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Preface to the Second Edition

Five years have passed since the First Edition of this Book was published.
Fortunately it obtained a large readership, and seems to have made a hum-
ble contribution to the development of the complex-valued neural-network
research. The author is extremely grateful to the readers for their explicit or
implicit insightful comments and continuous support. It is my great pleasure
to have the occasion to publish the Second Edition.

During this period, the research on complex-valued neural networks ex-
pands largely in both the quality and the quantity. There have been many
special sessions in representative conferences which cover not only mathe-
matical sciences but also electrical and electronic engineering such as the
International Joint Conference on Neural Networks (IJCNN) sponsored by
IEEE Computational Intelligence Society (IEEE CIS) and International Neu-
ral Network Society (INNS), including the biyearly held World Congress on
Computational Intelligence (WCCI), the International Conference on Neural
Information Processing (ICONIP) promoted by Asia-Pacific Neural Network
Assembly (APNNA) organized by Asia-Pacific countries’ neural network so-
cieties such as Japanese Neural Network Society (JNNS), and the Interna-
tional Conferece on Artificial Neural Networks (ICANN) organized by the
European Neural Network Society (ENNS). A project named ”Practical Ap-
plications of Complex-Valued Neural Networks” has also been organized as
one of the Nation-wide Cooperative Research Projects in Research Institute
of Electrical Communication (RIEC), Tohoku University, in 2009 to accel-
erate application-oriented research in technology and society. A worldwide
network, namely, the Task Force on Complex-Valued Neural Networks, has
also been inaugurated in the Institute of Electrical and Electronics Engineers
(IEEE) Computational Intelligence Society (CIS) Neural Network Technical
Committee (NNTC) with more than 40 active members.

Recent progress is summarized as follows. The application fields spread
more and more in electromagnetic-wave, lightwave and ultrasonic-wave
engineering areas such as earth and environmental observation with satel-
lite/airborne radar systems, security imaging at airports, railway stations
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and other public transportation, and medical diagnosis and monitoring uti-
lizing coherent wave phenomena. Other growing fields include adaptive image
processing in frequency domain and time-sequential signal processing widely.
Theories are going to extend from complex and quaternion networks to more
general frameworks based on Clifford algebra.

This Second Edition is an enlarged and revised book featuring mainly the
following two points. The first is the inclusion of recent trends in the overview
in Section 3.7 (research history) as well as in respective chapter citation in
Part II (applications), resulting in almost doubled number of references. The
parametron invented in 1954 is also referred to with discussion on analogy and
disparity. The second point is the addition of argument on the advantages
of the complex-valued neural networks in Sections 3.1 (history of complex
number), 3.2 (degree of freedom and circularity in learning), 3.4 (metric in
complex domain) and some other sections to enhance the difference from
real-valued neural networks.

The author is very much obliged to Prof. Janusz Kacprzyk, Editor-in-Chief,
Studies in Computational Intelligence, and Dr. Thomas Ditzinger, Engineer-
ing Editor, Springer-Verlag, for their continuous help in publication. I express
my sincere thanks also to Mr. Kosuke Hirase and Mr. Nobuhiko Tajima, Ex-
ecutive Editors, Saiensu-sha, for their kind permission and promotion.

Tokyo, Japan Akira Hirose
October 2011



Preface to the English First Edition

The original Japanese edition of this book, published by Saiensu-sha, Japan,
in March 2004, has fortunately acquired a favorable reputation. I am grateful
to the readers for their kind feedbacks, many of which are included in this
edition. I hope this English publication attracts readers in wider areas, and
evokes valuable feedbacks furthermore.

In the months after the Japanese publication, researches on the complex-
valued neural networks have kept evolution in respective directions. There
are some plans of special sessions in international conferences and special
issues in journals. The bibliography has been slightly modified to include the
special sessions and latest journal publications. On the other hand, references
written in Japanese on domestic circumstances have been omitted.

Besides, Fig.1.1 has been added, and Fig.2.1 has been modified, which are
related to the Special Issue on Complex-Valued Neural Networks, The Journal
of the IEICE, 87 (6), June 2004 (in Japanese), so that even readers not having
glanced the issue can obtain clear concepts. With these modifications, I expect
a higher appeal in this English edition.

I am very much obliged to Dr. Thomas Ditzinger, Engineering Editor,
Springer-Verlag, for his continuous help in publication.

Tokyo, Japan Akira Hirose
April 2006
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The studies on complex-valued neural networks have recently been evolv-
ing in various directions. The pioneering areas include electromagnetic-wave
and lightwave sensing and imaging, independent component analysis in blind
separation, blur restoration in image processing, and so on. Developing ap-
plications involve adaptive quantum devices, quantum computation, social
systems related to periodicity and oscillation, and so forth.

This book is the first one to describe systematically the complex-valued
neural networks. It is recommendable for researchers, graduate students, and
undergraduate students in, for example, electrical and electronic engineer-
ing, informatics, control engineering, mechanics, robotics, and bioengineer-
ing. This book is useful for those who begin to study, for instance, adaptive
signal processing for highly functional sensing and imaging, control in un-
known and changing environment, brain-like information processing, robotics
inspired by human neural systems, and interdisciplinary studies to realize
comfortable society. It is also helpful to those who carry out research and
development regarding new products and services at companies. The author
wrote this book hoping in particular that the book provides them meaningful
hints to make good use of neural networks in fully practical applications.

The first multiauthor book focusing on the complex-valued neural networks
is “Complex-Valued Neural Networks: Theories and Applications” published
by World Scientific Publishing Co. (October 2003), in which researchers most
active in this field reconstruct and present their pioneering works. Besides,
a foreword describes the relation of the complex-valued networks with other
fields and the real world. In addition, an introductory chapter outlines this
widely expanding field listing theoretical and application aspects.

On the other hand, this book, “Complex-Valued Neural Networks,” de-
scribes the field systematically by a single researcher. The book emphasizes
basic ideas and ways of thinking. Why do we need to consider neural networks
that deal with complex numbers? What advantages do the complex-valued
neural networks have? What is the origin of the advantages? In what areas
do they develop principal applications? This book answers these questions
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by describing details and examples, which will inspire many readers with
new ideas. It may not be completely comprehensive. Instead, the author de-
cided to make effort not to include all things relevant to this field, but to
describe vividly this extensively developing field. Therefore, the fields, where
the strong points of the complex-valued neural networks will potentially play
important roles, extend further beyond those explained in this book.

The book consists of two parts. Part I describes basic concepts, ideas and
fundamentals, while Part II presents application examples and illustrates how
to use the networks in specific situations. In Part I, an application example
is presented in Chapter 1, so that the readers grasp the rough idea of the
complex-valued neural networks. Chapter 2 provides briefly the viewpoint
of the artificial neural networks in general in the framework of information
processing. Chapter 3 presents basic ideas, overview of applications, and a
historic outline. Then, Chapter 4 explains constructions and dynamics of the
complex-valued neural networks. In the descriptions, conventional neural net-
works are first presented, and then, they are extended into the complex-valued
networks. Consequently, the readers are able to understand the contents even
if they do not have any knowledge on conventional neural networks.

Therefore, the book is recommendable as an introduction not only to the
complex-valued networks, but also widely to the artificial neural networks.
The manner of description in this book places stress on the intuitional under-
standing of actual dynamics, practical advantages, and effective applications,
rather than mathematical rigorousness. If the readers require formal mathe-
matics further more, please refer to literature presented in each chapter.

The fields relevant to the complex-valued neural networks are enormously
wide since, from a certain viewpoint, we may regard them as a superset of
the conventional networks. The author is afraid that the book may includes
serious errors and misunderstanding, on which the readers’ corrections and
suggestions are heartily welcome. Please note that the imaginary unit

√−1
is expressed as i or j in accordance with the customs in respective fields.

The application examples presented in Part II have been obtained in the
A. Hirose Laboratory, The University of Tokyo, with many graduate and un-
dergraduate students belonging to the Courses in Electrical and Electronic
Engineering, Computer Science, Frontier Informatics, and Interdisciplinary
Science and Technology. That is, the results in Chapters 5 (land-surface
segmentation) and 7 (digital elevation map) have been obtained mainly
by Dr. Andriyan Bayu Suksmono, Chapter 6 (landmine visualization radar
system) by Mr. Takahiro Hara, Chapters 8 (carrier-frequency-dependent as-
sociative memory) and 9 (optical phase equalizer) by Dr. Sotaro Kawata,
Chapter 10 (developmental learning) by Mr. Yasufumi Asano and Mr. Toshi-
hiko Hamano, and Chapter 11 (voice synthesis) by Mr. Keiichi Tsuda. The
author expresses his sincere thanks to them and all other laboratory members
and alumni. The details in the studies are available on the web pages of the
Laboratory (http://www.eis.t.u-tokyo.ac.jp/).
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The author is grateful also to Mr. Kosuke Hirase at Saiensu-sha, Japan,
and Mr. Naoshi Takeda at Suuri-kogaku-sha, Japan, for their great help in
publication.

Lastly, the author would like to ask all the readers for their cooperation in
this developing field by quoting from the Preface, contributed by Dr. Nobuo
Hataoka, in the Special Issue on “Complex-Valued Neural Networks,” The
Journal of the IEICE, vol.87, No.6 (2004) p.446: “The complex-valued neural
networks deal with phase information in addition. They possess remarkable
ability in comparison with the conventional networks. However, they have
just departed from the starting point.” The author would like to make fur-
ther effort to construct practically useful neural networks by obtaining the
cooperation of researchers at large in the world.

Tokyo, Japan Akira Hirose
December 2004
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Part I

Basic Ideas and Fundamentals: Why Are
Complex-Valued Neural Networks Inevitable?



1

Complex-Valued Neural Networks Fertilize
Electronics

The complex-valued neural networks are the networks that deal with complex-
valued information by using complex-valued parameters and variables. They
are extremely rich in variety.1 In this chapter, we grasp the basic ideas lying
in the complex-valued neural networks by glancing over an application exam-
ple. Then we also obtain a bird’s-eye view of their present and prospective
application fields so that we can enjoy the flavor before we go deep into the
world of the complex-valued neural networks.2

1.1 Imitate the Brain, and Surpass the Brain

The art of the artificial neural networks is a technological framework in which
we introduce and/or imitate the functions, constructions, and dynamics of
the brain to realize an adaptive and useful information processing. The brain
is able to manage both the pattern processing problems and the symbolic
processing ones. For example, when we find a correct traveling route in a
complex transportation network such as metro network in a large city, we
first guess a possible route by a pattern processing and, afterward, we confirm
the details and sequential consistencies. The principle and the mechanism of
the brain functions are still unclear in total. However, the accumulation of
physiological experiments has brought many important suggestions.

1Various features and applications are found, for example, in a series of special
sessions in international conferences such as [1], [2], [3], [4], [5], [6], [7] [8] [9] [10]
[11] [12] [13] [14] [15] [16] and tutorials [17] [18] [19]. Details are available on
the page of the Task Force on Complex-Valued Neural Networks (TF-CVNN) of
the IEEE Computational Intelligence Society (CIS) Neural Network Technical
Committee (NNTC) [20].

2This chapter is based on the article [21] (A.Hirose, Complex-valued neural net-
works fertilize electronics, Journal of the IEICE, 87 (6):447–449, June 2004).
Chapters in a multiple-author book [22] and a Japanese review [23] are also
helpful to extend the first impression of the complex-valued neural networks.

A. Hirose: Complex-Valued Neural Networks, SCI 400, pp. 3–8.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012
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The biological brain, including sensory neural networks such as retinal and
cochlear networks has various specific features. When it absorbs information
of events occurring in the world, it reconstructs the information according to
their meaning for the person. It also preserves the relation among the infor-
mation meanings. The brain’s manner to take in the information is roughly
determined by the nature of the cells as well as the constructions of the nerve
networks. Additionally the brain changes itself being influenced by the infor-
mation presented by the environment. This change is the self-organization
and / or learning in the neural system.

The purpose of the self-organization and learning lies in the reconstruc-
tion of information representation in the brain so that the man can utilize the
information as effectively as possible. It is known that it is significantly im-
portant for the human neural network to adopt a representation suitable for
the purpose assigned to respective network modules, in particular to a mod-
ule located close to human-environment interface. Therefore, the network of
each module also possesses a construction suitable for processing respective
information specific to visual, auditory, or olfactory signals. The cerebral
cortex has, however, a more homogeneous structure, i.e., the six-layer struc-
ture, so that one part of the cortex can be substituting for another part when
an inability occurs. But it also self-organizes according to input signals.

The modern electronics and communications provide us with a large va-
riety of information. It is hence expected more and more in the engineering
fields to develop new systems that process a wider range of information in
more adaptive and effective manners just like we do, or better than we do.
In other words, we need to build systems surpassing the brain by imitat-
ing the brain. Even in such cases, the effective self-organization and learning
inevitably require the information representations suitable for the purposes.

1.2 Create a “Superbrain” by Enrichment of the
Information Representation

Let’s consider an example. In these years, the measurement technology on the
basis of the interference of waves makes remarkable progress. Assume that
we have a coherent lightwave transmitter and phase-sensitive eyes, i.e., an
interferometric radar function, so that we can see the phase of the reflected
lightwave [24] as shown in Fig.1.1.

When a reflecting object approaches to us, the number of the wave (wave
tops or bottoms) between the object and our eyes reduces. That is, the phase
of the reflected lightwave progresses. Contrarily, when the object goes away,
the phase is retarded. In this way, phase of the reflected lightwave expresses
the distance between the object and us. The fluctuation is related to the
unevenness and roughness of the object surface. Then, as we see the object
coherently, our brain self-organizes in such a special manner that we can see
the environment in a phase-sensitive way.
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Wavelength of 
electromagnetic wave

Phase-sensitive eyes

"The Superbrain"

Fig. 1.1Geographical profile acquisition using phase-sensitive eyes and a superbrain
brought up with the special eyes. (Figure includes the data in Digital Map 50m Grid
(Elevation), Geographical Survey Institute, with permission.)

That is, our brain looks the objective world adaptively on the basis of the
amplitude and phase, i.e., ”complex amplitude” or ”phasor”, For example,
we are on a plane and see Mt. Fuji and Lake Yamanaka beneath the craft. If
we have phase-sensitive eyes, our brain takes in the information of the height
of Mt. Fuji, the shape and roughness of its skirt, statistical unevenness of
distance determined by vegetation, and the fluctuation texture in distance.
Then the brain recognizes the state of the ground surface with a pattern
processing method in complex-amplitude information space.

In Chapter 5, we present such an example of the phase-sensitive super-
brain to see the region of Mt. Fuji and Lake Yamanaka. In Fig.5.2 on Page
105, you find the data of reflection observation, while Fig.5.6 on Page 110
shows the recognition results. Figure 5.6(a) was generated by a conventional
neural network that sees only the intensity of the reflected wave. On the other
hand, Fig.5.6(b) is the result obtained by the phase-sensitive superbrain that
sees the complex amplitude. The latter figure gives an impression completely
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different from that of the former one. Mt. Fuji is segmented as a mountain
cluster, which is a useful result for human beings to live in the world. We
have also succeeded in visualization of antipersonnel plastic landmines with
this complex-amplitude superbrain brought up with the phase-sensitive eyes
(Chapter 6).

One of the most important advantages of the complex-valued neural net-
works (CVNNs) is good compatibility with wave phenomena. The CVNNs are
suitable for the processes related to complex amplitude such as the interfer-
ometric radar system mentioned above. In general, propagation and interfer-
ence of electromagnetic wave is expressed by the magnitude of transmission
and reflection, phase progression and retardation, superposition of fields, etc.
These phenomena are expressed simply and naturally by the use of complex
numbers. They are also related directly with the elemental processes in the
CVNNs such as weighting at synaptic connections, i.e., multiplications in
amplitude and shifts in phase, and summation of the weighted inputs.

1.3 Application Fields Expand Rapidly and Steadily

Regarding the research history of the CVNNs, we can trace back to the
middle of 20th century. The details are described in Section 3.7. The first
introduction of phase information in computation was made by Eiichi Goto
in 1954 in his ”parametron” [25] [26]. The parametron represents the values
to be processed by discrete phase values of oscillation. The phase was used for
a higher stability in the information representation in computing systems in
1950s. Aizenberg et al. discussed a set of multi-valued threshold logic in 1971
[27]. They suggested the representation of phase information by the shift of
pulse timing. That is, an encoding based on time progression and delay was
assumed.

These ideas are indeed suggestive even from the viewpoint of present re-
search situations. The most useful applications include the above-mentioned
coherent electromagnetic system, where we pay attention to amplitude and
phase of electromagnetic wave. In such a system, the amplitude corresponds
to energy, whereas the phase does to progression or retardation of time. The
CVNNs deal with the information directly related to such existence that
forms the basis of physical world.

There are many other fields in which the CVNNs provide systems with
appropriate information representations. Figure 1.2 is a diagram presenting
application fields. Many are related to wave phenomena, e.g., active antennas
in electromagnetism, communications and measurements using waves such as
radar image processing, learning electron-wave devices, quantum computa-
tion, ultrasonic imaging, analysis and synthesis in voice processing, and so
on. The wavelength-dependent dynamics of optical circuit leads to adap-
tive optical routers in optical wavelength-division-multiplexed communica-
tions, variable optical connections, frequency-domain parallel information
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processing, etc. The carrier-frequency-dependent neural behavior realizes
both the adaptability and controllability in neural networks.

The compatibility of neural adaptability and controllability is closely re-
lated to context-dependent behavior and emergence of volition in neural net-
works and, hence, connected with so-called brainlike systems in the future.
The periodicity in phase-information topology is applicable to systems that
process information naturally having a cyclic structure, e.g., adaptive con-
troller of traffic lights with periodic behavior. Such a research directly brings
comfort and safety to human beings. Other topics include new development in
chaos and fractals, and use of quaternion and higher-order complex numbers.

1.4 Book Organization

In this book, we present and discuss basic ideas and fundamentals of CVNNs
in Part I. First, in Chapter 2, we describe the backgrounds and reasons why
the art of the CVNNs becomes important more and more. Next, in Chapter 3,
we present the features of CVNNs as well as in what applications they are
especially useful. We also survey the history of CVNNs researches. In Chap-
ter 4, we explain the dynamics of processes, learning, and self-organization of
CVNNs. We present dynamics of conventional (real-valued) neural networks
first and, afterward, we extend them to those of CVNNs. Therefore, we ex-
pect that even a beginner in conventional neural networks can easily absorb
the basics of CVNNs. However, please consult the books listed in chapters, if
needed, for further assistance required in understanding conventional neural
networks.

In Part II, we present several examples of applications in CVNNs, proposed
by the author’s research group, such as an interferometric radar imaging sys-
tem and an adaptive lightwave information processing system. We describe
the features of self-organization and learning in these systems, and we show
the effectiveness of the CVNNs that deals with phase information in waves.
The framework adopted in the systems is not only useful in imaging and sens-
ing using other wave phenomena such as sonic and ultrasonic waves, but also
promising future development, e.g., in adaptive neural devices on the basis
of electron wave [28],[22]. Furthermore, we explain in what manner a CVNN
yields volition and developmental learning. We wish the ideas described in
this book inspire the readers with new ideas more and more.



2

Neural Networks: The Characteristic
Viewpoints

Before we describe complex-valued neural networks, first we review the basis
of neural networks in general. The basic way of thinking is common to both
the conventional (real-valued) and complex-valued neural networks.

2.1 Brain, Artificial Brain, Artificial Intelligence (AI),
and Neural Networks

What is the difference between computers we use in the daily life and neural
networks in their basic ideas and constructions? To know the difference must
be a useful compass to navigate around the world of complex-valued neural
networks.

The wonder of brain mechanism has been fascinating the human beings.
How do we recognize and cope with environment? What are the mechanisms
of the recognition, processing, learning, and adaptation? To begin with, what
are the self and consciousness? Such questions have attracted many people.
Aristotle in ancient Greek in the fourth century B.C. considered that the
nature is made of four elements, i.e., fire, water, earth, and air, and they
interchange with one another influenced by the sun. But living things addi-
tionally possess the soul, which is considered to bring us volition. That is,
nutritive soul is given to plants, animals, and humans, while perceptive soul
is to animals and humans, and rational soul is only to humans. A little earlier
than Aristotle, Chuang-tzu in ancient China speculated on self. In his narra-
tive, he was asleep on a lakeside. In his dream, he was a butterfly, and was
flying around happily. But he noticed that perhaps he might be actually a
butterfly, and that he might be a human being only in the butterfly’s dream.
What is the reality? What am I?

In the late 1930s and 1940s, researchers attempted variously and com-
prehensively to elucidate the excellent mechanisms of the human brain and
utilize obtained knowledge to realize artificial brain. Various physio-
logical measurements were conducted such as electroencephalography and

A. Hirose: Complex-Valued Neural Networks, SCI 400, pp. 9–15.
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membrane-potential recording using microelectrodes. The McCulloch & Pitts
proposed a simplified neuron model. Norbert Wiener founded cybernetics.
D. O. Hebb presented so-called Hebbian rule, a hypothesis on the learning
mechanism at synapses [29]. Furthermore, the concept of the Turing machine
and Shannon’s information theory was also developed. Roughly speaking, the
aim of these researches was the realization of artificial brain.

However, after 1950s, the computers developed almost separately from
the brain. The von Neumann computers, i.e., the present ordinary comput-
ers, made a great progress [30]. Hardware progress improved the speed and
capacity amazingly. The principal element of computer hardware was first
vacuum tube, then transistor, integrated circuit (IC), large-scale integrated
circuit (LSI), and now it is very-large-scale integrated circuit (VLSI). The
development in scale and function enables us to deal with a large quantity
of information bits very quickly. The computers have become hence useful
to human being and are widely used now. In the von Neumann computers,
the function is determined by software separately from physical existence.
That is, software is directed to process symbolic information expressed by
colorless bits on the basis of logic, i.e., hard rule. In this symbolic process-
ing, the expected process is clearly expressed by symbols and, therefore, the
operation has no ambiguity. It has another advantage, i.e., the compatibility
with reductionism. In other words, a problem to be solved may be reduced
into a set of simpler problems, thanks to the clearness of logic. The modern
society cannot go without computers even a single day.

The artificial brain function realized by such modern computers has been
called artificial intelligence (AI). In AI, the principal operation is symbolic
processing on the basis of discrete mathematics. Provided that a problem
is expressed logically clearly, then we can construct an efficient algorithm
(processing procedure) to solve it. Many various and useful algorithms have
been developed hitherto. If a problem is given only in an ambiguous way, we
first formalize the problem using symbolic representation. Then the computer
searches an optimal action by using knowledge data and rules. An excellent
example is the computer chess player ”Deep Blue” that successfully beat the
world chess champion in 1997. However, on the other hand, some problems
have turned up. That is, most of the real-world problems cannot be formalized
clearly. Rules to be used are often vague and uncertain. The search space
is also too large for a computer to find an optimal action in a workable
calculation time in most cases of realistically meaningful problems.

Incidentally, in parallel with the development of von Neumann comput-
ers, steady researches have been conducted to realize information processing
more similar to that in the human brain, i.e., the neural networks. In these
days, together with fuzzy processing and genetic algorithms, artificial neural
networks are often called soft computing or natural computing.

As shown schematically in Fig.2.1, neural networks perform pattern pro-
cessing, which is complementary to symbolic processing used in ordinary
AI. The pattern processing deals with pattern information, i.e., information
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Fig. 2.1 Von Neumann information processing versus neural information
processing.

expressed like a picture, holistically all at once. For example, even a baby
just after the birth follows moving things with his/her eyes. This action is an
unconscious reaction required for him/her to survive in this world. Such non-
symbolic and logic-independent processing is frequently observed in human
beings on various levels, e.g., simple reaction, complex feeling, and even the
sixth sense. On the other hand, most of adults perform also logical thinking
such as calculation of change. Contrarily, when we process information time-
sequentially, the meaning and operation of the information is defined clearly,
we call the treatment symbolic processing.

Certainly, symbolic processing is a powerful method in some application
fields. However, in 1990s, it has also been recognized that the symbolic-
processing system is often inflexible and inadaptable, i.e., too hard.
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Conventional AI is increasingly considered incompatible with the human flex-
ibility realized with learning and self-organization.

Information processing useful in the real world should be flexible enough
to cope with unexpectedly and dynamically changing environment. As a con-
sequence, such useful processing is considered inseparable from physical ex-
istence in the world. Therefore, the AI experiences a paradigm shift in these
decades to introduce nonsymbolic processing framework such as neural net-
works. Such AI is sometimes called ”the new AI” [31].

2.2 Physicality of Brain Functions

A strong point of artificial neural networks lies in the adaptability such as
learning and self-organizing abilities. Therefore, the processing in the neural
networks is largely influenced by the accumulation of experience, i.e., what
they have felt and obtained from the environment. We notice this fact in our
biological neural network or brain, in the daily life. Artificial neural networks
imitate the human brain.

The brain has physicality. Assume that the brain of a person A is replaced
by that of person B, while the bodies of A and B are unchanged. Then,
which person is more ”A-like”, i.e., endowed with the property of the person
A? We may say that (new A) = (brain A) + (body B) since the brain is
the origin of personality. However, the brain has quite a high adaptability. It
gradually adapts itself to the new body. The new A gathers information by
using former-B’s eyes and ears, and tackles the environment with former-B’s
hands and legs. Then new A should become B-like person. If it is true, the
personality is attributed to body rather than brain.

An extreme case can be given as follows. Assume that Mr. A’s brain is
implanted into a bird, e.g., dove or wild duck. Then, in a short time, the Mr.
A’s brain learns how to fly with flaps of his hands (wings) in the air. There is
more. Since he can fly now, he feels no fear even if he stands on the edge of a
cliff. Mr. A’s view of the world is completely changed, and it becomes almost
a bird’s view of the world. Such body-dependent property can be called the
physicality of brain functions. That is to say, the brain is brought up with
sense organs such as eyes, ears, glossa, nose, cutaneous sensors, etc., to sense
the environment, as well as motor organs such as hands, legs, vocal cords,
muscles in general, etc., to work on the environment.

The following consideration is also closely related to the physicality. ”Ex-
cellent human imagination (intelligence) originated from the retardation of
about 100ms in human sensorimotor organs with another retardation of about
100ms in motions of hands and legs are because of inertia [32].” The reason
is as follows. When a man chases a rapidly running game, say a rabbit, we
cannot catch it if we adopt feedback strategy because of unavoidable delays.
The rabbit feints against approaching hands to run away. Such a steady effort
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to reduce error doesn’t work well. We rather need to chase the rabbit while
sensing nebulously the rabbit’s action and the surroundings so that we can
catch it when it turns around. A small error at normal times does not matter.
Instead, we have to forefeel and predict new actions, such as turning around,
to be ready such an event. This necessity made the brain develop. That is,
the retardation in our sensorimotor system gave rise to the excellent brain
functions.

The most important basic idea in complex-valued neural networks is an
extension of the physicality mentioned above. If the properties or qualities of
sensorimotor organs differ from ordinary human organs, the resulting brain
should also be different from the ordinary human brain. When a certain sen-
sor or motor is assumed to be used, there exists a neural-network architecture
capable of bringing better up a brain towards expected purpose. Thereby, a
brain function useful for the special purpose, different from that of human,
emerges effectively and naturally. The complex-valued neural networks archi-
tecture expects such functional emergence. It should be a basic framework to
yield a brain superior to ordinary one, i.e., a Superbrain.

2.3 Neural Networks: General Features

Figure 2.2 shows the basic structure of neural networks schematically. A
neural network has all of, or some of, the following features in general.

1. Distributedness and parallelism: Many simple elements similar or iden-
tical to one another, i.e., neurons, gather and make connections to com-
municate, and process information distributedly in parallel.
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−→ Therefore, trouble in a single neuron does not give rise to a fatal
impact on the brain function. Although a certain number of human brain
cells actually die every day, we can live almost as we did before, being
uninfluenced by the death of a small number of neurons.

2. Locality: Information that a neuron can sense is limited locally to input
signals fed by other neurons through synaptic connections, internal state
of itself, and, in some cases, the state of the neuron to which the output
is connected. Connections are also often local.
−→ A neuron processes signals that it can see, and it does not receive
any instruction from someone who can look over the system globally.
This feature is closely related to the distributedness, and with a high
resistance to single trouble. However, note that biological body possesses
global mechanisms such as hormone and immunity systems besides neural
networks.

3. Weighted sum and activation function with nonlinearity: Input signal is
weighted at the synaptic connection by a connection weight. The internal
state of a neuron is simply the weighted sum of the input signals or a
nonlinear transform of the weighted sum. The nonlinear function is called
activation function, and usually has a saturation characteristic.
−→ Accordingly, the process in a neuron is similar to that of an operation
unit in historical analog computers such as weighting adders, and also of
a logic gate in modern digital computers such as AND, OR, NAND, etc.

4. Plasticity: Connection weights change according to the information fed
to the neuron and the internal state. Though the values may be assigned
previously, they can vary gradually in the information processing op-
eration. This plasticity of the connection weights leads to learning and
self-organization.
−→ The plasticity realizes the adaptability against the continuously vary-
ing environment. In contrast, a nonplastic system has to be designed with
prediction of all possible situations in advance, which is impossible to cope
with real-world problems.

