Chapter 5

Transfer in Reinforcement Learning:
A Framework and a Survey

Alessandro Lazaric

Abstract. Transfer in reinforcement learning is a novel research area that focuses
on the development of methods to transfer knowledge from a set of source tasks
to a target task. Whenever the tasks are similar, the transferred knowledge can be
used by a learning algorithm to solve the target task and significantly improve its
performance (e.g., by reducing the number of samples needed to achieve a nearly
optimal performance). In this chapter we provide a formalization of the general
transfer problem, we identify the main settings which have been investigated so far,
and we review the most important approaches to transfer in reinforcement learning.

5.1 Introduction

The idea of transferring knowledge across different but related tasks to improve the
performance of machine learning (ML) algorithms stems from psychology and cog-
nitive science research. A number of psychological studies (see e.g., Thorndike and
Woodworth, 1901; Perkins et al, 1992) show that humans are able to learn a task
better and faster by transferring the knowledge retained from solving similar tasks.
Transfer in machine learning has the objective to design transfer methods that an-
alyze the knowledge collected from a set of source tasks (e.g., samples, solutions)
and transfer it so as to bias the learning process on a target task towards a set of
good hypotheses. If the transfer method successfully identifies the similarities be-
tween source and target tasks, then the transferred knowledge is likely to improve
the learning performance on the target task. The idea of retaining and reusing knowl-
edge to improve the learning algorithms dates back to early stages of ML. In fact,
it is widely recognized that a good representation is the most critical aspect of any
learning algorithm, and the development of techniques that automatically change
the representation according to the task at hand is one of the main objectives of

Alessandro Lazaric
INRIA Lille-Nord Europe, 40 Avenue Halley, 59650 Villeneuve d’ Ascq, France
e-mail: alessandro.lazaric@inria.fr

M. Wiering and M. van Otterlo (Eds.): Reinforcement Learning, ALO 12, pp. 143-173]
springerlink.com © Springer-Verlag Berlin Heidelberg 2012

alessandro.lazaric@inria.fr

144 A. Lazaric

large part of the research in ML. Most of the research in transfer learning (Fawcett
et al, 1994) identified the single-problem perspective usually adopted in ML as a
limit for the definition of effective methods for the inductive construction of good
representations. On the other hand, taking inspiration from studies in psychology
and neuroscience (Gentner et al, 2003; Gick and Holyoak, 1983), the transfer point
of view, where learning tasks are assumed to be related and knowledge is retained
and transferred, is considered as the most suitable perspective to design effective
techniques of inductive bias (Utgoft, 1986).

Transfer in reinforcement learning. Transfer algorithms have been successful in
improving the performance of learning algorithms in a number of supervised learn-
ing problems, such as recommender systems, medical decision making, text clas-
sification, and general game playing. In recent years, the research on transfer also
focused on the reinforcement learning (RL) paradigm and how RL algorithms could
benefit from knowledge transfer. In principle, traditional reinforcement learning
already provides mechanisms to learn solutions for any task without the need of
human supervision. Nonetheless, the number of samples needed to learn a nearly-
optimal solution is often prohibitive in real-world problems unless prior knowledge
from a domain expert is available. Furthermore, every time the task at hand changes
the learning process must be restarted from scratch even when similar problems have
been already solved. Transfer algorithms automatically build prior knowledge from
the knowledge collected in solving a set of similar source tasks (i.e., training tasks)
and use it to bias the learning process on any new task (i.e., festing task). The result
is a dramatic reduction in the number of samples and a significant improvement in
the accuracy of the learned solution.

Aim of the chapter. Unlike supervised learning, reinforcement learning problems
are characterized by a large number of elements such as the dynamics and the re-
ward function, and many different transfer settings can be defined depending on the
differences and similarities between the tasks. Although relatively recent, research
on transfer in reinforcement learning already counts a large number of works cover-
ing many different transfer problems. Nonetheless, it is often difficult to have a clear
picture of the current state-of-the-art in transfer in RL because of the very different
approaches and perspectives adopted in dealing with this complex and challenging
problem. The aim of this chapter is to formalize what the main transfer settings
are and to classify the algorithmic approaches according to the kind of knowledge
they transfer from source to target tasks. Taylor and Stone (2009) also provide a
thorough survey of transfer in reinforcement learning. While their survey provides a
very in-depth analysis of each transfer algorithm, the objective of this chapter is not
to review all the algorithms available in the literature but rather to identify the char-
acteristics shared by the different approaches of transfer in RL and classify them
into large families.

Structure of the chapter. The rest of the chapter is organized as follows. In Sec-
tion 5.2 we formalize the transfer problem and we identify three main dimensions
to categorize the transfer algorithms according to the setting, the transferred knowl-
edge, and the objective. Then we review the main approaches of transfer in RL in

5 Transfer in Reinforcement Learning 145

H H
E— MEum e
%I
—_—
%Imnx fer H
Ja{mmsfer > Mearn >

fm—mm--- >~ i

H I

1

Fig. 5.1 (top) In the standard learning process, the learning algorithm gets as input some form
of knowledge about the task (i.e., samples, structure of the solutions, parameters) and returns
a solution. (bottom) In the transfer setting, a transfer phase first takes as input the knowledge
retained from a set of source tasks and returns a new knowledge which is used as input for
the learning algorithm. The dashed line represents the possibility to define a continual process
where the experience obtained from solving a task is then reused in solving new tasks.

three different settings. In Section 5.3 we focus on the source-to-target setting where
transfer occurs from one single source task to one single target task. A more general
setting with a set of source tasks and one target task is studied in Section 5.4. Finally,
in Section 5.5 we discuss the general source-to-target setting when the state-action
spaces of source and target tasks are different. In Section 5.6 we conclude and we
discuss open questions.

5.2 A Framework and a Taxonomy for Transfer in
Reinforcement Learning

Transfer learning is a general problem and it is difficult to provide a formal definition
able to take into account all the possible perspectives and approaches to the problem.
Furthermore, although many different algorithms have been already proposed, a
clear categorization of the main approaches to transfer in RL is still missing. In
this section we first introduce a formalization of the general transfer and we then
propose a taxonomy to classify transfer approaches along three main dimensions.

5.2.1 Transfer Framework

In this section, we adapt the formalisms introduced by Baxter (2000) and Silver
(2000) for supervised learning to the RL paradigm and we introduce general defini-
tions and symbols used throughout the rest of the chapter.

As discussed in the introduction, transfer learning leverages on the knowledge
collected from a number of different tasks to improve the learning performance in
new tasks. We define a task M as an MDP (Sutton and Barto, 1998) characterized

146 A. Lazaric

Table 5.1 List of the main symbols used in the chapter

Symbol Meaning

MDP
State space
Action space
Transition model (dynamics)
Reward function
Task space (set of tasks M)
Probability distribution over .#
Environment (task space and distribution)
Hypothesis space (e.g., value functions, policies)
Hypothesis (e.g., one value function, one policy)
Knowledge space (e.g., samples and basis functions)
Knowledge (e.g., specific realization of samples)
Knowledge space from a source task
Knowledge space from a target task
Hansfer Knowledge space return by the transfer algorithm and used in learning
.# Space of functions defined on a specific state-action space
] State-action basis function
Hearn Learning algorithm
Hanster Transfer algorithm
Set of options
0 € O An option

=

.
KXMTKD§owpAFES YR
¥N&¥§§% \T &g

by the tuple (Sar,Am, Ty, Ry) where Sy is the state space, Ay is the action space,
Ty is the transition function, and Ry is the reward function. While the state-action
space Sy X Ay defines the domain of the task, the transition 7y, and reward function
Ry define the objective of the task. The space of tasks involved in the transfer learn-
ing problem is denoted by .#Z = {M}. Let Q be a probability distribution over the
space of tasks ., then we denote by & = (.#,2) the environment, which defines
the setting of the transfer problem. The tasks presented to the learner are drawn from
the task distribution (i.e., M ~ €2). This general definition resembles the traditional
supervised learning setting where training samples are drawn from a given distribu-
tion. As a result, similar to classification and regression, transfer learning is based
on the idea that since tasks are drawn from the same distribution, an algorithm able
to achieve a good performance on average on a finite number of source tasks (or
training tasks), then it will also generalize well across the target tasks in .# coming
from the same distribution €2 (or testing tasks).

A standard learning algorithm takes as input some form of knowledge of the task
at hand and returns a solution in a set of possible results. We use .%#” to denote the
space of the knowledge used as input for the learning algorithm and ¢ for the
space of hypotheses that can be returned. In particular, %" refers to all the elements
used by the algorithm to compute the solution of a task, notably the instances (e.g.,

5 Transfer in Reinforcement Learning 147

samples), the representation of the problem (e.g., set of options, set of features), and
parameters (e.g., learning rate) used by the algorithm. Notice that /" includes prior
knowledge provided by an expert, transfer knowledge obtained from a transfer al-
gorithm, and direct knowledge collected from the task. A general learning algorithm
is defined as the mapping

Dheam : H — HC. (5.1

Example 1. Let us consider fitted Q-iteration (Ernst et al, 2005) with a linear func-
tion approximator. Fitted Q-iteration first collects N samples (the instances) and
through an iterative process returns an action-value function which approximates
the optimal action-value function of the task. In this case, the hypothesis space
S is the linear space spanned by a set of d features {¢;: S X A — R}le de-
signed by a domain expert, that is 7 = {h(-,-) = ¥¢_, 0;¢;(-,-)}. Beside this prior
knowledge, the algorithm also receives as input a set of N samples (s,a,s’,r). As
a result, the knowledge used by fitted Q-iteration can be formalized by the space
H = ((SxAxSxR)N, Z?), where any specific instance K € ¢ is K = ({ (s, an,
sy 1Y {4), with @; € Z. Given as input K € % the algorithm returns an
action-value function h € S (i.e., por(K) = h). O
Given the previous definitions, we can now define the general shape of transfer
learning algorithms. In general, in single-task learning only the instances are directly
collected from the task at hand, while the representation of the problem and the
parameters are given as a prior by an expert. In transfer learning, the objective is
to reduce the need for instances from the target task and prior knowledge from a
domain expert by tuning and adapting the structure of the learning algorithm (i.e.,
the knowledge used as input) on the basis of the previous tasks observed so far.
Let & = (. ,2) be the environment at hand and L be the number of tasks drawn
from .# according to the distribution £ used as source tasks, a transfer learning
algorithm is usually the result of a transfer of knowledge and a learning phase. Let
HE be the knowledge collected from the L source tasks and .%#; the knowledge
available (if any) from the target task. The transfer phase is defined as

