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Land-Surface Classification with Unevenness
and Reflectance Taken into Consideration

In this chapter, we describe an adaptive system to classify land surface by
taking unevenness and reflectance into consideration. We deal with inter-
ferograms on the basis of the complex-valued Markov random field (CMRF)
model in statistics. We generate an adaptively segmented map in terms of the
complex-valued texture of land-surface reflection by using the complex-valued
self-organizing map (CSOM) that processes CMRF-based feature vectors.

5.1 Interferometric Radar

Figure 5.1 illustrates airborne or satellite radar observation to detect reflec-
tion from the earth’s surface. By employing phase-sensitive electronics, we
can obtain not only the amplitude but also the phase of the reflected electro-
magnetic wave. As a result, we acquire an image having complex-valued pixel
values. These types of radars are called interferometric radars. We can detect
the phase value of a signal by mixing the signal wave with a reference wave
to observe their interference. For simplicity, in Fig.5.1, we show a system in
which we transmit one of the waves, capture the reflection, and mix it with
the other wave to obtain the phase1.

Roughly speaking, the amplitude represents the reflectance since it gives
the power of the reflected wave. On the other hand, the phase represents
the distance. That is, when the reflecting object approaches, the phase is ad-
vanced since the number of waves existing in the propagation path between
the antenna and the object is reduced. Contrarily, when the object recedes,

1In actual airborne or satellite interferometric radars, we prepare two antennas
or navigation routes, and we look aside to obtain the phase difference of the two
electromagnetic waves having slightly different off-nadia angles (angle between
vertical line and the radio beam). Therefore, the wavelength of the transmitted
wave does not correspond to 2π in the phase value in the phase image. However,
we consider the system shown in Fig.5.1 for simplicity.
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Fig. 5.1 Acquisition of land-surface information with an interferometric radar
system.

the phase is retarded. Therefore, the phase represents the distance to the ob-
ject, though the phase is expressed as modulo 2π. Then the phase fluctuation
corresponds to surface unevenness. Slopes and fine fluctuation also change
the reflection amplitude because it changes the reflection direction, or causes
scattering.

In this chapter, we present a neural system that generates highly use-
ful land-surface classification maps[197],[198]. It evaluates the texture in
complex-valued reflection images that conveys reflectance and unevenness in-
formation. With this system, we can extract not only forests, deserts, lakes,
and other regions having specific reflectance, but also mountain areas, ridges,
spurs, rock fields, and so on, reflecting characteristic unevenness. The system
is based on the complex-valued self-organizing map (CSOM) described in
Section 4.5.

5.2 CMRF Model

Figure 5.2 shows an example of images obtained by an interferometric
synthetic-aperture radar (InSAR) observing at around Mount Fuji. Fig-
ure 5.2(a) shows the amplitude, while Fig.5.2(b) gives the phase in mod-
ulo 2π, both in gray scale. (These original data were provided by cour-
tesy of Dr. Masanobu Shimada of NASDA, which is presently JAXA.)
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(a)

(b)

Fig. 5.2 (a)Amplitude and (b)phase of land-surface reflection obtained by an
InSAR system. Reprinted from Fig.3 in [197]: Andriyan Bayu Suksmono and Akira
Hirose, Adaptive complex-amplitude texture classifier that deals with both height
and reflectance for interferometric SAR images, IEICE Trans. on Electron., E83-C
(12):1912–1916, 2000, with permission from IEICE.
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Fig. 5.3 Pixel at position s to which we pay attention and its neighbors in the
vicinity Ns where the neurons are (a)labeled by distance from s and (b)labeled
sequentially as ti.

Conventional adaptive segmentation systems have utilized the texture in am-
plitude only. In this chapter, we use the phase information as well to generate
more useful segmentation maps.

We evaluate local complex-valued texture quantitatively, but as simply
as possible, to classify local areas and segment the image. We consider the
complex-valued Markov random field (CMRF) model. In the present process,
we introduce a noncausal CMRF model, i.e., unlike the time-sequential one,
having no cause and result directions. Such a model is usually suitable for
images.

