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Removal of Phase Singular Points to Create
Digital Elevation Map

The phase map obtained in observation of Mount Fuji presented in Chapter 5
shows the reflection phase modulo 2π. Therefore, the fringe curves are con-
tours showing the geography in the observation area. Given one knows the
fact, one can imagine the landscape of Mount Fuji to some extent. Comput-
ers can perform a similar processing to yield a height map, which we call a
digital elevation map (or digital elevation model: DEM). The process to un-
wrap the phase image wrapped within −π to π is the phase unwrapping. The
phase unwrapping is, however, known as a difficult process for conventional
computers because of the existence of phase singular points. In this chapter,
first we explain the singular points, which is a serious noise induced in the
interferometric observation. Then we present a method to remove the singu-
lar points effectively by using a complex-valued neural network, and generate
a high-quality DEM with a smaller calculation cost.

7.1 Phase Unwrapping

The phase unwrapping is explained as follows. As we discussed in Chapter
5, the phase map obtained in airborne / satellite observation using interfero-
metric radars possesses information equivalent to the height of land surface.
However, the phase values are wrapped into −π to π. By unwrapping them
using computers, we can obtain so-called digital elevation map (DEM). This
process is the phase unwrapping.

However, the phase unwrapping is known as a difficult task in conventional
computing. Figure 7.1 illustrates, a little more microscopically, the amplitude
and phase observed in a similar observation [202]. In the phase image, we can
find some points where the phase values have rotational components. That
is to say, when we examine the phase value around the point, it increases
in 2π unawares, or decreases in −2π. We call the point the singular point
(SP). The main origin is interference noise. We can also find in the amplitude
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Fig. 7.1 Typical (a)amplitude and (b)phase images obtained by interferometric
radars. In the phase image, we can find five phase singular points indicated by open
circles. (Reprinted from Fig.3 in [202] with permission from Springer-Verlag.)

image that the points corresponding to the SPs have abrupt small values. The
phenomenon is very natural since, in physical consideration, a point having
indefinite phase value should not have any non-zero amplitude.

Because the phase value represents height of land surface, the phase field
should intrinsically be conservative. Nonetheless, the field cannot be con-
servative actually. Then we cannot determine the height. For example, as
we see later, the phase map shown in Fig.7.6(a) (Page 130) contains SPs of
over 600.

However, we have a conventional method called the branch-cut method,
so that we manage to determine, or more accurately, to estimate the height.
In the branch-cut method, fundamentally we determine the height of a pixel
by examining the phase shift between neighboring pixels, pixel by pixel, by
incorporating 2π jump when we consider it appropriate. However, in this
process, we place lines connecting SPs, and we determine the height without
crossing the SP-connecting lines. In this way, regardless, we determine the
elevation, though we have 2π cliffs on the SP-connecting lines because the line
functions as a barrier of the spreading of the 2π inconsistency. Therefore, the
total length of the lines should be as small as possible. When we connect all
the SPs, the lines appear to be a branch in total. Hence the name branch-cut.
The shorter the total length is, the better the DEM quality becomes. However,
such a search problem with combinatorial explosion to find the shortest-line
pairs is incompatible with ordinary computing. The computational cost grows
seriously rapidly as the number of SPs increases.
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Fig. 7.2 Point s and its neighboring points ti in the neighbor’s area Ns.

7.2 Noise Reduction with a Complex-Valued Cellular
Neural Network

Then, how can the human brain easily estimate the shape of Mount Fuji?
Human beings first estimate the shape roughly and globally. Afterwards, if
we find an inconsistent point in a precise examination of the phase map, we
will presume a correct pixel value in a pattern processing by observing the
surrounding pixels, and will remove the SP.

In this chapter, we present a neural network that performs a task such as
the “phase-familiar brain” does. It is a superbrain named complex Markov-
random-field (CMRF) estimating neural network (See Section 4.6) which is
constructed as a complex-valued cellular neural network. A cellular neural
network has neurons at lattice points, and a neuron has connections only
locally. A two-dimensional cellular network is suitable for image processing
and compatible with integration on a chip.

In phase unwrapping, we may use only phase data in general. However, the
present complex-valued network deals with not only the phase but also the
amplitude, as complex amplitude consistently, of the image data because, in
many cases, they are related closely to each other. As we mentioned above,
they are correlated strongly in particular at around an SP. We utilize the
amplitude information effectively.

The network estimates a correct pixel value at a detected SP by using the
values around the SP, and modifies the pixel value based on the estimate. This
process reduces the number of SPs considerably, lightens the calculation cost
required in making a DEM, and improves the DEM quality [194],[203],[198].

