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Adaptive Optical-Phase Equalizer

In the framework of the complex-valued neural networks dealing with phase
values adaptively, we can realize various adaptive subsystems required in
optical communications such as a learning phase equalizer. Modern optical
communications attains a high degree of development mainly in trunk lines.
Moreover, near-future networks provide subscribers with high-speed and
multichannel information transmission over all-optical routers and switches.
Thereby, we have to compensate the fiber dispersion varying with succes-
sively switched optical routes. The dispersion variation is very large since the
high-speed multichannel optical communications occupies a wide frequency
bandwidth. The optical-phase equalizer to be presented in this chapter can be
one of the principles useful in such applications. As an example, we consider
a system with supervised learning here.

9.1 System Construction

Figure 9.1 shows the neuron, the basic element, constructing the system. Its
main characteristic is the multiple connections between m-th single input
and n-th single neurons. Each connection possesses its own time delay and
transparency. The connections altogether generate interference dependent on
the optical carrier frequency.

We can directly relate the amplitude and phase of lightwave to those of
signals in complex-valued neural networks. Then, to modulate phase in par-
allel two-dimensionally, we use a parallel-aligned liquid-crystal spatial light
modulator (PAL-SLM), as we did in Chapter 8. To modulate amplitude, on
the other hand, we use a PAL-SLM or ordinary (polarization-type) spatial
light modulator (SLM) in combination with a polarizer. We express the in-
put signal as xm ≡ |xm| exp(iαm), output signal as yn ≡ |yn| exp(iβn), and
connection weight as wnm,h ≡ |wnm,h| exp(i2πfτnm,h), respectively, where m
and n are indices for input and output vectors, while h is that for multiple
connections mentioned above.

A. Hirose: Complex-Valued Neural Networks, SCI 400, pp. 143–149.
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Fig. 9.1 Element constructing the adaptive phase equalizer. (Reprinted from Fig.1
in [209]: Sotaro Kawata and Akira Hirose: A coherent optical neural network that
learns desirable phase values in frequency domain by using multiple optical-path
differences, Opt. Lett., 28(24):2524–2526, 2003, with permission.)

The purpose of the network is to generate a desirable phase value against
input phase by adaptive processing. The task is classified into the function
approximation described in Section 4.4. We realize function approximation
in a frequency-dependent manner by the method explained in Section 4.4.5.
The processing conducted by the neuron is expressed as

yn = g

(∑
m

∑
h

(|wnm,h| exp(i2πfτnm,h) xm)

)
(9.1)

g(u) ≡ A tanh(B |u|) exp(i arg(u)) (9.2)

All the weighted inputs are summed in the complex domain to yield the
internal state u. The activation function g(u) is an amplitude-phase-type
function defined in (9.2), A is saturation amplitude in output signals, and B
is amplitude gain.

9.2 Optical Setup

We consider one of the simplest examples, i.e., an optical circuit consisting
of a single neuron [209],[192]. Though the construction is simple, the func-
tion is fulfilling. We implement the neuron shown in Fig.9.1 as an optical
circuit illustrated in Fig.9.2(a). Figure 9.2(b) is a photograph of the opti-
cal setup, where a three-armed optical interferometer is constructed as a set
of self-homodyne circuits. We examine the phase of the circuit output by
self-homodyning. We realize a frequency modulation by employing a semi-
conductor laser diode. The basis of the optical circuit is the same as that in
the associative memory presented in Chapter 8.
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Fig. 9.2 (a)Construction [209] and (b)photograph of the optical setup. (Reprinted
from Fig.2 in [209] in figure caption of Fig.9.1 with permission.)
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Fig. 9.3 Assignments of signals on the PAL-SLM and the CCD. (Reprinted from
Fig.3 in [209] in figure caption of Fig.9.1 with permission.)

The delay length for input signals of the neuron is physically represented by
the difference between the signal optical-path length LSigh and the reference
length LRef , i.e., ΔLh ≡ LSigh−LRef , where we assume ΔL1 < ΔL2 < ΔL3.
The delay time τnm,h of the connection weight wnm,h in total is the sum of
the delay time of the SLM modulation, shown in Fig.9.3, and the delay in
the optical-path difference, i.e., τSLMnm,h +ΔLh/c. Here we assume |wnm,h|=1
for simplicity. The optical sum and the nonlinearity in g(·) is realized by
the optical detector (CCD: Charge Coupled Device) that detects interference
result as shown in Fig.9.3.

