
Chapter 7
Reinforcement Learning in
Continuous State and Action Spaces

Hado van Hasselt

Abstract. Many traditional reinforcement-learning algorithms have been designed
for problems with small finite state and action spaces. Learning in such discrete
problems can been difficult, due to noise and delayed reinforcements. However,
many real-world problems have continuous state or action spaces, which can make
learning a good decision policy even more involved. In this chapter we discuss how
to automatically find good decision policies in continuous domains. Because an-
alytically computing a good policy from a continuous model can be infeasible,
in this chapter we mainly focus on methods that explicitly update a representa-
tion of a value function, a policy or both. We discuss considerations in choosing
an appropriate representation for these functions and discuss gradient-based and
gradient-free ways to update the parameters. We show how to apply these methods
to reinforcement-learning problems and discuss many specific algorithms. Amongst
others, we cover gradient-based temporal-difference learning, evolutionary strate-
gies, policy-gradient algorithms and (natural) actor-critic methods. We discuss the
advantages of different approaches and compare the performance of a state-of-the-
art actor-critic method and a state-of-the-art evolutionary strategy empirically.

7.1 Introduction

In this chapter, we consider the problem of sequential decision making in continu-
ous domains with delayed reward signals. The full problem requires an algorithm to
learn how to choose actions from an infinitely large action space to optimize a noisy
delayed cumulative reward signal in an infinitely large state space, where even the
outcome of a single action can be stochastic. Desirable properties of such an algo-
rithm include applicability in many different instantiations of the general problem,

Hado van Hasselt
Centrum Wiskunde en Informatica (CWI, Center for Mathematics and Computer Science)
Amsterdam, The Netherlands
e-mail: H.van.Hasselt@cwi.nl

M. Wiering and M. van Otterlo (Eds.): Reinforcement Learning, ALO 12, pp. 207–251.
springerlink.com © Springer-Verlag Berlin Heidelberg 2012

H.van.Hasselt@cwi.nl

208 H. van Hasselt

computational efficiency such that it can be used in real-time and sample efficiency
such that it can learn good action-selection policies with limited experience.

Because of the complexity of the full reinforcement-learning problem in contin-
uous spaces, many traditional reinforcement-learning methods have been designed
for Markov decision processes (MDPs) with small finite state and action spaces.
However, many problems inherently have large or continuous domains. In this chap-
ter, we discuss how to use reinforcement learning to learn good action-selection
policies in MDPs with continuous state spaces and discrete action spaces and in
MDPs where the state and action spaces are both continuous.

Throughout this chapter, we assume that a model of the environment is not
known. If a model is available, one can use dynamic programming (Bellman, 1957;
Howard, 1960; Puterman, 1994; Sutton and Barto, 1998; Bertsekas, 2005, 2007),
or one can sample from the model and use one of the reinforcement-learning algo-
rithms we discuss below. We focus mainly on the problem of control, which means
we want to find action-selection policies that yield high returns, as opposed to the
problem of prediction, which aims to estimate the value of a given policy.

For general introductions to reinforcement learning from varying perspectives,
we refer to the books by Bertsekas and Tsitsiklis (1996) and Sutton and Barto (1998)
and the more recent books by Bertsekas (2007), Powell (2007), Szepesvári (2010)
and Buşoniu et al (2010). Whenever we refer to a chapter, it is implied to be the
relevant chapter from the same volume as this chapter.

In the remainder of this introduction, we describe the structure of MDPs in con-
tinuous domains and discuss three general methodologies to find good policies
in such MDPs. We discuss function approximation techniques to deal with large
or continuous spaces in Section 7.2. We apply these techniques to reinforcement
learning in Section 7.3, where we discuss the current state of knowledge for re-
inforcement learning in continuous domains. This includes discussions on tempo-
ral differences, policy gradients, actor-critic algorithms and evolutionary strategies.
Section 7.4 shows the results of an experiment, comparing an actor-critic method
to an evolutionary strategy on a double-pole cart pole. Section 7.5 concludes the
chapter.

7.1.1 Markov Decision Processes in Continuous Spaces

A Markov decision process (MDP) is a tuple (S,A,T,R,γ). In this chapter, the state
space S is generally an infinitely large bounded set. More specifically, we assume
the state space is a subset of a possibly multi-dimensional Euclidean space, such
that S ⊆ R

DS , where DS ∈ N is the dimension of the state space. The action space
is discrete or continuous and in the latter case we assume A ⊆ R

DA , where DA ∈
N is the dimension of the action space.1 We consider two variants: MDPs with
continuous states and discrete actions and MDPs where both the states and actions

1 In general, the action space is more accurately represented with a function that maps a
state into a continuous set, such that A(s)⊆ R

DA . We ignore this subtlety for conciseness.

7 Reinforcement Learning in Continuous State and Action Spaces 209

Table 7.1 Symbols used in this chapter. All vectors are column vectors

DX ∈ {1,2, . . .} dimension of space X
S⊆ R

DS state space
A⊆ R

DA action space
T : S×A×S → [0,1] state-transition function
R : S×A×S → R expected-reward function
γ ∈ [0,1] discount factor
V : S → R state value function
Q : S×A → R state-action value function
π : S×A → [0,1] action-selection policy
α ∈ R,β ∈ R step-size parameters (may depend on state and action)
t ∈ N time step
k ∈ N episode
Φ ⊆R

DΦ feature space
φ : S→ Φ feature-extraction function
Θ ⊆ R

DΘ parameter space for value functions
θ ∈Θ parameter vector for a value function
Ψ ⊆R

DΨ parameter space for policies
ψ ∈Ψ parameter vector for a policy
e ∈ R

DΘ eligibility trace vector
‖x‖= ∑n

i=0 x[i]2 quadratic norm of vector x = {x[0], . . . ,x[n]}
‖ f ‖=

∫
x∈X(f (x))2 dx quadratic norm of function f : X → R

‖ f ‖w =
∫

x∈X w(x)(f (x))2 dx quadratic weighted norm of function f : X → R

are continuous. Often, when we write ‘continuous’ the results hold for ‘large finite’
spaces as well. The notation used in this chapter is summarized in Table 7.1.

The transition function T (s,a,s′) gives the probability of a transition to s′ when
action a is performed in s. When the state space is continuous, we can assume the
transition function specifies a probability density function (PDF), such that

∫
S′

T (s,a,s′) ds′ = P(st+1 ∈ S′|st = s and at = a)

denotes the probability that action a in state s results in a transition to a state in the
region S′ ⊆ S. It is often more intuitive to describe the transitions through a function
that describes the system dynamics, such that

st+1 = T (st ,at)+ωT (st ,at) ,

where T : S×A → S is a deterministic transition function that returns the expected
next state for a given state-action pair and ωT (s,a) is a zero-mean noise vector with
the same size as the state vector. For example, st+1 could be sampled from a Gaus-
sian distribution centered at T (st ,at). The reward function gives the expected reward
for any two states and an action. The actual reward can contain noise:

rt+1 = R(st ,at ,st+1)+ωR(st ,at ,st+1) ,

210 H. van Hasselt

where ωR(s,a,s′) is a real-valued zero-mean noise term. If ωR and the components
of ωT are not uniformly zero at all time steps, the MDP is called stochastic. Oth-
erwise it is deterministic. If T or R is time-dependent, the MDP is non-stationary.
In this chapter, we assume stationary MDPs. Since it is commonly assumed that S,
A and γ are unknown, when we refer to a model in this chapter we usually mean
(approximations of) T and R.

When only the state space is continuous, the action-selection policy is repre-
sented by a state dependent probability mass function π : S×A→ [0,1], such that

π(s,a) = P(at = a|st = s) and ∑
a∈A

π(s,a) = 1 .

When the action space is also continuous, π(s) represents a PDF on the action space.
The goal of prediction is to find the value of the expected future discounted re-

ward for a given policy. The goal of control is to optimize this value by finding
an optimal policy. It is useful to define the following operators Bπ : V → V and
B∗ : V → V , where V is the space of all value functions:2

(BπV)(s) =
∫

A
π(s,a)

∫
S
T (s,a,s′)

(
R(s,a,s′)+ γV(s′)

)
ds′ da , (7.1)

(B∗V)(s) = max
a

∫
S
T (s,a,s′)

(
R(s,a,s′)+ γV(s′)

)
ds′ ,

In continuous MDPs, the values of a given policy and the optimal value can then
be expressed with the Bellman equations V π = BπV π and V ∗ = B∗V ∗. Here V π(s)
is the value of performing policy π starting from state s and V ∗(s) = maxπV π(s) is
the value of the best possible policy. If the action space is finite, the outer integral
in equation (7.1) should be replaced with a summation. In this chapter, we mainly
consider discounted MDPs, which means that γ ∈ (0,1).

For control with finite action spaces, action values are often used. The optimal
action value for continuous state spaces is given by the Bellman equation

Q∗(s,a) =
∫

S
T (s,a,s′)

(
R(s,a,s′)+ γmax

a′
Q∗(s′,a′)

)
ds′ . (7.2)

The idea is that when Q∗ is approximated by Q with sufficient accuracy, we get
a good policy by selecting the argument a that maximizes Q(s,a) in each state s.
Unfortunately, when the action space is continuous both this selection and the max
operator in equation (7.2) may require finding the solution for a non-trivial optimiza-
tion problem. We discuss algorithms to deal with continuous actions in Section 7.3.
First, we discuss three general ways to learn good policies in continuous MDPs.

2 In the literature, these operators are more commonly denoted Tπ and T ∗ (e.g., Szepesvári,
2010), but since we use T to denote the transition function, we choose to use B.

7 Reinforcement Learning in Continuous State and Action Spaces 211

7.1.2 Methodologies to Solve a Continuous MDP

In the problem of control, the aim is an approximation of the optimal policy. The
optimal policy depends on the optimal value, which in turn depends on the model
of the MDP. In terms of equation (7.2), the optimal policy is the policy π∗ that
maximizes Q∗ for each state: ∑aπ∗(s,a)Q∗(s,a) = maxa Q∗(s,a). This means that
rather than trying to estimate π∗ directly, we can try to estimate Q∗, or we can even
estimate T and R to construct Q∗ and π∗ when needed. These observations lead to
the following three general methodologies that differ in which part of the solution
is explicitly approximated. These methodologies are not mutually exclusive and we
will discuss algorithms that use combinations of these approaches.

Model Approximation. Model-approximation algorithms approximate the MDP
and compute the desired policy on this approximate MDP. Since S, A and γ are as-
sumed to be known, this amounts to learning an approximation for the functions
T and R.3 Because of the Markov property, these functions only depend on local
data. The problem of estimating these functions then translates to a fairly standard
supervised learning problem. For instance, one can use Bayesian methods (Dear-
den et al, 1998, 1999; Strens, 2000; Poupart et al, 2006) to estimate the required
model. Learning the model may not be trivial, but in general it is easier than learn-
ing the value of a policy or optimizing the policy directly. For a recent survey on
model-learning algorithms, see Nguyen-Tuong and Peters (2011).

An approximate model can be used to compute a value function. This can be done
iteratively, for instance using value iteration or policy iteration (Bellman, 1957;
Howard, 1960; Puterman and Shin, 1978; Puterman, 1994). The major drawback of
model-based algorithms in continuous-state MDPs is that even if a model is known,
in general one cannot easily extract a good policy from the model for all possible
states. For instance, value iteration uses an inner loop over the whole state space,
which is impossible if this space is infinitely large. Alternatively, a learned model
can be used to generate sample runs. These samples can then be used to estimate a
value function, or to improve the policy, using one of the methods outlined below.
However, if the accuracy of the model is debatable, the resulting policy may not be
better than a policy that is based directly on the samples that were used to construct
the approximate model. In some cases, value iteration can be feasible, for instance
because T (s,a,s′) is non-zero for only a small number of states s′. Even so, it may be
easier to approximate the value directly than to infer the values from an approximate
model. For reasons of space, we will not consider model approximation further.

Value Approximation. In this second methodology, the samples are used to ap-
proximate V ∗ or Q∗ directly. Many reinforcement-learning algorithms fall into this
category. We discuss value-approximation algorithms in Section 7.3.1.

3 In engineering, the reward function is usually considered to be known. Unfortunately, this
does not make things much easier, since the transition function is usually harder to estimate
anyway.

212 H. van Hasselt

Policy Approximation. Value-approximation algorithms parametrize the policy in-
directly by estimating state or action values from which a policy can be inferred.
Policy-approximation algorithms store a policy directly and try update this policy
to approximate the optimal policy. Algorithms that only store a policy, and not a
value function, are often called direct policy-search (Ng et al, 1999) or actor-only
algorithms (Konda and Tsitsiklis, 2003). Algorithms that store both a policy and
a value function are commonly known as actor-critic methods (Barto et al, 1983;
Sutton, 1984; Sutton and Barto, 1998; Konda, 2002; Konda and Tsitsiklis, 2003).
We will discuss examples of both these approaches. Using this terminology, value-
based algorithms that do not store an explicit policy can be considered critic-only
algorithms. Policy-approximation algorithms are discussed in Section 7.3.2.

7.2 Function Approximation

Before we discuss algorithms to update approximations of value functions or poli-
cies, we discuss general ways to store and update an approximate function. General
methods to learn a function from data are the topic of active research in the field
of machine learning. For general discussions, see for instance the books by Vapnik
(1995), Mitchell (1996) and Bishop (2006).

In Sections 7.2.1 and 7.2.2 we discuss linear and non-linear function approxi-
mation. In both cases, the values of the approximate function are determined by a
set of tunable parameters. In Section 7.2.3 we discuss gradient-based and gradient-
free methods to update these parameters. Both approaches have often been used in
reinforcement learning with considerable success (Sutton, 1988; Werbos, 1989b,a,
1990; Whitley et al, 1993; Tesauro, 1994, 1995; Moriarty and Miikkulainen, 1996;
Moriarty et al, 1999; Whiteson and Stone, 2006; Wierstra et al, 2008; Rückstieß
et al, 2010). Because of space limitations, we will not discuss non-parametric ap-
proaches, such as kernel-based methods (see, e.g., Ormoneit and Sen, 2002; Powell,
2007; Buşoniu et al, 2010).

In this section, we mostly limit ourselves to the general functional form of the
approximators and general methods to update the parameters. In order to apply these
methods to reinforcement learning, there are a number of design considerations. For
instance, we have to decide how to measure how accurate the approximation is. We
discuss how to apply these methods to reinforcement learning in Section 7.3.

In supervised learning, a labeled data set is given that contains a number of inputs
with the intended outputs for these inputs. One can then answer statistical questions
about the process that spawned the data, such as the value of the function that gen-
erated the data at unseen inputs. In value-based reinforcement learning, targets may
depend on an adapting policy or on adapting values of states. Therefore, targets may
change during training and not all methods from supervised learning are directly ap-
plicable to reinforcement learning. Nonetheless, many of the same techniques can
successfully be applied to the reinforcement learning setting, as long as one is care-
ful about the inherent properties of learning in an MDP. First, we discuss some

7 Reinforcement Learning in Continuous State and Action Spaces 213

issues on the choice of approximator. This discussion is split into a part on linear
function approximation and one on non-linear function approximation.

7.2.1 Linear Function Approximation

We assume some feature-extraction function φ : S → Φ is given that maps states
into features in the feature space Φ . We assume Φ ⊆ R

DΦ where DΦ is the di-
mension of the feature space. A discussion about the choice of good features falls
outside the scope of this chapter, but see for instance Buşoniu et al (2010) for some
considerations.

A linear function is a simple parametric function that depends on the feature vec-
tor. For instance, consider a value-approximating algorithm where the value function
is approximated by

Vt(s) = θT
t φ(s) . (7.3)

In equation (7.3) and in the rest of this chapter, θ t ∈Θ denotes the adaptable param-
eter vector at time t and φ(s) ∈Φ is the feature vector of state s. Since the function
in equation (7.3) is linear in the parameters, we refer to it as a linear function ap-
proximator. Note that it may be non-linear in the state variables, depending on the
feature extraction. In this section, the dimension DΘ of the parameter space is equal
to the dimension of the feature space DΦ . This does not necessarily hold for other
types of function approximation.

