
Chapter 14
Game Theory and Multi-agent Reinforcement
Learning

Ann Nowé, Peter Vrancx, and Yann-Michaël De Hauwere

Abstract. Reinforcement Learning was originally developed for Markov Decision
Processes (MDPs). It allows a single agent to learn a policy that maximizes a pos-
sibly delayed reward signal in a stochastic stationary environment. It guarantees
convergence to the optimal policy, provided that the agent can sufficiently experi-
ment and the environment in which it is operating is Markovian. However, when
multiple agents apply reinforcement learning in a shared environment, this might be
beyond the MDP model. In such systems, the optimal policy of an agent depends not
only on the environment, but on the policies of the other agents as well. These situa-
tions arise naturally in a variety of domains, such as: robotics, telecommunications,
economics, distributed control, auctions, traffic light control, etc. In these domains
multi-agent learning is used, either because of the complexity of the domain or be-
cause control is inherently decentralized. In such systems it is important that agents
are capable of discovering good solutions to the problem at hand either by coordi-
nating with other learners or by competing with them. This chapter focuses on the
application reinforcement learning techniques in multi-agent systems. We describe
a basic learning framework based on the economic research into game theory, and
illustrate the additional complexity that arises in such systems. We also described
a representative selection of algorithms for the different areas of multi-agent rein-
forcement learning research.

14.1 Introduction

The reinforcement learning techniques studied throughout this book enable a single
agent to learn optimal behavior through trial-and-error interactions with its environ-
ment. Various RL techniques have been developed which allow an agent to optimize
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442 A. Nowé, P. Vrancx, and Y.-M. De Hauwere

its behavior in a wide range of circumstances. However, when multiple learners si-
multaneously apply reinforcement learning in a shared environment, the traditional
approaches often fail.

In the multi-agent setting, the assumptions that are needed to guarantee conver-
gence are often violated. Even in the most basic case where agents share a stationary
environment and need to learn a strategy for a single state, many new complexities
arise. When agent objectives are aligned and all agents try to maximize the same re-
ward signal, coordination is still required to reach the global optimum. When agents
have opposing goals, a clear optimal solution may no longer exist. In this case, an
equilibrium between agent strategies is usually searched for. In such an equilibrium,
no agent can improve its payoff when the other agents keep their actions fixed.

When, in addition to multiple agents, we assume a dynamic environment which
requires multiple sequential decisions, the problem becomes even more complex.
Now agents do not only have to coordinate, they also have to take into account the
current state of their environment. This problem is further complicated by the fact
that agents typically have only limited information about the system. In general,
they may not be able to observe actions or rewards of other agents, even though
these actions have a direct impact on their own rewards and their environment. In
the most challenging case, an agent may not even be aware of the presence of other
agents, making the environment seem non-stationary. In other cases, the agents have
access to all this information, but learning in a fully joint state-action space is in
general impractical, both due to the computational complexity and in terms of the
coordination required between the agents. In order to develop a successful multi-
agent approach, all these issues need to be addressed. Figure 14.1 depicts a standard
model of Multi-Agent Reinforcement Learning.

Despite the added learning complexity, a real need for multi-agent systems ex-
ists. Often systems are inherently decentralized, and a central, single agent learning
approach is not feasible. This situation may arise because data or control is physi-
cally distributed, because multiple, possibly conflicting, objectives should be met, or
simply because a single centralized controller requires to many resources. Examples
of such systems are multi-robot set-ups, decentralized network routing, distributed
load-balancing, electronic auctions, traffic control and many others.

The need for adaptive multi-agent systems, combined with the complexities of
dealing with interacting learners has led to the development of a multi-agent rein-
forcement learning field, which is built on two basic pillars: the reinforcement learn-
ing research performed within AI, and the interdisciplinary work on game theory.
While early game theory focused on purely competitive games, it has since devel-
oped into a general framework for analyzing strategic interactions. It has attracted
interest from fields as diverse as psychology, economics and biology. With the ad-
vent of multi-agent systems, it has also gained importance within the AI community
and computer science in general. In this chapter we discuss how game theory pro-
vides both a means to describe the problem setting for multi-agent learning and the
tools to analyze the outcome of learning.
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Fig. 14.1 Multiple agents acting in the same environment

The multi-agent systems considered in this chapter are characterized by strategic
interactions between the agents. By this we mean that the agents are autonomous en-
tities, who have individual goals and independent decision making capabilities, but
who also are influenced by each other’s decisions. We distinguish this setting from
the approaches that can be regarded as distributed or parallel reinforcement learn-
ing. In such systems multiple learners collaboratively learn a single objective. This
includes systems were multiple agents update the policy in parallel (Mariano and
Morales, 2001), swarm based techniques (Dorigo and Stützle, 2004) and approaches
dividing the learning state space among agents (Steenhaut et al, 1997). Many of
these systems can be treated as advanced exploration techniques for standard rein-
forcement learning and are still covered by the single agent theoretical frameworks,
such as the framework described in (Tsitsiklis, 1994). The convergence of the al-
gorithms remain valid as long as outdated information is eventually discarded. For
example, it allows to use outdated Q-values in the max-operator in the right hand
side of standard Q-learning update rule (described in Chapter 1). This is particularly
interesting when he Q-values are belonging to to different agents each exploring
their own part of the environment and only now and then exchange their Q-values.
The systems covered by this chapter, however, go beyond the standard single agent
theory, and as such require a different framework.

An overview of multi-agent research based on strategic interactions between
agents is given in Table 14.1. The techniques listed are categorized based on their
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applicability and kind of information they use while learning in a multi-agent sys-
tem. We distinguish between techniques for stateless games, which focus on dealing
with multi-agent interactions while assuming that the environment is stationary, and
Markov game techniques, which deal with both multi-agent interactions and a dy-
namic environment. Furthermore, we also show the information used by the agents
for learning. Independent learners learn based only on their own reward observation,
while joint action learners also use observations of actions and possibly rewards of
the other agents.

Table 14.1 Overview of current MARL approaches. Algorithms are classified by their ap-
plicability (common interest or general Markov games) and their information requirement
(scalar feedback or joint-action information).

Game setting
Stateless Games Team Markov Games General Markov Games
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Independent
Learners

Stateless Q-learning Policy Search MG-ILA
Learning Automata Policy Gradient (WoLF-)PG

IGA Learning of Coordination
FMQ Independent RL

Commitment Sequences CQ-learning
Lenient Q-learners

Joint
Action

Learners

Distributed- Q Nash-Q
Sparse Tabular Q Friend-or-Foe Q

Utile Coordination Asymmetric Q
Joint Action Learning

Correlated-Q

In the following section we will describe the repeated games framework. This
setting introduces many of the complexities that arise from interactions between
learning agents. However, the repeated game setting only considers static, stateless
environments, where the learning challenges stem only from the interactions with
other agents. In Section 14.3 we introduce Markov Games. This framework gen-
eralizes the Markov Decision Process (MDP) setting usually employed for single
agent RL. It considers both interactions between agents and a dynamic environment.
We explain both value iteration and policy iteration approaches for solving these
Markov games. Section 14.4 describes the current state of the art in multi-agent re-
search, which takes the middle ground between independent learning techniques and
Markov game techniques operating in the full joint-state joint-action space. Finally
in Section 14.5, we shortly describe other interesting background material.
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14.2 Repeated Games

14.2.1 Game Theory

The central idea of game theory is to model strategic interactions as a game between
a set of players. A game is a mathematical object, which describes the consequences
of interactions between player strategies in terms of individual payoffs. Different
representations for a game are possible. For example,traditional AI research often
focusses on the extensive form games, which were used as a representation of situa-
tions where players take turns to perform an action. This representation is used, for
instance, with the classical minimax algorithm (Russell and Norvig, 2003). In this
chapter, however, we will focus on the so called normal form games, in which game
players simultaneously select an individual action to perform. This setting is often
used as a testbed for multi-agent learning approaches. Below we the review basic
game theoretic terminology and define some common solution concepts in games.

