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Developmental Learning with
Behavioral-Mode Tuning by Carrier-Frequency
Modulation

We realize a so-called developmental learning with which a motion-control
system learns multiple tasks similar to each other, or advanced ones, incre-
mentally and efficiently by tuning its behavioral mode. The system is based on
a coherent neural network whose carrier frequency works as a mode-tuning
parameter. The coherent neural network is a class of the complex-valued
neural networks. As presented in the previous chapters, we can modulate the
behavior of the coherent neural network, such as learning and processing,
by changing the carrier frequency. We make the carrier frequency represent
the internal mode of the system, and utilize the carrier frequency as the key
to realize the developmental learning. In this chapter, we consider two tasks
related to bicycle riding. The first is to ride as temporally long as the system
can before it falls down (Task 1). The second is an advanced one, i.e., to
ride as far as possible in a certain direction (Task 2). We compare develop-
mental learning to learn Task 2 after Task 1 with the direct learning of Task
2. Experiments demonstrate that the developmental learning enhances the
efficiency in learning in total. We confirm the effectiveness of the develop-
mental learning utilizing the carrier frequency as the mode-tuning key in the
coherent neural network.

10.1 Development, Context Dependence, Volition, and
Developmental Learning

Development is an important concept in the science to understand human
beings. It has been widely studied in various fields such as cognitive science,
psychology and neuroscience. In robotics, development is also expected to
play an important role in various applications. For example, Asada et al. [211]
proposed cognitive developmental robotics. If we regard a learning process as
a search for an appropriate system state, we can interpret the developmental
learning as follows. First we begin with a simple and dimensionally small
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state, and then we increase the search dimension, if needed, to realize efficient
learning.

The search dimension is often so large in solving real-world problems
that developmental learning will be crucial to successful learning or self-
organization workable in a realistically short time. The dimension-increasing
procedure is also compared to a situation that, for example, a mother will
first present a most basic goal to a child and, afterward, give him or her
gradually advanced tasks one after another.

What condition is required for the system to realize such developmental
learning? Among others, the most important is an appropriate structure that
increases the effective number of internal states1 or the dimension of them
efficiently. To be simple, the system should generally prepare a small set
of sufficient and effective parameters or variables incrementally. Thereby, in
the parameter enlargement, it is significantly important that the parameter
increment leads firmly to an expansion of behavior. At this point, the use of
a coherent neural network (CNN) is promising, which we describe later.

Regarding the preparation and control of internal states in artificial neural
networks, we have several proposals to utilize internal-mode modulations to
extend learning and self-organization for the emergence of context-dependent
behavior [212]. The context dependence is a behavioral feature explained as
follows. For example, assume that people ask you, ”What do you like?” If they
were talking about sports, then you may answer, ”I like tennis.” However, if
they were discussing swimming, you may answer, ”I like backstroke.” In such
a way, we catch the course of the talk, and respond accordingly. This is one
of the context-dependent behavior. Such behavior is regarded as emergence
of volition. In other words, we possess a situation-dependent direction or
intention, i.e., internal state, inside us, and decide what to do based on it.

In PATON proposed by Omori et al. [213],[214], the behavior of recog-
nition and association in an associative memory system is controlled by a
context-dependent switch. In motion control, Wolpert and Kawato [215],[216]
prepared multiple neural-network modules. In their system, each output is
weighted by a ”responsibility coefficient” determined by the closeness of the
tentative output value of each module to a desirable one. The coefficient is
also used effectively as a weight in the learning process. Then the outputs are
weighted and summed to yield a total output signal of the neural system. In
such a manner, the system consistently learns an appropriate motion control,
and then processes input sensory signals properly. Hartono and Hashimoto
[217] also reported the successful introduction of annealing in the module-
output integration.

Such switching and weighting-and-integrating methods increase the vari-
ety of neural states in learning and processing. In the extension, a crucial

1The internal state mentioned here is NOT the neuron’s internal state described
in Section 2.3 or 4.1.1, but a parameter existing in the network and determining
the neural-network’s behavior. By changing it, we realize the modulation of mood
or intent of the network.
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characteristic is again how flexible and effective the system can change its
behavior. Simultaneously, a smooth behavioral variation, i.e., the generaliza-
tion, is also an indispensable characteristic for natural neural processing.

