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Adaptive Radar System to Visualize
Antipersonnel Plastic Landmines

We extend the idea in the adaptive classification described in Chapter 5
by introducing frequency-domain information to visualize plastic landmines
buried shallowly underground. Antipersonnel landmines, in particular plastic
ones, use so slight metal that it is difficult to detect them with metal detectors
because many shots and metal fragments are scattered under battlefields.
The shallowness also causes serious surface-reflection noise. We construct
a phase-sensitive millimeter-wave / microwave front-end to observe ground
reflection in spatial and frequency domains, and feed the data to a complex-
valued self-organizing map (CSOM). The CSOM visualizes plastic landmines
by segmenting the reflection image adaptively.

6.1 Ground Penetrating Radars

Ground penetrating radars (GPRs) are widely used in many fields such
as buried-object detection, ruin explorations, and groundwater surveillance.
In landmine detection, we also expect to apply them to nonmetal landmine
detections, and many researches have been done in a long while. However,
the detection of antipersonnel plastic landmines is mostly still difficult in
practice because of the small target size, low reflectance, and relatively large
land-surface reflection when they are buried shallowly underground. At the
same time, insufficiency of demining professionals and high danger of opera-
tion augments the demand for support and automatization of the demining
operation.

The complex-valued self-organizing map (CSOM) is highly effective in such
a task. When a part of electromagnetic wave penetrates ground surface and
landmine itself, we want to measure the range distribution (and texture) of
reflectance. Then, by applying the CSOM to processing data obtained at
multiple frequencies, we can expect a successful adaptive segmentation of
three-dimensional data, i.e., in the propagation direction and the transver-
sal two-dimensional space. Because the inverse Fourier transform of the
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Fig. 6.1 Adaptive plastic-landmine visualization system consisting of millimeter-
wave / microwave antennas, front-end, and CSOM processing unit [149]2.

frequency-domain data gives the time-domain reflection of an electromagnetic-
wave pulse, the above processing is equivalent to classification of reflection
texture in three dimensions.

In the system presented in this chapter, we observe the amplitude and
phase of reflection at multiple frequencies to acquire complex-amplitude im-
ages. We visualize landmines adaptively by classifying the reflection texture
in three dimensions, i.e., frequency + two-dimensional-space dimensions, by
utilizing frequency-domain information in the CSOM [199] [149] . We also
compare the result obtained by the CSOM with that by a conventional real-
valued SOM dealing with amplitude texture only.

6.2 Construction of CSOM Plastic Landmine
Visualization System Dealing with Frequency- and
Space-Domain Texture

Figure 6.1 shows the schematic construction of the system focusing on the
antennas and the front-end. A vector network analyzer (VNA) is used for

2Figs.6.1, 6.3, 6.4, 6.5 and Table 6.1 are reprinted from [149]: Neural Net-
works, vol.17, No.8–9, Takahiro Hara and Akira Hirose, “Plastic mine detecting
radar system using complex-valued self-organizing map that deals with multiple-
frequency interferometric images,” pp.1201–1210, Copyright (2004), with permis-
sion from Elsevier. Japanese review [200] is also helpful for further understanding
of the background and the technology.
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homodyne detection of the received reflection. We obtain the amplitude and
phase information simultaneously. The transmitter and receiver are rectan-
gular horn antennas. The frequency range is 30−40GHz. The wider the fre-
quency bandwidth is (which requires a higher center frequency), the higher
resolution we can enjoy. However, a too high frequency is not suitable for
GPRs because it will be so largely absorbed by the soil that we cannot see
underground. We prepare a 70×70cm corrugated-cardboard box with a thin
plastic sheet paved inside, and put ordinary Tokyo soil, containing stones and
miscellaneous, and a target object in it. We move the pair of antennas facing
to the soil horizontally, and obtain complex-valued data at multiple frequency
points. The system is totally controlled by a personal computer (PC), and
the obtained data is stored also in the PC, where the CSOM classifies pixels
in the images by conducting the adaptive segmentation.