14.2.1.1 Normal Form Games

Definition 14.1. A normal form game is a tuple (n,A1,...,n,R1,...,n), where

• 1, . . . ,n is a collection of participants in the game, called players;
• Ak is the individual (finite) set of actions available to player k;
• Rk : A1× . . .×An → R is the individual reward function of player k, specifying

the expected payoff he receives for a play a ∈ A1× . . .×An.

A game is played by allowing each player k to independently select an individual
action a from its private action set Ak.The combination of actions of all players
constitute a joint action or action profile a from the joint action set A=A1× . . .×An.
For each joint action a ∈ A, Rk(a) denotes agent k’s expected payoff.

Normal form games are represented by their payoff matrix. Some typical 2-player
games are given in Table 14.2. In this case the action selected by player 1 refers to a
row in the matrix, while that of player 2 determines the column. The corresponding
entry in the matrix then gives the payoffs player 1 and player 2 receive for the play.
Players 1 and 2 are also referred to as the row and the column player, respectively.
Using more dimensional matrices n-player games can be represented where each
entry in the matrix contains the payoff for each of the agents for the corresponding
combination of actions.

A strategy σk : Ak → [0,1] is an element of μ(Ak), the set of probability distribu-
tions over the action set Ak of player k . A strategy is called pure if σk(a) = 1 for
some action a∈ Ak and 0 for all other actions, otherwise it is called a mixed strategy.
A strategy profile σ = (σ1, . . . ,σn) is a vector of strategies, containing one strategy
for each player. If all strategies in σ are pure, the strategy profile corresponds to a
joint action a∈A. An important assumption which is made in normal form games is
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that the expected payoffs are linear in the player strategies, i.e. the expected reward
for player k for a strategy profile σ is given by:

Rk(σ ) = ∑
a∈A

n

∏
j=1
σ j(a j)Rk(a)

with a j the action for player j in the action profile a.

14.2.1.2 Types of Games

Depending on the reward functions of the players, a classifications of games can
be made. When all players share the same reward function, the game is called a
identical payoff or common interest game. If the total of all players rewards adds up
to 0 the game is called a zero-sum game. In the latter games wins for certain players
translate to losses for other players with opposing goals. Therefore these games are
also referred to as pure competitive games. When considering games without special
restrictions we speak of general sum games.

Table 14.2 Examples of 2-player, 2-action games. From left to right: (a) Matching pennies,
a purely competitive (zero-sum) game. (b) The prisoner’s dilemma, a general sum game. (c)
The coordination game, a common interest (identical payoff) game. (d) Battle of the sexes,
a coordination game where agents have different preferences) Pure Nash equilibria are indi-
cated in bold.

a1 a2
a1 (1,-1) (-1,1)
a2 (-1,1) (1,-1)

a1 a2
a1 (5,5) (0,10)
a2 (10,0) (1,1)

a1 a2
a1 (5,5) (0,0)
a2 (0,0) (10,10)

a1 a2
a1 (2,1) (0,0)
a2 (0,0) (1,2)

(a) (b) (c) (d)

Examples of these game types can be seen in Table 14.2. The first game in this
table, named matching pennies, is an example of a strictly competitive game. This
game describes a situation where the two players must each, individually, select one
side of a coin to show (i.e. Heads or Tails). When both players show the same side,
player one wins and is paid 1 unit by player 2. When the coins do not match, player
2 wins and receives 1 unit from player 1. Since both players are betting against each
other, one player’s win automatically translates in the other player’s loss, therefore
this is a zero-sum game.

The second game in Table 14.2, called the prisoner’s dilemma, is a general sum
game. In this game, 2 criminals have been apprehended by the police for commit-
ting a crime. They both have 2 possible actions: cooperate with each other and deny
the crime (action a1), or defect and betray the other, implicating him in the crime
(action a2). If both cooperate and deny the crime, the police have insufficient evi-
dence and they get a minimal sentence, which translates to a payoff of 5 for both. If
one player cooperates, but the other one defects, the cooperator takes all the blame
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(payoff 0), while the defector escapes punishment (payoff 10). Should both play-
ers defect, however, they both receive a large sentence (payoff 1). The issue in this
game is that the cooperate action is strictly dominated by the defect action: no mat-
ter what action the other player chooses, to defect always gives the highest payoff.
This automatically leads to the (defect, defect) outcome, despite the fact that both
players could simultaneously do better by both playing cooperate.

The third game in Table 14.2 is a common interest game. In this case both players
receive the same payoff for each joint action. The challenge in this game is for the
players to coordinate on the optimal joint action. Selecting the wrong joint action
gives a suboptimal payoff and failing to coordinate results in a 0 payoff.

The fourth game, Battle of the sexes, is another example of a coordination game.
Here however, the players get individual rewards and prefer different outcomes.
Agent 1 prefers (a1,a1), whereas agent 2 prefers (a2,a2). In addition to the coor-
dination problem, the players now also have to agree on which of the preferred
outcomes.

Of course games are not restricted to only two actions but can have any number
of actions. In Table 14.3 we show some 3-action common interest games. In the
first, the climbing game from (Claus and Boutilier, 1998), the Nash equilibria are
surrounded by heavy penalties. In the second game, the penalties are left as a param-
eter k < 0. The smaller k, the more difficult it becomes to agree through learning
on the preferred solution ((a1,a1) and (a3,a3)) (The dynamics of these games us-
ing a value-iteration approach are analyzed in (Claus and Boutilier, 1998), see also
Section 14.2.2).

Table 14.3 Examples of 2-player, 3-action games. From left to right: (a) Climbing game (b)
The penalty game, where k ≤ 0. Both games are of the common interest type. Pure Nash
equilibria are indicated in bold.

a1 a2 a3
a1 (11,11) (-30,-30) (0,0)
a2 (-30,-30) (7,7) (6,6)
a3 (0,0) (0,0) (5,5)

a1 a2 a3
a1 (10,10) (0,0) (k,k)
a2 (0,0) (2,2) (0,0)
a3 (k,k) (0,0) (10,10)

(a) (b)

14.2.1.3 Solution Concepts in Games

Since players in a game have individual reward functions which are dependent on
the actions of other players, defining the desired outcome of a game is often not
clearcut. One cannot simply expect participants to maximize their payoffs, as it may
not be possible for all players to achieve this goal at the same time. See for example
the Battle of the sexes game in Table 14.2(d).
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An important concept for such learning situations, is that of a best response.
When playing a best response, a player maximizes his payoff with respect to the
current strategies of his opponents in the game. That is, it is not possible for the
player to improve his reward if the other participants in the game keep their strate-
gies fixed. Formally, we can define this concept as follows:

Definition 14.2. Let σ = (σ1, . . . ,σn) be a strategy profile and let σ−k denote the
same strategy profile but without the strategy σk of player k. A strategy σ∗k ∈ μ(Ak)
is then called a best response for player k, if following holds:

Rk(σ−k ∪σ∗k )≥ Rk(σ−k ∪σ ′k) ∀σ ′k ∈ μ(Ak)

where σ−k ∪σ ′k denotes the strategy profile where all agents play the same strategy
as they play in σ except agent k who plays σ ′k, i.e. (σ1, . . . ,σk−1,σ ′k,σk+1, . . . ,σn).

