Approximate Minimum Spanning Tree in High Dimensional
Space

For c ≥ 1 and a finite set S of points in a metric space, a c-approximate minimum
spanning tree for S is a spanning tree in the complete weighted graph on S, with
edge weights equal to the distances between the endpoints, whose total weight
is at most c times the minimum.

In [16] (section 4.3) and [15] (section 3), Indyk and Motwani in particular con-
sidered the bichromatic ε-approximate closest pair problem for n points in Rd

with integer coordinates in O(1) under the Lp metric, p ∈ {1, 2}. They showed
that there is a dynamic data structure for this problem which supports insertions,
deletions and queries in time O(dn1/(1+ε)) and requires O(dn+n1+1/(1+ε))-time
preprocessing. In consequence, by a simulation of Kruskal’s algorithm they de-
duced the following fact.

Fact 2. For ε > 0, a 1 + ε-approximate minimum spanning tree for a set of n
points in Rd with integer coordinates in O(1) under the L1 or L2 metric can be
computed by a Monte Carlo algorithm in time O(dn1+1/(1+ε)).

In [17] Indyk, Schmidt and Thorup reported even slightly more efficient (by a
poly-log factor) reduction of the problem of finding a 1+ε-approximate minimum
spanning tree to the bichromatic ε-approximate closest pair problem via an easy
simulation of Prim’s algorithm.

Note that the L1 metric for points in Rn with 0, 1-coordinates coincides
with the n-dimensional Hamming metric. Hence, Fact 2 immediately yields the
following corollary.

Corollary 1. For ε > 0, a 1 + ε-approximate minimum spanning tree for a set
of n 0− 1 strings of length n under the Hamming metric can be computed by a
Monte Carlo algorithm in time O(n2+1/(1+ε)).

3.2 The Algorithm for Mixed Matrix Product

The idea of our combinatorial algorithm for the right mixed product C of A
with B and its witness matrix is a generalization of that from [5]. Let P (r, v)

A Combinatorial Algorithm for All-Pairs Shortest Paths 379

denote a priority queue (implemented as a heap) on the entries A[r, k] such that
B[k, v] = 1 ordered by their values in nondecreasing order.

First, we compute an approximate minimum spanning tree of the columns of
B in the Hamming metric. Then, we fix a traversal of the tree. Next, for each row
r of A, we traverse the tree, construct P (r, start) where start is the first column
of B in the tree traversal and then maintain P (r, v) for the currently traversed v
by updating P (r, u) where u is the predecessor of v in the traversal. A minimum
element in P (r, v) yields a witness for C[r, v]. The cost of the updates in a single
traversal of the tree is proportional to the cost of the tree modulo a logarithmic
factor.�

�

�

�

Algorithm 1.
Input: n× n matrix A over R ∪ {+∞} and an n× n Boolean matrix B;
Output: A witness matrix W for the right mixed product C of A and B.
Comment: P (r, v) stands for a priority queue on the entries A[r, k] s.t. B[k, v] = 1
ordered by their values in nondecreasing order.

1. Compute an O(log n)-approximate minimum spanning tree TB of the columns
of B in the Hamming metric;

2. Fix a traversal of the tree TB linear in its size;
3. Set start to the first node of the traversal;
4. For each pair of consecutive neighboring columns v, u in the traversal, pre-

compute the set Dv,u of positions where 1s occur in v but not in u and the set
Du,v of positions where 1s occur in u but not in v;

5. For each row r of A do
– Construct the priority queue P (r, start) and if P (r, start) �= ∅ set

W [r, start] to the index k where A[r, k] is the minimum element in
P (r, start);

– Traverse the tree TB and for each node v different from start compute
the priority queue P (r, v) from the priority queue P (r, u), where u is the
predecessor of v in the traversal, by utilizing Dv,u and Du,v. If P (r, v) �= ∅
set W [r, v] to the index k where A[r, k] is the minimum element in P (r, v).

Lemma 3. Algorithm 1 is correct, i.e., it outputs the witnesses matrix for the
right mixed product of matrices A and B.

For an n × n Boolean matrix C, let KC be the complete weighted graph on
the rows of C where the weight of an edge between two rows is equal to their
Hamming distance. Next, let MWT (C) be the weight of a minimum weight
spanning tree of KC .

Lemma 4. Algorithm 1 can be implemented in time Õ(n(n+MWT (Bt)))+t(n),
where t(n) is the time taken by the construction of the O(log n)-approximate
minimum weight spanning tree in step 1.

Proof. Step 1 can be implemented in time t(n) while steps 2,3 take time O(n).
Step 4 takes O(n2) time. The block in Step 5 is iterated n times.

The first step in the block, i.e., the construction of P (r, start) takes O(n log n)
time. The update of P (r, u) to P (r, v) takes O(log n(|Dv,u|+ |Du,v|)) time. Note

380 A. Lingas and D. Sledneu

that |Dv,u| + |Du,v| is precisely the Hamming distance between the columns v
and u. It follows by the O(log n) approximation factor of TB that the total time
taken by these updates is O(MWT (Bt) log2 n).

We conclude that Step 5 can be implemented in time Õ(nMWT (Bt)). !"

Theorem 1. The right mixed product of two n× n matrices A over R ∪ {+∞}
and B over {0, 1} can be computed by a combinatorial randomized algorithm in

time Õ(n(n+MWT (Bt))). Analogously, the left mixed product of B and A can be

computed by a combinatorial randomized algorithm in time Õ(n(n+MWT (B))).

Proof. By Corollary 1, an Θ(log n)-approximate minimum spanning tree can be

constructed by a Monte Carlo algorithm in time Õ(n2) (observe that n1/f = O(1)
if f = Ω(log n)). Hence, by Lemmata 3, 4, we obtain the theorem for the right
mixed product. The upper bound on the time required to compute the left mixed
product follows symmetrically. !"

4 Main Results

Lemma 2 combined with Theorem 1 yield our main result.

Theorem 2. Let G a directed graph G on n vertices with non-negative real ver-
tex weights. The all-pairs shortest path problem for G can be solved by a combina-
torial randomized algorithm in time Õ(n2

√
n+min{MWT (AG),MWT (At

G)}).

By setting vertex weights, say, to zero, we obtain immediately the following
corollary.

Corollary 2. The transitive closure of a directed graph G on n vertices can be
computed by a combinatorial randomized algorithm in time
Õ(n2

√
n+min{MWT (AG),MWT (At

G)}).

Equivalently, we can formulate Corollary 2 as follows.

Corollary 3. The transitive closure of an n × n Boolean matrix B (over the
Boolean semi-ring) can be computed by a combinatorial randomized algorithm in

time Õ(n2
√

n+min{MWT (B),MWT (Bt)}).

5 APSP in Vertex-Weighted Uniform Disk Graphs of
Bounded Density

In this section, we consider uniform disk graphs that are induced by a set P of
n points in a unit square in the plane that are b(n)-dense, where b : N → N.
Formally, we say that P is b(n)-dense iff each cell of the regular

√
n ×√n grid

within the unit square contains at most b(n) points. The vertices of such an
induced disk graph are the points in P , and two vertices are adjacent in the
graph iff their Euclidean distance is at most r, where r is a positive constant not
exceeding 1. We shall term the aforementioned graphs as uniform disk graphs
induced by b(n)-dense point sets.

A Combinatorial Algorithm for All-Pairs Shortest Paths 381

Lemma 5. Given two intersecting disks on the plane of the same radius r with
the distance d between centers, the area of the symmetric difference is O(rd).

A

B

C D

Proof. AC = d
2 , AB = r.

The area of the triangle ABC is

AreaABC =
1

2
ACBC =

1

2

d

2

√
r2 − d2

4
=

1

8
d
√

4r2 − d2.

The area of the circular sector ABD is

AreaABD =
1

2
r2∠BAC =

1

2
r2 arccos

(
d

2r

)
.

The area of BCD is AreaBCD = AreaABD −AreaABC .
The area of the symmetric difference

Area = 2(πr2 − 4AreaBCD) = 2πr2 − 4r2 arccos

(
d

2r

)
+ d

√
4r2 − d2.

Finally, by using Taylor series expansion

4r2 arccos

(
d

2r

)
= 4r2

(
π

2
− d

2r
+O

((
d

2r

)2
))

=

= 2πr2 − 2dr +O(d2) = 2πr2 − 2dr +O(rd)

and
√
4r2 − d2 ≤ 2r we get Area = O(rd). !"

Lemma 6. Let G be a uniform disk graph induced by a b(n)-dense point set.
For each edge (v, u) of G, the number of vertices in G that are a neighbor of
exactly one of the vertices v, u, i.e., the Hamming distance between the two
rows in the adjacency matrix of G corresponding to v and u, respectively, is
O(r × b(n)(dist(v, u)× n+

√
n)).

Proof. The number of vertices of G that are a neighbor of exactly one of the
vertices v and u is at most the minimum number of cells of the regular

√
n×
√
n

382 A. Lingas and D. Sledneu

grid within the unit square that cover the symmetric difference S(v, u) between
the disks centered at v and u, respectively, multiplied by b(n). The aforemen-
tioned number of cells is easily seen to be at most the area A(v, u) of S(v, u)
divided by the area of the grid cell, i.e., A(v, u)× n, plus the number of cells of
the grid intersected by the perimeter of S(v, u), i.e., O(r

√
n). By Lemma 5, we

have A(v, u) = O(dist(v, u) × r). Hence, the aforementioned number of cells is
O(r(dist(v, u) × n+

√
n)). !"

The following lemma is a folklore (e.g., it follows directly from the upper bound
on the length of closed path through a set of points in a d-dimensional cube
given in Lemma 2 in [18]).

Lemma 7. The minimum Euclidean spanning tree of any set of n points in a
unit square in the plane has total length O(

√
n).

Combining Lemmata 6, 7, we obtain the following one.

Lemma 8. For a uniform disk graph G induced by a b(n)-dense n-point set,
a spanning tree of the rows (or, columns) of the adjacency matrix of G in the
Hamming metric having cost O(rn3/2) can be found in time O(n2).

Proof. Construct a minimum Euclidean spanning tree of the n points forming
the vertex set of G. It takes time O(n logn) and the resulting tree T has total
length O(

√
n) by Lemma 7. Form a spanning tree U of the rows (or, columns)

of the adjacency matrix of G by connecting by edge the rows corresponding to
v and u iff (v, u) ∈ T. By Lemma 6 and the O(

√
n) length of T, the total cost of

U is O(rn3/2b(n)). !"
By plugging Lemma 8 into Theorem 2, we obtain our main result in this section.

Theorem 3. Let G be a uniform disk graph with non-negative real vertex weights
induced by a b(n)-dense n-point set. The all-pairs shortest path problem for G

can be solved by a combinatorial algorithm in time Õ(
√
rn2.75

√
b(n)).

In the application of the method of Theorem 2 yielding Theorem 3, we can use
the deterministic algorithm of Lemma 8 to find a spanning tree of the rows or
columns of the adjacency matrix of G instead of the randomized approximation
algorithm from Fact 2.

By straightforward calculations, our upper time-bound for APSP in vertex-
weighted uniform disk graphs induced by O(1)-dense point sets subsumes that for
APSP in sparse graphs based on Dijkstra’s single-source shortest-path algorithm,
running in time Õ(nm), where m is the number of edges, for r >> n−1/6.

Finally, we can also easily extend Theorem 3 to include uniform ball graphs
in a d-dimensional Euclidean space. In the extension, the term

√
r in the upper

time-bound generalizes to
√
rd−1.

6 Final Remarks

We can easily extend our main result to include solving the APSP problem for
vertex and edge weighted directed graphs in which the number of different edge

A Combinatorial Algorithm for All-Pairs Shortest Paths 383

weights is bounded, say by q. This can be simply achieved by decomposing the
adjacency matrix AG into the union of up to q matrices A1, A2, ...Al in one-to-
one correspondence with the distinct edge weights and consequently replacing
each mixed product with l such products in Lemmata 1, 2. In the final up-
per bound, MWT (AG) and MWT (At

G) are replaced by
∑l

i=1 MWT (Ai) and∑l
i=1 MWT (At

i), respectively.
It is an interesting problem to determine if there are other natural graph

classes where MWT (AG) or MWT (At
G) are substantially subquadratic in the

number of vertices.
It follows from the existence of the so called Hadamard matrices [7] that there

is an infinite sequence of graphs with ni × ni adjacency matrices Ai such that
min{MWT (Ai),MWT (At

i)} = Ω((ni)
2) holds.

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading (1974)

2. Alon, N., Naor, M.: Derandomization, Witnesses for Boolean Matrix Multiplication
and Construction of Perfect hash functions. Algorithmica 16, 434–449 (1996)

3. Alon, N., Galil, Z., Margalit, O.: On the exponent of all pairs shortest path problem.
J. Comput. System Sci. 54, 25–51 (1997)

4. Bansal, N., Williams, R.: Regularity Lemmas and Combinatorial Algorithms. In:
Proc. of 50th IEEE Symposium on Foundations on Computer Science, Atlanta
(2009)

5. Björklund, A., Lingas, A.: Fast Boolean Matrix Multiplication for Highly Clustered
Data. In: Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125,
pp. 258–263. Springer, Heidelberg (2001)

6. Borodin, A., Ostrovsky, R., Rabani, Y.: Subquadratic Approximation Algorithms
For Clustering Problems in High Dimensional Spaces. In: Proceedings of the 31st
ACM Symposium on Theory of Computing (1999)

7. Cameron, P.J.: Combinatorics. Cambridge University Press (1994)
8. Chan, T.M.: More algorithms for all-pairs shortest paths in weighted graphs. SIAM

J. Comput. 39(5), 2075–2089; preliminary version in proc. STOC 2007, pp. 590–598
(2007)

9. Chan, T.M.: All-pairs shortest paths with real weights in O(n3/ log n) time. Algo-
rithmica 41, 330–337 (2008)

10. Coppersmith, D., Winograd, S.: Matrix Multiplication via Arithmetic Progressions.
J. of Symbolic Computation 9, 251–280 (1990)

11. Fürer, M., Kasiviswanathan, S.P.: Approximate Distance Queries in Disk Graphs.
In: Erlebach, T., Kaklamanis, C. (eds.) WAOA 2006. LNCS, vol. 4368, pp. 174–187.
Springer, Heidelberg (2007)

12. Galil, Z., Margalit, O.: Witnesses for Boolean Matrix Multiplication and Shortest
Paths. Journal of Complexity, 417–426 (1993)

13. G ↪asieniec, L., Lingas, A.: An Improved Bound on Boolean Matrix Multiplication
for Highly Clustered Data. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003.
LNCS, vol. 2748, pp. 329–339. Springer, Heidelberg (2003)

14. Huang, X., Pan, V.Y.: Fast rectangular matrix multiplications and applications.
Journal of Complexity 14(2), 257–299 (1998)

384 A. Lingas and D. Sledneu

15. Indyk, P.: High-dimensional computational geometry. PhD dissertation, Standford
University (2000)

16. Indyk, P., Motwani, R.: Approximate Nearest Neighbors: Towards Removing the
Curse of Dimensionality. In: Proceedings of the 30th ACM Symposium on Theory
of Computing (1998)

17. Indyk, P., Schmidt, S.E., Thorup, M.: On reducing approximate mst to closest pair
problems in high dimensions (1999) (manuscript)

18. Karp, R.M., Steele, J.M.: Probabilistic analysis of heuristics. In: Lawler, E.L.,
Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B. (eds.) The Traveling Sales-
man Problem: A Guided Tour of Combinatorial Optimization, ch. 6, pp. 181–205.
John Wiley & Sons Ltd. (1985)

19. Kushilevitz, E., Ostrovsky, E., Rabani, Y.: Efficient search for approximate nearest
neighbor in high dimensional spaces. SIAM J. Comput. 30(2), 457–474; Preliminary
version in Proc. 30th STOC (1989)

20. Lingas, A.: A Geometric Approach to Boolean Matrix Multiplication. In: Bose, P.,
Morin, P. (eds.) ISAAC 2002. LNCS, vol. 2518, pp. 501–510. Springer, Heidelberg
(2002)

21. Munro, J.I.: Efficient determination of the transitive closure of a directed graph.
Information Processing Letters 1(2), 56–58 (1971)

22. Rytter, W.: Fast recognition of pushdown automaton and context-free languages.
Information and Control 67(1-3), 12–22 (1985)

23. Seidel, R.: On the All-Pairs-Shortest-Path Problem. In: Proc. 24th ACM STOC,
pp. 745–749 (1992)

24. Vassilevska, V., Williams, R.: Subcubic Equivalences Between Path, Matrix, and
Triangle Problems. In: Proceedings 51st Annual IEEE Symposium on Foundations
of Computer Science, FOCS (2010)

25. Yuster, R.: Efficient algorithms on sets of permutations, dominance, and real-
weighted APSP. In: Proc. of the 20th ACM-SIAM Symposium on Discrete Al-
gorithms, pp. 950–957 (2009)

26. Zwick, U.: All pairs shortest paths using bridging rectangular matrix multiplication.
Journal of the ACM 49(3), 289–317 (2002)

27. Zwick, U.: Exact and Approximate Distances in Graphs - A survey. In: Meyer auf
der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 33–48. Springer, Heidelberg
(2001)

The Complexity of Small Universal Turing

Machines: A Survey�

Turlough Neary1 and Damien Woods2

1 School of Computer Science & Informatics, University College Dublin, Ireland
turlough.neary@ucd.ie

2 Division of Engineering & Applied Science, California Institute of Technology,
Pasadena, CA 91125, USA

woods@caltech.edu

Abstract. We survey some work concerned with small universal Turing
machines, cellular automata, tag systems, and other simple models of
computation. For example it has been an open question for some time
as to whether the smallest known universal Turing machines of Minsky,
Rogozhin, Baiocchi and Kudlek are efficient (polynomial time) simula-
tors of Turing machines. These are some of the most intuitively simple
computational devices and previously the best known simulations were
exponentially slow. We discuss recent work that shows that these ma-
chines are indeed efficient simulators. In addition, another related result
shows that Rule 110, a well-known elementary cellular automaton, is ef-
ficiently universal. We also discuss some old and new universal program
size results, including the smallest known universal Turing machines. We
finish the survey with results on generalised and restricted Turing ma-
chine models including machines with a periodic background on the tape
(instead of a blank symbol), multiple tapes, multiple dimensions, and
machines that never write to their tape. We then discuss some ideas for
future work.

1 Introduction

In this survey we explore results related to the time and program size complexity
of universal Turing machines, and other models of computation. We also discuss
results for variants on the Turing machine model to give an idea of the many
strands of work in the area. Of course the choice of topics is incomplete and
reflects the authors’ interests, and there are other related surveys that may
interest the reader [32,38,41,57].

In 1956 Shannon [95] considered the question of finding the smallest possible
universal Turing machine [99], where size is the number of states and symbols.

� This paper is extended and updated from [110]. T. Neary is supported by Science
Foundation Ireland, Grant Number 09/RFP/CMS2212. D. Woods is supported by
National Science Foundation Grant 0832824, the Molecular Programming Project.
We thank Astrid Haberleitner for her tireless work in translating a number of highly
technical papers from German to English, and Beverley Henley for her support.

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 385–405, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

386 T. Neary and D. Woods

In the early Sixties, Minsky and Watanabe had a running competition to see
who could find the smallest universal Turing machine [51,54,103,104]. Early at-
tempts [23,104] gave small universal Turing machines that efficiently (in poly-
nomial time) simulated Turing machines. In 1962, Minsky [54] found a small
7-state, 4-symbol universal machine. Minsky’s machine worked by simulating
2-tag systems, which were shown to be universal by Cocke and Minsky [8,55].
Rogozhin [88] extended Minsky’s technique of 2-tag simulation and found small
machines with a number of state-symbol pairs. Subsequently, some of Rogozhin’s
machines were reduced in size or improved by Robinson [86,91], Kudlek and Ro-
gozhin [27], and Baiocchi [4]. All of the smallest known 2-tag simulators are
plotted as circles in Figure 1. Also, Table 1 lists a number of these machines.

� ������	
�� ����� 	����
����� ������ ����

� ������	
�� ���
� 	����
����� ���� ���� ��� ���������

� ������	
�� ����
� 	����
����� ������ ����

� 	���� �
!�" ������	
�� ����� 	����
����� ������ ��#��

� 	���� �
!�" ������	
�� �"������
� 	����
����� ���� ���� ��� �����

� �
!�" ������	
�� $��� ��# 	����
����� ���� ���� ��� ��%�

������	
�

����������	
�

� � � � � � � 	
 � �� �� �� �� �� �� �� �	 �
 ��

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

�	

�

	�
��	

	"����	

Fig. 1. State-symbol plot of small universal Turing machines. The type of simulation
is given for each group of machines. Simulation time overheads are given in terms of
simulating a single-tape deterministic Turing machine that runs in time t.

Unfortunately, Cocke and Minsky’s 2-tag simulation of Turing machines was
exponentially slow. The exponential slowdown was essentially caused by the use
of a unary encoding of Turing machine tape contents. Therefore, for many years
it was entirely plausible that there was an exponential trade-off between program
size complexity on the one hand, and time/space complexity on the other: the
smallest universal Turing machines seemed to be exponentially slow.

Figure 1 shows a non-universal curve. This curve is a lower bound that gives
the state-symbol pairs for which it is known that the halting problem is decidable.
The 1-symbol case is trivial and Shannon [95] claimed that 1-state Turing ma-
chines are non-universal. However, both Fischer [12] and Nozaki [70] noted that
Shannon’s definition of universal Turing machine is too strict and so his proof
is not sufficiently general. Later, the 1-state case was shown by Hermann [19].

The Complexity of Small Universal Turing Machines: A Survey 387

Table 1. Small standard universal Turing machines, ordered by date and then by
state-symbol product. If there are multiple machines with the same state-symbol pair,
the machine with the smallest number of instructions is denoted *.

states symbols state-symbol product author

m 2 2m Shannon [95]
2 n 2n Shannon [95]
12 6 72 Takahashi [98] (mentioned in [104])
10 6 60 Ikeno [23] (also appears in [51])
8 6 48 Watanabe [103] (mentioned in [54])
7 6 42 Minsky [51]
8 5 40 Watanabe [104]
9 4 36 Tritter (mentioned in [54])
25 2 50 Minsky [55]
6 6 36 Minsky [54]
7 4 28 Minsky [54]
24 2 48 Rogozhin [87,88,91]
2 21 42 Rogozhin [87,88]
11 3 33 Rogozhin [87,88]
3 10 30 Rogozhin [87,88]
7 4 28 Rogozhin [87,88,91]
5 5 25 Rogozhin [87,88,91]
4 6 24 Rogozhin [87,88,91]
2 18 36 Rogozhin [91]
10 3 30 Rogozhin [89,91]
3 10 30 Rogozhin [90,91]*
22 2 44 Rogozhin [92]
19 2 38 Baiocchi [4]
7 4 28 Baiocchi [4]*
3 9 27 Kudlek & Rogozhin [27]
18 2 36 Neary & Woods [66]
9 3 27 Neary & Woods [69]
5 5 25 Neary & Woods [69]*
6 4 24 Neary & Woods [69]
15 2 30 Neary & Woods [69]

Pavlotskaya [75] and, via another method, Kudlek [26] have shown that there
are no universal 2-state, 2-symbol machines, where one transition rule is reserved
for halting. Pavlotskaya [77] has also shown that there are no universal 3-state,
2-symbol machines, and also claimed [75], without publishing a proof, that there
are no universal machines for the 2-state, 3-symbol case. Again, both of these
cases assume that a transition rule is reserved for halting.

2 Time and Size Efficiency of Universal Machines

As mentioned above, some of the very earliest small Turing machines were poly-
nomial time simulators. Subsequently, attention turned to the smaller, but ex-
ponentially slower, 2-tag simulators given by Minsky, Rogozhin and others.

388 T. Neary and D. Woods

Recently [65] we have given small machines that are efficient polynomial time
simulators. More precisely, if M is a deterministic single-tape Turing machine
that runs in time t and space s, then there are machines, with state-symbol
pairs given by the squares in Figure 1, that directly simulate M in polynomial
time O(t2) and linear space O(s). These machines define a O(t2) curve. They
are currently the smallest known universal Turing machines that simulate Turing
machines in O(t2) time. Their O(s) space usage is also extremely efficient, more
efficient than the other machines in Figure 1, all of which use space that is up
to square root of their simulation time.

Despite the existence of these efficient O(t2) simulators, it still remained the
case that the smallest universal machines were exponentially slow. However, we
have recently shown that the smallest machines are in fact efficient simulators
of Turing machines, by showing that 2-tag systems are efficient [108]. Tag sys-
tems are one of a number of rewriting systems invented in the 1920s by Post,
although published somewhat later [79]. Post wanted to prove the decidability
of various properties of tag systems, but found that even very simple examples
had extremely complicated behaviour. Forty years later, Minsky showed that
tag systems [53] are in fact computationally universal, and then Cocke and Min-
sky [8,55] showed universality for a particularly simple form called 2-tag systems.
Minsky [54,55] saw that one could find very small universal Turing machines by
simulating 2-tag systems, and since then 2-tag systems have been at the core of
many results in the field.

A 2-tag system acts on a dataword, which is a string of symbols taken from a
finite alphabet Σ. There is a fixed set of rules R : Σ → Σ∗. In a single timestep,
the leftmost symbol σj of the dataword is read, if there is a rule σj → αj then
the string αj is appended to the right of the dataword and the leftmost two
dataword symbols are deleted. This process is iterated until a suitable halting
condition is reached (i.e. there is no rule for the read symbol, the dataword has
length less than 2, or the 2-tag system enters a repeating loop). Part of the
reason why it was presumed that 2-tag systems were exponentially slow is that
it is not obvious how to locate a specific symbol based solely on its position
relative to other symbols in the dataword (one might want to do this to simulate
the local action of a Turing machine tape head). The main result of [108] uses
an algorithm that solves this problem, and does so efficiently.

More precisely, given a deterministic single-tape Turing machine M that runs
in time t, there is a 2-tag system that simulates M and runs in polynomial
time O(t4 log2 t). The small machines of Minsky, Rogozhin, and others have a
quadratic time overhead when simulating 2-tag systems, hence by the result
in [108] they simulate Turing machines in time O(t8 log4 t). It turns out that
the time overhead can be improved [63] to O(t4 log2 t), giving the O(t4 log2 t)
time overhead for the machines shown in Figure 1 as hollow circles. Thus, there
is currently little evidence for the claim of an exponential trade-off between
program size complexity, and time/space complexity.

From the point of view of program size, Neary and Woods [63,69] have recently
given four Turing machines that are presently the smallest known (standard)

The Complexity of Small Universal Turing Machines: A Survey 389

machines with 2, 3, 4 and 5 symbols. The 5-symbol machine improves on the
5-symbol machine of Rogozhin [91] by one transition rule. The remainder of
these machines improve on the 2- and 4-symbol machines of Baiocchi [4], and
the 3-symbol machine of Rogozhin [91]. These small machines simulate Turing
machines in polynomial time O(t6) and are illustrated as triangles in Figure 1.
They were proven universal via simulation of our universal variant of tag sys-
tems called bi-tag systems [69]. Bi-tag systems are essentially 1-tag systems (and
so they read and delete one symbol per timestep) augmented with additional
context sensitive rules that read, and delete, two symbols per timestep. Bi-tag
systems are a restriction of Post’s normal systems [79]. On the one hand bi-tag
systems are universal, while on the other hand they are sufficiently ‘simple’ to
be simulated by such small machines.

Exponentially improving the time efficiency of 2-tag systems has implications
for a number of models of computation, besides small universal Turing machines.
Following our result, the simulation efficiency of many biologically inspired mod-
els of computation, including neural networks, H systems and P systems, has
been improved from exponential to polynomial. For example, Siegelmann and
Margenstern [96] give a neural network that uses only nine high-order neurons
to simulate 2-tag systems. Taking each synchronous update of the nine neurons
as a single parallel timestep, their neural network simulates 2-tag systems in
linear time. They note that “tag systems suffer a significant slow-down ... and
thus our result proves only Turing universality and should not be interpreted
complexity-wise as a Turing equivalent.” Now we know that their neural net-
work is in fact efficiently universal. Rogozhin and Verlan [93] give a tissue P
system with eight rules that simulates 2-tag systems in linear time, and thus
we have improved its simulation time overhead from exponential to polynomial.
This system uses splicing rules (from H systems) with membranes (from P sys-
tems) and is non-deterministic. Harju and Margenstern [18] gave an extended
H-system with 280 rules that generates recursively enumerable sets using Ro-
gozhin’s 7-state, 4-symbol universal Turing machine. Using our result from 2-tag
systems, the time efficiency of their construction is improved from exponential
to polynomial, with a possible small constant increase in the number of rules.
The efficiency of Hooper’s [22] small 2-tape universal Turing machine is also
improved from exponential to polynomial, as is Rothemund’s [94] restriction
enzyme implementation of Minsky’s 7-state, 4-symbol UTM. The technique of
simulation via 2-tag systems is at the core of many of the universality proofs in
Margenstern’s survey [41]. Our work exponentially improves the time overheads
in these simulations, such as Lindgren and Nordahl’s cellular automata [31],
Margenstern’s non-erasing Turing machines [34,36], and Robinson’s tiling [85].

3 Non-standard Universal Turing Machines: Time
Efficiency and Program Size

So far we have been discussing results for universal Turing machines that have
one tape, one tape head, and are deterministic (we often refer to this setup as

390 T. Neary and D. Woods

the standard model). Of course one can consider results for other variants of
the model. There are many generalised models, for example allowing multiple
tapes, multiple dimensions, or even coupling the Turing machine with a finite
automaton. Restricted models include non-printing, non-erasing and reversible
Turing machines, and machines with restricted instructions. In this section we
explore program size and time complexity results for a number of generalised
and restricted models. Table 2 contains program size results for a number of
such non-standard machines.

Table 2. Small non-standard universal Turing machines. Semi-weak machines are de-
noted by †, weak machines by ‡, machines coupled with a finite automaton by �, and
a machine with 2 tape heads by �.

states symbols dimensions tape author

15 2 1 3 Moore [60]†
6 5 1 1 Watanabe [104]†
1 2 1 4 Hooper [21,22]†
2 3 1 2 Hooper [21,22]
7 3 1 1 Watanabe (mentioned in [105,70])†
5 4 1 1 Watanabe [105]†
8 4 2 1 Wagner [100]
2 7 2 1 Ottmann [73]‡
10 2 2 1 Ottmann [74,25]‡
6 3 2 1 Ottmann [74,25]‡
4 4 2 1 Ottmann [74,25]‡
2 6 2 1 Kleine-Büning & Ottmann [25]‡
2 5 2 1 Kleine-Büning & Ottmann [25]‡
2 3 2 1 Kleine-Büning & Ottmann [25]‡
1 7 3 1 Kleine-Büning & Ottmann [25]‡
4 5 2 1 Kleine-Büning & Ottmann [25]
3 6 2 1 Kleine-Büning & Ottmann [25]
10 2 2 1 Kleine-Büning [24]
2 5 2 1 Kleine-Büning [24]
2 4 2 1 Priese [82]
4 2 2 1 Gajardo et al. [15]
2 2 2 1 Priese [82]�
2 5 1 1 Margenstern & Pavlotskaya [45]�
4 7 1 1 Pavlotskaya [78]�
2 3 1 1 Margenstern & Pavlotskaya [46]�
7 2 1 1 Eppstein (published by Cook [9])‡
4 3 1 1 Cook [9] & Wolfram [107]‡
3 4 1 1 Cook [9] & Wolfram [107]‡
2 5 1 1 Cook [9] & Wolfram [107]‡
6 2 1 1 Neary & Woods [68]‡
3 3 1 1 Neary & Woods [68]‡
2 4 1 1 Neary & Woods [68]‡
3 7 1 1 Woods & Neary [111]†
4 5 1 1 Woods & Neary [111]†
2 13 1 1 Woods & Neary [111]†

The Complexity of Small Universal Turing Machines: A Survey 391

3.1 Weak Universality and Rule 110

An interesting generalisation occurs when we stick to the standard conventions,
but we allow the blank portion of the tape to contain a word, that is constant
(independent of the input), and is repeated infinitely often in one direction, say to
the left of the input. We say that such Turing machines are semi-weakly universal.
Some of the earliest small universal Turing machines were semi-weak [104,105].
Sometimes another word is also repeated infinitely often to the right. Universal
machines that use this setup are called weakly universal [43].

It is not difficult to see how this generalisation can help to reduce program
size. For example, it is typical of small universal Turing machine simulations that
the program being simulated is stored on the tape. When reading an instruction
we often mark certain symbols. At a later time we then restore marked symbols
to their original values. If the simulated program is repeated infinitely often, say
to the left of the input, things may be much easier as we can simply skip the
‘restore’ phase of our algorithm and access a new copy of the program when
simulating the next instruction, thus reducing the universal program’s size.

This was the strategy used byWatanabe [104,105] to find the semi-weak, direct
Turing machine simulators shown as hollow diamonds in Figure 1. Recently [111]
we have given three new semi-weakly universal machines and these are shown
as solid diamonds in Figure 1. These machines simulate cyclic tag systems [9].
It is interesting to note that two of our machines are symmetric with those of
Watanabe (around the line where states = symbols), despite the fact that we
use a different simulation technique. Our 4-state, 5-symbol machine has only 17
transition rules, making it the smallest known semi-weakly universal machine
(Watanabe’s 5-state, 4-symbol machine has 18 transition rules, and his 7-state,
3-symbol machine has 21 rules [105])1. The time overhead for these machines is
polynomial. More precisely, if M is a single-tape deterministic Turing machine
that runs in time t, then M is simulated by either of our semi-weak machines in
time O(t4 log2 t). Watanabe’s semi-weak machines also ran in polynomial time,
with a very efficient time overhead of O(t2).

Cook, Eppstein, and Wolfram [9,107] gave weakly universal Turing machines
that were significantly smaller than the existing semi-weak machines. These were
improved upon by Neary and Woods [68] to give the smallest known weakly
universal machines. In (states, symbols) notation their sizes are (2, 4), (3, 3) and
(6, 2), and they are illustrated in Figure 1. These machines work by simulating
Rule 110, a very simple kind of cellular automaton. Rule 110 is an elementary
cellular automaton, which means that it is a one-dimensional, nearest neighbour,
binary cellular automaton [106]. More precisely, it is composed of a sequence of
cells . . . p−1p0p1 . . . where each cell has a binary state pi ∈ {0, 1}. At timestep
t + 1 the value of cell pi,t+1 = F (pi−1,t, pi,t, pi+1,t) is given by the synchronous
local update function F

1 Watanabe mentions that he found a (7, 3) universal machine with 21 transition rules
in reference [105]. We have not found the details of this machine, however the most
reasonable inference from the literature is that it is semi-weakly universal.

392 T. Neary and D. Woods

F (0, 0, 0) = 0 F (1, 0, 0) = 0

F (0, 0, 1) = 1 F (1, 0, 1) = 1

F (0, 1, 0) = 1 F (1, 1, 0) = 1

F (0, 1, 1) = 1 F (1, 1, 1) = 0

Rule 110 was shown to be universal via an impressive and detailed simulation of
cyclic tag systems, the result is stated and described in [107] and the full proof
is given in [9]. In the proof, the Rule 110 instance has a special (constant) word
repeated infinitely to the left of the input, and another to the right. Rule 110
has a very simple update rule which facilitates the writing of very small weak
Turing machines to simulate it.

As noted, Rule 110 was shown to be universal by simulating cyclic tag systems,
which in turn simulate 2-tag systems. The chain of simulations included the
exponentially slow 2-tag algorithm of Cocke and Minsky, thus Rule 110, and the
weakly universal machines that simulate it, were exponentially slow. In a recent
paper [64] we have improved their simulation time overhead to polynomial by
showing that cyclic tag systems are efficient simulators of Turing machines. In
doing so, we solved what Cook [10] has called the “geometry problem of cyclic-
state tape processors.” The difficult in overcoming this problem is that there is
no obvious way for the system to efficiently determine which symbols or objects
are adjacent to each other. Previous works used unary encodings as it was not
obvious how to determine the relative positions of adjacent digits in a sequence.
Our main result was in providing an efficient solution to this problem.

Our result has interesting implications for Rule 110. For example, given an
initial configuration of Rule 110, and a value t in unary, predicting t timesteps
of a Rule 110 computation is P-complete. Therefore, unless P = NC, which is
widely believed to be false, we cannot hope to quickly (in polylogarithmic time)
predict the evolution of this simple cellular automaton even if we have a poly-
nomial amount of parallel hardware. Rule 110 is the simplest (one-dimensional,
nearest neighbour) cellular automaton that has been shown to have a P-complete
prediction problem. In particular, Ollinger’s [71] intrinsic universality result al-
ready shows that prediction for one dimensional nearest neighbour cellular au-
tomata is P-complete for 6 states (later improved to 4 states by Richard and
Ollinger [84,72]), and our result improves this to 2 states. The question of whether
Rule 110 prediction is P-complete has been asked, directly or indirectly, in a
number of previous works (for example [2,58,59]).

It is currently unknown whether all of the lower bounds in Figure 1 hold for
weak machines. For example, the non-universality results of Pavlotskaya were
proven for the case where one transition rule is reserved for halting, however the
smallest weak machines do not halt.

3.2 Other Non-standard Universal Turing Machines

Weakness has not been the only generalisation on the standard model in the
search for ever smaller universal machines. We give some notable examples here,
many others are to be found in Table 2.

The Complexity of Small Universal Turing Machines: A Survey 393

Before Shannon’s famous paper, Moore [60] observed that 2-symbol machines
were universal as any Turing machine could be converted into a 2-symbol ma-
chine by the (now) usual encoding. In the same paper Moore used this observa-
tion to give a universal 3-tape machine with 15 states and 2 symbols. Moore’s
machine uses only 57 instructions, each instruction being a sextuple that either
moves one of its tape heads or prints a single symbol to one of its tapes. One
of the tapes in Moore’s 3-tape machine is circular and contains the simulated
program, therefore his machine also operates correctly if the circular tape is re-
placed with a one-way infinite tape with a periodic background (i.e. semi-weak).
Moore’s result has been largely ignored in the literature despite being the first
published small universal Turing machine. Interestingly, Moore’s paper cites un-
published work by Shannon on the universality of non-erasing machines.

Hooper [21,22] gave universal machines with 2 states, 3 symbols and 2 tapes,
and with 1 state, 2 symbols and 4 tapes. One of the tapes in Hooper’s 4-tape
machine is circular and contains the simulated program, and so could be re-
placed by a one-way infinite tape with a periodic background (i.e. semi-weak).
Priese [82] gave a 2-state, 4-symbol machine with a 2-dimensional tape, and a
2-state, 2-symbol machine with 2 tape heads and a 2-dimensional tape. Mar-
genstern and Pavlotskaya [46,45] gave a 2-state, 3-symbol Turing machine that
uses only 5 instructions and is universal when coupled with a finite automaton.
They also showed that the halting problem is decidable for such machines with
4 instructions [46].

3.3 Restricted Universal Turing Machines

If we suitably restrict the standard Turing machine model the problem of find-
ing universal machines with small state-symbol products becomes more difficult.
Over the years, a number of authors have looked at non-erasing Turing machines,
that is machines that are permitted to overwrite blank symbols only. Moore [60]
mentions that Shannon had proved that such non-erasing Turing machines sim-
ulate arbitrary Turing machines, however Shannon’s work was never published.
Shortly after, Shannon published a proof that 2-symbol Turing machines are uni-
versal, and Wang [101] proved that 2-symbol non-erasing Turing machines are
universal. Later, Minsky proved the same result as Wang, but using the tech-
nique of simulation via non-writing Turing machines, yet another (universal)
restriction [53].

Margenstern has examined the universality of 2-symbol Turing machines for a
number of different restrictions. One such restriction is the number of colours of
a machine, defined as the number of distinct triples (α,D, δ), where α is the read
symbol, D is the move direction, and δ is the write symbol of a transition rule.
Pavlotskaya [75,76] has shown that there are standard universal Turing machines
with 3 colours and no standard universal Turing machines with 2 colours. Mar-
genstern [34] has shown that there are non-erasing universal Turing machines
with 5 colours and no non-erasing universal Turing machines with 4 colours.

394 T. Neary and D. Woods

Laterality number is another property examined by Margenstern. The laterality
number of a Turing machine is defined as the minimum of the number of left
move instructions and the number of right move instructions. Margenstern and
Pavlotskaya [75,44] have shown that there are universal Turing machines with
laterality number 2 and no universal machines with laterality number 1. Mar-
genstern [36,39] has shown that there are universal non-erasing Turing machines
with laterality number 3 and no universal non-erasing machines with laterality
number 2. For more on these results see [33,34,35,36,37,42].

Fischer [12] gives a number of universality results for Turing machines that
use restricted forms of transition rules. In one result he proves that 3-state Post
machines are universal (Post machines [80] are like Turing machines, except
that in a single timestep they can move or write, but not both). Interestingly,
Aanderaa and Fischer [1] show that the halting problem for 2-state Post machines
is decidable.

Bennett [5] has shown that 3-tape reversible Turing machines are universal.
Morita and others have since shown universality results for reversible Turing
machines with 1 tape and 2 symbols [61], and 17 states and 5 symbols [62].

3.4 Universal Turing Machines with Multidimensional Tapes: Time
Efficiency and Program Size

During the 1970s a number of authors [82,25,100] were interested in finding
small universal Turing machines with multidimensional tapes. The machines of
these authors have not, to our knowledge, been analysed from the perspective of
time/space complexity. We discuss this topic here.

Lutz Priese [82] gives a 2D machine with 2 states and 4 symbols that is uni-
versal on finite initial conditions (i.e. all except a finite number of symbols are
initially blank), and another 2D machine with 2 states, 2 symbols and 2 tape
heads that is derived from this 4-symbol machine. Priese’s machines simulate
counter machines (also called register machines), via a sequence of reductions.
Given a counter machine that runs in time τ , Priese’s machines simulate its
computation in time O(τ2) and space O(τ). Due to the unary encoding used by
counter machines [13], both of Priese’s machines simulate Turing machines with
an exponential time overhead. Priese’s machines do not end their computation
in the conventional manner of halting on a state-symbol pair that has no tran-
sition rule: instead there is a choice, via the initial input encoding, of ending a
computation either by entering a sequence of 6 repeating configurations or by
halting when an attempt is made to move off the edge of the 2D tape.

Langton’s ant [29] is usually described as an ant that lives on a 2D grid of
binary-valued cells. The ant chooses which adjacent cell to move to based on
(a) the current cell’s binary value and (b) the ant’s current orientation. The ant
flips the current cell’s bit as it moves away. So Langton’s ant is a 2D Turing
machine with 2 symbols and 4 states (North, South, East and West). Gajardo et
al. [15] showed that predicting the behaviour of the ant is P-hard, by simulating

The Complexity of Small Universal Turing Machines: A Survey 395

Boolean circuits in polynomial time. By then showing how the ant can simulate
an infinite sized circuit (with a simple repeating structure), which in turn can
simulate the space-time diagram of a cellular automata (CA), they prove that
Langton’s ant is weakly universal in 2D.

It is worth pausing to describe a form of weak universality in 2D, where
the tape has a background that is ultimately periodic in both dimensions of
single quadrant. A one-way infinite sequence is ultimately periodic [14] if it is
of the form s1s

ω
2 where sω2 = s2s2s2 . . ., and s1 and s2 are finite sequences. We

say that a N × N pattern is ultimately periodic in the x direction if for each
y ∈ N the infinite sequence of symbols at the coordinates (0, y), (1, y), (2, y), . . .
is ultimately periodic. This is defined analogously for the y direction.

Kleine-Büning and Ottmann [25] give universal Turing machines which have
a single multidimensional tape, a number of which are weakly universal. Re-
markably, their 2D, 2-state, 3-symbol machine does not even print to the tape!
The two counter values of a simulated 2-counter machine are encoded by the
(x, y) position of the tape head on the 2D tape. Testing for zero amounts to
detecting one of the axes. It is well-known that 2-counter machines are uni-
versal [56]. However, using known algorithms, 2-counter machines suffer from a
doubly-exponential slowdown when simulating Turing machines [97], and so the
2-state, 3-symbol machine of Kleine-Büning and Ottmann also suffers from a
doubly-exponential slowdown when simulating Turing machines. We give a brief
overview of this machine’s computation.

The 2D tape uses only the upper-right quadrant of the plane and so each tape
cell may be indexed by a coordinate of the form (x, y) ∈ N × N. The quadrant
is filled using 4, infinitely repeated, finite square blocks (of tape symbols) which
we will call A, B, C, and D. The infinite pattern on the 2D tape given by the
arrangement of these blocks is ultimately periodic in both the x and y directions.
Each block is of size O(r2) where r is the number of instructions in the 2-counter
machine being simulated. The block at the origin of the quadrant is of type A.
Types B and C are repeated along along the x-axis and y-axis, respectively, and
the remainder of the quadrant is tiled by blocks of type D. Each block encodes the
entire program of the 2-counter machine being simulated. The current counter
machine instruction being simulated is given by the position of the tape head
within a block. If the counters have values x1 and y1 respectively, then the tape
head will be in the xth

1 block from the y-axis and the yth1 block from the x-
axis. The blocks contain specially defined paths that the tape head follows to
(a) arrive at the next counter machine instruction and (b) move to one of the
adjacent blocks if a change in the value of a counter is being simulated. A, B and
C blocks lie along the axes and so are used to simulate any instruction where one
or more counters have value zero, and in particular they contain special paths
that simulate a positive test for zero.

Kleine-Büning and Ottmann adapt their technique to give a non-printing 1-
state, 7-symbol universal machine with a 3D tape. Only 2 planes in the third
dimension are used, giving tape cells that are indexed by coordinates (x, y, z),

396 T. Neary and D. Woods

where x, y ∈ N and z ∈ {0, 1}. The pattern defined by the symbols on each
of the infinite 2D planes given by (x, y, 0) and (x, y, 1) is ultimately periodic in
both the x and y directions. The technique used to simulate 2-counter machines
by the 1-state, 7-symbol machine is, in essence, the same as the technique use
by the 2-state, 3-symbol machine. The 2D machine uses 2 states to remember
which path it is following when two different paths cross (the tape head follows
paths that encode instructions of the counter machine being simulated). With
the introduction of a third dimension it is no longer necessary for paths to cross
and so it is possible to give a universal Turing machine with only 1 state. Finally,
we note that an immediate corollary of this machine’s design is the existence of
a non-halting universal machine with only 6 symbols, as the only purpose of one
of the 7 symbols is to provide an undefined transition rule for halting.

It is a fairly straightforward matter to show that for each Turing machine
with a single, ultimately periodic, 2D tape and no print instructions there is a
2-counter machine that simulates it in linear time. It immediately follows that
improvement on the doubly-exponential time overhead when simulating Turing
machines with such non-printing 2D machines is not possible unless such an
improvement is also possible for 2-counter machines. Thus, it could be interesting
to see if the simulation time overhead for such machines can be reduced to singly-
exponential when a slightly more complicated background is permitted on the
tape.

Wagner [100] shows that the halting problem for Turing machines with a single
kD tape (k ∈ N), 2 symbols and 2 states is decidable2. Specifically, he shows that
if such machines halt then they do so in space O(n), where n is input length. It is
not difficult to give relevant decidability results (such as predicating looping or
halting) for machines with a single 1D tape and non-printing instructions, even
when an ultimately periodic background is permitted. Regarding kD machines,
it can be shown for some classes of these machines that only weaker forms of
universality are possible. For the case of kD non-printing machines, it is not
difficult to give relevant decidability results when the initial tape contains only a
finite number of non-blank symbols. Herman has shown that the halting problem
is decidable for 1-state kD printing machines when all but a finite number of tape
cells are blank at the start of each computation [20].

Though lacking in formal rigour, a comparison between the three 2D machines
we discussed in this section poses some interesting questions about the possible
trade-offs for different 2D models. For example, out of the three machines the 2-
state, 3-symbol weak machine has the smallest state-symbol product, is the only
non-writing machine, and the only machine that can halt. The 2-state, 4-symbol
machine of Priese is the only machine of the three that does not use a periodic
(weak) encoding, and the 4-state, 2-symbol machine of Gajardo et al. (Lang-
ton’s ant) is the only machine of the three that simulates Turing machines in
polynomial time. The best we can hope for with non-printing 2D machines is

2 Machines using Wagner’s definition end their computation with a simple loop: re-
peatedly executing a special transition rule that does not change the configuration.
This is equivalent to executing a halting transition rule.

The Complexity of Small Universal Turing Machines: A Survey 397

a singly exponential time overhead, but achieving even this bound would seem
to be very tricky. It is interesting to note that the only non-weak 2D machine
of the three, that of Priese, has an exponential time overhead when simulating
Turing machines. This is not the case for the smallest non-weak 1D machines.
It begs the question, is there a non-weak 2D machine with the same number of
states and symbols as Priese’s machine that is universal with a polynomial time
overhead?

3.5 Termination of a Computation

As we hope has been made clear so far, it is vitally important to clearly specify
the computational model one is using when trying to find small universal pro-
grams or give lower bounds on universal program size. In the absence of a clear
model description and matching lower bounds, one can never claim to have found
the “smallest” universal program. Throughout this work we have described re-
sults on upper bounds and lower bounds on universal program size and we have
described how both change when the model definition changes. In this section
we focus on one such issue: computation termination.

A number of authors have given universal Turing machines where successful
computations do not end in a halt state. Many of the machines given in Table 2
are non-halting. What about the problem of proving relevant non-universality
results for these models? Such non-universality results are not achievable by
proving the halting problem decidable. Before we attempt such an endeavour
we must agree on a clear definition of universal Turing machine. For example,
instead of specifying the end of a computation by a single halting (or terminal)
configuration, a computation could end with a specific sequence of configura-
tions. We refer to this as a terminal configuration sequence. The output of the
simulated Turing machine is retrieved by applying a recursive decoding function
to the entire computation (also a configuration sequence). There are many ways
to define terminal configuration sequence, some examples are:

– a configuration sequence that goes through a specified sequence of states,
– a configuration sequence that contains two identical configurations,
– a configuration that contains a specific subword.

Given a definition of a terminal configuration sequence we may prove that the
terminal sequence problem (will a machine execute a terminal configuration se-
quence) is decidable. This gives non-universal lower bounds that are relevant to
universal machines that end their computation with such a sequence. However,
this result may not hold as a proof of non-universality if we subsequently alter
our definition of terminal configuration sequence. One more general approach is
to prove that the terminal sequence problem for all possible terminal sequences,
of a machine or set of machines, is decidable. In any case, it is important to
specify these details when giving upper and lower bounds on program size.

398 T. Neary and D. Woods

4 Busy Beavers

Besides small universal Turing machines, one finds small, yet complicated, pro-
grams in the busy beaver literature. The term busy beaver was introduced by
Rado [83] who put forward a game where the goal for a given k ∈ N is to find,
out of all the k-state, 2-symbol Turing machines, the machine that prints the
most 1s and then halts when started on a blank tape. The busy beaver function
Σ : N→ N is then defined by letting Σ(k) be the maximum number of 1’s printed
by any halting k-state, 2-symbol Turing machine. Busy beavers essentially ad-
here to the standard Turing machine model described in previous sections (one
tape, one head, usual blank symbol, deterministic). It is known that Σ(1) = 1
(trivial), Σ(2) = 4 [83], Σ(3) = 6 [30], and Σ(4) = 13 [6]. However for 5 states
or more the best we currently have are lower bounds. For example, Michel [50]
cites Σ(5) ≥ 4098 to Marxen and Buntrock [47], and Σ(6) ≥ 3.5 × 1018267 to
Pavel Kropitz. S(k), the step-counting analogue of Σ(k), is also considered. In
fact, both Σ and S grow faster than any computable function [83]. Green [16]
has given a lower bound on the growth of the function Σ.

The busy beaver problem has been generalised to machines with � ≥ 2 sym-
bols [7], where Σ(k, �) is the largest number of non-zeros written by any k-state,
�-symbol Turing machine. It has been shown [7,28] that Σ(2, 3) = 9. Terry
Ligocki and Shawn Ligocki have shown that Σ(2, 4) ≥ 2, 050 and Σ(3, 3) ≥
374, 676, 383, and have given lower bounds on a number of other state-symbol
pairs. See Michel’s survey [50] for more results.

Although finding busy beavers is somewhat orthogonal to the goal of finding
small universal Turing machines, there are potential connections between the two
fields. On the one hand, when designing small universal programs one often has
to reuse instructions in many different contexts, something which busy beavers
might also do, so perhaps small instruction sets from one field might be useful
for the other. On the other hand, proving lower bounds on universal program
size, and upper bounds on values for the busy beaver function, both involve hefty
case analyses so once again techniques developed in one field could potentially
be useful for the other. In particular, the search for busy beavers has produced
small programs with very complicated behaviour, which lend weight to the idea
that proving non-universality of such program classes might be difficult.

5 Further Work

There are many avenues for further work, here we highlight a few examples.
Applying computational complexity theory to the area of small universal Tur-

ing machines allows us to ask a number of questions that are more subtle than
the usual questions about program size. As we move towards the origin in Fig-
ure 1, the universal machines have larger (but polynomial) time overheads. Can
the time overheads in Figure 1 be further improved (lowered)? Can we prove
lower bounds on the simulation time of machines with a given state-symbol pair?
Proving non-trivial simulation time lower bounds seems like a difficult problem.

The Complexity of Small Universal Turing Machines: A Survey 399

Such results could be used to prove that there is a polynomial trade-off between
simulation time and universal program size.

As we move away from the origin, the non-universal machines seem to have
more power. For example Kudlek’s classification of 2-state, 2-symbol machines
shows that the sets accepted by these machines are regular, with the exception
of one context free language (anbn). Can we hope to fully characterise the sets
accepted by non-universal machines (e.g. in terms of complexity or automata
theoretic classes) with given state-symbol pairs or other program restrictions?

When discussing the complexity of small machines the issue of encodings
becomes very important. For example, when proving that the prediction problem
for a small machine is P-complete [17], the relevant encodings should be in
logspace, and this is the case for all of the polynomial time machines in Figure 1.

Of course there are many models of computation that we have not mentioned
where researchers have focused on finding small universal programs. Post’s [79]
tag systems are an interesting example. Minsky [52,53] showed that tag systems
are universal with deletion number 6. Cocke and Minsky lowered the deletion
number to 2, by showing that 2-tag systems were universal. They used produc-
tions (appendants) of length at most 4. Wang [102] further lowered the pro-
duction length to 3. Recently, De Mol [11] has given a lower bound by showing
that the reachability (and thus halting) problems are decidable for 2-tag systems
with 2 symbols; a problem which Post claimed [81] to have solved but never pub-
lished. It would be interesting to find the smallest universal tag systems in terms
of number of symbols, deletion length, and production length.

The space between the non-universal curve and the smallest non-weakly uni-
versal machines in Figure 1 contains some complicated beasts. These lend weight
to the feeling that finding new lower bounds on universal program size is tricky.
Most noteworthy are the weakly and semi-weakly universal machines discussed
earlier. Table 2 highlights that the existence of general models that provably
have less states and symbols than the standard universal machines can have (for
example the machines with (states, symbols, dimensions, tapes) of (2,3,2,1) [25],
(1,7,3,1) [25], and (1,2,1,4) [22]). Also of importance are the busy beavers [50]
and small machines of Margenstern [40,41], Baiocchi [3], and Michel [48,49] that
live in this region and simulate iterations of the 3x + 1 problem and other
Collatz-like functions. So it seems that there are plenty of animals yet to be
tamed.

References

1. Aanderaa, S., Fischer, P.C.: The solvability of the halting problem for 2-state
post machines. Journal of the Association for Computing Machinery 14(4),
677–682 (1967)

2. Aaronson, S.: Book review: A new kind of science. Quantum Information and
Computation 2(5), 410–423 (2002)

3. Baiocchi, C.: 3N+1, UTM e tag-system. Technical Report Pubblicazione 98/38,
Dipartimento di Matematico, Università di Roma (1998) (in Italian)

400 T. Neary and D. Woods

4. Baiocchi, C.: Three Small Universal Turing Machines. In: Margenstern, M., Ro-
gozhin, Y. (eds.) MCU 2001. LNCS, vol. 2055, pp. 1–10. Springer, Heidelberg
(2001)

5. Bennett, C.H.: Logical reversibility of computation. IBM Journal of Research and
Development 17(6), 525–532 (1973)

6. Brady, A.H.: The determination of the value of Rado’s noncomputable func-
tion Σ(k) for four-state Turing machines. Mathematics of Computation 40(163),
647–665 (1983)

7. Brady, A.H.: The busy beaver game and the meaning of life. In: Herken, R. (ed.)
The Universal Turing Machine: A Half-Century Survey, pp. 259–277. Oxford Uni-
versity Press (1988)

8. Cocke, J., Minsky, M.: Universality of tag systems with P = 2. Journal of the
Association for Computing Machinery 11(1), 15–20 (1964)

9. Cook, M.: Universality in elementary cellular automata. Complex Systems 15(1),
1–40 (2004)

10. Cook, M.: A Concrete View of Rule 110 Computation. Electronic Proceedings in
Theoretical Computer Science 1, 31–55 (2009)

11. De Mol, L.: Study of Limits of Solvability in Tag Systems. In: Durand-Lose,
J., Margenstern, M. (eds.) MCU 2007. LNCS, vol. 4664, pp. 170–181. Springer,
Heidelberg (2007)

12. Fischer, P.C.: On formalisms for Turing machines. Journal of the Association for
Computing Machinery 12(4), 570–580 (1965)

13. Fischer, P.C., Meyer, A.R., Rosenberg, A.L.: Counter machines and counter lan-
guages. Mathematical Systems Theory 2(3), 265–283 (1968)

14. Friedman, J.: A decision procedure for computations of finite automata. Journal
of the ACM 9(3), 315–323 (1962)

15. Gajardo, A., Moreira, A., Goles, E.: Complexity of Langton’s ant. Discrete Ap-
plied Mathematics 117, 41–50 (2002)

16. Green, M.W.: A lower bound on Rado’s sigma function for binary Turing ma-
chines. In: Proceedings of the 5th IEEE Annual Symposium on Switching Circuit
Theory and Logical Design, pp. 91–94 (1964)

17. Greenlaw, R., Hoover, H.J., Ruzzo, W.L.: Limits to parallel computation: P-
completeness theory. Oxford university Press, Oxford (1995)

18. Harju, T., Margenstern, M.: Splicing Systems for Universal Turing Machines.
In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384,
pp. 149–158. Springer, Heidelberg (2005)

19. Hermann, G.T.: The uniform halting problem for generalized one state Turing
machines. In: Proceedings of the Ninth Annual Symposium on Switching and Au-
tomata Theory (FOCS), pp. 368–372. IEEE Computer Society Press, Schenectady
(1968)

20. Hermann, G.T.: The halting problem of one state Turing machines with
n-dimensional tape. Mathematical Logic Quarterly 14(7-12), 185–191 (1968)

21. Hooper, P.: Some small, multitape universal Turing machines. Technical report,
Computation Laboratory, Harvard University, Cambridge, Massachusetts (1963)

22. Hooper, P.: Some small, multitape universal Turing machines. Information Sci-
ences 1(2), 205–215 (1969)

23. Ikeno, N.: A 6-symbol 10-state universal Turing machine. In: Proceedings, Insti-
tute of Electrical Communications, Tokyo (1958)

24. Kleine-Büning, H.: Über probleme bei homogener Parkettierung von Z×Z durch
Mealy-automaten bei normierter verwendung. PhD thesis, Institut für Mathema-
tische Logik, Münster (1977)

The Complexity of Small Universal Turing Machines: A Survey 401

25. Kleine-Büning, H., Ottmann, T.: Kleine universelle mehrdimensionale Tur-
ingmaschinen. Elektronische Informationsverarbeitung und Kybernetik 13(4-5),
179–201 (1977) (in German)

26. Kudlek, M.: Small deterministic Turing machines. Theoretical Computer Sci-
ence 168(2), 241–255 (1996)

27. Kudlek, M., Rogozhin, Y.: A Universal Turing Machine with 3 States and 9 Sym-
bols. In: Kuich,W., Rozenberg, G., Salomaa, A. (eds.) DLT 2001. LNCS, vol. 2295,
pp. 311–318. Springer, Heidelberg (2002)

28. Lafitte, G., Papazian, C.: The fabric of small Turing machines. In: Computation
and Logic in the Real World, Third Conference on Computability in Europe, CiE
2007, Local Proceedings, pp. 219–227 (2007)

29. Langton, C.: Studying artificial life with cellular automata. Physica D 2(1-3),
120–149 (1986)

30. Lin, S., Rado, T.: Computer studies of Turing machine problems. Journal of the
ACM 12(2), 196–212 (1965)

31. Lindgren, K., Nordahl, M.G.: Universal computation in simple one-dimensional
cellular automata. Complex Systems 4(3), 299–318 (1990)

32. Margenstern, M.: Surprising areas in the quest for small universal devices. Elec-
tronic Notes in Theoretical computer Science 225, 201–220 (2009)

33. Margenstern, M.: Sur la frontière entre machines de Turing á arrêt décidable et
machines de Turing universelles. Technical Report 92-83, LITP Institut Blaise
Pascal (1992)

34. Margenstern, M.: Non-erasing Turing Machines: A Frontier Between a Decidable
Halting Problem and Universality. In: Ésik, Z. (ed.) FCT 1993. LNCS, vol. 710,
pp. 375–385. Springer, Heidelberg (1993)

35. Margenstern, M.: Une machine de Turing universelle sur {0,1}, non-effaçante et
à trois instructions gauches. Technical Report 94-08, LITP Institut Blaise Pascal
(1994)

36. Margenstern, M.: Non-Erasing Turing Machines: A New Frontier Between a De-
cidable Halting Problem and Universality. In: Baeza-Yates, R.A., Poblete, P.V.,
Goles, E. (eds.) LATIN 1995. LNCS, vol. 911, pp. 386–397. Springer, Heidelberg
(1995)

37. Margenstern, M.: Une machine de Turing universelle non-effaçante à exactement
trois instructions gauches. C. R. Acad. Sci. Paris, Série I 320, 101–106 (1995)

38. Margenstern, M.: Decidability and Undecidability of the Halting Problem on Tur-
ing Machines, a Survey. In: Adian, S., Nerode, A. (eds.) LFCS 1997. LNCS,
vol. 1234, pp. 226–236. Springer, Heidelberg (1997)

39. Margenstern, M.: The laterality problem for non-erasing Turing machines on {0, 1}
is completely solved. Theoretical Informatics and Applications 31(2), 159–204
(1997)

40. Margenstern, M.: Frontier between decidability and undecidability: a survey. In:
Margenstern, M. (ed.) Machines, Computations and Universality (MCU), France,
IUT, Metz., vol. 1, pp. 141–177 (1998)

41. Margenstern, M.: Frontier between decidability and undecidability: a survey. The-
oretical Computer Science 231(2), 217–251 (2000)

42. Margenstern, M.: On quasi-unilateral universal Turing machines. Theoretical
Computer Science 257(1-2), 153–166 (2001)

43. Margenstern, M.: An algorithm for building intrinsically universal cellular au-
tomata in hyperbolic spaces. In: Proceedings of the 2006 International Conference
on Foundations of Computer Science (FCS), Las Vegas, NV, pp. 3–9. CSREA
Press (2006)

402 T. Neary and D. Woods

44. Margenstern, M., Pavlotskaya, L.: Deux machines de Turing universelles á au plus
deux instructions gauches. C. R. Acad. Sci. Paris, Série I 320, 1395–1400 (1995)

45. Margenstern, M., Pavlotskaya, L.: Vers ue nouvelle approche de l’universalité
concernant les machines de Turing. Technical Report 95-58, LITP Institut Blaise
Pascal (1995)

46. Margenstern, M., Pavlotskaya, L.: On the optimal number of instructions for
universality of Turing machines connected with a finite automaton. International
Journal of Algebra and Computation 13(2), 133–202 (2003)

47. Marxen, H., Buntrock, J.: Attacking the Busy Beaver 5. Bulletin of the EATCS 40,
247–251 (1990)

48. Michel, P.: Busy beaver competition and Collatz-like problems. Archive Mathe-
matical Logic 32(5), 351–367 (1993)

49. Michel, P.: Small Turing machines and generalized busy beaver competition. The-
oretical Computer Science 326, 45–56 (2004)

50. Michel, P.: The busy beaver competition: a historical survey, arXiv:0906.3749v2
(2010), http://www.logique.jussieu.fr/~michel/ha.html

51. Minsky, M.: A 6-symbol 7-state universal Turing machines. Technical Report
54-G-027, MIT (1960)

52. Minsky, M.: Recursive unsolvability of Post’s tag problem. Technical Report
54-G-023, Massachusetts Institute of Technology (1960)

53. Minsky, M.: Recursive unsolvability of Post’s problem of “tag” and other topics
in theory of Turing machines. Annals of Mathematics 74(3), 437–455 (1961)

54. Minsky, M.: Size and structure of universal Turing machines using tag systems.
In: Recursive Function Theory: Proceedings, Symposium in Pure Mathematics,
Provelence, vol. 5, pp. 229–238 (1962)

55. Minsky, M.: Universality of (p=2) tag systems and a 4 symbol 7 state univer-
sal Turing machine. In: AIM-33, A.I. memo 33, Computer Science and Artificial
Intelligence Laboratory. MIT, Cambridge (1962)

56. Minsky, M.: Computation, finite and infinite machines. Prentice-Hall, Englewood
Cliffs (1967)

57. Moore, C., Mertens, S.: The Nature of Computation. Oxford University Press
(2011)

58. Moore, C.: Quasi-linear cellular automata. Physica D 103, 100–132 (1997)

59. Moore, C.: Predicting non-linear cellular automata quickly by decomposing them
into linear ones. Physica D 111, 27–41 (1998)

60. Moore, E.F.: A simplified universal Turing machine. In: ACM National Meeting,
Toronto, Canada, pp. 50–54. ACM Press (1952)

61. Morita, K., Shirasaki, A., Gono, Y.: A 1-tape 2-symbol reversible Turing machine.
The Transactions of the IEICE Japan E72(3), 223–228 (1989)

62. Morita, K., Yamaguchi, Y.: A Universal Reversible Turing Machine. In: Durand-
Lose, J., Margenstern, M. (eds.) MCU 2007. LNCS, vol. 4664, pp. 90–98. Springer,
Heidelberg (2007)

63. Neary, T.: Small universal Turing machines. PhD thesis, National University of
Ireland, Maynooth (2008)

64. Neary, T., Woods, D.: P-Completeness of Cellular Automaton Rule 110. In:
Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006, Part I.
LNCS, vol. 4051, pp. 132–143. Springer, Heidelberg (2006)

65. Neary, T., Woods, D.: Small fast universal Turing machines. Theoretical Com-
puter Science 362(1-3), 171–195 (2006)

http://www.logique.jussieu.fr/~michel/ha.html

The Complexity of Small Universal Turing Machines: A Survey 403

66. Neary, T., Woods, D.: Four Small Universal Turing Machines. In: Durand-Lose,
J., Margenstern, M. (eds.) MCU 2007. LNCS, vol. 4664, pp. 242–254. Springer,
Heidelberg (2007)

67. Neary, T., Woods, D.: Small weakly universal Turing machines, arXiv:0707.4489v1
[cs.CC] (2007)

68. Neary, T., Woods, D.: Small Weakly Universal Turing Machines. In: Kuty�lowski,
M., Charatonik, W., G ↪ebala, M. (eds.) FCT 2009. LNCS, vol. 5699, pp. 262–273.
Springer, Heidelberg (2009)

69. Neary, T., Woods, D.: Four small universal Turing machines. Fundamenta Infor-
maticae 91(1), 123–144 (2009)

70. Nozaki, A.: On the notion of universality of Turing machine. Kybernetika
Academia Praha 5(1), 29–43 (1969) (English translated version)

71. Ollinger, N.: The Quest for Small Universal Cellular Automata. In: Widmayer, P.,
Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP
2002. LNCS, vol. 2380, pp. 318–329. Springer, Heidelberg (2002)

72. Ollinger, N., Richard, G.: Four states are enough! Theoretical Computer Sci-
ence 412(1-2), 22–32 (2011)

73. Ottmann, T.: Eine universelle Turingmaschine mit zweidimensionalem band. Elek-
tronische Informationsverarbeitung und Kybernetik 11(1-2), 27–38 (1975) (in
German)

74. Ottmann, T.: Einfache universelle mehrdimensionale Turingmaschinen. Habilita-
tionsschrift, Karlsruhe (1975)

75. Pavlotskaya, L.: Solvability of the halting problem for certain classes of Turing
machines. Mathematical Notes 13(6), 537–541; Translated from Matematicheskie
Zametki, 13(6), 899–909 (1973)

76. Pavlotskaya, L.: O minimal’nom chisle razlichnykh kodov vershin v grafe univer-
sal’noj mashiny T’juringa. Disketnyj Analiz, Sbornik Trudov Instituta Matematiki
SO AN SSSR 27, 52–60 (1975); On the minimal number of distinct codes for the
vertices of the graph of a universal Turing machine (in Russian)

77. Pavlotskaya, L.: Dostatochnye uslovija razreshimosti problemy ostanovki dlja
mashin T’juring. Avtomaty i Mashiny, 91–118 (1978); Sufficient conditions for
the halting problem decidability of Turing machines (in Russian)

78. Pavlotskaya, L.: On machines, universal by extensions. Theoretical Computer Sci-
ence 168(2), 257–266 (1996)

79. Post, E.L.: Formal reductions of the general combinatorial decision problem.
American Journal of Mathmatics 65(2), 197–215 (1943)

80. Post, E.L.: Recursive unsolvability of a problem of Thue. Journal of Symbolic
Logic 12(1), 1–11 (1947)

81. Post, E.L.: Absolutely unsolvable problems and relatively undecidable proposi-
tions – account of an anticipation. In: Davis, M. (ed.) The Undecidable: Basic
Papers on Undecidable Propositions, Unsolvable Problems and Computable Func-
tions, pp. 340–406. Raven Press, New York (1965); Corrected republication. Dover
publications, New York (2004)

82. Priese, L.: Towards a precise characterization of the complexity of universal and
nonuniversal Turing machines. SIAM J. Comput. 8(4), 508–523 (1979)

83. Rado, T.: On non-computable functions. Bell System Technical Journal 41(3),
877–884 (1962)

84. Richard, G.: A particular universal cellular automaton, HAL research report
(oai:hal.archives-ouvertes.fr:hal-00095821 v1) (2006)

85. Robinson, R.M.: Undecidability and nonperiodicity for tilings of the plane. Inven-
tiones Mathematicae 12(3), 177–209 (1971)

404 T. Neary and D. Woods

86. Robinson, R.M.: Minsky’s small universal Turing machine. International Journal
of Mathematics 2(5), 551–562 (1991)

87. Rogozhin, Y.: Sem’ universal’nykh mashin T’juringa. In: Fifth All Union Confer-
ence on Mathematical Logic, Akad. Naul SSSR. Otdel. Inst. Mat., Novosibirsk,
p. 27 (1979); Seven universal Turing machines (in Russian)

88. Rogozhin, Y.: Sem’ universal’nykh mashin T’juringa. Systems and Theoretical
Programming, Mat. Issled 69, 76–90 (1982); Seven universal Turing machines (in
Russian)

89. Rogozhin, Y.: Universal’naja mashina T’juringa s 10 sostojanijami i 3 simvolami.
Izvestiya Akademii Nauk Respubliki Moldova, Matematika 4(10), 80–82 (1992);
A universal Turing machine with 10 states and 3 symbols (in Russian)

90. Rogozhin, Y.: About Shannon’s problem for Turing machines. Computer Science
Journal of Moldova 1(3), 108–111 (1993)

91. Rogozhin, Y.: Small universal Turing machines. Theoretical Computer Sci-
ence 168(2), 215–240 (1996)

92. Rogozhin, Y.: A universal Turing machine with 22 states and 2 symbols. Romanian
Journal of Information Science and Technology 1(3), 259–265 (1998) (in Russian)

93. Rogozhin, Y., Verlan, S.: On the Rule Complexity of Universal Tissue P Systems.
In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS,
vol. 3850, pp. 356–362. Springer, Heidelberg (2006)

94. Rothemund, P.W.K.: A DNA and restriction enzyme implementation of Turing
Machines. In: Lipton, R.J., Baum, E.B. (eds.) DNA Based Computers: Proceeding
of a DIMACS Workshop. DIMACS, vol. 2055, pp. 75–119. Princeton University,
AMS (1996)

95. Shannon, C.E.: A universal Turing machine with two internal states. Automata
Studies, Annals of Mathematics Studies 34, 157–165 (1956)

96. Siegelmann, H.T., Margenstern, M.: Nine switch-affine neurons suffice for Turing
universality. Neural Networks 12(4-5), 593–600 (1999)

97. Schroeppel, R.: A two counter machine cannot calculate 2n. Technical Report
AIM-257, A.I. memo 257, Computer Science and Artificial Intelligence Laboratory,
MIT, Cambridge, MA (1972)

98. Takahashi, H.: Keisankikai II. Iwanami, Tokyo (1958); Computing machine II (in
Japanese)

99. Turing, A.M.: On computable numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society 2(42), 230–265
(1936)

100. Wagner, K.: Universelle Turingmaschinen mit n-dimensionale band. Elektronis-
che Informationsverarbeitung und Kybernetik 9(7-8), 423–431 (1973); Universal
Turing machines with n-dimensional tapes (in German)

101. Wang, H.: A variant to Turing’s theory of computing machines. Journal of the
Association for Computing Machinery 4(1), 63–92 (1957)

102. Wang, H.: Tag systems and lag systems. Mathematical Annals 152(4), 65–74
(1963)

103. Watanabe, S.: On a minimal universal Turing machine. Technical report, MCB
Report, Tokyo (1960)

104. Watanabe, S.: 5-symbol 8-state and 5-symbol 6-state universal Turing machines.
Journal of the ACM 8(4), 476–483 (1961)

105. Watanabe, S.: 4-symbol 5-state universal Turing machine. Information Processing
Society of Japan Magazine 13(9), 588–592 (1972)

The Complexity of Small Universal Turing Machines: A Survey 405

106. Wolfram, S.: Statistical mechanics of cellular automata. Reviews of Modern
Physics 55(3), 601–644 (1983)

107. Wolfram, S.: A new kind of science. Wolfram Media, Inc. (2002)
108. Woods, D., Neary, T.: On the time complexity of 2-tag systems and small universal

Turing machines. In: 47th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pp. 439–446. IEEE, Berkeley (2006)

109. Woods, D., Neary, T.: Small Semi-Weakly Universal Turing Machines. In: Durand-
Lose, J., Margenstern, M. (eds.) MCU 2007. LNCS, vol. 4664, pp. 303–315.
Springer, Heidelberg (2007)

110. Woods, D., Neary, T.: The complexity of small universal Turing machines: A
survey. Theoretical Computer Science 410(4-5), 443–450 (2009)

111. Woods, D., Neary, T.: Small semi-weakly universal Turing machines. Fundamenta
Informaticae 91(1), 179–195 (2009)

A Sufficient Condition for Sets Hitting the Class

of Read-Once Branching Programs of Width 3

(Extended Abstract)�

Jǐŕı Š́ıma and Stanislav Žák

Institute of Computer Science, Academy of Sciences of the Czech Republic,
P. O. Box 5, 18207 Prague 8, Czech Republic

{sima,stan}@cs.cas.cz

Abstract. We characterize the hitting sets for read-once branching pro-
grams of width 3 by a so-called richness condition which is independent
of a rather technical definition of branching programs. The richness prop-
erty proves to be (in certain sense) necessary and sufficient condition for
such hitting sets. In particular, we show that any rich set extended with
all strings within Hamming distance of 3 is a hitting set for width-3
read-once branching programs. Applying this result to an example of an
efficiently constructible rich set from our previous work we achieve an
explicit polynomial time construction of an ε-hitting set for read-once
branching programs of width 3 with acceptance probability ε > 11/12.

1 Introduction

An ε-hitting set for a class of Boolean functions of n variables is a setH ⊆ {0, 1}n
such that for every function f in the class, if a random input is accepted by f
with probability at least ε, then there is also an input in H that is accepted
by f . Looking for polynomial time constructions of hitting sets for functions of
polynomial complexity in different models such as circuits, formulas, branching
programs which would have consequences for the relationship between respective
deterministic and probabilistic computations belongs to the hardest problems in
computer science, and hence, restricted models are investigated. An efficiently
constructible sequence of hitting sets for increasing n is a straightforward gen-
eralization of the hitting set generator introduced in [9], which is a weaker (one-
sided error) version of pseudorandom generator [13].

We consider read-once branching (1-branching) programs of polynomial size,
which is a restricted model of space-bounded computations [17] for which pseu-
dorandom generators with seed length O(log2 n) have been known for a long time
through Nisan’s result [12]. Recently, considerable attention has been paid to im-
proving this to O(log n) in the constant-width case, which is a fundamental prob-
lem with many applications in circuit lower bounds and derandomization [11].

� This research was partially supported by projects GA ČR P202/10/1333, MŠMT ČR
1M0545, and AV0Z10300504.

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 406–418, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Sufficient Condition for Sets Hitting the Class 407

The problem has been resolved for width 2 but already for width 3 the issue was
reported to be widely open as the known techniques provably fail [3,5,6,8,11].

In the case of width 3, we do not know of any significant improvement over
Nisan’s result except for severely restricted so-called regular or permutation
oblivious 1-branching programs. Recall that an oblivious branching program
queries the input variables in a fixed order, which represents a provably weaker
model [2]. For constant-width regular oblivious 1-branching programs which have
the in-degree of all nodes equal to 2 (or 0), pseudorandom generators have re-
cently been constructed with seed length O(log n(log logn+log(1/ε))) [4,5] which
was further improved to O(log n log(1/ε)) [6], where ε is the error of generators.
Moreover, for constant-width permutation oblivious 1-branching programs which
are regular programs with the two edges incoming to any node labeled 0 and 1,
the same seed length was previously achieved [10].

In the constant-width regular 1-branching programs the fraction of inputs that
are queried at any node is always lower bounded by a positive constant, which
excludes the fundamental capability of general (non-regular) branching programs
to recognize the inputs that contain a given substring on a non-constant num-
ber of selected positions. In our approach, we manage the analysis also for this
essential case by identifying two types of convergence of the number of inputs
along a computational path towards zero which implement read-once DNFs and
CNFs, respectively. Thus, we achieve the construction of a hitting set generator
for general width-3 1-branching programs which need not be regular nor oblivi-
ous. In our previous work [14], we constructed the hitting set for so-called simple
width-3 1-branching programs which exclude one specific pattern of level-to-level
transition in their normalized form and cover the width-3 regular case.

In this extended abstract (for a full presentation see [15]), we formulate a so-
called richness condition (Section 2) which is independent of a rather technical
definition of branching programs. In fact, a rich set is a hitting set for read-
once conjunctions of a DNF and a CNF. Thus, a related line of study concerns
pseudorandom generators for read-once formulas, such as read-once DNFs [7].
We show that the richness property characterizes the hitting sets for width-3
1-branching programs. In particular, a weaker version of the richness condition
proves to be necessary for such hitting sets, while the sufficiency of richness
represents the main result of this paper. More precisely, we show that any rich
set extended with all strings within Hamming distance of 3 is a hitting set for
width-3 1-branching programs. The proof which is based on a detailed analysis
of structural properties of the width-3 1-branching programs that reject all the
inputs from the candidate hitting set is sketched in Sections 3–5.

The presented characterization of hitting sets by the richness property is of in-
dependent interest since it opens the possibility of generalizing this condition to
more complicated read-once formulas in the constant-width case. In our (chrono-
logically later) related paper [16], we proved that any almost O(log n)-wise in-
dependent set, which can be constructed in polynomial time [1], is an example
of the rich set (i.e. the hitting set for read-once conjunctions of DNF and CNF).

408 J. Š́ıma and S. Žák

Combining this example with the sufficiency of the richness condition we achieve
an explicit polynomial time construction of an ε-hitting set for 1-branching pro-
grams of width 3 with acceptance probability ε > 11/12 (Section 6).

We start with a brief review of basic formal definitions regarding branching
programs [17]. A branching program P on the set of input Boolean variables
Xn = {x1, . . . , xn} is a directed acyclic multi-graph G = (V,E) that has one
source s ∈ V of zero in-degree and, except for sinks of zero out-degree, all the
inner (non-sink) nodes have out-degree 2. In addition, the inner nodes get labels
from Xn and the sinks get labels from {0, 1}. For each inner node, one of the
outgoing edges gets the label 0 and the other one gets the label 1. The branch-
ing program P computes Boolean function P : {0, 1}n −→ {0, 1} as follows.
The computational path of P for an input a = (a1, . . . , an) ∈ {0, 1}n starts at
source s. At any inner node labeled by xi ∈ Xn, input variable xi is tested and
this path continues with the outgoing edge labeled by ai to the next node, which
is repeated until the path reaches the sink whose label gives the output value
P (a). Denote by P−1(a) = {a ∈ {0, 1}n |P (a) = a} the set of inputs for which
P outputs a ∈ {0, 1}. For inputs of arbitrary lengths, infinite families {Pn} of
branching programs, one Pn for each input length n ≥ 1, are used. A branching
program P is called read-once (or shortly 1-branching program) if every input
variable from Xn is tested at most once along each computational path. Here we
consider leveled branching programs in which each node belongs to a level, and
edges lead from level k ≥ 0 to the next level k+1 only. We assume that the source
of P creates level 0, whereas the last level is composed of all sinks. The number
of levels decreased by 1 equals the depth of P which is the length of its longest
path, and the maximum number of nodes on one level is called the width of P .

In the sequel, we confine ourselves to the 1-branching programs of width 3, for

which we define 3×3 transition matrix Tk on level k ≥ 1 such that t
(k)
ij ∈ {0, 12 , 1}

is the half of the number of edges leading from node v
(k−1)
j (1 ≤ j ≤ 3) on

level k − 1 to node v
(k)
i (1 ≤ i ≤ 3) on level k. For example, t

(k)
ij = 1 implies

there is a double edge from v
(k−1)
j to v

(k)
i . Denote by a column vector p(k) =

(p
(k)
1 , p

(k)
2 , p

(k)
3)T the distribution of inputs among 3 nodes on level k of P , that

is, p
(k)
i equals the ratio of the number of inputs from M(v

(k)
i) ⊆ {0, 1}n that are

tested at v
(k)
i to all 2n possible inputs. It follows M(v

(k)
1)∪M(v

(k)
2)∪M(v

(k)
3) =

{0, 1}n and p
(k)
1 + p

(k)
2 + p

(k)
3 = 1 for every level k ≥ 0. Given the distribution

p(k−1) on level k − 1, the distribution on the subsequent level k can be com-
puted using transition matrix Tk as p(k) = Tk ·p(k−1). We say that a 1-branching
program P of width 3 is normalized if P has the minimum depth among the pro-

grams computing the same function and P satisfies 1 > p
(k)
1 ≥ p

(k)
2 ≥ p

(k)
3 > 0

for every k ≥ 2. Any width-3 1-branching program can be normalized by permut-

ing its nodes at each level [14]. Obviously, any normalized P satisfies p
(k)
1 > 1

3 ,

p
(k)
2 < 1

2 , and p
(k)
3 < 1

3 for every level 2 ≤ k ≤ d where d ≤ n is the depth of P .

A Sufficient Condition for Sets Hitting the Class 409

2 The Richness Condition

Let P be the class of read-once branching programs of width 3 and ε > 0 be a real
constant. A set of input strings H ⊆ {0, 1}∗ is called an ε-hitting set for class P
if for sufficiently large n, for every branching program P ∈ P with n inputs∣∣P−1(1)

∣∣ /2n ≥ ε implies (∃ a ∈ H ∩ {0, 1}n)P (a) = 1 . (1)

We say that a set A ⊆ {0, 1}∗ is weakly ε-rich if for sufficiently large n, for any
index set I ⊆ {1, . . . , n}, and for any partition {Q1, . . . , Qq, R1, . . . , Rr} of I, if(

1−
∏q

j=1

(
1− 1/2|Qj|

))
×

∏r
j=1

(
1− 1/2|Rj|

)
≥ ε , (2)

then for any c ∈ {0, 1}n there exists a ∈ A ∩ {0, 1}n that meets

(∃ j ∈ {1, . . . , q})(∀ i ∈ Qj) ai = ci & (∀ j ∈ {1, . . . , r}) (∃ i ∈ Rj) ai �= ci . (3)

Note that the product on the left-hand side of inequality (2) expresses the prob-
ability that a random string a ∈ {0, 1}n (not necessarily in A) satisfies condi-
tion (3). Moreover, formula (3) can be interpreted as a read-once conjunction of
a DNF and a CNF (each variable occurs at most once)

q∨
j=1

∧
i∈Qj

�(xi) ∧
r∧

j=1

∨
i∈Rj

¬�(xi) , where �(xi) =

{
xi for ci = 1
¬xi for ci = 0

(4)

which accepts a random input with probability at least ε according to (2). Hence,
a weakly rich set A is a hitting set for read-once conjunctions of DNF and CNF.
The following theorem shows that the weak richness is necessary for any set to
be a hitting set for width-3 1-branching programs.

Theorem 1 ([15]). Every ε-hitting set for the class of read-once branching pro-
grams of width 3 is weakly ε-rich.

Furthermore, a set A ⊆ {0, 1}∗ is ε-rich if for sufficiently large n, for any index
set I ⊆ {1, . . . , n}, for any partition {R1, . . . , Rr} of I (r ≥ 0) satisfying∏r

j=1

(
1− 1/2|Rj|

)
≥ ε , (5)

and for any Q ⊆ {1, . . . , n} \ I such that |Q| ≤ logn, for any c ∈ {0, 1}n there
exists a ∈ A ∩ {0, 1}n that meets

(∀ i ∈ Q) ai = ci and (∀ j ∈ {1, . . . , r}) (∃ i ∈ Rj) ai �= ci . (6)

One can observe that any ε-rich set is weakly ε-rich since condition (2) implies
that there is j ∈ {1, . . . , q} such that |Qj | ≤ logn. We have proved [16] that any
almostO(log n)-wise independent set is an example of the rich set (see Section 6).
The following theorem shows that the richness condition is, in certain sense,
sufficient for a set to be a hitting set for P . In particular, for an input a ∈ {0, 1}n
and an integer constant c ≥ 0, denote by Ωc(a) = {a′ ∈ {0, 1}n |h(a, a′) ≤ c} the
set of so-called h-neighbors of a, where h(a, a′) is the Hamming distance between
a and a′. We also define Ωc(A) =

⋃
a∈A Ωc(a) for a given set A ⊆ {0, 1}∗.

410 J. Š́ıma and S. Žák

Theorem 2. Let ε > 11
12 . If A is ε′11-rich for some ε′ < ε then H = Ω3(A) is

an ε-hitting set for the class of read-once branching programs of width 3.

Proof. (sketch) Suppose a normalized read-once branching program P of width
3 with sufficiently many input variables n meets |P−1(1)|/2n ≥ ε > 11

12 . We will
prove that there exists a ∈ H such that P (a) = 1. On the contrary, we assume
that P (a) = 0 for every a ∈ H . The main idea of the proof lies in using this
assumption first for constraining the structure of branching program P so that
the richness of A can eventually be employed to disprove this assumption.

The Plan of the Proof. We start the underlying analysis of the structure of P
from its last level d containing the sinks and we go backwards block after block
to lower levels. In particular, we inspect the structure of a block whose last level
m satisfies the following four so-called m-conditions which can, without loss of
generality [15], be met for m = d at the beginning:

1. t
(m)
11 = t

(m)
21 = 1

2 , 2. t
(m)
32 > 0, 3. p

(m)
3 < 1

12 ,

4. there is a(m) ∈ A such that if we put a(m) at node v
(m)
1 or v

(m)
2 , then its

onward computational path arrives to the sink labeled with 1.

The block starts at level m′ which is defined in Section 4. A typical block from
m′ through m is schematically depicted in Figure 1. Using the knowledge of
this block structure, we define the partition class R associated with this block
which includes all the indices of the variables that are queried on the compu-
tational path which is indicated in boldface on the top in Figure 1 (Section 3).
The edge labels on this path define relevant bits of c ∈ {0, 1}n so that any
input passing through this path that differs from c on the bit locations from
R reaches a double-edge path in the first column, which implements one CNF
clause from (4). Similarly, sets Q1, . . . , Qq (candidates for Q) associated with
this block are defined so that any input that agrees with c on the bit locations
from Qj reaches the first column, which implements DNF monomials from (4).

The partition classes associated with the blocks that have been analyzed so
far are employed in the richness condition (6) first for Q = ∅ provided that
the partition satisfies (5). The richness is used to prove that the m′-conditions
are also met for the first level m′ of the block (Section 4). In particular, the
richness condition (6) for the partition class R associated with the underlying

block ensures that an input a(m) ∈ A that is put at node v
(m′)
1 or v

(m′)
2 arrives

to the first column (see Figure 1) which implies m′-condition 4 by induction (the
recursive step in Section 5). Then the block analysis including the definition of
associated partition class and sets Qj is applied recursively for m replaced with
m′ etc. If, on the other hand, the underlying partition does not satisfy (5), then
one can prove that there is a set Q among Qj associated with the blocks that
have been analyzed so far such that |Q| ≤ logn, and the recursive analysis ends
(the last paragraph of Section 5). In this case, the richness condition (6) for this

Q implies that there is a ∈ H whose computational path traverses v
(m)
1 or v

(m)
2

A Sufficient Condition for Sets Hitting the Class 411

Fig. 1. The structure of a typical block

412 J. Š́ıma and S. Žák

of the block defining Q (cf. Figure 1) and m-condition 4 then guarantees this
path eventually arrives to the sink labeled with 1 providing P (a) = 1 for a ∈ H .