Hransfer %L X Hf — <%/trzmsfera (5.2)

where Hanster 18 the final knowledge transferred to the learning phase. In particular,
the learning algorithm is now defined as

earn © Hranster X H; — . (5.3)

Example 2. Let us consider the transfer algorithm introduced by Lazaric (2008) in
which a set of features is learned from a set of L source tasks. In this case “ ansfer
takes as input N; samples for each of the L tasks and returns d features {(pi}le
from .Z. The fitted Q-iteration algorithm is then used to learn the solution of a
target task and e, takes as input N, target samples and the features extracted
during the transfer phase and returns a function in the space .7 spanned by the

148 A. Lazaric

Lram[er
Transfer from source task to
target task with fixed domain

source task target task
@ trcmsfer
Transfer from source task to
target task with fixed domain @
source tasks target task
Transfer from source task to me[er
target task with different
state-action space
source task target task

Fig. 5.2 The three main transfer settings defined according to the number of source tasks and
their difference w.r.t. the target task

features {¢;}¢_,. Thus, we have % = (S x A x S x R)™, % = (S x A x § x R)™
and Hansfer = F <, O

Although in the definition in Equation (5.2) % is present in both the transfer and
learning phase, in most of the transfer settings, no knowledge about the target is
available in the transfer phase. This formalization also shows that transfer algo-
rithms must be compatible with the specific learning algorithm employed in the
second phase, since Hansfer 1S used as an additional source of knowledge for ey .
The performance of the transfer algorithm is usually compared to a learning algo-
rithm in Equation (5.1) which takes as input only .#;. As discussed in the next sec-
tion, the specific setting &, the knowledge spaces %", and the way the performance
is measured define the main categories of transfer problems and approaches.

5.2.2 Taxonomy

In this section we propose a taxonomy of the major approaches to transfer in rein-
forcement learning. We define three main dimensions: the setting, the transferred
knowledge, and the objective.

5 Transfer in Reinforcement Learning 149

5.2.2.1 The Settings

In the general formulation of the transfer problem we define an environment & as
the space of tasks .# and the probability distribution € on it. Unlike other learn-
ing paradigms (see Pan and Yang (2010) for a review of the possible settings in
supervised learning), an RL problem is defined by different elements such as the
dynamics and the reward, and the tasks in .# may differ in a number of possible
ways depending on the similarities and differences in each of these elements. For
instance, in the transfer problem considered by Mehta et al (2008) all the tasks share
the same state-action space and dynamics but the reward functions are obtained as
linear combinations of basis reward functions and a weight vector. In this case, the
space of tasks . is the set of MDPs which can be generated by varying the weights
of the reward functions. Furthermore, although in the general definition tasks are
drawn from a distribution (2, there are many transfer settings in which the tasks are
fixed in advance and no generalization over other tasks is considered. For instance,
most of the inter-task mapping approaches (see e.g., Taylor et al, 2007a) focus on
the setting in which only one source task and one target task are available. Although
an implicit assumption of similarity is usually made, the tasks are simply given as
input to the algorithm and no explicit distribution is defined.

In the following we will distinguish among three different categories of transfer
settings (see Figure 5.2).

(I) Transfer from source task to target task with fixed domain. As defined in Sec-
tion 5.2.1 the domain of a task is determined by its state-action space Sy; X Ay,
while the specific structure and goal of the task are defined by the dynamics Ty,
and reward Ry;. Most of the early literature in transfer in RL focused on the set-
ting in which the domain is fixed and only two tasks are involved: a source task
and a target task. This setting is usually referred to inductive transfer learning
in the supervised learning literature (Pan and Yang, 2010). The transfer algo-
rithm might or might not have access to the target task at transfer time. If no
target knowledge is available, some of the transfer algorithms perform a shal-
low transfer of the knowledge collected in the source task (e.g., the policy) and
directly use it in the target task. Other algorithms try to abstract from the source
task some general characteristics (e.g., subgoals) that are likely to be relevant in
solving target tasks sharing the same characteristics. On the other hand, when
some target knowledge is available at transfer time, then it is used to adapt the
source knowledge to the target task. For instance, in (Taylor et al, 2008b) target
samples are used to identify the best mapping between source and target state-
action variables and thus to transform the source policy into a target policy used
to initialize the learning process in the target task.

(IT) Transfer across tasks with fixed domain. In this setting, the general definition
of environment & with a distribution over the task space is considered. In this
case, tasks share the same domain and the transfer algorithm takes as input
the knowledge collected from a set of source tasks and use it to improve the
performance in the target task. In this setting, the objective is usually to gener-
alize over the tasks in .# according to the distribution £2. Similar to supervised

150 A. Lazaric

learning, we expect that, as the number of source tasks increases, the transfer
algorithm is able to improve the average performance on the target tasks drawn
from € when compared to a single-task learning algorithm which does not use
any transferred knowledge.

(II) Transfer across tasks with different domains. Finally, in this setting tasks have a
different domain, that is they might have different state-action variables, both in
terms of number and range. Most of the transfer approaches in this case consider
the source-target scenario and focus on how to define a mapping between the
source state-action variables and the target variables so as to obtain an effective
transfer of knowledge.

5.2.2.2 The Knowledge

The definition of transferred knowledge and the specific transfer process are the
main aspects characterizing a transfer learning algorithm. In the definition of Sec-
tion 5.2.1 the space .# contains the instances collected from the environment (e.g.,
sample trajectories), the representation of the solution and the parameters of the al-
gorithm itself. Once the space of knowledge considered by the algorithm is defined,
it is important to design how this knowledge is actually used to transfer information
from the source tasks to the target task. Silver (2000) and Pan and Yang (2010) pro-
pose a general classification of the knowledge retained and transferred across tasks
in supervised learning. Taylor and Stone (2009) introduces a very detailed classifi-
cation for transfer in RL. Here we prefer to have a broader classification identifying
macro-categories of approaches along the lines of Lazaric (2008). We classify the
possible knowledge transfer approaches into three categories: instance transfer, rep-
resentation transfer, parameter transfer.

(D) Instance transfer. Unlike dynamic programming algorithms, where the dynam-
ics and reward functions are known in advance, all the RL algorithms rely on a
set of samples collected from a direct interaction with the MDP to build a solu-
tion for the task at hand. This set of samples can be used to estimate the model
of the MDP in model-based approaches or to directly build an approximation
of the value function or policy in model-free approaches. The most simple ver-
sion of transfer algorithm collects samples coming from different source tasks
and reuses them in learning the target task. For instance, the transfer of tra-
jectory samples can be used to simplify the estimation of the model of new
tasks (Sunmola and Wyatt, 2006) or the estimation of the action value function
as in (Lazaric et al, 2008).

(Il) Representation transfer. Each RL algorithm uses a specific representation of
the task and of the solution, such as state-aggregation, neural networks, or a
set of basis functions for the approximation of the optimal value function. Af-
ter learning on different tasks, transfer algorithms often perform an abstrac-
tion process which changes the representation of the task and of the solutions.
In this category, many possible approaches are possible varying from reward

5 Transfer in Reinforcement Learning 151

Learning Speed Improvement Jumpstart Improvement
& 5P P! Asymptotic Improvement P P!

w/o transfer ——

wlo transfer —— o f
w/ transfer

w/ transfer

w/o transfer
w/ transfer

Performance
Performance
Performance

Experience Experience Experience

Fig. 5.3 The three main objectives of transfer learning (Langley, 2006). The red circles high-
light the improvement in the performance in the learning process expected by using transfer
solutions w.r.t. single-task approaches.

shaping (Konidaris and Barto, 2006) and MDP augmentation through op-
tions (Singh et al, 2004) to basis function extraction (Mahadevan and Maggioni,
2007).

(IIT) Parameter transfer. Most of the RL algorithms are characterized by a number
of parameters which define the initialization and the behavior of the algorithm
itself. For instance, in Q-learning (Watkins and Dayan, 1992) the Q-table is ini-
tialized with arbitrary values (e.g., the highest possible value for the action val-
ues Ryqc /(1 —7)) and it is updated using a gradient-descent rule with a learning
rate . The initial values and the learning rate define the set of input param-
eters used by the algorithm. Some transfer approaches change and adapt the
algorithm parameters according to the source tasks. For instance, if the action
values in some state-action pairs are very similar across all the source tasks, the
Q-table for the target task could be initialized to more convenient values thus
speeding-up the learning process. In particular, the transfer of initial solutions
(i.e., policies or value functions) is commonly adopted to initialize the learning
algorithm in the transfer setting with only one source task.