A central solution concept in games, is the Nash equilibrium (NE). In a Nash equi-
librium, the players all play mutual best replies, meaning that each player uses a best
response to the current strategies of the other players. Nash (Nash, 1950) proved that
every normal form game has at least 1 Nash equilibrium, possibly in mixed strate-
gies. Based on the concept of best response we can define a Nash equilibrium as:

Definition 14.3. A strategy profile σ = (σ1, . . . ,σn) is called a Nash equilibrium if
for each player k, the strategy σk is a best response to the strategies of the other
players σ−k.

Thus, when playing a Nash equilibrium, no player in the game can improve his
payoff by unilaterally deviating from the equilibrium strategy profile. As such no
player has an incentive to change his strategy, and multiple players have to change
their strategy simultaneously in order to escape the Nash equilibrium.

In common interest games such as the coordination in Table 14.2(c), the Nash
equilibrium corresponds to a local optimum for all players, but it does not necessar-
ily correspond to the global optimum. This can clearly be seen in the coordination
game, where we have 2 Nash equilibria: the play (a1,a1) which gives both players
a reward of 5 and the global optimum (a2,a2) which results in a payoff of 10.

The prisoner’s dilemma game in Table 14.2 shows that a Nash equilibrium does
not necessarily correspond to the most desirable outcome for all agents. In the
unique Nash equilibrium both players prefer the ’defect’ action, despite the fact
that both would receive when both are cooperating. The cooperative outcome is not
a Nash equilibrium, however, as in this case both players can improve their payoff
by switching to the ’defect’ action.

The first game, matching pennies, does not have a pure strategy Nash equilib-
rium, as no pure strategy is a best response to another pure best response. Instead
the Nash equilibrium for this game is for both players to choose both sides with
equal probability. That is, the Nash strategy profile is ((1/2,1/2),(1/2,1/2)).
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14.2.2 Reinforcement Learning in Repeated Games

The games described above are often used as test cases for multi-agent reinforce-
ment learning techniques. Unlike in the game theoretical setting, agents are not as-
sumed to have full access to the payoff matrix. In the reinforcement learning setting,
agents are taken to be players in a normal form game, which is played repeatedly, in
order to improve their strategy over time.

It should be noted that these repeated games do not yet capture the full multi-
agent reinforcement learning problem. In a repeated game all changes in the ex-
pected reward are due to changes in strategy by the players. There is no changing
environment state or state transition function external to the agents. Therefore, re-
peated games are sometimes also referred to as stateless games. Despite this lim-
itation, we will see further in this section that these games can already provide a
challenging problem for independent learning agents, and are well suited to test
coordination approaches. In the next section, we will address the Markov game
framework which does include a dynamic environment.

A number of different considerations have to be made when dealing with rein-
forcement learning in games. As is common in RL research, but contrary to tradi-
tional economic game theory literature, we assume that the game being played is
initially unknown to the agents, i.e. agents do not have access to the reward function
and do not know the expected reward that will result from playing a certain (joint)
action. However, RL techniques can still differ with respect to the observations the
agents make. Moreover, we also assume that the game payoffs can be stochastic,
meaning that a joint action does not always result in the same deterministic reward
for each agent. Therefore, actions have to be sampled repeatedly.

Since expected rewards depend on the strategy of all agents, many multi-agent
RL approaches assume that the learner can observe the actions and/or rewards of
all participants in the game. This allows the agent to model its opponents and to
explicitly learn estimates over joint actions. It could be argued however, that this
assumption is unrealistic, as in multi-agent systems which are physically distributed
this information may not be readily available. In this case the RL techniques must
be able to deal with the non-stationary rewards caused by the influence of the other
agents. As such, when developing a multi-agent reinforcement learning application
it is important to consider the information available in a particular setting in order
to match this setting with an appropriate technique.

14.2.2.1 Goals of Learning

Since it is in general impossible for all players in a game to maximize their pay-
off simultaneously, most RL methods attempt to achieve Nash equilibrium play.
However, a number of criticisms can be made of the Nash equilibrium as a solu-
tion concept for learning methods. The first issue is that Nash equilibria need not
be unique, which leads to an equilibrium selection problem. In general, multiple
Nash equilibria can exist for a single game. These equilibria can also differ in the
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payoff they give to the players. This means that a method learning Nash equilibria,
cannot guarantee a unique outcome or even a unique payoff for the players. This
can be seen in the coordination game of Table 14.2(c), where 2 Nash equilibria ex-
ist, one giving payoff 5 to the agents, and the other giving payoff 10. The game in
Table 14.3(b) also has multiple NE, with (a1,a1) and (a3,a3) being the 2 optimal
ones. This results in a coordination problem for learning agents, as both these NE
have the same quality.

Furthermore, since the players can have different expected payoffs even in an
equilibrium play, the different players may also prefer different equilibrium out-
comes, which means that care should be taken to make sure the players coordinate
on a single equilibrium. This situation can be observed in the Battle of the sexes
game in Table 14.2(d), where 2 pure Nash equilibria exist, but each player prefers a
different equilibrium outcome.

Another criticism is that a Nash Equilibrium does not guarantee optimality.
While playing a Nash equilibrium assures that no single player can improve his
payoff by unilaterally changing its strategy, it does not guarantee that the players
globally maximize their payoffs, or even that no play exists in which the players si-
multaneously do better. It is possible for a game to have non-Nash outcomes, which
nonetheless result in a higher payoff to all agents than they would receive for play-
ing a Nash equilibrium. This can be seen for example in the prisoner’s dilemma in
Table 14.2(c).

While often used as the main goal of learning, Nash equilibria are not the only
possible solution concept in game theory. In part due to the criticisms mentioned
above, a number of alternative solution concepts for games have been developed.
These alternatives include a range of other equilibrium concepts, such as the Cor-
related Equilibrium(CE))(Aumann, 1974), which generalizes the Nash equilibrium
concept, or the Evolutionary Stable Strategy (ESS)(Smith, 1982), which refines the
Nash equilibrium. Each of these equilibrium outcomes has its own applications and
(dis)advantages. Which solution concept to use depends on the problem at hand, and
the objective of the learning algorithm. A complete discussion of possible equilib-
rium concepts is beyond the scope of this chapter. We focus on the Nash equilibrium
and briefly mention regret minimization as these are the approaches most frequently
observed in the multi-agent learning literature. A more complete discussion of so-
lution concepts can be found in many textbooks, e.g. (Leyton-Brown and Shoham,
2008).

Before continuing, we mention one more evaluation criterion, which is regularly
used in repeated games: the notion of regret. Regret is the difference between the
payoff an agent realized and the maximum payoff the agent could have obtained
using some fixed strategy. Often the fixed strategies that one compares the agent
performance to, are simply the pure strategies of the agent. In this case, the total
regret of the agent is the accumulated difference between the obtained reward and
the reward the agent would have received for playing some fixed action. For an agent
k, given the history of play at time T , this is defined as:
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RT = maxa∈Ak

T

∑
t=1

Rk(a−k(t)∪{a})−Rk(a(t)), (14.1)

where a(t) denotes the joint action played at time t and a−k(t)∪ {a} denotes the
same joint action but with player k playing action a. Most regret based learning
approaches attempt to minimize the average regret RT/T of the learner. Exact cal-
culation of this regret requires knowledge of the reward function and observation of
the actions of other agents in order to determine the Rk(a−k(t)∪{a}) term. If this
information is not available, regret has to be estimated from previous observations.
Under some assumptions regret based learning can been shown to converge to some
form of equilibrium play (Foster and Young, 2003; Hart and Mas-Colell, 2001).