The inspection of the block structure has the form of a rather tedious case
analysis including various parameters denoting specific levels in the block whose
definitions are indicated in boldface. Figure 1 summarizes these definitions hav-
ing the form of “a ≤ b ↑ ≤ c : C(b)” which means b is the greatest level such
that a ≤ b ≤ c and condition C(b) is satisfied (similarly, ↓ denotes the least such
level). Due to the lack of space, the proofs of lemmas are omitted and we will
present the analysis only for a ‘general’ case excluding plenty of degenerated
cases which occur when some of the level parameters coincide. In order to focus
on this general case illustrating the main idea of the proof we make simplify-
ing assumptions concerning the relations among these levels which will always
be introduced in the bold square brackets below. The full presentation for all
combinations of parameters is available in a preliminary technical report [15].

A Technical Lemma. The following lemma represents a technical tool which
will be used for the analysis of the block from level μ through m where 2 ≤ μ <

m denotes the least level of P such that t
(�)
11 = 1 for every � = μ+ 1, . . . ,m− 1.

For this purpose, define a switching path starting from v ∈ {v(k)2 , v
(k)
3 } at level

μ ≤ k < m to be a computational path of length at most 3 edges leading from

v to v
(�)
1 for some k < � ≤ min(k + 3,m) or to v

(m)
2 for m ≤ k + 3.

Lemma 1

(i) 3 < μ < m− 1.

(ii) There are no two simultaneous switching paths starting from v
(k)
2 and from

v
(k)
3 , respectively, at any level μ ≤ k < m.

(iii) If t
(k+1)
12 > 0 for some μ ≤ k < m, then t

(�)
11 = t

(�)
33 = 1, t

(�)
12 = t

(�)
22 = 1

2 for

every � = μ+ 1, . . . , k, and t
(k+1)
12 = 1

2 .

(iv) If t
(k+1)
13 > 0 for some μ < k < m, then one of the four cases occurs:

1. t
(k)
11 = t

(k)
23 = 1 and t

(k)
12 = t

(k)
32 = 1

2 , 2. t
(k)
11 = t

(k)
23 = 1 and t

(k)
22 = t

(k)
32 = 1

2 ,

3. t
(k)
11 = t

(k)
22 = 1 and t

(k)
13 = t

(k)
33 = 1

2 , 4. t
(k)
11 = t

(k)
22 = 1 and t

(k)
23 = t

(k)
33 = 1

2 .

In addition, if t
(k)
23 = 1 (case 1 or 2), then t

(�)
11 = t

(�)
33 = 1 and t

(�)
12 = t

(�)
22 = 1

2 for
every � = μ+ 1, . . . , k − 1.

3 Definition of Partition Class

The Block Structure from μ to ν (Definition of R). In the following
corollary, we summarize the block structure from level μ through level ν by

using Lemma 1, where μ ≤ ν ≤ m is the greatest level such that t
(�)
12 +t

(�)
13 > 0 for

every � = μ+1, . . . , ν, and level γ is the greatest level such that μ ≤ γ ≤ ν and

t
(γ)
12 > 0 (for γ > μ). For simplicity we will further assume [μ < γ < ν < m].

A Sufficient Condition for Sets Hitting the Class 413

Corollary 1

1. t
(�)
11 = t

(�)
33 = 1 and t

(�)
12 = t

(�)
22 = 1

2 for � = μ+ 1, . . . , γ − 1 (Lemma 1.iii),

2. t
(γ)
11 = t

(γ)
23 = 1 and t

(γ)
12 = t

(γ)
32 = 1

2 (case 1 of Lemma 1.iv),

3. t
(�)
11 = t

(�)
22 = 1 and t

(�)
13 = t

(�)
33 = 1

2 for � = γ + 1, . . . , ν − 1 (case 3 of
Lemma 1.iv),

4. t
(ν)
13 = 1

2 (similarly to Lemma 1.iii),

5. t
(�)
12 = 0 for � = ν, . . . ,m (Lemma 1.iii).

Now we can define the partition class R associated with the underlying block
to be a set of indices of the variables that are tested on the single-edge compu-

tational path v
(μ)
2 , v

(μ+1)
2 , . . . , v

(γ−1)
2 , v

(γ)
3 , v

(γ+1)
3 , . . . , v

(ν−1)
3 , which is illustrated

in Figure 1. For the future use of condition (6) we also define relevant bits of
string c ∈ {0, 1}n. Thus, let cRi be the corresponding labels of the edges creating
this computational path (indicated by a bold line in Figure 1) including the edge

outgoing from the last node v
(ν−1)
3 that leads to v

(ν)
2 or to v

(ν)
3 .

The Block Structure from ω to m (Definition of Q1, . . . , Qq). We define
level ω to be the greatest level such that μ < ν − 1 ≤ ω ≤ m and the double-

edge path from Corollary 1 leading v
(μ)
3 to v

(ν−1)
2 (see Figure 1) further continues

up to level ω containing only nodes v� ∈ {v(�)2 , v
(�)
3 } for every � = μ, . . . , ω. For

simplicity we will further assume [ω < m]. We know t
(m)
12 = 0 from Corollary 1.5.

We assume t
(m)
13 > 0 without loss of generality [15], which implies t

(m)
32 = 1

according to Lemma 1.iii. Then Lemma 1.iv can be employed for k = m − 1

where only case 3 and 4 may occur due to ω < m. In case 3, t
(m−1)
13 > 0 and

Lemma 1.iv can again be applied recursively to k = m− 2 etc.

In general, starting with level σ1 = m that meets t
(σj)
13 > 0 for j = 1,

we proceed to lower levels and inspect recursively the structure of subblocks
indexed as j from level λj through σj where λj is the least level such that
μ < ω ≤ λj < σj − 1 and the transitions from case 3 or 4 of Lemma 1.iv, i.e.

t
(�)
11 = t

(�)
22 = 1 and t

(�)
33 = 1

2 , occur for all levels � = λj +1, . . . , σj − 1, as depicted
in Figure 1. We will observe that case 4 from Lemma 1.iv occurs at level λj +1,

that is t
(λj+1)
23 = 1

2 . On the contrary, suppose that t
(λj+1)
13 = 1

2 (case 3). For
λj > ω, this means case 1 or 2 occurs at level λj < μ by the definition of λj ,
which would be in contradiction to ω ≤ λj according to Lemma 1.iv. For λj = ω,

on the other hand, t
(ω+1)
13 = 1

2 contradicts the definition of ω by Lemma 1.iv.

This completes the argument for t
(λj+1)
23 = 1

2 .
Furthermore, let level κj be the least level such that λj + 1 < κj ≤ σj and

t
(κj)
13 > 0, which exists since at least t

(σj)
13 > 0. Now we can define the correspond-

ingQj (a candidate for Q in the richness condition (6)) to be a set of indices of the

variables that are tested on the computational path v
(λj)
3 , v

(λj+1)
3 , . . . , v

(κj−1)
3 ,

and let c
Qj

i be the corresponding labels of the edges creating this path including

the edge from v
(κj−1)
3 to v

(κj)
1 (indicated by a bold line in Figure 1). This extends

414 J. Š́ıma and S. Žák

the definition of c ∈ {0, 1}n associated with R and Qk for 1 ≤ k < j, which are
usually pairwise disjoint due to P is read-once. Nevertheless, the definition of c
may not be unique for indices from their nonempty intersections in some very
special cases (including those corresponding to neighbor blocks) but the rich-
ness condition will only be used for provably disjoint sets (Section 5). Finally,
define next level σj+1 to be the greatest level such that ω + 1 < σj+1 ≤ λj

and t
(σj+1)
13 > 0, if such σj+1 exists, and continue in the recursive definition of

λj+1, κj+1, Qj+1 with j replaced by j + 1 etc. If such σj+1 does not exist, then
set q = j and the definition of sets Q1, . . . , Qq associated with the underlying
block is complete.

The following lemma gives an upper bound on p
(m)
1 + p

(m)
2 in terms of p

(ω+1)
1 .

Lemma 2

p
(m)
1 + p

(m)
2 ≤ 1−

(
1− p

(ω+1)
1

) q∏
j=1

(
1− 1

2|Qj |

)
. (7)

4 The Block Structure below μ Provided That p
(μ)
3 < 1

12

The Block Structure from m′ to μ (m′-Conditions 1–3). Throughout this
Section 4, we will assume

p
(μ)
3 <

1

12
. (8)

Based on this assumption, we will further analyze the block structure below level
μ in the following lemmas (see Figure 1) in order to satisfy the m′-conditions 1–4
also for the first block level m′ so that the underlying analysis can be applied
recursively when inequality (8) holds (Section 5). In particular, define the first
level m′ of the underlying block to be the greatest level such that 2 ≤ m′ ≤ μ

and t
(m′)
32 > 0 (m′-condition 2), which exists since at least t

(2)
32 > 0.

Lemma 3. t
(k)
31 = t

(k)
32 = 0 and t

(k)
33 = 1 for k = m′ + 1, . . . , μ.

Lemma 3 together with assumption (8) verifies m′-condition 3 for the first block

level m′, that is p
(m′)
3 = p

(μ)
3 < 1/12, which gives m′ ≥ 4 since p

(3)
3 ≥ 1/23.

Lemma 4. t
(m′)
11 = t

(m′)
21 = 1

2 (m′-condition 1).

In the following lemma, we will extend an upper bound on p
(m)
1 + p

(m)
2 achieved

in Lemma 2 (in terms of p
(ω+1)
1) in order to derive a recursive formula for an

upper bound on p
(m)
1 + p

(m)
2 in terms of p

(m′)
1 + p

(m′)
2 which will be used in

Section 5 for verifying condition (5).

Lemma 5

p
(m)
1 + p

(m)
2 ≤ 1−

(
1−

(
p
(m′)
1 + p

(m′)
2

)(
1− 1

2|R|+3

)) q∏
j=1

(
1− 1

2|Qj|

)
. (9)

A Sufficient Condition for Sets Hitting the Class 415

5 The Recursion

In the previous Sections 2–4, we have analyzed the structure of the block of P
from level m′ through m (see Figure 1). We will now employ this block analysis
recursively so that m = mr is replaced by m′ = mr+1. For this purpose, we
introduce additional index b = 1, . . . , r to the underlying objects in order to dif-
ferentiate among respective blocks. For example, the sets R,Q1, . . . , Qq, defined
in Section 3, corresponding to the bth block are denoted as Rb, Qb1, . . . , Qbqb ,
respectively. Since we, for simplicity, assume νb > mb−1 for b = 1, . . . , r, sets
R1, . . . , Rr create a partition due to P is read-once.

Inductive Assumptions. We will proceed by induction on r, starting with
r = 0 and m0 = d. In the induction step for r + 1, we assume that the four
mr-conditions are met for the last block level mr, and let assumption (8) be
satisfied for the previous blocks, that is,

p
(μb)
3 < 1/12 (10)

for every b = 1, . . . , r. In addition, assume

1−Πr < δ = min(ε− ε′, (12ε− 11)/13) < 1/13 (11)

where ε > 11/12 and ε′ < ε are the parameters of Theorem 2, and denote Πk =∏k
b=1 πb with πb =

∏qb
j=1(1− 1/2|Qbj|), $k =

∏k
b=1 αb with αb = (1− 1/2|Rb|+3),

for k = 1, . . . , r, and $0 = Π0 = 1. Hence, we can employ recursive inequality (9)
from Section 4, which is rewritten as pb−1 ≤ 1− (1− pbαb)πb = 1− πb + pbαbπb

for b = 1, . . . , r where notation pb = p
(mb)
1 + p

(mb)
2 is introduced. Starting with

p0 = p
(d)
1 + p

(d)
2 ≥ ε, this recurrence can be solved as

ε ≤
∑r

k=1(1− πk)
∏k−1

b=1αbπb + pr
∏r

b=1αbπb

<
∑r

k=1(1− πk)Πk−1 + pr$rΠr = 1−Πr + pr$rΠr . (12)

In addition, it follows from (12) and (11) that

$r > pr$rΠr > ε− δ ≥ ε′ . (13)

Recursive Step. Throughout this paragraph, we will consider the case when
1 −Πr+1 < δ (cf. (11)), while the complementary case concludes the induction

and will be resolved in the next paragraph. We know pr ≤ 1 − (p
(ωr+1+1)
2 +

p
(ωr+1+1)
3)πr+1 according to Lemma 2, and p

(ωr+1+1)
2 + p

(ωr+1+1)
3 ≥ p

(μr+1)
3 by

the definition of ωr+1, which altogether gives ε < 1−Πr+(1−p
(μr+1)
3 πr+1)$rΠr

according to (12). Hence, ε−δ < (1−p
(μr+1)
3 πr+1)$rΠr < 1−p

(μr+1)
3 πr+1 follows

from (11), which implies p
(μr+1)
3 < (1−ε+δ)/(1−δ) < 1/12 since πr+1 ≥ Πr+1 >

1 − δ. Thus, assumption (8) of Section 4 is also met for the (r + 1)st block,
which justifies recurrence inequality (9) for this block providing the solution

416 J. Š́ıma and S. Žák

ε < 1 −Πr+1 + pr+1$r+1Πr+1 implying $r+1 > ε′ by analogy to (12) and (13).
Thus, inductive assumptions (10) and (11) are valid for r replaced with r + 1.

In Section 4, mr+1-conditions 1–3 have been verified, and thus, it suffices
to validate mr+1-condition 4. We exploit the fact that A is ε′11-rich after we
show condition (5) for partition {R1, . . . , Rr+1} of I =

⋃r+1
b=1 Rb. In particular,∏r+1

b=1(1 − 1/2|Rb|) > ε′11 follows from $r+1 > ε′ since (1 − 1/2|Rb|+3)11 < 1 −
1/2|Rb| for |Rb| ≥ 1. This provides required a(mr+1) ∈ A such that for every

b = 1, . . . , r + 1 there exists i ∈ Rb that meets a
(mr+1)
i �= cRb

i according to (6)

where Q = ∅. Hence, the computational path for this a(mr+1) ends up in sink v
(d)
1

or v
(d)
2 labeled with 1 when we put a(mr+1) at node v

(mr+1)
1 or v

(mr+1)
2 (mr+1-

condition 4) by the definition of Rb, c
Rb
i , and the structure of P (see Figure 1).

Thus, we can continue recursively for r replaced with r + 1 etc.

The End of Recursion. In this paragraph, we will consider the complemen-
tary case of 1−Πr+1 ≥ δ, which concludes the recursion. Suppose |Qbj | > logn
for every b = 1, . . . , r + 1 and j = 1, . . . , qb, then we would have Πr+1 ≥
(1−1/2logn)n/ logn > 1−(1/n)·(n/ logn) = 1−1/ logn, which gives a contradic-
tion for sufficiently large n. Hence, there must be 1 ≤ b∗ ≤ r+1 and 1 ≤ j∗ ≤ qb∗

such that |Qb∗j∗ | ≤ logn, and we denote Q = Qb∗j∗ . Clearly, Q ∩ Rb = ∅ for
b = 1, . . . , b∗ − 2 due to P is read-once while it may happen that Q∩Rb∗−1 �= ∅
for j∗ = 1, κb∗1 = σb∗1 = mb∗−1, and t

(mb∗−1)
23 = 0. Thus, let r∗ be the maximum

of b∗ − 2 and b∗ − 1 such that Q ∩Rr∗ = ∅. We will again employ the fact that

A is ε′11-rich. First condition (5) for partition {R1, . . . , Rr∗} of I =
⋃r∗

b=1 Rb

is verified as
∏r∗

b=1(1 − 1/2|Rb|) > $11r > ε′11 according to (13). This provides

a∗ ∈ A such that a∗i = cQi for every i ∈ Q and at the same time, for every

b = 1, . . . , r∗ there exists i ∈ Rb that meets a∗i �= cRb
i according to (6).

Lemma 6. Denote λ = λb∗j∗ . There are two ‘switching’ paths starting from v
(k)
2

and from v
(k)
3 , respectively, at some level λ− 2 ≤ k < λ, which may lead to v

(λ)
3

in addition to v
(λ−1)
1 or v

(λ)
1 .

By a similar argument to Lemma 1.ii, Lemma 6 gives an h-neighbor a′ ∈
Ω2(a

∗) ⊆ H of a∗ ∈ A such that a′ ∈ M(v
(λ)
1) ∪M(v

(λ)
3). Thus, either a′ ∈

M(v
(λ)
1) ⊆ M(v

(mb∗−1)
1) ∪ M(v

(mb∗−1)
2) or a′ ∈ M(v

(λ)
3) which implies a′ ∈

M(v
(κb∗j∗)
1) ⊆ M(v

(mb∗−1)
1) ∪M(v

(mb∗−1)
2) since a′i = a∗i = cQi for every i ∈ Q

according to (6) (see Figure 1). Note that M(v
(κb∗j∗)
1) = M(v

(mb∗−1)
1) for r∗ =

b∗ − 2. Hence, P (a′) = 1 because for every b = 1, . . . , r∗ there exists i ∈ Rb that
meets a′i = a∗i �= cRb

i due to (6). This completes the proof of Theorem 2. !"

6 Conclusion

In order to achieve an explicit polynomial time construction of a hitting set for
read-once branching programs of width 3 we combine Theorem 2 with our result
that almost O(log n)-wise independent sets are rich:

A Sufficient Condition for Sets Hitting the Class 417

Theorem 3 ([16]). Let ε > 0, C be the least odd integer greater than (2ε ln
1
ε)

2,
and 0 < β < 1

nC+3 . Then any (�(C +2) logn(, β)-wise independent set is ε-rich.

In particular, we can use the result due to Alon et al. [1] who, for β > 0 and k =
O(log n), constructed (k, β)-wise independent set A ⊆ {0, 1}∗ in time polynomial
in n

β such that for sufficiently large n and any index set S ⊆ {1, . . . , n} of

size |S| ≤ k, the probability that a given c ∈ {0, 1}n coincides with a string
a ∈ An = A ∩ {0, 1}n on the bit locations from S is almost uniform, that is,
||{a ∈ An | (∀i ∈ S) ai = ci}|/|An| − 1/2|S|| ≤ β. It follows that H = Ω3(A),
which can be constructed in polynomial time, is an ε-hitting set for read-once
branching programs of width 3 and ε > 11/12.

In the present paper, we have made an important step in the effort of con-
structing the hitting set generators for the model of read-once branching pro-
grams of bounded width. Although this model seems to be relatively weak, the
presented proof is far from being trivial. From the point of view of derandom-
ization of unrestricted models, our result still appears to be unsatisfactory but
it is the best we know so far. The issue of whether our technique based on the
richness condition can be extended to the case of width 4 or to bounded width
represents an open problem for further research. Another challenge for improving
our result is to optimize parameter ε, e.g. to achieve the result for ε ≤ 1

n , which
would be important for practical derandomizations. In fact, the presented proof
can be extended for ε > 5/6 by increasing the number of cases in the analysis.

References

1. Alon, N., Goldreich, O., H̊astad, J., Peralta, R.: Simple constructions of almost
k-wise independent random variables. Random Struct. Algor. 3(3), 289–304 (1992)

2. Beame, P., Machmouchi, W.: Making branching programs oblivious requires su-
perpolynomial overhead. ECCC TR10-104 (2010)

3. Bogdanov, A., Dvir, Z., Verbin, E., Yehudayoff, A.: Pseudorandomness for width
2 branching programs. ECCC TR09-70 (2009)

4. Braverman, M., Rao, A., Raz, R., Yehudayoff, A.: Pseudorandom generators for
regular branching programs. In: Proc. of FOCS 2010, pp. 41–50 (2010)

5. Brody, J., Verbin, E.: The coin problem, and pseudorandomness for branching
programs. In: Proc. of FOCS 2010, pp. 30–39 (2010)

6. De, A.: Improved pseudorandomness for regular branching programs. In: Proc. of
CCC 2011, pp. 221–231 (2011)

7. De, A., Etesami, O., Trevisan, L., Tulsiani, M.: Improved Pseudorandom Genera-
tors for Depth 2 Circuits. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.)
APPROX and RANDOM 2010. LNCS, vol. 6302, pp. 504–517. Springer, Heidel-
berg (2010)

8. Fefferman, B., Shaltiel, R., Umans, C., Viola, E.: On beating the hybrid argument.
ECCC TR10-186 (2010)

9. Goldreich, O., Wigderson, A.: Improved Derandomization of BPP Using a Hitting
Set Generator. In: Hochbaum, D.S., Jansen, K., Rolim, J.D.P., Sinclair, A. (eds.)
RANDOM 1999 and APPROX 1999. LNCS, vol. 1671, pp. 131–137. Springer,
Heidelberg (1999)

418 J. Š́ıma and S. Žák

10. Koucký, M., Nimbhorkar, P., Pudlák, P.: Pseudorandom generators for group prod-
ucts. In: Proc. of STOC 2011, pp. 263–272 (2011)

11. Meka, R., Zuckerman, D.: Pseudorandom generators for polynomial threshold func-
tions. In: Proc. of STOC 2010, pp. 427–436 (2010)

12. Nisan, N.: Pseudorandom generators for space-bounded computation. Combina-
torica 12(4), 449–461 (1992)

13. Nisan, N., Wigderson, A.: Hardness vs. randomness. J. Comput. Syst. Sci. 49(2),
149–167 (1994)

14. Š́ıma, J., Žák, S.: A Polynomial Time Constructible Hitting Set for Restricted
1-Branching Programs of Width 3. In: van Leeuwen, J., Italiano, G.F., van der
Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362,
pp. 522–531. Springer, Heidelberg (2007)

15. Š́ıma, J., Žák, S.: A polynomial time construction of a hitting set for read-once
branching programs of width 3. ECCC TR10-088 (2010)

16. Š́ıma, J., Žák, S.: Almost k-Wise Independent Sets Establish Hitting Sets for
Width-3 1-Branching Programs. In: Kulikov, A., Vereshchagin, N. (eds.) CSR 2011.
LNCS, vol. 6651, pp. 120–133. Springer, Heidelberg (2011)

17. Wegener, I.: Branching Programs and Binary Decision Diagrams—Theory and
Applications. SIAM Monographs on Discrete Mathematics and Its Applica-
tions (2000)

Complete Problem for Perfect Zero-Knowledge

Quantum Proof

Jun Yan�

School of Computer Science and Technology
University of Science and Technology of China

Hefei, Anhui 230027, China
and

State Key Laboratory of Computer Science
Institute of Software, Chinese Academy of Sciences

Beijing 100190, China
junyan@ios.ac.cn

Abstract. The main purpose of this paper is to prove that (promise)
problem Quantum State Identicalness (abbreviated QSI) is essentially
complete for perfect zero-knowledge quantum interactive proof (QPZK).
Loosely speaking, problem QSI is to decide whether two efficiently
preparable quantum states (captured by quantum circuit of polynomial
size) are identical or far apart (in trace distance). It is worthy noting
that our result does not have classical counterpart yet; natural com-
plete problem for perfect zero-knowledge interactive proof (PZK) is still
unknown. Our proof generalizes Watrous’ completeness proof for statis-
tical zero-knowledge quantum interactive proof (QSZK), with an extra
idea inspired by Malka to deal with completeness error. With complete
problem at our disposal, we can immediately prove (and reprove) several
interesting facts about QPZK.

Keywords: Quantum zero-knowledge proof, perfect zero-knowledge,
complete problem, quantum complexity, quantum cryptography.

1 Introduction

Zero-knowledge proof has been a hot topic and played an important role in com-
plexity and cryptography research since it was introduced by Goldwasser, Micali,
and Rackoff in [11]. Zero-knowledge proof is an intriguing notion, from which
verifier ”learns” nothing but the truth of the assertion. Recall that in canonical
proof system represented by complexity class NP, prover just sends witness as
the proof for the verifier to check. Intuitively, a canonical proof system cannot
be zero-knowledge, for it also reveals the witness to the verifier other than the
truth of the assertion. To construct zero-knowledge proof system, we have to
generalize the notion of canonical proof. Such generalization turns out to be of
� This work is supported by the National Natural Science Foundation of China (Grant

No. 60833001).

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 419–430, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

420 J. Yan

two folds: First, we allow the proof to be probabilistic, with a slight of com-
pleteness and soundness errors. Second, we allow the proof to be interactive, in
the sense that prover and verifier can exchange messages. The resulting proof
system is known as interactive proof system. An alternative way which preserves
non-interactiveness of the canonical proof is to let prover and verifier share a ran-
dom string a prior, resulting in a proof system known as non-interactive proof
system. There is a protocol associated with each interactive and non-interactive
proof system, describing (honest) prover’s and (honest) verifier’s strategies. The
formulation of the zero-knowledge property of a proof system follows simula-
tion paradigm; loosely speaking, we says verifier ”learns nothing” from a proof
if the proof itself (a probability distribution) can be approximately generated
without prover. According to the ”quality” of approximation, we have perfect,
statistical, and computational zero-knowledge proofs (denoted by PZK, SZK,
and ZK in the interactive model, and NIPZK, NISZK, and NIZK in the non-
interactive model, respectively). The formal definition and more details about
zero-knowledge proof can be found in standard textbooks such as [8, Chapter
9], [7, Chapter 4].

Quantum proof system is a generalization of classical proof system in the
quantum world. In the past decade, a variety of computational models of quan-
tum proof system (see [23,1,12,17,15,4]) were proposed and studied. Since quan-
tumness is a phenomenan, for good or bad, that exists in nature, we cannot
help considering the possibility of zero-knowledge quantum proof1, which may
play an important role in quantum cryptography (like its classical counterpart in
classical cryptography). As a natural generalization of classical zero-knowledge
proof, we can define QPZK, QSZK, and QZK in the interactive model, and
NIQPZK, NIQSZK, and NIQZK in the non-interactive model, respectively
(see [24,27,15,4]).

Two Generic Approaches

To study properties of zero-knowledge proof, there are two generic approaches.
The first one is via (black-box) transformation. That is, given a zero-knowledge
proof system, we construct a new one for which prover’s and verifier’s strategies
are constructed using original prover’s strategy, original verifier’s strategy, plus
original simulator, as black-boxes. For example, one can transform an honest-
verifier statistical zero-knowledge interactive proof system with completeness
error into another one with perfect completeness [6].

In this paper, we are more interested in the second approach to study zero-
knowledge proof, namely, via complete problem. This approach is in the same
spirit as we study complexity class NP via various NP-complete problems. Sa-
hai and Vadhan [19] initialized this approach. In particular, they found problems
Statistical Difference (SD) and its complement SD are complete for statistical
zero-knowledge interactive proof (SZK). Follow-up works include [10], [21], [9],

1 Some researchers may use term ”quantum zero-knowledge proof”, but we choose to
follow Watrous [26].

Complete Problem for Perfect Zero-Knowledge Quantum Proof 421

among others. Using complete problems, many interesting facts about statistical
zero-knowledge (interactive and non-interactive) proof are proved uncondition-
ally (in contrast to those proved based on complexity assumption such as exis-
tence of one-way function). Refer to [22] for a survey on the study of statistical
zero-knowledge proof via complete problem.

In quantum case, we can also study zero-knowledge quantum proof via both
transformation and complete problem. Interested readers are referred to [12],
[17], [14], et al., for the first approach. With respect to complete problem,
Watrous [24] was the first to extend the idea of [19] to study statistical zero-
knowledge quantum interactive proof (QSZK). Specifically, in [24] two promise
problems, Quantum State Distinguishability (QSD) and its complement Quantum
State Closeness (QSC), were shown to be QSZK-complete, where problem QSD
can be viewed as the quantum analog of SZK-complete problem SD. Later, in
the same spirit, Kobayashi [15] (implicitly) found a problem named Quantum
State Closeness to Identity (QSCI) that is complete for statistical zero-knowledge
quantum non-interactive proof (NIQSZK). More recently, using quantum ex-
tractor, complete problems for QSZK and NIQSZK about (von Neumann)
entropy difference were found; see [3,4]. Thus far, almost all complete problems
for statistical zero-knowledge (classical) proof find their quantum counterparts.

Motivation and Related Work

Note that in either classical or quantum cases, only complete problems for sta-
tistical zero-knowledge proof are found. Naturally we shall ask, what about com-
plete problems for perfect and computational zero-knowledge proof, in classical
and quantum cases, respectively? In this paper, we shall focus on perfect zero-
knowledge proof.

Let us first review some prior related works. In his thesis [22, section 4.7],
Vadhan fully discussed the extension of SZK completeness proof to PZK. In
particular, he found that the straightforward adaption of his proof only gives
hard problems for a restriction of PZK. Since then, there have been no progress
towards complete problems for perfect zero-knowledge proof until recently, when
Malka [16] constructed a (comparably natural) complete problem for perfect
zero-knowledge non-interactive proof (NIPZK) and a hard problem for public-
coin PZK. The genesis of Malka’s construction is a way to deal with complete-
ness error.

In quantum case, up until now, nearly nothing is known about the complete
problem for QPZK. Instead, Kobayashi [14] proved several impressing proper-
ties about QPZK via transformations, while remarking that the finding of nat-
ural complete problem for QPZK are definitely helpful. As for non-interactive
model, Kobayashi [15] constructed a complete problem for NIQPZK1

(NIQPZK with perfect completeness).
In this paper, we try to answer the following question: can we apply Malka’s [16]

idea in classical case to construct complete problem for perfect zero-knowledge
quantum proof?

422 J. Yan

Our Contribution

The main result of this paper is to give a (comparably) natural (promise) problem
that is complete for QPZK. To our knowledge, this is the first time that some
natural (not involving computation of universal model of computation) complete
problem is found for general perfect zero-knowledge interactive proof (in both
classical and quantum case). We can also carry the same study in non-interactive
model, obtaining a NIQPZK-complete problem.

To get a taste of our QPZK-complete problem, it would be beneficial to
first recall the QSZK-complete problem QSC. Loosely speaking, instances of
problem QSC consist of a pair of efficiently preparable quantum states (captured
by quantum circuit of polynomial size; see section 3 for detail), where for yes
instance these two states are close (in trace distance), while for no instance
they are far apart. Our QPZK-complete problem is essentially (not exactly) a
special case of problem QSC as follows: the no instance is the same as problem
QSC, whereas the yes instance now is restricted to a pair of efficiently preparable
quantum states that are identical; we call this special problem Quantum State
Identicalness (QSI). Roughly, our actual QPZK-complete problem adds a BQP
instance to each instance of problem QSI; the formal definition is referred to
Definition 2.

With complete problems at our disposal, we can immediately prove (and re-
prove) several interesting facts about perfect zero-knowledge quantum (interac-
tive and non-interactive) proof as follows.

1. Every problem possessing perfect zero-knowledge quantum interactive proof
has a two-message honest-verifier perfect zero-knowledge quantum interac-
tive proof, with exponentially small completeness and soundness error; it
also has a three-message public-coin honest-verifier perfect zero-knowledge
quantum interactive proof, in which verifier’s message consists of a single
coin flip.

2. HVQPZK = QPZK. That is, from complexity view, the restriction to
honest verifier does not change the class of problems possessing perfect zero-
knowledge quantum interactive proof.

3. QPZK ⊆ BQPQPZK1 , NIQPZK ⊆ BQPNIQPZK1 , where the sub-
script ”1” stands for with perfect completeness. This implies that allowing
completeness error essentially does not increase the complexity of perfect
zero-knowledge quantum proof.

4. NIQPZKh = QPZK = QPZKh, where subscript ”h” indicates the help
model [4] (a model lying between standard interactive and non-interactive
models).

5. QPZK1 is closed under monotone boolean formula. This result can be
viewed as quantum analog of results in [20] and [5], where boolean closure
property for some special cases of PZK is established.

We remark that among the facts listed above, only the second part of item 1
and item 2 are previously known, which were proved by Kobayashi [14] through
a series of transformations. In comparison, our proof via complete problem is
almost straightforward.

Complete Problem for Perfect Zero-Knowledge Quantum Proof 423

Main Idea

The main idea of our construction of QPZK-complete problem is from Watrous
[24] and Malka [16]: we almost follow [24] to do simulator analysis, with only one
difference that is similar to [16] to deal with completeness error. Roughly speak-
ing, the difference is that now we no longer move the completeness error into
the simulation. This difference will result in the instance of our complete prob-
lem having an extra quantum circuit (compared with QSZK-complete problem
QSC) to encode the acceptance probability of simulator. More detail is referred
to section 4. We remark that due to the quantum nature, our construction of
QPZK-complete problem is different from [16]; indeed, it is simpler and more
straightforward.

Our NIQPZK-complete problem is obtained by the same idea, except that
now the simulator analysis follows Kobayashi [15].

Comparing with Results in Classical Case

Problem QSI can be viewed as the quantum analog of problem SD1/2,0 introduced
in [22, section 4.7], whose instances consist of a pair of efficiently samplable
probability distributions, where for yes instance these two distributions are close
(in statistical difference), while for no instance they are far apart. As a special
case of SZK-complete problem SD, it is tempting to prove that problem SD1/2,0

is PZK-complete. But whether this is true is still open: we only know that
this problem is hard for public-coin PZK with respect to honest verifier and
with perfect completeness. Malka [16] modified problem SD1/2,0 to get a hard
problem for public-coin PZK with respect to honest verifier, removing perfect
completeness restriction. In comparison, our quantum result is much stronger: it
does not suffer any restrictions, giving a complete problem for general QPZK.

Organization

In this extended abstract, we shall highlight the specification of our QPZK-
complete problem and the idea of its construction. The technical detail of the
proof, as well as the completeness theorem in non-interactive model, and applica-
tions of complete problems, are all referred to the full version of this paper [28].

The remainder of this paper is organized as follows. In section 2 we review
some background materials. Section 3 is devoted to the formal definition of our
complete problems. Section 4 contains the sketch of the proof of completeness
theorem for QPZK. We conclude with section 5.

2 Preliminaries

We assume readers are familiar with basic quantum computation and informa-
tion (see [18,13]), as well as basic notion of zero-knowledge (classical) interactive
proof system (see [2,7,8]).

424 J. Yan

2.1 Quantum Circuit Model

In this paper, we shall restrict our attention to unitary quantum circuit model,
where the choice of universal gate set could be arbitrary2. In particular, one can
choose Shor basis: Toffoli gate, Hadamard gate, and Phase-shift gate. Measure-
ment of a qubit is with respect to computational basis {|0〉, |1〉}, described by
{Π0, Π1}.

We formalize efficient quantum algorithm Q in terms of polynomial-time uni-
formly generated family of quantum circuits {Qx}, where by ”polynomial-time
uniformly generated” we mean there is a (classical) Turing machine which on
input x, outputs a description of quantum circuits Qx in time polynomial of |x|.

2.2 Efficiently Preparable Quantum State

An efficiently preparable quantum state is encoded by a quantum circuit Q of
polynomial size in the following way: apply Q on quantum registers denoted
by (O, G) that are initialized in state |0〉, where registers O and G correspond
to the output and non-output (garbage) qubits, respectively. That is, quantum
state encoded by quantum circuit Q, which we denote by ρQ, is TrG

(
Q|0〉〈0|Q∗),

where partial trace TrG(·) is tracing out qubits corresponding to register G.
Efficiently preparable quantum state can be viewed as quantum analog of

efficiently samplable probability distribution [22, Definition 3.1.1].

2.3 Perfect Zero-Knowledge Quantum Interactive Proof

Quantum interactive proof system [12] generalizes classical interactive proof
system by allowing prover, verifier, as well as communication channel, to use
quantumness. To formally define perfect zero-knowledge property of quantum
interactive proof system, we need first to introduce the notion of verifier’s view.

Suppose (P,V) is an m-message quantum interactive proof system. Following
[24], we define verifier’s view immediately after the i-th message is sent, denoted
by viewP,V(x, i), as the joint quantum state of all qubits other than those at
prover’s hand at that moment. For our convenience, we also define viewP,V(x, 0)
and viewP,V(x, m + 1) as the initial (before the running) and final (after the
running) views of verifier, respectively.

Following [24], we say quantum interactive proof system (P,V) has perfect zero-
knowledge property with respect to honest verifier if there exists a collection of
efficiently preparable quantum states {σx,i} such that for each input x ∈ Ayes,
and for each i ∈ {0, 1, . . . , m + 1},

viewP,V(x, i) = σx,i. (1)

2 We remark that our complete theorems are insensible to the choice of universal
unitary quantum gate set. However, to prove HVQPZK = QPZK, we need re-
versible computation and phase-flip be implemented without error (this is required
in quantum rewinding lemma [24] that will be applied).

Complete Problem for Perfect Zero-Knowledge Quantum Proof 425

In other words, there is a simulator which on input x ∈ Ayes, runs in polynomial
time and outputs viewP,V(x, i) for each i.

We shall denote by HVQPZK the class of promise problems possessing
honest-verifier perfect zero-knowledge quantum interactive proof. Though per-
fect zero-knowledge property only with respect to honest-verifier seems a little
bit weak in practice, class HVQPZK is nevertheless suitable for complexity
study. In this paper, we actually prove completeness theorem for HVQPZK;
it turns out that with our HVQPZK-complete problem, we immediately have
HVQPZK = QPZK by calling quantum rewinding lemma [27]. The equiva-
lence of HVQPZK and QPZK in turn justifies that our focus on HVQPZK
does not lose any generality. Thus, here we even choose not to give formal defi-
nition of QPZK, which requires more setup that is not relevant to the focus of
this paper; the formal definition of QPZK can be found in [27,14].

As a remark about the definition of perfect zero-knowledge quantum interac-
tive proof, note that the generally accepted definition for perfect zero-knowledge
(classical) proof allows simulator to fail with some probability. In spite of this,
it turns out that such relaxation does not change the corresponding complexity
classes induced by perfect zero-knowledge proof, either in classical or quantum
cases (see [16] and [14], respectively). These facts once again illustrate the ro-
bustness of complexity classes PZK and QPZK.

2.4 Perfect Zero-Knowledge Quantum Non-interactive Proof

Recall that in classical case, non-interactive proof consists of only one message
which is sent from prover to verifier; moreover, prover and verifier share a prior
a uniformly distributed random string known as common reference string [7]. In
quantum case, Kobayashi [15] suggested replacing the random string with EPR
pairs such that prover and verifier keep one qubit of each EPR pair privately
before the execution of the protocol.

3 Complete Problems

In this section, we shall introduce several promise problems concerning about
efficiently preparable quantum state. Before giving formal definition, we need
first introduce the notion of trace distance between two quantum states. Specif-
ically, the trace distance between two quantum states ρ and ξ, which we denote
by δ(ρ, ξ), is equal to ‖ρ − ξ‖1 /2, where ‖·‖1 is the trace norm, or 1-norm (see
[25]). The trace distance can be viewed as the quantum analog of statistical
difference between two probability distributions.

The first problem we are to introduce is problem Quantum State Identicalness
(abbreviated QSI).

Definition 1. The specification of problem QSI is as follows.

Input: description of a pair of quantum circuits (Q0, Q1), which encode two
quantum states, respectively.

426 J. Yan

Promise: Circuits Q0 and Q1 act on, and output, the same number of qubits.
Moreover, either of the following two conditions hold:
(1) δ(ρQ0 , ρQ1) = 0,
(2) δ(ρQ0 , ρQ1) ≥ 2/3.

Output: Accept in case (1) and reject in case (2).

We point out that problem QSI can be viewed as a special case problem QSC, in
which the yes instance is relaxed to be δ(ρQ0 , ρQ1) ≤ 1/3. We are interested in
problem QSI because later in this paper we shall show its QPZK1-completeness
(QPZK with perfect completeness); moreover, our QPZK-complete problem is
just a slight variant of problem QSI, as described below.

Definition 2. The specification of problem QSI′ is as follows.

Input: description of a triple of quantum circuits (Q0, Q1, Q2), which encode
three quantum states, respectively.

Promise: Circuits Q0 and Q1 act on, and output, the same number of qubits;
circuit Q2 outputs one qubit. Moreover, either of the following two conditions
hold:
(1) δ(ρQ0 , ρQ1) = 0 and Tr(Π1ρ

Q2) ≥ 2/3;
(2) δ(ρQ0 , ρQ1) ≥ 1/2 or Tr(Π1ρ

Q2) ≤ 1/3.
Output: Accept in case (1) and reject in case (2).

Compared with problem QSI, the instance of problem QSI′ has an extra quantum
circuit Q2, which induces a BQP instance; the motivation of its construction is
referred to section 4.

We remark that the choice of constants in the definitions above is arbitrary,
due to a straightforward polarization lemma.

Next, we are going to introduce two additional problems concerning about
efficiently preparable quantum state. Actually, these two problems can be viewed
as special cases of the two problems defined above respectively: if we fix quantum
circuit Q0 to encode maximally mixed state (represented by density operator
�/2k, where integer k is the number of qubits designated as output) in the
definitions of problem QSI and QSI′ , then we obtain problems that we shall
denote by QSII (Quantum State Identicalness to Identity) and QSII′ , respectively.
Kobayashi [15] proved that problem QSII is NIQPZK1-complete; we can extend
this result to show that problem QSII′ is NIQPZK-complete.

4 The Completeness Theorem

In this section, we shall sketch the completeness proof for HVQPZK, with the
focus on the idea of the construction of our complete problem QSI′ . The proof
itself is adapted from Watrous’ completeness proof for HVQSZK [24], with a
new idea inspired by Malka [16] to deal with completeness error. We shall also
give the statement of complete theorem for NIQPZK without proof.

Complete Problem for Perfect Zero-Knowledge Quantum Proof 427

Theorem 1. Problem QSI′ is HVQPZK-complete.

Proof. We only sketch the proof here, highlighting the main idea.
A HVQPZK protocol for problem QSI′ is as follows. On input (Q0, Q1, Q2),

we let verifier first run a procedure resembling BQP error reduction: apply many
copies of Q2 on qubits in state |0〉, and then measure the output qubits of all
these copies: reject immediately if less than a half of outcomes are one. Then
conditioned on verifier does not reject, we let prover and verifier execute either
of two identicalness tests, which are adapted from closeness tests given in [24],
on input (Q0, Q1). This will establish that problem QSI′ belongs to HVQPZK.

Next, we give a reduction from an arbitrary problem A ∈ HVQPZK to
problem QSI′ .

Suppose (P,V) is an m-message honest-verifier perfect zero-knowledge quan-
tum interactive proof system for problem A. Following [12] and [24], we can
formalize the running of (P,V) on input x ∈ Ayes ∪Ano in terms of quantum cir-
cuits. Specifically, the workspace of (P,V) is divided into three parts of quantum
registers P, M and V, corresponding to prover’s private workspace, communica-
tion channel, and verifier’s private workspace, respectively. At the beginning, all
qubits of the workspace are initialized to be in state |0〉. Then prover and veri-
fier take in turns to apply their operations (represented by quantum circuits) on
quantum register (P, M) and (M, V), respectively. Since in this paper we restrict
to unitary quantum circuit model, all these operations are unitary. One qubit,
say the first qubit of register V, is designated as the output of the whole proof
system.

We introduce some notations that are consistent with [24]. Let n = |x|. With-
out loss of generality, assume m is even (thus, verifier sends the first message);
let k = m/2 + 1. Suppose prover’s and verifier’s operations are P1, . . . , Pk−1 and
V1, . . . , Vk, respectively. Suppose the simulator for (P,V) outputs a collection of
quantum states, {ρj} and {ξj}, to approximate verifier’s views. The case for
m = 4 is illustrated in Figure 1.

ρ0 ξ1 ρ1 ξ2 ρ2 ξ3

V1 V2 V3

← output

V |0〉

P1 P2

M |0〉

P |0〉

⎧⎨⎩
⎧⎨⎩
⎧⎨⎩
Fig. 1. A 4-message perfect zero-knowledge quantum interactive proof system

428 J. Yan

Without loss of generality, we can assume that the collection of quantum states
{ρj} and {ξj} satisfy (whether x ∈ Ayes or x ∈ Ano) the following properties:

1. ρ0 = |0〉〈0|;
2. Vjρj−1V

∗
j = ξj , for j = 1, . . . , k.

These can be achieved by a simple modification of the simulator as [24].
It turns out that whether x ∈ Ayes or x ∈ Ano can be based on the simulator

analysis as below:

1. If input x ∈ Ayes, then by completeness and honest-verifier perfect zero-
knowledge property of the protocol, we have TrM(ξj) = TrM(ρj), j =
1, . . . , k − 1, and Tr

(
Π1ξk

) ≥ 1 − 2n.
2. If input x ∈ Ano, then by soundness of the protocol, either for some j,

δ(TrM(ξj), TrM(ρj)) is ”noticeable”, or Tr
(
Π1ξk

)
is ”negligible”. For oth-

erwise, prover can use a simulator-based strategy to cheat verifier to accept
with a noticeable amount of probability.

We highlight that compared with the simulator analysis for HVQSZK in Wa-
trous’ proof, here we have an extra term Tr

(
Π1ξk

)
, which is used to capture the

acceptance probability of the final state output by the simulator (probability
that the final state will cause verifier to accept). In Watrous’ proof, this term is
not needed because in case of HVQSZK, one can assume, also by a simple mod-
ification of simulator, that the resulting simulator always outputs a final state
which will cause verifier to accept with certainty. However, this modification
moves completeness error into the simulation. Note that this error of simulation
is allowable in case of statistical zero-knowledge, which can tolerate exponen-
tially small error. But in case of perfect zero-knowledge, we cannot do this. So
in our reduction, we do not do this modification of simulator; instead, we use an
extra quantum circuit to capture the acceptance probability of the final state.
This will cause the resulting complete problem (QSI′) a bit more complex (hav-
ing an extra quantum circuit to capture Tr

(
Π1ξk

)
) than HVQSZK-complete

problem QSC. Actually, this is exactly quantum analog of Malka’s idea [16] in
classical case.

Now we describe the instance of problem QSI′ to which input x is reduced:

- Q0: quantum circuit which encodes quantum state TrM(ρ1)⊗· · ·⊗TrM(ρk−1).
- Q1: quantum circuit which encodes quantum state TrM(ξ1)⊗· · ·⊗TrM(ξk−1).
- Q2: quantum circuit which encodes quantum state ξk, with the output re-

designated as the qubit intended as the approximation of the first qubit of
register V.

Clearly, the description of quantum circuits Q0, Q1, Q2 can be computed in poly-
nomial time given the simulator (which runs in polynomial time). ��
We observe that for HVQPZK1, a special case of HVQPZK with perfect
completeness, quantum circuit Q2 in our reduction above can be discarded by
the same modification of simulator as Watrous [24]. We thus have the following
completeness theorem for HVQPZK1.

Complete Problem for Perfect Zero-Knowledge Quantum Proof 429

Theorem 2. Problem QSI is HVQPZK1-complete.

We note that complete problems for HVQPZK and HVQPZK1 only differ
up to a BQP instance. Does HVQPZK = HVQPZK1? This is an interesting
open problem. It is worthy noting that Kobayashi [14] showed that HVQSZK =
HVQSZK1 by giving a transformation. However, this transformation cannot
be applied directly to perfect zero-knowledge quantum proof, because it will
introduce an additional message which may not be perfectly output by simulator
(though it can be approximated with exponentially small error).

In non-interactive model, we can also prove a completeness theorem with the
same strategy as in interactive model, except that now the proof is adapted from
Kobayashi [15].

Theorem 3. Problem QSII′ is NIQPZK-complete.

5 Conclusion

Combining our results with [24] and [14], we can draw a table as below to
summerize all complete problems we known for statistical and perfect zero-know-
ledge quantum proofs.

Complexity class QSZK QPZK1 QPZK NIQSZK NIQPZK1 NIQPZK

Complete problem QSC QSI QSI′ QSCI QSII QSII′

We note that all these complete problems can be viewed as derived from
problem QSC, comparing them may reveal the relationship among corresponding
complexity classes.

References

1. Aharonov, D., Naveh, T.: Quantum NP - a survey (2002)
2. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge

University Press (2009)
3. Ben-Aroya, A., Schwartz, O., Ta-Shma, A.: Quantum expanders: Motivation and

construction. Theory of Computing 6(1), 47–79 (2010)
4. Chailloux, A., Ciocan, D.F., Kerenidis, I., Vadhan, S.P.: Interactive and Nonin-

teractive Zero Knowledge are Equivalent in the Help Model. In: Canetti, R. (ed.)
TCC 2008. LNCS, vol. 4948, pp. 501–534. Springer, Heidelberg (2008)

5. Damg̊ard, I.B., Cramer, R.J.: On monotone function closure of perfect and statis-
tical zero-knowledge. Technical report, Amsterdam, The Netherlands (1996)

6. Furer, M., Goldreich, O., Mansour, Y., Sipser, M., Zachos, S.: On completeness
and soundness in interactive proof systems. In: Micali, S. (ed.) Randomness and
Computation, Greenwich, Connecticut. Advances in Computing Research, vol. 5,
pp. 429–442. JAI Press (1996)

7. Goldreich, O.: Foundations of Cryptography, Basic Tools, vol. I. Cambridge Uni-
versity Press (2001)

430 J. Yan

8. Goldreich, O.: Computational Complexity: A Conceptual Approach. Cambridge
University Press (2008)

9. Goldreich, O., Sahai, A., Vadhan, S.P.: Can Statistical Zero Knowledge be Made
Non-Interactive? or on the Relationship of SZK and NISZK. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, p. 467. Springer, Heidelberg (1999)

10. Goldreich, O., Vadhan, S.P.: Comparing entropies in statistical zero knowledge
with applications to the structure of SZK. In: IEEE Conference on Computational
Complexity, pp. 54–73 (1999)

11. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

12. Kitaev, A.Y., Watrous, J.: Parallelization, amplification, and exponential time sim-
ulation of quantum interactive proof systems. In: STOC, pp. 608–617 (2000)

13. Kitaev, A.Y., Shen, A.H., Vyalyi, M.N.: Classical and Quantum Computation.
In: American Mathematical Society. Graduate Studies in Mathematics, vol. 47.
American Mathematical Society (2002)

14. Kobayashi, H.: General Properties of Quantum Zero-Knowledge Proofs. In:
Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 107–124. Springer, Heidelberg
(2008), arXiv.org e-Print 0705.1129

15. Kobayashi, H.: Non-Interactive Quantum Perfect and Statistical Zero-Knowledge.
In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS, vol. 2906,
pp. 178–188. Springer, Heidelberg (2003)

16. Malka, L.: How to Achieve Perfect Simulation and A Complete Problem for
Non-Interactive Perfect Zero-Knowledge. In: Canetti, R. (ed.) TCC 2008. LNCS,
vol. 4948, pp. 89–106. Springer, Heidelberg (2008)

17. Marriott, C., Watrous, J.: Quantum Arthur-Merlin games. Computational Com-
plexity 14(2), 122–152 (2005)

18. Nielsen, M.A., Chuang, I.L.: Quantum computation and Quantum Informatioin.
Cambridge University Press (2000)

19. Sahai, A., Vadhan, S.P.: A complete problem for statistical zero knowledge. J.
ACM 50(2), 196–249 (2003)

20. Santis, A.D., Crescenzo, G.D., Persiano, G., Yung, M.: On monotone formula clo-
sure of SZK. In: FOCS, pp. 454–465 (1994)

21. De Santis, A., Di Crescenzo, G., Persiano, G., Yung, M.: Image Density is Com-
plete for Non-Interactive-SZK (Extended Abstract). In: Larsen, K.G., Skyum, S.,
Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 784–795. Springer, Heidel-
berg (1998)

22. Vadhan, S.: Ph.D Thesis: A Study of Statistical Zero-Knowledge Proofs (1999)
23. Watrous, J.: Succinct quantum proofs for properties of finite groups. In: FOCS,

pp. 537–546 (2000)
24. Watrous, J.: Limits on the power of quantum statistical zero-knowledge. In: FOCS,

pp. 459–468 (2002)
25. Watrous, J.: Theory of Quantum Information. Online Lecture Notes (2008),

http://www.cs.uwaterloo.ca/~watrous/798/

26. Watrous, J.: Quantum computational complexity. In: Encyclopedia of Complexity
and Systems Science, pp. 7174–7201 (2009)

27. Watrous, J.: Zero-knowledge against quantum attacks. SIAM J. Comput. 39(1),
25–58 (2009)

28. Yan, J.: Complete problem for perfect zero-knowledge quantum proof. Full version,
http://lcs.ios.ac.cn/~junyan/Yan11_qpzk-SOFSEM12-final-full.pdf

http://www.cs.uwaterloo.ca/~watrous/798/
http://lcs.ios.ac.cn/~junyan/Yan11_qpzk-SOFSEM12-final-full.pdf

An Algorithm

for Probabilistic Alternating Simulation

Chenyi Zhang1,2 and Jun Pang3

1 University of Queensland, Brisbane, Australia
2 University of New South Wales, Sydney, Australia

3 University of Luxembourg, Luxembourg

Abstract. In probabilistic game structures, probabilistic alternating
simulation (PA-simulation) relations preserve formulas defined in prob-
abilistic alternating-time temporal logic with respect to the behaviour
of a subset of players. We propose a partition based algorithm for com-
puting the largest PA-simulation. It is to our knowledge the first such
algorithm that works in polynomial time. Our solution extends the gen-
eralised coarsest partition problem (GCPP) to a game-based setting with
mixed strategies. The algorithm has higher complexities than those in
the literature for non-probabilistic simulation and probabilistic simula-
tion without mixed actions, but slightly improves the existing result for
computing probabilistic simulation with respect to mixed actions.

1 Introduction

Simulation and bisimulation relations are useful tools in the verification of finite
and infinite state systems. State space minimisation modulo these relations is a
valuable technique to fight the state explosion problem in model checking, since
bisimulation preserves properties formulated in logics like CTL and CTL∗ [8]
while simulation preserves the universal (or safe) fragment of these logics [14].

In some situations, however, it is necessary to model quantitative aspects of
a system. It is the case, for instance, in wireless networks, where we often need
to assume that there is a chance of connection failure with a given rate. This
requires modelling network systems with randomised behaviours (e.g., by pool-
ing a connection after uncertain amount of time to minimise conflict). Another
important fact of real-world systems is that environment changes, such as unex-
pected power-off, are often unpredictable. Therefore, we need to encode appro-
priate system behaviours to handle such situations, and in order to do so, it is
sometimes crucial to employ probabilistic strategies to achieve the best possible
outcomes [24]. One simple example is the rock-scissor-paper game where there is
no deterministic strategy to win since the other player’s move is unknown, but
there is a probabilistic strategy, sometimes called mixed strategy, to win at least
a third of all cases in a row, regardless of what the other player does.1

1 A mixed strategy also ensures an eventual win but deterministic strategies do not.

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 431–442, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

432 C. Zhang and J. Pang

A probabilistic game structure (PGS) is a model that has probabilistic tran-
sitions, and allows the consideration of probabilistic choices of players. The
simulation relation in PGSs, called probabilistic alternating simulation (PA-
simulation), has been shown to preserve a fragment of probabilistic alternating-
time temporal logic (PATL) under mixed strategies, which is used in character-
ising what a group of players can enforce in such systems [25]. In this paper we
propose a polynomial-time algorithm for computing the largest PA-simulation,
which is, to the best of our knowledge, the first algorithm for computing a simu-
lation relation in probabilistic concurrent games. A PGS combines the modelling
of probabilistic transitions from probabilistic automata (PA), and the user inter-
actions from concurrent game structures (GS). In PA, the probabilistic notions
of simulation preserve PCTL safety formulas [20]. The alternating simulation [2]
in GS has been been proved to preserve a fragment of ATL∗, under the se-
mantics of deterministic strategies. These simulation relations are computable
in polynomial time for finite systems [26,2].

Related work. Efficient algorithms have been proposed for computing the largest
simulation (e.g., see [15,22,4,13,23]) in finite systems, with a variety of time
and space complexities. In particular, Gentilini et al. [13] developed an effi-
cient algorithm with an improved time complexity based on the work of Hen-
zinger et al. [15] without losing the optimal space complexity. Van Glabbeek and
Ploeger [23] later found a flaw in [13] and proposed a non-trivial fix. So far the
best algorithm for time complexity is [18]. To compute probabilistic simulation,
Baier et al. [3] reduce the problem of establishing a weight function for the lifted
relation to a maximal flow problem. Cattani and Segala [5] reduce the problem
of deciding strong probabilistic bisimulation to LP problems. Zhang and Her-
manns [27] develop algorithms with improved time complexity for probabilistic
simulations, following [3,5]. A space efficient probabilistic simulation algorithm
is proposed by Zhang [26] using the techniques proposed in [13,23].

Studies on stochastic games have actually been carried out since as early as the
1950s [21], and a rich literature has developed in recent years (e.g. see [10,9,11,6]).
One existing approach called game metrics [12] defines approximation-based sim-
ulation relations, with a kernel simulation characterising the logic quantitative
game μ-calculus [9], an extension of modal μ-calculus for concurrent games where
each state is assigned a quantitative value in [0, 1] for every formula. However,
so far the best solutions in the literature on approximating the simulation as de-
fined in the metrics for concurrent games potentially take exponential time [7].
Although PA-simulation is strictly stronger than the kernel simulation relation
of the game metrics in [12], the algorithm presented in the paper has a more
tractable complexity result, and we believe that it will benefit the abstraction
or refinement based techniques for verifying game-based properties.

2 Preliminaries

Probabilistic game structures are defined in terms of discrete probabilistic dis-
tributions. A discrete probabilistic distribution Δ over a finite set S is a function

An Algorithm for Probabilistic Alternating Simulation 433

of type S → [0, 1], where
∑

s∈S Δ(s) = 1. We write D(S) for the set of all such
distributions on a fixed S. For a set T ⊆ S, define Δ(T) =

∑
s∈T Δ(s). Given a

finite index set I, a list of distributions (Δi)i∈I and a list of probabilities (pi)i∈I

where, for all i ∈ I, pi ∈ [0, 1] and
∑

i∈I pi = 1,
∑

i∈I piΔi is obviously also
a distribution. For s ∈ S, s is called a point (or Dirac) distribution satisfying
s(s) = 1 and s(t) = 0 for all t �= s. Given Δ ∈ D(S), we define �Δ(as the set
{s ∈ S | Δ(s) > 0}, which is the support of Δ.

In this paper we assume a set of two players {I, II} (though our results can
be extended to handle a finite set of players as in the standard game structure
and ATL semantics [1]), and Prop a finite set of propositions.

Definition 1. A probabilistic game structure G is a tuple 〈S, s0,L,Act, δ〉, where

– S is a finite set of states, with s0 the initial state;
– L : S → 2Prop is the labelling function which assigns to each state s ∈ S a

set of propositions that are true in s;
– Act = ActI ×ActII is a finite set of joint actions, where ActI and ActII are,

respectively, the sets of actions for players I and II;
– δ : S ×Act→ D(S) is a transition function.

If in state s player I performs action a1 and player II performs action a2 then
δ(s, 〈a1, a2〉) is the distribution for the next states. During each step the players
choose their next moves simultaneously. We define a mixed action of player I

(II) as a distribution over ActI (ActII), and write ΠI (ΠII) for the set of mixed
actions of player I (II).2 In particular, a is a deterministic mixed action which
always chooses a. We lift the transition function δ to handle mixed actions. Given
π1 ∈ ΠI and π2 ∈ ΠII, for all s, t ∈ S, we have

δ(s, 〈π1, π2〉)(t) =
∑

a1∈ActI,a2∈ActII

π1(a1) · π2(a2) · δ(s, 〈a1, a2〉)(t)

Simulation relations in probabilistic systems require a definition of lifting [16],
which extends the relations to the domain of distributions.3 Let S, T be two
sets and R ⊆ S × T be a relation, then R ⊆ D(S) × D(T) is a lifted relation
defined by ΔRΘ if there exists a weight function w : S × T → [0, 1] such that
(1)

∑
t∈T w(s, t) = Δ(s) for all s ∈ S, (2)

∑
s∈S w(s, t) = Θ(t) for all t ∈ T , (3)

sR t for all s ∈ S and t ∈ T with w(s, t) > 0.
The intuition behind the lifting is that each state in the support of one distri-

bution may correspond to a number of states in the support of the other distri-
bution, and vice versa. The example in Fig. 1 is taken from [19] to show how to
lift one relation. We have two set of states S = {s1, s2} and T = {t1, t2, t3}, and
R = {(s1, t1), (s1, t2), (s2, t2), (s2, t3)}. We have ΔRΘ, where Δ(s1) = Δ(s2) =

2 Note ΠI is equivalent to D(ActI), though we choose a different symbol because the
origin of a mixed action is a simplified mixed strategy of player I which has type
S+ → D(ActI). A mixed action only considers player I’s current step.

3 In a probabilistic system without explicit user interactions, state s is simulated by
state t if for every s

a→ Δ1 there exists t
a→ Δ2 such that Δ1 is simulated by Δ2.

434 C. Zhang and J. Pang

Fig. 1. An example showing how to lift one relation

1
2 and Θ(t1) = Θ(t2) = Θ(t3) = 1

3 . To check this, we define a weight function
w by: w(s1, t1) =

1
3 , w(s1, t2) =

1
6 w(s2, t2) =

1
6 , and w(s2, t3) =

1
3 . The dotted

lines indicate the allocation of weights required to relate Δ to Θ via R. By lifting
in this way, we are able to extend the notion of alternating simulation [2] to a
probabilistic setting.

Definition 2. Given a PGS 〈S, s0,L,Act, δ〉, a probabilistic alternating I-simu-
lation (PA-I-simulation) is a relation � ⊆ S × S such that if s � t, then

– L(s) = L(t),
– for all π1 ∈ ΠI, there exists π′

1 ∈ ΠI, such that for all π′
2 ∈ ΠII, there exists

π2 ∈ ΠII, such that δ(s, 〈π1, π2〉) � δ(t, 〈π′
1, π

′
2〉).

If s PA-I-simulates t and t PA-I-simulates s, we say s and t are PA-I-simulation
equivalent.4

PA-I-simulation has been shown to preserve a fragment of PATL which covers
the ability of player I to enforce certain temporal requirements [25]. For example,
if in state s player I can enforce reaching some states satisfying p within 5
transition steps and with probability at least 1

2 , written s |= 〈〈I〉〉≥ 1
2♦≤5p, then

for every state t that simulates s with respect to I, i.e., s � t by some PA-I-
simulation ‘�’, we also have t |= 〈〈I〉〉≥ 1

2♦≤5p.

General Coarsest Partition Problem
The general coarsest partition problem (GCPP) provides a characterisation of
(non-probabilistic) simulation in finite state transition systems [13]. Informally,
in this approach, states that are (non-probabilistic) simulation equivalent are
grouped into the same block, and all such blocks form a partition over the (fi-
nite) state space. Based on the partition, blocks are further related by a partial
order 4, so that if P 4 Q, then every state in block P is simulated by every
state in block Q. The GCPP is to find, for a given PGS, the smallest such set
of blocks. In the literature such a methodology yields space efficient algorithms
for computing the largest (non-probabilistic) simulation relation in a finite sys-
tem [13,23]. Similar methods have been adopted and developed to compute the
largest simulation relations in the model of probabilistic automata [26].

4 Alternating simulations and equivalences are for player I unless stated otherwise.

An Algorithm for Probabilistic Alternating Simulation 435

We briefly review the basic notions that are required to present the GCPP
problem. A partition over a set S, is a collectionΣ ⊆ P(S) satisfying (1)

⋃
Σ = S

and (2) P ∩ Q = ∅ for all distinct blocks P,Q ∈ Σ. Given s ∈ S, write [s]Σ for
the block in partition Σ that contains s. A partition Σ1 is finer than Σ2, written
Σ1 �Σ2, if for all P ∈ Σ1 there exists Q ∈ Σ2 such that P ⊆ Q.

Given a set S, a partition pair over S is (Σ,4) where Σ is a partition over
S and 4 ⊆ Σ × Σ is a partial order. Write Part(S) for the set of partition
pairs on S. If Υ � Σ and 4 is a relation on Σ, then 4 (Υ) = {(P,Q) | P,Q ∈
Υ, ∃P ′, Q′ ∈ Σ,P ⊆ P ′, Q ⊆ Q′, P ′ 4 Q′} is the relation on Υ induced by 4. Let
(Σ1,41) and (Σ2,42) be partition orders, write (Σ1,41) ≤ (Σ2,42) if Σ1�Σ2,
and 41⊆42 (Σ1). Define a relation �(Σ,�)⊆ S×S as determined by a partition
pair (Σ,4) by s �(Σ,�) t iff [s]Σ 4 [t]Σ .

Let→⊆ S×S be a (transition) relation and L : S → 2Prop a labelling function,
then a relation � is a simulation on S if for all s, t ∈ S with s � t, we have (1)
L(s) = L(t) and (2) s → s′ implies that there exists t′ such that t → t′ and
s′ � t′. Let (Σ,4) be a partition pair on S, then it is stable with respect to → if
for all P,Q ∈ Σ with P 4 Q and s ∈ P such that s→ s′ with s′ ∈ P ′ ∈ Σ, then
there exists Q′ ∈ Σ such that P ′ 4 Q′ and for all t ∈ Q, there exists t′ ∈ Q′

such that t→ t′. The following result is essential to the GCPP approach, as we
derive the largest simulation relation by computing the coarsest stable partition
pair over a finite state space.5

Proposition 1. [13,23] Let (Σ,4) be a partition pair, then it is stable with
respect to → iff the induced relation �(Σ,�) is a simulation (with respect to →).

Given a transition relation on a state space there exists a unique largest sim-
ulation relation. Thus, solutions to GCPP provide the coarsest stable partition
pairs, and they have been proved to characterise the largest simulation relations
in non-probabilistic systems [13,23].

3 Solving GCPP in Probabilistic Game Structures

In this section we extend the GCPP framework to characterise PA-simulations
in PGSs. Given a PGS G = 〈S, s0,L,Act, δ〉, a partition pair over G is (Σ,4)
where Σ is a partition over S. Write Part(G) for the set of all partition pairs
over S. We show how to compute the coarsest partition pair and prove that it
characterises the largest PA-simulation for a given player.

Since in probabilistic systems transitions go from states to distributions over
states, we first present a probabilistic version of stability, as per [26]. Let →⊆
S × D(S) be a probabilistic (transition) relation. For a distribution Δ ∈ D(S)
and Σ a partition, write ΔΣ as a distribution on Σ defined by ΔΣ(P) = Δ(P)
for all P ∈ Σ. Let (Σ,4) be a partition pair, it is stable with respect to the

5 We choose the word coarsest for partition pairs to make it consistent with the stan-
dard term GCPP, and it is clear in the context that coarsest carries the same meaning
as largest with respect to the order ≤ defined on partition pairs.

436 C. Zhang and J. Pang

relation→, if for all P,Q ∈ Σ with P 4 Q and s ∈ P such that s→ Δ, then for
all t ∈ Q there exists t→ Θ such that ΔΣ 4ΘΣ .

Another obstacle in characterising PA-simulation is that the concerned player
can only partially determine a transition. That is, after player I performs an
action on a state, the exact future distribution on next states depends on an
action from player II. Therefore, we need to (again) lift the stability condition
for PA-I-simulation from distributions to sets of distributions.

Let ≤ ⊆ S × S be a partial order on a set S, define ≤Sm⊆ P(S)× P(S), by
P ≤Sm Q if for all t ∈ Q there exists s ∈ P such that s ≤ t. In the literature
this definition is known as a ‘Smyth order’. In a PGS, we ‘curry’ the transition
function by defining δ(s, π1) = {δ(s, 〈π1, π2〉) | π2 ∈ ΠII}, which is the set of
distributions that are possible if player I takes a mixed action π1 ∈ ΠI on s ∈ S.

Definition 3. (lifted stability) Let (Σ,4) be a partition pair on S in a PGS, it
is stable with respect to player I’s choice, if for all π ∈ ΠI, P,Q ∈ Σ with P 4 Q
and s ∈ P , there exists π′ ∈ ΠI such that δ(s, π)Σ 4Sm δ(t, π′)Σ for all t ∈ Q.

Intuitively, the Smyth order captures the way of behavioral simulation. That is,
if δ(t, π′) is at least as restrictive as δ(s, π), then whatever player I is able to
enforce by performing π in s, he can also enforce it by performing π′ in t, as
player II has fewer choices in δ(t, π′) than in δ(s, π). At this point, for the sake of
readability, if it is clear from the context, we write W for WΣ as the distribution
W mapped onto partition Σ.

For simulation relations, it is also required that the related states agree on
their labelling. Define Σ0 as the labelling partition satisfying for all s, t ∈ S,
L(s) = L(t) iff [s]Σ0 = [t]Σ0 . Write Part0(G) ⊆ Part(G) for the set of partition
pairs (Σ,4) satisfying (Σ,4) ≤ (Σ0, Id), where Id is the identity relation.

Lemma 1. For all (Σ,4) ∈ Part0(G), if (Σ,4) is a stable partition pair with
respect to player I’s choice then �(Σ,�) is a PA-I-simulation.

Obviously every PA-I-simulation is contained in the relation induced by (Σ0, Id),
and moreover, the above lemma asserts that every stable partition pair smaller
than (Σ0, Id) is a PA-I-simulation. In the following, we try to compute the
coarsest partition pair by refining (Σ0, Id) until it stabilises. The resulting stable
partition pair can be proved to characterise the largest PA-I-simulation on the
state space S as required.

We say t simulates s with respect to player-I’s choice on a partition pair
(Σ,4) if for all π ∈ ΠI, there exists π′ ∈ ΠI such that δ(s, π)4Sm δ(t, π′). For
better readability, sometimes we also say t simulates s on (Σ,4) if it is clear
from the context. Let (Σ1,41) ≤ (Σ2,42), we say (Σ1,41) is stable on (Σ2,42),
if for all P,Q ∈ Σ1 with P 41 Q, s ∈ P and t ∈ Q, t simulates s on (Σ2,42).

Definition 4. Define an operator ρ : Part(G) → Part(G), such that ρ((Σ,4))
is the largest partition pair (Σ′,4′) ≤ (Σ,4) that is stable on (Σ,4).
The operator ρ has the following properties.

Lemma 2. 1) ρ is well defined on Part(G). 2) ρ is monotonic on (Part0(G),≤).

An Algorithm for Probabilistic Alternating Simulation 437

Lemma 1 ensures that for all (Σ,4) ∈ Part0(G), �(Σ,�) is a PA-I-simulation
if ρ((Σ,4)) = (Σ,4), i.e., (Σ,4) is a fixpoint of ρ. However, we still need
to find the largest PA-I-simulation. The following result indicates that if S is
finite, the coarsest stable partition pair achieved by repetitively applying ρ on
(Σ0, Id) indeed yields the largest PA-I-simulation.6 Define ρ0(X) = X and
ρn+1(X) = ρ(ρn(X)) for partition pairs X .

Theorem 1. Let (Σ,4) =
⋂

i∈N
ρi((Σ0, Id)), then �(Σ,�) is the largest PA-I-

simulation on G.

Proof. (sketch) Let �+ be the largest PA-I-simulation on G. Define a set Σ+ =
{{t ∈ S | s �+ t ∧ t �+ s} | s ∈ S}. Since �+ is the largest PA-I-simulation, it
can be shown that �+ is reflexive, symmetric and transitive within each block
P ∈ Σ+. Moreover, we define a relation 4+ by P 4+ Q if there exists s ∈ P
and t ∈ Q such that s �+ t, and it can be shown that 4+ is a partial order on
Σ+. Then (Σ+,4+) forms a partition pair on G, and furthermore, it is stable,
and we also have (Σ+,4+) ≤ (Σ0, Id).

We apply ρ on both sides. By Lemma 2(2) (monotonicity), and (Σ+,4+)
being stable, we have (Σ+,4+) = ρi((Σ+,4+)) ≤ ρi((Σ0, Id)) for all i ∈ N. As
Part(G) is finite, there exists j ∈ N, such that ρj((Σ0, Id)) = ρj+1((Σ0, Id)).
Therefore, ρj((Σ0, Id)) is a stable partition pair, and �ρj((Σ0,Id)) is a PA-I-
simulation by Lemma 1. Straightforwardly we have �+⊆�ρj((Σ0,Id)). Since �+

is the largest PA-I-simulation by assumption, we have �+=�ρj((Σ0,Id)), and the
result directly follows. !"

4 A Decision Procedure for PA-I-Simulation

Efficient algorithms for simulation in the non-probabilistic setting sometimes
apply predecessor based methods [15,13] for splitting blocks and refining parti-
tions. This method can no longer be applied for simulations in the probabilistic
setting, as the transition functions now map a state to a state distribution rather
than a single state, and simulation relation needs to be lifted to handle distri-
butions. The algorithms in [27,26] follow the approaches in [3] by reducing the
problem of deciding a weight function on lifted relations to checking the value
of a maximal flow problem. This method, however, does not apply to combined
transitions, where a more general solution is required. Algorithms for deciding
probabilistic bisimulations [5] reduce the problem on checking weight functions
with combined choices to solutions in linear programming (LP), which are known
to be decidable in polynomial time [17].7

Simulation relations are characterised by partition pairs in the solutions to the
GCPP. We propose the following characterisation of lifting in order to handle

6 The following proof resembles the classical paradigm of finding the least fixpoint in
an ω-chain of a complete partial order by treating (Σ0, Id) as ⊥. However, here we
also need that fixpoint to represent the largest PA-I-simulation.

7 The maximal flow problem is a special instance of an LP problem, which can be
solved more efficiently.

438 C. Zhang and J. Pang

the partial order relation on partitions. Let S be a finite set and 4 a partial
order on S. Define *s�� = {t ∈ S | s 4 t}, which is called the up-closure of
s. The following lemma reduces the problems of finding a weight function for
two distributions on a partition pair to comparing weights of each up-closed
block, and the latter problem can be easily encoded in LP when checking PA-I-
simulation on a given partition pair between two states (as shown in Lemma 7).

Lemma 3. Let S be a set with a partial order 4⊆ S × S and Δ1, Δ2 ∈ D(S),
then Δ14Δ2 iff we have Δ1(*s��) ≤ Δ2(*s��) for all s ∈ S.

When deciding whether s is able to simulate t with respect to I’s choice on
a certain partition pair, we need to examine potentially infinitely many mixed
actions in ΠI. This problem can be moderated by the following observations.
First we show that for s to be simulated by t, it is only required to check all
deterministic choices of player I on s.

Lemma 4. Let (Σ,4) be a partition pair, then t simulates s on (Σ,4) if for
all a ∈ ActI, there exists π ∈ ΠI such that δ(s, a) 4Sm δ(t, π).

The next lemma states that for checking a Smyth order δ(s, π)4Sm δ(t, π′), it
suffices to focus on player II’s deterministic choices in δ(t, π′), since all proba-
bilistic choices can be represented as interpolations from deterministic choices.

Lemma 5. δ(s, π) 4Sm δ(t, π′) if for all a ∈ ActII, there exists π′′ ∈ ΠII such
that δ(s, 〈π, π′′〉)4 δ(t, 〈π′, a〉).

Combining the above two lemmas, we have the following.

Lemma 6. Let (Σ,4) be a partition pair, then t simulates s with respect to
player-I’s choice on (Σ,4) if for all a1 ∈ ActI, there exists π1 ∈ ΠI such that
for all a2 ∈ ActII, there exists π2 ∈ ΠII such that δ(s, 〈a1, π2〉) 4 δ(t, 〈π1, a2〉).
The following lemma states how to check if the action a can be followed by a
mixed action from ΠI.

Lemma 7. Given a partition pair (Σ,4), two states s, t ∈ S and a ∈ ActI, there
exists π ∈ ΠI such that δ(s, a)4Sm δ(t, π), iff the following LP has a solution:
Let ActI = {a1, a2, . . . , a�} and ActII = {b1, b2, . . . , bm}

�∑
i=1

αi = 1 (1)

∀i = 1, 2, . . . , � : 0 ≤ αi ≤ 1 (2)

∀j = 1, 2, . . . ,m :

m∑
k=1

βj,k = 1 (3)

∀j, k = 1, 2, . . . ,m : 0 ≤ βj,k ≤ 1 (4)

An Algorithm for Probabilistic Alternating Simulation 439

∀B ∈ Σ : j = 1, 2, . . . ,m :

m∑
k=1

βj,k · δ(s, a, bk)(*B��) ≤
�∑

i=1

αi · δ(t, ai, bj)(*B��) (5)

Here α1, α2, . . . , α� are used to ‘guess’ a mixed action from player I, as con-
strained in Eq. 1 and Eq. 2. To establish the Smyth order 4Sm, by Lemma 6,
for every player II action bj with j = 1, 2, . . . ,m, we ‘guess’ a mixed action
from ActII represented by βj,1, βj,2 . . . , βj,m, as constrained in Eq. 3 and Eq. 4.
Then for each block B in Σ, the established distributions need to satisfy the
lifted relation 4, which is characterised by the inequalities on the up-closure of
B with respect to the order 4, by Lemma 3.

We define a predicate CanFollow such that CanFollow((Σ,4), s, t, a) decides
whether there exists a mixed action of player I from t which simulates action
a ∈ ActI from s on the partition pair (Σ,4). CanFollow establishes an LP prob-
lem from its parameters (see Lemma 7). We further define a predicate CanSim
which decides whether a state simulates another with respect to player I’s
choice on (Σ,4) for all actions in ActI, i.e., CanSim((Σ,4), s, t) returns true
if CanFollow((Σ,4), s, t, a) returns true for all a ∈ ActI.

Algorithm 1. Refining a block to make it stable on a partition pair

INPUT: a partition pair (Σ,!), a block B ∈ Σ
OUTPUT: a partition pair (ΣB,!B) on B
function Split ((Σ,!), B)

ΣB := {{s} | s ∈ B}; !B := {(s, s) | s ∈ B}; Σ′ := ∅; !′:= ∅
while ΣB �= Σ′∨ !B �=!′ do

Σ′ := ΣB ; !′:=!B

for each distinct B1, B2 ∈ ΣB do
pick any s1 ∈ B1 and s2 ∈ B2

if (CanSim((Σ,!), s1, s2) ∧ CanSim((Σ,!), s2, s1)) then
ΣB := ΣB \ {B1, B2} ∪ {B1 ∪ B2}
!B :=!B ∪ {(X,B1 ∪B2) | X ∈ Σ : (X,B1) ∈!B ∨ (X,B2) ∈!B}

∪{(B1 ∪B2, X) | X ∈ Σ : (B1, X) ∈!B ∨ (B2, X) ∈!B}
\{(Bi, X), (X,Bi) | X ∈ Σ : (Bi, X), (X,Bi) ∈!B ∧ i ∈ {1, 2}}

else if (CanSim((Σ,!), s1, s2)) then
!B :=!B ∪{(B2, B1)}

else if (CanSim((Σ,!), s2, s1)) then
!B :=!B ∪{(B1, B2)}

endfor
endwhile
return (ΣB,!B)

Algorithm 1 defines a function Split which refines a block B ∈ Σ into a par-
tition pair corresponding the maximal simulation that is stable on (Σ,4). It
starts with the finest partition and the identity relation (as the final relation
is reflexive). For each pair of blocks in the partition, we check if they can sim-
ulate each other by picking up a state from each block. If they are simulation
equivalent on (Σ,4) then we merge the two blocks as well as all incoming and

440 C. Zhang and J. Pang

outgoing relation in the current partial order. If only one simulates the other
we add an appropriate pair into the current ordering. This process continues
until the partition pair stablises.

Algorithm 2. Computing the Generalised Coarsest Partition Pair

INPUT: a probabilistic game structure G = 〈S, s0,L,Act, δ〉
OUTPUT: a partition pair (Σ,!) on S
function GCPP (G)

Σ := {{t | L(t) = L(s)} | s ∈ S}; ! := {(B,B) | B ∈ Σ}
Σ′ := ∅; !′:= ∅
while Σ �= Σ′∨ !�=!′ do

Σ′ := Σ; !′:=!
for each B ∈ Σ do

(ΣB ,!B) := Split((Σ′,!′), B)
Σ := Σ \ {B} ∪ΣB

! := ! ∪ !B

∪{(B′, X) | X ∈ Σ : B′ ∈ ΣB : (B,X) ∈!}
∪{(X,B′) | X ∈ Σ : B′ ∈ ΣB : (X,B) ∈!}
\{(B,X), (X,B) | X ∈ Σ : (X,B), (B,X) ∈!}

endfor
endwhile
return (Σ,!)

Algorithm 2 is based on the functionality of Split in Algorithm 1. Starting
from the partition (Σ0, Id), which is identified as ({{t | L(t) = L(s)} | s ∈
S}, {(B,B) | B ∈ Σ0}), the algorithm computes a sequence of partition pairs
(Σ1,41), (Σ2,42) . . . until it stabilises, which is detected by checking the con-
dition Σ �= Σ′ ∨ 4�=4′. At each iteration we have (Σi+1,4i+1) ≤ (Σi,4i), and
moreover, (Σi+1,4i+1) is the maximal partition pair that is stable on (Σi,4i).
The correctness of the algorithm is justified by Theorem 1, which states that it
converges to the coarsest partition pair that is contained in (Σ0, Id) and returns
a representation of the largest PA-I-simulation.

Space complexity. For a PGS 〈S, s0,L,Act, δ〉, it requires O(|S|) to store the
state space and O(|S|2 · |Act|) for the transition relation, since for each s ∈ S
and 〈a1, a2〉 ∈ Act it requires an array of size O(|S|) to store a distribution.
Recording a partition pair takes O(|S| log |S|+ |S|2) as the first part is needed
to record for each state which equivalence class in the partition it belongs, and
the second part is needed for the partial order relation 4 which takes at most
O(|S|2). The computation from (Σi,4i) to (Σi+1,4i+1) can be done in-place
which only requires additional constant space to track if the partition pair has
been modified during each iteration. Another extra space-consuming part is for
solving LP constrains, which we assume has space usage O(γ(N)) where N =
1 + |ActI| + |ActII| + |ActII|2 + |S| · |ActII| is the number of linear constraints
at most, and γ(N) some polynomial. The space complexity roughly sums up to
O(|S|2 · |Act|+ |S| log |S|+ γ(|Act|2 + |S| · |Act|)). (The first part O(|S|2 · |Act|+
|S| log |S|) for the PGS itself can be considered optimal, while the second part
depends on the efficiency of the LP algorithm being used.)

An Algorithm for Probabilistic Alternating Simulation 441

Time complexity. The number of variables in the LP problem in Lemma 7 is
|ActI|+|ActII|2, and the number of constraints is bounded by 1+|ActI|+|ActII|+
|ActII|2 + |S| · |ActII|. The predicate CanSim costs |ActI| times LP solving. Each
Split invokes at most |B|2 testing of CanSim where B is a block in Σ. Each
iteration of GCPP splits all current blocks, and the total number of comparisons
within each iteration of GCPP is be bounded by |S|2. (However it seems heuristics
on the existing partition can achieve a speed close to linear in practice by caching
previous CanSim checks [27].) The number of iterations is bounded by |S|. This
gives us time complexity which is in the worst case to solve O(|ActI| · |S|3) many
such LP problems, each of which has O(|S| · |Act|+ |Act|2) constraints.
Remark. By removing the interaction between players (i.e., the alternating part),
our algorithm downgrades to a partition-based algorithm computing the largest
strong probabilistic simulation relation in probabilistic automata, where com-
bined transitions are needed. The algorithm of [27] for computing strong proba-
bilistic simulation has time complexity of solving O(|S|2 ·m) LP problems, where
m is the size of the transition relation comparable to O(|S|2 · |Act|). They have
O(|S|2) constraints for each LP instance. The improvement achieved in our al-
gorithm is due to the use of partitions in each iteration instead of working on
the whole relation, which is made possible by applying Lemma 3.

The space-efficient algorithm [26] for probabilistic simulation (without com-
bined transitions) has the same space complexity but better time complexity
than ours, which is due to the reduction to the maximal flow problem.

5 Conclusion

We have presented a partition-based algorithm to compute the largest probabilis-
tic alternating simulation relation in finite probabilistic game structures. To the
best of our knowledge, our work presents the first polynomial-time algorithm for
computing a relation in probabilistic systems considering (concurrently) mixed
choices from players. As aforementioned, PA-simulation is known as stronger
than the simulation relation characterising quantitative μ-calculus [12], though
it is still a conservative approximation which has a reasonable complexity to be
useful in verification of game-based properties.

Acknowledgement. Wan Fokkink, Rob van Glabbeek and Lijun Zhang give
us a lot of helpful comments. Especially we thank Timothy Bourke, whose com-
ments have greatly improved the presentation of this paper.

References

1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Jour-
nal of ACM 49(5), 672–713 (2002)

2. Alur, R., Henzinger, T.A., Kupferman, O., Vardi, M.Y.: Alternating Refinement
Relations. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466,
pp. 163–178. Springer, Heidelberg (1998)

3. Baier, C., Engelen, B., Majster-Cederbaum, M.E.: Deciding bisimilarity and simi-
larity for probabilistic processes. Journal of Computer and System Sciences 60(1),
187–231 (2000)

4. Bustan, D., Grumberg, O.: Simulation based minimization. ACM Transactions on
Computational Logic 4(2), 181–206 (2003)

442 C. Zhang and J. Pang

5. Cattani, S., Segala, R.: Decision Algorithms for Probabilistic Bisimulation. In:
Brim, L., Jančar, P., Křet́ınský, M., Kučera, A. (eds.) CONCUR 2002. LNCS,
vol. 2421, pp. 371–386. Springer, Heidelberg (2002)

6. Chatterjee, K., de Alfaro, L., Henzinger, T.A.: The complexity of quantitative
concurrent parity games. In: Proc. SODA, pp. 678–687. ACM (2006)

7. Chatterjee, K., de Alfaro, L., Majumdar, R., Raman, V.: Algorithms for game
metrics (full version). Logical Methods in Computer Science 6(3:13), 1–27 (2010)

8. Clarke, E.M., Emerson, E.A.: Synthesis of Synchronization Skeletons for
Branching-Time Temporal Logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982)

9. de Alfaro, L.: Quantitative Verification and Control Via the Mu-Calculus. In:
Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 103–127.
Springer, Heidelberg (2003)

10. de Alfaro, L., Henzinger, T.A., Kupferman, O.: Concurrent reachability games. In:
Proc. FOCS, pp. 564–575. IEEE CS (1998)

11. de Alfaro, L., Majumdar, R.: Quantitative solution of omega-regular games. Jour-
nal of Computer and System Sciences 68(2), 374–397 (2004)

12. de Alfaro, L., Majumdar, R., Raman, V., Stoelinga, M.: Game refinement relations
and metrics. Logic Methods in Computer Science 4(3:7), 1–28 (2008)

13. Gentilini, R., Piazza, C., Policriti, A.: From bisimulation to simulation: Coarsest
partition problems. Journal of Automatic Reasoning 31(1), 73–103 (2003)

14. Grumberg, O., Long, D.: Model checking and modular verification. ACM Transac-
tions on Programming Languages and Systems 16(3), 843–871 (1994)

15. Henzinger, M.R., Henzinger, T.A., Kopke, P.W.: Computing simulations on finite
and infinite graphs. In: Proc. FOCS, pp. 453–462. IEEE CS (1995)

16. Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes.
In: Proc. LICS, pp. 266–277. IEEE CS (1991)

17. Karmakar, N.: A new polynomial-time algorithm for linear programming. Combi-
natorica 4(4), 373–395 (1984)

18. Ranzato, F., Tapparo, F.: A new efficient simulation equivalence algorithm. In:
Proc. LICS, pp. 171–180. IEEE CS (2007)

19. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Sys-
tems. PhD thesis, Massachusetts Institute of Technology (1995)

20. Segala, R., Lynch, N.A.: Probabilistic simulations for probabilistic processes.
Nordic Journal of Computing 2(2), 250–273 (1995)

21. Shapley, L.S.: Stochastic games. Proc. National Academy of Science 39, 1095–1100
(1953)

22. Tan, L., Cleaveland, R.: Simulation Revisited. In: Margaria, T., Yi, W. (eds.)
TACAS 2001. LNCS, vol. 2031, pp. 480–495. Springer, Heidelberg (2001)

23. van Glabbeek, R.J., Ploeger, B.: Correcting a Space-Efficient Simulation Algo-
rithm. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 517–529.
Springer, Heidelberg (2008)

24. von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior.
Princeton University Press (1947)

25. Zhang, C., Pang, J.: On Probabilistic Alternating Simulations. In: Calude, C.S., Sas-
sone,V. (eds.)TCS2010. IFIPAICT, vol. 323, pp. 71–85. Springer, Heidelberg (2010)

26. Zhang, L.: A Space-Efficient Probabilistic Simulation Algorithm. In: van Breugel,
F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 248–263. Springer,
Heidelberg (2008)

27. Zhang, L., Hermanns, H., Eisenbrand, F., Jansen, D.N.: Flow faster: Efficient de-
cision algorithms for probabilistic simulations. Logical Methods in Computer Sci-
ence 4(4:6), 1–43 (2008)

Towards a Smart, Self-scaling

Cooperative Web Cache

Tomáš Černý1, Petr Praus2, Slávka Jaroměřská2,
Luboš Matl1, and Michael J. Donahoo2

1 Department of Computer Science and Engineering,
Czech Technical University, Charles Square 13, 121 35 Prague 2, CZ

{tomas.cerny,matllubo}@fel.cvut.cz
2 Department of Computer Science,

Baylor University, P.O. Box 97356, 76798-7356 Waco, TX, USA
{petr praus,slavka jaromerska,jeff donahoo}@baylor.edu

Abstract. The traditional client/server architecture for web service de-
livery fails to naturally scale. This results in growing costs to the service
provider for powerful hardware or extensive use of Content Distribution
Networks. A P2P overlay network provides inherent scalability with mul-
tiple benefits to both clients and servers. In this paper, we provide anal-
ysis, design and prototype implementation of Cooperative Web Cache,
which allows us to scale web service delivery and cope with demand
spikes by employing clients in content replication. To demonstrate per-
formance capabilities, we provide a prototype emulation for both client
and server.