Linear function approximators are useful since they are better understood than
non-linear function approximators. Applied to reinforcement learning, this has led to
a number of convergence guarantees, under various additional assumptions (Sutton,
1984, 1988; Dayan, 1992; Peng, 1993; Dayan and Sejnowski, 1994; Bertsekas and
Tsitsiklis, 1996; Tsitsiklis and Van Roy, 1997). From a practical point of view, linear
approximators are useful because they are simple to implement and fast to compute.

Many problems have large state spaces in which each state can be represented
efficiently with a feature vector of limited size. For instance, the double pole cart
pole problem that we consider later in this chapter has continuous state variables,
and therefore an infinitely large state space. Yet, every state can be represented with
a vector with six elements. This means that we would need a table of infinite size,
but can suffice with a parameter vector with just six elements if we use (7.3) with
the state variables as features.

This reduction of tunable parameters of the value function comes at a cost. It is
obvious that not every possible value function can be represented as a linear combi-
nation of the features of the problem. Therefore, our solution is limited to the set of
value functions that can be represented with the chosen functional form. If one does
not know beforehand what useful features are for a given problem, it can be benefi-
cial to use non-linear function approximation, which we discuss in Section 7.2.2.

214 H. van Hasselt

Fig. 7.1 An elliptical state space is discretized by tile coding with two tilings. For a state
located at the X, the two active tiles are shown in light grey. The overlap of these active
features is shown in dark grey. On the left, each tiling contains 12 tiles. The feature vector
contains 24 elements and 35 different combinations of active features can be encountered
in the elliptical state space. On the right, the feature vector contains 13 elements and 34
combinations of active features can be encountered, although some combinations correspond
to very small parts of the ellipse.

7.2.1.1 Discretizing the State Space: Tile Coding

A common method to find features for a linear function approximator divides the
continuous state space into separate segments and attaches one feature to each seg-
ment. A feature is active (i.e., equal to one) if the relevant state falls into the corre-
sponding segment. Otherwise, it is inactive (i.e., equal to zero).

An example of such a discretizing method that is often used in reinforcement
learning is tile coding (Watkins, 1989; Lin and Kim, 1991; Sutton, 1996; San-
tamaria et al, 1997; Sutton and Barto, 1998), which is based on the Cerebel-
lar Model Articulation Controller (CMAC) structure proposed by Albus (1971,
1975). In tile coding, the state space is divided into a number of disjoint sets.
These sets are commonly called tiles in this context. For instance, one could de-
fine N hypercubes such that each hypercube Hn is defined by a Cartesian product
Hn = [xn,1,yn,1]× . . .× [xn,DS ,yn,DS], where xn,d is the lower bound of hypercube Hn

in state dimension d and yn,d is the corresponding upper bound. Then, a feature
φn(s) ∈ φ (s) corresponding to Hn is equal to one when s ∈ Hn and zero otherwise.

The idea behind tile coding is to use multiple non-overlapping tilings. If a single
tiling contains N tiles, one could use M such tilings to obtain a feature vector of
dimension DΦ = MN. In each state, precisely M of these features are then equal to
one, while the others are equal to zero. An example with M = 2 tilings and DΦ = 24
features is shown on the left in Figure 7.1. The tilings do not have to be homo-
geneous. The right picture in Figure 7.1 shows a non-homogeneous example with
M = 2 tilings and DΦ = 13 features.

When M features are active for each state, up to
(DΦ

M

)
different situations can

theoretically be represented with DΦ features. This contrasts with the naive ap-
proach where only one feature is active for each state, which would only be able to

7 Reinforcement Learning in Continuous State and Action Spaces 215

Fig. 7.2 A reward function and feature mapping. The reward is Markov for the features. If
st+1 = st +at with at ∈ {−2,2}, the feature-transition function is not Markov. This makes it
impossible to determine an optimal policy.

represent DΦ different situations with the same number of features.4 In practice,
the upper bound of

(DΦ
M

)
will rarely be obtained, since many combinations of ac-

tive features will not be possible. In both examples in Figure 7.1, the number of
different possible feature vectors is indeed larger than the length of the feature
vector and smaller than the theoretical upper bound: 24 < 35 <

(24
2

)
= 276 and

13 < 34 <
(13

2

)
= 78.

7.2.1.2 Issues with Discretization

One potential problem with discretizing methods such as tile coding is that the
resulting function that maps states into features is not injective. In other words,
φ(s) = φ(s′) does not imply that s = s′. This means that the resulting feature-space
MDP is partially observable and one should consider using an algorithm that is ex-
plicitly designed to work on partially observable MDPs (POMDPs). For more on
POMDPs, see Chapter 12. In practice, many good results have been obtained with
tile coding, but the discretization and the resulting loss of the Markov property im-
ply that most convergence proofs for ordinary reinforcement-learning algorithms do
not apply for the discretized state space. This holds for any function approximation
that uses a feature space that is not an injective function of the Markov state space.

Intuitively, this point can be explained with a simple example. Consider a state
space S = R that is discretized such that φ(s) = (1,0,0)T when s ≤ −2, φ(s) =
(0,1,0)T when −2 < s < 2 and φ(s) = (0,0,1)T when s ≥ 2. The action space is
A = {−2,2}, the transition function is st+1 = st + at and the initial state is s0 = 1.
The reward is defined by rt+1 = 1 if st ∈ (−2,2) and rt+1 = −1 otherwise. The
reward function and the feature mapping are shown in Figure 7.2. In this MDP, it is
optimal to jump back and forth between the states s =−1 and s = 1. However, if we
observe the feature vector (0,1,0)T , we can not know if we are in s = −1 or s = 1
and we cannot determine the optimal action.

Another practical issue with methods such as tile coding is related to the step-size
parameter that many algorithms use. For instance, in many algorithms the parame-
ters of a linear function approximator are updated with an update akin to

4 Note that 1 < M < DΦ implies that DΦ <
(DΦ

M

)
.

216 H. van Hasselt

θ t+1 = θ t +αt(st)δtφ(st) , (7.4)

where αt(st) ∈ [0,1] is a step size and δt is an error for the value of the current state.
This may be a temporal-difference error, the difference between the current value
and a Monte Carlo sample, or any other relevant error. A derivation and explanation
of this update and variants thereof are given below, in Sections 7.2.3.1 and 7.3.1.2.

If we look at the update to a value V (s) = θTφ(s) that results from (7.4), we get

Vt+1(s) = θT
t+1φ(s) = (θ t +αt(s)δtφ(s))T φ(s)

= θT
t φ(s)+αt(s)φT (s)φ(s)δt

=Vt(s)+αt(s)φT (s)φ(s)δt .

In other words, the effective step size for the values is equal to

αt(st)φT (st)φ(st) = αt(st)‖φ(st)‖ . (7.5)

For instance, in tile coding ‖φ(st)‖ is equal to the number of tilings M. Therefore,
the effective step size on the value function is larger than one for αt(st)> 1/M. This
can cause divergence of the parameters. Conversely, if the euclidean norm ‖φ(s)‖
of the feature vector is often small, the change to the value function may be smaller
than intended.

This issue can occur for any feature space and linear function approximation,
since then the effective step sizes in (7.5) are used for the update to the value func-
tion. This indicates that it can be a good idea to scale the step size appropriately, by
using

α̃t (st) = αt(st)/‖φ(st)‖ ,

where α̃t(st) is the scaled step size.5 This scaled step size can prevent unintended
small as well as unintended large updates to the values.

In general, it is often a good idea to make sure that |φ(s)| = ∑DΦ
k φk(s) ≤ 1 for

all s. For instance, in tile coding we could set the value of active features equal
to 1/M instead of to 1. Such feature representations have good convergence proper-
ties, because they are non-expansions, which means that maxs |φ(s)Tθ−φ(s)Tθ ′| ≤
maxk |θk − θ ′k| for any feature vector φ(s) and any two parameter vectors θ and
θ ′. A non-expansive function makes it easier to prove that an algorithm iteratively
improves its solution in expectation through a so-called contraction mapping (Gor-
don, 1995; Littman and Szepesvári, 1996; Bertsekas and Tsitsiklis, 1996; Bertsekas,
2007; Szepesvári, 2010; Buşoniu et al, 2010). Algorithms that implement a contrac-
tion mapping eventually reach an optimal solution and can be guaranteed not to
diverge, for instance by updating their parameters to infinitely high values.

5 One can safely define α̃t(st) = 0 if ‖φ(st)‖ = 0, since in that case update (7.4) would not
change the parameters anyway.

7 Reinforcement Learning in Continuous State and Action Spaces 217

A final issue with discretization is that it introduces discontinuities in the func-
tion. If the input changes a small amount, the approximated value may change a
fairly large amount if the two inputs fall into different segments of the input space.

7.2.1.3 Fuzzy Representations

Some of the issues with discretization can be avoided by using a function that is
piece-wise linear, rather than piece-wise constant. One way to do this, is by using
so-called fuzzy sets (Zadeh, 1965; Klir and Yuan, 1995; Babuska, 1998). A fuzzy
set is a generalization of normal sets to fuzzy membership. This means that elements
can partially belong to a set, instead of just the possibilities of truth or falsehood.

A common example of fuzzy sets is the division of temperature into ‘cold’ and
‘warm’. There is a gradual transition between cold and warm, so often it is more
natural to say that a certain temperature is partially cold and partially warm.

In reinforcement learning, the state or state-action space can be divided into fuzzy
sets. Then, a state may belong partially to the set defined by feature φi and partially
to the set defined by feature φ j . For instance, we may have φi(s) = 0.1 and φ j(s) =
0.3. An advantage of this view is that it is quite natural to assume that ∑k φk(s)≤ 1,
since each part of an element can belong to only one set. For instance, something
cannot be fully warm and fully cold at the same time.

It is possible to define the sets such that each combination of feature activations
corresponds precisely to one single state, thereby avoiding the partial-observability
problem sketched earlier. A common choice is to use triangular functions that are
equal to one at the center of the corresponding feature and decay linearly to zero
for states further from the center. With some care, such features can be constructed
such that they span the whole state space and ∑k φk(s)≤ 1 for all states.

A full treatment of fuzzy reinforcement learning falls outside the scope of this
chapter. References that make the explicit connection between fuzzy logic and re-
inforcement learning include Berenji and Khedkar (1992); Berenji (1994); Lin and
Lee (1994); Glorennec (1994); Bonarini (1996); Jouffe (1998); Zhou and Meng
(2003) and Buşoniu et al (2008, 2010). A drawback of fuzzy sets is that these sets
still need to be defined beforehand, which may be difficult.

7.2.2 Non-linear Function Approximation

The main drawback of linear function approximation compared to non-linear func-
tion approximation is the need for good informative features.6 The features are of-
ten assumed to be hand-picked beforehand, which may require domain knowledge.
Even if convergence in the limit to an optimal solution is guaranteed, this solution
is only optimal in the sense that it is the best possible linear function of the given
features. Additionally, while less theoretical guarantees can be given, nice empirical
results have been obtained by combining reinforcement-learning algorithms with

6 Non-parametric approaches somewhat alleviate this point, but are harder to analyze in
general. A discussion on such methods falls outside the scope of this chapter.

218 H. van Hasselt

non-linear function approximators, such as neural networks (Haykin, 1994; Bishop,
1995, 2006; Ripley, 2008). Examples include Backgammon (Tesauro, 1992, 1994,
1995), robotics (Anderson, 1989; Lin, 1993; Touzet, 1997; Coulom, 2002) and ele-
vator dispatching (Crites and Barto, 1996, 1998).

In a parametric non-linear function approximator, the function that should be op-
timized is represented by some predetermined parametrized function. For instance,
for value-based algorithms we may have

Vt(s) =V (φ (s),θt) . (7.6)

Here the size of θt ∈Θ is not necessarily equal to the size of φ(s) ∈Φ . For instance,
V may be a neural network where θ t is a vector with all its weights at time t. Often,
the functional form of V is fixed. However, it is also possible to change the structure
of the function during learning (e.g., Stanley and Miikkulainen, 2002; Taylor et al,
2006; Whiteson and Stone, 2006; Buşoniu et al, 2010).

In general, a non-linear function approximator may approximate an unknown
function with better accuracy than a linear function approximator that uses the same
input features. In some cases, it is even possible to avoid defining features altogether
by using the state variables as inputs. A drawback of non-linear function approxima-
tion in reinforcement learning is that less convergence guarantees can be given. In
some cases, convergence to a local optimum can be assured (e.g., Maei et al, 2009),
but in general the theory is less well developed than for linear approximation.

7.2.3 Updating Parameters

Some algorithms allow for the closed-form computation of parameters that best
approximate the desired function, for a given set of experience samples. For in-
stance, when TD-learning is coupled with linear function approximation, least-
squares temporal-difference learning (LSTD) (Bradtke and Barto, 1996; Boyan,
2002; Geramifard et al, 2006) can be used to compute parameters that minimize the
empirical temporal-difference error over the observed transitions. However, for non-
linear algorithms such as Q-learning or when non-linear function approximation is
used, these methods are not applicable and the parameters should be optimized in a
different manner.

Below, we explain how to use the two general techniques of gradient descent
and gradient-free optimization to adapt the parameters of the approximations. These
procedures can be used with both linear and non-linear approximation and they can
be used for all three types of functions: models, value functions and policies. In
Section 7.3, we discuss reinforcement-learning algorithms that use these methods.

We will not discuss Bayesian methods in any detail, but such methods can be used
to learn the probability distributions of stationary functions, such as the reward and
transition functions of a stationary MDP. An advantage of this is that the exploration
of an online algorithm can choose actions to increase the knowledge of parts of the
model that have high uncertainty. Bayesian methods are somewhat less suited to

7 Reinforcement Learning in Continuous State and Action Spaces 219

1: input: differentiable function E : RN ×R
P → R to be minimized,

step size sequence αt ∈ [0,1], initial parameters θ0 ∈ R
P

2: output: a parameter vector θ such that E is small
3: for all t ∈ {1,2, . . .} do
4: Observe xt , E(xt ,θt)
5: Calculate gradient:

∇θE(xt ,θt) =

(
∂

∂θt [1]
E(xt ,θt), . . . ,

∂
∂θt [P]

E(xt ,θt)

)T

.

6: Update parameters:
θ t+1 = θ t −αt∇θE(x,θt)

Algorithm 15. Stochastic gradient descent

learn the value of non-stationary functions, such as the value of a changing policy.
For more general information about Bayesian inference, see for instance Bishop
(2006). For Bayesian methods in the context of reinforcement learning, see Dearden
et al (1998, 1999); Strens (2000); Poupart et al (2006) and Chapter 11.

7.2.3.1 Gradient Descent

A gradient-descent update follows the direction of the negative gradient of some
parametrized function that we want to minimize. The gradient of a parametrized
function is a vector in parameter space that points in the direction in which the
function increases, according to a first-order Taylor expansion. Put more simply, if
the function is smooth and we change the parameters a small amount in the direction
of the gradient, we expect the function to increase slightly.

The negative gradient points in the direction in which the function is expected to
decrease, so moving the parameters in this direction should result in a lower value
for the function. Algorithm 15 shows the basic algorithm, where for simplicity a
real-valued parametrized function E : RN ×R

P → R is considered. The goal is to
make the output of this function small. To do this, the parameters of θ ∈ R

DΘ of
E are updated in the direction of the negative gradient. The gradient ∇θE(x,θ) is
a column vector whose components are the derivatives of E to the elements of the
parameter vector θ , calculated at the input x. Because the gradient only describes
the local shape of the function, this algorithm can end up in a local minimum.