14.2.2.2 Q-Learning in Games

A natural question to ask is what happens when agents use a standard, single-agent
RL technique to interact in a game environment. Early research into multi-agent
RL focussed largely on the application of Q-learning to repeated games. In this so
called independent or uninformed setting, each player k keeps an individual vector
of estimated Q-values Qk(a), a ∈ Ak. The players learn Q-values over their own
action set and do not use any information on other players in the game. Since there
is no concept of environment state in repeated games, a single vector of estimates is
sufficient, rather than a full table of state-action pairs, and the standard Q-learning
update is typically simplified to its stateless version:

Q(a)← Q(a)+α[r(t)−Q(a)] (14.2)

In (Claus and Boutilier, 1998) the dynamics of stateless Q-learning in repeated nor-
mal form common interest games are empirically studied.The key questions here
are: is simple Q-learning still guaranteed to converge in a multi-agent setting, and
if so, does it converge to (the optimal) equilibrium. It also relates independent Q-
learners to joint action learners (see below) and investigates how the rates of con-
vergence and limit points are influenced by the game structures and action selection
strategies. In a related branch of research (Tuyls and Nowé, 2005; Wunder et al,
2010) the dynamics of independent Q-learning are studied using techniques from
evolutionary game theory (Smith, 1982).

While independent Q-learners were shown to reach equilibrium play under some
circumstances, they also demonstrated a failure to coordinate in some games, and
even failed to converge altogether in others.

They compared joint action learners to independent learners. In the former the
agents learn Q-values for all joint actions, with other words each agent j leans a Q-
value for all a in A. The action selection is done by each agent individually based on
the believe the agents has about the other agents strategy. Equation 14.3 expresses
that the Q-value of the joint action is weighted according to the probability the other
agents will select some particular value. The Expected Values (EV) can then be used
in combination with any action selection technique. Claus and Boutilier showed
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experimentally using the games of table 2, that joint action learners and independent
learners using a Boltzmann exploration strategy with decreasing temperature behave
very similar. These learners have been studied from an evolutionary game theory
point of view in (Tuyls and Nowé, 2005) and is has been shown that these learners
will converge to evolutionary stable NE which are not necessarily pareto optimal.

EV (ai) = ∑
a−i∈A−i

Q(a−i∪{ai})∏
j �=i

{Pri
a−i[ j]} (14.3)

However the learners have difficulties to reach the optimal NE, and more sophis-
ticated exploration strategies are needed to increase the probability of converging
to the optimal NE. The reason that simple exploration strategies are not sufficient
is mainly due to the fact that the actions involved in the optimal NE often lead to
much lower payoff when combined with other actions, the potential quality of the
action is therefore underestimated. For example in game 2a the action a1 of the row
player, will only lead to the highest reward 11 when combined with action a1 of the
column player. During the learning phase, agents are still exploring and action a1
will also be combined with actions a2 and a3. As a results the agents will often settle
for the more “safe” NE (a2,a2). A similar behavior is observed in game 2b, since
miscoordination on the 2 NE is punished, the bigger the penalty (k¡0) the more dif-
ficult it become for the agents to reach either of the optimal NE. This also explains
why independent learners are generally not able to converge to a NE when they
are allowed to use any, including a random exploration strategy. Whereas in sin-
gle agent Q-learning, the particular exploration strategy does not affect the eventual
convergence (Tsitsiklis, 1994) this no longer holds in a MAS setting.

The limitations of single-agent Q-learning have lead to a number of extensions
of the Q-learning algorithm for use in repeated games. Most of these approaches fo-
cus on coordination mechanisms allowing Q-learners to reach the optimal outcome
in common interest games. The frequency maximum Q-learning (FMQ) algorithm
(Kapetanakis and Kudenko, 2002), for example, keeps a frequency value f req(R∗,a)
indicating how often the maximum reward so far (R∗) has been observed for a cer-
tain action a. This value is then used as a sort of heuristic which is added to the
Q-values. Instead of using Q-values directly, the FMQ algorithm relies on following
heuristic evaluation of the actions:

EV (a) = Q(a)+w. f req(R∗,a).R∗, (14.4)

where w is a weight that controls the importance of the heuristic value f req(R∗,a)R∗.
The algorithm was empirically shown to be able to drive learners to the optimal joint
action in common interest games with deterministic payoffs.

In (Kapetanakis et al, 2003) the idea of commitment sequences has been intro-
duced to allow independent learning in games with stochastic payoffs. A commit-
ment sequence is a list of time slots for which an agent is committed to selecting al-
ways the same action. These sequences of time slots is generated according to some
protocol the agents are aware off. Using this guarantee that at time slots belonging
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to the same sequence the agents are committed to always select the same individual
action, the agents are able to distinguish between the two sources of uncertainty: the
noise on the reward signal and the influence on the reward by the actions taken by
the other agents. This allows the agents to deal with games with stochastic payoffs.

A recent overview of multi-agent Q-learning approaches can be found in (Wun-
der et al, 2010).

14.2.2.3 Gradient Ascent Approaches

As an alternative to the well known Q-learning algorithm, we now list some ap-
proaches based on gradient following updates. We will focus on players that employ
learning automata (LA) reinforcement schemes. Learning automata are relatively
simple policy iterators, that keep a vector action probabilities p over the action set
A. As is common in RL, these probabilities are updated based on a feedback received
from the environment. While initial studies focussed mainly on a single automaton
in n-armed bandit settings, RL algorithms using multiple automata were developed
to learn policies in MDPs (Wheeler Jr and Narendra, 1986). The most commonly
used LA update scheme is called Linear Reward-Penalty and updates the action
probabilities as follows:

pi(t + 1) = pi(t)+λ1b(t)(1− pi(t))−λ2(1− r(t))pi(t) (14.5)

if a(t) = ai,

p j(t + 1) = p j(t)−λ1r(t)p j(t)+λ2(1− r(t))(
1

K− 1
− p j(t)) (14.6)

if a j �= ai,

r(t) being the feedback received at time t and K the number of actions in available
to the auomaton. λ1 and λ2 are constants, called the reward and penalty parameter
respectively. Depending on the values of these parameters 3 distinct variations of the
algorithm can be considered. When λ1 = λ2, the algorithm is referred to as Linear
Reward-Penalty (LR−P) while it is called Linear Reward-εPenalty (LR−εP) when
λ1 >> λ2. If λ2 = 0 the algorithm is called Linear Reward-Inaction (LR−I). In this
case, λ1 is also sometimes called the learning rate:

pi(t + 1) = pi(t)+λ1r(t)(1− pi(t)) (14.7)

if a(t) = ai

p j(t + 1) = p j(t)−λ1r(t)p j(t) (14.8)

if a j �= ai

This algorithm has also been shown to be a special case of the REINFORCE
(Williams, 1992) update rules. Despite the fact that all these update rules are derived
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from the same general scheme, they exhibit very different learning behaviors. Inter-
estingly, these learning schemes perform well in game contexts, even though they
do not require any information (actions, rewards, strategies) on the other players in
the game. Each agent independently applies a LA update rule to change the prob-
abilities over its actions. Below we list some interesting properties of LA in game
settings. In two-person zero-sum games, the LR−I scheme converges to the Nash
equilibrium when this exists in pure strategies, while the LR−εP scheme is able to
approximate mixed equilibria. In n-player common interest games reward-inaction
also converges to a pure Nash equilibrium. In (Sastry et al, 1994), the dynamics
of reward-inaction in general sum games are studied. The authors proceed by ap-
proximating the update in the automata game by a system of ordinary differential
equations. Following properties are found to hold for the LR−I dynamics:

• All Nash equilibria are stationary points.
• All strict Nash equilibria are asymptotically stable.
• All stationary points that are not Nash equilibria are unstable.

