
Chapter 15
Decentralized POMDPs

Frans A. Oliehoek

Abstract. This chapter presents an overview of the decentralized POMDP (Dec-
POMDP) framework. In a Dec-POMDP, a team of agents collaborates to maximize
a global reward based on local information only. This means that agents do not
observe a Markovian signal during execution and therefore the agents’ individual
policies map from histories to actions. Searching for an optimal joint policy is an ex-
tremely hard problem: it is NEXP-complete. This suggests, assuming NEXP�=EXP,
that any optimal solution method will require doubly exponential time in the worst
case. This chapter focuses on planning for Dec-POMDPs over a finite horizon. It
covers the forward heuristic search approach to solving Dec-POMDPs, as well as
the backward dynamic programming approach. Also, it discusses how these relate
to the optimal Q-value function of a Dec-POMDP. Finally, it provides pointers to
other solution methods and further related topics.

15.1 Introduction

Previous chapters generalized decision making to multiple agents (Chapter 14) and
to acting under state uncertainty as in POMDPs (Chapter 12). This chapter gen-
eralizes further by considering situations with both state uncertainty and multiple
agents. In particular, it focuses on teams of collaborative agents: the agents share a
single objective. Such settings can be formalized by the framework of decentralized
POMDPs (Dec-POMDPs) (Bernstein et al, 2002) or the roughly equivalent multi-
agent team decision problem (Pynadath and Tambe, 2002). The basic idea of this
model is illustrated in Figure 15.1, which depicts the two-agent case. At each stage,
the agents independently take an action. The environment undergoes a state transi-
tion and generates a reward depending on the state and the actions of both agents.
Finally, each agent receives an individual observation of the new state.
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Fig. 15.1 Execution of a decentralized POMDP

This framework allows modeling important real-world tasks for which the mod-
els in the previous chapters do not suffice. An example of such a task is load bal-
ancing among queues (Cogill et al, 2004). Each agent represents a processing unit
with a queue that has to decide whether to accept new jobs or pass them to an-
other queue, based only on the local observations of its own queue size and that of
immediate neighbors. Another important application area for Dec-POMDPs is com-
munication networks. For instance, consider a packet routing task in which agents
are routers that have to decide at each time step to which neighbor to send each
packet in order to minimize the average transfer time of packets (Peshkin, 2001).
An application domain that receives much attention in the Dec-POMDP community
is that of sensor networks (Nair et al, 2005; Varakantham et al, 2007; Kumar and
Zilberstein, 2009). Other areas of interests are teams of robotic agents (Becker et al,
2004b; Emery-Montemerlo et al, 2005; Seuken and Zilberstein, 2007a) and crisis
management (Nair et al, 2003a,b; Paquet et al, 2005).

Most research on multi-agent systems under partial observability is relatively
recent and has focused almost exclusively on planning—settings where the model of
the environment is given—rather than the full reinforcement learning (RL) setting.
This chapter also focuses exclusively on planning. Some pointers to RL approaches
are given at the end of the chapter.

A common assumption is that planning takes place in an off-line phase, after
which the plans are executed in an on-line phase. This on-line phase is completely
decentralized as shown in Figure 15.1: each agent receives its individual part of
the joint policy found in the planning phase1 and its individual history of actions
and observations. The off-line planning phase, however, is centralized. We assume
a single computer that computes the joint plan and subsequently distributes it to the
agents (who then merely execute the plan on-line).2

1 In some cases it is assumed that the agents are given the joint policy. This enables the
computation of a joint belief from broadcast local observations (see Section 15.5.4).

2 Alternatively, each agent runs the same planning algorithm in parallel.
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15.2 The Decentralized POMDP Framework

In this section we more formally introduce the Dec-POMDP model. We start by
giving a mathematical definition of its components.

Definition 15.1 (Dec-POMDP). A decentralized partially observable Markov de-
cision process is defined as a tuple 〈D ,S,AAA,T,R,OOO,O,h,I〉, where

• D = {1, . . . ,n} is the set of n agents.
• S is a finite set of states s in which the environment can be.
• AAA is the finite set of joint actions.
• T is the transition probability function.
• R is the immediate reward function.
• OOO is the finite set of joint observations.
• O is the observation probability function.
• h is the horizon of the problem.
• I ∈P(S ), is the initial state distribution at stage t = 0.

The Dec-POMDP model extends single-agent POMDP models by considering joint
actions and observations. In particular, AAA =×i∈DAi is the set of joint actions. Here,
Ai is the set of actions available to agent i, which can be different for each agent.
Every time step, one joint action aaa =

〈
a1,...,an

〉
is taken. How this joint action in-

fluences the environment is described by the transition function T , which specifies
P(s′|s,aaa). In a Dec-POMDP, agents only know their own individual action; they do
not observe each other’s actions. Similar to the set of joint actions, OOO = ×i∈DOi is
the set of joint observations, where Oi is a set of observations available to agent i.
Every time step the environment emits one joint observation ooo =

〈
o1,...,on

〉
from

which each agent i only observes its own component oi. The observation function O
specifies the probabilities P(ooo|aaa,s′) of joint observations. Figure 15.2 further illus-
trates the dynamics of the Dec-POMDP model.

During execution, the agents are assumed to act based on their individual obser-
vations only and no additional communication is assumed. This does not mean that
Dec-POMDPs cannot model settings which concern communication. For instance,
if one agent has an action “mark blackboard” and the other agent has an observation
“marked blackboard”, the agents have a mechanism of communication through the
state of the environment. However, rather than making this communication explicit,
we say that the Dec-POMDP can model communication implicitly through the ac-
tions, states and observations. This means that in a Dec-POMDP, communication
has no special semantics. Section 15.5.4 further elaborates on communication in
Dec-POMDPs.

This chapter focuses on planning over a finite horizon, for which the (undis-
counted) expected cumulative reward is the commonly used optimality criterion.
The planning problem thus amounts to finding a tuple of policies, called a joint
policy that maximizes the expected cumulative reward.
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Fig. 15.2 A more detailed illustration of the dynamics of a Dec-POMDP. At every stage
the environment is in a particular state. This state emits a joint observation according to the
observation model (dashed arrows) from which each agent observes its individual component
(indicated by solid arrows). Then each agent selects an action, together forming the joint
action, which leads to a state transition according to the transition model (dotted arrows).

We will consider the decentralized tiger (Dec-Tiger) problem —a frequently used
Dec-POMDP benchmark introduced by Nair et al (2003c)—as an example. It con-
cerns two agents that are standing in a hallway with two doors. Behind one of the
doors is a tiger, behind the other a treasure. Therefore there are two states: the tiger
is behind the left door (sl) or behind the right door (sr). Both agents have 3 actions
at their disposal: open the left door (aOL), open the right door (aOR) and listen (aLi).
They cannot observe each other’s actions. In fact, they can only receive 2 observa-
tions: either they hear the tiger make a sound from behind the left (oHL) or right (oHR)
door.

At t = 0 the state is sl or sr with probability 0.5. As long as no agent opens a door,
the state does not change. When a door is opened, the state resets to sl or sr with
probability 0.5. The observation probabilities are independent and identical for both
agents. For instance, when the state is sl and both perform action aLi, each agent has
a 85% chance of observing oHL, and the probability that both hear the tiger behind
the left door is 0.85× 0.85 = 0.72. When one of the agents opens the door to the
treasure they receive a positive reward (+9), while they receive a penalty for opening
the wrong door (−101). When opening the wrong door jointly, the penalty is less
severe (−50). Opening the correct door jointly leads to a higher reward (+20). The
full transition, observation and reward models are listed by Nair et al (2003c).
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Note that, when the wrong door is opened by one or both agents, they are attacked
by the tiger and receive a penalty. However, neither of the agents observe this attack
nor the penalty (remember, the only possible observations are oHL and oHR) and the
episode continues. Intuitively, an optimal joint policy for Dec-Tiger should specify
that the agents listen until they are certain enough to open one of the doors. At
the same time, the policy should be ‘as coordinated’ as possible, i.e., maximize the
probability of acting jointly.

15.3 Histories and Policies

In an MDP, the agent uses a policy that maps states to actions. In selecting its ac-
tion, it can ignore the history because of the Markov property. In a POMDP, the
agent can no longer observe the state, but it can compute a belief b that summarizes
the history; it is also a Markovian signal. In a Dec-POMDP, however, during execu-
tion each agent will only have access to its individual actions and observations and
there is no method known to summarize this individual history. It is not possible to
maintain and update an individual belief in the same way as in a POMDP, because
the transition and observation function are specified in terms of joint actions and
observations.3

This means that in a Dec-POMDP the agents do not have access to a Markovian
signal during execution. The consequence of this is that planning for Dec-POMDPs
involves searching the space of tuples of individual Dec-POMDP policies that map
full-length individual histories to actions. We will see later that this also means that
solving Dec-POMDPs is even harder than solving POMDPs.