1 Introduction

Expectations on web service delivery rapidly grow every year. What we expe-
rienced in the past in a standalone, rich user interface application can be seen
today online and on demand. As this trend continues, we expect online version
of many applications such as office tools, remote desktops, user-friendly presen-
tations, etc. This direction requires a network that can scale naturally and can
provide soon feedback on client gestures and navigation.

The contemporary model used for web services follows the client-server ar-
chitecture. This model works well until we reach hardware or bandwidth bottle-
necks. In order to provide better scalability we must invest in powerful server
hardware, load balancing, CDN services [1], and/or application rewrite to allow
Cloud [2]. CDN distributes resources to multiple places around the world and
allows the end-user to use the closest host for communication. Cloud comput-
ing allows to scale the service quickly. As the demand grows, the service might
be replicated to multiple computers and handle larger load. Unfortunately the
cloud involves extra charges for such ability.

In this paper, we argue that there exists a more natural way to deal with
growing interest in a service. From the CDN and the cloud approaches, we see
three aspects that should be addressed. First, the service should be as close as

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 443–455, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

444 T. Černý et al.

possible to the client. Second, if the interest grows, there should exist multi-
ple replicas of such service. Finally, the existing service should not experience
any changes and should not be recompiled. One possible approach to address
the above mentioned aspects is to involve decentralized model to communicate
with services. Peer-to-peer (P2P) overlay network has qualities that may sat-
isfy our needs. Such network can be built by involved clients communicating
with each other. This way the client requesting a service may cache the service
results (similar as CDN) and those results might be provided to others. Such
an overlay network may grow large, in that case we want two clients to have
the best conditions for their communication, such as the best bandwidth or the
lowest latency. Two distinct communication types exists, such as the client-to-
server and client-to-client. The network itself should be self-scalable and resilient
to client departure. Similar to clouds the client provides hardware resources as
contribution to others. Such mechanism does not require any changes neither
to the service nor to the client. Our prototype Cooperative Web Cache (CWC)
provides the above mentioned functionality and properties. It allows us to eval-
uate real-world case study and to identify advantages and disadvantages to both
client and server sides, and to identify challenges and further research.

This paper is organized as follow: As next analysis and design details are
provided (Section 2). Case study and evaluation is in Section 3. Related work is
discussed in Section 4. Paper is concluded in Section 5.

2 Analysis and Design of the CWC

Client-server model puts the entire burden on the service provider, who needs
to invest into new hardware or CDN. CWC relocates most of the burden to
clients who reuse the service results and share it with others. As popularity of a
service grows more clients are participating in serving and in result the service
scales more naturally with the size of clients. Furthermore, the distribution of
participating clients may form clusters, so that a client in a given cluster should
communicate within the cluster. The aim of CWC is to decrease server load and
to speedup service delivery. The original service should stay unchanged and the
whole process should be transparent to both sides. It can be seen as HTTP web
browser extension or a proxy.

The CWC should be based on peer collaboration and expect various peer
capabilities. CWC overlay network must sustain clients arrivals and departures
and must be self-organizable. When clouds of clients with certain service results
exist the requesting client should be directed to the nearest client. The nearest
client in the overlay represents a location with the highest communication band-
width and the lowest latency. In order to select the serving client an anycast
request should be sent to the network. Although anycast is not supported by all
networks the application level anycast can be used.

Regards web applications the service is to provide a page that consists of
various resources (html, css, js, etc.). These resources can be divided on static
and dynamic. Static resources often distributed on CDN are browser cacheble

Towards a Smart, Self-scaling Cooperative Web Cache 445

ImagesScripts

C
S
S

Flash

O
th
er

H
T
M
L

35 28 131 90 29 471 [kB]

Total: 784 kB

Fig. 1. Average web page content

and can be reused over the time (until changed by the host). Dynamic resources
change often based on context, GET or POST request parameters [3] or user
rights. Dynamic resources cannot be cached by browser and the replication would
require a deeper knowledge of the system, although technologies such as AJAX
[4] or AHAH (Asynchronous HTML and HTTP) can be seen as a successful
approach with incremental changes to a temporarily cached dynamic resource.
From the above, only static service results can be replicated. In order to impact
the overall page load time by our approach the page must have static resources.
Evaluation of Alexa Top 500 web sites [5] shows that 90% of web page resources
are static in average case. This is in line with Google statistics as shown in Fig. 1.

The life-cycle of expected behavior shown in Fig. 2 is described from the client
perspective. A client browser sends a request to a server (a1,b1,c1). The request
is inspected to determine whether it provides a cacheable result (CWC). If not,
the request is sent to the server (c2), otherwise the anycast request for the service
result is sent to CWC cloud (a2,b2). If the result was not found (a3) the request
is forwarded (a4) and fetched from the server (a5), otherwise is fetched from the
cloud (b3). In both cases the client registers for the CWC group (a6) of clients
having the result. In case the group does not exist then a new one is created
(a6). The CWC group allows other clients to request the service result.

The life-cycle can be summarize as follows:

1. Client sends a request to a server

2. The request is inspected for the result
(a) [Not cacheable] Request forwarded to the Server ⇒ step 3.

(b) [Cacheable] Anycast for service result to CWC cloud
i. [Result found] fetch from CWC Peer

ii. [Result no found] fetch from Server

iii. Join (create) CWC Group with service result

3. Done

The basic life-cycle above can be further extended with multiple strategies. A
web page that consists multiple sources (service results) is most likely either
cached in the network with all its sources or none of those will be registered in
the network. We an approach based on this assumption cache miss avoidance.
This way the CWC proxy can predict whether to send a request to the CWC
cloud or directly to the server. As next, an index of expected service results can
be built per a web page (as in [6]) and registered in the CWC cloud, this way the

446 T. Černý et al.

Fig. 2. Cooperative Web Cache request life-cycle

CWC proxy knows what services to call before the first service is requested and
result parsed. This approach is referred as speculative preloading. Furthermore,
a similar principle as in Bittorent [7] can be applied. The large service result
can be divided into multiple chunks and requested from different locations in
parallel, referred as chunking.

In order to verify validity of service result received from the CWC network
multiple approaches can be applied. From the most optimistic approach a simple
time-stamp will exist, once the result is stale based on the timeout the whole
service result group is invalidated and must be rebuilt. The most pessimist ap-
proach is to always verify the result hash towards the server (as in HTTP), in
case of failure the result group is invalidated. A reasonable approach is to employ
probability where the client verifies the service result with probability p. In case
of failure the group is invalidated and service requested from the server. The
setting of p then reflects the level of optimism placed on the cache.

The CWC design [8] must be flexible towards modification and extension.
For this reason it should be build on multiple layers to support maintenance
and allow plugins for extension. The top layer should communicate with web
browser as a proxy or web browser plugin. The bottom layer should contain a
cache which can be either local or distributed, furthermore there can exist an
addition extension or new services available on CWC. The middle layer should
provide lookup services and mediate communication between the layers.

CWC prototype implementation consists from multiple parts. The distributed
cache is build on P2P Framework developed at Rice University called Pastry
[9]. This frameworks provides self-scalable P2P overlay network with operations
like join, create or query. Its network is robust towards often joining and de-
parting nodes and is tree-based towards its groups. A Tree allows to invali-
dated the whole group by contacting the root. Pastry itself does not provide
neither anycast nor multicast capability necessary for optimal client-to-client
communication. Pastry extension, Scribe [10] [11], provides both services in the
application layer and guarantees that a message is delivered with logarithmic
complexity regards the size of participants. The prototype is implemented in Java
technology.

Towards a Smart, Self-scaling Cooperative Web Cache 447

3 Case Study

In our case study we look at both client and server perspectives. In order to
provide real-world study we must know capabilities of a server and a client that
should be emulated. It is necessary to know the upload and download bandwidth
capacity and latency of both.

From our measurement [5] for client-to-server, the median time for estab-
lishing a TCP connection (round-trip time) with the Alexa Top 500 websites
through a backbone connection located in Prague, Czech Republic was 114 mil-
liseconds. The latency for client-to-client is chosen from the above measurement
to be 20 milliseconds. The presumption is that most traffic will be between ge-
ographically clustered nodes that are selected by anycast with distance metrics.
End-user speeds vary significantly based on locations of such measurements or
type of connectivity. The value for the U.S. household is based on Speed Matters
report [12] and presented in Table 1. Average bandwidth across all providers in
Prague and bandwidth average of state-wide provider UPC are taken from speed
measuring website rychlost.cz on January 24th, 2011. Average bandwidth values
for servers are much higher, commercial offers in data centers provide 100/100
Mbit/s for upload and download.

Our testbed environment [13] is based on a central unit directing distributed
emulators via a test script. Each emulator node can be distributed on multiple
machines where multiple nodes can be hosted by the same machine as well. Each
emulated node has a specific network setting via latency and bandwidth [14].

3.1 Client Evaluation in Homogeneous Network

The evaluation in a homogeneous network applies identical client communica-
tion bandwidth and latency between all clients. The scenario is that a group of
clients has the intention to download a web page. The page has 100 resources
with consistence provided in Fig. 1. The first client requests and downloads the
page, once done, a second client requests and downloads the page and so on.
The client-to-client communication has latency 20 ms and bandwidth 2.2/9.3
Mbps for upload/download, which reflects the network properties in Prague.
Server bandwidth capability is 100/100 Mbps for upload/download and the
client-to-server latency is 114 ms.

Table 1. Typical download/upload bandwidth condditions

Type Download [Mbps] Upload #Tests

Server 100 100 –

USA 3 0.6 –

Sweden 22.2 4.5 –

Japan 18.0 7.0 –

Prague, CZ 9.3 2.2 6467

UPC ISP, CZ 10.5 1.3 13195

448 T. Černý et al.

Table 2. Massive download from server

Number of clients 1 20 30 40

Download time [ms] 6311 6860 6939 7297

Fig. 3. CWC strategy evaluation

We measure the time it takes to a client to download the web page. An average
download time of a single client downloading from the server with no CWC is
6.3 seconds (10 measurements). The time gets worse when multiple client load
from the server as shown in Table 2.

The basic, cache miss avoidance and preloading CWC strategies described in
Section 2 are compared with standard communication (no CWC). The results
from the measurement are available in Fig. 3. Axis x,y of graphs represent the
number of a client/peer and a total page download time respectively. For each
measurement the first client requesting the page was fully served by the server,
it is because the page resources were not stored in the CWC network yet. An
average time for downloading a page from a server for the first client of the basic
strategy is 6.9 seconds. The time difference of 0.6 seconds is caused by searches
for files not available in the CWC network. When the cache miss avoidance
strategy is employed, the average download time for the first client drops to
6.4 seconds, representing 7.3% improvement. The preloading strategy achieves
similar results for the first peer. When a second client requests the page, the
resources are fetched from both server and the first client. The page load time
for basic strategy has worse load time, which is caused by lower first client
upload compared to the server. Increasing the number of clients in the same
CWC group allows a client to request service results from multiple locations,
which positively impacts the overall load time. The saturation of the load time
is in the range of 6-8 clients. In such case the load time drops to 6.3 seconds
for both basic and cache miss avoidance strategies, respective 5.2 seconds for
preloading strategy. An inspection of client participation shows that clients are

Towards a Smart, Self-scaling Cooperative Web Cache 449

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

t+0 t+5 t+10 t+15 t+20 t+25 t+30 P
ee

r p
ar

tic
ip

an
ce

 [M
bp

s]

Time range [sec]

26 25 24 23

22 21 20 19

18 17 16 15

14 13 12 11

10 9 8 7

6 5 4 3

2 1

Fig. 4. Example peer participation in upload

Fig. 5. Massive server download - compared to CWC with preloading strategy

not using the whole download capacity for basic strategy. However, when using
preloading the download capacity was brought close to the limit distributed to
all group members, although, no fairness mechanism was applied. In Fig. 4 is
shown an example client participation in upload to a given client. The figure
shows three consequent web page downloads in a CWC network consisting of
26 CWC clients with shared cacheable web page resources.

We also evaluate multiple clients downloading the same web page from a server
at the same time. Fig. 5 shows that the preloading strategy is significantly faster
than standard server download (no CWC).

3.2 Client Evaluation in Heterogeneous Network

This evaluation considers clients with different network capabilities. The scenario
is the same as in the homogeneous evaluation. Clients has network conditions as
in Prague, UPC, and Sweden listed in Table 1. The client-to-client latencies for
all locations are specified in Table 3. Initial web page load times for evaluated
locations (without CWC) are shown also in Table 3. Our evaluation with CWC
network provides results in Fig. 6. The first requesting client is from Sweden and
its load time is 4.3 seconds. Later load times for Swedish clients converge to 2.9
seconds. Prague load times converge to 5.6 seconds. Compare to homogeneous

450 T. Černý et al.

Table 3. Location settings for peers

Location Download Upload Latency [ms] Web page load time

[Mbps] [Mbps] Sweden Prague UPC Prague Server [ms]

Sweden 22200 4500 20 40 30 114 4303

Prague UPC 10500 1300 40 60 50 134 9497

Prague 9300 2200 30 50 40 124 6311

2000

4000

6000

8000

10000

1 5 15 25

[m
s]

Peer #

Sweden
UPC (ISP)
Prague

Fig. 6. Progressive heterogenous environment

network the result reflects increased delay that aggregates with number of re-
sources. Prague UPC load times converge to 8.4 seconds.

3.3 Server Load Evaluation

From the server point of view the load can be seen by the number of hits or
by downloaded data over a duration of the test. We compare requests going
straight to the server with the use of CWC and without. Fig. 7 shows data
downloaded from the server during the test. The green curve suggests that once
the data is stored in the cooperative web cache the server load declines by 90%.
This figure coincides with the ratio of dynamic content on a web page discussed
above. Fig. 8 showing the number of requests to the server supports this idea.
It should be noted the amount of downloaded data during the first five seconds
roughly corresponds to the size of the page and its resources. After the first client
downloaded some resources he provides them to other requesting clients.

3.4 Server Delay Dependency

Motivation for this test is discovering the boundary of server distance with which
it is advantageous (performance-wise) to use CWC. For each bandwidth setup
from Table 1 we compared download times of a client downloading directly from
the server and a CWC client downloading from a network of 10 CWC clients.
Fig. 9 shows that for Prague-like bandwidth it is useful to download page cached
in a CWC network from server-to-client distances greater than 170 milliseconds.
The same applies to UPC ISP and USA bandwidths with RTT 250 ms and

Towards a Smart, Self-scaling Cooperative Web Cache 451

Fig. 7. Server load - data flow Fig. 8. Server load - requests

Fig. 9. Server delay - dependency between
client-to-server RTT and speed

Fig. 10. Websites with improvable RTT
values by different CWC setups

490 ms respectively. Fig. 10 shows RTT values from Alexa TOP500 mentioned
above. The three horizontal lines represent efficiency boundaries for different
setups. Access to websites above the lines could be improved by using a CWC
network. The percentage of improvable websites by Prague, UPC ISP and USA
bandwidth setups is 34%, 22% and 6.4% respectively.

3.5 Resilience to Abrupt Departure

Simulated departure of 5% and 10% clients from a network of 50 clients with
all static sources in their caches was made. All peers left at the very same
moment (no TCP FIN packet has been sent). An instant after the departure
a new client joined the CWC network and downloaded cached page. The mea-
sured page download time is show in Table 4 (ten measurements). The
referential download times were measured in a healthy CWC network with
the same number of clients - for 5% and 10% departure 48 and 45 clients
respectively.

452 T. Černý et al.

Table 4. Resilience to abrupt departure of clients

Network Time [ms] Deviation [ms]

5% departure Healthy 5124 96

After departure 5435 349

10% departure Healthy 5109 97

After departure 5523 414

4 Related Work

Survey of web caching [15] (section 4.1.2) contains early (1999) thoughts how a
distributed caching of web content might look like and focuses on exchanging
content between institution and national level caches. Distributed web caches are
topics of multiple researches, for example Yingwu [16] shows their potentials and
benefits. Squirrel [17] tries to engage clients in web content distribution and also
builds on Pastry. It is similar to our proposal with multiple aspects, however, it
aims only for corporate LAN networks and lacks anycast and multicast capabil-
ities. Squirrel node, hosting a popular file, is bound to be eventually overloaded
because all traffic for that given object is routed through a “home node”. This
also applies to its “directory mode” where the home node keeps reference to a
certain number of it’s latest clients and redirects new clients’ requests to them
just holding off the inevitable overload with redirect responses. Scribe [10], [11]
implements anycast and multicast on top of Pastry [9] and allows us to imple-
ment efficient invalidation/update mechanism (multicast) and better scaling of
popular files using the anycast. Dalesa [18] aims to provide web content caching
for LAN networks with a working prototype. Kache [19] is focuses on lookup per-
formance, its authors present a method reducing the number of necessary hops
between nodes to one. They do this by using O(

√
n) space on each node (where

n is the number of nodes) and a probabilistic approach to content retrieval.
A node has a certain (very low) probability it will not be able to fulfill a request
for the content it previously advertised.

P2P networks have unique security considerations, because peers are more
powerful than clients. They issue their own node IDs, act as routers, relay mes-
sages and issues with trust arise. Uniform random distribution of node IDs is
fundamental operational presumption of Pastry and all similar networks. If an
attacker can choose node ID, she can surround a victim node, isolating it from
the rest of the network, partition the network into smaller pieces or become
a root key holder. This issue could be solved by centralizing node ID issuing
into the hands of trusted certificate authority. Legitimate peers would refuse
to communicate with peer not able to produce a signed combination of node
ID and timestamp. A malicious node might also tamper with relayed messages,
posing as the closest node. Furthermore one client can act with many identities
[20]. Castro et al. describe possible solutions [21], but this area remains largely
unexplored and addressing these concerns will be crucial for a practical use.

Towards a Smart, Self-scaling Cooperative Web Cache 453

Multiple applications and research topics in this area are distributed web
caches/proxies that specialize solely on content caching and its redistribution
known as Content distribution networks (CDN’s). Survey on CDN’s and its op-
timization proposals are provided in detail by [22] or [23]. Among the most known
solutions are Akamai [1] or Squid [24]. Squid is a hierarchical web proxy cache
consisting of multiple independent servers. The content is shared by simple mul-
ticast query mechanism. These CDN solutions are statically distributed based
on service provider decision. The motivation behind our approach is natural
cache population formed by clients and its relocation based on popularity. Our
approach does not involve costs related with cache server maintenance (Squid)
or costs for given service (Akamai). On the other hand this approach does not
face neither security issues nor content invalidation.

Cloud Computing [2] supports application scaling, it provides the illusion of
infinite computing resources available on demand, eliminates an up-front com-
mitment by cloud users and has the ability to pay for use of computing resources
on a short-term basis as needed. The disadvantage comes with the implementa-
tion and extended costs. Our approach pushes the responsibility of the server-
cloud to a user-cloud with no charge or changes in the implementation and could
complement the cloud-computing in order to decrease charges for service.

5 Conclusion

In this paper we suggest that Internet web services could take advantage of
peer-to-peer overlay network that is formed by clients with similar interest in
the given time frame. We have presented our prototype Cooperative Web Cache
and its simulations which are relatively close to the real-world conditions and
prove our concept. CWC provides benefits to end-users who may experience im-
proved download times for relatively common cases, benefits to service providers
involve significant savings and better capability to survive peak loads. Although
the beforementioned results are promising, we are aware that CWC concept is
missing some key properties, such as proper security and content invalidation,
which are subjects to further research. The invalidation scheme may impact
performance as well as security. Security for decentralized approaches is more
complicated and may require addition centralized mechanism issuing certificates
or Facebook-like friendships. In order to provide chunking strategy for CWC the
underlying network must provide manycast service.

Future work includes extensive emulation environment. We were able to em-
ulate a network of at most about a fifty nodes with our hardware. Using more
computers (for example on PlanetLab) would better reflect viability of our pro-
posal in practical terms. Introducing jitter or packet-loss into our environment
with heterogeneous network would provide more real-world performance results.
Efficiency of CWC relies on a large user population and therefore it should be
implemented in the most user-friendly way as a web browser plug-in.

454 T. Černý et al.

References

1. Nygren, E., Sitaraman, R.K., Sun, J.: The akamai network: a platform for high-
performance internet applications. SIGOPS Oper. Syst. Rev. 44, 2–19 (2010)

2. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee,
G., Patterson, D.A., Rabkin, A., Zaharia, M.: Above the clouds: A berkeley view
of cloud computing. Technical report. Berkeley (2010)

3. Stevens, W.R.: TCP/IP illustrated: the protocols, vol. 1. Addison-Wesley Longman
Publishing Co., Inc., Boston (1993)

4. Ullman, C., Dykes, L.: Beginning Ajax. Wrox (2007)
5. Cerny, T., Jaromerska, S., Praus, P., Matl, L., Donahoo, J.: Cooperative web cache.

In: 18th International Conference on Systems, Signals and Image Processing, pp.
85–88. IEEE (2011)

6. Swen, B.: Outline of initial design of the structured hypertext transfer protocol. J.
Comput. Sci. Technol. 18, 287–298 (2003)

7. Cohen, B.: Incentives Build Robustness in BitTorrent (2003)
8. Matl, L.: System for source distribution to support web application load time (cz).

Master’s thesis. Czech Technical University (2011),
https://dip.felk.cvut.cz/browse/pdfcache/matllubo_2011bach.pdf

9. Rowstron, A., Druschel, P.: Pastry: Scalable, Decentralized Object Location, and
Routing for Large-Scale Peer-to-Peer Systems. In: Liu, H. (ed.) Middleware 2001.
LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

10. Druschel, P., Kermarrec, A.-M., Rowstron, A.: Scalable Application-Level Anycast
for Highly Dynamic Groups. In: Stiller, B., Carle, G., Karsten, M., Reichl, P. (eds.)
NGC 2003 and ICQT 2003. LNCS, vol. 2816, pp. 47–57. Springer, Heidelberg
(2003)

11. Castro, M., Druschel, P., Kermarrec, A., Rowstron, A.: SCRIBE: A large-scale and
decentralized application-level multicast infrastructure. IEEE Journal on Selected
Areas in Communications 20, 1489–1499 (2002)

12. Speed matters, internet speeds report (2010),
http://www.speedmatters.org/2010report

13. Jaromerska, S.: Environment for peer-to-peer application simulation with applica-
tion on cooperative web cache. Master’s thesis. Czech Technical University (2011),
https://dip.felk.cvut.cz/browse/pdfcache/jaromsla_2011bach.pdf

14. Praus, P.: Framework for network management to support simulation of varying
network conditions. Master’s thesis. Czech Technical University (2011),
https://dip.felk.cvut.cz/browse/pdfcache/prauspet_2011bach.pdf

15. Wang, J.: A survey of web caching schemes for the internet. ACM SIGCOMM
Computer Communication Review 29, 36–46 (1999)

16. Zhu, Y.: Exploiting client caches: An approach to building large web caches. In:
Proceedings of the 2003 International Conference on Parallel Processing, ICPP
2003 (2002)

17. Iyer, S., Rowstron, A., Druschel, P.: Squirrel: A decentralized peer-to-peer web
cache. In: Proceedings of the Twenty-First Annual Symposium on Principles of
Distributed Computing, pp. 213–222. ACM (2002)

18. Dalesa: The Peer-to-Peer Web Cache, http://www.dalesa.lk/
19. Linga, P., Gupta, I., Birman, K.: Kache: Peer-to-Peer Web Caching Using Kelips

(2004)

https://dip.felk.cvut.cz/browse/pdfcache/matllubo_2011bach.pdf
http://www.speedmatters.org/2010report
https://dip.felk.cvut.cz/browse/pdfcache/jaromsla_2011bach.pdf
https://dip.felk.cvut.cz/browse/pdfcache/prauspet_2011bach.pdf
http://www.dalesa.lk/

Towards a Smart, Self-scaling Cooperative Web Cache 455

20. Douceur, J.R.: The Sybil Attack. In: Druschel, P., Kaashoek, M.F., Rowstron, A.
(eds.) IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002)

21. Castro, M., Druschel, P., Ganesh, A., Rowstron, A., Wallach, D.: Secure routing
for structured peer-to-peer overlay networks. ACM SIGOPS Operating Systems
Review 36, 299–314 (2002)

22. Ball, N., Pietzuch, P.: Distributed content delivery using load-aware network coor-
dinates. In: Proceedings of the 2008 ACM CoNEXT Conference, CoNEXT 2008,
pp. 77:1–77:6. ACM, New York (2008)

23. Bakiras, S., Loukopoulos, T., Papadias, D., Ahmad, I.: Adaptive schemes for dis-
tributed web caching. J. Parallel Distrib. Comput. 65, 1483–1496 (2005)

24. Spare, I.: Deploying the squid proxy server on linux. Linux J. (2001)

Named Entity Disambiguation

Based on Explicit Semantics

Martin Jačala and Jozef Tvarožek

Institute of Informatics and Software Engineering
Faculty of Informatics and Information Technologies
Slovak University of Technology, Bratislava, Slovakia

martin.jacala@gmail.com,

jtvarozek@fiit.stuba.sk

Abstract. In our work we present an approach to the Named Entity
Disambiguation based on semantic similarity measure. We employ exist-
ing explicit semantics present in datasets such as Wikipedia to construct
a disambiguation dictionary and vector–based word model. The analysed
documents are transformed into semantic vectors using explicit semantic
analysis. The relatedness is computed as cosine similarity between the
vectors. The experimental evaluation shows that the proposed approach
outperforms traditional approaches such as latent semantic analysis.

1 Introduction

The constantly increasing amount of written text available online makes the
automatic processing of these resources a challenging task. The published textual
resources (e.g. personal blogs, newswire articles, web pages) provide us with
highly unstructured yet interesting source of knowledge. To make the automatic
processing possible, we need to solve many problems along the way. The field of
Natural Language Processing studies and tries to solve such challenges.

The named entities, such as persons names, locations, names of organisations
and similar are widely used in any form of written text. Many of the widely used
words to describe entities are subject to homonymy. For example, if we find
a word ”Jaguar” in the text, we often need to disambiguate the true meaning
of the particular statement among the set of all possible meanings (sports car,
animal, etc.). The understanding of the true meaning of the word is crucial in
many situations.

It has been shown that NEs carry much of the user interest making it an source
of information in user modelling and personalisation approaches [15]. Recent
studies show that at least 70% of submitted search queries contain reference to
named entity [7,16] and true understanding of document content can be helpful
in search engine optimisation.

In our work we present an approach to the Named Entity Disambiguation
problem based on the explicit semantics extracted from Wikipedia data. The
presented paper is organised as follows: in the following chapter we discuss the

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 456–466, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Named Entity Disambiguation Based on Explicit Semantics 457

related work, the third chapter presents the proposed method, in the fourth chap-
ter we present the evaluation and the attained results and finally we conclude
and summarise the contribution. Approaches to disambiguate search by recom-
mending keywords according to users social network [10], and ad-hoc navigation
using automatic term retrieval, ranking and categorization [21] were proposed.

2 Related Work

The identification of named entities in text is very important and well studied
task of the NLP since its introduction at MUC6 conference [6]. The goal of the
identification is to label all surface forms used to describe an entity in the written
text with an appropriate label, such as person, organisation, etc. While labelling
the entities, we may encounter several types of disambiguation problems. While
we solve the structural ambiguity we need to break the surface forms found in
the text correctly into entities (e.g. how many entities does The Metropolitan
Museum of Art in New York refer to?). The second problem is the identification
of the proper type of an entity (e.g. Jordan advanced is a person or location?).

2.1 Semantic Ambiguity

If we process more text resources there is high probability that the same entities
are present in many of them. Due to the semantic ambiguity and homonymy,
however, the surface forms used in these resources may differ significantly. For ex-
ample, the entity International Business Machines Corporation is often referred
using the acronym IBM or its nick name Big Blue. Grouping all occurrences of
the same entity regardless to the surface form used in the text is an challenging
task providing vital information about the true semantic content of the resources
contained in the data set. On the other hand, there are entities with the same
surface forms but with different meanings (e.g. John Smith).

This problem has been originally solved with model based on heuristic mea-
sured incorporated into the Nominator system [22] originally developed as a
named entity recogniser. The method uses the University of Pennsylvania’s
CAMP coreference detection system further extended with the Vector Space
Model to solve homonymous cases. During the evaluation they compare the
impact of used scoring function and achieved an F1 score (harmonic mean of
precision and recall) of 87% [1].

Similar approach based on the context in which entities appear is presented in
[19,9]. The approach employs within-document coreference analysis followed by
context analysis when necessary. During this stage, each entity is transformed
into an canonical structure used later during the cross–document analysis. The
canonical structures are then merged or split into two or more separate entities
according to many heuristics and linguistic rules. Comparison of the context is
done using the Context Thesaurus tool, which returns a list of related terms to
any given input text. The comparison of term sets for analysed entities provide
additional information used in the coreference analysis.

458 M. Jačala and J. Tvarožek

2.2 Large–Scale Disambiguation

The clustering approaches presented in the previous section detect and track
an entity even across multiple documents but are usually unable to uniquely
identify the meaning using an external dictionary. Several approaches using large
scale data such as Wikipedia or Open Directory has been recently proposed to
overcome this limitation.

The concept of semantic relatedness between two text fragments is the fun-
damental idea of the majority of latest approaches to the named entity disam-
biguation. One of the first approaches to compute semantic relatedness using
Wikipedia data is WikiRelate [20]. The evaluation shows that Wikipedia signif-
icantly outperforms traditionally used Wordnet on larger datasets.

The approach described in [3] presents a baseline method based on dictionary
constructed from Wikipedia image. The dictionary contains a list of surface
forms extracted using heuristic analysis of letter capitalisation in Wikipedia ar-
ticles together with context for each surface form. The context is captured with
a sliding window of 50 words around each occurrence of hypertext link. The
name of linked article is then used to label and uniquely identify the disam-
biguated meaning. The same technique is used to analyse the input document,
the fragments are then transformed into a set of tf-idf weight vectors and com-
pared using the cosine similarity measure. The baseline method is then further
extended with support vector machile (SVM) disambiguation kernel trained on
the data extracted from Wikipedia image. Experimental evaluation on selected
Wikipedia articles show the precision of 82.3% and 84.4% for the cosine measure
and the taxonomy kernel, respectively.

The approach presented in [4] present hybrid approach consisting of separate
entity recognition and disambiguation stages. The disambiguation process em-
ploys a vector space model to compare both vector representations of analysed
document and information extracted from Wikipedia. The document vector con-
tains aggregated categories and contexts of the entities discovered in the article.
This vector is then compared with each possible entity vector, maximising the
similarity between vectors. The evaluation done on set of manually annotated
newswire articles gave the precision of 91.4%.

There are many other uses of knowledge extracted from Wikipedia, such as
mining a domain–specific thesauri, training named entity recognisers or ma-
chine translations between multiple languages [14,18]. The Wikipedia–based cor-
pora has been proven more suitable than the ones created from Open Directory
Project or even gold–standard corpora for applications in the NLP [5,17]. Auto-
matic term recognition algorithm used for keyword extraction from Wikipedia
pages taking advantage of HTML tags was proposed [12]. Keyword relations
can be extracted using different large scale data, such as social bookmarks from
delicious and CiteULike [2].

2.3 Formal Definition

We may cast the entity disambiguation as a ranking problem: we search for the
most related meaning (concept) c of an surface form of an entity s among all

Named Entity Disambiguation Based on Explicit Semantics 459

of the possible meanings c ∈ C, where C is set of all possible meanings in the
knowledge base extracted during training. We define an ranking function

sim = arg max
c

rank(s, c)

and compute the similarity (sim) between the surface form found in the text
and the possible meanings.

3 Entity Disambiguation Using Wikipedia

In this section we present an overview of the proposed method. We divided
the disambiguation process into four main stages: (1) Entity identification and
boundary detection, (2) Transformation of the document, (3) Lookup of the
candidate meanings and finally (4) Ranking and disambiguation. The input to
this process is plain text without any formatting or markup, each later stage
process the output from it’s predecessor.

As the source of background knowledge for the disambiguation we pre–process
Wikipedia image and construct a disambiguation dictionary and vectorial word
model (semantic space) for later use in the mentioned process. In the following
parts of this chapter we discuss the individual steps in detail.

3.1 Dataset Structure

The main idea of our contribution is to leverage the explicit semantics already
present in Wikipedia. This source of rich markup created by the human editors,
such as hyperlinks, redirect or disambiguation pages is very useful for the purpose
of named entity disambiguation.

In our work, we create a disambiguation dictionary where each surface form of
an entity we find in Wikipedia image has a set of related candidate meanings. The
extraction follows a simple idea that each hypertext written in the MediaWiki
syntax in the form [Surface Form|Article Name] provides a mapping between the
surface form commonly used in the text to describe the entity to it’s proper name.
For instance, considering the following text fragment we extract the mapping of
Big Blue as a surface form for the entity IBM: The software giant, also known
as [[Big Blue|IBM]], released the much anticipated product.

Similarly, we create such mapping for any redirect page we find in the dataset.
Usually, the redirect pages are used to correct misspelling or to create mapping
of an informal to the official name. We then further extract all possible meanings
of a proper name through the disambiguation pages found in Wikipedia. The
disambiguation page is a page created when a proper name has many different,
unrelated meanings. These pages usually form a long list of hypertext links
all lexicologically related to the proper name. We extract these entities as the
values in the disambiguation dictionary, so the dictionary contains a set of the
possible, candidate meanings for each surface form. Each meaning is identified
by the name of appropriate Wikipedia article as shown on Fig. 1.

460 M. Jačala and J. Tvarožek

Fig. 1. Example of the constructed disambiguation dictionary for surface forms ABC
and Jaguar

3.2 Semantic Space

The Wikipedia is not only a source of rich semantic and a network of interlinked
documents, but a source of vast amount of text as well. We use the information
extracted from the way the words are used in different contexts to discover the
most probable meanings.

According to the Charles and Miller [13] co-occurence hypothesis – similar,
or the same words are used in semantically similar contexts. Following this hy-
pothesis, we should be able to discover the related contexts of a document or
text fragment by analysing the word usage across the dataset.

This word usage information is used later in the text processing and disam-
biguation stage of the proposed method. To discover and capture the
word – concept relationships, we construct a semantic space – a vector word
model created from large amount of training text data.

Traditionally, latent semantic analysis (LSA) is used to create such vectorial
models. The LSA method does not need any kind of structurality in the input
data [11]. Using matrix operations such as singular value decomposition reduces
the number of dimensions in the space leaving out smaller and merging adjacent
concepts. Finally, the method discovers hidden (latent) concepts in the provided
training text. The inverted document frequency (tf-idf) is computed for each
word in relation to the discovered latent concepts.

If we assume that each of Wikipedia’s articles describes one natural concept,
we may leave out the detection of latent concepts. Each of the articles in the
dataset is well defined, categorised and written using consistent writing style.
If we consider the natural concepts as the concepts in the constructed semantic
space, we may leave out the discovery process of latent semantic analysis.

Method described in [5] uses semantic relatedness to generate topics or con-
cepts from any given fragment of text. The method is referred to as explicit
semantic analysis – each dimension of the semantic space corresponds to one
natural concept defined in the training data set.

Named Entity Disambiguation Based on Explicit Semantics 461

We build the vectorial semantic space using the explicit semantic analysis
from Wikipedia data. The process is relatively straightforward, we count the
occurrences of words in the individual articles and the whole dataset, then we
compute term and inverse document frequencies. The completed semantic space
is an term – concept matrix, where columns corresponds to the natural concepts
and individual rows are words found in the dataset. The matrix values are tf–idf
frequencies of the words. Thus, each row vector gives us an idea of how related
is the given word to each of the generated concepts.

3.3 Entity Identification

Our proposed method does not attempt to solve the problem of identification
of named entities in the text. Instead, we use existing named entity recogniser
system (Stanford NER). The recogniser offers state–of–art precision and recall
on the ConLL 2003 dataset. The proposed method is not tied with this specific
system, this step can be left out if the analysed text has already defined entity
boundaries or if the text will be annotated manually.

Currently, we only use the information about entity boundaries ignoring any
additional information provided (e.g. entity type) making it even easier and more
flexible to adopt for different environments.

3.4 Document Transformation

The analysed document is transformed into a semantic vector using the
term – concept matrix we described earlier. The semantic vector is in the fol-
lowing form.

Q = (M1, M2, M3, · · · , Mn)

where n is the number of dimensions in the semantic space. Each of the vector
values M1, · · · , Mn is the relatedness of the document to corresponding concept,
in our case this is equal to Wikipedia article used in the training stage.

The vector is created as follows. Firstly, we apply simple stemmer to reduce
the number of unique words in the document. Then, we look up appropriate row
vector from the term – concept matrix for the words found in the document.
The final semantic vector is a running total of the selected rows. The semantic
space is a sparse matrix, so we need to add only the non–zero tf-idf values. The
final vector is used later when we compute the semantic relatedness.

3.5 Candidate Meanings

As we mentioned earlier, the disambiguation dictionary contains a set of {surface
form–possible meanings} pairs extracted from Wikipedia. In this stage of the
disambiguation process we use the dictionary to narrow down the set of possible
meanings.

462 M. Jačala and J. Tvarožek

For each surface form retrieved from the NER system we query the dictionary
for the possible meanings according to extracted explicit semantics. There are
three possible outcomes. First, there is exactly one possible meaning for the
current surface form. This means we found unambiguous entity or an entity
with minor other meanings. If the latter is the case, we are currently unable
to detect and disambiguate the out–of–Wikipedia entities. If an unambiguous
entity is found, we label the occurrence with the name of appropriate article in
Wikipedia and the processing ends here.

Second, the most common case is when we match a set of possible mean-
ings for analysed surface form. In this case, we retrieve the text of the articles
corresponding to the candidate meanings and pass them to the next stage.

Third, we may have found no candidates for given surface form. Either we
found an out-of-Wikipedia entity or the entity has been misspelled, or expressed
in very rare way (it has been not expressed in that way in Wikipedia). In this
case, we run approximate string matching algorithm to overcome some of the
differences in exact spelling. All matching surface forms are then processed as in
the second case.

The disambiguation dictionary is crucial to the disambiguation process not
just because of narrowing down the number of possible candidates to reduce
workload. During this process we also eliminate false meanings that may be
very related to the topic of the document fragment, but not being an exact
meaning of the surface form. We demonstrate the impact of the disambiguation
dictionary on the following text fragment.

[I]f successful, the changes could get incorporated into future Mars missions.
Spirit and Opportunity were also fitted with a new navigation system that allows
them to think several steps ahead when faced with an obstacle [...].

It is clear that surface form Spirit and Opportunity are names of the Mars
remote operated vehicles. The Tab. 1 shows the highest ranked meanings for
these surface forms. In the first column are the highest ranked meanings among
all of Wikipedia articles. The retrieved concepts are related to the analysed
text, however, it does not relate to the given surface forms. If we limit the set of
meanings only to those retrieved from the dictionary (columns 2 and 3) we find
that the true meanings for the given surface form (in bold) rank higher than
other meanings from the dictionary.

Table 1. Top ranking meanings for a given text fragment

Unrestricted Spirit surface form Opportunity surface form

Navigation Spirit rover Opportunity rover
Offensive tackle 37452 Spirit 39382 Opportunity

Geology B-2 Spirit Launch window
Inland navigation The Spirit Opportunity cost

Robot Holy Spirit Business opportunity
Planetary geology Spirit (band) Equal opportunity

Named Entity Disambiguation Based on Explicit Semantics 463

3.6 Ranking

In the previous sections we discussed key components of the disambiguation pro-
cess. In this final stage we process each surface form with at least two candidate
meanings retrieved in the third step. Firstly, we transform the articles that de-
scribe each possible meaning into the semantic vectors. Then, we compute the
semantic relatedness between the document vector and each vector created from
appropriate Wikipedia article.

According to the formal definition mentioned earlier, we define the ranking
function as cosine between the document vector Q and candidate meaning vec-
tors M1, . . . , Mn.

rank(q, m) = cos(θ) =
Q · M

‖Q‖‖M‖ =
∑n

i=1 Qi × Mi√∑n
i=1 (Qi)2 ×

√∑n
i=1 (Mi)2

Finally, we take the most similar meaning and label the occurrence in the input
document. This approach, however, fails to rank some of the correct meanings
as the most related because of several reasons, e.g. too short input document,
too short or incomplete Wikipedia article or too few references to the entity
found in the document. For instance, in an article about the band Texas surface
forms are correctly mapped to the Texas (band) article, however, if another
ambiguous entity with one of the meaning related to the music is present in
the text, the method may incorrectly prefer this alternative over the correct,
intended meaning.

To partially solve this problem, we compare modified vectors and combine
both results of ranking functions. The modified vectors are constructed as vectors
of words found in the sliding window around the surface forms found in the
documents. Using this technique, we partially eliminate strong incline e.g. to
music related topics in case there is no evidence of being related to music in
close vicinity of the surface form in question. The impact of this enhancement
is further discussed in the section Evaluation.

4 Evaluation

We implemented the proposed method using Java programming language and
the s–space framework [8]. Three evaluation dataset were used, one during the
development and the other two during the evaluation run only. Each dataset
contain 20 manually disambiguated newswire articles with marked entity bound-
aries. We discarded references to entities not found in Wikipedia. We found
that approximately 10% of all surface forms has been discarded due to out-of-
wikipedia entities. The named entities in our datasets have 18 meanings on aver-
age, while 78% of entities have more than one meaning extracted from Wikipedia.

In the evaluation we compared the results of human annotator with the re-
sults of our automated method. Further, we studied the impact of two-vector
approach where we create two semantic vectors for each document fragment,
this modification is referred to as Combined (Tab. 2).

464 M. Jačala and J. Tvarožek

Table 2. Precision – Proposed method

Dataset ESA - Article ESA - Combined
Acc [%] σ Acc [%] σ

devel 89.31 9.93 91.93 10.33
eval-1 87.84 7.61 90.25 6.67
eval-2 85.06 8.93 86.56 8.56

We have found that the Combined approach does improve the precision in
some edge cases, especially the cases when the surface form in question does
refer to a topic significantly different than the rest of the article.

Further, we modified our implementation to follow the latent semantic analysis
approach and limited the number of dimensions to n=250. We tried to further
increase and decrease the number of dimensions with no significant effect on the
precision of the method. The results of the LSA approach are shown in Table 3.

Table 3. Precision – LSA model

Dataset LSA - Article LSA - Combined
Acc [%] σ Acc [%] σ

devel 80.60 16.60 81.41 16.47
eval-1 80.34 15.44 81.05 16.35
eval-2 80.63 15.06 82.33 11.65

The baseline method presented in [3] does not use the semantic space model at
all. We compared the results of both ESA and LSA models to this approach. We
did not used the Combined variant here, as we followed the original description
during our implementation.

The sliding window method often fails to capture the important pieces of
knowledge because of the way typical article is written – the article is often
divided into sub-topics (sections) to improve readability. Mostly, if a Wikipedia
article consists of many paragraphs of text, the hypertext links does not appear
through the entire article but only couple of times in the first paragraphs of an
article. The results of baseline evaluation are shown in Table 4.

Table 4. Precision – Baseline method

Dataset Baseline
Acc [%] σ

devel 76.28 17.30
eval-1 85.36 10.44
eval-2 82.36 14.94

Named Entity Disambiguation Based on Explicit Semantics 465

5 Conclusion and Future Work

In our paper we present an approach to automated named entity disambiguation
based on Wikipedia data. We use explicit semantics already defined in Wikipedia
to retrieve all possible disambiguations for the entities. Additionally, we leverage
the semantics to create a high-dimensional word model to compute the similarity
between the documents based on human created concepts defined in the Ency-
clopaedia. Our method uses an existing named entity recogniser as preprocessor,
therefore no human annotation of unknown text is necessary.

The evaluation of our method shows better results than the traditionally used
Latent Semantic Analysis as well as the baseline system. As the future work we
plan to extend the method with a contextual classifier. Such classifier will take into
account already disambiguated entities in the document as opposed to individual
disambiguation of the entities. Such contextual awareness can be of great help to
resolve cases when an entity has been successfully disambiguated earlier in the text
(expressed with different surface form) but fails to rank appropriately later on.

Additionally, we experiment with various scenarios of the context generation
to solve the outstanding issue when the occurrences of the same surface form in
the document have two distinct meanings. Currently, all such occurrences are
merged into one, most probable meaning.

Acknowledgement. This work was partially supported by the grants VG1/0971
/11/2011-2014, KEGA 028-025STU-4/2010, APVV-0208-10 and it is the partial
result of the Research & Development Operational Programme for the project
Research of methods for acquisition, analysis and personalized conveying of in-
formation and knowledge, ITMS 26240220039, co-funded by the ERDF.

References

1. Bagga, A., Baldwin, B.: Entity-based cross-document coreferencing using the Vec-
tor Space Model. In: Proceedings of the 36th Annual Meeting on Association for
Computational Linguistics, pp. 79–85. Association for Computational Linguistics,
Morristown (1998)

2. Barla, M., Bieliková, M.: On Deriving Tagsonomies: Keyword Relations Coming
from Crowd. In: Nguyen, N.T., Kowalczyk, R., Chen, S.-M. (eds.) ICCCI 2009.
LNCS, vol. 5796, pp. 309–320. Springer, Heidelberg (2009)

3. Bunescu, R., Pasca, M.: Using encyclopedic knowledge for named entity disam-
biguation. In: Proceedings of EACL, pp. 9–16 (2006)

4. Cucerzan, S.: Large-scale named entity disambiguation based on Wikipedia data.
In: Proceedings of EMNLP-CoNLL, vol. (6), pp. 708–716 (2007)

5. Gabrilovich, E., Markovitch, S.: Computing Semantic Relatedness using
Wikipedia-based Explicit Semantic Analysis. In: Proceedings of the 20th Inter-
national Joint Conference on Artificial Intelligence, pp. 1606–1611 (2007)

6. Grishman, R., Sundheim, B.: Message understanding conference-6: A brief history.
In: Proceedings of the 16th Conference on Computational Linguistics (COLING
1996), Copenhagen, Denmark, vol. 1, pp. 466–471 (1996)

466 M. Jačala and J. Tvarožek

7. Guo, J., Xu, G., Cheng, X., Li, H.: Named entity recognition in query. In: Proceed-
ings of the 32nd International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval - SIGIR 2009, p. 267. ACM Press, New York (2009)

8. Jurgens, D., Stevens, K.: The S-Space Package: An Open Source Package for Word
Space Models. In: Proceedings of the ACL 2010 System Demonstrations, pp. 30–35.
Association for Computational Linguistics (2010)

9. Kazi, Z., Ravin, Y.: Whos who? Identifying concepts and entities across multiple
documents. In: Proceedings of the 33rd Annual Hawaii International Conference,
p. 7. IEEE Computer Society (2000)

10. Kramár, T., Barla, M., Bieliková, M.: Disambiguating Search by Leveraging a
Social Context Based on the Stream of User’s Activity. In: De Bra, P., Kobsa, A.,
Chin, D. (eds.) UMAP 2010. LNCS, vol. 6075, pp. 387–392. Springer, Heidelberg
(2010)

11. Landauer, T.K., Foltz, P.W.: An Introduction to Latent Semantic Analysis. Dis-
course Processes 1(25), 259–284 (1998)

12. Lučanský, M., Šimko, M., Bieliková, M.: Enhancing automatic term recognition
algorithms with HTML tags processing. In: Rachev, B., Smrikarov, A. (eds.) Pro-
ceedings of the 12th Int. Conf. on Computer Systems and Technologies (CompSys-
Tech 2011), pp. 173–178. ACM, New York (2011)

13. Miller, G.A., Charles, W.G.: Contextual correlates of semantic similarity. Language
and Cognitive Processes 6(1), 1–28 (1991)

14. Milne, D., Medelyan, O., Witten, I.: Mining domain-specific thesauri from
wikipedia: A case study. In: IEEE/WIC/ACM International Conference on Web
Intelligence, pp. 442–448. IEEE Computer Society, Hong Kong (2006)

15. Min, J., Jones, G.J.F.: Building User Interest Profiles from Wikipedia Clusters
Categories and Subject Descriptors. In: Proceedings of the Workshop on Enriching
Information Retrieval (2011)

16. Nguyen, D., Overwijk, A., Hauff, C., Trieschnigg, D.R.B., Hiemstra, D., de Jong, F.:
WikiTranslate: Query Translation for Cross-Lingual Information Retrieval Using
Only Wikipedia. In: Peters, C., Deselaers, T., Ferro, N., Gonzalo, J., Jones, G.J.F.,
Kurimo, M., Mandl, T., Peñas, A., Petras, V. (eds.) CLEF 2008. LNCS, vol. 5706,
pp. 58–65. Springer, Heidelberg (2009)

17. Nothman, J., Murphy, T., Curran, J.: Analysing Wikipedia and gold-standard
corpora for NER training. In: Proceedings of the 12th Conference of the European
Chapter of the Association for Computational Linguistics, pp. 612–620. Association
for Computational Linguistics (April 2009)

18. Ponzetto, S.P., Strube, M.: Knowledge derived from Wikipedia for computing se-
mantic relatedness. Journal of Artificial Intelligence Research 30(1), 181–212 (2007)

19. Ravin, Y., Kazi, Z.: Is Hillary Rodham Clinton the president?: disambiguating
names across documents. In: Proceedings of the Workshop on Coreference and its
Applications, pp. 9–16. Association for Computational Linguistics, Maryland (1999)

20. Strube, M., Ponzetto, S.: WikiRelate! Computing semantic relatedness using
Wikipedia. In: Proceedings of the National Conference on Artificial Intelligence,
vol. 21, p. 1419. AAAI Press, MIT Press, Menlo Park, Cambridge (1999) (2006)

21. Ševce, O., Tvarožek, J., Bieliková, M.: Term Ranking and Categorization for
Ad-Hoc Navigation. In: Dicheva, D., Dochev, D. (eds.) AIMSA 2010. LNCS,
vol. 6304, pp. 71–80. Springer, Heidelberg (2010)

22. Wacholder, N., Ravin, Y., Choi, M.: Disambiguation of proper names in text. In:
Proceedings of the Fifth Conference on Applied Natural Language Processing,
pp. 202–208. Association for Computational Linguistics, Stroudsburg (1997)

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 467–478, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Design Pattern Support Based on the Source Code
Annotations and Feature Models

Peter Kajsa and Pavol Návrat

Faculty of Informatics and Information Technologies, Slovak University of Technology,
Ilkovičova 3, 842 16 Bratislava, Slovakia
{kajsa,navrat}@fiit.stuba.sk

Abstract. Nowadays there exist many approaches to support design pattern
instantiation, evolution, etc., but most of the approaches focus mainly at the
design level (i.e. model). By the transition to the source code level the pattern
instances become almost invisible in the huge amount of source code lines. The
goal of this paper is to present our method supporting design pattern instantiation,
evolution and identification in the source code. The method is based on source
code annotations and feature models of individual patterns. The method does not
require a manual annotation of the source code by a human, instead the method
works on the idea of architectural and design information propagation and
expansion from higher levels of abstraction (i.e. models) into the source code. In
this paper we also present a method defining how to connect the necessary
knowledge to the model and the source code.

Keywords: design patterns, instantiation, evolution, identification, source code,
context assistant, annotations, feature models.

1 Introduction

In general, patterns are based on abstraction and generalization of effective, reliable
and robust solutions to recurring problems. The idea of applying verified pattern
solutions to common recurring problems has very quickly attracted considerable
attention also in the software design (e.g. [1]), since the quality of software systems
depends greatly on the design solutions chosen by developers.

Nowadays there are many efforts to improve the quality of software system
development or maintenance based on the identification, acquisition and application
of some kind of design or architectural knowledge (e.g. [2]). Most of the approaches
are focused on the support of design patterns at the design level (i.e. model). Many of
them are based on pattern modeling languages, pattern ontologies (e.g. [4]), UML
profiles (e.g. [5]), pattern templates (e.g. [6]) or model transformations (e.g. [7]), etc.

As a result, developers have available wide tool-based support of many pattern
aspects at the design level. However, the support becomes less robust by the transition
to the source code and pattern instances become almost invisible in the huge amount
of the source code lines. The evolution of the existing instances of patterns in the
source code is very difficult without any tool-based support, because a developer does

468 P. Kajsa and P. Návrat

not have a good view of all the participants of pattern instances in the source code.
Moreover, due to the inability to identify the individual participants of pattern
instances in the source code, they may be modified in an incorrect way during the
system evolution and maintenance, and this may result in the breakdown of the
pattern and the loss of the benefits gained by its application in the software system.

Consequently, it is necessary to mark explicitly and make visible the higher-level
(i.e. design) intentions in the source code. However, a pure source code does not
provide explicit expression of its semantics, because this knowledge is mainly
available to developers and domain experts involved in the design process. Despite
these difficulties, the missing semantics can be added into the source code via
annotations (e.g. [8]) expressing the semantics and intention of the annotated code
fragments.

2 Related Work

Meffert [11] introduces an approach assisting developers in selection of the correct
design pattern for a given context. The approach introduces the annotations to the
source code in order to express an intention of the given source code fragment.
Meffert also proposes the description of the intention for some design patterns. The
suitable pattern is recommended to a developer on the basis of comparison of the
annotated source code intention with the intention defined for the design pattern’s
parts.

Sabo et al. [10] present a method of preserving the correct form of applied design
patterns during the process of software system evolution. The method aims to explicit
indication of the pattern participants in the source code by annotations. The authors
also propose a mechanism determining whether the applied pattern instances are still
valid or have been broken due meantime code modifications.

Kirasić et al. [12] present an ontology-based architecture for pattern recognition.
The authors integrate the knowledge representation ground and static code analysis
for pattern recognition.

Another method of the patterns recovery based on code annotations and regular
expressions has been introduced by Rasool et al. [9]. The authors extend the list of
annotations defined in [11] in order to detect the similarity of different annotations
used in multiple patterns. Authors’ intention is to use the annotations for the static
analysis of the source code and subsequent recognition of structural design patterns.

Fülleborn et al. [3] present an approach of the documentation of the particular
source code or UML models that have design deficiencies, in order to document the
problems in their context that the chosen design pattern solves. Documenting is done
by adding non-functional requirements in form of annotations. Next, the authors
formally document also the solved problems so that they can be compared to the
situation before the chosen design pattern was applied. By the way of comparison, the
transformation between the situation before and after the application of the design
pattern is made explicitly in order to derive the reusable cross-domain representation
of the situation.

 Design Pattern Support Based on the Source Code Annotations and Feature Models 469

3 Open Problems and Our Ideas

Source code annotations as metadata information about the intention of the source
code fragments have been introduced in several approaches. All of the approaches,
however, require a manual annotation of source code fragments by a developer. So a
developer needs to insert the annotations manually in the source code as a guideline
before the source code analysis (e.g. [9], [10]) or to annotate the intentions of the
source code fragments, manually as well. Only after that an approach is capable of the
pattern recommendation (e.g. [11]).

However, the manual annotation of the source code by developers is very lengthy
and tiresome. Therefore our method does not require the manual annotation of the
source code by a human, instead the method works on the idea of the architectural and
design information propagation and expansion from higher levels of abstraction (i.e.
models) into the source code.

Moreover, the other approaches do not try to support the instantiation or evolutions
of the applied patterns via annotations in the source code, even though some try to
recover patterns from the source code (e.g. [9]), to indicate the errors in the pattern
structure during the compilation (e.g. [10]) or to perform a recommendation of a
suitable pattern for application (e.g. [11]).

Our idea is to support also the instantiation and evolution of the pattern instances in
the form of the context assistant in the source code working via annotations and
feature models.

4 Method of Design Pattern Support in the Source Code

The semantics of patterns introduced into the source code by annotations emphasizes
the visibility of pattern instances and therefore makes identification of pattern
participants in the source code quite easy. In consequence, the support of the pattern
detection, instantiation and evolution in the source code can be achieved in a very
suitable form of a source code context assistant. Thanks to annotations, the support
mechanism will be able to identify the pattern participants already implemented, and
subsequently it will be able to offer an option to generate any missing pattern
participant or to perform possible pattern evolution in the given context, etc. This idea
brings significant improvement of the pattern support at this level of abstraction (i.e.
the source code).

4.1 Proposal of Annotation for Design Patterns

Source code annotations work as metadata information for different artifacts and
fragments of the source code. This information can be processed by various tools
(compilers, etc.). We propose the following definition of annotation for design
patterns (see Figure 1).

470 P. Kajsa and P. Návrat

Fig. 1. Proposal of the source code annotation for design patterns

The attribute patternName of the annotation expresses the name of the pattern
e.g. Observer, Mediator, Command, etc. Because one pattern (for example
Observer) may have more different instances applied, the pattern instance “alias” is
necessary for the recognition among these instances. The roleName expresses the
name of the pattern participant e.g. Subject, ConcreteSubject, attach, etc.
Some participants of the pattern instances may have more possible variants and
therefore the variant attribute is also necessary.

In the following Figure 2 an example of the source code snippet with some
annotated participants of Observer pattern instance by the proposed definition of
annotation is illustrated.

Fig. 2. Example of the source code snippet with some annotated participants of Observer pattern
instance by proposed definition of annotation

4.2 Support of Design Pattern Instantiation and Evolution

The support of the pattern instantiation and evolution is realized in form of the source
code context assistant with the consequent source code generation driven by typed
annotation and its location. The method is described in the following steps.

 Design Pattern Support Based on the Source Code Annotations and Feature Models 471

1. In the first step, the developer begins with the writing of a pattern annotation in the
desired location in the code. When the developer writes @DesignPattern
(patternName..., the context assistant offers the set of names of supported
patterns. The developer, for example, chooses PatternNames.Observer.

2. Next the developer continues with the writing of the annotation and
writes instanceAlias. So the annotation looks as follows: @DesignPattern
(patternName = PatternNames.Observer, instanceAlias = ... Now the
context assistant searches all the existing instances of the pattern with the given
name i.e. PatternNames.Observer and it offers the developer the set of aliases
of all the existing instances of Observer pattern in the project. Because of the
suitable annotation structure this search is very straightforward.

Consequently, the developer chooses an instanceAlias from the offered set or
writes a new, unique alias. When the developer writes a new, unique instance alias,
the support mechanism deduces that the developer desires a creation of a new pattern
instance. Otherwise, when the developer chooses one of the offered existing instance
aliases, the support mechanism deduces that the developer desires evolution of the
pattern instance identified by the chosen alias and the pattern name. According to the
developer's choice pattern instantiation (4.2.1.) or evolution (4.2.2) follows.

4.2.1 Design Pattern Instantiation
Because in the second step of the previous section the developer wrote a new, unique
instance alias, the instantiation of the pattern with the typed name is performed (in our
case instantiation of Observer). The method continues with the following steps.

1. The support mechanism loads feature model of the pattern. It selects all mandatory
features at the first level (i.e. classes) and generates them into the source code.

2. If one of the mandatory features has more possible variants, the developer is
asked for selection of its variant via dialogue during the instance generation.

Illustration of the feature model of Observer pattern is shown in following Figure 3.

Fig. 3. Illustration of feature model of Observer. Mandatory features are filled with gray color.

472 P. Kajsa and P. Návrat

The first mandatory class is generated at the position of the entered annotation in
the current file, therefore in case of the pattern instantiation the developer should
write the annotation in a new empty file. Other mandatory classes are generated into
new automatically created empty files in the current package of the project. Of course,
an element is always generated with all its mandatory sub-elements.

4.2.2 Pattern Evolution
When the developer selects alias from offered set of the existing instance aliases of
the pattern with the name typed in the second step (section 4.2), the support
mechanism deduces that the developer wants to perform the evolution of the pattern
instance with the selected instance alias. The support continues with following steps.

1. The support mechanism creates a feature model configuration of the pattern
instance identified by the selected alias. Thanks to the annotations, the recognition
of the pattern instance participants present in the source code is quite easy.

2. The support mechanism loads the feature model of the pattern.
3. The created feature model configuration of the pattern instance is compared with

the loaded feature model of the pattern. In consequence, the options of possible
evolution of the pattern instance are detected (Figure 4).

4. The support mechanism offers the detected set of possible instance evolution
options in form of the code assistant (Figure 5). So the developer may choose the
desired pattern instance evolution.

Fig. 4. A comparison of the feature model configuration of an existing Observer instance with
the feature model of Observer pattern (existing participants - features are filled with gray
color). The possible options of pattern instance evolution are illustrated by the arrows.

Fig. 5. Example of detected set of possible instance evolution options offered in form of the
code assistant

 Design Pattern Support Based on the Source Code Annotations and Feature Models 473

It is important to remark that only the roots of possible instance evolution sub-trees
are offered to the developer, because generation of child elements (e.g. methods) has
no sense as long as the parent element (e.g. class) does not exist in the source code.

The selected element with all its mandatory sub-elements is generated at the
position of the entered annotation in the current file. So the method supposes at least
basic knowledge of patterns. If an element has more possible variants within the
scope of the given instance, the developer is asked to select one of the variants via the
dialogue during the element generation.

Within the scope of the pattern evolution also the detection of missing mandatory
features is supported (e.g. Figure 4, the update method of Observer instance is
missing). This way the basic check of the pattern instance validity is achieved.

4.3 Realization

Each element of the pattern feature model1 has its own code template attached. Each
code template of an element includes subsequent templates of all related mandatory
sub-elements of the element in accord with the feature model of the pattern. Therefore
an element is always generated with all its mandatory sub-elements. For example,
Subject template includes observers, attach, detach and notifyObservers
templates. Example of Subject template is illustrated in the following Figure 6.

Fig. 6. Example of Subject template. The template includes subsequent templates of sub-elements
of Subject in accord to the feature model of Observer.

If an element has more possible variants, the template of such element contains the
source code for both variants distinguished by annotations (for example, see Fig. 7).
The following notation has been introduced for the variant attribute of annotations:

[~]Attribute_name = value[;]

If the attribute value selected by the developer in GUI dialogue corresponds with the
introduced notation, the variant of an element is generated from the template.

1 Except the elements marked as #pattern or #variant.

474 P. Kajsa and P. Návrat

Dependency on more than one value or attribute can be attached via “;”, while the
symbol “~” expresses negation. So when the element - feature has more than one
possible variant, the developer’s selection is compared with annotations in the
template and in consequence, the desired variant of element – feature is generated.

Fig. 7. Example of notifyObservers template which contains two different variants
distinguished by annotations (notice difference of variant attributes of annotations)

As it can be noticed, in the Figure 6, the names of new generated classes, methods
and fields are created as roleName+InstanceAlias. So the name collisions are
minimized, because the concatenation of roleName and instanceAlias is unique in
the scope of pattern instantiation and evolution as well. The developer may rename
the elements later, of course. However, when a body of a method is generated in the
scope of an instance evolution, the introduced name convention is not sufficient
enough. The bodies of generated methods should be tied to an existing
implementation of the instance and therefore the particular names of existing elements
should be found out (for example, see observerClassName retrieving in the Figure 7).
Because of the annotations of existing pattern participants this task is straightforward.

Moreover, the whole method is based on the defined name conventions. The names
of feature models are identical to the PatternNames used in the source code
annotations and the feature names are identical to the RoleNames used in the
source code annotations as well. The templates are named as follows: PatternName-
RoleNameTemplate. As a consequence, the support mechanism is able to automatically
deduce from the annotations typed by the developer in the source code which feature
model and which templates it should load and generate. This way the flexibility of the
method is improved and achieved, since the addition of a new feature model and new
templates is sufficient enough to extend the support for a new pattern. An extension of
PatternNames and RoleNames about the new pattern name and roles is also necessary,
of course.

 Design Pattern Support Based on the Source Code Annotations and Feature Models 475

4.3.1 Implementation
Implementation of the method is based on the Eclipse platform. The templates are
implemented in JET framework. The JET framework is part of Eclipse Modeling
Project in M2T (Model to Text) area and it provides very good infrastructure for the
source code generation based on code templates.

The feature models of patterns are implemented as UML class diagrams
analogically, as has been introduced in [13] (see the section Feature Modeling Profile
for UML), but for the method purposes we rather use the class diagram instead of the
component diagram.

However, because Java does not support the annotation of one code unit (i.e.
method, class, etc.) by more than one annotation with the identical name, the current
implementation is limited in case that one fragment - unit of the code represents more
roles in more patterns (for example, in case of pattern composition). This problem can
be resolved by enclosing the next DesignPattern annotations in comments.

The presented implementation is intended for Java platform, but it can be simply
adjusted also for other platforms, even if they do not support source code annotations.
In such case the annotations may be enclosed in comments as well.

4.4 Elimination of Manual Annotation of the Source Code

The instances of patterns applied into the source code via the presented method are
automatically generated into the source code with the annotations of all instance
participants. So the evolution of these instances is supported by the method directly,
without any need of manual annotation.

For other instances of patterns we propose a mechanism of architectural and design
information propagation and expansion from higher levels of abstraction (i.e. models)
into the source code.

4.4.1 Realization
For the purpose of architectural and design decision suggestion in the model we use
the UML profile which represents the built-in standard for semantic extension of
UML. UML profile enables to define semantic extension of UML in form of semantic
marks (i.e. stereotypes) and their meta-attributes (i.e. tagged values), enumerations
and constraints. The elements from UML profile can be applied directly to the context
(i.e. specific model elements such as Classes, Attributes, Operations, etc). Therefore,
the UML profile provides the appropriate way to define required semantics for
architectural and design decisions or patterns. As a consequence, the developer is able
to suggest architectural or design decisions and intentions via application of the
stereotypes from the UML profile onto specific model elements. For example, in the
following Figure 8, we can see the suggestion of the Observer pattern via stereotype
<<Observes>> application onto the association.

Suggested instances of patterns are concretized by the transformation of a model to
a model in the next step. The transformation generates missing structural participants
of pattern instances and it also marks each pattern participant with the appropriate
stereotype. So the transformation propagates and expands applied marks (in our case

476 P. Kajsa and P. Návrat

the two stereotypes <<Observes>>) on particular elements in the concretization
process as the pattern instances are concretized. The result of the transformation of
the model from Figure 8 is illustrated in the next Figure 9.

Fig. 8. Suggestion of the Observer pattern instances via stereotype <<Observes>> application

Fig. 9. The result of the transformation of the model from Figure 8. The transformation marks
each pattern participant with an appropriate semantic mark (i.e. stereotype) from UML profile.

We have published the realization of the transformation and the UML profile in
our previous work. For more details about the authored UML profile and realization
of model to model transformations please see the paper [14].

The models with concretized instances of patterns are transformed into the source
code in the next step. In order to propagate the visibility of the applied patterns from
the model into the source code we have used proposed annotations (see Figure 1). In
the following Figure 10 the source code snippet of Subject generated from the model
in the Figure 9 is illustrated. Each generated pattern participant is annotated with the
proposed definition of annotation. The transformation of the model into the source
code is realized in form of JET templates which generate the pattern participants with
correct annotations as well. For classes marked with a stereotype, the template with
the same name is used. For example, for the model classes marked with the stereotype
<<Subject>>, the template with the name subject.javajet is used, etc.

Consequently, in this approach we propagate and expand the two applied
stereotypes from higher level of abstraction (i.e. <<Observes>> from Figure 8) onto
many annotations in the source code (e.g. Figure 10 - but it is only a little snippet
from one class of all generated source code). So this way, the massive manual
annotation of pattern participants in a huge source code is reduced to a few manual
suggestions via stereotypes at the highest level of abstraction (e.g. Figure 8).

 Design Pattern Support Based on the Source Code Annotations and Feature Models 477

Fig. 10. Source code snippet of Subject class generated from the model illustrated in Figure 9

5 Evaluation

The presented method and the implemented tool have been evaluated in various ways.
The evaluation in form of case studies has been performed, by which we have
compared the results obtained by the tool with our targets. Furthermore, the method
and the tool have been evaluated by experiments in which we have monitored the
time of carrying out the assigned tasks with and without usage of the tool. The tasks
consisted of implementing specified instances of Observer pattern in specified form.
Average results of the experiments on a group of three programmers and three master
degree students of software engineering are summarized in the Table 1. The results of
the experiments indicate a significant improvement gained by the usage of the tool.

Table 1. Average results of the experiments of Observer pattern implementation with and
without usage of the tool

Time with
tool usage
– t1

Time without
tool usage - t2

Speed up -
t2/t1

Number of
generated
code lines - Ng

Number of
added code
lines – Na

Improving
coefficient -
(Ng / Na) + 1

< 15 min > 35 min > 2,3 123 19 7,5

6 Conclusion and Future Work

The presented method fits in wider context of pattern support based on semantics and
subsequent model transformations or source code generation. The proposed definition
of annotations introduces the semantics and clear visibility of pattern instances in the
source code and in consequence it opens new opportunities to support various aspects
of patterns, or even for correct reverse transformations of the code with the pattern
detection. Available feature models of patterns also enable a possibility of live
detection of pattern instances advanced defects. Because the manual annotation of the
source code by developers is very lengthy and tiresome, we have proposed the
approach of manual annotation elimination based on the idea of design information

478 P. Kajsa and P. Návrat

propagation and expansion from models into the source code. Although it does not
deal with the problem of existing or legacy software systems, it provides a very useful
way how to propagate and expand design information and how to prevent the problem
of pattern instances invisibility in the source code towards the future. Besides, it does
not have to be used only for patterns, but it can be simply adjusted for other
architectural or design decisions as well.

Acknowledgments. This work was partially supported by the grants VG1/0508/09,
APVV-0208-10 and it is the partial result of the Research & Development
Operational Programme for the projects Support of Center of Excellence for Smart
Technologies, Systems and Services SMART and SMART II, ITMS 26240120005
and ITMS 26240120029, co-funded by the ERDF.

References

1. Gamma, E., et al.: Design Patterns, Elements of Reusable Object-Oriented Software.
Addison-Wesley professional computing series (1995)

2. Havlice, Z., et al.: Knowledge Based Software Engineering. In: Computer Science and
Technology Research Survey, elfa, Košice, pp. 1–10 (2009)

3. Fülleborn, A., Meffert, K., Heisel, M.: Problem-Oriented Documentation of Design
Patterns. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503, pp. 294–308.
Springer, Heidelberg (2009)

4. Kampffmeyer, H., Zschaler, S.: Finding the Pattern You Need: The Design Pattern Intent
Ontology. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007.
LNCS, vol. 4735, pp. 211–225. Springer, Heidelberg (2007)

5. Debnath, N.C., et al.: Defining Patterns Using UML Profiles. In: IEEE International
Conference on Computer Systems and Applications, Washington, pp. 1147–1150 (2006)

6. Marko, V.: Template Based, Designer Driven Design Pattern Instantiation Support. In:
Benczúr, A.A., Demetrovics, J., Gottlob, G. (eds.) ADBIS 2004. LNCS, vol. 3255,
pp. 144–158. Springer, Heidelberg (2004)

7. Dong, J., Yang, S., Zhang, K.: A model transformation approach for design pattern
evolutions. In: ECBS 2006, pp. 80–92. IEEE Computer Society, Washington, DC (2006)

8. Java Specification Request: Common Annotations for the Java Platform,
http://www.jcp.org/en/jsr/detail?id=250

9. Rasool, G., Philippowa, I., Mädera, P.: Design pattern recovery based on annotations.
Advances in Engineering Software, 519–526 (2010)

10. Sabo, M., Porubän, J.: Preserving Design Patterns using Source Code Annotations. Journal
of Computer Science and Control Systems, 53–56 (2009)

11. Meffert, K.: Supporting Design Patterns with Annotations. In: Proceedings of the 13th
Annual IEEE International Symposium and Workshop on Engineering of Computer Based
System, ECBS 2006, pp. 437–445. IEEE Computer Society, Washington, DC (2006)

12. Kirasić, D., Basch, D.: Ontology-Based Design Pattern Recognition. In: Lovrek, I.,
Howlett, R.J., Jain, L.C. (eds.) KES 2008, Part I. LNCS (LNAI), vol. 5177, pp. 384–393.
Springer, Heidelberg (2008)

13. Vranić, V., Šnirc, J.: Integrating Feature Modeling into UML. In: NODe 2006, GSEM.
Lecture Notes in Informatics, vol. P-88, pp. 3–15. Gesellschaft fur Informatik, Bonn (2006)

14. Kajsa, P., Majtás, L.: Design Patterns Instantiation Based on Semantics and Model
Transformations. In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds.)
SOFSEM 2010. LNCS, vol. 5901, pp. 540–551. Springer, Heidelberg (2010)

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 479–491, 2012.
© Springer-Verlag Berlin Heidelberg 2012

On the Formalization of UML Activities
for Component-Based Protocol Design Specifications

Prabhu Shankar Kaliappan and Hartmut König

Department of Computer Science
Brandenburg University of Technology Cottbus

P.O.B. 10 13 44, 03013 Cottbus, Germany
{psk,koenig}@informatik.tu-cottbus.de

Abstract. Formal description techniques, such as LOTOS and SDL, have been
proven as a successful means for developing communication protocols and dis-
tributed systems. Meanwhile the Unified Modeling Language (UML) has
achieved wide acceptance. It is, however, less applied in the field of protocol
design due to the lack of an appropriate formal semantics. In this paper we pro-
pose a formalization technique for UML activity diagrams using the composi-
tional Temporal Logic of Actions (cTLA). We use cTLA because it can express
correctness properties in temporal logic and can also be verified formally using
several model checking mechanisms. The approach consists of two steps. First,
we predefine the formal semantics of the most commonly used UML activity
nodes using simple cTLA. In the second step we derive the functional semantics
of the activity diagram by mapping it to a compositional cTLA process. We il-
lustrate our approach for a connection set up as an example. Finally we present
with the Activity to cTLA generator a tool to automate this process.

Keywords: communication protocols, distributed systems, UML modeling, for-
mal description techniques (FDTs), formal semantics, cTLA.

1 Motivation

The Unified Modeling Language (UML) provides a variety of diagrams to model the
structure and behavior of a system to be designed. Compared to the formal description
techniques (FDTs), such as the Specification and Description Language (SDL) [1] or
the Language of Temporal Ordering Specification (LOTOS) [2] etc., the UML has
been less applied to the design of distributed systems and communication protocols so
far. This is due to the in-adequate option to specify a formal semantics. The FDTs
enforce a strict formal semantics. They support straightforward mechanisms to verify
designs and to perform model transformations. Many significant contributions on the
FDT-based design and validation of communication protocols and distributed sys-
tems, respectively, have been published in the last two decades. Babich and Deotto
give a survey on this in [3]. In contrast to FDTs, UML has found a wide acceptance in
software design. There are mainly two reasons for this: (1) it uses profiles [4] to mo-
del domain specific concepts and (2) the UML specification document [5] does not

480 P.S. Kaliappan and H. König

provide a formal semantics. Instead, it allows the designer to define a semantics that
is suitable for the specific application development. So several approaches have been
proposed which formalize UML diagrams applying programming language semantics,
such as C++, JAVA, etc. This sometimes directs the UML towards an implementation
language rather than a modeling language which limits its system modeling capabi-
lities and weakens the UML benefits, such as user-free design. Hence, there is a nece-
ssity to define implementation independent formal semantics. Besides, the semantics
should support the verification of the UML models to prove the design correctness.

We have developed a component-oriented modeling approach for the design of
communication protocols and distributed systems [6]. The approach aims at the reuse
of components, represented as UML diagrams, in various designs. Components may
be typical protocol mechanisms, such as handshake procedures, flow control, and
others. Each component consists of two representations: a communication- and a
behavior-oriented description. The communication-oriented description illustrates the
interactions between the communicating entities. This presentation is to be used to
visualize the protocol flow, i.e. how the entities interact and in which order. The
communication-oriented description is preferred and applied in the design phase as
well as for documentation purposes. UML sequence diagrams are applied for this.
The behavior-oriented description describes the behavior of each communicating en-
tity, e.g. as a finite state machine. It shows the execution flow of the entity when re-
acting to occurring events. Behavior-oriented description is typically represented in
UML by activity diagrams. Accordingly, the communication- and behavior-oriented
descriptions complement each other. They have to be synchronized [7] in the
modeling process (see Figure 1).

Automatic
background
interpretation

Formal
Semantics cTLA

process

Presentation Interface

Fig. 1. Different system design perspectives

A UML-based design specification can only be used as a basis for further protocol
or system development if it is defined in a formal way. Only this enables an exact
interpretation of the design and allows model transformations into other formal
presentations. By investigating the functions of the communication- and behavior-
oriented description, we assign a formal semantics to the behavior description (see
Figure 1). We chose the behavior-oriented description for this because it specifies
how the occurring events are handled by the entities. This is the basis for subsequent

 UML Activities for Component-Based Protocol Design Specifications 481

coding. Besides, the subsequent development stages verification and testing relate to
the protocol design given as activity diagrams. We use the compositional Temporal
Logic of Actions (cTLA) [8] for defining the formal semantics of UML activity dia-
grams. It is designed for the specification and verification of transfer protocols. Today
it is applied for the design of reactive systems [9]. cTLA was chosen because it is a
constraint-oriented specification language. It allows one to formulate desired proper-
ties of the systems under design in a temporal logic and to prove formally their
correctness. In this paper we describe how UML activity diagrams can be mapped
onto cTLA. For this, first we predefine the formal semantics of the most commonly
used UML activity nodes. In the next step we show how the functional semantics of
the activity diagram can be derived by combining the predefined semantics and the
activity diagram data. The remainder of the paper is organized as follows. In Section
2 we briefly introduce cTLA. Thereafter in Section 3, we first define the semantics of
the activity nodes. For the latter, we present a transformation method to map activity
diagrams onto a compositional cTLA process. We also present the Activity to cTLA
process generator tool to automate this process. Section 4 discusses related approa-
ches. Some final remarks conclude the paper.

2 cTLA – Compositional Temporal Logic of Actions

cTLA is a formal specification language developed for the specification and verify-
cation of transfer protocols [8]. It is based on Lamport’s Temporal Logic of Actions
(TLA) [10]. cTLA distinguishes two types of processes: simple and compositional
ones. Simple cTLA processes are used to model single system resources, while com-
positional ones model systems and sub-systems as compositions of simple cTLA
processes which cooperate by means of synchronously executed process actions. An
example is shown in Table 1.

Table 1. A simple and a compositional cTLA process

Simple cTLA Process Compositional cTLA Process

PROCESS communicate(pdu_type: ANY)
CONSTANTS FREE ∈ pdu_type
BODY
 VARIABLES channel: pdu_type

 INIT ≜ channel = FREE

 ACTIONS

 send(sd: pdu_type) ≜

channel = FREE ∧ channel′ = sd;

 receive(rd: pdu_type) ≜

channel ≠ FREE ∧
channel = rd ∧ channel′ = FREE;

END

PROCESS connect_s
IMPORT DT-PDU
BODY

VARIABLES
state: {“idle”,“wait connection”,“connected”};

INIT ≜ state = ”idle”;

PROCESSES
 C: communicate(pdu: pdu_type);
 t: Timer(to: natural);
 …
ACTIONS

 Con-Init(pdu: pdu_type) ≜

 pdu ∧ pdu.type = “DT” ∧ pdu.sequ = 1 ∧
 state = “idle” ∧ state′= “wait connection” ∧
 C.send(pdu) ∧ t.start(5);
 …

END

482 P.S. Kaliappan and H. König

cTLA specifications have a program-like structure with process as main function,
constants and variables as declarations, init as the initial process state, processes as
sub-functions with an index, and actions to define the process behavior. The process
states are defined by the current variable values. The simple cTLA process shown in
the example above describes a process communication to send and receive a message.
It is modeled by a channel of pdu_type. Initially, the state variable is set to FREE
indicating that the channel is free. When a message, i.e. a protocol data unit (PDU), is
sent the channel must be free. After execution the channel contains the data unit. The
actions send and receive are specified after ACTIONS. The identifier channel refers
to the current state, the primed variable channel′ accordingly to the next state. Simi-
larly, the compositional cTLA process defined in Table 1 represents a fragment of a
connection set up procedure. The processes that compose the compositional process
are listed after PROCESSES. For each process, an instantiation is created which is
represented by a name. For instance, C: communicate(pdu: pdu_type) which is de-
fined as simple cTLA process. The ACTIONS definition part describes the actions
belonging to the compositional process. An action describes a transition transferring
the modeled system from a given state to another state.

The reasons for using cTLA to formalizing the semantics of activity diagrams are
threefold: (i) Foremost, the formal semantics of cTLA enables an exact interpretation
of the system design specification. (ii) As a temporal event-based system, it is pos-
sible to specify cTLA processes in a canonical form [8]. This form can be used to ve-
rify the system behaviors by introducing an appropriate verification mechanism, e.g.
model checking. It is also possible to formulate time-ordering events as properties to
prove whether it holds in the cTLA process or not. (iii) Due to its program-like struc-
ture, it is appropriate for model transformations into other FDTs, such as LOTOS, and
into verification languages like PROMELA (PRocess MEta LAnguage) [21]. The ap-
proaches [8,11] also address the importance of using cTLA for protocol verification.

3 Formalizing the Semantics of UML Activity Diagrams

Our approach of formalizing the semantics of UML activity diagrams consists of two
steps. First, each activity diagram node and a control flow are defined by simple
cTLA processes. Then, we derive the functional semantics of the specification to
unify the simple operations of the activity nodes and to interpret the specification

Fig. 2. Semantics definition process

Pre-defined Semantics Functional Semantics

Compositional
cTLA Process

UML Activity nodes
UML

Activity diagram

Activity to cTLA
Process generator
- Transformation

Simple
cTLA Processes

Parsing
expression
grammar

Transformed as

Stored as

uses

Input

Output

 UML Activities for Component-Based Protocol Design Specifications 483

formally. In principle, the functional semantics is based on the transformations of a
design/program in a standard way for a given data set. Defining such kind of seman-
tics has the advantage that the designer can model the system with any standardized
UML tool. The resulting model can then be translated into a cTLA description by
using our transformation method. In order to predefine the semantics of an activity
diagram the behavior of each activity node is represented by a simple cTLA process.
These processes are stored as rules in form of a parsing expression grammar (see
Figure 2). The parsing expression grammar uses the simple cTLA process name as
identifier for the respective UML activity node. The grammar is manually derived,
but it must be done only once. Afterwards, the functional semantics of each activity
diagram can be derived based on the predefined semantics of the activity nodes by
generating the compositional cTLA process. We implemented this generation process
in a tool - Activity to cTLA Process generator.

3.1 Semantics Definition for Activity Nodes

To get an idea of how to formalize the semantics of the UML activity nodes we out-
line here as an example the semantics definition of the activity node action. Accord-
ing to the UML document, the activities in UML have a Petri net like semantics, i.e.
the semantics is based on a token flow. An activity node is described by token move-
ments as transitions, and the placement of the tokens in the graph as states. In cTLA
the token movement and tokens have to be represented by means of process parame-
ters. The parameter activity token AT is assumed as a set of triggering tokens for ac-
tivities. These tokens represent the data flow among activities.

The action node may possess multiple operations based on parameters
which trigger the activity. For example, three different operations are de-

fined for the action node: pack to build the protocol data unit, unpack to extract data
from the PDU, and analyze_data to check the extracted data. Functions, such as
pack_PDU(), unpack_PDU(), and analyze_data(), are external processes, i.e. sequen-
tial compositions. The flag acts as a guard for executing the three operations.

Our experience shows that this kind of definitions is straightforward and intuitive to
protocol engineers and modelers. The other activity nodes, such as send, fork, join,
merge and so on are defined in a similar way. A definition of all important nodes for
protocol design can be found in [12]. We omit these definitions here for lack of space.

PROCESS Action(pdu_type: Any, flag: Any)
IMPORT pack_PDU, upack_PDU, analyze_data;
BODY
 VARIABLES pdata;

 INIT ≜ pdata = NULL;

 ACTIONS execute(ad: pdu_type, at: flag) ≜ at ∈ {“pack”, “unpack”, “analyze”}:

 at = “pack” ∧ pack_PDU(ad) ∧ pdata´= at;
 at = “unpack ∧ unpack_PDU(ad) ∧ pdata´= at;
 at = “analyze” ∧ analyze_data(ad) ∧ pdata´ = at;
END

484 P.S. Kaliappan and H. König

3.2 Functional Semantics

The objective of the functional semantics derivation is to formalize the designed ac-
tivity diagram based on the simple cTLA process definitions for independent activity
nodes introduced above. To identify the behavior of the activity diagram, however,
we have to consider the nodes in connection with the whole diagram to be trans-
formed. This issue is handled by our Activity to cTLA Process generator (see dashed
rectangle in Figure 3). It comprises the following four simple steps.

Fig. 3. Compositional cTLA process generation steps

First, the UML activity diagram is converted into a deterministic finite automaton
(DFA) to identify the hierarchical structure of the activity diagram. Thereafter, an
equivalent regular expression (RE) is derived from the generated DFA. We use the
regular expression as a source to generate a formal specification using formation
rules. As formation rules we apply the parsing expression grammar extracted from
the predefined simple cTLA processes. To accomplish this, two algorithms are ap-
plied: (a) the Activity to DFA generation and (b) the DFA to RE conversion algorithm.

Second, we generate the cTLA specification parts ACTIONS and PROCESSES
based on the obtained regular expression to derive all definitions parts of the final
compositional cTLA process. This is achieved using the regular expression to (c)
cTLA ACTION and (d) cTLA PROCESSES generation algorithms.

Third, the skeleton of the compositional cTLA process is generated using the
ACTIONS and PROCESSES definition parts by means of the (e) cTLA process ge-
neration algorithm. This process is similar to a functional definition in a programming
language. In addition, the activity data are extracted from the DFA using the (f) cTLA
ACTION data extraction algorithm.

Finally we combine all the generated definition parts to one compositional cTLA
process using the data definitions of the UML activity diagram. This is achieved by
means of the (g) compositional cTLA process generation algorithm.

To provide a fixed structure and to interpret the design in a sequential order we ap-
ply certain activity syntax constraints, e.g. each activity diagram must have exactly
one init node. A full list of the constraints can be found in [12]. The observance of
these constraints can be checked automatically by the Activity to cTLA Process gene-
rator. We explain the above four steps using an example: a connection establishment
with a two-way handshake (see Figure 4).

Regular expression
conversion

(Lexical Analysis: a,b)

cTLA ACTION &
PROCESSES

generation
(Semantic Analysis: c,d)

Activity Diagram -
data extraction

(Intermediate code: e,f)

cTLA Process
generation

(code generation: g)

Parsing
expression
grammar

Compositional
cTLA Process

uses

Input

Output

UML
Activity diagram

 UML Activities for Component-Based Protocol Design Specifications 485

Fig. 4. Example: The connection set up phase

The initiator and responder in the sequence diagram (Figure 4.a) represent the life-
lines of the service users; entities A and B accordingly the lifelines of the protocol en-
tities. At first, the initiator sends the service connection request (CONrequ) to entity
A. Next, it is been encoded as a connect request (CR) protocol data unit (PDU) and
sent for setting up a connection to B. Entity B receives the request and informs the
service user. If the service user accepts the connection and entity B responds with
connect confirm (CC), otherwise it sends a disconnect indication (DISCONind). In
the latter case, a disconnect request (DR) PDU is sent to entity A. For brevity, we
show the formalization for only entity A in Figure 4.b.

Deterministic Finite Automata Conversion: As first step in the cTLA process gen-
eration, an equivalent DFA is created from the given activity diagram. Here, the ac-
tivity diagram nodes are marked with identifiers, such as Initial – I, Action – A, Ac-
cept Event – R, Final – F, etc. Thereafter, a directed graph is constructed by consid-
ering the activity diagram nodes as states and the activity labels as transitions. The di-
rected graph is considered as a DFA M = {Q, ∑, δ, q0, F} with Q - states, Σ - tran-
sition inputs, δ - state transition relations, q0 – start state, and F - final state. The DFA
tuple elements are identified. It may be possible that the directed graph is non-deter-
ministic. In this case, it has to be converted into a deterministic automaton as required
for protocol development. In the following we use the first letter of the activity nodes
in Figure 4.b as abbreviation instead of the full name. Figure 5 shows the respective
directed graph from which the tuple elements are constructed. Thereafter, we derive
the regular expression (RE) from this DFA. In our example the depicted DFA
directed graph algorithm requires 18 steps to obtain the regular expression:
IRASD(RASF/RASF) (see Figure 5).