Usually, E is an error measure such as a temporal-difference or a prediction error.
For instance, consider a parametrized approximate reward function R̄ : S×A×R

P→
R and a sample (st ,at ,rt+1). Then, we might use E(st ,at ,θt) = (R̄(st ,at ,θt)− rt+1)

2.
If the gradient is calculated over more than one input-output pair at the same

time, the result is the following batch update

θ t+1 = θ t −αt∑
i
∇θEi(xi,θt) ,

220 H. van Hasselt

where Ei(xi,θt) is the error for the i th input xi and αt ∈ [0,1] is a step-size parameter.
If the error is defined over only a single input-output pair, the update is called a
stochastic gradient descent update. Batch updates can be used in offline algorithms,
while stochastic gradient descent updates are more suitable for online algorithms.

There is some indication that often stochastic gradient descent converges faster
than batch gradient descent (Wilson and Martinez, 2003). Another advantage of
stochastic gradient descent over batch learning is that it is straightforward to extend
online stochastic gradient descent to non-stationary targets, for instance if the policy
changes after an update. These features make online gradient methods quite suitable
for online reinforcement learning. In general, in combination with reinforcement
learning convergence to an optimal solution is not guaranteed, although in some
cases convergence to a local optimum can be proven (Maei et al, 2009).

In the context of neural networks, gradient descent is often implemented through
backpropagation (Bryson and Ho, 1969; Werbos, 1974; Rumelhart et al, 1986),
which uses the chain rule and the layer structure of the networks to efficiently calcu-
late the derivatives of the network’s output to its parameters. However, the principle
of gradient descent can be applied to any differentiable function.

In some cases, the normal gradient is not the best choice. More formally, a prob-
lem of ordinary gradient descent is that the distance metric in parameter space may
differ from the distance metric in function space, because of interactions between
the parameters. Let dθ ∈ R

P denote a vector in parameter space. The euclidean
norm of this vector is ‖dθ‖ = dθT dθ . However, if the parameter space is a curved
space—known as a Riemannian manifold—it is more appropriate to use dθT Gdθ
where G is a P×P positive semi-definite matrix. With this weighted distance metric,
the direction of steepest descent becomes

∇̃θE(x,θ) = G−1∇θE(x,θ) ,

which is known as the natural gradient (Amari, 1998). In general, the best choice
for matrix G depends on the functional form of E. Since E is not known in general,
G will usually need to be estimated.

Natural gradients have a number of advantages. For instance, the natural gradient
is invariant to transformations of the parameters. In other words, when using a natu-
ral gradient the change in our function does not depend on the precise parametriza-
tion of the function. This is somewhat similar to our observation in Section 7.2.1.2
that we can scale the step size to tune the size of the step in value space rather than
in parameter space. Only here we consider the direction of the update to the pa-
rameters, rather than its size. Additionally, the natural gradient avoids plateaus in
function space, often resulting in faster convergence. We discuss natural gradients
in more detail when we discuss policy-gradient algorithms in Section 7.3.2.1.

7.2.3.2 Gradient-Free Optimization

Gradient-free methods are useful when the function that is optimized is not differ-
entiable or when it is expected that many local optima exist. Many general global

7 Reinforcement Learning in Continuous State and Action Spaces 221

methods for optimization exist, including evolutionary algorithms (Holland, 1962;
Rechenberg, 1971; Holland, 1975; Schwefel, 1977; Davis, 1991; Bäck and Schwe-
fel, 1993), simulated annealing (Kirkpatrick, 1984), particle swarm optimization
(Kennedy and Eberhart, 1995) and cross-entropy optimization (Rubinstein, 1999;
Rubinstein and Kroese, 2004). Most of these methods share some common features
that we will outline below. We focus on cross-entropy and a subset of evolutionary
algorithms, but the other approaches can be used quite similarly. For introductions to
evolutionary algorithms, see the books by Bäck (1996) and Eiben and Smith (2003).
For a more extensive account on evolutionary algorithms in reinforcement learning,
see Chapter 10. We give a short overview of how such algorithms work.

All the methods described here use a population of solutions. Traditional evo-
lutionary algorithms create a population of solutions and adapt this population by
selecting some solutions, recombining these and possibly mutating the result. The
newly obtained solutions then replace some or all of the solutions in the old popula-
tion. The selection procedure typically takes into account the fitness of the solutions,
such that solutions with higher quality have a larger probability of being used to cre-
ate new solutions.

Recently, it has become more common to adapt the parameters of a probability
distribution that generates solutions, rather than to adapt the solutions themselves.
This approach is used in so-called evolutionary strategies (Bäck, 1996; Beyer and
Schwefel, 2002). Such approaches generate a population, but use the fitness of the
solutions to adapt the parameters of the generating distribution, rather than the so-
lutions themselves. A new population is then obtained by generating new solutions
from the adapted probability distribution. Some specific algorithms include the fol-
lowing. Covariance matrix adaptation evolution strategies (CMA-ES) (Hansen and
Ostermeier, 2001) weigh the sampled solutions according to their fitness and use
the weighted mean as the mean of the new distribution. Natural evolutionary strate-
gies (NES) (Wierstra et al, 2008; Sun et al, 2009) use all the generated solutions to
estimate the gradient of the parameters of the generating function, and then use nat-
ural gradient ascent to improve these parameters. Cross-entropy optimization meth-
ods (Rubinstein and Kroese, 2004) simply select the m solutions with the highest
fitness—where m is a parameter—and use the mean of these solutions to find a new
mean for the distribution.7

7 According to this description, cross-entropy optimization can be considered an evolution-
ary strategy similar to CMA-ES, using a special weighting that weighs the top m solutions
with 1/m and the rest with zero. There are more differences between the known algo-
rithmic implementations however, most important of which is perhaps the more elegant
estimation of the covariance matrix of the newly formed distribution by CMA-ES, aimed
to increase the probability of finding new solutions with high fitness. Some versions of
cross-entropy add noise to the variance to prevent premature convergence (e.g., Szita and
Lörincz, 2006), but the theory behind this seems less well-developed than covariance esti-
mation used by CMA-ES.

On a similar note, it has recently been shown that CMA-ES and NES are equivalent
except for some differences in the proposed implementation of the algorithms (Akimoto
et al, 2011).

222 H. van Hasselt

1: input: parametrized population PDF p : RK ×R
P → R, fitness function f : RP → R,

initial parameters ζ0 ∈ R
K , population size n

2: output: a parameter vector ζ such that if θ ∼ p(ζ ,·) then f (θ) is large with high
probability

3: for all t ∈ {1,2, . . .} do
4: Construct populationΘt = {θ̄1,θ̄2, . . . ,θ̄n}, where θ̄i ∼ p(ζt ,·)
5: Use the fitness scores f (θ̄i) to compute ζt+1 such that E{ f (θ)|ζt+1}> E{ f (θ)|ζt}

Algorithm 16. A generic evolutionary strategy

A generic evolutionary strategy is shown in Algorithm 16. The method to com-
pute the next parameter setting ζt+1 for the generating function in line 5 differs
between algorithms. However, all attempt to increase the expected fitness such
that E{ f (θ)|ζt+1} is higher than the expected fitness of the former population
E{ f (θ)|ζt}. These expectations are defined by

E{ f (θ)|ζ} =
∫
RP

p(ζ ,θ) f (θ) dθ .

Care should be taken that the variance of the distribution does not become too small
too quickly, in order to prevent premature convergence to sub-optimal solutions. A
simple way to do this, is by using a step-size parameter (Rubinstein and Kroese,
2004) on the parameters in order to prevent from too large changes per iteration.
More sophisticated methods to prevent premature convergence include the use of
the natural gradient by NES, and the use of enforced correlations between the co-
variance matrices of consecutive populations by CMA-ES.

No general guarantees can be given concerning convergence to the optimal so-
lution for evolutionary strategies. Convergence to the optimal solution for non-
stationary problems, such as the control problem in reinforcement learning, seems
even harder to prove. Despite this lack of guarantees, these methods can perform
well in practice. The major bottleneck is usually that the computation of the fitness
can be both noisy and expensive. Additionally, these methods have been designed
mostly with stationary optimization problems in mind. Therefore, they are more
suited to optimize a policy using Monte Carlo samples than to approximate the
value of the unknown optimal policy. In Section 7.4, we compare the performance
of CMA-ES and an actor-critic temporal-difference approach.

The gradient-free methods mentioned above all fall into a category known as
metaheuristics (Glover and Kochenberger, 2003). These methods iteratively search
for good candidate solutions, or a distribution that generates these. Another ap-
proach is to construct an easier solvable (e.g., quadratic) model of the function that
is to be optimized and then maximize this model analytically (see, e.g., Powell,
2002, 2006; Huyer and Neumaier, 2008). New samples can be iteratively chosen
to improve the approximate model. We do not know any papers that have used
such methods in a reinforcement learning context, but the sample-efficiency of such

7 Reinforcement Learning in Continuous State and Action Spaces 223

methods in high-dimensional problems make them an interesting direction for future
research.

7.3 Approximate Reinforcement Learning

In this section we apply the general function approximation techniques described in
Section 7.2 to reinforcement learning. We discuss some of the current state of the
art in reinforcement learning in continuous domains. As mentioned earlier in this
chapter, we will not discuss the construction of approximate models because even if
a model is known exact planning is often infeasible in continuous spaces.

7.3.1 Value Approximation

In value-approximation algorithms, experience samples are used to update a value
function that gives an approximation of the current or the optimal policy. Many
reinforcement-learning algorithms fall into this category. Important differences be-
tween algorithms within this category is whether they are on-policy or off-policy and
whether they update online or offline. Finally, a value-approximation algorithm may
store a state-value function V : S → R, or an action-value function Q : S×A → R,
or even both (Wiering and van Hasselt, 2009). We will explain these properties and
give examples of algorithms for each combination of properties.

On-policy algorithms approximate the state-value function V π or the action-value
function Qπ , which represent the value of the policy π that they are currently fol-
lowing. Although the optimal policy π∗ is unknown initially, such algorithms can
eventually approximate the optimal value function V ∗ or Q∗by using policy iter-
ation, which improves the policy between evaluation steps. Such policy improve-
ments may occur as often as each time step. Off-policy algorithms can learn about
the value of a different policy than the one that is being followed. This is useful, as
it means we do not have to follow a (near-) optimal policy to learn about the value
of the optimal policy.

Online algorithms adapt their value approximation after each observed sample.
Offline algorithms operate on batches of samples. Usually, online algorithms require
much less computation per sample, whereas offline algorithms require less samples
to reach a similar accuracy of the approximation.

Online on-policy algorithms include temporal-difference (TD) algorithms, such
as TD-learning (Sutton, 1984, 1988), Sarsa (Rummery and Niranjan, 1994; Sutton
and Barto, 1998) and Expected-Sarsa (van Seijen et al, 2009).

Offline on-policy algorithms include least-squares approaches, such as
least-squared temporal difference (LSTD) (Bradtke and Barto, 1996; Boyan, 2002;
Geramifard et al, 2006), least-squares policy evaluation (LSPE) (Nedić and Bert-
sekas, 2003) and least-squares policy iteration (LSPI) (Lagoudakis and Parr, 2003).
Because of limited space we will not discuss least-squares approaches in this chap-
ter, but see Chapter 3 of this volume.

224 H. van Hasselt

Arguably the best known model-free online off-policy algorithm is Q-learning
(Watkins, 1989; Watkins and Dayan, 1992). Its many derivatives include Perseus
(Spaan and Vlassis, 2005), Delayed Q-learning (Strehl et al, 2006) and Bayesian
Q-learning (Dearden et al, 1998; see also Chapter 11). All these variants try to es-
timate the optimal policy through use of some variant of the Bellman optimality
equation. In general, off-policy algorithms need not estimate the optimal policy,
but can also approximate an arbitrary other policy (Precup et al, 2000; Precup and
Sutton, 2001; Sutton et al, 2008; van Hasselt, 2011, Section 5.4). Offline variants
of Q-learning include fitted Q-iteration (Ernst et al, 2005; Riedmiller, 2005; Antos
et al, 2008a).

An issue with both the online and the offline variants of Q-learning is that noise in
the value approximations, due to the stochasticity of the problem and the limitations
of the function approximator, can result a structural overestimation bias. In short,
the value of maxa Qt(s,a), as used by Q-learning, may—even in expectancy—be far
larger than maxa Q∗(s,a). This bias can severely slow convergence of Q-learning,
even in tabular settings (van Hasselt, 2010) and if care is not taken with the choice
of function approximator, it may result in divergence of the parameters (Thrun and
Schwartz, 1993). A partial solution for this bias is given by the Double Q-learning
algorithm (van Hasselt, 2010), where two action-value functions produce an esti-
mate which may underestimate maxa Q∗(s,a), but is bounded in expectancy.

Many of the aforementioned algorithms can be used both online and offline, but
are better suited for either of these approaches. For instance, fitted Q-iteration usu-
ally is used as an offline algorithm, since the algorithm is considered too compu-
tationally expensive to be run after each sample. Conversely, online algorithms can
store the observed samples are reuse these as if they were observed again in a form of
experience replay (Lin, 1992). The least-squares and fitted variants are usually used
as offline versions of temporal-difference algorithms. There are exceptions however,
such as the online incremental LSTD algorithm (Geramifard et al, 2006, 2007).

If the initial policy does not easily reach some interesting parts of the state-
space, online algorithms have the advantage that the policy is usually updated more
quickly, because value updates are not delayed until a sufficiently large batch of
samples is obtained. This means that online algorithms are sometimes more sample-
efficient in control problems.

In the next two subsections, we discuss in detail some online value-approximation
algorithms that use a gradient-descent update on a predefined error measure.

7.3.1.1 Objective Functions

In order to update a value with gradient descent, we must choose some measure
of error that we can minimize. This measure is often referred to as the objective
function. To be able to reason more formally about these objective functions, we
introduce the concepts of function space and projections. Recall that V is the space
of value functions, such that V ∈ V . Let F ⊆ V denote the function space of
representable functions for some function approximator. Intuitively, if F contains

7 Reinforcement Learning in Continuous State and Action Spaces 225

a large subset of V , the function is flexible and can accurately approximate many
value functions. However, it may be prone to overfitting of the perceived data and it
may be slow to update since usually a more flexible function requires more tunable
parameters. Conversely, if F is small compared to V , the function is not very flexi-
ble. For instance, the function space of a linear approximator is usually smaller than
that of a non-linear approximator. A parametrized function has a parameter vector
θ = {θ [1], . . . ,θ [DΘ]} ∈ R

DΘ that can be adjusted during training. The function
space is then defined by

F =
{

V (·,θ)|θ ∈R
DΘ

}
.

From here on further, we denote parametrized value functions by Vt if we want to
stress the dependence on time and by V θ if we want to stress the dependence on the
parameters. By definition, Vt(s) =V (s,θt) and V θ (s) =V (s,θ).

A projectionΠ : V →F is an operator that maps a value function to the closest
representable function in F , under a certain norm. This projection is defined by

‖V −ΠV‖w = min
v∈F

‖V − v‖w = min
θ
‖V −Vθ‖w ,

where ‖ · ‖w is a weighted norm. We assume the norm is quadratic, such that

‖V −Vθ‖w =
∫

s∈S
w(s)

(
V (s)−V θ (s)

)2
ds .

This means that the projection is determined by the functional form of the approxi-
mator and the weights of the norm.

Let B = Bπ or B = B∗, depending on whether we are approximating the value of
a given policy, or the value of the optimal policy. It is often not possible to find a
parameter vector that fulfills the Bellman equations V θ = BV θ for the whole state
space exactly, because the value BV θ may not be representable with the chosen
function. Rather, the best we can hope for is a parameter vector that fulfills

V θ =ΠBVθ . (7.7)

This is called the projected Bellman equation; Π projects the outcome of the Bell-
man operator back to the space that is representable by the function approximation.