We can expect that developmental learning will also be realized on the basis
of CNNs using carrier frequency modulation for the behavioral mode tuning.
In general, the CNN has a large freedom of tuning and a flexible generalization
characteristic in its behavior by utilizing the complete-orthogonal property
of the trigonometric basis functions used (cos θ and sin θ, or exp[iθ]), for
example, ei2πfτji = cos 2πfτji + i sin 2πfτji in the complex-valued Hebbian
rule in (4.47) and (4.48) [208], [218]. In other words, the summation of a set
of weighted sinusoidal curves is potentially capable of yielding a large variety
of functions [204],[56].

In this chapter, we present a developmental learning architecture based
on the CNN with carrier-frequency modulation for behavioral mode tuning
[219]. The developmental learning is also regarded as a short-time growth.
First, the network learns a certain task. Then, it learns a similar or advanced
task quickly by utilizing the skill obtained previously. We consider bicycle
riding. The first task is to ride a bicycle as temporally long as possible (Task
1), while the second and advanced one is to ride as far as possible in a certain
direction (Task 2). This procedure is a class of developmental learning, though
the situation is very simple. We compare the performance of developmental
learning with that of the direct learning of Task two.

Note that the basic idea is already presented in Chapters 8 and 9 where we
describe lightwave neural networks whose behavior is dependent on the opti-
cal carrier frequency. The same framework realizes a developmental learning.
Additionally, in the process, the system finds the best frequency by itself. In
this sense, the developmental learning is realized by self-organization.

10.2 Neural Construction and Human-Bicycle Model

Figure 10.1 shows a neuron in the coherent neural network. The input signal
xm, output signal yn and weight wnm are all complex numbers and composed
of amplitude and phase. We adopt an amplitude-phase-type neuron activa-
tion function, which is introduced in Section 3.3.5, expressed in terms of the
complex-valued input summation sn exp[iβn] with amplitude sn, phase βn
and i ≡ √−1 as

sn exp[iβn] ≡
∑
m

wnmxm (10.1)

yn = A tanh(gsn) exp[iβn] (10.2)

where A and g (real numbers) denote saturation amplitude and small-signal
gain that determines unsaturated gain, respectively. The function transforms
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wnm=| wnm| exp ( i 2π f τnm)

xm=| xm| exp (iθm)

yn=| yn| exp ( iθn )Input

Output

Weight

Fig. 10.1 Amplitude-phase-type complex-valued neuron in coherent network.

the signal amplitude in a saturation manner, just like the real-valued sigmoid
function does, while it leaves the signal phase unchanged. The operation is a
natural extension of the real-valued sigmoidal activation function.

A set of the neurons form a CNN with a carrier frequency, f , that works as
the mode parameter. The neural connection weight wnm is expressed by the
connection amplitude (transparency) |wnm|, delay time τnm and the carrier
frequency f common to all the weights as

wnm(f) = |wnm| exp[i2πfτnm] (10.3)

Therefore, the behavior of the coherent neural network depends on f accord-
ing to (10.1)-(10.3). As mentioned above, we use this carrier frequency as
the modulation parameter of the behavioral mode. If we fix the parameter
value f , the behavioral mode is also fixed, whereas if we release it free to
move to an optimal point self-organizingly, then the network learns and pro-
cesses properly with the optimal parameter different from the previous one.
A context-dependent behavior is also expected to emerge with this dynamics.

Figure 10.2 shows the construction of the coherent neural network inter-
acting with a bicycle. It is a single-layered feedforward network. Variables
are explained below in relation to human-bicycle model. The human-bicycle
physical model is shown in Fig.10.3. We have variables such as handlebar
azimuth φ, bicycle velocity v, wheel torque T , human rolling angle relative
to bicycle σ, rolling angle of the total center of gravity of human and bicycle
α. We have developed a mechanics simulator which is similar to that used
in the study of walking. Figure 10.4 presents a window capture. The x − y
section shows a bicycle (larger box) and a human (smaller one) projected on
the ground, while the y − z and x− z sections present their elevations. The
angle-of-roll section illustrates their rear view of the rolling angle. The curves
on the right-hand side show time evolutions of the rolling angle of the total
human-bicycle gravity center α, handlebar azimuth φ, bicycle velocity v and
wheel torque T .