Furthermore, in (Verbeeck, 2004) it is shown that an automata team using the
reward-inaction scheme will convergence to a pure joint strategy with probability
1 in common as well as conflicting interest games with stochastic payoffs. These
results together imply local convergence towards pure Nash equilibria in n-player
general-sum games(Verbeeck, 2004). Since NE with higher payoffs are stronger at-
tractors for the LA, the agents are more likely to reach the better NE. Equipped with
an exploration strategy with only requires very limited communications, the agents
are able to explore the interesting NE without the need for exhaustive exploration
and once these are found, different solution concepts can be considered, for example
fair solutions alternating between different Pareto optimal solutions.

In (Verbeeck et al, 2005) it has also been shown that these LA based approach
is able to converge in a setting where agents take actions asynchronously and the
rewards are delayed as is common in load balancing settings or congestion games.

Another gradient technique frequently studied in games is the Infinitesimal Gra-
dient Ascent (IGA) family of algorithms (Singh et al, 2000; Bowling and Veloso,
2001; Zinkevich, 2003; Bowling, 2005). In addition to demonstrating Nash equilib-
rium convergence in a number of repeated game settings, several of these papers
also evaluate the algorithms with respect to their regret.

14.3 Sequential Games

While highlighting some of the important issues introduced by learning in a multi-
agent environment, the traditional game theory framework does not capture the full
complexity of multi-agent reinforcement learning. An important part of the rein-
forcement learning problem is that of making sequential decisions in an environment
with state transitions and cannot be described by standard normal form games, as
they allow only stationary, possibly stochastic, reward functions that depend solely
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on the actions of the players. In a normal form game there is no concept of a system
with state transitions, a central issue of the Markov decision process concept. There-
fore, we now consider a richer framework which generalizes both repeated games
and MDPs. Introducing multiple agents to the MDP model significantly compli-
cates the problem that the learning agents face. Both rewards and transitions in the
environment now depend on the actions of all agents present in the system. Agents
are therefore required to learn in a joint action space. Moreover, since agents can
have different goals, an optimal solution which maximizes rewards for all agents
simultaneously may fail to exist.

To accommodate the increased complexity of this problem we use the represen-
tation of Stochastic of Markov games (Shapley, 1953). While they were originally
introduced in game theory as an extension of normal form games, Markov games
also generalize the Markov Decision process and were more recently proposed as
the standard framework for multi-agent reinforcement learning (Littman, 1994). As
the name implies, Markov games still assume that state transitions are Markovian,
however, both transition probabilities and expected rewards now depend on the joint
action of all agents. Markov games can be seen as an extension of MDPs to the
multi-agent case, and of repeated games to multiple state case. If we assume only 1
agent, or the case where other agents play a fixed policy, the Markov game reduces
to an MDP. When the Markov game has only 1 state, it reduces to a repeated normal
form game.

14.3.1 Markov Games

An extension of the single agent Markov decision process (MDP) to the multi-agent
case can be defined by Markov Games. In a Markov Game, joint actions are the
result of multiple agents choosing an action independently.

Definition 14.4. A Markov game is a tuple (n,S,A1,...,n,R1,...,n,T ):

• n the number of agents in the system.
• S = {s1, . . . ,sN} a finite set of system states.
• Ak the action set of agent k.
• Rk : S×A1× . . .×An× S→ R, the reward function of agent k. 1

• T : S×A1× . . .×An → μ(S) the transition function.

Note that Ak(si) is now the action set available to agent k in state si, with k : 1 . . .n,
n being the number of agents in the system and i : 1, . . . ,N, N being yhe number
of states in the system. Transition probabilities T (si,ai,s j) and rewards Rk(si,ai,s j)
now depend on a current state si, next state s j and a joint action from state si, i.e.
ai = (ai

1, . . .a
i
n) with ai

k ∈ Ak(si). The reward function Rk(si,ai,s j ,) is now individual

1 As was the case for MDPs, one can also consider the equivalent case where reward does
not depend on the next state.
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to each agent k. Different agents can receive different rewards for the same state
transition. Transitions in the game are again assumed to obey the Markov property.

As was the case in MDPs, agents try to optimize some measure of their future
expected rewards. Typically they try to maximize either their future discounted re-
ward or their average reward over time. The main difference with respect to single
agent RL, is that now these criteria also depend on the policies of other agents. This
results in the following definition for the expected discounted reward for agent k
under a joint policy π = (π1, . . . ,πn), which assigns a policy πi to each agent i:

V πk (s) = Eπ
{
∞

∑
t=0
γt rk(t + 1) | s(0) = s

}
(14.9)

while the average reward for agent k under this joint policy is defined as:

Jπk (s) = lim
T→∞

1
T

Eπ
{

T

∑
t=0

rk(t + 1) | s(0) = s

}
(14.10)

Since it is in general impossible to maximize this criterion for all agents simul-
taneously, as agents can have conflicting goals, agents playing a Markov game face
the same coordination problems as in repeated games. Therefore, typically one relies
again on equilibria as the solution concept for these problems. The best response and
Nash equilibrium concepts can be extended to Markov games, by defining a policy
πk as a best response, when no other policy for agent k exists which gives a higher
expected future reward, provided that the other agents keep their policies fixed.

It should be noted that learning in a Markov game introduces several new issues
over learning in MDPs with regard to the policy being learned. In an MDP, it is
possible to prove that, given some basic assumptions, an optimal deterministic pol-
icy always exists. This means it is sufficient to consider only those policies which
deterministically map each state to an action. In Markov games, however, where we
must consider equilibria between agent policies, this no longer holds. Similarly to
the situation in repeated games, it is possible that a discounted Markov game, only
has Nash equilibria in which stochastic policies are involved. As such, it is not suffi-
cient to let agents map a fixed action to each state: they must be able to learn a mixed
strategy. The situation becomes even harder when considering other reward criteria,
such as the average reward, since then it is possible that no equilibria in stationary
strategies exist (Gillette, 1957). This means that in order to achieve an equilibrium
outcome, the agents must be able to express policies which condition the action se-
lection in a state on the entire history of the learning process. Fortunately, one can
introduce some additional assumptions on the structure of the problem to ensure the
existence of stationary equilibria (Sobel, 1971).

14.3.2 Reinforcement Learning in Markov Games

While in normal form games the challenges for reinforcement learners originate
mainly from the interactions between the agents, in Markov games they face the
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additional challenge of an environment with state transitions. This means that the
agents typically need to combine coordination methods or equilibrium solvers used
in repeated games with MDP approaches from single-agent RL.

14.3.2.1 Value Iteration

A number of approaches have been developed, aiming at extending the successful
Q-learning algorithm to multi-agent systems. In order to be successful in a multi-
agent context, these algorithms must first deal with a number of key issues.

Firstly, immediate rewards as well as the transition probabilities depend on the
actions of all agents. Therefore, in a multi-agent Q-learning approach, the agent does
not simply learns to estimate Q(s,a) for each state action pair, but rather estimates
Q(s,a) giving the expected future reward for taking the joint action a = a1, . . . ,an in
state s. As such, contrary to the single agent case, the agent does not have a single
estimate for the future reward it will receive for taking an action ak in state s. Instead,
it keeps a vector of estimates, which give the future reward of action ak, depending
on the joint action a−k played by the other agents. During learning, the agent selects
an action and then needs to observe the actions taken by other agents, in order to
update the appropriate Q(s,a) value.

This brings us to the second issue that a multi-agent Q-learner needs to deal with:
the state values used in the bootstrapping update. In the update rule of single agent
Q-learning the agent uses a maximum over its actions in the next state s′. This gives
the current estimate of the value of state s′ under the greedy policy. But as was
mentioned above, the agent cannot predict the value of taking an action in the next
state, since this value also depends on the actions of the other agents. To deal with
this problem, a number of different approaches have been developed which calculate
a value of state s′ by also taking into account the other agents. All these algorithms,
of which we describe a few examples below, correspond to the general multi-agent
Q-learning template given in Algorithm 23, though each algorithm differs in the
method used to calculate the Vk(s′) term in the Q-learning update.