In some cases, it is possible to give a closed form expression for the projection
(Tsitsiklis and Van Roy, 1997; Bertsekas, 2007; Szepesvári, 2010). For instance,
consider a finite state space with N states and a linear function Vt(s) = θTφ(s),
where DΘ = DΦ � N. Let ps = P(st = s) denote the expected steady-state prob-
abilities of sampling each state and store these values in a diagonal N×N matrix
P. We assume the states are always sampled according to these fixed probabilities.
Finally, the N ×DΦ matrix Φ holds the feature vectors for all states in its rows,
such that Vt = Φθt and Vt(s) = Φsθt = θT

t φ (s). Then, the projection operator can
be represented by the N×N matrix

226 H. van Hasselt

Π =Φ
(
ΦT PΦ

)−1ΦT P . (7.8)

The inverse exists if the features are linearly independent, such that Φ has rank DΦ .
With this definitionΠVt =ΠΦθt =Φθt =Vt , butΠBVt �= BVt , unless BVt can be

expressed as a linear function of the feature vectors. A projection matrix as defined
in (7.8) is used in the analysis and in the derivation of several algorithms (Tsitsiklis
and Van Roy, 1997; Nedić and Bertsekas, 2003; Bertsekas et al, 2004; Sutton et al,
2008, 2009; Maei and Sutton, 2010). We discuss some of these in the next section.

7.3.1.2 Gradient Temporal-Difference Learning

We generalize standard temporal-difference learning (TD-learning) (Sutton, 1984,
1988) to a gradient update on the parameters of a function approximator. The tabular
TD-learning update is

Vt+1(st) =Vt(st)+αt(st)δt ,

where δt = rt+1 +γVt(st+1)−Vt(st) and αt(s) ∈ [0,1] is a step-size parameter. When
TD-learning is used to estimate the value of a given stationary policy under on-
policy updates the value function converges when the feature vectors are linearly in-
dependent (Sutton, 1984, 1988). Later it was shown that TD-learning also converges
when eligibility traces are used and when the features are not linearly independent
(Dayan, 1992; Peng, 1993; Dayan and Sejnowski, 1994; Bertsekas and Tsitsiklis,
1996; Tsitsiklis and Van Roy, 1997). More recently, variants of TD-learning were
proposed that converge under off-policy updates (Sutton et al, 2008, 2009; Maei
and Sutton, 2010). We discuss these variants below. A limitation of most afore-
mentioned results is that they apply only to the prediction setting. Recently some
work has been done to extend the analysis to the control setting. This has led to the
Greedy-GQ algorithm, which extends Q-learning to linear function approximation
without the danger of divergence, under some conditions (Maei et al, 2010).

When the state values are stored in a table, TD-learning can be interpreted as a
stochastic gradient-descent update on the one-step temporal-difference error

E(st) =
1
2
(rt+1 + γVt(st+1)−Vt(st))

2 =
1
2
(δt)

2 . (7.9)

If Vt is a parametrized function such that Vt(s) =V (s,θt), the negative gradient with
respect to the parameters is given by

−∇θE(st ,θ) =−(rt+1 + γVt(st+1)−Vt(st))∇θ (rt+1 + γVt(st+1)−Vt(st)) .

Apart from the state and the parameters, the error depends on the MDP and the pol-
icy. We do not specify these dependencies explicitly to avoid cluttering the notation.

A direct implementation of gradient descent based on the error in (7.9) would
adapt the parameters to move Vt(s) closer to rt+1 + γVt(st+1) as desired, but would
also move γVt(st+1) closer to Vt(st)− rt+1. Such an algorithm is called a residual-
gradient algorithm (Baird, 1995). Alternatively, we can interpret rt+1 + γVt(st+1) as

7 Reinforcement Learning in Continuous State and Action Spaces 227

a stochastic approximation for V π that does not depend on θ . Then, the negative
gradient is (Sutton, 1984, 1988)

−∇θEt(st ,θ) = (rt+1 + γVt(st+1)−Vt(st))∇θVt(st) .

This implies the parameters can be updated as

θ t+1 = θ t +αt(st)δt∇θVt(st) . (7.10)

This is the conventional TD learning update and it usually converges faster than the
residual-gradient update (Gordon, 1995, 1999). For linear function approximation,
for any θ we have ∇θVt(st) = φ (st) and we obtain the same update as was shown
earlier for tile coding in (7.4). Similar updates for action-value algorithms are ob-
tained by replacing ∇θVt(st) in (7.10) with ∇θQt(st ,at) and using, for instance

δt = rt+1 + γmax
a

Qt(st+1,a)−Qt(st ,at) , or

δt = rt+1 + γQt(st+1,at+1)−Qt(st ,at) ,

for Q-learning and Sarsa, respectively.
We can incorporate accumulating eligibility traces with trace parameter λ with

the following two equations (Sutton, 1984, 1988):

et+1 = λγet +∇θVt(st) ,

θ t+1 = θ t +αt(st)δtet+1 ,

where e ∈ R
DΦ is a trace vector. Replacing traces (Singh and Sutton, 1996) are less

straightforward, although the suggestion by Främling (2007) seem sensible:

et+1 = max(λγet ,∇θVt(st)) ,

since this corresponds nicely to the common practice for tile coding and this update
reduces to the conventional replacing traces update when the values are stored in a
table. However, a good theoretical justification for this update is still lacking.

Parameters updated with (7.10) may diverge when off-policy updates are used.
This holds for any temporal-difference method with λ < 1 when we use linear
(Baird, 1995) or non-linear function approximation (Tsitsiklis and Van Roy, 1996).
In other words, if we sample transitions from a distribution that does not comply
completely to the state-visit probabilities that would occur under the estimation pol-
icy, the parameters of the function may diverge. This is unfortunate, because in the
control setting ultimately we want to learn about the unknown optimal policy.

Recently, a class of algorithms has been proposed to deal with this issue (Sutton
et al, 2008, 2009; Maei et al, 2009; Maei and Sutton, 2010). The idea is to perform
a stochastic gradient-descent update on the quadratic projected temporal difference:

E(θ) =
1
2
‖Vt −ΠBVt‖P =

1
2

∫
s∈S

P(s = st)(Vt(s)−ΠBVt(s))
2 ds . (7.11)

228 H. van Hasselt

In contrast with (7.9), this error does not depend on the time step or the state. The
norm in (7.11) is weighted according to the state probabilities that are stored in the
diagonal matrix P, as described in Section 7.3.1.1. If we minimize (7.11), we reach
the fixed point in (7.7). To do this, we rewrite the error to

E(θt) =
1
2
(E {δt∇θVt(s)})T (

E
{
∇θVt(s)∇T

θVt(s)
})−1

E {δt∇θVt(s)} , (7.12)

where it is assumed that the inverse exists (Maei et al, 2009). The expectancies are
taken over the state probabilities in P. The error is the product of multiple expected
values. These expected values can not be sampled from a single experience, because
then the samples would be correlated. This can be solved by updating an additional
parameter vector. We use the shorthands φ = φ (st) and φ ′ = φ(st+1) and we assume
linear function approximation. Then ∇θVt(st) = φ and we get

−∇θE(θt) = E
{
(φ − γφ ′)φT}(E

{
φφT})−1

E {δtφ}
≈ E

{
(φ − γφ ′)φT}w ,

where wt ∈ R
DΦ is an additional parameter vector. This vector should approximate(

E
{
φφT

})−1
E {δtφ}, which can be done with the update

wt+1 = wt +βt(st)
(
δt −φT wt

)
φ ,

where βt(st) ∈ [0,1] is a step-size parameter. Then there is only one expected value
left to approximate, which can be done with a single sample. This leads to the update

θ t+1 = θ t +αt(st)
(
φ − γφ ′

)(
φT wt

)
,

which is called the GTD2 (Gradient Temporal-Difference Learning, version 2) al-
gorithm (Sutton et al, 2009). One can also write the gradient in a slightly different
manner to obtain the similar TDC algorithm, which is defined as:

θ t+1 = θ t +αt(st)
(
δtφ − γφ ′

(
φT wt

))
,

where wt is updated as above. This algorithm is named TD with gradient correction
(TDC), because the update to the primary parameter vector θt is equal to (7.10),
except for a correction term. This term prevents divergence of the parameters when
off-policy updates are used. Both GTD2 and TDC can be shown to minimize (7.12),
if the states are sampled according to P. The difference with ordinary TD-learning is
that these algorithms also converge when the probabilities in P differ from those that
result from following the policy π , whose value we are estimating. This is useful for
instance when we have access to a simulator that allows us to sample the states in
any order, while π would spend much time in uninteresting states.

When non-linear smooth function approximators are used, it can be proven that
similar algorithms reach local optima (Maei et al, 2009). The updates for the non-
linear algorithms are similar to the ones above, with another correction term. The

7 Reinforcement Learning in Continuous State and Action Spaces 229

updates can be extended to a form of Q-learning in order to learn action values
with eligibility traces. The resulting GQ(λ) algorithm is off-policy and converges to
the value of a given estimation policy, even when the algorithm follows a different
behavior policy (Maei and Sutton, 2010). The methods can be extended to control
problems (Maei et al, 2010) with a greedy non-stationary estimation policy, although
it is not yet clear how well the resulting Greedy-GQ algorithm performs in practice.

Although these theoretic insights and the resulting algorithms are promising,
in practice the TD update in (7.10) is still the better choice in on-policy settings.
Additionally, an update akin to (7.10) for Q-learning often results in good poli-
cies, although convergence can not be guaranteed in general. Furthermore, for
specific functions—so-called averagers—Q-learning does converge (Gordon, 1995;
Szepesvári and Smart, 2004). In practice, many problems do not have the pre-
cise characteristics that result in divergence of the parameters. Finally, the conver-
gence guarantees are mainly limited to the use of samples from fixed steady-state
probabilities.

If we can minimize the so-called Bellman residual error E(θt) = ‖V −BV‖P, this
automatically minimizes the projected temporal-difference error in (7.11). Using
(δt)

2 as a sample for this error (with B = Bπ) leads to a biased estimate, but other
approaches have been proposed that use this error (Antos et al, 2008b; Maillard et al,
2010). It is problem-dependent whether minimizing the residual error leads to better
results than minimizing the projected error (Scherrer, 2010).

It is non-trivial to extend the standard online temporal-difference algorithms such
as Q-learning to continuous action spaces. Although we can construct an estimate of
the value for each continuous action, it is non-trivial to find the maximizing action
quickly when there are infinitely many actions. One way to do this is to simply
discretize the action space, as in tile coding or by performing a line search (Pazis
and Lagoudakis, 2009). Another method is to use interpolators, such as in wire-
fitting (Baird and Klopf, 1993; Gaskett et al, 1999), which outputs a fixed number
of candidate action-value pairs in each state. The actions and values are interpolated
to form an estimate of the continuous action-value function in the current state.
Because of the interpolation, the maximal value of the resulting function will always
lie precisely on one of the candidate actions, thus facilitating the selection of the
greedy action in the continuous space. However, the algorithms in the next section
are usually much better suited for use in problems with continuous actions.

7.3.2 Policy Approximation

As discussed, determining a good policy from a model analytically can be in-
tractable. An approximate state-action value function Q makes this easier, since
then the greedy policy in each state s can be found by choosing the argument
a that maximizes Q(s,a). However, if the action space is continuous finding the
greedy action in each state can be non-trivial and time-consuming. Therefore, it
can be beneficial to store an explicit estimation of the optimal policy. In this section,

230 H. van Hasselt

we consider actor-only and actor-critic algorithms that store a parametrized policy
π : S×A×Ψ→ [0,1], where π(s,a,ψ) denotes the probability of selecting a in s for
a given policy parameter vector ψ ∈Ψ ⊆ R

DΨ . This policy is called an actor.
In Section 7.3.2.1 we discuss the general framework of policy-gradient algo-

rithms and how this framework can be used to improve a policy. In Section 7.3.2.2
we discuss the application of evolutionary strategies for direct policy search. Then,
in Section 7.3.2.3 we discuss actor-critic methods that use this framework along
with an approximation of a value function. Finally, in Section 7.3.2.4 we discuss an
alternative actor-critic method that uses a different type of update for its actor.

7.3.2.1 Policy-Gradient Algorithms

The idea of policy-gradient algorithms is to update the policy with gradient ascent
on the cumulative expected value V π (Williams, 1992; Sutton et al, 2000; Baxter
and Bartlett, 2001; Peters and Schaal, 2008b; Rückstieß et al, 2010). If the gradient
is known, we can update the policy parameters with

ψk+1 = ψk +βk∇ψE{Vπ(st)} = ψk +βk∇ψ
∫

s∈S
P(st = s)V π(s) ds .

Here P(st = s) denotes the probability that the agent is in state s at time step t
and βk ∈ [0,1] is a step size. In this update we use a subscript k in addition to t
to distinguish between the time step of the actions and the update schedule of the
policy parameters, which may not overlap. If the state space is finite, we can replace
the integral with a sum.

As a practical alternative, we can use stochastic gradient descent:

ψt+1 = ψt +βt(st)∇ψV π(st) . (7.13)

Here the time step of the update corresponds to the time step of the action and we use
the subscript t. Such procedures can at best hope to find a local optimum, because
they use a gradient of a value function that is usually not convex with respect to
the policy parameters. However, some promising results have been obtained, for
instance in robotics (Benbrahim and Franklin, 1997; Peters et al, 2003).

The obvious problem with update (7.13) is that in general V π is not known and
therefore neither is its gradient. For a successful policy-gradient algorithm, we need
an estimate of ∇ψV π . We will now discuss how to obtain such an estimate.

We will use the concept of a trajectory. A trajectory S is a sequence of states
and actions:

S = {s0,a0,s1,a1, . . .} .

The probability that a given trajectory occurs is equal to the probability that the
corresponding sequence of states and actions occurs with the given policy:

7 Reinforcement Learning in Continuous State and Action Spaces 231

P(S |s,ψ) = P(s0 = s)P(a0|s0,ψ)P(s1|s0,a0)P(a1|s1,ψ)P(s2|s1,a1) · · ·

= P(s0 = s)
∞

∏
t=0
π(st ,at ,ψ)P

st+1
st at . (7.14)

The expected value V π can then be expressed as an integral over all possible trajec-
tories for the given policy and the corresponding expected rewards:

V π(s) =
∫

S
P(S |s,ψ)E

{
∞

∑
t=0

γt rt+1

∣∣∣∣∣S
}

dS .

Then, the gradient thereof can be expressed in closed form:

∇ψV π(s) =
∫

S
∇ψP(S |s,ψ)E

{
∞

∑
t=0

γt rt+1

∣∣∣∣∣S
}

dS

=

∫
S

P(S |s,ψ)∇ψ logP(S |s,ψ)E
{

∞

∑
t=0
γt rt+1

∣∣∣∣∣S
}

dS

= E

{
∇ψ logP(S |s,ψ)E

{
∞

∑
t=0

γt rt+1

∣∣∣∣∣S
}∣∣∣∣∣s,ψ

}
, (7.15)

where we used the general identity ∇x f (x) = f (x)∇x log f (x). This useful observa-
tion is related to Fisher’s score function (Fisher, 1925; Rao and Poti, 1946) and the
likelihood ratio (Fisher, 1922; Neyman and Pearson, 1928). It was applied to rein-
forcement learning by Williams (1992) for which reason it is sometimes called the
REINFORCE trick, after the policy-gradient algorithm that was proposed therein
(see, for instance, Peters and Schaal, 2008b).

The product in the definition of the probability of the trajectory as given in (7.14)
implies that the logarithm in (7.15) consists of a sum of terms, in which only the
policy terms depend on ψ . Therefore, the other terms disappear when we take the
gradient and we obtain:

∇ψ logP(S |s,ψ) = ∇ψ

(
logP(s0 = s)+

∞

∑
t=0

logπ(st ,at ,ψ)+
∞

∑
t=0

logPst+1
st at

)

=
∞

∑
t=0

∇ψ logπ(st ,at ,ψ) . (7.16)

This is nice, since it implies we do not need the transition model. However, this only
holds if the policy is stochastic. If the policy is deterministic we need the gradi-
ent ∇ψ logPs′

sa = ∇a logPs′
sa∇ψπ(s,a,ψ), which is available only when the transition

probabilities are known. In most cases this is not a big problem, since stochastic
policies are needed anyway to ensure sufficient exploration. Figure 7.3 shows two
examples of stochastic policies that can be used and the corresponding gradients.