In the same manner as we did in Chapter 5, we label the pixels as shown
in Fig.7.2. We adopt the CMRF model. Remember that, when we consider a
probability P (zs) that the pixel s has a value of zs

P (zs| values of pixels in the image except for s ) = P (zs|zti ∈ Ns) (7.1)
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where ti ∈ Ns is neighbors, the probability can be assumed constant in an
area with a certain extension and, consequently, it represents a nature of the
image statistically.

Accordingly, the value at the pixel s is estimated statistically by the neigh-
bors. In the conventional real-valued MRF model, the probability Ps that the
pixel s takes the value of xs is estimated by the neighbor values xt as

P (xs) =
1

Z
e−E(xs) (7.2)

E(xs) =
1

2σ2

(
xs −

∑
t∈Ns

ΛT
stxt

)2

(7.3)

where Z is the partition function for normalization, Λst (= wst in Section
4.6) is correlations in a generalized-inverse-matrix expression, σ2 is variance
reflecting the degree of fluctuation, and E(xs) is energy. The parameters Λst

and σ2 are called the MRF parameters.
We extend the formula into a complex one to extract statistic features and

to estimate pixel values of complex-valued images. We derive the complex-
valued version for a complex pixel value zs, by considering an analogy with the
real-valued one given above and substituting conjugate transpose for simple
transpose, as [194]

P (zs) =
1

Z
e−E(zs) (7.4)

E(zs) =
1

2σ2

∣∣∣∣∣zs −
∑
t∈Ns

Λ∗
stzt

∣∣∣∣∣
2

. (7.5)

However, in practice, we have to estimate the CMRF parameters Λ∗
st based

on the data in a local area. By considering averages within an L × L local
observation area, we estimate the CMRF parameters as

Λ̂∗ ≡
[ ∑
s∈L×L

zsq
∗
s

][ ∑
s∈L×L

q∗
sqs

]−1

(7.6)

σ̂2 ≡ 1

L2

∑
s∈L×L

∣∣∣zs − Λ̂∗qs

∣∣∣2 (7.7)

qs ≡

⎡
⎢⎢⎢⎢⎢⎣

zt−12

zt−11

...
zt+11

zt+12

⎤
⎥⎥⎥⎥⎥⎦

(7.8)

Note that, in the above expression, we omit the suffix st of Λ̂∗ since we
estimate the parameters finally for arbitrary s by scanning the local area by
shifting s and Ns.
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Fig. 7.3 Construction of the complex-valued cellular neural network to remove
singular points. (Reprinted from Fig.4 in [194]: Andriyan Bayu Suksmono and
Akira Hirose: Adaptive noise reduction of InSAR image based on complex-valued
MRF model and its application to phase unwrapping problem, IEEE Trans. on
Geoscience and Remote Sensing, 40(3):699–709 (followed by publisher’s errata on
Fig.12), 2002 ((C) 2002 IEEE) with permission from the IEEE.)

In (7.6), we obtain the estimate of zs by using Λ̂∗ obtained as a generalized-
inverse matrix described in Chapter 4. However, fundamentally we can esti-
mate the parameters Λ̂∗ by employing the simple complex-valued Hebbian
rule. That is to say, we can do it with the neural Hebbian (correlation) learn-

ing as Λ̂∗ =
∑
zsq

∗
s , which has the same nature as the CMRF parameters

expressed by (7.6). In other words, we can explain the process to estimate
the CMRF parameters as a self-organization in the cellular neural network
where a neuron is assigned to every pixel, and neural connections between
neurons learn the correlation between the pixel values as < zs(zt)

∗ >. When
the neighbor window Ns scans the local area in which the statistic property is
unchanged, the network self-organizes to realize the estimation of the CMRF
parameters similar to those expressed in (7.6).

7.3 System Construction

Figure 7.3 shows the system construction. A complex-valued reflection
image I is input from the left-hand side. In the reflection observation, a ho-
modyne circuit yields in-phase (real-part) and quadrature-phase (imaginary-
part) components. Thereby, we regard the phase of the local oscillator output
as the phase reference. If we use a vector network analyzer, we may obtain
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directly the phase and amplitude of the reflection. In any case, by scanning
the beam direction, we obtain a complex-valued reflection image I.

We scan the image I and detect SPs. At the same time, we estimate the
CMRF parameters (ρ̂2, Λ̂) by using the data in the area containing no SPs.
Then, as shown in the large rectangle at the center in Fig.7.3, we update
the pixel value at the SPs. That is, the neuron at an SP connected locally to
other neurons estimate the proper pixel value based on the CMRF parameters
(ρ̂2, Λ̂) and the surrounding pixel values. We modify the pixel value in such
a manner that the energy expressed in (7.5) is reduced. We can employ a
deterministic method [194], or a probabilistic hill-climbing one [203].