A first possibility to determine the expected value of a state Vk(s) is to employ
opponent modeling. If the learning agent is able to estimate the policies used by the
other agents, it can use this information to determine the expected probabilities with
which the different joint actions are played. Based on these probabilities the agent
can then determine the expected value of a state. This is the approach followed, for
example, by the Joint Action Learner (JAL) algorithm (Claus and Boutilier, 1998).
A joint action learner keeps counts c(s,a−k) of the number of times each state joint
action pair (s,a−k) with a−k ∈ A−k is played. This information can then be used to
determine the empirical frequency of play for the possible joint actions of the other
agents:

F(s,a−k) =
c(s,a−k)

∑a−k
′∈A−k

n(s,a−k
′)
,
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t=0
Qk(s,a) = 0 ∀s,a,k
repeat

for all agents k do
select action ak(t)

execute joint action a = (a1, . . . ,an)
observe new state s’, rewards rk
for all agents k do

Qk(s,a) = Qk(s,a) + α [Rk(s,a) + γVk(s′) - Qk(s,a)]
until Termination Condition

Algorithm 23. Multi-Agent Q-Learning

This estimated frequency of play for the other agents, allows the joint action learner
to calculate the expected Q-values for a state:

Vk(s) = max
ak

Q(s,ak) = ∑
a−k∈A−k

F(s,a−k).Q(s,ak,a−k),

where Q(s,ak,a−k) denotes the Q-value in state s for the joint action in which agent
k plays ak and the other agents play according to a−k. These expected Q-values can
then be used for the agent’s action selection, as well as in the Q-learning update, just
as in the standard single-agent Q-learning algorithm.

Another method used in multi-agent Q-learning is to assume that the other agents
will play according to some strategy. For example, in the minimax Q-learning algo-
rithm (Littman, 1994), which was developed for 2-agent zero-sum problems, the
learning agent assumes that its opponent will play the action which minimizes the
learner’s payoff. This means that the max operator of single agent Q-learning is
replaced by the minimax value:

Vk(s) = mina′maxσ∈μ(A)∑
a∈A

σ(a)Q(s,a,a′)

The Q-learning agent maximizes over its strategies for state s, while assuming that
the opponent will pick the action which minimizes the learner’s future rewards.
Note that the agent does not just maximizes over the deterministic strategies, as it
is possible that the maximum will require a mixed strategy. This system was later
generalized to friend-or-foe Q-learning (Littman, 2001a), where the learning agent
deals with multiple agents by marking them either as friends, who assist to maximize
its payoff or foes, who try to minimize the payoff.

Alternative approaches assume that the agents will play an equilibrium strategy.
For example, Nash-Q (Hu and Wellman, 2003) observes the rewards for all agents
and keeps estimates of Q-values not only for the learning agent, but also for all
other agents. This allows the learner to represent the joint action selection in each
state as a game, where the entries in the payoff matrix are defined by the Q-values
of the agents for the joint action. This representation is also called the stage game.
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A Nash-Q agent then assumes that all agents will play according to a Nash equilib-
rium of this stage game in each state:

Vk(s) = Nashk(s,Q1,...,Qn),

where Nashk(s,Q1,...,Qn) denotes the expected payoff for agent k when the agents
play a Nash equilibrium in the stage game for state s with Q-values Q1,...,Qn. Under
some rather strict assumptions on the structure of the stage games, Nash-Q can be
shown to converge in self-play to a Nash equilibrium between agent policies.

The approach used in Nash-Q can also be combined with other equilibrium con-
cepts, for example correlated equilibria (Greenwald et al, 2003) or the Stackelberg
equilibrium (Kononen, 2003). The main difficulty with these approaches is that the
value is not uniquely defined when multiple equilibria exist, and coordination is
needed to agree on the same equilibrium. In these cases, additional mechanisms are
typically required to select some equilibrium.

While the intensive research into value iteration based multi-agent RL has
yielded some theoretical guarantees (Littman, 2001b), convergence results in the
general Markov game case remain elusive. Moreover, recent research indicates that
a reliance on Q-values alone may not be sufficient to learn an equilibrium policy in
arbitrary general sum games (Zinkevich et al, 2006) and new approaches are needed.

14.3.2.2 Policy Iteration

In this section we describe policy iteration for multi-agent reinforcement learning.
We focus on an algorithm called Interconnected Learning Automata for Markov
Games (MG-ILA)(Vrancx et al, 2008b), based on the learning automata from Sec-
tion 14.2.2.3 and which can be applied to average reward Markov games. The al-
gorithm can be seen as an implementation of the actor-critic framework, where the
policy is stored using learning automata. The main idea is straightforward: each
agent k puts a single learning automaton LA (k,i) in each system state si. At each
time step only the automata of the current state are active. Each automaton then
individually selects an action for its corresponding agent. The resulting joint action
triggers the next state transition and immediate rewards. Automata are not updated
using immediate rewards but rather using a response estimating the average reward.
The complete algorithm is listed in Algorithm 24.

An interesting aspect of this algorithm is that its limiting behavior can be approx-
imated by considering a normal form game in which all the automata are players. A
play in this game selects an action for each agent in each state, and as such corre-
sponds to a pure, joint policy for all agents. Rewards in the game are the expected
average rewards for the corresponding joint policies. In (Vrancx et al, 2008b),it is
shown that the algorithm will converge to a pure Nash equilibrium in this result-
ing game (if it exists), and that this equilibrium corresponds to a pure equilibrium
between the agent policies. The game approximation also enables an evolutionary
game theoretic analysis of the learning dynamics (Vrancx et al, 2008a), similar to
that applied to repeated games.
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initialise rprev(s,k), tprev(s), aprev(s,k),t, rtot(k),ρk(s,a), ηk(s,a) to zero, ∀s,k,a.
s← s(0)
loop

for all Agents k do
if s was visited before then
• Calculate received reward and time passed since last visit to state s:

Δ rk = rtot(k)− rprev(s,k)

Δ t = t− tprev(s)

• Update estimates for action aprev(s,k) taken on last visit to s:

ρk(s,aprev(s,k)) = ρk(s,aprev(s,k))+Δ rk

ηk(s,aprev(s,k)) = ηk(s,aprev(s,k))+Δ t

• Calculate feedback:

βk(t) =
ρk(s,aprev(s,k))

ηk(s,aprev(s,k))

• Update automaton LA(s,k) using LR−I update with a(t)= aprev(s,k) and βk(t)
as above.

• Let LA(s,k) select an action ak.
• Store data for current state visit:

tprev(s)← t

rprev(s,k)← rtot(k)

aprev(s,k)← ak

• Execute joint action a = (a1, . . . ,an), observe immediate rewards rk and new state s′

• s← s′

• rtot(k)← rtot(k)+ rk
• t ← t +1

Algorithm 24. MG-ILA

While not as prevalent as value iteration based methods, a number of interesting
approaches based on policy iteration have been proposed. Like the algorithm de-
scribed above, these methods typically rely on a gradient based search of the policy
space. (Bowling and Veloso, 2002), for example, proposes an actor-critic frame-
work which combines tile coding generalization with policy gradient ascent and
uses the Win or Learn Fast (WoLF) principle. The resulting algorithm is empirically
shown to learn in otherwise intractably large problems. (Kononen, 2004) introduces
a policy gradient method for common-interest Markov games which extends the
single agent methods proposed by (Sutton et al, 2000). Finally, (Peshkin et al, 2000)
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develop a gradient based policy search method for partially observable, identical
payoff stochastic games. The method is shown to converge to local optima which
are, however, not necessarily Nash equilibria between agent policies.