6.3 Adaptive Signal Processing in CSOM

As described in the previous chapter, first we prepare a small window block
at around a pixel we focus on. In the block, we generate a feature vector
reflecting the stochastic properties contained in the pixel values (texture).
We sweep the whole image with the block, calculating a feature vector in
the block at each position. Then we classify the obtained feature vectors
adaptively in the CSOM in such a manner that the classification reflects the
feature-vector distribution in the information space. Finally, we segment the
image by labeling each pixel with the class into which the block belongs.

In this system, we observe reflection at multiple frequency points. The
Fourier-transform operation reveals that the frequency-domain data contains
information essentially identical to that of the time-domain data, i.e., the
depth-direction reflection information. It is possible that, first, we Fourier
transform the frequency-domain data inversely into time-domain one. In the
present adaptive system, however, we deal with the frequency-domain data
directly without the linear transform as follows.

6.3.1 Feature Vector Extraction by Paying Attention
to Frequency Domain Information

Figure 6.2 shows the construction of the adaptive three-dimensional radar-
image segmentation system consisting of two modules, namely, a complex-
valued feature extractor and a CSOM in its narrow sense. We prepare a
window block having a size of L×L on a set of input images measured at Nf

frequency points. The feature extractor calculates a feature vector expressing
stochastic properties of the pixel values in the block. As we did in the previous
chapter, we adopt the complex-valued mean and covariances as the feature
vector elements. We shift the block pixel by pixel, and calculate a local feature
vector for the block at each position. Finally, the block finishes sweeping the
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Fig. 6.2 Construction of the adaptive three-dimensional radar-image segmentation
system [201]4.

whole image set. We feed the feature vectors sequentially to the CSOM, which
determines adaptively which class each vector should belong to.

The procedure is described as follows. We consider the mean M and the
covariances K(ξ, η, fζ) in each block as the elements of the feature vector
K. We determine the mean M and a covariance K in an L × L block for
complex-valued pixel data z(i, j, f) as

M =
1

L2

L−1∑
i=0

L−1∑
j=0

z(i, j, fb) (6.1)

K(ξ, η, fζ) =
1

L2

L−1∑
i=0

L−1∑
j=0

z(i, j, fb) z
∗(i+ ξ, j + η, fb + fζ) (6.2)

where fb is a basis frequency determined arbitrary.
The total number of the covariancesK(ξ, η, fζ) is enormous because of the

possible combinations of the variables ξ, η, and fζ . To avoid this explosive ex-
pansion, we consider approximately that the spatial- and frequency-domain
data are qualitatively orthogonal to each other. Then, the covariance ele-
ments have two parts, namely, the covariances in spatial domain Ks at a
basis frequency fb, and those in frequency domain Kf . Finally, we take into
account only the four spatial-domain values (mean M , variance K(0, 0, 0)

4Fig.6.2 is reprinted from [201]: System and Human Science – For Safety, Se-
curity and Dependability (T.Arai, S.Yamamoto, K.Makino (eds.)), Akira Hirose
and Takahiro Hara, “Complex-valued self-organizing map: A framework of adap-
tive processing for multiple-frequency millimeter-wave interferometric imaging
systems,” pp.299–308, Copyright (2004), with permission from Elsevier.
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(i.e., energy), covariances K(0, 1, 0), K(1, 0, 0), and K(1, 1, 0)) and a limited
number of frequency-domain ones (covariances K(0, 0, fζ)). That is,

K ≡ [Ks,Kf ] (6.3)

Ks ≡ [M,K(0, 0, 0),K(0, 1, 0),K(1, 0, 0),K(1, 1, 0)] (6.4)

Kf ≡ [K(0, 0, f1),K(0, 0, f2), · · · ,K(0, 0, fNf
)] (6.5)

In (6.4) and (6.5),K(0, 0, 0) is always a real number, while others are complex
numbers.