Initiator Responder

Entity A Entity B

CONrequ

CONcon

CR

CC

CONind

CONres

DISCONind
DR

DISCONres

alt

CR, PDU

CR, pack

CONcon, upack

CONcon

Accept the CONNECT
request data

Build as Connect
Request (CR) PDU

Transfer the CR
packet

Rebuild PDU as
service data

Release the
service Confirm data

Entity A

connected

CONrequ

CC, PDU
Receive the
CONNECT
confirm packet

DISCONind, upack

DISCONind

DR, PDU

Check for the
arrival packet

Receive the
DISCONNECT
request packet

disconnected

Rebuild PDU as
service data

Release the
service
indication data

a) Sequence diagram b) Activity diagram

486 P.S. Kaliappan and H. König

I R A S D

A S F

(0)

(CR, pack)

(CR, PDU)(CONreq)

(Decision)

(CONcon, upack)

(DISCONind)

(disconnected)

R

A S F

(connected)

R
(CC, PDU)

(DISCONind, upack)

(DR, PDU)

(CONcon)

Fig. 5. Activity diagram to finite automaton conversion

cTLA Action and Process Generation: To obtain the cTLA ACTIONS definition
part, another algorithm is introduced to read the regular expression and the parsing
expression grammar (simple cTLA process). The cTLA ACTIONS are specified using
propositional logic operators. In our example first a parse tree is constructed for the
regular expression IRASD(RASF/RASF) (cf. Figure 5). The tree is updated by replac-
ing the elements with the parsing expression grammar to obtain the cTLA ACTIONS
part with no data value, for e.g. I → In.start(st: AT). Finally the cTLA ACTIONS part
is specified in form of logical expressions as shown in Table 2.

Table 2. Generation of the cTLA ACTIONS and PROCESSES part

cTLA ACTIONS cTLA PROCESSES
In.start(st: AT) ∧ In: Initial(AT: Any)
Acc.receive(rd: pdu_type) ∧ Acc: AcceptEvent(pdu_type: Any)
Act.execute(ad: pdu_type, at: flag) ∧ Act: Action(pdu_type: Any, flag: Any)
........ …...
Fi.stop(fin:AT) ∨ Fin: Final(AT: Any)

The cTLA PROCESSES part is generated in two steps. First, the generated regular

expression is analyzed by ignoring the special and repetition characters. Thereafter,
the regular expression is parsed with the process expression grammar to generate the
set of PROCESSES. In our example the obtained regular expression has been
IRASD(RASF/RASF). The non-repeated non-terminals are extracted from the regular
expression as IRASDF. Now the regular expression is parsed to obtain the corre-
sponding cTLA PROCESSES part as shown in Table 2.

Generation of the Non-functional cTLA Process: Another algorithm is applied to
obtain the skeleton for the compositional cTLA process as intermediate code. The
algorithm uses a predefined compositional cTLA process frame (cf. Section 2) and the
previously generated cTLA ACTIONS and PROCESSES parts.

We explain this step with respect to our example with the help of Table 3. The pro-
cess name is the specification name, e.g. ConEst_Entity_A. The parameter Entity B
indicates the partner entity (see line A in Table 3). The process state status (PSS) varia-
ble is declared to identify the current state and the successor state (PSS′). PSS is
initialized with NULL of no value, since the state actions are not executed yet.
Thereafter, the cTLA ACTIONS and PROCESSES parts from c) and d) (see Table 2)
are included into the compositional cTLA process skeleton. END is added for process
termination. The italic text in Table 3 indicates the data extracted from the activity

Q: {I,R,A,S,D,R,A,S,F,R,A,S,F}
∑: {(0),(CONreq),(CR, pack),
 (CR, PDU), ..}
δ: {δ(I,(CONreq=R),
 δ(R,(CR, pack)=A), ..}
qo: {I}
F: {F}

 UML Activities for Component-Based Protocol Design Specifications 487

diagram. In principle, the activity data, e.g. CONrequ (cf. Figure 4), are extracted
from the DFA and the regular expression and include them into the cTLA ACTIONS
part of the compositional cTLA process. The ACTIONS in line F of Table 3 depicts the
extracted data for our example. They are not yet included by this algorithm, but in the
next step.

Table 3. Compositional cTLA process for entity A (fragment)

compositional cTLA process

A. PROCESS ConEst_Entity_A(Entity_B) /* Process name */

B. BODY /* cTLA process structure begins */

C. VARIABLES PSS: {“connected”, “disconnected”}; /* Process state status variables */

D. INIT ≜ PSS = NULL; /* Variable(s) initialization */

E. PROCESSES /* Processes declaration */
In: Initial(AT: Any); /* Initial node */
Acc: AcceptEvent(pdu_type: Any); /* Accept event node */
……….
Dec: Decision(dec: Any, action: Any) /* Decision node */
Fi: Final(AT: Any); /* Final node */

F. ACTIONS /* Process actions */

con(du:SDU) ≜ /* cTLA execution part begins */

 (In.start(0) ∧ /* Initial state */
 Acc.receive(CONrequ) ∧ /* Waiting for the SDU to arrive */
 Act.execute(CR, pack) ∧ /* Encoding the SDU as data packet CR */
 Sen.send(CR, PDU) ∧ /* Transferring the packet to receiver entity */
 Dec.decide(CC/DR) ∧ /* Check for the arrival packet */
 ………
 Fi.stop(disconnected))); /*End of unsuccessful connection set up */

G. END /* cTLA process terminates */

Generation of the Compositional cTLA Process: In a final step the compositional
cTLA process is generated. It reads the formerly generated cTLA process frame and
updates the process state variable and the cTLA ACTIONS with the data extracted in
the previous step. For example, Acc.receive(rd:pdu_type) is updated with CONrequ
(see Table 3). This replacement establishes equality with the activity diagram. In
principle, the token passing among the activity nodes is achieved by a variable du
(data unit) (see Table 3 under ACTIONS). At the beginning, the initial node is trig-
gered by means of du=0 which then waits for a CONrequ to arrive from the initiator.
Once arrived the variable du=CONrequ is forwarded to the activity node action. Here
the actual data is encoded as CR-PDU and sent to entity B. Now the cTLA process
waits for a reply from entity B, i.e., CC/DR to connect or disconnect the set up. Based
on the reply, du is forwarded to an appropriate activity node. Similarly the entire
cTLA ACTIONS carries the variable du for mapping data among the activity nodes.

The algorithmic steps described above are implemented, as already mentioned be-
fore, in a tool - the Activity to cTLA Process generator – to automate the transfor-
mation into cTLA. The algorithms are coded in JAVA. A screenshot of the tool is
depicted in Figure 6. The transformation method given in this paper resembles to a
compiler process, in which each part can be extracted for further development, e.g.
generating test cases from a DFA.

488 P.S. Kaliappan and H. König

Fig. 6. Activity to cTLA generator – tool screenshot

To prove whether the transformed specification is correct or not, we provide a
verification method in our protocol design approach [6]. Illustrating an approach for
design verification goes out of the scope of this paper. Here, we only outline the
principle. As mentioned in the introduction, we apply two descriptions in the design
process, the communication- and the behavior-oriented representation. The
communication-oriented description is used to visualize the protocol flow between
the communicating entities. It acts as a design document. Based on this document
and the given protocol requirements, the specifier (verifier) may formulate cor-
rectness properties, i.e. safety and liveness properties, the protocol has to meet. The
properties are expressed in a temporal logic. The communication-oriented de-
scription is mapped automatically onto the behavior-oriented description, i.e. the
activity diagrams [7]. In the next step the behavior-oriented representation is auto-
matically transformed into a cTLA compositional process, as shown in this paper, to
prove the semantic requirements. For verification, we map the generated cTLA meta-
representation onto PROMELA and apply the SPIN model checker [21] to trace
whether the properties hold in the obtained cTLA specification or not. The designer
may use multiple protocol design components to specify a protocol in our approach.
To verify both, model checking is carried out in two steps: (1) Each component
possesses a concrete abstraction. They are first verified independently. Here, the for-
mulated correctness properties are checked whether they hold in the PROMELA model
or not. (2) Next, the composition is verified in two stages. First, it is proved whether
the components are adapted properly by checking the output of the components with
the specified input. This can automatically be checked for all components of the
composition during adaptation phase. Second, the correctness of the composition is
proved. For this, the component adaptations are tracked by means of temporal
events, i.e., henceforth (�) and eventually (◊) operators followed by the component
name, for e.g. ConEst_Entity_A. This temporal property is used to check the
component adaptation path. The specification of the henceforth and eventually
notations are based on the protocol requirements which is stated by the designer.

 UML Activities for Component-Based Protocol Design Specifications 489

Now we derive the safety and liveness properties from the component’s temporal
property using inference rules, such as invariance, precedence, response and
correlation from [21]. Finally we verify the constructed properties along with the
(composed) PROMELA specification for correctness using SPIN. Since we verify all
possible occurrences of events and options including related reactions, the
completeness to the generated specification is eventually verified.

4 Related Work

We focus here on the formalization of UML activity diagrams. For this, Eshuis et al.
[13] propose an approach by predefining temporal events (logic) based semantics to
each activity diagram node. Likewise, [14] applies properties like safety, guarantee,
etc. as predefined rules to generate a temporal logic based specification from the ac-
tivity diagrams. However, both approaches do not address the use of temporal events
during the activity diagram transformations onto other representations. Störrle and
Hausmann [15] investigated the possibility of semantics mapping from activity dia-
grams into Petri nets. Their study concludes that the mapping is intuitive for the basic
activities. Unfortunately, no such intuitive connection exists for high-level activities,
such as exceptions, loops, etc. Abstract state machines (ASMs) are also applied to
formalize UML activity diagrams. The notable approaches for this are from [16, 17]
to formalize an entire activity diagram and to formalize the state charts, activities, and
sequence diagrams [18]. Independent UML diagram formalization using ASM is real-
istic, but in compositions bulky ASMs are difficult to interpret. The object constraint
language (OCL) [19] specification provides an easy way to express the semantics as
constraints, but the problem is to interpret them between tools because the interpreta-
tion of the semantics may differ. The formal specification language Z [20] is used to
specify real systems. However, it is not ideal for all problems, e.g. dealing with con-
currency is clumsy. Besides, the toolset for Z is not very well advanced by industrial
standards. The related work shown here is not exhaustive. The reason for using cTLA
as formal semantics over the existing technologies is the following. (i) cTLA supports
modular formal specifications [8] of distributed systems and applies state transition
system based modeling like standardized FDTs, such as SDL. This fosters easy-to-
read formal descriptions of the systems. (ii) cTLA has been designed with the
objective of explicit verification support through TLA-based verification. (iii) cTLA
is a constraint-oriented language where the designer can define the constraints which
the system has to meet explicitly during design. For instance, the limitations to model
an activity diagram can be predefined in the formalization tool. The Activity to cTLA
Process generator automatically detects the error cases in the design and an error
notification is displayed.

5 Final Remarks

In this paper we have presented a procedural approach to assign a formal semantics
for a widely applied class of UML diagrams, namely activity diagrams, using the

490 P.S. Kaliappan and H. König

compositional Temporal Logic of Actions (cTLA). The formalization forms the basis
of our component-oriented method for a UML based design and development of
communication protocols and distributed systems [6]. The method applies two pers-
pectives: the communication-oriented using UML sequence diagrams and the
behavior-oriented representation using UML activity diagrams. Both views are
complementary and synchronized with each other as shown in [7]. The communica-
tion perspective supports the intuitive design by representing the interactions between
the protocol entities. The behavior perspective describes how these interactions are
“implemented” by the entities. The activity diagram specifications form the basis for
the further development stages and require therefore a formal basis.

The use of UML in the protocol and system development has several advantages
compared to traditional FDT-based approaches. Unlike FDTs which enforce a seman-
tic-oriented description, UML better supports an intuitive modeling of protocols and
distributed systems which allows in particular a reuse of the designs. In contrast to
FDTs, however, UML does not possess a formal semantics which is required for a
unique interpretation of the specification and the transformation into other formal
representations. For this reason, we developed this formalization procedure. We chose
cTLA because of its constraint-oriented specification which is in particular helpful for
the subsequent verification of the specification. The formalization is performed in two
steps. First, we introduce predefined semantics for the activity diagram nodes using
simple cTLA processes. Next, the functional semantics of the specification is derived
by mapping the activity diagram onto a compositional cTLA process. The transfor-
mation is implemented as a tool. Unlike the referenced approaches of Section 4 which
define formal semantics for a specific UML tool, our approach allows designing UML
models in any UML 2.x supported tool and to formalize the same using the Activity to
cTLA Process generator tool. This presents a general approach for UML designers to
formalize their specifications in temporal logic. The main advantage of the translation
shown in this paper is to support automated design verification for the UML
modeling. Here we explicitly refer to our work [22] which provides an automatic
transformation from cTLA onto PROMELA. For design verification, we outlined the
approach in Section 3.2. Formalizing the semantics of UML diagrams raises the UML
based design to the level of FDT-based protocol and system development. The
designer can benefit, on the one hand, from the intuitive modeling features provided
by UML and, on the other hand, use the rich experience of the FDT-based design
applying established methods for verification, performance evaluation, code
generation, and testing.

Currently, we apply our the Activity to cTLA Process generator to deriving formal
semantics to frequently used protocol mechanisms, such as connection set up, flow
control, automated repeat request, connection release, and others which are provided
in our component library. It is further planned to connect our tool with SPIN as add-
on. This allows the designer to apply the tool to formalize and verify his/her speci-
fication even without a profound knowledge on logics because of the enriched
graphical interface.

 UML Activities for Component-Based Protocol Design Specifications 491

References

1. ITU-T Recommendation Z.100: Specification and Description Language (2000)
2. ISO LOTOS: A Formal Description Technique Based on the Temporal Ordering of

Observational Behaviour, IS 8807 (1988)
3. Babich, F., Deotto, L.: Formal Methods for Specification and Development of

Communication Protocols. IEEE Comm. Surveys and Tutorials 4, 2–20 (2002)
4. Object Management Group: Catalog of UML Profile Specifications (2011)
5. Object Management Group: UML Superstructure Specification Document (2009)
6. Kaliappan, P.S., König, H., Schmerl, S.: Model-Driven Protocol Design Based on

Component Oriented Modeling. In: Dong, J.S., Zhu, H. (eds.) ICFEM 2010. LNCS,
vol. 6447, pp. 613–629. Springer, Heidelberg (2010)

7. Kaliappan, P.S., König, H.: An Approach to Synchronize UML-Based Design
Components for Model-Driven Protocol Development. In: 34th Annual IEEE Software
Engineering Workshop. IEEE, Limerick (2011)

8. Herrmann, P., Krumm, H.: A Framework for Modeling Transfer Protocols. Computer
Networks 34(2), 317–337 (2000)

9. Kraemer, F.A.: Arctis and Ramses: Tool Suites for Rapid Service Engineering. In: Proc. of
the Norwegian Informatics Conference, Oslo, Norway (2007)

10. Lamport, L.: Specifying Systems. Addison Wesley (2002)
11. Graw, G., Herrmann, P., Krumm, H.: Verification of UML-Based Real-Time System

Designs by Means of cTLA. In: Proc. of the 3rd IEEE Int. Symposium on Object-Oriented
Real-Time Distributed Computing. IEEE (2000)

12. Kaliappan, P.S.: cTLA-based Semantics Specification for UML Activity Diagram. Technical
Report, Computer Science Department, Brandenburg University of Technology Cottbus
(2010), http://www-rnks.informatik.tu-cottbus.de/de/node/334

13. Eshuis, H., Wieringa, R.J.: A Formal Semantics for UML Activity Diagrams - Formalizing
Workflow Models. CTIT technical reports series (2001)

14. Araújo, J., Moreira, A.: Integrating UML Activity Diagrams with Temporal Logic
Expressions. In: Proceedings of the 10th International Workshop on Exploring Modelling
Methods for Systems Analysis and Design, Portugal (2005)

15. Störrle, H., Hausmann, J.H.: Towards a Formal Semantics of UML 2.0 Activities. In: Proc.
of the German Software Engineering Conference, vol. P-64 (2005)

16. Börger, E., Cavarra, A., Riccobene, E.: An ASM Semantics for UML Activity Diagrams.
In: Rus, T. (ed.) AMAST 2000. LNCS, vol. 1816, pp. 293–308. Springer, Heidelberg
(2000)

17. Sarstedt, S., Guttmann, W.: An ASM Semantics of Token Flow in UML 2 Activity
Diagrams. In: Virbitskaite, I., Voronkov, A. (eds.) PSI 2006. LNCS, vol. 4378, pp. 349–362.
Springer, Heidelberg (2007)

18. Jürgens, J.: Formal Semantics for Interacting UML Subsystems. In: Proc. of the IFIP 5th
Intl. Conf. on Formal Methods for OODS, vol. 209, pp. 29–43. Kluwer B.V (2002)

19. Object Constraint Language: Object Management Group (2011)
20. Information Technology — Z Formal Specification Notation — Syntax, Type System and

Semantics (ISO/IEC 13568:2002 ed.), p. 196 (2002)
21. Holzmann, G.J.: The SPIN Model Checker. Addison-Wesley (2006)
22. Kaliappan, P.S., König, H.: Model Transformation from cTLA onto Promela for Model

Checking the Protocol Designs. Technical Report, Computer Science Department,
Brandenburg University of Technology Cottbus (2011),
http://www-rnks.informatik.tu-cottbus.de/de/node/334

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 492–504, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Tree Based Domain-Specific Mapping Languages

Elina Kalnina, Audris Kalnins, Agris Sostaks, Edgars Celms, and Janis Iraids

University of Latvia, IMCS, Raina bulvaris 29, LV-1459 Riga, Latvia
{Elina.Kalnina,Audris.Kalnins,Agris.Sostaks,

Edgars.Celms,Janis.Iraids}@lumii.lv

Abstract. Model transformation languages have been mainly used by research-
ers – the software engineering industry has not yet widely accepted the model
driven software development (MDSD). One of the main reasons is the complex-
ity of metamodelling principles the developers are required to know to actually
use model transformations in the way the OMG has stated. We offer the basic
principles how to create domain-specific model transformation languages which
can be used by developers relying only on familiar modelling concepts. We
propose to use simple graphical mappings to specify the correspondence be-
tween source and target models which are represented using trees based on the
concrete syntax of underlying modelling languages. If such principles were fol-
lowed, then the range of potential users of model transformation languages
would increase significantly.

Keywords: mappings, domain-specific languages, UML, model transformation
languages.

1 Introduction

Model transformations are the key feature to deal with models in any model driven
(MD) technology. However, usage of model transformation languages requires highly
skilled specialists with deep knowledge of metamodelling. That is one of the reasons
why the industry has not yet widely accepted the MD approaches.

Domain-Specific Modelling (DSM) proposes to use modelling languages which use
notation and concepts specific to the domain actually being modelled. Similarly, we
propose to use domain-specific transformation languages which use elements specific
to models being transformed. Most of model transformation languages use abstract
syntax (metamodels) to specify model transformation definitions. However users of
the modelling languages use only the concrete syntax of the language. Thus, the do-
main-specific model transformation language should use familiar concepts for model-
ling experts: the concrete syntax of the modelling language.

Another crucial aspect for a domain-specific model transformation language is
the use of convenient means to represent correspondences between source and
target model elements in the model transformation definition. The most intuitive op-
tion to define model transformations is to use mappings. Mappings permit to specify

 Tree Based Domain-Specific Mapping Languages 493

transformations in a simple way, by very intuitive graphics. The expressive power of
general purpose mapping languages is limited, however, we show that mappings are
expressive enough for transformations in specific domains.

This should lead to the shift of roles of developers in the model driven software
development (MDSD) process. The metamodelling experts (highly skilled profession-
als) would be the developers of domain-specific transformation languages using all
the arsenal of technologies they have. The software developers (modellers) would
become the actual developers and users of model transformations. Thus the former
model transformation users would become model transformation developers (and
users), but former model transformation developers would become model transforma-
tion language developers.

In this paper we study how to build domain-specific transformation languages
based on simple mappings and the concrete syntax of models. One concrete mapping
language of such type - MALA4MDSD is proposed. A general approach how to build
similar languages is sketched. This approach helps us in reaching simplicity, readabil-
ity and sufficient expressiveness of the transformation language at the same time.

In §2 we describe the basic principles for obtaining domain-specific mapping lan-
guages using our approach. In §3 we describe MALA4MDSD where MDSD-related
transformations from a UML subset to UML subset can be specified in a simple way.
We compare our approach with the traditional transformation development on a
MDSD use case. In §4 facilities required for precise definition of such mapping lan-
guages are described. We complete this paper with the related work description in §5.

2 Basic Principles of Mapping Language Family

Though models being transformed by model transformations are graphs, we propose
to base our mapping language definition on the simplest model syntax – model trees.
A significant part of model structure in modelling languages such as UML is deter-
mined by containment relations, therefore it is natural to represent the basic contents
of a model by a tree. A transformation in the defined mapping language (a mapping
diagram) will consist of source and target trees with mappings represented graphically
by arrows from a source tree node to target tree node (see Fig. 1).

Our approach to mapping language definition is based on the concept of tree type
as a very lightweight equivalent of metamodelling. First, a tree type definition can be
considered as a successor of XML Schema language [19] – while a schema defines
the permitted tree structure of a XML document, a tree type defines the structure of a
model represented as a tree. The tree type for a modelling language defines the possi-
ble node types in a model tree and the permitted containment relations between them.
Each node type typically corresponds to a modelling language element; hence its
graphical representation can be borrowed from the concrete syntax of this element. In
addition, each node type has a set of attributes – proper attributes in the sense of do-
main metamodel and also references to other metamodel classes such as type in UML.
A tree type has also some analogy to graph type used by graph transformation lan-
guages [18]. In line with this, we introduce edge types by adding edges to the tree

494 E. Kalnina et al.

type – as lines linking a pair of node types. Edge types may also have attributes. Each
concrete model tree is an instance tree compliant to its tree type.

The cornerstone of a mapping language is source and target trees. They are based
on the corresponding tree types: one if the source and target is in the same language
(as it is for MALA4MDSD, see Section 3) or two if they are different.

Mappings in a diagram go from nodes in the source tree to those in the target tree.
The source tree of a mapping diagram represents the way how we want to process an
instance tree in the given mapping diagram, it is a sort of pattern for selecting appro-
priate sets of instance tree nodes to be mapped to the target. More precisely, a source
tree can be obtained from the corresponding tree type by adding appropriate filtering
conditions (attribute-based expressions) to nodes. This way a node type may be re-
peated under its parent as many times as required, each time with a different filter
expression. The aim of a source tree node as a starting point of a mapping is to repre-
sent the set of instance tree nodes to be processed by the given mapping. Edge types
defined in the tree type may also appear in the source tree to represent a set of edges
to be mapped to the target.

The target tree of a diagram provides the description, how individual target nodes
created by each mapping should be assembled into the target tree. Certainly, it must
comply with its tree type, and nodes again may be duplicated when mappings require
this. The target tree nodes contain assignments for some or all of the attributes defined
in the tree type, they specify expressions how the attribute value is computed when a
node instance is created.

Source and target tree nodes are connected using named mapping relations (ar-
rows). A mapping relation means that if an instance corresponding to the source node
is found in the source model then an appropriate instance should be created in the
target model (we should think of both models to be represented by their instance
trees). For each valid instance of a source node the outgoing mappings are executed
(i.e., the target instances created and their attributes set). Validity of an instance is
checked using the containment relationship to parent and filter conditions. In addition
to this basic mapping kind, mappings with some modifiers are also supported.

Mapping relations in a mapping diagram are ordered top-down – according to their
start position in the source tree. Mappings are executed according to their ordering.
This natural execution order ensures that in typical cases children of a source node are
processed after their parent and since the hierarchy is preserved at the target end it is
easy to find where the newly created target node instances are to be attached.

The general “create if not exists” semantics is used for mappings – a duplicate tar-
get instance defined by the same type of mapping is never created. This is ensured by
creating a special named trace edge linking the source and target instances.

3 Proposed Mapping Language for MDSD

In this section one concrete mapping language based on our approach is proposed -
MALA4MDSD (MApping LAnguage for MDSD). This language is built to transform
one UML model to another UML model. Currently only a UML subset describing the

 Tree Based Domain-Specific Mapping Languages 495

static structure of a UML model is used (however, it could be easily extended to in-
clude behaviour-related elements as well). Typical application of such language is
transformations from PIM (Platform Independent Model) to PSM (Platform Specific
Model) in the MDSD lifecycle.

The only formal element of the language definition from its user point of view is
the simpleUML tree type (only one since the source and target is of the same type).
This definition is inspired by real model trees in UML tools. See Section 4 for some
fragment of a more formal definition of this tree type. The root node is always a
Model. A Model can contain Packages. A Package can contain other Packages,
Classes, Interfaces, Components, DataTypes, Actors, and Enumerations. Component
can contain provided Interfaces. Class and Interface are allowed to contain Attributes
and Operations. Operations contain their Parameters. These node types are depicted
graphically by shapes and icons inspired by UML tools.

There are also four types of edges: Association (from Class to Class), Generalisa-
tion (from Class to Class), Dependency (from Class to Class) and Realisation (from
Class to Interface). All node types have the name attribute (a String). Class, Attribute,
Operation, Interface and Association have also the stereotype (also a String). Attrib-
ute, Operation and Parameter have the type attribute (in the sense of UML), for us it
can be a String (names of UML primitive types) or a reference to Class, Interface or
Enumeration instance in the model tree.

3.1 Basics of MALA4MDSD

On the basis of the defined simpleUML tree type both source and target trees in a
MALA4MDSD mapping diagram can be built. The source tree has to specify in a
hierarchical form which nodes in the source instance tree (in fact, the source UML
model) must be processed, and by which mappings.

Fig. 1. MALA4MDSD example. UML model “PIM” is transformed to UML model “PSM”.
Package “Service” in model “PIM” is transformed to package “service” in “PSM” model.
Classes from source package “Service” are transformed to classes in target package “service”.

A simple mapping diagram example is presented in Fig. 1. The topmost mapping
relation is executed first. It maps two UML Models. In the source instance tree a
UML model named “PIM” is sought for (there is a filter expression on the name at-
tribute in the Model node). For each such model a UML model named “PSM” is

496 E. Kalnina et al.

created in the target (formally, as the root node in the target instance tree, the name
attribute is set by a constant expression). Then packages named “Service” in the UML
model ”PIM” are sought for. For each such package (in fact only one exists) the cor-
responding package named “service” in the target UML model “PSM” is created. The
third mapping relation processes all classes in the source model package “Service”
and creates the corresponding classes in the target model package “service”. The pre-
fix “i” is added to the source model class name – note, how the reference “~c” is used
to navigate the mapping named “c” from target to source. Thus the expression
“~c.name” gives us the name of the mapping source node (class). In general, the ex-
pression syntax is a very simple subset of OCL (referencing the tree type elements).

3.2 More Advanced Mapping Elements

Elements described in the previous sections are the core of the proposed mapping
language. To facilitate transformation development in this mapping language some
more features are introduced.

For some tasks large source and target trees with many mapping relations must be
built, therefore there is a need to divide mappings into smaller sub-diagrams. One
mapping program (transformation) consists of several ordered mapping diagrams.
They are executed separately in the given order.

There are special mapping modifiers. A mapping with the copyAttributes modifier
specifies that in the target node for each attribute an implicit assignment is performed
setting it to the value corresponding to that attribute value in the source node.

The copy modifier is even more powerful. It specifies that implicit mappings for all
children types of the node (at any depth, according to the tree type definition) with the
copyAttributes modifier are performed. This is a powerful feature for copying tree
fragments. Certainly, the node types for copy must be the same. In Fig. 2 the copy
modifier is used for class nodes. Child elements for classes are attributes and opera-
tions, operations in turn are copied with their parameters.

Fig. 2. Mapping example from ReDSeeDS project [13]. Transformation in MALA4MDSD
where edge processing and hierarch flattening is demonstrated.

 Tree Based Domain-Specific Mapping Languages 497

The third mapping modifier check means that nothing is created in the target tree
only the relevant node is found using the traces between source and target (another
kind of arrowhead is used here). Such mappings are necessary, e.g., for locating edge
endpoints in the target tree as in Fig. 2.

As it was already mentioned in the previous section a UML package can contain
other packages. It means there could be a package hierarchy with arbitrary depth.
Sometimes there is a need to process this hierarchy and similar ones in a generic way.
Therefore in our mapping language the concept of transitive (recursive) containment
is introduced. There is a specially marked node, which represents not a single hierar-
chy level, but the whole set of hierarchy levels containing this node type (it is a tran-
sitive node). If there is a mapping from such a node it must go to a transitive node in
the target tree. In this case the whole source hierarchy represented by this node is
reproduced in the target tree. The tree fragment below a transitive node has the stan-
dard meaning.

The mapping diagram in Fig. 2 shows an example of transitive node – it is the 3rd
node in the source tree. This node represents any level of nested packages below a
package represented by the 2nd node of the tree. Here the marking is used only in
the source tree (no outgoing mapping from this node), therefore the mappings from
the class nodes below create classes in the target tree ignoring the fact how deeply the
source instances were found in the source tree.

An edge mapping is also shown in Fig. 2. The edge processing is done after both
nodes connected by this edge have been processed. All Associations and Generaliza-
tions between classes in the defined package hierarchy are copied to the target. All
classes in this hierarchy have already been copied before the edge processing (by the
mapping cl2cl). To find for an association the other end class in the target the map-
ping cl2cl is duplicated from another class node in the source (the other end of edge in
the source) but this time with the Check modifier.

Sometimes composition relationships alone are not sufficient to define the mapping
application context. Therefore it is possible to use source patterns in order to increase
the expressiveness of the mapping language. Patterns are similar to the ones in the
transformation languages, however only the node types and edge types defined in the
tree type may be used in a pattern. To make mapping language less verbose, mapping
relations with an application condition and conditional expressions in the target are
introduced.

It is not possible to write an arbitrary transformation between models in this map-
ping language. Therefore we introduce a special tree node type named “Custom trans-
formation”. This feature permits to combine mappings and transformations.

3.3 Mapping and Transformation Comparison

In this section we will compare UML to UML transformation development in the
mapping language MALA4MDSD and in a traditional transformation language.

In IST 6th framework project ReDSeeDS a model driven path from requirements to
code is investigated. Two different transformation sets (“styles”) from requirements to
code have been developed (for details see [13]). Each set contains a different structure

498 E. Kalnina et al.

of PIM and PSM and different transformations between them. These transformations
have been developed in the model transformation language MOLA [12]. We have
rewritten these transformations in the language MALA4MDSD. Table 1 contains
statistics about transformations in MOLA and transformations in MALA4MDSD.

Table 1. Comparison of transformations from PIM to PSM developed using Model transformation
language MOLA and mapping language MALA4MDSD. One table row presents comparable
elements in both languages.

Basic Style MOLA procedures 19 3 MALA4MDSD diagrams
MOLA rules 84 19 MALA4MDSD mappings
MOLA class elements 265 29(source:11; target:18) MALA4MDSD nodes

Keyword-
based Style

MOLA procedures 51 8 MALA4MDSD diagrams
MOLA rules 137 41 MALA4MDSD mappings
MOLA class elements 418 66(source:27; target:39) MALA4MDSD nodes

In the left hand side of Fig. 3 one mapping diagram from the Keyword-based style

transformations is presented. In this diagram copying of Classes, Interfaces and Inter-
face realizations from the PIM model to appropriate place in the PSM model is pre-
sented. Classes and Interfaces in the PIM model can be located in the sub-package
hierarchy under the packages “businesslogic” and “applicationlogic” (the 3rd node – a
transitive one - in the source tree represents the package hierarchy). The same sub-
package hierarchy should be reproduced in the target model.

Fig. 3. Mapping example from ReDSeeDS project. Transformation in MALA4MDSD on the
left. MOLA transformation for the highlighted part of the same task is presented on the right.

 Tree Based Domain-Specific Mapping Languages 499

In the right hand side a part of MOLA transformations implementing the same
logic is presented. Actually here only the package hierarchy is processed and class
and interface copiers are invoked. All the copy logic is defined directly in other
MOLA procedures. This copy logic description is quite long as there has to be de-
scribed that attributes, operations and operation parameters should be copied and how
they should be copied in terms of UML metamodel. The mapping part above the
package hierarchy symbols is described in another MOLA procedure. Interface reali-
zation processing is also not visible in this MOLA transformation.

The reader may get the impression that MOLA is not a suitable language for this
task and other transformation languages would do better. However it is not the case.
Transformation languages usually deal with UML in its abstract syntax. Therefore all
processing of all classes and associations according to the UML metamodel should be
precisely defined. In the mapping language UML logical elements (a sort of concrete
syntax) are processed and user should not care whether this logical element is repre-
sented with instance of one class or with instances of two classes connected with an
association (and so on) in the UML domain. One more thing that is easier in a map-
ping language is the hierarchy processing. It is very easy to define that we have to
process elements in some hierarchy or that we have to process relations with source
and target ends in some hierarchy.

We have tried to rewrite the same fragment presented in Fig. 3 also in the most
popular model transformation language – ATL [10]. The amount of code was similar
to the amount of code in MOLA.

To sum up, a significant gain in conciseness of transformation specification using
the mapping language compared to traditional transformation languages is obtained by
using copy operators, convenient hierarchy processing and logical elements instead of
abstract syntax elements. There is also a significant gain in the language understand-
ability and usability because users are familiar with such logical elements typically to
be seen in model trees within UML tools. There is no more need for transformation
developers to know the coding of these logical elements in UML metamodel.

4 Mapping Language Definition

The precise definition of the general mapping language execution (semantics) as far
as provided in previous sections was only from an instance tree to instance tree. How-
ever in real life there are only models (compliant to their metamodels). So there must
be facilities for going from a model to tree and vice versa.

We propose a uniform solution how to relate models in a modelling language (such
as UML) to trees conforming to a tree type based on the language (e.g., the tree type
simpleUML for MALA4MDSD). Certainly, we assume the metamodel of the lan-
guage in MOF to be given. The solution – domain-to-tree mapping is based on the
tree type itself. It extends the tree type by OCL expressions based on the metamodel
and few predefined keywords. Our mapping definition will directly show how an
instance tree could be extracted from a model. But it will provide also an indirect
solution for the reverse mapping.

500 E. Kalnina et al.

For each node type we will specify on which metamodel class it is based (using the
Class keyword). In addition, a selection expression in OCL can also be provided if
not all class instances qualify. Further, for each attribute we want to include in the
node type an OCL expression extracting the relevant value from a model must be
provided. If that expression is to return a reference to another node type in our tree
type, the Node function is used (with an appropriate class as the argument).

For each containment (parent-child) relation an OCL navigation expression speci-
fying how child instances can be reached from the parent in a model must be provided
(after the keyword Path). A node with transitive containment (such as Package in
UML) must provide a special Path expression within it – how the next contained
instance of the same type may be reached.

Similarly, for edge types the metamodel class they are based on must be specified.
Attributes are specified the same way as for nodes. A new element is the end specifi-
cation – the path by which the relevant end node instance can be found.

Fig. 4. Mapping language definition. Fragment from MALA4MDSD definition.

Fig. 4 illustrates how the tree type simpleUML can be defined on the basis of the
slightly simplified UML 2 metamodel. Only the top three node types: Model, Package
and Class are visible in the fragment but the continuation is quite similar. For all three
node types the name attribute is defined in a natural way (the OCL self points to the
node base class). The containment relation in all cases is defined by the same OCL
navigation expression self.packagableElement. Only the association edge is visible in
the fragment. Role and stereotype attributes are defined for it. Since both ends of an
association are attached to classes, two similar end specifications are given.

It should be completely transparent now how an instance tree of the given type
could be extracted from the model. The reverse operation – to obtain a model from
tree is in most cases quite direct as well, but in complicated cases an explicit reverse
mapping can be required. This mapping definition serves also as a basis for creating a
MALA4MDSD implementation in a generic way. One more element to be defined is

 Tree Based Domain-Specific Mapping Languages 501

how to “implement” at the model level the special trace edge between trees. Typically
a special traceability class with associations should be added to metamodels.

5 Related Work

Attempts to create universal mapping languages as a certain alternative to traditional
transformation languages have been started sufficiently early.

Hausmann and Kent in [9] used the term mapping to address the general under-
standing of connection between models and offered a graphical mapping language to
specify mappings. However, the precise functionality of mappings had to be defined
in OCL thus these relatively simple diagrams actually meant a complicated program-
ming in OCL. In the thesis of Lopes [16] the Hausmann's and Kent's ideas have been
developed much further – a mapping specification language has been created and
implemented. However the usage of abstract syntax (standard UML metamodel) has
led to complicated mappings even for simple tasks. In Malan language [2] mappings
may be visualised as simple arrows between metamodel classes, however the actual
mappings are specified using declarative textual definitions.

The Atlas Model Weaver (AMW) [6] provides a generic infrastructure and editor
to declaratively specify weaving models between two arbitrary models. The weaving
models are used to capture different kinds of links between model elements. AMW
provides a generic mapping metamodel which should be extended in particular case.

The most recent approach uses composite Mapping Operators (MOps) [21]. The
basic mapping operators called kernel MOps provide the basic types of possible map-
pings (like class to class, attribute to attribute, relation to relation, etc.). Kernel MOps
can be composed into more advanced mapping operators – composite MOps.

Another view on mapping languages is given by Guerra et al. [8], where it is pro-
posed to use mappings as requirements specifications for transformations.

All abovementioned mapping languages are general purpose ones, applicable to
any domain and are based on the abstract syntax. Unlike the approaches described
above, we propose to base the mapping language on a concrete syntax of source and
target languages. For transformation languages a similar idea has already been ap-
plied, for example in AToM3[15], and by Grønmo in [7]. The concrete syntax is used
directly in model (graph) transformation rules. However, this approach lacks the sim-
plicity and power of representation of correspondences between model elements of-
fered by mapping languages. Transformation examples are also specified as mappings
in a concrete syntax within the model transformation by example (MTBE) approach
[22]. However, the MTBE approach requires a reasoner for transformation synthesis
while in our approach the defined mappings are complete transformation definitions.

Though our approach to transformations is based on models in the form of trees,
we have made a brief overview of transformation languages operating on structured
textual data represented by trees. XSLT [20] is the transformation language used to
transform data in XML format. Although XSLT itself is an XML-based textual
language, there are tools which use mappings to represent XSLT transformations, for
example Stylus Studio XSLT Mapper [1]. The source and target schemas are

502 E. Kalnina et al.

represented by fixed trees and all transformation logic are specified using much more
complex mapping features than it has been done in our approach. Another field where
data are trees is program rewriting. However, the tools and languages, like
Stratego/XT [3] or TXL [4], are intended for the analysis, manipulation and genera-
tion of programs.

6 Conclusions

In this paper the use of domain-specific mapping languages is discussed. It is pro-
posed to define model transformations using simple mapping relations and tree syntax
of source and target models. As a result it is possible to define typical model trans-
formations in terms familiar to modellers. Therefore these domain-specific mapping
languages could be applied by a much wider class of users.

The proposed general principles have been applied to a family of mapping lan-
guages where a language for a specific domain is defined by specifying the tree
syntax for source and target. One specific mapping language – MALA4MDSD for
transformations from PIM to PSM (a UML subset to UML subset) is discussed in
some details. A concrete syntax similar to model trees in UML tools is used for
source and target models. The transformation development in this language is com-
pared to transformation development in a traditional model transformation language.
A significant gain both in transformation size and understandability has been noticed
since there is no need to deal with the technical details of the UML abstract syntax.

We propose a generic approach for the creation of domain-specific mapping lan-
guages. To define a mapping language, the tree types of source and target trees and
their relations to models should be defined. This should be done by an expert in
metamodelling and OCL. However, this should be done only once for a mapping
language. Of course, the creation of a mapping language pays off only if multiple
transformations in the same domain should be defined.

The proposed approach has been successfully checked also on the standard show
case for transformations – the UML to RDBMS transformation (according to annex A
of [17]). A domain-specific mapping language has been created in which the whole
example (except the support for complex attributes) can be specified by one mapping
diagram with 10 relations; in this language not only compositions but also associa-
tions and generalizations are adequately represented by tree containment. Other ap-
propriate areas for the approach are transformations of UML to XML, RDBMS to
ontologies and similar ones where the analysis of source model is simple enough.
However, for transformation tasks which involve complicated graph-based source
model analysis (for example, BPMN to BPEL [5]) the traditional pattern and rule
based paradigm supported by most of transformation languages is better.

Mapping language family is being implemented using the DSL tool definition
framework METAclipse [14] and Higher-order transformations in Template MOLA
[11]. In METAclipse framework the generic (for the family) behaviour of a mapping
language editor and compiler is defined using model transformations in MOLA [12].

 Tree Based Domain-Specific Mapping Languages 503

The mapping language-specific MOLA transformations for the editor and compiler
are generated from the tree type definition using Higher-order transformations.

Acknowledgments. This work has been partially supported by the European Social
Fund within the project ”Support for Doctoral Studies at University of Latvia”.

References

1. XSLT Mapper, http://www.stylusstudio.com/xslt_mapper.html
2. Blouin, A., Beaudoux, O., Loiseau, S.: Malan: a mapping language for the data manipula-

tion. In: Proceeding of the Eighth ACM Symposium on Document Engineering, DocEng
2008, pp. 66–75. ACM (2008)

3. Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Stratego/XT 0.17. A language
and toolset for program transformation. Science of Computer Programming 72(1-2), 52–70
(2008)

4. Cordy, J.R.: The TXL source transformation language. Sci. Comput. Program. 61,
190–210 (2006)

5. Dumas, M.: Case study: BPMN to BPEL model transformation. Oryx, 6–9 (2008),
http://is.ieis.tue.nl/staff/pvgorp/events/grabats2009/cases/
grabats2008translationcase.pdf

6. del Fabro, M.D., Bézivin, J., Jouault, F., Breton, E., Gueltas, G.: AMW: a generic model
weaver. In: Proceedings of the 1ère Journée sur l’Ingénierie Dirigée par les Modèles
(2005)

7. Grønmo, R., Møller-Pedersen, B.: From Sequence Diagrams to State Machines by Graph
Transformation. In: Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142,
pp. 93–107. Springer, Heidelberg (2010)

8. Guerra, E., de Lara, J., Kolovos, D.S., Paige, R.F., dos Santos, O.M.: transML: A Family
of Languages to Model Transformations. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.)
MODELS 2010. LNCS, vol. 6394, pp. 106–120. Springer, Heidelberg (2010)

9. Hausmann, J.H., Kent, S.: Visualizing model mappings in UML. In: Proceedings of the
2003 ACM Symposium on Software Visualization, SoftVis 2003, pp. 169–178. ACM
(2003)

10. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.-M. (ed.) MoDELS
2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

11. Kalnina, E., Kalnins, A., Celms, E., Sostaks, A.: Graphical Template Language for Trans-
formation Synthesis. In: van den Brand, M., Gašević, D., Gray, J. (eds.) SLE 2009. LNCS,
vol. 5969, pp. 244–253. Springer, Heidelberg (2010)

12. Kalnins, A., Barzdins, J., Celms, E.: Model Transformation Language MOLA. In:
Aßmann, U., Aksit, M., Rensink, A. (eds.) MDAFA 2003. LNCS, vol. 3599, pp. 62–76.
Springer, Heidelberg (2005)

13. Kalnins, A., Sostaks, A., Celms, E., Kalnina, E., Ambroziewicz, A., Bojarski, J., Nowa-
kowski, W., Straszak, T., Riediger, V., Schwarz, H., Bildhauer, D., Kavaldjian, S., Popp,
R., Falb, J.: Final reuse-oriented modelling and transformation language definition. Project
Deliverable D3.2.2, ReDSeeDS Project (2009), http://www.redseeds.eu

14. Kalnins, A., Vilitis, O., Celms, E., Kalnina, E., Sostaks, A., Barzdins, J.: Building tools by
model transformations in Eclipse. In: Proceedings of DSM 2007 Workshop of OOPSLA
2007, pp. 194–207. Jyvaskyla University Printing House, Montreal (2007)

504 E. Kalnina et al.

15. de Lara, J., Vangheluwe, H.: AToM: A Tool for Multi-Formalism and Meta-Modelling. In:
Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306, pp. 174–188. Springer,
Heidelberg (2002)

16. Lopes, D., Hammoudi, S., Bézivin, J., Jouault, F.: Generating Transformation Definition
from Mapping Specification: Application to Web Service Platform. In: Pastor, Ó., Falcão e
Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 309–325. Springer, Heidelberg (2005)

17. Object Management Group: Meta Object Facility (MOF) 2.0 Query/View/Transformation
(QVT) Specification, version 1.1, formal/ (January 01, 2011)

18. Taentzer, G.: AGG: A Tool Environment for Algebraic Graph Transformation. In: Münch,
M., Nagl, M. (eds.) AGTIVE 1999. LNCS, vol. 1779, pp. 481–488. Springer, Heidelberg
(2000)

19. W3C: XML Schema Part 0: Primer Second Edition (October 2004),
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/

20. W3C: XSL Transformations (XSLT) Version 2.0 (2007)
21. Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W., Schoenboeck, J., Schwinger, W.:

Surviving the Heterogeneity Jungle with Composite Mapping Operators. In: Tratt, L., Go-
golla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 260–275. Springer, Heidelberg (2010)

22. Wimmer, M., Strommer, M., Kargl, H., Kramler, G.: Towards model transformation ge-
neration by-example. In: Proceedings of the 40th Annual Hawaii International Conference
on System Sciences, HICSS 2007, p. 285. IEEE Computer Society, USA (2007)

RESTGroups for Resilient Web Services

Tadeusz Kobus and Paweł T. Wojciechowski

Poznań University of Technology
Institute of Computing Science

60-965 Poznań, Poland
{Tadeusz.Kobus,Pawel.T.Wojciechowski}@cs.put.poznan.pl

Abstract. Service resilience, defined as the continued availability of a
service despite failures and other negative changes in its environment, is
vital in many systems. It is typically achieved by state machine replica-
tion using group communication middleware for coordination of service
replicas. In this paper we focus on systems that represent critical data
as Web resources identified by Uniform Resource Identifiers (URIs). The
best examples of such systems are RESTful web services. We present
RESTGroups: a group communication front-end for RESTful web ser-
vices. Our system is based on Spread – a popular group communication
toolkit. Contrary to Spread and other such toolkits, we represent group
communication services as resources on the Web, addressed by URIs. In
the paper, we describe the system architecture and the API.

Keywords: REST, web services, service resilience, group communica-
tion, replication.

1 Introduction

The Web can provide a common, language-independent platform for interopera-
ble services that work together to create seamless and robust systems. However,
we must ensure that each individual service is resilient, i.e. it is able to withstand
unpredictable and difficult conditions, such as sudden and significant degrada-
tion of network latency or failure of dependant services. In our work, we focus on
RESTful web services. REpresentational State Transfer (REST) [4,3] embraces a
stateless client-server architecture, in which web services are viewed as resources
identified by URIs. Clients that want to request these services access their par-
ticular representation by transferring application content using a small globally
defined set of methods. The methods describe an action to be performed on
a given resource (consequently, by the corresponding service). Typically REST
uses HTTP [2] and its methods GET, PUT, POST, and DELETE.

A typical way of increasing service resilience is to replicate it. Service repli-
cation means deployment of a service on several server machines, each of which
may fail independently, and coordination of client interactions with service repli-
cas. Each service replica, called a process, starts in the same initial state and
executes the same requests in the same order. Thus, the replicated service exe-
cutes simultaneously on all machines. A client can use any single response to its

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 505–517, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

506 T. Kobus and P.T. Wojciechowski

request to the service. A replicated service is available continuously, tolerating
crashes of individual server machines. If required, these machines can be located
in geographically distant places, connected via a wide-area network.

A general model of such replication is called replicated state machine [17]. In
this approach, each non-fault replica receives every request (the agreement prop-
erty), and each non-fault replica processes the requests in the same relative order
(the order property). The key abstractions required to obtain these two essential
properties are offered by group communication systems. They provide reliable
multicast transport protocols with a range of delivery options, e.g. causally- ,
fifo- and totally-ordered multicasts in a group of processes. The protocols are
fully distributed, i.e. they do not depend on any central server and so there is
no single point of failure. For the past 20+ years, many group communication
systems have been implemented (e.g. JGroups [15] and Spread [18]; see also [9]
for other references). Unfortunately, they have quite different APIs, which are
language dependent and complex. Moreover, many of group communication sys-
tems are monolithic, so it is not possible to easily replace their protocols or add
new features. Using these systems to implement resilient web services makes the
code of the services neither easily reusable nor interoperable with other services,
which is a counterexample to the openness of the Web. Moreover, none of the
system that we know offers a REST/HTTP-based interface.

In [14], the authors discuss some examples of service replication middleware
systems developed at the academia (e.g. WS-Replication [16]); however, none of
these systems supports RESTful web services. The industry solutions for web
service resilience are usually based on the SOAP-based WS-* standards that
were not designed for service replication. The concrete implementations of ser-
vice resilience are usually built on queueing or publish-subscribe systems. This
approach does not benefit from the group communication protocols that have
been optimized for state machine replication. When it comes to RESTful ap-
proaches to web service implementation, group communication solutions that
offer all associated properties and guarantees are unknown to us. At the mo-
ment there is a lack of standards in the domain of group communication in-
tended for the REST style. This provided motivation for our work described in
this paper.

We introduce a group communication front-end for replication of RESTful
web services – RESTGroups. A brief announcement of our work appeared in [7].
In this paper, we describe the system architecture and the API. Our system is
based on Spread [18,1] – a popular group communication toolkit implementing
protocols for reliable, ordered multicasts and group membership. Contrary to
Spread and other such toolkits, we represent group communication services as
resources on the Web, addressed by URIs. Thus, RESTful web services and
their clients can use group communication services in the same style as they
communicate among themselves. Moreover, since firewalls usually do not block
the HTTP protocol, RESTGroups supports communication across firewalls. The
system has been implemented and the distribution files are available [5].

RESTGroups for Resilient Web Services 507

2 RESTGroups Design and Service Replication

RESTGroups is a group communication front-end for RESTful web services. Our
current implementation is based on Spread Toolkit. Spread [18,1] is a monolithic
group communication system, consisting of a daemon program, client libraries,
and a system monitor. RESTGroups represents group communication services
provided by Spread, as resources on the Web, addressed by URIs. Spread’s API
consists of many functions with bindings available for several programming lan-
guages: C/C++, Java, Perl, Python, and Ruby. RESTGroups has a small but
powerful API that consists of just four methods of the HTTP protocol: GET,
POST, PUT, and DELETE. They can be used for detection of malfunction-
ing/crashed processes, reliable point-to-point transfer of messages, formation of
processes into groups, the structure of which can change at runtime, and reli-
able message multicasting with a wide range of guarantees concerning delivery
of messages to group members (e.g. causally-, fifo- and totally-ordered delivery).

2.1 System Design

A system built using RESTGroups consists of four types of communicating com-
ponents: Web Service, Client, RESTGroups Server (RESTGr Server in short),
and spreadd (which is a daemon of Spread Toolkit). Web Service is a user-defined
RESTful web service. The RESTGr Server acts as a proxy between Web Ser-
vice and group communication protocols that are implemented by spreadd. The
communication between Client and Web Service, as well as between Web Service
and RESTGr Server uses the REST/HTTP style. RESTGr Server and spreadd
communicate using TCP and may or may not run on the same machine.

Group communication services (provided by Spread) are represented as Web
resources identified by URIs. Instead of calling Spread methods, a user-defined
Web Service invokes only four methods of the HTTP protocol (i.e. GET, PUT,
POST or DELETE). Then, a suitable HTTP request, possibly containing an
XML document, is sent to RESTGr Server that translates it into a group com-
munication call to spreadd. A crash of RESTGr Server results in the disconnec-
tion of all Web Services that are using this server. They can establish connection
with another RESTGr Server which is available within the same group. Next,
we present an architecture of a system, in which the RESTGroups components
will be replicated for resilience.

2.2 Service Replication

In Figure 1, we show an architecture of an example system in which RESTGroups
has been used for replication of a RESTful web service. There are three service
replicas (each one called Web Service replica) perceived by the clients as a single
web service, represented as a large circle. Clients can issue REST/HTTP requests
to any of them. Each Web Service replica connects to two RESTGr Servers using
HTTP, so it can tolerate a crash of one server. Each RESTGr Server has its own

508 T. Kobus and P.T. Wojciechowski

Web
Service
replica

Web
Service
replica

Web
Service
replica

RESTGr
Server

RESTGr
Server

RESTGr
Server

HTTP

H
T
T
P

H
T
T
P

H
T
T
P

H
T
T
P

HTTP

spreadd

spreadd

spreadd

T
C
P

TCP

TCP
TC

P

T
C
P

TCP

Client

Client

Client

Client

Client

service request

Fig. 1. Replication of a RESTful web service

spreadd so that partial failure of the Spread group communication system used
as the back-end is also tolerated.

In general, replicating a web service to tolerate at most �(n − 1)/2� machine
crashes, requires the following steps:

– spawning n Spread daemons (spreadd) on n independent machines;
– spawning n RESTGroups servers on different machines; each server commu-

nicates only with one Spread daemon (usually located on the same machine);
– spawning n instances of the RESTful web service on different machines (in

this case, they would run on the same machines as Spread daemons); each
service replica can communicate with one or many RESTGroups servers.

The service developers can use the replicated state machine approach [17,20]
to implement a resilient RESTful web service, as follows. After system start up,
a group is created to which all Web Service replicas must join. A client can issue
a request to any known replica which then forwards the request to the RESTGr
Server that is alive; the latter broadcasts the request in the group. All client
requests issued to (any replica of) the web service are delivered within the group
totally ordered. Thus the requests will be processed by each replica in exactly
the same order; the client will obtain only one reply to each request. We require
the web service to be deterministic, so that all replicas will make transition to
the same state in response to the same sequence of requests issued by clients. In
the case of a replica crash, the clients may have to repeat its request to another
Web Service replica after a timeout.

2.3 Statelessness

RESTGr Servers are almost stateless – they only store data that are neces-
sary to maintain group communication sessions for the connected Web Service

RESTGroups for Resilient Web Services 509

replicas. Moreover, RESTGr Server does not have any representation in the
group communication system that is the back-end of RESTGroups. However,
unique client IDs generated by Spread are used by RESTGroups.

Various authors pointed out limitations of the REST architectural style. For
example, Khare and Taylor [6] discussed some of the limitations and proposed
extensions of REST, collectively called ARRESTED. They allow to model the
properties required by distributed and decentralized systems. Similarly to them,
we are not bound by the rules of the original model since REST cannot model
group communication well (as the RESTGr Server is not 100% stateless). There-
fore our goal was rather to design the REST-inspired interface to group commu-
nication, albeit sacrificing strict conformance to the original REST model.

3 RESTGroups API Calls

In this section, we explain the calls of RESTGroups API using a few simple
examples. A complete description of the API is in the User Guide, available
electronically [5]. The following methods of the HTTP protocol are used, where
resources represent some group communication services or data structures (such
as a mailbox):

– GET is used to perform a query on a resource, e.g. to retrieve messages from
the mailbox (in a blocking or non-blocking manner);

– PUT is used to create a new resource, e.g. to extend a process group with a
new process; the server responds with a status indicating success or failure;

– POST is used to update existing resources, e.g. to connect to the server on
system start-up (this operation is executed only once) or to send/broadcast
a new message;

– DELETE is used to remove a resource, e.g. to remove a process from a process
group; in some cases, the update and delete actions may be performed with
POST operations as well.

Consider the RESTGroups server located at http://mydomain.com:8182 and a
RESTGroups client (or client, in short), denoted userA, located at some other
site. For example, userA could be the Web Service replica in Figure 1. Below we
describe the following operations: connecting to the server, sending messages,
and message retrieval.

3.1 Connecting to the Server

HTTP is a stateless protocol for client-server communication. In order to execute
a given action by a server, a client initializes connection with the server and
sends a request to it. The request contains all the information that are needed
by the server to process the action. After processing the action, the server sends
back a response message and the connection is closed. Therefore, using HTTP as
a transport protocol in the group communication system does not seem natural.

510 T. Kobus and P.T. Wojciechowski

Fig. 2. Successfully connecting and disconnecting from the RESTGroups server

A permanent connection would be more useful, since it can allow the system to
detect client’s failure when the connection is broken.

Therefore, the connection with the RESTGroups server is accomplished using
two requests to the server. The first one, called the temporary (or pilot) request, is
used to ask the server to set up a resource which represents a new communication
session. The session is created using the second request, called the permanent
request. The server does not respond to this request, so the connection opened to
process it remains open. Breaking of the latter connection is interpreted by the
server as crash of the client. Both requests should be separated in time by no more
than 5 seconds; the order of the requests is irrelevant. In Figure 2, we illustrate
making a successful connection and disconnection with the RESTGroups server.

Connection with the RESTGr Server is identified by a unique identifier
pilotConnectionToken, created with the use of random UUID numbers [19]. The
UUID number created by a client is sent in the XML format in the bodies of
both the pilot and permanent requests. A pilot request may look as follows:

POST http://mydomain.com:8182/groups/userA/pilotConnection

<?xml version="1.0" encoding="UTF-8"?>

<restgroups>

<pilotConnectionToken>dec7b89c-1f08-447e-952f-9c441ec92e5c<</pilotConnectionToken>

</restgroups>

Processing of this request is suspended until a corresponding permanent re-
quest is received or a timeout occurs. The schemes/profilesPilotMessage.xsd file
is used for validation of the temporary request’s body.

A permanent request may contain information about client preferences, e.g.
a request of discarding the group membership messages, as below.

RESTGroups for Resilient Web Services 511

POST http://mydomain.com:8182/groups/userA

<?xml version="1.0" encoding="UTF-8"?>
<restgroups>
<pilotConnectionToken>dec7b89c-1f08-447e-952f-9c441ec92e5c</pilotConnectionToken>
<groupMembership>false</groupMembership>

</restgroups>

The schema/profileMessage.xsd file is used for validation of the permanent
request’s body.

If a new session has been created successfully, the response message to the
temporary request is returned with the 204 ’Success No Content’ status. The
response contains: sessionID – a session identification number, stored in the
response ’cookie’; from now on, all requests to the RESTGroups server must
include sessionID, which will allow the server to identify clients, and identifier

– URI of the client’s private group, stored in the response field that is used
for identification; since the names of private groups must be unique across the
whole group communication system, the identifier value can be different from
the name of the client, which is specified in the pilot and permanent requests.
For example, the following values could be received:

– sessionID: d10b88e7-74f3-424a-b306-c47440a818d9

– identifier: http://mydomain.com:8182/groups/@userA@mydomain

Fig. 3. Unsuccessful session creation due to a connection timeout

If connection with the RESTGroups server fails, suitable error messages are
received, e.g. in response to the pilot or permanent request, HTTP’s 408 ’Request

Timeout’ error can be received if one of the two requests has not been received
in a predefined period of time (see Figure 3).

512 T. Kobus and P.T. Wojciechowski

3.2 Sending Messages

There are two possible ways of sending messages to a group of users or to a
single user, identified by the URI of the private group to which it belongs (only
one user can belong to a given private group). The first way (see Figure 4) can
be applied in every case; it uses a predefined resource /multicast and requires
to specify (in the body of a message) the name of the message recipient, i.e. an
identifier of a group or a user to whom the message will be sent. When using
the second way, there is no need to specify the message recipient in the body of
the message. However, each potential recipient of the message, i.e. a group or
an individual user, must be represented by a resource, identified by URI. This
approach is convenient if messages are addressed to a single user only.

Fig. 4. Sending a message

Consider a user-defined group named customGroup. Sending a message to this
group by referring to the /multicast resource, requires an XML document. The
structure of this document is verified based on the schemes/clientMessage.xsd

file which defines the proper XML schema. The following sections (or tags) of the
structure must be defined: guarantee – the reliability and ordering guarantees of
message delivery, type – a message type, groups – a list of addresses, and finally
data – the message payload.

The following guarantees of message delivery are supported:

– unreliable – no guarantee of message delivery,

– reliable – reliable broadcast,

– fifo – fifo broadcast (first-in-first-out),

– causal – causal broadcast, consistent with Lamport’s definition of causality,

– safe – total order broadcast,

– agreed – total order broadcast that is consistent with causal broadcast, i.e.
messages are delivered to all recipients in the same order, and the order
agrees with the causal relation between messages.

RESTGroups for Resilient Web Services 513

POST http://mydomain.com:8182/multicast

<?xml version="1.0" encoding="UTF-8"?>

<restgroups>

<messages>

<message type="regular">

<guarantee>safe</guarantee>

<type>0</type>

<groups>

<group>customGroup</group>

</groups>

<data>Sample message</data>

</message>

</messages>

</restgroups>

Using the second approach for sending a message to the customGroup, requires
to specify an XML document. The structure of this document is verified using
the schemes/clientMessageSingleGroup.xsd schema file.

The request should appear as below:

POST http://mydomain.com:8182/groups/customGroup/mailbox/safe

<?xml version="1.0" encoding="UTF-8"?>

<restgroups>

<messages>

<message type="regular">

<type>0</type>

<data>Sample message</data>

</message>

</messages>

</restgroups>

Note that the request’s URI refers to a private mailbox located at the speci-
fied address. The last part of the URI defines the chosen guarantee of message
delivery; this guarantee can take any of the six values described earlier.

Upon successful message sending, the RESTGr Server returns a response mes-
sage with the 204 ’Success No Content’ status code. In the case of an error, the
server returns the HTTP error message, e.g. 400 ’Client Bad Request’ – if the
client with the sessionID identifier in the request’s ’cookie’ does not have an
active RESTGroups session, or 503 ’Service Unavailable’ – if an error occurs
during the disconnection from the group communication system.

3.3 Reception of Messages

The RESTGroups system offers two types of mechanisms for reception of mes-
sages: blocking (synchronous) and non-blocking (asynchronous). A user can also

514 T. Kobus and P.T. Wojciechowski

check if there are any unread messages waiting on the RESTGroups server with-
out fetching them. Below we describe the blocking reception mechanism; the
non-blocking reception mechanism has a similar syntax.

Performing the following GET request by a client is suspended until a new
message (or messages) will be received by the client:

GET http://mydomain.com:8182/groups/@userA@mydomain/mailbox/blocking

A response to this request is an XML document which contains aggregated
messages that have been sent (or broadcast) to the client; each message contains
the names of the broadcast group and of the message sender. Messages are sent
to a client as soon as they arrive to the RESTGroups server. The structure of
responses in the case of non-blocking messages is similar, except that the “no
messages” response can also be returned.

In order to stop receiving messages, the client should issue the DELETE request:

DELETE http://mydomain.com:8182/groups/@userA@mydomain/mailbox/blocking

4 Related Work

In this section, we describe related work on group communication support for
web services. We begin from discussing the industry standards, followed by ex-
ample research projects. This work is for SOAP-based web services only; we are
not aware of similar work done for RESTful web services.

In SOAP-based web services, distributed processes communicate messages,
typically wrapped in the XML format, using the Simple Object Access Proto-
col (SOAP). Essentially, SOAP means sending remote procedure calls (RPC)
through standard HTTP ports, using an XML envelope. REST emphasizes the
element of using standardized URIs, and also giving importance to the HTTP
verb used (i.e. GET, POST, PUT, or DELETE). Benefit of the RESTful interface
is that requests and responses can be short – in contrary to SOAP that requires
an XML wrapper around every request and response. On the other hand, SOAP
can easier transport any attached files and has better tool support. Since group
communication protocols exchange many control messages, shorter processing
time of messages in REST means better performance of these protocols. How-
ever, we do not present evaluation results since our contribution is mainly the
design of the group communication interface for RESTful web services, not a
group communication system. In particular, we might use some other back-end
system instead of Spread and obtain different performance.

WS-ReliableMessaging [13] is an OASIS standard describing the protocol for
reliable unicast-only message communication using SOAP. The standard does
not specify multicast (or broadcast) communication. It defines two components:
Remote Messaging Source (RMS) on the sender side and Remote Messaging Des-
tination (RMD) on the receiver side. These two components communicate using
SOAP-messages. For this, a communication link is created between RMS and
RMD, and all messages exchanged using this link are given a sequence number.

RESTGroups for Resilient Web Services 515

The programmer can choose among the following levels of delivery assurances,
e.g. at-least-once, at-most-once, exactly-once and in-order. The above properties
can provide building blocks for implementing group communication abstractions
above the WS-ReliableMessaging. In RESTGroups, the unicast communication
with analogous guarantees can be achieved by defining a group to which only
the sender and the receiver belong, and using a POST method with the required
semantics (unreliable, reliable, or fifo).

WS-BaseNotification [11] and WS-BrokeredNotification [12] are OASIS stan-
dards describing the protocols for one-to-many communication of SOAP mes-
sages. The communication is based on the publish-subscribe model. The system
users can create topics of messages, to which the message recipients (or con-
sumers) can subscribe. The standard allows to have a separate subscriber that
subscribes a number of consumers to a given topic. When a message sender (or
a publisher) publishes a message on a given topic, the message is propagated to
all consumers who subscribed (or have been subscribed) for that topic and their
subscription remains active. The WS-BrokeredNotification standard also intro-
duces a broker, who is responsible for recording published messages of a given
topic, and resending them to all consumers that have subscribed to that topic.
However, the WS-BaseNotification and WS-BrokeredNotification standards fo-
cus on the information exchange protocol only, leaving the issues of reliable
communication to “a delivery mechanism for transmission”, where transmission
properties are unspecified: “depending on the actual delivery mechanism, this
transmission might be reliable or might be done on a best-effort basis” [11].

In commercial applications, message queueing systems are often used as the
mechanism for reliable message transmission, including the one-to-many inter-
action. They provide an asynchronous communication protocol between dis-
tributed, loosely coupled processes. The sender and a receiver of a message do
not need to be accessible at the same time, for the message to be delivered (by
default, in the FIFO order). When a receiver of a message is not accessible, the
message will be stored in a queue until it can be delivered. This property is
called durability. Many implementations of queueing systems support resilience
to system failures. This is usually done by implementing a message property
called persistence. After receiving a persistent message, a queueing system sends
a message receipt acknowledgment but only after the message had been stored in
non-volatile memory. The persistence property guarantees that a message char-
acterized by this property will never be lost, even in the case of runtime failures.
Many queueing systems have been developed for the last few decades. This re-
sulted in a variety of protocols and APIs (including REST/HTTP). However,
many consider the Java Message Service (JMS) [10] to be a de facto standard
of a queueing system. JMS assumes both the one-to-one and one-to-many mode
of communication, where the latter uses the publish-subscribe model. In [8], the
authors show that it is possible to build a group communication system based
on JMS, offering a notion of a group, a membership service and a total-order
broadcast. However, such approach adds additional layers of abstraction when
compared to RESTGroups. On the contrary, the group communication protocols
designed for the replicated state machine are more efficient.

516 T. Kobus and P.T. Wojciechowski

The closest work to ours is WS-Multicast [16] that has been designed as a
broadcasting service for SOAP-based web services. The service is built on the
JGroups group communication system [15]. It uses its own transport layer mod-
ule for message communication based on SOAP. A WSDL interface has been
defined, making WS-Multicast a web service itself. Since WS-Multicast only
replaces the transport layer of the JGroups system, leaving the rest of the pro-
tocol stack unchanged, all the assurances offered by JGroups remain in place.
Nonetheless, as was noted, the use of SOAP involves sizable cost stemming from
the character of this protocol. Thus, in the final version of the proposed service,
parsing XML data was being avoided.

5 Conclusion

In this paper, we demonstrated that group communication middleware, such as
Spread, can be easily extended to support RESTful web services. RESTGroups
wraps functionality of group communication middleware and exposes it through
a uniform interface based on the HTTP protocol. We have discussed an example
application of our system – replication of RESTful web services. We also em-
phasized that systems like RESTGroups cannot be 100% RESTful since some
REST principles, such as client-server stateless interaction, cannot be captured
in this type of application.

Acknowledgments. This work has been partially supported by the Polish
Ministry of Science and Higher Education within the European Regional Deve-
lopment Fund, Grant No. POIG.01.03.01-00-008/08.

References

1. Amir, Y., Stanton, J.: The Spread wide area group communication system. Tech-
nical Report CNDS-98-4, Dep. of CS, Johns Hopkins Univ. (1998)

2. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-
Lee, T.: Hypertext Transfer Protocol – HTTP/1.1. Internet Engineering Task Force
(1999)

3. Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine (2000)

4. Fielding, R.T., Taylor, R.N.: Principled design of the modern Web architecture.
ACM TOIT 2(2), 115–150 (2002)

5. IT-SOA. RESTGroups (2011), http://www.it-soa.pl/restgroups
6. Khare, R., Taylor, R.N.: Extending the Representational State Transfer (REST)

architectural style for decentralized systems. In: Proc. ICSE 2004 (2004)
7. Kobus, T., Wojciechowski, P.T.: A 90% RESTful group communication service. In:

Proc. of the DCDP Workshop 2010 (2010)
8. Kupšys, A., Pleisch, S., Schiper, A., Wiesmann, M.: Towards JMS compliant group

communication-a semantic mapping. In: Proc. NCA 2004 (2004)
9. Mena, S., Schiper, A., Wojciechowski, P.T.: A Step Towards a New Generation of

Group Communication Systems. In: Endler, M., Schmidt, D.C. (eds.) Middleware
2003. LNCS, vol. 2672, Springer, Heidelberg (2003)

http://www.it-soa.pl/restgroups

RESTGroups for Resilient Web Services 517

10. Sun Microsys. Java Message Service (2009), http://java.sun.com/products/jms/
11. OASIS. Web Services Base Notification 1.3 (2006)
12. OASIS. Web Services Brokered Notification 1.3 (2006)
13. OASIS. Web Services Reliable Messaging 1.1 (2007)
14. Osrael, J., Froihofer, L., Goeschka, K.M.: What service replication middleware can

learn from object replication middleware. In: Proc. of MW4SOC: the 1st Workshop
on Middleware for Service Oriented Systems (2006)

15. Red Hat. The JGroups toolkit (2009), http://www.jgroups.org/
16. Salas, J., Pérez-Sorrosal, F., Patiño-Martínez, M., Jiménez-Peris, R.: WS-

Replication: A framework for highly available Web services. In: Proc. of WWW
2006 (2006)

17. Schneider, F.B.: Implementing fault-tolerant services using the state machine ap-
proach: A tutorial. ACM CSUR 22(4), 299–319 (1990)

18. Spread Concepts LLC. The Spread toolkit (2006), http://www.spread.org/
19. The Internet Society. A Universally Unique IDentifier (UUID) URN Namespace

(2005), http://www.ietf.org/rfc/rfc4122.txt
20. Wiesmann, M., Pedone, F., Schiper, A., Kemme, B., Alonso, G.: Understanding

replication in databases and distributed systems. In: Proc. of ICDCS 2000 (2000)

http://java.sun.com/products/jms/
http://www.jgroups.org/
http://www.spread.org/
http://www.ietf.org/rfc/rfc4122.txt

Leveraging Microblogs for Resource Ranking

Tomáš Majer and Marián Šimko

Faculty of Informatics and Information Technologies, Slovak University of
Technology, Ilkovičova 3, 842 16, Bratislava 4

tomasmajer@gmail.com, simko@fiit.stuba.sk

Abstract. In order to compute page rankings, search algorithms pri-
marily utilize information related to page content and link structure.
Microblog as a phenomenon of today provides additional, potentially
relevant, information – short messages often containing hypertext links
to web resources. Such source is particularly valuable when considering
a temporal aspect of information, which is being published every second.
In this paper we present a method for resource ranking based on Twitter
data structure processing. We apply various graph algorithms leveraging
the notion of a node centrality in order to deduce microblog-based re-
source ranking. Our method ranks a microblog user based on his followers
count with respect to a number of (re)posts and reflects it into resource
ranking. The evaluation of the method showed that micro-based resource
ranking a) can not be substituted by a common form of an explicit user
rating, and b) has the great potential for search improvement.

Keywords: microblog, Twitter, resource ranking, web search.

1 Introduction

Nowadays, people benefit from the Internet and its most important service –
the Web, which no longer consists only of static pages that people browse and
search information in. User generated content has become more important than
ever, what caused that a new medium for publishing short posts has emerged –
microblog.

Microblog is a lightweight form of traditional blog, where users publish only
brief reports. This phenomenon has become popular mainly thanks to microblog
Twitter. Therefore, the most common name for a user post is “tweet”. Microblog
introduced a completely new form of communication. Users became able to share
their actual feelings, experiences or opinions. Their posts are often related (and
explicitly linked) to entities, which typically represent personalities, products or
events. By aggregating different posts on various topics coming from a plethora
of users and various platforms, microblog became a valuable source of data.

It is possible to monitor current users’ opinions all around the world on mi-
croblog. Different world events can be tracked [4] such as elections, an introduc-
tion of a new product to the market, or revolutions. Typically it is a very current
and extensive user content. Such content can be processed and utilized in order
to improve access to information, e.g. by improving search. Currently the search

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 518–529, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Leveraging Microblogs for Resource Ranking 519

takes into consideration criteria, where the most important are the content and
links structure. There are also other areas such as product review or rating,
where ranking can be utilized for filtering and sorting. However, those can be
subsequently (and unfairly) amended by owners of e-shops. Thinking of Twitter
as of a separate service, it contains un-moderated user data, which typically are
not as biased and are more objective.

In this paper we propose a method for leveraging microblogs for ranking
resources (typically web pages). The method is based on Twitter graph anal-
ysis that results into resource ranking computation. The method is domain
independent as it processes a graph representation abstracting of the content
itself.

The rest of the paper is structured as follows. Section 2 summarizes work
related to microblogs and resource ranking. In section 3 we introduce a novel
ranking measure called TweetRank. The evaluation and a dataset acquired for
experiments are described in section 4. In section 5 we conclude our work.

2 Related Work

There are many areas where microblog mining is beneficial. By textual processing
of user posts we can gather specific keywords for a particular user [22], or use
text classification methods to classify posts and users to specific topics [15]. It is
possible to use methods and techniques of opinion mining to find user opinions
[13] such as polarity of tweet.

Much work has been done in the area of microblog search and microblog
posts ranking [12,20]. Also the well known search engines like Google include
tweets in their search results, based on full text search. Twitter itself contains
a custom search engine allowing to search effectively through full text or tags.
Twitter can be used to find relevant recent resources over the Web and to iden-
tify new and current trends in the world [5]. However, little is known about
how Twitter posts influence the relevancy of resources contained in the posts
and how this information can be utilized outside microblog. To our best knowl-
edge, we are not aware of any method directly using microblog posts for deriv-
ing resource ranking and improving search in resources contained within those
posts.

Viewing Twitter as a huge network, it is natural to apply graph algorithms to
analyze its structure. General graph ranking algorithms such as PageRank, HITS
or NodeRanking can be applied to a graph representing microblog structure.
PageRank identifies nodes that have the greatest relevance in the graph. It can
be used to rank users by analyzing relationships [3]. NodeRanking also builds
on the random surfer model and, in addition to PageRank, considers weights of
links and the damping factor is not a constant but a node variable [14].

Some ranking algorithms have been already adopted for microblogs. Twitter-
Rank is based on PageRank [21]. Besides link structure, it considers topical simi-
larity between users. TunkRank is basic ranking method for social networks, which
are based on microblog principles [7]. It is directly correlated with an expected

520 T. Majer and M. Šimko

number of readers of a twitterer and inversely correlated with the number of users
he follows. TunkRank algorithm can be used to identify influential users.

3 Microblog-Based Resource Ranking

Twitter is a service combining elements of both social networking and microblog-
ging with certain specifics [8]. While user profiles in social networks are connected
bi-directionally, connections on microblog have only one-way orientation. User
may follow other users in order to track their posts, but it does not necessarily
mean that also reverse links exist, i.e., a followed user may choose not to fol-
low ones that follow him. Twitter data analysis revealed that 80.5 % of users
is followed by 80 % of their followers [21]. It was also showed that posts that
users publish mostly depend on the number of users who follow them [8]. In
contrast with traditional blogs, post comments cannot be assigned directly to a
post. However, a new post linking to existing posts can be created, referred to
as retweet. Users have the option to setup visibility for each post and restrict
the “audience” of his tweets.

Twitter is mostly used by users who actively use the web. It is therefore
natural that a 22 % of their tweets contain links to websites [2]. Due to the
limited length of the contributions many of the services that shorten the web
address are used, called URL-shortening services.

The aforementioned characteristics can be used to construct a graph represen-
tation (see Fig. 1). Twitter graph contains three types of entities: users, tweets
and resources. There are some tweets on Twitter, which are not connected to re-
sources (typically web pages). The edges between users represent a unidirectional
followership relation. Users are also connected with tweets they post. Tweets can
be linked to users, another tweets and pages. Relations between tweets represent
a re-tweet of a “parent” tweet.

3.1 TweetRank Computation

We believe the structure of microblog posts (represented by the graph) can be
leveraged to determine ranking of resources referenced in microblog tweets.

We propose a method for computing a resource rank, which we call Tweet-
Rank. Basically, TweetRank is derived from tweet topology. The method is based
on the existing graph analysis algorithms, while extending them with microblog
specific features. The principle of the method lies in user ranking estimation and
propagating such rank via graph relationships into web resources.

In order to obtain resource ranking, we first compute user ranking based on
modified TunkRank algorithm [6]. In contrast with TunkRank, we do not use
static constant transition probability, but calculate dynamic coefficient for each
user based on a number of his followers and tweets. For a user rank calculation
we proposed the following equation:

UserRank(u) =
∑

f∈followers(u)

1 + |followers(u)|
|tweets(u)| ∗ UserRank(f)

|followers(f)| (1)

Leveraging Microblogs for Resource Ranking 521

U1

U2

U3

T1

T2

T4

T3

T7

T6

T5

R1

R2

R4

R5

R3

Fig. 1. Basic Twitter graph representation. Users are represented by circle on the left
hand side (labeled Ux). Squares in the middle represent tweets (labeled Ty). Hexagons
on the right hand side represent resources (labeled Rz).

where UserRank(u) represents rank of a user u, followers(u) represents set of
followers of user u and tweets(u) is set of tweets of user u.

After computing a rank for each user, we use the UserRank to rank user
tweets. Users with higher UserRank post tweets that are more important and, as
a result, resources they share in those tweets are more relevant. The computation
is iterative: UserRank is based on UserRank of all user followers. The more
high-ranked followers a user has, the higher UserRank of this user is. In the
beginning we assign same UserRank value to every user. In order to obtain
final UserRank, we perform more UserRank computations until changes in
user ranks do not exceed a specified (very low) threshold.

For calculating a relevance of a tweet, we use the following computation:

TR(t) = TweetRelevance(t) =
UserRank(Author(r))
|tweets(Author(t))| (2)

where TR(t) = TweetRelevance(t) is relevance of tweet t, Author(t) is author
of tweet t. TweetRelevance represents relative rank of every tweet. It is based
on UserRank which is adjusted according to the number of tweets of the author.

After obtaining a rank for each tweet, we compute ranks of tweets, which
link to resources, and derive resource rankings. When a tweet is re-tweeted, we
increase a rank for a resource, as we explained earlier. Finally, TweetRank for
a resource r is defined as an aggregation of ranks of all tweets that point to the
resource r:

TweetRank(r) =
∑

t∈tweetsURL

(
TR(t) +

∑
rt∈retweets(t)

TR(t) ∗ TR(rt)
)

(3)

where TweetRank(r) is TweetRank of a resource r, tweetsURL is set of tweets
containing URL and retweets(t) is set of retweets of tweet t.

522 T. Majer and M. Šimko

For example, consider graph on Fig 1. Assuming user rankings UserRank(U1)
=6, UserRank(U2)=2, UserRank(U3) = 10 we calculate TweetRank of resource
R4 as follows: TweetRank(R4) = TR(T 5)+TR(T 5)∗TR(T6)+TR(T 6) = 2/3+
2/3 ∗ 10/2 + 10/2 = 8.9 (normalisation omitted). Similarly, TweetRank(R2) =
5.6. The higher user ranking reflects into the higher ranking of a resource.

The proposed method is a novel graph analysis method for computing rankings
for microblog-based networks such as Twitter. For computing resource ranks it
considers microblog specific concepts: unidirectional relation of followership and
ability to re-tweet already tweeted post.

4 Evaluation

In order to evaluate the proposed method, we conducted two experiments. We
collected Twitter dataset with tweets containing links and users relations. In
the first experiment we rank YouTube videos and compare results based on
TweetRank and user rank from YouTube.

In the second experiment we evaluate our ranking method by incorporating
it in searching. We present an approach where resources are sorted based on
combination of fulltext search with microblog-based rating.

4.1 Dataset

We collected and joined two datasets to be used in experiments. First, we pre-
pared a dataset of Twitter data by using 140kit service1. The dataset contains
tweets and user profiles from 18th to 24th September 2009. There are 1,997,446
tweets and 367,824 user profiles in the dataset. User profiles contain basic user
data such as the count of his followers or the count of his total tweets. Dataset
contains tweets in 6 different languages. 85 % of tweets are in English. To cal-
culate ratings of users it is necessary to create connections between the users
(for the calculation of user rank we need to know user rank of all of his follow-
ers). However, there were no such relations between users in obtained dataset.
In order to calculate the ratings of users, Twitter API can be used directly for
downloading a list of followers for a particular user. Unfortunately, this pro-
cess is slow and Twitter limits the number of requests (350 per hour). There-
fore, we used additional dataset, which contains information about user relations
[10]. The dataset contains only links between users based on followers relation-
ship and was created for three months from early June 2009 until the end of
September 2009. This dataset contains users, who are part of the first dataset.
The dataset contains 1,468,365,182 connections between 40,103,281 users. The
dataset together with a full description can be downloaded from the website of
the work2.

There are 1,150,168 unique web links in the dataset. By using our method for
resource ranking, we computed TweetRank for each resource determined by a
1 http://140kit.com
2 http://an.kaist.ac.kr/traces/WWW2010.html

http://140kit.com
http://an.kaist.ac.kr/traces/WWW2010.html

Leveraging Microblogs for Resource Ranking 523

link in the dataset. The distribution of the number of resources having particular
TweetRank value is depicted in Fig. 2. It follows a power-law distribution.

Further analysis of the dataset revealed that as much as 3 % of links points
to YouTube videos. YouTube videos also contain explicit rating given by users.
In the first experiment we assess to what extent TweetRank relates with rating
coming from the YouTube site.

4.2 Comparison with YouTube User Rank

In addition to watching a video on YouTube, users can also comment the video,
they respond to comments of others and they vote. A vote can be positive or
negative. For the purpose of the experiment we downloaded the user votes of 605
videos. We transformed each vote into a rating calculated as a difference between
positive and negative votes and normalized it according to TweetRank rankings.
After that, we compared user rating to TweetRank ranking. We assumed that
the ranking of videos using TweetRank will be similar to that of the votes on
YouTube, as both ratings come from the crowd. However, we did not find a
correlation between both rankings (see Fig. 3).

The performed experiment showed that the evaluation of video-based ratings
of users on YouTube is not correlated with the TweetRank (correlation coeffi-
cient r = 0.02). Although both approaches are basically based on rating of users,
results differ. We see the main difference in results in unequal length of ranking
time period. Videos on YouTube are available from the moment of their publi-
cation until the author decides to remove the video (which occurs very rarely).
Long period YouTube rating is based on continuous rating through years, while
TweetRank ranks are computed based on user posts collected during a period
in September 2009 as described earlier. As we were not able to asses TweetRank
rankings, we decided to compare the rankings with user rankings in the period
closer to that from dataset in terms of both time distance and time length.

We created an application for collecting user ratings by enabling them to see
video and enabling them to enter a rank. The application offered to visitors 5

0
100000
200000
300000
400000
500000
600000

0-0.005 0.005-0.03 0.03-0.1 0.1-0.3 0.5-0.07 0.7-0.9

Li
nk

s

TweetRank values interval

Fig. 2. Distribution of computed TweetRank values

524 T. Majer and M. Šimko

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

0 100 200 300 400 500 600

Ra
nk

 V
al

ue

Videos sorted by TweetRank

TweetRank YouTube vote

Fig. 3. Comparison of YouTube user rank and TweetRank

YouTube videos coming from the acquired dataset. The visitors were instructed
to rate the videos on a scale from 1 to 5, where 1 stood for best and 5 for
the worst rate. Users were given simple guidelines for evaluating videos: they
should rate videos according to how they like them. There were no other criteria
suggested they should consider. 70 different users participated in the experi-
ment. They were non-technically oriented, ordinary web users and thus, in the
most cases, also users of YouTube. We collected 680 responses together. The
participants were approached through social networks Facebook and microblog
Twitter.

Based on user voting, we created two comparisons. We sorted videos based
on average video rating computed according the following formula:

AV R(v) =

∑
H(v)

Rating(v)

|H(v)| (4)

where AV R(v) represents video rating computed as an average rating from a set
of all video ratings H(v) of video v.

The results of voting showed that videos got rather lower user rank values in
general (see Table 1). When compared to the TweetRank results (Fig. 2), we
see similar characteristics: in both cases many videos got low rates and only a
few videos were assigned high rates. The user voting results were compared with
TweetRank rankings. We computed the Kendall rank correlation coefficient τ in
order to measure the association between both results. We obtained τ = -0.12519
(the resulting value is negative because user rank evaluation method has been
reversed). We also calculated the correlation coefficient r = 0.387.

Leveraging Microblogs for Resource Ranking 525

Table 1. Number of videos with a particular user rank falling into rank interval

Average rank in interval Number of videos

〈1.0, 1.5〉 40
(1.5, 2.5〉 45
(2.5, 3.5〉 92
(3.5, 4.5〉 106
(4.5, 5.0〉 107

As each user had to rate five videos at once in the created application, he
created own subjective ordering of the videos. Average difference between two
adjacent videos in ordering by TweetRank is 0.0025. We also considered a de-
viation of rating in order to observe the change of two orderings (5-tuplets)
match ratio. One ordering was based on user ranks and the other was based on
Tweet-Rank (of the same videos). Deviation we define as a number, which we
need to add to any TweetRank of video from 5-tuplet of videos in order to make
changed TweetRank ordering match the 5-tuplet of videos composed by a user
(Fig. 4).

We see that finding a match in 5-tuple of user rating and TweetRank is
difficult, because disagreement even in one place makes a comparison of orderings
unsuccessful. Therefore, we also made another comparison, where we compared
pairs of videos rather than 5-tuples. Similarly, we considered deviation in order
to observe match ratio change (Fig. 5).

The number of matched pairs is far higher than in the case when comparing
5-tuples. Results show that there is more then 60 % of matches without consider-
ing deviation. Although a match ratio increases with a growing deviation, there is
still much difference in agreement on orderings. We believe the explicit user rat-
ing lacks information (let us name it a context) that was induced from microblog.
Microblog topology and relationships between all entities represents potentially

13 15 15 17 21 22 23 26 29 31 38

123 121 121 119 115 114 113 110 107 105 98

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Pe
rc

en
ta

ge
 M

at
ch

Deviation

Mismatch

Match

Fig. 4. Comparison of identical sort of five videos with different deviation

526 T. Majer and M. Šimko

317 332 341 347 357 364 367 375 382 386 394

203 188 179 173 163 156 153 145 138 134 126

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
Pe

rc
en

ta
ge

 M
at

ch

Deviation

Mismatch

Match

Fig. 5. Comparison of identical pairs with different deviation

valuable information with regards to resources contained in blog posts. In order
to further analyze obtained TweetRank rankings, we conducted an experiment
related to search.

4.3 Sorting Search Results with TweetRank

In the experiment we used TweetRank for sorting search results. For the exper-
iment we selected a part of the acquired dataset, which contained the randomly
chosen 20,000 unique links to web resources. We indexed the resources using the
SOLR search platform, which utilizes the core Apache Lucene search3. We ex-
tended document representation in order to incorporate calculated TweetRank,
allowing us to sort search results by that rank.

We proposed a hybrid approach for scoring computation combining inter-
nal ranking of SOLR search engine and TweetRank. As a result, search yields
relevant documents (containing keywords from a query), which are sorted by
TweetRank. Top-k documents are selected for presentation on a result page.

We performed search with 20 randomly selected queries from well understood
domain and manually evaluated the results. In order to demonstrate the results
we have selected the keyword “apple”. Top-5 documents ranked by both Lucene
original ranking and our approach utilizing TweetRank are shown in Table 2. We
see from the example that the hybrid approach yields ordering, which prefers pages
containing information about releasing new products. This kind of pages also
ranked better with other queries we tried. Such behavior of rank originates in the
nature of microblogs, where people often react to world or local news [5]. How-
ever, an important observation is that TweetRank-based ordering does not match
a chronological rank of resources, i.e., publication time of information on a page.
This leads us to conclusion that microblog-based ranking is especially useful when
ranking a set of resource created within a specific time window, as it can not be re-
placed by temporal metatada of resources itself (creation time, change time, etc.).
3 http://lucene.apache.org/java/2_4_0/scoring.html

http://lucene.apache.org/java/2_4_0/scoring.html

Leveraging Microblogs for Resource Ranking 527

Table 2. Top pages in search result by SOLR index and by TweetRank

Sorted by SOLR Sorted by TweetRank

1 iPhone 4 Available in China on Sep. 25 Adobe’s Premiere Elements now avail-
able . . .

2 Bad Apple!! (HQ, Download, . . . iPhone 4 Available in China on Sep. 25
3 Apple Pushing the Art of iPhontogra-

phy
VLC for iPad is finally out on the App
. . .

4 eBay - New & used electronics . . . Can Apple’s Time Machine old . . .
5 eBay - New & used electronics . . . Cloud Computing – Look forward . . .