15.3.1 Histories

First, we define histories of observations, actions and both.

Definition 15.2 (Action-observation history). The action-observation history
(AOH) for agent i, θ̄ i, is the sequence of actions taken by and observations received
by agent i. At a specific time step t, this is

θ̄ i
t =

(
ai

0,o
i
1, . . . ,a

i
t−1,o

i
t

)
.

The joint action-observation history θ̄θθ t = 〈θ̄ 1
t , . . . ,θ̄ n

t 〉 specifies the AOH for all
agents. Agent i’s set of possible AOHs at time t is Θ̄ i

t . The set of AOHs possible for

3 Different forms of beliefs for Dec-POMDP-like settings have been considered Nair et al
(2003c); Hansen et al (2004); Oliehoek et al (2009); Zettlemoyer et al (2009). These are not
specified over only states, but also specify probabilities over histories/policies/types/beliefs
of the other agents. The key point is that from an individual agent’s perspective just know-
ing a probability distribution over states is insufficient; it also needs to predict what actions
the other agents will take.
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all stages for agent i is Θ̄ i and θ̄ i denotes an AOH from this set.4 Finally the set of
all possible joint AOHs θ̄θθ is denoted Θ̄ΘΘ . At t = 0, the (joint) AOH is empty θ̄θθ 0 = ().

Definition 15.3 (Observation history). The observation history (OH) for agent i,
ōi, is defined as the sequence of observations an agent has received. At a specific
time step t, this is:

ōi
t =

(
oi

1, . . . ,o
i
t

)
.

The joint observation history, is the OH for all agents: ōoot = 〈ō1
t , . . . ,ō

n
t 〉. The set of

observation histories for agent i at time t is denoted Ōi
t . Similar to the notation for

action-observation histories, we also use ōi ∈ Ōi and ōoo ∈ ŌOO.

Definition 15.4 (Action history). The action history (AH) for agent i, āi, is the
sequence of actions an agent has performed:

āi
t =

(
ai

0,a
i
1, . . . ,a

i
t−1

)
.

Notation for joint action histories and sets are analogous to those for observation
histories. Finally, note that a (joint) AOH consists of a (joint) action- and a (joint)
observation history: θ̄θθ t = 〈ōoot ,āaat〉.

15.3.2 Policies

A policy π i for an agent i maps from histories to actions. In the general case, these
histories are AOHs, since they contain all information an agent has. The number of
AOHs grows exponentially with the horizon of the problem: At time step t, there are(∣∣Ai

∣∣× ∣∣Oi
∣∣)t

possible AOHs for agent i. A policy π i assigns an action to each of
these histories. As a result, the number of possible policies π i is doubly exponential
in the horizon.

It is possible to reduce the number of policies under consideration by realizing
that many policies of the form considered above specify the same behavior. This is
illustrated by the left side of Figure 15.3: under a deterministic policy only a sub-
set of possible action-observation histories can be reached. Policies that only differ
with respect to an AOH that can never be reached, manifest the same behavior. The
consequence is that in order to specify a deterministic policy, the observation his-
tory suffices: when an agent selects actions deterministically, it will be able to infer
what action it took from only the observation history. This means that a determinis-
tic policy can conveniently be represented as a tree, as illustrated by the right side
of Figure 15.3.

Definition 15.5. A deterministic policy π i for agent i is a mapping from observation
histories to actions, π i : Ōi → Ai.

4 In a particular Dec-POMDP, it may be the case that not all of these histories can actually
be realized, because of the probabilities specified by the transition and observation model.
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Fig. 15.3 A deterministic policy can be represented as a tree. Left: a tree of action-observation
histories θ̄ i for one of the agents from the Dec-Tiger problem. A deterministic policy π i is
highlighted. Clearly shown is that π i only reaches a subset of histories θ̄ i. (θ̄ i that are not
reached are not further expanded.) Right: The same policy can be shown in a simplified
policy tree. When both agents execute this policy in the h = 3 Dec-Tiger problem, the joint
policy is optimal.

For a deterministic policy, π i(θ̄ i) denotes the action that it specifies for the obser-
vation history contained in θ̄ i. For instance, let θ̄ i =

〈
ōi,āi

〉
, then π i(θ̄ i) � π i(ōi).

We use πππ =
〈
π1,...,πn

〉
to denote a joint policy. We say that a deterministic joint

policy is an induced mapping from joint observation histories to joint actions
πππ : ŌOO → AAA. That is, the mapping is induced by individual policies π i that make up
the joint policy. Note, however, that only a subset of possible mappings f : ŌOO → AAA
correspond to valid joint policies: when f does not specify the same individual ac-
tion for each ōi of each agent i, it will not be possible to execute f in a decentralized
manner. That is, such a policy is centralized: it would describe that an agent should
base its choice of action on the joint history. However, during execution it will only
be able to observe its individual history, not the joint history.

Agents can also execute stochastic policies, but we restrict our attention to deter-
ministic policies without sacrificing optimality, since a finite-horizon Dec-POMDP
has at least one optimal pure joint policy (Oliehoek et al, 2008b).

15.3.3 Structure in Policies

Policies specify actions for all stages of the Dec-POMDP. A common way to repre-
sent the temporal structure in a policy is to split it into decision rules δ i that specify
the policy for each stage. An individual policy is then represented as a sequence of
decision rules π i = (δ i

0, . . . ,δ
i
h−1). In case of a deterministic policy, the form of the

decision rule for stage t is a mapping from length-t observation histories to actions
δ i

t : Ōi
t → Ai. In the more general case its domain is the set of AOHs δ i

t : Θ̄ i
t → Ai.

A joint decision rule δδδ t = 〈δ 1
t , . . . ,δ n

t 〉 specifies a decision rule for each agent.
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We will also consider policies that are partially specified with respect to time.
Formally, ϕϕϕt = (δδδ 0, . . . ,δδδ t−1) denotes the past joint policy at stage t, which is a
partial joint policy specified for stages 0,...,t−1. By appending a joint decision rule
for stage t, we can ‘grow’ such a past joint policy.

Definition 15.6 (Policy concatenation). We write

ϕϕϕt+1 = (δδδ 0, . . . ,δδδ t−1,δδδ t) = 〈ϕϕϕt ◦ δδδ t〉 (15.1)

to denote policy concatenation.

A future policy ψ i
t of agent i specifies all the future behavior relative to stage t. That

is, ψ i
t =

(
δ i

t+1, . . . ,δ
i
h−1

)
. We also consider future joint policies ψψψt = (δδδ t+1, . . . ,

δδδ h−1). The structure of a policy π i can be represented as

π i = (δ i
0,δ

i
1, . . . ,δ

i
t−1︸ ︷︷ ︸

ϕ i
t

,δ i
t ,δ i

t+1, . . . ,δ
i
h−1︸ ︷︷ ︸

ψ i
t

) (15.2)

and similarly for joint policies.
Since policies can be represented as trees (remember Figure 15.3), a different

way to decompose them is by considering sub-trees. Define the time-to-go τ at stage
t as

τ = h− t.

Now qi
τ=k denotes a k-steps-to-go sub-tree policy for agent i. That is, qi

τ=k is a
policy tree that has the same form as a full policy for the horizon-k problem. Within
the original horizon-h problem qi

τ=k is a candidate for execution starting at stage
t = h− k. The set of k-steps-to-go sub-tree policies for agent i is denoted Qi

τ=k. A
joint sub-tree policy qqqτ=k ∈ QQQτ=k specifies a sub-tree policy for each agent.

Figure 15.4 shows the different structures in a policy for a fictitious Dec-POMDP
with h = 3. It represents decision rules by dotted ellipses. It also shows a past policy
ϕ i

2 and illustrates how policy concatenation 〈ϕ i
2 ◦ δ i

2〉 = π i forms the full policy.
This full policy also corresponds to a 3-steps-to-go sub-tree policy qi

τ=3; two of the
sub-tree policies are indicated using dashed ellipses.

Definition 15.7 (Policy consumption). Providing a length-k (joint) sub-tree policy
qqqτ=k with a sequence of l < k (joint) observations consumes a part of qqqτ=k leading
to a (joint) sub-tree policy which is a sub-tree of qqqτ=k. In particular, consumption

;<
by a single joint observation ooo is written as

qqqτ=k−1 = qqqτ=k

;<
ooo. (15.3)

For instance, in Figure 15.4, qi
τ=1 = qi

τ=2

;<
ǒ.



15 Decentralized POMDPs 479

a

a

a

ǎǎǎ
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ǒǒ

ǒ
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Fig. 15.4 Structure of a policy for an agent with actions {a,ǎ} and observations {o,ǒ}. A
policy π i can be divided into decision rules δ i or sub-tree policies qi.

15.3.4 The Quality of Joint Policies

Joint policies differ in how much reward they can expect to accumulate, which will
serve as a criterion of their quality. Formally, we consider the expected cumulative
reward of a joint policy, also referred to as its value.