5. Generalization: A neural network behaves expectedly not only to situa-
tions it learned, but also to unlearned situations by inferring an optimal
action on the basis of previously learned events by interpolation, extrap-
olation, etc. It constructs its own view of the world in itself, and responds
to unknown environment with its own metric (measure) provided by the
world view.
−→ In pattern processing, it is easy and natural to construct the view of
the world from experience. The reason is that pattern representation of
information is compatible with continuity and continuous metric.

In the following chapters, we present details of the processing dynamics
and characteristics of conventional (real-valued) and complex-valued neu-
ral networks. Regarding conventional networks, there exist many excellent
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books such as Ref.[33] and [34] by T. Kohonen on associative memories and
self-organizing maps, Ref.[35] by S. Haykin in signal-processing view points,
Ref.[36] by D. Marr on biological visual system, Ref.[37] by C. Mead on
hardware, and so on. Please refer to them for details. This book focuses
on the complex-valued neural networks by describing conventional networks
briefly for easier and intuitive understanding.



3

Complex-Valued Neural Networks: Distinctive
Features

Complex-valued neural networks (CVNNs) deal with information in complex
domain with complex-valued parameters and variables. As explained in Sec-
tion 2.2 in relation to physicality, neural functions including learning and
self-organization are influenced by sensorimotor interfaces that connect the
neural network with the environment. This characteristic is of great impor-
tance also in CVNNs. There exist certain situations where CVNNs are in-
evitably required or greatly effective. In this Chapter, we list such examples
and discuss conditions, which will be helpful for readers to grasp what hap-
pens in individual dynamics of the CVNNs illustrated in Chapter 4. However,
before listing situations, we first discuss the nature of complex number and
its effect on the CVNNs. We look back the mathematical history to elucidate
the features of complex number, in particular to confirm the importance of
the phase-and-amplitude viewpoint for designing and constructing CVNNs to
enhance the advantageous features. This viewpoint is essential in general to
deal with waves such as electromagnetic-wave and lightwave. Then we point
out that, although we may represent a complex number as an ordered pair of
real numbers, CVNNs have dynamics different from that of real-valued neural
networks. In short, in CVNNs, we can reduce ineffective degree of freedom in
learning or self-organization to achieve better generalization characteristics.
This merit is significantly useful not only for wave-related signal process-
ing but also for general processing with frequency-domain treatment through
Fourier transform. We also explain a matter specific to CVNNs, i.e., the fact
that activation functions of CVNNs cannot be analytic. Additionally, at the
end of this chapter, we review CVNN researches reported hitherto.

3.1 What Is a Complex Number?

3.1.1 Geometric and Intuitive Definition

In the old days history, the definition of the complex number changed gradu-
ally [38]. In the 16th century, Cardano tried to work with imaginary roots in
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dealing with quadratic and cubic equations. Afterward, Euler used complex
numbers in his calculations intuitively and correctly. It is said that by 1728
he knew the transcendental relationship i log i = −π/2. The Euler formulae
appear in his book as

cosx =
eix + e−ix

2
and sinx =

eix − e−ix

2i
(3.1)

It is also believed that, in early 1749, Euler already had a visual concept
of complex numbers as points of plane. He described a number x on a unit
circle as x = cos g + i sin g where g is an arc of the circle. In 1798, Wessel
described representation of the points of a plane by complex numbers to
deal with directed line segments. Argand also interpreted

√−1 as a rotation
through a right angle in the plane, and justified this idea on the ground that
two
√−1 rotations yields a reflection, i.e., −1. Gauss was in full possession

of the geometrical theory by 1815. Furthermore, he proposed to call +1, −1,
and
√−1 as direct, inverse, and lateral unity, instead of positive, negative,

and imaginary or ”impossible” elements, to enhance the substantiality of
imaginary number.

3.1.2 Definition as Ordered Pair of Real Numbers

The geometrical representation is intuitively simple and visually understand-
able, but may be weak in strictness. In 1835, Hamilton presented the formal
definition of the complex number as an “ordered pair of real numbers,” which
also led to the discovery of quaternions, in his article entitled “Theory of con-
jugate functions, or algebra as the science of pure time.” He defined addition
and multiplication in such a manner that the distributive, associative, and
commutative laws hold. The definition as the ordered pair of real numbers is
algebraic, and can be stricter than the intuitive rotation interpretation.

At the same time, the fact that a complex number is defined by two real
numbers may lead present-day neural-network researchers to consider a com-
plex network equivalent in essence to just a real-number network that has
double real input terminals and real double output neurons. However, it is
not true. We can clarify the merit by focusing on the rotational function even
with this definition.

Based on the definition of the complex number as an ordered pair of real
numbers, we represent a complex number z as

z ≡ (x, y) (3.2)

where x and y are real numbers. Then the addition and multiplication of z1
and z2 are defined in complex domain as

(x1, y1) + (x2, y2) ≡ (x1 + x2, y1 + y2) (3.3)

(x1, y1) · (x2, y2) ≡ (x1x2 − y1y2, x1y2 + y1x2) (3.4)
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As a reference, the addition and multiplication (as a step in the calculation
of inner product, for example) of two-dimensional real values is expressed as

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) (3.5)

(x1, y1) · (x2, y2) = (x1x2, y1y2) (3.6)

In the comparison, the addition process is identical. Contrarily, the complex
multiplication seems quite artificial, but this definition (3.4) brings the com-
plex number with its unique function, that is, the angle rotation, as well as
amplitude amplification / attenuation, which are the result of the intermix-
ture of the real and imaginary components.

It is easily verified that the commutative, associative, and distributive laws
hold. We have the unit element (1, 0) and the inverse of z (�= 0) which is

z−1 ≡
(

x

x2 + y2
,
−y

x2 + y2

)

=

(
x

|z|2 ,
−y
|z|2

)
(3.7)

where |z| ≡
√
x2 + y2.

3.1.3 Real 2×2 Matrix Representation

We can also use real 2×2 matrices, instead of the ordered pairs of real num-
bers, to represent complex numbers [38] [39] . With every complex number
c = a+ ib, we associate the C-linear transformation

Tc : C → C, z �→ cz = ax− by + i(bx+ ay) (3.8)

which includes a special case of z → iz that maps 1 into i, i into −1, ...,
with a rotation with right angle each. In this sense, this definition is a more
precise and general version of Argand’s interpretation of complex numbers.
If we identify C with R2 by

z = x+ iy =

[
x
y

]
(3.9)

it follows that

Tc

[
x
y

]
=

[
ax− by
bx+ ay

]

=

[
a −b
b a

] [
x
y

]
(3.10)

In other words, the linear transformation Tc determined by c = a + ib is

described by the matrix

[
a −b
b a

]
. Generally a mapping represented by a 2×2
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matrix is non-commutative. However, in the present case, it becomes com-
mutative. By this real matrix representation, the imaginary unit i in C is
given as

I ≡
[
0 −1
1 0

]
, I2 =

[−1 0
0 −1

]
= −E (3.11)

In the days of Hamilton, we did not have matrices yet. Even present, it is very
rare to define complex numbers in terms of real 2×2 matrices [38] (Chapter
3, §2, 5.), [39] . The introduction of complex numbers through 2×2 matrices
has the advantage, over introducing them through ordered pairs of real num-
bers, that it is unnecessary to define an ad hoc multiplication. What is most
important is that this matrix representation clearly expresses the function
specific to the complex numbers. That is, the rotation and amplification or
attenuation as [

a −b
b a

]
= r

[
cos θ − sin θ
sin θ cos θ

]
(3.12)

where r and θ denote amplification / attenuation of amplitude and rotation
angle applied to signals, respectively, in the multiplication calculation. On
the other hand, addition is rather plain. The complex addition function is
identical to that in the case of doubled-dimension real numbers.

In summary, the phase rotation and amplitude amplification / attenuation
are the most important features of complex numbers. The significance is
described in the following sections.

3.2 Comparison of Complex- and Real-Valued
Feedforward Neural Networks

3.2.1 Function of Complex-Valued Synapse and
Network Operation

In wave-related adaptive processing, we often obtain excellent performance
with learning or self-organization based on the CVNNs. As already men-
tioned, the reason depends on situations. However, the discussion in Section
3.1 suggests that the origin lies in the complex rule of arithmetics. That is to
say, the merit arises from the functions of the four fundamental rules of arith-
metics of complex numbers, in particular the multiplication, rather than the
representation of the complex numbers, which can be geometric, algebraic,
or in matrices. Moreover, the essence of the complex numbers also lies in the
characteristic multiplication function, the phase rotation, as overviewed in
Section 3.1 [17] [40] [41].

Assume a task to realize a mapping that transforms an input xIN to an
output xOUT shown in Fig.3.1. Let us consider a very simple single layer
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Fig. 3.1 A task to learn a mapping that maps xIN to xOUT [40].
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Fig. 3.2 A simple linear feedforward network to learn the task given in Fig.3.1:
(a)a real-valued single-layered two-input two-output feedforward network and (b)a
possible but degenerate solution that is often unuseful [40].

2-input 2-output feedforward neural network in real number as shown in
Fig.3.2(a). For simplicity, we omit the possible nonlinearity at the neurons,
i.e., the activation function is the identity function, where the neurons have
no threshold. We train the network through supervised learning that adjusts
the synaptic weights wji. Simply we have only a single teacher pair of input
and output signals. Then we can describe a general input-output relationship
as [

xOUT
1

xOUT
2

]
=

[
a b
c d

] [
xIN1
xIN2

]
(3.13)

We have a variety of possible mapping obtained by the learning because the
number of parameters to be determined is larger than the condition, i.e., the
learning task is an ill-posed problem. The functional difference emerges as
the difference in the generalization characteristics. For example, learning can
result in a degenerate mapping shown in Fig.3.2(b), which is often unuseful
in practice.
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Fig. 3.3 Another simple linear feedforward network to learn the same task given
in Fig.3.1: (a)complex-valued neural network seemingly identical to Fig.3.2(a), and
(b)a solution obtained in this small degree-of-freedom case [40].

Next, let us consider the mapping learning task in the one-dimensional
complex domain, which transforms a complex value xIN = zIN = (xIN1 , xIN2 )
to another complex value xOUT = zOUT = (xOUT

1 , xOUT
2 ). Figure 3.3(a)

shows the complex-valued network, where the weight is a single complex
value. The situation is expressed just like in (3.13) as[

xOUT
1

xOUT
2

]
=

[ |w| cos θ −|w| sin θ
|w| sin θ |w| cos θ

] [
xIN1
xIN2

]
(3.14)

where θ ≡ arg(w). The degree of freedom is reduced, and the arbitrariness of
the solution is also reduced. Figure 3.3(b) illustrates the result of the learning.
The mapping is a combination of phase rotation and amplitude attenuation.
This example is truly an extreme. The dynamics of a neural network is deter-
mined by various parameters such as network structure, input–output data
dimensions, and teacher signal numbers. However, the above characteristics
of phase rotation and amplitude modulation are embedded in the complex-
valued network as a universal elemental process of weighting.

The essential merit of neural networks in general lies in the high degree
of freedom in learning and self-organization. However, if we know a priori
that the objective quantities include “phase” and/or “amplitude,” we can re-
duce possibly harmful portion of the freedom by employing a complex-valued
neural network, resulting in a more meaningful generalization characteristics.
The “rotation” in the complex multiplication works as an elemental process
at the synapse, and realizes the advantageous reduction of the degree of free-
dom. This feature corresponds not only to the geometrical intuitive definition
of complex numbers but also to the Hamilton’s definition by ordered pairs of
real numbers, or the real 2×2 matrix representation.

Though we considered a small feedforward network in this section,
the conclusion is applicable also to other CVNNs such as complex-valued
Hebbian-rule-based network and complex correlation learning networks, where
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Fig. 3.4 Conceptual illustration of the relationship between bases in the respective
neural networks to deal with complex signal z [41].

the weight is updated by the multiplication results. The elemental process
of phase rotation and amplitude modulation results in the network behavior
consistent with phase rotation and amplitude modulation in total. The na-
ture is a great advantage when we deal with not only coherent signals and
waves such as electromagnetic wave and lightwave, but also arbitrary signals
with the Fourier synthesis principle, or in the frequency domain through the
Fourier transform.

3.2.2 Circularity and Widely-Linear Systems

The circularity of the signals to be processed is also an important factor in
CVNNs [41]. To deepen the discussion, we refer to the wide sense linear (or
widely linear: WL) systems which introduce conjugate signals in addition
to direct complex signals [42] [43] . WL systems well learns complex data
distributed anisotropically in the complex plane, i.e., noncircular data. For
example, it is useful for predict wind strength and direction by assuming
the axes of the complex-number plane represent north, south, east and west,
and the distance from the origin expresses the strength. Augmented complex-
valued neural networks have been proposed in such a context [44] . Wind has
high anisotropy in general. The augmented complex-valued networks do not
lead to the reduction of the degree of freedom. The degree is the same as that
of parallel real-valued networks to process real and imaginary parts of signals
separately, or their variations. Accordingly the dynamics becomes similar to
that of real-valued ones. A conceptual illustration is given in Fig. 3.4.

More accurately, the number of the signal-representation bases of the aug-
mented complex networks is the same as that of the real-valued networks, and
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its dynamics approaches that of real-valued neural networks. This situation is
analogous to the fact that the combination of positive and negative frequency
spectra generates almost real-valued signals. We can also compare the rela-
tionship to polarization of lightwave. CVNNs deal with only one of the left-
or right-handed circular polarized lightwave, and are suitable for circular sig-
nal processing. Note that the signal in total can be out of complete circularity,
but only each frequency component has the circularity. Since any waveform
can be synthesized by sinusoidal components through Fourier synthesis, the
signals that the CVNNs can deal with is not limited to completely coherent
signals. In contrast, the augmented complex-valued networks deal with both
the left- and right-handed circular polarized lightwave. They are more flexible
because of the larger degree of freedom, which is too much for circular signals.
The number of signal representation bases is the same as that of real-valued
neural networks though, in the real-valued case, the bases are horizontal and
vertical linear polarizations corresponding to the real and imaginary parts. The
relationship is similar to that of complex-valued filtering and dual univariate
real-valued filtering, which processes real and imaginary parts of signals sepa-
rately in two real-valued filters in parallel [45]. Real-valued layered neural net-
works having various structures can be equivalently range from, so to say, dual
univariate real-valued neural networks, where the real and imaginary signals
are processed separately, to completely bivariate real-valued neural networks,
where the signals are processed as a mixture all over the layers with a still
higher flexibility originating from massive neural connections.

Consequently, complex-valued neural networks are suitable for processing
analytic signals, which consist of a real component and its consistent imag-
inary component that has the same amplitude but 90-degree shifted phase.
The details are given in Section 3.6.1. The analytic signal is essentially circu-
lar. Analytic signals exist widely in electronics, for example, at the output of
heterodyne or homodyne mixers and at the output of digital signal processing
using the Hilbert transform. CVNNs have a higher generalization ability to
process such analytic signals appropriately.

Noncircular signals are observed in, e.g., wind information processing,
but less in electronics dealing with electromagnetic wave and related time-
sequential signals. The reason lies in the fact that phase does not have any
meaning in its absolute value, but only in its difference from a certain ref-
erence. However, a few exceptions may exist. For example, signals in offset
quadrature phase shift keying (OQPSK) modulation may include nonnegli-
gible noncircularity generated by highly unbalanced electronics.

3.2.3 Nonlinearity That Enhances the Features of
Complex-Valued Networks

The neuron nonlinearity can be another issue. We describe here the relation-
ship between the nonlinearity and the neural dynamics mentioned above. The
detail will be discussed in Section 3.3.
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The complex least mean square (LMS) algorithm is the most widely-used
basis of adaptive processing of complex signals [46]. The introduction of non-
linearity into the neuron activation function once seemed to have a serious
problem in the differentiability in the complex domain. Liouville’s theorem
in complex analysis states that every entire function (holomorphic function)
must be constant. It follows that, if we introduce some nonlinearity, we have
to abandon the differentiability. This fact was considered to be a big problem
at around 1990 because some researchers believed that the indifferentiabil-
ity should lead directly to the impossibility to obtain and/or analyze the
dynamics of the CVNNs.

However, the concern was found to be a trifle because neural dynamics are
generally described by partial differentiation in terms of a number of variables
associated with the neurons. Actually, nowadays we can determine neural dy-
namics in CVNNs by calculating partial differentials in terms of real and imag-
inary parts, or phase and amplitude. This manner is practically effective.

At the same time, it is true that we discard the conformal mapping nature
of the holomorphic function. However, when we utilize a conformal mapping
function, we often concentrate upon the mapping structure itself, rather than
a combination with some nonlinearity. Additional nonlinearity should rather
be a hindrance. Accordingly, the non-holomorphy is not a big problem again.

In complex-valued associative memories, researchers investigated the re-
quirements necessary in the nonlinearity to determine an effective energy
function [47]. As a result, roughly speaking, we have two types of possibil-
ity. One is to apply nonlinearity to real and imaginary parts separately and
to combine them to yield a complex output (real–imaginary nonlinearity)
[48][49]. The other is to employ nonlinear functions for the phase and ampli-
tude, respectively (amplitude–phase nonlinearity) [50].

In other CVNNs, we may have possibilities to employ other nonlinearity
depending on the objectives, i.e., what type of processing we aim at. Even in
such cases, the above-mentioned two types of nonlinearity will be the most
promising candidates since we normally consider that a direct extension of
the real sigmoid function works well also widely in complex domain, instead
of complex sigmoid function itself.

When we deal with wave information or wave itself, the real and imaginary
axes are essentially less meaningful than amplitude and phase (or phase dif-
ference) because the real and imaginary axes are determined only relatively
to an arbitrarily determined phase reference. An example is the coherent de-
tection in communications receiver, where we prepare a local oscillator (LO)
with a phase-locked loop (PLL) locked to some reference to be used for de-
modulation, that is, extraction of real and imaginary signals. The receiver
determines the real and imaginary parts, which never exist beforehand [50].
Instead, the difference of two phase values are meaningful itself, which cor-
responds to time course and/or position difference. In this sense, the phase
difference represents certain information directly. The amplitude, orthogo-
nal to phase, is also meaningful, signifying energy or power of the wave.
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Accordingly, in this sense, the amplitude–phase nonlinearity is more suitable
for wave-related processing. Part II presents various adaptive systems based
on the amplitude–phase nonlinearity such as the optical learning logic cir-
cuits realizing frequency-multiplexed operation [51] [52] and the fast method
to yield computer-generated hologram (CGH) for three-dimensional movies
[53] [54].

3.3 Activation Functions in Neurons

3.3.1 Nonlinear Activation Functions in Real-Valued
Neural Networks

In Section 2.3, we enumerated the features in artificial neurons and neural
networks. A neuron weights input signals, and sums up the weighted inputs.
Then a function provided in the neuron, namely activation function, yields an
output signal. As the activation function, we often adopt a nonlinear function.
(N.B., it can be a linear function in general.)

Figure 3.5 shows our neuron model with the input signal xi, connection
weight wi, internal state u ≡ ∑

wixi, activation function f , and output
signal y.

y = f(u) = f

(
N∑
i=1

wixi

)
(3.15)

In many real-valued neural networks, f is a sigmoid function (saturation
function with “S” shape) such as

f(u) ≡ tanh(u) =
eu − e−u

eu + e−u
(3.16)

fΣ

x1

x2

x3

xN

y

w1
w2

w3

wN

Fig. 3.5 A neuron with input signal xi, connection weight wi, activation function
f , and output signal y.
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Fig. 3.6 Activation function tanh(u) widely used in real-valued neural networks.
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Fig. 3.7 Another activation function 1/(1 + exp(−u)) widely used in real-valued
neural networks.

The function is called hyperbolic tangent, and its shape is shown in Fig.3.6.
In biological neurons, when it receives larger input signals (higher pulse
frequency), the output signal (pulse frequency) becomes also higher in a
saturation manner. The activation function in artificial neural networks imi-
tates such a characteristic. The nonlinearity is effective in some tasks such as
function approximation described in Chapter 4. Another activation function,
similar to the above one and widely used, is

f(u) ≡ 1

1 + exp(−u) (3.17)

The shape is shown in Fig.3.7. Except for the value range of [0,1], the function
is analogous with the first one. The value range can be transformed to any
desirable one such as [−1,1] or [0,1] by shifting and scaling.

In any case, we often introduce a gain coefficient g and/or saturation
amplitude A to modify the function as f(u) = A tanh(gu), or f(u) =
A/(1 + exp(−gu)), to control the slope and saturation value of the sigmoid
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functions. Increase in the gain g yields a steeper slope, and when g −→ ∞,
the sigmoid function approaches the step function.

3.3.2 Problem Concerning Activation Functions in
Complex-Valued Neural Networks

A problem arises when we extend the sigmoid function to a complex-valued
saturation function to construct a CVNN. The problem is that such a nonlin-
ear function cannot be analytic. A complex function is called analytic when it
is differentiable at any point. A complex function is differentiable at a point u
in complex plane if we can determine the limit value of (f(u+Δu)−f(u))/Δu
when Δu→ 0 for the function f(u) of complex variable u, i.e., the limit value
does not depend on the direction in which the variable approaches to the
point u.

When a function considered is differentiable at a point, we also say that
the function is regular at the point (regular point). Contrarily, a point at
which the function is not differentialble is a singular point. Being analytic
means that the function is regular at any point in the domain considered.
If the activation function is an analytic function (holomorphic function in
other words), we can analyze the neural dynamics such as learning, self-
organization, and processing, to understand the characteristics of CVNNs,
in the same manner as we investigate the dynamics of conventional neural
networks.

This problem of being nonanalytic is equivalent to the Liouville’s theorem.
That is, if a complex function is analytic at any point and bounded, it is a
constant function.

Let us consider that the variable u in (3.16) is complex. Then the function
f(u) is differentiable at almost any point. However, it diverges to infinity.
Figure 3.8 shows the shape of the function, which is far away from the “sat-
uration” feature. Although the complex tanh(u) in complex domain may be
a natural extension of real-valued tanh(u) in the sense that the variable is
extended into complex one, the meaning of the nonlinearity is completely
different from something saturating. Therefore, we cannot construct useful
system with the complex tanh(u).

This issue was the most serious reason that the CVNNs were considered
difficult to develop before. Figure 3.9 shows complex 1/(1+exp(−u)) in (3.17)
in complex domain. We find the same problem again.

3.3.3 Construction of CVNNs with Partial
Derivatives in Complex Domain

The problem mentioned above is avoided at present as follows. When we
introduce a nonlinear activation function (N.B., we may use a linear function),
we do not pay attention to differentiability. It does not matter whether the
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Fig. 3.8 Complex tanh(u) as a function of complex variable u: (a)real part,
(b)imaginary part, (c)amplitude, and (d)phase.

function is analytic or not. Thus, we do not expect rigorous analyses similar to
those in investigations in real-valued neural networks1. Instead, we construct
the dynamics of learning and self-organization on the basis of meaningful
partial derivatives in complex domain with deliberation on the properties of
input and output information.

Actually, this veer of way of thinking led to constructing many useful
CVNNs. Widely used are the following two activation functions. Needless

1However, practically speaking, we can conduct analyses almost as rigorous as
those in conventional neural networks. The reason is as follows. As we see in
the following sections, the dynamics of neural networks, that are parallel and
distributed systems, is analyzed mostly with partial differentiation. Note that
neural networks often deal with modally different variables at once. In the same
way, we have no difficulty in dealing with variables different in the characteristic
nature from one another, such as amplitude and phase, which we will see in
the following sections. Contrarily, if we adopt an analytic one as an activation
function, we can analyze the dynamics analytically. However, an analytic function
cannot be a meaningfully nonlinear function, but a power series at most. Its
whole shape is determined rigidly by its characteristic on a small local region in
complex domain (theorem of identity), which sometimes reduces the function’s
attractiveness because of the hardness in resulting generalization characteristics.
Note that, however, the rigidness is useful when we utilize the conformal nature.
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Fig. 3.9 Complex 1/(1 + exp(−u)) as a function of complex variable u: (a)real
part, (b)imaginary part, (c)amplitude, and (d)phase.

to say, activation functions are not limited to these two. Instead, we can
introduce functions suitable for processing purpose, including linear ones.

It is true that the above change of thinking direction caused a coordinate
dependence of the neural dynamics. In other words, the neural learning and
self-organization can be variable related to the direction of the basis in par-
tial differentiation. For example, in most applications presented in Part II
adopt polar coordinate system where the bases are taken in the radial and
angular directions in the complex domain. In some other cases, we may adopt
Cartesian coordinate system (orthogonal line coordinate system).

Mechanics in its wide sense, including neural networks, should be inde-
pendent of coordinate in general. However, the coordinate dependence of
CVNN dynamics is rather favorable to construct a useful network. Consider
a CVNN application related to electromagnetic wave or lightwave. Then the
CVNN will deal with the wave by controlling modulators such as amplitude
and phase modulators. The modulators are influential basically to energy
or delay time of the wave. In robotics with periodic motion, we will also
manipulate the motion’s amplitude, phase, and frequency. In such a way,
it is very important to clarify what properties a CVNN directly deals with
in the interaction with the real world. Thus a CVNN should turn the co-
ordinate dependence of the dynamics into an advantage, i.e., it should uti-
lize the dependence. We will see such examples in the contrast between the
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real-imaginary-type and amplitude-phase-type activation functions presented
in the next section.

3.3.4 Real-Imaginary-Type Activation Function

One of the widely used activation functions is

fre−im(u) ≡ fR(u) + ifI(u) (3.18)

fR(u) ≡ tanh(Re(u)) (3.19)

fI(u) ≡ tanh(Im(u)) (3.20)

where fR and fI are real and imaginary parts of the activation function,
while Re(u) and Im(u) are real and imaginary parts of complex variable u,
respectively. Here, the function tanh is a real-valued hyperbolic tangent. We
call the complex function in (3.18) real-imaginary-type activation function.

Figure 3.10 shows the shape of the real-imaginary-type activation function.
It has line symmetry regarding real and imaginary axes (lines of Im(u) = 0
and Re(u) = 0, respectively), which is shown in the shape in Figs.3.10(a)
and(b), i.e., the real and imaginary parts. We can also observe characteristic
changes on and around the real and imaginary axes in Figs.3.10(c)amplitude
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Fig. 3.10 Real-imaginary-type complex activation function: (a)real part,
(b)imaginary part, (c)amplitude, and (d)phase.
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Fig. 3.11 Amplitude-phase-type activation function: (a)real part, (b)imaginary
part, (c)amplitude, and (d)phase.

and (d)phase. The symmetry gives the two axes a special meaning in the
neural dynamics.

Therefore, we can expect that the real-imaginary-type activation function
works well when we deal with complex information that must have symmetry
concerning, or a certain special meaning on, the real and imaginary axes. It
is also implied that a network processing n-dimensional information with
this activation function has neural dynamics slightly similar to that of a
real-valued neural network processing 2n-dimensional real-valued information
because, as shown in (3.19) and (3.20), it deals with real and imaginary parts
separately and independently.

3.3.5 Amplitude-Phase-Type Activation Function

Another one widely used is amplitude-phase-type activation function ex-
pressed as

fap(u) ≡ tanh (|u|) exp (i arg(u)) (3.21)

The definition (3.21) means saturation in amplitude, whereas the phase is
unchanged.

Figure 3.11 shows the shape. It has point symmetry concerning the ori-
gin (0, i0), which is clearly observed in Figs. 3.11(c) and (d). In comparison
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with the real-imaginary-type activation function, the amplitude-phase-type
function is independent of the way of setting of real and imaginary axes.
Therefore, it is suitable for processing information meaningful in rotation
around the origin of coordinate.

Among others, it is suitable for processing waves or wave-related infor-
mation. We assume that the wave amplitude corresponds to the amplitude
of the complex variable in the neural network, while wave phase does to the
phase of the neural variable. Then the saturation characteristic of the nonlin-
ear function can be related to the saturation of wave energy, which is widely
observed in various physical phenomena. (We deal with possible saturation-
related weak nonlinearity in phase separately from this treatment. 2) On the
other hand, the wave phase rotates in accordance with the progress or delay
of time. The phase is a physical entity itself, though we may observe real
or imaginary part of wave in measurement. Therefore, the radial isotropy
concerning coordinate origin in the amplitude-phase-type activation function
is desirable in dealing with waves.

Accordingly, we use the amplitude-phase-type activation function when
we deal with electromagnetic wave, lightwave, sonic wave, ultrasonic wave,
quantum waves such as electron wave, and other wave-related phenomena. In
electronics, we have various wave-related applications, as shown schematically
in Fig.1.2 (Page 7) in Chapter 1, such as remote sensing, radar imaging, adap-
tive antennas and beamforming, adaptive mobile communications, lightwave
information processing, lightwave routing, lighwave sensing, ultrasonic imag-
ing and diagnosis, speech analysis and synthesis, quantum devices, quantum
computing, and so forth.