5 Conclusions

The amount and nature of non-moderated user generated data emerging from
microblog made it a potentially relevant and powerful data source that can be
utilized for a variety of tasks. We believe that microblog data mining can im-
prove approaches to domain modeling [16,17] and user modeling [1,9] potentially
resulting in improved web search [18] or personalization [19,11]. It is important
to note that microblog has certain restrictions, typically related to a limited
size of a post or too specific language, which make microblog content processing
more difficult. However, its popularity and spread result into increased number
of posts every day. Nearly one quarter of posts contains URL to a web page [2].
Increasing popularity of microblog also increases a number of microblog posts,
which can be utilized for web search improvement. This makes microblog data
extremely perspective. Not only for search improvement at the Web scale, but
also in domains, where microblog emerges as a tool for instant discussions among
communities of the specialized interest.

In this paper we proposed a novel method for ranking resources referenced
by microblog users in their posts. We particularly focused on microblog Twitter
as it is both public and widely adopted. The principle of our approach lies in
ranking microblog users and reflecting this rank in resources present in posts they
publish. We utilize user ranking method TunkRank and extend it by considering
additional microblog specific features like re-tweet, which improves user ranking
computation in relation to posts a user publishes.

In order to evaluate the proposed method for resources ranking we conducted
two experiments. The first experiment we performed in the domain of user videos,
where we compared ratings obtained from YouTube website with ranking ob-
tained by our method. We found no correlations in both measures, what can be
explained by temporal characteristics of underlying data: while microblog-based
ratings were created based on one month sample of tweets, original user vot-
ing at YouTube site is present for years. Therefore, we created own application
for collecting a different form of explicit user rating: relative ordering. The final
user ratings were compared with the rank obtained from microblog Twitter using
our method. We were able to see similarities between the measures, but there still

528 T. Majer and M. Šimko

was not sufficient number of agreements on rankings. We interpret this as a
presence of additional potentially valuable information originating in microblog
topology that can not be reflected in explicit user ratings.

In the second experiment we used TweetRank for sorting search results. We
combined document score computation by considering both a traditional statis-
tical measure and TweetRank obtained by the method we proposed. By perform-
ing a set of search scenarios we assessed how the search results were reordered.
Results showed that combined scoring computation prefers pages containing
relatively new information. Such behavior of rank originates in the nature of
microblogs, where people often react instantly. On the other hand, TweetRank-
based ordering does not match a chronological rank of resources, i.e., resources
in top-k search results are not new in terms of time only, but also sorted with
regards of user attitudes expressed through microblog posts they write.

In conclusion, we consider results of our research very promising and perspec-
tive. As a part of a future work we plan to conduct an experiment in a real world
setting by incorporating users, who will assess obtained search results. Links in
microblog posts are typically accompanied with user comments, which can be
considered as resource annotations. Our long term goal is to extend our method
with microblog posts content analysis in order to further improve obtained re-
source rankings and possibly combine it with semantic search approaches [18].

Acknowledgments. This work was partially supported by the grants VG1/
0675/ 11/2011-2014, KEGA 028-025STU-4/2010, APVV-0208-10 and it is the
partial result of the Research & Development Operational Programme for the
project Research of methods for acquisition, analysis and personalized conveying
of information and knowledge, ITMS 26240220039, co-funded by the ERDF.

References

1. Barla, M., Bieliková, M.: Ordinary Web Pages as a Source for Metadata Acquisition
for Open Corpus User Modeling. In: Proc. of WWW/Internet, pp. 227–233. IADIS
Press (2010)

2. Boyd, D.M., Golder, S., Lotan, G.: Tweet, Tweet, Retweet: Conversational Aspects
of Retweeting on Twitter. In: 43rd Hawaii International Conference on System
Sciences, pp. 1–10. IEEE (2010)

3. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
In: Proc. of the 7th Int. World Wide Web Conf. (1998)

4. Diakopoulos, N.A., Shamma, D.A.: Characterizing Debate Performance via
Aggregated Twitter Sentiment. In: Proc. of the 28th Int. Conf. on Human Fac-
tors in Computing Systems, pp. 1195–1198. ACM (2010)

5. Dong, A.: Time is of the essence: improving recency ranking using Twitter data.
In: Proc. of the 19th Int. Conf. on World Wide Web, pp. 331–340. ACM (2010)

6. Gayo-Avello, D., Brenes, D.J.: Overcoming Spammers in Twitter: A Tale of Five
Algorithms. ir.ii.uam.es, pp. 41–52 (2010)

7. Gayo-Avello, D.: Nepotistic Relationships in Twitter and their Impact on Rank
Prestige Algorithms. In: Arxiv preprint, arXiv:1004.0816 (2010)

Leveraging Microblogs for Resource Ranking 529

8. Huberman, B.A., Romero, D.M.: Social networks that matter: Twitter under the
microscope. In: Arxiv preprint, arXiv:0812.1045v1 (2009)

9. Kramár, T., Barla, M., Bieliková, M.: PeWeProxy: A Platform for Ubiquitous
Personalization of the ”Wild” Web. In: UMAP 2011: Adjunct Proc. of the 19th
Int. Conf. on User Modeling, Adaptation and Personalization. Demo., pp. 7–9
(2011)

10. Kwak, H., Lee, C., Park, H.: What is Twitter, a Social Network or a News Media?
In: Proceedings of the 19th International Conference on World Wide Web, Raleigh,
pp. 591–600. ACM (2010)

11. Labaj, M.: Information Sciences and Technologies Bulletin of the ACM Slovakia.
Special Section on Student Research in Informatics and Information Technolo-
gies 3(2), 76–78 (2011)

12. Nagmoti, R., Teredesai, A., De Cock, M.: Ranking Approaches for Microblog
Search. In: Proc. of the 2010 IEEE/WIC/ACM Int. Conf. on Web Intelligence
and Intelligent Agent Technology, vol. 01, pp. 153–157. IEEE Computer Society,
Washington, DC (2010)

13. Pandey, V., Iyer, C.: Sentiment analysis of microblogs (2009),
http://www.stanford.edu/class/cs229/proj2009/PandeyIyer.pdf (accessed
October 05, 2011)

14. Pujol, J.M., Sangesa, R., Delgado, J.: Extracting Reputation in Multi Agent Sys-
tems by Means of Social Network Topology. In: Proc. of the First Int.l Joint Conf.
Autonomous Agents and Multiagent Systems, pp. 467–474 (2002)

15. Ramage, D., Dumais, S., Liebling, D.: Characterizing Microblogs with Topic Mod-
els. In: Proc. of Int. AAAI Conf. on Weblogs and Social Media, pp. 130–137. AAAI
Press (2010)

16. Šimko, J., Tvarožek, M., Bieliková, M.: Little Search Game: Term Network Ac-
quisition via a Human Computation Game. In: HT 2011: Proc. of the 22nd ACM
Conf. on Hypertext and Hypermedia, pp. 57–61. ACM, New York (2011)

17. Šimko, J.: Augmenting Human Computed Lightweight Semantics. Information Sci-
ences and Technologies Bulletin of the ACM Slovakia, Special Section on Student
Research in Informatics and Information Technologies 3(2), 116–118 (2011)

18. Šimko, M., Bieliková, M.: Improving Search Results with Lightweight Semantic
Search. In: Grobelnik, M., Mika, P., Douc, T.T., Wang, H. (eds.) Proc. of the
Workshop on Semantic Search, SemSearch 2009 at the 18th Int. World Wide Web
Conference, WWW 2009, Madrid, Spain. CEUR, vol. 491, pp. 53–54 (2009)

19. Šimko, M., Barla, M., Bieliková, M.: ALEF: A Framework for Adaptive Web-Based
Learning 2.0. In: Reynolds, N., Turcsányi-Szabó, M. (eds.) KCKS 2010. IFIP AICT,
vol. 324, pp. 367–378. Springer, Heidelberg (2010)

20. Teevan, J., Ramage, D., Morris, M.R.: TwitterSearch: a comparison of microblog
search and web search. In: Proc. of the Fourth ACM Int. Conf. on Web Search and
Data Mining, WSDM 2011, pp. 35–44. ACM, New York (2011)

21. Weng, J., Lim, E.P., Jiang, J., He, Q.: TwitterRank: Finding Topic-sensitive Influ-
ential Twitterers. In: Proc. of the Third ACM Int. Conf. on Web Search and Data
Mining, pp. 261–270. ACM (2010)

22. Wu, W., Zhang, B., Ostendorf, M.: Automatic generation of personalized annota-
tion tags for Twitter users. In: Proc. HLT 2010 Human Language Technologies:
The 2010 Annual Conf. of the North American Chapter of the Association for
Computational Linguistics, pp. 689–692. ACM (2010)

http://www.stanford.edu/class/cs229/proj2009/PandeyIyer.pdf

Inner Architecture of a Social
Networking System

Jaroslav Škrabálek, Petr Kunc, and Tomáš Pitner

Lab Software Architectures and Information Systems,
Faculty of Informatics, Masaryk University, Brno, Czech Republic

{xskraba1,xkunc7,tomp}@fi.muni.cz

Abstract. Social networks, their increasing popularity reaching hun-
dreds of million users, demand advance software architecture. Count-
less requests per second necessitate flexible and utmost efficiency and
high performance. This article is focused on development of such a web-
based service offering social functionality to end users, but from the
technology point of view represents state-of-the-art in current usage of
the latest technologies. Those technologies mentioned further are often
used for the first time in such a complex project. High volume data
distribution is handled by Apache Hadoop1 framework together with
Hadoop Distributed File System (HDFS) and MapReduce. Therewithal,
non-relational distributed database HBase and Memcached tool ensures
scalability and high throughput helping with often accessed information.
Inner architecture of the social subsystem has been implemented within
three-layer structure (services/data access/transmission). Social subsys-
tem among others deals with one-way (unsymmetrical) relationship gen-
eration or cancellation between users but events either. Particular sys-
tem entities are allowed to add comments, follow or “like” others. In the
end, testing phase, deployment and practical utilization (although the re-
sulted solution is completely independent) is demonstrated on practical
example of case study Takeplace – complex tool for event management.

1 Introduction

Web 2.0 [8] meant the revolution of creating and using webpages. The content
was not anymore created by the administrator but by the users. A webpage
turned to be just an interface.
Probably the most popular Web 2.0 applications are social network services

that allow creating user accounts, managing relations with other users, creating
groups of interest, communicating and sharing information. For example Face-
book has more than seven hundred million users in July 2011 [7].
This paper focuses on design and architecture of a server-side social net-

work service (based on analysis of existing services), which aims on creating
professional relations.

1 Apache Hadoop, Hadoop, HDFS, Avro, Cassandra, Chukwa, HBase, Hive, Mahout,
Pig, Zookeeper are trademarks of the Apache Software Foundation.

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 530–541, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Inner Architecture of a Social Networking System 531

Although Facebook and Twitter start to assimilate technologies mentioned in
abstract, social network service has never been built on these storage systems
aiming on performance and sustainability.
The benefit is an easy data analysis and distribution using Hadoop Frame-

work2. The main task was to create suitable services, which will cooperate with
simple framework over HBase to make development easy. The most challeng-
ing task is to store users’ walls and news feeds without redundancy but still
with great performance, as these channels are most important in social network
service.
The social network services are heavily data-oriented and are based on model

write once, read many as is expected that once submitted post will be read
many times. Relational databases are designed for often updating, inserting and
reading small chunks of structured data but can fall behind when joining huge
tables that can be distributed over the network. As we lose relations among data
while using non-relational databases we get great performance, which does not
decrease, with amount of data stored in our database.
The application was created as a subsystem and therefore can be implemented

in any existing web application that can communicate with social network service
interface.

1.1 The Wall

The wall is an important term that will be used often in this paper. It was used
on social network service Facebook for the first time. The wall is a webpage on
any user’s profile where he/she and friends can leave messages, photos, links,
and the like.
Friends’ posts (sorted by time) are displayed on News Feed – it is an aggrega-

tion of other users’ posts on one webpage so that user can see important events
taking place on social network.
One post consists of user’s photography and name, text of the post and

time when it has been posted. Visitors can comment and like using a simple
interface.

1.2 Entity

System is not limited on physical users only – the user can be for example event
or conference – more exact term would be an entity. In this paper the terms
entity and user are interchangeable. Same rules stand for every entity.

2 Analysis

Well-known social network services were analyzed before implementing and on
the results and other available data basic requirements were set.

2 Apache Hadoop, hadoop.apache.org

hadoop.apache.org

532 J. Škrabálek, P. Kunc, and T. Pitner

2.1 Existing Social Networks

Facebook is a social network service helping people to communicate with friends
and family. Facebook influenced application presented in this paper especially in
the concepts of posts and comments and also presents two main channels: wall
and news feed.
Facebook used Cassandra3, which was developed by its team and later open-

sourced, for messaging system until 2010. In 2010 Facebook engineers decided
to start using HBase instead as Cassandra’s consistency model proved to be
insufficient [6].
Twitter works on the main principle of microblog. It is a more public ser-

vice than Facebook that connects people with friends. Twitter allows people to
communicate with anyone and is more focused on interests. Twitter inspires our
described application mostly at asymmetric relations among users.
Twitter uses several NoSQL technologies [3] such as Hadoop and HBase4

for data analysis or people search and also Cassandra for online systems and
backups. Cassandra is also planned to be used as the Tweet storage but currently
Twitter is not developing this system yet as it would mean a vast intervention
into its data model.
LinkedIn is a service focused on professional relations but aims more at cre-

ating the relations and building own professional profile than at communicating
with each other. LinkedIn is often used by headhunters and with their special-
ization is closest to the created social network service. LinkedIn uses Hadoop
and non-relational database Voldemort5.

2.2 Technological Requirements

– System has to work on any Linux operating system as most recent and
innovative technologies are built on this platform.

– Java programming language has to be used (JavaEEplatform, especially Spring
Framework) to ensure cross-platform availability of the software itself. Java
also provides professional frameworks and interfaces for most technologies.

– Persistent storage must focus on high throughput because the application
is data-oriented. Many concurrent requests can happen any time and the
storage has to deal with heavy loads.

– System must use a caching tool to increase performance as the most needed
data is stored in a fast memory.

2.3 Functional Requirements

– Entities can create asymmetric relations (Entity A can follow Entity B but it
does not mean that Entity B also follows Entity A). It is a more professional
approach than symmetric relations when speaker does not want to read posts
from his/her listeners but wants to let them read his/her posts.

3 Apache Cassandra, cassandra.apache.org
4 Apache HBase, hbase.apache.org
5 Project Voldemort. A distributed database. project-voldemort.com/

cassandra.apache.org
hbase.apache.org
project-voldemort.com/

Inner Architecture of a Social Networking System 533

– Entities can block any entities so they will not be able to follow them.
– Entity can view walls of entities they are following and each of them has its
own wall and news feed. Entities can put posts on their own wall. System
can put posts on any wall.

– The author of post or people following the author can put comments. Com-
ments can be deleted by their authors or by post author.

– Entities can like posts (with the very same restrictions as comments).
– System can create recommendations. For example:
• “This event is favored by X entities you are following.”
• “Y entities you are following follow Entity A.”
• “Z people you are following plan to visit event M.”

3 Used Technologies

In order to develop scalable and high performance social network subsystem,
the choice of proper technologies is crucial. First of all, the Java Platform En-
terprise Edition became the foundation of the solution. Java ensures high level
of security and robustness as well as multithread support. On the other hand,
certain simplification of low-level routines handling like memory management
causes performance risks. Another facilitation of development has been given
by Spring6 framework utilization. Spring is an open-source solution combining
other single-layer frameworks into one complex forming resulting system archi-
tecture. In this concrete example of social network, Spring is used for Plain Old
Java Objects (POJO) adaptation to enterprise solution. POJO thus provides
all benefits of Java Enterprise Edition but the programming code is also sim-
ple enough for reusability, sustainability or testing [5]. Social networks are well
known for processing large amount of data continuously and thanks to huge
amount of users accessing the social system simultaneously in very short time
as well. For that reason, the Hadoop software framework creates the backbone
for distributed environment of presented solution. Hadoop is currently the most
important project of Apache Company and it consists of two parts:

1. Hadoop Distributed File System (HDFS)
2. MapReduce

Persistent data layer HBase is strictly independent on Hadoop framework. Pro-
cessing data model MapReduce (introduced by Google) is built on the ideas of
functional programming, dividing processing into two phases both reading the
input and writing the output in the form of key-value. In the map phase the
main node (master) in distributed network divides problem into several smaller
one and then they are assigned to other nodes. These nodes are giving results
back to the main node. Reduction phase processes returned results within the
main (master) node and assemble them into the original problem [4]. This par-
allelism helps to avoid dropouts. If particular node would not give the result

6 SpringSource, www.springsource.org/

www.springsource.org/

534 J. Škrabálek, P. Kunc, and T. Pitner

back, it could be easily substitute by another one. MapReduce model is suitable
for cases when once written data has to be read and process often, especially in
huge amounts. Unlike relational databases that were designed for frequent small
data blocks writing and updating [10].
HDFS – distributed file system – has been designed for storing large amounts

of data with general hardware requirements. HDFS divides files to 64 MiB blocks
and in contrast to standard file systems smaller files do not occupy the whole
block. The size of 64 MiB helps to decrease seeking time for particular blocks
and increase transmission speed of large files. The division of file to those blocks
also enables distribution of very large files between several computers with disk
drives smaller than original file.
HBase is another component of Hadoop framework, yet independent. It serves

as a non-relational database built upon HDFS for quick reading and writing vast
data collections. There is no SQL (Structured Query Language), foreign keys,
triggers or views because of absence of relations between the data. HBase is in-
spired by the BigTable[1] model. Particular tables are automatically distributed
to so call regions. Region is a subset of rows defined by the first and last row
and randomly generated identification. In the beginning, while the database is
small enough, it is stored on a single server. When the database limit is reached,
HBase is split into two regions distributed through the network to other servers
using HDFS [10].
HBase consists of tables in which information is stored in four dimensions:

row, column family, column and version. Basically it is a multidimensional sorted
persistent distributed map (key-value). Keys and values are array of bytes so any
data can be stored. Column families are stated as the table is created and should
not be changed later. Columns can have any name and in any column family
can be a various number of them. They can be added or changed any time and
the database is ready to store millions of them. Information in column can have
versions so data can be automatically backed up. As is said database does not
support query language over the data but to obtain more rows a developer can
use scanner which can fetch rows of some key interval (for example “aa” to “cz”
row names).
Data model demonstration (JSON):

{ // t ab l e
// prev ious sor t ed rows
”aa” : { // row

” c f 1 ” : { // column fami ly
” jedna ” : 1 , // column and data
” ob j e c t ” : s e r i a l i z e d d a t a

} ,
” c f 2 ” : {

”” : ”w” // the only column
}

} ,
// next sor t ed rows (i . e . ”ad ” , ”ba ” , ” cz ”)

}

Inner Architecture of a Social Networking System 535

For the best use of persistent databases, Memcached7 is one of the most suitable
recent technologies that can be utilized. Memcached is a distributed system as
well as the previous ones, focused primary on very high performance enabling
to cache any information in the form of key-value. Memcached is keeping the
data in RAM improving performance of dynamic web applications [2]. A typical
Memcached usage is demonstrated below:

public Data getData (St r ing query) {
Data data = memcached . get (query) ;
i f (data == null) {

data = database . get (query) ;
memcached . s e t (query , data) ;

}
return data ;

}

First, the data is retrieved from Memcached layer. If they are not present there,
the data is loaded from database, stored in Memcached for future re-usage and
sent to the web application. In the beginning, there is a obvious delay caused
by accessing Memcached uselessly but each next data call brings significant
improvement thanks to accessing directly RAM. Another benefit represents the
ability to store Memcached distributed through network on more cooperating
servers. Disadvantage of this solution lies in a way how RAM works. It is energy
dependent repository and therefore the risk of data lost in case of any failure
is considerable (but within the next call we can retrieve the data again from
persistent database).

4 Architecture and Design

The system has been designed to be integrated into existing applications. It
uses the interfaces, which defines services. These services can be called directly
or developer can implement communication layer, which handles remote calls
(REST, XML-RPC, JSON-RPC, SOAP and many others) and is connected with
system services.

4.1 Inner Architecture

The system has three basic layers connected by interfaces. Service layer can call
data access layer that access the storage using the data transmission layer.
Service layer serves as the interface for direct or remote callings from the

application. It processes data and authorizes operations.
Data access layer fetches or stores data from/in database and transforms it

into business objects and back.

7 Free and open source, high-performance, distributed memory object caching system,
memcached.org

memcached.org

536 J. Škrabálek, P. Kunc, and T. Pitner

Fig. 1. Three layers of inner architecture

The last layer consists of basic operations like add, delete, get, replace on
database or cache and creates a simple framework over any storage.
There are four basic services currently in the application:

1. Follow service is responsible for creating and managing relations. It also
enables to get data about followers and following (complete or random list
which can be paginated).

2. Wall service performs actions related to posts and walls. It provides methods
for creating, deleting and viewing either the entire post or only minimized
one (for example on wall we do not want to show all comments connected
with the post).

3. Like service allows entities to like and unlike the posts.
4. Discussion service manages the comments of specific posts.

4.2 Data Model

The system consists of three tables entities, walls and discussions (their names
can be changed before initialization to avoid the problem of identical names).
Table entities consist of five column families and saves basic information about

them. Column families followers, following and blocked contains unique ids in
columns. The news column family includes post ids to the posts on news feed
(stored as a backup when Memcached fails to store news). The last column
family count stores redundant information about numbers of followers, following
etc. so system does not have to recalculate them every time.

Inner Architecture of a Social Networking System 537

Table walls stores all posts of each entity in the system. Column family info
stores basic information like author, type, number of comments and number of
likes. In text is only one column containing the text of the post and likes contains
unique ids of people who like the post.
Table discussions is very similar to the table walls but does not contain type,

likes, number of likes and comments.

4.3 Storing Data

While using HBase, developer has to think about row identifiers as they affect
performance. Rows are sorted lexically (identifiers are arrays of bytes) and the
only possibility how to obtain more lines is a sequence scanner, therefore there
results the need to store similar data in a batch to easily fetch them.
In table entities is unique identifier (UID) the key which provides correct

sorting in other tables that uses this id as part of their keys. The key should
have constant length to ensure that data are always lexically similar.
Table walls uses concatenation of UID and time of the post (Java Simple-

DateFormat yyyyMMddhhmmssSSS). Thanks to that there exists only one length
of the key so posts are grouped by entities and then sorted by time – so each
entity has posts sorted from oldest to newest so fetching data is fast for each
entity and there is higher probability that it will be stored on the same region
server. Also entities can view complete history of posts on the wall.
In fact the posts are stored in reverse order (newest to oldest) so developer can

very fast obtain only certain number of newest posts (in the opposite sorting it
would be really hard as the scanner can read only in direction first to last row).
The solution is quite clear – all bytes in formatted date are inverted.
There are only weak relations among data. The entities have their posts and

they have their comments. These relations are displayed in names of keys. Other
relations are not clearly seen in the database because they are not important.

4.4 Wall and News Feed

As is said in previous paragraph, posts are stored in table walls for each entity
so it is simple and fast to obtain wall for any entity. The news feed is stored in
HBase only like a backup of Memcached data (for each entity post identifiers
are stored so we can get the news). Fetching the news from HBase is relatively
slow because we need to load the posts one by one. It is the only solution of
this problem – otherwise we would create a huge redundancy (as many copies as
many users are following). In this case Memcached can avoid redundancy and
also make access to data fast.
While sending a new post to the server all entities following author are dis-

covered. The post is inserted in the cache in minimized form (also time to live is
set) and link to it is put in news feed to every interested entity. We can obtain
news feed in two simple cache queries. First one fetches the list of posts and
the second one (batch query) returns the posts. As Memcached is a simple hash

538 J. Škrabálek, P. Kunc, and T. Pitner

table in RAM getting a few posts to display is a really fast operation. Once the
data gets old or Memcached is full the expired posts are deleted first and after
them the least recently used.

4.5 Implementation

System was implemented using Java EE and Spring Framework, client libraries
for Memcached is Spymemcached developed by one of founders of Memcached
and client library for HBase is HBase 0.90.2 API for Java.

5 Case Study

The application was created to ensure social interactions for users of web appli-
cation Takeplace.
Takeplace8 is a web-based service designed and implemented on the basis of

expert requirements for the particular tool to facilitate efficient organization of
events based on meeting, sharing and communication.
Users are provided with a web interface and gain an access to the standard

services for organizing events according to the type. Basic types of events include
conferences, congresses, symposia, seminars, trainings, consultation meetings,
workshops and team buildings.
With increasing number of professional events organized with the Takeplace

system, we will be able to evaluate these events. Users themselves will be able
to share the experience of participation, evaluate and recommend events to oth-
ers. Then, virtual communities of professional users will arise in course of time.
The emphasis on social and interpersonal interaction is the essential feature of
Takeplace [9].
Social network service was implemented for several reasons. One of the most

important was to provide an easy tool to comment conferences or individual
events and give a feedback to organizers and speakers. Attenders can find prob-
lems that hosts do not see and help them make a successful conference. Users
can also “like” events, which should compare particular seminars and give an
opportunity to people to tell which events are the best.
The second very important reason is to create a professional user network.

Attenders of conferences are people with common professional interests and
therefore a service allowing finding new contacts, create specialist relations and
recommend each other is needed to be implemented.
Several other use cases:

– Simply inform a group of people.
– Find out how many visitors could attend particular event.
– Hear the topics the attenders want to study.
– Share any information among users of service.

8 Takeplace Event Management Tool, www.takeplace.eu

www.takeplace.eu

Inner Architecture of a Social Networking System 539

Fig. 2. Takeplace event management tool – submission

5.1 Implementation

Service layer of social network service is connected with Takeplace by communi-
cation layer that uses JSON to send needed data. Takeplace can retrieve certain
information and connects them with their database of users. User identifiers both
in the application and in the subsystem remain the same so there is no need to
transform them. Takeplace sends to the social subsystem authenticated unique
id so it can authorize all needed operations.
Any data fetched from social network can be post-processed and the appli-

cation can for example after obtaining list of all followers load names and pho-
tographs to display information. The social network subsystem independence,
easy integration and configuration are one of key features.

5.2 Testing

This application was tested using Jakarta JMeter, Netbeans Profiler and also
private pilot run. The application was deployed to a single very limited machine

540 J. Škrabálek, P. Kunc, and T. Pitner

(with only one dual core processor at 2GHz and 1GB RAM) with Tomcat 6.0.26
as it was enough to see how the application performs with 100 hundred users.
In average one simple follow invokation took 0.5ms, obtaining the list of all

one hundred followers and thirty random followers took 2.2ms (data access time
was less than 1ms). Sending one post to server consumed 2.58ms in average and
loading wall of 35 posts for single entity took about 4ms. Load time of entity
news feed was 7ms.
On server we got throughput of about 700 requests per second and median

of loading a simple page which performed one follow operation was 304ms. The
most important page’s (News Feed) throughput is 440 requests per second and
median was 354ms.
Memcached heavily improved the loading time as data load operation of get-

ting all followers improved about 1000 as the operation needs a single request to
memcached. Loading the news feed is even faster as Memcached only performs
batch query for needed keys and HBase has to find the posts in each user’s post
(random reads). Memcached proves to be useful immediately and developers
should not use it for only two reasons. Either the applications update the data
too often so the cache hit is not probable or the single chunk of data is larger
than 1MiB. This application is based on write once read many so Memcached
brought significant performance improvment.
The testing showed that Memcached is really improving the load time. The

comparison between relational and non-relational databases will be evaluated
when high volume of data will be accessed by our users. The testing data from
pilot run look really promising. The main advantages of using the HBase is
scalability and also flexibility as we can react easily when we need to change the
structure of data while implementing new features.
The testing data are only estimation as the application was running on single

node, using one Memcached server and one HBase region. In the beginning of
2012 we will deploy our application to cloud service and then we will evaluate
the performance again as it can improve or downgrade.

6 Conclusion

The social network service was designed as a subsystem and can be integrated
into existing application by implementing the communication layer and connect
it with existing database of users.
Social module allows creating asymmetric relations among users and events.

Entities can insert posts, which can be “liked” and commented. Posts are dis-
played on entity’s profile wall and user can view all posts in the history. News
feed displays the newest posts from entities news feed owner is following. The
news is stored for limited time that can be set up in configuration files.
Subsystem uses non-relational database HBase as permanent storage and

Memcached as distributed cache to improve performance, as is expected heavy
load on fetching data from database. Non-relational database and memory cache
should decrease reading time and provide high throughput and scalability in
data-oriented web application.

Inner Architecture of a Social Networking System 541

Subsystem was integrated in Takeplace application and tested in a pilot run
with limited users. The availability on production servers is planned in the be-
ginning of 2012.
The paper aimed to present a modern layered architecture and propose use

of technologies to ensure high volume data distribution, scalability and high
throughput.
Described system is unique for connecting the most innovative technologies

currently developed and as seen on pilot testing the performance should increase
in comparison to ordinary RDBS with amount of data stored in database. At the
expense of performance, developer loses the relations among data which creates
slightly more responsibility to ensure that data is consistent and valid but with
right choice of keys and creating a suitable framework even this problem can be
overcome.

References

1. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,
Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: A distributed storage system for
structured data. ACM Trans. Comput. Syst., 26, 4:1–4:26 (2008)

2. Finsel, J.: Using Memcached: How to scale your website easily (2008),
http://pragprog.com/titles/memcd/using-memcached

3. Leavitt, N.: Will nosql databases live up to their promise? Computer 43(2), 12–14
(2010)

4. Lin, J., Dyer, C.: Data-intensive text processing with mapreduce. Synthesis Lec-
tures on Human Language Technologies 3(1), 1–177 (2010)

5. Machacek, J., Vukotic, A., Ditt, J., Chakraborty, A.: Pro. Spring 2.5. Springer,
Heidelberg (2008)

6. Muthukkaruppan, K.: The underlying technology of messages. Facebook Engineer-
ing (2010)

7. Newman, J.: Time: What decline? facebook may have just reached 750 million
users (2011),
http://techland.time.com/2011/06/24/

what-decline-facebook-may-have-just-reached-750-million-users/
8. O’Reilly, T.: What Is Web 2.0: Design Patterns and Business Models for the Next
Generation of Software. O’Reilly Media (2007)

9. Škrabálek, J., Ludík, T., Slabý, J., Pitner, T.: Web-based service for collaborative
organization of academic events–case study of takeplace. In: Tetsuo, I., Viorel, N.,
Jebelean, T., Petcu, D., Watt, S., Zaharie, D. (eds.) 12th International Symposium
on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), pp.
577–580. IEEE Computer Society (2010)

10. White, T.: Hadoop: The Definitive Guide. O’Reilly Media (2009)

http://pragprog.com/titles/memcd/using-memcached
http://techland.time.com/2011/06/24/what-decline-facebook-may-have-just-reached-750-million-users/
http://techland.time.com/2011/06/24/what-decline-facebook-may-have-just-reached-750-million-users/

State Coverage: Software Validation Metrics beyond
Code Coverage

Dries Vanoverberghe1,�, Jonathan de Halleux2, Nikolai Tillmann2,
and Frank Piessens1

1 Katholieke Universiteit Leuven, Leuven, Belgium
{dries.vanoverberghe,frank.piessens}@cs.kuleuven.be

2 Microsoft Research, Redmond, WA, USA
{jhalleux,nikolait}@microsoft.com

Abstract. Currently, testing is still the most important approach to reduce the
amount of software defects. Software quality metrics help to prioritize where
additional testing is necessary by measuring the quality of the code. Most ap-
proaches to estimate whether some unit of code is sufficiently tested are based
on code coverage, which measures what code fragments are exercised by the test
suite. Unfortunately, code coverage does not measure to what extent the test suite
checks the intended functionality.

We propose state coverage, a metric that measures the ratio of state updates
that are read by assertions with respect to the total number of state updates, and
we present efficient algorithms to measure state coverage. Like code coverage,
state coverage is simple to understand and we show that it is effective to measure
and easy to aggregate. During a preliminary evaluation on several open-source
libraries, state coverage helped to identify multiple unchecked properties and
detect several bugs.

Keywords: state coverage, test adequacy metric, test oracle.

1 Introduction

As software becomes a central part of society, the impact of software defects on the
economy is huge. For example, in 2002, software failures were estimated to cost the US
economy about $60 billion annually [17]. Currently, testing is still the most important
approach to reduce the amount of software defects.

During the testing process, the code under test is exercised in various ways while
a test oracle (e.g. assertions or pre- and post conditions) checks that the code behaves
according to its specification. Defects are reported and fixed and the testing process
restarts. In principle, this process can continue forever since testing usually cannot show
the absence of software defects. In practice however, only limited resources are avail-
able and testing needs to stop at some point. Software quality metrics help to prioritize
where additional testing is necessary by measuring the quality of the code under test.
� This work was done during an internship at Microsoft Research. Dries Vanoverberghe is a

Postdoctoral Fellow of the Fund for Scientific Research - Flanders (FWO). This research is
partially funded by the Interuniversity Attraction Poles Programme Belgian State, Belgian
Science Policy, by the IWT, and by the Research Fund K.U.Leuven.

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 542–553, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

State Coverage: Software Validation Metrics beyond Code Coverage 543

Currently, most software validation metrics, i.e. metrics that estimate whether the
code is sufficiently tested, are based on code coverage. Code coverage estimates the
fraction of the execution paths of the code under test that are exercised by the test
suite. Since code coverage metrics are simple to understand and efficient to compute,
the use of code coverage metrics during the testing process is well-established. Further-
more, automatic tools have been created to help testers achieve high code coverage (e.g.
random testing, symbolic execution[13]). Unfortunately code coverage alone is not suf-
ficient to measure software quality since it only measures whether the code has been
sufficiently exercised. It does not measure the strength of the test oracle, the properties
that must be satisfied by the code.

In this paper, we focus on the use of assertions, one of the most basic ways to in-
strument the code with the test oracle. Whenever the execution reaches an assertion,
the execution state must satisfy the given boolean expression. Although the use of as-
sertions is far from new [10,23,12,20] and experimental evidence [15] shows there is a
correlation between the number of assertions and the amount of software defects, little
work has been done to measure the quality of assertions in a test suite.

We propose the use of state coverage [14], a software validation metric based on the
hypothesis that every update to the execution state must eventually be followed by an
assertion that reads the updated value. State coverage is orthogonal to code coverage:
they measure different concerns. While state coverage measures the strength of the test
oracle, code coverage measures how well the code is exercised. Nonetheless they are
intertwined, for example adding extra assertions to the test suite may decrease code
coverage and exercising more paths of the program may discover new state updates
and decrease state coverage. Therefore code coverage and state coverage work best
in combination. In addition, the thought process of developers to achieve high state
or code coverage is also orthogonal: While code coverage makes a developer think in
terms of branches, state coverage makes a developer think in terms of properties that
are established by state updates.

For a good software validation metric, the following criteria are essential:

– easy to understand, for developers and testers who write code and tests to achieve
certain metric numbers, and for managers to decide when a project is ready to be
shipped,

– composable, i.e. results from individual test cases can be combined to an overall
result for an entire test suite,

– effective to measure, i.e. adding only a reasonable overhead during the software
development and testing process.

We show in this paper that state coverage fulfills all of the above criteria.
Except for Mutation Testing [8], state coverage is the only technique to measure the

quality of the test oracle. Unfortunately, the mutation adequacy score is hard to under-
stand because deciding whether a live mutant is equivalent can be complex and often
requires human intervention. In addition, it suffers from a high performance penalty
caused by executing the test suite with millions of mutants.

We have implemented a prototype of the state coverage metric for the .NET plat-
form, and have applied it to several open-source libraries. While adding extra assertions

544 D. Vanoverberghe et al.

to increase state coverage, we have found several bugs in DSA[2,1], a library with com-
plementary data structures for the .NET platform. In total, we found seven properties
which were not or insufficiently checked in the existing test suite.

To summarize, the main contributions of this paper are:

– We propose a general definition for state coverage, a software validation metric that
goes beyond code coverage. Our definition improves on existing work by Koster et
al.[14] by allowing more dynamic state updates and lifting the restriction on the
structure of test cases.

– We present efficient algorithms to measure object sensitive and object insensitive
state coverage, two variants with different granularity.

– We propose a technique to make object sensitive state coverage composable.
– We evaluate the metric in a case study on several open-source libraries, using a

prototype implementation of our algorithm.

The remainder of this paper is structured as follows. First, Section 2 introduces state
coverage and discusses how it can be computed. Then, we evaluate state coverage in
Section 3. Finally, we discuss related work and conclude in Sections 4 and 5
respectively.

2 State Coverage

In this section, we propose state coverage, an approach that measures the percentage
of the state updates that are verified by an assertion. We start with its definition, and
then give a simple algorithm to track state coverage of a single test case at runtime. We
describe how state coverage data of individual test cases can be combined into overall
state coverage information, in order to measure state coverage of an entire test suite.
Finally, we extend the algorithm with dependency tracking to avoid low state coverage
ratios due to intermediate state updates and missing context information.

2.1 Definition

We define state coverage as the ratio of the number of state updates which are read by
assertions to the total number of state updates.

This definition of state coverage depends on the definition of state updates. Just as
there are different characterizations of code coverage (statement, basic block, arc, etc.),
there are different possible characterizations of state coverage, depending on the chosen
granularity of state updates.

In this work, we propose two such granularities of state coverage:

– Object insensitive state coverage considers as a state update the code location in
the source code where an update is performed.

– Object sensitive state coverage considers as a state update a pair of object identifier
and code location, where the object identifier is derived from the actual object
reference that is involved in a state update at runtime.

State Coverage: Software Validation Metrics beyond Code Coverage 545

Object insensitive state coverage is quite similar in nature to the idea of statement
coverage. It simply relates a number of covered code locations to a total number of
code locations. While easy to understand, statement coverage is often not fine-grained
enough to give confidence that the code has been sufficiently exercised. Similarly, object
insensitive state coverage is rather coarse. While it provides some basic insights into the
quality of a test suite, we have found cases where only striving for object sensitive state
coverage could uncover certain software defects.

We have implemented a prototype to compute state coverage based on runtime mon-
itors. To get the state coverage, all test cases of a given test suite are executed with a
special monitor, which gets callbacks during the execution, for example, whenever a
field is read or written. Sections 2.2 and 2.3 discuss the implementation of the monitors
for object insensitive and object sensitive state coverage. Both monitors collect a set of
state updates (writes) and a subset that is read in assertions (reads). The resulting value
is computed by dividing the number of reads by the number of writes. More details
about this algorithm can be found in an extended technical report of this paper [25].

2.2 Object Insensitive State Coverage

Figure 1 shows the basic algorithm to compute the object insensitive state coverage
metric. The class ObjectInsensitiveStateCoverageMonitor is a runtime monitor which
gets notified whenever a field is written (WriteField) or read (ReadField) and upon en-
tering (EnterMethod) and leaving methods (LeaveMethod). The state coverage monitor
uses EnterMethod and LeaveMethod to track whether the execution is currently inside
the assert method. Whenever a field is written, the current code location is added to
a set writes, which tracks all code locations where write operations are performed by
the program. A code location represents a method and the offset of an instruction in
the body of that method. In addition, the written object and field is associated with the
current code location in the map lastWrite, which tracks the last location where each
object field has been written. When the execution is inside an assert method and the
execution reads an object field, the last write location for that object field is added to
the set reads.

For simplicity, the presented algorithm only deals with writes to object fields. How-
ever, other parts of the state, such as static fields, array elements, or struct fields, can be
handled similarly.

In general, computing the set of object fields that influence an assertion corresponds
to information flow analysis [21]. For simplicity, the algorithms in this paper simply
track all fields read during the computation of the assertion. However, our implementa-
tion uses runtime information flow monitoring to give more precise results.

Composing the results from all test cases of an entire test suite is easy: It simply
amounts to computing the union of the respective reads and writes sets.

2.3 Object Sensitive State Coverage

The basic idea of the object sensitive algorithm is similar to the object insensitive algo-
rithm. The main difference is that instead of just tracking code locations for the reads

546 D. Vanoverberghe et al.

Fig. 1. State coverage monitors

and writes sets, we will track more information, allowing us to distinguish writes which
might have happened at the same code location, but were performed on different ob-
jects.

The obvious and most general approach would be to track pairs representing the ac-
tual object reference together with the code location where it was written. However, this
is impractical. While it may allow computing very precise state coverage for individual
test cases, joining the information of individual test cases to obtain an overall state cov-
erage ratio for a test suite becomes challenging: It is not clear how to relate the actual
object references of different test runs.

Composing state coverage information is important. It is quite common that multiple
unit tests check different properties of the same code unit. Some people even consider it
bad practice to write multiple assertions in one test case [18]. For example, the methods
PairTest.Test1 and PairTest.Test2 in Figure 2 check that the constructor correctly initial-
ized the field x and y respectively. Since the allocated pair p will not be identical during
the execution of both test cases, a simple union of the read and written fields leads to
a joined state coverage of only 50 percent. On the other hand, it also happens that one
single test checks multiple properties on different objects.

As discussed above, the global nature of object references poses a challenge to join
the results of multiple executions of a particular method or for all methods of a par-
ticular type. To enable joining for object sensitive state coverage, the state coverage
monitor needs to maintain context-insensitive object identifiers. Figure 1 contains an

State Coverage: Software Validation Metrics beyond Code Coverage 547

class Pair {
int x, y;
public Pair(int x, int y) {

this.x = x;
this.y = y;

}
}

class PairTest {
void Test1() {

var p = new Pair(27, 33);
Assert.IsTrue(p.x == 27);

}
void Test2() {

var p = new Pair(27, 33);
Assert.IsTrue(p.y == 33);

}
}

Fig. 2. Example to illustrate composition

updated version of the object insensitive algorithm. Each frame maintains a map from
the actual object references to frame-local object identifiers. Whenever an object iden-
tifier is requested and the frame does not yet have an identifier, it allocates the next
identifier, represented by returning the idCounter and increasing its value by one. All
reads and writes use the frame-local identifier instead of the actual object reference. In
addition, the last write also tracks the frame-local identifier. For brevity, we omitted the
code to push and pop frames when entering and exiting a method.

The resulting set of reads and writes can be unioned together over multiple tests,
which makes it possible to report state coverage values for all tests in a particular test
fixture or test assembly.

There are alternative approaches to to assign context-insensitive object identifiers.
We have chosen the current approach, because it is simple and effective without sacti-
ficing precision.

3 Evaluation

We have implemented a prototype for the state coverage metric as an extension for Pex
[24], an automatic test input generation tool for .NET developed at Microsoft Research,
based on the idea of dynamic symbolic execution: During the execution of a program,
Pex maintains a symbolic state and uses it to generate new inputs that drive the exe-
cution to some unexplored path of the program. We implemented our runtime monitor
on top of Pex, leveraging its extensible instrumentation framework. As shown in the
algorithms in Section 2.2 and Section 2.3, the prototype focuses on object field updates.

The aim of this paper is to present and investigate the notion of state coverage. We
want to avoid the influence of automatic test generation on the evaluation of state cov-
erage. Therefore, we use existing projects with manually created test suites, and we do
not generate additional test cases with Pex. Since state coverage is computed using a
run-time monitor, it is essential that these projects already have a test suite with high
code coverage. In addition, state coverage is only useful when the test cases use asser-
tions to specify the test oracle. Based on these criteria, we applied our prototype on the
following open-source libraries:

– Quickgraph [7] is a managed C# port of the Boost Graph Library.
– Data Structures and Algorithms (DSA) [2,1] features implementations of data

structures and algorithms that complement the data structures in the .NET 3.5 base
class libraries.

548 D. Vanoverberghe et al.

Ultimately, the main research question is whether code bases with low state coverage
are more likely to have bugs, while code bases with high state coverage are unlikely to
have bugs. Unfortunately, answering this question is troubled because of two reasons:
First, all projects have been tested reasonably well which implies that the likelihood
of findings bugs is low. By consequence, the evaluation is biased. Second, we do not
have historical information about older bugs. Therefore it is not possible to compute a
reliable correlation between the amount of bugs and the state coverage values.

Since a quantitative analysis is challenging, we perform a more qualitative analysis.
Our experiment answers the following research question: “for code bases with good
structural coverage, how does an increase in state coverage impact the number of bugs
found?”

We measure the initial state coverage of each project and manually add new asser-
tions to read object fields that were written but not read in an assertion. When we can no
longer improve the state coverage score, we report the amount of added assertions and
the number of bugs we discovered. In this process, we give preference to the simplest
assertions that increase state coverage over well-known more complicated invariants. In
a realistic test setting, more time could be spent to come up with more valuable invari-
ants. This implies that the results are conservative, i.e. it is in some sense the weakest
set of invariants that maximizes state coverage.

For one of the projects, DSA, we perform a detailed analysis of the added proper-
ties. We discuss the most useful invariants, and assess whether they add value to the
test suite. For this project, we also evaluate the level of false positives/negatives. False
positives show up as uncovered state updates, and are therefore easy to detect. False
negatives are harder to detect. Therefore, we manually inspected the code bases to find
patterns that can cause false negatives.

Most of the assertions are added as invariants or post-conditions using Code Con-
tracts [9]. By consequence, the impact on the existing code base is minimal and the
added properties are checked at multiple locations.

3.1 General Results

Table 1 contains the results of executing our prototype on the original unmodified
projects. Since all projects have been reasonably well tested, they have high basic block
coverage (column 2). Columns three and four report the object insensitive and object
sensitive state coverage. All projects have a high score on the object insensitive state
coverage, and therefore require few additional properties to reach the maximum ratio.
This is not surprising since they had high code coverage and a significant number of
assertions (See Table 2). In fact this represents a significant (conservative) bias of our
evaluation. We expect that object insensitive state coverage is more useful on average
projects. The object sensitive state coverage ratios are lower, and highlight the need for
some useful properties. Table 1 show the results for QuickGraph and DSA after adding
additional assertions. For both projects, we achieved the maximal ratio.

Column five and six show the performance overhead of object insensitive and object
sensitive state coverage. However, we made no attempt to reduce the execution over-
head of the prototype, therefore there may be room to improve these numbers. What is

State Coverage: Software Validation Metrics beyond Code Coverage 549

essential about the overhead is that it clearly is just a constant factor off the original per-
formance, not unlike what one would expect from measuring code coverage overhead.

One may object that writing additional assertions just to increase a new metric is
a burden for the developer. Column 3 in Table 2, shows the number of lines of code
that the traditional test suites required in order to achieve high code coverage. The code
added to increase state coverage was negligible compared to the size of the existing test
suite.

Table 1. State coverage results before and after adding extra assertions

State coverage Performance overhead

Project basic block coverage Obj. insens. Obj. sens. Obj. insens. Obj. sens.

DSA (before) 1580/1608 (98.26%) 69/71 (97.18%) 552/805 (68.57%) 22.89% 29.92%
QuickGraph (before) 553/658 (84.04%) 17/19 (89.47%) 1006/1307 (76.97%) 374.91% 291.17%

DSA (after) 1973/2074 (95.13%) 71/71 (100.00%) 801/801 (100.00%) 45.33% 57.65%
QuickGraph (after) 673/779 (86.39%) 19/19 (100.00%) 1304/1304 (100.00%) 353.93% 276.60%

Table 2. Added assertions

Assertions LOC
Project (Added/Total) (Original/Total) Bugs

DSA 33/461 999/1036 5
QuickGraph 22/56 373/426 0

3.2 Detailed Evaluation of DSA

First, we evaluate the bugs we found in DSA while adding properties, and we describe
the process that led us to them. The relevant code fragments for these bugs can be
found in the extended version of this paper [25]. First, some locations in the code write
to the root field of the binary search tree, and the left and right fields of the nodes, but
these writes were never read in an assert. The simplest invariant for reference fields is
checking whether they are non-null. Since the root, left and right fields can be null,
we needed a more complicated invariant. The simplest invariant we could find was that
the amount of nodes in the tree must equal the count field of the BinarySearchTree.
After inserting this invariant, one of the existing tests failed. Upon closer inspection, it
revealed that a value was ignored when it was already in the tree, but the count was still
increased.

Interestingly, when increasing state coverage, a developer thinks differently about the
code than when trying to increase traditional code coverage. In code coverage, when a
statement is uncovered, a developer needs to look at the branch condition that preceeds
this code fragment. In state coverage, when a state update is uncovered, a developer is
forced to think about the properties that are established by this state update.

This mindset helped us discover the other four bugs. After reaching full object in-
sensitive and object sensitive state coverage, it was surprising that we did not need to

550 D. Vanoverberghe et al.

specify some properties, in particular, that the reachable nodes in a linked list can not
be shared between different linked lists. The existing test suite did not check this prop-
erty, and both SinglyLinkedList and DoublyLinkedList have the methods AddBefore and
AddAfter which insert a value before or after a given node. None of the existing tests
attempted to invoke these methods with a node that was not in the linked list. The im-
plementation of these methods does not validate that the nodes are in the linked list, and
throws a null reference exception or invalidates the invariants concerning the structure
of the linked list.

The process to find the bugs in the linked lists illustrates that it is not required to have
a full functional specification in order to reach full state coverage. This is due to the fact
that state coverage is fundamentally an underapproximative measure for the strength of
the test oracle. For example, it was also not necessary to check the consistency between
previous and next fields of doubly linked list, or sortedness of the values of the binary
search tree.

Nonetheless, 33 additional assertions were added to achieve full state coverage. Four
of those assertions were introduced in the new test cases that detect the bug in the
linked lists. Eleven of the assertions were trivial data structure invariants, which were
enforced locally (for example, in the constructor). Those invariant are less useful, but it
is likely possible to infer them automatically using existing invariant generation tech-
niques. Now we discuss the most useful properties that were inserted (using 18 out of
the 33 assertions):

– We added a post condition that checks if an element that added to a data structure
is contained by the data structure (1 post-condition in CollectionBase, 2 more for
specialized methods in Deque, a double-ended queue).

– We added an invariant that checks whether the height of all reachable nodes in an
AvlTree is consistent with its actual height (1 invariant, 2 post conditions).

– An invariant in BinaryTree checks that the amount of reachable nodes equals the
count of the binary tree (1 invariant).

– None of the tests checked that constructors of heap correctly initialize the strategy
field (1 postcondition for both constructors).

– Some data structures are a wrapper around other data structure, but do not always
check that the Count field is consistent (2 invariants).

– In the linked lists, the tail pointer is null if and only if the head pointer is null. In
addition, the next field of the tail and the previous field of the head must be null
(5 invariants in total).

– An invariant in the linked lists checks that the amount of reachable nodes equals the
count of the binary tree. In addition, it checks that the previous field of all reachable
nodes (except the head node) is not null (2 invariants).

In the end, we achieve 100% state coverage, which implies that the potential false pos-
itives due to the dependency tracker did not occur in practice. Intuitively, the lack of
false positives due to the intraprocedural algorithm can be explained because the results
of a method call are usually consumed in the same branch as the invocation. In addi-
tion, the false positives due to tracking dependencies at runtime do not occur because
the expressions in assertions are typically simple. Finally, we manually examined the
source code for patterns that cause false negatives, and we did not find such patterns.

State Coverage: Software Validation Metrics beyond Code Coverage 551

4 Related Work

In the broader sense, state coverage is part of the larger area of software quality met-
rics. Empirical studies have shown that complexity metrics (e.g. Cyclomatic complexity
[16]) and object oriented design metrics (e.g. Coupling [5]) can be used to predict defect
density (See Catal et al. [3] for a survey on defect prediction). However, such metrics
only indirectly help to reduce the defect rate by measuring the quality of the design.

More narrowly, state coverage is a test adequacy metric (See Zhu et al. [26] for a
survey on test adequacy criteria), it directly measures how well the software has been
validated. Structural coverage metrics (such as statement coverage) are most popular
in this area. They all measure to some extent which subset of the execution paths of
the program are exercised by the test suite. State coverage is orthogonal to these met-
rics, since it measures the strength of the test oracle. Therefore, state coverage is most
powerful in combination with the existing approaches.

State coverage is most closely related with all-defs [19] coverage. The critical dif-
ference between both is that dataflow coverage works with all state reads, whereas state
coverage focuses on state reads that influence the result of an assertion. This difference
makes state coverage measure the strength of the assertions in a code base, instead of
measuring whether the code base is sufficiently exercised.

With respect to Koster et al. [14], our definition of state coverage is more general.
We do not require any particular structure for the tests. Furthermore, we allow more
dynamic state update identifiers (e.g. by including object identifiers) than nodes in the
control flow graph. Our preliminary experiments have shown that a more dynamic ver-
sion can reveal more faults and is therefore more precise. Finally, we do not restrict the
metric to output-defining nodes. Therefore our algorithm gives a more accurate view of
the fraction of state updates that have been checked by assertions.

Structural test adequacy criteria have also been applied to specifications instead of
programs [4,11,6]. These metrics consider the system as a black box, and evaluate
whether the test suite sufficiently exercises a model of the system. Therefore, they mea-
sure the quality of a set of tests rather than the quality of the test oracle. Unlike pure
program based or specification based adequacy metrics, state coverage uses the struc-
ture of the program and the specification.

Next, fault-based test adequacy criteria (mostly mutation testing [8]) measure the
fault finding capability of a test suite. Unlike existing structural test adequacy criteria,
mutation testing can be used to evaluate the strength of the test oracle. Mutation testing
injects faults into the codebase and checks whether the test suite can observe the injected
fault. Often mutation testing requires generating and executing millions of mutants.
The mutation adequacy score divides the amount of killed mutants by the amount of
non-equivalent mutants. Unfortunately, deciding whether a mutation is equivalent is
undecidable in general, and therefore often requires human interaction. State coverage
achieves some of the benefits of mutation testing, without the performance overhead
and complexity of mutation testing.

The number of assertions in a code base have been shown to correlate inversely with
the amount of defects in the code [15]. Based on this observation, counting the number
of assertions is an obvious metric for the strength of the oracle. State coverage goes
beyond assertion count in that it is more constructive: it highlights parts of the state that

552 D. Vanoverberghe et al.

are not mentioned by any assertion. In addition, assertion count does not normalize as
well as state coverage: The ideal assertion density (the assertion count divided by the
size of the code base) may vary from program to program.

From a more technical perspective, state coverage is related to UnitPlus [22], a
tool to assist developers in writing unit tests. Based on a static read/write analysis,
UnitPlus suggest new assertions. Unlike UnitPlus, our algorithm computes state cover-
age at runtime and therefore it can be more precise (e.g. we don’t have problems due to
aliasing). In addition, the algorithm in Section 2 uses dependency tracking to precisely
track which state has been read while constructing expressions.

5 Conclusion and Future Work

In this paper, we went beyond traditional code coverage metrics to assess the quality of
a test suite. We created state coverage, a novel metric that measures the ratio of state
updates that are read by assertions, and we presented efficient algorithms to measure
state coverage. We have implemented a prototype to measure state coverage, and eval-
uated the metric in a case study on several open-source libraries. State coverage helped
to identify multiple unchecked properties and detect several defects.

In future work, we will further experiment with different frame-local object iden-
tifiers. Although the current identifiers are simple and efficient, they do not provide
enough feedback to debug which object is updated and cover this update in a new as-
sertion.

In addition, we plan to measure some notion of redundancy of assertions to avoid
trivial assertions such as tautologies or otherwise implied properties. We envision a
redundancy notion which gives individual assertions a score, which measures its quality,
similar to how state coverage quantifies the quality of a test case or suite, but possibly
another orthogonal metric.

References

1. Barnett, G., Del Tongo, L.: Data Structures and Algorithms: Annotated Reference with Ex-
amples. NETSlackers (2008)

2. Barnett, G., Del Tongo, L.: Data structures and algorithms, dsa (2008),
http://dsa.codeplex.com/

3. Catal, C., Diri, B.: A systematic review of software fault prediction studies. Expert Systems
with Applications 36(4), 7346–7354 (2009)

4. Chang, J., Richardson, D.J., Sankar, S.: Structural specification-based testing with adl. In:
Proceedings of the 1996 ACM SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA 1996, New York, NY, USA, pp. 62–70 (1996)

5. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE Trans.
Softw. Eng. 20(6), 476–493 (1994)

6. Dadeau, F., Ledru, Y., du Bousquet, L.: Measuring a java test suite coverage using jml speci-
fications. Electronic Notes in Theoretical Computer Science 190(2), 21–32 (2007); Proceed-
ings of the Third Workshop on Model Based Testing

7. de Halleux, J.: Quickgraph: A 100% c# graph library with graphviz support (2007),
http://www.codeproject.com/KB/miscctrl/quickgraph.aspx

http://dsa.codeplex.com/
http://www.codeproject.com/KB/miscctrl/quickgraph.aspx

State Coverage: Software Validation Metrics beyond Code Coverage 553

8. DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on test data selection: Help for the prac-
ticing programmer. Computer 11(4), 34–41 (1978)

9. Fähndrich, M., Barnett, M., Logozzo, F.: Embedded contract languages. In: SAC 2010:
Proceedings of the 2010 ACM Symposium on Applied Computing, New York, NY, USA,
pp. 2103–2110 (2010)

10. Floyd, R.W.: Assigning meanings to programs. Mathematical Aspects of Computer Sci-
ence 19(19-32), 1 (1967)

11. Heimdahl, M.P., George, D., Weber, R.: Specification test coverage adequacy criteria = spec-
ification test generation inadequacy criteria? In: IEEE International Symposium on High-
Assurance Systems Engineering, pp. 178–186 (2004)

12. Hoare, C.A.R.: Assertions: A personal perspective. IEEE Ann. Hist. Comput. 25(2), 14–25
(2003)

13. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–394 (1976)
14. Koster, K., Kao, D.: State coverage: a structural test adequacy criterion for behavior check-

ing. In: The 6th Joint Meeting on European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering: Companion Papers,
ESEC-FSE Companion 2007, New York, NY, USA, pp. 541–544 (2007)

15. Kudrjavets, G., Nagappan, N., Ball, T.: Assessing the relationship between software asser-
tions and faults: An empirical investigation. In: ISSRE 2006: Proceedings of the 17th In-
ternational Symposium on Software Reliability Engineering, pp. 204–212. IEEE Computer
Society, Washington, DC, USA (2006)

16. McCabe, T.J.: A complexity measure. IEEE Trans. Softw. Eng. 2(4), 308–320 (1976)
17. N.I. of Standards and technology. The economic impacts of inadequate infrastructure for

software testing. Planning Report 02-3 (2002)
18. Osherove, R.: The Art of Unit Testing with examples in .NET. Manning Publications Co.

(2009)
19. Rapps, S., Weyuker, E.J.: Selecting software test data using data flow information. IEEE

Trans. Softw. Eng. 11, 367–375 (1985)
20. Rosenblum, D.: A practical approach to programming with assertions. IEEE Transactions on

Software Engineering 21(1), 19–31 (1995)
21. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE Journal on Se-

lected Areas in Communications 21(1), 5–19 (2003)
22. Song, Y., Thummalapenta, S., Xie, T.: Unitplus: assisting developer testing in eclipse. In:

Eclipse 2007: Proceedings of the 2007 OOPSLA Workshop on Eclipse Technology Ex-
change, New York, NY, USA, pp. 26–30 (2007)

23. Taylor, R.N.: Assertions in programming languages. SIGPLAN Not. 15(1), 105–114 (1980)
24. Tillmann, N., de Halleux, J.: Pex–White Box Test Generation for .NET. In: Beckert, B.,

Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134–153. Springer, Heidelberg (2008)
25. Vanoverberghe, D., de Halleux, J., Tillmann, N., Piessens, F.: State coverage: Software vali-

dation metrics beyond code coverage - extended version (2011),
http://www.cs.kuleuven.be/publicaties/rapporten/
cw/CW610.abs.html

26. Zhu, H., Hall, P.A.V., May, J.H.R.: Software unit test coverage and adequacy. ACM Comput.
Surv. 29, 366–427 (1997)

http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW610.abs.html
http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW610.abs.html

Factorization for Component-Interaction

Automata

Nikola Beneš�, Ivana Černá��, and Filip Štefaňák

Faculty of Informatics, Masaryk University, Brno, Czech Republic

Abstract. Component-interaction automata is a verification oriented
formalism devised to be general enough to capture important aspects of
component interaction in various kinds of component systems. A factor-
ization problem naturally arises in formalisms that are based on compo-
sition. In general, the factorization problem may be presented as finding
a solution X to the equation M | X � S, where | is a composition and �
a behavioural equivalence. In our framework, the equivalence is the weak
bisimulation and composition is parametrized. We provide a solution for
the factorization problem which is built on top of the approach of Qin
and Lewis [13].

1 Introduction

Developing correct and efficient computer systems is an intrinsically difficult
task and the component-based development approach is no exception to this
rule. Formal methods prove to be an invaluable ally in the effort to achieve this
uneasy goal. They have their place in all parts of the development process, be it
the specification stage or the verification stage.

To be able to employ formal methods, we need a formalism to describe the
kind of systems we wish to work with. One of such formalisms is the mod-
elling language of component-interaction automata, first presented in [2]. This
formalism, as its name suggests, focuses on the properties of interaction be-
tween components. It has been devised with two main goals in mind: (a) to
be able to model component interaction in various kinds of component systems
with various kinds of component assembly, and (b) to support various formal
methods of analysis, most notably formal verification of temporal properties.
Component-interaction automata model component assembly using a flexible
form of composition, which can be parametrized by a set of interactions that are
feasible/infeasible in the system. This helps to model component-based systems
quite precisely, even though the formalism itself is rather simple [4,8,17].

A problem that naturally arises in every formalism that is composition-
oriented is the following. Suppose we have some kind of specification describing
the desired system we are attempting to develop. Let us call this specification S.
Assume further that a part, a component of the system is already built, call
� The author has been supported by Czech Grant Agency, grant No. GD102/09/H042.

�� The author has been supported by Czech Grant Agency, grant No. GAP202/11/0312.

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 554–565, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Factorization for Component-Interaction Automata 555

this component M . We then might ask the following question: “Is there any
component that can be composed with M in order to obtain a system equiv-
alent to the specification S?” This problem is called the factorization problem
and the solution to this problem may be seen as an inverse to the composition
operation.

In this paper, we are interested in solving the factorization problem in connec-
tion with component-interaction automata. In our version of the problem, both
the system specification and the given component are assumed to be described
in the component-interaction automata language. The equivalence in the factor-
ization problem question is a version of the weak bisimulation. This allows S to
be a high-level specification without describing any details of internal communica-
tion. Another advantage of using this kind of equivalence is that it preserves a wide
range of temporal logics (see e.g. [1]). Our solution to this problem is built on top
of the approach of Qin and Lewis [13]. They provide the solution of the factoriza-
tion problem for finite CCS processes, which they call finite-state machines, using
a version of CCS parallel composition and the standard weak bisimulation. Our
situation is more complex, as the formalism of component-interaction automata
employs a generalized notion of composition which is parametrized to allow for
different wiring of the components. In our approach, the solution to the factoriza-
tion problem is not only a component but also a description of the way it should
be connected to the existing component of the system.

Our main contribution is an algorithm solving the factorization problem for
component-interaction automata. In the structural part of the factorization con-
struction we make use of the original algorithm of Qin and Lewis and provide
a two way transformation from component-interaction automata into finite-state
machines and back. The transformation itself is not completely straightforward,
as we need to take the parametrized composition into account. The reason we
choose this approach instead of a modification of the original algorithm is that
such a formulation would be too complicated, adding little value to the presen-
tation. On the other hand, the use of transformation leaves us enough space to
focus on on the question of the composition parameter, which is not present in
the finite-state machines model.
Related work. The factorization problem and its relatives have been studied in
various contexts and using various formalisms. We have already mentioned the
work by Qin and Lewis [13], which extends previous work done by Shields in [16].
A similar problem (solving CCS process equations with weak bisimulation) has
been tackled by [11], yielding a semi-automatic procedure that is not well suited
for automatic verification. Solutions to process equations with strong bisimu-
lation have been fully described in [7]. This approach even yields a compact
description of all possible solutions in the form of a disjunctive modal transition
system, which is an extension to previously defined modal transition systems [6].
The comparison of these approaches together with a discussion about complex-
ity may be found in [5]. Moreover, when using deterministic modal transition
systems as the formalism for describing components, the factorization problem
(here called the residual) has been also recently tackled in [14].

556 N. Beneš, I. Černá , and F. Štefaňák

The factorization problem may be also seen as a special kind of a synthesis
problem. Another kind of a synthesis problem is that where the specification of
desired behaviour is not given as a model but as a logic formula. An example
of this is the approach of [12], which produces a system satisfying a given LTL
formula (for the definition of LTL, see e.g. [1]). Recently, in [9] this approach has
been extended to synthesis from a given library of components. Another prob-
lem related to that of factorization is the substitutability problem, investigated
e.g. in [15]. This problem concerns the question whether a given component in
a given system may be substituted with another component. In the framework of
component-interaction automata, this problem has been already tackled in [3].
Note, however, that although the substitutability and the factorization problems
are similar, they cannot be reduced to each other.

2 Preliminaries

In this section, we present basic definitions that will be used throughout the
paper. We start with the definition of labelled transition systems and weak bisim-
ulation on labelled transition systems. The other formalisms (component-inter-
action automata, finite-state machines) will then follow as extension of labelled
transition systems. The advantage of this approach will be seen further in Sec-
tion 4 as the transformations presented there will be based on modifications of
the underlying labelled transition systems, preserving their state space.

Definition 1. A labelled transition system (LTS) is a tuple (Q, q0, L,−→) where
Q is a set of states, q0 ∈ Q is the initial state, L is a set of labels, and −→ ⊆
Q × L × Q is a transition relation. We write q

�−→ q′ instead of (q, 	, q′) ∈ −→.
We say that an LTS is finite if Q and L are finite. We say that an LTS is
deterministic if for all q ∈ Q and 	 ∈ L there is at most one q′ such that q

�−→ q′.

In the next definition, we use the following notation: Let U ⊆ L be a set
of given unobservable labels. We then use q

α̂−→ r to denote that either α �∈ U

and q
α−→ r, or α ∈ U and q = r. We further use q

α̂=⇒ r to denote that q
β1−→

· · · βn−−→ α̂−→ γ1−→ · · · γm−−→ r, where all βi, γj ∈ U . We then define weak bisimulation
with respect to a given set of unobservable labels as a modification of the original
definition of [10].

Definition 2. Let S, T be two LTS, S = (QS , qS
0 , L,−→S) and T = (QT , qT

0 , L,
−→T). Let U ⊆ L be a set of unobservable labels. A relation R ⊆ QS×QT is a weak
bisimulation with respect to U if for each (pS , pT) ∈ R the following holds:

– If pS α−→S qS then there is some qT such that pT α̂=⇒T qT and (qS , qT) ∈ R.
– If pT α−→T qT then there is some qS such that pS α̂=⇒S qS and (qS , qT) ∈ R.

We say that pS ∈ QS and pT ∈ QT are weakly bisimilar with respect to U ,
denoted as pS ≈U pT if there exists a weak bisimulation R with respect to U
such that (pS , pT) ∈ R. We say that S and T are weakly bisimilar with respect
to U (S ≈U T) if qS

0 ≈U qT
0 .

Factorization for Component-Interaction Automata 557

Component-InteractionAutomata. The formalism of component-interaction
automata was introduced in [2] for description of components and their interac-
tions. Informally, a component-interaction automaton is a finite state LTS with
structured labels that capture three types of communication – input, output and
internal communication. The formalism is equipped with parametrized composi-
tion operator which allows for various kinds of composition.

In order to define component-interaction automata formally, we first introduce
the following notation: Let Act and P be arbitrary sets. We use the symbol LP

Act

to denote

LP
Act = ((P ∪ {−}) × Act × (P ∪ {−})) \ ({−} × Act × {−}),

where − is a special symbol not in P . The elements of LP
Act are called component-

interaction labels (CI labels). Every CI label of the form (r, a,−) is called an out-
put label, every CI label of the form (−, a, s) is called an input label, the remaining
CI labels are called internal. The input and output labels are also called external
labels. The internal labels are used to model internal behaviour of a component.
It can also represent communication between some of the constituents of a com-
posite component. The external labels are then used to model the readiness
of the component to communicate with the environment, thus representing the
services that are required or provided by the component.

The following definition is an extension of the original definition of [2].
The original definition uses a notion of component names and each component-
interaction automaton is equipped with a hierarchy of component names, repre-
senting its constituent components. The hierarchy can be degenerate, i.e. contain
only one component name, which means that the automaton represents a single
primitive component. The component names then are used in the structured la-
bels (see r and s) above. We extend this approach by adding a more fine-grained
notion of a port. Every primitive component may be equipped with one or more
(but finitely many) ports. A component name is thus identified with a set of
ports. The ports are then used in the structured labels instead of the component
names. Clearly, this modification is a strict extension of the original formalism,
as any primitive component of the original definition can be seen as a component
with just one port.

Definition 3. A component-interaction automaton (CI automaton) is a tu-
ple (Q, q0, Act,−→,H) where Act is a finite set of actions, H is a hierarchy
of component names, where each component name is a finite set of ports and
(Q, q0, L

P
Act,−→) is a finite LTS, where P is the union of all sets of ports found

in the component names of H.

For a CI automaton C = (Q, q0, Act,−→C ,H) with P being the set of all ports
occurring in H we further define the set of all reachable labels in C as

Reach(C) = {	 ∈ LP
Act | ∃k ∈ N, ∃q1, . . . , qk ∈ Q,

∃	1, . . . , 	k−1 ∈ LP
Act :

q0
�1−→C q1

�2−→C · · · �k−1−−−→C qk−1
�−→C qk}

558 N. Beneš, I. Černá , and F. Štefaňák

Two component-interaction automata are said to be composable if the sets
of all ports found in the respective automata’s hierarchy are disjoint. This is
again in accordance with the original definition from [2] which required disjoint
component names. We define the (parametrized) composition of two composable
automata as follows. The definition is a slight modification of the original defi-
nition of ⊗F in [17], as we only define composition of two automata. Also, the
requirement that all internal transitions of the original automata are preserved
is made implicit in this definition instead of imposing further requirements on F .

Definition 4. Let C1 = (Q1, q1, Act1,−→1,H1) and C2 = (Q2, q2, Act2,−→2,H2)
be two composable CI automata. Let P1 and P2 be the set of all ports occurring in
H1 and H2, respectively. Let H = (H1,H2) and let P be set of all ports occurring
in H (thus P = P1 ∪ P2). Let further Act = Act1 ∪ Act2 and let F ⊆ LP

Act be
a set of feasible labels. We define the composition of C1 and C2 with respect
to F , denoted by C1 ⊗F C2, as C1 ⊗F C2 = (Q1 × Q2, (q1, q2), Act,−→,H), where
(p1, p2) α−→ (p′1, p

′
2) if and only if α ∈ F ∪ (P1 × Act1 × P1) ∪ (P2 × Act2 × P2)

and one of the following four conditions holds: (1) p1
α−→1 p′1 and p′2 = p2, or

(2) p1 = p′1 and p2
α−→2 p′2, or (3) α = (s, a, r), p1

(s,a,−)−−−−→1 p′1, p2
(−,a,r)−−−−→2 p′2,

or (4) α = (s, a, r), p1
(−,a,r)−−−−→1 p′1, p2

(s,a,−)−−−−→2 p′2.

When talking about weak bisimulation in connection with a CI automaton, we
use the weak bisimulation on its underlying LTS, taking U = P × Act × P
(internal actions) as the set of unobservable labels. Whenever we speak about
weakly bisimilar CI automata in the following, we shall use ≈ instead of ≈U , as
U is always clear from the context.

Finite-State Machines. We now present the definition of finite-state ma-
chines, their composition and bisimulation, as defined in [13]. Finite-state ma-
chines are basically finite-state processes of CCS [10] with composition that
contains an implicit restriction of all synchronization actions. A finite-state ma-
chine is thus a finite LTS equipped with a finite set of action symbols Σ and
a special symbol τ �∈ Σ.

Definition 5. A finite-state machine (FSM) is a tuple (Q, q0, Σ,−→), where
(Q, q0, Σ∪{τ},−→) is a finite LTS and τ �∈ Σ is a special invisible action symbol.
We define Σ̂ = Σ∪{ū | u ∈ Σ}. We further assume that ¯̄u = u for every u ∈ Σ.

Definition 6. ([13]) Let M1 = (Q1, q1, Σ1,−→1) and M2 = (Q2, q2, Σ2,−→2) be
two FSM. We define the composition of M1 and M2, denoted as M1 ‖ M2, as
M1 ‖ M2 = (S × T, (q1, q2), Σ,−→), where Σ = (Σ1 ∪ Σ2) \ (Σ̂1 ∩ Σ̂2) and −→ is
defined as follows:

– If p1
α−→1 p′1, and α ∈ (Σ ∪ τ), then (p1, p2) α−→ (p′1, p2) for all p2 ∈ Q2.

– If p2
α−→2 p′2, and α ∈ (Σ ∪ τ), then (p1, p2) α−→ (p1, p

′
2) for all p1 ∈ Q1.

– If p1
α−→1 p′1, and p2

ᾱ−→2 p′2, then (p1, p2) τ−→ (p′1, p′2).

Factorization for Component-Interaction Automata 559

When talking about weak bisimulation on FSM, we use the weak bisimulation
on its underlying LTS, taking U = {τ}. In the following, we shall thus use ≈
instead of ≈{τ} when talking about weakly bisimilar FSM.

Note: In the following, we shall use calligraphic letters (such as A, C) for CI
automata while using ordinary roman letters (such as A, C) for FSM.

3 The Factorization Problem

We start this section with a reminder about the general factorization problem,
followed by a formal definition of the factorization problem for CI automata and
a general outline of our solution. We then proceed with a short discussion on the
factorization problem solved in [13].

The general factorization problem is as follows. Suppose we have a modelling
formalism that supports some kind of composition of models (denoted as |) and
is equipped with a relation that represents behavioural equivalence (denoted as
�). Let then S be a model of the desired system and M be a model of an already
build component of the desired system. The factorization problem is then to find
some X such that M | X � S.

In the context of CI automata, the problem is a bit more complex. As the
composition operator for CI automata is parametrized by F , a set of feasible
labels, we require the solution to not only consist of a CI automaton X , but also
such set F . This requirement on the solution is natural in the framework of CI
automata, as the parameter F represents the connection of components. Having
one component A, we therefore look for a second component X together with
the way of connecting it to A, which is represented by F .

Formally, the definition of our factorization problem is as follows:

input: CI automata A and C such that C is deterministic and Reach(C) contains
no internal labels.

output: A CI automaton X and a set of CI labels F such that A⊗F X ≈ C.

The condition that Reach(C) contain no internal labels is a natural one, as the
CI automaton C is supposed to describe a high level specification of the desired
system. Such specification may pose no constraints on the internal interaction of
its actual implementation. It only describes the communication with the envi-
ronment, i.e. the required and provided services. The determinism requirement
on C is then a prerequisite to using the approach of [13] as the basis for our ap-
proach. We are not aware of a solution to the factorization problem using weak
bisimulation that would allow for nondeterministic specification.

The general outline of the solution to this problem is the following: We first
transform the CI automata A and C into FSM, preserving their structure. The
two FSM will then be used as an input to the approach of [13], resulting in
another FSM. This FSM is then to be transformed back into a CI automaton X ,
which will be the solution to our original problem. Note that this general plan
does not address the problem of finding the desired composition parameter F .

560 N. Beneš, I. Černá , and F. Štefaňák

This task, together with presenting the transformations, will be tackled in the
next section. Note that there is one necessary condition on F that is already
clear, namely that F ⊇ Reach(C).

Before we come to the next section, which provides the transformation from CI
automata to FSM and back, we shortly discuss the solution to the factorization
problem for FSM. In context of FSM in [13], the composition is ‖ and the
behavioural equivalence is ≈, the weak bisimulation. The factorization problem
is then to find some FSM X such that A ‖ X ≈ C where A, C are given
FSM. The paper [13] then present a solution of this problem, under certain
conditions, namely that C is deterministic and rigid, i.e. it does not contain any
τ -transitions.

The solution provided by [13] is furthermore the most general solution in the
following sense. Let the provided solution be called R. Then every other solution
to the factorization problem is strongly included in R, where the definition of
strong inclusion is provided below. Note that the provided solution may con-
tain a special state called the DON’T-CARE state. It is guaranteed that the
composition with A will never enter such state.

Definition 7. ([13]) A binary relation T on states is a strong inclusion relation
if the following holds: Whenever (p, q) ∈ T and p

u−→ p′ then either (a) q
u−→

DON’T-CARE or (b) p �= DON’T-CARE, q
u−→ q′ and (p′, q′) ∈ T . We say that

R strongly includes R′ if there exists a strong inclusion relation T such that
(q0, q

′
0) ∈ T where q0 and q′0 are the initial state of R and R′, respectively.

4 From CI Automata to FSM and Back

In this section, we shall often use assumptions of the form “Let F be a set of CI
labels.” If no further information about F is given, such an assumption simply
means that F may be an arbitrary set of triples, where either the first or the third
element may be the special symbol −, but not both. We also ignore the hierarchy
of component names and only work with the ports occurring in the hierarchy, as
the hierarchy does not influence the solution to the factorization problem. We
shall thus write C = (Q, q0, Act,−→, P) instead of using: “C = (Q, q0, Act,−→,H)
where P is the set of ports found in H”. This allows us to simplify some of the
reasoning and reduces the complexity of the presentation in this section.

We introduce functions f : CI → FSM and gF : CI → FSM for every set of
CI labels F such that A ⊗F B ≈ C ⇐⇒ gF(A) ‖ gF(B) ≈ f(C). The f and
g transformations are going to preserve the set of states and the initial state of
the underlying LTS. Only the transitions are going to change.

The first transformation is the f transformation, which is to be applied on the
system represented by C. The transformation changes all internal labels into τ ,
leaving the rest intact.

Definition 8. Let C = (Q, q0, Act,−→C , P). A FSM f(C) is defined as f(C) =
(Q, q0, Σ,−→), where Σ = (P ×Act×{−})∪ ({−}×Act×P), for α ∈ Σ, q

α−→ q′

if and only if q
α−→C q′, and q

τ−→ q′ if and only if q
(r,a,s)−−−−→C q′ where r, s ∈ P .

Factorization for Component-Interaction Automata 561

In order to define the g transformations, we need the following definition of a few
auxiliary sets.

Definition 9. Let C = (Q, q0, Act,−→, P) be a CI automaton, let F be a set of
CI labels. We define:

– extCF = {(r, a,−) ∈ F | r ∈ P} ∪ {(−, a, s) ∈ F | s ∈ P}. This is the set of
all external labels of C that are allowed by F .

– outCF =
{

(r, a, s) | (r, a, s) ∈ F , r ∈ P, s �∈ P ∪ {−}
}
.

This is the set of all synchronization labels in F such that C can be the
outputting automaton in the synchronization.

– inC
F = {(r, a, s) | (r, a, s) ∈ F , s ∈ P, r �∈ P ∪ {−}}.

Similarly to previous, this is the set of all synchronization labels in F such
that C can be the inputting automaton in the synchronization.

– otherC
F = {(r, a, s) ∈ F | (r, s /∈ P ∪ {−}) ∨ (r, s ∈ P)}. This is the set of

all labels of F that cannot be created by synchronization, if C is one of the
partners of the synchronization. They are thus either internal labels of C or
they are internal labels with both ports different from those of C.

Note that the four sets extCF , outCF , inC
F , otherC

F may be seen as a partition of
F , except for the fact that all labels in outCF are modified with a line above.
This is to ensure that (r, a, s) and (r, a, s) may synchronize in the FSM that is
constructed below.

We now define the g transformation. The transformation is parametrized with
F , a set of CI labels. The transformation (i) changes all internal labels to τ and
(ii) multiplies all external labels with all possibilities of synchronization.

Definition 10. Let F be a finite set of CI labels, let C = (Q, q0, Act,−→C , P).
We define a FSM gF(C) as gF(C) = (Q, q0, Σ,−→), where

– Σ = extCF ∪ inC
F ∪ outCF ∪ otherC

F ,
– for all α ∈ extCF , q

α−→ q′ iff q
α−→C q′,

– q
τ−→ q′ iff q

(r,a,s)−−−−→C q′ for some (r, a, s) ∈ (P × Act × P),

– for all (r, a, s) ∈ outCF , q
(r,a,s)−−−−→ q′ iff q

(r,a,−)−−−−→C q′,

– for all (r, a, s) ∈ inC
F , q

(r,a,s)−−−−→ q′ iff q
(−,a,s)−−−−→C q′.

Example 1. Let F = {(1, a, 3), (1, a, 4), (2, a, 4)} and let A be a CI automa-

ton with a transition p
(1,a,−)−−−−→A p′ and B a CI automaton with a transition

q
(−,a,4)−−−−→B q′. Then gF transforms A into a FSM with transitions p

(1,a,3)−−−−→g(A) p′

and p
(1,a,4)−−−−→g(A) p′ and B into a FSM with transitions q

(1,a,4)−−−−→g(B) q′ and

q
(2,a,4)−−−−→g(B) q′. The composition of these two FSM is then allowed to synchronize

on (1, a, 4), producing the internal transition (p, q) τ−→ (p′, q′) in gF(A) ‖ gF(B).

We now show that the f and g transformation preserve composition and weak
bisimulation and thus satisfy the requirement given at the beginning of the
current section. Due to space constraints, the proofs of all lemmata are omitted.

562 N. Beneš, I. Černá , and F. Štefaňák

Lemma 1. Let A, B and C be CI automata such that A and B are composable.
Let F be a set of CI labels such that F ⊇ Reach(C). Then the following holds:
A⊗F B ≈ C ⇐⇒ gF(A) ‖ gF(B) ≈ f(C).

We thus know that our transformations f and g preserve composition and weak
bisimulation. Moreover, we need the transformation g to be reversible, which is
not possible in the general case. We shall, however, provide a sufficient condition
for F that ensures reversibility of g. We then show that this condition does not
restrict the possibility of finding a solution to the factorization problem.

Definition 11. Let P ′ be a set of ports and F an arbitrary set of CI labels. We
say that F is label injective with respect to P ′ if the following statements hold:

– ∀r ∈ P ′, x, y �∈ P ′ : (r, a, x), (r, a, y) ∈ F =⇒ x = y
– ∀s ∈ P ′, x, y �∈ P ′ : (x, a, s), (y, a, s) ∈ F =⇒ x = y

Note that x, y may be −.

We first show that label injectivity of F implies reversibility of gF .

Lemma 2. Let A = (Q, q0, Σ,−→A) be a FSM such that Σ is a set of CI labels.
Let P ′ be a set of ports such that for every (r, a, s) ∈ Σ, s ∈ P ′ and for every
(r, a, s) ∈ Σ, r ∈ P ′. Further, let F be a set of CI labels that is label injective
with respect to P ′. Then there exists a CI automaton A′ with set of ports P ′

such that gF (A′) = A.

Example 2. Indeed, without the requirement of label injectivity, the inverse of
gF may not exist. Take a FSM A with only one state q and only one transition

q
(1,a,2)−−−−→A q and let F = {(1, a, 2), (1, a, 3)}. It can be clearly seen that there is

no CI automaton C such that gF(C) = A.

The following lemma states that if there exists a solution to the factorization
problem, there exists a solution with label injective F .

Lemma 3. Let F ′, X ′ be a solution to the factorization problem. Then there
exists a solution F , X such that F is label injective with respect to the set of
ports of X .

We now know that we can focus our attention to solutions F , X such that
F is label injective with respect to the set of ports of X . From Section 3, we
know that a necessary condition for F is that F ⊇ Reach(C). Combining these
two conditions is, however, not yet sufficient for a solution to exist. Indeed,
take F = Reach(C). This F is always label injective with respect to any set
of ports, yet disallows all communication in the composition. We thus define
a new condition imposed on F that, together with the two conditions already
mentioned, will be sufficient.

Definition 12. Let A be a CI automaton with set of ports PA. Let F be an ar-
bitrary set of CI labels. We say that F is complete with respect to A if for every
(r, a,−) ∈ Reach(A) there is some (r, a, y) ∈ F with y �∈ PA, y �= − and for
every (−, a, s) ∈ Reach(A) there is some (x, a, s) ∈ F with x �∈ PA, x �= −.

Factorization for Component-Interaction Automata 563

Lemma 4. Let A, C be as in the definition of the factorization problem. Let
F ⊇ Reach(C) be complete with respect to A and label injective with respect
to all ports not in PA. Let further F ′, X ′ be a label injective solution to the
factorization problem. Then we may find a CI automaton X such that F , X is
also a solution to the factorization problem.

5 The Algorithm

Before we can proceed with explaining the final algorithm solving the factoriza-
tion problem, we need to show that there always exists a set F satisfying the
sufficient conditions given by Lemma 4. Let A, C be the instance of the problem
and let PA be the set of ports of A. Recall that the sufficient conditions are:
(i) F ⊇ Reach(C), (ii) F is complete with respect to A, and (iii) F is label injec-
tive with respect to all ports not in PA. A trivial F satisfying these conditions
is given as follows: Let for each r ∈ PA, r′ be a unique new port not contained
in PA. We then set F = Reach(C)∪{(r, a, r′) | (r, a,−) ∈ Reach(A)}∪{(s′, a, s) |
(−, a, s) ∈ Reach(A)}. Our solution to the factorization problem for CI automata
thus works as follows.

input: CI automata A and C such that C is deterministic and Reach(C) contains
no internal labels.

1. Let F = Reach(C) ∪ {(r, a, r′) | (r, a,−) ∈ Reach(A)} ∪ {(s′, a, s) | (−, a, s) ∈
Reach(A)}

2. Transform A into gF(A) and C into f(C).
3. Solve the factorization problem for FSM gF (A) and f(C) using the algorithm

from [13]. Let B denote the solution. (If no solution exists, claim that no
solution for the original problem exists.)

4. Using the construction from the proof of Lemma 2 produce a CI automaton
B such that gF(B) = B.

5. Output F , B as the solution of the original problem.

The correctness of this algorithm is a corollary to all previous lemmata.

Theorem 1. The algorithm is correct and complete, i.e. whenever it produces
an output, it is a correct solution, and if there exists a solution, it produces one.

The complexity of the algorithm is determined by the complexity of Qin and
Lewis’ construction. It may be easily seen that all our transformations are linear
in the size of the transformed models. Therefore, even though we have a more
complex formalism, finding solution to the factorization problem in our approach
retains the complexity of [13].

Figure 1 illustrates the result of the algorithm. Note that the solution also
contains transitions to a DON’T-CARE state, which we omitted here for clarity.
It is easy to verify that indeed A⊗F B ≈ C. Note that although the solution B
has three ports 1′, 2′, and 3′, a solution with two ports also exists. We could,
for example, rename 1′ to 2′ everywhere in B’s labels and thus obtain a solution
with ports 2′ and 3′. However, no solution with just one port exists.

564 N. Beneš, I. Černá , and F. Štefaňák

B

(1
′ , i

n
it

,−
)

(2′, sync,−)

(−
, x

, 2 ′
)

(1′, init,−)

(3′, sync,−)

(−
, y

, 3 ′
)

(1′, init,−)

(1
′ , i

n
it

,−
)

A C

(−, init , 1)

(−
, syn

c
, 2)(−

, s
yn

c
, 3

)

(2, x,−)(3, y,−)

(2, x,−)(3, y,−)

Fig. 1. An instance (A, C) of the factorization problem and its solution, B

The solution provided by the algorithm is a CI automaton whose number of
ports may be in the worst case equal to the number of ports in A. However,
it may be the case that it is desirable to produce a CI automaton with as few
ports as possible. The algorithm can be augmented with the following heuristic,
lowering the number of ports of the result.

Let P+
a be the set of ports r such that (r, a,−) ∈ Reach(A), let P−

a be the
set of ports s such that (−, a, s) ∈ Reach(A). Let then m be defined as m =
max {maxa∈Act |P+

a | , maxa∈Act |P−
a |}. Clearly, for each a there exists an injective

function i+a : P+
a → {1, . . . , m} and an injective function i−a : P−

a → {1, . . . , m}.
The improved parameter F is then defined as:

F = Reach(C) ∪ {(r, a, i+a (r)) | (r, a,−) ∈ Reach(A)}
∪ {(i−a (s), a, s) | (−, a, s) ∈ Reach(A)}

We thus obtain a solution with only m ports.

6 Conclusion and Future Work

In this paper, we have tackled the factorization problem in connection with the
framework of component-interaction automata. We have based our solution on
a previous work by Qin and Lewis [13]. Our solution works by transforming
the original problem into a form that is an input to the approach of [13]. The
result of this approach is then transformed back into a component-interaction
automaton, thus providing a solution to the original problem.

There are many possibilities of future development. One of them is port min-
imization. Our solution may produce a component-interaction automaton with
many ports, even if much smaller number of ports would suffice. We provide a
heuristic reducing the number of ports, but we suspect that a general approach

Factorization for Component-Interaction Automata 565

to finding the solution with the minimal number of ports may be a much harder
problem. A related issue is that of finding the most general solution. The work [13]
provides the most general solution in the sense of strong inclusion as explained in
Section 3. This is, however, not very satisfactory result, as it is not complete. This
means that although every solution is strongly included in the provided one, there
may be systems which are strongly included in the provided one, yet are not solu-
tions to the factorization problem. A better description of a most general solution
would perhaps use modalities such as in [7,6].