Definition 15.8. The value V (πππ) of a joint policy πππ is defined as

V (πππ) � E
[h−1

∑
t=0

R(st ,aaat)
∣∣∣I,πππ],

where the expectation is over states and observations.

This expectation can be computed using a recursive formulation. For the last
stage t = h− 1, the value is given simply by the immediate reward

V πππ(sh−1,ōooh−1) = R(sh−1,πππ(ōooh−1)) .

For all other stages, the expected value is given by:

V πππ(st ,ōoot) = R(st ,πππ(ōoot))+ ∑
st+1∈S

∑
ooo∈OOO

P(st+1,ooo|st ,πππ(ōoot))V
πππ(st+1,ōoot+1). (15.4)

Here, the probability is simply the product of the transition and observation prob-
abilities P(s′,ooo|s,aaa) = P(ooo|aaa,s′)P(s′|s,aaa). In essence, fixing the joint policy trans-
forms the Dec-POMDP to a Markov chain with states (st ,ōoot). Evaluating this equa-
tion via dynamic programming will result in the value for all (s0,ōoo0)-pairs. The value
V (πππ) is then given by weighting these pairs according to the initial state distribution
I. Note that given a fixed joint policy πππ , a history ōoot actually induces a joint sub-tree
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policy. As such, it is possible to rewrite (15.4) in terms of sub-tree policies. Execut-
ing qqqτ=k over the last k stages, starting from a state s at stage t = h− k will achieve:

V (st ,qqqτ=k) = R(st ,aaat)+ ∑
st+1∈S

∑
ooo∈OOO

P(st+1,ooo|st ,aaat)V (st+1,qqqτ=k

;<
ooo) (15.5)

where aaat is the joint action specified by (the root of) qqqτ=k.
Finally, as is apparent from the above equations, the probabilities of states and

histories are important in many computations. The following equation recursively
specifies the probabilities of states and joint AOHs under a (potentially stochastic)
past joint policy:

P(st ,θ̄θθ t |I,ϕϕϕt) = ∑
st−1∈S

∑
aaat−1∈AAA

P(st ,ooot |st−1,aaat−1)P(aaat−1|θ̄θθ t−1,ϕϕϕt)

P(st−1,θ̄θθ t−1|I,ϕϕϕt). (15.6)

15.4 Solution of Finite-Horizon Dec-POMDPs

This section gives an overview of methods proposed for finding exact and approx-
imate solutions for finite-horizon Dec-POMDPs. For the infinite-horizon problem,
which is significantly different, some pointers are provided in Section 15.5.

15.4.1 Brute Force Search and Dec-POMDP Complexity

Because there exists an optimal deterministic joint policy for a finite-horizon Dec-
POMDP, it is possible to enumerate all joint policies, evaluate them as described
in Section 15.3.4 and choose the best one. However, the number of such joint
policies is

O

(
|A†|

n(|O†|h−1)
|O†|−1

)
,

where |A†| and |O†| denote the largest individual action and observation sets. The
cost of evaluating each joint policy is O

(
|S|× |O†|nh

)
. It is clear that this approach

therefore is only suitable for very small problems. This analysis provides some in-
tuition about how hard the problem is. This intuition is supported by the complexity
result due to Bernstein et al (2002).

Theorem 15.1 (Dec-POMDP complexity). The problem of finding the optimal so-
lution for a finite-horizon Dec-POMDP with n≥ 2 is NEXP-complete.

NEXP is the class of problems that takes non-deterministic exponential time. Non-
deterministic means that, similar to NP, it requires generating a guess about the
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solution in a non-deterministic way. Exponential time means that verifying whether
the guess is a solution takes exponential time. In practice this means that (assuming
NEXP �= EXP) solving a Dec-POMDP takes doubly exponential time in the worst
case. Moreover, Dec-POMDPs cannot be approximated efficiently: Rabinovich et al
(2003) showed that even finding an ε-approximate solution is NEXP-complete.

15.4.2 Alternating Maximization

Joint Equilibrium based Search for Policies (JESP) (Nair et al, 2003c) is a method
that is guaranteed to find a locally optimal joint policy, more specifically, a Nash
equilibrium: a tuple of policies such that for each agent i its policy π i is a best re-
sponse for the policies employed by the other agents π−i. It relies on a process called
alternating maximization. This is a procedure that computes a policy π i for an agent
i that maximizes the joint reward, while keeping the policies of the other agents
fixed. Next, another agent is chosen to maximize the joint reward by finding its best
response. This process is repeated until the joint policy converges to a Nash equilib-
rium, which is a local optimum. This process is also referred to as hill-climbing or
coordinate ascent. Note that the local optimum reached can be arbitrarily bad. For
instance, if agent 1 opens the left (aOL) door right away in the Dec-Tiger problem,
the best response for agent 2 is to also select aOL. To reduce the impact of such bad
local optima, JESP can use random restarts.

JESP uses a dynamic programming approach to compute the best-response pol-
icy for a selected agent i. In essence, fixing π−i allows for a reformulation of the
problem as an augmented POMDP. In this augmented POMDP a state š = 〈s,ō−i〉
consists of a nominal state s and the observation histories of the other agents ō−i.
Given the fixed deterministic policies of other agents π−i, such an augmented state
š is Markovian and all transition and observation probabilities can be derived from
π−i and the transition and observation model of the original Dec-POMDP.

15.4.3 Optimal Value Functions for Dec-POMDPs

This section describes an approach more in line with methods for single agent MDPs
and POMDPs: we identify an optimal value function Q∗ that can be used to derive
an optimal policy. Even though computation of Q∗ itself is intractable, the insight
it provides is valuable. In particular, it has a clear relation with the two dominant
approaches to solving Dec-POMDPs: the forward and the backward approach which
will be explained in the following subsections.
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Fig. 15.5 Tree of joint AOHs θ̄θθ for a fictitious 2-agent Dec-POMDP with actions{{
a1,ǎ1

}
,
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o1,ǒ1
}
,
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}}

. Given I, the AOHs induce a
‘joint belief’ bbb(s) over states. Solid lines represent joint actions and dashed lines joint ob-
servations. Due to the size of the tree it is only partially shown. Highlighted joint actions
represent a joint policy. Given a joint sub-tree policy at a node (the action choices made in
the sub-tree below it), the value is given by (15.8). However, action choices are not inde-
pendent in different parts of the trees: e.g., the two nodes marked † have the same θ̄ 1 and
therefore should specify the same sub-tree policy for agent 1.

15.4.3.1 Selecting Sub-Tree Policies

Let us start by considering Figure 15.5, which illustrates a tree of joint AOHs. For
a particular joint AOH (a node in Figure 15.5), we can try to determine which joint
sub-tree policy qqqτ=k is optimal. Recall that V (st ,qqqτ=k) the value of qqqτ=k starting
from st is specified by (15.5). Also, let bbb(s) � P(s|I,θ̄θθ t) be the joint belief corre-
sponding to θ̄θθ t which can be computed using Bayes’ rule in the same way as the
POMDP belief update (see Chapter 12). Given an initial belief I and joint AOH θ̄θθ t ,
we can compute a value for each joint sub-tree policy qqqτ=k that can be used from
that node onward via

V (I,θ̄θθ t ,qqqτ=k) =∑
s∈S

bbb(s)V (s,qqqτ=k). (15.7)

Now, it is possible to rewrite (15.7) recursively:

V (I,θ̄θθ t ,qqqτ=k) = R(θ̄θθ t ,aaat)+∑
ooo

P(ooo|bbb,aaa)V (I,θ̄θθ t+1,qqqτ=k

;<
ooo), (15.8)
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where the expected immediate reward is given by:

R(θ̄θθ t ,aaa) = ∑
st∈S

bbb(st )R(st ,aaa). (15.9)

Therefore one would hope that a dynamic programming approach would be pos-
sible, where, for each θ̄θθ t one could choose the maximizing qqqτ=k. Unfortunately,
running such a procedure on the entire tree is not possible because of the decentral-
ized nature of a Dec-POMDP: it is not possible to choose maximizing joint sub-tree
policies qqqτ=k independently, since this could lead to a centralized joint policy.