The origin of the affinity of the amplitude-phase-type activation function
for waves lies in the direct treatment of basic physical entities, i.e., energy
and time (progress and delay) as described in Section 1.3 (application fields).
This fact also implies the compatibility with information that human be-
ings receive from the world because our sensory organs receive information
as physical stimuli. As explained in Chapter 2 (general features of neural
networks), to cope with real world problems, significantly important is the
information processing inseparable from physical entities.

Additionally, the amplitude-phase-type function is useful to deal with
time-sequential signals and space-sequential ones (e.g., images) in frequency
domain with the help of Fourier transform or wavelet transform. This is
because the frequency-domain treatment assumes that any signal can be de-
composed into sinusoidal waves. Frequency-domain treatment using complex-
valued neural networks is of great importance because it enables, or simplifies,
various types of information processing.

2Note that, however, there exist exceptions. For example, when the environment
is more or less related to resonance phenomena, we will utilize the relationship
between amplitude and phase (Kramers-Kronig relationship). The Hilbert trans-
form equivalent to the relations is also used to obtain so-called analytic signals
in processing baseband signals as described in Section 3.6.1.
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The amplitude-phase-type activation function is also suitable for applica-
tions where we find essence in point symmetry concerning origin, or in polar
coordinate expression of the environment. Focusing on phase, we can say that
utilizing periodic topology is also very important, which we describe in detail
in Section 3.6. Besides above mentioned ones, many applications shown in
Fig.1.2 in Chapter 1 are compatible with the amplitude-phase-type activation
function.

3.4 Metric in Complex Domain

3.4.1 Importance of Metric: An Example in
Complex-Valued Self-organizing Map

Among various neurodynamics in the complex domain, the complex-valued
self-organizing maps (CSOMs), to be explained in Section 4.5, may possess
less features which reflect the complex multiplication mentioned in 3.2, since
most of SOMs have two sub-processes in the operation, i.e., winner determi-
nation and weight update, both of which sub-processes may consist of only
addition and subtraction in its arithmetics without any multiplication that
utilizes the complex nature of phase rotation.

However, the circumstances depend on the metric we use to determine
the dynamics. If we employ complex inner product, instead of conventional
Euclidean metric in double-dimensional real space, we can utilize the charac-
teristics specific to complex space [55]. The general dynamics of a SOM will
be explained in Section 4.5. In this section, we discuss the metric we use in
feature vector space.

3.4.2 Euclidean Metric

In SOM in general, the metric most widely used to determine the winner
neuron whose weight wc is nearest to an input feature vector z is the Eu-
clidean metric. Even in a complex-valued SOM (CSOM) where z and w are
complex, we can express them with imaginary unit i as

z ≡

⎡
⎢⎢⎣
|z1| exp(iθ1)
|z2| exp(iθ2)

...

⎤
⎥⎥⎦ (3.22)

wc ≡

⎡
⎢⎢⎣
|wc 1| exp(iψc 1)

|wc 2| exp(iψc 2)
...

⎤
⎥⎥⎦ (3.23)
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Fig. 3.12 Conceptual illustration to compare the inner product z∗wc and the
real-part inner product Re(z∗wc) to calculate ||z −wc||2 [55].

The Euclidean process to choose a winner is expressed as

ĉ = argmin
c
||z −wc|| (c : class index) (3.24)

where argminc · · · chooses a c that minimizes · · · , and || · || denotes norm
(amplitude), i.e.,

||z −wc||2 = (z −wc)
∗ (z −wc)

= ||z||2 + ||wc||2 − (z∗wc +w∗
cz)

= ||z||2 + ||wc||2 − 2Re(z∗wc) (3.25)

Though (3.25) deals with complex numbers, this arithmetic is identical with
the calculation of real-valued Euclidean distance and also of the real-valued
inner product, i.e., when x,wc ∈ Rm,

||x−wc||2 = ||x||2 + ||wc||2 − 2xTwc

= ||x||2 + ||wc||2 − 2
∑
i

|xi||wc i| cos(ψc i − θi) (3.26)

Then, when ||z||2 and ||wc||2 are almost constants, as is often the case, and/or
we pay attention to phase information, the distance (3.26) is detemined by
the cosine component (real part) |zi||wc i| cos(ψc i − θi).
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3.4.3 Complex-Valued Inner-Product Metric

Instead, we can also employ a complex inner-product metric for use in deter-
mination of a winner in the CSOM as

ĉ = argmax
c

(∣∣∣∣ z∗ wc

||z||||wc||
∣∣∣∣
)

(c : class index) (3.27)

This process is better understandable in equations by employing the polar
representation. That is, the numerator of the complex-valued inner product
(3.27) is given as

z∗ wc =
∑
i

(|zi| exp(−iθi)) (|wc i| exp(iψc i)) (3.28)

=
∑
i

|zi||wc i| exp(i(ψc i − θi)) (3.29)

where the summation takes into account the phase values directly, that is,
the direction of the arrows [55].

In other words, the metric (3.29) takes both the cosine and sine components
(real and imaginary parts) into consideration. That is, when we express the
vectors as z = (x1+ iy1, x2+ iy2, ...) and w = (u1+ iv1, u2+ iv2, ...), omitting
suffix c, we obtain

z∗ w = [x1 − iy1 x2 − iy2 ... ] [u1 + iv1 u2 + iv2 ... ]T

= x1u1 + y1v1 + x2u2 + y2v2 + ... ⇐= cos component

+i (x1v1 − y1u1 + x2v2 − y2u2 + ...) ⇐= sin component (3.30)

3.4.4 Comparison between Complex-Valued Inner
Product and Euclidean Distance

Figure 3.12 is a conceptual illustration to show the merit of this complex
inner-product metric. In active imaging, for example (see, e.g., Chapter 6),
we obtain coherent signals consisting of amplitude and phase. The feature
vector is defined in complex domain. For a set of high-coherence signals,
i.e., signals having similar phases, the summation to generate inner product
grows straightforward as shown by arrows (a) in Fig. 3.12. Contrarily, in a
low-coherence case, having random phases, the summation does not grow so
much as shown by arrows (b). This effect emerges also in the Euclidean metric
to some extent. However, the Euclidean metric is related only to the cosine
component as shown in Fig. 3.12(a’) and (b’), resulting in a partial treatment
of phase directions. The evaluation results can be different from (a) and (b).
The complex inner-product metric is then more sensitive to signal coherence
and, therefore, enhances the distinction among various objects compared with
the case of Euclidean metric described below.
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In addition, the complex inner product is inherently less sensitive to the
norm of signal vectors. This is simply because of the normalization. It is
desirable in particular in coherent imaging systems where we often suffer
from distortion in intensity caused by the mirror glaring and speckles.

3.4.5 Metric in Correlation Learning

Correlation learning, to be used widely in neural networks such as associative
memories described in Section 4.3.5 and the simplest case of filtering based
on Markov random field model in Section 4.6, also possess the same feature of
the complex-valued learning. The correlation learning embeds the correlation
between output signals zs and input signals zt in synaptic weights w. For
simplicity of expression, we consider one of the output signals zs out of zs. As
shown in detail in Sections 4.3.5 and 4.6, the learning dynamics is expressed
as

τ
dw

dt
= −w + zs z∗

t (3.31)

where τ is learning time constant in time t domain. Various pairs of input zt
and output zs teacher signals are presented to the network for the training.
The correlation is accumulated into w, converging at

w −→ K < zs z∗
t > (3.32)

where K is a real constant.
Here we express the teacher signal pairs in real and imaginary parts as

zs = xs + jys (3.33)

zt = [xt1 + jyt1, xt2 + jyt2, · · · , xtN + jytN ]T (3.34)

where j and N are imaginary unit and the input terminal number. Then the
product in the correlation in (3.32) is rewritten as

zs z∗
t =[ (xsxt1 +ysyt1) +j(ysxt1 − xsyt1), (xsxt2 + ysyt2) +j(ysxt2 − xsyt2),

· · · , (xsxtN + ysytN ) +j(ysxtN − xsytN )]T (3.35)

The real and imaginary parts mix with each other. The meaning becomes
obvious when we express the pixel values in amplitude and phase as

zs = rse
iθs (3.36)

zt = [rt1e
jyt1 , rt2e

jyt2 , · · · , rtNejytN ]T (3.37)

and rewrite (3.35) as

zs z∗
t = [ rsrt1e

j(θs−θt1), rsrt2e
j(θs−θt2), · · · , rsrtNej(θs−θtN )]T (3.38)
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The product yields the phase difference as well as the amplitude product,
which is compatible with the signal circularity.

On the contrary, if we regard the neural network as a real-valued network
having double input terminals and two output neurons corresponding to real
and imaginary parts, the dynamics for double-dimensional real signals zs and
zt are expressed as

zs = [xs, ys] (3.39)

zt = [xt1, yt1, xt2, yt2, · · · , xtN , ytN ]T (3.40)

and the product as a step to calculate correlation becomes

zs zt = [ xsxt1 , ysyt1 , xsxt2 , ysyt2, · · · , xsxtN , ysytN ]T(3.41)

We can find that the product (3.41) is different from (3.35) or (3.38). That is,
the dynamics of the real-valued network is completely different from that of
the complex-valued one. The difference originates from the very basic arith-
metic operation, and is therefore very fundamental. This property may also
be called circularity as one of the characteristics of the complex-valued neural
network. The circularity is one of the most essential features of the complex-
valued neural networks.

3.5 What Is the Sense of Complex-Valued Information
and Its Processing?

Utilizing complex numbers is one of the bottom lines in modern science and
technology.3 However, “imaginary” was a great misnomer. “Imaginary num-
ber” implies unreality and powerlessness.We have to sometimes inquire about
to CVNNs as follows. What is the difference between a CVNN dealing with n-
dimensional information and a real-valued network processing 2n-dimensional
one? Do we observe something imaginary in brain measurement using micro-
electrode?

However, the application fields of CVNNs have been extending more and
more [21],[56]. In CVNNs, the flexibility in learning and self-organization
is restricted rather than that in double-dimensional real-valued neural net-
works. As we discussed in Section 3.2.1, the restriction is brought by the four
fundamental rules of arithmetic in complex numbers. Such fundamental rules
in processing often work well in solving real world problems. This feature is
one of the most useful advantages in CVNNs.

Typical applications include the treatment of wave-related phenomena
such as sonic wave, lightwave, and electromagnetic wave. Let us consider
a broadcasting system, namely, a radio or television system.

3The beginning of this section is a retouch of the Article [22].
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A sender transmits an electromagnetic wave having a carrier frequency
of f , and a receiver catches the wave. The wave needs to be modulated so
that it carries information. There are various modulations, but they are fun-
damentally categorized into amplitude modulation, phase modulation, and
frequency modulation, which change amplitude, phase and frequency of the
carrier wave, respectively. That is, information is carried on amplitude a,
phase θ, or frequency f that is time-differential of phase. These facts are
common to both analog and digital communications.

The receiver decides what information is sent by the sender by examining
the amplitude a and phase θ (and sometimes frequency f as well). A square-
law detector detects squared amplitude a2, which is equivalent to energy,
while an envelope detector detects amplitude a. However, the phase cannot
be detected in such a simple manner. Instead, we use homodyne (or hetero-
dyne) detection as follows. In the receiver, we prepare a local oscillator of
the same frequency f , and multiply the received wave by the output wave
of the oscillator. The multiplying process is called mixing. Then, thanks to
the angle sum and difference identities of trigonometric functions, the mixing
yields a subtracted-frequency signal (f − f = 0) and an added-frequency one
(f+f = 2f). We extract the former, i.e., the 0-frequency signal, with a filter.
It is called baseband signal containing cos and sin components correspond-
ing to the amplitude and phase of the transmitted signal. (The detail of the
technique is explained in the next section.) In this process, we need both the
cos and sin components to determine the phase value. In other words, we
observe a cos θ + ia sin θ = aeiθ.

There are various types of devices that realizes modulations at the sender
such as amplitude modulators and phase modulators. An amplitude modu-
lator modulates the wave power, while a phase modulator put the wave for-
ward or backward in time. Each modulator interacts with elemental entity in
physics. Therefore, in adaptive signal detection and noise elimination, neural
processing that deals with amplitude and/or phase is expected to be capable
of learning or self-organizing efficiently by excluding unnatural or needless
adaptive behavior. The above consideration leads to a neural network whose
synaptic weights are composed of amplitude and phase modulations. That is,
the network deals with phasor (complex amplitude) by amplifying / attenu-
ating the amplitude and rotating the phase.

At the early proposal stage of CVNNs, the effectiveness was sometimes
suspected, i.e., “why do we need deal with complex numbers?” However,
in these years, we have various fields where CVNNs are effectively used, in
particular in wave-related processing. They are even necessary in some areas
such as independent component analysis in frequency domain. Application
fields are explained in detail in the next section.

Considering the above situation, together with the dismissal of differen-
tiability, we may say that CVNNs pay more attention to complex number as
complex amplitude, i.e., phasor, than that as two-dimensional plane number.
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Fig. 3.13 (a)Spectrum of non-baseband signal (modulated wave) and (b)extraction
of in-phase (real) and quadrature-phase (imaginary) components of the signal by
homodyne detection.

3.6 In What Fields Are CVNNs Effective?

Complex-valued neural networks (CVNNs) are useful in particular in the
following fields. Referring to the diagram showing applications in Fig.1.2
(Page 7) in Chapter 1, we discuss features in dynamics in the respective
fields.

3.6.1 Electromagnetic and Optical Waves, Electrical
Signals in Analog and Digital Circuits

Non-baseband signals (modulated carrier waves)

Figure 3.13(a) shows the spectrum of a modulated carrier waves (non-
baseband signals) such as electromagnetic-wave signals in radio and television
broadcasting and mobile communications, as well as lightwave signals in op-
tical communications. The spectrum ranges around its carrier frequency fc.
The signal is carried on the carrier wave modulated by a modulator. A tech-
nique called homodyne detection extracts the real and imaginary parts of the
signal as follows [57].

Figure 3.13(b) shows the schematic diagram of the homodyne detection.
We prepare a local oscillator that generates two waves orthogonal to each
other (cos and sin) of the same frequency fc, and multiply (mix) divided
incoming signals by them, respectively. Low-pass filters extract only the
baseband signals (subtracted-frequency component), i.e., in-phase (real) com-
ponent obtained through the cos path and quadrature-phase (imaginary)
component obtained through the sin path. The phase of the local oscilla-
tor works as the phase reference that determines real and imaginary axes in
information. Note that this scheme functions well for various signals if the
relative bandwidth (= (bandwidth) / (carrier frequency)) is small enough,
even for a carrier suppressed signals such as binary-shift-keying signals.
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Fig. 3.14 Signal constellation in complex plane in 16-QAM digital communica-
tions. (a)Ideal constellation and (b)received one affected by noise, phase rotation,
and saturation.

The mixing is effective also for lightwave detection. When a photodiode de-
tects a lightwave, it yields a photocurrent proportional to optical power, i.e.,
the squared amplitude. Therefore, we can obtain a baseband signal simply
by superimposing a local-oscillator lightwave on the incoming signal light-
wave at a halfmirror, and detecting the mixture with a photodiode [58]. The
mechanism is the same as that of Young’s interference experiment where two
interfering lightwaves have an identical carrier frequency so that the frequency
difference is 0.

Note that, in most cases, we can practically neglect harmonic waves that
we may observe in nonlinear systems dealing with waves. As an example, let
us consider the so-called 16-quadrature-amplitude modulation (16-QAM) in
wireless or lightwave communications. Figure 3.14(a) shows an ideal signal
constellation in the complex plane. When a receiver detects the signal, the
constellation is affected by random noise, phase rotation (Doppler effect),
and possible harmonic waves originating from, for example, the nonlinearity
in the output stage in a transmitter. However, if the receiver is equipped
with a filters to eliminate the harmonics, the constellation does not include
the harmonics, but instead, a simple amplitude saturation just like shown in
Fig.3.14(b) [59]. Such a simple saturation is useful to realize an activation
function in neural networks. Similar nonlinearity is observed in optical-fiber
amplifiers and various saturation phenomena.

Baseband signals

Incidentally, we often need to deal with baseband signals also, i.e., time-
sequential signals of fc = 0, with CVNNs. Even in such baseband cases,
neural adaptive processing in complex domain is effective, as mentioned in
Chapter 1. We can adaptively deal with most of baseband signals consistently
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in total by assuming that they have imaginary components obtained in the
following manner.

In general, a real-world time-sequential signal has causality. The real and
imaginary parts of the Fourier-transformed signal are, hence, not indepen-
dent of each other. That is, we can construct an imaginary signal consistent
with the real one as the Hilbert transform pair. The generated signal is called
analytic signal. Note that the automatic generation of the imaginary infor-
mation does not mean the insignificance of the complex treatment. Instead,
by taking the imaginary part into account, we can realize a neural learning
and self-organization more appropriately without unnecessary search in in-
formation space than we might do when we consider, as it were, only the
real-part projection of what the signal should be [60]. That is, even though
all information is carried by the real part, we can make a neural network
learn or self-organize in a better way by a preprocessing that transforms a
real-valued input signal into a consistent complex-valued one.

Complex-valued signals are generated as follows. Let us consider a signal
whose frequency spectrum is shown in Fig.3.15(a). A real-valued signal in
time domain has an even spectrum with a symmetry line at f = 0. (More
generally speaking, S(f) = (S(−f))∗ where ∗ means complex conjugate.),
that is, if the spectrum component at f is the same as that at−f , the real part
of the signal is doubled, while the imaginary part is cancelled out, resulting in
a real-valued signal. Therefore, if we extract only the positive f component of
the spectrum and inversely Fourier transforms it, we will obtain a complex-
valued baseband signal (complex amplitude, or phasor) that has a imaginary
part naturally consistent with the real part.

A procedure to generate the complex-valued baseband signal is explained
as follows. First, we conduct the Hilbert transform on a real-valued base-
band signal s(t). The result is sH(t) ≡ Hs(t). The transform is expressed in
continuous or discrete time (unit time delay is τ0) as

sH(t) =
1

π

∫ ∞

−∞

s(t− τ)
τ

dτ (continuous time) (3.42)

=
1

π

∑
k �=0

s(t− kτ0)
kτ0

τ0 (discrete time) (3.43)

A little arithmetic reveals that the characteristic function of the Hilbert trans-
form H(f) rotates the spectrum in positive frequency by −π/2 while that in
negative frequency by +π/2, i.e.,

H(f) =

⎧⎨
⎩

j (= ejπ/2) (f < 0)
0 (f = 0)

−j (= e−jπ/2) (f > 0)
(3.44)

where j ≡ √−1 here. As a result, we obtain the spectrum shown in
Fig.3.15(b). Then, (1+ jH) transform generates the spectrum in Fig.3.15(c).
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The multiplication of j means a rotation by π/2, which is easily realized in
digital processing by alternating the real and imaginary parts with signs taken
into account. Then the inverse Fourier transform generates a complex-valued
baseband signal.

Note that, in a practical system, the above process including the Hilbert
transform is realized in time domain with a digital filter as shown in
Fig.3.15(d). Since baseband signals are mostly composed of low frequency
components, they are easily dealt with by analog / digital converters (A/D
converters) and digital signal processors. In such a case, we construct a filter
of certain steps, instead of ideal one of infinite steps. We also need a delay
of half number of total steps for the real-part signal flow because the Hilbert
transform requires the delay.

3.6.2 Electron Wave

On the left-hand side in Fig.1.2 (Page 7) in Chapter 1, we find various appli-
cations based on physical entities such as electromagnetic wave and lightwave.
Next to them, we can also find quantum waves such as electron wave. When
we observe microscopic particles such as electrons, we find significant quan-
tum nature. It is a big issue in science and technology to utilize the quantum
nature, in particular in the modern nanotechnology.

Quantum nature often means the wave nature of particles, i.e., quantum
wave. That is, in the case of electron, we deal with the electron wave. In this
sense, electron wave is somewhat analogous to electromagnetic wave. For ex-
ample, single-electron devices, where an electron is apparently regarded as
a particle, are also considered based on the wave nature, i.e., the standing
electron wave. Note that, at the same time, we have to pay attention to differ-
ences between electromagnetic wave (photon) and electron wave in relation
to the electric charge and the rest mass.

Conventional direction of development of electron devices has been very
simple and clear, i.e., higher speed, lower operation power and voltage, and
larger-scale integration of transistors such as field-effect transistors (FETs).
The criteria have always been valid because we have been sure that we can
solve more problems if we can deal with larger capacity of bit information
quickly. However, as we see in Section 2.1 (comparison between AI and neural
networks) and Fig.2.1, it turned out that we have various problems difficult
to formalize, to reduce into elements, and therefore, to solve by conventional
approaches. The maturity of the system-on-chip technology to integrate com-
plicated system on a single chip also accelerates new approaches to consider
device physics and system functions altogether.

Consequently, it is expected that the researches on highly functional sys-
tems including neural networks develop into device level investigations more
and more. It becomes hence significantly important to construct a neural
framework where we deal with wave aspects of electrons as quantum waves
from adaptive-system viewpoints. We have the possibility to develop quantum
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and (d)digital circuit or program that generates the complex signal.

devices that possess adaptability at the microscopic level of device physics.
The theory of the CVNNs can be a framework exactly suitable for such in-
vestigations. Quantum-wave neural theories and quantum neural devices is
increasingly developing such interdisciplinary fields.
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3.6.3 Superconductors

Superconductivity is a quantum effect having some parallels with electron
wave. Based on the same reason that electron wave has, adaptive supercon-
ductive devices will be developed in the future. In comparison with electron
wave, we may utilize its macroscopic nature and ultralow power consump-
tion. This field is also a hopeful realm. Interactions of Josephson junction
with electromagnetic wave will also be a key phenomenon.

3.6.4 Quantum Computation

Quantum computation is another field to which the theories in the CVNNs are
effectively applicable since the quantum states are represented by complex
amplitude. It is a very natural and prospective approach to pay attention
to the complex states and operators as well as the parallel and distributed
operations to find analogies with the theory of CVNNs. References in Section
3.7 present recent development.

3.6.5 Sonic and Ultrasonic Waves

In Fig.1.2(Page 7) in Chapter 1, we also find sonic and ultrasonic waves.
In these applications, we can expect the same adaptability as that in
electromagnetic-wave and lightwave applications. When we process sonic and
ultrasonic waves electronically, we generate or detect them with transducers
such as speakers and microphones. Then we treat electrical signals, that re-
flect the sonic and ultrasonic properties governing propagation, reflection,
diffraction, and other sound-wave phenomena, in the same manner as those
in dealing with electric signals in Section 3.6.1.

Medicine is one of the most important fields related to ultrasonic waves.
Ultrasonic diagnosis will become more useful if we can generate ultrasonic
beams more adaptively (beamforming), or can process obtained image with
learning, on the basis of CVNNs. To improve reflection images, we will be able
to realize an automatic adaptive feedback for a vibrator array by being based
on obtained image information such as independence in pixelwise information.
We may call such a system a superbrain that can see or hear ultrasonic
complex amplitude.

We have another direction, i.e., realization of CVNNs using sonic and
ultrasonic waves. In such an approach, we can expect a larger variety in
constructing neural systems since we have physically various possibilities in
wavelength and velocity than those in electromagnetic waves. It is also attrac-
tive to provide ultrasonic wave itself with adaptability. For example, there
exists a method to inform solely a person standing at the edge of a platform
at a railway station by focusing to the person an ultrasonic beam modu-
lated by vocal wave. This caution system utilizes nonlinearity at our outer
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ears that extracts the vocal information out of the modulated ultrasonic car-
rier wave. Adaptive and soft CVNN processing will realize more variously
shaping beamforming required for more complex arrangement of persons and
objects, which will lead to information delivery with a more complicated
individualization.

3.6.6 Compatibility of Controllability and Adaptability

We find application fields related to CVNN dynamics on the right-hand side
in Fig.1.2 (Page 7) in Chapter 1. At the center of the figure, we have a box
showing compatibility of controllability and adaptability. The compatibility
is realized by modulating carrier frequency in a CVNN to change its behavior,
i.e., processing, learning, and self-organization. System examples are shown
in Chapter 8 (Lightwave associative memory that has carrier-frequency de-
pendent behavior), Chapter 9 (Lightwave phase equalizer), and Chapter 10
(Developmental learning in robotics).

Neural networks possess high adaptability. Therefore, it is sometimes dif-
ficult for users to control the network behavior. However, in coherent neural
networks, we can use the carrier frequency as a key to change the behavioral
mode after the network conducted learning in a carrier-frequency dependent
manner. A carrier-frequency dependent self-organization is also possible if
the network has an appropriate feedback mechanism including frequency-
determining network in the self-organization, in which the network finds the
most suitable key value self-organizingly by itself. Such a self-organization is
related to volition, which is indispensable for emergence of context-dependent
behavior and so-called brainlike information-processing systems in the future.

Moreover, if we conduct processing at multiple behavioral modes in parallel
by assigning multiple carrier frequencies, we can realize a carrier-frequency-
domain parallelism in neural processing. Because one of the structural fea-
tures of neural networks in general is parallelism, the above frequency-domain
parallelism is attractive in relation not only to neurodynamics but also to
hardware implementation utilizing vast optical frequency bandwidth.

3.6.7 Periodic Topology and Metric

In CVNNs, phase information has a periodic topology. We can sometimes uti-
lize this nature. Conventional neural networks employing ordinary sigmoid
function or radial basis function (RBF) are not good at dealing with infor-
mation intrinsically possessing a periodic structure. Previously, researchers
proposed nonmonotonic activation-function neurons employing, e.g., trigono-
metric activation functions (cos or sin) as the activation functions, to deal
with periodic information. In this context, CVNNs are the networks that
address this issue head-on. We have many technical areas that include peri-
odically structured information.
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Even in physiology, periodic information structure is related to various
observations. On human visual cortex, we have a neuron that fires for a
vertical-line stimulus. We also have a neuron that fires for slightly slant (e.g.,
in 10 degrees) line stimulus. Another neuron fires for a little more slant stim-
ulus. The neurons are aligned on a curve in the order of the degree of slant as
shown in Fig.3.16. That is, the order of what the stimulus means to human
being determines the mapping of the corresponding neurons, though they are
actually on a meandering curve. The brain develops the slant information as
the placement of corresponding neurons, i.e., as the topology and metric of
the neuron mapping. In the following neural processing realized with many
local connections, the contiguity plays an important role. The human beings
have a higher resolution in particular at around vertical and horizontal lines
because these angles have important meanings for us to live in the real world,
and also because we are familiar with such angles in our lives. On the other

Position of the neuron activated by vertical stimulus

Position of the neuron activated by 10-degree slant stimulus

Position of the neuron activated by 20-degree slant stimulus

(a)

(b)

Fig. 3.16 (a)Schematic illustration of mapping of slant-bar information on the
visual cortex and (b)a torus schematically expressing multidimensional circular
mapping.
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hand, we have lower resolution at some other angles and, at around such
angles, neurons are assigned with a lower density.

When we intend to realize a mapping with a high resolution homoge-
neously in all the angles in engineering systems, the fragmentary arcs will
be connected with one another to form a circular structure. In a task where
such circular structures will be constructed in n-dimensional space, it must
be helpful to prepare some arrangement, within the basic neural structure, fa-
vorable for constructing n-dimensional torus. For this purpose, we can utilize
the periodicity in phase. (In other words, the one-dimensional torus group
is isomorphic to multiplicative group of all complex numbers with absolute
value of unity, and the n-times direct product of the one-dimensional torus
with itself is geometrically an n-torus.) Such an approach can be named the
preparation of “a superbrain cortex having n-dimensional torus structure.”

3.6.8 Direct Use of Polar Coordinates

We can utilize the coordinate dependence of the neural dynamics, in partic-
ular, the dependence on the polar coordinate instead of Cartesian one. We
can also enjoy the ease in numerical treatment. For example, the fovea cen-
tralis on the retina has a high resolution to gaze at a still object, whereas the
fringes have lower one to catch something moving. The functions of the retina
and following networks depend on the position of the visual field, i.e., at the
center or on the edge. The polar coordinate system is suitable for realizing
an adaptability having a smooth changeover from the central function to the
edge one basically continuously.

The polar coordinate is advantageous also to us to deal with images ob-
tained by omnidirectional cameras without deforming it into a rectangu-
lar frame. The computational time in deformation deteriorates the real-time
processing ability. In particular, when we use a retina-like imaging device
having a higher resolution at the center in the future, the deformation will
be a serious detour. A direct treatment using the polar coordinate is ideal and
effective. Incidentally, if we feed the omnidirectional image directly to neural
networks, the network will self-organize in such a way that it constructs a
self-centered view of the world, which may be similar to the worldview of the
human beings and useful to realize a humanlike robot. That is, we can bring
up a “brain that self-organizes with a polar-coordinate visual field.”

3.6.9 High Stability in Recurrent Dynamics

Recurrent neural networks, that have feedback loops in the structure, realize
time-sequential operation. Recurrent CVNNs have a high stability in general
in dealing with time-sequential signals such as movies, i.e., gradually changing
images.