With this feature vector, we expect qualitatively an adaptive segmenta-
tion of the image as follows. First, we consider the relationship in the pixel
values in the frequency domain. If, at a local spot or a point, the soil includ-
ing objects has some specific reflection at certain depths differently from its
surrounding area, the frequency-domain-correlation elements are expected to
express certain values specific to the frequency-domain texture at the point.
The peculiarity assigns the feature vector K to a special location in the
feature-vector information space. Then the points containing the identical
feature are clustered in a single class.

Next, we consider the pixel-value relationship in the spatial domain. Re-
member the process described in Chapter 5 (clustering Mount Fuji, etc.).
When we see the phase image, we regard the mountain as a mass. We deal
with only the steepness of slopes without slope directions. Such treatment
probably works well also in the present landmine visualization. Therefore, we
adopt a direction-insensitive slope variables as we did in Chapter 5 . When we
write the spatial feature-vector elements K(ξ, η, 0) ∈Ks in polar coordinate
as

K(ξ, η, 0) = |K(ξ, η, 0)| ejϕ(ξ,η,0) (6.6)

the phase value ϕ in (6.6) represents the slope information. Therefore, we
modify Ks to adopt a new one as

K ′(ξ, η, 0) = |K(ξ, η, 0)| ej|ϕ(ξ,η,0)| (6.7)

By using the K ′
s, we define a new feature vector K′ as

K ′ ≡ [K′
s,Kf ] (6.8)

We use K ′ as the feature vector to be fed into the CSOM.

6.3.2 Dynamics of CSOM Classification

The CSOM classifies the feature vectors according to the dynamics described
in Chapter 4. In the present case, we assign a window block to every pixel
position, and calculate the statistic features in the block to determine the
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feature vector K′. The number of the vectors fed to the CSOM is the pixel
number in total (see Section 4.5). The CSOM classifies the vector determined
for every pixel position into a class adaptively. By coloring the pixel according
to the class into which the vector is classified, the set of the input images
for an observation is segmented in the manner that reflects the result of the
adaptive classification. Then we find spatial clusters in the segmented images.

In buried-object detection like the present case, the depth information
plays a significantly important role. Though a pulse-radar system usually
possesses depth information in the time-domain data, the multiple-frequency
continuous-wave (CW) interferometric radar system has this information in
the frequency-domain data. The Fourier transform reveals substantial equiv-
alence between the frequency-domain data and the time-domain one. In our
system, however, we do not employ the Fourier transform, which is a linear
processing, but, instead, apply the nonlinear and adaptive CSOM processing
directly to the frequency-domain feature-vector information. In this process,
we expect the follows. We have a plastic object having a certain thickness at a
certain depth. Then we observe specific signals such as frequency-dependent
characteristic reflection and resonance. Such signals make the feature vector
distribution inhomogeneous and, instead, specific to the object in the feature-
vector space. The CSOM segments the distribution into a number of classes
adaptively.

6.4 Visualization of Antipersonnel Plastic Landmines

6.4.1 Measurement Parameters

As shown in Fig.6.1, we place antennas facing to the land surface. We bury a
mock plastic landmine called TYPE 72 whose diameter and height are 78mm
and 40mm, respectively. It is filled with a substance having the same permit-
tivity as that of explosive. Parameters in electromagnetic-wave observation
and CSOM processing are shown in Table 6.1.

Table 6.1 Parameters in measurement and CSOM processing [149].

Start frequency fmin 30.0GHz

Stop frequency fmax 40.0GHz

Frequency point number Nf 81

Frequency interval Δf 125MHz

Scanning area X × Y 381.0mm × 381.0mm

Sampling point number Nx ×Ny 128 × 128

Sampling interval ΔX (ΔY ) 3.0mm

Clustering class number smax 16
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40GHz

30GHz

Fig. 6.3 Complex-amplitude images obtained in multiple-frequency observation of
a plastic landmine buried shallowly underground where brightness shows intensity
and hue shows phase [149].
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Fig. 6.4 Adaptive visualization result for a plastic landmine buried shallowly
underground [149].

Amplitude

Real-SOM

Classified

Fig. 6.5 Adaptive visualization result for a plastic landmine buried shallowly
underground with a conventional (real-valued) SOM [149].