The consequence is that, even though (15.8) can be used to compute the value for
a (θ̄θθ t ,qqqτ=k)-pair, it does not directly help to optimize the joint policy, because we
cannot reason about parts of the joint AOH tree independently. Instead, one should
decide what sub-tree policies to select by considering all θ̄θθ t of an entire stage t at
the same time, assuming a past joint policy ϕϕϕt . That is, when we assume we have
computed V (I,θ̄θθ t ,qqqτ=k) for all θ̄θθ t and for all qqqτ=k, then we can compute a special
form of joint decision rule Γt =

〈
Γ i

t

〉
i∈D

for stage t. Here, the individual decision
rules map individual histories to individual sub-tree policies Γ i

t : Θ̄ i
t → Qi

τ=k. The
optimal Γt satisfies:

Γ ∗t = argmax
Γt

∑
θ̄θθ t∈Θ̄ΘΘ t

P(θ̄θθ t |I,ϕϕϕt)V (I,θ̄θθ t ,Γt(θ̄θθ t)), (15.10)

whereΓt(θ̄θθ t)=
〈
Γ i

t (θ̄ i
t )
〉

i∈D
denotes the joint sub-tree policy qqqτ=k resulting from ap-

plication of the individual decision rules and the probability is a marginal of (15.6).
This equation clearly illustrates that the optimal joint policy at a stage t of a Dec-

POMDP depends on ϕϕϕt , the joint policy followed up to stage t. Moreover, there are
additional complications that make (15.10) impractical to use:

1. It sums over joint AOHs, the number of which is exponential in both the number
of agents and t.

2. It assumes computation of V (I,θ̄θθ t ,qqqτ=k) for all θ̄θθ t , for all qqqτ=k.

3. The number ofΓt to be evaluated is O(|Q†
τ=k||Θ̄

†
t |n), where ‘†’ denotes the largest

set. |Q†
τ=k| is doubly exponential in k and |Θ̄ †

t | is exponential in t. Therefore the
number of Γt is doubly exponential in h = t + k.

Note that by restricting our attention to deterministic ϕϕϕt it is possible to reformulate
(15.10) as a summation over OHs, rather than AOHs (this involves adapting V to
take ϕϕϕt as an argument). However, for such a reformulation, the same complications
hold.

15.4.3.2 Selecting Optimal Decision Rules

This section shifts the focus back to regular decision rules δ i—as introduced in
Section 15.3.3—that map from OHs (or AOHs) to actions. We will specify a value
function that quantifies the expected value of taking actions as specified by δδδ t and
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Fig. 15.6 Computation of Q∗. The dashed ellipse indicates the optimal decision rule δδδ ∗2
for stage t = 2, given that ϕϕϕ2 = 〈ϕϕϕ1 ◦ δδδ 1〉 is followed for the first two stages. The entries
Q∗(I,θ̄θθ 1,ϕϕϕ1,δδδ 1) are computed by propagating relevant Q∗-values of the next stage. For in-
stance, the Q∗-value under ϕϕϕ2 for the highlighted joint history θ̄θθ 1 =

〈
(ǎ1,ǒ1),(a2,o2)

〉
is

computed by propagating the values of the four successor joint histories, as per (15.12).

continuing optimally afterward. That is, we replace the value of sub-trees in (15.10)
by the optimal value of decision rules. The optimal value function for a finite-
horizon Dec-POMDP is defined as follows.

Theorem 15.2 (Optimal Q∗). The optimal Q-value function Q∗(I,ϕϕϕt ,θ̄θθ t ,δδδ t) is a
function of the initial state distribution and joint past policy, AOH and decision
rule. For the last stage, it is given by

Q∗(I,ϕϕϕh−1,θ̄θθ h−1,δδδ h−1) = R(θ̄θθh−1,δδδ h−1(θ̄θθ h−1)), (15.11)

as defined by (15.9), and, for all 0≤ t < h− 1, by

Q∗(I,ϕϕϕt ,θ̄θθ t ,δδδ t) = R(θ̄θθ t ,δδδ t(θ̄θθ t))+∑
ooo

P(ooo|θ̄θθ t ,δδδ t(θ̄θθ t))Q
∗(I,ϕϕϕt+1,θ̄θθ t+1,δδδ ∗t+1),

(15.12)
with ϕϕϕt+1 = 〈ϕϕϕt ◦ δδδ t〉, θ̄θθ t+1 = (θ̄θθ t ,δδδ t(θ̄θθ t),ooo) and

δδδ ∗t+1 = argmax
δδδ t+1

∑
θ̄θθ t+1∈Θ̄ΘΘ t+1

P(θ̄θθ t+1|I,ϕϕϕt+1)Q
∗(I,ϕϕϕt+1,θ̄θθ t+1,δδδ t+1). (15.13)

Proof. Because of (15.11), application of (15.13) for the last stage will maximize
the expected reward and thus is optimal. Equation (15.12) propagates these optimal
values to the preceding stage. Optimality for all stages follows by induction.

Note that ϕϕϕt is necessary in order to compute δδδ ∗t+1, the optimal joint decision rule
at the next stage, because (15.13) requires ϕϕϕt+1 and thus ϕϕϕt .

The above equations constitute a dynamic program. When assuming that only
deterministic joint past policies ϕϕϕ can be used, the dynamic program can be eval-
uated from the end (t = h− 1) to the beginning (t = 0). Figure 15.6 illustrates the
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computation of Q∗. When arriving at stage 0, the past joint policy is empty ϕϕϕ0 = ()
and joint decision rules are simply joint actions, thus it is possible to select

δδδ ∗0 = argmax
δδδ 0

Q∗(I,ϕϕϕ0,θ̄θθ 0,δδδ 0) = argmax
aaa

Q∗(I,(),(),aaa).

Then given ϕϕϕ1 = δδδ
∗
0 we can determine δδδ ∗1 using (15.13), etc.5 This procedure, we

refer to as forward-sweep policy computation (FSPC) using Q∗. The principle of
FSPC is that a new decision rule is selected given the past joint policy found so far
and is illustrated in Figure 15.7a.

Unfortunately, computing Q∗ itself is intractable, since it means evaluating the
dynamic program of Theorem 15.2 for all past joint policies. In particular, (15.11)
will need to be evaluated for all (ϕϕϕh−1,δδδ h−1) and these pairs have a direct corre-
spondence to all joint policies: πππ = 〈ϕϕϕh−1 ◦ δδδ h−1〉. Therefore, the time needed to
evaluate this DP is doubly exponential in h. This means that the practical value
of Q∗ is limited.

The identified Q∗ has a form quite different from Q-value functions encountered
in MDPs and POMDPs. We still use the symbol ‘Q’, because δδδ t can be seen as
an action on the meta-level of the planning process. In this process (I,ϕϕϕt) can be
interpreted as the state and we can define V and Q with their usual interpretations.
In particular, it is possible to write

V ∗(I,ϕϕϕt) = max
δδδ t

Q∗(I,ϕϕϕt ,δδδ t) (15.14)

where Q∗ is defined as

Q∗(I,ϕϕϕt ,δδδ t) = ∑̄
θθθ t

P(θ̄θθ t |I,ϕϕϕt)Q
∗(I,ϕϕϕt ,θ̄θθ t ,δδδ t).

By expanding this definition of Q∗ using (15.12), one can verify that it indeed has
the regular interpretation of the expected immediate reward induced by first taking
‘action’ δδδ t plus the cumulative reward of continuing optimally afterward (Oliehoek,
2010).

15.4.4 Forward Approach: Heuristic Search

The previous section explained that once Q∗ is computed, it is possible to extract
πππ∗ by performing forward-sweep policy computation: repeatedly applying (15.13)
for consecutive stages t = 0,1, . . . ,h− 1. When processing stage t, stages 0 . . . t− 1
have been processed already. Therefore a past joint policy ϕϕϕt = (δδδ 0, . . . ,δδδ t−1) is

5 Note that performing the maximization in (15.13) has already been done and can be
cached.
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available and the probability P(θ̄θθ t |I,ϕϕϕt) is defined. Unfortunately, computing Q∗

itself is intractable. One idea to overcome this problem is to use an approximation Q̂
that is easier to compute. We refer to this as the forward approach to Dec-POMDPs.

...
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π

(a) Forward-sweep policy computation
(FSPC) can be used with Q∗ or a heuris-
tic Q̂.
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(b) (Generalized) MAA∗ performs back-
tracking and hence only is useful with (admis-
sible) heuristics Q̂.

Fig. 15.7 Forward approach to Dec-POMDPs

15.4.4.1 Dec-POMDPs as Series of Bayesian Games

A straightforward approach is to try and apply forward-sweep policy computation
using a heuristic Q-value function Q̂. This is essentially what the method introduced
by Emery-Montemerlo et al (2004) does. It represents a Dec-POMDP as a series of
collaborative Bayesian games (CBGs), one for each stage t, with an approximate
payoff function Q̂(θ̄θθ t ,aaa). A Bayesian game (BG) (Osborne and Rubinstein, 1994) is
an extension of a strategic form game in which the agents have private information.
A CBG is a BG with identical payoffs. By solving CBGs for consecutive stages it is
possible to find an approximate solution. This is forward-sweep policy computation
(with Q̂).