When we employ a real-valued recurrent neural network, we often expe-
rience breakdowns into chaotic behavior. However, if we try with a CVNN,



3.6 In What Fields Are CVNNs Effective? 49

we can obtain more stable behavior [61]. The advantage stems from the fact
that a CVNN can deal with signals as a weighted summation of various pha-
sors, i.e., by synthesizing revolutions of complex vectors of various amplitude,
phase, and frequency. This feature results in the stability in dynamics in, e.g.,
the analysis and synthesis of time-sequential patterns, such as memory and
recall of music melodies [62].

3.6.10 Preservation of Relative Directions and
Segmentation Boundaries in Two-Dimensional
Information Transform

If we use a linear or holomorphic activation function, we can utilize the
conformal nature in total neural transform. When we equate the complex
plane with two-dimensional information, such as an image to be transformed
through a CVNN, the relative direction of two vectors in the input image is
preserved in the output one. Therefore, in clustering or classification tasks,
the direction relationship of crossing two boundary curves is also preserved
[63]. This nature is approximately available in networks with weak nonlinear
activation functions including real-imaginary-type and amplitude-phase-type
ones.

3.6.11 Chaos and Fractals in Complex Domain

Chaos in complex domain possesses characteristic nature [64]. Chaotic phe-
nomena have been analyzed in these years, and may be connected to useful
applications in the future.

Fractals in complex domain are also interesting. Complex transforms re-
mind us of the Mandelbrot set obtained by iterative complex transform. In
the construction of digital elevation map (DEM) (See Chapter 7), we observe
earth surface with interferometric radars, and conduct the phase unwrapping
process. Though the unwrapping process sometimes yields distortion, we can
reduce the distortion by use of fractal parameters [65]. Such practical usages
of fractals will be developed increasingly.

3.6.12 Quaternion and Other Higher-Order Complex
Numbers

The complex number is directly related to two-dimensional plane, or rather
rotations in two-dimensional space. Similarly, the quaternion is parallel to
three-dimensional space and rotations thereby. Rotation in three- or higher-
dimensional space is noncommutative. That is, when the order of sequential
rotation processes having various rotational-axis directions is changed, the
process in total is also changed. Quaternion has this nature intrinsically.
Application fields include three-dimensional control in robotics, adaptive
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computer graphics such as virtual realities, and generation of images in adap-
tive three-dimensional color space. It is also useful in control of polarization
of lightwave and electromagnetic wave. Polarization is represented on the
Poincaré sphere. Control of polarization on the Poincaré sphere means three-
dimensional rotation. The combination of phase rotation by ordinary CVNNs
and the polarization manipulation by quaternion neural networks leads to a
variety of adaptive polarization control.

Further higher-order complex numbers are also known for their charac-
teristic natures. Octernion does not satisfy the commutativity law nor the
associativity law. If these laws hold, we have a larger degree of operations
(order of operation, etc.). However, higher-order complex numbers gradually
looses the freedom and increases restriction. This nature is completely differ-
ent from that of increase in the dimension of real-number space. To utilize
higher-order complex numbers, it is desirable to understand the nature of the
objective situations so that we can adopt appropriate features of the complex
numbers to make good use of the restrictions.

3.7 Investigations in Complex-Valued Neural Networks

3.7.1 History

Researches on CVNNs date back to the middle of the 20th century. Introduc-
tion of phase-based information representation was introduced by Eiichi Goto
of Japan in 1954 in his invention of ”parametron” [25] [26] . Valve computers
and memories at that time had a short lifetime and unstable operation. He
aimed at more stable physical representation of values by employing multi-
stable phase locking in oscillation. Numbers were expressed binary, decimal,
or in the N -based manner by discrete phase values of integral multiple of
2π/N as exp(

√−1 2nπ/N) where n ( 0 ≤ n < N ) is an integer. Along with
elemental researches on parametron counter circuits [66] , theoretical anal-
ysis on frequency division in feedback circuits [67] , phase memory devices
[68] , design of decimal arithmetic circuits [69] and others, he and Hidetosi
Takahasi succeeded in constructing generic computers based on inherently
multi-valued logic circuits utilizing multi-stable oscillation and convergence
at discrete multiple phase values [70] [71] , though in many cases they adopted
binary representation. They realized general-purpose digital computers that
possess higher reliability, quicker operation, and lower cost than vacuum-tube
computers at that time. The series of the researches had big propagation ef-
fects in many fields. Afterwards, however, transistor computers have come to
dominate all over the world. In general-use digital computers, the information
representation itself has only small influence on the dynamics of information
processing because the processing algorithm is determined in discrete logic,
instead of any dynamics. This is a point of great difference from that of neu-
ral networks. In the CVNN case, the use of phase (or complex-amplitude) in
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information representation plays a significantly important and essential role
as shown in Sections 3.1 to 3.6.

In 1971, Aizenberg et al. in Soviet Union (present Russia) reported an idea
to extend binary output values of “0” and “1” to multiple values on the unit
circle in the complex plane [27]. They also proposed an implementation on
the basis of pulse position modulation (PPM) where they coded the multiple
phase values into the time shift of the “1” pulse in a unit period. This time-
shift idea is compatible with the phase shift in the parametron and modern
wave applications, suggesting the universality of close relationship between
time and phase.

In the above two cases, the multiple-valued output signals are placed on
discrete points on the unit circle. Such a class of CVNNs is sometimes called
the phasor neural networks where the amplitude is fixed at unity, though
the word phasor does not always mean a fixed-amplitude vector in complex
plane. Aizenberg’s group published a book on the multiple-valued networks
in 2000 [72]. (One of the authors of the book, Naum Aizenberg, is the fa-
ther of another, Igor Aizenberg. Though Naum already passed away, Igor is
developing the work.)

In the adaptive signal processing in radar systems, communications, and
other applications, on the other hand, we inevitably need to deal with complex
signals. In such linear processing, Widrow et al. in the U.S.A. presented the
complex least mean square (LMS, the steepest descent method with squared
error) [46]. Since it is linear, the dynamics is clear. The most basic treatment
is that we substitute the hermitian conjugate (conjugate transpose) for the
transpose of vectors and matrices in real-valued processing. This operation is
widely found in science and technology such as quantum mechanics.

In 1988, Noest in the Nederland proposed multiple-valued (phasor) asso-
ciative memory [73] and obtained the memory capacity [74]. It was found
that, under a certain condition, the normalized capacity of the phasor asso-
ciative memory is calculated as π/4, which is a little larger than 2/π of a
binary associative memory.

Afterward, in late 1991 and 1992, many ideas were presented on the steep-
est descent method and backpropagation learning, both of which are impor-
tant learning process explained in Chapter 4, intensively and independently.
In 1991, Leung & Haykin considered a CVNN whose activation function is
expressed as yj = 1/(1 + exp(−∑

wjixi)) with complex variables, as pre-
sented in (3.17). They analyzed the dynamics with partial derivatives in real
and imaginary parts [48].

In 1992, Benvenuto & Piazza considered a CVNN whose activation
function is expressed separately in real and imaginary parts as f(z) =
sigmoid(Re(z)) + i sigmoid(Im(z)), namely, the real-imaginary-type activa-
tion function [49]. This can be one of the simple extensions of a real sigmoid
activation function. Its advantage is that we can also obtain a backpropaga-
tion algorithm as a simple extension of that in the real-valued networks.
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Paper by Nitta [75], an extension of his Japanese one [76], also consid-
ered a CVNN with the real-imaginary-type activation function and analyzed
the dynamics by dealing with the real and imaginary parts separately. He
assumed a task to transform two-dimensional images composed of points in
complex plane to discuss the two-dimensional generalization ability.

There exist other papers introducing a real-imaginary-type activation func-
tion to consider steepest descent methods and backpropagation algorithms
with independent real and imaginary parts. For example, the purpose of the
papers by Kim & Guest [77] and Birx & Pipenberg [78] lay in optical imple-
mentation. However, they analyzed the dynamics with the real and imaginary
parts only separately, though the separate treatment makes most analyses
simple.

In such a situation, the paper by Georgiou & Kutsougeras in 1992 [79]
discussed what class of activation functions is meaningful, after some real-
imaginary-type theoretical analysis is given in the beginning. Assuming an
analog circuit implementation, they proposed a function whose amplitude is
saturating, while the phase is unchanged, i.e., f(z) = z

c+|z|/r where c and

r are parameters determining the saturation characteristic. This function is
basically equivalent to the amplitude-phase-type activation function shown
in (3.21). Consideration on signals or waves in electronic circuits reasonably
leads us to an activation function of this type.

In the same year, Hirose proposed an associative memory employing an
amplitude-phase-type activation function, independent of Goergiou’s group,
and demonstrfated smooth recall in the complex domain [80]. This proposal
also assumed physical implementations such as quantum devices in the future.

In 1992 again, Hirose proposed a steepest descent method and a backprop-
agation algorithm available for CVNNs employing the amplitude-phase-type
activation function [81], and demonstrated their effectiveness. They were de-
rived on the basis of partial derivatives in amplitude and phase directions,
which are compatible with this activation function. The backpropagation
has another characteristic feature. That is, it does not make error signals
backpropagate but, instead, makes teacher signals themselves backpropagate
through the neuron layers. This feature matches implementations with light-
wave and electromagnetc wave (See Chapter 4).

The year 1992 was fruitful year in CVNN researches. Takeda & Kishigami
reported the theory and experiments on a complex-valued lightwave associa-
tive memory [82]. They noticed the fact that the mathematical expression
of the lightwave field in a phase-conjugate-mirror resonator is identical with
that of a complex-valued associative memory. Their success in the experi-
ments was epoch-making indeed. To construct a theory realistically effective,
it is important to develop it in conformity with physical reality. They also suc-
ceeded in presenting an excellent example that a basic physical phenomenon
realizes a CVNN.

Following above ideas related to the amplitude-phase-type CVNNs, Hi-
rose’s group published several papers on coherent lightwave neural networks,
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including a paper describing physical implementation with homodyne detec-
tion and the details of the amplitude-phase-type backpropagation [50], and
another one presenting numerical analysis on the generalization characteris-
tics in the frequency domain [83] [84] [85].

Moreover, they proposed the realization of carrier-frequency-dependent
behavior (processing, learning, self-organization, etc.) in coherent
electromagnetic-wave or lightwave CVNNs [83] [86]. This idea leads not
only to the control of neural behavior by modulating the carrier frequency,
but also to emergence of volition in combination with a feedback of output
signals to controllers (See Chapter 10). Furthermore, it realizes frequency-
domain multiplexing (i.e., frequency-domain parallelism) in the vast optical
frequency band (Chapters 8 and 9). These advantages originate from the pre-
cise frequency-dependent manipulation of signals by dealing with the phase
information in the CVNNs.

3.7.2 Recent Progress

Theories

Theoretical aspects have been variously discussed from diverse viewpoints
with a constellation of ideas. Hanna & Mandic analyzed the dynamics of
steepest descent learning in a single-layered filter having an activation func-
tion of 1/(1 + exp(−∑

wixi), or of the amplitude-phase type [87]. They
also investigated the resulting outputs of the filtering process [88]. Hanna &
Mandic [89] and Mandic & Chambers [90] discussed the effect of data reusing
in learning in CVNNs. Besides, many papers reported analysis results on
learning algorithms such as Casasent & Natarajan [91], Nitta [92][93], Goh
& Mandic [94][95][96], Fiori [97], and Xu et al. [98]. We can also find an error
evaluation in perceptrons by Yang et al. [99] and reduction of hidden-layer
neuron number by Kobayashi [100]. Learning property in multiple-valued
networks has also been investigated by Cao et al. [101] and Gao et al. [102].

Characteristics of activation functions were discussed in, for example, Kim
& Adali [103], Kim & Adali [104], Jankowski et al. [105]. Regarding complex-
valued associative memories, there are various reports on energy functions
and dynamics: Kuroe et al. [106], Hirose [107], Nemoto & Kubono [108], Lee
& Wang [109], Aoki & Kosugi [110], Lee [111][112][113], Prashanth [114],
Takahashi [115], Müezzinoǧlu et al. [116] , as well as detailed discussion on
stability of point attractors: Agu et al. [117] and Hirose [118]. Dynamics of
CVNNs with real-imaginary-type activation functions were analyzed when
they are used for complex-plane transform in Nitta [119][63][120]. Principal
component analysis (PCA) and independent component analysis (ICA) have
also been investigated from various points of view by Zhang & Ma [121],
Sawada et al. [122], Makino et al. [123], Rattan & Hsieh [124], Uncini & Pi-
azza [125], Anemuller et al. [126], Li & Adali [127][128] and Novey & Adali
[129]. Oscillatory networks are also closely related to complex-valued net-
works, which are discussed by Burwick [130][131] .
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Quaternion and Clifford neural networks were proposed and analyzed by
Pearson & Bisset [132], Arena et al. [133], Isokawa et al. [134], Kusamichi
et al. [135], Buchholz [136][137], Byro-Corrochano & Arana-Daniel [138] and
many other research groups.

Applications

There are many applications in microwave and millimeter-wave fields such as
CVNN-based adaptive designing of patch antennas:

Mishra & Patnaik [139], Du et al. [140], Mishra & Patnaik [141], estimation
of DoA (direction of arrival) using CVNNs proposed by Yang et al. [142],
adaptive beamforming in array antennas by Suksmono & Hirose [143][144],
Yamaki & Hirose [145] [146], Chang et al. [147] , and adaptive processing
of airborne and satellite interferometric radar images for globe observation
[148], or ground penetrating radars (GPRs) for landmine detection Hara &
Hirose [149] [150], Masuyama & Hirose [151], Masuyama et al. [152], Nakano
& Hirose [153] [154] [143]. Some of the following chapters are dedicated to
such radar image processing. Such ideas are useful also in ultrasonic imaging
reported by Nishino & Hirose [155].

In neurophysiological analysis, the dynamics of complex-valued Nagumo-
Sato model to represent time-sequential neuron activities and emerging
chaotic behavior were analyzed and discussed by Nemoto & Saito [64]. In
bioinformatics and related image processing, the gene expression was ana-
lyzed for classification of the stages of gene expression by using CVNNs by
Aizenberg et al. [156]. Handayani et al. [157] proposed an adaptive image
segmentation method based on so-called “snake,” which is a dynamic bound-
ary, in the complex domain for segmentation of vessels in magnetic resonance
images (MRI).

In associative memories, various beautiful manners were proposed to deal
with data transformed into frequency domain such as Aoki et al. [158], Aizen-
berg & Butakoff [159], Aizenberg et al. [160]and Tanaka & Aihara [161].

In communications, a specific dynamics was designed by Miyajima et al.
[162] where a phasor neural network has an attractor at the coordinate origin
as well as other attractors on the unit circle for applications to multiple-access
communications.We can regardCVNNs as a superset of complex-valued filters
[163]. Adaptive equalizers and filters have been proposed in many papers such
as You & Hong [164], Gan et al. [165], Hirose & Nagashima [59], Wang et al.
[166], Jianping et al [167], Park& Jeong [168], Kawamoto& Inouye [169], Koike
& and Noda [170], Deng & Yang [171], and Chen et al. [172].

We have large number of CVNN papers related to time-sequential process-
ing such as Chakravarthy & Ghosh [173] where they discussed embedment of
pattern sequences in oscillations. CVNNs have a more stable dynamic behav-
ior in comparison with those in real-valued ones when they construct recur-
rent neural networks such as time-sequential associative memories [174], [175],
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[61]. The dynamic stability is widely applicable in other areas. For example,
melody (music) memorization and extraction was reported by Kinouchi &
Hagiwara [62]. Other methods to learn for time-sequential prediction were
also proposed in, e.g., Rajagopal & Kak [176] showing a quick learning
algorithm.

One of the recent novel applications is the traffic-dependent optimal control
of traffic signals connected by roads mutually and complicatedly, proposed
and analyzed by Nishikawa & Kuroe [177]. They considered the learning dy-
namics of large number of oscillators (traffic signals) connected by roads to
make cars flow better. CVNNs were also applied to calculate inverse matrices
by Song & Yam [178], which can be a feedback to mathematics. Regarding
higher-order complex numbers, we have a quaternion neural-network appli-
cation, for example, in learning in three-dimensional RGB space to transform
color images proposed by Isokawa et al. [134].

A variety of CVNN hardware has also been proposed using lightwave [51],
electromagnetic wave, in particular high-frequency electric signal wave, elec-
tron wave, and sonic or ultrasonic wave [155]. Since a high-frequency pro-
cessing requires high-speed operation, analog neural networks are desirable
rather than digital or pulsed neural networks. Though analog networks can
deal with signals speedily, the low precision has usually been a big problem.
However, recent progress in circuit components is overcoming the drawback
[179].

Quantum neural networks form another new field with various proposals
such as Kinjo et al. [180], Sato et al. [181], Kouda et al. [182], Kinjo et al.
[183] and Nakamiya et al. [184].

Books

Besides the first edition of this present book

• “Complex-Valued Neural Networks” by Hirose (2006, Springer, book
review by Georgiou [185]) (Japanese Edition, 2005, Saiensu-sha) [186],

there are some books on CVNNs or CVNN-related topics:

• “Multi-Valued and Universal Binary Neurons – Theory, Learning and Ap-
plications –” by I.Aizenberg, N.Aizenberg & J.Vandewalle (2000, Kluwer
Academic Publishers) [72],

• “Complex Valued Nonlinear Adaptive Filters – Noncircularity, Widely Lin-
ear and Neural Models” by Mandic & Goh (2009, Wiley) [43],

• “Complex-Valued Neural Networks with Multi-Valued Neurons” by Igor
Aizenberg (Springer, 2011, in the Series of Studies in Computational
Intelligence) [187],
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and multi-author books:

• “Complex-Valued Neural Networks: Theories and Applications” edited by
Hirose (2003, World Scientific, book review by Aizenberg [188]) [56], and

• “Complex-Valued Neural Networks: Utilizing High–Dimensional Praram-
eters” edited by Nitta (2009, Information Science Publishing) [189].

• “Complex-Valued Neural Networks: Advances and Applications” edited by
Hirose (2012, The IEEE Press / Wiley) [190].



4

Constructions and Dynamics of Neural
Networks

In this chapter, we present constructions of neural networks and their dynam-
ics in processing, learning, and self-organization. Biological neural networks,
in particular, most of interface networks, evolved in such a specific man-
ner that each network fits its particular purpose such as seeing, listening, or
speaking. Artificial neural networks also possess various constructions depen-
dent on purposes. Therefore, in this chapter, we investigate the constructions
and dynamics in individual networks according to purposes. However, there
exits a common dynamics in their microscopic mechanisms of learning and
self-organization, namely, the Hebbian rule in the broad sense of the word.
First, we consider the Hebbian rule. Then we go on to various constructions
and dynamics in networks. You do not need any detailed background in ad-
vance since we begin with conventional (real-valued) neural networks and,
afterward, we extend them into complex-valued neural networks (CVNNs).

4.1 Processing, Learning, and Self-organization

4.1.1 Pulse-Density Signal Representation

In biological neural networks, electric pulses, called action potentials, pass
through the network and carry information among neurons. Transmission of
an action potential is called firing. Once the neurons at sensory organs such as
eyes and ears fire, the action potentials are transmitted to sensory neurons,
processed in various ways, and sent with other internally generated pulses
to motor neurons that activate motor organs such as hands, legs, and vocal
cords so that we can move and speak.

We construct artificial neural networks by modeling the biological ones.
The most widely used modeling technique is to deal with pulse density in
time instead of pulse itself. That is, we consider that the principal variable
in the network is the pulse frequency, i.e., how many pulses pass the network

A. Hirose: Complex-Valued Neural Networks, SCI 400, pp. 57–100.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 4.1 Learning and self-organization are attributed to the changes of the weights
placed at the input of the neuron.

in unit time. We consider the pulse density as the signal in neural networks.
This type of neuron model is called a McCulloch-Pitts neuron.

Figure 4.1 shows input and output signals. By normalizing the pulse den-
sity in time appropriately, we can consider that input and output signals, xi
and y, respectively, are regarded as real number in a range of [0,1]. We can
also modify the range to [−1,1] for symmetry. They are basically identical,
which we already examined in relation to the activation functions expressed
by (3.16) and (3.17) in Chapter 3. We assume that the input signal values
are also in the range of [−1,1]. We introduce a real-valued activation func-
tion f(u) = tanh(u) shown in (3.16). The weights are also real numbers in
real-valued networks.

Here we remember the features in neural networks listed in Section 2.3.

1. Distributedness and parallelism: Many simple elements similar or iden-
tical to one another, namely, neurons, gather and make connections to
let pulse-density information pass in parallel.

2. Locality: Information that a neuron can sense is limited to input signals
fed from other neurons through connections, internal state of the neuron
itself, and, in some cases, the state of the neuron to which the output is
connected. Connections are also often local.

3. Weighted sum and activation function with nonlinearity: Input signals
are weighted at the connections. The internal state of a neuron is simply
the weighted sum of the input signals or a nonlinear transform of the
weighted sum. The nonlinear function is called activation function.
Note that, in this Book, we do not deal explicitly with the so-called
threshold in the model neuron. Contrarily, model neurons in not a few
books possess a threshold so that (internal state) = (weighted sum of
inputs) − (threshold). When we consider an analogy between neurons and
logic gates such as AND and OR, the threshold gives us useful insights,
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since AND is realized with a high threshold in the neuron, while OR is
with a low one. But it has no relation to the basis of neuron dynamics,
which you will find in the following sections. If you need a threshold for
some reason, you can put an additional input, x0, per neuron and feed it
with −1 constantly. Then the weight w0 works just like the threshold.

4. Plasticity: Weights change according to the information fed to the neuron
and the internal state. They can change even in the processing of tasks.
The change is called learning or self-organization.

5. Generalization: A neural network behaves expectedly not only to situa-
tions it learned, but also to unlearned ones by inferring an optimal action
on the basis of previously learned events. It constructs its own view of
the world, i.e., its own metric (measure), to estimate the optimal reaction
to unforeseen environment.

4.1.2 Neural Dynamics

”Behavior” of a neural network has the following two aspects.

1. Processing tasks. A neural network reacts to signals, presented by the
environment, by processing the presented input information in a manner
meaningful to the network or network users.

2. Learning or Self-organization. The network changes itself to process infor-
mation meaningfully. The change in processing is mostly realized as the
change in weight values, but sometimes also as the change in connection
routes, i.e., network topology.

We call the details of the behavior the neurodynamics. Section 4.2 and the
following sections present several examples of neurodynamics.

4.1.3 Task Processing

“A neural network processes a task” means that the network yields output
signals appropriately to input signals. In a real-valued neural network, both
the input and output signals are real numbers.

The signals can be temporally changing. Then the network processes time-
sequential signals. In digital logic circuits, we have combinational circuits,
such as AND and OR, and sequential circuits having memory circuit to deal
with time sequence. Neural networks can also work as both of them. However,
we seldom prepare explicit memories. Instead, we utilize the latency, or delay,
in the reaction of neurons. Though conventional computers are equipped
with processors and memories separately, neural networks possess them in a
harmonious whole.
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4.1.4 Learning and Self-organization

Learning is the changes of the neural network, made by the network itself, in
such a way that the resultant processing behavior becomes in accordance with
the wishes of network users, e.g., “memorize this relationship” or ”behave in
this way.” One can wish the behavior in full detail (supervised learning)
or vaguely by presenting only the final goal to the network (unsupervised
learning). One may give an evaluation to the network for every learning trial
(reinforcement learning).

Self-organization is the change of the neural network, made by the network
itself again, to become self-consistent through interactions with environment.
Users find something useful in the result or the resultant behavior.

4.1.5 Changes in Connection Weights

Though both the learning and self-organization are explained as the changes
mentioned above from a macroscopic viewpoint, they are also gradual changes
of neural-connection weights microscopically. Figure 4.1 shows the changeable
weights wi for inputs xi. The capability of the connection change is called
plasticity. The change does not necessarily require explicit target values. In-
stead, the weights can approach appropriate values by taking the input and
output values into consideration. When desirable input and output values are
given explicitly from the environment, they are called teacher signals.

There are various procedures in the weight changes. For example, the net-
work may be provided with all teacher signals required, and change the con-
nections starting from certain initial values. This learning can be regarded as
a batch process. If the environment is changed, the network repeats to learn.

In other cases, however, the network may learn or self-organize during
task processing. It is, so to speak, an on-the-job training. The learning and
processing occur in unison. In general, the task processing works quickly,
while the learning progresses slowly. Besides, learning may occur at intervals
between task processing.

4.2 Hebbian Rule

The Hebbian rule is considered to be the most basic principle of learning. It
is a hypothesis proposed by D. O. Hebb, a psychophysiologist in Canada /
U.S.A., in 1949, related to biological neural networks [29], namely, “When an
axon of cell A is near enough to excite cell B and repeatedly or consistently
takes part in firing it, some growth process or metabolic change takes place
in one or both cells such that A’s efficiency, as one of the cells firing B, is
increased.”
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Fig. 4.2 Changes in connection weights according to the Hebbian rule.

Recent progress in physiological experiments revealed the correctness of
the assumption.

With the neuron model described in the previous section, the rule is ex-
pressed as the temporal change of the connection weight wi as

τ
dwi

dt
= −wi + yxi (4.1)

where τ is the time constant of the change, and y and xi denote output and
input signals, respectively, as shown in Fig.4.2.

When the input signal of Neuron B (output signal of Neuron A) xi is
almost unity, and the output signal of Neuron B y is also near to unity, the
weight wi increases. In a [−1,1]-neuron’s network, the weight wi also increases
even if both the input and output are near to −1, which is consistent with the
meaning of the hypothesis. The steady state solution is derived by assuming
dwi/dt = 0 as

wi = < yxi > (4.2)

where < · > denotes expectation. That is, when various input signals xi(t)
are fed to the neuron one after another, the mean product < yxi >, i.e., the
correlation, is stored in the weight wi.

We can implement the Hebbian rule as software by discretizing (4.1) as

wi(t+ 1) = (1 −K)wi(t) +K y xi (4.3)

where t is discrete time, and K (0 < K < 1) is the constant determining the
changing speed. In a steady state where the fractionΔwi(t) ≡ wi(t+1)−wi(t)
that changes the weight wi is zero, the weight is < yxi > again.

Then, in what way the complex-valued Hebbian rule, the complex version
of the Hebbian rule, can be expressed? When we consider the correlation
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between two complex variables, we multiply one variable with the complex
conjugate of the other one. Therefore, we obtain the follows consistent with
the real valued one.

τ
dwi

dt
= −wi + y (xi)

∗ (continuous time) (4.4)

wi(t+ 1) = (1 −K)wi(t) +K y (xi)
∗ (discrete time) (4.5)

where (·)∗ means complex conjugate. The weight wi is, so to speak, an op-
erator to operate on the input xi to yield the output y. Therefore, we adopt
the correlation yx∗i where the latter variable xi (input) is conjugated. The
operation is clarified in a matrix expression. We express the input signals as
a vertical vector, while the hermitian conjugate (conjugate transpose) as a
horizontal vector.

x =

⎡
⎢⎢⎢⎣
x1
x2
...
xN

⎤
⎥⎥⎥⎦ , x∗ = [(x1)

∗ (x2)
∗ · · · (xN )∗] (4.6)

The weight w is expressed as a horizontal vector to generate an output y
(presently a scalar) as the inner product of the weight w itself and the input
signals x.

w = [w1 w2 · · · wN ] (4.7)

The Hebbian rule, (4.4) and (4.5), is then expressed as a horizontal-vector
equations as

τ
d

dt
w = −w + y x∗ (continuous time) (4.8)

w(t+ 1) = (1−K)w +K y x∗ (discrete time) (4.9)

Incidentally, the conjugating operation in lightwave and electromagnetic-
wave physics is related to, for example, the phase-conjugation mirrors. It
realizes the reverse of time, or the reverse of propagation direction. We will
utilize the relationship between the conjugation and the reverse of time when
we develop a so-called backpropagation learning process in Section 4.4 (Func-
tion approximation).

Moreover, the complex-valued Hebbian rule corresponds directly to the
recording process in holography. That is, the memory of correlation (4.8) is
optically realized simply by using a hologram. Frequency-domain multiplex-
ing in complex-valued Hebbian-rule learning was also reported [191], [192].

To summarize the Hebbian rule, it is the most fundamental weight-
changing rule. The real-valued Hebbian rule is expressed by (4.1) and (4.3),
while the complex-valued Hebbian rule is expressed by (4.4) and (4.5), or
(4.8) and (4.9). In any case, the Hebbian rule makes the connection weight
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approach to the input-output correlation. We will find in the following sec-
tion that the Hebbian rule is applicable in correlation learning when teacher
signals are given to the network in a bunch or time-sequentially. In Section
4.4.6, it is also useful in function approximation in supervised learning.

In the following sections, we present variously functional neural networks
using the Hebbian rule. The behavior and functional operations will be ex-
plained in a plain manner, for example, by showing how a set of input signals
is processed in the network, so that the readers can grasp some hints to ap-
ply the dynamics in various application fields. If one needs more rigorous
mathematics, please refer to literature listed in Chapter 2.3.