We update the pixel values at all the SPs to obtain a first estimate image
Î. We can expect that the number of the SPs in the estimate is less than
that in the initial image. By repeating the above process, we generate a final
estimate image Î.

7.4 Dynamics of Singular-Point Reduction

Figure 7.4 shows the detail of the SP reduction. In Fig.7.4(a), we find observed
amplitude and phase images with a corresponding SP map from the left-hand
side to the right. The values of the amplitude and phase images are expressed
in grayscale. There are two types of SPs, i.e., counterclockwise increasing
SPs (positive SPs) and clockwise increasing SPs (negative SPs). They are

(48 residues)

(14 residues)

(a)Initial

(b)Estimated

(i)

(ii)

Fig. 7.4 Close-up of amplitude and phase images with a corresponding SP map
from the left-hand side to the right. (Reprinted from Fig.6 in [194] in figure caption
of Fig.7.3 ((C) 2002 IEEE with permission, IEEE.)
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Fig. 7.5 Energy versus iteration number. (Reprinted from Fig.7 in [194] in figure
caption of Fig.7.3 ((C) 2002 IEEE with permission, IEEE.)

expressed by white and black dots, respectively, in the SP map, where we
have 48 SPs in this case in total. On the other hand, Fig.7.4(b) shows the
processing result. We find that the number of the SPs is reduced to 14, and
that the phase image has almost the same contours as those in the observed
phase image in (a). In a close observation at the areas indicated by (i) and (ii),
it is clear that the proposed neural network removes the SPs and, at the same
time, the global elevation information is preserved. In the amplitude image
in (b), the amplitude values around the SPs are modified to approximately
zero in a wider area so that, as we considered in Section 7.1, the physical
consistency is maintained explicitly around the SPs where the phase values
cannot be determined uniquely.

Figure 7.5 presents the energy value defined in (7.5) versus the number of
iteration of the neural processing. It decreases monotonically, which suggests
a successful removal of the SPs.

7.5 DEM Quality and Calculation Cost

Figure 7.6 shows the results for an observation at the Mount Fuji area [194].
Figure 7.6(a) is the case where we apply the branch-cut method directly
to the observed phase image. There we find the phase image, correspond-
ing minimum-spanning-tree branch-cut, and obtained DEM. The DEM is
expressed in color, where purple means undefined height because of closed
branch-cut.
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Fig. 7.6 Results for Mount Fuji observation: (a)Observed phase image, minimum-
spanning-tree branch-cut, and resulting DEM obtained directly from the observed
phase image without SP reduction, and (b)phase image after SP reduction, corre-
sponding minimum-spanning-tree branch-cut, and resulting DEM obtained for the
SP-reduced complex-amplitude image. (Reprinted from Figs.10, 12, 13, and 14 in
[194] in figure caption of Fig.7.3 ((C) 2002 IEEE with permission, IEEE.)

On the other hand, Fig.7.6(b) shows the results when we conducted the
SP reduction with the complex-valued cellular neural network. Though we
cannot find difference between the phase images in (a) and (b) at a glance,
the SP number in (a) is 611, while that in (b) has been reduced to just 100.
That is to say, the neural processing realizes a great SP reduction without
global landscape modification. Consequently, the total length of the branch-
cut in (b) has become so short that the resulting DEM contains only small
unnatural areas. The calculation time required for the branch-cut phase-
unwrapping process has also been reduced to approximately 1/8.5.
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7.6 Summary

In this chapter, we presented a complex-valued cellular neural network to
estimate pixel values based on the complex-valued Markov random field
(CMRF) model. At around singular points (SPs), the network estimates cor-
rect complex-amplitude reflection values, and reduces the number of the SPs.
As a result, the calculation cost in the branch-cut phase unwrapping (PU)
is drastically reduced. The quality of the obtained DEM is also greatly im-
proved. The present estimation technique based on statistics is useful when
the statistical property is considered almost uniform in a local area. In the
Mount Fuji case, the statistics changes in the image in total. However, by
preparing a local area smaller than the spatial changes of the statistic char-
acteristics, we have been successful in applying the present method very ef-
fectively. Note that it is quite important that we deal with the phase together
with the amplitude, i.e., the complex-amplitude, even if we are finally inter-
ested only in phase information.

The method presented here has advanced into an improvement in the works
of Yamaki & Hirose [146] in the first years of 2000s, where they deal with
the four pixels constructing a singular point simultaneously, and also lead to
new unwrapping techniques such as the “progressive least-square unwrapping
method” (Suksmono & Hirose) [144] and the so-called “singularity spreading
phase unwrapping (SSPU) method” (Yamaki & Hirose) [145]. Their practi-
cal applicability has been evaluated by, e.g., Japan Aerospace Exploration
Agency (JAXA) for the near-future use in the world.
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