5.2.2.3 The Objectives

While in supervised learning the performance of a classifier or a regressor are usu-
ally measured in terms of prediction error, in RL many possible measures can be
employed to evaluate how good is the solution returned by the learning algorithm.
As aresult, transfer algorithms can be evaluated according to a number of different
performance measures. Depending on how the learning performance is measured,
different transfer metrics may be used. In Taylor and Stone (2009) a number of
metrics is proposed to measure the improvement of transfer over single-task ap-
proaches. Here we discuss three main transfer objectives adapted from the objec-
tives suggested for the general problem of transfer suggested by Langley (2006)
(see Figure 5.3):

(I) Learning speed improvement. This objective is about the reduction in the
amount of the experience needed to learn the solution of the task at hand. As
new tasks are sampled according to €2, the knowledge retained from a set of

152 A. Lazaric

previously solved tasks can be used to bias the learning algorithm towards a
limited set of solutions, so as to reduce its learning time. The complexity of
a learning algorithm is usually measured by the number of samples needed to
achieve a desired performance. In RL, this objective is pursued following two
different approaches. The first approach is to make the algorithm more effec-
tive in using the experience collected from the exploration of the environment.
For instance, Kalmar and Szepesvari (1999) and Hauskrecht (1998) show that
the use of options can improve the effectiveness of value iteration backups by
updating value function estimates with the total reward collected by an option,
and thus reducing the number of iterations to converge to a nearly optimal so-
lution. The second aspect is about the strategy used to collect the samples. In
online RL algorithms samples are collected from direct interaction with the en-
vironment through an exploration strategy. The experience collected by solving
a set of tasks can lead to the definition of better exploration strategies for new
related tasks. For instance, if all the tasks have goals in a limited region of the
state space, an exploration strategy that frequently visits that region will lead to
more informative samples.

In practice, at least three different methods can be used to measure the im-
provement in the learning speed: time fo threshold, area ratio, and finite-sample
analysis. In all the problems where a target performance is considered (e.g.,
a small enough number of steps-to-go in a navigation problem), it is possible
to set a threshold and measure how much experience (e.g., samples, episodes,
iterations) is needed by the single-task and transfer algorithms to achieve that
threshold. If the transfer algorithm successfully takes advantage of the knowl-
edge collected from the previous tasks, we expect it to need much less expe-
rience to reach the target performance. The main drawback of this metric is
that the threshold might be arbitrary and that it does not take into account the
whole learning behavior of the algorithms. In fact, it could be the case that an
algorithm is faster in reaching a given threshold but it has a very poor initial
performance or does not achieve the asymptotic optimal performance. The area
ratio metric introduced by Taylor and Stone (2009) copes with this problem by
considering the whole area under the learning curves with and without transfer.
Formally, the area ratio is defined as

area with transfer — area without transfer

r=) (5.4)
area without transfer

Although this metric successfully takes into consideration the behavior of the
algorithms until a given number of samples, it is scale dependent. For instance,
when the reward-per-episode is used as a measure of performance, the scale of
the rewards impacts on the area ratio and changes in the rewards might lead to
different conclusions in the comparison of different algorithms. While the two
previous measures allow to empirically compare the learning performance with
and without transfer, it is also interesting to have a more rigorous comparison
by deriving sample-based bounds for the algorithms at hand. In such case, it is
possible to compute an upper bound on the error of the solution returned by the

5 Transfer in Reinforcement Learning 153

algorithm depending on the parameters of the task and the number of samples
is available. For instance, if the algorithm returns a function 4 € S and Q* is
the optimal action value function, a finite sample bound is usually defined as

[|h—0Q"||p < &1(,0%) +&(N), (5.5)

where p is a distribution over the state space S, &) (¢,0%) is the approximation
error and it accounts for the asymptotic error of the best possible solution in .77,
and & (N) is the estimation error and it decreases with the number of samples.
Transfer algorithms should be able to reduce the estimation error such that with
the same number of samples as in the single-task algorithm, they could achieve
a better performance. Although recent works in RL provide finite-sample anal-
ysis for a number of popular algorithms such as fitted value iteration (Munos
and Szepesvdri, 2008), LSTD (Farahmand et al, 2008; Lazaric et al, 2010), and
Bellman residual minimization (Antos et al, 2008; Maillard et al, 2010), at the
best of our knowledge, at the moment there is no finite-sample analysis for any
transfer algorithm in RL.

As it will be reviewed in next sections, this objective is usually pursued by
instance-transfer by adding source samples to the set of samples used to learn
the target task and by parameter-transfer approaches by initializing the learning
process to a convenient solution. Representation-transfer algorithms achieve a
learning speed improvement by augmenting the current representation of the
task (e.g., adding options to the action set) and of the solutions (i.e., adding
features).

(IT) Asymptotic improvement. In most of the problems of practical interest, a perfect
approximation of the optimal value function or policy is not possible (e.g., prob-
lems with continuous state-action spaces) and the use of function approximation
techniques is mandatory. The more accurate the approximation, the better the
generalization (and the performance) at convergence. The accuracy of the ap-
proximation is strictly dependent on the structure of the space of hypotheses
€ used to represent the solution (e.g., value functions). This objective is usu-
ally targeted by representation-transfer algorithms which adapt the structure of
J (e.g., by changing the features in a linear approximation space) so as to ac-
curately approximate the solutions of the tasks in .#. An empirical measure
of the quality of JZ is to compare the asymptotic performance (i.e., when a
large number of samples is available) of transfer and single-task learning. Also
in this case it would be interesting to analyze the effectiveness of the transfer
algorithms by providing a finite-sample analysis of their performance. In partic-
ular, the asymptotic improvement corresponds to a better approximation error
term in the bound of Equation (5.5). Similar to the learning speed improve-
ment, at the moment no transfer algorithm is guaranteed to improve the average
approximation error over the tasks in ./

(III) Jumpstart improvement. The learning process usually starts from either a ran-
dom or an arbitrary hypothesis /4 in the hypothesis space .7°. According to the
definition of environment, all the tasks are drawn from the same distribution £2.

154 A. Lazaric

Table 5.2 The three dimensions of transfer learning in RL. Each transfer solution is specifi-
cally designed for a setting, it transfers some form of knowledge, and it pursues an objective.
The survey classifies the existing algorithms according to the first dimension, it then reviews
the approaches depending on the transferred knowledge and discusses which objectives they
achieve.

Setting Knowledge Objective
Transfer from source to target with fixed domain Instance Learning speed
Transfer across tasks with fixed domain Representation Asymptotic performance
Transfer across tasks with different domains Parameter Jumpstart

As aresult, after observing a number of source tasks, the transfer algorithm may
build an effective prior on the solution of the tasks in ./ and initialize the learn-
ing algorithm to a suitable initial hypothesis with a better performance w.r.t. to a
random initialization. It is worth noting that this objective does not necessarily
correspond to an improvement in the learning speed. Let us consider a source
task whose optimal policy is significantly different from the optimal policy of
the target task but that, at the same time, it achieves only a slightly suboptimal
performance (e.g., two goal states with different final positive rewards in dif-
ferent regions of the state space). In this case, the improvement of the initial
performance can be obtained by initializing the learning algorithm to the opti-
mal policy of the source task, but this may lead to worsen the learning speed. In
fact, the initial policy does not provide samples of the actual optimal policy of
the task at hand, thus slowing down the learning algorithm. On the other hand,
it could be possible that the policy transferred from the source task is an effec-
tive exploration strategy for learning the optimal policy of the target task, but
that it also achieves very poor performance. This objective is usually pursued
by parameter-transfer algorithms in which the learning algorithm is initialized
with a suitable solution whose performance is better compared to a random (or
arbitrary) initialization.

5.2.2.4 The Survey

Given the framework introduced in the previous sections, the survey is organized
along the dimensions in Table 5.2. In the following sections we first classify the
main transfer approaches in RL according to the specific setting they consider. In
each setting, we further divide the algorithms depending on the type of knowledge
they transfer from source to target, and, finally, we discuss which objectives are
achieved. As it can be noticed, the literature on transfer in RL is not equally dis-
tributed on the three settings. Most of the early literature on transfer in RL focused
on the source-to-target setting, while the most popular scenario of recent research is
the general problem of transfer from a set of source tasks. Finally, research on the
problem of mapping different state and action spaces mostly relied on hand-coded
transformations and much room for further investigation is available.

5 Transfer in Reinforcement Learning 155

S G

S
S

source task target task

Fig. 5.4 Example of the setting of transfer from source to target with a fixed state-action
space

5.3 Methods for Transfer from Source to Target with a Fixed
State-Action Space

In this section we consider the most simple setting in which transfer occurs from one
source task to a target task. We first formulate the general setting in the next sec-
tion and we then review the main approaches to this problem by categorizing them
according to the type of transferred knowledge. Most of the approaches reviewed
in the following change the representation of the problem or directly transfer the
source solution to the target task. Furthermore, unlike the other two settings con-
sidered in Section 5.4 and 5.5, not all the possible knowledge transfer models are
considered and at the best of our knowledge no instance-transfer method has been
proposed for this specific setting.

5.3.1 Problem Formulation

In this transfer setting we define two MDPs, a source task M; = (S,A, Ty, R;) and
a target task M; = (S,A, T;,R,), sharing the same state-action space S x A. The en-
vironment & is defined by the task space .# = {M;,M,;} and a task distribution £
which simply returns M, as the first task and M; as second.

Example 3. Let us consider the transfer problem depicted in Figure 5.4. The source
task is a navigation problem where the agent should move from the region marked
with S to the goal region G. The target task shares exactly the same state-action
space and the same dynamics as the source task but the initial state and the goal
(and the reward function) are different. The transfer algorithm first collect some
form of knowledge from the interaction with the source task and then generates
a transferrable knowledge that can be used as input to the learning algorithm on
the target task. In this example, the transfer algorithm can exploit the similarity in
the dynamics and identify regularities that could be useful in learning the target task.