In a Dec-POMDP, the crucial difficulty in making a decision at some stage t is
that the agents lack a common signal on which to condition their actions. They must
instead base their actions on their individual histories. Given I and ϕϕϕt , this situation
can be modeled as a CBG. Such a CBG B(I,ϕϕϕt) consists of:

• the set of agents,
• their joint actions AAA,
• the set of their joint AOHs Θ̄ΘΘ t ,
• a probability distribution over them P(θ̄θθ t |I,ϕϕϕt), and
• a payoff function Q̂(θ̄θθ t ,aaa).
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In the CBG agents use policies that map from their individual AOHs to actions.
That is, a policy of an agent i for a CBG corresponds to a decision rule δ i

t for the
Dec-POMDP. The solution of the CBG is the joint decision rule δδδ t that maximizes
the expected payoff with respect to Q̂:

δ̂δδ t
∗
= argmax

δδδ t

∑
θ̄θθ t∈Θ̄ΘΘ t

P(θ̄θθ t |I,ϕϕϕt)Q̂(θ̄θθ t ,δδδ t(θ̄θθ t)). (15.15)

Again, if ϕϕϕt is deterministic, the probability of θ̄θθ t = 〈āaat ,ōoot〉 is non-zero for exactly
one āaat , which means that attention can be restricted to OHs and decision rules that
map from OHs to actions.

15.4.4.2 Heuristic Q-Value Functions

While the CBG for a stage is fully specified given I,ϕϕϕt and Q̂, it is not obvious how
to choose Q̂. Here we discuss this issue.

Note that, for the last stage t = h− 1, δ̂δδ t
∗

has a close relation6 with the optimal
decision rule selected by (15.13): if for the last stage the heuristic specifies the im-
mediate reward Q̂(θ̄θθ t ,aaa) = R(θ̄θθ t ,aaa), both will select the same actions. That is, in this

case δ̂δδ t
∗
= δδδ ∗t .

While for other stages it is not possible to specify such a strong correspondence,
note that FSPC via CBGs is not sub-optimal per se: It is possible to compute a value
function of the form Qπππ(θ̄θθ t ,aaa) for any πππ . Doing this for a πππ∗ yields Qπππ

∗
and when

using the latter as the payoff functions for the CBGs, FSPC is exact (Oliehoek et al,
2008b).7

However, the practical value of this insight is limited, since it requires knowing
an optimal policy to start with. In practice, research has considered using an ap-
proximate value function. For instance, it is possible to compute the value function
QM(s,aaa) of the ‘underlying MDP’: the MDP with the same transition and reward
function as the Dec-POMDP (Emery-Montemerlo et al, 2004; Szer et al, 2005).
This can be used to compute Q̂(θ̄θθ t ,aaa) = ∑s bbb(s)QM(s,aaa), which can be used as the
payoff function for the CBGs. This is called QMDP. Similarly, it is possible to use
the value function of the ‘underlying POMDP’ (QPOMDP) (Roth et al, 2005b; Szer
et al, 2005), or the value function of the problem with 1-step delayed communication
(QBG) (Oliehoek and Vlassis, 2007).

A problem in FSPC is that (15.15) still maximizes over δδδ t that map from histo-
ries to actions; the number of such δδδ t is doubly exponential in t. There are two main
approaches to gain leverage. First, the maximization in (15.15) can be performed

6 Because Q∗ is a function of ϕϕϕ t and δδδ t , (15.13) has a slightly different form than (15.15).
The former technically does not correspond to a CBG, while the latter does.

7 There is a subtle but important difference between Qπππ
∗
(θ̄θθ t ,aaa) and Q∗(I,ϕϕϕ t ,θ̄θθ t ,δδδ t): the

latter specifies the optimal value given any past joint policy ϕϕϕ t while the former only
specifies optimal value given that πππ∗ is actually being followed.
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more efficiently: approximately via alternating maximization (Emery-Montemerlo
et al, 2004), or exactly via heuristic search (Kumar and Zilberstein, 2010b; Oliehoek
et al, 2010). Second, it is possible to reduce the number of histories under con-
cern via pruning (Emery-Montemerlo et al, 2004), approximate clustering (Emery-
Montemerlo et al, 2005) or lossless clustering (Oliehoek et al, 2009).

15.4.4.3 Multi-Agent A*

Since FSPC using Q̂ can be seen as a single trace in a search tree, a natural idea is
to allow for back-tracking and perform a full heuristic search as in multi-agent A∗

(MAA∗) (Szer et al, 2005), illustrated in Figure 15.7b.
MAA∗ performs an A∗ search over past joint policies ϕϕϕt . It computes a heuris-

tic value V̂ (ϕϕϕt) by taking V 0...t−1(ϕϕϕt), the actual expected reward over the first t
stages, and adding V̂ t...h−1, a heuristic value for the remaining h− t stages. When
the heuristic is admissible—a guaranteed overestimation—so is V̂ (ϕϕϕt). MAA∗ per-
forms standard A∗ search (Russell and Norvig, 2003): it maintains an open list P of
partial joint policies ϕϕϕt and their heuristic values V̂ (ϕϕϕt). On every iteration MAA∗

selects the highest ranked ϕϕϕt and expands it, generating and heuristically evaluating
all ϕϕϕt+1 = 〈ϕϕϕt ◦ δδδ t〉 and placing them in P. When using an admissible heuristic, the
heuristic values V̂ (ϕϕϕt+1) of the newly expanded policies are an upper bound to the
true values and any lower bound v� that has been found can be used to prune P. The
search ends when the list becomes empty, at which point an optimal fully specified
joint policy has been found.

There is a direct relation between MAA∗ and the optimal value functions de-
scribed in the previous section: V ∗ given by (15.14) is the optimal heuristic V̂ t...h−1

(note that V ∗ only specifies reward from stage t onward).
MAA∗ suffers from the same problem as FSPC via CBGs: the number of δδδ t

grows doubly exponential with t, which means that the number of children of a
node grows doubly exponential in its depth. In order to mitigate the problem, it is
possible to apply lossless clustering (Oliehoek et al, 2009), or to try and avoid the
expansion of all child nodes by incrementally expanding nodes only when needed
(Spaan et al, 2011).

15.4.4.4 Generalized MAA*

Even though Figure 15.7 shows a clear relation between FSPC and MAA∗, it is
not directly obvious how they relate: the former solves CBGs, while the latter per-
forms heuristic search. Generalized MAA∗ (GMAA∗) (Oliehoek et al, 2008b) uni-
fies these two approaches by making explicit the ‘Expand’ operator.

Algorithm 26 shows GMAA∗. When the Select operator selects the highest
ranked ϕϕϕt and when the Expand operator works as described for MAA∗, GMAA∗

simply is MAA∗. Alternatively, the Expand operator can construct a CBG B(I,ϕϕϕt)
for which all joint CBG-policies δδδ t are evaluated. These can then be used to
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Initialize: v�←−∞ , P←{ϕϕϕ0 = ()}
repeat
ϕϕϕ t←Select(P)
ΦΦΦExpand←Expand(I,ϕϕϕ t)
if ΦΦΦExpand contains full policies ΠΠΠExpand ⊆ΦΦΦExpand then
πππ ′←argmaxπππ∈ΠΠΠExpand

V (πππ)
if V (πππ ′)> v� then

v�←V (πππ ′) {found new lower bound}
πππ�←πππ ′
P←{ϕϕϕ ∈ P | V̂ (ϕϕϕ)> v�} {prune P}

ΦΦΦExpand←ΦΦΦExpand \ΠΠΠExpand {remove full policies}
P←(P\ϕϕϕ t)∪{ϕϕϕ ∈ΦΦΦExpand | V̂ (ϕϕϕ)> v�} {remove processed/add new ϕϕϕ }

until P is empty

Algorithm 26. (Generalized) MAA∗

construct a new set of partial policies ΦΦΦExpand = {〈ϕϕϕt ◦ δδδ t〉} and their heuristic
values. This corresponds to MAA∗ reformulated to work on CBGs. It can be shown
that when using a particular form of Q̂ (including the mentioned heuristics QMDP,
QPOMDP and QBG), the approaches are identical (Oliehoek et al, 2008b). GMAA∗

can also use an Expand operator that does not construct all new partial policies, but
only the best-ranked one, ΦΦΦExpand = {〈ϕϕϕt ◦ δδδ

∗
t 〉}. As a result the open list P will

never contain more than one partial policy and behavior reduces to FSPC. A gener-
alization called k-GMAA∗ constructs the k best-ranked partial policies, allowing to
trade off computation time and solution quality. Clustering of histories can also be
applied in GMAA∗, but only lossless clustering will preserve optimality.

15.4.5 Backwards Approach: Dynamic Programming

The forward approach to Dec-POMDPs incrementally builds policies from the first
stage t = 0 to the last t = h− 1. Prior to doing this, a Q-value function (optimal
Q∗ or approximate Q̂) needs to be computed. This computation itself, the dynamic
program represented in Theorem 15.2, starts with the last stage and works its way
back. The resulting optimal values correspond to the expected values of a joint de-
cision rule and continuing optimally afterwards. That is, in the light of (15.10) this
can be interpreted as the computation of the value for a subset of optimal (useful)
joint sub-tree policies.