6.4.2 Results of Observation and Classification

First, we examine the raw data obtained in the observation. Figure 6.3 shows
the phase images in grayscale observed at multiple frequency points for the
mock plastic landmine buried shallowly underground at about 1cm depth.
Black corresponds to −π phase angle, while white means π. The frequency
is 30GHz in the top-left image, whereas it is 40GHz in the bottom-right one,
and the frequency is changed stepwise with a constant interval. When we
see each image individually, we cannot find anything hidden. That is, even
human brain cannot detect a landmine.

Actually, a round plastic landmine is buried at the center. When we know
this fact, and when we examine all the images in total, not a few readers
probably find that we can construct something round intuitively in our mind.
With our volition, we can see something undetected when we watch a single
image. However, we have still difficulty in seeing it.

If we analyze our mind, we may say the follows. First, the central area
presents more-orderly changes in the space than the surrounding areas. The
soil-and-stone areas have more random phase changes. In the frequency do-
main, we can also find more-orderly changes in the central area, though the
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frequency-domain changes are little more difficult to notice. The role of the
CSOM is to extract such differences in the texture to visualize the object.

In contrast, the amplitude images observed at multiple-frequency points
are similar to each other. As an example, we show an amplitude image on the
left-hand side in Fig.6.4 in grayscale. White means a high power, while black
means a low one. In Fig.6.4, the next image is the phase image. We can find
in the amplitude image that the power is a little high at the center. However,
the shape is not round. Moreover, in multiple observations, we find similar
high-power reflection even for a buried metal bolt. Therefore, it is difficult to
find plastic landmines only with the amplitude observation.

The right-hand-side image in Fig.6.4 is the result of the CSOM segmen-
tation. We clearly find something round at the center. The CSOM system
visualizes the plastic landmine buried shallowly underground by performing
an effective segmentation in the observed images successfully.

On the other hand, Fig.6.5 shows a result when we employ a conventional
(real-valued) SOM for segmentation of the amplitude image. Though we can
find something small at the center, the visualization quality is much lower
than that of the CSOM in comparison with the result in Fig.6.4. We cannot
say that the landmine area is segmented with the conventional SOM.

The comparison between the results of the real-valued SOM and the
CSOM, we find that the round shape of the landmine has been brought
about by the phase information. That is to say, the CSOM has successfully
performed the segmentation that we could do, in Fig.6.3, when we examine
the spatial and frequency-domain phase data in total, and when we know the
correct answer. The CSOM has worked as a phase-sensitive superbrain.

6.4.3 Performance Evaluation by Visualization Rate

We repeated experiments to estimate the success rate in visualization. With
our present CSOM system, the rate is about 70%, while it is about 10% for a
real-valued SOM, which suggests the effectiveness of the CSOM processing.
The value of 70% is comparable to the rate that a metal detector finds metal
landmines. In this sense, at least, the present system has a sufficient ability
in practical use.

6.5 Summary

In this chapter, we have presented a CSOM system to visualize plastic land-
mines buried shallowly underground by dealing with complex-amplitude im-
ages obtained at multiple-frequency points. By comparing the result with that
of a real-valued SOM, we have discussed in what way the CSOM realizes a
successful visualization.

It is urgent to detect and remove plastic landmines in the world. Needless
to say, we have to develop useful techniques to realize efficient detections
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of plastic landmines. Complex-valued neural networks provide the human
beings with solutions in such problems.

In the first decade of 2000s, the system presented here has been modified
and improved into a series of small portable visualization systems employing
array antennas for quick acquisition of scattering / reflection of electromag-
netic wave. They have been tested in the field of Cambodia, for example, for
further improvement for practical use in the near future [151] [152] [154].

The neural processing in two-dimensional space × frequency-domain (or
time-domain) data realizes an adaptive processing of three-dimensional spa-
tial information. The importance of such three-dimensional adaptive process-
ing will increase more and more in many fields related to millimeter wave and
microwave systems such as intelligent transport systems (ITS) and multiple-
input multiple-output (MIMO) systems where we use multiple antennas in
transmission and detection in wireless communications.
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