156 A. Lazaric

As reviewed in the next section, one effective way to perform transfer in this case is
to discover policies (i.e., options) useful to navigate in an environment with such a
dynamics. For instance, the policy sketched in Figure 5.4 allows the agent to move
from any point in the left room to the door between the two rooms. Such a policy is
useful to solve any navigation task requiring the agent to move from a starting region
in the left room to a goal region in the right room. Another popular approach is to
discover features which are well-suited to approximate the optimal value functions
in the environment. In fact, the dynamics displays symmetries and discontinuities
which are likely to be preserved in the value functions. For instance, both the source
and target value functions are discontinuous close to the walls separating the two
rooms. As a result, once the source task is solved, the transfer algorithm should an-
alyze the dynamics and the value function and return a set of features which capture
this discontinuity and preserve the symmetries of the problem. a

5.3.2 Representation Transfer

In some transfer problems no knowledge about the target task is available before
transfer actually takes place and % in Equation (5.2) is always empty. In this case, it
is important to abstract from the source task general characteristics that are likely to
apply to the target task as well. The transfer algorithm first collects some knowledge
from the source task and it then changes the representation either of the solution
space ¢ or of the MDP so as to speed-up the learning in the target task.

Option discovery. One of the most popular approaches to the source-target trans-
fer problem is to change the representation of the MDP by adding options (Sutton
et al, 1999) to the set of available actions (see Chapter 9 for a review of hierarchi-
cal RL methods). In discrete MDPs, options do not affect the possibility to achieve
the optimal solution (since all the primitive actions are available, any possible pol-
icy can still be represented), but they are likely to improve the learning speed if
they reach regions of the state space which are useful to learn the target task. All
the option-transfer methods consider discrete MDPs, a tabular representation of the
action-value function, and source and target tasks which differ only in the reward
function (i.e., Ty = T;). The idea is to exploit the structure of the dynamics shared
by the two tasks and to ignore the details about the specific source reward function.
Most of these methods share a common structure. A set of samples (s;,a;,r;,s;) is
first collected from the source task and an estimated MDP M, is computed. On the
basis of the characteristics of the estimated dynamics a set of relevant subgoals is
identified and a set of d options is learned to reach each of them. According to the
model in Section 5.2.1, the source knowledge is J#; = (S X A X § X R)N‘, and for any
specific realization K € .%#;, the transfer algorithm returns ansier(K) = (O, 57,
where O = {0;}¢_, and # = {h: S x {AUO} — R}. The learning algorithm can
now use the new augmented action space to learn the solution to the target task us-
ing option Q-learning (Sutton et al, 1999). Although all these transfer algorithms
share the same structure, the critical point is how to identify the subgoals and learn

5 Transfer in Reinforcement Learning 157

options from the estimated dynamics. McGovern and Barto (2001) define the con-
cept of bottleneck state as a state which is often traversed by the optimal policy
of the source task and that can be considered as critical to solve tasks in the same
MDP. Metrics defined for graph partitioning techniques are used in (Menache et al,
2002) and (Simsek et al, 2005) to identify states connecting different regions of the
state space. Hengst (2003) proposes a method to automatically develop a MAXQ
hierarchy on the basis of the concept of access states. Finally, Bonarini et al (2006)
a psychology-inspired notion of interest aimed at identifying states from which the
environment can be easily explored.

Action space transfer. A different approach to representation-transfer involving the
action space is proposed in (Sherstov and Stone, 2005). Using random task pertur-
bation, a set of tasks is artificially generated from one single source task and a new
action set is obtained by removing from A all the actions which are not optimal in
any of the source tasks. In this case, the transfer algorithm returns a pair (A’,.7)
where A’ C A is a subset of the original action space A and .7 = {h: S x A" — R}.
With a smaller action set the learning speed in the target task is significantly im-
proved at the cost of a loss in the optimality of the learned policy. In fact, some
of the actions removed according to the artificially generated source tasks might be
optimal in the target task. Nonetheless, if source and target tasks are similar and the
perturbed tasks are different enough from the source task, then the method is likely
to preserve most of the actions necessary to solve the target task.

Feature discovery. In (Mahadevan and Maggioni, 2007; Ferguson and Mahadevan,
2006; Ferrante et al, 2008) a representation-transfer approach similar to option-
transfer is proposed. The main difference is that instead of options, the transfer
algorithm extracts a set of features { ¢; ;lzl which defines the hypothesis space 7.
Similar to the option-transfer algorithms, the tasks are assumed to share the same dy-
namics and an estimated transition model 7}, is used to extract the features. While the
source knowledge 7; is again the set of samples collected from Mj, the transferred
knowledge is Hranster = F 4 and once a specific set of features {q),-}f’:l (with ¢; €
F) is extracted, the solution space is defined as .# = {h(x,a) = YL, oy¢;(x,a)}.
Furthermore, in option-transfer the objective is to improve the learning speed, while
feature-transfer aims at achieving a better approximation of the target value func-
tion (i.e., asymptotic improvement). While option-transfer approaches are specifi-
cally designed for on-line algorithms such as option Q-learning, the feature-transfer
algorithms can be paired to any RL algorithm using a linear function approximation
scheme. Mahadevan and Maggioni (2007) introduces a method to generate proto-
value functions (i.e., the features) using spectral analysis of the Laplacian of the
estimated graph of the source MDP. Proto-value functions capture the intrinsic struc-
ture of the manifold underlying the dynamics of the tasks at hand (e.g., symmetries)
and thus they are likely to approximate well the value function of any task shar-
ing the same dynamics. Ferguson and Mahadevan (2006) generalize this approach
to problems with slightly different dynamics. Finally, Ferrante et al (2008) further
generalize this appraoch to a more general setting is considered in which both the

158 A. Lazaric

dynamics and reward function may be different in source and target task. A differ-
ent method is proposed to build the source graph and extract proto-value functions
which are well suited to approximate functions obtained from similar dynamics and
reward functions.

5.3.3 Parameter Transfer

All the previous methods about representation transfer rely on the implicit assump-
tion that source and target tasks are similar enough so that options or features ex-
tracted from the source task are effective in learning the solution of the target task.
Nonetheless, it is clear that many different notions of similarity can be defined. For
instance, we expect the option-transfer methods to work well whenever the two op-
timal policies have some parts in common (e.g., they both need passing through
some specific states to achieve the goal), while proto-value functions are effective
when the value functions preserve the structure of the transition graph (e.g., sym-
metries). The only explicit attempt to measure the expected performance of transfer
from source to target as a function of a distance between the two MDPs is pursued
by Ferns et al (2004) and Phillips (2006). In particular, they analyze the case in
which a policy 7 is transferred from source to target task. The learning process in
the target task is then initialized using 7 and its performance is measured. If the
MDPs are similar enough, then we expect this policy-transfer method to achieve
a jumpstart improvement. According to the formalism introduced in Section 5.2.1,
in this case % is any knowledge collected from the source task used to learn 7,
while the transferred knowledge #{ anster Only contains 7 and no learning phase ac-
tually takes place. Phillips (2006) defines a state distance between M, and M; along
the lines of the metrics proposed in (Ferns et al, 2004). In particular, the distance
d:S — Ris defined as

d(s) = max ([Rs(s,a) = Ri(s.a)| +v7 (d) (Is(‘|s,a) i (‘|s,a))), (5.6)
where .7 (d) is the Kantorovich distance which measures the difference between
the two transition distributions T(+|s,a) and T;(+|s,a) given the state distance d. The
recursive Equation (5.6) is proved to have a fixed point d* which is used a state
distance. Phillips (2006) prove that when a policy 7 is transferred from source to
target, its performance loss w.r.t. the optimal target policy 7, can be upper bounded
by d* as

* 2 1+
V™ =V < |, maxd"(s)+ v

— Y s€S 1—vy
As it can be noticed, when the transferred policy is the optimal policy 7, of the
source task, then its performance loss is upper bounded by the largest value of d*
which takes into consideration the difference between the reward functions and tran-
sition models of the two tasks at hand.

5 Transfer in Reinforcement Learning 159

As discussed in Section 5.5, many other approaches parameter-transfer ap-
proaches have been investigated in the setting of source and target tasks with differ-
ent state-action spaces.

5.4 Methods for Transfer across Tasks with a Fixed
State-Action Space

While in the previous section we considered the setting in which only one source
task is available, here we review the main transfer approaches to the general setting
when a set of source tasks is available. Transfer algorithms in this setting should
deal with two main issues: how to merge knowledge coming from different sources
and how to avoid the transfer from sources which differ too much from the target
task (negative transfer).

5.4.1 Problem Formulation

In this section we consider the more general setting in which the environment &
is defined by a set of tasks .# and a distribution €. Similar to the setting in Sec-
tion 5.3.1, here all the tasks share the same state-action space, that is for any M € .Z,
Sy = S and Ay = A. Although not all the approaches reviewed in the next section
explicitly define a distribution €2, they all rely on the implicit assumption that all
the tasks involved in the transfer problem share some characteristics in the dynam-
ics and reward function and that by observing a number of source tasks, the transfer
algorithm is able to generalize well across all the tasks in .Z.

Example 4. Let us consider a similar scenario to the real-time strategy (RTS) game
introduced in (Mehta et al, 2008). In RTS, there is a number of basic tasks such
as attacking the enemy, mining gold, building structures, which are useful to ac-
complish more complex tasks such as preparing an army and conquering an enemy
region. The more complex tasks can be often seen as a combination of the low level
tasks and the specific combination depends also on the phase of the game, the char-
acteristics of the map, and many other parameters. A simple way to formalize to
problem is to consider the case in which all the tasks in .# share the same state-
action space and dynamics but have different rewards. In particular, each reward
function is the result of a linear combination of a set of d basis reward function, that
is, for each task M, the reward is defined as Ry/(-) = 3¢, wir;(-) where w is a weight
vector and r;(+) is a basis reward function. Each basis reward function encodes a spe-
cific objective (e.g., defeat the enemy, collect gold), while the weights represent a
combination of them as in a multi-objective problem. It is reasonable to assume
that the specific task at hand is randomly generated by setting the weight vector w.