This section treats dynamic programming (DP) for Dec-POMDPs (Hansen,
Bernstein, and Zilberstein, 2004). This method also works backwards, but rather
than computing a Q-value function, it directly computes a set of useful sub-tree
policies.
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15.4.5.1 Dynamic Programming for Dec-POMDPs

The core idea of DP is to incrementally construct sets of longer sub-tree policies for
the agents: starting with a set of one-step-to-go (τ = 1) sub-tree policies (actions)
that can be executed at the last stage, construct a set of 2-step policies to be executed
at h− 2, etc. That is, DP constructs Qi

τ=1,Q
i
τ=2, . . . ,Q

i
τ=h for all agents i. When the

last backup step is completed, the optimal policy can be found by evaluating all
induced joint policies πππ ∈ Q1

τ=h× ·· ·×Qn
τ=h for the initial belief I as described in

Section 15.3.4.
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ǒǒ

ǒ

Fig. 15.8 Difference between policy construction in MAA∗ (left) and dynamic programming
(right) for an agent with actions a,ǎ and observations o,ǒ. Dashed components are newly
generated, dotted components result from the previous iteration.

DP formalizes this idea using backup operations that construct Qi
τ=k+1 from

Qi
τ=k. For instance, the right side of Figure 15.8 shows how qi

τ=3, a 3-steps-to-go
sub-tree policy, is constructed from two qi

τ=2 ∈ Qi
τ=2. In general, a one step ex-

tended policy qi
τ=k+1 is created by selecting a sub-tree policy for each observation

and an action for the root. An exhaustive backup generates all possible qi
τ=k+1 that

have policies from the previously generated set qi
τ=k ∈ Qi

τ=k as their sub-trees. We
will denote the sets of sub-tree policies resulting from exhaustive backup for each
agent i by Qe,i

τ=k+1.
Unfortunately, sets of sub-tree policies maintained grow doubly exponentially

with k.8 To counter this source of intractability, it is possible to prune dominated
sub-tree policies from Qe,i

τ=k, resulting in smaller maintained sets Qm,i
τ=k (Hansen et al,

2004). The value of a qi
τ=k depends on the probability distribution over states when

it is started (at stage t = h−k) as well as the probability with which the other agents
j �= i select their sub-tree policies. Therefore, a qi

τ=k is dominated if it is not max-

imizing at any point in the multi-agent belief space: the simplex over S×Qm,−i
τ=k . It

is possible to test for dominance by linear programming. Removal of a dominated
sub-tree policy qi

τ=k of an agent i may cause a q j
τ=k of another agent j to become

dominated. Therefore DP iterates over agents until no further pruning is possible,

8 Since the qi
τ=k are essentially full policies for the horizon-k problem, their number is

doubly exponentially in k.
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a procedure known as iterated elimination of dominated policies (Osborne and Ru-
binstein, 1994).

In practice, the pruning step in DP often is not able to sufficiently reduce the
maintained sets to make the approach tractable for larger problems. Bounded DP
(BDP) can be used to compute a bounded approximation (Amato et al, 2007). It
performs more aggressive ε-pruning: a qi

τ=k that is maximizing in some region of
the multi-agent belief space, but improves the value in this region by at most ε ,
is also pruned. Because iterated elimination using ε-pruning can still lead to an
unbounded reduction in value, BDP performs one iteration of ε-pruning, followed
by iterated elimination using normal pruning.

Even when many sub-tree policies can be pruned, DP can run into problems
during the exhaustive backup. Incremental policy generation (IPG) is a technique to
mitigate this problem by performing a one-step state reachability analysis (Amato
et al, 2009). During the back up of sub-trees for an agent i, IPG analyzes the set
of states S〈ai,oi〉 that have non-zero probability after each 〈ai,oi〉-pair (a particular

observation may exclude many states). Subsequently, in constructing the set Qe,i
τ=k+1,

only sub-tree policies that are non-dominated for S〈ai,oi〉 are selected for action ai

and observation oi. This can lead to much smaller sets of sub-tree policies.
An additional difficulty in DP is that, in order to perform pruning, all the

V (s,qqqτ=k) values need to be computed and stored, which takes |Qe,†
τ=k|n × |S| real

numbers. As such, DP runs out of memory well before it runs out of time. In or-
der to address this problem Boularias and Chaib-draa (2008) represent these values
more compactly by making use of a sequence form (Koller et al, 1994) representa-
tion. A disadvantage is that this approach can lead to keeping dominated policies,
however. As such there is a trade-off between space required to store the values for
all sub-tree policies and the number of sub-tree policies.

15.4.5.2 Point-Based DP

DP only removes qi
τ=k that are not maximizing at any point in the multi-agent be-

lief space. Point-based DP (PBDP) (Szer and Charpillet, 2006) proposes to improve
pruning of the set Qe,i

τ=k by considering only a subset Bi ⊂P(S×Q−i
τ=k) of reach-

able multi-agent belief points. Only those qi
τ=k that maximize the value at some

bi ∈Bi are kept. The definition of reachable is slightly involved.

Definition 15.9. A multi-agent belief point bi
t is reachable if there exists a proba-

bility distribution P(st ,θ̄−i
t |I,ϕϕϕt) (for any deterministic ϕϕϕt ) and an induced mapping

Γ−i
t = 〈Γ j

t 〉 j �=i with Γ j
t : Θ̄ j

t → Q j
τ=k that result in bi

t .

That is, a belief point bi is reachable if there is a past joint policy that will result in
the appropriate distribution over states and AOHs of other agents such that, when
combined with a mapping of those AOHs to sub-tree policies, bi is the resulting
distribution over states and sub-tree policies.
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PBDP can be understood in the light of (15.10). Suppose that the range of the Γ i
t

are restricted to the sets generated by exhaustive backup: Γ i
t : Θ̄ i

t → Qe,i
τ=k. Solving

(15.10) for a past joint policy ϕϕϕt will result in Γ ∗t which will specify, for all agents,
all the useful sub-tree policies qi

τ=k ∈Qe,i
τ=k given ϕϕϕt . Solving (15.10) for all ϕϕϕt will

result in the set of all potentially useful qi
τ=k ∈ Qe,i

τ=k.
Given a ϕϕϕt and a Γ−i

t , (15.10) can be rewritten as a maximization from the per-
spective of agent i to compute its best response:9

BRi(θ̄ i
t ,ϕϕϕt ,Γ

−i
t ) = argmax

qi
τ=k

∑̄
θ−i

t

∑
st

P(st ,θ̄−i
t |θ̄ i

t ,I,ϕϕϕt)V (st ,
〈
Γ−i

t (θ̄−i
t ),qi

τ=k

〉
).

(15.16)
That is, given ϕϕϕt and Γ−i

t , each θ̄ i
t generates a multi-agent belief point, for which

(15.16) performs the maximization. The set Qm,i
τ=k := {BRi(θ̄ i

t ,ϕϕϕt ,Γ
−i

t )} of best re-
sponses for all ϕϕϕt , Γ

−i
t and θ̄ i

t , contains all non-dominated sub-tree policies, thus
yielding an exact pruning step.

PBDP uses the initial belief to overcome the need to test for dominance over the
entire multi-agent belief space. It can also result in more pruning, since it avoids
maintaining sub-tree policies that are maximizing in a part of this space that cannot
be reached. Still, the operation described above is intractable because the number
of (θ̄ i

t ,ϕϕϕt ,Γ
−i

t ) is doubly exponential in t and because the maintained sets Qm,i
τ=k can

still grow doubly exponentially.

15.4.5.3 Memory-Bounded DP

Memory-bounded DP (MBDP) (Seuken and Zilberstein, 2007b) is an approximate
method that addresses these complexity issues by making two approximations. This
first approximation is the assumption that the joint sub-tree policies that are max-
imizing for a joint belief are likely to specify good candidate individual sub-tree
policies. I.e., instead of performing (15.16) to compute candidate sub-tree policies
MBDP performs:

∀θ̄θθ t
qqqθ̄θθ t
τ=k = argmax

qqqτ=k∈QQQe
τ=k

V (I,θ̄θθ t ,qqqτ=k), (15.17)

where QQQe
τ=k � Qe,1

τ=k×·· ·×Qe,n
τ=k is the set of qqqτ=k induced by the sets exhaustively

backed-up sub-trees Qe,i
τ=k. If a qi

τ=k is not part of any qqqθ̄θθ t
τ=k, it is assumed to be

dominated. Note that V (I,θ̄θθ t ,qqqτ=k), defined by (15.7), only depends on θ̄θθ t through
the joint beliefs bbb it induces, so (15.17) only has to be evaluated for distinct bbb. Also
note that this maximization is surprising: it was explained in Section 15.4.3.1 that
performing this maximization for a particular node of the AOH tree is not possible.

The difference here is that MBDP will not use the found qqqθ̄θθ t
τ=k as the joint sub-tree

policy for θ̄θθ t (which might result in a centralized joint policy), but rather uses it to
construct sets of individual candidate qi

τ=k.