4.3 Associative Memory

4.3.1 Function: Memory and Recall of Pattern
Information

Associative memories typify the spirit of neural networks. They are sometimes
called Hopfield networks. The function is the memory and recall of pattern
information. That is, an associative memory memorizes a set of patterns.
Then, it chooses one of the memorized patterns nearest to an input pattern
fed, and yields it as the output pattern. Though the input is generally noisy
and ambiguous, the associative memory estimates the pattern most similar
to the input.

4.3.2 Network Construction and Processing
Dynamics

Figure 4.3 shows the network construction. All the neurons are connected
with one another. That is, it is a fully-connected neural network. Once an
input signal pattern is fed to the network, the output pattern is fed again
to the neural inputs iteratively. This structure is called recurrent. The hip-
pocampus in the human brain, that plays an important role in memorizing
information, possess a clear recurrent structure. The associative memory was
modeled after the hippocampus.

The input signal is an N -dimensional vector x. The output is also an
N -dimensional vector, and the values of its elements are within [−1, 1]. We
assume that the element values of the vectors to be recalled are ±1. We
adopt f(u) = tanh(u) as the activation function saturating at ±1. In such an
associative memory, we usually obtain positive or negative unity as the final
output values, though we may have halfway values in the recall process. The
patterns to be memorized sμ are also N -dimensional vectors whose elements
are ±1.
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We express input, output, and memorized vectors, x, y, and sμ, respec-
tively, as vertical vectors as

x ≡

⎡
⎢⎢⎢⎣
x1
x2
...
xN

⎤
⎥⎥⎥⎦ , y ≡

⎡
⎢⎢⎢⎣
y1
y2
...
yN

⎤
⎥⎥⎥⎦ , sμ ≡

⎡
⎢⎢⎢⎣
s1μ
s2μ
...

sNμ

⎤
⎥⎥⎥⎦ (4.10)

For example, when we deal with an image whose pixel number is N , the
simplest way to map the pixel values to the input vector is to make the
pixels align to form an N -dimensional vector.

The output y is also a vector, and then the connection-weight vector ex-
plained in the Hebbian-rule section is extended to a matrix. The connection-
weight matrix W ≡ [wji] is determined, or formed through learning, as
follows.

When all the N -dimensional vectors to be memorized sμ can be previously
known, we can determine the weight matrix at once. That is, the weight
matrix should be the autocorrelation matrix of sμ where the subscript μ =
1, 2, · · · , μ is given to each vector to be memorized.

Output signals

Input signals

(Signals triggers
off  the association)

x

W

y

Fig. 4.3 Construction of associative memory network.
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W ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣
s1 s2 · · · sμ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

(s1)
T

(s2)
T

...
(sμ)

T

⎤
⎥⎥⎥⎦

= SST (4.11)

where S denotes horizontally aligned vertical vectors sμ, and (·)T means a
transposed vector or transposed matrix.

S ≡

⎡
⎢⎢⎢⎣
s11 s12 · · · s1μ
s21 s22 · · · s2μ
...

...
...

sN1 sN2 · · · sNμ

⎤
⎥⎥⎥⎦ , ST ≡

⎡
⎢⎢⎢⎣
s11 s21 · · · sN1

s12 s22 · · · sN2

...
...

...
s1μ s2μ · · · sNμ

⎤
⎥⎥⎥⎦ (4.12)

The weight matrix W becomes symmetric.
The task processing, namely, recall, is conducted as follows. First, an N -

dimensional input vector x is fed to the network as a trigger to start the
recall at (discrete) time t = 0. The input propagates through the weights
and the neuron, and result in an output y(t = 1) with a unit-time delay.
The output is fed again to the neural inputs recurrently and transformed to
a new output y(t = 2). After a single or several times of iteration, the output
vector y(t) converges at a certain vector, which is often the vector nearest
to the input x among the memorized ones sμ. The “nearest vector” usually
means the vector that yields a largest inner product (sμ)

Tx with the input
vector. That is,

y(1) = f(Wx)

y(2) = f(Wy(1))

y(3) = f(Wy(2))

...

y(t) −→ sμ nearest to the input vector x (4.13)

where f(u) = tanh(u) is the activation function, for output values of [−1, 1],
working on every element of the vector u. The output y(t) converges typically
with a single or several iterations. In other words, the recall is completed.

Why it is capable of recalling the vector nearest to the input? To under-
stand the dynamics, we trace the changes in the signal vector. Assume that
the input vector x is near to, say, s2. Then we can express x using s2 and
noise n as
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x = s2 + n

=

⎡
⎢⎢⎣
s12
s22
· · ·
sN2

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
n1

n2

· · ·
nN

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
s12 + n1

s22 + n2

· · ·
sN2 + nN

⎤
⎥⎥⎦ (4.14)

Then the product of the weight matrix and the input is calculated as

Wx = W(s2 + n)

= SST(s2 + n)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣
s1 s2 · · · sμ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

(s1)
T

(s2)
T

...
(sμ)

T

⎤
⎥⎥⎥⎦ (s2 + n)

(4.15)

We pay attention at the end of (4.15). If the memorized vectors are cho-
sen at random, they are approximately orthogonal to each other. That is,
their inner product should almost be (sμ)

Tsν � 0. The noise, on the other
hand, is independent of the memorized vectors, resulting also in (sμ)

Tn � 0.
Therefore, (4.15) is calculated as

⎡
⎢⎢⎢⎣

(s1)
T

(s2)
T

...
(sμ)

T

⎤
⎥⎥⎥⎦ (s2 + n)

=

⎡
⎢⎢⎢⎣
(s1)

Ts2 + (s1)
Tn

(s2)
Ts2 + (s2)

Tn
...

(sμ)
Ts2 + (sμ)

Tn

⎤
⎥⎥⎥⎦

(4.16)

=

⎡
⎢⎢⎢⎣

0 + 0
(s2)

Ts2 + 0
...

0 + 0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0
|s2|2
...
0

⎤
⎥⎥⎥⎦ (4.17)
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In consequence, we obtain the product of the weight and the input signal as

Wx =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣
s1 s2 · · · sμ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

0
|s2|2
...
0

⎤
⎥⎥⎥⎦

= |s2|2s2 (4.18)

That is, the output y(1) becomes

y(1) = f(|s2|2s2) (4.19)

The activation function transforms |s2|2s2 with a saturation characteristic
that binds the output in the range of [−1, 1]. If |s2|2 is sufficiently larger
than unity, we obtain

y(1) = s2 (4.20)

In this manner, the associative memory recalls s2. In practice, the product of
memorized vectors (sμ)

Tsν and that of memorized and noise vectors (sμ)
Tn

may not completely be zero. However, the residual difference should statis-
tically be very near to zero. Therefore, we can expect that the residue is
removed with a few or several iterations of the above process, and that the
network recalls s2.

Note that, when the number of memorized vectors μ becomes large in
comparison with the vector length (neuron number) N , the influence of the
noise is enhanced and significantly influential to the recalling dynamics as
mentioned later. It is known in statistics that the capacity of the associative
memory (the maximum number of memorizable vectors μ normalized by the
neuron number N) is approximately μ/N = 0.15.

4.3.3 Energy Function

We can interpret the recall operation as a process to minimize a certain
energy function. We define the energy E as

E(y;W) ≡ −1

2
yTWy (4.21)

It is shown that the energy (4.21) decreases along with the progress of the
recall y −→ sμ, and becomes a relative minimum at the end. The energy
is also called Lyapunov function. It is a quadratic form of y, and W is the
metric matrix of the energy.
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y
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N

E ( y ; W )

Minimum points
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process

s
2

s1

Energy

Fig. 4.4 Schematic illustration of the energy function E(y;W) determined by the
weight matrix of the associative memory W against signal vector y.

We can understand the decrease of the energy intuitively as follows. The

energy function (4.21) is decomposed as − 1
2

∑
μ

∣∣(sμ)Ty∣∣2, just like we did
in (4.15). It is the summation of the squared products of the memorized
vectors and the signal where, as we considered in the calculation in (4.17),
all the products are approximately zero except for that with the memorized
vector nearest to the signal (s2 in the previous case). Therefore, as the recall
proceeds and the signal y approaches to s2, the product of s2 and y increases,
while other ones stay around zero. Therefore, the summation grows in total,
and the negative of the summation is the energy.

We also find that, since the weight matrix W is symmetric, the energy
variation per iteration must be negative as shown below, and that the move-
ment of y stops at a relative minimum. For example, assume that an element
yk of the signal vector y changes as yk(t + 1) = yk(t) + Δyk. Then, by us-
ing the relationship

∑
iwkiyi =

∑
j yjwjk = uk, we can express the energy

variation as

ΔE = −1

2
(y +Δy)TW(y +Δy)−

(
−1

2
yTWy

)

= −1

2

⎛
⎝∑

i

Δyk wkiyi +
∑
j

yjwjk Δyk + wkk(Δyk)
2

⎞
⎠

= −Δyk uk(t)− 1

2
wkk (Δyk)

2 (4.22)

Therefore, if the activation function has a steep rise against input signal
value, uk(t) > 0 leads to yk(t + 1) ∼ 1 which implies Δyk > 0. Then the
first term of the right-hand side of (4.22) should be negative. Contrarily, if
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uk(t) < 0, then yk(t + 1) ∼ −1 and Δyk < 0, resulting in the term being
negative again. On the other hand, the second term, wkkΔy

2
k, is negligible if

the diagonal components are not large.
Figure 4.4 shows a schematic illustration of the energy landscape. The en-

ergy has relative minima at memorized points. This landscape is the “world”
that is constructed in the associative-memory network and represented by the
metric matrix, namely the weight matrix. If the memorized vectors are not
orthogonal but close to one another, the energy minima are also placed near
to one another and gives rise to incorrect recall. As the number of memorized
vectors increases, the landscape does not stay simple any more, but becomes
complex withmany folds and localminima inwhich the signal vector is trapped
and incapable of reaching the correct goal. That is, the recall fails.

The matrix construction (4.11) shows that the diagonal components of W
consists of nonnegative numbers such as w11 = s211 + s212 + · · ·+ s21μ. They are
often large in particular when the memory has many memorized vectors. Then
we may not be able to neglect the second term of the right-hand side of (4.22).
The term yields fluctuation in the energy and local minima. Therefore, to avoid
such inconvenience, we sometimes force the diagonal components be zero, i.e.,
wii = 0, after the matrix construction by (4.11). The process removes direct
self-feedback connections in the network. Even in this case, the dynamics of
the recall process is principally the same as that mentioned above.

4.3.4 Use of Generalized Inverse Matrix

Do we have any good measures to overcome the harm of nonorthogonality
of the memorized vectors, i.e., non-zero inner products (sμ)

Tsν? We can
improve the weight matrix in such a way that the recall dynamics works
well. That is, we use a generalized inverse matrix to change the metric of
energy (metric matrix) by substituting a set of new bases of the metric for
the old one. The introduction of the generalized inverse matrix changes the
understanding of the world in the network so that it feels as if the memorized
vectors were orthogonal to one another. We determine W as

W ≡ S(STS)−1ST (4.23)

where (STS)−1ST is a generalized inverse matrix called Moor-Penrose pseudo
inverse.

4.3.5 Weight Learning by Sequential Correlation
Learning

In the previous section, we constructed the weight matrix in a batch process.
However, we can also make the network learn the vectors to be memorized by
presenting them one after another to the network. This learning is called cor-
relation learning since the network learns the correlation between presented
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input and output vectors. It is one of the supervised learning methods. With
this learning, the network learns the environment gradually by adapting even
to a slowly changing or shading world. In this sense, the correlation learning
is more flexible than the batch method.

We present one of the vectors sμ (μ = 1, 2, · · · , μ) to the input and output
of the network simultaneously. Then we present the next one, and we continue
the presentation for all the vectors to be memorized repetitively. To memorize
the correlation, the weight W gradually changes as

τ
dwji

dt
= −wji + sjμsiμ (4.24)

where τ is time constant of learning. The corresponding matrix expression is

τ
dW

dt
= −W + sμ(sμ)

T (4.25)

The formal expression is the same as (4.1). In this sense, the correlation learn-
ing is an application of the Hebbian rule. As mentioned in Section 4.2, the
Hebbian rule is fundamentally a rule to memorize correlation. Therefore, the
learning of the autocorrelation explained here has the same formal expres-
sion. The discrete expression is also the same as that of the discrete Hebbian
rule (4.3), i.e.,

W(t+ 1) = (1 −K)W(t) +K sμ (sμ)
T (4.26)

where time t can be differently scaled from the processing time in combination
with the time constant K. Usually we choose the time constant τ (or K) in
such a way that the learning process proceeds much more slowly than the
recall process does.

4.3.6 Complex-Valued Associative Memory

Now we obtain a complex-valued associative memory on the basis of the real-
valued one mentioned above. First, we consider that the input vector, output
vector, and weight matrix are complex-valued, i.e., xi ∈ C, yi ∈ C, and
wji ∈ C where C is the complex number set. When we adopt a saturation-
characteristic activation function, we can consider that the elements of input
and output vectors are limited as |xi| ≤ 1 and |yj | ≤ 1.

The task that a complex-valued associative memory processes is the same
as that of a real-valued memory except for the fact that the input and output
vectors are complex-valued vectors. According to the discussion in Section
3.3, we adopt the amplitude-phase-type activation function f(u) expressed
as

fap(u) = tanh (|u|) exp (i arg(u)) (4.27)
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Therefore, the elements of finally recalled vectors y become |yj | = 1. That
is, yj = eiθj . The elements of memorized vectors s are also |siμ| = 1, i.e.,
siμ = eiθi .

In a batch construction of the weight matrix, we determine it in the same
manner as we did in (4.11) as

W ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣
s1 s2 · · · sμ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

(s1)
∗

(s2)
∗

...
(sμ)

∗

⎤
⎥⎥⎥⎦

≡ SS∗ (4.28)

where (·)∗ denotes conjugate transpose vector or conjugate transpose matrix
(hermitian conjugate). Note that a transpose in real-valued neural network
should be a conjugate transpose in complex-valued one. This is one of the most
basic operations to construct complex-valued networks. Such an operation is
quite universal and seen in various fields such as quantum dynamics. This
operation also means time reversal or space reversal. When we consider the
correlation between two quantities (or a squared value of a quantity), we take
the product of one value and the conjugate transpose of the other one (or
the identical one).

The energy correpsonding to (4.21) is defined as follows. The metric matrix
W becomes hermitian, which yields a real-valued energy.

E(y;W) = −1

2
y∗Wy (4.29)

When we use a generalized inverse matrix, we again replace the transpose in
(4.23) with conjugate transpose as

W ≡ S(S∗ S)−1S∗ (4.30)

The complex-valued correlation learning is also formally identical with the
complex-valued Hebbian rule. That is, we modify (4.9) as

τ
d

dt
W = −W + sμ (sμ)

∗ (continuous time)(4.31)

W(t+ 1) = (1−K)W +K sμ (sμ)
∗ (discrete time) (4.32)

We present sμ one after another to make the complex-valued neural network
learn correlation.

The above is the construction, processing, and learning in complex-valued
associative memories.
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4.3.7 Amplitude–Phase Expression of Hebbian Rule

The complex-valued Hebbian rule, or precisely speaking, the complex-valued
correlation learning, is expressed by (4.31) or (4.32). When we implement the
learning as software or a physical setup dealing with lightwave or electromag-
netic wave, we vary wji on the complex plane by designating the span and
direction of the small shift on the plane. The simplest way is to change the
real and imaginary parts. That is, every time when a vector to be memorized
sμ = [siμ] is presented to the network, we vary the real and imaginary parts
of the weights W = [wji] as

τ
d

dt
Re(wji) = −Re(wji) +Re(sjμ (siμ)

∗)

τ
d

dt
Im(wji) = −Im(wji) + Im(sjμ (siμ)

∗)

(continuous time) (4.33)

Re(wji)(t+ 1) = (1−K)Re(wji) +KRe( sjμ (siμ)
∗)

Im(wji)(t+ 1) = (1−K)Im(wji) +KIm( sjμ (siμ)
∗)

(discrete time) (4.34)

Or we may rather vary the amplitude and phase of the weights, which matches
the amplitude-phase-type activation function. Moreover, when we construct
a lightwave or electromagnetic-wave system, we actually utilize amplitude
modulators and phase modulators. The changing rule of the amplitude and
phase values, |wji| and θji, is obtained for the weights wji ≡ |wji|eiθji and
vectors si ≡ |si|eiθi (μ is omitted here) as

τ
d

dt
wji = −wji + sj(si)

∗

τ
d

dt

(|wji|eiθji
)
= −|wji|eiθji + |sj |eiθj |si|e−iθi

= |wji|eiθji
(
−1 + |sj ||si||wji| e

i(θj−θi−θji)

)

= |wji|eiθji
(

−1 + |sj ||si||wji| cos(θj − θi − θji)
︸ ︷︷ ︸

change in amplitude direction Δ(|wji|)

+ i
|sj||si|
|wji| sin(θj − θi − θji)

︸ ︷︷ ︸
change in phase direction Δ arg(wji)

)
(4.35)

Accordingly, considering the relationship among the vectors shown in Fig.4.5,
we find that the real and imaginary parts in the curly brackets correspond



4.3 Associative Memory 73

w = | w | e i θji

Δw = Δ ( |w | e      ) i θji

Δ(| w |)

i |wji | θji 

Radial direction (real)

Angular direction (imeginary)

ji ji 

ji 

ji e    
i θji

e    
i θji ji Δ

Fig. 4.5 Relationship among vectors expressing the changes in the amplitude and
phase of the weight in the complex-valued Hebbian rule.

to the amplitude and phase variations, respectively. That is, the amplitude
change is written as

τ
d|wji|
dt

= |wji|
(
−1 + |sj ||si||wji| cos(θj − θi − θji)

)

Therefore, we obtain

τ
d|wji|
dt

= −|wji|+ |sj ||si| cos(θj − θi − θji) (4.36)

The phase change is also obtained as

τ
dθji
dt

=
|sj ||si|
|wji| sin(θj − θi − θji) (4.37)

These changes in amplitude, |wji|, and phase, θji, realize the complex-valued
Hebbian learning. These expressions are compatible with the amplitude-
phase-type activation function. The discrete-time version is expressed just
like (4.5) with a real learning constant K (0 < K < 1) as

|wji|(t+ 1) = (1−K)|wji|(t) +K|sj||si| cos(θj − θi − θji) (4.38)

θji(t+ 1) = K
|sj ||si|
|wji| sin(θj − θi − θji) (4.39)

4.3.8 Lightwave Neural Networks and
Carrier-Frequency-Dependent Learning

Among various applications presented in Part II, we will deal with lightwave
neural networks in Chapters 8 and 9. They treat information utilizing co-
herence of lightwave emitted by lasers. We call this class of complex-valued
neural networks coherent neural networks.

Let us consider an optical coherent neural network. The phase value of a
propagating lightwave at a point is determined by optical carrier frequency
and optical path length, i.e., the delay time of propagation. This fact enables
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Fig. 4.6 A lightwave neural network forming a self-homodyne optical circuit.

us to realize carrier-frequency-dependent learning, self-organization, and task
processing in the coherent neural network. The carrier frequency is identical
with the oscillation frequency of the laser. When we use a semiconductor laser,
the oscillation frequency can easily be modulated by the change in the injec-
tion current (frequency modulation: FM). We can modulate, so to speak, the
behavior of the neural network by changing the carrier frequency as follows.

The carrier frequency is f . (Please do not confuse f here and the activation
function.) We consider an optical self-homodyne circuit shown in Fig.4.6. It is
also called Mach-Zehnder interferometer that is the most basic interferometer
for two lightwaves generated at an identical light source. The modulators in
Fig.4.6 modulates the phase (or, actually, the delay time) and the amplitude
of the lightwave. We express the signal si, weight wji, and reference wave sRef

as follows, respectively, by taking the phase of sRef as the phase reference.

si = |si| exp(i(2πft+ θi)) (4.40)

wji = |wji| exp(i(2πft+ θji)) (4.41)

sRef = |sRef | exp(i(2πft)) (4.42)

The signal si, generated by the modulator for input signal generation, is
modulated again by the modulator for weight multiplication to become

wjisi = |wji||si| exp(i(2πft+ θi + θji)) (4.43)

Then it is superimposed on the reference wave for the homodyning at the
half mirror as

|wji||si| exp(i(2πft+ θi + θji) + |sRef | exp(i(2πft)) (4.44)

By detecting the mixed lightwave with a square-law detector, we obtain a
detection current I as

I ∝
∣∣∣ |wji||si| exp(i(2πft+ θi + θji)) + |sRef | exp(i(2πft))

∣∣∣2
= |wji|2|si|2 + |sRef |2 + 2|wji||si||sRef | cos(θi + θji) (4.45)

If the optical power of the reference lightwave is sufficiently large, |sRef | �
|si||wji|, then the dc component, |wji|2|si|2 + |sRef |2, is almost unchanged
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even if the signal or the weight changes. By subtracting the dc component,
we obtain the following signal current as the resulting information of the
interference.

I ∝ |wji||si| cos(θi + θji) (4.46)

Consequently, the optical circuit produces the product of the signal and the
weight quite simply.

Therefore, we can construct a lightwave neural network by preparing op-
tical circuits mentioned above in parallel. For instance, when we build an
associative memory, we present signal vectors to be memorized s at the in-
puts and outputs so that the network learns the correlation. Then the learning
dynamics of the absolute value of the weight |wji| is expressed directly by the
amplitude-phase-type Hebbian rule (4.36) or by the discrete version (4.38).
That of the phase value, in (4.37) or (4.39), requires a modification because
an actual modulator modulates the delay time, τji (which is not the learning
time constant τ), instead of the phase value itself. We rewrite the equations
by using the relationship among the phase θji, carrier frequency f , and delay
time τji, namely θji = 2πfτji, as

τ
d|wji|
dt

= −|wji|+ |si||sj | cos(θj − θi − 2πfτji) (4.47)

τ
dτji
dt

=
1

2πf

|si||sj |
|wji| sin(θj − θi − 2πfτji) (4.48)

The discrete version is obtained as

|wji|(t+ 1) = (1−K)|wji|(t) +K|si||sj | cos(θj − θi − 2πfτji) (4.49)

τji(t+ 1) = τji(t) +
K

2πf

|si||sj |
|wji| sin(θj − θi − 2πfτji) (4.50)

Please pay attention to the following features in the above learning. The
arguments of cos and sin include the product of the carrier frequency f and
delay time τji. The typical optical-carrier frequency is very high, say, 400THz
for GaAs diode lasers. Therefore, the delay time is much influential to the
phase value. The change in f also causes the variation in the phase value.
Available frequency range of modulation is, e.g., a few THz, which is much
smaller than 400THz but very large as an information-processing bandwidth.
On the other hand, though τji includes f also in the denominator as 1/(2πf),
the change in f in this term is relatively so small that it has no distinct effect
on the learning behavior.

Chapters 8 and 9 present lightwave neural networks whose behavior can
be modulated by the carrier-frequency modulation based on the frequency-
dependent learning mentioned above. A bicycle-riding robot shown in Chap-
ter 10 is also based on the identical principle. Other applications include
microwave or millimeter-wave information processing in, for example, active
antennas and radar systems.
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4.4 Function Approximation

4.4.1 Function: Generation of Desirable Outputs for
Given Inputs

Function approximation is a task to generate desirable output signals y for
given input signals x. In particular, when a set of limited number of input-
output pairs (x̂, ŷ) are presented to the network, the network is expected,
in a function-approximation task, to yield appropriate output signals even
for unlearned signals with interpolation and extrapolation. Such an ability to
meaningfully correspond even to inputs other than teachers is called general-
ization. The quality of generalization is the generalization characteristics. If
a generalization characteristic meets with a processing purpose, it is a good
generalization characteristic. Obtaining a good generalization characteristic
leads to a skillful prediction and estimation against unknown environment.
Prediction and estimation are difficult problems for symbolic processors. Con-
trarily, neural networks are good at solving them since they construct their
landscape expressing the world.

4.4.2 Network Construction and Processing
Dynamics

Figure 4.7 shows the network construction. Neurons and connections form a
single or multiple layers. Such a network is called layered neural network. If a
network consists of single layers of input terminals, connections, and output
neurons, it is a single-layered neural network. A network having L pairs of
connection and neuron layers, with a single input layer, is called a L-layered
neural network.

The input-terminal layer is called the input layer, while the output-neuron
layer is called the output layer. If the network has a single or multiple layers
of connection- and neuron-layer pairs besides the output layer, the layers are
called the hidden layers.

A network having an input layer (input terminals), a hidden layer, and
an output layer is called a two-layered neural network.1 It is known that, in
the case of real-valued neural networks, any logic function can be realized
with a network having two layers at least (i.e., single hidden layer at least)
if the number of hidden-layer neurons is sufficiently large. The reason is as
follows. A logic function determines the output as “1” if the weighted sum is
larger than a threshold, whereas, if not, the network generates “0”. A neural
network having a steep activation function, such as a step function, works as
a logic function. A high threshold level realizes AND operation, whereas low
threshold level does an OR. A single neuron corresponds to a logic operation

1Formerly, we called it a three-layered network by taking the input layer into
account.
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Fig. 4.7 Construction of layered neural network.

such as AND or OR, which divides input information space simply into ”1”-
and ”0”-output regions (linear separation). If the hidden layer is capable of
preparing sufficiently various ways of linear separation (i.e., if the hidden
layer has a sufficiently large number of neurons), the output neurons are able
to synthesize any desirable partition of the space by the following weighting
and summing operation at the output layer. That is to say, the hidden layer
provides freedom in the way of linking of ”1” or ”0” regions (topology).

The connection weights vary in learning. The historically well-known per-
ceptron is a two-layer neural network whose weights in the hidden layer (input
terminals – hidden neurons) are fixed at certain values at random, while the
weights at the output layer (hidden neurons – output neurons) are variable in
learning. If the network has a large number of hidden neurons, it is expected
that the hidden layer has prepared various linear-separation operation. Then
the output layer can select needed hidden outputs as its inputs that are suffi-
ciently useful to generate desirable output characteristic. However, because the
perceptron does not possess themean tomake the hidden layer learn, it requires
an extremely large number of hidden neurons. One of the learning methods in
hidden layers is the so-called backpropagation learning mentioned below.

The task processing dynamics in a layered neural network is explained
generally as follows. Input signals x0 is fed to the input terminals, weighted
by connection weights W1, and summed. The weighted sum is fed to the
activation function f , and an output of the neuron x1 is detemined.

x1 = f(W1x0) (4.51)
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By repeating this operation, we obtain output signals at the output layer.

x2 = f(W2x1)

x3 = f(W3x2)

...

xl = f(Wlxl−1)

...

xL = f(WLxL−1) (4.52)

This is the task-processing operation in a layered neural network.

4.4.3 Learning by Steepest Descent Method

The steepest descent method is an optimization method in multiple parame-
ter systems to use partial derivatives to determine the direction of parameter
variation. Let us consider a problem in which we want to minimize an error
function E expressed with parameters w ≡ [wi]. The rate of change of E
in terms of wi is derived as the partial derivative ∂E/∂wi. Then, the vector
∂E/∂w ≡ [∂E/∂wi] points to the direction in which the error function E
increases in the parameter space w. Therefore, the opposite vector −∂E/∂w
indicates the path in which the error E reduces most efficiently. That is, we
can decrease E by changing the parameter w in the direction of −∂E/∂w.
This method is called the steepest descent method.

The steepest descent method realizes the learning in weights at a layer
(l-th layer), or those in a single-layered network, as follows. We prepare a set
of input and output teacher pairs (x̂l−1, x̂l). We define an error function El

as the squared difference between output teachers x̂l and temporary outputs
xl(x̂l−1;Wl) determined for the input teachers x̂l−1. Since, usually, we have
multiple teacher signal pairs (x̂l−1 μ, x̂l μ), the error function El is defined
as

El ≡ 1

2

∑
μ

(xl μ − x̂l μ)
2 ≡ 1

2
(xl − x̂l)

2 (4.53)

where μ is the index for each pair. However, in the most right-hand side in
(4.53), we omit μ only for simplicity in expression.

We change the connection weights Wl in such a way that we decrease the
error El. In general, the values ∂El/∂wjil show the rates of changes of El in
terms of wjil. That is, a set of the values ∂El/∂wjil points to the direction in
which El increases in [wjil ] space. Therefore, we change Wl in the opposite
direction, namely, −∂El/∂Wl. A weight wjil should be changed as
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τ
dwjil

dt
= − ∂El

∂wjil

= − ∂

∂wjil

(
1

2
(xl − x̂l)

2

)

= −(xjl − x̂jl) ∂xjl
∂wjil

= −(xjl − x̂jl)f ′(
∑
i

wjil xi l−1)xi l−1 (4.54)

where τ and f ′ denote learning time constant and derivative function of f ,
respectively. The derivative is calculated for f(u) = tanh(u) as

f ′(u) = (tanh(u))′ = sech2(u) = 1− tanh2(u) = 1− (f(u))2 (4.55)

We derive

τ
dwjil

dt
= −(xjl − x̂jl)(1− x2jl)xi l−1 (4.56)

The discrete-time version is expressed with a learning time constant K as

wjil(t+ 1) = wjil(t)−K(xjl − x̂jl)(1− x2jl)xi l−1 (4.57)

In this manner, we can realize the learning if we know the output error
(xjl− x̂jl), temporary outputs xjl, and temporary inputs xi l−1. The neurons
also know these values locally. Therefore, the learning is performed locally
and distributedly.