160 A. Lazaric

In particular, we can define a generative distribution €2y, with hyper-parameters y
from which the weights wy, are drawn. For instance, the hyper-parameter could be a
pair y = (u,X) and Qy, could be a multivariate d-dimensional Gaussian distribution
A (1,X). In this case, the objective of the transfer algorithm is to estimate as accu-
rately as possible the parameters ¥ so as to have a reliable prior on any new weight
vector wy. O

5.4.2 Instance Transfer

The main idea of instance-transfer algorithms is that the transfer of source samples
may improve the learning on the target task. Nonetheless, if samples are transferred
from sources which differ too much from the target task, then negative transfer
might occur. In this section we review the only instance-transfer approach for this
transfer setting proposed in (Lazaric et al, 2008) which selectively transfers samples
on the basis of the similarity between source and target tasks.

Let L be the number of source tasks, Lazaric et al (2008) propose an algorithm
proposed which first collects Ny samples for each source task .#; = (S x A x § x R)™s
and N, samples (with N; < Ny) from the target task .%; = (S x A x S x R)™, and the
transfer algorithm takes as input JZ; and .%#;. Instead of returning as output a set con-
taining all the source samples, the method relies on a measure of similarity between
the source and the target tasks to select which source samples should be included
in Hganster- Let Ky, € 2 and K; € J#; be the specific source and target samples
available to the transfer algorithm. The number of source samples is assumed to be
large enough to build an accurate kernel-based estimation of each source model M »
Given the estimated model, the similarity between the source task My, and the target
task M, is defined as

1Y

Ay = N,
n=1

]P (<Sn7anvsi17rn> ‘MSI)

where P ((s,,,a,,,si,,r,,) \MS,) is the probability of the transition (s,,ay,s,,r) € K; ac-
cording to the (estimated) model of Mj,. The intuition behind this measure of sim-
ilarity is that it is more convenient to transfer samples collected from source tasks
which are likely to generate target samples. Finally, source samples are transferred
proportionally to their similarity Ay, to the target task. The method is further refined
using another measure of utility for each source sample so that from each source
task only the samples that are more likely to improve the learning performance in
the target task. In the experiments reported in (Lazaric et al, 2008) this method is
shown to successfully identify which sources are more relevant to transfer samples
from and to avoid negative transfer.

5 Transfer in Reinforcement Learning 161

5.4.3 Representation Transfer

Unlike in the source-to-target transfer, the objective of representation transfer in this
setting is to infer from the source tasks general characteristics that are preserved
across the tasks in .# and that can be effectively exploited to improve the average
(measured according to the distribution £2) learning performance w.r.t. single-task
learning.

Option transfer. Bernstein (1999) introduce a new option (called reuse option)
which is added to the set of available actions and which is built as a combina-
tion of the optimal policies learned on the L source tasks and it is then reused to
speed-up learning on the target task. The process can be re-iterated so that the tar-
get task is added to the source tasks and the reuse option is updated accordingly.
After a sufficient number of source tasks, the reuse option is shown to significantly
speed-up the learning process on new tasks. Options are used to speed-up learning
also in (Perkins and Precup, 1999) where a POMDP-like framework is considered.
In particular, they assume the set .# to be known in advance and a belief about the
identity of the current task is estimated. The value of an option in the current task is
then computed as an average of its value in different tasks weighted by the current
belief. Although in both these approaches the tasks are assumed to be drawn from
a common distribution €2, they do not provide any analysis about which options
could guarantee the best improvement. Kalmar and Szepesvari (1999) consider the
problem of finding the set of options which reduces the most the number of itera-
tions needed for value iteration to converge. Unlike the previous approaches, in this
case the transfer algorithm is guaranteed to return the optimal set of options. Finally,
Asadi and Huber (2007) propose a method for incremental discovery of skills using
the MAX-Q hierarchical architecture.

Feature transfer to speed-up learning. A different approach to representation-
transfer is to identify a function space which is likely to contain functions able ei-
ther to speed-up the learning process or to accurately approximate the optimal value
functions in .#. Similar to option-transfer, the first objective is usually achieved
in the setting of discrete MDPs in which a tabular approach is used. In this case,
the space of functions .72 = {h : S x A — R} already guarantees the possibility
to compute the optimal action value function with an arbitrary small approxima-
tion error. Nonetheless, when the number of states and actions is large, the learn-
ing process could be very slow. The augmentation of the space .7 with features
which accurately approximate the optimal action-value functions of the tasks in .#
in some parts of the state-action space could considerably speed-up the learning
process. The transfer phase in this case takes as input for each source task a source

knowledge Ky, € %, defined as K;, = {{(sn,an,s;l,rn>}N‘ Jf} while no knowl-

n=1>
edge about the target task is available. The output knowledge is a set of d new
features A anster = -9, so that Lhanster ({ K Hoy) = {@i € Z,i=1,...,d} where
the new features are used by the learning algorithm in addition to 7Z. Foster and
Dayan (2002) propose an automatic method to decompose the MDPs into elemental

162 A. Lazaric

fragments. In particular, an unsupervised method is first used to analyze the opti-
mal value functions learned so far and to decompose the state space into fragments.
Each fragment (i.e., a sub-task) can be solved independently and its value function is
then used as an additional feature when learning the target task. Drummond (2002)
propose a similar method which identifies subtasks and features according to the
analysis of the dynamics of the source tasks. In both cases, the methods are able
to identify useful features in maze problems with highly structured optimal value
functions. Madden and Howley (2004) introduce a hybrid representation-parameter
transfer approach. According to the Q-tables learned on the source tasks, a symbolic
learner generates a set of decision rules defined on a higher-level of abstraction com-
pared to the state features used in learning the Q-tables. This representation is then
transferred to the target task together with the rules which are used to initialize the
Q-table for the target task.

Feature transfer to improve asymptotic performance. While the previous meth-
ods consider discrete MDPs where it is possible to exactly compute the optimal
solution and the objective is to speed-up the learning, other methods focus on
the continuous state-action spaces in which function approximation is mandatory.
Walsh et al (2006) consider a simple state-aggregation function approximation
scheme. In this case, the objective is to find an aggregation of states able to ac-
curately approximate all the optimal value functions of the tasks at hand. A similar
objective is pursued in (Lazaric, 2008) in which the transfer algorithm identifies the
best set of features to approximate the source tasks and then reuses them in solving
the target task. Similar to (Argyriou et al, 2008), the algorithm relies on the as-
sumption that there exists a small subset of features which is useful to approximate
the value functions of the tasks in .# (shared sparsity assumption). The algorithm
considers a set of features {(pi6 };‘;1 parameterized by a parameter 6 € O and the cor-
responding linear hypothesis space /% = {h(x,a) = X%, 0;¢f (x,a) }. The objective
is to learn the parameter 6 which defines a feature space such that only a small set of
features are used to approximate the value functions of the tasks (i.e., features such
that the corresponding optimal weights o have a small number of non-zero compo-
nents). Empirical evaluation shows that whenever the optimal value functions of the
tasks in . can be represented with a very small number of features, the algorithm
is able to learn them and to obtain a significant convergence improvement.

5.4.4 Parameter Transfer

Unlike representation-transfer approaches, all parameter-transfer algorithms explic-
itly define a distribution €2 on the task space .# and try to estimate the true distri-
bution in order to build a prior over the space of hypotheses .7 so as to improve
the initial performance (jumpstart improvement) and reduce the number of samples
needed to solve any task in 2. More formally, most of the parameter-transfer ap-
proaches share the following structure. Let . = {My,0 € O} be a parameterized
space of tasks with parameters 6 and £, a family of task probability distributions,

5 Transfer in Reinforcement Learning 163

<sm amsllqv rn>

L

Fig. 5.5 Example of a generative model of a hierarchical Bayesian model (HBM). The obser-
vations {s,a,s’, r) are generated according to an MDP parameterized by a parameter vector 6,
while each task is generated according to a distribution defined by a set of hyper-parameters
Y. ' is a vector of parameters defining the prior over the hyper-parameters.

where y € ¥ is a hyper-parameter vector. The main assumption is that all the task
parameters 0 are independently and identically distributed according to a specific
task distribution €y+.

The hierarchical Bayesian model. The structure of this problem is usually rep-
resented as a hierarchical Bayesian model (HBM) as depicted in Figure 5.5. The

transfer algorithms take as input samples K, = {{(sn,an,s;,r@}ﬁl;l} from each of
the source tasks My, (I = 1,...,L) which are drawn from the true distribution €2+

. iid . .
(.e., 6 ~ Q,+) whose true hyper-parameters are unknown. Given a prior over V,
the algorithm solves the inference problem

L

P (wl{Ks }i-1) o [TP (K, |w) B(w), (5.7)
=1

where P (Kj, |y) o< P (K,,|6) P (). The y with highest probability is usually trans-
ferred and used to initialize the learning process on the target task. Notice that the
learning algorithm must be designed so as to take advantage of the knowledge about
the specific task distribution €2, returned by the transfer phase. Bayesian algorithms
for RL such as GPTD (Engel et al, 2005) are usually adopted (see Chapter 11).

The inference problem in Equation (5.7) leverages on the knowledge collected
on all the tasks at the same time. Thus, even if few samples per task are available
(i.e., N; is small), the algorithm can still take advantage of a large number of tasks
(i.e., L is large) to solve the inference problem and learn an accurate estimate of
w*. As L increases the hyper-parameter y gets closer and closer to the true hyper-
parameter y* and y can be used to build a prior on the parameter 6 for any new
target task drawn from the distribution £2,+. Depending on the specific definition of
O and €2y, and the way the inference problem is solved, many different algorithms
can be deduced from this general model.