References

1. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)
2. Brim, L., Černá, I., Vařeková, P., Zimmerova, B.: Component-interaction automata

as a verification-oriented component-based system specification. In: SAVCBS 2005,
pp. 31–38. Iowa State University, USA (2005)

3. Černá, I., Vařeková, P., Zimmerova, B.: Component substitutability via equivalen-
cies of component-interaction automata. ENTCS 182, 39–55 (2007)

4. Jia,Y.,Li,Z.,Zhang,Z.:Timedcomponent-interactionautomata for specificationand
verification of real-time reactive systems. In: CSSE 2008, vol. 2, pp. 135–138 (2008)

5. Jonsson, B., Larsen, K.G.: On the Complexity of Equation Solving in Process
Algebra. In: Abramsky, S. (ed.) CAAP 1991 and TAPSOFT 1991. LNCS, vol. 493,
pp. 381–396. Springer, Heidelberg (1991)

6. Larsen, K.G., Thomsen, B.: A modal process logic. In: LICS 1988, pp. 203–210.
IEEE Computer Society (1988)

7. Larsen, K.G., Xinxin, L.: Equation solving using modal transition systems. In:
LICS, pp. 108–117. IEEE Computer Society (1990)

8. Lumpe, M., Grunske, L., Schneider, J.G.: State Space Reduction Techniques for
Component Interfaces. In: Chaudron, M.R.V., Ren, X.-M., Reussner, R. (eds.)
CBSE 2008. LNCS, vol. 5282, pp. 130–145. Springer, Heidelberg (2008)

9. Lustig, Y., Vardi, M.Y.: Synthesis from Component Libraries. In: de Alfaro, L.
(ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 395–409. Springer, Heidelberg (2009)

10. Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Hei-
delberg (1980)

11. Parrow, J.: Submodule construction as equation solving in ccs. Theor. Comput.
Sci. 68(2), 175–202 (1989)

12. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL 1989,
pp. 179–190. ACM (1989)

13. Qin, H., Lewis, P.: Factorization of Finite State Machines Under Observational
Equivalence. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458,
pp. 427–441. Springer, Heidelberg (1990)

14. Raclet, J.B.: Residual for component specifications. ENTCS 215, 93–110 (2008)
15. Sharygina, N., Chaki, S., Clarke, E.M., Sinha, N.: Dynamic Component Substi-

tutability Analysis. In: Fitzgerald, J.S., Hayes, I.J., Tarlecki, A. (eds.) FM 2005.
LNCS, vol. 3582, pp. 512–528. Springer, Heidelberg (2005)

16. Shields, M.W.: Implicit system specification and the interface equation. The Com-
puter Journal 32(5), 399–412 (1989)

17. Zimmerova, B., Vařeková, P., Beneš, N., Černá, I., Brim, L., Sochor, J.:
Component-Interaction Automata Approach (CoIn). In: Rausch, A., Reussner,
R., Mirandola, R., Plášil, F. (eds.) The Common Component Modeling Example.
LNCS, vol. 5153, pp. 146–176. Springer, Heidelberg (2008)

Optimizing Segment Based Document

Protection

Miros�law Kuty�lowski and Maciej Gȩbala

Institute of Mathematics and Computer Science,
Wroc�law University of Technology

{miroslaw.kutylowski,maciej.gebala}@pwr.wroc.pl

Abstract. We consider documents with restricted access rights, where
some segments of the document are encrypted in order to prevent unau-
thorized reading. The access rights to such a document are described by
an access graph. It is a directed acyclic graph; each node describing a
different access rights level. It is assumed that a user having the rights
corresponding to a node v has also all rights corresponding to all nodes
w such that there is a directed path from v to w in the access graph.
Then, to each node v we assign a key Kv and use this key to encrypt the
segment of the document corresponding to the access level v.

We consider key management schemes and encoding auxiliary infor-
mation in the document which ensure that a user who gets a single key
corresponding to his access level v can derive all keys Kw for w = v or
w being an ancestor of v in the access graph.

In this paper we show how to minimize the total size of auxiliary
keying information stored in the document. We provide an algorithm
based on node disjoint paths in the access graph and key derivation
based on one-way functions. We show that the algorithm chooses the
paths in an optimal way.

Keywords: document protection, access rights, key management, key
hierarchy, directed acyclic graph.

1 Introduction

Digitalization of information flow requires in particular creating electronic docu-
ments as a counterpart of paper documents and assigning them similar legal role
as for paper documents. This process is inevitable, but creates a lot of problems
in the transition period. They have not only legal and social background, there
are new technical challenges as well.

One of the key technical problems is that once a digital document is created,
it can be easily copied (with each copy indistinguishable from the original) and
freely distributed. This is not the case for paper documents where one can control
the location of a document and where there is only one original of the document.
The ease of copying electronic documents becomes a problem since in some areas
(like court procedures and personal data protection) there are strict rules about
granting rights to read documents.

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 566–575, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Optimizing Segment Based Document Protection 567

Access to an electronic document might be guarded by the operating system:
it assigns access rights to each document and afterwards grants access to a
document for a given user as long as it is explicitly admitted by access rights. This
method is satisfactory as long as a the system has a small size and all entitled
readers are using the same computer. However, when we are talking about a
large distributed system such an approach leads to a very tedious distributed
rights management.

In this situation cryptography may contribute a lot into practical usability:
we can encrypt a document (or its appropriate parts) and make it easily avail-
able (by posting on the Web, or broadcasting). Then it suffices to distribute the
decryption keys to the entitled users. The decryption keys may be delivered in
different ways; for instance the users might have hardware tokens with secrets
shared by document issuer and can generate decryption keys on demand. An-
other option are broadcast protocols, where secret material (i.e. decryption keys)
is encoded so that only certain recipients may derive it.

1.1 Segment Based Document Protection

Encryption of electronic documents brings also some advantages: instead of using
a single key for all sensitive parts one can use different keys to different parts.
In this situation different parties may get access to different parts of the same
document, while integrity of the document and its the encrypted parts might be
secured with means of electronic signatures. Such a policy of separation of roles
and limiting the scope of user’s view in case of sensitive documents is an idea
gaining popularity (e.g. for medical data systems).

The idea of securing multiple parts of a document in different ways has ap-
peared in many contexts in the literature; for recent application oriented work
see [1, 2]. The components of the system are the following:

– the document contents as well as auxiliary right management information
are encoded in an XML-structure,

– apart from plaintext contents, the document is divided into segments, each
segment encrypted with a dedicated key,

– the dependencies between segments are described by an access graph, which
is a directed acyclic graph (dag); in the access graph, if there is a directed
path from a node labelled A to a node labelled B, then a user having the
right to decrypt segment A has also the right to decrypt segment B,

– the XML-structure contains public key information on decryption keys; it
enables a user that knows the key for a given segment A to derive the key of
any segment B such that there is a directed path from A to B in the access
graph.

Obviously, the access graph must be acyclic in order to derive a hierarchy-like
rights management. Many authors talk about an ordering induced by the access

568 M. Kuty�lowski and M. Gȩbala

graph: if there is a directed path from node A to node B, we say that A 5 B.
The relation 5 need not to be a linear ordering. In many target applications it
is only a partial order.

The question considered in this paper is what auxiliary information concerning
the keys has to be stored inside the document in order to provide a solution that
is computation and space efficient as well as flexible and scalable.

1.2 Hierarchical Key Structures and Key Derivation Techniques

The idea of efficient key management appeared at early days of modern cryptog-
raphy. The idea of [3] is to provide each user with a single key so that all keys
corresponding to the user’s rights can be derived locally by the user.

Linear Schemes. If the access graph defines a linear ordering, say A1 5 A2 5
. . . 5 Am, then we may derive the corresponding keys with any one-way function
F (see e.g. [4]). Then we choose a key K1 at random and for i = 2, . . . ,m derive

Ki := F (Ki−1) (1)

Then we assign the key Ki to node Ai, for i ≤ m.
Obviously, having Ki it is easy to derive the keys Ki+1, . . . , Km by applying

formula (1). On the other hand, an attempt to deriveKi−1 fromKi is an attempt
to derive a preimage of a one-way function. By definition of one-way functions,
this is infeasible.

In a practical setting we may use a cryptographic hash function H in place of
F . Then we rely upon preimage resistance of the hash function H .

Tree Schemes. If the access graph is a tree, then we can apply a similar solution
(see e.g. [5]). Namely, if a node A has child nodes B1, . . .Bk, and a key K has
been assigned to A, then we assign the keys K1. . .Kk to, respectively B1, . . .Bk

using the formula
Ki := Fi(K) for i ≤ k (2)

where F1, . . .Fk are distinct and unrelated one-way functions. For this scheme
we require that there is a easy to determine linear ordering of children of each
node.

In a practical setting we may use a cryptographic hash function H instead of
F1,. . .Fk. Namely, we put:

Ki := H(i,K) for i ≤ k . (3)

However, then we rely upon a nonstandard assumption about infeasibility of
derivationKi based on Kj for j �= i, when they are derived by the above formula.
However, even if we use distinct one-way functions, we have to prove that one-
wayness still holds, if an attacker gets not only a value of a single one-way
function Fi(K), but a collection of values F1(K), . . . , Fk(K) derived from the
sought value K.

Optimizing Segment Based Document Protection 569

Arbitrary Posets. From the early days of hierarchical key management, ba-
sically two techniques have been used. The first one, proposed in [3] is based
on the strong RSA assumption, but in fact can be used in any multiplicative
algebraic structure, where exponentiation is easy but computing roots of a given
degree is infeasible (e.g. see [6]). The idea is as follows. First for a given poset P
describing the access rights find a mapping ρ : P → N such that for any nodes
u, v we have

A 5 B iff ρ(A)|ρ(B)

Then choose an element g at random in a given algebraic structure and compute

KA := gρ(A)

as the key for node A. Of course, if ρ(A)|ρ(B), then one can compute KB from

KA due to equality KB = K
ρ(B)/ρ(A)
A . On the other hand, computing KA from

KB would mean computing root of degree ρ(B)/ρ(A), which is infeasible.
The advantage of the scheme described is that each user has to store a single

key and only the mapping need to be described in a document – no key infor-
mation is necessary in the document. The main disadvantage of this scheme is
computational complexity and relatively low flexibility.

The second approach is to use an arbitrary tree scheme (see e.g. [7] and [2]).
Of course, this leads to conflicts when a node v has more than one incoming arcs.
As the keys in successor nodes are computed by one-way functions, in general
there would be more than one value derived for the key corresponding to node
v. In order to deal with this problem we assign a kind of offset for each arc of the
access graph. Namely, if the key of node v should be Kv and the computation
for an arc (u, v) yields K ′, then we may define the offset as K ′ XOR Kv. The
offset is the essential part of public information corresponding to the arc.

1.3 Document Encoding and Problem Statement

After making choice over hierarchical key management scheme we have to include
relevant informations in the segmented document encoding described in Sect. 1.1.
Namely, we have to describe

– key derivation method for each arc of the access graph,
– offset, if it is necessary for a given arc.

The mechanisms described so far have the following space requirements related
to key information fields:

– If we use a hierarchical key management that can support arbitrary access
graph, then no public key information need to be attached to the arcs of
the access graph. Consequently, space overhead of the document encoding is
low.

– If the tree key management is used, then key information might be eliminated
from relatively many arcs of the access graph. Namely, we embed a tree into

570 M. Kuty�lowski and M. Gȩbala

the access graph and assign the keys within the embedded tree according
to the tree key management method.1 For the remaining arcs we define the
offsets. If the access graph differs from a tree by just a few arcs, then only
those arcs must be given offset information.

– If we use a linear hierarchy of keys, then, in order to save space, we have to
choose node disjoint paths that together contain as many arcs as possible.
Clearly, in general the remaining arcs (outside these paths) require public
key information to be encoded in a document.

So we see that from the point of view of size expansion of a document, the first
option is the most advantageous. However, we should be aware of the following
problems that make the final implementation decision quite uneasy:

– In the first case, specific algebraic constructions must be applied. Security of
encoding depends solely on security of a given algebraic scheme. Moreover,
the schemes are based on asymmetric techniques, which are heavy from com-
putational point of view. For this reason they might be hard to implement on
certain consumer devices, while on the other hand the encoding has to be as
portable as possible. However, the most important issue is lack of flexibility
and a specific dependence on the order of the group applied.

– Tree schemes may be based on a wide range of techniques, among them on
standard hash functions and symmetric encryption. For this reason compu-
tational requirements are significantly lower. On the other hand, underlying
schemes must be secure in a specific model where the keys produced for
siblings of a node are derived from the same secret (plus some public param-
eters) and therefore are related in some cryptanalytic sense.

For these reasons we feel that tree and linear schemes might be interesting for
practical applications. This point of view is shared by many authors constructing
such schemes.

If we decide to use a tree scheme or a linear scheme for key derivation in a
dag, we are faced with the following problems:

Problem 1. Given a dag G, embed some number of trees in G so that

– the embedded trees are node disjoint,
– the number of arcs that do not belong to any of embedded trees is minimal.

Problem 2. Given a dag G, embed some number of paths in G so that

– the embedded paths are node disjoint,
– the number of arcs that do not belong to any of embedded paths is minimal.

Note that if we are given an embedding such as mentioned in Problem 1 or Prob-
lem 2, then within each embedded tree (respectively, path), we can separately

1 Recall that φ is an embedding of a directed graph G1 in a directed graph G2, if φ is
a bijection from the mapping the vertices of G1 to vertices of G2, and if (v, w) is an
arc in G1, then (φ(v), φ(w)) is an arc in G2.

Optimizing Segment Based Document Protection 571

derive the keys starting from a single root key. Due to node disjointness this
does not lead to any conflict. Consequently, in the access graph all arcs that
correspond to embedded arcs do not require offset key information. Only for the
remaining arcs we need offset key information.

2 Tree-Based Key Derivation

Let us apply the following algorithm:

Algorithm 1.

Input: a dag G
Output: a subgraph G′ of G that consists a set of disjoint trees and containing the
maximal possible number of arcs

Algorithm:
Construct a reduced graph G′, a subgraph of G, in the following way:
for each node v ∈ G of indegree greater than 1 pick up an arbitrary arc with endpoint
v and remove all other arcs with endpoint v.

Let us observe that in G′ each node has indegree at most 1. Therefore G′ is a
forest, i.e. a graph consisting of some number of disjoint trees. The shape of the
forest depends very much on the choices made by Algorithm 1, however we may
observe that this does not influence quality of the solution from our point of
view:

Proposition 1. The number of arcs in G′ is constant and does not depend on
algorithm execution. Moreover, no forest embedded in G may contain more arcs
than G′.

Proof. First observe that the choice made for a node v does not influence the
choices at other nodes. Indeed, removing arcs pointing to v does not change the
arc pointing to w for w �= v.

If for node v there aremv incoming arcs, then the total number of arcs removed
during algorithm execution equals always

∑
v∈Gmax(0,mv − 1), and therefore

the number of arcs in G′ is always the same.
For the second part of Proposition 1 observe that if F is a forest and a

subgraph of G, then for each node v of F , let in(v) denote an arc of F with
the endpoint v (if there such an arc), or undefined (if there is no such an arc).
Then we construct graph G′ in the following way: for a given v we leave the arc
in(v) (if it is defined), or an arbitrary arc with endpoint v (if in(v) is undefined).
Clearly, in this way we do not remove any arc of F and therefore all arcs of F
are contained in G′. So the number of arcs in F is not higher than the number
of arcs in G′. !"

By Proposition 1 we see that determining a forest, a subgraph of an access graph
G, with the maximal number of arcs is straightforward.

572 M. Kuty�lowski and M. Gȩbala

Fig. 1. Let us consider a dag consisting of arcs (v, u), (v, w) and (w, u) - a triangle with
source v and sink u. If during a greedy procedure we take the arc (v, u) (or remove
(v, w)), then the final solution will contain just one path with a single arc. On the other
hand, the optimal solution is the path (v, w), (w, u).

3 Sequential Key Derivation

First let us observe that unlike in the case of constructing a maximal subforest,
determining the maximal set of node disjoint paths cannot be done in a greedy
way. The simplest example is presented on Figure 1.

Before we present an algorithm constructing the optimal solution for Problem
2, let us make the following observation:

Lemma 1. Let d be the maximal number of arcs in a subgraph of a dag G so that
the subgraph consists of node disjoint paths. Let v be a node of G with indegree
0. Then there is a subgraph S′ of G consisting of node disjoint paths having d
arcs and containing an arc starting at v pointing to an arbitrary of its immediate
ancestors.

Proof. Let S be a subgraph of a dag G, where S consists of node disjoint paths
containing in total d arcs.

Let v be a node of G with indegree 0 such that no arc starting in v belongs to
S (otherwise the claim of Lemma 1 is already fulfilled for v). Consider all arcs
(v, u1), . . . , (v, uk) in G that originate in v. According to our assumption, none
of them belongs to S. If any node ui does not belong to S, then we could add
the arc (v, ui) to S. The resulting graph would be still composed of node disjoint
paths (with a new path (v, ui) of length 1), but would have one more arc than
S, contrary to the assumption that S is optimal. In the same way we show that
each of the nodes ui must have a predecessor in S. Indeed, otherwise adding the
arc (v, ui) would extend the path that originates in ui.

Now, consider the node u1. Assume that w is a predecessor of u1 in S. We
construct a new graph S′ by removing the arc (w, u1) from S and adding the
arc (v, u1). As S′ has the same number of arcs as S, the graph S′ is optimal,
too. !"

Below we present a recursive algorithm called TOP DOWN SELECT (Algo-
rithm 2) that is based on Lemma 1.

Now we argue that TOP DOWN SELECT outputs an optimal solution.

Lemma 2. An output S of TOP DOWN SELECT is a graph consisting of node
disjoint paths.

Optimizing Segment Based Document Protection 573

Algorithm 2. TOP DOWN SELECT

Input: a dag G
Output: a subgraph S of G that consists of node disjoint paths and containing the
maximal possible number of arcs

Algorithm:

1. select an arbitrary node v in G of indegree 0,
2. select an arbitrary arc (v, u) in G,
3. construct a graph G′ by removing from G:

– node v and all its outgoing arcs,
– all arcs with the endpoint u.

4. run TOP DOWN SELECT for graph G′, yielding an output S′,
5. compose S by adding the arc (v, u) to S′,
6. output S.

If G contains at most one arc, then output this arc.

Proof. It suffices to prove that each node in S has indegree at most 1 and
outdegree at most 1.

The proof is by induction on the number of arcs of graph G. For a graph with
one or no arc the algorithm obviously provides the optimal solution.

So let us consider an inductive step and a graph G. For G, the algorithm
TOP DOWN SELECT constructs a solution S′ for a graph G′ with a smaller
number of arcs. So by induction hypothesis, S′ consists of node disjoint paths.

When the arc (v, u) is added to S′, then indegree and outdegree requirements
may be violated at most by u and v. First let us consider v. Since its indegree is
0 in G, it will be 0 in S as well (S is a subgraph of G). For outdegree, observe
that there is no arc starting at v left in G′, so no arc starting at v may occur in
S′ (recall that S′ is a subgraph of G′). Hence outdegree of v is 1.

Now consider node u. Its outdegree in S is the same as in S′, hence at most
1. For indegree, let us recall that according to the construction there is no arc
pointing to u in G′. Therefore the indegree in S is 1. !"

Lemma 3. An output S of TOP DOWN SELECT contains the optimal number
of arcs.

Proof. Assume that the optimal set of node disjoint paths in G contains d arcs.
By Lemma 1, there is a solution Z with d arcs such that (u, v) selected at the
second step of TOP DOWN SELECT belongs to it. Let Z ′ be the graph obtained
from Z by removing the arc (v, u). It is easy to observe that Z ′ is contained in
the graph G′. Indeed, any arc in G \G′ would cause violation of the indegree or
outdegree rule for u or v.

Z ′ contains d− 1 arcs, but we do not know a priori if it is an optimal solution
for G′. However, we know that the number of arcs in S′ is at least d − 1, since
S′ is optimal in G′. So S contains at least d− 1 + 1 = d arcs. So S contains the
maximal number of arcs d. !"

574 M. Kuty�lowski and M. Gȩbala

Let us observe that the algorithm TOP DOWN SELECT not only derives the
optimal solution, but is very efficient.

BOTTOM UP SELECT alternative. One can reverse the ordering and
start to fix arcs not at source nodes but from sink nodes. Below we present
such a dual version of algorithm TOP DOWN SELECT:

Algorithm 3. BOTTOM UP SELECT

Input: a dag G
Output: a subgraph S of G that consists of node disjoint paths and containing the
maximal possible number of arcs

Algorithm:

1. select an arbitrary node v in G of outdegree 0,
2. select an arbitrary arc (u, v) in G,
3. construct a graph G′ by removing from G:

– node v and all its ingoing arcs,
– all arcs with the startpoint u.

4. run BOTTOM UP SELECT for graph G′, yielding an output S′,
5. compose S by adding the arc (u, v) to S′,
6. output S.

If G contains at most one arc, then output this arc.

Lemma 4. Algorithm BOTTOM UP SELECT outputs the optimal solution: a
subgraph consisting of node disjoint paths with the maximal number of arcs.

Proof. Consider a graph G−1 obtained from G by reversing each arc. The claim
of Lemma 4 follows from observation that BOTTOM UP SELECT for graph G
runs exactly as TOP DOWN SELECT for G−1, and that the number of arcs in
the optimal solutions are the same for G and G−1. !"

4 Open Problems

In some application areas it might be useful to generate subdocuments of a given
document truncated to those segments that are readable by some specific group
of users. In this case we consider a subgraph Ḡ of access right graph G with the
following property: if v is a vertex in Ḡ, then all arcs of the form (v, u) from G
are also arcs of Ḡ. Therefore, a node v from Ḡ has the same ancestors in Ḡ as
in G. If D is an encoded document with access graph G, we construct a new
document D′ such that:

– D′ contains only those segments that correspond to the nodes of Ḡ, all
remaining segments are removed,

– D′ contains only those key information fields that correspond to the arcs of Ḡ.

When truncated versions of a document D are concerned, then optimization of
key derivation scheme has to be reconsidered.

Optimizing Segment Based Document Protection 575

Tree-based Scheme. Given a node v in G of indegree higher than 1, Algorithm
1 selects one of arc with endpoint v. For the generalized scheme we need a opti-
mize the choice taking into account statistical data about access rights. Namely,
to each node v in G we associate frequency parameter pv which describes the
fraction of users that are assigned the access rights corresponding to v. Then for
each arc (u, v) in G we compute the weight which is the sum of pu and frequency
parameters pw for all predecessors of u in G. Modified Algorithm 1 selects an
arc with endpoint v with the highest weight. One can easily see that this is an
optimal solution, if every user is getting a truncated version of the document D.
Indeed, such a choice leads to elimination of key information for arcs pointing
to v for the highest number of users.

Linear Scheme. The argument used for tree-based schemes cannot be extended
directly to Algorithm 2. The reason is that selection of an arc based on Lemma
1 does not change the number of arcs in the optimal solution, but may change
a lot the shape of all paths in the final solution. Since each decision has global
consequences, it is unclear how to make an optimal choice.

Our first impression is that it is more reasonable to optimize Algorithm 3
than 2. A promising heuristic is to choose always an arc leading to a node with
outdegree 0 that is used by the highest number of users. However, it remains an
open problem how to compute an optimal solution.

References

1. Qiu, R., Tang, Z., Gao, L., Yu, Y.: A novel XML-based document format with
printing quality for web publishing. In: Imaging and Printing in a Web 2.0 World;
and Multimedia Content Access: Algorithms and Systems IV. Proc. SPIE, vol. 7540.
Society of Photographic Instrumentation Engineers (2010)

2. Xu, D., Tang, Z., Yu, Y.: An efficient key management scheme for segment-based
document protection. In: 2011 IEEE Consumer Communications and Networking
Conference (CCNC), pp. 896–900 (2011)

3. Akl, S.G., Taylor, P.D.: Cryptographic solution to a problem of access control in a
hierarchy. ACM Trans. Comput. Syst. 1(3), 239–248 (1983)

4. Levin, L.A.: The tale of one-way functions (2003),
http://arxiv.org/abs/cs.CR/0012023 (retrieved on May 20, 2011)

5. Hassen, H.R., Bouabdallah, A., Bettahar, H.: A new and efficient key management
scheme for content access control within tree hierarchies. In: AINA Workshops,
vol. (1), pp. 551–556. IEEE Computer Society (2007)

6. Wu, J., Wei, R.: An Access Control Scheme for Partially Ordered Set Hierarchy with
Provable Security. In: Preneel, B., Tavares, S.E. (eds.) SAC 2005. LNCS, vol. 3897,
pp. 221–232. Springer, Heidelberg (2006)

7. Atallah, M.J., Blanton, M., Fazio, N., Frikken, K.B.: Dynamic and efficient key
management for access hierarchies. ACM Trans. Inf. Syst. Secur. 12(3) (2009)

http://arxiv.org/abs/cs.CR/0012023

Securing the Future — An Information Flow

Analysis of a Distributed OO Language�

Martin Pettai1,2 and Peeter Laud1,2

1 University of Tartu
2 Cybernetica AS

Abstract. We present an information-flow type system for a distributed
object-oriented language with active objects, asynchronous method calls
and futures. The variables of the program are classified as high and low.
We allow while cycles with high guards to be used but only if they are
not followed (directly or through synchronization) by an assignment to
a low variable. To ensure the security of synchronization, we use a high
and a low lock for each concurrent object group (cog). In some cases,
we must allow a high lock held by one task to be overtaken by another,
if the former is about to make a low side effect but the latter cannot
make any low side effects. This is necessary to prevent synchronization
depending on high variables from influencing the order of low side effects
in different cogs. We prove a non-interference result for our type system.

1 Introduction

The question of information security arises when the inputs and outputs of
a program are partitioned into different security classes. In this case we want
the high-security inputs not inappropriately influence the low-security outputs
and other behaviour observable at low clearance. The strongest such property is
non-interference [9] stating that there is no influence at all; or that variations in
the high-security inputs do not change the observations at the low level.

Over the years, static analyses, typically type systems for verifying secure
information flow have been proposed for programs written in many kinds of
programming languages and paradigms — imperative or functional, sequential
or parallel, etc. Each new construct in the language can have a profound effect
on the information flows the programs may have. With the spread of distributed
computing and multi-core processors, concurrent object-oriented programming
is gaining mindshare. The languages supporting this paradigm emphasize the
greater independence of objects and various methods of communication between
the objects and the concurrently running tasks. The effect these constructs have

� The research leading to these results has received funding from the European
Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement
no. 231620, from Estonian Science Foundation through grants No. 7543 and 8124,
and from the European Regional Development Fund through the Estonian Center
of Excellence in Computer Science, EXCS.

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 576–587, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Securing the Future — An Information Flow Analysis 577

on the information flow has not yet been thoroughly investigated. On the one
hand, the communication primitives are prone to introducing information leaks.
On the other hand, the explicit independence of objects and their groups can
provide clear evidence that certain flows are missing.

In this paper, we investigate a particular concurrent object-oriented language,
related to Creol [12] and JCoBoxes [21]. The language, its syntax and seman-
tics is almost the same as the concurrent OO sublanguage of the core Abstract
Behavioural Specification Language (ABS) [10] and shall henceforth be named
as this. At the core of this language lies the notion of a concurrent object group
(cog). Different cogs run concurrently and independently of each other and com-
municate only via asynchronous method calls. When placing such a call, a future
[8] (a placeholder for the eventually available return value) is immediately re-
turned. A future admits certain operations for checking the presence of and
reading the return value. Inside a cog, there may also be several running tasks
sharing some common state (the fields of the object). In contrast, these tasks
are scheduled cooperatively, such that there is always just a single active task
per cog.

In this paper we propose a type system for checking the non-interference in
programs written in ABS. For eliminating certain information flows, and for
simplifying the checks we will fix or adjust certain details of the language in a
manner that can be seen as non-essential for its purposes (specifying concurrent
systems). Compared to [10], our language has a more fine-grained system of
locks for controlling which task is currently running inside a cog. We have also
restricted the scheduler for non-preemptive tasks, such that information flow
properties are easier to enforce. The specification of scheduling decisions is made
harder by the necessity to not introduce deadlocks into the program that were
not there before. On the other hand, different cogs are running in a truly parallel
fashion, scheduled nondeterministically.

We will introduce the syntax and semantics of ABS in Sect. 2. While describ-
ing the syntax, we will already introduce security types and annotations that
form the basis for defining non-interference. In Sect. 3 we introduce our type
system for secure information flow, and state the properties satisfied by well-
typed programs. We review the related work in Sect. 4 and discuss our results
in Sect. 5.

2 The Programming Language

2.1 Syntax

Our programming language is a simplified version of ABS. Its (abstract) syntax
is given in Fig. 1. The notation X denotes a sequence of X-s. Several constructs
in the syntax are annotated by security levels. These do not have to be provided
by the programmer, as they can be inferred automatically during type checking.

Let us explain the language constructs related to distributed execution.
ep!m(ep) denotes the asynchronous call of the method m. The call immediately

578 M. Pettai and P. Laud

x | n | o | b | f local variable | task | object | cog | field name

Pr ::= Cl B program

Cl ::= class C{T f M} class definition

M ::= (m : (l, T)
l[,i]→ Cmdl(T))(x) B method definition

B ::= {T x s;x} method body

v ::= x | this | this.f variable

i ::= . . . | −1 | 0 | 1 | . . . integer

e ::= ep | es expression

ep ::= v | null | i | ep = ep pure expression

es ::= ep!lm(ep) | ep.getl | new C | new cog C expression with side effects

s ::= v := e | e | skip | suspendl | awaitl g statement

| if (ep) s else s | whilel (ep) s | s; s
g ::= v? guard

l ::= L |H security level

� ::= l | i security level or integer

T ::= Intl | Cl | Fut�l (T) | Guard�l security type

Fig. 1. Syntax

returns a future. The get-construct is used to read the value of that future, if it
is available. If not, then get blocks. The suspend-statement suspends the current
thread, it is used for non-preemptive scheduling inside a cog. The statement
await g suspends until the guard g = v? becomes true, which happens when the
future v obtains a value.

2.2 Operational Semantics

We first define run-time configurations. The program at run time is a set of cogs
(concurrent object groups), each of which contains a set of objects. Each object
is related to zero or more tasks. The run-time configurations are as follows:

P ::= b[n1, n2] | o[b, C, σ] | n 〈b, o, σ, s〉 | P ‖ P

Each cog is represented by its identifier b and the state of its locks. Each cog has
two locks—the low lock, which is owned by task n1 (or is free if n1 = ⊥), and
the high lock, which is owned by task n2 (or is free if n2 = ⊥).

Each object is represented by its identifier o, its cog b, its class C, and its
state σ (the values of its fields). Each task is represented by its identifier n, its
cog b, its object o, the statement s that is yet to be executed in this task, and
its state σ (the values of its local variables).

The run-time syntax will have some additional constructs:

ep ::= . . . | n | o s ::= . . . | grabl | releasel a ::= null | i | n | o

Securing the Future — An Information Flow Analysis 579

Thus task and object identifiers can be used (these result from evaluating other
expressions) and we will use a to denote fully reduced expressions (i.e. constants):
Also separate statements are introduced for grabbing and releasing locks (used
for executing suspend and when starting and terminating tasks).

The initial configuration for the program Cl {T x s;x0} will be

b0[n0, n0] ‖ n0 〈b0, null, σ, s; releaseL;x0〉

i.e. an initial cog b0 will be created for the task n0 executing the main method.
This task will have both locks initially and the statement releaseL is added to
release the locks before the task terminates. This task is the only task that is not
tied to an object (all tasks created later will be tied to some object). The variable
x0 (which must have type IntL) will contain the return value of the program.
Input can be given to the program through the initial values of the variables in
σ. These variables must be declared in the body of the main method.

Now we can give the reduction rules (including the necessary reduction con-
texts) in Fig. 2. Again, some explanations are in order. The commands grab and
release manipulate the locks of a cog. Suspending a task is equivalent to releasing
a lock and then trying to grab it again. A method body that starts with a grab
is currently suspended. It is possible to perform either a low or a high suspend.
When a task has performed a high suspend, then only other high-suspended
tasks can continue.

An asynchronous call (acall) creates a new task in the cog containing the
receiver of the call. The new task is initially suspended. The name of the new
task is used as the future.

A while-loop suspends after each iteration. Hence an infinite loop cannot stop
the computation in the entire cog and cause information flows through non-
termination in such manner. The semantics of the await-command is straight-
forward, except for the rule (await3). It is used to avoid certain deadlocks. See
Sect. 3.1 for the definition of low and high-low tasks and further discussion.
Basically, rule (await3) allows the task n′ to preemptively start running (and
suspend the task n1) if its final value is being waited for. In such manner, the
possible non-termination of task n1 cannot affect the termination behaviour of
n (the high-low task n′ always terminates).

3 Type System for Non-interference

3.1 Types

The types in the type system are the following:

T ::= Intl | Cl | Fut�l (T) | Guard�l | Expl(T) | Cmdl | Cmdl(T) | (l, T) l[,i]→ Cmdl(T)

Thus we can have integers, objects of class C, futures, guards, possibly non-
terminating expressions, commands, commands (method bodies) returning a
value, and methods. Here the subscript represents the security level of the value.

580 M. Pettai and P. Laud

Fig. 2. Reduction rules

Securing the Future — An Information Flow Analysis 581

For integers and objects, this corresponds to the upper bound on the security
levels of the inputs that may have affected this value. For futures and guards,
this is the upper bound on the (control flow) information that may affect which
task this future is referring to. The security level on top of the arrow of the
method type corresponds to the minimum level of side effects this method is
allowed to perform. If this is high, then the side effects of this method do not
affect the low part of the computation. The level l0 in the method type denotes
the security level of the receiver of the method call (i.e., this-argument). The
superscripts on the types are the upper bound on information that may affect
whether this future, guard, expression, or command eventually returns a value
or terminates. If this information is high, then the effects of any computation
that follows are high, too.

We also define the security level corresponding to those security types that
can be types of variables:

level(Cl) = l level(Intl) = l level(Fut�
′
l (T)) = l level(Guard�

′
l) = l

Thus level(T) is the maximum context level where assignments to variables of
type T are allowed.

The typing rules are given in Figures 3 and 4. The general shape of the typing

l ≤ l L ≤ H
l2 ≤ l1 �3 ≤ �4

Guard�3l1 ≤ Guard�4l2

l2 ≤ l1 �3 ≤ �4 T5 ≤ T6

Fut�3l1 (T5) ≤ Fut�4l2 (T6)

GuardiH ≤ GuardLH
l1 ≤ l2

Cl1 ≤ Cl2

l1 ≤ l2
Intl1 ≤ Intl2

γ, l � e : T

γ, l � e : ExpL(T)

γ, l � e : T1 T1 ≤ T2

γ, l � e : T2

γ, l � s : Cmdl1 l1 ≤ l2

γ, l � s : Cmdl2
γ, l1 � s : Cmdl l1 ≥ l2

γ, l2 � s : Cmdl

Fig. 3. Subtyping rules

rules is γ, l � X : T , where γ is the typing context giving the types of local
variables, fields, and methods, l is the current security context upper bounding
the information that may have affected whether the execution reaches the current
program point, X is a typable quantity and T is its type. For typing methods,
there is no security context. Considering the meaning of sub- and superscripts
in the types, the rules in Figures 3 and 4 should be rather straightforward. A
program Pr is well typed if � Pr : ok is derivable.

We also allow an integer i to be added to the security level of the context.
This is used to guarantee termination for methods (corresponding to high-low
tasks in Def. 2) where the security level of the context is higher than the security
level of termination and thus while cycles are forbidden. Cycles could still occur
through cycles in the await graph and to disallow this, each of these methods
has a positive integer i > 0 and can only await after a task with a smaller integer.

582 M. Pettai and P. Laud

Fig. 4. Reduction rules

Securing the Future — An Information Flow Analysis 583

This makes the await graph of high-low tasks acyclic. To achieve this, we have
some typing rules of the form γ, l, i � X : T . The integer i can also be assimilated
with γ. For example, a rule

γ, l, i � s1 : Cmdl1 γ, l ∨ l1, i � s2 : Cmdl2

γ, l, i � s1; s2 : Cmdl1∨l2

is considered a special case of the rule (Seq1) and thus is not given separately.
The integer i is also used (instead of L) in the superscript of the futures and
guards of high-low tasks.

By the next definition, we can now distinguish high and low reduction steps,
depending on whether the reduced statement is typable in high context or not.

Definition 1. Let the statement s have the form s1; s2 where s1 is not a sequen-
tial composition (because of associativity of the sequential composition operator,
a statement always has either this form or the form x (a single variable, which
cannot be further reduced)). We call the next reduction step of s a high step if
γ,H � s1 : Cmd l and a low step otherwise.

The next definition allows to also distinguish high and low tasks. The previous
and the next definition are used in the (await3) rule in Fig. 2.

Definition 2. We call a task n 〈b, o, σ, s;x〉 a high task if γ,H � s : Cmd l and a
low task otherwise. The high tasks are further distinguished: if γ,H � s : CmdL

then it is a high-low task and otherwise it is a high-high task.

A high task can only make high steps, but a low task can make both high and low
steps. A high-high task can contain only high cycles (cycles with a high guard)
because low cycles are not allowed in high context. A high-low task cannot
contain any cycles (because at most low guards are allowed but high context
requires at least high guards). We have the following lemma.

Lemma 1. A low task cannot contain high while cycles. A high-low task cannot
contain any while cycles.

The restriction on the use of high while cycles is modeled after the restriction
in [22]. Thus no low steps can follow a high while cycle in the same task. This
restriction is checked in the rules (Seq1) and (Seq2). Because a low task must
eventually release both locks, which is a low step, a low task cannot contain high
while cycles at all. We extend the same restriction to await cycles. Thus a low
task cannot await after a task that is allowed to make high cycles.

In our language, the scheduler of a cog cannot switch to a different task
before the current task releases the high lock (or both locks). This can be done
explicitly using suspend, but it is also done implicitly after each iteration of a
while or await cycle. In contrast, in [22], by default the scheduler can switch tasks
at any time, this can be disallowed by wrapping a sequence of commands in a
protect construct. The protect construct is not allowed to contain cycles. This
restriction corresponds to our implicit suspend after each iteration of a cycle.

584 M. Pettai and P. Laud

Because our language allows more than one cog, there can be several low
tasks running in parallel (at most one in each cog). This can create a situation
where a low task n1 in one cog (b1) is in high context and awaits for a high
task n2 in another cog (b2) but the high lock of cog b2 is held by a low task n3

in cog b2. Thus the task n1 cannot make the next low step before the task n2

terminates, which cannot happen before the task n3 releases the high lock but
n3 may make some low steps before it releases the lock. Thus it may depend on
the high variables in n1 whether low steps must be made in n3 before the next
low step in n1 or not. Thus the low steps in n3 are essentially in high context.
To prevent this indirect information flow, we allow the task n2 to overtake the
high lock from n3 in this situation. This means that n3 is not required to make
low steps before n1 does, no matter what the values of high variables in n1 are.
This is handled by the reduction rule (await3).

3.2 Non-interference

We first define the low-equivalence relation in Fig. 5. Here we assume (w.l.o.g.)
that all variables in the program have globally unique names. Thus we can use
a single type context γ instead of separate type contexts for each task.

γ, l � s : CmdH

s ∼γ s

γ,H � s : CmdH γ,H � s′ : CmdH

s ∼γ s′

γ, l � s : CmdH(T)

s ∼γ s

γ,H � s : CmdH(T) γ,H � s′ : CmdH(T)

s ∼γ s′

γ,H � s1 : CmdH s2 ∼γ s′2
s1; s2 ∼γ s′2

γ,H � s1 : CmdH s2 ∼γ s′2
s2 ∼γ s1; s′2

s2 ∼γ s′2
s1; s2 ∼γ s1; s′2

σ ∼γ σ′ ≡ dom(σ) = dom(σ′) ∧ ∀v ∈ dom(σ). level(γ(v)) = L⇒ σ(v) = σ′(v)

b[n1, n2] ∼γ b[n1, n
′
2]

σ ∼γ σ′

o[b, C, σ] ∼γ o[b, C, σ′]
σ ∼γ σ′ s ∼γ s′

n 〈b, o, σ, s〉 ∼γ n 〈b, o, σ′, s′〉
P1 ∼γ P ′

1 P2 ∼γ P ′
2

P1 ‖ P2 ∼γ P ′
1 ‖ P ′

2

γ,H � s : Cmdl1(T2) P ∼γ P ′

n 〈b, o, σ, s〉 ‖ P ∼γ P ′
γ,H � s : Cmdl1(T2) P ∼γ P ′

P ∼γ n 〈b, o, σ, s〉 ‖ P ′

Fig. 5. The low-equivalence relation ∼γ

From the definition of ∼γ we see that any typable command is equivalent to
itself. Two commands are also equivalent if they both only have high side-effects.
Commands with only high side-effects are also equivalent to skip-s.

Two local states are equivalent if the values of variables with low types are
equal. Two objects are equivalent if the values of fields with low types are equal.
The notion of equivalence is then extended to program configurations. We can
now define the notion of non-interference we are considering. It is typical for the
non-deterministic treatment of information flows, dating back to [24].

Securing the Future — An Information Flow Analysis 585

Definition 3 (Non-interference). A program Cl{T x s;x0}is non-interferent
if for any three states σ0, σ

•
0 and σ1 satisfying σ0 ∼x:T σ1,

b0[n0, n0] ‖ n0 〈b0, null, σ0, s; releaseL;x0〉
∗	 n0 〈b0, null, σ•

0 , x0〉 ‖ . . .

implies that there exists a state σ•
1 with σ•

1(x0) = σ•
0(x0) and

b0[n0, n0] ‖ n0 〈b0, null, σ1, s; releaseL;x0〉
∗	 n0 〈b0, null, σ•

1 , x0〉 ‖

Now we can prove the lemmas and the theorem for non-interference, stating
that well-typed programs are non-interferent. Due to space constraints, we will
just state the theorems here, and refer to [15] for the proofs and the necessary
lemmas.

Theorem 1 (Subject reduction). If P1 and P2 are well typed under γ and
P1 ∼γ P2 then if P1 	 P ′

1 then there exists P ′
2 such that P2 	∗ P ′

2 and P ′
1 ∼γ P ′

2.

Theorem 2 (Non-interference). If � Pr : ok, where Pr = Cl {T x s;x0},
then Pr is non-interferent.

4 Related Work

The treatment of secure information flow in the language- and lattice-based
setting is considered to have been pioneered by Denning and Denning. The first
well-known type-based analysis for secure information flow in a simple imperative
language was proposed by Volpano et al. [25]. Later, their analysis has been
extended in many different directions, including treated language constructs,
and the versatility of the tools for defining information flow properties. Our
analysis, applied to a complex language, draws ideas from the developments in
many of those directions. Let us give an overview of those.

While at first, the definitions of secure information flow were given in terms
of distinguishable memories, bisimulation relations over program configurations
[13,18] soon emerged as a convenient and composable way of defining information
flow properties. The use of weak bisimulations, allowing stuttering, appeared
in [23].

Object-oriented features, including fields and methods, were first treated in
the JFlow (Jif) compiler [14]. However, they did not provide formal non-
interference results. Such results for an OO-language were provided in [3]. In
that area, a lot of attention has also been devoted to the analysis of low-level
OO-languages, e.g. Java bytecode [4,5].

Concurrent languages, with possible race conditions and synchronization
primitives, bring their own challenges. Secure information flow in a language
with the possibility to spawn new threads was first considered in [24]. Synchro-
nization primitives were considered in [19]. A bisimulation-based definition of
secure information flow was provided in [7]. In this area, most of the research

586 M. Pettai and P. Laud

seems to have concentrated on languages with parallel threads operating on a
shared state. For the treatment of processes with private states, one may have
to refer to the work based on process calculi [2,11,6]. Another interesting area
is the building of distributed systems [26] satisfying certain information-flow
properties.

In the analysis of thread pools with shared state, the properties of schedulers
play a major role in the analysis of information flow properties. Their effect
was first considered in [20]. More recently, scheduler strategies for providing the
security of information flow have been considered [17,16].

5 Conclusions

We have demonstrated a type-based information flow analysis for a rich modeling
language that has been designed to be applicable in designing large systems. As
such, the type-based technique is a suitable choice because of its efficiency in
checking large artefacts.

Our work demonstrates that the notion of futures, heavily employed by the
language, may cause some interesting information flows in the system. These
information flows are particularly apparent if the futures are considered as first-
class values. In particular, the synchronization points they create can interfere
with the scheduling decisions. Our work shows that the details of scheduling in
ABS may need some further design efforts.

Our analysis has been applied to a language employing many different fea-
tures. Our work has been valuable in pointing out how these features interact
with each other in terms of possible information flows. We believe that our work
will be helpful in making information flow type systems more widely used in the
design and programming phases of the software development process.

References

1. 14th IEEE Computer Security Foundations Workshop (CSFW-14 2001), Cape Bre-
ton, Nova Scotia, Canada. IEEE Computer Society (2001)

2. Abadi, M.: Secrecy by Typing in Security Protocols. In: Ito, T., Abadi, M. (eds.)
TACS 1997. LNCS, vol. 1281, pp. 611–638. Springer, Heidelberg (1997)

3. Banerjee, A., Naumann, D.A.: Secure Information Flow and Pointer Confinement
in a Java-like Language. In: CSFW, p. 253. IEEE Computer Society (2002)

4. Barthe, G., Rezk, T.: Non-interference for a JVM-like language. In: Morrisett, J.G.,
Fähndrich, M. (eds.) TLDI, pp. 103–112. ACM (2005)

5. Barthe, G., Rezk, T., Naumann, D.A.: Deriving an Information Flow Checker and
Certifying Compiler for Java. In: IEEE Symposium on Security and Privacy, pp.
230–242. IEEE Computer Society (2006)

6. Bernardeschi, C., De Francesco, N., Lettieri, G.: Concrete and Abstract Semantics
to Check Secure Information Flow in Concurrent Programs. Fundamenta Infor-
maticae 60(1-4), 81–98 (2004)

7. Boudol, G., Castellani, I.: Noninterference for concurrent programs and thread
systems. Theor. Comput. Sci. 281(1-2), 109–130 (2002)

Securing the Future — An Information Flow Analysis 587

8. de Boer, F.S., Clarke, D., Johnsen, E.B.: A Complete Guide to the Future. In: De
Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 316–330. Springer, Heidelberg
(2007)

9. Goguen, J.A., Meseguer, J.: Security Policies and Security Models. In: IEEE Sym-
posium on Security and Privacy, pp. 11–20 (1982)

10. Hähnle, R., Johnsen, E.B., Østvold, B.M., Schäfer, J., Steffen, M., Torjusen, A.B.:
Report on the Core ABS Language and Methodology: Part A. Highly Adaptable
and Trustworthy Software using Formal Models (HATS), Deliverable D1.1A (2010)

11. Honda, K., Vasconcelos, V.T., Yoshida, N.: Secure Information Flow as Typed
Process Behaviour. In: Smolka, G. (ed.) ESOP 2000. LNCS, vol. 1782, pp. 180–
199. Springer, Heidelberg (2000)

12. Johnsen, E.B., Blanchette, J.C., Kyas, M., Owe, O.: Intra-Object versus Inter-
Object: Concurrency and Reasoning in Creol. Electr. Notes Theor. Comput.
Sci. 243, 89–103 (2009)

13. Mantel, H., Sabelfeld, A.: A Generic Approach to the Security of Multi-Threaded
Programs. In: CSFW [1], p. 126

14. Myers, A.C.: JFlow: Practical Mostly-Static Information Flow Control. In: POPL,
pp. 228–241 (1999)

15. Pettai, M., Laud, P.: Securing the Future — an Information Flow Analysis of a
Distributed OO Language. Technical Report T-4-14, Cybernetica AS (2011)

16. Russo, A., Hughes, J., Naumann, J.D.A., Sabelfeld, A.: Closing Internal Timing
Channels by Transformation. In: Okada, M., Satoh, I. (eds.) ASIAN 2006. LNCS,
vol. 4435, pp. 120–135. Springer, Heidelberg (2008)

17. Russo, A., Sabelfeld, A.: Security for Multithreaded Programs Under Cooperative
Scheduling. In: Virbitskaite, I., Voronkov, A. (eds.) PSI 2006. LNCS, vol. 4378, pp.
474–480. Springer, Heidelberg (2007)

18. Sabelfeld, A.: Confidentiality for Multithreaded Programs via Bisimulation. In:
Broy, M., Zamulin, A.V. (eds.) PSI 2003. LNCS, vol. 2890, pp. 260–274. Springer,
Heidelberg (2004)

19. Sabelfeld, A., Mantel, H.: Securing Communication in a Concurrent Language. In:
Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 376–394.
Springer, Heidelberg (2002)

20. Sabelfeld, A., Sands, D.: Probabilistic Noninterference for Multi-Threaded Pro-
grams. In: CSFW, pp. 200–214 (2000)

21. Schäfer, J., Poetzsch-Heffter, A.: JCoBox: Generalizing Active Objects to Con-
current Components. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp.
275–299. Springer, Heidelberg (2010)

22. Smith, G.: A New Type System for Secure Information Flow. In: CSFW [1], pp.
115–125

23. Smith, G.: Probabilistic Noninterference through Weak Probabilistic Bisimulation.
In: CSFW, pp. 3–13. IEEE Computer Society (2003)

24. Smith, G., Volpano, D.M.: Secure Information Flow in a Multi-Threaded Impera-
tive Language. In: POPL, pp. 355–364 (1998)

25. Volpano, D.M., Irvine, C.E., Smith, G.: A Sound Type System for Secure Flow
Analysis. Journal of Computer Security 4(2/3), 167–188 (1996)

26. Zheng, L., Chong, S., Myers, A.C., Zdancewic, S.: Using Replication and Parti-
tioning to Build Secure Distributed Systems. In: IEEE Symposium on Security
and Privacy, pp. 236–250. IEEE Computer Society (2003)

Improving Watermark Resistance against

Removal Attacks Using
Orthogonal Wavelet Adaptation

Jan Stolarek and Piotr Lipiński

Institute of Information Technology
Technical University of Lodz, Poland

{jan.stolarek,piotr.lipinski}@p.lodz.pl

Abstract. This paper proposes a new approach for enhancing the ro-
bustness of wavelet-based image watermarking algorithms. The method
adjusts wavelet used in the process of image watermarking in order to
maximize resistance against image processing operations. Effectiveness of
the approach is demonstrated using blind multiplicative watermarking
algorithm, but it can easily be generalized to all wavelet-based water-
marking algorithms. Presented results demonstrate that wavelets gener-
ated using proposed approach outperform other wavelet bases commonly
used in image watermarking in terms of robustness to removal attacks.

1 Introduction

Discrete Wavelet Transform (DWT) is widely applied in the field of digital image
watermarking. Despite the popularity and proliferation of DWT-based water-
marking algorithms, the following aspects attract surprisingly little attention:
the influence of DWT filter coefficients on watermarked image fidelity and the
influence of DWT filter coefficients on watermark robustness against attacks.
Although the problem of choosing the optimal wavelet has been noticed by some
authors [7,12], so far there have been no attempts to optimize the wavelet in
order to increase either the watermarked image fidelity or attack resistance of
the watermark. Huang and Jiang in [8] notice the influence of wavelet filter coef-
ficients on watermarking fidelity, but they do not optimize it. Instead, they use
wavelet filter parameters as a private key to increase security of the watermark.
A similar approach is presented in [2] for two-dimensional case.

The algorithm for improving the watermarked image fidelity and watermark
separability by wavelet adaptation has already been presented in [11]. In this
paper we modify that algorithm in order to increase the watermarking robustness
against removal attacks [16] while maintaining constant image fidelity. It will be
demonstrated that the presented algorithm adapts the wavelet to a cover image
and a watermark signal. Image fidelity assessment using the MSE measure was
replaced by the Wang-Bovik Index [17].

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 588–599, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Improving Watermark Resistance against Removal Attacks 589

2 Orthogonal Wavelet Filter Parametrization

Orthogonal wavelet transform is implemented by an orthonormal filter bank,
each of the filters having impulse response of even length L. In the case of wave-
lets, L/2+1 degrees of freedom are bound by the theoretical conditions imposed
on the filters. The remaining L/2 − 1 degrees of freedom can be manipulated
to adapt the properties of the filter. In order to effectively synthesize wavelets
a filter parametrization must be defined. In this paper, parametrization based
on the lattice filter [14] is used, following the description given in [18]. Basic
operations of the lattice filter are orthogonal 2× 2 rotations, which ensure both
orthogonality of the structure and perfect reconstruction of the signal. For a filter
of length L, L/2 orthogonal rotations have to be used. Fig.1 shows an example
of a filter implementing 4-tap transform (H(z) and G(z) are the low-pass and
high-pass filter outputs respectively). To ensure that wavelet implemented by
the lattice filter has zero mean, the sum of all rotation angles in the structure
must equal −45◦ [13]:

L/2∑
k=0

αk = −45◦ , (1)

where αk are the angles of the orthogonal rotations. In order to ensure that this
condition is always fulfilled, the following substitution can be used [13]:

α1 = ϑ− ϕ1 ,

αi = (−1)i(ϕi−1 + ϕi) , for i = 2, . . . ,
L

2
− 1 ,

αL
2
= ϕL

2 −1 .

(2)

The above shows that wavelets parametrized using the lattice filter are defined
by a set of L/2− 1 rotation angles ϕk.

X(z)

z−1

+

+

cos(α1)

− sin(α1)

sin(α1)

cos(α1)

+

+

cos(α2)

− sin(α2)

sin(α2)

cos(α2)

H(z)

G(z)z−1

Fig. 1. Lattice filter implementing a 4-tap wavelet transform

3 Image Watermarking in the Wavelet Transform
Domain

Figure 2a shows the generic scheme of digital image watermark embedding in
the wavelet transform domain. The image to be watermarked is decomposed

590 J. Stolarek and P. Lipiński

image DWT
wavelet

coefficients

embedwatermark

key

watermarked
wavelet

coefficients
DWT−1

watermarked
image

attack

attacked
watermarked

image
DWT

watermarked
wavelet

coefficients

extract
extracted
watermark

compare

decision

a) embedding

b) extraction

Fig. 2. Generic scheme of watermark embedding and blind extraction in the wavelet
transform domain. Rectangles represent data, elipses represent algorithms.

using from 3 to 5 levels of DWT. Watermark sequence is then embedded in
the wavelet coefficients. Some embedding algorithms return supplementary data
– a key – that is essential to successfully extract the watermark. The image
is reconstructed using the inverse wavelet transform (denoted as DWT−1 in
Fig.2a) and it is released to the public where it may be subjected to attacks,
i.e. operations – deliberate or not – that make the watermark extraction and
identification more difficult. To check for watermark presence the presumably
watermarked and possibly attacked image has to be decomposed using the same
number of DWT levels as was used for watermark embedding. Watermark is then
extracted from the wavelet coefficients (using the optional key, if necessary) and
compared with the embedded one. Schemes that do not require knowledge of the
original image are called blind. It must be noted that this generic scheme may
differ in details for particular embedding algorithms.

The improvement method presented in this paper is a general one and can be
used to enhance any wavelet-based watermarking algorithm. For demonstration
purposes the simplest blind multiplicative watermarking method was used, in
which the watermark w is a sequence of N random numbers from set {−1, 1}
and the embedding formula is

c(w) = c+ κ · |c| ·w , (3)

where c are the N largest wavelet coefficients selected from the highest level de-
tail subbands (see Fig.3), κ is the embedding strength, | · | denotes the absolute

Improving Watermark Resistance against Removal Attacks 591

HH3

HL3

LH3

LL

HL2

LH2 HH2

HL1

LH1 HH1

Fig. 3. Wavelet decomposition of an image. Watermark is embedded in the third level
detail subbands, corresponding to middle frequencies (in gray).

value, w is the watermark sequence and c(w) are the watermarked wavelet coef-
ficients. Operations on the vectors in (3) are performed element-wise. Locations
of the watermarked coefficients c(w) have to be stored, since they are required
in the process of watermark extraction – these locations play the role of the
key (see Fig.2). To detect the presence of the watermark, normalized correlation
between the embedded watermark and the presumably watermarked coefficients
is calculated using the formula

C =
1

N − 1

N∑
i=1

(c
(w)
i − c(w))(wi −w)

σcσw
, (4)

where c
(w)
i are the presumed watermarked coefficients, c(w) is the mean value of

the watermarked coefficients, wi are the embedded watermark values, w is the
mean value of the embedded watermark, σc and σw are standard deviations of
watermarked coefficients and the watermark respectively.

In the digital image watermarking there are three main requirements, that
determine whether the watermarking process is effective:

– Fidelity: watermarking process must not degrade the quality of the water-
marked image.

– Separability: the extracted watermark must have significantly greater nor-
malized correlation with the embedded watermark than with random water-
marks. This ensures faultless watermark detection and distinction.

– Attack resistance: watermark separability must be maintained despite image
manipulations (unless the image is damaged beyond usability).

It has already been demonstrated [11] that the mother wavelet used for image de-
composition can be adjusted to the image, the watermark and the watermarking

592 J. Stolarek and P. Lipiński

algorithm in order to improve separability and fidelity. In this paper we mod-
ified that system to maximize watermark resistance against image processing
operations and maintain constant fidelity of the watermarked image.

4 Watermarked Image Fidelity

We assess the fidelity of the watermarked image using the Wang-Bovik Index
(WBI) [17], which takes into account the loss of correlation, luminance distortion
and contrast distortion, thus offering a better image quality estimation than the
widely used MSE. The original WBI is calculated by using the moving window
approach. For each window the index between original imageX and watermarked
image Y is calculated using the following formula:

Qm =
4σxyxy

(σ2
x + σ2

y)[(x)
2 + (y)2]

, (5)

where x and y are mean values of pixels in a window, σ2
x and σ2

y are the variances,
σxy is given as

σxy =
1

N − 1

N∑
i=1

(xi − x)(yi − y) , (6)

where xi and yi denote pixels of non-watermarked and watermarked image win-
dow respectively and N denotes the number of pixels in a single window. The
moving window approach creates a map of distortions, where each Qm ∈ [−1, 1].
We found that converting this map to a single value describing quality of an
image – which is required if the constant distortion rate is to be maintained
– is problematic. We achieved the best result by dropping the moving window
approach and calculating WBI once for the whole image instead. To ensure that
the distortion of the watermarked image was constant for every image, water-
mark and wavelet, the embedding strength κ in (3) was adjusted using Matlab’s
fmincon function.

5 Improving Watermark Attack Resistance

In commonly used DWT-based watermarking algorithms wavelet basis used for
image decomposition and reconstruction is chosen arbitrarily. As a result the
wavelets used in watermark embedding are suboptimal for a given cover image,
watermark, embedding algorithm and attacks. In this paper we used evolutionary
approach to synthesize wavelet basis that adapts to the cover image, watermark
and embedding algorithm and also provides better robustness against attacks
than already existing wavelets. Simple Genetic Algorithm (SGA) combined with
Evolution Strategies was applied. SGA maintains a population of possible solu-
tions called individuals. Each individual represents a wavelet filter parametrized
using the lattice structure. Therefore, the filter of length L was represented as

Improving Watermark Resistance against Removal Attacks 593

a set of L
2 − 1 binary coded ϕi angles. Watermark resistance against selected

attacks (e.g. JPEG compression, median filtering, noise contamination etc.) was
increased by carrying out the attacks independently on the watermarked image.
For each attack the watermark extraction was performed and partial fitnesses
based on separability of the watermark were assigned to an individual:

Fj(k) = min
i∈{1,...,M}

(C(k)
e − C(i,k)

r) , (7)

where k ∈ {1, . . . ,K} is index of the attack and k = 0 denotes no attack, j is the in-

dex of an individual, C
(k)
e is the normalized correlation between the extracted wa-

termark and the embedded watermark for k-th attack and C
(i,k)
r is the normalized

correlation between the extracted watermark and the i-th randomwatermark and
k-th attack.M denotes the number of randomwatermarks.The smallest difference
between the correlations was selected as individual’s fitness. Since C

(k)
e , C

(i,k)
r ∈

[−1, 1], thenFj(k) ∈ [−2, 2].Tournament selectionwas used and therefore normal-
ization ofFj(k) to ensure that it was greater than zerowas avoided. Introducing (7)
created selection pressure that promoted individuals maximizing the separability
despite the image distortion introduced by the attack.

The lowest partial fitness was selected as the total fitness of an individual:

Fj = min
k∈{0,...,K}

{Fj(k)} . (8)

This approach ensured that synthesized wavelets offered high resistance to all of
the performed attacks. Wavelets that failed to meet the high robustness require-
ment against at least one of the attacks were assigned low fitness value, which
eventually led to their elimination in the genetic algorithm. The scheme of the
fitness evaluation algorithm is given in Fig.4.

6 Experimental Results

For our experiments, we selected 20 images from the USC-SIPI Image Database
(including textures and well-known images like Lena, Barbara, Baboon, Air-
plane, Boat, Lake etc.). A watermark w consisting of 512 random values in
{−1, 1} was embedded in the third level detail subbands and the acceptable per-
ceptual image distortion rate was selected to WBI = 0.996. Separability given
by (7) was used to characterize the robustness of the watermarking algorithm.
1000 randomly generated watermarks were used for calculating the separability.
Removal attacks contained JPEG compression, median filtering, low-pass filter-
ing and scaling (the image was scaled down to 40% of original size and then
rescaled to original size).

The proposed algorithm was used to synthesize the optimal wavelet filter for
every selected image. Orthogonal wavelets of length 4, 6, 8, 12 and 20 taps were
synthesized. Due to lack of space, detailed results are presented only for two
example images: one photo (Boat) and one texture (Fig.5b). The robustness
of adaptive wavelets (denoted as A) was compared with other wavelets known

594 J. Stolarek and P. Lipiński

Adjust embed-
ding strength
using fmincon

Convert an-
gles to filters

Convert angles
(Equation (2))

Embed water-
mark (Fig.2a)

Extract water-
mark (Fig.2b)

Calculate separa-
bility (Equation 7)

Calculate total
fitness (Equation 8)

Conduct
attack no. 1

Extract water-
mark (Fig.2b)

Calculate separa-
bility (Equation 7)

Conduct
attack no. K

Extract water-
mark (Fig.2b)

Calculate separa-
bility (Equation 7)

Yj

C
(0)
j

Fj(0)

Y
(K)
j

C
(K)
j

Y
(1)
j

C
(1)
j

Fj(1) Fj(K)

Y Y

Fj

X

w

(ϕ1, . . . , ϕL
2
−1)j

(α1, . . . , αL
2
)j

(h,g)j

(h,g)j

κj

Fig. 4. Fitness evaluation scheme. X represents the original image, Y represents the
image watermarked with w, (h,g) represents the low-pass and high-pass filters respec-
tively, j is an index of an indvidual in a population.

Improving Watermark Resistance against Removal Attacks 595

Table 1. Comparison of separability values for adaptive wavelets and commonly used
wavelets for Boat test image. Adaptive wavelet denoted with bold font, biorthogonal
wavelets denoted with oblique font.

no JPEG median low-pass scaling
attack compression filter filter

A6 0.327 A6 0.302 A6 0.311 A6 0.315 A6 0.311
A12 0.311 A8 0.279 A8 0.275 A20 0.272 A8 0.268
A8 0.306 A4 0.268 A20 0.270 A8 0.268 A4 0.263
A4 0.291 A20 0.265 A4 0.262 A4 0.258 A20 0.258
A20 0.281 A12 0.233 A12 0.251 A12 0.249 A12 0.246
C6 0.273 C12 0.230 C6 0.242 S12 0.242 C6 0.239
D4 0.265 V3 0.226 S12 0.241 C6 0.241 D4 0.226
S12 0.259 S12 0.224 C12 0.237 C12 0.238 C12 0.214
Ha 0.251 C6 0.224 V2 0.231 V6 0.235 V2 0.205
C12 0.250 V5 0.217 V6 0.226 V2 0.230 V3 0.204
V2 0.244 V6 0.217 D4 0.220 V3 0.218 D8 0.202
V6 0.242 Ha 0.210 V3 0.220 D4 0.217 V6 0.197
V5 0.233 V2 0.188 D8 0.214 D8 0.215 V5 0.197
V3 0.231 D8 0.180 V5 0.213 CDF 0.210 S8 0.193
D8 0.231 CDF 0.176 CDF 0.210 V5 0.201 S12 0.190
CDF 0.214 C18 0.175 Ha 0.198 An 0.185 C18 0.179
An 0.209 D4 0.172 An 0.189 C18 0.184 Od 0.178
LG 0.203 S10 0.165 S8 0.187 S8 0.184 An 0.172
S8 0.201 S8 0.164 C18 0.185 Ha 0.178 LG 0.158
C18 0.199 V4 0.155 Od 0.174 Od 0.175 CDF 0.157
Od 0.189 An 0.153 LG 0.164 LG 0.172 Ha 0.153
S10 0.183 LG 0.150 S10 0.163 S10 0.168 D6 0.150
V4 0.177 Od 0.146 V4 0.155 V4 0.160 S10 0.141
D6 0.173 D6 0.138 D6 0.148 D6 0.144 V4 0.119

from the literature: orthogonal Haar (Ha), Daubechies (D4, D6, D8), Symlet
(S4, S6, S8) and Coiflet (C6, C12, C18) wavelets [5] and the biorthogonal CDF
9/7 (CDF) [3], LeGall 5/3 (LG) [9], Antonini 9/7 (An) [1], Odegard (Od) [6],
Villasenor 13/11 (V2), 6/10 (V3), 5/3 (V4), 2/6 (V5), 9/3 (V6) [15] wavelets.
Each of these wavelets was used to embed the watermark in an image and the
separability – with and without the attacks – was calculated. Tables 1 and 2
present separability values for all of the above mentioned wavelets. The first
column contains separability for watermarked, unattacked image; the second
column: separability for JPEG attack; the third column: separability for me-
dian attack; the fourth column: separability for low-pass filter; the fifth column:
separability for scaling attack.

The results show that in each case the adaptive wavelets outperform wavelets
proposed in the literature. Furthermore, no non-adaptive wavelet could be con-
sidered the best, as they perform differently depending on the conducted attack
even though the same image and watermark are used. This confirms the obser-
vations made by Dietze and Jassim [7] that no single wavelet can be regarded as

596 J. Stolarek and P. Lipiński

Table 2. Comparison of separability values for adaptive wavelets and commonly used
wavelets for texture test image. Adaptive wavelet denoted with bold font, biorthogonal
wavelets denoted with oblique font.

no JPEG median low-pass scaling
attack compression filter filter

A4 0.717 A8 0.623 A4 0.679 A4 0.653 A6 0.517
A20 0.699 A4 0.575 A6 0.642 A12 0.619 A12 0.492
A8 0.685 A6 0.568 A20 0.635 A6 0.614 A4 0.492
A6 0.663 A12 0.547 A8 0.634 A20 0.607 A8 0.490
A12 0.649 A20 0.546 A12 0.620 A8 0.605 A20 0.439
C6 0.603 C6 0.539 C6 0.577 C6 0.552 C6 0.418
V4 0.532 V4 0.408 V4 0.508 V4 0.510 V4 0.362
LG 0.516 An 0.405 LG 0.493 LG 0.496 CDF 0.359
An 0.490 LG 0.398 An 0.457 An 0.470 LG 0.346
CDF 0.413 C12 0.327 CDF 0.395 CDF 0.404 Od 0.345
C12 0.384 CDF 0.317 C12 0.358 C12 0.363 An 0.344
Od 0.341 Od 0.287 Od 0.323 Od 0.340 C12 0.321
V6 0.328 V6 0.239 V6 0.306 V6 0.324 V6 0.263
D6 0.267 D6 0.226 D6 0.241 D6 0.252 D6 0.235
V2 0.248 C18 0.213 V2 0.231 V2 0.245 V2 0.228
C18 0.239 V2 0.195 C18 0.219 C18 0.217 C18 0.199
D4 0.229 S8 0.147 D4 0.195 D4 0.192 D4 0.195
S8 0.173 D4 0.143 S8 0.153 S8 0.167 S8 0.157
S10 0.122 S10 0.100 S10 0.108 S10 0.110 S12 0.147
S12 0.122 S12 0.096 S12 0.103 S12 0.105 S10 0.103
Ha 0.093 Ha 0.075 Ha 0.069 D8 0.068 D8 0.081
D8 0.080 V5 0.073 V5 0.067 V5 0.065 Ha 0.053
V5 0.074 V3 0.055 D8 0.064 V3 0.056 V3 0.049
V3 0.056 D8 0.051 V3 0.045 Ha 0.050 V5 0.039

optimal in terms of robustness. The proposed algorithm overcomes this limita-
tion by adapting to the image, the watermark and the watermarking algorithm.
This can be demonstrated by embedding the watermark in the Boat image using
adaptive wavelets synthesized for Lena image. The result of such an experiment
is shown in Table 3. It can be clearly noticed that the performance of adaptive
wavelets has degraded significantly. For each image the synthesized wavelet is
different. Fig.6a and Fig.6b show example scaling functions synthesized for two
of the test images. Function in Fig.6b resembles Coiflet 6 wavelet and indeed
the Coiflet 6 wavelet performs better than other non-adaptive wavelets for the
example texture image. Tables 1 and 2 allow also to conclude that the algorithm
works for different classes of images (natural and textures).

7 Scope of the Proposed Method

It is important to clearly define the scope of the proposed method. As the ex-
perimental results have shown, the introduced algorithm increases watermark

Improving Watermark Resistance against Removal Attacks 597

Table 3. Comparison of separability values for adaptive wavelets synthesized for Lena
image and used to embed the watermark in Boat image. Adaptive wavelet denoted
with bold font, biorthogonal wavelets denoted with oblique font.

no JPEG median low-pass scaling
attack compression filter filter

C6 0.273 C12 0.230 C6 0.242 S12 0.242 C6 0.238
D4 0.265 V3 0.226 S12 0.241 C6 0.241 S12 0.230
S12 0.259 S12 0.224 C12 0.237 C12 0.238 C12 0.230
Ha 0.251 C6 0.224 V2 0.231 V6 0.235 V2 0.221
C12 0.250 V5 0.217 V6 0.226 V2 0.230 D4 0.217
A4 0.245 V6 0.217 D4 0.220 V3 0.218 V6 0.217
V2 0.244 Ha 0.210 V3 0.220 D4 0.217 V3 0.216
V6 0.242 A20 0.194 A20 0.219 D8 0.215 D8 0.204
A20 0.242 V2 0.188 D8 0.214 A20 0.212 V5 0.201
V5 0.233 D8 0.180 V5 0.213 CDF 0.210 A20 0.197
V3 0.231 A12 0.178 CDF 0.210 V5 0.201 CDF 0.192
D8 0.231 CDF 0.176 A4 0.199 A4 0.198 A12 0.189
A8 0.214 C18 0.175 Ha 0.198 A12 0.190 C18 0.186
CDF 0.214 A4 0.175 A12 0.190 An 0.185 A4 0.182
An 0.209 D4 0.172 An 0.189 C18 0.184 S8 0.181
A12 0.208 S10 0.165 S8 0.187 S8 0.184 An 0.180
LG 0.203 S8 0.164 C18 0.185 A8 0.180 Od 0.173
S8 0.201 A8 0.158 A8 0.178 Ha 0.178 LG 0.171
C18 0.199 V4 0.155 Od 0.174 Od 0.175 Ha 0.166
Od 0.189 An 0.153 LG 0.164 LG 0.172 A8 0.165
A6 0.183 LG 0.150 S10 0.163 S10 0.168 S10 0.153
S10 0.183 Od 0.146 A6 0.155 V4 0.160 V4 0.149
V4 0.177 D6 0.138 V4 0.155 D6 0.144 D6 0.146
D6 0.173 A6 0.122 D6 0.148 A6 0.143 A6 0.133

resistance to undeliberate1 removal attacks2, e.g. image compression or filtering.
Nevertheless, wavelet bases adaptation is not a universal solution to all the se-
curity problems that arise in the field of image watermarking. The method will
not increase robustness against desynchronization attacks, e.g. geometric attacks
like cropping, scaling or rotation. The watermarking algorithm must ensure that
the synchronization is regained after such an attack [10]. Please note that in our
experiments, we carried out scaling attack by scaling the image down to 40%
of its original size and then scaling it back to its original size, thus inverting
the desynchronization. The proposed method does not also increase robustness
against protocol, coping and sensitivity attacks and it does not increase security
of invertible or quasi-invertible [4] watermarking algorithms.

1 Not exploiting knowledge of the watermark embedding scheme, watermark sequence
etc.

2 According to classification by Voloshynovskiy et al. [16].

598 J. Stolarek and P. Lipiński

(a) Boat (b) texture

Fig. 5. Example test images

(a) Scaling function synthesized
for Boat test image

(b) Scaling function synthesized
for texture test image

Fig. 6. Adaptive scaling functions

8 Conclusions

In this paper, the problem of improving digital watermarking effectiveness by
wavelet synthesis is addressed. Genetic-based method of adapting the wavelets
to the image, the watermark, the embedding algorithm and selected types of
removal attacks is presented. The results of experiments that are demonstrated
here, as well as the experiments which were carried out on the other test im-
ages, prove that wavelets generated using the proposed method outperform the
commonly used wavelet bases in terms of robustness against attacks.

References

1. Antonini, M., Barlaud, M., Mathieu, P., Daubechies, I.: Image coding using wavelet
transform. IEEE Transactions on Image Processing 1, 205–220 (1992)

2. Cheng, G., Yang, J.: A watermarking scheme based on two-dimensional wavelet
filter parametrization. In: Fifth International Conference on Information Assurance
and Security, IAS 2009, pp. 301–304 (2009)

Improving Watermark Resistance against Removal Attacks 599

3. Cohen, A., Daubechies, I., Feauveau, J.-C.: Biorthogonal bases of compactly
supported wavelets. Communications on Pure and Applied Mathematics 45(5),
485–560 (1992)

4. Craver, S., Memon, N., Yeo, B.-L., Yeung, M.M.: Resolving rightful ownerships
with invisible watermarking techniques: Limitations, attacks, and implications.
IEEE Journal on Selected Areas in Communications 16(4), 573–586 (1998)

5. Daubechies, I.: Ten Lectures on Wavelets. SIAM (1992)
6. Davis, G.: Wavelet image compression construction kit (1997),

http://www.geoffdavis.net/dartmouth/wavelet/wavelet.html

7. Dietze, M., Jassim, S.: Filters ranking for DWT-domain robust digital watermark-
ing. EURASIP Journal on Applied Signal Processing 14, 2093–2101 (2004)

8. Huang, Z.Q., Jiang, Z.: Watermarking still images using parametrized wavelet sys-
tems. In: Image and Vision Computing. Institute of Information Sciences and Tech-
nology, Massey University (2003)

9. Le Gall, D., Tabatabai, A.: Sub-band coding of digital images using symmetric
short kernel filters and arithmetic coding techniques. In: International Conference
on Acoustics, Speech, and Signal Processing, ICASSP 1988 (1988)

10. Licks, V., Jordan, R.: Geometric attacks on image watermarking systems. IEEE
Multimedia 12(3), 68–78 (2005)

11. Lipiński, P., Stolarek, J.: Digital watermarking enhancement using wavelet filter
parametrization. In: Dobnikar, A., Lotrič, U., Šter, B. (eds.) Adaptive and Natural
Computing Algorithms (10th ICANNGA, 2011), vol. 1, pp. 330–339 (2011)

12. Miyazaki, A.: A study on the best wavelet filter bank problem in the wavelet-based
image watermarking. In: 18th European Conference on Circuit Theory and Design,
ECCTD 2007, pp. 184–187 (2007)

13. Rieder, P., Götze, J., Nossek, J.S., Burrus, C.S.: Parameterization of orthogonal
wavelet transforms and their implementation. IEEE Transactions on Circuits and
Systems II: Analog and Digital Signal Processing 45(2), 217–226 (1998)

14. Vaidyanathan, P.P., Hoang, P.-Q.: Lattice structures for optimal design and robust
implementation of two-channel perfect-reconstruction QMF banks. IEEE Transac-
tions on Acoustics, Speech and Signal Processing 36(1), 81–94 (1988)

15. Villasenor, J.D., Belzer, B., Liao, J.: Wavelet filter evaluation for image compres-
sion. IEEE Transactions on Image Processing 4(8), 1053–1060 (1995)

16. Voloshynovskiy, S., Pereira, S., Pun, T., Eggers, J.J., Su, J.K.: Attacks on dig-
ital watermarks: Classification, estimation based attacks and benchmarks. IEEE
Communications Magazine 39(8), 118–126 (2001)

17. Wang, Z., Bovik, A.C.: A universal image quality index. IEEE Signal Processing
Letters 9(3), 81–84 (2002)

18. Yatsymirskyy, M.: Lattice structures for synthesis and implementation of wavelet
transforms. Journal of Applied Computer Science 17(1), 133–141 (2009)

http://www.geoffdavis.net/dartmouth/wavelet/wavelet.html

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 600–611, 2012.
© Springer-Verlag Berlin Heidelberg 2012

MAK€€ – A System for Modelling, Optimising, and
Analyzing Production in Small and Medium Enterprises

Roman Barták1, Con Sheahan2, and Ann Sheahan3

1 Charles University in Prague, Faculty of Mathematics and Physics
Malostranské náměstí 2/25, 118 00 Praha 1, Czech Republic

bartak@ktiml.mff.cuni.cz
2 University of Limerick, Limerick, Ireland

Con.Sheahan@ul.ie
3 ManOPT Systems Ltd., National Technology Park, Limerick, Ireland

Ann.Sheahan@manopt.com

Abstract. The paper presents a performance prediction and optimisation tool
MAK€€ that allows users to model enterprises in a visually rich and intuitive
way. The tool automatically generates a scheduling model describing all
choices that users can do when optimising production. This model then goes to
the Optimiser Module that generates schedules optimising on-time-in-full
performance criterion while meeting the constraints of the firm and the
customer demand. Finally, the Performance Manager Module shows the
decision maker what is the best possible outcome for the firm given the inputs
from the Enterprise Modeller. The Optimiser Module, which is the main topic
of this paper, is implemented using constraint-based solving techniques with
specific search heuristics for this type of problems. It demonstrates practical
applicability of constraint-based scheduling – one of the killer application areas
of constraint programming, a technology originated from AI research.

Keywords: production scheduling, problem modelling, optimisation.

1 Introduction

Though there exists a vast amount of research in the area of scheduling there is still a
large gap between practical problems and research results especially in the area of
production optimisation for small and medium enterprises. This gap is partly due to
missing modelling and visualization tools that would allow easy transformation of
real-life problems to optimisation models and the results back to customers [8] and
partly due to large distance of academic algorithms from existing problems. The
MAK€€ tool developed by ManOPT Systems (now traded as Entellexi,
www.entellexi.com) addresses the above gaps by providing a streamlined feature rich
environment where the user can do all of the following in a simple, efficient and user-
friendly way:

• specify how a particular product is manufactured (i.e. define a bill of material
accompanied by a workflow describing manufacturing of a single product);

 MAK€€ – A System for Modelling, Optimising, and Analyzing Production 601

• enter a work order from a customer (customers request certain quantities of
products that the factory can manufacture, together with a desired deadline);

• generate a schedule for the order (the schedule describes which elementary
operations are executed together with exact timing and used resources to
efficiently fulfil the work orders);

• display the generated schedule in the form of a Gantt chart including
production characteristics of the schedule such as resource utilization.

The MAK€€ tool is a result of EU funded projects EMPOSME and ValuePOLE that
gave a unique opportunity for co-operation between academia and industry as usually
researchers and final customers are too far from each other to communicate directly
the needs on one side and the possibilities on the other side. In the project we
demonstrate the recent research advancements in the areas of formal problem
modelling and solving, namely using Temporal Networks with Alternatives [5] to
describe workflows, in real-life industrial setting. The goal was to make optimisation
technology accessible to practitioners without any knowledge of optimisation
techniques. The paper shows how AI-originated technology called Constraint
Programming (CP) is used in the MAK€€ scheduling engine also called optimiser. We
will first specify the optimisation problem solved by the MAK€€ tool. Then we will
explain why CP was selected as the core optimisation technology and give some
particular examples how CP techniques were used. Finally, we will present the added
value of using this technology from the industrial perspective. In the paper we are
giving a broader picture of the area to show that there is a long path from the
customer to the optimiser where many important decisions must be done before the
formal model is presented to the optimiser to generate a schedule.

2 The Problem

Frequently, when people are applying Constraint Programming techniques to real-life
problems, they focus on solving a particular problem for which they formulate
(manually) a constraint model and then fine tune the model to achieve acceptable
performance for a given sort of data [13,16]. This is not the case of the MAK€€ project
which is intended to provide a tool for production optimisation in small and medium
enterprises in general. It means that there is no single problem to be solved but rather
a collection of problems with a common core – production of certain pieces of items
that are manufactured, assembled, packed, and delivered to a customer. It means that
the system collects data about particular enterprise in the form common for enterprise
systems; it generates an optimisation model fully automatically; it solves the
optimisation problem, it shows the result to the user, and finally it supports analysis of
the result. Obviously, there are many optimisation problems appearing in enterprises
starting with optimising layout of the factory, minimizing waste production and
energy consumption, optimising resource utilization and others. In the MAK€€ system
we focus on optimising production schedules.

602 R. Barták, C. Sheahan, and A. Sheahan

piston

rodtube

kitrod part

Fig. 1. Example of bill of materials accompanied by workflows for individual items

There exists a huge number of various scheduling problems with many ad-hoc
algorithms to solve particular classes of problems [10]. In the MAK€€ system, the
scheduling problem is not described explicitly by the user, but it is rather derived
automatically from data about enterprise provided by the user [8]. These data consist
of description of bill of materials, workflows, resources, and custom orders. Bill of
materials (BOM) can be seen as a hierarchical structure (tree) with the final product
on top (in the root) and items from which this product is composed below. BOM
determines how the final product is assembled from its component parts. For example
to produce a piston we need a tube and a rod, where the rod consists of a rod part and
some kit (Figure 1). BOM describes not only the structure of the product but also the
quantities of required components (in our example, one unit of each component is
required). BOM is accompanied by the description of manufacturing routes which
describe workflows for each basic part. Both bill of materials and workflows define
temporal constraints between individual manufacturing operations. In particular, the
BOM structure specifies that processing of components must be finished before
assembling them together. The workflow structure defines explicit temporal relations
between the operations including details such as the minimal time distance between
two operations. For each operation there are one or more machines, tools, operators,
etc. which are required to carry it out. These resources have assigned availability
calendars and performance characteristics that can be used to pre-compute durations
of operations (together with information about quantity of products from BOM).
Currently, we assume unary resources only so each resource can process at most one
operation at any time. Bill of materials, workflows, and resources describe the
enterprise, but we need custom orders to dictate what needs to be manufactured. Each
order specifies the ordered item, its quantity, and the delivery date. The major
objective that we focus on is on-time-in-full delivery. It means that the goal of
optimiser is producing a schedule where the ordered products are ready to ship at
requested dates. Notice that the input data are not in the format of a typical scheduling
problem so when formalising the scheduling problem to be solved, we need to take in
account all possible scenarios that can be obtained from input data.

 MAK€€ – A System for Modelling, Optimising, and Analyzing Production 603

Fig. 2. A manufacturing process with alternatives (the alternative branching is marked by ALT,
the other branchings are parallel; arcs are annotated by simple temporal constraints expressing
minimal and maximal distance in time)

The closest formalism for the underlying scheduling problem is probably the
Extended Resource Constrained Project Scheduling Problem [15]. We describe the
scheduling problem as a set of non-interruptible operations, where each operation has
a fixed duration and has assigned a set of unary resources to which the operation must
be allocated if the operation is decided to be part of the schedule. The operations are
connected in a temporal network with alternatives [5] that describes the workflows.

Temporal network with alternatives (TNA) is basically a directed acyclic graph
where nodes correspond to operations and arcs are annotated by simple temporal
constraints specifying the minimal and maximal time distance between the start times
of operations (see Figure 2). The main difference from traditional temporal networks
is specifying the branching constraints. If there are more arcs going from the node
then either parallel or alternative branching is specified in the TNA. The type of
branching describes the flow of the process. Parallel branching means that either all
operations (the operation and all its direct successors) are present in the solution or no
operation is present (see collectMaterial in Figure 2). This constraint is also assumed
in the case of having exactly one successor. Alternative branching means that either
the operation together with exactly one of its direct successors (predecessors) in the
TNA is present in the solution or no operation is present (see finishTube and its
predecessors in Figure 2). This is the way to describe splitting of the process into
several alternatives. Note also, that the same mechanism can be used to model
alternative resources (the process splits into alternative operations and each of the
operations is allocated to one of the alternative resources). Similarly, we describe
alternative or parallel joining of processes if there are more arcs going into a node.
We may also assume auxiliary operations with zero duration and no resource
requirements in the TNA to model auxiliary time points in TNA (see the top left node
in Figure 2). Using alternatives in TNA is the main difference from traditional

screwRod

[50,∞]

[10,∞]

shipPiston

orderTub

cutTube

weldTube

cutRod

inspectRod

assemblePiston

ALT

ALT

[1,∞] [0, ∞]

[0, ∞]

[10,∞]
[10,∞]

[10,∞]
[2,∞]

[1,∞]

[15,∞]
[0,∞]

[5,∞]

[1,∞]

cutKit

polishKit

[5,∞]

collectMaterial

finishTube

604 R. Barták, C. Sheahan, and A. Sheahan

scheduling problems as the scheduling task now includes selecting the operations [9]
together with allocating them to time while respecting the temporal, branching, and
resource constraints. To state it differently: the task is to select a subset of operations
that satisfies the branching constraints (this was called a P/A graph assignment
problem in [5]) and to decide the start time of each selected operation in such a way
that the temporal constraints from TNA are satisfied and the selected operations
allocated to the same resource do not overlap in time. This is a form of integrated
planning (selection of operations) and scheduling (allocation of operations) problem.

Note that selecting a consistent subset of nodes from a general TNA where some
nodes are preselected (a P/A graph assignment problem) is an NP-complete problem
[5]. Fortunately, real-life workflows frequently have a specific structure [1], which we
call a nested TNA, where the P/A graph assignment problem is tractable [6]. Nested
structure means that the network is obtained by a decomposition process starting with
single arc and decomposing any arc into a set of arcs and nodes called a nest as
Figure 3 shows (the TNA in Figure 2 is also nested). The bad news is that adding
simple temporal constraints [14] to nested TNA makes the problem NP-complete
again [7]. What makes the problem hard is using the “deadline” constraints, in terms
of TNA it means using maximal distance between operations. In practice, users
usually specify only the minimal distance constraints though there exist industries,
such as metallurgy, where maximal distance between operations is important.

Fig. 3. Arc decompositions in nested graphs

So far we focused on the feasibility problem, that is, formalizing the constraints to
be satisfied by the schedule. As we mentioned at the beginning we are in fact solving
an optimisation problem with an on-time-in-full objective. This objective is reflected
in the formalization of the problem as follows. Some operations, typically those
describing the delivery operation, have assigned a due date with earliness and lateness
costs. Assume that E is the earliness cost, L is the lateness cost, D is due date and T is
the scheduled time when the operation finishes. Then the cost of the operation is
E.max(D-T,0) + L.max(T-D,0). Now the task is to find a feasible schedule minimizing
the sum of costs of all the selected operations.

In summary there are two main issues to be solved when integrating the optimiser
into a MAK€€ tool. First, it is necessary to generate the scheduling model from
existing data. It means converting the bill of materials, workflow descriptions,
resources, and demands to scheduling concepts such as operations, temporal and
resource constraints, and objectives and converting the schedule back to the enterprise

z z z

x x

y y

x

y

z z

x

y

z

k = 1 k = 2 k = 3

 MAK€€ – A System for Modelling, Optimising, and Analyzing Production 605

model. We solved this problem by defining translation rules that automatically
transform the notions and related data between the enterprise system and the
scheduling engine [8]. Though the translation may seem easy (which is really not the
case if real data are assumed), it is important to highlight that users do not specify the
scheduling problem and the problem is generated automatically. The second issue is
solving the scheduling problem itself and this is where CP was used.

3 Why CP?

The first question one needs to ask is why the users should use new optimisation
software. According to our experience the reason is never because the users want to
try a new technology. This claim holds across all business areas including the most
innovative ones such as space exploration [18]. It is almost impossible to go to a
company with an offer of a new and theoretically better system and get the contract.
There must be internal necessity inside the company that pushes the company to
implement a new technology. Typically, this necessity goes from the outside of the
company, from the competitors. Currently, there is an increased competition in the
area of mass production from Far East. Big multi-national companies solve this
problem by moving their production facilities to areas with low labour cost which
helps them to decrease the cost of their products but sometimes with the trade-off of
lower quality. This strategy is not applicable to small and medium enterprises (SMEs)
that are typically family-owned and closely connected to their area of origin. Such
companies can compete by providing high quality products that are built-to-order or
even engineered-to-order so the products fit exactly the specific needs of their
customers. However, this brings huge variety of produced items and increases
complexity of work organization which implies that traditional scheduling methods
(in these companies) based on Excel sheets and manual production of work plans are
less applicable. There is also increased demand for decreasing production cost by
optimising production processes and utilisation of resources. Existing enterprise
resource planning tools are less applicable for SMEs as they are too expensive, too
complex, and too hard to customize for SMEs so there is a need for new tools that fit
well the requirements of SMEs. The MAK€€ tool has already been available for
several years and it is used in a couple of manufacturing companies. It used a
heuristic scheduling algorithm that was capable to automatically generate schedules,
but it was less flexible and too connected to existing scheduling practice (using
preferred process routes) rather than providing alternative and justified solutions
based on optimisation. This is where Constraint Programming enters the scene.