We deal with complex-valued images based on the noncausal CMRF model
as follows. Figure 5.3 shows the assignment of pixels. The value of the pixel
at position s is zs ∈ C. Since an observed actual image is a part of nature, we
consider that it has the Markovianity. That is to say, the pixel value zs has
some relationship statistically with the values of neighbors. The nearest pix-
els labeled as “1” must have a strong relationship, while far pixels labeled as
“4” or “5” will have a weaker one. Moreover, when the statistical character-
istic is uniform in a certain area, we can expect almost identical relationship
statistically even if we pay attention to another pixel in the area.

Figure 5.3(b) shows a vicinity of the pixel at position s, Ns, with local
neighbors labeled as ti. Let us consider the probability distribution P (zs)
that the pixel s has a value zs in statistics. Then we have

P (zs| values of pixels in the image except for s ) = P (zs|zti ∈ Ns) (5.1)

In other words, the probability distribution is determined by the neighbors,
and is unchanged within the area having a uniform statistics. The probability
distribution represents a set of features of the area in the image. This is the
basic idea of the CMRF.
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Fig. 5.4 Neighbors of point s, t+1 ≡ t(1,0), t+5 ≡ t(0,1), and t+6 ≡ t(1,1), sweep a
local area having a size of L× L to gather the statistical features.

5.3 CMRF Model and Complex-Valued Hebbian
learning Rule

Incidentally, (5.1) can be interpreted as follows. For statistically uniform data,
the correlation between a pixel value zs and a neighbor’s values zt is un-
changed. Therefore, as mentioned in Section 4.6 (MRF estimation), we can
obtain correlations between pixels by assigning a neuron to each pixel, and by
making the neural connections learn the correlations with the complex-valued
Hebbian rule as < zs(zt)

∗ >.
We assign neurons to the pixels one to one. The neurons are connected with

the neighbors, and each neural connection learns the correlation between the
input signals as < zs(zt)

∗ >. As shown in Fig.5.3, let us consider a small
neighbor consisting of three pixels, t+1 ≡ t(1,0), t+5 ≡ t(0,1), and t+6 ≡ t(1,1).
When the neurons see various, but statistically identical, images, the corre-
lations, < zs(zt(1,0))

∗ >, < zs(zt(0,1))
∗ >, and < zs(zt(1,1))

∗ >, will converge
at certain values, respectively.

Alternatively, we can replace the temporal accumulation by a spatial one.
Let us consider a local area having a size of L × L in which the statistics
is uniform. Neurons in the area communicate to one another to accumulate
statistical characteristics spatially. We may have a picture that the point
s and the neighbors t(0,1), t(1,0), and t(1,1) sweep the local area with their
relative location fixed. Then the neural connections memorize the following
correlations

K(ξ, η) =
1

L2

L−1∑
i′=0

L−1∑
j′=0

(z(i′, j′))∗ z(i′ − ξ, j′ − η) (5.2)

where (ξ, η) = {(1, 0), (0, 1), (1, 1)}.
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We construct the network to gather the statistical features in the local
area as described above. Other neurons, that see another area having an-
other statistics, will memorize the correlations specific to that area. Then we
can segment the image based on the correlation values accumulated in the
neural connections. In the present case, the pixel values are represented by
complex numbers. Therefore, the correlations reflect both the changes in re-
flectance (included mainly in amplitude) and the unevenness (in phase), i.e.,
complex texture in total. We conduct the segmentation based on the complex
texture.

5.4 Construction of CSOM Image Classification System

We classify local areas into classes based on statistics adaptively by using the
complex-valued self-organizing map (CSOM) mentioned in Section 4.5. Resul-
tantly, we segment the land-surface by taking the reflectance and unevenness
into consideration. In general, a SOM is widely used in adaptive vector quan-
tization. In the present system, we expect that the CSOM also quantizes the
texture-based features and segments the image into classes adaptively.