In practice, we have multiple teacher signal pairs (x̂l−1 μ, x̂l μ) as noted in
relation to (4.53). We present teacher pairs to the network one after another,
and reduce gradually the total error (1/2)

∑
μ(xl μ − x̂l μ)

2.

4.4.4 Backpropagation Learning

The backpropagation (BP) learning is a supervised learning method to realize
the learning in all hidden layers by making output-teacher information propa-
gate backward to the preceding layers. In particular, in error backpropagation
learning, the difference between the teacher signals and the temporary output
signals propagates layer by layer. Usually, ”backpropagation” or ”BP” refers
to this ”error backpropagation.”

In the steepest descent method, we obtained the rule to change the weights
in l-th layer by presenting a set of teacher signals at the layer’s outputs. Then,
how can we change the weights in (l− 1)-th layer? First, let us see the task-
processing operation related to these layers.

xl−1 = f(Wl−1xl−2)

xl = f(Wlxl−1) = f(Wlf(Wl−1xl−2)) (4.58)
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Therefore, we can extract the influence of the change in a certain weight
wji l−1 in the preceding weights Wl−1 on the (l− 1)-th layer’s outputs xl as

xkl = f(
∑
j

(wkjl f(
∑
i

wji l−1xi l−2)

︸ ︷︷ ︸
xj l−1

)) (for every k) (4.59)

where (·)kj are subscript for l-th layer’s weights. The vector expression is
obtained as

xl = f( wjl f(
∑
i

wji l−1xi l−2)

︸ ︷︷ ︸
xj l−1

) (4.60)

where wjl is the j-th column elements in Wl = [wkjl], forming a vertical vec-
tor wjl ≡ [wkjl ]. Therefore, the steepest descent process changes an element
wji l−1 in Wl−1 = [wji l−1] as

τ
dwji l−1

dt
= − ∂El

∂wji l−1

= −
(∑

k

∂El

∂xkl

∂xkl
∂xj l−1

)
∂xj l−1

∂wji l−1

= −

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
∑
k

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂{(xkl − x̂kl)2/2}
∂xkl

∂

xkl︷ ︸︸ ︷
f(

∑
j

wkjlxj l−1)

∂xj l−1

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂

xj l−1︷ ︸︸ ︷
f(

∑
i

wji l−1xi l−2)

∂wji l−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= −
(∑

k

(xkl − x̂kl)(1− x2kl)wkjl

)
(1 − x2j l−1)xi l−2 (4.61)

The treatment in the last step in (4.61) is identical with that in the steepest
descent method. We can consider this process as a backward propagation of
the error (xkl−x̂kl). Iteration of this process realizes learning in all the layers.
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Fig. 4.8 Schematic illustration of single-layered coherent lightwave neural network.
(Detail in coherent optical summation is omitted.)

The discrete-time version of (4.61) is expressed with learning time constant
K as

wji l−1(t+ 1) = wji l−1(t)−K
(∑

k

(xkl − x̂kl)(1 − x2kl)wkjl

)

× (1 − x2j l−1)xi l−2 (4.62)

4.4.5 Learning by Complex-Valued Steepest Descent
Method

Next, we consider the complex-valued steepest descent method 2 in a single-
layered coherent neural network shown in Fig.4.8. The laser beam is divided
into halves. One is used as the signal light and the other is the reference for
homodyning. The signal light is modulated in the amplitude and phase to
represent input signals x = [xi] physically as

xi = |xi| eiθi (4.63)

2The complex-valued BP method that is compatible rather with the real-
imaginary-type activation functions is derived in a similar manner as that in
the real-valued BP. See, for example, [48],[79], etc.
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Then the signal lightwaves are modulated again in the amplitude and phase
corresponding to the multiplication by the connection weights W = [wji].
The weights are composed of transparency |wji| and time delay |τji| as de-
scribed in Section 4.3.8. For the meantime, θji represents the phase shift
caused by the time delay.

wji = |wji| ei2πfτji = |wji| eiθji (4.64)

The modulated signals are expressed as the products of the signals and the
weights, and coherently summed in, e.g., a star coupler, to be the internal
states of the neurons u = [uj] written as

uj =
∑
i

wjixi =
∑
i

|wji||xi| ei(θji+θi) (4.65)

According to the discussion in Section 3.3.5, we adopt an amplitude-phase-
type activation function fap. The function presents saturation in amplitude,
but no change in phase. Then the outputs y = [yj ] are obtained as

yj = fap(uj)

= tanh (|uj |) exp (i arg (uj)) (4.66)

Let us consider how to realize steepest descent learning by presenting a set
of teacher signals to the system mentioned above. As we did in the previous
section, we define the energy function E as the sum of the squared difference
between the teacher signals ŷj and the temporary output signals yj as

El ≡ 1

2
|y − ŷ|2

=
1

2

∑
j

|yj − ŷj |2

=
1

2

∑
j

(
tanh2(|uj |) + tanh2(|ûj |)

− 2 tanh(|uj |) tanh(|ûj |) cos(θj − θ̂j)
)

(4.67)

where û = [|ûj|eiθ̂j ] is the equivalent internal state corresponding to the
teacher signal ŷ.

The changes in amplitude and phase of the internal state, |uj | and θj ,
respectively, are orthogonal to each other. Therefore, we obtain an amplitude-
phase-type steepest descent change by summing separately-obtained partial
derivatives in terms of wji in these orthogonal directions. The derivative of
tanh(|u|) is (1 − tanh2(|u|)), as we confirmed in the previous section, while
the derivative of the teacher signal is 0. Then we have
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∂E

∂(|uj|) =
1

2

(
2 tanh(|uj|)(1 − tanh2(|uj |))

− 2(1− tanh2(|uj |)) tanh(|ûj |) cos(θj − θ̂j)
)

= (1− |yj |2)(|yj | − |ŷj | cos(θj − θ̂j)) (4.68)

∂E

∂θj
= |yj ||ŷj | sin(θj − θ̂j) (4.69)

How the amplitude and phase of the weighted sum uj varies when a certain
weight wji′ changes? Assume that the weight changes with two fractions,
Δ(wa

ji′ ) and Δ(wp
ji′ ), in the complex plane as

wji′ −→ wji′ + (Δ(wa
ji′ ) + iΔ(wp

ji′ ))e
i(θj−θi′) (4.70)

Defined in this way, the fractions, Δ(wa
ji′ ) and Δ(wp

ji′ ), are related directly
to the amplitude |uj | and the phase θj of the internal state uj , respectively.
In other words, we multiply wji′ by the input xi′ ≡ |xi′ |eiθi′ to see the change
in uj, i.e., Δ(|uj |eiθj ), as follows.

Δ(|uj |eiθj ) = (Δwji′ )xi′ = (Δ(wa
ji′ ) + iΔ(wp

ji′ ))|xi′ |eiθj (4.71)

That is, the phase (θj −θi′) in (4.70) is multiplied by the input θi′ to become
θj in (4.71), being oriented in the same direction as uj.

Accordingly, we can obtain the two fractions, Δ(wa
ji′ ) and Δ(wp

ji′ ), sepa-
rately and independently. For general i = i′, we have

d(|uj |)
d(wa

ji)
= |xi| (4.72)

dθj
d(wp

ji)
=
|xi|
|uj| (4.73)

Putting them all together, we obtain the partial derivatives in terms of wa
ji

and wp
ji as

∂E

∂wa
ji

=
∂E

∂(|uj |)
d(|uj |)
dwa

ji

= (1− |yj |2)(|yj | − |ŷj | cos(θj − θ̂j))|xi| (4.74)

∂E

∂wp
ji

=
∂E

∂θj

dθj
dwp

ji

= |yj ||ŷj | sin(θj − θ̂j) |xi||uj | (4.75)

Incidentally, the fractions, Δ(wa
ji) and Δ(wp

ji), and the amplitude and phase
of the weight, |wji| and θji, have the relationship of (4.70), i.e.,
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|wji′ |eiθji′ −→ |wji′ |eiθji′ + (Δ(wa
ji′ ) + iΔ(wp

ji′ ))e
i(θj−θi′ ) (4.76)

By dividing the both sides of (4.76) by eiθji′ , which corresponds to rotation
in the complex plane, we derive a relationship, for general i = i′, expressed
as

[
Δ(|wji|)
|wji|Δθji

]
=

[
cos θrotji − sin θrotji

sin θjirot cos θrotji

] [
Δ(wa

ji)
Δ(wp

ji)

]
(4.77)

where

θrotji ≡ θj − θi − θji (4.78)

The explicit expression for Δ(wa
ji) and Δ(wp

ji) is written as

[
Δ(wa

ji)
Δ(wp

ji)

]
=

[
cos θrotji sin θrotji

− sin θrotji cos θrotji

] [
Δ(|wji|)
|wji|Δθji

]
(4.79)

which leads to

∂E

∂(|wji|) =
∂E

∂wa
ji

∂wa
ji

∂(|wji|) +
∂E

∂wp
ji

∂wp
ji

∂(|wji|)

=
∂E

∂wa
ji

cos θrotji −
∂E

∂wp
ji

sin θrotji (4.80)

∂E

∂θji
=

∂E

∂wa
ji

∂wa
ji

∂θji
+

∂E

∂wp
ji

∂wp
ji

∂θji

=
∂E

∂wa
ji

|wji| sin θrotji +
∂E

∂wp
ji

|wji| cos θrotji (4.81)

Therefore, the rule of the changes is obtained as

τ
d(|wji|)
dt

= − ∂E

∂(|wji|)

= −
(
∂E

∂wa
ji

cos θrotji −
∂E

∂wp
ji

sin θrotji

)
(4.82)

τ
dθji
dt

= − 1

|wji|
∂E

∂θji

= −
(
∂E

∂wa
ji

sin θrotji +
∂E

∂wp
ji

cos θrotji

)
(4.83)

where the partial derivatives in the right-hand sides are given in (4.74) and
(4.75). Finally, the learning rule for the amplitude |wji| and the phase θji of
the weight is expressed as



4.4 Function Approximation 85

τ
d(|wji|)
dt

= − ∂E

∂(|wji|)
= −

(
(1− |yj |2)(|yj | − |ŷj | cos(θj − θ̂j))|xi| cos θrotji

− |yj ||ŷj | sin(θj − θ̂j) |xi||uj | sin θ
rot
ji

)
(4.84)

τ
dθji
dt

= − 1

|wji|
∂E

∂θji

= −
(
(1− |yj |2)(|yj | − |ŷj | cos(θj − θ̂j))|xi| sin θrotji

+ |yj ||ŷj | sin(θj − θ̂j) |xi||uj | cos θ
rot
ji

)
(4.85)

Though the expressions are slightly complicated thanks to the rotation oper-
ation, the learning is found distributed because the learning rule uses only lo-
cally obtainable variables, which is what a neural network should do. The ro-
tation angle θrotji defined in (4.78) is the difference between temporary output
phase, θj , and the phase of the input we focus on, which is weighted but not yet
summed, θi+θji. In other words, it is the difference between the phase of sum-
mation result and the phase of each weighted input before summation, which
is theoretically obtainable as the interference fringe of these waves. Hence, the
phase information is locally available, and its meaning is clear.

We also find that the partial derivatives in (4.74) and (4.75) are docile and
similar to the expressions of the complex-valued Hebbian rule. We can grasp
the meaning as follows. In these equations, the value θj− θ̂j is obtained as the

difference of the temporary output phase θj and the teacher phase θ̂j . The
difference is, as described in the next section, available as the interference
fringe of the teacher and output signals when we make the teacher signal
itself propagate backward in the layered neural network, instead of the error
signal. The above rotation angle θrotji is also obtainable as a fringe if the
teacher wave propagates backward.

The discrete-time version of the complex-valued steepest descent method
is obtained in the same manner as that of the complex-valued Hebbian rule
by rewriting (4.84) and (4.85) as

|wji|(t+ 1) = |wji|(t)
−K

(
(1− |yj |2)(|yj | − |ŷj | cos(θj − θ̂j))|xi| cos θrotji

− |yj ||ŷj| sin(θj − θ̂j) |xi||uj | sin θ
rot
ji

)
(4.86)

θji(t+ 1) = θji(t)

−K
(
(1− |yj |2)(|yj | − |ŷj | cos(θj − θ̂j))|xi| sin θrotji

+ |yj ||ŷj| sin(θj − θ̂j) |xi||uj | cos θ
rot
ji

)
(4.87)
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where K is learning time constant. We can also obtain a carrier-frequency-
dependent dynamics, as we did for the complex-valued Hebbian rule. The
amplitude equation is identical with (4.86), whereas the time delay τji is
related to the phase θji as θji = 2πfτji, i.e.,

τji(t+ 1) = τji(t)

− K

2πf

(
(1− |yj |2)(|yj | − |ŷj | cos(θj − θ̂j))|xi| sin θrotji

+ |yj ||ŷj | sin(θj − θ̂j) |xi||uj | cos θ
rot
ji

)
(4.88)

The rotation angle θrotji in (4.78) is given as

θrotji ≡ θj − θi − 2πfτji (4.89)

4.4.6 Function Approximation by Use of
Complex-Valued Hebbian Rule

In a phasor neural network whose output amplitude is always unity, the mean-
ingful signal is only the phase. In this case, we can utilize the complex-valued
supervised Hebbian rule (complex-valued correlation learning) described in
Section 4.3.7 to realize function approximation of the phase value. Though
the method is rougher than the steepest descent method, it works well in
many applications.

The complex-valued Hebbian rule in (4.36) and (4.37) can be rewritten for
the present function-approximation problem as

τ
d|wji|
dt

= −|wji|+ |ŷj ||xi| cos(θ̂j − θi − θji) (4.90)

τ
dθji
dt

=
|ŷj||xi|
|wji| sin(θ̂j − θi − θji) (4.91)

where xi ≡ |xi|eiθi is input signal, wji ≡ |wji|eiθji is weight, and ŷj ≡ |ŷj |eiθ̂j
is output teacher. Equation (4.91) means that there exists an ideally stable
state of phase at

θ̂j = θji + θi (4.92)

Namely, the input |xi|eiθi is multiplied by the weight |wji|eiθji , and directed

to the direction (phase) of the teacher signal |ŷj |eiθ̂j . This rotation occurs
for all i. After appropriate learning in phase, all the weighted inputs wjixi
point to the teacher’s direction θ̂j . The summation also points to the same
direction. Even if the learning does not converge, each wjixi will be expected

to point to approximately the same direction as θ̂j . In this sense, the phase

value θ̂j can be learned properly according to (4.91).
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The above learning method is applicable, not in a few cases, even to func-
tion approximations with general complex-valued neural networks where the
signal amplitude is variable, when we can control the amplitude appropriately
by some means. We have several ways to control the amplitude. Among oth-
ers, if all the signals point to a certain direction in the complex plane, we will
be able to use the same learning method as that in the real-valued neural net-
works. In other words, we may construct a roughly effective complex-valued
function-approximation dynamics by substituting the real-valued steepest de-
scent learning expressed by (4.56) for the amplitude equation of the complex-
valued Hebbian rule.

τ
dwji

dt
= −(|yj | − |ŷj|)(1 − |yj |2)|xi| (4.93)

τ
dθji
dt

=
|ŷj ||xi|
|wji| sin(θ̂j − θi − θji) (4.94)

This method sometimes increases local minima in learning because it is not a
genuine steepest descent method. It is, instead, a very rough method to deal
with the amplitude and phase in completely different manners, though each
equation is reasonable.When we have many inharmonious teacher signals, the
phase values may not converge and, in such a case, the learning in amplitude
will stop at a pseudo solution. The success depends on the nature of the
problem to be solved. Practically, this method functions in many cases where
the amplitude and phase are related to each other only weakly, and when the
teacher signals have less inharmoniousness.

The discrete-time expression is given as

wji(t+ 1) = wji(t)−K(|yj| − |ŷj |)(1− |yj |2)|xi| (4.95)

θji(t+ 1) = θji(t) +K
|ŷj||xi|
|wji| sin(θ̂j − θi − θji) (4.96)

In addition, the continuous- and discrete-time expressions of delay-time learn-
ing in coherent neural networks is obtained with the relation of θji = 2πfτji
as follows.

τ
dτji
dt

=
1

2πf

|ŷj ||xi|
|wji| sin(θ̂j − θi − θji) (4.97)

τji(t+ 1) = τji(t) +
K

2πf

|ŷj||xi|
|wji| sin(θ̂j − θi − 2πfτji) (4.98)

4.4.7 Backpropagation Learning by Backward
Propagation of Teacher Signals instead of
Errors

Figure 4.9 is a schematic illustration of a multiple-layered lightwave coherent
neural network where multiple modules similar to the network in Fig.4.8 are
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Fig. 4.9 Schematic illustration of multiple-layered coherent lightwave neural
network.

stacked. We can obtain error-backpropagation learning dynamics by calcu-
lating the steepest descent operations over two adjacent modules as we did
in the real-valued backpropagation section. However, the calculation and the
obtained dynamics are a little more complicated than those for real-valued
ones.

Moreover, in the error-backpropagation learning in such a network, we
have a problem in the physical picture. That is to say, in a system based on
lightwave or electromagnetic wave, it is difficult to make ”error” wave propa-
gate (backward). It is unnatural. (Even in a real-valued neural-network case,
it seems also unnatural that ”error” voltage, for example, backpropagates in
the system.) Though we may mathematically be able to express the propa-
gation of a difference of amplitude or phase (or real part or imaginary part),
we cannot obtain a clear physical picture representing such a phenomenon.
If such propagation of ”error” is hard to illustrate, the dynamics should
require additional global information-transmission connections, resulting in
the failure in distributed learning with local interactions expected in neural
networks.

On the other hand, the meaning of the complex-valued Hebbian rule (or
correlation learning) is quite clear. The Hebbian rule accumulates the correla-
tion between input and output signals, where we take the complex conjugate
of the output signals in the complex-valued neural network. The complex con-
jugate means reversal of time, i.e., reversal of propagation direction just like
what we would see if a movie film ran in reverse. In this sense, we can say that
the complex-valued Hebbian rule corresponds to a physical picture in which
forward-propagating processing waves interfere with backward-propagating
teacher waves to produce standing waves. We observe the amplitude and
phase at learning points to obtain information needed for the learning. This
viewpoint is insightful, and is directly applicable to the use of holography in
optical neural networks. [191], [192].
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Fig. 4.10 Detection of the difference, |xL − x̂∗
L|2, by detecting two counter-

propagating lightwaves with a square-law detector.

In this context, the teacher-signal backpropagation learning was proposed
[193],[83],[81]. In this learning method, the phase-conjugate waves of teacher
signals propagate from the output layer (the L-th layer) backward through
the layers toward the input terminals to deliver teacher information to neu-
rons in hidden layers. The neurons perform the learning locally by using the
delivered information sensible for themselves. In each layer, neurons employ
the steepest descent method, or they may adopt the easy method based on
complex-valued Hebbian rule mentioned in the previous section. Please refer
to literature for details cited above. In this section, we present the underlying
basic idea briefly.

Assume that a set of output teacher signals x̂L are presented at the output
(L-th) layer. We want to reduce the difference between temporary outputs
xL and x̂L. If the system is based on lightwave, and if the output lightbeams
xL propagate outward through the output layer, it is natural that the teacher
signal lightbeams are also given as outward propagating lightwave. In Fig.4.9,
the lightbeams propagate rightward.

The error function was defined as

E =
1

2
|xL − x̂L|2

=
1

2

∑
k

(
|xkL|2 + |x̂kL|2 − 2|xkL||x̂kL| cos(θkL − θ̂kL)

)
(4.99)

where suffix k is given to each element in xL and x̂L. Equation (4.99) means
the detection of the difference between the signals carried by two lightbeams
(one of them should be conjugate) by superimposing and detecting them with
square-law detectors. We can also consider an alternative as follows. It means
that we detect standing waves generated by backward-propagating conjugate
waves x̂∗

L and forward-propagating output waves xL at the output layer with
thin and transparent square-low detectors as illustrated in Fig.4.10.
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Fig. 4.11 Teacher signals x̂∗
L propagating backward in a layered neural network.

Then we reach the following pictures. We make the teacher signals at
the output layer x̂L backpropagate through the layered network as x̂l−1 ≡
W−1f−1(x̂l), or more simply as shown in Fig.4.11, x̂∗

l−1 = f(x̂∗
lVl) where

vjil ≡ wjil/|wjil|2. A more simpler one is the backward propagation, using
the optical configuration as it is, as x̂∗

l−1 = f(x̂∗
l Wl). We detect the errors

with thin and transparent detector arrays placed at output neurons in each
layer. Even with such simplified dynamics, the learning can be conducted
successfully. The success is attributed mainly to the fact that the meaning of
the layering of the network lies in the reconstruction of topology (as it was
in the perceptron), not in the details of metric, and that it is insignificant to
manipulate the metric finely in hidden layers. In this way, the backpropaga-
tion learning is able to possess a meaningful physical picture if we make the
teacher signals per se, instead of the errors, propagate backward penetrating
the layers.

4.5 Adaptive Clustering and Visualization of
Multidimensional Information

4.5.1 Function: Vector Quantization and
Visualization

Self-organizing map (SOM) is used for adaptive clustering (vector quantiza-
tion) and visualization of high-dimensional information by adaptively pro-
jecting signals onto two- or low-dimensional space [33] [34] .

For example, a SOM conducts the following adaptive clustering. For an
input vector, the SOM examines which class cluster the input is nearest to,
and classifies the input into the nearest class. To determine the distance
between the input and a cluster, the SOM measures the distance, with some
metric, between the input vector and the reference vector that represents the
cluster of the class we focus on. A reference vector is prepared for each class
assumed in the SOM. At the same time, the SOM modifies the position of the
reference vector, into which the input is classified, slightly in the direction of
the input vector.
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Fig. 4.12 Construction of the neural network functioning as a self-organizing
map (SOM). Closed input circles are inhibitory connections, while open ones are
ordinary excitatory connections.

By repeating the treatment mentioned above, the SOM finally arranges the
positions of the reference vectors in the information space in such a way that
their positions reflect the distribution of the input vectors fed sequentially to
the SOM. That is, the SOM places many reference vectors at regions of high
densities of input vectors to realize a fine classification, while it does only
a small number of reference vectors at low input-vector-density regions for
rough classification. By placing the reference vectors according to the input
distribution, the SOM realizes an adaptive classification.

4.5.2 Network Construction, Processing, and
Self-organization

Figure 4.12 shows the construction of the SOM neural network. Let us con-
sider that each neuron represents a class. The neuron has a set of connection
weights (weight vector), which are identical with the elements of the reference
vector of the class, of which the neuron is in charge. When an input vector is
fed to the network, it is delivered to all the neurons. Accordingly, the neuron
that has the weight vector nearest to the input vector is most likely to fire.

We also assume that every neuron has strongly inhibitory output connec-
tions (negative connections that suppress firing) to all neurons other than
itself. As a result, once one of the neurons fires, the output propagates to
all other neurons as an inhibitory signal to block firing. This mechanism is
called lateral inhibition, and is often found in the brain. Because of the lateral
inhibition, only a single neuron, if any, fires at once. This process is named
the winner-take-all (WTA) process.
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Fig. 4.13 Schematic diagram of the classification in SOM: (a) Input vectors are
fed to the SOM one after another. Each vector is classified into the nearest class,
and the reference vector of the class is updated. (b) After sufficient iterations, all
the reference vectors are placed appropriately reflecting the input-vector density,
resulting in adaptive classification of the input vectors.

With the above mentioned mechanism, a single neuron having the weight
vector nearest to the input vector fires. The class represented by the firing
neuron is the class into which the input vector is classified. The weight vector
of the firing neuron is updated.

The SOM performs the update of the weight vector, which is identical
with the reference vector representing the class of the neuron, as follows. We
consider a case in which the number of classes (neurons) is fixed. The class
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number is determined according to the nature of application and character-
istics of input vectors. It may also be increased or decreased adaptively.

First, we distribute the reference vectors (connection-weight vectors) in the
information space at random. Then we present input vectors to the SOM one
after another. As shown in Fig.4.13(a), the SOM finds the reference vector
nearest to the input, and classifies the input into the class represented by
the reference. Simultaneously, the SOM makes the reference vector slightly
approach the input vector. By repeating this treatment, the SOM arranges
more reference vectors in the regions of higher input-vector density, resulting
in an adaptive classification of input vectors as shown in Fig.4.13(b).

The procedure of the input-vector classification and the reference-vector
update is summarized as follows.

Adaptive input-vector classification and reference-vector update in SOM:

1. Initialization of reference vectors:
Initialize reference vectors ws(t = 0) (s=1,2,3,...) at random.

2. Reference-vector update and input-vector classification:
Repeat a) and b) described below for every input vector x.
a) Find the winner class Cŝ to which x should belong, and label x as a

member of class Cŝ.

x ∈ Cŝ if ‖x−wŝ(t)‖ = min
s
{‖x−ws(t)‖} (4.100)

where Cŝ denotes class, ‖.‖ means some distance such as Euclidean
distance.

b) Update the winner reference vector.

ws(t+ 1) =

{
ws(t) + α[x−ws(t)] , Cs = Cŝ(t)

ws(t) , Cs �= Cŝ(t)
(4.101)

where α (0 < α < 1) is self-organization parameter.

This is the simplest SOM dynamics called the k-mean algorithm. We often
use a variable α that is large at the beginning and gets smaller as the self-
organization proceeds.

On the other hand, for the purpose of visualization of multidimensional
information, we preparews two-dimensionally on a grid, and update not only
the winner but also its neighbors weakly. This situation is analogous to the
movement of points on a thin rubber. That is, the movement of the winner
causes additional movement of neighbors on the elastic film. This is more
general dynamics of SOM. In this case, we have a neural-network picture in
which a neuron communicates with neighbors.

As shown in the above explanation, a SOM is a self-organizing neural
network, i.e., it changes itself according to input signals. The self-organization
proceeds along with task processing, e.g., the adaptive classification in the
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above case. If we regard the self-organization as a learning, it is unsupervised
learning.

Recently, a general SOM dynamics to realize an adaptive classification of
migrating signals was proposed, and results of theoretical analysis and ex-
periments were reported [59]. In the paper, they dealt with the adaptive de-
modulation problem in terms of communication signals in the complex plane
affected by noise, nonlinearity, and Doppler effect causing migration of the sig-
nals. The method is applicable not only to complex-valued signal processing
but also to applications in wide areas. This type of SOM is called predictive
SOM (P-SOM) because the P-SOM predicts the future signal points in the
SOM operation. Since phase-shift phenomena have an endless signal move-
ment in the space with circular topology, the P-SOM is useful in particular
in the complex-valued signal processing related to phase information.

4.5.3 Complex-Valued Self-organizing Map: CSOM

There exists the complex-valued self-organizing map (CSOM). To determine
the distance between input vectors and reference ones, the CSOM employs a
metric suitable for complex numbers. The most basic metric to measure the
distance is to evaluate the absolute value of the difference of the two vectors,
i.e., the scalar product of the difference vector and its conjugate transpose.
In the case, where the absolute values of vectors are not so significant, we
may use the inner product, i.e., the scalar product of one vector and the
conjugate transpose of the other one (normalized by the absolute values of
the two vectors). For example, the larger the real part of the inner product,
the nearer we consider the two vectors.

These treatments are very simple in which we assume complex-valued
space without warp. However, it is sufficient to include the nature of complex
arithmetic such as periodicity in phase. Application examples are presented in
Chapter 5 (adaptive classification of landsurface) and in Chapter 6 (adaptive
radar system to visualize antipersonnel plastic landmines).

4.6 Markov Random Field Estimation

4.6.1 Function: Signal Estimation from Neighbors

Natural data such as elevation maps expressing earth landscape are well
modeled upon the Markov random field (MRF) model. That is to say, we
expect that the probability P (xs) that a variable defined at a position s in
space and time takes a value of xs is determined by the values in the vicinity.
As an example, we consider an image having a size ofM ×N pixels, in which
Ns denotes the vicinity including neighbors of a point s. The probability
function P (xs) is expressed by the values of the neighbors as
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P
(
xs|x1, x2, · · · , xs−1, xs+1, · · · , xM×N

)
= P

(
xs|xt; t ∈ Ns

)
(4.102)

In the natural world, most variables have some relationship with its neighbors
more or less, and changes continuously in space and time. The situation is
compatible with the basic idea of neural networks. We can expect that neural
networks play important roles in the problems related to the MRF model.

If the system under consideration is linear in total, the basis of processing
with the MRF model is the same as that of so-called adaptive filters. However,
even in such a case, ”neural networks” will convey a more suitable meaning
of the processing, rather than ”filters,” as the degree of parallelism increases.

. . . . . . . . . . . . . . 

Output

Fed with the input signals at neighbor neurons

Input

Ns

xs ys

Position  s

Fig. 4.14 Construction of a MRF-estimating neural network.