232 H. van Hasselt

Boltzmann exploration can be used in discrete actions spaces. Assume that φ(s,a) is a feature
vector of size corresponding to state s and action a. Suppose the policy is a Boltzmann
distribution with parameters ψ , such that

π(s,a,ψ) =
eψT φ(s,a)

∑b∈A(s) eψT φ(s,b)
,

then, the gradient of the logarithm of this policy is given by

∇ψ logπ(s,a,ψ) = φ(s,a)−∑
b

π(s,b,ψ)φ(s,b) .

Gaussian exploration can be used in continuous action spaces. Consider a Gaussian policy with
mean μ ∈ R

DA and DA×DA covariance matrix Σ , such that

π(s,a,{μ,Σ}) = 1√
2π detΣ

exp
(
−1

2
(a−μ)T Σ−1(a−μ)

)
,

∇μ logπ(s,a,{μ,Σ}) = (a−μ)T Σ−1 ,

∇Σ logπ(s,a,{μ,Σ}) = 1
2
(
Σ−1(a−μ)(a−μ)T Σ−1−Σ−1) .

where the actions a ∈ A are vectors of the same size as μ . If ψ ∈ Ψ ⊆ R is a parameter
vector that determines the state-dependent location of the mean μ(s,ψ), then ∇ψ logπ(s,a,ψ) =
JT

ψ (μ(s,ψ))∇μ logπ(s,a,{μ,Σ}), where Jψ (μ(s,ψμ)) is the DA×DΨ Jacobian matrix, containing
the partial derivatives from each of the elements of μ(s,ψ) to each of the elements of ψ .
The covariance matrix can be the output of a parametrized function as well, but care should be taken
to preserve sufficient exploration. One way is to use natural-gradient updates as normal gradients
may decrease the exploration too fast. Another option is to use a covariance matrix σ2I, where σ
is a tunable parameter that is fixed or decreased according to some predetermined schedule.

DΨ

DA

,

Fig. 7.3 Examples of stochastic policies for policy-gradient algorithms

When we know the gradient in (7.16), we can sample the quantity in (7.15). For
this, we need to sample the expected cumulative discounted reward. For instance,
if the task is episodic we can take a Monte Carlo sample that gives the cumulative
(possibly discounted) reward for each episode. In episodic MDPs, the sum in (7.16)
is finite rather than infinite and we obtain

∇ψV π(st) = E

{
Rk(st)

(
Tk−1

∑
j=t

∇ψ logπ(s j,a j,ψ)

)}
(7.17)

where Rk(st) = ∑Tk−1
j=t γ

t− jr j+1 is the total (discounted) return obtained after reach-
ing state st in episode k, where this episode ended on Tk. This gradient can be sam-
pled and used to update the policy through (7.13).

7 Reinforcement Learning in Continuous State and Action Spaces 233

A drawback of sampling (7.17) is that the variance of Rk(st) can be quite high,
resulting in noisy estimates of the gradient. Williams (1992) notes that this can be
mitigated somewhat by using the following update:

ψt+1 = ψt +βt(st)(Rk(st)− b(st))
Tk

∑
j=t

∇ψ logπ(s j,a j,ψt) , (7.18)

where b(st) is a baseline that does not depend on the policy parameters, although it
may depend on the state. This baseline can be used to minimize the variance without
adding bias to the update, since for any s ∈ S∫

S
∇ψP(S |s,ψ)b(s) dS = b(s)∇ψ

∫
S

P(S |s,ψ) dS

= b(s)∇ψ1 = 0 .

It has been shown that it can be a good idea to set this baseline equal to an esti-
mate of the state value, such that b(s) = Vt(s) (Sutton et al, 2000; Bhatnagar et al,
2009), although strictly speaking it is then not independent of the policy parameters.
Some work has been done to optimally set the baseline to minimize the variance and
thereby increase the convergence rate of the algorithm (Greensmith et al, 2004; Pe-
ters and Schaal, 2008b), but we will not go into this in detail here.

The policy-gradient updates as defined above all use a gradient that updates the
policy parameters in the direction of steepest ascent of the performance metric.
However, the gradient update operates in parameter space, rather than in policy
space. In other words, when we use normal gradient descent with a step size, we
restrict the size of the change in parameter space: dψT

t dψt , where dψt = ψt+1−ψt

is the change in parameters. It has been argued that it is much better to restrict the
step size in policy space. This is similar to our observation in Section 7.2.1.2 that an
update in parameter space for a linear function approximator can result in an update
in value space with a unintended large or small step size. A good distance metric for
policies is the Kullback-Leibler divergence (Kullback and Leibler, 1951; Kullback,
1959). This can be approximated with a second-order Taylor expansion dψT

t Fψ dψt ,
where Fψ is the DΨ ×DΨ Fisher information matrix, defined as

Fψ = E
{
∇ψP(S |s,ψ)∇T

ψP(S |s,ψ)
}

,

where the expectation ranges over the possible trajectories. This matrix can be sam-
pled with use of the identity (7.16). Then, we can obtain a natural policy gradient,
which follows a natural gradient (Amari, 1998). This idea was first introduced in
reinforcement learning by Kakade (2001). The desired update then becomes

ψT
t+1 = ψ

T
t +βt(st)F

−1
ψ ∇ψV π(st) , (7.19)

which needs to be sampled. A disadvantage of this update is the need for enough
samples to (approximately) compute the inverse matrix F−1

ψ . The number of re-
quired samples can be restrictive if the number of parameters is fairly large, espe-
cially if a sample consists of an episode that can take many time steps to complete.

234 H. van Hasselt

Most algorithms that use a natural gradient use O(D2
Ψ) time per update and

may require a reasonable amount of samples. More details can be found elsewhere
(Kakade, 2001; Peters and Schaal, 2008a; Wierstra et al, 2008; Bhatnagar et al,
2009; Rückstieß et al, 2010).

7.3.2.2 Policy Search with Evolutionary Strategies

Instead of a gradient update on the policy parameters, we can also conduct a
gradient-free search in the policy-parameter space. As an interesting example that
combines ideas from natural policy-gradients and evolutionary strategies, we dis-
cuss natural evolutionary strategies (NES) (Wierstra et al, 2008; Sun et al, 2009).
The idea behind the algorithm is fairly straightforward, although many specific im-
provements are more advanced (Sun et al, 2009). The other gradient-free methods
discussed in Section 7.2.3.2 can be used in a similar vein.

Instead of storing a single exploratory policy, NES creates a population of n pa-
rameter vectors ψ1, . . ., ψn. These vectors represent policies that have a certain
expected payoff. This payoff can be sampled by a Monte Carlo sample Rk(s0), sim-
ilar to (7.17), where s0 is the first state in an episode. This Monte Carlo sample is
the fitness. The goal is to improve the population parameters of the distribution that
generates the policy parameters, such that the new population distribution will likely
yield better policies. In contrast with policy-gradient methods, we do not improve
the policies themselves; we improve the process that generates the policies. For this,
we use a gradient ascent step on the fitness of the current solutions.

In NES and CMA-ES, the parameter vectorsψ i are drawn from a Gaussian distri-
bution ψ i ∼N

(
μψ ,Σψ

)
. Let ζψ be a vector that contains all the population param-

eters for the mean and the covariance matrix. NES uses the Monte Carlo samples to
find an estimate of the natural gradient F−1

ζ ∇ζE{R} of the performance to the pop-
ulation parameters in μψ and Σψ . This tells us how the meta-parameters should be
changed in order to generate better populations in the future. Because of the choice
of a Gaussian generating distribution, it is possible to calculate the Fisher informa-
tion matrix analytically. With further algorithmic specifics, it is possible to restrict
the computation for a single generation in NES to O(np3+n f), where n is the num-
ber of solutions in the population, p is the number of parameters of a solution and f
is the computational cost of determining the fitness for a single solution. Note that
f may be large if the necessary Monte Carlo roll-outs can be long. The potentially
large variance in the fitness may make direct policy search less appropriate for large,
noisy problems. Note that in contrast with policy-gradient algorithms, the candidate
policies can be deterministic, which may reduce the variance somewhat.

7.3.2.3 Actor-Critic Algorithms

The variance of the estimate of ∇ψV π(st) in (7.17) can be very high if Monte Carlo
roll-outs are used, which can severely slow convergence. Likewise, this is a prob-
lem for direct policy-search algorithms that use Monte Carlo roll-outs. A potential

7 Reinforcement Learning in Continuous State and Action Spaces 235

solution to this problem is presented by using an explicit approximation of V π . In
this context, such an approximate value function is called a critic and the combined
algorithm is called an actor-critic algorithm (Barto et al, 1983; Sutton, 1984; Konda
and Borkar, 1999; Konda, 2002; Konda and Tsitsiklis, 2003).

Actor-critic algorithms typically use a temporal-difference algorithm to update
Vt , an estimate for V π . It can be shown that if at is selected according to π , under
some assumptions the TD error δt = rt+1 + γVt(st+1)−Vt(st) is an unbiased esti-
mate of Qπ(st ,at)−V π(st). Assuming b(st) = V π(st) as a baseline, this leads to an
unbiased estimate of δt∇ψ logπ(st ,at ,ψt) for the gradient of the policy (Sutton et al,
2000). This estimate can be extended to an approximate natural-gradient direction
(Peters et al, 2003; Peters and Schaal, 2008a), leading to natural actor-critic (NAC)
algorithms. A typical actor-critic update would update the policy parameters with

ψt+1 = ψt +βt(st)δt∇ψ logπ(st ,at ,ψt) ,

where ∇ψ logπ(st ,at ,ψt) can be replaced with F−1
ψ ∇ψ logπ(st ,at ,ψt) for a NAC

algorithm.
In some cases, an explicit approximation of the inverse Fisher information matrix

can be avoided by approximating Qπ(s,a)−b(s) with a linear function approximator
gπt (s,a,w) = wT

t ∇ψ logπ(s,a,ψt) (Sutton et al, 2000; Konda and Tsitsiklis, 2003;
Peters and Schaal, 2008a). After some algebraic manupulations we then get

∇ψVt(s) = E{∇ψ logπ(s,a,ψt)∇T
ψ logπ(s,a,ψt)}wt = Fψwt ,

which we can plug into (7.19) to get the NAC update

ψt+1 = ψt +βt(st)wt .

However, this elegant update only applies to critics that use the specific linear func-
tional form of gπt (s,a,w) to approximate the value Qπ(s,a)− b(s). Furthermore, the
accuracy of this update clearly depends on the accuracy of wt . Other NAC variants
are described by Bhatnagar et al (2009).

There is significant overlap between some of the policy-gradient ideas in this
section and many of the ideas in the related field of adaptive dynamic programming
(ADP) (Powell, 2007; Wang et al, 2009). Essentially, reinforcement learning and
ADP can be thought of as different names for the same research field. However, in
practice there is a divergence between the sort of problems that are considered and
the solutions that are proposed. Usually, in adaptive dynamic programming more of
an engineering’s perspective is used, which results in a slightly different notation
and a somewhat different set of goals. For instance, in ADP the goal is often to sta-
bilize a plant (Murray et al, 2002). This puts some restraints on the exploration that
can safely be used and implies that often the goal state is the starting state and the
goal is to stay near this state, rather that to find better states. Additionally, problems
in continuous time are discussed more often than in reinforcement learning (Beard
et al, 1998; Vrabie et al, 2009) for which the continuous version of the Bellman op-
timality equation is used, that it known as the Hamilton–Jacobi–Bellman equation

236 H. van Hasselt

(Bardi and Dolcetta, 1997). A further discussion of these specifics falls outside the
scope of this chapter.

One of the earliest actor-critic methods stems from the ADP literature. It approx-
imates Qπ , rather than V π . Suppose we use Gaussian exploration, centered at the
output of a deterministic function Ac : S×Ψ → A. Here, we refer to this function
as the actor, instead of to the whole policy. If we use a differentiable function Qt to
approximate Qπ , it becomes possible to update the parameters of this actor with use
of the chain rule:

ψt+1 = ψt +αt∇ψQt(st ,Ac(s,ψ),θ)

= ψt +αt J
T
ψ (Ac(st ,ψ))∇aQt(st ,a) ,

where Jψ(Ac(s,ψ)) is the DA×DΨ Jacobian matrix of which the element on the i th

row and j th column is equal to ∂
∂ψ j

Aci(s,ψ), where Aci(s,ψ) is the i th element of

Ac(s,ψ). This algorithm is called action dependent heuristic dynamic programming
(ADHDP) (Werbos, 1977; Prokhorov and Wunsch, 2002). The critic can be in fact
updated with any action-value algorithm, including Q-learning, which would imply
an estimate of Q∗ rather than Qπ . There are multiple variants of this algorithm, many
of which assume a known model of the environment, the reward function or both, or
they construct such models. Then, often an additional assumption is that the model
is differentiable.

7.3.2.4 Continuous Actor-Critic Learning Automaton

In this section we discuss the continuous actor-critic learning-automaton (Cacla)
algorithm (van Hasselt and Wiering, 2007, 2009). In contrast with most other actor-
critic methods, Cacla uses an error in action space rather than in parameter or policy
space and it uses the sign of the temporal-difference error rather than its size.

In the Cacla algorithm, a critic V : S×Θ → R approximates V π , where π is
the current policy. An actor Ac : S×Ψ → A outputs a single—possibly multi-
dimensional—action for each state. During learning, it is assumed that there is
exploration, such that at �= Ac(st ,ψt) for reasons that will soon become clear. For
instance, π(st ,ψt) could be a Gaussian distribution centered on Ac(st ,ψt). As in
many other actor-critic algorithms, if the temporal-difference error δt is positive, we
judge at to be a good choice and we reinforce it. In Cacla, this is done by updating
the output of the actor towards at . This is why exploration is necessary: without ex-
ploration the actor output is already equal to the action, and the parameters cannot
be updated.8

An update to the actor only occurs when the temporal-difference error is positive.
This is similar to a linear reward-inaction update for learning automata (Narendra

8 Feedback on actions equal to the output of the actor can still improve the value function.
This can be useful, because then the value function can improve while the actor stays
fixed. Similar to policy iteration, we could interleave steps without exploration to update
the critic, with steps with exploration to update the actor. Although promising, we do not
explore this possibility here further.

7 Reinforcement Learning in Continuous State and Action Spaces 237

1: Initialize θ0 (below Vt(s) =V (s,θt)), ψ0, s0.
2: for t ∈ {0,1,2, . . .} do
3: Choose at ∼ π(st ,ψt)
4: Perform at , observe rt+1 and st+1
5: δt = rt+1 + γVt(st+1)−Vt (st)
6: θ t+1 = θ t +αt(st)δt∇θVt(st)
7: if δt > 0 then
8: ψ t+1 = ψ t +βt(st)(at −Ac(st ,ψt))∇ψAc(st ,ψt)
9: if st+1 is terminal then

10: Reinitialize st+1

Algorithm 17. Cacla

and Thathachar, 1974, 1989), using the sign of the temporal-difference error as a
measure of ‘success’. Most other actor-critic methods use the size of the temporal-
difference error and also update in the opposite direction when its sign is negative.
However, this is usually not a good idea for Cacla, since this is equivalent to up-
dating towards some action that was not performed and for which it is not known
whether it is better than the current output of the actor. As an extreme case, consider
an actor that already outputs the optimal action in each state for some determinis-
tic MDP. For most exploring actions, the temporal-difference error is then negative.
If the actor would be updated away from such an action, its output would almost
certainly no longer be optimal.

This is an important difference between Cacla and policy-gradient methods: Ca-
cla only updates its actor when actual improvements have been observed. This
avoids slow learning when there are plateaus in the value space and the temporal-
difference errors are small. It was shown empirically that this can indeed result in
better policies than when the step size depends on the size of the temporal-difference
error (van Hasselt and Wiering, 2007). Intuitively, it makes sense that the distance to
a promising action at is more important than the size of the improvement in value.

A basic version of Cacla is shown in Algorithm 17. The policy in line 3 can
depend from the actor’s output, but this is not strictly necessary. For instance, unex-
plored promising parts of the action space could be favored by the action selection.
In Section 7.4, we will see that Cacla can even learn from a fully random policy. Ca-
cla can only update its actor when at �= Ac(st ,ψt), but after training has concluded
the agent can deterministically use the action that is output by the actor.