Figure 5.5 shows the construction of the CSOM-based radar system to
segment a complex-valued image into classes adaptively by paying attention
to the complex texture [197]. The expected function is the segmentation of
landscape into, for example, Mount Fuji and Lake Yamanaka as if we had
phase-sensitive eyes as mentioned in Chapter 1.

We place a local window block having a size of L×L, and scan the image
with this block. First, we unwrap the phase values z(i, j) in the block (see
Chapter 7) in a simple way. Then we obtain statistical properties such as
mean M and covariance K(ξ, η) to construct a feature vector K to be fed to
the CSOM as

K ≡ [M,K(0, 0),K(0, 1),K(1, 0),K(1, 1)] (5.3)

M =
1

L2

L−1∑
i=0

L−1∑
j=0

z(i, j) (5.4)

K(ξ, η) =
1

L2

L−1∑
i=0

L−1∑
j=0

(z(i, j))
∗
z(i+ ξ, j + η) (5.5)

where (·)∗ means complex conjugate. Consequently, the covarianceK(ξ, η) in-
cludes phase differences, reflecting the height variation, unevenness, and their
texture. Therefore, the system can estimate whether an amplitude change is
caused by a change in reflectance, or by a change in unevenness.

Moreover, we can introduce some concepts such as “mountain” and “val-
ley” as new indices for classification. In this case, the directions of slopes are
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Fig. 5.5 Construction of the adaptive interferometric-radar-image segmentation
system based on complex-valued self-organizing-map (CSOM). Reprinted from
Fig.2 in [197] in the caption of Fig.5.2 with permission from IEICE.

not so important, or should rather be suppressed in the classification process
to make a mountain area “mountain.” For this reason, we slightly modify K
into K ′ in such a way that the covariance is insensitive to the positive and
negative of the phase differences as

K′ ≡ [M,K(0, 0),K ′(0, 1),K ′(1, 0),K ′(1, 1)] (5.6)

K ′(ξ, η) = |K(ξ, η)| ej|ϕ(ξ,η)| (5.7)

where we write K ≡ |K(ξ, η)| ejϕ(ξ,η). We adopt such fine customization in
the feature vector according to the purposes.
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(a)
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Fig. 5.6 Adaptive segmentation results for the InSAR land image generated by
(a)a conventional SOM system and (b)the proposed CSOM system. Reprinted from
Figs.5 and 6 in [197] in the caption of Fig.5.2 with permission from IEICE.

5.5 Generation of Land-Surface Classification Map

Figure 5.2 is a radar-image example obtained at an area around Mount Fuji
and Lake Yamanaka, Japan. Figure 5.2(a) shows amplitude, while Fig.5.2(b)
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shows phase, both in gray scale. We find that the reflection is very small at
Lake Yamanaka and relatively small at forests and rocky areas. On the other
hand, in the phase map, though the contours are apparently similar to the
contours that should be found in an elevation map, the phase at the Lake
is unnaturally turbulent because the low reflectance relatively emphasizes
measurement noise.

Figure 5.6 shows the segmentation results (a)generated by a conventional
(real-valued) SOM system for the amplitude image, and (b)generated by the
proposed CSOM system for the complex-amplitude image. In 5.6(a), we find
that Lake Yamanaka, forests, and rocky areas are segmented from others. On
the other hand, in Fig.5.6(b), we find that the mass of Mount Fuji and the
mountain ridge near Lake Yamanaka are also segmented additionally to those
above, showing the fine folds of the skirt of Mount Fuji. In this way, we can
generate a more useful adaptively segmented map by incorporating phase
information into the segmentation with the concept of the phase-sensitive
superbrain.

5.6 Summary

In this chapter, we described the usefulness of the complex-valued neural
network to segment adaptively the land surface. This method is now going to
be applied to wide areas such as inspections in factories. Complex-amplitude
signals are of wide use in high-resolution ranging systems. They are also
important in imaging permittivity distribution, e.g., with phase-contrast mi-
croscope. In such applications, the above-mentioned ideas are quite useful to
realize adaptive processing.
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