Scheduling is definitely not a new application area to Constraint Programming [2]
and in some sense, constraint-based scheduling is the prominent and the most
influential application area for CP with many successful applications [3,13,16]. The
reason could be the flexibility of constraint models that allows adding side constraints
appearing in real-life problems without big problem. Another reason is a support for
specific scheduling constraints in existing constraint satisfaction packages [16,17].
Many specific global constraints for example for describing resources have been

606 R. Barták, C. Sheahan, and A. Sheahan

proposed in recent years [2,17,20], which simplifies significantly problem modelling
and brings advanced scheduling techniques to fingertips of regular CP users. The
MAK€€ tool brings this technology further to practitioners who are even not familiar
with the optimisation techniques. The reasons to use Constraint Programming in the
MAK€€ tool can be summarized as:

─ flexibility, it is easy to modify the formal model by side constraints,
─ efficiency, it is possible to integrate specific solving techniques as additional

inference (constraint propagation),
─ customization, it is easy to use search heuristics derived from the problem

specification,
─ familiarity, it is a technology that the developer (the authors of this paper) is

familiar with.

4 How CP?

As specified in the previous section, we decided for a pure CP approach to solve the
problem. Though hybrid techniques are very popular and can solve some problems
faster, they are also harder to implement and maintain as they require expertise from
more areas. Basically, we believe that a pure solving approach is fine when the
produced solutions are satisfactory which seems to be the case of the MAK€€ tool.
Moreover, CP technology provides enough flexibility to integrate specific inference
techniques and search heuristics which is crucial for the types of problems that we are
solving. In this section we will describe the core ideas of the CP model with some
specific inference techniques and search strategy.

The constraint model and search strategy were implemented in SICStus Prolog 4.
We used the unary resource constraint disjoint1, arithmetic and logical
constraints from clpfd library of SICStus Prolog and we implemented special
inference procedures for temporal constraints using the global constraints interface in
SICStus Prolog.

4.1 The Core Model

For the MAK€€ tool we decided for a “light” constraint model with only two types of
variables (start time and validity) and a few types of constraints (integrated branching
and temporal constraints, unary resource constraints, and some auxiliary constraints).
This is a big difference from our previous scheduling approach used in Visopt
ShopFloor system [3] which used a very complex dynamic constraint model. The
main reason for the light model was fast development and easy maintenance. This
gives us opportunity to focus on core features and implement them as efficiently as
possible and to explore more alternatives how to implement the core constraints and
search strategies. On the other hand, this approach requires some real-life features to
be compiled to this light model. This is done during the translation of the enterprise
model to the scheduling model. For example, the availability calendar is modelled by

 MAK€€ – A System for Modelling, Optimising, and Analyzing Production 607

auxiliary operations that are fixed in time and occupy the resource when the resource
is not available. In the rest of this section, we will describe the light constraint model.

The traditional scheduling features are modelled in a standard way. For each
operation we have a start time and duration variables. The domain of start time
variable is defined by the time window for given operation. The domain of duration
variable consists of two values: zero and the constant processing time of the operation
specified in the problem formulation. These variables participate in the resource
constraint describing the unary resource to which the operation is allocated (as we
mentioned we use disjoint1 from SICStus Prolog). Using zero duration is a
method to describe optional operations in traditional resource constraints that do not
support optional operations [2,20]. If duration is zero then the operation is ignored in
the unary resource constraint and vice versa the resource constraint may also set
duration to zero if there is not enough capacity to process the operation.

To model selection of operations we use a Boolean validity variable for each
operation. This variable is assigned to 1 (true) if the operation is selected (then also
the duration variable is non-zero for real operations) and to 0 (false) if the operation is
not selected (then the duration variable is zero). The duration variable can model
selection of operations, but we use the validity variable for simplicity reasons and also
to cover auxiliary (milestone) operations, which have zero duration by definition but
could be selected to the schedule. For real operations the relation between duration
and validity variables is described using the constraint:

ValA = 1 ⇔ DurA > 0

The validity variable together with the start time variable participates in the
constraints describing the temporal network with alternatives. It is possible to use a
straightforward model of branching constraints in the following form. If operation B
follows directly operation A in some parallel branching then the constraint is:

ValA = ValB.

If Branch is a set of direct successors (predecessors) of operation A in alternative
branching then the branching constraint can be described using arithmetic formula:

ValA = ΣB∈Branch ValB.

Note that the above model for branching constraints does not achieve global
consistency when alternative branching is present even if the TNA is nested. Assume
constraints A = 1, A = B + C, B + C = D over the Boolean variables that describe a
simple nest with two alternative nodes B and C. Obviously D = 1, but standard arc
consistency techniques used in most constraint solvers cannot infer this information.
Adding a redundant constraint A = D improves inference there, actually this
constraint can substitute constraint B + C = D. In [6] we showed how such a
constraint model for nested graphs can be automatically generated. We are however
not using these redundant constraints in the current version of the MAK€€ tool because
there is no assumption about the workflows to be nested and detecting the nested
structure is an expensive process for large general graphs.

608 R. Barták, C. Sheahan, and A. Sheahan

Recall that the temporal relation between the start times of operations A and B is
described by a pair [aA,B, bA,B] representing minimal and maximal distance. This
relation can be naturally represented using the following constraint (we assume that 0
is the schedule start point):

ValA * ValB * (StartA + aA,B) ≤ StartB ∧ ValA * ValB * (StartB – bA,B) ≤ StartA.

The above straightforward model is appropriate if there is only a small number of
alternative branchings. For such problems, values of most validity variables are
known and the constraints propagate well. However, if the number of alternative
branches increases then the straightforward model contains many (hidden)
disjunctions that do not propagate well in current constraint solvers. In particular,
notice that the lower bound of start time variables never increases until both validity
variables are set to 1. In such a situation a more pro-active approach to domain
filtering is better. The pro-active model always filters out infeasible time points from
the start time variable (even if the operation is not yet known to be in the solution)
and when the domain of the start time variable is to become empty then the filtering
algorithm sets the corresponding validity variable to 0 rather than emptying the
domain of the start time variable and generating a failure (empty domain in constraint
satisfaction means a failure which causes backtracking in the search procedure). The
pro-active filtering algorithm is described in [7]. In the constraint solver, the pro-
active filtering is realized as inference for the global constraint over the validity and
temporal variables. The possibility of integrating such special inference procedures to
the underlying constraint solver without influencing the rest of the model is one of
important advantages of CP technology.

4.2 Search Strategy

There are two types of decision variables in the constraint model, the start time
variables and the validity variables. The duration variables are auxiliary and their
value is fully determined by the value of validity variables. Hence the search strategy
focuses on selection of operations (assigning the validity variables) and time
allocation (assigning the start time variables). Note that selecting the operations also
means deciding the alternative resources, if they are defined. This is one of the
consequences of the light constraint model – we can focus on the selection of
alternative process routes and still cover features such as resource allocation.

Rather than using generic labelling procedures available in constraint solvers, we
decided to implement our own search strategy driven by the objective function. The
search procedure consists of two stages. In the first stage we select the operations to
form the schedule and we decide their order if they share a resource. In the second
stage we decide the particular start times. The first stage can be seen as a
generalization of Precedence Constraint Posting (PCP) scheduling strategy [11] while
the second stage is a known Set a Start Time (SST) strategy [12]. The ideas how to
extend the PCP to support optional operations is described in [4]. In the MAK€€ tool
we are using a similar technique but the technical details are of commercial value so
they cannot be revealed. Briefly speaking, we are doing left-to-right scheduling where
we are ordering the operations from left (earlier times) to right (later times). We select
the operation based on its minimal start time, its slack [19] and validity status (these

 MAK€€ – A System for Modelling, Optimising, and Analyzing Production 609

values depend on previous decisions that are propagated to domains of variables), and
its recommended start time derived from the due date. For the selected operation, the
validity variable is set to 1 and new precedence constraints are posted between this
operation and all not-yet scheduled operations that share a resource with the currently
selected operation (the selected operation is ordered before all not-yet scheduled
operations using the same resource). If a failure is detected (via inference or later
during search), the selected operation is known not be the first one so its minimal start
time is increased and the operation is remembered to be after some other valid
operation that will be selected later during search. The last option, if postponing the
operation also fails, is setting the validity status of the operation to zero which means
that the operation is not part of the solution. After the first stage successfully finishes,
we obtain a set of valid (selected to the schedule) operations connected via a simple
temporal network (STN) [14]. The operations are not yet allocated to precise times;
this allocation is done in the second stage. We first sort the operations based on their
earliness and lateness costs and in this order we try to allocate them to their due dates,
if possible. More precisely, assume that we take an operation with the largest lateness
cost parameter and due date D. Then we post a constraint that the operation finishes
before or at D which implies that the lateness cost for this operation is zero. The
alternative branch during search uses a constraint stating that the operation finishes
after D. The same mechanism is used for the earliness cost. The operations are
selected based on the largest lateness or earliness cost parameters and depending on
which type of cost is the largest one we use one of the above two branching schemes.
After allocating the operations with costs we instantiate the start times of all other
operations to their minimal possible values. Thanks to strong inference of temporal
constraints (recall that solving STN is tractable [14]), the second stage will never fail
and will always produce a solution. Actually, for our data we obtained optimal
solutions for the second stage without backtracking which justifies that this technique
is indeed appropriate for this type of problems.

The above search procedure looks like a greedy search but it allows exploration of
alternatives in case of failure. The failure may occur only if there are some hard
deadlines (or maximal distance between some operations) otherwise it is always
possible to postpone the operations with the penalty of increased cost of the solution.
The search procedure can also be encapsulated in a standard branch and bound
procedure where first a feasible solution is found and then we look for a better
solution. However, experiments will real data showed that the first found solution has
acceptable quality. To give the idea of size of problems solved by this approach, we
can generate a schedule of good quality (according to customers) with more than 4000
operations and more than 30 resources in less than two minutes on standard laptops.

5 Added Value of CP

There have been many attempts to enhance the economic performance of firms with
scheduling tools. Most have failed due to their limited ability to represent the typical
SME where there are a large diversity of workflows and resource alternatives being
applied to a very large diversity of products with tight delivery time lines. In the case
of the MAK€€ tool a key contribution of the CP approach was the ability to effectively
represent this complex problem as one unified model. Once this initial representation

610 R. Barták, C. Sheahan, and A. Sheahan

was defined the CP approach supported an iterative development of the MAK€€ tool
where the validation of the proposed scheduling solutions was completed on actual
production problems from the SME end user partners. The structure of these actual
problems tends to be quite different from the synthetic benchmark problems sets
common in the literature. The end users in particular made an important contribution
to the refinement of the objective function so that the CP search was focused on
finding solutions that were of greatest practical significance to the SME partner firms
involved rather than the more traditional makespan type objective functions. The
MAK€€ application has had a total of 15 years of use in five different production
facilities with no change in the model being applied to each facility. This general
model of enterprises exploits the expressive properties of CP and has dramatically
reduced the level of customer model development required for each new
implementation. This has dramatically reduced the cost of the MAK€€ tool
development and deployment. This has enabled the allocation of resources to creating
a GUI that more closely meets the decision support needs of practitioners. The end
users are presented with the consequences of the proposed scheduling solutions on a
suite of Key Performance Indicators (KPIs) for the enterprise. These are the focus of
the practitioners when the MAK€€ tool is being used in production mode. In
production mode a critical requirement of the application end users was that the
scheduling solutions were generated quickly and could not be improved with manual
interventions. The end user population had minimal interest in understanding the
technology used to generate the schedule solutions. The ability of the decision makers
to comprehensively evaluate the proposed scheduling solutions via a schedule
analyser proved to be critical in establishing the credibility of the MAK€€ tool with the
end users. This method of presenting the proposed scheduling solution proved to be
more important to end users than arguments based on optimality proofs being
achieved for large populations of representative problem sets.

The payback for each facility has been very rapid since the workflow preparation
effort is modest and required only once for each product whereas the MAK€€ tool can
be run 50-60 times per day in production mode. The typical pay back for the MAK€€
tool is less than six months since the KPI focus of the application is aligned with the
scheduling solutions being proposed. This is far superior to the current state of the art
ERP (Enterprise Resource Planning) and manufacturing execution systems.

Acknowledgments. The research is supported by the Czech Science Foundation
under the contract P202/10/1188 and by EU Funding Scheme Research for the benefit
of SMEs: FP7-SME-2007-1 under the project ValuePOLE (contract 222218).

References

1. Bae, J., Bae, H., Kang, S.-H., Kim, Z.: Automatic Control of Workflow Processes Using
ECA Rules. IEEE Transactions on Knowledge and Data Engineering 16(8), 1010–1023
(2004)

2. Baptiste, P., Le Pape, C., Nuijten, W.: Constraint-based Scheduling: Applying Constraints
to Scheduling Problems. Kluwer Academic Publishers, Dordrecht (2001)

 MAK€€ – A System for Modelling, Optimising, and Analyzing Production 611

3. Barták, R.: Visopt ShopFloor: On the Edge of Planning and Scheduling. In: Van
Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 587–602. Springer, Heidelberg (2002)

4. Barták, R.: Search Strategies for Scheduling Problems with Optional Activities. In:
Proceedings of CSCLP 2008 Annual ERCIM Workshop on Constraint Solving and
Constraint Logic Programming, Rome (2008)

5. Barták, R., Čepek, O.: Temporal Networks with Alternatives: Complexity and Model. In:
Proceedings of the Twentieth International Florida AI Research Society Conference
(FLAIRS), pp. 641–646. AAAI Press (2007)

6. Barták, R., Čepek, O.: Nested Precedence Networks with Alternatives: Recognition,
Tractability, and Models. In: Dochev, D., Pistore, M., Traverso, P. (eds.) AIMSA 2008.
LNCS (LNAI), vol. 5253, pp. 235–246. Springer, Heidelberg (2008)

7. Barták, R., Čepek, O., Hejna, M.: Temporal Reasoning in Nested Temporal Networks with
Alternatives. In: Fages, F., Rossi, F., Soliman, S. (eds.) CSCLP 2007. LNCS (LNAI),
vol. 5129, pp. 17–31. Springer, Heidelberg (2008)

8. Barták, R., Little, J., Manzano, O., Sheahan, C.: From Enterprise Models to Scheduling
Models: Bridging the Gap. Journal of Intelligent Manufacturing 21(1), 121–132 (2010)

9. Beck, J.C., Fox, M.S.: Constraint-directed techniques for scheduling alternative activities.
Artificial Intelligence (121), 211–250 (2000)

10. Brucker, P.: Scheduling algoritms. Springer, Heidelberg (2001)
11. Cesta, A., Oddi, A., Smith, S.F.: Iterative Flattening: A Scalable Method for Solving

Multi-Capacity Scheduling Problems. In: Proceedings of the National Conference on
Artificial Intelligence (AAAI), pp. 742–747. AAAI Press (2000)

12. Godard, D., Laborie, P., Nuijten, W.: Randomized Large Neighborhood Search for
Cumulative Scheduling. In: Proceedings of the 15th International Conference of
Automated Planning and Scheduling (ICAPS), pp. 81–89. AAAI Press (2005)

13. Delgado, A., Jensen, R.M., Schulte, C.: Generating Optimal Stowage Plans for Container
Vessel Bays. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 6–20. Springer,
Heidelberg (2009)

14. Dechter, R., Meiri, I., Pearl, J.: Temporal Constraint Networks. Artificial Intelligence (49),
61–95 (1991)

15. Kuster, J., Jannach, D., Friedrich, G.: Handling Alternative Activities in Resource-
Constrained Project Scheduling Problems. In: Proceedings of Twentieth International Joint
Conference on Artificial Intelligence (IJCAI 2007), pp. 1960–1965 (2007)

16. Laborie, P.: IBM ILOG CP Optimizer for Detailed Scheduling Illustrated on Three
Problems. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547,
pp. 148–162. Springer, Heidelberg (2009)

17. Laborie, P., Rogerie, J.: Reasoning with Conditional Time-intervals. In: Proceedings of the
Twenty-First International Florida AI Research Society Conference (FLAIRS), pp. 555–560.
AAAI Press (2008)

18. Rabenau, E., Donati, A., Denis, M., Policella, N., Schulster, J., Cesta, A., Cortellessa, G.,
Fratini, S., Oddi, A.: The RAXEM Tool on Mars Express - Uplink Planning Optimisation
and Scheduling Using AI Constraint Resolution. In: Proceedings of the 10th International
Conference on Space Operations, SpaceOps 2008, Heidelberg, Germany (2008)

19. Smith, S.F., Cheng, C.-C.: Slack-Based Heuristics for Constraint Satisfaction Scheduling. In:
Proceedings of the National Conference on Artificial Intelligence (AAAI), pp. 139–144.
AAAI Press (1993)

20. Vilím, P., Barták, R., Čepek, O.: Extension of O(n log n) filtering algorithms for the unary
resource constraint to optional activities. Constraints 10(4), 403–425 (2005)

Knowledge Compilation with Empowerment

Lucas Bordeaux1 and Joao Marques-Silva1,2,3

1 Microsoft Research, Cambridge, UK
2 University College Dublin, Ireland
3 IST/INESC-ID, Lisbon, Portugal

Abstract. When we encode constraints as Boolean formulas, a natural ques-
tion is whether the encoding ensures a ”propagation completeness” property:
is the basic unit propagation mechanism able to deduce all the literals that are
logically valid? We consider the problem of automatically finding encodings
with this property. Our goal is to compile a naı̈ve definition of a constraint into
a good, propagation-complete encoding. Well-known Knowledge Compilation
techniques from AI can be used for this purpose, but the constraints for which
they can produce a polynomial size encoding are few. We show that the notion of
empowerment recently introduced in the SAT literature allows producing encod-
ings that are shorter than with previous techniques, sometimes exponentially.

1 Introduction

Modeling problems with constraints is as much an art as it is a science. Very often the
same relations between variables can be encoded in a wide range of possible ways.
Although semantically equivalent these various encodings may present dramatic differ-
ences in terms of complexity: some encodings are ”well-posed” in some sense, which
guarantees a tractable reasoning on the constraints, while some others are formulated in
a way that hinders the deduction mechanisms of constraint solvers.

The Question we investigate is how to automatize the search for such ”well-posed”
encodings: given a naı̈ve definition of a constraint in propositional logic, how do we
produce an equivalent, but ”well-posed”, encoding of the constraint? Both of the words
naı̈ve and well-posed require clarification. The specific notion of ”well-posed” we focus
on is defined precisely later in the paper by the property of propagation completeness,
which states that the simple unit propagation rule that is at the core of SAT solvers effec-
tively deduces all the literals that are logically entailed. The notion of ”naı̈ve” encoding
is unavoidably more subjective: by this we essentially mean a concise encoding that
logically captures the semantics of the constraint, but ignores any of the redundancies
or ”modeling tricks” that experts will usually add for performance reasons.

Producing propagation-complete encodings is an important question on which sig-
nificant prior work can be found. In particular the Knowledge Compilation literature
proposes a rich set of techniques for the preprocessing of logical formulas into a ”com-
piled” form that allows certain types of reasoning, including literal and clausal entail-
ment, to be done in polynomial time [16,8]. In parallel, recent Constraint Programming
(CP) literature proposes propagation-complete SAT encodings of specific constraints
[2,6,15,11,4,9,4]. Bacchus [2] makes the connection between the two areas and was the

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 612–624, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Knowledge Compilation with Empowerment 613

first to explicitly suggest the use of Knowledge Compilation techniques to automatically
obtain propagation-complete encodings of complex constraints.

Our Contribution in this paper is to relate clausal Knowledge compilation to the notion
of empowerment, recently introduced by [1,14]. We show that generating empowering
redundant clauses is a key rewriting technique that can be used to generate ”useful”
redundant constraints that ultimately produce a propagation-complete formula. This
observation is simple and, in retrospect, natural, but we prove that restricting the clause
generation to empowering clauses can in some cases reduce exponentially the size of
compiled formulas, compared to previous CNF knowledge compilation techniques.

Overview of the Paper. We start by reviewing the notation and required material in
Section 2. Section 3 presents the notion of empowerment and studies the question of
how to find empowering clauses. Section 4 introduces and studies the technique of com-
pilation using empowerment, which is compared to prior CNF compilation techniques
in Section 5. Finally, Section 6 outlines a number of research directions.

2 Preliminaries

This section overviews the needed preliminary material and notation.

Resolution. The paper will mostly consider logical formulas in CNF (Conjunctive Nor-
mal Form). Recall that these formulas are conjunctions of clauses, each of which is a
disjunction of literals (variable or its negation). We write ϕ |= c to indicate that clause
c is a logical consequence of ϕ, i.e. all models of ϕ also satisfy c. We say that c is an
implicate of ϕ. We denote by ⊥ the empty clause; by vars(ϕ) the set of variables that
have an occurrence in a formula ϕ; by |c| the length (number of literals) of a clause c.

Propositional resolution is the well-known deduction rule that deduces from two
clauses of the form A∨x and ¬x∨B the consequence A∨B. Additionally to this rule
we implicitly use the rewriting rules of simplification (x∨x and x∧x rewrite to x) and
exchange (x∨y, resp. x∧y, rewrite to y∨x, resp. y∧x), which mean that conjunctions
and disjunctions are effectively treated as sets. Unit resolution, aka unit propagation,
is the special case where A or B is empty. We use the symbol � for deduction using
resolution, with subscripts corresponding to restricted cases of resolution: in particular
given a CNF formula ϕ we write ϕ �1 l if the clause c can be deduced from ϕ using
unit propagation, as used in SAT solvers.

Propagation-Completeness is defined as follows:

Definition 1 (Propagation-Completeness). A formula ϕ is propagation-complete if
for any set of literals {l1, · · · , lk} any literal d that is logically entailed can be obtained
by unit propagation, i.e.,

if ϕ ∧ l1 ∧ · · · ∧ lk |= d then ϕ ∧ l1 ∧ · · · ∧ lk �1 d

In particular, if ϕ ∧ l1 ∧ · · · ∧ lk is inconsistent, and ϕ is propagation-complete, unit
propagation deduces ⊥. Propagation completeness has been implicitly considered in
recent CP papers [10,2,6,15,11,4] because of its connection to Domain Consistency
(aka Generalized Arc-Consistency): when we encode in SAT a constraint over some

614 L. Bordeaux and J. Marques-Silva

Finite-Domain variables, if the encoding of the variables is a natural encoding with one
Boolean variable per value in the variable’s domain (as opposed to ”logarithmic encod-
ings” where b Booleans encode 2b possible values), and if the encoding of the constraint
is propagation-complete, then unit propagation on the SAT encoding effectively finds
the same implications as Domain Consistency.

Knowledge Compilation. We can now define more formally the problem we are con-
sidering throughout the paper:

Problem 1. Given a CNF formula ϕ, produce a ”compiled formula” that is equivalent
to ϕ and propagation-complete.

This question has been extensively studied in the Knowledge Compilation literature;
more precisely what is studied is usually a variant called clausal entailment (see, e.g.
[8]): given a clause c ≡ (l1 ∨ · · · ∨ lk), do we have ϕ |= c? It is easy to see that if a
formula is propagation-complete then clausal entailment on the formula can be done in
polynomial time as we can simply check whether ϕ∧¬l1 ∧ · · · ∧¬lk �1 ⊥. Conversely
if a polynomial-time algorithm (not necessarily based on unit propagation) exists for
clausal entailment then we can check efficiently whether ϕ ∧ l1 ∧ · · · ∧ lk |= d for
any literal d by checking whether (¬l1 ∨ · · · ∨ ¬lk ∨ d) is entailed. Clausal entailment
and propagation-completeness are therefore essentially equivalent, but tractable clausal
entailment can resort to any type of polynomial-time algorithm, while propagation-
completeness specifically focusses on unit propagation.

In general, if the formula ϕ to be compiled is arbitrary, the compilation process
hits fundamental complexity limits: clausal entailment, like other intractable problems,
is ”non-compilable” in general, unless NP ⊆ P/poly [7]; hence reaching propagation-
completeness requires in the worst case an exponentially large encoding. There are nev-
ertheless many specific constraints whose satisfiability and unit implication problems
are polynomial-time solvable, and for many of them (but not all, as shown in [5]!), con-
cise propagation-complete CNF encodings have been proposed. [6,15,11,4,9,4]. Prob-
lem 1 asks how we automatically find such encodings.

3 Empowering Implicates

In this section we review the notion of empowering clause and relate it to knowledge
compilation. We next address the question: how do we compute empowering clauses
for a formula?

3.1 Empowerment

It is well-known that adding logically redundant constraints (in SAT: implicates) to a
problem can in some cases improve propagation but that not all redundant clauses are
useful. Consider for instance ϕ = {(¬x ∨ y), (¬y ∨ z)}. The clause (¬x ∨ z) is an
implicate, however this clause does not add anything that really benefits propagation:
from x we can deduce z and from ¬z we can deduce ¬x, with or without this clause.
The property that this clause is missing is empowerment [14]. This notion has been

Knowledge Compilation with Empowerment 615

introduced in a different setting, but we argue that it is the exact characterization of
”useful” clause. Implicates such as (¬x ∨ z) that are useless are said to be absorbed by
the CNF ϕ.

Definition 2 (Empowerment [14]; Absorption [1]). Let ϕ be a CNF formula, and
c = (l1 ∨ · · · ∨ lk) be an implicate of ϕ. The clause c is empowering1 w.r.t. ϕ if one of
its literals li, called empowered literal, is such that:

ϕ ∧
∧

j∈1..k, j �=i

¬lj ��1 li.

c called absorbed by ϕ if it has no empowered literal.

Our first observation is that empowerment is intimately related to compilation:

Definition 3 (Closure under Empowerment; Completion). A formula ψ is said to be
closed under empowerment if it absorbs any implicate. Given a formula ϕ, let ψ be a
set of implicates of ϕ; if the formula ϕ ∪ ψ is closed under empowerment, then we say
that it is a completion of ϕ.

Proposition 1. A formula is closed under empowerment iff it is propagation-complete.

Given a CNF formula ϕ of size s (size here means the sum of clause lengths), and a
candidate clause c = (l1 ∨ · · · ∨ lk), there are two contexts in which it may be useful
to check whether c is an empowering implicate. If we do not know whether c is an
implicate, then checking whether it is is coNP-complete. In some other cases, c may
be known to be an implicate, for instance if it is obtained by application of steps of
propositional resolution. Checking whether it is empowering is in this case easier: we
simply have to check whether any of the lis (i ∈ 1..k) is obtained by propagation when
we assert the conjunction

∧
j∈1..k,j �=i ¬lj . This can be done in time O(k · s) since it is

sufficient to run (and undo) k propagations.

3.2 Finding Empowering Implicates Using QBF

Empowerment was introduced in the context of SAT solvers, and it was noted that
learnt clauses in DPLL solvers are in fact empowering [14,1]. However the literature has
not, to our knowledge, proposed any complete method for finding empowering clauses.
Such a method should fail to return an empowering implicate only when the formula is
proved to be propagation-complete. We propose such a method based on an encoding to
Quantified Boolean Formulae (QBF). The generated Quantified Boolean Formula asks
whether there exists a clause that is a valid implicate and that is empowering. This QBF
encoding is described below.

A set of variables X is assumed, with |X | = n, X = {x1, . . . , xn}. Literals are
represented as xp

i , where xi ∈ X , p ∈ {0, 1}, xi ≡ x1
i and ¬xi ≡ x0

i . Essentially, p

1 Reference [14] uses the term 1-empowering, but we drop the 1- prefix for simplicitiy. Also
we use in fact the original formulation from a AAAI conference paper that precedes [14]: for
technical reasons [14] adds the extra condition ϕ ∧

∧
j �=i ¬lj ��1 ⊥, which we do not need.

616 L. Bordeaux and J. Marques-Silva

denotes the truth value of xi that satisfies the literal associated with xp
i . Furthermore,

let T (xp
i) denote the clauses satisfied by xi when assigned value p ∈ {0, 1}.

Consider a CNF formula ϕ and a clause c. Define ϕa = ϕ ∪ {¬lc : lc ∈ c} and
ϕc = ϕa \ {¬l}, for a given literal l ∈ c. A clause c is 1-empowering for ϕ if there
exists l ∈ c such that: (i) ϕ |= c; (ii) ϕc ��1 ⊥; and (iii) ϕc ��1 l.

The identification of a 1-empowering clause c consists of the following main steps:
(i) select the literals of clause c, among all possible sets of literals; and (ii) validate the
conditions of Definition 2 for clause c. The configuration of clause c is done through
a set of auxiliary variables S = {spi |xi ∈ X ∧ p ∈ {0, 1}}. Clause c is defined as
follows: c = {l01, l11, l02, l12, . . . , l0n, l1n}, where lpi ↔ xp

i ∧ spi . Moreover, (¬s0i ∨ ¬s1i)
holds for i = 1, . . . , n. A complete assignment to the variables in set S decides which
literals actualy integrate clause c.

Given the definition of set S, the model outlined above can be refined as follows:

∃S.(ϕ |= c) ∧ (ϕc ��1 ⊥) ∧ (ϕc ��1 l) (1)

which captures the conditions of Definition 2. In the remainder of this section, the com-
plete QBF is derived by specifying the following predicates (each associated with one
of the conditions of 1-empowering clause):

∃S.Unsat(ϕa) ∧ ProperUPConfig(ϕc) ∧
∨
l∈c

NonUPImplied(ϕc, l) (2)

where Unsat(ϕa) holds if ϕa is unsatisfiable, ProperUPConfig(ϕc) holds if unit prop-
agation (UP) on ϕc is non-inconsistent, and NonUPImplied(ϕc, l) holds if l is not im-
plied by unit propagation. Predicate Unsat(ϕa) is represented by ∀X.¬ϕa(X). The
other two predicates require modeling the proper outcomes of unit propagation (UP) as
a propositional formula.

The selection of the set of variables to be declared assigned by unit propagation is
achieved through a few sets of auxiliary variables. The first set U , is defined as follows:
U = {up

i |xi ∈ X ∧ p ∈ {0, 1}}, where up
i is true iff xi ∈ X takes value p ∈ {0, 1} by

unit propagation. Clearly, (¬u0
i ∨ ¬u1

i) holds for all 1 ≤ i ≤ n. Also, if u0
i = u1

i = 0
then xi is unassigned by unit propagation. Moreover, up

i,d denotes whether xi takes
value p in no more than d unit propagation steps. The consistent assignments to up

i,d are
defined recursively as follows: (i) up

i,0 = 1 iff (xp
i) is a unit clause; and (ii) for d > 0,

up
i,d = 1 if xp

i was already set to 1 at earlier propagation stages than d, or if there exists
a clause ct ∈ ϕc with all literals but xp

i assigned value 0 in no more than d − 1 unit
propagation steps. Formally,

up
i,0 = 1 if (xp

i) ∈ ϕc

up
i,0 = 0 if (xp

i) �∈ ϕc

up
i,d = up

i,d−1 ∨
∨

ct∈T (xp
i)

∧
xq
j∈ct

xq
j �=xp

i

u1−q
j,d−1 for d > 0 (3)

For simplicity of notation, in the rest of the section we simply denote by up
i the variables

up
i,n, that represent the state of each xi at the end of propagation, i.e. when d = n (last

”propagation level”).

Knowledge Compilation with Empowerment 617

Let ϕu,d(up
i) denote the set of clauses from (3). Then, the predicate ProperUP(up

i)
is given by the conjunction of ϕu,d(up

i), (¬u0
i ∨¬u1

i), (u
p
i,d−1→up

i,d), with 1 ≤ d ≤ n,
and (up

i ↔up
i,n).

For a given clause ct, the predicate SAT(ct) is given by (∨xp
i ∈ctu

p
i). After consistent

unit propagation, all clauses must either be satisfied or non-unit. Define vi to be true iff
xi is unassigned, i.e. vi↔(¬u0

i ∧ ¬u1
i). Then the NonUnit(ct) predicate is defined by

(
∑

xp
i∈ct

vi ≥ 2).
The predicate ProperUPConfig(ϕc, U) can be defined as follows:∧

1≤i≤n
p∈{0,1}

ProperUP(up
i) ∧

∧
ct∈ϕc

(SAT(ct) ∨ NonUnit(ct)) (4)

The existence of a proper UP configuration is then given by: ∃U.ProperUPConfig (ϕc, U).
Finally, assuming literal l corresponds to xp

k , predicate NonUPImplied(ϕc, xp
k, U) is

defined as follows: ProperUPConfig(ϕc, U)→¬up
k, i.e. for any non-inconsistent unit

propagation xp
k remains unassigned. Thus, the condition that xk is not implied, is given

by ∀U.NonUPImplied(ϕc, l, U).

Proposition 2. Given a formula ϕ, the question: is there a clause c that is an empow-
ering implicate of ϕ? is polynomial-time reducible to a QBF formula with quantifier
alternation ∃∀.

Proof. See QBF derivation above.

We also note that the QBF encoding can easily be tuned to express the existence of
empowering clauses of bounded length: this amounts to constraining the length of the
desired clause in the encoding.

4 Compilation by Iterative Empowerment

The most natural approach to knowledge compilation using empowering clauses is to
iteratively add empowering clauses to the formula until it ultimately becomes propa-
gation-complete. We call this approach compilation by iterative empowerment. Here we
study this approach and focus in particular on a disciplined approach where empowering
clauses are introduced by increasing length.

4.1 Compilation Sequences

Knowledge compilation by empowering implicate generation is highly dependent on
the order in which empowering clauses are generated. The notion of compilation se-
quence captures this ordering:

Definition 4. Let ϕ be a CNF formula. A compilation sequence is a sequence of clauses
[ϕ; c1; · · · ; ck] such that:

– Each clause ci for 1 ≤ i ≤ k is an implicate of ϕ that is empowering wr.t. the
partially compiled formula ϕ ∧ c1 ∧ · · · ∧ ci−1 ;

618 L. Bordeaux and J. Marques-Silva

– ϕ ∧ c1 ∧ · · · ∧ ck is ultimately propagation-complete.

Example 1. Consider the formula: ϕ ≡ {(a ∨ b), (¬a ∨ x), (¬a ∨ y), (¬b ∨ x), (¬b ∨
y), (¬x∨y), (¬y∨x)}. There are two possible compilation sequences for this formula:
[ϕ; (x)] and [ϕ; (y)]. In other words we may start by adding the empowering implicate
(x), in which case (y) becomes deducible by unit propagation and therefore is not an
empowering clause; or we may start by adding (y) in which case (x) is not empowering.

4.2 Clause Deprecation

Being empowering w.r.t. ϕ∧ c1 ∧ · · · ∧ ci−1 does not, in general, guarantee that ci will
remain empowering w.r.t. to the fully compiled formula. One issue is that as we generate
empowering clauses sequentially, some clauses created at an earlier stage may become
non-empowering later as more clauses are added. We call this clause deprecation:

Definition 5 (Clause Deprecation). In a compilation sequence [ϕ; c1; · · · ; ck] we say
that a clause ci is deprecated by the addition of clause cj (j > i) if ci is empowering
w.r.t ϕ ∧

∧
h∈1..j−1,h �=i ch and non-empowering w.r.t. ϕ ∧

∧
h∈1..j,h �=i ch.

Example 2. Consider the formula: ϕ ≡ {(a ∨ b), (¬a ∨ x), (¬a ∨ y), (¬b ∨ x), (¬b ∨
y), (¬x ∨ y)}. The two possible compilation sequences are: [ϕ; (y); (x)] and [ϕ; (x)].
In the first sequence, (y) is empowering w.r.t. ϕ but is not empowering w.r.t. ϕ ∧ (x),
i.e. becomes deprecated by the addition of clause (x).

In extreme examples, some poorly selected sequences can ultimately contain exponen-
tially many deprecated clauses, as shown in the following example.

Example 3. Consider the following formulas parameterized by a size m:

∧
p

(
y ∨

∨
h

xph

)
∧

∧
h

∧
p

∧
p′>p

(y ∨ ¬xph ∨ ¬xp′h)

where p ranges over 1..m and h ranges over 1..m− 1. (These formulas are a variant of
the well-known Pigeon-Hole Principle (PHP) formulas encoding y ∨ PHPm.) It is clear
that for this formula we can generate exponentially many clauses, and in particular
many empowering ones, whereas the unit clause (y) is indeed the only meaningful im-
plicate. Specifically, a possible compilation sequence starts by ϕ, then adds all clauses

of the form
(
y ∨

∨
p∈1..m−1 ¬xp,δ(p)

)
, for all bijections δ from 1 · · ·m− 1 onto itself

(i.e. permutations); then adds (y). All clauses are empowering at the time where they
are added. Yet adding the final clause (y) deprecates all the previous clauses.

Example 3 shows that generating a short (here, unit) empowering clause can sometimes
prevent the creation of many more empowering clauses. This suggests a strategy of
length-increasing iterative empowerment, detailed next.

Knowledge Compilation with Empowerment 619

function length increasing empower(ϕ):
let ψ := ∅
for L from 1 to width(ϕ)

while there exists a clause c of length L that is empowering w.r.t. ϕ ∪ ψ
ψ := ψ ∪ {c}

% minimization code optionally goes here
return ϕ ∪ ψ

function minimize(ϕ):
let ψ := ϕ
foreach clause c in ψ % arbitrary order

if c is absorbed by ψ \ {c}
ψ := ψ \ {c}

return ψ

Fig. 1. Algorithms: length increasing empower takes a CNF ϕ and returns a completion of it;
minimize takes a propagation-complete CNF ϕ and returns a subset of it that is equivalent,
propagation-complete, and minimal

4.3 Length-Increasing Iterative Empowerment

We now consider what happens if we generate clauses by increasing length: we first
saturate the formula under empowering clauses of length 1; only then do we consider
length 2; and so forth. This is shown as Algorithm length increasing empower in Fig. 1.
The algorithm is similar to the simple width-increasing algorithm resolution proposed
in e.g. [3], but (1) only generates clauses that are empowering, and (2) exhaustively
checks that no implicate of length L exists before incrementing L. The latter test can
be done by a width-bounded QBF encoding as suggested in the previous section. This
algorithm is non-deterministic in that there are many possible choices in the selection
of the empowering clause at any stage. The sequences of implicates it generates can be
characterized as follows:

Definition 6 (Length-Increasing Compilation Sequence). A compilation sequence
[ϕ; c1; · · · ; ck] is length-increasing if for every i ∈ 1..k we have that all implicates
of length strictly less than |ci| are absorbed by ϕ ∧ c1 ∧ · · · ∧ ci−1.

A key property of compilation by length-increasing iterative empowerment is that it
limits the effects of deprecation, in the following sense:

Proposition 3. In a length-increasing sequence, a clause of length b never deprecates
a clause of length a < b.

4.4 Minimality

It may be desirable in some cases to compute propagation-complete formulas that are
minimal, where removing any clause would cause the formula not to be propagation-
complete anymore.

620 L. Bordeaux and J. Marques-Silva

Definition 7 (Minimal propagation-complete formula). A propagation-complete
CNF formula {c1 · · · cm} is minimal if no ci is absorbed by the set of remaining clauses,
i.e. {cj : j �= i}.

Example 2 shows that length-increasing iterative empowerment does not necessarily
lead to formulas that are minimal: deprecation can happen between generated impli-
cates of the same length. Minimizing a propagation-complete formula can be done by
simply checking one by one, in some arbitrary order, whether any clause is absorbed
by the rest of the formula, as shown in Algorithm minimize of Fig. 1. If a clause c
is verified to be empowering during the execution of the algorithm, it is clear that it
will remain empowering at the end of the execution, where more clauses have been
removed; therefore considering each clause once is enough. Minimizing a formula of
length s (counted in sum of clause lengths) takes time O(s2) since we need to do/undo
one propagation for each literal of every clause.

To construct a minimal propagation-complete formula using the length-increasing
compilation approach, it is possible to interleave the generation of empowering clauses
of every length with minimization steps. In Algorithm length increasing empower of
Fig. 1 the minimization code can be added in the commented area. Because of Proposi-
tion 3, it is sufficient, once the generation of empowering implicates of a certain length
L has completed, to verify the empowerment of clauses of length L, i.e. the foreach
loop of Algorithm minimize can be restricted to clauses whose length is L.

5 Iterative Empowerment versus Prime Implicate Saturation

We now study compilation by iterative empowerment and compare it against prior
implicate-based approaches to knowledge compilation. We focus for most of our re-
sults on the length-increasing compilation scheme, but do not assume minimality. Our
main point is that it provides a strictly more ”succinct” compilation language than prior
compilation methods by prime implicates, where succinctness is defined as in [8].

5.1 Previous Compilation Schemes

A well-known way to obtain a propagation-complete formula is to saturate it by prime
implicates, as was proposed by, e.g. [16,13] and suggested for the encoding of con-
straints by [2]. An implicate of a formula ϕ is a clause c that is a valid consequence, i.e.
ϕ |= c. An implicate is prime if it is not subsumed by another implicate, i.e., there is no
implicate c′ that contains a strict subset of the literals of c. We denote by prime(ϕ) the
set of prime implicates of a formula ϕ. (This set is uniquely defined.)

It is known that prime implicate generation can generate clauses that are useless for
propagation-completeness; for instance from the formula ϕ = (¬x ∨ y), (¬y ∨ z) the
absorbed clause (¬x∨z) is a prime implicate. Heuristics have been proposed to restrict
the number of absorbed clauses, in particular based on the notion of merge resolution.
When resolving two clauses A∨x and¬x∨B, the resolution step is called non-merge if
vars(A)∩ vars(B) = ∅, and merge otherwise. Several optimizations to prime implicate
generation have been proposed in [16]; the central idea is to avoid adding to the formula
some implicates that are generated by non-merge resolution.

Knowledge Compilation with Empowerment 621

We compare iterative empowerment to this approach. Later approaches to prime
implicate generation have been proposed, for instance [12], but these approaches depart
from explicit CNF generation, while it is our aim to produce CNF encodings amenable
to SAT solving. ([12] uses, specifically, a compact clause representation with BDDs).

5.2 Iterative Empowerment versus Prime Implicates

We first note that length-increasing compilation sequences can never generate more
clauses than prime implicate generation, as they only contain prime implicates. We
then show that compilation by saturation under empowering clauses can in some cases
be exponentially more compact than approaches based on prime implicate generation.

Proposition 4. All implicates generated in a length-increasing compilation sequence
are prime.

Proof. Consider a sequence [ϕ; c1; · · · ; ck], and clauses ci and cj . We assume that ci
subsumes cj and show a contradition. Since the literals of ci are a strict subset of those
of cj , we have |ci| < |cj | and i < j, i.e. clause cj is generated after ci in the sequence.
But cj is not empowering w.r.t. the formula that already includes ci: whenever cj be-
comes unit, ci either also becomes unit, or becomes inconsistent; in both cases no useful
new literal can be inferred from cj .

A class of formulas that exhibit an exponential separation between prime implicate
saturation and iterative empowerment is the so-called EVEN formulas, introduced next.
(Comments on the right-hand side of the formula explain the meaning of each block of
clauses in this formula.) These are CNF encodings of the formula x1 ⊕ · · · ⊕ xn = 0,
true when the number of 1s is even.

Definition 8 (EVEN Formulas). We denote by EVENn the following formula over the
sets of variables X = {x1 · · ·xn} and X = {y1 · · · yn}:

(¬x1 ∨ y1) ∧ (¬y1 ∨ x1) ”y1 = x1”

∧
∧

i∈2..n

⎛⎜⎜⎝
(¬yi ∨ yi−1 ∨ xi)∧
(¬yi ∨ ¬yi−1 ∨ ¬xi)∧
(yi ∨ ¬yi−1 ∨ xi)∧
(yi ∨ yi−1 ∨ ¬xi)

⎞⎟⎟⎠ ”yi = yi−1 ⊕ xi”

∧ (yn) ”output gate yn is true”

Proposition 5. The EVENn formulas are closed under empowerment yet have expo-
nentially many prime implicates.

Proof. We first note that the constraint hyper-graph of these formulas is Berge-acyclic.
It is well-known that for acyclic constraint networks achieving arc consistency for each
constraint of the hyper-graph is enough to achieve arc-consistency for the whole net-
work. It follows that the formula is propagation-complete; In other words any impli-
cate is absorbed. Now there exist an exponential number of prime implicates: (1) any
clause over the variables {x1 · · ·xn} that has an odd number of negative literals is an

622 L. Bordeaux and J. Marques-Silva

implicate. (2) these implicates are prime: if we remove any of their literals we obtain an
invalid clause. (3) there are 2n−1 such clauses.

5.3 Iterative Empowerment versus Merge Resolution

We next consider the optimizations to prime implicate generation based on merge reso-
lution [16]. The goal of these methods was to find a subset of the prime implicates that
remains propagation-complete. However these previous approaches did not formulate
the notion of empowerment, and the question is to compare them with iterative empow-
erment. We show that in some cases, those compilation schemes, that discard clauses
that are produced by non-merge resolution steps, can still generate exponentially many
non-empowering clauses. This is exhibited by the following class of formulas.

Definition 9 (MERGE-EVEN formulas). We denote by MERGE-EVENn the variant of
EVEN in which every clause receives an additional positive literal f , such that f �∈
X ∪ Y ; i.e. MERGE-EVENn is the set of clauses {(f ∨ c) : c ∈ EVENn}.

The set of solutions of MERGE-EVENn is exactly the union of: (1) all assignments
where f is true (with any value assigned elsewhere); (2) all assignments where f is
false and EVENn holds.

Proposition 6. The set of prime implicates of MERGE-EVENn is: {(f ∨ A) : A ∈
prime(EVENn)}

Proposition 7. The formula EVENn is closed under empowerment, but has exponen-
tially many prime implicates; furthermore all of these implicates are produced by
merge-resolution.

Proof. Assume the existence of a non-empowering prime implicate of MERGE-EVEN.
It is a clause of the form (f ∨A∨ l), not subsumed by any clause of MERGE-EVEN, and
where literal l is not obtained from MERGE-EVEN by unit propagation when f is false
and all literals in A are false. When f is set to false the formula simplifies to EVEN,
therefore it is also the case that l is not obtained from EVEN when all literals in A are
false. This implies that (A∨ l) is an empowering clause of EVEN not subsumed by any
clause in it, which contradicts Proposition 5.

We now show that all the resolvents applied in the compilation are Merge. All
clauses of EVEN include a positive occurrence of f . Any resolution on two such clauses
is a merge resolution operation and produces in a clause that also includes a positive oc-
currence of f . Therefore all clauses in any resolution proof will include only clauses
with positive occurrence of f , and make us of merge resolution exclusively.

Note also that in formula MERGE-EVEN the merge literal is always f . This means that
the optimization of algorithm FPI1 of [16] do not apply and that this algorithm also
generates exponentially many absorbed implicates.

Knowledge Compilation with Empowerment 623

6 Conclusion and Perspectives

Clausal (CNF) formalisms played an important role in early Knowledge Compilation
work, but more recent work has favoured non-clausal formalisms that are in many re-
spects more expressive [8]. In our view clausal Knowledge Compilation remains im-
portant because of its connections to propagation-complete encodings, and to our initial
Question (formalized as Problem 1). Our main findings in this paper are the following:

– The notion of empowerment of [1,14] sheds a new light on clausal Knowledge
Compilation: several heuristics had previously been proposed to limit the ”useless”
redundant constraints generated by classical prime implicate methods; but they did
not, to our knowledge, explicitly define ”useless” — it is now clear that empower-
ment is the desired property of implicates used in compilation.

– In particular we showed that length-increasing empowerment is a knowledge com-
pilation scheme that has many appealing features in terms of limited deprecation
and easier minimization, connection to treewidth, and comparison with other prime
implicate generation schemes.

Acknowledgement. This work is partially supported by SFI PI grant BEACON (09/ IN.1/
I2618), by FCT through grants ATTEST (CMU-PT/ELE/0009/2009) and POLARIS (PTDC/EIA-
CCO/123051/2010), and by INESC-ID multiannual funding from the PIDDAC program funds.

References

1. Atserias, A., Fichte, J.K., Thurley, M.: Clause-learning algorithms with many restarts and
bounded-width resolution. J. of Artif. Intel. Research (JAIR) 40, 353–373 (2011); prelimi-
nary version in SAT 2009

2. Bacchus, F.: GAC Via Unit Propagation. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741,
pp. 133–147. Springer, Heidelberg (2007)

3. Ben-Sasson, E., Wigderson, A.: Short proofs are narrow - resolution made simple. J. of the
ACM 48(2), 149–169 (2001)

4. Bessiere, C., Katsirelos, G., Narodytska, N., Quimper, C.G., Walsh, T.: Decompositions of
all different, global cardinality and related constraints. In: Int. Joint. Conf. on Artif. Intel.
(IJCAI), pp. 419–424 (2009)

5. Bessiere, C., Katsirelos, G., Narodytska, N., Walsh, T.: Circuit complexity and decomposi-
tions of global constraints. In: Int. Joint. Conf. on Artif. Intel. (IJCAI), pp. 412–418 (2009)

6. Brand, S., Narodytska, N., Quimper, C.-G., Stuckey, P.J., Walsh, T.: Encodings of the
SEQUENCE Constraint. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 210–224.
Springer, Heidelberg (2007)

7. Cadoli, M., Donini, F., Liberatore, P., Schaerf, M.: Preprocessing of intractable problems.
Information and Computation 176, 89–120 (2002)

8. Darwiche, D., Marquis, P.: A knowledge compilation map. J. of Artif. Intel. Research
(JAIR) 17, 229–264 (2002)

9. Feydy, T., Stuckey, P.J.: Lazy Clause Generation Reengineered. In: Gent, I.P. (ed.) CP 2009.
LNCS, vol. 5732, pp. 352–366. Springer, Heidelberg (2009)

10. Gent, I.P.: Arc consistency in SAT. In: Euro. Conf. on Artif. Intel. (ECAI), pp. 121–125
(2002)

624 L. Bordeaux and J. Marques-Silva

11. Huang, J.: Universal Booleanization of Constraint Models. In: Stuckey, P.J. (ed.) CP 2008.
LNCS, vol. 5202, pp. 144–158. Springer, Heidelberg (2008)

12. Marquis, P., Sadaoui, S.: A new algorithm for computing theory prime implicates compila-
tions. In: Conf. on Artif. Intel. (AAAI), pp. 504–509 (1996)

13. Marquis, P.: Knowledge compilation using theory prime implicates. In: IJCAI, pp. 837–845
(1995)

14. Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning SAT solvers as resolution
engines. Artif. Intel. 175(2), 512–525 (2011); preliminary works in AAAI 2008 (notion of
empowerment) and CP (2009)

15. Quimper, C.G., Walsh, T.: Decompositions of grammar constraints. In: Conf. on Artif. Intel.
(AAAI), pp. 1567–1570 (2008)

16. del Val, A.: Tractable databases: How to make propositional unit resolution complete through
compilation. In: Knowledge Representation and Reasoning (KR), pp. 551–561 (1994)

Cost-Sensitive Classification with Unconstrained

Influence Diagrams�

Jǐŕı Iša, Zuzana Reitermanová, and Ondřej Sýkora

Department of Theoretical Computer Science
Faculty of Mathematics and Physics

Charles University in Prague
Malostranské náměst́ı 25, 118 00 Prague, Czech Republic
{isa,reitermanova,sykora}@ktiml.mff.cuni.cz

Abstract. In this paper, we deal with an enhanced problem of
cost-sensitive classification, where not only the cost of misclassification
needs to be minimized, but also the total cost of tests and their re-
quirements. To solve this problem, we propose a novel method CS-UID
based on the theory of Unconstrained Influence Diagrams (UIDs). We
empirically evaluate and compare CS-UID with an existing algorithm
for test-cost sensitive classification (TCSNB) on multiple real-world pub-
lic referential datasets. We show that CS-UID outperforms TCSNB.

1 Introduction

The problem of cost-sensitive classification plays a great role in practical appli-
cations. Though most learning algorithms assume all classification errors have
the same cost, this is seldom true in real world. For example, in the area of med-
ical or technical diagnosis, different tests, classifiers or misclassifications may
have different costs or benefits. The goal of the standard cost-sensitive learn-
ing is to minimize the total cost of the classification process, when different
misclassifications incur different costs. This problem can be solved by deriving
cost-sensitive variants of the existing classifiers. However, such conversion must
be done for each type of classifier separately, and it is a time consuming and
sometimes impossible process. The other option is using a meta-algorithm for
extending an existing classifier without changing it. Examples of such approach
are undersampling, oversampling, or employing a specialized algorithm such as
MetaCost [3]. Contrary to these techniques, we are facing the generalized test-cost
sensitive classification problem. We optimize not only the total cost of the mis-
classification, but simultaneously also the total cost of the performed tests and
their requirements.

Consider the following motivational example (medical example): A patient
comes to a doctor and the doctor needs to find out, if the patient has diabetes.

� This work was supported by the grant “Res Informatica” of the Grant Agency
of the Czech Republic under Grant-No. 201/09/H057 and by SVV project No. 263
314.

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 625–636, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

626 J. Iša, Z. Reitermanová, and O. Sýkora

Claiming a patient with diabetes healthy is a big mistake and incurs a heavy
misclassification cost. Subjecting a healthy patient to more and more tests can
become costly too: when the doctor needs to know the patient’s glucose level
(an attribute of the patient), she does not pay only for the test itself (e.g. for
sending a sample to a lab for analysis), but also for its requirements – a blood
sample must be taken first. However, once the blood is taken, other tests can be
performed on it without the need to take the blood again.

In Section 2, we define the new task of generalized test-cost sensitive clas-
sification. Section 3 summarizes the related work. In Section 4, we propose
CS-UID, a novel method for the generalized test-cost sensitive classification
based on the Unconstrained Influence Diagram theory [10]. Section 5 discusses
the experiments we performed and their results. We empirically evaluate CS-UID
on multiple real-world publicly available referential datasets and compare it with
TCSNB, an existing and effective method for test-cost sensitive classification [2].
We show that CS-UID outperforms TCSNB.

2 Problem Statement

This section defines the generalized test-cost sensitive classification problem,
which is an extension of the standard cost-sensitive classification problem (CSC)
[4]. The task is to classify samples (i.e. patients in our medical example) into
a finite set of final classes S = {s1, s2, . . . , sk}. The cost of reporting class si
when the real class is sj is defined as cij . Usually, cii = 0 for each si ∈ S.
The expected cost of misclassification when reporting class sj for a sample x is
defined as

c(sj |x) =
k∑

i=1

cijP (si|x), (1)

where P (si|x) is the posterior conditional probability of si, given x. For a sample
x, the goal of the standard CSC is to report a class s∗ ∈ S, such that

c(s∗|x) = min
s∈S

c(s|x). (2)

The expected cost of misclassification over the distribution of samples Dx is then

cMC = E

[
min
s∈S

c(s|x)
]
Dx

. (3)

In our classification scenario, there is a finite set of tests T = {T1, T2, . . . , Tm}.
Each test T ∈ T classifies samples into a finite set of classes ST . These sets
may be in general different for each test and completely different from the set
of final classes S. For our medical example, one of the tests may be the test
of hemoglobin. This test may classify samples (i.e. patients) into three classes
high, medium and low, according to the level of hemoglobin. The final classes
are yes and no, corresponding to the patient having or not having diabetes.

Cost-Sensitive Classification with Unconstrained Influence Diagrams 627

Each test T ∈ T is characterized by the probability PT (sT |s) of reporting
class sT ∈ ST when the final class is s ∈ S. Each of the tests may have zero or
more requirements from the finite set R = {r1, r2, . . . , rn}. For a test T ∈ T ,
f(T) ⊆ R denotes the (possibly empty) set of requirements of the test T .

Each test and each requirement has a cost associated with it. More formally,
for the set of requirements R and the set of tests T , cost functions cR : R → R
and cT : T → R are defined. When the user decides to perform a test, she
must pay the cost of the test itself plus the costs of all of its requirements. If
a requirement is used by more tests, the user has to pay for it only once. Return
to our medical example: for the tests of hemoglobin, glucose and cholesterol,
the common requirement would be to take the blood sample from the patient.
While the doctor may pay a price for each of these tests, she only needs to take
the blood once.

The goal of the generalized test-cost sensitive classification is to optimize
the expected total cost of misclassification, requirements and tests. In our sce-
nario, the solution is a strategy π that for a given sample x successively advises,
which test (and its requirements) to perform next and which tests and their
requirements to omit, depending on the tests already performed and on their
results. The decision to perform or to skip a test influences the expected total
cost of tests cT (x, π) and the expected total cost of requirements cR(x, π). In
the end, after the user performs all the chosen tests and knows their results,
π advises the final class sπ ∈ S with the expected misclassification cost c(sπ|x).
The goal is to find a strategy π that for a sample x minimizes the expected value
of

c(sπ|x) + cT (x, π) + cR(x, π). (4)

The expected overall cost of the optimal strategy over the distribution of samples
Dx is then

E
[
min
π

(c(sπ |x) + cT (x, π) + cR(x, π))
]
Dx

. (5)

3 Related Work

While most classification algorithms treat all misclassification errors the same
and they do not consider test or requirement costs, cost-sensitive learning has
a long history of its own. The basic principles were described by Elkan [4], who
also gives theoretical foundations for the field.

Currently, there are two major trends in cost-sensitive learning, based on
the costs considered: a) misclassification cost only, b) test cost (feature cost,
attribute cost). Several methods optimize the (non-uniform) misclassification
costs alone [3,18,19]. Other works [15,17] treat the attribute costs alone. Few ap-
proaches [2,7,13,21] consider both misclassification cost and test cost. Contrary
to our more general definition of tests and their costs, the previous test-cost sen-
sitive methods assume that samples are tuples of attributes and the test costs
are then incurred by obtaining the attribute values. These works introduce var-
ious test-strategies as processes of obtaining unknown attribute values at a cost
when classifying samples [16].

628 J. Iša, Z. Reitermanová, and O. Sýkora

Some test-cost sensitive methods adopt an optimal search test-strategy to
solve the test-cost sensitive learning problem, however with high computational
costs – using Markov Decision Process (MDP) [21], or PAC-learning framework
[7]. Other methods adopt effective local search algorithms in their test-strategies.
They are mostly based on the model of Decision trees [13,12,16,20] or are approx-
imative versions of the exact methods [21]; an exception is Test-cost Sensitive
Naive Bayes (TCSNB) [2] that extends the Naive Bayes classifier.

Our method is, similarly to TCSNB [2], based on the Bayesian theory, but
it adopts an optimal search strategy. Contrary to the MDP-based optimal test
strategy [21], CS-UID offers a more effective, yet optimal, search [9]. Moreover,
contrary to existing test-cost sensitive methods, CS-UID solves a more general
and enhanced problem (as defined in Section 2): a) The test costs in our case are
not necessarily the costs of obtaining attribute values – our concept of test costs
is much more general (see our medical example in Section 1); b) we consider also
requirement costs.

4 Proposed Method

In this section, the CS-UID algorithm for generalized cost-sensitive classifica-
tion is described. To solve a given generalized test-cost sensitive classification
problem, we first encode the problem as an UID. This UID can be solved using
existing solvers, such as [8] or [14]. Then, the solution of the UID is used to build
a classifier for the classification problem.

4.1 Unconstrained Influence Diagrams

Unconstrained Influence Diagrams [10] are a graphical computational model
developed for decision making under uncertainty. They combine the Bayesian
probability inference with calculating the optimal decisions. They extend the In-
fluence Diagrams [11] to deal with problems where the ordering of the decisions
is unspecified. Instead, searching for the optimal ordering is an integral part of
the solution.

An UID is a directed acyclic graph (DAG) over decision, chance, and utility
variables (see Figure 1 for an example). There are two types of chance variables:
observables and non-observables. Each variable has a finite set of its possible val-
ues. An edge into a decision variable represents informational precedence; an edge
into a chance variable represents causal influence; an edge into a utility variable
represents functional dependence. The utility variables have no children. For
each chance variable, there is a conditional probability table, while for each util-
ity (or decision) variable, there is a utility table. The goal of the UID model is to
find the best linear ordering of actions (corresponding to the decision variables)
and the best options of the decisions with respect to the given observations and
probabilistic assumptions. This linear ordering must extend the partial temporal
ordering given by the UID.

Cost-Sensitive Classification with Unconstrained Influence Diagrams 629

O1D1

O2D2

O3D3

OmDm

R U

DC

U2

U1

Un

Inference block

Fig. 1. The schema of the UID for cost-sensitive classification with independent test
outcomes, using the notation proposed by Jensen and Vomlelová [10]. Node R repre-
sents the real final class of the sample, which is not directly observable, DC is the de-
cision which final class to assign the sample to, U represents utility coming from the
misclassification costs. The value of U functionally depends on the real final class and
on the final class selected by the classifier. Nodes D1, . . . , Dm are decisions whether to
perform or to skip the corresponding tests T1, . . . , Tm. Variables O1, . . . , Om represent
results of the tests T1, . . . , Tm. The test results depend conditionally on the decision
whether to perform the corresponding test, and on the real class R. Utilities U1, . . . , Un

represent the costs of requirements and depend only on the decisions corresponding to
tests that have these requirements.

4.2 Classification UID

Let the generalized test-cost sensitive classification problem be specified as de-
scribed in Section 2. For clarity, we will first describe the method for the case,
where the probabilities P (sT |s) are conditionally independent. The case where
the outcomes of the tests are not independent given the final class will be dis-
cussed later in the section.

The problem can be encoded in an UID. Structure of such UID is shown on
Figure 1, and, using the notation X [x1, . . . , xk] for a variable X with values
x1, . . . xk, it contains exactly the following elements:

– A non-observable chance variable R[s1, . . . , sk] that encodes the real final
class. We define the probability P (R = si) = P (si) for each class si ∈ S.

– A decision variable DC [s1, . . . , sk] used to select the final class. It represents
the final class reported by the model. The utility U(DC) associated with DC

is zero.
– A utility node U that functionally depends on the values of R and DC .

The node U encodes the misclassification costs: U(R = sr, DC = sd) = −cdr,

630 J. Iša, Z. Reitermanová, and O. Sýkora

where cdr is the cost of reporting the final class sd when the real final class
is sr.

– For each test T ∈ T , there is a decision node DT [Perform , Skip], and
an observable chance node OT [ST ∪ {Unknown}]. Variable DT represents
the decision to perform or to skip the test T , and its cost cT (T). The cor-
responding utility table U(DT) contains the values U(DT = Skip) = 0,
U(DT = Perform) = −cT (T).
Variable OT encodes the information whether the test T was performed and
eventually the class reported by T . The value of OT depends conditionally
on DT and R. The probability table associated with OT is P (OT |R,DT), its
values are defined by the following equations for all s ∈ S, sT ∈ ST :

P (Unknown|s,Skip) = 1, (6)

P (Unknown|s,Perform) = 0, (7)

P (sT |s,Perform) = P (sT |s), (8)

P (sT |s,Skip) = 0, (9)

where P (sT |s) is the conditional probability of T reporting sT given the real
final class is s.

– For each requirement r ∈ R, there is a utility node Ur, which encodes r and
its cost cR(r). The value of Ur depends functionally on exactly all decision
nodes DT such that r ∈ f(T); it is equal to 0 if the value of all such decisions
is Skip; otherwise, the value of Ur is −cR(r).

4.3 Classification of Samples

A solution of an UID u is a step-strategy π that tells what decision should be
made next, and which value to assign to the decision variable. A state σ of UID
u is a set of assignments of values to variables in u. Let π be a step-strategy
for the UID u. For a state σ, π(σ) returns a pair (D, v), where D is a decision
variable in u that does not have a value assigned in σ, and v is a value that
should be assigned to D.

After adding D = v to σ to form a new state σ′, observable chance variables
that only depend on D and on variables that were already assigned a value in σ
will become available. For simplicity, we assume that the values of these variables
are immediately observed and added to σ′.

Given a classification UID u, there are two types of decision nodes. First,
there are m decision nodes DT corresponding to the m tests T1, T2, . . . , Tm.
Then, there is the decision node DC for determining the final class of the sam-
ple. In such setting, a step-strategy π in a state σ either says that a test T ,
that was not considered until now, should be performed or skipped by return-
ing (DT ,Perform) or (DT , Skip), or determines the final class s of the sample
by returning (DC , s). Algorithm 1 shows the pseudo-code of the classification
algorithm.

Cost-Sensitive Classification with Unconstrained Influence Diagrams 631

Algorithm 1. Classification with CS-UID

Input: UID u that encodes the classification problem, a sample x
Output: The final class s for the sample x

1: Solve u, yield a strategy π
2: σ ← ∅
3: loop
4: (D, v)← π(σ)
5: σ ← σ ∪ {(D, v)}
6: if D is a decision variable DT for test T then
7: if v = Perform then
8: Perform test T on x, observe its outcome o
9: σ ← σ ∪ {(OT , o)}
10: else
11: σ ← σ ∪ {(OT ,Unknown)}
12: end if
13: else {D is the final decision DC , v is the final class}
14: Return v as the final class of x
15: end if
16: end loop

4.4 Full-Powered Bayesian Inference

The schema on Figure 1 shows the simpler case of CS-UID, where the outcomes
of the tests are conditionally independent given the final class. This condition is
rarely fully satisfied in real-world applications, which can influence the quality
of the achieved results – they may become non-optimal.

In the general case, the “Inference block” on Figure 1 can be replaced by a full-
featured Bayesian network designed for the particular classification problem. In
such case, an exact UID solver finds an optiomal solution of the problem.

4.5 Remarks

To use the CS-UID method, an UID solver is needed. Currently, there are two
types of UID solvers: exact methods [10] and approximative or anytime methods
[1,6]. The exact methods are able to find an optimal strategy, but with high
computational costs [8,9]. The approximative or anytime methods are generally
faster, but the optimality of the solution is not granted.

For the experiments conducted in this paper, we have used the solution
method proposed by Jensen and Vomlelová [10] as implemented by Iša, et al. [8].
This method is an exact solution method that calculates the optimal strategy. It
follows from the UID solving algorithm, that the classification decision (the vari-
able DC) will always be made after all tests are considered. Moreover, the final
class is for the simpler CS-UID determined the same way as when applying
the Naive Bayes classifier to the results of the tests that were performed.

In the case of zero requirement costs, this property makes the simpler CS-UID
remarkably similar to TCSNB [2], but these methods do not advise the same

632 J. Iša, Z. Reitermanová, and O. Sýkora

Table 1. Datasets used for the experiments

Dataset Classes Attributes Samples

balance-scale 3 4 625
car 4 6 1,728
hayes-roth 3 4 160
monks-1 2 6 432
monks-2 2 6 432
monks-3 2 6 432
nursery 5 8 12,960

tests to be performed: TCSNB employs a greedy search strategy, while CS-UID
uses a complex search strategy that considers possible outcomes of all tests.
For illustration, consider a classification problem with four equiprobable final
classes s1, s2, s3, s4, and tests T1, T2, cT (T1) = cT (T2) = 10, cij = 36 for i �= j.
Each test classifies samples into two classes t, f. The test T1 returns t, if the
real class is one of s1 or s2, otherwise it returns f ; T2 returns t, if the real class
is one of s1 or s3, otherwise it returns f. By using both tests, the real class
can be determined correctly with cost 20 for any sample. This is the optimal
strategy and it is the solution CS-UID comes up with. When only one of the
tests T1, T2 is used, the probability of misclassification is 1

2 and expected overall
cost is 10 + 36 ∗ 1

2 = 28; when none of the tests is used, the probability of
misclassification is 3

4 and expected overall cost is 36 ∗ 3
4 = 27. TCSNB will

decide to perform no test.

5 Experiments

The goal of our experiments is to evaluate the performance of the CS-UID
method, assess its behavior on real-world datasets and compare it to the per-
formance of TCSNB [2]. Comparison between CS-UID and the MDP approach
[21] was not performed, because:

1. both models are equivalent and thus provide solutions that have the same
expected cost,

2. when m is the number of tests, the exact AO-tree used in [21] requires O(m!)
leaves, while an exact UID solver only requires O(m2m) nodes [9].

Seven publicly available datasets from the UCI Machine Learning Repository [5]
were employed: These datasets are widely used as benchmarks for the uniform-
cost classification. However, they lack information needed for the cost-sensitive
classification. They provide neither the misclassification costs, nor the costs of
tests and requirements. To deal with the issue, we extended the approach used
by Domingos [3] and generated the costs and the requirements stochastically. To
obtain reproducible results, we preferred generated costs on the public datasets
over proprietary data.

Cost-Sensitive Classification with Unconstrained Influence Diagrams 633

Domingos [3] distinguishes two types of misclassification costs: a) uniform
– the misclassification costs do not depend on the class probabilities, b) pro-
portional – misclassifying a rare class (e.g. a serious disease as “healthy”) is
penalized strongly. In the uniform case, the misclassification costs are gener-
ated randomly from the uniform distribution in the [0; 1, 000] interval. The costs
of correct classification cii are kept at 0.0. In the proportional case, the mis-
classification costs of labeling a sample as sj instead of si (for i �= j) come

from the uniform distribution in the
[
0; 1, 000 ∗ P (sj)

P (si)

]
interval. P (sk) denotes

prior probability of class sk ∈ S. 1

For the experiments, we take the discrete attributes in the datasets for test
outputs – each attribute serves as an outcome of one test. Because there exist no
requirements for these tests, we created a set of ten (arbitrary number) artificial
requirements. Every test needs each of the requirements with a fixed (arbitrary)
probability of 0.1. This way we obtained requirements shared among the tests.
The costs of tests and requirements are generated from the [0; 10] interval uni-
formly.

We distinguish three levels of cost-sensitive classification: a) zero – zero costs
of tests and requirements, non-zero misclassification costs, b) zero-requirements –
zero costs of requirements, non-zero costs of tests and non-zero misclassification
costs, c) non-zero – all costs non-zero. The two types of misclassification costs
together with three misclassification levels give us six different setups.

We performed the experiments using the non-optimal simplified schema of
CS-UID, as described in Section 4.2. This models real-world situations, in which
no domain experties is available. Moreover, it is similar to typical applications
of the Naive Bayesian classifier – the solution they obtain is not optimal, but
often works well in practice.

For the experiments, we had to extend the TCSNB algorithm to take costs
of requirements into account – the algorithm described by Chai, et al. [2] con-
siders only test costs. We extended the algorithm in such a way, that when
considering a test, the cost of that test includes costs of all its requirements that
were not paid for yet. In case of zero requirement costs, this algorithm degrades
exactly to the algorithm described by Chai, et al. [2].

The reported results come from a 10-fold cross-validation. To restrict the in-
fluence of randomly generated costs, the costs were generated with twenty dif-
ferent seeds for every dataset and the results are averaged over these twenty
runs. The varying costs cause a large variance in the results over the ten folds
and twenty cost variants. To verify the significance of the comparisons, a paired
Wilcoxon test is used – the total classification costs for each individual sample
are compared one by one. The significantly better results (with 0.95 confidence)
are printed in bold in the tables with the results.

1 The nursery dataset contains one class, which appears only at two samples
out of the total 12961. Its extremely low prior causes extremely large penalties
for the misclassification of these two samples. Consecutively, the correct decision
would be to classify all samples to this rare class to avoid the penalties. We removed
the two samples to obtain a richer environment.

634 J. Iša, Z. Reitermanová, and O. Sýkora

Table 2. Average cost in the zero::uniform and zero::proportional setups. Significantly
better results are printed in bold.

Setup zero::uniform zero::proportional
Dataset CS-UID TCSNB CS-UID TCSNB

balance-scale 67.23 75.68 94.98 101.71
car 56.89 63.23 16.13 16.45
hayes-roth 83.26 84.49 84.15 92.94
monks-1 105.36 105.12 104.97 104.78
monks-2 151.36 143.48 141.33 142.49
monks-3 15.43 15.46 15.26 15.34
nursery 43.61 47.27 18.02 18.56

Table 3. Average cost in the zero-requirements::uniform and zero-requirements::
proportional setups. Significantly better results are printed in bold.

Setup zero-req.::uniform zero-req.::prop.
Dataset CS-UID TCSNB CS-UID TCSNB

balance-scale 85.31 98.72 96.04 97.51
car 71.00 96.02 27.62 29.34
hayes-roth 97.06 100.08 96.37 111.07
monks-1 107.95 107.95 107.92 107.92
monks-2 145.52 141.43 145.60 143.44
monks-3 24.25 27.55 24.06 29.45
nursery 58.51 65.02 25.90 26.09

Tables 2, 3 and 4 show the experimental results of CS-UID and TCSNB on all
six setups.

From the Tables 2 and 4 we see that CS-UID mostly outperforms TCSNB
not only in the non-zero setup it was designed for, but also on the other setups.
There are few exemptions of the rule – all regarding the hayes-roth dataset and
the monks-x variants. The monks-x datasets are artificially generated using rules
such as “a1 = a2 or a5 = 1” and such as they are not suited for naive Bayes
classification. Taking mostly costs into account, CS-UID and TCSNB perform
equally weakly. The hayes-roth dataset does not fulfill the assumption of the test
results (i.e. attributes in our experiments) being conditionally independent given
the final class. The exact CS-UID solver we used for the experiments takes all
the future decisions and their impact into account. When the obtained informa-
tion is not independent, the real information gain of performing multiple tests
(and paying for them) does not meet the expectation. Thus CS-UID is willing
to pay for multiple tests, while it does not receive the expected information in
return. Meanwhile, the greedy TCSNB does not even consider such a cumulated
impact of performing multiple tests. This prevents it from paying for the (un-
available) extra information.

Cost-Sensitive Classification with Unconstrained Influence Diagrams 635

Table 4. Average cost in the non-zero::uniform and non-zero::proportional setups.
Significantly better results are printed in bold.

Setup non-zero::uniform non-zero::proportional
Dataset CS-UID TCSNB CS-UID TCSNB

balance-scale 106.12 113.70 81.99 92.87
car 87.31 98.10 38.18 43.24
hayes-roth 116.15 111.65 111.75 114.60
monks-1 114.78 115.76 114.85 114.90
monks-2 144.71 145.70 140.88 140.83
monks-3 36.29 41.14 37.44 38.86
nursery 73.98 77.67 34.42 37.65

The real-world datasets other than hayes-roth reveal, that CS-UID may be
used even in some situations when the tests are not conditionally independent.
This matches a common usage of the Naive Bayes classifier, whose assumptions
are also rarely satisfied, yet it often works very well.

6 Conclusions and Future Work

In this paper, we defined the generalized test-cost sensitive classification prob-
lem, and we proposed CS-UID – a new method to solve it. The method uses
Unconstrained Influence Diagrams as a base for deriving an optimal test strat-
egy. We have described the method in detail for the case where all tests are
conditionally independent. We evaluated performance of the new method on
multiple real-world data sets and compared it with TCSNB [2], an existing test-
cost sensitive classification algorithm. Our experiments revealed that CS-UID
gives good classification results even when the independence condition does not
hold, and it outperforms TCSNB on most data sets.

Due to the time and memory complexity of the used UID solution algorithm
with respect to the number of tests [9], the experiments had to be performed
on datasets with a limited amount of attributes (“tests”). If a larger problem
needs to be dealt with, either a more advanced hardware and more time needs
to be given to the solver, or an approximate or even any-time solver needs to be
used.

References

1. Ahlmann-Ohlsen, K.S., Jensen, F.V., Nielsen, T.D., Pedersen, O., Vomlelová, M.:
A Comparison of two Approaches for Solving Unconstrained Influence Diagrams.
Int. J. of Approximate Reasoning 50(1), 153–173 (2009)

2. Chai, X., Deng, L., Yang, Q., Ling, C.X.: Test-Cost Sensitive Naive Bayes Classi-
fication. In: IEEE Int. Conf. on Data Mining, pp. 51–58 (2004)

636 J. Iša, Z. Reitermanová, and O. Sýkora

3. Domingos, P.: MetaCost: A General Method for Making Classifiers Cost-Sensitive.
In: Proc. 5th Int. Conf. on Knowledge Discovery and Data Mining, pp. 155–164
(1999)

4. Elkan, C.: The Foundations of Cost-Sensitive Learning. In: Proc. 17th Int. Joint
Conf. on Artificial Intelligence, pp. 973–978 (2001)

5. Frank, A., Asuncion, A.: UCI machine learning repository (2010),
http://archive.ics.uci.edu/ml

6. Fried, V.: Approximate solution of Unconstrained influence diagrams. Master’s
thesis, Fac. of Math. and Phys., Charles Univ., Prague, Czech Republic (2006)

7. Greiner, R., Grove, A.J., Roth, D.: Learning Cost-sensitive Active Classifiers. Ar-
tificial Intelligence 139(2), 137–174 (2002)

8. Iša, J., Lisý, V., Reitermanová, Z., Sýkora, O.: Unconstrained Influence Diagram
Solver: Guido. In: Proc. 19th IEEE Int. Conf. on Tools with Artificial Intelligence,
vol. 1, pp. 24–27. IEEE Computer Society, Washington, DC, USA (2007)

9. Iša, J., Reitermanová, Z., Sýkora, O.: On the Complexity of General Solution
DAGs. In: Proc. 8th IEEE Int. Conf. on Machine Learning and Applications,
pp. 673–678 (2009)

10. Jensen, F., Vomlelová, M.: Unconstrained Influence Diagrams. In: Proc. 18th Annu.
Conf. on Uncertainty in Artificial Intelligence, pp. 234–241. Morgan Kaufmann,
Edmonton (2002)

11. Jensen, F.V., Graven-Nielsen, T.: Bayesian Networks and Decision Graphs. Infor-
mation Science and Statistics. Springer, New York (2007)

12. Ling, C.X., Sheng, V.S., Yang, Q.: Test Strategies for Cost-Sensitive Decision Trees.
IEEE Trans. on Knowledge Data Engineering 18(8), 1055–1067 (2006)

13. Ling, C.X., Yang, Q., Wang, J., Zhang, S.: Decision Trees with Minimal Costs. In:
Proc. 21st Int. Conf. on Machine Learning, pp. 4–8. Morgan Kaufmann (2004)

14. Luque, M., Nielsen, T.D., Jensen, F.V.: An Anytime Algorithm for Evaluating Un-
constrained Influence Diagrams. In: Proc. 4th European Workshop on Probabilistic
Graphical Models, Hirtshals, Denmark, pp. 177–184 (2008)

15. Núñez, M.: The Use of Background Knowledge in Decision Tree Induction. Machine
Learning 6, 231–250 (1991)

16. Sheng, V.S., Ling, C.X., Ni, A., Zhang, S.: Cost-Sensitive Test Strategies. In: Proc.
21st Nat. Conf. on Artificial Intelligence, pp. 482–487. AAAI Press (2006)

17. Tan, M.: Cost-Sensitive Learning of Classification Knowledge and Its Applications
in Robotics. Machine Learning 13, 7–33 (1993)

18. Ting, K.M.: Inducing Cost-Sensitive Trees via Instance Weighting. In: Proc.
2nd European Symposium Principles of Data Mining and Knowledge Discovery,
pp. 139–147 (1998)

19. Ting, K.M.: An Instance-Weighting Method to Induce Cost-Sensitive Trees. IEEE
Trans. on Knowledge Data Engineering 14(3), 659–665 (2002)

20. Turney, P.D.: Cost-Sensitive Classification: Empirical Evaluation of a Hybrid Ge-
netic Decision Tree Induction Algorithm. Journal of Artificial Intelligence Research,
369–409 (1995)

21. Zubek, V.B., Dietterich, T.G.: Integrating learning from examples into the search
for diagnostic policies. Journal of Artificial Intelligence Research 24, 263–303 (2005)

http://archive.ics.uci.edu/ml

Modeling and Predicting Students Problem

Solving Times�

Petr Jarušek and Radek Pelánek

Faculty of Informatics, Masaryk University Brno

Abstract. Artificial intelligence and data mining techniques offer a
chance to make education tailored to every student. One of possible
contributions of automated techniques is a selection of suitable problems
for individual students based on previously collected data. To achieve
this goal, we propose a model of problem solving times, which predicts
how much time will a particular student need to solve a given problem.
Our model is an analogy of the models used in the item response theory,
but instead of probability of a correct answer, we model problem solving
time. We also introduce a web-based problem solving tutor, which uses
the model to make adaptive predictions and recommends problems of
suitable difficulty. The system already collected extensive data on human
problem solving. Using this dataset we evaluate the model and discuss
an insight gained by an analysis of model parameters.

1 Introduction

Problem solving is an important component of education. To make problem
solving activities attractive, it is important to confront students with problems of
suitable difficulty – neither too easy, nor too difficult (see the flow concept [3,4]).
Since students vary in their skills, it is crucial to make problem recommendations
individually adaptive.

Our main aim in this paper is to predict a difficulty of problems, more specif-
ically to predict a time it will take a student to solve a problem. We aim to
do the prediction based on previous data about problem solving activity of this
and other students. To this end we model a relation between a problem solving
ability and a time to solve a problem. As a concrete application of the proposed
model we develop a problem solving tutor – an online application for enhanced
learning.

To make our setting clear, we describe one of the problems that we use in our
tutoring application (and also in evaluation in this paper). The goal of the prob-
lem “Graphs and functions” (see Fig. 1) is to identify a formula for describing a
function, which is specified by its graph. As a tool for solving students may use
interactive graph drawing facility which plots their attempts to the graph1. By
solving these puzzles students train their ability to visualize math functions and
deduct formulas from visualizations.
� This work is supported by GAČR grant No. P202/10/0334.
1 The reader can try the problem at tutor.fi.muni.cz

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 637–648, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

638 P. Jarušek and R. Pelánek

Fig. 1. Three instances of the problem “Graphs and functions” and their solutions.
Note that a title is sometimes used to give students a hint.

Our work is related to four research areas, but has significant differences from
each of them. Item response theory (IRT) [2,5] is used particularly for comput-
erized adaptive testing (i.e., for measuring student latent ability). IRT considers
tests where each question (item) has several possible answers. IRT models give
relation between student ability and a probability of a correct answer. Our model
is directly inspired by IRT, but there is an important difference. The IRT focuses
on tests with correct and incorrect answers, whereas we study problem solving
and measure a time to solve a problem (as illustrated above on the “Graphs and
functions” problem). The most relevant aspect of IRT are models of response
times [15,16] (which are discussed in more detail in Section 2.3). Unlike IRT
which is primarily applied for adaptive testing, we are interested in intelligent
tutoring.

Intelligent tutoring systems [1] are computer programs used to make learning
process more adaptive and student oriented. They provide background infor-
mation, problems to solve, hints, and learning progress feedback. Well known
example of an intelligent tutoring system is a system for teaching algebra [9,8].
Tutoring systems usually have static structure which is determined by an expert
in a particular domain. Our system is dynamic and recommends problems based
on collected problem solving data. Most research on tutoring systems focuses on
the “inner loop” (how to give hints about a problem), we focus solely on the
“outer loop” (how to dynamically order problems) [17].

Recommendation systems [7] are used mainly in e-commerce. These systems
recommend to users products that may be interesting for them (e.g., books on
Amazon, films on Netflix). One of the approaches to recommendation – col-
laborative filtering – is based on the use of data on user behaviour. With this
approach a recommender system at the same time collects data and uses these
data to make predictions and recommendation. We build our system in the same
way, although we are not interested in recommending products, but problems of
suitable difficulty. This approach is in contrast with the mainly linear approach
(collect data, calibrate models, use models) used in IRT and in education in
general.

Research in human problem solving [14] so far focused mainly on analysis and
computational modeling of human problem solving for a particular problem, e.g.,

Modeling and Predicting Students Problem Solving Times 639

Tower of Hanoi [10], Chinese ring puzzle [11], Fifteen puzzle [13], Sokoban [6],
Sudoku [12]. This research provides insight into problem difficulty, but the insight
is usually closely tied to a particular problem.

We combine principles from the above mentioned areas in the following way.
We build tutor for practising problem solving which recommends users problems
of suitable difficulty, based on the previously collected data and using a novel
model, which is a variation on models used in the item response theory.

Our specific contributions are the following. We propose a general setting
for modeling problem solving times and three specific models. For these models
we discuss methods for parameter estimation and provide evaluation on large
problem solving data. We also present direct application of the model – a problem
solving tutor (tutor.fi.muni.cz).

2 Modeling Problem Solving Times

In this section we describe our approach to modeling problem solving times. It is
analogical to models used in the item response theory, but instead of modeling
probability of a correct answer, we model a time to solve a problem.

2.1 Summary of Item Response Theory

We start by summarising main principles of the item response theory. We focus
only on aspects relevant to our model and we provide simplified description of the
theory. The item response theory is a tool for designing, analyzing, and scoring
tests, questionnaires, and similar instruments that measure abilities [2]. One of
its main applications is computerized adaptive testing – selection of questions
in test is done dynamically based on answers of a student.

Main assumption of IRT is that a given test measures one latent ability θ. IRT
models response to one item (test question) as a relation between this ability θ
and probability P that the item is correctly answered (basic models consider only
dichotomous questions). This relation is expressed by an item response function.
The basic model in IRT is 3 parameter logistic model (see also Fig. 2):

Pa,b,c,θ = c+ (1− c)
ea(θ−b)

1 + ea(θ−b)

This model has three parameters: b is the basic difficulty of the item, a is
the discrimination factor (slope of the curve, how well the item discriminates
based on ability), and c is the pseudo-guessing parameter (lower limit of the
curve, probability that even a student with very low ability will guess the correct
answer). Other two often used models are derived from this model by fixing
values of some parameters: a two parameter logistic model (c = 0) and a one
parameter logistic model (c = 0, a = 1).

To apply these models, it is necessary to estimate values of their parameters.
Since we do not know neither the item parameters (a, b, c), nor student’s abilities
(θ), we need to estimate both of these at the same time. This is usually done

640 P. Jarušek and R. Pelánek

Fig. 2. Intuitive illustration of item response function, general problem response func-
tion, and a specific problem response function under our assumptions. Dashed lines
illustrate distributions at certain points; solid lines denotes the median of a time dis-
tribution, grey areas depict the area into which most attempts should fall.

by joint maximum likelihood estimation, which proceeds by repeating two steps:
estimating abilities from item parameters and estimating item parameters from
abilities. These steps are repeated until parameter values converge.

An important feature of IRT models is group invariance – item parameters do
not depend on a subset of students which answered the item, i.e., even if some
item is answered only by above-average students, the estimated item parameters
should be similar as if the item was answered by a representative subset of
students.

2.2 Problem Solving Times

There are many extensions of the basic IRT models, e.g., models for items with
polytomous answers or models which take into account response times. But none
of these models is directly applicable to the problem solving setting. We propose
a model, which relates problem solving ability and a time to solve a problem. At
the moment we study only students time to solve a problem and not a quality
of solutions (i.e., the current theory is applicable only to well-structured prob-
lems with easily verifiable solutions like the “Graphs and Functions” problem in
Fig. 1).

The basic principles are analogical to the above mentioned principles of IRT.
Similarly to IRT, we assume that a problem solving performance depends on
one latent problem solving ability θ. We are interested in “problem response
function” f(θ), which for a given ability θ gives an estimate of a time to solve
a problem. More specifically, the function gives a probabilistic density of times.
Fig. 2 gives a comparison of basic setting of IRT and our model.

2.3 Specific Assumptions and Model

To obtain a specific model we make the following two assumptions. First, the
distribution of solving times f(θ) for students with a fixed ability θ is a log-
normal distribution. Second, the mean and variance of the distribution f(θ)
are exponentially dependent on θ (this dependency can be, of course, changed

Modeling and Predicting Students Problem Solving Times 641

Fig. 3. Examples of different problem types and their modeling using the 3 parameter
model. See Fig. 6 for specific examples.

by rescaling θ; we implicitly assume that problem solving ability is normally
distributed in the population).

These assumptions are grounded on our data about human problem solving
from our previous experiments [6,12] and on experience in modeling response
times in IRT [16]. Moreover, the assumptions lead to a tractable model with
nice properties – by using logarithm of time we obtain linear relationship and
normal distributions.

Based on these assumptions, we can now specify a concrete model. Our basic
model is a 3 parameter model in which the intuitive meaning of the parameters
is the following (we intentionally use notation analogical to IRT): discrimination
factor a, basic difficulty of the problem b, randomness factor c.

The problem response function, i.e., the probability that a student with abil-
ity θ will solve a problem at a logarithm of time t, is given by a normal distri-
bution with a mean b + aθ and a variance c2. Thus we have:

fa,b,c,θ(ln t) = N (aθ + b, c)(ln t) =
1√
2πc

e−
(ln t−(aθ+b))2

2c2

This model and intuition behind its parameters are illustrated in Fig. 2. Dis-
crimination factor a describes the slope of the function, i.e., it specifies how the
problem distinguishes between students with different ability. Basic difficulty
describes expected solving time for student with average ability. Randomness
factor describes variance in solving times for particular ability. The model is
relatively simple, yet it can capture different aspect of problem difficulty and
their combinations (see Fig. 3).

The presented model is not yet identified as it suffers from the “indeterminacy
of the scale” issue in the same way as the basic IRT model, e.g., we can multiply θ
and divide a by k without any effect on the model. Thus we further require the
following normalization – for a set of problem parameters bi, ai, ci and student
parameters θj , we require that the mean of θj is 0, the mean of ai is -1.