164 A. Lazaric

Inference for transfer. Tanaka and Yamamura (2003) consider a simpler approach.
Although the MDPs are assumed to be drawn from a distribution €2, the proposed
algorithm does not try to estimate the task distribution but only a statistics about the
action values is computed. The mean and variance of the action values over different
tasks are computed and then used to initialize the Q-table for new tasks. Sunmola
and Wyatt (2006) and Wilson et al (2007) consider the case where the MDP dy-
namics and reward function are parameterized by a parameter vector 6 and they
are assumed to be drawn from a common distribution £2y,. The inference problem
is solved by choosing appropriate conjugate priors over the hyper-parameter y. A
transfer problem on POMDPs is consider in (Li et al, 2009). In this case, no ex-
plicit parameterization of the tasks is provided. On the other hand, it is the space
of history-based policies .7#” which is parameterized by a vector parameter 8 € ©.
A Dirichlet process is then used as a non-parametric prior over the parameters of
the optimal policies for different tasks. Lazaric and Ghavamzadeh (2010) consider
the case of a parameterized space of value functions by considering the space of
linear functions spanned by a given set of features, .72 = {h(x,a) = YL, 6;¢;(x,a)}.
The vector 6 is assumed to be drawn from a multivariate Guassian with parame-
ters ¥ drawn from a normal-inverse-Wishart hyper-prior (i.e., 0 ~ 4 (u,X) and
W, ~ N - (y)). The inference problem is solved using an EM-like algorithm
which takes advantage of the conjugate priors. This approach is further extended to
consider the case in which not all the tasks are drawn from the same distribution. In
order to cluster tasks into different classes, Lazaric and Ghavamzadeh (2010) place
a Dirichlet process on the top of the hierarchical Bayesian model and the number of
classes and assignment of tasks to classes is automatically learned by solving an in-
ference problem using a Gibbs sampling method. Finally, Mehta et al (2008) define
the reward function as a linear combination of reward features which are common
across tasks, while the weights are specific for each task. The weights are drawn
from a distribution €2 and the transfer algorithm compactly stores the optimal value
functions of the source tasks exploiting the structure of the reward function and uses
them to initialize the solution in the target task.

5.5 Methods for Transfer from Source to Target Tasks with a
Different State-Action Spaces

All the previous settings consider the case where all the tasks share the same domain
(i.e., they have the same state-action space). In the most general transfer setting the
tasks in .# may also differ in terms of number or range of the state-action variables.

5.5.1 Problem Formulation

Although here we consider the general case in which each task M € . is de-
fined as an MDP (Sas,Apm, Tyr, Ry) and the environment & is obtained by defining a

5 Transfer in Reinforcement Learning 165

2D Mountain Car
1 — 3D Mountain Car

mountain height
o

£
o
5
=
£
5
£
5
3.
=

R = =

- //
P
08 N4

-1 = -
-12 -1 -08 -06-04-02 0 02 04 06
X

Fig. 5.6 Transfer from 2D to 3D mountain car (Taylor et al, 2008a)

distribution 2 on ., in practice only the source-to-target transfer setting has been
considered. Thus, similarly to Section 5.3, we consider a task space .# = {M;, M, },
where M; = (S;,A;, Ty, Rs) is the source task and M; = (S;,A;,T;,R;) is the target
task on which we want to improve the learning performance. According to the nota-
tion introduced in Section 5.2.1, #; and %/ are now defined on different state-action
spaces and the knowledge in .Z; cannot be directly used by the learning algorithm to
learn on the target task. Thus, the transfer phase implemented by @ nsfer must return
some knowledge Hanster compatible with J#;. This objective is usually achieved
following three different approaches: transform J7; into % through a hand-coded
mapping, learn a mapping from My to M, and transform J#; into .%#;, extract from
Js some abstract knowledge that can be reused to solve M;. In the next section we
still follow the different categories used in the previous sections but we will make
explicit which approach to the problem of mapping is used.

Example 5. Let us consider the mountain car domain and the source and target tasks
in Figure 5.6 introduced by Taylor et al (2008a). Although the problem is somehow
similar (i.e., an under-powered car has to move from the bottom of the valley to the
top of the hill), the two tasks are defined over a different state space and the action
space contains a different number of actions. In fact, in the 2D mountain car task the
state space is defined by the position and the velocity variables (x,%) and the action
space contains the actions A = {Left, Neutral, Right}. On the other hand, the 3D task
has two additional state variables describing the position in y and its correspond-
ing speed y and the action space becomes A = {Neutral, West, East, South, North}.
The transfer approaches described so far cannot be applied here because the knowl-
edge Hanster they transfer from the source task would not be compatible with
the target task. In this case, the transfer algorithm must define a suitable map-
ping between source and target state and action spaces, and then transfer solu-
tions learned in the 2D mountain car to initialize the learning process in the 3D
task. O

166 A. Lazaric

5.5.2 Instance Transfer

Similar to the method introduced by Lazaric et al (2008), Taylor et al (2008a) study
the transfer of samples. Unlike Lazaric et al (2008), here only one source task is con-
sidered and no specific method for the selection of the samples is implemented. On
the other hand, the two tasks do not share the same domain anymore, thus an explicit
mapping between their state-action variables is needed. A hand-coded mapping is
provided as input to the transfer algorithms which simply applies it to the source
samples thus obtaining samples that can be used to learn on the target task. Follow-
ing the inter-task mapping formalism introduced by Taylor et al (2007a) and used
by Taylor et al (2008a), a hand-coded mapping is defined by two functionals yg and
4. Let the state spaces Sy and S; be factorized in d; and d; state variables respec-
tively (i.e., Sy = Stx...x8%and S, = S! x ... x S%) and A, and A, be scalar spaces
with values Ay = {a',...,a%} and A, = {a',...,a*}. The state mapping maps the
index of a source state variable 1 <i < d; to the index of a state variable 1 < j <d; in
the target state space, thatis ys: {1,...,ds} — {1,...,d; }. With an abuse of notation
we denote by ys(s) € S, the transformation of a state s € S; into the state obtained
by mapping each variable of s into a target variable according to ys. Similarly, the
action mapping x4 maps each source action in A to one of the target actions in A;.
As aresult, if 7 is the space of source samples and K, € % is one specific realiza-
tion of Ny samples, for any samples (s,,an,s,,rn) € K; the transfer algorithm returns
new target samples ()s(sn), xa(an), xs(s),),). While Lazaric et al (2008) define an
algorithm where the transferred samples are used in a batch model-free RL algo-
rithm, Taylor et al (2008a) study how the model-based algorithm Fitted R-max can
benefit from samples coming from the source task when transformed according to a
hand-coded mapping from the source to the target task. In particular, the method is
shown to be effective in the generalized mountain car problem in Figure 5.6.

5.5.3 Representation Transfer

As reviewed in the previous sections, many transfer approaches develop options that
can be effectively reused in the target task. In this case, the main problem is that op-
tions learned on the source task are defined as a mapping from S; to A; and they
cannot be used in a target task with different state-action variables. A number of
transfer algorithms deal with this problem by considering abstract options that can
be reused in different tasks. Ravindran and Barto (2003); Soni and Singh (2006)
use the homomorphism framework to map tasks to a common abstract level. For
instance, let us consider all the navigation problems in an empty squared room. In
this case, it is possible to define one common abstract MDP and obtain any specific
MDP by simply using operators such as translation, scaling, and rotation. In order
to deal with this scenario, Ravindran and Barto (2003) introduce the concept of rel-
ativized options. Unlike traditional options, relativized options are defined on the
abstract MDP, without an absolute frame of reference, and their policy is then trans-
formed according to the specific target task at hand. In particular, a set of possible

5 Transfer in Reinforcement Learning 167

transformations is provided and the transfer phase needs to identify the most suit-
able transformation of the relativized options depending on the current target task.
The problem is casted as a Bayesian parameter estimation problem and the transfor-
mation which makes the sequence of states observed by following the option more
likely is selected. Konidaris and Barto (2007) define options at a higher level of
abstraction and they can be used in the target task without any explicit mapping or
transformation. In fact, portable options are defined in a non-Markovian agent space
which depends on the characteristics of the agent and remains fixed across tasks.
This way, even when tasks are defined on different state-action spaces, portable op-
tions can be reused to speed-up learning in any target task at hand. Finally, Torrey
et al (2006) proposed an algorithm in which a set of skills is first identified using in-
ductive logic programming and then reused in the target task by using a hand-coded
mapping from source to target.

5.5.4 Parameter Transfer

While in the setting considered in Section 5.3, the transfer of initial solutions (e.g.,
the optimal source policy) from the source to the target task is trivial, in this case
the crucial aspect in making transfer effective is to find a suitable mapping from the
source state-action space S X A; to the target state-action space S; X A;.

Most of the algorithms reviewed in the following consider hand-coded mappings
and investigate how the transfer of different sources of knowledge (e.g., policies,
value functions) influence the performance on the target task. The transformation
through a hand-coded mapping and the transfer of the source value function to ini-
tialize the learning in the target task has been first introduced by Taylor and Stone
(2005) and Taylor et al (2005) and its impact has been study in a number of challeng-
ing problems such as the simulated keep-away problem (Stone et al, 2005). Baner-
jee and Stone (2007) also consider the transfer of value functions in the context
of general games where different games can be represented by a common abstract
structure. Torrey et al (2005) learn the Q-table in the target task by reusing advices
(i.e., actions with higher Q-values in the source task) which are mapped to the target
task through a hand-coded mapping. While the previous approaches assume that in
both source and target task the same solution representation is used (e.g., a tabu-
lar approach), Taylor and Stone (2007) consider the problem of mapping a solution
(i.e., a value function or a policy) to another solution when either the approximation
architecture (e.g., CMAC and neural networks) or the learning algorithm itself (e.g.,
value-based and policy search methods) changes between source and target tasks.
Using similar mappings as for the state-action mapping, they show that transfer is
still possible and it is still beneficial in improving the performance on the target
task. Finally, Taylor et al (2007b) study the transfer of the source policy where a
hand-coded mapping is used to transform the source policy into a valid policy for
the target task and a policy search algorithm is then used to refine it.