9.3 Dynamics of Output Phase-Value Learning

We synthesize a desired output signal (phase) by adjusting the connection
weights wnm,h in learning. As we discussed in Chapter 4, we have two frame-
works in supervised learning in single-layered complex-valued neural net-
works, i.e., the complex-valued steepest-descent method and the complex-
valued correlation learning superficially identical to the complex-valued Heb-
bian rule. Here we employ the delay-time learning, (4.97), which is the
frequency-dependent version of the complex-valued correlation learning men-
tioned in Section 4.3.8. That is, we have

τ
dτnm,h

dt
=

1

2πf

|yn||xm|
|wnm,h| sin(βn − αm − 2πfτnm,h) (9.3)

where τ without index is the time constant determining the learning speed.
The learning procedure is described as follows. First, we determine an

arbitrary frequency f̂ . Then we present signal sets (f̂ , x̂, ŷ) to the system,
where ŷ is the output to be learned for an input x̂. We update the connection
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weights wnm,h according to (9.3) for all the connections. We repeat the above

process for all the frequency–signal sets f̂ , x̂, and ŷ to be learned.
We choose initial weight values wnm,h such that the transparency is

|wnm,h|=1 and that the delay time is τnm,h=θ0/(2πf0) + ΔLh/c where θ0
is random value in the range of 0 ∼ 2π, where f0 is the optical center fre-
quency (the frequency without modulation). As the learning proceeds, the
system learns to generate the desired output ŷ for input x̂ when the carrier
frequency is f = f̂ . In the case that f �= f̂ , the output can be different.

9.4 Performance of Phase Equalization

The setup for the optical experiment is shown in Fig.9.2. First, we confirm the
learning dynamics in simulation using parameters in the optical experiments
to be conducted. Then we proceed to an actual experiment. We prepare vari-
ous desirable output phase values at four carrier-frequency points from 472.002
THz to 472.008 THz with an interval of 2GHz, and make the system learn the
values. The upper limit of the learning iteration has been chosen at 200. We
investigate the generalization characteristics in the frequency domain. We also
define an error function as (9.4), and examine its evolution, i.e.,

E ≡ 1

2

∑
μ

|y(x̂μ)− ŷμ|2 (9.4)

where μ is the index for memorized vectors. In the following simulation and
experiment, the learning is effective not only for phase but also for amplitude.
However, with the present purpose of phase equalization, we investigate the
output phase values in particular.

Figure 9.4 shows typical results of simulation (broken curves) and optical
experiment (crosses). Closed circles in Fig.9.4 show the teacher signals that
the system should learn. Figure 9.4(a) shows random output phase values
before learning. However, for the output values at 80 iterations in Fig.9.4(b)
and those at 200 iterations in Fig.9.4(c), we find that the system learns grad-
ually the desirable outputs. Figure 9.4(d) presents the reduction of the error
function. The almost monotonic decrease reveals the practical effectiveness
of the learning dynamics.

By combining the processing elements shown here, we will obtain more
complex phase curves in the frequency domain. In combination with the
scaling in the frequency sensitivity, we can realize various types of dispersion
compensation, besides wavelength-selecting routers. The scaling is actual-
ized by preparing appropriate rough delays ΔL. The frequency-dependent
learning will ultimately lead to novel parallelism based on frequency-domain
multiplexing in neural networks utilizing the vast frequency bandwidth in
lightwave.
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Fig. 9.4 Results of the optical experiment. Output phase values (a)before learning,
(b)at 80 learning iterations, and (c)at 200 learning iterations. (d)Change in the error
function. (Reprinted from Fig.5 in [209] in figure caption of Fig.9.1 with permission.)

Note that, in the present experiment mentioned here, we used a two-
dimensional spatial light modulator (SLM) and other bulky optics. There-
fore, the system is not so small. However, the principle of the learning and
self-organization is widely applicable so that this type of system can be con-
structed based on, for instance, optical waveguides and photonic crystals.
With such devices, we can design micro-optical circuits with high tolerance
to mechanical turbulence.
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9.5 Summary

In this chapter, we described a lightwave phase equalizer as a communications-
network application of a coherent neural network. The learning dynamics and
characteristics were presented. There are many other application areas in op-
tical communications. One example is an adaptive recognition and classifi-
cation of optical binary phase shift keying (BPSK) labels in photonic label
routing for high-speed optical networks [210]. Such learning networks that
treat the phase of waves adaptively are directly applicable also to sonic, ul-
trasonic, and other wave-related systems. They are also expected to pioneer
novel future quantum devices that are highly adaptive.
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