The critic update in line 6 is an ordinary TD learning update. One can replace
this with a TD(λ) update, an incremental least-squares update or with any of the
other updates from Section 7.3.1.2. The actor update in line 8 can be interpreted as
gradient descent on the error ‖at−Ac(st ,ψt)‖ between the action that was performed
and the output of the actor. This is the second important difference with most other
actor-critic algorithms: instead of updating the policy in parameter space (Konda,
2002) or policy space (Peters and Schaal, 2008a; Bhatnagar et al, 2009), we use an
error directly in action space.

238 H. van Hasselt

In some ways, Cacla is similar to an evolutionary strategy. In the context of rein-
forcement learning, evolutionary strategies usually store a distribution in parameter
space, from which policy parameters are sampled. This approach was for instance
proposed for NES (Rückstieß et al, 2010), CMA-ES (Heidrich-Meisner and Igel,
2008) and cross-entropy optimization (Buşoniu et al, 2010). Conversely, Cacla uses
a probability distribution in action space: the action-selection policy.

Cacla is compatible with more types of exploration than policy-gradient algo-
rithms. For instance, a uniform random policy would still allow Cacla to improve its
actor, whereas such a policy has no parameters to tune for policy-gradient methods.

In previous work, Cacla was compared favorably to ADHDP and wire-fitting
(van Hasselt and Wiering, 2007) and to discrete temporal-difference methods such
as Q-learning and Sarsa (van Hasselt and Wiering, 2009). In the next section, we
compare it to CMA-ES and NAC on a double-pole cart pole problem. For simplic-
ity, in the experiment we use the simple version of Cacla outlined in Algorithm 17.
However, Cacla can be extended and improved in numerous ways. For complete-
ness, we list some of the possible improvements here.

First, Cacla can be extended with eligibility traces. For instance, the value func-
tion can be updated with TD(λ) or the new variants TDC(λ) and GTD2(λ) (Sutton
et al, 2009). The latter variants may be beneficial to learn the value function for the
actor in an off-policy manner, rather than to learn the value for the stochastic policy
that is used for exploration as is done in the simple version of the algorithm. The ac-
tor can also be extended with traces that update the actor’s output for a certain state
a little bit towards the action that was taken there if positive TD errors are observed
later. It is not yet clear whether such actor traces improve the performance.

Second, Cacla can be extended with batch updates that make more efficient
use of the experiences that were observed in the past. For instance, (incremental)
least-squares temporal-difference learning (Bradtke and Barto, 1996; Boyan, 2002;
Geramifard et al, 2006) or a variant of (neural) fitted Q-iteration (Ernst et al, 2005;
Riedmiller, 2005) can be used. Since this can decrease the variance in the TD er-
rors, this can prevent actor updates to poor actions and may allow for larger actor
step sizes. Similarly, samples could be stored in order to reuse them in a form of
experience replay (Lin, 1992).

Third, Cacla can use multiple actors. This can prevent the actor from getting
stuck in a locally optimal policy. One could then use a discrete algorithm such as
Q-learning to choose between the actors. Preliminary results with this approach are
promising, although the additional actor selector introduces additional parameters
that need to be tuned.

7.4 An Experiment on a Double-Pole Cart Pole

In this section, we compare Cacla, CMA-ES and NAC on a double-pole cart-pole
problem. In this problem, two separate poles are attached by a hinge to a cart. The
poles differ in length and mass and must both be balanced by hitting the cart.

7 Reinforcement Learning in Continuous State and Action Spaces 239

In reinforcement learning, many different metrics have been used to compare the
performance of algorithms and no fully standardized benchmarks exist. Therefore,
we compare the results of Cacla to the results for CMA-ES and NAC from an earlier
paper (Heidrich-Meisner and Igel, 2008), using the dynamics and the performance
metric used therein. We choose this particular paper because it reports results for
NAC and for CMA-ES, which is considered the current state-of-the-art in direct
policy search and black-box optimization (Jiang et al, 2008; Gomez et al, 2008;
Glasmachers et al, 2010; Hansen et al, 2010).

The dynamics of the double cart pole are as follows (Wieland, 1991):

ẍ =
F − μcsign(ẋ)+∑2

i=1 2miχ̇2
i sinχi +

3
4 mi cosχi

(
2 μi χ̇i

mili
+ gsinχi

)
mc +∑2

i=1 mi
(
1− 3

4 cos2 χi
)

χ̈ =− 3
8li

(
ẍcosχi + gsinχi + 2

μiχ̇i

mili

)

Here l1 = 1m and l2 = 0.1m are the lengths of the poles, mc = 1kg is the weight of
the cart, m1 = 0.1kg and m2 = 0.01kg are the weights of the poles and g= 9.81m/s2

is the gravity constant. Friction is modeled with coefficients μc = 5 ·10−4 N s/m and
μ1 = μ2 = 2 ·10−6 N m s. The admissible state space is defined by the position of the
cart x ∈ [−2.4m,2.4m] and the angles of both poles χi ∈ [−36◦,36◦] for i ∈ {1,2}.
On leaving the admissible state space, the episode ends. Every time step yields a
reward of rt = 1 and therefore it is optimal to make episodes as long as possible.
The agent can choose an action from the range [−50N,50N] every 0.02s.

Because CMA-ES uses Monte Carlo roll-outs, the task was made explicitly
episodic by resetting the environment every 20s (Heidrich-Meisner and Igel, 2008).
This is not required for Cacla, but was done anyway to make the comparison
fair. The feature vector is φ (s) = (x,ẋ,χ1,χ̇1,χ2,χ̇2)

T . All episodes start in φ (s) =
(0,0,1◦,0,0,0)T . The discount factor in the paper was γ = 1. This means that the state
values are unbounded. Therefore, we use a discount factor of γ = 0.99. In practice,
this makes little difference for the performance. Even though Cacla optimizes the
discounted cumulative reward, we use the reward per episode as performance met-
ric, which is explicitly optimized by CMA-ES and NAC.

CMA-ES and NAC were used to train a linear controller, so Cacla is also used
to find a linear controller. We use a bias feature that is always equal to one, so we
are looking for a parameter vector ψ ∈R

7. A hard threshold is used, such that if the
output of the actor is larger than 50N or smaller than −50N, the agent outputs 50N
or −50N, respectively. The critic was implemented with a multi-layer perceptron
with 40 hidden nodes an a tanh activation function for the hidden layer. The initial
controller was initialized with uniformly random parameters between−0.3 and 0.3.
No attempt was made to optimize this initial range for the parameters or the number
of hidden nodes.

The results by CMA-ES are shown in Figure 7.4. Heidrich-Meisner and Igel
(2008) show that NAC performs far worse and therefore we do not show its

240 H. van Hasselt

Fig. 7.4 Median reward per episode by CMA-ES out of 500 repetitions of the experiment.
The x-axis shows the number of episodes. Figure is taken from Heidrich-Meisner and Igel
(2008).

performance. The performance of NAC is better if it is initialized close to the op-
timal policy, in which case the median performance of NAC reaches the optimal
reward per episode of 1000 after 3000 to 4000 episodes. However, this would of
course assume a priori knowledge about the optimal solution. The best performance
of CMA-ES is a median reward of approximately 850. As shown in the figure, for
values of the parameter σ other than σ = 1, the performance is worse.

We ran Cacla for just 500 episodes with fixed step sizes of α = β = 10−3 and
Gaussian exploration with σ = 5000. This latter value was coarsely tuned and the
reason the exploration is so high is that Cacla effectively learns a bang-bang con-
troller: the resulting actor outputs values far above 50N and far below −50N. The
results are very robust to the exact setting of this exploration parameter.

We also ran Cacla with ε-greedy exploration, in which a uniform random action
is chosen with probability ε . We used ε = 0.1 and ε = 1, where the latter implies
a fully random policy. The ε-greedy versions of Cacla do not learn a bang-bang
controller, because the targets for the actor are always within the admissible range.
Note that the actor is only updated on average once every ten steps when ε = 0.1,
because at the other steps the action is equal to its output.

Table 7.2 shows the results of our experiments with Cacla. The mean reward
per episode (with a maximum of 1000) and the success rate is shown, where the
latter is the percentage of controllers that can balance the poles for at least 20s. The
online column shows the average online results for episodes 401–500, including
exploration. The offline column shows the average offline results, obtained by testing
the actor without exploration after 500 episodes were concluded. In Figure 7.4 the
median performances are shown, but the online and offline median performance of
Cacla with σ = 5000 and ε = 0.1 is already perfect at 1000. This can be seen from
Table 7.2, since in those cases the success rate is over 50%. To be able to compare
different exploration techniques for Cacla, we show the mean performances.

7 Reinforcement Learning in Continuous State and Action Spaces 241

Table 7.2 The mean reward per episode (mean), the standard error of this mean (se) and the
percentage of trials where the reward per episode was equal to 1000 (success) are shown for
Cacla with α = β = 10−3. Results are shown for training episodes 401–500 (online) and for
the greedy policy after 500 episodes of training (offline). The action noise and exploration
are explained in the main text. Averaged over 1000 repetitions.

online offline
action noise exploration mean se success mean se success

0
σ = 5000 946.3 6.7 92.3 % 954.2 6.3 94.5 %
ε = 0.1 807.6 9.6 59.0 % 875.2 9.4 84.5 %
ε = 1 29.2 0.0 0 % 514.0 10.4 25.5 %

[-20 N,20 N]
σ = 5000 944.6 6.9 92.5 % 952.4 6.5 94.5 %
ε = 0.1 841.0 8.7 60.7 % 909.5 8.1 87.4 %
ε = 1 28.7 0.0 0 % 454.7 9.5 11.3 %

[-40 N,40 N]
σ = 5000 936.0 7.4 91.9 % 944.9 7.0 93.8 %
ε = 0.1 854.2 7.9 50.5 % 932.6 6.7 86.7 %
ε = 1 27.6 0.0 0 % 303.0 6.7 0 %

On average, the controllers found by Cacla after only 500 episodes are signifi-
cantly better than those found by CMA-ES after 10,000 episodes. Even ε = 1 results
in quite reasonable greedy policies. Naturally, when ε = 1 the online performance
is poor, because the policy is fully random. But note that the greedy performance of
514.0 is much better than the performance of CMA-ES after 500 episodes.

To test robustness of Cacla, we reran the experiment with noise in the action
execution. A uniform random force in the range [−20N,20N] or [−40N,40N] is
added to the action before execution. The action noise is added after cropping the
actor output to the admissible range and the algorithm is not informed of the amount
of added noise. For example, assume the actor of Cacla outputs an action of Ac(st)=
40. Then Gaussian exploration is added, for instance resulting in at = 70. This action
is not in the admissible range [−50,50], so it is cropped to 50. Then uniform noise,
drawn from [−20,20] or [−40,40], is added. Suppose the result is 60. Then, a force
of 60N is applied to the cart. If the resulting temporal-difference is positive, the
output of the actor for this state is updated towards at = 70, so the algorithm is
unaware of both the cropping and the uniform noise that were applied to its output.

The results including action noise are also shown in Table 7.2. The performance
of Cacla is barely affected when Gaussian exploration is used. The slight drop in
performance falls within the statistical margins of error, although it does seem con-
sistent. Interestingly, the added noise even improves the online and offline perfor-
mance of Cacla when ε-greedy exploration with ε = 0.1 is used. Apparently, the
added noise results in desirable extra exploration.

This experiment indicates that the relatively simple Cacla algorithm is very ef-
fective at solving some continuous reinforcement-learning problems. Other previous
work show that natural-gradient and evolutionary algorithms typically need a few

242 H. van Hasselt

thousand episodes to learn a good policy on the double pole, but also on the sin-
gle pole task (Sehnke et al, 2010). We do not show the results here, but Cacla also
performs very well on the single-pole cart pole. Naturally, this does not imply that
Cacla is the best choice for all continuous MDPs. For instance, in a partially ob-
servable MDPs an evolutionary approach to directly search in parameter space may
find good controllers faster, although it is possible to use Cacla to train a recurrent
neural network, for instance with real-time recurrent learning (Williams and Zipser,
1989) or backpropagation through time (Werbos, 2002). Additionally, convergence
to an optimal policy or even local optima for variants of Cacla is not (yet) guar-
anteed, while for some actor-critic (Bhatnagar et al, 2009) and direct policy-search
algorithms convergence to a local optimum can be guaranteed.

The reason that Cacla performs much better than CMA-ES on this particular
problem is that CMA-ES uses whole episodes to estimate the fitness of a candidate
policy and stores a whole population of such policies. Cacla, on the other hand,
makes use of the structure of the problem by using temporal-difference errors. This
allows it to quickly update its actor, making learning possible even during the first
few episodes. NAC has the additional disadvantage that quite a few samples are
necessary to make its estimate of the Fisher information matrix accurate enough to
find the natural-gradient direction. Finally, the improvements to the actor in Cacla
are not slowed down by plateaus in the value space. As episodes become longer, the
value space will typically exhibit such plateaus, making the gradient estimates used
by NAC more unreliable and the updates smaller. Because Cacla operates directly
in action space, it does not have this problem and it can move towards better actions
with a fixed step size, whenever the temporal-difference is positive.

As a final note, the simple variant of Cacla will probably not perform very well
in problems with specific types of noise. For instance, Cacla may be tempted to
update towards actions that often yield fairly high returns but sometimes yield very
low returns, making them a poor choice on average. This problem can be mitigated
by storing an explicit approximation of the reward function, or by using averaged
temporal-difference errors instead of the stochastic errors. These issues have not
been investigated in depth.

7.5 Conclusion

There are numerous ways to find good policies in problems with continuous spaces.
Three general methodologies exist that differ in which part of the problem is explic-
itly approximated: the model, the value of a policy, or the policy itself. Function ap-
proximation can be used to approximate these functions, which can be updated with
gradient-based or gradient-free methods. Many different reinforcement-learning al-
gorithms result from combinations of these techniques. We mostly focused on value-
function and policy approximation, because models of continuous MDPs quickly
become intractable to solve, making explicit approximations of these less useful.

7 Reinforcement Learning in Continuous State and Action Spaces 243

Several ways to update value-function approximators were discussed, including
temporal-difference algorithms such as TD-learning, Q-learning, GTD2 and TDC.
To update policy approximators, methods such as policy-gradient, actor-critic and
evolutionary algorithms can be used. Because these latter approaches store an ex-
plicit approximation for the policy, they can be applied directly to problems where
the action space is also continuous.

Of these methods, the gradient-free direct policy-search algorithms have the best
convergence guarantees in completely continuous problems. However, these meth-
ods can be inefficient, because they use complete Monte Carlo roll-outs and do not
exploit the Markov structure of the MDP. Actor-critic methods store both an explicit
estimate of the policy and a critic that can exploit this structure, for instance by using
temporal differences. These methods have much potential, although they are harder
to analyze in general.

To get some idea of the merits of different approaches, the continuous actor-critic
learning automaton (Cacla) algorithm (van Hasselt and Wiering, 2007, 2009) was
compared on a double-pole balancing problem to the state-of-the-art in black-box
optimization and direct policy search: the covariance-matrix adaptation evolution
strategy (CMA-ES) (Hansen et al, 2003). In earlier work, CMA-ES was compared
favorably to other methods, such as natural evolutionary strategies (NES) (Wierstra
et al, 2008; Sun et al, 2009) and the natural actor-critic (NAC) algorithm (Peters
and Schaal, 2008a). Our results show that Cacla reaches much better policies in a
much smaller number of episodes. A reason for this is that Cacla is an online actor-
critic method, whereas the other methods need more samples to deduce the direction
to update the policy to. In other words, Cacla uses the available experience samples
more efficiently, although it can easily be extended to be even more sample-efficient.