4.6.2 Network Construction and Processing
Dynamics

Figure 4.14 shows the network construction. Though the illustration shows
one-dimensional network for simplicity in display, the construction can be n-
dimensional in general according to the data treated. For instance, a network
dealing with two-dimensional data such as landscape maps, as mentioned
in Chapter 7 (noise elimination in interferogram), possesses two-dimensional
structure.

Let us consider an image. A neuron is assigned to every pixel, and each
pixel has an input and an output terminals. As an example of processing,
assume that we want to fill a defective pixel at position s. The neuron at
s gathers input signals xt at neighbors t ∈ Ns to generate an estimate of
the value as an output ys. In the case that a noisy pixel value xs is tem-
porarily given to the pixel, the network can also compare the value with an
estimated one ys and calculate an energy to evaluate the appropriateness of
the temporary input pixel value. When we do not consider any nonlinearity, a
probability density P (xs) that the pixel has a value of xs can be constructed
with a set of connection weights w ≡ [wst] as
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P (xs) =
1

Z
e−E(xs) (4.103)

E(xs) =
1

2σ2

∣∣∣∣∣xs −
∑
t∈Ns

wT
stxt

∣∣∣∣∣
2

(4.104)

where Z is partition function (coefficient to normalize the probability), σ2 is
the variance of pixel values, and E means energy. In the equations, wst and
σ2 are called MRF parameters.

In a complex-valued neural network, the relationship (4.103) and (4.104)
are expressed for a complex pixel value zs as [194]

P (zs) =
1

Z
e−E(zs) (4.105)

E(zs) =
1

2σ2

∣∣∣∣∣zs −
∑
t∈Ns

w∗
stzt

∣∣∣∣∣
2

(4.106)

Applications of the statistics and the processing are presented in Chapter
5 (clustering of landsurface), Chapter 6 (visualization of plastic landmines),
and Chapter 7 (generation of digital elevation maps by eliminating noise).

4.6.3 Learning Correlations between Signals at a
Pixel and Its Neighbors

A neural connection learns the correlation between two signals by following the
Hebbian rule. For given values at pixels s and t, the neuron accumulates the
correlation between the values at s and t in the connection weight wst. In an
image, or in a part of image, modeled upon the MRF, the correlation value is
one of the MRF parameters reflecting a statistical feature of (the part of) the
image.When a series of images are presented sequentially to the network, and if
the statistical feature is unchanged at the two pixels, a correlation is gradually
stored in the weight. An estimate of the MRF parameter is obtained as ŵ.

Alternatively, if the statistical feature is uniform over a local area in the
image, a neuron will obtain an estimate of the correlation between pixels s
ant t in ŵ = [ŵst] by scanning the positions of s and t in the local area
with a fixed relative location. Note that, in practice, we often replace the
simple correlation matrix resulting in the Hebbian laerning by an expression
using the generalized inverse matrix mentioned in Section 4.3.4 (associative
memory). We obtain

ŵ∗ ≡
[ ∑
s∈L×L

zsq
∗
s

][ ∑
s∈L×L

q∗
sqs

]−1

(4.107)

σ̂2 ≡ 1

L2

∑
s∈L×L

|zs − ŵ∗qs|2 (4.108)

qs ≡ (vertical vector consisting of s-neighbor pixel values) (4.109)

where L× L is the number of the pixels in the local area.
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In the application to generate a digital elevation map in Chapter 7, we deal
with radar interferogram obtained in landsurface observation. We restore
a pixel value, which we consider is strongly affected by noise (resulting in
so-called phase singular points), by estimating a noiseless value using its
neighbor pixels. Then we remove the singular points, and obtain a high-
quality digital elevation map with a low calculation cost.

4.7 Principal Component Analysis

4.7.1 Function: Extraction of Principal Information
in Statistical Data

Principal component analysis (PCA) is a method to analyze multidimen-
sional statistical data by reducing the data dimension with only little loss
of information. In the PCA, we reconstruct input signals by generating their
linear combinations, and present the first principal signal component (largest-
energy component), secondly principal signal component (secondly-largest-
energy component), and so on.

The PCA is widely used in multivariate analyses, and is often implemented
in numerical-analysis software. In ordinary cases, we obtain all data at the
beginning, and construct correlation coefficient matrices and variance matri-
ces to conduct the PCA. In sum, we do it in a batch. On the other hand, in
a PCA neural network presented in this section, the network self-organizes
gradually in an on-the-job manner to become a PCA network, though the
principle of the PCA processing is identical. Because of this adaptability,
PCA neural networks can follow input signals even when their statistical
property changes slowly.

The PCA is used extensively in processing waves such as speech and elec-
tromagnetic wave. Therefore, we naturally deal with complex-valued data.
That is, complex-valued neural networks play an important role also in PCA.

4.7.2 Network Construction and Dynamics of Task
Processing and Self-organization

Figure 4.15 shows the network construction for a complex-valued PCA. Since
the construction is very simple, we skip the detailed description on real-valued
networks. In a real-valued one, we substitute transpose (·)T for conjugate
transpose (·)∗ in a complex-valued network described below.

An input signal vector x is fed to the first neuron. We do not need a
nonlinear activation function. The input is weighted and summed as

y1 = w∗
1x (4.110)
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Fig. 4.15 Construction of a neural network for principal component analysis
(PCA).

At the same time, the weight w1 self-organizes by following the complex-
valued Hebbian rule as

w1 ←− w1 +Ky∗1x (4.111)

where K is a constant determining the speed of self-organization.
The input signals are, for example, sound waveforms obtained by N micro-

phones placed against multiple sound sources. The analog waveforms are A/D
converted and transformed into complex-valued data with the help of Hilbert
transform described in Section 3.6.1 (preprocessing for baseband signals). The
signals form time-sequential vectors having a length of N . Alternatively, just
like bats, we may transmit ultrasonic waves all around, and detect reflections
with N sensors by homodyning and A/D conversion to obtain time-sequential
complex-valued N -long signal vectors.

We consider a set of zero-mean stationary-statistic signals, or signals hav-
ing statistic characteristics migrating sufficiently slowly. As we present the
signal vectors to the neural network time-sequentially, the weight w1 is grad-
ually directed to the principal component direction of the series of the signals
x in N -dimensional information space. The principal component is a linear
combination of the signal-vector elements whose direction in the scatter di-
agram has the largest variance, i.e., the largest power. This is because the
signals have the largest amplitude in this direction, and the weight w1 is
dragged into the direction of y∗1x, namely, the direction of x since y∗1 is
scalar. The variation causes a positive feedback and enhances the influence
of the component in this direction.

However, the simple Hebbian rule (4.111) makes the weight w1 increase
infinitely. To avoid this divergence, we modify the dynamics as
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w1 ←− w1 +Ky∗1x−Ky∗1y1w1

= w1 +Ky∗1(x− y1w1) (4.112)

Then, w1 is directed to the principal-component direction without the diver-
gence. Simultaneously, every momentary y1w1 for y1 ≡ w∗

1x represents the
principal component included in x. Therefore, we can ”hear” the principal-
component signal by D/A-converting w1y1. Thus the principal component
is extracted by the on-the-job self-organization on the bases of the Hebbian
rule.

Next, we extract the secondary-, third-, etc., principal components by using
so-called the deflation method. As shown in Fig.4.15, we subtract the first
principal component from the input x, and we apply the identical extracting
process to the residual signals. The second neuron will extract the largest
component in the residue, namely, the secondary-principal component. We
repeat the process to extract n-th principal components sequentially.

The final representation of the dynamics including the deflation method is
obtained as

wj ←− wj +Ky∗j

⎛
⎝x− yjwj −

∑
i<j

yiwi

⎞
⎠ (4.113)

In this way, we can extract some principal components from time-sequential
sound signals x, and we can hear y1w1, y2w2, y3w3, and so on, separately
from one another.

The complex-valued PCA was reported, for example, in application to
an adaptive sonar (sound navigation and ranging) system [121] to separate
sounds obtained in the sea. Mixture of signals often occurs in relation with
propagations of waves such as sound and electromagnetic wave. In such wave-
related fields, the signal treatment in complex domain possesses inevitably
great advantage. The complex-valued neural networks function effectively and
fruitfully.

4.8 Independent Component Analysis

Independent component analysis (ICA) is another field in which the complex-
valued neural networks are expected to work effectively, because we frequently
deal with waves just like we do in PCA. The processing function and the
network construction of the ICA are similar to those of PCA, respectively.
However, in ICA, we extract independent signal components by evaluating
the independence in the extracted components. In practice, we pay attention
to the fact that, if sequences of signals y = [yj ] are independent of one an-
other, signal sequences f(y), derived from y with some nonlinear function
f(·), should also be independent of one another. Accordingly, in a matrix
representation of neural weights, we update the weights as, for example,
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W ←− W + K(I − f(y)y∗)W, where I is the identity matrix and K is
self-organization constant.

Detailed descriptions of the ICA is given in literature, for example, [195]
and [196]. As mentioned there, in the extraction of independent components,
we have two approaches to represent a mixing matrix, i.e., representation
in the time domain and that in the frequency domain. When we adopt a
frequency-domain representation, we deal with complex spectra obtained as
short-time Fourier transform of time-domain signals. Thereby, at least, we
need a complex-valued neural network.

Sawada et al. [122] reported that, when we conduct frequency-domain
blind separation (separation of mixed signals without advance knowledge)
of speech, polar-coordinate-type (amplitude-phase-type) nonlinear functions
result in better separation than rectangular-coordinate (real-imaginary-type)
nonlinear functions do. This is because there is no special meaningful refer-
ence to measure the spectrum phase (setting of real and imaginary axes) since
the window in the short-time Fourier transform cannot be synchronized with
the speech signals in any sense. This condition holds in most cases when
we deal with waves. Principal attributes of waves lie in amplitude and phase.
Contrarily, real and imaginary parts cannot be essential entities because they
depend on a phase reference introduced in observation.



Part II

Applications: How Wide Are the Application
Fields?



5

Land-Surface Classification with Unevenness
and Reflectance Taken into Consideration

In this chapter, we describe an adaptive system to classify land surface by
taking unevenness and reflectance into consideration. We deal with inter-
ferograms on the basis of the complex-valued Markov random field (CMRF)
model in statistics. We generate an adaptively segmented map in terms of the
complex-valued texture of land-surface reflection by using the complex-valued
self-organizing map (CSOM) that processes CMRF-based feature vectors.

5.1 Interferometric Radar

Figure 5.1 illustrates airborne or satellite radar observation to detect reflec-
tion from the earth’s surface. By employing phase-sensitive electronics, we
can obtain not only the amplitude but also the phase of the reflected electro-
magnetic wave. As a result, we acquire an image having complex-valued pixel
values. These types of radars are called interferometric radars. We can detect
the phase value of a signal by mixing the signal wave with a reference wave
to observe their interference. For simplicity, in Fig.5.1, we show a system in
which we transmit one of the waves, capture the reflection, and mix it with
the other wave to obtain the phase1.

Roughly speaking, the amplitude represents the reflectance since it gives
the power of the reflected wave. On the other hand, the phase represents
the distance. That is, when the reflecting object approaches, the phase is ad-
vanced since the number of waves existing in the propagation path between
the antenna and the object is reduced. Contrarily, when the object recedes,

1In actual airborne or satellite interferometric radars, we prepare two antennas
or navigation routes, and we look aside to obtain the phase difference of the two
electromagnetic waves having slightly different off-nadia angles (angle between
vertical line and the radio beam). Therefore, the wavelength of the transmitted
wave does not correspond to 2π in the phase value in the phase image. However,
we consider the system shown in Fig.5.1 for simplicity.

A. Hirose: Complex-Valued Neural Networks, SCI 400, pp. 103–111.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 5.1 Acquisition of land-surface information with an interferometric radar
system.

the phase is retarded. Therefore, the phase represents the distance to the ob-
ject, though the phase is expressed as modulo 2π. Then the phase fluctuation
corresponds to surface unevenness. Slopes and fine fluctuation also change
the reflection amplitude because it changes the reflection direction, or causes
scattering.

In this chapter, we present a neural system that generates highly use-
ful land-surface classification maps[197],[198]. It evaluates the texture in
complex-valued reflection images that conveys reflectance and unevenness in-
formation. With this system, we can extract not only forests, deserts, lakes,
and other regions having specific reflectance, but also mountain areas, ridges,
spurs, rock fields, and so on, reflecting characteristic unevenness. The system
is based on the complex-valued self-organizing map (CSOM) described in
Section 4.5.

5.2 CMRF Model

Figure 5.2 shows an example of images obtained by an interferometric
synthetic-aperture radar (InSAR) observing at around Mount Fuji. Fig-
ure 5.2(a) shows the amplitude, while Fig.5.2(b) gives the phase in mod-
ulo 2π, both in gray scale. (These original data were provided by cour-
tesy of Dr. Masanobu Shimada of NASDA, which is presently JAXA.)
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(a)

(b)

Fig. 5.2 (a)Amplitude and (b)phase of land-surface reflection obtained by an
InSAR system. Reprinted from Fig.3 in [197]: Andriyan Bayu Suksmono and Akira
Hirose, Adaptive complex-amplitude texture classifier that deals with both height
and reflectance for interferometric SAR images, IEICE Trans. on Electron., E83-C
(12):1912–1916, 2000, with permission from IEICE.
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Fig. 5.3 Pixel at position s to which we pay attention and its neighbors in the
vicinity Ns where the neurons are (a)labeled by distance from s and (b)labeled
sequentially as ti.

Conventional adaptive segmentation systems have utilized the texture in am-
plitude only. In this chapter, we use the phase information as well to generate
more useful segmentation maps.

We evaluate local complex-valued texture quantitatively, but as simply
as possible, to classify local areas and segment the image. We consider the
complex-valued Markov random field (CMRF) model. In the present process,
we introduce a noncausal CMRF model, i.e., unlike the time-sequential one,
having no cause and result directions. Such a model is usually suitable for
images.

We deal with complex-valued images based on the noncausal CMRF model
as follows. Figure 5.3 shows the assignment of pixels. The value of the pixel
at position s is zs ∈ C. Since an observed actual image is a part of nature, we
consider that it has the Markovianity. That is to say, the pixel value zs has
some relationship statistically with the values of neighbors. The nearest pix-
els labeled as “1” must have a strong relationship, while far pixels labeled as
“4” or “5” will have a weaker one. Moreover, when the statistical character-
istic is uniform in a certain area, we can expect almost identical relationship
statistically even if we pay attention to another pixel in the area.

Figure 5.3(b) shows a vicinity of the pixel at position s, Ns, with local
neighbors labeled as ti. Let us consider the probability distribution P (zs)
that the pixel s has a value zs in statistics. Then we have

P (zs| values of pixels in the image except for s ) = P (zs|zti ∈ Ns) (5.1)

In other words, the probability distribution is determined by the neighbors,
and is unchanged within the area having a uniform statistics. The probability
distribution represents a set of features of the area in the image. This is the
basic idea of the CMRF.
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Fig. 5.4 Neighbors of point s, t+1 ≡ t(1,0), t+5 ≡ t(0,1), and t+6 ≡ t(1,1), sweep a
local area having a size of L× L to gather the statistical features.

5.3 CMRF Model and Complex-Valued Hebbian
learning Rule

Incidentally, (5.1) can be interpreted as follows. For statistically uniform data,
the correlation between a pixel value zs and a neighbor’s values zt is un-
changed. Therefore, as mentioned in Section 4.6 (MRF estimation), we can
obtain correlations between pixels by assigning a neuron to each pixel, and by
making the neural connections learn the correlations with the complex-valued
Hebbian rule as < zs(zt)

∗ >.
We assign neurons to the pixels one to one. The neurons are connected with

the neighbors, and each neural connection learns the correlation between the
input signals as < zs(zt)

∗ >. As shown in Fig.5.3, let us consider a small
neighbor consisting of three pixels, t+1 ≡ t(1,0), t+5 ≡ t(0,1), and t+6 ≡ t(1,1).
When the neurons see various, but statistically identical, images, the corre-
lations, < zs(zt(1,0))

∗ >, < zs(zt(0,1))
∗ >, and < zs(zt(1,1))

∗ >, will converge
at certain values, respectively.

Alternatively, we can replace the temporal accumulation by a spatial one.
Let us consider a local area having a size of L × L in which the statistics
is uniform. Neurons in the area communicate to one another to accumulate
statistical characteristics spatially. We may have a picture that the point
s and the neighbors t(0,1), t(1,0), and t(1,1) sweep the local area with their
relative location fixed. Then the neural connections memorize the following
correlations

K(ξ, η) =
1

L2

L−1∑
i′=0

L−1∑
j′=0

(z(i′, j′))∗ z(i′ − ξ, j′ − η) (5.2)

where (ξ, η) = {(1, 0), (0, 1), (1, 1)}.
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We construct the network to gather the statistical features in the local
area as described above. Other neurons, that see another area having an-
other statistics, will memorize the correlations specific to that area. Then we
can segment the image based on the correlation values accumulated in the
neural connections. In the present case, the pixel values are represented by
complex numbers. Therefore, the correlations reflect both the changes in re-
flectance (included mainly in amplitude) and the unevenness (in phase), i.e.,
complex texture in total. We conduct the segmentation based on the complex
texture.

5.4 Construction of CSOM Image Classification System

We classify local areas into classes based on statistics adaptively by using the
complex-valued self-organizing map (CSOM) mentioned in Section 4.5. Resul-
tantly, we segment the land-surface by taking the reflectance and unevenness
into consideration. In general, a SOM is widely used in adaptive vector quan-
tization. In the present system, we expect that the CSOM also quantizes the
texture-based features and segments the image into classes adaptively.

Figure 5.5 shows the construction of the CSOM-based radar system to
segment a complex-valued image into classes adaptively by paying attention
to the complex texture [197]. The expected function is the segmentation of
landscape into, for example, Mount Fuji and Lake Yamanaka as if we had
phase-sensitive eyes as mentioned in Chapter 1.

We place a local window block having a size of L×L, and scan the image
with this block. First, we unwrap the phase values z(i, j) in the block (see
Chapter 7) in a simple way. Then we obtain statistical properties such as
mean M and covariance K(ξ, η) to construct a feature vector K to be fed to
the CSOM as

K ≡ [M,K(0, 0),K(0, 1),K(1, 0),K(1, 1)] (5.3)

M =
1

L2

L−1∑
i=0

L−1∑
j=0

z(i, j) (5.4)

K(ξ, η) =
1

L2

L−1∑
i=0

L−1∑
j=0

(z(i, j))
∗
z(i+ ξ, j + η) (5.5)

where (·)∗ means complex conjugate. Consequently, the covarianceK(ξ, η) in-
cludes phase differences, reflecting the height variation, unevenness, and their
texture. Therefore, the system can estimate whether an amplitude change is
caused by a change in reflectance, or by a change in unevenness.

Moreover, we can introduce some concepts such as “mountain” and “val-
ley” as new indices for classification. In this case, the directions of slopes are
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Fig. 5.5 Construction of the adaptive interferometric-radar-image segmentation
system based on complex-valued self-organizing-map (CSOM). Reprinted from
Fig.2 in [197] in the caption of Fig.5.2 with permission from IEICE.

not so important, or should rather be suppressed in the classification process
to make a mountain area “mountain.” For this reason, we slightly modify K
into K ′ in such a way that the covariance is insensitive to the positive and
negative of the phase differences as

K′ ≡ [M,K(0, 0),K ′(0, 1),K ′(1, 0),K ′(1, 1)] (5.6)

K ′(ξ, η) = |K(ξ, η)| ej|ϕ(ξ,η)| (5.7)

where we write K ≡ |K(ξ, η)| ejϕ(ξ,η). We adopt such fine customization in
the feature vector according to the purposes.
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(a)

(b)

Fig. 5.6 Adaptive segmentation results for the InSAR land image generated by
(a)a conventional SOM system and (b)the proposed CSOM system. Reprinted from
Figs.5 and 6 in [197] in the caption of Fig.5.2 with permission from IEICE.

5.5 Generation of Land-Surface Classification Map

Figure 5.2 is a radar-image example obtained at an area around Mount Fuji
and Lake Yamanaka, Japan. Figure 5.2(a) shows amplitude, while Fig.5.2(b)
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shows phase, both in gray scale. We find that the reflection is very small at
Lake Yamanaka and relatively small at forests and rocky areas. On the other
hand, in the phase map, though the contours are apparently similar to the
contours that should be found in an elevation map, the phase at the Lake
is unnaturally turbulent because the low reflectance relatively emphasizes
measurement noise.

Figure 5.6 shows the segmentation results (a)generated by a conventional
(real-valued) SOM system for the amplitude image, and (b)generated by the
proposed CSOM system for the complex-amplitude image. In 5.6(a), we find
that Lake Yamanaka, forests, and rocky areas are segmented from others. On
the other hand, in Fig.5.6(b), we find that the mass of Mount Fuji and the
mountain ridge near Lake Yamanaka are also segmented additionally to those
above, showing the fine folds of the skirt of Mount Fuji. In this way, we can
generate a more useful adaptively segmented map by incorporating phase
information into the segmentation with the concept of the phase-sensitive
superbrain.

5.6 Summary

In this chapter, we described the usefulness of the complex-valued neural
network to segment adaptively the land surface. This method is now going to
be applied to wide areas such as inspections in factories. Complex-amplitude
signals are of wide use in high-resolution ranging systems. They are also
important in imaging permittivity distribution, e.g., with phase-contrast mi-
croscope. In such applications, the above-mentioned ideas are quite useful to
realize adaptive processing.
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Adaptive Radar System to Visualize
Antipersonnel Plastic Landmines

We extend the idea in the adaptive classification described in Chapter 5
by introducing frequency-domain information to visualize plastic landmines
buried shallowly underground. Antipersonnel landmines, in particular plastic
ones, use so slight metal that it is difficult to detect them with metal detectors
because many shots and metal fragments are scattered under battlefields.
The shallowness also causes serious surface-reflection noise. We construct
a phase-sensitive millimeter-wave / microwave front-end to observe ground
reflection in spatial and frequency domains, and feed the data to a complex-
valued self-organizing map (CSOM). The CSOM visualizes plastic landmines
by segmenting the reflection image adaptively.

6.1 Ground Penetrating Radars

Ground penetrating radars (GPRs) are widely used in many fields such
as buried-object detection, ruin explorations, and groundwater surveillance.
In landmine detection, we also expect to apply them to nonmetal landmine
detections, and many researches have been done in a long while. However,
the detection of antipersonnel plastic landmines is mostly still difficult in
practice because of the small target size, low reflectance, and relatively large
land-surface reflection when they are buried shallowly underground. At the
same time, insufficiency of demining professionals and high danger of opera-
tion augments the demand for support and automatization of the demining
operation.

The complex-valued self-organizing map (CSOM) is highly effective in such
a task. When a part of electromagnetic wave penetrates ground surface and
landmine itself, we want to measure the range distribution (and texture) of
reflectance. Then, by applying the CSOM to processing data obtained at
multiple frequencies, we can expect a successful adaptive segmentation of
three-dimensional data, i.e., in the propagation direction and the transver-
sal two-dimensional space. Because the inverse Fourier transform of the

A. Hirose: Complex-Valued Neural Networks, SCI 400, pp. 113–122.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 6.1 Adaptive plastic-landmine visualization system consisting of millimeter-
wave / microwave antennas, front-end, and CSOM processing unit [149]2.

frequency-domain data gives the time-domain reflection of an electromagnetic-
wave pulse, the above processing is equivalent to classification of reflection
texture in three dimensions.

In the system presented in this chapter, we observe the amplitude and
phase of reflection at multiple frequencies to acquire complex-amplitude im-
ages. We visualize landmines adaptively by classifying the reflection texture
in three dimensions, i.e., frequency + two-dimensional-space dimensions, by
utilizing frequency-domain information in the CSOM [199] [149] . We also
compare the result obtained by the CSOM with that by a conventional real-
valued SOM dealing with amplitude texture only.

6.2 Construction of CSOM Plastic Landmine
Visualization System Dealing with Frequency- and
Space-Domain Texture

Figure 6.1 shows the schematic construction of the system focusing on the
antennas and the front-end. A vector network analyzer (VNA) is used for

2Figs.6.1, 6.3, 6.4, 6.5 and Table 6.1 are reprinted from [149]: Neural Net-
works, vol.17, No.8–9, Takahiro Hara and Akira Hirose, “Plastic mine detecting
radar system using complex-valued self-organizing map that deals with multiple-
frequency interferometric images,” pp.1201–1210, Copyright (2004), with permis-
sion from Elsevier. Japanese review [200] is also helpful for further understanding
of the background and the technology.
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homodyne detection of the received reflection. We obtain the amplitude and
phase information simultaneously. The transmitter and receiver are rectan-
gular horn antennas. The frequency range is 30−40GHz. The wider the fre-
quency bandwidth is (which requires a higher center frequency), the higher
resolution we can enjoy. However, a too high frequency is not suitable for
GPRs because it will be so largely absorbed by the soil that we cannot see
underground. We prepare a 70×70cm corrugated-cardboard box with a thin
plastic sheet paved inside, and put ordinary Tokyo soil, containing stones and
miscellaneous, and a target object in it. We move the pair of antennas facing
to the soil horizontally, and obtain complex-valued data at multiple frequency
points. The system is totally controlled by a personal computer (PC), and
the obtained data is stored also in the PC, where the CSOM classifies pixels
in the images by conducting the adaptive segmentation.

6.3 Adaptive Signal Processing in CSOM

As described in the previous chapter, first we prepare a small window block
at around a pixel we focus on. In the block, we generate a feature vector
reflecting the stochastic properties contained in the pixel values (texture).
We sweep the whole image with the block, calculating a feature vector in
the block at each position. Then we classify the obtained feature vectors
adaptively in the CSOM in such a manner that the classification reflects the
feature-vector distribution in the information space. Finally, we segment the
image by labeling each pixel with the class into which the block belongs.

In this system, we observe reflection at multiple frequency points. The
Fourier-transform operation reveals that the frequency-domain data contains
information essentially identical to that of the time-domain data, i.e., the
depth-direction reflection information. It is possible that, first, we Fourier
transform the frequency-domain data inversely into time-domain one. In the
present adaptive system, however, we deal with the frequency-domain data
directly without the linear transform as follows.

6.3.1 Feature Vector Extraction by Paying Attention
to Frequency Domain Information

Figure 6.2 shows the construction of the adaptive three-dimensional radar-
image segmentation system consisting of two modules, namely, a complex-
valued feature extractor and a CSOM in its narrow sense. We prepare a
window block having a size of L×L on a set of input images measured at Nf

frequency points. The feature extractor calculates a feature vector expressing
stochastic properties of the pixel values in the block. As we did in the previous
chapter, we adopt the complex-valued mean and covariances as the feature
vector elements. We shift the block pixel by pixel, and calculate a local feature
vector for the block at each position. Finally, the block finishes sweeping the
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Fig. 6.2 Construction of the adaptive three-dimensional radar-image segmentation
system [201]4.

whole image set. We feed the feature vectors sequentially to the CSOM, which
determines adaptively which class each vector should belong to.

The procedure is described as follows. We consider the mean M and the
covariances K(ξ, η, fζ) in each block as the elements of the feature vector
K. We determine the mean M and a covariance K in an L × L block for
complex-valued pixel data z(i, j, f) as

M =
1

L2

L−1∑
i=0

L−1∑
j=0

z(i, j, fb) (6.1)

K(ξ, η, fζ) =
1

L2

L−1∑
i=0

L−1∑
j=0

z(i, j, fb) z
∗(i+ ξ, j + η, fb + fζ) (6.2)

where fb is a basis frequency determined arbitrary.
The total number of the covariancesK(ξ, η, fζ) is enormous because of the

possible combinations of the variables ξ, η, and fζ . To avoid this explosive ex-
pansion, we consider approximately that the spatial- and frequency-domain
data are qualitatively orthogonal to each other. Then, the covariance ele-
ments have two parts, namely, the covariances in spatial domain Ks at a
basis frequency fb, and those in frequency domain Kf . Finally, we take into
account only the four spatial-domain values (mean M , variance K(0, 0, 0)

4Fig.6.2 is reprinted from [201]: System and Human Science – For Safety, Se-
curity and Dependability (T.Arai, S.Yamamoto, K.Makino (eds.)), Akira Hirose
and Takahiro Hara, “Complex-valued self-organizing map: A framework of adap-
tive processing for multiple-frequency millimeter-wave interferometric imaging
systems,” pp.299–308, Copyright (2004), with permission from Elsevier.
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(i.e., energy), covariances K(0, 1, 0), K(1, 0, 0), and K(1, 1, 0)) and a limited
number of frequency-domain ones (covariances K(0, 0, fζ)). That is,

K ≡ [Ks,Kf ] (6.3)

Ks ≡ [M,K(0, 0, 0),K(0, 1, 0),K(1, 0, 0),K(1, 1, 0)] (6.4)

Kf ≡ [K(0, 0, f1),K(0, 0, f2), · · · ,K(0, 0, fNf
)] (6.5)

In (6.4) and (6.5),K(0, 0, 0) is always a real number, while others are complex
numbers.