14.4 Sparse Interactions in Multi-agent System

A big drawback of reinforcement learning in Markov games is the size of the state-
action-space in which the agents are learning. All agents learn in the entire joint
state-action space and as such these approaches become quickly infeasible for all
but the smallest environments and with a limited number of agents. Recently, a
lot of attention has gone into mitigating this problem. The main intuition for these
approaches is to only explicitly consider the other agents if a better payoff can be
obtained by doing so. In all other situations the other agents can safely be ignored
and as such have the advantages of learning in a small state-action space, while also
having access to the necessary information to deal with the presence of other agents,
if this is beneficial. An example of such systems is an automated warehouse, where
the automated guided vehicles only have to consider each other when they are close
by to each other. We can distinguish two different lines of research: agents can base
their decision for coordination on the actions that are selected, or agents can focus on
the state information at their disposal, and learn when it is beneficial to observe the
state information of other agents. We will describe both these approaches separately
in Sections 14.4.2.1 and 14.4.2.2

14.4.1 Learning on Multiple Levels

Learning with sparse interactions provides an easy way of dealing with the expo-
nential growth of the state space in terms of the number of agents involved in the
learning process. Agents should only rely on more global information, in those situ-
ations where the transition of the state of the agent to the next state and the rewards
the agents experience are not only dependent on the local state information of the
agent performing the action, but also on the state information or actions of other
agents. The idea of sparse interactions is ’When is an agent experiencing influence
from another agent?’. Answering this questing, allows an agent to know when it can
select its actions independently (i.e. the state transition function and reward function
are only dependent on its own action) or when it must coordinate with other agents
(i.e. the state transition function and the reward function is the effect of the joint ac-
tion of multiple agents). This leads naturally to a decomposition of the multi-agent
learning process into two separate layers. The top layer should learn when it is nec-
essary to observe the state information about other agents and select whether pure
independent learning is sufficient, or whether some form of coordination between
the agents is required. The bottom layer contains a single agent learning technique,
to be used when there is no risk of influence by other agents, and a multi-agent tech-
nique, to be used when the state transition and reward the agent receives is depen-
dent of the current state and actions of other agents. Figure 14.2 shows a graphical
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representation of this framework. In the following subsection we begin with an
overview of algorithms that approach this problem from the action space point of
view, and focus on the coordination of actions.

Is there interaction between the agents?

Act independently, as if single-agent.
Use a multi-agent technique to 

coordinate.

No Yes

Fig. 14.2 Decoupling the learning process by learning when to take the other agent into
account on one level, and acting on the second level

14.4.2 Learning to Coordinate with Sparse Interactions

14.4.2.1 Learning Interdependencies among Agents

Kok & Vlassis proposed an approach based on a sparse representation for the joint
action space of the agents while observing the entire joint state space. More specif-
ically they are interested in learning joint-action values for those states where the
agents explicitly need to coordinate. In many problems, this need only occurs in very
specific situations (Guestrin et al, 2002b). Sparse Tabular Multiagent Q-learning
maintains a list of states in which coordination is necessary. In these states, agents
select a joint action, whereas in all the uncoordinated states they all select an action
individually (Kok and Vlassis, 2004b). By replacing this list of states by coordi-
nation graphs (CG) it is possible to represent dependencies that are limited to a
few agents (Guestrin et al, 2002a; Kok and Vlassis, 2004a, 2006). This technique
is known as Sparse Cooperative Q-learning (SCQ). Figure 14.3 shows a graphical
representation of a simple CG for a situation where the effect of the actions of agent
4 depend on the actions of agent 2 and the actions of agent 2 and 3 both depend on
the actions of agent 1, so the nodes represent the agents, while an edge defines a
dependency between two agents. If agents transitioned into a coordinated state, they
applied a variable elimination algorithm to compute the optimal joint action for the
current state. In all other states, the agents select their actions independently.

In later work, the authors introduced Utile Coordination (Kok et al, 2005). This
is a more advanced algorithm that uses the same idea as SCQ, but instead of hav-
ing to define the CGs beforehand, they are being learned online. This is done by
maintaining statistical information about the obtained rewards conditioned on the
states and actions of the other agents. As such, it is possible to learn the context spe-
cific dependencies that exist between the agents and represent them in a CG. This
technique is however limited to fully cooperative MAS.
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A1

A2 A3

A4

Fig. 14.3 Simple coordination graph. In the situation depicted the effect of the actions of
agent 4 depends on the actions of agent 2 and the actions of agent 2 and 3 both depend on the
actions of agent 1.

The primary goal of these approaches is to reduce the joint-action space. How-
ever, the computation or learning in the algorithms described above, always employ
a complete multi-agent view of the entire joint-state space to select their actions,
even in states where only using local state information would be sufficient. As such,
the state space in which they are learning is still exponential in the number of agents,
and its use is limited to situations in which it is possible to observe the entire joint
state.

14.4.2.2 Learning a Richer State Space Representation

Instead of explicitly learning the optimal coordinated action, a different approach
consists in learning in which states of the environment it is beneficial to include the
state information about other agents. We will describe two different methods. The
first method learns in which states coordination is beneficial using an RL approach.
The second method learns the set of states in which coordination is necessary based
on the observed rewards. Unlike the approaches mentioned in Section 14.4.2.1, these
approaches can also be applied to conflicting interest games and allow independent
action selection.

The general idea of the approaches described in this section are given by Figure
14.4. These algorithms will expand the local state information of an agent to in-
corporate the information of another agent if this information is necessary to avoid
suboptimal rewards.

Learning of Coordination
Spaan and Melo approached the problem of coordination from a different angle than
Kok & Vlassis (Spaan and Melo, 2008). They introduced a new model for multi-
agent decision making under uncertainty called interaction-driven Markov games
(IDMG). This model contains a set of interaction states which lists all the states in
which coordination is beneficial.
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Expand

32

7 98

5

1

4 6

4-1 4-2 4-3 6-1 6-2

Fig. 14.4 Graphical representation of state expansion with sparse interactions. Independent
single states are expanded to joint-states where necessary. Agents begin with 9 independent
states. After a while states 4 and 6 of an agent are expanded to include the states of another
agent.

In later work, Melo and Veloso introduced an algorithm where agents learn in
which states they need to condition their actions on the local state information of
other agents (Melo and Veloso, 2009). As such, their approach can be seen as a
way of solving an IDMG where the states in which coordination is necessary is
not specified beforehand. To achieve this, they augment the action space of each
agent with a pseudo-coordination action (COORDINATE). This action will perform
an active perception step. This could for instance be a broadcast to the agents to
divulge their location or using a camera or sensors to detect the location of the other
agents. This active perception step will decide whether coordination is necessary or
if it is safe to ignore the other agents. Since the penalty of miscoordination is bigger
than the cost of using the active perception, the agents learn to take this action in the
interaction states of the underlying IDMG. This approach solves the coordination
problem by deferring it to the active perception mechanism.

The active perception step of LoC can consist of the use of a camera, sensory data,
or communication to reveal the local state information of another agent. As such the
outcome of the algorithm depends on the outcome of this function. Given an adequate
active perception function, LoC is capable of learning a sparse set of states in which
coordination should occur. Note that depending on the active perception function,
this algorithm can be used for both cooperative as conflicting interest systems.