168 A. Lazaric

Unlike the previous approaches, some transfer methods automatically identify
the most suitable mapping between source and target tasks. Taylor et al (2008b) in-
troduce the MASTER algorithm. The objective is to identify among all the possible
mappings from source to target state variables, the one which guarantees the best
prediction of the dynamics of the environment. The algorithm receives as input a
relatively large number of samples from the source task and few target samples. Let
X be the set of all the possible mappings between Sg and S;, K € % and K; € J#; be
specific realization of source and target samples. From K; the algorithm first com-
putes an approximation of the target dynamics 7;. Each sample (s,,ay,s),r) in K
is then transformed with one of the possible mappings ys € X and the state ys(s/,)
is compared to the state predicted by 7;(xs(sy,),a). The mapping ys which is the
most accurate in predicting the transitions of the samples in K is then used to trans-
fer the solution of the source task. Talvitie and Singh (2007) first learn a policy for
the source task, and a target policy is then obtained by mapping the source policy
according to each of the possible mappings from the source to the target state vari-
ables. The problem of selecting the most appropriate mapping is then translated into
the problem of evaluating the best policy among the target policies. The problem is
then solved using an expert-like algorithm (Cesa-Bianchi and Lugosi, 2006).

5.6 Conclusions and Open Questions

In this chapter we defined a general framework for the transfer learning problem in
the reinforcement learning paradigm, we proposed a classification of the different
approaches to the problem, and we reviewed the main algorithms available in the
literature. Although many algorithms have been already proposed, the problem of
transfer in RL is far from being solved. In the following we single out a few open
questions that are relevant to the advancement of the research on this topic. We
refer the reader to the survey by Taylor and Stone (2009) for other possible lines of
research in transfer in RL.

Theoretical analysis of transfer algorithms. Although experimental results sup-
port the idea that RL algorithms can benefit from transfer from related tasks, no
transfer algorithm for RL has strong theoretical guarantees. Recent research in trans-
fer and multi-task learning in the supervised learning paradigm achieved interesting
theoretical results identifying the conditions under which transfer approaches are ex-
pected to improve the performance over single-task learning. Crammer et al (2008)
study the performance of learning reusing samples coming from different classifica-
tion tasks and they prove that when the sample distributions of the source tasks do
not differ too much compared to the target distribution, then the transfer approach
performs better than just using the target samples. Baxter (2000) studies the problem
of learning the most suitable set of hypotheses for a given set of tasks. In particular,
he shows that, as the number of source tasks increases, the transfer algorithm man-
ages to identify a hypothesis set which is likely to contain good hypotheses for all
the tasks in .#. Ben-David and Schuller-Borbely (2008) consider the problem of

5 Transfer in Reinforcement Learning 169

learning the best hypothesis set in the context of multi-task learning where the ob-
jective is not to generalize on new tasks but to achieve a better average performance
in the source tasks. At the same time, novel theoretical results are now available
for a number of popular RL algorithms such as fitted value iteration (Munos and
Szepesvari, 2008), LSTD (Farahmand et al, 2008; Lazaric et al, 2010), and Bellman
residual minimization (Antos et al, 2008; Maillard et al, 2010). An interesting line
of research is to take advantage of theoretical results of transfer algorithms in the
supervised learning setting and of RL algorithms in the single-task case to develop
new RL transfer algorithms which provably improve the performance over single-
task learning.

Transfer learning for exploration. The objective of learning speed improvement
(see Section 5.2.2) is often achieved by a better use of the samples at hand (e.g., by
changing the hypothesis set) rather than by the collection of more informative sam-
ples. This problem is strictly related to the exploration-exploitation dilemma where
the objective is to trade-off between the exploration of different strategies and the
exploitation of the best strategy so far. Recent works by Bartlett and Tewari (2009);
Jaksch et al (2010) studied optimal exploration strategies for single-task learning.
Although most of the option-based transfer methods implicitly bias the exploration
strategy, the problem of how the exploration on one task should be adapted on the
basis of the knowledge of previous related tasks is a problem which received little
attention so far.

Concept drift and continual learning. One of the main assumptions of transfer
learning is that a clear distinction between the tasks in .# is possible. Nonetheless,
in many interesting applications there is no sharp division between source and target
tasks while it is rather the task itself that changes in time. This problem, also known
as concept drift, is also strictly related to the continual learning and lifelong learning
paradigm (Silver and Poirier, 2007) in which, as the learning agent autonomously
discovers new regions of a non-stationary environment, it also increases its capabil-
ity to solve tasks defined on that environment. Although tools coming from transfer
learning probably could be reused also in this setting, novel approaches are needed
to deal with the non-stationarity of the environment and to track the changes in the
task at hand.

References

Antos, A., Szepesvdri, C., Munos, R.: Learning near-optimal policies with Bellman-residual
minimization based fitted policy iteration and a single sample path. Machine Learning
Journal 71, 89-129 (2008)

Argyriou, A., Evgeniou, T., Pontil, M.: Convex multi-task feature learning. Machine Learning
Journal 73(3), 243-272 (2008)

Asadi, M., Huber, M.: Effective control knowledge transfer through learning skill and repre-
sentation hierarchies. In: Proceedings of the 20th International Joint Conference on Arti-
ficial Intelligence (IJCAI-2007), pp. 2054-2059 (2007)

170 A. Lazaric

Banerjee, B., Stone, P.: General game learning using knowledge transfer. In: Proceedings of
the 20th International Joint Conference on Artificial Intelligence (IICAI-2007), pp. 672—
677 (2007)

Bartlett, P.L., Tewari, A.: Regal: a regularization based algorithm for reinforcement learning
in weakly communicating mdps. In: Proceedings of the Twenty-Fifth Conference on Un-
certainty in Artificial Intelligence (UAI-2009), pp. 35—42. AUAI Press, Arlington (2009)

Baxter, J.: A model of inductive bias learning. Journal of Artificial Intelligence Research 12,
149-198 (2000)

Ben-David, S., Schuller-Borbely, R.: A notion of task relatedness yiealding provable
multiple-task learning guarantees. Machine Learning Journal 73(3), 273-287 (2008)

Bernstein, D.S.: Reusing old policies to accelerate learning on new mdps. Tech. rep., Univer-
sity of Massachusetts, Amherst, MA, USA (1999)

Bonarini, A., Lazaric, A., Restelli, M.: Incremental Skill Acquisition for Self-motivated
Learning Animats. In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J.C.T., Marocco,
D., Meyer, J.-A., Miglino, O., Parisi, D. (eds.) SAB 2006. LNCS (LNAI), vol. 4095, pp.
357-368. Springer, Heidelberg (2006)

Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge University Press
(2006)

Crammer, K., Kearns, M., Wortman, J.: Learning from multiple sources. Journal of Machine
Learning Research 9, 1757-1774 (2008)

Drummond, C.: Accelerating reinforcement learning by composing solutions of automati-
cally identified subtasks. Journal of Artificial Intelligence Research 16, 59-104 (2002)
Engel, Y., Mannor, S., Meir, R.: Reinforcement learning with Gaussian processes. In: Pro-
ceedings of the 22nd International Conference on Machine Learning (ICML-2005),

pp. 201-208 (2005)

Ernst, D., Geurts, P., Wehenkel, L.: Tree-based batch mode reinforcement learning. Journal
of Machine Learning Research 6, 503-556 (2005)

Farahmand, A.M., Ghavamzadeh, M., Szepesvari, C., Mannor, S.: Regularized policy itera-
tion. In: Proceedings of the Twenty-Second Annual Conference on Advances in Neural
Information Processing Systems (NIPS-2008), pp. 441-448 (2008)

Fawcett, T., Callan, J., Matheus, C., Michalski, R., Pazzani, M., Rendell, L., Sutton, R. (eds.):
Constructive Induction Workshop at the Eleventh International Conference on Machine
Learning (1994)

Ferguson, K., Mahadevan, S.: Proto-transfer learning in markov decision processes using
spectral methods. In: Workshop on Structural Knowledge Transfer for Machine Learning
at the Twenty-Third International Conference on Machine Learning (2006)

Ferns, N., Panangaden, P., Precup, D.: Metrics for finite markov decision processes. In: Pro-
ceedings of the 20th Conference on Uncertainty in Artificial Intelligence (UAI-2004),
pp. 162-169 (2004)

Ferrante, E., Lazaric, A., Restelli, M.: Transfer of task representation in reinforcement learn-
ing using policy-based proto-value functions. In: Proceedings of the Seventh International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS-2008), pp.
1329-1332 (2008)

Foster, D.J., Dayan, P.: Structure in the space of value functions. Machine Learning Jour-
nal 49(2-3), 325-346 (2002)

Gentner, D., Loewenstein, J., Thompson, L.: Learning and transfer: A general role for ana-
logical encoding. Journal of Educational Psychology 95(2), 393—-408 (2003)

Gick, M.L., Holyoak, K.J.: Schema induction and analogical transfer. Cognitive Psychol-
ogy 15, 1-38 (1983)

5 Transfer in Reinforcement Learning 171

Hauskrecht, M.: Planning with macro-actions: Effect of initial value function estimate on con-
vergence rate of value iteration. Tech. rep., Department of Computer Science, University
of Pittsburgh (1998)

Hengst, B.: Discovering hierarchy in reinforcement learning. PhD thesis, University of New
South Wales (2003)

Jaksch, T., Ortner, R., Auer, P.: Near-optimal regret bounds for reinforcement learning. Jour-
nal of Machine Learning Research 11, 1563-1600 (2010)

Kalmar, Z., Szepesvari, C.: An evaluation criterion for macro-learning and some results. Tech.
Rep. TR-99-01, Mindmaker Ltd. (1999)