The above variables are shown also in Fig.10.2, together with another
variable γ which stands for the azimuth of the bicycle running direction. The
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xv = cos(v  / Vc)e

xα = αe yφ

wnm = | wnm| exp[i2 π f  τnm]

wnm = | wnm| exp[i2 π f τnm]Fixed Mode Learning (FML) :

yT

yσ

i0

i0

xγ = γe i0

Variable Mode Learning (VML) :

Fig. 10.2 Construction of the neural network. (Reprinted from Fig.2 in [219]: Akira
Hirose, Yasufumi Asano, and Toshihiko Hamano: Mode-utilizing developmental
learning based on coherent neural networks. In International Conference on Neural
Information Processing (ICONIP) 2004 Calcutta (Lecture Notes in Computer Sci-
ences 3316), pages 116–121, Berlin, November 2004, Springer, (C) Springer-Verlag
Berlin Heidelberg 2004, with permission.)

information γ works as a sight in the advanced task mentioned below. The
sensory signals are real numbers and are fed to the CNN as

xα = α (= αei0) (10.4)

xv = cos(v/Vc) (= cos(v/Vc) e
i0) (10.5)

xγ = γ (= γei0) (10.6)

where angles are represented in radians. Velocity v is normalized by a constant
Vc and converted simply into an even function.

On the other hand, the motor signals are obtained at the neural outputs
with the constants φc, Tc and σc as

φ = φc Im[yφ], (10.7)

σ = σc Im[yσ] (10.8)

T = Tc Re[yT ], (10.9)

Then, provided that the neural input values and the initial neural connection
phase values are chosen at around zero, which means a neutral condition,
the bicycle will be controlled almost in neutral by the neural output, i.e., the
handlebar is directed straight, the relative human angle of roll is zero, and
the wheel torque is moderate. Such a situation may be helpful for the control
if the initial weight delays are very small, though they are more at random
actually in the experiment. However, note that, this condition is natural and
does not violate generality. The values of the constants and the parameters
are presented together with other parameters in the next section.
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Fig. 10.3 Physical model of the human-bicycle system with variables and pa-
rameters: (a)Plan view and rear elevation. (Reprinted from Fig.3 in [219] in figure
caption of Fig.10.2 with permission.)

10.3 Developmental Learning in Bicycle Riding

In the present developmental learning experiment, we employ the reinforce-
ment learning having two learning stages. The first one is the random trial
where the network changes neural connection weights |wnm| and τnm at ran-
dom. The initial values are chosen also at random within certain ranges of
the variables, e.g., |wnm| = 0.01 ∼ 0.99 and τnm = 0.1 ∼ 99 [ms]. We repeat
the random trial for certain times, and we find the best trial. This stage is
analogous to our rough trials in various ways to ride a bicycle in the real life.

The second stage employs the hill-climbing method by starting at the
best condition obtained in the first random trial stage. The hill-climbing
process changes the weight components with small fractions Δ|w| and Δτ
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Fig. 10.4 Captured simulator display where the larger rectangle shows a bicycle,
while the smaller one shows a human body. (Reprinted from Fig.4 in [219] in figure
caption of Fig.10.2 with permission.)

as |wnm| ←−
∣∣∣ |wnm| + Δw

∣∣∣ (i.e., |wnm| ≥ 0) and τnm ←− τnm + Δτ ,

respectively. If the resulting effect is desirable, the network accepts the small
changes. Otherwise, it rejects them. By repeating the process, the network
searches a better set of connections. This stage may correspond to learning
by iteration of fine adjustment for the human beings.

10.3.1 Task 1: Ride as Long as Possible

First, we try to learn Task 1, i.e., to ride as temporally long as possible. The
carrier frequency in (10.3) is fixed at f0 = 100[Hz] so that the behavioral
mode is also fixed. The frequency f is kept unchanged at f0. We call this
learning style the fixed-mode learning (FML). In Task 1, the system does not
use the direction information γ, which means a blind condition.

Figures 10.5 and 10.6 present typical results in Task 1. Figure 10.5(a)
shows the riding time before falling down, tR, for every random trial,
Fig.10.5(b) shows the riding time tR for the following hill-climbing learning
by starting at the best trial condition in the random trial, and Fig.10.5(c)
presents the riding locus for the longest-time trial after the hill-climbing
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Fig. 10.5 Typical result in Task 1: (a)Riding time tR versus random trial, (b)that
versus hill-climbing learning with starting under the best weight-set condition in
(a), and (c)riding locus for the longest-time trial after the hill-climbing learn-
ing converged. (Reprinted from Fig.5 in [219] in figure caption of Fig.10.2 with
permission.)

process converged. The hill-climbing learning is found to extend the tR in-
creasingly, and to accomplish the goal of the long-time riding. However, the
locus in Fig.10.5(c) reveals a round course.

However, the obtained behavior is found human-like and very attractive
as follows. Figure 10.6 shows the (a)angle-of-roll of the center of gravity α,
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Fig. 10.6 Evolutions of the variables in typical Task 1 result corresponding to
the ride in Fig.10.5(c): (a)Angle-of-roll of the center of gravity α, (b) handlebar
azimuth φ, (c)human-bicycle rolling angle σ, (d)velocity v, and (e)torque T .