The authors use a variation on the standard Q-learning update rule:

QC
k (s,ak)← (1−α(t))QC

k (s,a)+α(t)
[

rk + γmax
a′

Qk(s
′
k,a

′
k)

]
(14.11)

Where QC
k represents the Q-table containing states in which agent k will coordinate

and Qk contains the state-action values for its independent states. The joint state
information is represented as s, whereas sk and ak are the local state information
and action of agent k. So the update of QC

k uses the estimates of Qk. This represents
the one-step behaviour of the COORDINATE action and allows for a sparse repre-
sentation of QC

k , since there is no direct dependency between the states in this joint
Q-table.
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Coordinating Q-Learning
Coordinating Q-Learning, or CQ-learning, learns in which states an agent should
take the other agents into consideration (De Hauwere et al, 2010) and in which
states is cant act using primarily only its own state information. More precisely, the
algorithm will identify states in which an agent should take other agents into account
when choosing its preferred action.

The algorithm can be decomposed into three sections: detecting conflict situa-
tions, selecting actions and updating the Q-values which will now be explained in
more detail:

1. Detecting conflict situations
Agents must identify in which states they experience the influence of at least
one other agent. CQ-Learning needs a baseline for this, so agents are assumed
to have learned a model about the expected payoffs for selecting an action in a
particular state applying an individual policy. For example, in a gridworld this
would mean that the agents have learned a policy to reach some goal, while
being the only agent present in the environment. If agents are influencing each
other, this will be reflected in the payoff the agents receive when they are acting
together. CQ-learning uses a statistical test to detect if there are changes in the
observed rewards for the selected state-action pair compared to the case where
they were acting alone in the environment. Two situations can occur:

a. The statistics allow to detect a change in the received immediate rewards.
In this situation, the algorithm will mark this state, and search for the cause
of this change by collecting new samples from the joint state space in order
to identify the joint state-action pairs in which collisions occur. These state-
action pairs are then marked as being dangerous, and the state space of the
agent is augmented by adding this joint state information. State-action pairs
that did not cause interactions are marked as being safe, i.e. the agent’s
actions in this state are independent from the states of other agents. So
the algorithm will first attempt to detect changes in the rewards an agent
receives, solely based on its own state, before trying to identify due to which
other agents these changes occur.

b. The statistics indicate that the rewards the agent receives are from the same
distribution as if the agent was acting alone. Therefore, no special action is
taken in this situation and the agent continues to act as if it was alone.

2. Selecting actions
If an agent selects an action, it will check if its current local state is a state in
which a discrepancy has been detected previously (case 1.a, described above). If
so, it will observe the global state information to determine if the state informa-
tion of the other agents is the same as when the conflict was detected. If this is
the case, it will condition its actions on this global state information, otherwise
it can act independently, using only its own local state information. If its local
state information has never caused a discrepancy (case 1.b, described above), it
can act without taking the other agents into consideration.
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3. Updating the Q-values
The updating the Q-values follows the same idea as the Learning of Coordi-
nation algorithm, described above. The Q-values for local states are used to
bootstrap the Q-values of the states that were augmented.

The statistical test used in the algorithm is the Student t-test (Stevens, J.P., 1990).
This test can determine whether the null hypothesis that the mean of two populations
of samples are equal holds, against the alternative that they are not equal. In CQ-
learning this test is first used to identify in which states the observed rewards are
significantly different from the expected rewards based on single agent learning,
and also to determine on which other agents’ states these changes depend.

A formal description of this algorithm is given in Algorithm 25.
CQ-learning can also be used to generalise information from states in which

coordination is necessary to obtain a state-independent representation of the co-
ordination dependencies that exist between the agents (De Hauwere et al, 2010).
This information can then be transferred to other, more complex, task environments
(Vrancx et al, 2011). This principle of transfer learning improves the learning speed,
since agents can purely focus on the core task of the problem at hand and use trans-
ferred experience for the coordination issues.

Initialise Qk through single agent learning and Q j
k;

while true do
if state sk of Agent k is unmarked then

Select ak for Agent k from Qk
else

if the joint state information js is safe then
Select ak for Agent k from Qk

else
Select ak for Agent k from Q j

k based on the joint state information js
Sample 〈sk,ak,rk〉
if t-test detects difference in observed rewards vs expected rewards for 〈sk,ak〉 then

mark sk
for ∀ other state information present in the joint state js do

if t-test detects difference between independent state sk and joint state js then
add js to Q j

k
mark js as dangerous

else
mark js as safe

if sk is unmarked for Agent k or js is safe then
No need to update Qk(sk).

else
Update Q j

k( js,ak)← (1−αt )Q
j
k( js,ak)+αt [r( js,ak)+ γ maxaQ(s′k,a)]

Algorithm 25. CQ-Learning algorithm for agent k
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This approach was later extended to detect sparse interactions that are only re-
flected in the reward signal, several timesteps in the future (De Hauwere et al, 2011).
Examples of such situations are for instance if the order in which goods arrive in a
warehouse are important.

14.5 Further Reading

Multi-agent reinforcement learning is a growing field of research, but quite some
challenging research questions are still open. A lot of the work done in single-agent
reinforcement learning, such as the work done in Bayesian RL, batch learning or
transfer learning, has yet to find its way to the multi-agent learning community.
General overviews of multi-agent systems are given by Weiss (Weiss, G., 1999),
Wooldridge (Wooldridge, M., 2002) and more recently Shoham (Shoham, Y. and
Leyton-Brown, K., 2009). For a thorough overview of the field of Game Theory the
book by Gintis will be very useful (Gintis, H., 2000).

More focused on the domain of multi-agent reinforcement learning we recom-
mend the paper by Buşoniu which gives an extensive overview of recent research
and describes a representative selection of MARL algorithms in detail together with
their strengths and weaknesses (Busoniu et al, 2008). Another track of multi-agent
research considers systems where agents are not aware of the type or capabilities of
the other agents in the system (Chalkiadakis and Boutilier, 2008).

An important issue in multi-agent reinforcement learning as well as in single
agent reinforcement learning, is the fact that the reward signal can be delayed in
time. This typically happens in systems which include queues, like for instance in
network routing and job scheduling. The immediate feedback of taking an action
can only be provided to the agent after the effect of the action becomes apparent,
e.g. after the job is processed. In (Verbeeck et al, 2005) a policy iteration approach
based on learning automata is given, which is robust with respect to this type of
delayed reward. In (Littman and Boyan, 1993) a value iteration based algorithm is
described for routing in networks. An improved version of the algorithm is presented
in (Steenhaut et al, 1997; Fakir, 2004). The improved version allows on one hand to
use the feedback information in a more efficient way, and on the other hand it avoids
instabilities that might occur due to careless exploration.
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470 A. Nowé, P. Vrancx, and Y.-M. De Hauwere

Sobel, M.: Noncooperative Stochastic Games. The Annals of Mathematical Statistics 42(6),
1930–1935 (1971)

Spaan, M., Melo, F.: Interaction-Driven Markov Games for Decentralized Multiagent Plan-
ning under Uncertainty. In: Proceedings of the 7th International Conference on Au-
tonomous Agents and Multi-Agent Systems (AAMAS), pp. 525–532. International Foun-
dation for Autonomous Agents and Multiagent Systems (2008)

Steenhaut, K., Nowe, A., Fakir, M., Dirkx, E.: Towards a Hardware Implementation of Re-
inforcement Learning for Call Admission Control in Networks for Integrated Services.
In: Proceedings of the International Workshop on Applications of Neural Networks to
Telecommunications, vol. 3, p. 63. Lawrence Erlbaum (1997)

Stevens, J.P.: Intermediate Statistics: A Modern Approach. Lawrence Erlbaum (1990)
Sutton, R., McAllester, D., Singh, S., Mansour, Y.: Policy Gradient Methods for Reinforce-

ment Learning with Function Approximation. In: Advances in Neural Information Pro-
cessing Systems, vol. 12(22) (2000)

Tsitsiklis, J.: Asynchronous stochastic approximation and Q-learning. Machine Learn-
ing 16(3), 185–202 (1994)
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