Konidaris, G., Barto, A.: Autonomous shaping: knowledge transfer in reinforcement learn-
ing. In: Proceedings of the Twenty-Third International Conference on Machine Learning
(ICML-2006), pp. 489496 (2006)

Konidaris, G., Barto, A.G.: Building portable options: Skill transfer in reinforcement learn-
ing. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence
(1JCAI-2007), pp. 895-900 (2007)

Langley, P.: Transfer of knowledge in cognitive systems. In: Talk, Workshop on Structural
Knowledge Transfer for Machine Learning at the Twenty-Third International Conference
on Machine Learning (2006)

Lazaric, A.: Knowledge transfer in reinforcement learning. PhD thesis, Poltecnico di Milano
(2008)

Lazaric, A., Ghavamzadeh, M.: Bayesian multi-task reinforcement learning. In: Proceed-
ings of the Twenty-Seventh International Conference on Machine Learning, ICML-2010
(2010) (submitted)

Lazaric, A., Restelli, M., Bonarini, A.: Transfer of samples in batch reinforcement learning.
In: Proceedings of the Twenty-Fifth Annual International Conference on Machine Learn-
ing (ICML-2008), pp. 544-551 (2008)

Lazaric, A., Ghavamzadeh, M., Munos, R.: Finite-sample analysis of Istd. In: Proceedings of
the Twenty-Seventh International Conference on Machine Learning, ICML-2010 (2010)

Li, H., Liao, X., Carin, L.: Multi-task reinforcement learning in partially observable stochastic
environments. Journal of Machine Learning Research 10, 1131-1186 (2009)

Madden, M.G., Howley, T.: Transfer of experience between reinforcement learning environ-
ments with progressive difficulty. Artificial Intelligence Review 21(3-4), 375-398 (2004)

Mahadevan, S., Maggioni, M.: Proto-value functions: A laplacian framework for learning
representation and control in markov decision processes. Journal of Machine Learning
Research 38, 2169-2231 (2007)

Maillard, O.A., Lazaric, A., Ghavamzadeh, M., Munos, R.: Finite-sample analysis of bell-
man residual minimization. In: Proceedings of the Second Asian Conference on Machine
Learning, ACML-2010 (2010)

McGovern, A., Barto, A.G.: Automatic discovery of subgoals in reinforcement learning using
diverse density. In: Proceedings of the Eighteenth International Conference on Machine
Learning, ICML 2001 (2001)

Mehta, N., Natarajan, S., Tadepalli, P, Fern, A.: Transfer in variable-reward hierarchical
reinforcement learning. Machine Learning Journal 73(3), 289-312 (2008)

Menache, 1., Mannor, S., Shimkin, N.: Q-cut - dynamic discovery of sub-goals in reinforce-
ment learning. In: Proceedings of the Thirteen European Conference on Machine Learn-
ing, pp. 295-306 (2002)

Munos, R., Szepesviri, C.: Finite time bounds for fitted value iteration. Journal of Machine
Learning Research 9, 815-857 (2008)

172 A. Lazaric

Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Transactions on Knowledge and Data
Engineering 22(22), 1345-1359 (2010)

Perkins, D.N., Salomon, G., Press, P.: Transfer of learning. In: International Encyclopedia of
Education. Pergamon Press (1992)

Perkins, T.J., Precup, D.: Using options for knowledge transfer in reinforcement learning.
Tech. rep., University of Massachusetts, Amherst, MA, USA (1999)

Phillips, C.: Knowledge transfer in markov decision processes. McGill School of Computer
Science (2006),
http://www.cs.mcgill.ca/~martin/usrs/phillips.pdf

Ravindran, B., Barto, A.G.: Relativized options: Choosing the right transformation. In: Pro-
ceedings of the Twentieth International Conference on Machine Learning (ICML 2003),
pp. 608-615 (2003)

Sherstov, A.A., Stone, P.: Improving action selection in MDP’s via knowledge transfer. In:
Proceedings of the Twentieth National Conference on Artificial Intelligence, AAAI-2005
(2005)

Silver, D.: Selective transfer of neural network task knowledge. PhD thesis, University of
Western Ontario (2000)

Silver, D.L., Poirier, R.: Requirements for Machine Lifelong Learning. In: Mira, J., Alvarez,
J.R. (eds.) IWINAC 2007, Part I. LNCS, vol. 4527, pp. 313-319. Springer, Heidelberg
(2007)

Simsek, O., Wolfe, A.P., Barto, A.G.: Identifying useful subgoals in reinforcement learning
by local graph partitioning. In: Proceedings of the Twenty-Second International Confer-
ence of Machine Learning, ICML 2005 (2005)

Singh, S., Barto, A., Chentanez, N.: Intrinsically motivated reinforcement learning. In:
Proceedings of the Eighteenth Annual Conference on Neural Information Processing
Systems, NIPS-2004 (2004)

Soni, V., Singh, S.P.: Using homomorphisms to transfer options across continuous reinforce-
ment learning domains. In: Proceedings of the Twenty-first National Conference on Arti-
ficial Intelligence, AAAI-2006 (2006)

Stone, P., Sutton, R.S., Kuhlmann, G.: Reinforcement learning for RoboCup-soccer keep-
away. Adaptive Behavior 13(3), 165-188 (2005)

Sunmola, E.T., Wyatt, J.L.: Model transfer for markov decision tasks via parameter matching.
In: Proceedings of the 25th Workshop of the UK Planning and Scheduling Special Interest
Group, PlanSIG 2006 (2006)

Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge
(1998)

Sutton, R.S., Precup, D., Singh, S.: Between mdps and semi-mdps: a framework for temporal
abstraction in reinforcement learning. Artificial Intelligence 112, 181-211 (1999)

Talvitie, E., Singh, S.: An experts algorithm for transfer learning. In: Proceedings of the
20th International Joint Conference on Artificial Intelligence (IJCAI-2007), pp. 1065—
1070 (2007)

Tanaka, F., Yamamura, M.: Multitask reinforcement learning on the distribution of mdps. In:
IEEE International Symposium on Computational Intelligence in Robotics and Automa-
tion, vol. 3, pp. 1108-1113 (2003)

Taylor, M.E., Stone, P.: Behavior transfer for value-function-based reinforcement learning.
In: Proceedings of the Fourth International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS-2005), pp. 53-59 (2005)

http://www.cs.mcgill.ca/~martin/usrs/phillips.pdf

5 Transfer in Reinforcement Learning 173

Taylor, M.E., Stone, P.: Representation transfer for reinforcement learning. In: AAAI 2007
Fall Symposium on Computational Approaches to Representation Change during Learn-
ing and Development (2007)

Taylor, M.E., Stone, P.: Transfer learning for reinforcement learning domains: A survey. Jour-
nal of Machine Learning Research 10(1), 1633-1685 (2009)

Taylor, M.E., Stone, P., Liu, Y.: Value functions for RL-based behavior transfer: A compara-
tive study. In: Proceedings of the Twentieth National Conference on Artificial Intelligence,
AAAI-2005 (2005)

Taylor, M.E., Stone, P., Liu, Y.: Transfer learning via inter-task mappings for temporal differ-
ence learning. Journal of Machine Learning Research 8, 2125-2167 (2007a)

Taylor, M.E., Whiteson, S., Stone, P.: Transfer via inter-task mappings in policy search
reinforcement learning. In: Proceedings of the Sixth International Joint Conference on
Autonomous Agents and Multiagent Systems, AAMAS-2007 (2007b)

Taylor, M.E., Jong, N.K., Stone, P.: Transferring instances for model-based reinforcement
learning. In: Proceedings of the European Conference on Machine Learning (ECML-
2008), pp. 488-505 (2008a)

Taylor, M.E., Kuhlmann, G., Stone, P.: Autonomous transfer for reinforcement learning. In:
Proceedings of the Seventh International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS-2008), pp. 283-290 (2008b)

Thorndike, E.L., Woodworth, R.S.: The influence of improvement in one mental function
upon the efficiency of other functions. Psychological Review 8 (1901)

Torrey, L., Walker, T., Shavlik, J., Maclin, R.: Using Advice to Transfer Knowledge Acquired
in one Reinforcement Learning Task to Another. In: Gama, J., Camacho, R., Brazdil,
PB., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp. 412-424.
Springer, Heidelberg (2005)

Torrey, L., Shavlik, J., Walker, T., Maclin, R.: Skill Acquisition Via Transfer Learning and
Advice Taking. In: Fiirnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS
(LNAI), vol. 4212, pp. 425-436. Springer, Heidelberg (2006)

Utgoft, P.: Shift of bias for inductive concept learning. Machine Learning 2, 163—-190 (1986)

Walsh, T.J., Li, L., Littman, M.L.: Transferring state abstractions between mdps. In: ICML
Workshop on Structural Knowledge Transfer for Machine Learning (2006)

Watkins, C., Dayan, P.: Q-learning. Machine Learning 8, 279-292 (1992)

Wilson, A., Fern, A., Ray, S., Tadepalli, P.: Multi-task reinforcement learning: a hierarchi-
cal bayesian approach. In: Proceedings of the Twenty-Forth International Conference on
Machine learning (ICML-2007), pp. 1015-1022 (2007)

	Transfer in Reinforcement Learning:
A Framework and a Survey
	Introduction
	A Framework and a Taxonomy for Transfer in Reinforcement Learning
	Transfer Framework
	Taxonomy

	Methods for Transfer from Source to Target with a Fixed State-Action Space
	Problem Formulation
	Representation Transfer
	Parameter Transfer

	Methods for Transfer across Tasks with a Fixed State-Action Space
	Problem Formulation
	Instance Transfer
	Representation Transfer
	Parameter Transfer

	Methods for Transfer from Source to Target Tasks with a Different State-Action Spaces
	Problem Formulation
	Instance Transfer
	Representation Transfer
	Parameter Transfer

	Conclusions and Open Questions
	References