There are less general convergence guarantees in continuous MDPs than in finite
MDPs. Some work has been done recently to fill this gap (see, e.g., Bertsekas, 2007;
Szepesvári, 2010), but more analysis is still desirable. Many of the current methods
are either (partially) heuristic, sample-inefficient or computationally intractable on
large problems. However, recent years have shown an increase in theoretical guar-
antees and practical general-purpose algorithms and we expect this trend will con-
tinue. Efficiently finding optimal decision strategies in general problems with large
or continuous domains is one of the hardest problems in artificial intelligence, but it
is also a topic with many real-world applications and implications.

Acknowledgements. I would like to thank Peter Bosman and the anonymous reviewers for
helpful comments.

References

Akimoto, Y., Nagata, Y., Ono, I., Kobayashi, S.: Bidirectional Relation Between CMA Evolu-
tion Strategies and Natural Evolution Strategies. In: Schaefer, R., Cotta, C., Kołodziej, J.,
Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 154–163. Springer, Heidelberg (2010)

Albus, J.S.: A theory of cerebellar function. Mathematical Biosciences 10, 25–61 (1971)

244 H. van Hasselt

Albus, J.S.: A new approach to manipulator control: The cerebellar model articulation con-
troller (CMAC). In: Dynamic Systems, Measurement and Control, pp. 220–227 (1975)

Amari, S.I.: Natural gradient works efficiently in learning. Neural Computation 10(2), 251–
276 (1998)

Anderson, C.W.: Learning to control an inverted pendulum using neural networks. IEEE Con-
trol Systems Magazine 9(3), 31–37 (1989)

Antos, A., Munos, R., Szepesvári, C.: Fitted Q-iteration in continuous action-space MDPs.
In: Advances in Neural Information Processing Systems (NIPS-2007), vol. 20, pp. 9–16
(2008a)

Antos, A., Szepesvári, C., Munos, R.: Learning near-optimal policies with Bellman-residual
minimization based fitted policy iteration and a single sample path. Machine Learn-
ing 71(1), 89–129 (2008b)

Babuska, R.: Fuzzy modeling for control. Kluwer Academic Publishers (1998)
Bäck, T.: Evolutionary algorithms in theory and practice: evolution strategies, evolutionary

programming, genetic algorithms. Oxford University Press, USA (1996)
Bäck, T., Schwefel, H.P.: An overview of evolutionary algorithms for parameter optimization.

Evolutionary Computation 1(1), 1–23 (1993)
Baird, L.: Residual algorithms: Reinforcement learning with function approximation. In:

Prieditis, A., Russell, S. (eds.) Machine Learning: Proceedings of the Twelfth Interna-
tional Conference, pp. 30–37. Morgan Kaufmann Publishers, San Francisco (1995)

Baird, L.C., Klopf, A.H.: Reinforcement learning with high-dimensional, continuous actions.
Tech. Rep. WL-TR-93-114, Wright Laboratory, Wright-Patterson Air Force Base, OH
(1993)

Bardi, M., Dolcetta, I.C.: Optimal control and viscosity solutions of Hamilton–Jacobi–
Bellman equations. Springer, Heidelberg (1997)

Barto, A.G., Sutton, R.S., Anderson, C.W.: Neuronlike adaptive elements that can solve
difficult learning control problems. IEEE Transactions on Systems, Man, and Cybernet-
ics SMC-13, 834–846 (1983)

Baxter, J., Bartlett, P.L.: Infinite-horizon policy-gradient estimation. Journal of Artificial In-
telligence Research 15, 319–350 (2001)

Beard, R., Saridis, G., Wen, J.: Approximate solutions to the time-invariant Hamilton–
Jacobi–Bellman equation. Journal of Optimization theory and Applications 96(3), 589–
626 (1998)

Bellman, R.: Dynamic Programming. Princeton University Press (1957)
Benbrahim, H., Franklin, J.A.: Biped dynamic walking using reinforcement learning.

Robotics and Autonomous Systems 22(3-4), 283–302 (1997)
Berenji, H.: Fuzzy Q-learning: a new approach for fuzzy dynamic programming. In: Pro-

ceedings of the Third IEEE Conference on Fuzzy Systems, IEEE World Congress on
Computational Intelligence, pp. 486–491. IEEE (1994)

Berenji, H., Khedkar, P.: Learning and tuning fuzzy logic controllers through reinforcements.
IEEE Transactions on Neural Networks 3(5), 724–740 (1992)

Bertsekas, D.P.: Dynamic Programming and Optimal Control, vol. I. Athena Scientific (2005)
Bertsekas, D.P.: Dynamic Programming and Optimal Control, vol. II. Athena Scientific

(2007)
Bertsekas, D.P., Tsitsiklis, J.N.: Neuro-dynamic Programming. Athena Scientific, Belmont

(1996)
Bertsekas, D.P., Borkar, V.S., Nedic, A.: Improved temporal difference methods with linear

function approximation. In: Handbook of Learning and Approximate Dynamic Program-
ming, pp. 235–260 (2004)

7 Reinforcement Learning in Continuous State and Action Spaces 245

Beyer, H., Schwefel, H.: Evolution strategies–a comprehensive introduction. Natural Com-
puting 1(1), 3–52 (2002)

Bhatnagar, S., Sutton, R.S., Ghavamzadeh, M., Lee, M.: Natural actor-critic algorithms.
Automatica 45(11), 2471–2482 (2009)

Bishop, C.M.: Neural networks for pattern recognition. Oxford University Press, USA (1995)
Bishop, C.M.: Pattern recognition and machine learning. Springer, New York (2006)
Bonarini, A.: Delayed reinforcement, fuzzy Q-learning and fuzzy logic controllers. In: Her-

rera, F., Verdegay, J.L. (eds.) Genetic Algorithms and Soft Computing. Studies in Fuzzi-
ness, vol. 8, pp. 447–466. Physica-Verlag, Berlin (1996)

Boyan, J.A.: Technical update: Least-squares temporal difference learning. Machine Learn-
ing 49(2), 233–246 (2002)

Bradtke, S.J., Barto, A.G.: Linear least-squares algorithms for temporal difference learning.
Machine Learning 22, 33–57 (1996)

Bryson, A., Ho, Y.: Applied Optimal Control. Blaisdell Publishing Co. (1969)
Buşoniu, L., Ernst, D., De Schutter, B., Babuška, R.: Continuous-State Reinforcement Learn-

ing with Fuzzy Approximation. In: Tuyls, K., Nowe, A., Guessoum, Z., Kudenko, D.
(eds.) ALAMAS 2005, ALAMAS 2006, and ALAMAS 2007. LNCS (LNAI), vol. 4865,
pp. 27–43. Springer, Heidelberg (2008)

Buşoniu, L., Babuška, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic
Programming Using Function Approximators. CRC Press, Boca Raton (2010)

Coulom, R.: Reinforcement learning using neural networks, with applications to motor con-
trol. PhD thesis, Institut National Polytechnique de Grenoble (2002)

Crites, R.H., Barto, A.G.: Improving elevator performance using reinforcement learning. In:
Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Advances in Neural Information
Processing Systems, vol. 8, pp. 1017–1023. MIT Press, Cambridge (1996)

Crites, R.H., Barto, A.G.: Elevator group control using multiple reinforcement learning
agents. Machine Learning 33(2/3), 235–262 (1998)

Davis, L.: Handbook of genetic algorithms. Arden Shakespeare (1991)
Dayan, P.: The convergence of TD(λ) for general lambda. Machine Learning 8, 341–362

(1992)
Dayan, P., Sejnowski, T.: TD(λ): Convergence with probability 1. Machine Learning 14,

295–301 (1994)
Dearden, R., Friedman, N., Russell, S.: Bayesian Q-learning. In: Proceedings of the Fifteenth

National/Tenth Conference on Artificial Intelligence/Innovative Applications of Artificial
Intelligence, pp. 761–768. American Association for Artificial Intelligence (1998)

Dearden, R., Friedman, N., Andre, D.: Model based Bayesian exploration. In: Proceedings of
the Fifteenth Conference on Uncertainty in Artificial Intelligence, pp. 150–159 (1999)

Eiben, A.E., Smith, J.E.: Introduction to evolutionary computing. Springer, Heidelberg
(2003)

Ernst, D., Geurts, P., Wehenkel, L.: Tree-based batch mode reinforcement learning. Journal
of Machine Learning Research 6(1), 503–556 (2005)

Fisher, R.A.: On the mathematical foundations of theoretical statistics. Philosophical Trans-
actions of the Royal Society of London Series A, Containing Papers of a Mathematical or
Physical Character 222, 309–368 (1922)

Fisher, R.A.: Statistical methods for research workers. Oliver & Boyd, Edinburgh (1925)
Främling, K.: Replacing eligibility trace for action-value learning with function approxima-

tion. In: Proceedings of the 15th European Symposium on Artificial Neural Networks
(ESANN-2007), pp. 313–318. d-side publishing (2007)

246 H. van Hasselt

Gaskett, C., Wettergreen, D., Zelinsky, A.: Q-learning in continuous state and action spaces.
In: Advanced Topics in Artificial Intelligence, pp. 417–428 (1999)

Geramifard, A., Bowling, M., Sutton, R.S.: Incremental least-squares temporal difference
learning. In: Proceedings of the 21st National Conference on Artificial Intelligence, vol. 1,
pp. 356–361. AAAI Press (2006)

Geramifard, A., Bowling, M., Zinkevich, M., Sutton, R.: ilstd: Eligibility traces and con-
vergence analysis. In: Advances in Neural Information Processing Systems, vol. 19, pp.
441–448 (2007)

Glasmachers, T., Schaul, T., Yi, S., Wierstra, D., Schmidhuber, J.: Exponential natural evolu-
tion strategies. In: Proceedings of the 12th Annual Conference on Genetic and Evolution-
ary Computation, pp. 393–400. ACM (2010)

Glorennec, P.: Fuzzy Q-learning and dynamical fuzzy Q-learning. In: Proceedings of the
Third IEEE Conference on Fuzzy Systems, IEEE World Congress on Computational In-
telligence, pp. 474–479. IEEE (1994)

Glover, F., Kochenberger, G.: Handbook of metaheuristics. Springer, Heidelberg (2003)
Gomez, F., Schmidhuber, J., Miikkulainen, R.: Accelerated neural evolution through coopera-

tively coevolved synapses. The Journal of Machine Learning Research 9, 937–965 (2008)
Gordon, G.J.: Stable function approximation in dynamic programming. In: Prieditis, A., Rus-

sell, S. (eds.) Proceedings of the Twelfth International Conference on Machine Learning
(ICML 1995), pp. 261–268. Morgan Kaufmann, San Francisco (1995)

Gordon, G.J.: Approximate solutions to Markov decision processes. PhD thesis, Carnegie
Mellon University (1999)

Greensmith, E., Bartlett, P.L., Baxter, J.: Variance reduction techniques for gradient esti-
mates in reinforcement learning. The Journal of Machine Learning Research 5, 1471–
1530 (2004)

Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies.
Evolutionary Computation 9(2), 159–195 (2001)

Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the deran-
domized evolution strategy with covariance matrix adaptation (CMA-ES). Evolutionary
Computation 11(1), 1–18 (2003)

Hansen, N., Auger, A., Ros, R., Finck, S., Pošı́k, P.: Comparing results of 31 algorithms from
the black-box optimization benchmarking BBOB-2009. In: Proceedings of the 12th An-
nual Conference Companion on Genetic and Evolutionary Computation, GECCO 2010,
pp. 1689–1696. ACM, New York (2010)

Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall PTR (1994)
Heidrich-Meisner, V., Igel, C.: Evolution Strategies for Direct Policy Search. In: Rudolph,

G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp.
428–437. Springer, Heidelberg (2008)

Holland, J.H.: Outline for a logical theory of adaptive systems. Journal of the ACM
(JACM) 9(3), 297–314 (1962)

Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press,
Ann Arbor (1975)

Howard, R.A.: Dynamic programming and Markov processes. MIT Press (1960)
Huyer, W., Neumaier, A.: SNOBFIT–stable noisy optimization by branch and fit. ACM

Transactions on Mathematical Software (TOMS) 35(2), 1–25 (2008)
Jiang, F., Berry, H., Schoenauer, M.: Supervised and Evolutionary Learning of Echo State

Networks. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN
2008. LNCS, vol. 5199, pp. 215–224. Springer, Heidelberg (2008)

7 Reinforcement Learning in Continuous State and Action Spaces 247

Jouffe, L.: Fuzzy inference system learning by reinforcement methods. IEEE Transactions on
Systems, Man, and Cybernetics, Part C: Applications and Reviews 28(3), 338–355 (1998)

Kakade, S.: A natural policy gradient. In: Dietterich, T.G., Becker, S., Ghahramani, Z. (eds.)
Advances in Neural Information Processing Systems 14 (NIPS-2001), pp. 1531–1538.
MIT Press (2001)

Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE Interna-
tional Conference on Neural Networks, Perth, Australia, vol. 4, pp. 1942–1948 (1995)

Kirkpatrick, S.: Optimization by simulated annealing: Quantitative studies. Journal of Statis-
tical Physics 34(5), 975–986 (1984)

Klir, G., Yuan, B.: Fuzzy sets and fuzzy logic: theory and applications. Prentice Hall PTR,
Upper Saddle River (1995)

Konda, V.: Actor-critic algorithms. PhD thesis, Massachusetts Institute of Technology (2002)
Konda, V.R., Borkar, V.: Actor-critic type learning algorithms for Markov decision processes.

SIAM Journal on Control and Optimization 38(1), 94–123 (1999)
Konda, V.R., Tsitsiklis, J.N.: Actor-critic algorithms. SIAM Journal on Control and Opti-

mization 42(4), 1143–1166 (2003)
Kullback, S.: Statistics and Information Theory. J. Wiley and Sons, New York (1959)
Kullback, S., Leibler, R.A.: On information and sufficiency. Annals of Mathematical Statis-

tics 22, 79–86 (1951)
Lagoudakis, M., Parr, R.: Least-squares policy iteration. The Journal of Machine Learning

Research 4, 1107–1149 (2003)
Lin, C., Lee, C.: Reinforcement structure/parameter learning for neural-network-based fuzzy

logic control systems. IEEE Transactions on Fuzzy Systems 2(1), 46–63 (1994)
Lin, C.S., Kim, H.: CMAC-based adaptive critic self-learning control. IEEE Transactions on

Neural Networks 2(5), 530–533 (1991)
Lin, L.: Self-improving reactive agents based on reinforcement learning, planning and teach-

ing. Machine Learning 8(3), 293–321 (1992)
Lin, L.J.: Reinforcement learning for robots using neural networks. PhD thesis, Carnegie

Mellon University, Pittsburgh (1993)
Littman, M.L., Szepesvári, C.: A generalized reinforcement-learning model: Convergence

and applications. In: Saitta, L. (ed.) Proceedings of the 13th International Conference on
Machine Learning (ICML 1996), pp. 310–318. Morgan Kaufmann, Bari (1996)

Maei, H.R., Sutton, R.S.: GQ (λ): A general gradient algorithm for temporal-difference pre-
diction learning with eligibility traces. In: Proceedings of the Third Conference On Arti-
ficial General Intelligence (AGI-2010), pp. 91–96. Atlantis Press, Lugano (2010)

Maei, H.R., Szepesvári, C., Bhatnagar, S., Precup, D., Silver, D., Sutton, R.: Convergent
temporal-difference learning with arbitrary smooth function approximation. In: Advances
in Neural Information Processing Systems 22 (NIPS-2009) (2009)

Maei, H.R., Szepesvári, C., Bhatnagar, S., Sutton, R.S.: Toward off-policy learning control
with function approximation. In: Proceedings of the 27th Annual International Conference
on Machine Learning (ICML-2010). ACM, New York (2010)

Maillard, O.A., Munos, R., Lazaric, A., Ghavamzadeh, M.: Finite sample analysis of Bellman
residual minimization. In: Asian Conference on Machine Learning, ACML-2010 (2010)