9 The summation over states comes from substituting (15.7) for V (I,θ̄θθ t ,qqqτ=k)).
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The second approximation is that MBDP maintains sets Qm,i
τ=k of a fixed size,

M, which has two main consequences. First, the size of the candidate sets Qe,i
τ=k

formed by exhaustive backup is O(|A†|M|O†|), which clearly does not depend on
the horizon. Second, (15.17) does not have to be evaluated for all distinct bbb; rather
MBDP samples M joint belief points bbb on which (15.17) is evaluated.10 To perform
this sampling, MBDP uses heuristic policies.

In order to perform the maximization in (15.17), MBDP loops over the |QQQe
τ=k|=

O(|A†|nMn|O†|) joint sub-tree policies for each of the sampled belief points. To re-
duce the burden of this complexity, many papers have proposed new methods for
performing this point-based backup operation (Seuken and Zilberstein, 2007a; Car-
lin and Zilberstein, 2008; Dibangoye et al, 2009; Amato et al, 2009; Wu et al,
2010a). This backup corresponds to solving a CBG for each joint action (Kumar
and Zilberstein, 2010b; Oliehoek et al, 2010).

Finally, sample-based extensions have been proposed (Wu et al, 2010c,b). These
use sampling to evaluate the quantities V (s,qqqτ=k) and use particle representations
for the sampled joint beliefs.

15.4.6 Other Finite-Horizon Methods

There are a few other approaches for finite-horizon Dec-POMDPs, which we will
only briefly describe here. Aras et al (2007) proposed a mixed integer linear pro-
gramming formulation for the optimal solution of finite-horizon Dec-POMDPs,
based on representing the set of possible policies for each agent in sequence form
(Koller and Pfeffer, 1997). In this representation, a policy for an agent i is rep-
resented as a subset of the set of sequences (roughly corresponding to action-
observation histories) for the agent. As such the problem can be interpreted as a
combinatorial optimization problem and solved with a mixed integer linear
program.

The fact that solving a Dec-POMDP can be approached as a combinatorial opti-
mization problem was also recognized by approaches based on cross-entropy opti-
mization (Oliehoek et al, 2008a) and genetic algorithms (Eker and Akın, 2008).

15.5 Further Topics

This section provides pointers to some further topics in Dec-POMDPs.

15.5.1 Generalization and Special Cases

The generalization of the Dec-POMDP is the partially observable stochastic game
(POSG). It has the same components as a Dec-POMDP, except that it specifies a

10 If evaluation of (15.17) leads to duplicate qi
τ=k more samples may be necessary.
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collection of reward functions: one for each agent. A POSG assumes self-interested
agents that maximize their individual expected cumulative reward. The consequence
of this is that there is no longer a simple concept of optimal joint policy. Rather the
joint policy should be a Nash Equilibrium (NE), and preferably a Pareto optimal NE.
However, there is no clear way to identify the best one. Moreover, such an NE is only
guaranteed to exist in randomized policies (for a finite POSG), which means that it
is no longer possible to perform brute-force policy evaluation. Also, search methods
based on alternating maximization are no longer guaranteed to converge for POSGs.
The (not point-based) dynamic programming method, discussed in Section 15.4.5.1,
applies to POSGs since it finds the set of non-dominated policies for each agent.

Because of the negative complexity results for Dec-POMDPs, much research has
focused on special cases to which pointers are given below. For a more compre-
hensive overview the reader is referred to the texts by Pynadath and Tambe (2002);
Goldman and Zilberstein (2004); Seuken and Zilberstein (2008).

Some of the special cases are formed by different degrees of observability. These
range from fully- or individually observable as in a multi-agent MDP (Boutilier,
1996) to non-observable. In the non-observable case agents use open-loop policies
and solving it is easier from a complexity point of view (NP-complete, Pynadath
and Tambe 2002). Between these two extremes there are partially observable prob-
lems. One more special case has been identified, namely the jointly observable case,
where not the individual, but the joint observation identifies the true state. A jointly
observable Dec-POMDP is referred to as a Dec-MDP, which is a non-trivial sub-
class of the Dec-POMDP for which the NEXP-completeness result holds (Bernstein
et al, 2002).

Other research has tried to exploit structure in states, transitions and reward. For
instance, many approaches are based on special cases of factored Dec-POMDPs.
A factored Dec-POMDP (Oliehoek et al, 2008c) is a Dec-POMDP in which the
state space is factored, i.e., a state s = 〈x1, . . . ,xk〉 is specified as an assignment to
a number of state variables or factors. For factored Dec-POMDPs the transition
and reward models can often be specified much more compactly by making use of
Bayesian networks and additive reward decomposition (the total reward is the sum
of a number of ‘smaller’ reward functions, specified over a subset of agents). Many
special cases have tried to exploit independence between agents by partitioning the
set of state factors into individual states si for each agent.

One such example is the transition- and observation-independent (TOI) Dec-
MDP (Becker et al, 2004b; Wu and Durfee, 2006) that assumes each agent i has
its own MDP with local states si and transitions, but that these MDPs are coupled
through certain events in the reward function: some combinations of joint actions
and joint states will cause extra reward (or penalty). This work introduced the idea
that in order to compute a best response against a policy π j, an agent i may not
need to reason about all the details of π j, but can use a more abstract representation
of the influence of π j on itself. This core idea was also used in event-driven (ED)
Dec-MDPs (Becker et al, 2004a) that model settings in which the rewards are inde-
pendent, but there are certain events that cause transition dependencies. Mostafa and
Lesser (2009) introduced the EDI-CR, a type of Dec-POMDP that generalizes TOI
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and ED-Dec-MDPs. Recently the idea of abstraction has been further explored by
Witwicki and Durfee (2010), resulting in a more general formulation of influence-
based policy abstraction for a more general sub-class of the factored Dec-POMDP
called temporally decoupled Dec-POMDP (TD-POMDP) that also generalizes TOI-
and ED-Dec-MDPs (Witwicki, 2011). While much more general than TOI Dec-
MDPs (e.g., the local states of agents can overlap) the TD-POMDP is still restrictive
as it does not allow multiple agents to have direct influence on the same state factor.

Finally, there has been a body of work on networked distributed POMDPs (ND-
POMDPs) (Nair et al, 2005; Kim et al, 2006; Varakantham et al, 2007; Marecki et al,
2008; Kumar and Zilberstein, 2009; Varakantham et al, 2009). ND-POMDPs can be
understood as factored Dec-POMDPs with TOI and additively factored reward func-
tions. For this model, it was shown that the value function V (πππ) can be additively
factored as well. As a consequence, it is possible to apply many ideas from dis-
tributed constraint optimization in order to optimize the value more efficiently. As
such ND-POMDPs have been shown to scale to moderate numbers (up to 20) of
agents. These results were extended to general factored Dec-POMDPs by Oliehoek
et al (2008c). In that case, the amount of independence depends on the stage of the
process; earlier stages are typically fully coupled limiting exact solutions to small
horizons and few (three) agents. Approximate solutions, however, were shown to
scale to hundreds of agents (Oliehoek, 2010).

15.5.2 Infinite-Horizon Dec-POMDPs

The main focus of this chapter has been on finding solution methods for finite-
horizon Dec-POMDPs. There also has been quite a bit of work on infinite-horizon
Dec-POMDPs, some of which is summarized here.

The infinite-horizon case is substantially different from the finite-horizon case.
For instance, the infinite-horizon problem is undecidable (Bernstein et al, 2002),
which is a direct result of the undecidability of (single-agent) POMDPs over an
infinite horizon (Madani et al, 1999). This can be understood by thinking about the
representations of policies; in the infinite-horizon case the policy trees themselves
should be infinite and clearly there is no way to represent that in a finite amount of
memory.

As a result, research on infinite-horizon Dec-POMDPs has focused on approxi-
mate methods that use finite policy representations. A common choice is to use finite
state controllers (FSCs). A side-effect of limiting the amount of memory for the pol-
icy is that in many cases it can be beneficial to allow stochastic policies (Singh et al,
1994). Most research in this line of work has proposed methods that incrementally
improve the quality of the controller. For instance, Bernstein et al (2009) propose
a policy iteration algorithm that computes an ε-optimal solution by iteratively per-
forming backup operations on the FSCs. These backups, however, grow the size
of the controller exponentially. While value-preserving transformations may reduce
the size of the controller, the controllers can still grow unboundedly.
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One idea to overcome this problem is bounded policy iteration (BPI) for Dec-
POMDPs (Bernstein et al, 2005). BPI keeps the number of nodes of the FSCs fixed
by applying bounded backups. BPI converges to a local optimum given a particular
controller size. Amato et al (2010) also consider finding an optimal joint policy
given a particular controller size, but instead propose a non-linear programming
(NLP) formulation. While this formulation characterizes the true optimum, solving
the NLP exactly is intractable. However, approximate NLP solvers have shown good
results in practice.