Similarly to IRT, we can also use simplified models. A two parameter model
is obtained by using a constant randomness factor k, a one parameter model is
obtained by using constant randomness and discrimination factors:

fai,bi,θ(ln t) = N (bi + aiθ, k)(ln t) fbi,θ(ln t) = N (bi − θ, k)(ln t)

642 P. Jarušek and R. Pelánek

Fig. 4. If a problem is solved by above-average persons, the mean time underestimates
the difficulty of a problem, whereas our model can capture it correctly

Our model is similar to van der Linden’s model for response times in IRT [15].
There are two main differences. First, he uses the model in a context of testing,
where the timing information is just supplementary to information about cor-
rectness of an answer, whereas in our case timing is the main focus. Second, his
model has just two parameters (basic difficulty and randomness).

2.4 Group Invariance

An important feature of the approach is that the models are group invariant
(analogically to IRT), i.e., parameters of a problem do not depend on a subgroup
of students which solve the problem.

Let us explain this important feature by comparing our 1 parameter model to
the baseline metric of a problem difficulty – the mean time to solve the problem
(Fig. 4). In both cases the problem difficulty is captured by one number – by
difficulty parameter b in our model or by the mean m. If we have a set of
problems, then it typically happens that harder problems are solved only by
students with above-average ability. In this case the mean time underestimates
the real difficulty of the problem, whereas our mode is not biased by the selection
of students.

3 Parameter Estimation

Since we do not know neither parameters of problems, nor parameters of stu-
dents, we need to estimate them. To compute these estimates we use data of
the following type: problem i was solved by a student j in time tij . From these
data we need to estimate both problem parameters ai, bi, ci and student param-
eters θj .

One way to do this is to apply a generic data-fitting method like non-linear
least squares directly on the model and to use existing software implementa-
tions to compute estimates. Here we discuss an alternative iterative approach
which is analogical to the joint maximum likelihood calculation in IRT. Advan-
tage of the iterative approach is that it computes estimates for each student
(problem) separately from others, so it is possible to update estimates locally
without recomputing the whole set of parameters – this is a useful feature for the

Modeling and Predicting Students Problem Solving Times 643

application of the approach in our problem solving tutor, which needs to make
prediction in realtime. Moreover, the iterative approach gives better insight into
the computation.

3.1 Estimating Ability

Suppose that a student solved n problems, where i-th problem has parameters
ai, bi, ci and was solved in time ti. Based on these data we want to estimate
the ability θ of the student. We do this by finding a maximal likelihood θ. The
likelihood of the observed times t1, . . . , tn given our 3 parameter model is:

L =
n∏

i=1

fai,bi,ci,θ(ln ti) = k
n∏

i=1

1

ci
e
− (ln ti−(bi+aiθ))

2

2c2
i

We need to find the value of θ such that L is maximized. As is usual, we
proceed by finding maximum of lnL (which is the same as maximum of L):

lnL = k +
n∑

i=1

ln
1

ci
+

1

2c2i
(a2i θ

2 + 2aiθ(ln ti − bi) + (ln ti − bi)
2)

Since this is a quadratic function in θ, we can find maximum by finding the
value of θ for which the derivation is zero:

lnL

∂θ
=

n∑
i=1

θ
a2i
c2i

+
ai
c2i
(ln ti − bi) = 0 θ =

∑n
i=1

a2
i

c2i

ln ti−bi
ai∑n

i=1
a2
i

c2i

The resulting expression for θ has a clear intuitive interpretation. The expres-
sion (ln ti − bi)/ai is a local estimate of ability for i-th problem – it is the value
of θ for which the expected logarithm of time is ln ti. The overall estimate of
θ is obtained as a weighted average of these local estimates, where the weight
is given by the expression a2i /c

2
i , i.e., the more discriminating and less random

a problem is, the more weight it gets (which is exactly what one would intu-
itively expect). For the one parameter model model this expression simplifies to
θ = (

∑n
i=1 bi − ln ti)/n.

3.2 Estimating Problem Parameters

Suppose that a problem was solved by n students, where j-th student has ability
θj and solved the problem in time tj . Now we want to estimate problem param-
eters a, b, c. Maximal likelihood estimates can be found by a regression analysis.
For the two and three parameter models we can use standard linear regression
(least square method), because for our model (linear dependence with normally
distributed errors) the least square method gives maximal likelihood estimation.
Parameter c is then estimated from error residuals.

For the one parameter model we are looking for linear regression line with
a fixed slope a = −1, thus we need to minimize the following sum of squares:∑n

j=1(ln tj − (b − θj))
2. This is a quadratic function with a minimum at b =

(
∑n

j=1 ln tj + θj)/n.

644 P. Jarušek and R. Pelánek

3.3 Joint Estimation

So far we assumed that either abilities are known exactly and we estimate prob-
lem parameters, or that problem parameters are known exactly and we estimate
student ability. In reality, of course, we do not known exactly neither student
abilities nor problem parameters. We compute their estimates by an iterative
bootstraping process:

1. initialization: for each problem i, set problem parameters as follows: ai = −1,
bi = mean time, ci = k,

2. repeat until a selected convergence criterion is satisfied:
(a) for each user j update the estimates of θj based on the current problem

parameters,
(b) for each problem i update the estimates of ai, bi, ci based on the current

ability estimates.

Although each of the steps computes maximum likelihood estimates (with re-
spect to fixed input parameters), overall it is only approximation of the joint
maximum likelihood. One of the reasons is that the input parameters in each
step of iteration are only estimates and they differ in their confidence, e.g., for
students which solved more problems we have better estimates of their ability.
However, this aspects is not included in the described computation. This issue
can be (pragmatically) addressed by using weighted least squares for estimating
parameters ai and bi with weight for each student dependent on the number of
solved problems.

4 Application and Evaluation

We apply the model in development of a web portal for tutored problem solving:
a “Problem solving tutor”. In this section we describe the system and provide
evaluation of the model using the collected data.

4.1 Problem Solving Tutor

Problem solving tutor is a free web-based tutoring systems for practicing problem
solving skills; the system is available at tutor.fi.muni.cz. The tutor contains
large set of problems of different types. At the moment the system contains
a math problem, two programming exercises, regular expressions, and 10 logic
puzzles. For each problem type there are between 30 and 80 instances of dif-
ferent difficulty. The system is in active development and we are continuously
adding new problems and collecting more data. Although the system was made
public only recently, it is already used by several high schools and has more than
1 200 registered users who have spent more then 2000 hours solving more than
60 000 problems.

At the moment we focus solely on the “outer loop” of the tutor [17], i.e.,
recommending problem instances of the right difficulty. The inner loop (within a

Modeling and Predicting Students Problem Solving Times 645

selected problem) is currently not present – we just let the users solve a problem,
either they finish or give up; i.e., rather than giving hints we give users different
(simpler) problem to solve.

The following modules provide the core functionality of the system:

– Problem simulators. Simulators provide web interface for solving individual
problems (puzzles).

– Prediction module. Based on the collected data it makes predictions about
solving time for given user.

– Recommendation module. Based on predictions it recommends to a user an
unsolved problem of suitable difficulty. Recommendations are based on the
predicted times and on the session history (e.g., number of recent successes
and failures).

– Feedback module. Based on the collected data it gives a user comparison
with other users; particularly we provide immediate feedback after finishing
problem solving (to support the flow phenomenon [4]).

Our focus at the moment is on the prediction module, which implements the
model described above. The prediction module uses the iterative process for
computing the parameter estimates. It would be computationally expensive to
recompute all parameter estimates after each solved problem. Thus when user j
solves problem instance i we update only parameters ai, bi, ci, θj and only occa-
sionally we run complete update of all parameters (i.e., full run of the iterative
computation).

For every solved problem instance we store not only a final solving time, but
also every performed move. In this way we collect extensive data about human
problem solving. These data may be useful for further analysis of human problem
solving behaviour and more detailed research into problem difficulty (in a similar
way as in our previous research [6,12]).

4.2 Evaluation of Predictions

We have evaluated two approaches for estimating parameters: our implemen-
tation of the iterative estimation process (as described above) and estimation
using a generic non-linear least squares method (using R software). The iterative
computation converges very quickly (for practical use 3 iterations are enough)
and both methods provide very similar results.

Student abilities θ are approximately normally distributed and the relation
between ability and logarithm of time is nearly linear, see Fig. 6. These results
support assumptions on which the model is based (see discussion in Section 2.3).

To evaluate a quality of predictions, we compare predictions based on the one
parameter model with the baseline metric “mean time to solve a problem”. Both
prediction methods were trained using 90% of data and evaluated on the remain-
ing 10% of data. Fig. 5 shows predictions and solving times for the Graphs and
functions problem. Table 1 compares the results using the Spearman correlation
coefficient. We have also evaluated other metrics like the Pearson correlation co-
efficient, root mean square error and mean absolute error, the results are similar.

646 P. Jarušek and R. Pelánek

Table 1. Evaluation of quality of predictions measured by Spearman correlation coef-
ficients

Problem Baseline Model Improvement (%)

Robot Karel 0.45 0.80 77.78
Nurikabe 0.42 0.73 73.81
Regular expressions 0.47 0.73 55.32
Graphs and functions 0.51 0.77 50.98
Slitherlink 0.64 0.84 31.25
Sokoban 0.67 0.80 19.40
Tents puzzle 0.58 0.67 15.52
Robot programming 0.62 0.71 14.52
Tilt maze 0.71 0.78 9.86
Region division 0.52 0.57 9.62
Rush Hour puzzle 0.78 0.84 7.69
Number maze 0.78 0.82 5.13

Fig. 5. Prediction versus real problem solving data: comparison of prediction based on
mean time (left) and on the one parameter model (right)

As the table shows, the model leads to improvement of 5-80% in precision of
the prediction. As expected, the improvement is modest in cases of simple puzzles
which contain a “luck factor” (e.g., mazes), and it is more pronounced for prob-
lems, where problem solving skill plays significant role (pedagogical problems or
more complex logic puzzles like Nurikabe or Slitherlink).

There is no significant difference between quality of predictions based on the
one parameter model and the three parameter model. We suppose that the three
parameter models needs more data to make a difference for predictions. Never-
theless, even with current data the three parameter model brings an additional
insight – as we now illustrate on one of the examples.

4.3 Insight Gained from Parameter Values

Let us illustrate the insight gained from the values of three parameter model on
the problem “Graphs and functions”, which is described in introduction. Fig. 6
shows the collected data and values of model parameters for the three examples
illustrated in Fig. 1. All three problems have similar basic difficulty (parameter
b), but they differ in the other two parameters. The “Logarithm wings” problem

Modeling and Predicting Students Problem Solving Times 647

Fig. 6. “Graphs and functions” problem – three specific examples, for each of them we
provide the collected data and values of parameters of the three parameter model

has small randomness and large discrimination; the “Resonance” problem has
large randomness and small discrimination; and the “Squared and opposite”
problem has small randomness and small discrimination.

These parameters provide a valuable insight, which can be potentially used
for further improving intelligent tutoring systems. Problems with small discrim-
ination and large randomness clearly depend more on luck than on ability and
thus are probably not a very good pedagogical examples (so we may want to
filter out such examples). At the beginning of the problem solving session (when
we do not have a good estimate of student ability), we may prefer problems with
small discrimination (so that we have higher confidence in solving time estima-
tion), later we may prefer problems with higher discrimination (so that we select
problems “tuned” for a particular student).

5 Conclusions and Future Work

We propose a novel variation on the item response theory where we do not focus
on correctness of answers but on the time to solve a problem. Our model is given
by a function which for a problem solving ability gives a probabilistic distribution
of time to solve a problem. We provide a specific model with three parameters
and discuss methods for parameter estimation. We evaluate the model and apply
it in a problem solving tutor, which is already used in education.

This work lays foundations for future work in several directions. First, it
would be useful to extend the model to deal with unfinished attempts (when
a student spends some time trying to solve a problem and then abandons the
problem, we do not include this information in our computation, although it can
plausibly improve our parameter estimates). Second, the problem solving tutor
can be extended by including an inner loop (hints for problem solving), and more
sophisticated recommendations (e.g., using session history). Third, the collected
data could be used to analyse causes of difficulty of particular problems (in a
similar way as in our previous work [6,12]).

648 P. Jarušek and R. Pelánek

References

1. Anderson, J.R., Boyle, C.F., Reiser, B.J.: Intelligent tutoring systems. Sci-
ence 228(4698), 456–462 (1985)

2. Baker, F.B.: The basics of item response theory. University of Wisconsin (2001)
3. Csikszentmihalyi, M.: Beyond boredom and anxiety. Jossey-Bass (1975)
4. Csikszentmihalyi, M.: Flow: The psychology of optimal experience. HarperPeren-

nial, New York (1991)
5. De Ayala, R.J.: The theory and practice of item response theory. The Guilford

Press (2008)
6. Jarušek, P., Pelánek, R.: What determines difficulty of transport puzzles? In: Proc.

of Florida Artificial Intelligence Research Society Conference, FLAIRS (2011)
7. Kantor, P.B., Ricci, F., Rokach, L., Shapira, B.: Recommender systems handbook.

Springer, Heidelberg (2010)
8. Koedinger, K.R., Anderson, J.R., Hadley, W.H., Mark, M.A.: Intelligent tutoring

goes to school in the big city. International Journal of Artificial Intelligence in
Education 8(1), 30–43 (1997)

9. Koedinger, K.R., Corbett, A.T., Ritter, S., Shapiro, L.: Carnegie Learning’s Cog-
nitive Tutor: Summary research results. White paper. Available from Carnegie
Learning Inc., 1200 (2000)

10. Kotovsky, K., Hayes, J.R., Simon, H.A.: Why are some problems hard? Evidence
from tower of Hanoi. Cognitive psychology 17(2), 248–294 (1985)

11. Kotovsky, K., Simon, H.A.: What Makes Some Problems Really Hard: Explorations
in the Problem Space of Difficulty. Cognitive Psychology 22(2), 143–183 (1990)

12. Pelánek, R.: Difficulty rating of sudoku puzzles by a computational model. In: Proc.
of Florida Artificial Intelligence Research Society Conference, FLAIRS (2011)

13. Pizlo, Z., Li, Z.: Solving combinatorial problems: The 15-puzzle. Memory and Cog-
nition 33(6), 1069 (2005)

14. Simon, H.A., Newell, A.: Human problem solving. Prentice-Hall (1972)
15. Van der Linden, W.J.: A lognormal model for response times on test items. Journal

of Educational and Behavioral Statistics 31(2), 181 (2006)
16. Van Der Linden, W.J.: Conceptual issues in response-time modeling. Journal of

Educational Measurement 46(3), 247–272 (2009)
17. Vanlehn, K.: The behavior of tutoring systems. International Journal of Artificial

Intelligence in Education 16(3), 227–265 (2006)

Generic Heuristic Approach to General

Game Playing

Jacek Mańdziuk1 and Maciej Świechowski2

1 Faculty of Mathematics and Information Science,
Warsaw University of Technology, Warsaw, Poland

j.mandziuk@mini.pw.edu.pl
2 Phd Studies at Systems Research Institute,
Polish Academy of Sciences, Warsaw, Poland

m.swiechowski@ibspan.waw.pl

Abstract. General Game Playing (GGP) is a specially designed en-
vironment for creating and testing competitive agents which can play
variety of games. The fundamental motivation is to advance the deve-
lopment of various artificial intelligence methods operating together in
a previously unknown environment. This approach extrapolates better
on real world problems and follows artificial intelligence paradigms bet-
ter than dedicated single-game optimized solutions. This paper presents
a universal method of constructing the heuristic evaluation function for
any game playable within the GGP framework. The algorithm embraces
distinctive discovery of candidate features to be included in the evalua-
tion function and learning their correlations with actions performed by
the players and the game score. Our method integrates well with the
UCT algorithm which is currently the state-of-the-art approach in GGP.

1 Introduction

Computer systems able to play a particular game such as chess or checkers
have always been in the interest of Artificial Intelligence (AI). One of the most
prominent examples is Deep Blue [1] - chess-playing machine which successfully
challenged Garri Kasparov. Such programs, however, are equipped with game
specific knowledge and heavily rely on computational power rather than intel-
ligent behavior. General Game Playing (GGP) represents a new trend in AI
focused on the ability of playing many different games previously unknown to
the playing system. Given the game rules written in the so-called GDL (Game
Description Language) [2] a playing agent takes various actions towards learning
and mastering the game. This includes analysis of the game rules, application of
various learning and searching mechanisms, logic-based reasoning methods, ef-
ficient knowledge representation and many other techniques [3,4,5]. Integration
of all these elements formulates an interesting and challenging research task.
Before playing a game an agent is a Tabula Rasa - no game specific features
should be assumed a priori. GGP took its name from the competition proposed
by Stanford Logic Group in 2005. It is held annually at AAAI (or IJCAI in

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 649–660, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

650 J. Mańdziuk and M. Świechowski

2011) conferences. Playing environment contains central unit called Gamemas-
ter and remote playing agents called Game Players. Game Players communicate
via http protocol with the Gamemaster only whose role is to provide players
with the rules in the GDL, running the game, sending control messages and
receiving responses. Gamemaster also includes its own GDL reasoning mecha-
nism in order to validate legality of the players’ moves and updates the state. If
an agent responded with an illegal move, a random move would be selected for
them. Each agent is then notified about moves performed by other players. The
contest features two timers: a move clock and a start clock. The first one counts
time available for notifying the Gamemaster about selected action and the latter
represents time for preparation before the actual start of the game. Hence, the
start clock defines room for application of various pre-game learning strategies.

1.1 The Class of Considered Games

Any game which is finite, deterministic and synchronous can be played within
GGP framework. The term finite should be understood as finite number of play-
ers and available actions (moves) in any game state and finite number of states.
One distinguished state is marked as initial and at least one as terminal. Each
terminal state has goal values defined for each player. Goal values range from
0 to 100. Due to deterministic nature of the game a state can change only as
a result of performed move and there is no randomness. Players perform moves
simultaneously (synchronously) during the update phase, but turn-based games
can be easily simulated with the use of no-operation moves. In this scenario, for
all players but one players the no-operation move is the only legal move available
for them in the current state.

1.2 Game Description Language

GDL is a formal first-order logic language with the structure strictly following
Datalog [2], which in turn is a subset of Prolog. Terms used in game descriptions
compose sentences that are true in particular states. There are a few distin-
guished keywords which cannot be redefined. As an example a partial listing of
Tic-Tac-Toe game written in GDL is presented below.

(role xplayer) (role oplayer)

(init (cell 1 1 b)) (init (cell 1 2 b))

(init (cell 3 3 b))

(init (control xplayer))

(<= (next (cell ?m ?n x))

(does xplayer (mark ?m ?n))

(true (cell ?m ?n b)))

(<= (next (control oplayer) (true (control xplayer)))

(<= (row ?m ?x)

(true (cell ?m 1 ?x))

Generic Heuristic Approach to General Game Playing 651

(true (cell ?m 2 ?x))

(true (cell ?m 3 ?x)))

(<= (legal ?w (mark ?x ?y))

(true (cell ?x ?y b))

(true (control ?w)))

(<= (legal xplayer noop) (true (control oplayer)))

(<= (goal xplayer 100) (line x))

(<= (goal xplayer 50)

(not (line x))

(not (line o))

(not open))

(<= (goal xplayer 0) (line o))

(<= terminal (line x)) (<= terminal (line o)) (<= terminal (not

open))

[A subset of Tic-Tac-Toe game definition downloaded from Dresden GGP Server [6].]

A complete set of keywords consists of the following elements: role, init, true,
does, next, legal, goal, terminal, distinct. They are used to define the initial state,
legal moves, state update procedure as well as game terminal states and goals
accomplishment. A more detailed description of all keywords can be found in [2].
There are also logical operators available in GDL, such as not, or, and <=. A
special symbol ? is used to make an argument a variable - in this case a set of
symbols satisfying the truth condition is to be calculated. For example: relation
(cell ?m 1 ?x) has two variable arguments (?m ?x) and one constant (1). Negation
and recursion, in restricted form, are both part of the language too.

2 State-of-the-Art

GGP annual competition provides an environment for testing the strength of
game playing algorithms. Last years were dominated by two winning approaches:
CadiaPlayer (2007, 2008) presented in [7] and Ary (2009, 2010) described in
[8]. Both agents rely on performing Monte Carlo simulations (MCS) aimed at
learning the game and incrementally building the game tree. This solution was
inspired by Go playing agents [9]. MCS perform random play from the current
state to the terminal state. The goal value is then obtained and stored in the
current node of the tree. Storing the entire tree in memory using all visited nodes
on simulation paths would quickly exceed the available memory. Therefore, only
one node, representing the first action, is added after a single simulation [7]. The
most popular variant of MCS is known as Upper Confidence Bounds Applied
for Trees (UCT) method [9] which efficiently keeps balance between exploration
and exploitation. As the name suggests, the UCT method is a generalization of
the Upper Confidence Bounds (UCB) [10] which can be used, for example, to
learn the payoff distribution of slot machines in a casino. The goal of UCT is to
perform MCS as wisely as possible taking advantage of the knowledge acquired
so far. In each node the algorithm checks if all possible moves in the associated

652 J. Mańdziuk and M. Świechowski

position have already been tried at least once during simulation (therefore they
possess initial MC estimations). If not, one of the unvisited child nodes is chosen
at random. Otherwise (i.e. in case all successors of the current node have been
visited at least once), the move a* is chosen according to the following rule:

a∗ = arg max
a∈A(s)

{
Q(s, a) + C

√
ln [N(s)]

N(s, a))

}
(1)

where a - is an action; s - the current state; A(s) - a set of actions available
in state s ; Q(s,a) - an evaluation of performing action a in state s ; N(s) - a
number of previous visits of state s; N(s,a) - the number of times an action
has been sampled in state s ; C - a coefficient defining a degree to which the
bonus (second component) should be considered. UCT-based players, such as
the above-mentioned Ary and Cadia build a game tree gradually. Each node
stores the average payoff, obtained by those MCS, in which it was visited on the
path of play. Simulations are not terminated when the start time elapses but
continue through the entire GGP episode. During the actual game, if a player
chooses an action stored in a node, that node becomes a new tree root (i.e.
all higher branches are deleted, because they are not needed anymore). A new
simulation always runs from the current game state. Most of the UCT based
players share the basic idea described above but differ by employing specific
search control mechanism to optimize tree exploration [11].

3 Automatic Construction of the Evaluation Function

One of the potential enhancements of purely simulation-based UCT implementa-
tion is combining it with the use of some kind of evaluation function. Due to wide
variety of GGP games it is hardly (if at all) possible to design such a generally-
applicable function a priori and only tune its coefficients for a particular game.
Despite the above difficulties, several researchers have explored this possibility
and some heuristic approaches to General Game Playing used predefined candi-
dates for the evaluation procedure. ClunePlayer [12] considered mobility, payoff
and termination stability. Fluxplayer [13], harnessed predefined syntactic tem-
plates for common game features like board definition or successor relation. Flux-
player’s heuristic construction mechanism is an extension to the idea derived ear-
lier in [15]. Another noteworthy approach, adopted by OGRE player [16], focuses
mainly on board games. It uses the so-called evaluators. The game structure eval-
uators are distance-initial, distance-to-target, count-pieces and occupied-columns
whereas game definition evaluators are count-moves, depth, exact, pattern and
purse [16]. OGRE came 4-th out of 12 entrants in 2006 competition winning
34% of the matches [17].

Generally speaking, all the above-mentioned methods were geared towards
standard two players board games and, in random environment, they tend to
lose againts UCT-based players. Our approach constructs features that are com-
pletely independent of particular game definition. The key difference is that no

Generic Heuristic Approach to General Game Playing 653

predefined templates are present. Its underpinning idea is related to identifica-
tion of meaningful numbers from the symbol representation. Before going into
details let us introduce database-like vocabulary used to describe the elements
of GDL.

– A row is a complete term in GDL that describes the game fact in a particular
state. By a fact we mean a statement which is true. A row consists of a name
of the fact and its arguments (called symbols).

– A table is a name of the row; in our example it is cell. TableRows are all
rows sharing a common name;

– A column is a set of symbols at a fixed position in rows’ argument lists.

The proposed algorithm for automatic construction of the evaluation function
for a given GGP game consists of three phases: selection, construction and play.

3.1 Selection Phase

The aim of this phase is to select the candidate features for heuristic function.
The main idea is to track cardinality of three kinds of objects:

– For a given table count its rows (TableRows);
– For a given table, column index and symbol count the symbol occurrences

in the corresponding column in the table (ColumnSymbols);
– For a given table, column index and symbol extract the set of rows with the

matching symbol in the corresponding column in a given table (Symbol-
Rows).

The essential part of the algorithm is the way the features are counted. This
issue is described in detail below.

Selection phase - step 1 - parallel simulations. In the first selection phase
TableRows and ColumnSymbols are found. Not all of them are selected but
only those with occurrence count varying during the game in a manner
which depends on the performed moves. It means that, if for a current game
state all legal moves produce pairwise equal changes to the object’s quantity,
then such occurrence is neglected by the algorithm. The motivation behind this
constraint is to discard all features a player has no impact on (such as counters,
timers, control, board cells count etc.) and focus on real move consequences.
In order to perform the selection, N simulations with random move making are
launched in parallel. Parameter N can be tuned depending on how much time
is available. Tests show that 3-4 parallel simulations are usually sufficient. This
phase terminates when there is only one or none unfinished simulations left. At
each simulation step TableRows and ColumnSymbols are counted independently
for each simulation and their counters are tested against each other. If a difference
occurs, an object (a table with all its TableRows or ColumnSymbol) is marked as
changing and excluded from further tests. It is important to note that a difference
is computed only between the same steps of each of (different) simulations. No
difference is computed between consecutive steps. Objects marked as changing
are stored for further use.

654 J. Mańdziuk and M. Świechowski

Selection phase - step 2 - extracting symbols. In the second step of selec-
tion phase, only one complete random simulation is performed. Let (s1, s2, s3,
. . . , sn−1, sn) represent consecutive states present during the simulated game.
After reaching each state si two additional random moves are simulated that lead
to hypothetical states sij and sik. The difference between the two new states sij
and sik is analyzed from the heuristic selection viewpoint. The main simulation
continues as if it was not affected by the two moves and SymbolRows sets are
constructed for each symbol. The general idea behind this part of the algorithm
is to filter symbols which express the most important features within the rela-
tion. The most important features are usually dynamic and the rest of symbols
which they appear with, represent their properties which vary from state to
state. Therefore features supposed to play important role will change their set
of properties often. The following measure of symbols’ variation was used:

val = 1− 2 ∗ |Aij ∩ Aik|
|Aij |+ |Aik|

(2)

where Aij and Aik denote SymbolRows for a particular symbol in states sij and
sik. Formula (2) is used to calculate variation of each symbol during the selection
step. The most varying symbol (with the highest computed value) at each step is
marked as changing and becomes a candidate for further heuristic weighting. If
a selected symbol has already been marked before, this new selection is ignored.

3.2 Construction of a Heuristic Function

During the selection phase some objects marked as changing are captured. These
can either be TableRows, ColumnSymbols or SymbolRows. The occurrence count
is correlated with the actions selected by a player during the game. The purpose
of the construction phase is to approximate the correlation factor by assigning
weights to the counters. Here come MCS with preferable UCT enhancement
which are run until the time is up. These MCS are used to assign weights to dis-
covered elements of the evaluation function. The following pseudocode describes
the weight-learning phase:

ConstructHeuristic(TimeLimit,Player)

While(currentTime < TimeLimit)

Start a new simulation S

While S not finished

SavedStates->Push(S->State)

S->Advance

If IsSuccess(S->State,Player)

CountOccurences(SavedStates)

CountAverages()

AddAverages(WinAverageList);

Else If IsFail(S->State,Player)

CountOccurences(SavedStates)

CountAverages()

AddAverages(LossAverageList);

For each heuristic object:

Generic Heuristic Approach to General Game Playing 655

Count winAverage

Count lossAverage

weight = C*(winAverage - lossAverage)/MaxValue

End

[A pseudocode of the weights-learning phase.]

Although the detailed algorithm appears to be rather complicated, its underlying
idea is quite simple. During simulations the counting procedure is performed and
the game-average result is computed. This value is put into collection of either
’win values’ or ’loss values’ depending on the game result assigned to the player
for whom the heuristic is being defined. The distinction between a won and lost
game can be defined in various ways. In our approach it was:

AverageResult =

(MaxResult - MinResult)/2 If(Result > AverageResult)

Win = true

Else If(Result < AverageResult)

Loss = true;

Else //no action

Win = Loss = false

[A pseudocode for determining the win or loss. MaxResult and MinResult come from

the GDL definition.]

In the final step of this phase, game-average values from win and loss collections
are transformed into single averages for won and lost games independently. For
each counter the maximum occurrence ever (MaxValue) is monitored and used
for the normalization purpose (see an example below).

//Data structures after a completed simulation:

CurrentGameValues = [6,4,2,0] //symbol occurrences

WinAverageValues = [4.5, 4.5]

LossAverageValues = [3,2]

MaxValue = 6

//Computing current average

CurrentAverage = (6+4+2+0)/4 = 3

//Let assume the game was won

WinAverageValues = [4.5, 4.5, 3] //3 is added

//Computing single average values for won and lost games

WinAverage = (4.5+4.5+3)/3 = 4

LossAverage = (3+2)/2 = 2.5

[Illustration of how the average values are computed.]

The heuristic value for each object is computed according to the following for-
mula:

weight = C ∗ WinAverage− LossAverage

MaxV alue
(3)

where C is a constant parameter for each of the three types of heuristic elements.
In the current implementation of the system we use C = 1.0 for both TableRows

656 J. Mańdziuk and M. Świechowski

and ColumnSymbols and C = 0.2 for SymbolRows. Concrete rows, counted for
symbols, have lesser weights in order to force them to be used if no legal action
positively changes TableRows or ColumnSymbols. The final evaluation function
is a linear combination of the numbers of occurrences of the elements multiplied
by the computed weights.

3.3 The Use of the Heuristic Function

The evaluation method constructed as described in sections 3.1 - 3.2 takes game
state as an input, performs weights calculation according to (3) and returns a
single floating point value. Such automatically constructed heuristic can be taken
advantage of in several ways by the playing agent. It can be used for

(1) evaluation of each legal move in order to choose the heuristically best one;
(2) incremental building of a min-max inspired game tree (in that case a distinct

heuristic function is maintained for each player);
(3) sorting unplayed actions in the classic MC + UCT solution (evaluation func-

tion helps to determine which branches should be tried first);
(4) to replace the whole or part of the MC phase with certain probability in the

classic MC + UCT approach [14].

In the experimental evaluation of the proposed method our focus was on facets
(2). We decided to fully utilize start clock on heuristic function construction and
move clock for min-max tree search. Such distribution was chosen because it is
natural and easy to maintain. However, for some games a different balance might
be more beneficial.

4 Empirical Results

An agent using the heuristic function was tested against reference UCT solution
based on CadiaPlayer description [7] in several games downloaded from the Dres-
den General Game Playing Server site [6]. The main criterion for choosing games
was to focus on most widely recognized games of various rules and complexity.
The games included bomberman, breakthrough, checkers, chess, connnectfour,
farmers, othello, pacman, tic-tac-toe, sheep and wolf and wallmaze. Each of these
11 games was played 80 times with four different pairs of clocks settings (start
clock, move clock), i.e. (16T,2T), (32T,4T), (64T,8T) and (128T,16T) where T
is a game-specific parameter proportional to the average time of one random
simulation from the beginning to the end for particular game. The exact value
depends on game complexity. In each case, in half of the games the Heuristic
Player (our algorithm) was making the first move and it the remaining half of
them the UCT was the initial player.

In majority of tested games interesting features were selected for the heuristics.
For example high value is always assigned in chess to the TableRow check
making the player perform checking the opponent whenever possible. Our player
achieves better win ratio in almost all games for the shortest of tested times,

Generic Heuristic Approach to General Game Playing 657

Table 1. Percentage results between the Heuristic Player and UCT for short times.
The interpretation is the following: Heuristic Player win ratio - UCT win ratio (the
remaining games are ties). The results in favor for the Heuristic Player are bolded.

Game HP vs UCT. Clocks = [16T,2T] HP vs UCT. Clocks = [32T,4T]

Bomberman 6% - 94% 11% - 86%
Breakthrough 50% - 50% 50% - 50%
Checkers 64% - 22% 66% - 20%
Chess 14% - 0% 35% - 10%
Connectfour 48% - 40% 45% - 44%
Farmers 36% - 64% 32% - 68%
Othello 50% - 25% 29% - 49%
Pacman 78% - 22% 75% - 25%
Tic-Tac-Toe 55% - 25% 30% - 33%
Sheep and Wolf 89% - 11% 76% - 24%
Wallmaze 3% - 0% 6% - 0%

with bomberman and farmers being the only exceptions. The results prove that
the evaluation function constructed during the preparation time has a positive
impact on playing quality. With the increase of time the UCT becomes a stronger
opponent. It is mainly due to a greater impact of MCS performed during the
move clock. With extreme time limits, most parts of the tree constructed by UCT
approach will have an exact goal values fetched directly from terminal states,
whereas min-max algorithm requires a full tree expansion in order to fetch at
least one real goal value. This is a key difference between the methods in terms of
a tree search. For the longest time settings the heuristic player remained superior
in five games. Chess and checkers are games which are in favor for our method in
a most significant way, whereas bomberman and farmers are games at which the
UCT is undeniably better. Below we present two evaluation functions obtained
for chess and bomberman, respectively.

Table 2. Percentage results between the Heuristic Player and UCT for longer times.
See description of Table 1.

Game HP vs UCT. Clocks = [64T,8T] HP vs UCT. Clocks = [128T,16T]

Bomberman 21% - 70% 14% - 77%
Breakthrough 48% - 52% 37% - 63%
Checkers 84% - 10% 74% - 16%
Chess 45% - 9% 23% - 4%
Connectfour 45% - 46% 41% - 51%
Farmers 14% - 86% 11% - 89%
Othello 38% - 49% 30% - 54%
Pacman 55% - 45% 51% - 49%
Tic-Tac-Toe 44% - 46% 24% - 58%
Sheep and Wolf 70% - 30% 58% - 42%
Wallmaze 29% - 25% 34% - 30%

658 J. Mańdziuk and M. Świechowski

Chess. The evaluation function primarily forces to check the opponent whenever
possible and rewards having a greater number of particular pieces. Piece types
have various levels of importance assigned. Moreover, board positions where a
threat to adversary king’s initial location (coordinates) is applicable are slightly
favored. The most varying symbols are discovered as wp, wn, wb, wq, wr, bp, bn,
bb, bq, br for cell. These symbols represent chess pieces. For example wn stands
for white knight and bq stands for black queen.

1. TableRows:
a (check, 0.8); (pawn moved two, -0.006); (piece has moved, -0.25).

These symbols represent one-time actions that can occur after a move.
2. ColumnSymbols:

a For cell at column 2: (b,-0.008); (bb, -0.08); (bn, -0.04); (bp, 0.1); (bq;
-0.21); (br; -0.12); (wb, 0.29); (wn, 0.16); (wp, 0.11); (wq, 0.52); (wr; 0).
Pieces counts (known as strength of the material) are captured here.

b For check at column 0: (black, 0.36); (white, -0.43).
The white player is advised to check the black player.

c More values are discovered for all symbols in check,
pawn moved two, piece has moved, but with little impact.

3. SymbolRows:
a All rows with varying symbols that occurred during simulations, e.g. (cell

a 4 wq, 0.012). Values are within the range (-0.02, 0.02).
Particular board cells with concrete pieces are evaluated here.

Bomberman. This is an example of a game for which usually only one varying
symbol is discovered. It is 1 at the first index of blockedeast table. It turned out
that one random simulation in step 2 of the selection phase (3.1) is insufficient
since, if acting randomly, a player has 50% chance of dying because of its own
bomb in the first turn of the game. The only legal action is to place a bomb or
move in unblocked direction. The probability of losing in a few turns drastically
increases. UCT is capable of finding the safe path if given enough time.

1. TableRows: (location, -0.1).
2. ColumnSymbols:

a For table location, column 0: (bomb0, -0.5); (bomb1, -0.11); (bomb2, -
0.05); (bomb3, 0).

b For location, columns 1 and 2: not meaningful values.

3. SymbolRows: (blockedeast 1 2, 0) (blockedeast 1 7, 0).

The term location which appeared above describes rows with the following struc-
ture (location ?object ?x ?y). Its column 0 (?object) contains symbols repre-
senting object located at (?x,?y) coordinates (columns 1,2). Possible objects
are bomberman, bomberwoman, bomb0, bomb1, bomb2 and bomb3. The term
blockedeast means, if present, that east direction is not available at particu-
lar coordinates. The game description includes also north direction which was

Generic Heuristic Approach to General Game Playing 659

not selected by the algorithm. The goal of the game is to avoid bombs (of any
players) and make the opponent die by a bomb.

5 Conclusion

A novel approach to building a heuristic evaluation function for General Game
Playing has been presented. The proposed algorithm clearly outperforms UCT
in four out of eleven games while losing visibly in three games. The introduced
heuristic evaluation is constructed in a fully automatic way. Instead of using
predefined categories it counts occurrences of carefully filtered elements of three
different kinds. GDL description is lexical by nature and there are no ready-to-
use numbers encoded (even mathematical operators must be explicitly defined
for all possible arguments of lexical symbols). Our solution not only extracts
numbers but also assesses their usefulness. Only elements whose values’ vari-
ability is caused by a player’s move are considered which is an essential idea of
the algorithm. Their usefulness is further remodeled by their correlation with a
game score. Experiments show that the method is well suited for games in which
some ’objects’ are created, destroyed or moved. Objects can be of any type like
money, pieces, buildings, obstacles etc. The evaluation function can be inserted
at several stages of GGP scenario. It can be used to guide MC or UCT search,
which vastly improves the quality of play for games it normally performs bad at
and moderately decreases the quality of play for games it has advantage in. The
integration may even proceed a step further - the agent may discover, during
the learning phase, whether using plain heuristic approach or guided UCT gives
better results. Better strategy may by dynamically chosen for the actual play.
The other way to improve the method would be to incorporate it into a complex
agent featuring various heuristic functions and equipped with a feedback-based
learning mechanism to choose the best suited evaluation for a currently playing
game.

The main weak point of the proposed solution is that quality of the computed
function greatly depends on the numbers of simulations which fall into won
and lost categories. If a game lasts for a very long time or a tie is the typical
result, the evaluation function may be inaccurate. Such games are also difficult
to master by UCT approaches because most of the results propagated in a tree
are ties. Our current work concentrates on extension of the proposed method
towards automatic discovery of correlations among particular game elements
(game aspects) which would allow capturing their dynamic (changing in time)
mutual dependencies. This issue, in its general form, is highly challenging. To
the authors’ knowledge no universal solution for automatic discovery of such
correlations exists, even in well-researched classical board games domain (chess,
checkers, Go, Othello, etc.).

Acknowledgments. Maciej Świechowski would like to thank Foundation for
Polish Science under International PhD Projects in Intelligent Computing.
Project financed from The European Union within the Innovative Economy Op-
erational Programme 2007-2013 and European Regional Development Fund.

660 J. Mańdziuk and M. Świechowski

References

1. Newborn, M.: Kasparov versus Deep Blue: Computer Chess Comes of Age.
Springer, Heidelberg (1997)

2. Love, N., Hinrichs, T., Haley, D., Schkufza, E., Genesereth, M.: General Game
Playing: Game Description Language Specification. Technical Report LG-2006-01
(2006), http://games.stanford.edu

3. Genesereth, M., Love, N.: General Game Playing: Overview of the AAAI compe-
tition. AI Magazine 26, 62–72 (2005)

4. Walȩdzik, K., Mańdziuk, J.: CI in General Game Playing - To Date Achievements
and Perspectives. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A.,
Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS, vol. 6114, pp. 667–674. Springer,
Heidelberg (2010)

5. Mańdziuk, J.: Knowledge-Free and Learning-Based Methods in Intelligent Game
Playing, ch. 14.5, vol. 276. Springer, Heidelberg (2010)

6. Dresden GGP Server, http://euklid.inf.tu-dresden.de:8180/ggpserver
7. Bjornsson, Y., Finnsson, H.: CadiaPlayer: A Simulation-Based General Game

Player. IEEE Transactions on Computational Intelligence and AI in Games 1(1),
4–15 (2009)

8. Mėhat, J., Cazenave, T.: Ary, a General Game Playing Program, Board Games
Studies Colloqium, Paris (2010)

9. Gelly, S., Wang, Y.: Exploration and Exploitation in Go: UCT for Monte-Carlo
Go. In: 20th Annual Conference on Neural Information Processing Systems, NIPS
(2006)

10. Auer, P.: Using upper confidence bounds for online learning. In: FOCS 2000, Pro-
ceedings of the 41st Annual Symposium on Foundations of Computer Science
(2000)

11. Bjornsson, Y., Finnsson, H.: Simulation Control in General Game Playing Agents.
In: Proc. IJCAI 2009 Workshop on General Game Playing, GIGA 2009 (2009)

12. Clune, J.: Heuristic evaluation functions for general game playing. In: Proc. AAAI
Nat. Conf. on Artificial Intelligence, pp. 1134–1139. AAAI Press, Vancouver (2007)

13. Schiffel, S., Thielscher, M.: Fluxplayer: A successful general game player. In: Pro-
ceedings of the AAAI National Conference on Artificial Intelligence, pp. 1191–1196.
AAAI Press, Vancouver (2007)

14. Wal ↪edzik, K., Mańdziuk, J.: Multigame Playing by Means of UCT Enhanced with
Automatically Generated Evaluation Functions. In: Schmidhuber, J., Thórisson,
K.R., Looks, M. (eds.) AGI 2011. LNCS (LNAI), vol. 6830, pp. 327–332. Springer,
Heidelberg (2011)

15. Kuhlman, G., Dresner, K., Stone, P.: Automatic Heuristic Construction in a Com-
plete General Game Player. In: Proceedings of the Twenty-First National Confer-
ence on Artificial Intelligence, pp. 1457–1462 (2006)

16. Kaiser, D.: Automatic Feature Extraction for Autonomous General Game Playing
Agents. In: Proceedings of the Sixth Intl. Joint Conf. on Autonomous Agents and
Multiagent Systems (2007)

17. Love, N.: 2006 General Game Playing Competition Results,
http://euklid.inf.tu-dresden.de:8180/ggpserver (accessed 2006)

http://games.stanford.edu
http://euklid.inf.tu-dresden.de:8180/ggpserver
http://euklid.inf.tu-dresden.de:8180/ggpserver

The SiMoL Modeling Language for Simulation
and (Re-)Configuration

Iulia Nica and Franz Wotawa

Technische Universität Graz, Institute for Software Technology,
Inffeldgasse 16b/2, A-8010 Graz, Austria
{inica,wotawa}@ist.tugraz.at

Abstract. From automotive and up to telecommunication industry, configura-
tion and simulation are used for solving complex problems connected to the
ever growing number of components, which have to work together. To assist
these needs, many tools are nowadays available. Modeling languages like Mat-
lab/Simulink or Modelica are often used to model the dependencies between the
components of physical systems. However these are less suitable for the area
of knowledge-based systems. In this paper, we present a modeling language,
which combines the two different directions. SiMoL is an object-oriented lan-
guage that allows representing systems comprising basic and hierarchical com-
ponents. We state the syntax and the semantics of the language, referring also to
the implementation of SiMoL, which is based on the MINION constraint solver.
Furthermore, we discuss how the obtained model can be used for simulation and
re-configuration.

1 Introduction

The adaptation of technical systems after deployment to ensure the desired system’s
functionality over time is an important task and can never be avoided. Reasons for
adaptation are necessary corrections due to faults in system parts, changes in user re-
quirements, or changes of technology among others. All activities necessary for in-
creasing the lifetime of a system and retaining its usefulness are summarized under
the general term maintenance. When considering the overall cost of systems during the
whole lifetime, maintenance accounts for more than 50 percent. Any support provided
for maintenance potentially reduces costs or provides improved results while retaining
costs at the same level.

In our research, we focus on system changes due to changes in requirements. For
example, consider a cellular network where the base stations are initially configured to
ensure current and future needs to some extent. Due to changes in the environment, i.e.,
new apartment buildings constructed in reach of the base station or an increased use of
cellular networks for data communication, the base station or even the local topology
of the network has to be adapted. This adaption can more or less be classified as a
re-configuration problem where the current system’s structure, behavior, and the new
requirements are given as input. Changes in the structure and behavior of the system in

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 661–672, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

662 I. Nica and F. Wotawa

order to cope with the changes in the requirements are a solution of the re-configuration
problem.

In order to provide a method for computing solutions for a given re-configuration
problem we need to state the problem in a formal way. Therefore, we require a mod-
eling language for stating systems comprising components and their relationships. In
principle, formal languages like first order logic or constraint languages would be suffi-
cient for this purpose. But using such languages usually is not easy and prevents systems
based on such languages to be used in practice. Hence, there is a strong need for easy
to learn and use modeling languages that are expressive enough to state configuration
problems. The SiMoL language we introduce in this paper serves this purpose. The lan-
guage itself is from a syntactical point of view close to Java. The idea behind SiMoL is
to provide a language that can be used for (restricted) simulation and configuration at
the same time.

SiMoL is an object-oriented language with multiple inheritance and allows for sta-
ting constraints between variables. Beside the basic data types like integer and boolean,
SiMoL makes use of component instances. All component instances are statically de-
clared. In this paper we discuss the syntax and the semantics of SiMoL and show how
the language can be used for re-configuration purposes.

2 Related Research

Over time, the AI community has developed a large variety of configuration tools that
fitted the different necessities and goals in each practical area, thus creating a strong
foundation for newcomers.

As preamble to our approach, we will shortly recall a couple of configuration
systems, which illustrate the main approaches in the field of knowledge-based config-
uration: from rule- or structure-based configuration, to constraint-, resource- and case-
based methods.

In the early 80s, Digital Equipment Corporation was already using the R1/XCON
program in the selling process, by automatically selecting the computer system compo-
nents based on the customer’s requirements. [1] implemented XCON as a production-
rule-based system, containing in 1989 about 11.500 rules, specified in OPS5 language
[2]. But the weak structure offered by rules leaded to problems in managing the control
flow of the configuration task. Due to its architecture, XCON offered no user interaction
while solving the configuration task.

Another historical system is SICONFEX [3], which had a similar using purpose as
XCON, but offered a completely different solution. The input data was represented by
hardware components, software specifications and intended functionality. In this case,
the system used many techniques in order to get a better structuring of the domain
knowledge: rules, inheritance mechanisms, domain procedures, conceptual hierarchies,
schemes for describing objects and LISP Code.

Other configuration systems include ConBaCon (Constraint-Based Configuration)
[4] and CAWICOMS (Customer-Adaptive Web Interface for the Configuration Of prod-
ucts and services with Multiple Suppliers) [5]. ConBaCon treats the special case of
re-configuration, using the conditional propagation of constraint networks and has its

The SiMoL Modeling Language for Simulation 663

own input language - ConBaConL. In [4], the authors present ConBAConL, a ”largely
declarative specification language”, by means of which one can specify the object hier-
archy, the context-independent constraints and the context constraints. Furthermore, the
constraints are divided into Simple Constraints, Compositional Constraints and Condi-
tional Constraints. Although successfully integrated in industry, the performance prob-
lems were observed in case of large products/systems, as a result of the large number
of generated constraint variables and associated CE (consistency-ensuring) constraints
within the solution. In [6], the author tackles these issues by clustering the ConBaCon
model.

The scope of the CAWICOMS project was the development of a Business-To-
Business framework for distributed products and services configurations. In [5], an ap-
plication scenario for semantic Web services is presented, choosing as example the
domain of telecommunication services. In order to define a common language for
representing the properties of configurable products and services, the authors use a
hierarchical approach of related ontologies. By means of the DAML+OIL language,
a flexible product ontology for complex, customizable products can be modeled, the
domain knowledge being consistently represented in XML. For the configuration task,
ILOGs domain-independent and Java-based JConfigurator was adopted. JConfigura-
tor implements Generative Constraints Satisfaction for solving complex configuration
problems. Actually, the configuration task is executed on a distributed architecture, i.e.,
each involved configurator has only a partial view on the product model. The commu-
nication between the configurators occurs by means of XML-based SOAP messaging
and Web Services.

LAVA is another successful automated configurator [7], used in the complex do-
main of telephone switching systems. It makes use of generative constraints and is the
successor of COCOS [8], a knowledge-based, domain independent configuration tool.
The modeling language is ConTalk, an enhanced version of LCON that follows the
Smalltalk notation. A ConTalk constraint is a statement which describes a relationship
between components ports or between the attributes values. During configuration, the
inheritance hierarchy of component types is exploited and each time a component is
generated, a new constraint object is instantiated for that component and propagated to
all its related components, ports and attributes.

A powerful configuration system that combines constraint programming(CP) with a
description logic(DL) is the ILOG (J)Configurator [9]. The combined CP-DL language,
in which the configuration problem is formulated provides, on the one hand, the con-
straints, needed in the decision process, and on the other hand, the constructs of the
description logic, able to deal with unknown universes. When solving the problem, the
constructs of description logic, which are well-suited to model the configuration spe-
cific taxonomic and partonomic relations, are mapped on constraints and thus the wide
range of constraint solving algorithms may be used.

Products like COSMOS [10] and KIKon [11] used the resource-based configura-
tion approach, by seeing the components as resources and splitting the system in sub-
functionalities (COSMOS) or sealing the obtained configurations in order to store them
for future usage (KIKon). Among currently available products on the market, we

664 I. Nica and F. Wotawa

mention well-known systems like: Tacton Configurator1 [12] (uses logic programming,
object-oriented principles, SICSTUS Prolog [13] and its object-oriented extension SIC-
STUS Objects), SAP Product Configurators2 (SAP ERP Variant Configurator -since
1994, provides high-level configuration in SAP ERP systems and SAP CRM IPC (Inter-
net Pricing and Configuration)- since 2000, has a standalone configuration engine; both
support constraints and procedural dependencies and use a Truth Maintenance System
(TMS) as problem solving module [14]) or camos Configurator3 [10] (the components
are represented in a class tree, during the configuration process, the user can detect the
inconsistencies - if they appear).

The other field of interest for our research has been the modeling languages currently
used for simulation of technical systems. Matlab/Simulink4 and Modelica5 are the most
famous ones in the area of dynamic systems modeling and simulation. When working
with Simulink, the user is capable of modeling the desired system in the graphical
interface, based on the large library of standard components (called blocks). As part
of the standard library, Simulink includes a block intended to allow users to develop
and implement their own custom routines: the S-Function block, which can include
creation of new algorithms not directly supported by Simulink and reuse of existing
code [15]. Also making use of predefined model building blocks, Modelica, on the
other side, is an equation-based object-oriented language with multi-domain modeling
capability. Although both of them are complex languages, capable of modeling a great
variety of components, neither Simulink or Modelica can be used for re-configuration
purposes, as the description of the configuration specific knowledge is, due to technical
reasons, almost impossible. For instance, in Modelica, one cannot directly represent any
fields (data variables associated with a class and its instances), if they have an unknown
value. And this is inevitable in the implementation of non-monotonic reasoning, which
is required in solving the configuration problem. In Matlab/Simulink on the other side,
the differential equations are not even direct representable.

Throughout the rest of this paper, we present our modeling language - SiMoL.
SiMoL can be applied in both simulation and re-configuration domains, using the pow-
erful mechanism of constraint solving and hence being highly scalable for complex
simulation and re-configuration tasks.

3 An Example

In this paper we make use of the following small example to discuss SiMoL, as well as
re-configuration using SiMoL for modeling systems. Figure 1 depicts a small system
comprising 4 components, i.e., a power supply (PS), an acceleration sensor (AS), a
GPS sensor (GPS), and a communication device (CD). The communication device
is used for sending the measured sensor information to a server. The power supply is

1 http://www.tacton.com/en/
2 http://www.sap.com/
3 http://www.camos.de/
4 www.mathworks.com
5 www.modelica.com

The SiMoL Modeling Language for Simulation 665

for providing electricity to the connected components. All these components have a
behavior and provide functionality.

Power supply
(PS)

Communication
device

(CD)

Acceleration
sensor

(AS)

GPS sensor
(GPS)

Fig. 1. A small sensor systems

For the purpose of specifying functionality we
introduce a function fct that maps a component to
a set of attributes, which indicate a certain func-
tionality. For our example, we introduce the at-
tributes ad, gps, comm to state the acceleration
sensor functionality, the gps functionality, and the
ability for communication respectively.

fct(AS) = {ad}
fct(GPS) = {gps}
fct(CD) = {comm}

We now specify additional constraints of the
system. The following constraint formally repre-
sents the requirement that the power provided by
PS must be larger or at least equivalent to the
sum of the power consumption of the other com-
ponents:

power(PS) ≥ power(AS) + power(GPS) + power(CD)

Moreover, we state that the device has to provide at least ad, gps, comm functional-
ity.

fct(AS) ∪ fct(GPS) ∪ fct(CD) ⊇ {ad, gps, comm}
Finally, we have the requirement that the sum of the cost of each part of the device

is not allowed to exceed a certain pre-defined maximum cost.

cost(PS) + cost(AS) + cost(GPS) + cost(CD) ≤ max cost

In configuration we are interested in providing specific implementations of the com-
ponents PS, AS, GPS, and CD such that all requirements are fulfilled and no con-
straint is violated. Hence, what we do now for our running example, is to introduce

Table 1. The component instances for our small sensor system

Generic Instance 1 Instance 2
Component

PS PS1 : costs(PS1) = 10,
power(PS1) = 10

PS2 : costs(PS2) = 20,
power(PS2) = 15

AS AS1 : costs(AS1) = 2,
power(AS1) = 4

AS2 : costs(AS2) = 20,
power(AS2) = 1

GPS GPS1 : costs(GPS1) = 6,
power(GPS1) = 5

CD CD1 : costs(CD1) = 10,
power(CD1) = 10

CD2 : costs(CD2) = 20,
power(CD2) = 4

666 I. Nica and F. Wotawa

specific instances of the generic components with different costs and power consump-
tions. Table 1 summarizes all the used concrete component implementations.

A valid configuration is now a set of components that fulfills all constraints. For
example, when assuming maximum cost of 60, the set {PS1, AS2, GPS1, CD2} is a
valid configuration but {PS2, AS2, GPS1, CD2} is not because of violation of the cost
constraint.

Throughout this paper we make use of this example and show how SiMoL can be
used for modeling such systems.

4 SiMoL Definition

In order to get a clear view on SiMoL, we further present the SiMoL syntax, together
with the existing tokens and the corresponding language semantics.

4.1 SiMoL Syntax

As already mentioned, SiMoL uses a Java-like syntax and the common conventions
compass most of the defined tokens: identifiers for any type of component and attribute,
integer and boolean literals, separators, arithmetic and relational operators (+,−, ∗, /,=
, <,>,<=, >=, ! =), special tokens - comments, reserved words and literals.

Additionally, SiMoL offers support for using units of measurement, thus creating a
more realistic model.

Another feature of the language, that provides direct control over the possible values
of a component attribute, is the initialization of attributes with integer valued ranges,
represented either by a sorted list of integer values or by a bounded range of integer
numbers. We depict this feature in the following GPS component definition:

component GPS{
attribute int power, costs;
constraints{
power={4,6,10} W;
costs={10..30};
}}

A program written in SiMoL contains basically 3 sections:

– a knowledge base declaration section, which is optional. It is used to organize
components belonging to a specific domain or problem (similar to a Java package):

kbase SensorSystem;

– an import declaration section, also optional:

import Sensor.*;

– a component definition section, that is the main constructing unit of a SiMoL pro-
gram and it is mandatory. Generally, each component will posses a set of attributes
and will introduce constraints in the system. The attributes declaration is marked

The SiMoL Modeling Language for Simulation 667

by the attribute keyword, whilst the relations stated between the component
attributes and new-component instance-declaration statements appear enclosed in
the constraints{ . . . } block. By convention, an empty component definition
section is not allowed, i.e., if the constraints block is missing, we have to declare at
least one attribute for the current component. For example, we accept the following
definition:

component PS{
attribute int power, costs;

}

Furthermore, in the case of derived components, the opposite holds: even with no
attributes declared, we may state constraints over the inherited attributes. For in-
stance:

component AS{
attribute int power, costs;
constraints{
power={4,6} W;
costs={2..30};
}}

component AS1 extends AS{
constraints{
power=4 W; //equivalent with: power={4} W;
costs=2;
}}

More details about the implemented inheritance mechanism will be given in sub-
section 4.2.
In the constraints section, we may have the following types of statements:

• an empty statement: ;,
• a component instance declaration, with the possibility of initializing its at-

tributes:
GPS1 gps1; or GPS1 gps1{costs=100};

Using this kind of statements, we define the subcomponent hierarchy in our
model, i.e., the partonomy relations. The cardinality of these relations (i.e., the
number of subcomponents which can be connected to a certain component)
is always finite - we cannot have an unlimited number of components in our
model.

• an arithmetic or/and boolean expression:
ps1.power>=as1.power+gps2.power+cd1.power;

• a conditional block :
if(cd1.costs<cd2.costs)

cost=cost+cd1.costs;
else cost=cost+cd2.costs;

• a forall block :

668 I. Nica and F. Wotawa

forall(AS1){
power=10 W;
costs={1..10};}

• an exist statement, for instance:

exist(at most(1),GPS1,costs=30);

Due to space reasons, we only mention the built-in functions min, max, sum,
product, meant to ease the manipulation of large sets of component instances.

4.2 SiMoL Inheritance Mechanism

The ability to extend the functionality and behavior of existing components is of great
importance for the taxonomic structure of a configuration domain. In any object ori-
ented languages, the taxonomy relations are represented through the inheritance mech-
anism. We designed SiMoL with multiple inheritance. In order to demonstrate the ne-
cessity of this feature, let us consider the following scenario. For our small system
described in Section 3, we introduce a new requirement that refers to a specific signal
modulation which can be accomplished by a new component - a modem (M). The mo-
dem receives the measured sensor information and transmits the modified signal to the
communication device. The function fct from Section 3 will similarly depict for M the
modulation-demodulation functionality :

fct(M) = {mdm}

Now the additional constraints of the system become:

power(PS) ≥ power(AS) + power(GPS) + power(CD) + power(M)

fct(AS) ∪ fct(GPS) ∪ fct(CD) ∪ fct(M) ⊇ {ad, gps, comm,mdm}

cost(PS) + cost(AS) + cost(GPS) + cost(CD) + cost(M) ≤ max cost

The problem appears if the pre-defined maximum cost is always exceeded, because
of the new added component. In other words, we cannot afford both a modem and
a communication device. Therefore, a new component type - a communication de-
vice with integrated modem (MCD)- will solve the case (under the assumption that
cost(MCD) ≤ cost(CD) + cost(M)). In SiMoL, the MCD definition has the fol-
lowing syntax:

component MCD extends CD,M {
constraints{
power={4,6} W;
costs={2..30};
}}

The SiMoL Modeling Language for Simulation 669

4.3 Semantics of SiMoL

We now specify the semantics of the language SiMoL where we rely on mathemati-
cal equations. In particular, we map every statement to a mathematical equation, and
combine these equations for a component, taking care of component inheritance and
component instances.

For each component C defined in SiMoL we have a set of equations constr0 that is
defined within the constraints { . . . } block. Moreover, the component C also
receives equations from its super components and the instances used in the component
definition. For example, when specifyingGPS1 gps; in the constraints section of C, a
new instance of GPS1 is generated. All constraints of GPS1 are added to the constraints
of C. Because of the possibility of having more than one instance of a component, we
have to rename the variables used in the constraints of an instance. For this purpose
we assume a function replace that takes constraints M and a name N and changes all
variables x in M to N.x.

constr(C) = constr0(C) ∪ constrI(C) ∪ constrV (C)

where constrI are the constraints inherited from the super components of C

constrI(C) =
⋃

C′∈super(C)

constr(C′)

constrV are the constraints coming from the components used in the definition of C
(and requiring variable renaming using the function replace that add a new pre-fix to
the variables used in the components in order to make them unique)

constrV (C) =
⋃

(C′,N)∈vd inst(C)

replace(constr(C′), N)

where vd inst(C) are the variables used in the constraints of those instances defined
in the component C,

and finally, constr0 are the constraints defined in C directly.

constr0 =
⋃
i

Ci

A constraint Ci in the constraint definition of C usually takes one of the following
forms:

– Cattr val : attribute-equals-value/s constraints, formulated with = operator and ap-
plied on component attributes together with one single integer/boolean value or
with a set of values;

– Cattr attr : attribute-equals-attr constraints, formulated with = operator and ap-
plied on component attributes;

– Cnum : numeric constraints, formulated with basic relational operators over nu-
meric expressions;

– Ccond : conditional constraints,
if(Cx is satisfied) Cy must be satisfied else Cz must be satisfied;

670 I. Nica and F. Wotawa

– Cexist : existence constraints,
exist(at least(NR) |at most(NR)|NR,C,ATTR = V ALUE), with the mean-
ing that at most, at least or exactly NR components of a given type C have ATTR =
V ALUE.

By means of combining all the upper defined constraints with the multiple inheritance
mechanism and the inner component instances declarations, we manage to model the
three configuration knowledge forms defined in the chapter on configuration from [16]:
the catalog knowledge, the structural knowledge and the component constraints. Hence,
we find the expressiveness of our language sufficient for modeling a large number of
configuration problems, from simple option selection problems to more complex cases.

As already mentioned, the implementation of SiMoL is based on the MINION con-
straint solver [17]. In order to simulate the given configuration, we applied a translation
function from the SiMoL program to MINION specific input. The systems modeled
in SiMoL are always finite. Hence, the complexity of the SiMoL2MINION mapping
algorithm is polynomial (O(N)), where N is the size of the SiMoL program.

For instance, for a SiMoL program of 12 LOC, the number of constraints of the
resulted MINION constraint system is 12; for 104 SiMoL LOC we had 118 MINON
constraints, whereas for another SiMoL program of 70 LOC, the resulted constraint
system was of size 250. The SiMoL LOC/ MINION constraints ratio depends mainly on
the type of declared instances - simple instances or vectors of components - and on the
complexity of the arithmetic operations. The experiments showed that, even in systems
with over 300 component instances, each component possessing in average more than
4 attributes, the time needed to check whether a configuration is valid or not was about
0.18 seconds. In this case, the MINION program had about 700 constraints.

In our implementation, the simulation task consists in checking whether the current
configuration, i.e., the system modeled in SiMoL, is consistent. As a result, we may get
two possible outcomes: either the system consistency, which means the simulation was
successful, or system inconsistency, i.e., there exist no values in the attributes domains
that can satisfy all the component requirements. For our small system, the configuration
{PS2, AS2, GPS1, CD2} is reported as invalid in less than 0.01 seconds. In the next
section, we will discuss this case and suggest methods for re-configuration.

5 Re-Configuration

The characteristics of SiMoL presented in the previous sections demonstrate its use-
fulness also in the domain of knowledge-based (re-)configuration. We further assume
the re-configuration process is triggered by changes in user requirements, in this way,
the input for the problem consists in the new requirements together with the current
system’s structure and behavior, whereas the output is a valid configuration. Changes
in the structure and behavior of the system in order to cope with the changes in the
requirements represent a solution to the re-configuration problem. When making these
changes, we rely on the taxonomic structure of the domain, i.e., the fix set of compo-
nents given in the knowledge base and their relationships.

For a clear description of the approach, let us go back to our invalid configuration
for the small sensors system, namely {PS2, AS2, GPS1, CD2}. With respect to the

The SiMoL Modeling Language for Simulation 671

knowledge base, we assumed that we have 4 generic components PS, AS, CD and
GPS, each with the specific implementations depicted in Table 1. In the described con-
figuration, the requirement that the maximum cost is 60 must be fulfilled. Then, the
overall cost of the system containing the components PS2, AS2, GPS1, CD2 ex-
ceeds the pre-defined maximum cost, and thus the constraint cost(PS) + cost(AS) +
cost(GPS) + cost(CD) ≤ max cost is violated. The process of searching for a con-
sistent configuration implies replacing the components (one at a time) from the origi-
nal configuration with their corresponding sister-components, i.e., components with the
same super component. When the new component instance is declared, its constraints
replace the old ones in constrV (C) and the new attributes are propagated across the
constraints from constr0(C). If all the constraints are now satisfied, then we found a
solution to our re-configuration problem. In our case, if we change the power supply,
for instance, we get the valid configuration {PS1, AS2, GPS1, CD2}. Generally, for
increasing the search performance, we need to determine two specific orderings: on the
one hand, for selecting the component that should be replaced and, on the other hand,
for discriminating between sister-components, in case we have more than two compo-
nents with the same parent. We mention that the re-configuration mechanism is still in
early development stage, i.e., it might be subject to change.

6 Conclusion

In this paper, we have presented SiMoL - a new functional-based, declarative model-
ing language, that serves simulation and re-configuration purposes. The novelty of our
approach is designing a language that is easy to learn and capable of modeling large
and complex systems. We achieve this by using a state of the art constraint solver. In
addition, if due to changes in the user requirements the simulation fails, the configurator
offers an alternative model of the system such that the system functionality is kept and
the new requirements are fulfilled. SiMoL can coupe with large models and be also ef-
ficient with respect to computation time (simulation). Although re-configuration is not
fully implemented for the SiMoL language, several ideas are currently analyzed and
implemented, such that in the near future a fully working configurator can be used for
SiMoL models.

Due to the generality of the language, its scalability with respect to size of the model
and solving time (simulation and reconfiguration), but also due to its high flexibility
when modeling systems, SiMoL is a multi-purpose language suited for modeling sys-
tems specific to a wide range of domains, e.g., telecommunication, automotive systems,
electric networks.

In future research we mainly focus on providing a sound and complete configura-
tion algorithm that takes SiMoL models and requirements as input and computes valid
configurations as output.

Acknowledgments. The work presented in this paper has been supported by the
BRIDGE research project Simulation and configuration of Mobile networks with M2M
Applications (SIMOA), which is funded by the FFG.

672 I. Nica and F. Wotawa

References

1. McDermott, J.: R1: An Expert in the Computer Systems Domain. In: Proceedings of First
National Conference on Artificial Intelligence, AAAI 1980. Stanford University, Stanford
(1980)

2. Forgy, C.L., McDermott, J.: OPS, A Domain-Independent Production System Language.
In: Proceedings of the Fifth International Joint Conference on Artificial Intelligence,
pp. 933–939. MIT (1977)

3. Lehmann, E., Enders, R., Haugeneder, H., Hunze, R., Johnson, C., Schmid, L., Struss, P.:
SICONFEX - ein Expertensystem für die Konfigurierung eines Betriebssystems. In: Pro-
ceedings of GI Jahrestagung 1985, pp. 792–805 (1985)

4. John, U., Geske, U.: Reconfiguration of Technical Products Using ConBaCon. In: Proceed-
ings of WS on Configuration at AAAI 1999, Orlando (1999)

5. Felfernig, A., Friedrich, G., Jannach, D., Zanker, M.: Semantic Configuration Web Services
in the CAWICOMS Project. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342,
pp. 192–205. Springer, Heidelberg (2002)

6. John, U.: Solving large configuration problems efficiently by clustering the ConBaCon
model. In: Proceedings of the 13th International Conference on Industrial and Engineer-
ing Applications of Artificial Intelligence and Expert Systems: Intelligent Problem Solving:
Methodologies and Approaches. Springer-Verlag New York, Inc. (2000)

7. Fleischanderl, G., Friedrich, G.E., Haselböck, A., Schreiner, H., Stumptner, M.: Configur-
ing large systems using generative constraint satisfaction. IEEE Intelligent Systems & their
Applications, 59–68 (1998)

8. Stumptner, M., Haselböck, A., Friedrich, G.: COCOS - a tool for constraint-based, dynamic
configuration. In: Proceedings of the 10th IEEE Conference on AI Applications (CAIA), San
Antonio (1994)

9. Junker, U., Mailharro, D.: The logic of ILOG (J)Configurator: Combining Constraint Pro-
gramming with a Description Logic. In: Proceedings of IJCAI 2003 Configuration WS, pp.
13–20 (2003)

10. Günter, A., Kreuz, I., Kühn, C.: Kommerzielle Software-Werkzeuge für die Konfigurierung
von technischen Systemen. In: Proceedings of KI 1999, pp. 61–65 (1999)

11. Emde, W., Beilken, C., Bording, J., Orth, W., Petersen, U., Rahmer, J., Spenke, M., Voss,
A., Wrobel, S., Birlinghoven, S.: Configuration of Telecommunication Systems in KIKon
(1996)

12. Orsvärn, K., Axling, T.: The Tacton View of Configuration Tasks and Engines. In: AAAI
1999 Workshop on Configuration, the 16th National Conference on Artificial Intelligence,
pp. 127–130 (1999)

13. Prolog, S.: SICStus Prolog 3.12.2 (2005),
https://www.sics.se/sicstus/docs/3.12.2/html/sicstus/

14. Haag, A.: Experiences with Product Configuration (2010),
http://www.minet.unijena.de/dbis/lehre/ss2010/konfsem/

15. Henson, W.: Real time Control and Custom Components in the Matlab Environment. Tech-
nical report

16. Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming (Foundations of
Artificial Intelligence). Elsevier Science Inc., New York (2006)

17. Jefferson, C., Kotthoff, L., Moore, N., Nightingale, P., Petrie, K.E., Rendl, A.: The Minion
Manual, Minion Version 0.12 (2011),
http://minion.sourceforge.net/files/Manual012.pdf/

https://www.sics.se/sicstus/docs/3.12.2/html/sicstus/
http://www.minet.unijena.de/dbis/lehre/ss2010/konfsem/
http://minion.sourceforge.net/files/Manual012.pdf/

Author Index

Aceto, Luca 141

Bannai, Hideo 301
Barták, Roman 600
Beneš, Nikola 554
Blin, Guillaume 153
Bonizzoni, Paola 153
Bordeaux, Lucas 612

Çapuni, Ilir 165
Celms, Edgars 492
Čepek, Ondřej 177
Černá, Ivana 554
Černý, Tomáš 443
Cheilaris, Panagiotis 190
Couturier, Jean-François 202
Cucker, Felipe 1

Damaschke, Peter 214
De Bra, Paul 64
de Frutos-Escrig, David 141
de Halleux, Jonathan 542
Donahoo, Michael J. 443
Dondi, Riccardo 153

Ebbing, Johannes 226
Eğecioğlu, Ömer 238

Filiot, Emmanuel 251

Gács, Peter 165
Gál, Anna 264
Gazda, Maciej W. 277
Gȩbala, Maciej 566
Golovach, Petr A. 289
Goto, Keisuke 301
Gregorio-Rodŕıguez, Carlos 141
Gurevich, Yuri 31

Heggernes, Pinar 202

Ibarra, Oscar H. 238
Inenaga, Shunsuke 301
Ingólfsdóttir, Anna 141
Iraids, Janis 492

Iša, Jǐŕı 625
Italiano, Giuseppe F. 43

Jačala, Martin 456
Jang, Jing-Tang 264
Jansen, Klaus 313
Jaroměřská, Slávka 443
Jarušek, Petr 637
Junosza-Szaniawski, Konstanty 325

Kajsa, Peter 467
Kaliappan, Prabhu Shankar 479
Kalnina, Elina 492
Kalnins, Audris 492
Kari, Lila 337
Keszegh, Balázs 190
Kobus, Tadeusz 505
König, Hartmut 479
Kopecki, Steffen 337
Kratsch, Dieter 202
Krug, Sacha 349
Kučera, Petr 177
Kunc, Petr 530
Kupferman, Orna 88
Kuty�lowski, Miros�law 566

Laud, Peeter 576
Lavado, Giovanna J. 361
Lingas, Andrzej 373
Lipiński, Piotr 588
Lohmann, Peter 226

Majer, Tomáš 518
Mańdziuk, Jacek 649
Marques-Silva, Joao 612
Matl, Luboš 443
Muhammad, Azam Sheikh 214

Navigli, Roberto 115
Návrat, Pavol 467
Neary, Turlough 385
Nica, Iulia 661

Pálvölgyi, Dömötör 190
Pang, Jun 431

674 Author Index

Paulusma, Daniël 289
Pelánek, Radek 637
Pettai, Martin 576
Piessens, Frank 542
Pietrzak, Krzysztof 99
Pighizzini, Giovanni 361
Pitner, Tomáš 530
Praus, Petr 443

Reitermanová, Zuzana 625
Rizzi, Romeo 153

Seki, Shinnosuke 337
Servais, Frédéric 251
Sheahan, Ann 600
Sheahan, Con 600
Sikora, Florian 153
Š́ıma, Jǐŕı 406
Šimko, Marián 518
Škrabálek, Jaroslav 530
Sledneu, Dzmitry 373
Smits, David 64
Song, Jian 289
Sostaks, Agris 492
Štefaňák, Filip 554
Stolarek, Jan 588

Świechowski, Maciej 649
Sýkora, Ondřej 625

Takeda, Masayuki 301
Tillmann, Nikolai 542
Tran, Nicholas Q. 238
Tuczyński, Micha�l 325
Tvarožek, Jozef 456

van Emde Boas, Peter 14
Vanoverberghe, Dries 542
van’t Hof, Pim 202
Vlček, Václav 177

Warwick, Kevin 130
Wiedermann, Jǐŕı 44
Willemse, Tim A.C. 277
Wojciechowski, Pawe�l T. 505
Woods, Damien 385
Wotawa, Franz 661

Yan, Jun 419

Žák, Stanislav 406
Zezula, Pavel 77
Zhang, Chenyi 431

	Title
	Preface
	Organization
	Table of Contents
	Invited Talks�
	Foundations of Computer Science
	The Legacy of Turing in Numerical Analysis
	Introduction
	Complexity and Accuracy
	Accuracy
	Complexity
	References

	Turing Machines for Dummies Why Representations Do Matter
	The Turing Machine Model
	The Chomsky Hierarchy and the Corresponding Automata
	Master Reductions for NP
	Stockmeyer and His Work on Regular Expressions
	The Impact of the Intrinsic Representation on Machine Models in the Second Machine Class
	Conclusion - Is There a Dragon Out There?
	References

	What Is an Algorithm?
	Introduction
	Can the Notion of Algorithm Be Rigorously Defined?
	Remarks on Turing's Analysis of Computation
	Gandy's Analysis of Mechanisms
	What Kind of Entities Are Algorithms?
	Moschovakis's Recursion-Based Approach
	References

	Strong Bridges and Strong Articulation Points of Directed Graphs
	Towards Computational Models of Artificial Cognitive Systems That Can, in Principle, Pass the Turing Test
	Introduction
	Status Quo
	Watson the Computer
	Winds of Change

	A Non-biological Model of a Conscious Cognitive System
	HUGO
	Towards Higher Level Cognitive Functions

	Conclusions
	References

	Software and Web Engineering
	A Fully Generic Approach for Realizing the Adaptive Web
	Introduction
	A Brief Overview of Adaptive Applications and Platforms
	The GALE Architecture
	GALE Processors and Modules
	The Execution of GALE Adaptation Rules

	GAM: The GALE Adaptation Model (GALE Code)
	Conclusions and Further Work
	References

	Multi Feature Indexing Network MUFIN for Similarity Search Applications
	Motivation
	Challenges
	Digital Data Explosion
	Similarity Management of Data
	The Main Research Objectives

	The MUFIN Approach
	The Vision
	The Underlying Paradigms
	Demonstrations and Applications

	Future Trends and Conclusions
	References

	Cryptography, Security, and Verification
	Recent Challenges and Ideas in Temporal Synthesis
	Introduction
	Preliminaries
	Algorithms
	Methodology
	Scope
	Quality
	References

	Cryptography from Learning Parity with Noise
	Learning Parity with Noise and Related Problems
	Efficient LPN Based Cryptosystems
	Conclusions and Open Problems
	References

	Artificial Intelligence
	A Quick Tour of Word Sense Disambiguation, Induction and Related Approaches
	Introduction
	Word Sense Disambiguation
	Sense Representation
	Techniques
	Performance
	Knowledge
	Multilinguality
	Domain WSD

	Word Sense Induction
	Techniques
	Evaluation
	Coverage

	Lexical Substitution
	Other Techniques
	Compositionality and Meaning

	Conclusions
	References

	Not Another Look at the Turing Test!
	Introduction
	What Does the Turing Test Test?
	Loebner Competition
	Can a Machine Tell a Joke?
	Turing 2008
	Argument from Disability
	It Doesn’t Take Much to Fool a Philosopher
	Conclusions
	Answer to Puzzle
	References

	Regular Papers
	Foundations of Computer Science
	The Equational Theory of Weak Complete Simulation Semantics over BCCSP
	Introduction
	Preliminaries
	Weak Complete Simulation
	Ground-Complete Axiomatizations
	Nonexistence of Finite Complete Axiomatizations

	Conclusion
	References

	Complexity Insights of the Minimum Duplication Problem
	Introduction
	On a Tight Inapproximability
	A Randomized Approach
	Conclusion
	References

	A Turing Machine Resisting Isolated Bursts of Faults
	Introduction
	The Structure of the State, Cells, and Simulation
	Computation Phase
	Spreading Phase

	Coping with Faults
	The Recovery Procedure

	A Road-Map for the Proof of the Main Theorem
	References

	Properties of SLUR Formulae
	Introduction
	Definitions and Results
	Every Canonical CNF Is a SLUR CNF
	Testing Whether a Given CNF Is SLUR Is coNP Complete
	Hierarchy SLUR(i)
	References

	Unique-Maximum and Conflict-Free Coloring for Hypergraphs and Tree Graphs
	Introduction
	Preliminaries

	General Hypergraphs
	Tree Graphs
	Upper Bound for Unique-Maximum Number of Binary Trees
	Upper Bound for Unique-Maximum Number of Arbitrary Trees
	Trees with Different Unique-Maximum and Conflict-Free Numbers

	Discussion and Open Problems
	References

	Minimal Dominating Sets in Graph Classes: Combinatorial Bounds and Enumeration
	Introduction
	Preliminaries
	Preliminaries on Branching

	Chordal Graphs
	Split Graphs
	Cobipartite Graphs
	Cographs
	Chain Graphs
	Conclusions
	References

	Randomized Group Testing Both Query-Optimal and Minimal Adaptive
	Introduction
	Minimal Adaptive Group Testing Close to the Entropy Lower Bound
	Linear versus Sublinear Growth of the Defectives
	References

	Complexity of Model Checking for Modal Dependence Logic
	Introduction
	Modal Dependence Logic
	Unbounded Arity Fragments
	Bounded Arity Fragments
	Conclusion
	References

	Multitape NFA: Weak Synchronization of the Input Heads
	Introduction
	Preliminaries
	2-Ambiguous Multitape NFA
	Unambiguous Multitape NFA
	Multitape NFA on ABO-Bounded Inputs
	Multitape NFA on Unary Inputs
	Synchronizability
	Weakly Synchronized Regular Languages
	Weakly Synchronized NFA on Unary Inputs

	Conclusion
	References

	Visibly Pushdown Transducers with Look-Ahead
	Introduction
	Visibly Pushdown Languages and Transductions
	VPT with Visibly Pushdown Look-Ahead
	Functional VPT and VPTla
	Decision Problems
	References

	A Generalization of Spira’s Theorem and Circuits with Small Segregators or Separators
	Introduction
	Preliminaries
	Space Bounded Turing Machines
	The Circuit Model
	Separators and Segregators

	Boolean Circuits with Small Segregators or Separators
	Finding Minimum Size Segregators in Small Space
	Segregators of Directed Acyclic Graphs
	Segregators of Uniform Circuits

	Generating the Simulating Circuits in Small Space
	Circuit Value Problem
	References

	Consistent Consequence for Boolean Equation Systems
	Introduction
	Preliminaries
	Consistent Consequence
	Consistent Consequence Generalises Direct Simulation on Parity Games
	The Proof System c
	Application
	Future Work
	References

	4-Coloring H-Free Graphs When H Is Small
	Introduction
	Preliminaries
	The Algorithm
	References

	Computing q-Gram Non-overlapping Frequencies on SLP Compressed Texts
	Introduction
	Preliminaries
	Notation
	Occurrences and Frequencies
	Straight Line Programs

	q-gram Non-overlapping Frequencies on Compressed String
	Key Ideas
	Computing Longest Overlapping Covers
	Largest Left-Priority and Smallest Right-Priority Occurrences
	Counting Non-overlapping Occurrences in Longest Overlapping Covers
	Main Result

	Conclusion
	References

	A Fast Approximation Scheme for the Multiple Knapsack Problem
	Introduction
	Main Algorithm for MKP
	Pre-assignment and LP Relaxation
	High Profit Items
	Medium Profit Items
	Linear Program Relaxation

	New Rounding Strategy
	Packing and Shifting Arguments
	References

	Counting Maximal Independent Sets in Subcubic Graphs
	Introduction
	Preliminaries
	The Algorithm
	Complexity
	References

	Iterated Hairpin Completions of Non-crossing Words
	Introduction
	Preliminaries
	Hairpin Completion

	Non-crossing Words and Their Properties
	α-Prefixes and 1mu-1mu-1mu1mu-Suffixes
	The α-Index

	Iterated Hairpin Completion of Non-crossing Words
	References

	On the Approximation Ratio of the Path Matching Christofides Algorithm
	Introduction
	The PMCA for the Traveling Salesman Problem
	The PMCA for the Hamiltonian Path Problem
	References

	Parikh’s Theorem and Descriptional Complexity
	Introduction
	Preliminaries
	The Bounded Case
	The General Case
	References

	A Combinatorial Algorithm for All-Pairs Shortest Paths in Directed Vertex-Weighted Graphs with Applications to Disc Graphs
	Introduction
	A Reduction of APSP to Mixed Matrix Products
	The APSP Problem
	Mixed Matrix Products
	The Reduction

	Fast Computation of the Mixed Products for Clustered Data
	Approximate Minimum Spanning Tree in High Dimensional Space
	The Algorithm for Mixed Matrix Product

	Main Results
	APSP in Vertex-Weighted Uniform Disk Graphs of Bounded Density
	Final Remarks
	References

	The Complexity of Small Universal Turing Machines: A Survey
	Introduction
	Time and Size Efficiency of Universal Machines
	Non-standard Universal Turing Machines: Time Efficiency and Program Size
	Weak Universality and Rule 110
	Other Non-standard Universal Turing Machines
	Restricted Universal Turing Machines
	Universal Turing Machines with Multidimensional Tapes: Time Efficiency and Program Size
	Termination of a Computation

	Busy Beavers
	Further Work
	References

	A Sufficient Condition for Sets Hitting the Class of Read-Once Branching Programs of Width 3
	Introduction
	The Richness Condition
	Definition of Partition Class
	The Block Structure below Provided That p3(μ)<1/12
	The Recursion
	Conclusion
	References

	Complete Problem for Perfect Zero-Knowledge Quantum Proof
	Introduction
	Preliminaries
	Quantum Circuit Model
	Efficiently Preparable Quantum State
	Perfect Zero-Knowledge Quantum Interactive Proof
	Perfect Zero-Knowledge Quantum Non-interactive Proof

	Complete Problems
	The Completeness Theorem
	Conclusion
	References

	An Algorithm for Probabilistic Alternating Simulation
	Introduction
	Preliminaries
	Solving GCPP in Probabilistic Game Structures
	A Decision Procedure for PA-I-Simulation
	Conclusion
	References

	Software and Web Engineering
	Towards a Smart, Self-scaling Cooperative Web Cache
	Introduction
	Analysis and Design of the CWC
	Case Study
	Client Evaluation in Homogeneous Network
	Client Evaluation in Heterogeneous Network
	Server Load Evaluation
	Server Delay Dependency
	Resilience to Abrupt Departure

	Related Work
	Conclusion
	References

	Named Entity Disambiguation Based on Explicit Semantics
	Introduction
	Related Work
	Semantic Ambiguity
	Large–Scale Disambiguation
	Formal Definition

	Entity Disambiguation Using Wikipedia
	Dataset Structure
	Semantic Space
	Entity Identification
	Document Transformation
	Candidate Meanings
	Ranking

	Evaluation
	Conclusion and Future Work
	References

	Design Pattern Support Based on the Source Code Annotations and Feature Models
	Introduction
	Related Work
	Open Problems and Our Ideas
	Method of Design Pattern Support in the Source Code
	Proposal of Annotation for Design Patterns
	Support of Design Pattern Instantiation and Evolution
	Realization
	Elimination of Manual Annotation of the Source Code

	Evaluation
	Conclusion and Future Work
	References

	On the Formalization of UML Activities for Component-Based Protocol Design Specifications
	Motivation
	cTLA – Compositional Temporal Logic of Actions
	Formalizing the Semantics of UML Activity Diagrams
	Semantics Definition for Activity Nodes
	Functional Semantics

	Related Work
	Final Remarks
	References

	Tree Based Domain-Specific Mapping Languages
	Introduction
	Basic Principles of Mapping Language Family
	Proposed Mapping Language for MDSD
	Basics of MALA4MDSD
	More Advanced Mapping Elements
	Mapping and Transformation Comparison

	Mapping Language Definition
	Related Work
	Conclusions
	References

	RESTGroups for Resilient Web Services
	Introduction
	RESTGroups Design and Service Replication
	System Design
	Service Replication
	Statelessness

	RESTGroups API Calls
	Connecting to the Server
	Sending Messages
	Reception of Messages

	Related Work
	Conclusion
	References

	Leveraging Microblogs for Resource Ranking
	Introduction
	Related Work
	Microblog-Based Resource Ranking
	TweetRank Computation

	Evaluation
	Dataset
	Comparison with YouTube User Rank
	Sorting Search Results with TweetRank

	Conclusions
	References

	Inner Architecture of a Social Networking System
	Introduction
	The Wall
	Entity

	Analysis
	Existing Social Networks
	Technological Requirements
	Functional Requirements

	Used Technologies
	Architecture and Design
	Inner Architecture
	Data Model
	Storing Data
	Wall and News Feed
	Implementation

	Case Study
	Implementation
	Testing

	Conclusion
	References

	State Coverage: Software Validation Metrics beyond Code Coverage
	Introduction
	State Coverage
	Definition
	Object Insensitive State Coverage
	Object Sensitive State Coverage

	Evaluation
	General Results
	Detailed Evaluation of DSA

	Related Work
	Conclusion and Future Work
	References

	Cryptography, Security, and Verification
	Factorization for Component-Interaction Automata
	Introduction
	Preliminaries
	The Factorization Problem
	From CI Automata to FSM and Back
	The Algorithm
	Conclusion and Future Work
	References

	Optimizing Segment Based Document Protection
	Introduction
	Segment Based Document Protection
	Hierarchical Key Structures and Key Derivation Techniques
	Document Encoding and Problem Statement

	Tree-Based Key Derivation
	Sequential Key Derivation
	OpenProblems
	References

	Securing the Future — An Information Flow Analysis of a Distributed OO Language
	Introduction
	The Programming Language
	Syntax
	Operational Semantics

	Type System for Non-interference
	Types
	Non-interference

	Related Work
	Conclusions
	References

	Improving Watermark Resistance against Removal Attacks Using Orthogonal Wavelet Adaptation
	Introduction
	Orthogonal Wavelet Filter Parametrization
	Image Watermarking in the Wavelet Transform Domain
	Watermarked Image Fidelity
	Improving Watermark Attack Resistance
	Experimental Results
	Scope of the Proposed Method
	Conclusions
	References

	Artificial Intelligence
	MAK€ – A System for Modelling, Optimising, and Analyzing Production in Small and Medium Enterprises
	Introduction
	The Problem
	Why CP?
	How CP?
	The Core Model
	Search Strategy

	Added Value of CP
	References

	Knowledge Compilation with Empowerment
	Introduction
	Preliminaries
	Empowering Implicates
	Empowerment
	Finding Empowering Implicates Using QBF

	Compilation by Iterative Empowerment
	Compilation Sequences
	Clause Deprecation
	Length-Increasing Iterative Empowerment
	Minimality

	Iterative Empowerment versus Prime Implicate Saturation
	Previous Compilation Schemes
	Iterative Empowerment versus Prime Implicates
	Iterative Empowerment versus Merge Resolution

	Conclusion and Perspectives
	References

	Cost-Sensitive Classification with Unconstrained Influence Diagrams
	Introduction
	Problem Statement
	Related Work
	Proposed Method
	Unconstrained Influence Diagrams
	Classification UID
	Classification of Samples
	Full-Powered Bayesian Inference
	Remarks

	Experiments
	Conclusions and Future Work
	References

	Modeling and Predicting Students Problem Solving Times
	Introduction
	Modeling Problem Solving Times
	Summary of Item Response Theory
	Problem Solving Times
	Specific Assumptions and Model
	Group Invariance

	Parameter Estimation
	Estimating Ability
	Estimating Problem Parameters
	Joint Estimation

	Application and Evaluation
	Problem Solving Tutor
	Evaluation of Predictions
	Insight Gained from Parameter Values

	Conclusions and Future Work
	References

	Generic Heuristic Approach to General Game Playing
	Introduction
	The Class of Considered Games
	Game Description Language

	State-of-the-Art
	Automatic Construction of the Evaluation Function
	Selection Phase
	Construction of a Heuristic Function
	The Use of the Heuristic Function

	Empirical Results
	Conclusion
	References

	The SiMoL Modeling Language for Simulation and (Re-)Configuration
	Introduction
	Related Research
	An Example
	SiMoL Definition
	SiMoL Syntax
	SiMoL Inheritance Mechanism
	Semantics of SiMoL

	Re-Configuration
	Conclusion
	References

	Author Index