Mitchell, T.M.: Machine learning. McGraw Hill, New York (1996)
Moriarty, D.E., Miikkulainen, R.: Efficient reinforcement learning through symbiotic evolu-

tion. Machine Learning 22, 11–32 (1996)
Moriarty, D.E., Schultz, A.C., Grefenstette, J.J.: Evolutionary algorithms for reinforcement

learning. Journal of Artificial Intelligence Research 11, 241–276 (1999)

248 H. van Hasselt

Murray, J.J., Cox, C.J., Lendaris, G.G., Saeks, R.: Adaptive dynamic programming. IEEE
Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 32(2),
140–153 (2002)

Narendra, K.S., Thathachar, M.A.L.: Learning automata - a survey. IEEE Transactions on
Systems, Man, and Cybernetics 4, 323–334 (1974)

Narendra, K.S., Thathachar, M.A.L.: Learning automata: an introduction. Prentice-Hall, Inc.,
Upper Saddle River (1989)

Nedić, A., Bertsekas, D.P.: Least squares policy evaluation algorithms with linear function
approximation. Discrete Event Dynamic Systems 13(1-2), 79–110 (2003)

Neyman, J., Pearson, E.S.: On the use and interpretation of certain test criteria for purposes
of statistical inference part i. Biometrika 20(1), 175–240 (1928)

Ng, A.Y., Parr, R., Koller, D.: Policy search via density estimation. In: Solla, S.A., Leen,
T.K., Müller, K.R. (eds.) Advances in Neural Information Processing Systems, vol. 13,
pp. 1022–1028. The MIT Press (1999)

Nguyen-Tuong, D., Peters, J.: Model learning for robot control: a survey. Cognitive Process-
ing, 1–22 (2011)

Ormoneit, D., Sen, Ś.: Kernel-based reinforcement learning. Machine Learning 49(2), 161–
178 (2002)

Pazis, J., Lagoudakis, M.G.: Binary action search for learning continuous-action control poli-
cies. In: Proceedings of the 26th Annual International Conference on Machine Learning,
pp. 793–800. ACM (2009)

Peng, J.: Efficient dynamic programming-based learning for control. PhD thesis, Northeastern
University (1993)

Peters, J., Schaal, S.: Natural actor-critic. Neurocomputing 71(7-9), 1180–1190 (2008a)
Peters, J., Schaal, S.: Reinforcement learning of motor skills with policy gradients. Neural

Networks 21(4), 682–697 (2008b)
Peters, J., Vijayakumar, S., Schaal, S.: Reinforcement learning for humanoid robotics. In:

IEEE-RAS International Conference on Humanoid Robots (Humanoids 2003). IEEE
Press (2003)

Poupart, P., Vlassis, N., Hoey, J., Regan, K.: An analytic solution to discrete Bayesian re-
inforcement learning. In: Proceedings of the 23rd International Conference on Machine
Learning, pp. 697–704. ACM (2006)

Powell, M.: UOBYQA: unconstrained optimization by quadratic approximation. Mathemat-
ical Programming 92(3), 555–582 (2002)

Powell, M.: The NEWUOA software for unconstrained optimization without derivatives. In:
Large-Scale Nonlinear Optimization, pp. 255–297 (2006)

Powell, W.B.: Approximate Dynamic Programming: Solving the Curses of Dimensionality.
Wiley-Blackwell (2007)

Precup, D., Sutton, R.S.: Off-policy temporal-difference learning with function approxi-
mation. In: Machine Learning: Proceedings of the Eighteenth International Conference
(ICML 2001), pp. 417–424. Morgan Kaufmann, Williams College (2001)

Precup, D., Sutton, R.S., Singh, S.P.: Eligibility traces for off-policy policy evaluation. In:
Proceedings of the Seventeenth International Conference on Machine Learning (ICML
2000), pp. 766–773. Morgan Kaufmann, Stanford University, Stanford, CA (2000)

Prokhorov, D.V., Wunsch, D.C.: Adaptive critic designs. IEEE Transactions on Neural
Networks 8(5), 997–1007 (2002)

Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley & Sons, Inc., New York (1994)

7 Reinforcement Learning in Continuous State and Action Spaces 249

Puterman, M.L., Shin, M.C.: Modified policy iteration algorithms for discounted Markov
decision problems. Management Science 24(11), 1127–1137 (1978)

Rao, C.R., Poti, S.J.: On locally most powerful tests when alternatives are one sided. Sankhyā:
The Indian Journal of Statistics, 439–439 (1946)

Rechenberg, I.: Evolutionsstrategie - Optimierung technischer Systeme nach Prinzipien der
biologischen Evolution. Fromman-Holzboog (1971)

Riedmiller, M.: Neural Fitted Q Iteration - First Experiences with a Data Efficient Neural
Reinforcement Learning Method. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M.,
Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp. 317–328. Springer, Heidelberg
(2005)

Ripley, B.D.: Pattern recognition and neural networks. Cambridge University Press (2008)
Rubinstein, R.: The cross-entropy method for combinatorial and continuous optimization.

Methodology and Computing in Applied Probability 1(2), 127–190 (1999)
Rubinstein, R., Kroese, D.: The cross-entropy method: a unified approach to combinatorial

optimization, Monte-Carlo simulation, and machine learning. Springer-Verlag New York
Inc. (2004)

Rückstieß, T., Sehnke, F., Schaul, T., Wierstra, D., Sun, Y., Schmidhuber, J.: Exploring pa-
rameter space in reinforcement learning. Paladyn 1(1), 14–24 (2010)

Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error
propagation. In: Parallel Distributed Processing, vol. 1, pp. 318–362. MIT Press (1986)

Rummery, G.A., Niranjan, M.: On-line Q-learning using connectionist sytems. Tech. Rep.
CUED/F-INFENG-TR 166, Cambridge University, UK (1994)

Santamaria, J.C., Sutton, R.S., Ram, A.: Experiments with reinforcement learning in prob-
lems with continuous state and action spaces. Adaptive Behavior 6(2), 163–217 (1997)

Scherrer, B.: Should one compute the temporal difference fix point or minimize the Bell-
man residual? The unified oblique projection view. In: Fürnkranz, J., Joachims, T. (eds.)
Proceedings of the 27th International Conference on Machine Learning (ICML 2010),
pp. 959–966. Omnipress (2010)

Schwefel, H.P.: Numerische Optimierung von Computer-Modellen. Interdisciplinary
Systems Research, vol. 26. Birkhäuser, Basel (1977)

Sehnke, F., Osendorfer, C., Rückstieß, T., Graves, A., Peters, J., Schmidhuber, J.: Parameter-
exploring policy gradients. Neural Networks 23(4), 551–559 (2010)

Singh, S.P., Sutton, R.S.: Reinforcement learning with replacing eligibility traces. Machine
Learning 22, 123–158 (1996)

Spaan, M., Vlassis, N.: Perseus: Randomized point-based value iteration for POMDPs. Jour-
nal of Artificial Intelligence Research 24(1), 195–220 (2005)

Stanley, K.O., Miikkulainen, R.: Efficient reinforcement learning through evolving neural
network topologies. In: Proceedings of the Genetic and Evolutionary Computation Con-
ference (GECCO-2002), pp. 569–577. Morgan Kaufmann, San Francisco (2002)

Strehl, A.L., Li, L., Wiewiora, E., Langford, J., Littman, M.L.: PAC model-free reinforce-
ment learning. In: Proceedings of the 23rd International Conference on Machine Learning,
pp. 881–888. ACM (2006)

Strens, M.: A Bayesian framework for reinforcement learning. In: Proceedings of the Sev-
enteenth International Conference on Machine Learning, p. 950. Morgan Kaufmann Pub-
lishers Inc. (2000)

Sun, Y., Wierstra, D., Schaul, T., Schmidhuber, J.: Efficient natural evolution strategies. In:
Proceedings of the 11th Annual conference on Genetic and Evolutionary Computation
(GECCO-2009), pp. 539–546. ACM (2009)

250 H. van Hasselt

Sutton, R.S.: Temporal credit assignment in reinforcement learning. PhD thesis, University
of Massachusetts, Dept. of Comp. and Inf. Sci. (1984)

Sutton, R.S.: Learning to predict by the methods of temporal differences. Machine Learn-
ing 3, 9–44 (1988)

Sutton, R.S.: Generalization in reinforcement learning: Successful examples using sparse
coarse coding. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Advances in Neu-
ral Information Processing Systems, vol. 8, pp. 1038–1045. MIT Press, Cambridge (1996)

Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. The MIT press,
Cambridge (1998)

Sutton, R.S., McAllester, D., Singh, S., Mansour, Y.: Policy gradient methods for reinforce-
ment learning with function approximation. In: Advances in Neural Information Process-
ing Systems 13 (NIPS-2000), vol. 12, pp. 1057–1063 (2000)

Sutton, R.S., Szepesvári, C., Maei, H.R.: A convergent O(n) algorithm for off-policy
temporal-difference learning with linear function approximation. In: Advances in Neu-
ral Information Processing Systems 21 (NIPS-2008), vol. 21, pp. 1609–1616 (2008)

Sutton, R.S., Maei, H.R., Precup, D., Bhatnagar, S., Silver, D., Szepesvári, C., Wiewiora,
E.: Fast gradient-descent methods for temporal-difference learning with linear function
approximation. In: Proceedings of the 26th Annual International Conference on Machine
Learning (ICML 2009), pp. 993–1000. ACM (2009)

Szepesvári, C.: Algorithms for reinforcement learning. Synthesis Lectures on Artificial Intel-
ligence and Machine Learning 4(1), 1–103 (2010)

Szepesvári, C., Smart, W.D.: Interpolation-based Q-learning. In: Proceedings of the Twenty-
First International Conference on Machine Learning (ICML 2004), p. 100. ACM (2004)

Szita, I., Lörincz, A.: Learning tetris using the noisy cross-entropy method. Neural Compu-
tation 18(12), 2936–2941 (2006)

Taylor, M.E., Whiteson, S., Stone, P.: Comparing evolutionary and temporal difference meth-
ods in a reinforcement learning domain. In: Proceedings of the 8th Annual Conference on
Genetic and Evolutionary Computation, p. 1328. ACM (2006)

Tesauro, G.: Practical issues in temporal difference learning. In: Lippman, D.S., Moody, J.E.,
Touretzky, D.S. (eds.) Advances in Neural Information Processing Systems, vol. 4, pp.
259–266. Morgan Kaufmann, San Mateo (1992)

Tesauro, G.: TD-Gammon, a self-teaching backgammon program, achieves master-level play.
Neural Computation 6(2), 215–219 (1994)

Tesauro, G.J.: Temporal difference learning and TD-Gammon. Communications of the
ACM 38, 58–68 (1995)

Thrun, S., Schwartz, A.: Issues in using function approximation for reinforcement learning.
In: Mozer, M., Smolensky, P., Touretzky, D., Elman, J., Weigend, A. (eds.) Proceedings
of the 1993 Connectionist Models Summer School. Lawrence Erlbaum, Hillsdale (1993)

Touzet, C.F.: Neural reinforcement learning for behaviour synthesis. Robotics and Au-
tonomous Systems 22(3/4), 251–281 (1997)

Tsitsiklis, J.N., Van Roy, B.: An analysis of temporal-difference learning with function ap-
proximation. Tech. Rep. LIDS-P-2322, MIT Laboratory for Information and Decision
Systems, Cambridge, MA (1996)

Tsitsiklis, J.N., Van Roy, B.: An analysis of temporal-difference learning with function
approximation. IEEE Transactions on Automatic Control 42(5), 674–690 (1997)

van Hasselt, H.P.: Double Q-Learning. In: Advances in Neural Information Processing
Systems, vol. 23. The MIT Press (2010)

van Hasselt, H.P.: Insights in reinforcement learning. PhD thesis, Utrecht University (2011)

7 Reinforcement Learning in Continuous State and Action Spaces 251

van Hasselt, H.P., Wiering, M.A.: Reinforcement learning in continuous action spaces. In:
Proceedings of the IEEE International Symposium on Adaptive Dynamic Programming
and Reinforcement Learning (ADPRL-2007), pp. 272–279 (2007)

van Hasselt, H.P., Wiering, M.A.: Using continuous action spaces to solve discrete problems.
In: Proceedings of the International Joint Conference on Neural Networks (IJCNN 2009),
pp. 1149–1156 (2009)

van Seijen, H., van Hasselt, H.P., Whiteson, S., Wiering, M.A.: A theoretical and empirical
analysis of Expected Sarsa. In: Proceedings of the IEEE International Symposium on
Adaptive Dynamic Programming and Reinforcement Learning, pp. 177–184 (2009)

Vapnik, V.N.: The nature of statistical learning theory. Springer, Heidelberg (1995)
Vrabie,D.,Pastravanu,O.,Abu-Khalaf,M.,Lewis,F.:Adaptiveoptimalcontrol forcontinuous-

time linear systems based on policy iteration. Automatica 45(2), 477–484 (2009)
Wang, F.Y., Zhang, H., Liu, D.: Adaptive dynamic programming: An introduction. IEEE

Computational Intelligence Magazine 4(2), 39–47 (2009)
Watkins, C.J.C.H.: Learning from delayed rewards. PhD thesis, King’s College, Cambridge,

England (1989)
Watkins, C.J.C.H., Dayan, P.: Q-learning. Machine Learning 8, 279–292 (1992)
Werbos, P.J.: Beyond regression: New tools for prediction and analysis in the behavioral

sciences. PhD thesis, Harvard University (1974)
Werbos, P.J.: Advanced forecasting methods for global crisis warning and models of intelli-

gence. In: General Systems, vol. XXII, pp. 25–38 (1977)
Werbos, P.J.: Backpropagation and neurocontrol: A review and prospectus. In: IEEE/INNS

International Joint Conference on Neural Networks, Washington, D.C, vol. 1, pp. 209–216
(1989a)

Werbos, P.J.: Neural networks for control and system identification. In: Proceedings of
IEEE/CDC, Tampa, Florida (1989b)

Werbos, P.J.: Consistency of HDP applied to a simple reinforcement learning problem. Neural
Networks 2, 179–189 (1990)

Werbos, P.J.: Backpropagation through time: What it does and how to do it. Proceedings of
the IEEE 78(10), 1550–1560 (2002)

Whiteson, S., Stone, P.: Evolutionary function approximation for reinforcement learning.
Journal of Machine Learning Research 7, 877–917 (2006)

Whitley, D., Dominic, S., Das, R., Anderson, C.W.: Genetic reinforcement learning for neu-
rocontrol problems. Machine Learning 13(2), 259–284 (1993)

Wieland, A.P.: Evolving neural network controllers for unstable systems. In: International
Joint Conference on Neural Networks, vol. 2, pp. 667–673. IEEE, New York (1991)

Wiering, M.A., van Hasselt, H.P.: The QV family compared to other reinforcement learning
algorithms. In: Proceedings of the IEEE International Symposium on Adaptive Dynamic
Programming and Reinforcement Learning, pp. 101–108 (2009)

Wierstra, D., Schaul, T., Peters, J., Schmidhuber, J.: Natural evolution strategies. In: IEEE
Congress on Evolutionary Computation (CEC-2008), pp. 3381–3387. IEEE (2008)

Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine Learning 8, 229–256 (1992)

Williams, R.J., Zipser, D.: A learning algorithm for continually running fully recurrent neural
networks. Neural Computation 1(2), 270–280 (1989)

Wilson, D.R., Martinez, T.R.: The general inefficiency of batch training for gradient descent
learning. Neural Networks 16(10), 1429–1451 (2003)

Zadeh, L.: Fuzzy sets. Information and Control 8(3), 338–353 (1965)
Zhou, C., Meng, Q.: Dynamic balance of a biped robot using fuzzy reinforcement learning

agents. Fuzzy Sets and Systems 134(1), 169–187 (2003)

	Reinforcement Learning in Continuous State and Action Spaces
	Introduction
	Markov Decision Processes in Continuous Spaces
	Methodologies to Solve a Continuous MDP

	Function Approximation
	Linear Function Approximation
	Non-linear Function Approximation
	Updating Parameters

	Approximate Reinforcement Learning
	Value Approximation
	Policy Approximation

	An Experiment on a Double-Pole Cart Pole
	Conclusion
	References