Finally, a recent development has been to address infinite-horizon Dec-POMDPs
via the planning-as-inference paradigm (Kumar and Zilberstein, 2010a). Pajarinen
and Peltonen (2011) extended this approach to factored Dec-POMDPs.

15.5.3 Reinforcement Learning

A next related issue is the more general setting of multi-agent reinforcement learn-
ing (MARL). That is, this chapter has focused on the task of planning given a model.
In a MARL setting however, the agents do not have access to such a model. Rather,
the model will have to be learned on-line (model-based MARL) or the agents will
have to use model-free methods. While there is a great deal of work on MARL in
general (Buşoniu et al, 2008), MARL in Dec-POMDP-like settings has received
little attention.

Probably one of the main reasons for this gap in literature is that it is hard to
properly define the setup of the RL problem in these partially observable environ-
ments with multiple agents. For instance, it is not clear when or how the agents
will the observe rewards.11 Moreover, even when the agents can observe the state,
convergence of MARL is not well-understood: from the perspective of one agent,
the environment has become non-stationary since the other agent is also learning,
which means that convergence guarantees for single-agent RL no longer hold. Claus
and Boutilier (1998) argue that, in a cooperative setting, independent Q-learners are
guaranteed to converge to a local optimum, but not the optimal solution. Neverthe-
less, this method has on occasion been reported to be successful in practice (e.g.,
Crites and Barto, 1998) and theoretical understanding of convergence of individual
learners is progressing (e.g., Tuyls et al, 2006; Kaisers and Tuyls, 2010; Wunder
et al, 2010). There are coupled learning methods (e.g., Q-learning using the joint
action space) that will converge to an optimal solution (Vlassis, 2007). However,
all forms of coupled learning are precluded in the true Dec-POMDP setting: such
algorithms require either full observation of the state and actions of other agents, or
communication of all the state information.

Concluding this section we will provide pointers to a few notable approaches
to RL in Dec-POMDP-like settings. Peshkin et al (2000) introduced decentralized

11 Even in a POMDP, the agent is not assumed to have access to the immediate rewards, since
they can convey hidden information about the states.
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gradient ascent policy search (DGAPS), a method for MARL in partially observ-
able settings based on gradient descent. DGAPS represents individual policies us-
ing FSCs and assumes that agents observe the global rewards. Based in this, it is
possible for each agent to independently update its policy in the direction of the
gradient with respect to the return, resulting in a locally optimal joint policy. This
approach was extended to learn policies for self-configurable modular robots (Var-
shavskaya et al, 2008). Chang et al (2004) also consider decentralized RL assuming
that the global rewards are available to the agents. In their approach, these global re-
wards are interpreted as individual rewards, corrupted by noise due to the influence
of other agents. Each agent explicitly tries to estimate the individual reward using
Kalman filtering and performs independent Q-learning using the filtered individual
rewards. The method by Wu et al (2010b) is closely related to RL since it does not
need a model as input. It does, however, needs access to a simulator which can be
initialized to specific states. Moreover, the algorithm itself is centralized, as such it
is not directly suitable for on-line RL.

Finally, there are MARL methods for partially observed decentralized settings
that require only limited amounts of communication. For instance, Boyan and
Littman (1993) considered decentralized RL for a packet routing problem. Their
approach, Q-routing, performs a type of Q-learning where there is only limited lo-
cal communication: neighboring nodes communicate the expected future waiting
time for a packet. Q-routing was extended to mobile wireless networks by Chang
and Ho (2004). A similar problem, distributed task allocation, is considered by Ab-
dallah and Lesser (2007). In this problem there also is a network, but now agents do
not send communication packets, but rather tasks to neighbors. Again, communica-
tion is only local. Finally, in some RL methods for multi-agent MDPs (i.e., coupled
methods) it is possible to have agents observe a subset of state factors if they have
the ability to communicate locally (Guestrin et al, 2002; Kok and Vlassis, 2006).

15.5.4 Communication

The Dec-POMDP has been extended to explicitly incorporate communication ac-
tions, and observations. The resulting model, the Dec-POMDP-Com (Goldman and
Zilberstein, 2003, 2004) includes a set of messages that can be sent by each agent
and a cost function that specifies the cost of sending each message. The goal in a
Dec-POMDP-Com is to:

“find a joint policy that maximizes the expected total reward over the finite horizon.
Solving for this policy embeds the optimal meaning of the messages chosen to be
communicated” — Goldman and Zilberstein (2003)

That is, in this perspective the semantics of the communication actions become part
of the optimization problem (Xuan et al, 2001; Goldman and Zilberstein, 2003;
Spaan et al, 2006; Goldman et al, 2007).
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One can also consider the case where messages have fixed semantics. In such a
case the agents need a mechanism to process these semantics. For instance, when
the agents share their local observations, each agent maintains a joint belief and per-
forms an update of this joint belief, rather than maintaining the list of observations.
It was shown by Pynadath and Tambe (2002) that under cost-free communication,
a joint communication policy that shares the local observations at each stage is op-
timal. Much research has investigated sharing local observations in models similar
to the Dec-POMDP-Com (Ooi and Wornell, 1996; Pynadath and Tambe, 2002; Nair
et al, 2004; Becker et al, 2005; Roth et al, 2005b,a; Spaan et al, 2006; Oliehoek et al,
2007; Roth et al, 2007; Goldman and Zilberstein, 2008; Wu et al, 2011).

A final note is that, although models with explicit communication seem more
general than the models without, it is possible to transform the former to the latter.
That is, a Dec-POMDP-Com can be transformed to a Dec-POMDP (Goldman and
Zilberstein, 2004; Seuken and Zilberstein, 2008).

Acknowledgements. I would like to thank Leslie Kaelbling and Shimon Whiteson for the
valuable feedback they provided and the reviewers for their insightful comments. Research
supported by AFOSR MURI project #FA9550-09-1-0538.

References

Abdallah, S., Lesser, V.: Multiagent reinforcement learning and self-organization in a network
of agents. In: Proc. of the International Joint Conference on Autonomous Agents and
Multi Agent Systems, pp. 172–179 (2007)

Amato, C., Carlin, A., Zilberstein, S.: Bounded dynamic programming for decentralized
POMDPs. In: Proc. of the AAMAS Workshop on Multi-Agent Sequential Decision Mak-
ing in Uncertain Domains, MSDM (2007)

Amato, C., Dibangoye, J.S., Zilberstein, S.: Incremental policy generation for finite-horizon
DEC-POMDPs. In: Proc. of the International Conference on Automated Planning and
Scheduling, pp. 2–9 (2009)

Amato, C., Bernstein, D.S., Zilberstein, S.: Optimizing fixed-size stochastic controllers
for POMDPs and decentralized POMDPs. Autonomous Agents and Multi-Agent Sys-
tems 21(3), 293–320 (2010)

Aras, R., Dutech, A., Charpillet, F.: Mixed integer linear programming for exact finite-horizon
planning in decentralized POMDPs. In: Proc. of the International Conference on Auto-
mated Planning and Scheduling (2007)

Becker, R., Zilberstein, S., Lesser, V.: Decentralized Markov decision processes with event-
driven interactions. In: Proc. of the International Joint Conference on Autonomous Agents
and Multi Agent Systems, pp. 302–309 (2004a)

Becker, R., Zilberstein, S., Lesser, V., Goldman, C.V.: Solving transition independent decen-
tralized Markov decision processes. Journal of Artificial Intelligence Research 22, 423–
455 (2004b)

Becker, R., Lesser, V., Zilberstein, S.: Analyzing myopic approaches for multi-agent commu-
nication. In: Proc. of the International Conference on Intelligent Agent Technology, pp.
550–557 (2005)



15 Decentralized POMDPs 499

Bernstein, D.S., Givan, R., Immerman, N., Zilberstein, S.: The complexity of decentralized
control of Markov decision processes. Mathematics of Operations Research 27(4), 819–
840 (2002)

Bernstein, D.S., Hansen, E.A., Zilberstein, S.: Bounded policy iteration for decentralized
POMDPs. In: Proc. of the International Joint Conference on Artificial Intelligence, pp.
1287–1292 (2005)

Bernstein, D.S., Amato, C., Hansen, E.A., Zilberstein, S.: Policy iteration for decentralized
control of Markov decision processes. Journal of Artificial Intelligence Research 34, 89–
132 (2009)

Boularias, A., Chaib-draa, B.: Exact dynamic programming for decentralized POMDPs with
lossless policy compression. In: Proc. of the International Conference on Automated
Planning and Scheduling (2008)

Boutilier, C.: Planning, learning and coordination in multiagent decision processes. In: Proc.
of the 6th Conference on Theoretical Aspects of Rationality and Knowledge, pp. 195–210
(1996)

Boyan, J.A., Littman, M.L.: Packet routing in dynamically changing networks: A reinforce-
ment learning approach. In: Advances in Neural Information Processing Systems, vol. 6,
pp. 671–678 (1993)
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