(b)handlebar azimuth φ, (c)human-bicycle rolling angle σ, (d)velocity v and
(e)torque T , all against time, corresponding to the ride in Fig.10.5(c). At the
beginning of the ride, the fluctuation of the roll α is large. But gradually the
instability disappears. Other variables also present similar evolutions. That is
to say, the neural learning has been performed so that a good riding becomes
a stable point in the dynamics. This fact is evidence of the appropriateness
of the learning.
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Fig. 10.7 Typical result in developmental VML in Task 2 in hill-climbing pro-
cess starting with the best result in Task 1: (a)Score S for each riding, (b)self-
organization of carrier frequency f , and (c)riding locus for the highest-score riding
(Reprinted from Fig.6 in [219] in figure caption of Fig.10.2 with permission.)

10.3.2 Task 2: Ride as Far as Possible

Next, we assign an advanced task (Task 2), i.e., to ride as far as possible. We
also prepare an eye to see in which direction the bicycle runs. The direction
information xγ = γ is fed to the network as mentioned in Section 10.2. This
is a sighted condition.

We set free the carrier frequency f in (10.3) to enable the network to
change the behavioral mode. We call this learning style the variable-mode
learning (VML). We expect that the system utilizes the variable frequency.
The carrier frequency f is also changed by the hill-climbing method with
a frequency fraction Δf as f ←− f + Δf in addition to the hill-climbing
learning of |wnm| and τnm. The frequency shift is equivalent to the variation
in behavioral mode. The network searches a mode suitable for a far riding in
a self-organizing manner.

In Task 2, we begin with the hill-climbing process by starting at the best
result condition in Task 1. In addition, we define an evaluation function
(score) S of the far riding so that, the further the bicycle runs, the higher
the score becomes. (See, e.g., Ref.[219], [220] for details.)
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Fig. 10.8 Typical examples of scores in direct FML in Task 2 versus learning steps
with (a)1,000- or (b)10,000-times random trials and following hill-climbing learning.
(Reprinted from Fig.7 in [219] in figure caption of Fig.10.2 with permission.)

Figure 10.7 shows a typical result of the developmental VML in Task 2.
The starting condition is the best result one in Task 1. In Fig.10.7(a), we
find a quick increase in the score S. Figure 10.7(b) presents the variation of
the carrier frequency f , which works as the behavioral mode parameter. It
moves self-organizingly from f0 = 100[Hz] to an optimal value f ′

0. That is,
the network finds out the mode most suitable for the environment by itself.

Figure 10.7(c) shows the riding locus of the highest-score result after the
hill-climbing learning converged. In comparison with 10.5(c), the course has
been clearly straightened. The result is obtained quickly by the mode mod-
ulation of the longest-time-ride condition to adapt to the new environment,
i.e., the advanced task of long-distance riding.

10.3.3 Comparative Experiment: Direct FML in Task 2

We also conduct experiments on developmental FML, direct VML, and direct
FML. (See details in Ref.[220].) Figure 10.8 shows typical results of the direct
FML experiments without the learning in Task 1. We repeat random trials
for 1,000 or 10,000 times and, then, move to hill-climbing learning afterward.
The direction information γ is fed to the neural network. The initial state is
statistically the same as that of Task 1.

In Fig.10.8(a) and (b), we find that, in the random trial, a high-score
probability is very low. Moreover, even in the hill-climbing learning, the score
increases only slightly, which suggests that the random trial does not bring
the network to the vicinity of a truly ideal state.

10.3.4 Comparison between the Results

When we compare the developmental VML (Section 10.3.2), developmen-
tal FML, direct VML, and direct FML (Section 10.3.3), we find that the
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developmental VML is the most effective method in total [220]. In Fig.10.7(b),
we also find that the carrier frequency self organizes to realize such effective
learning. We can see that the network learns similar or advanced tasks quickly
by changing the internal mode parameter.

10.4 Summary

We have presented the idea of the mode-utilizing developmental learning ar-
chitecture based on the coherent neural network. The network learns similar
or advanced tasks incrementally by using its cumulative skill by changing the
behavioral mode-tuning parameter, i.e., the carrier frequency of the coher-
ent network. The mode parameter has been found adjusted self organizingly
and smoothly in the developmental learning. The developmental learning
and required architecture will be of growing importance in building so-called
brain-like systems.
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