With this feature vector, we expect qualitatively an adaptive segmenta-
tion of the image as follows. First, we consider the relationship in the pixel
values in the frequency domain. If, at a local spot or a point, the soil includ-
ing objects has some specific reflection at certain depths differently from its
surrounding area, the frequency-domain-correlation elements are expected to
express certain values specific to the frequency-domain texture at the point.
The peculiarity assigns the feature vector K to a special location in the
feature-vector information space. Then the points containing the identical
feature are clustered in a single class.

Next, we consider the pixel-value relationship in the spatial domain. Re-
member the process described in Chapter 5 (clustering Mount Fuji, etc.).
When we see the phase image, we regard the mountain as a mass. We deal
with only the steepness of slopes without slope directions. Such treatment
probably works well also in the present landmine visualization. Therefore, we
adopt a direction-insensitive slope variables as we did in Chapter 5 . When we
write the spatial feature-vector elements K(ξ, η, 0) ∈Ks in polar coordinate
as

K(ξ, η, 0) = |K(ξ, η, 0)| ejϕ(ξ,η,0) (6.6)

the phase value ϕ in (6.6) represents the slope information. Therefore, we
modify Ks to adopt a new one as

K ′(ξ, η, 0) = |K(ξ, η, 0)| ej|ϕ(ξ,η,0)| (6.7)

By using the K ′
s, we define a new feature vector K′ as

K ′ ≡ [K′
s,Kf ] (6.8)

We use K ′ as the feature vector to be fed into the CSOM.

6.3.2 Dynamics of CSOM Classification

The CSOM classifies the feature vectors according to the dynamics described
in Chapter 4. In the present case, we assign a window block to every pixel
position, and calculate the statistic features in the block to determine the
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feature vector K′. The number of the vectors fed to the CSOM is the pixel
number in total (see Section 4.5). The CSOM classifies the vector determined
for every pixel position into a class adaptively. By coloring the pixel according
to the class into which the vector is classified, the set of the input images
for an observation is segmented in the manner that reflects the result of the
adaptive classification. Then we find spatial clusters in the segmented images.

In buried-object detection like the present case, the depth information
plays a significantly important role. Though a pulse-radar system usually
possesses depth information in the time-domain data, the multiple-frequency
continuous-wave (CW) interferometric radar system has this information in
the frequency-domain data. The Fourier transform reveals substantial equiv-
alence between the frequency-domain data and the time-domain one. In our
system, however, we do not employ the Fourier transform, which is a linear
processing, but, instead, apply the nonlinear and adaptive CSOM processing
directly to the frequency-domain feature-vector information. In this process,
we expect the follows. We have a plastic object having a certain thickness at a
certain depth. Then we observe specific signals such as frequency-dependent
characteristic reflection and resonance. Such signals make the feature vector
distribution inhomogeneous and, instead, specific to the object in the feature-
vector space. The CSOM segments the distribution into a number of classes
adaptively.

6.4 Visualization of Antipersonnel Plastic Landmines

6.4.1 Measurement Parameters

As shown in Fig.6.1, we place antennas facing to the land surface. We bury a
mock plastic landmine called TYPE 72 whose diameter and height are 78mm
and 40mm, respectively. It is filled with a substance having the same permit-
tivity as that of explosive. Parameters in electromagnetic-wave observation
and CSOM processing are shown in Table 6.1.

Table 6.1 Parameters in measurement and CSOM processing [149].

Start frequency fmin 30.0GHz

Stop frequency fmax 40.0GHz

Frequency point number Nf 81

Frequency interval Δf 125MHz

Scanning area X × Y 381.0mm × 381.0mm

Sampling point number Nx ×Ny 128 × 128

Sampling interval ΔX (ΔY ) 3.0mm

Clustering class number smax 16
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40GHz

30GHz

Fig. 6.3 Complex-amplitude images obtained in multiple-frequency observation of
a plastic landmine buried shallowly underground where brightness shows intensity
and hue shows phase [149].
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Fig. 6.4 Adaptive visualization result for a plastic landmine buried shallowly
underground [149].
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Fig. 6.5 Adaptive visualization result for a plastic landmine buried shallowly
underground with a conventional (real-valued) SOM [149].

6.4.2 Results of Observation and Classification

First, we examine the raw data obtained in the observation. Figure 6.3 shows
the phase images in grayscale observed at multiple frequency points for the
mock plastic landmine buried shallowly underground at about 1cm depth.
Black corresponds to −π phase angle, while white means π. The frequency
is 30GHz in the top-left image, whereas it is 40GHz in the bottom-right one,
and the frequency is changed stepwise with a constant interval. When we
see each image individually, we cannot find anything hidden. That is, even
human brain cannot detect a landmine.

Actually, a round plastic landmine is buried at the center. When we know
this fact, and when we examine all the images in total, not a few readers
probably find that we can construct something round intuitively in our mind.
With our volition, we can see something undetected when we watch a single
image. However, we have still difficulty in seeing it.

If we analyze our mind, we may say the follows. First, the central area
presents more-orderly changes in the space than the surrounding areas. The
soil-and-stone areas have more random phase changes. In the frequency do-
main, we can also find more-orderly changes in the central area, though the
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frequency-domain changes are little more difficult to notice. The role of the
CSOM is to extract such differences in the texture to visualize the object.

In contrast, the amplitude images observed at multiple-frequency points
are similar to each other. As an example, we show an amplitude image on the
left-hand side in Fig.6.4 in grayscale. White means a high power, while black
means a low one. In Fig.6.4, the next image is the phase image. We can find
in the amplitude image that the power is a little high at the center. However,
the shape is not round. Moreover, in multiple observations, we find similar
high-power reflection even for a buried metal bolt. Therefore, it is difficult to
find plastic landmines only with the amplitude observation.

The right-hand-side image in Fig.6.4 is the result of the CSOM segmen-
tation. We clearly find something round at the center. The CSOM system
visualizes the plastic landmine buried shallowly underground by performing
an effective segmentation in the observed images successfully.

On the other hand, Fig.6.5 shows a result when we employ a conventional
(real-valued) SOM for segmentation of the amplitude image. Though we can
find something small at the center, the visualization quality is much lower
than that of the CSOM in comparison with the result in Fig.6.4. We cannot
say that the landmine area is segmented with the conventional SOM.

The comparison between the results of the real-valued SOM and the
CSOM, we find that the round shape of the landmine has been brought
about by the phase information. That is to say, the CSOM has successfully
performed the segmentation that we could do, in Fig.6.3, when we examine
the spatial and frequency-domain phase data in total, and when we know the
correct answer. The CSOM has worked as a phase-sensitive superbrain.

6.4.3 Performance Evaluation by Visualization Rate

We repeated experiments to estimate the success rate in visualization. With
our present CSOM system, the rate is about 70%, while it is about 10% for a
real-valued SOM, which suggests the effectiveness of the CSOM processing.
The value of 70% is comparable to the rate that a metal detector finds metal
landmines. In this sense, at least, the present system has a sufficient ability
in practical use.

6.5 Summary

In this chapter, we have presented a CSOM system to visualize plastic land-
mines buried shallowly underground by dealing with complex-amplitude im-
ages obtained at multiple-frequency points. By comparing the result with that
of a real-valued SOM, we have discussed in what way the CSOM realizes a
successful visualization.

It is urgent to detect and remove plastic landmines in the world. Needless
to say, we have to develop useful techniques to realize efficient detections
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of plastic landmines. Complex-valued neural networks provide the human
beings with solutions in such problems.

In the first decade of 2000s, the system presented here has been modified
and improved into a series of small portable visualization systems employing
array antennas for quick acquisition of scattering / reflection of electromag-
netic wave. They have been tested in the field of Cambodia, for example, for
further improvement for practical use in the near future [151] [152] [154].

The neural processing in two-dimensional space × frequency-domain (or
time-domain) data realizes an adaptive processing of three-dimensional spa-
tial information. The importance of such three-dimensional adaptive process-
ing will increase more and more in many fields related to millimeter wave and
microwave systems such as intelligent transport systems (ITS) and multiple-
input multiple-output (MIMO) systems where we use multiple antennas in
transmission and detection in wireless communications.
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Removal of Phase Singular Points to Create
Digital Elevation Map

The phase map obtained in observation of Mount Fuji presented in Chapter 5
shows the reflection phase modulo 2π. Therefore, the fringe curves are con-
tours showing the geography in the observation area. Given one knows the
fact, one can imagine the landscape of Mount Fuji to some extent. Comput-
ers can perform a similar processing to yield a height map, which we call a
digital elevation map (or digital elevation model: DEM). The process to un-
wrap the phase image wrapped within −π to π is the phase unwrapping. The
phase unwrapping is, however, known as a difficult process for conventional
computers because of the existence of phase singular points. In this chapter,
first we explain the singular points, which is a serious noise induced in the
interferometric observation. Then we present a method to remove the singu-
lar points effectively by using a complex-valued neural network, and generate
a high-quality DEM with a smaller calculation cost.

7.1 Phase Unwrapping

The phase unwrapping is explained as follows. As we discussed in Chapter
5, the phase map obtained in airborne / satellite observation using interfero-
metric radars possesses information equivalent to the height of land surface.
However, the phase values are wrapped into −π to π. By unwrapping them
using computers, we can obtain so-called digital elevation map (DEM). This
process is the phase unwrapping.

However, the phase unwrapping is known as a difficult task in conventional
computing. Figure 7.1 illustrates, a little more microscopically, the amplitude
and phase observed in a similar observation [202]. In the phase image, we can
find some points where the phase values have rotational components. That
is to say, when we examine the phase value around the point, it increases
in 2π unawares, or decreases in −2π. We call the point the singular point
(SP). The main origin is interference noise. We can also find in the amplitude

A. Hirose: Complex-Valued Neural Networks, SCI 400, pp. 123–131.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 7.1 Typical (a)amplitude and (b)phase images obtained by interferometric
radars. In the phase image, we can find five phase singular points indicated by open
circles. (Reprinted from Fig.3 in [202] with permission from Springer-Verlag.)

image that the points corresponding to the SPs have abrupt small values. The
phenomenon is very natural since, in physical consideration, a point having
indefinite phase value should not have any non-zero amplitude.

Because the phase value represents height of land surface, the phase field
should intrinsically be conservative. Nonetheless, the field cannot be con-
servative actually. Then we cannot determine the height. For example, as
we see later, the phase map shown in Fig.7.6(a) (Page 130) contains SPs of
over 600.

However, we have a conventional method called the branch-cut method,
so that we manage to determine, or more accurately, to estimate the height.
In the branch-cut method, fundamentally we determine the height of a pixel
by examining the phase shift between neighboring pixels, pixel by pixel, by
incorporating 2π jump when we consider it appropriate. However, in this
process, we place lines connecting SPs, and we determine the height without
crossing the SP-connecting lines. In this way, regardless, we determine the
elevation, though we have 2π cliffs on the SP-connecting lines because the line
functions as a barrier of the spreading of the 2π inconsistency. Therefore, the
total length of the lines should be as small as possible. When we connect all
the SPs, the lines appear to be a branch in total. Hence the name branch-cut.
The shorter the total length is, the better the DEM quality becomes. However,
such a search problem with combinatorial explosion to find the shortest-line
pairs is incompatible with ordinary computing. The computational cost grows
seriously rapidly as the number of SPs increases.
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Fig. 7.2 Point s and its neighboring points ti in the neighbor’s area Ns.

7.2 Noise Reduction with a Complex-Valued Cellular
Neural Network

Then, how can the human brain easily estimate the shape of Mount Fuji?
Human beings first estimate the shape roughly and globally. Afterwards, if
we find an inconsistent point in a precise examination of the phase map, we
will presume a correct pixel value in a pattern processing by observing the
surrounding pixels, and will remove the SP.

In this chapter, we present a neural network that performs a task such as
the “phase-familiar brain” does. It is a superbrain named complex Markov-
random-field (CMRF) estimating neural network (See Section 4.6) which is
constructed as a complex-valued cellular neural network. A cellular neural
network has neurons at lattice points, and a neuron has connections only
locally. A two-dimensional cellular network is suitable for image processing
and compatible with integration on a chip.

In phase unwrapping, we may use only phase data in general. However, the
present complex-valued network deals with not only the phase but also the
amplitude, as complex amplitude consistently, of the image data because, in
many cases, they are related closely to each other. As we mentioned above,
they are correlated strongly in particular at around an SP. We utilize the
amplitude information effectively.

The network estimates a correct pixel value at a detected SP by using the
values around the SP, and modifies the pixel value based on the estimate. This
process reduces the number of SPs considerably, lightens the calculation cost
required in making a DEM, and improves the DEM quality [194],[203],[198].

In the same manner as we did in Chapter 5, we label the pixels as shown
in Fig.7.2. We adopt the CMRF model. Remember that, when we consider a
probability P (zs) that the pixel s has a value of zs

P (zs| values of pixels in the image except for s ) = P (zs|zti ∈ Ns) (7.1)
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where ti ∈ Ns is neighbors, the probability can be assumed constant in an
area with a certain extension and, consequently, it represents a nature of the
image statistically.

Accordingly, the value at the pixel s is estimated statistically by the neigh-
bors. In the conventional real-valued MRF model, the probability Ps that the
pixel s takes the value of xs is estimated by the neighbor values xt as

P (xs) =
1

Z
e−E(xs) (7.2)

E(xs) =
1

2σ2

(
xs −

∑
t∈Ns

ΛT
stxt

)2

(7.3)

where Z is the partition function for normalization, Λst (= wst in Section
4.6) is correlations in a generalized-inverse-matrix expression, σ2 is variance
reflecting the degree of fluctuation, and E(xs) is energy. The parameters Λst

and σ2 are called the MRF parameters.
We extend the formula into a complex one to extract statistic features and

to estimate pixel values of complex-valued images. We derive the complex-
valued version for a complex pixel value zs, by considering an analogy with the
real-valued one given above and substituting conjugate transpose for simple
transpose, as [194]

P (zs) =
1

Z
e−E(zs) (7.4)

E(zs) =
1

2σ2

∣∣∣∣∣zs −
∑
t∈Ns

Λ∗
stzt

∣∣∣∣∣
2

. (7.5)

However, in practice, we have to estimate the CMRF parameters Λ∗
st based

on the data in a local area. By considering averages within an L × L local
observation area, we estimate the CMRF parameters as

Λ̂∗ ≡
[ ∑
s∈L×L

zsq
∗
s

][ ∑
s∈L×L

q∗
sqs

]−1

(7.6)

σ̂2 ≡ 1

L2

∑
s∈L×L

∣∣∣zs − Λ̂∗qs

∣∣∣2 (7.7)

qs ≡

⎡
⎢⎢⎢⎢⎢⎣

zt−12

zt−11

...
zt+11

zt+12

⎤
⎥⎥⎥⎥⎥⎦

(7.8)

Note that, in the above expression, we omit the suffix st of Λ̂∗ since we
estimate the parameters finally for arbitrary s by scanning the local area by
shifting s and Ns.
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Fig. 7.3 Construction of the complex-valued cellular neural network to remove
singular points. (Reprinted from Fig.4 in [194]: Andriyan Bayu Suksmono and
Akira Hirose: Adaptive noise reduction of InSAR image based on complex-valued
MRF model and its application to phase unwrapping problem, IEEE Trans. on
Geoscience and Remote Sensing, 40(3):699–709 (followed by publisher’s errata on
Fig.12), 2002 ((C) 2002 IEEE) with permission from the IEEE.)

In (7.6), we obtain the estimate of zs by using Λ̂∗ obtained as a generalized-
inverse matrix described in Chapter 4. However, fundamentally we can esti-
mate the parameters Λ̂∗ by employing the simple complex-valued Hebbian
rule. That is to say, we can do it with the neural Hebbian (correlation) learn-

ing as Λ̂∗ =
∑
zsq

∗
s , which has the same nature as the CMRF parameters

expressed by (7.6). In other words, we can explain the process to estimate
the CMRF parameters as a self-organization in the cellular neural network
where a neuron is assigned to every pixel, and neural connections between
neurons learn the correlation between the pixel values as < zs(zt)

∗ >. When
the neighbor window Ns scans the local area in which the statistic property is
unchanged, the network self-organizes to realize the estimation of the CMRF
parameters similar to those expressed in (7.6).

7.3 System Construction

Figure 7.3 shows the system construction. A complex-valued reflection
image I is input from the left-hand side. In the reflection observation, a ho-
modyne circuit yields in-phase (real-part) and quadrature-phase (imaginary-
part) components. Thereby, we regard the phase of the local oscillator output
as the phase reference. If we use a vector network analyzer, we may obtain
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directly the phase and amplitude of the reflection. In any case, by scanning
the beam direction, we obtain a complex-valued reflection image I.

We scan the image I and detect SPs. At the same time, we estimate the
CMRF parameters (ρ̂2, Λ̂) by using the data in the area containing no SPs.
Then, as shown in the large rectangle at the center in Fig.7.3, we update
the pixel value at the SPs. That is, the neuron at an SP connected locally to
other neurons estimate the proper pixel value based on the CMRF parameters
(ρ̂2, Λ̂) and the surrounding pixel values. We modify the pixel value in such
a manner that the energy expressed in (7.5) is reduced. We can employ a
deterministic method [194], or a probabilistic hill-climbing one [203].

We update the pixel values at all the SPs to obtain a first estimate image
Î. We can expect that the number of the SPs in the estimate is less than
that in the initial image. By repeating the above process, we generate a final
estimate image Î.

7.4 Dynamics of Singular-Point Reduction

Figure 7.4 shows the detail of the SP reduction. In Fig.7.4(a), we find observed
amplitude and phase images with a corresponding SP map from the left-hand
side to the right. The values of the amplitude and phase images are expressed
in grayscale. There are two types of SPs, i.e., counterclockwise increasing
SPs (positive SPs) and clockwise increasing SPs (negative SPs). They are

(48 residues)

(14 residues)

(a)Initial

(b)Estimated

(i)

(ii)

Fig. 7.4 Close-up of amplitude and phase images with a corresponding SP map
from the left-hand side to the right. (Reprinted from Fig.6 in [194] in figure caption
of Fig.7.3 ((C) 2002 IEEE with permission, IEEE.)
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Fig. 7.5 Energy versus iteration number. (Reprinted from Fig.7 in [194] in figure
caption of Fig.7.3 ((C) 2002 IEEE with permission, IEEE.)

expressed by white and black dots, respectively, in the SP map, where we
have 48 SPs in this case in total. On the other hand, Fig.7.4(b) shows the
processing result. We find that the number of the SPs is reduced to 14, and
that the phase image has almost the same contours as those in the observed
phase image in (a). In a close observation at the areas indicated by (i) and (ii),
it is clear that the proposed neural network removes the SPs and, at the same
time, the global elevation information is preserved. In the amplitude image
in (b), the amplitude values around the SPs are modified to approximately
zero in a wider area so that, as we considered in Section 7.1, the physical
consistency is maintained explicitly around the SPs where the phase values
cannot be determined uniquely.

Figure 7.5 presents the energy value defined in (7.5) versus the number of
iteration of the neural processing. It decreases monotonically, which suggests
a successful removal of the SPs.

7.5 DEM Quality and Calculation Cost

Figure 7.6 shows the results for an observation at the Mount Fuji area [194].
Figure 7.6(a) is the case where we apply the branch-cut method directly
to the observed phase image. There we find the phase image, correspond-
ing minimum-spanning-tree branch-cut, and obtained DEM. The DEM is
expressed in color, where purple means undefined height because of closed
branch-cut.
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Fig. 7.6 Results for Mount Fuji observation: (a)Observed phase image, minimum-
spanning-tree branch-cut, and resulting DEM obtained directly from the observed
phase image without SP reduction, and (b)phase image after SP reduction, corre-
sponding minimum-spanning-tree branch-cut, and resulting DEM obtained for the
SP-reduced complex-amplitude image. (Reprinted from Figs.10, 12, 13, and 14 in
[194] in figure caption of Fig.7.3 ((C) 2002 IEEE with permission, IEEE.)

On the other hand, Fig.7.6(b) shows the results when we conducted the
SP reduction with the complex-valued cellular neural network. Though we
cannot find difference between the phase images in (a) and (b) at a glance,
the SP number in (a) is 611, while that in (b) has been reduced to just 100.
That is to say, the neural processing realizes a great SP reduction without
global landscape modification. Consequently, the total length of the branch-
cut in (b) has become so short that the resulting DEM contains only small
unnatural areas. The calculation time required for the branch-cut phase-
unwrapping process has also been reduced to approximately 1/8.5.
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7.6 Summary

In this chapter, we presented a complex-valued cellular neural network to
estimate pixel values based on the complex-valued Markov random field
(CMRF) model. At around singular points (SPs), the network estimates cor-
rect complex-amplitude reflection values, and reduces the number of the SPs.
As a result, the calculation cost in the branch-cut phase unwrapping (PU)
is drastically reduced. The quality of the obtained DEM is also greatly im-
proved. The present estimation technique based on statistics is useful when
the statistical property is considered almost uniform in a local area. In the
Mount Fuji case, the statistics changes in the image in total. However, by
preparing a local area smaller than the spatial changes of the statistic char-
acteristics, we have been successful in applying the present method very ef-
fectively. Note that it is quite important that we deal with the phase together
with the amplitude, i.e., the complex-amplitude, even if we are finally inter-
ested only in phase information.

The method presented here has advanced into an improvement in the works
of Yamaki & Hirose [146] in the first years of 2000s, where they deal with
the four pixels constructing a singular point simultaneously, and also lead to
new unwrapping techniques such as the “progressive least-square unwrapping
method” (Suksmono & Hirose) [144] and the so-called “singularity spreading
phase unwrapping (SSPU) method” (Yamaki & Hirose) [145]. Their practi-
cal applicability has been evaluated by, e.g., Japan Aerospace Exploration
Agency (JAXA) for the near-future use in the world.
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Lightwave Associative Memory That
Memorizes and Recalls Information Depending
on Optical-Carrier Frequency

This chapter presents a lightwave neural network that learns behavior de-
pending on optical frequency. In general, a neural network learns or self-
organizes adaptively to environment. Because of this adaptability, we some-
times have difficulty in controlling the neural network at will. The lightwave
network to be presented here learns a certain processing at a certain optical-
carrier frequency, and another processing at another frequency, to possess
both the adaptability and the controllability. From a different viewpoint, we
can consider this compatibility as a mean of multiplexing of behavior in the
optical frequency domain. The frequency-domain multiplexing provides the
neural network, which is characterized by distributedness and parallelism,
with a new dimension of massive parallelism utilizing the vast optical fre-
quency bandwidth. In this sense, the network presents a novel direction in
optical information processing hardware.

8.1 Utilization of Wide Frequency Bandwidth in
Optical Neural Networks

The present state-of-the-art optical fiber communications involves frequency-
domain multiplexing (FDM) in the optical frequency domain. The communi-
cations frequency (so-called 1.55μm-wavelength band) is first divided into L
band (186.25‘190.95THz) and C band (191.60‘196.55THz). Then each band
is further divided into channels of 100 or 200GHz bandwidth just like the
channels in television and radio broadcasting systems. Each channel carries
information independent of the information conveyed by other channels.

If we utilize the same technique in optical information processing, we can
realize a massive parallelism in the vast optical frequency domain. Simultane-
ously, the fact that early-days’ telephone-switching systems were equivalent
to electronic computers suggests us that the realization of an optical FDM
information processor should also be equivalent to the construction of an
adaptive and intelligent all-optical FDM packet switch.

A. Hirose: Complex-Valued Neural Networks, SCI 400, pp. 133–142.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012
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Parallelism and distributedness are the most specific characteristics in the
construction and dynamics of neural networks. Optical circuits have plas-
ticity and three dimensionality in connections. At these points, we can say
that optical circuits possess high spatial parallelism. In particular in short-
wavelength circuits, the spatial parallelism can be enhanced. Therefore, con-
ventional optical neural networks emphasized the advantage in the spatial
parallelism.

On the other hand, electronic neural hardware has also been investigated
for a long time. Owing to high locality of electrons, electronic circuits have
been greatly minimized and integrated, and are nowadays integrated even
three dimensionally. Consequently, the spatial density of electronic hardware
is generally much higher than that of optical hardware.

Ordinary optical circuits don’t work well in space smaller than its wave-
length. Moreover, optical circuits have the so-called telescope-effect problem.
That is, lightwave generally requires such a long propagation length that an
optical circuit cannot be densely integrated in this direction. To solve such
problems, we need to go further into optical nanotechnology, for instance,
techniques to practically utilize evanescent light.

However, the operation speed of electron devices is inevitably restricted by
the electron charge. Contrarily, lightwave has an extremely higher operation
speed (= wider bandwidth). The ultrawide bandwidth is a big advantage in
optical circuits and should be explored much more. Additionally, conventional
neural optical circuits have utilized only the power of lightwave (≈ intensity
and amplitude) among other parameters such as phase, frequency, and polar-
ization. If we pay attention to frequency, we realize the vast optical frequency
bandwidth mentioned above, which is a crucial point to be investigated in
neural networks. To manipulate frequency precisely with high resolution, we
have to deal with phase of lightwave. For this purpose, the complex-valued
neural networks are essential and indispensable.

This chapter describes a coherent optical neural network that has carrier-
frequency-dependent behavior by utilizing the wide optical bandwidth.
Carrier frequency is the frequency of the pure sinusoidal wave without in-
formation modulation. When we use a semiconductor laser, we can easily
modulate the carrier frequency by changing the injection current fed to the
laser diode. This type of frequency modulation (FM) is called the direct
frequency modulation. In this chapter, we construct a coherent lightwave as-
sociative memory that memorizes and recalls patterns dependent on the value
of the optical-carrier frequency. Neural connection weights are determined by
use of the complex-valued Hebbian rule expressed in a frequency-dependent
form. Optical experiments demonstrate carrier-frequency-dependent memory
and recall [204],[192].

The system to be presented here follows the preceding construction of
a coherent lightwave associative memory that memorizes complex-valued
vectors reported in Ref.[205]. Coherent neural networks inherently possess
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Fig. 8.1 Conceptual illustration of the carrier-frequency-dependent behavior in
the associative memory system. (Reprinted from Fig.1 in [204]: Sotaro Kawata
and Akira Hirose: Coherent lightwave associative memory system that posesesses a
carrier-frequency-controlled behavior, Opt. Eng., 42(9):2670–2675, 2003, with per-
mission, SPIE.)

carrier-frequency-dependent behavior as mentioned in Section 4.3.8. The
present system is based on this nature.

The first optical experiment of complex-valued associative memory was
reported by Takeda & Kishigami in 1992 [82]. They constructed the epoch-
making lightwave associative memory based on the mathematical analogy
between the electromagnetic field in optical resonators formed with phase-
conjugate mirrors and the dynamics of hermitian associative memories. The
underlying idea is applicable to various situations where we deal with physical
waves. However, the possible neural functions are limited within associative
memories. On the other hand, the system to be presented here is not based on
phase-conjugate physics, but using optical modulators having more flexible
operation as an optical device. Therefore, in this sense, the bases described
below have a higher potential to construct neural networks with a variety of
functions.

Besides, we have several reports on the utilization of the optical-frequency
domain so far, for instance, an FDM memory using volume hologram [206],
a winner-take-all network based on the nonlinearity in semiconductor laser
oscillation with external optical feedback and the spectral hole burning [207],
and numerical experiments showing various generalization characteristics in
the frequency domain realized by learning and self-organization [83].
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8.2 Optical-Carrier-Frequency Dependent Associative
Memory: The Dynamics

Figure 8.1 is an illustration presenting the concept of the optical-carrier-
frequency-dependent behavior in the associative memory. The carrier fre-
quency means the frequency of the lightwave that conveys information, and
is identical to the oscillation frequency of the semiconductor laser used.

If the optical carrier frequency is f1, the associative memory system has
an information metric corresponding to f1. When the memory is fed with an
input vector x1(f1), it recalls a memorized vector s1(f1) that is nearest to
the input in the metric system determined by f1. For a different input vector
x2(f1), it recalls another one, s2(f1), nearest to x2(f1). However, on condition
that the system has a carrier frequency of f2, the metric is changed, giving
the memory a different worldview. That is, for instance, it recalls s1(f2) for
an input x2(f2) since x2(f2) is near to s1(f2) in this metric. An input x1(f2)
may be too far from any memorized vectors, and yields none of them.

The above recalling story is just a possible example. The recall behavior is
determined by learning that is dependent on the carrier frequency. The detail
is given below.

8.2.1 Recalling Process

Given the amplitude is fixed at unity without amplitude modulation, the
neurodynamics to recall a memorized vector is expressed as follows. As men-
tioned in Chapter 4, the amplitude can be variable in general. However, in
the present system, it is constant for simplicity.

x(d+ 1) = A (|Wx(d)|) exp(i arg{Wx(d)}) (8.1)

xi = |xi| exp(iαi) (8.2)

wji = |wji| exp(i2πfτji) (8.3)

where A(·) and W = [wji] are amplitude nonlinear function and connection
weights, respectively, and d is discrete time, f is carrier frequency, αi is input
signal phase, and τji is delay time of the connections.

We realize phase modulation by using a phase-modulation-type (more pre-
cisely, delay-time modulation type) spatial light modulator (SLM), which is
named parallel-aligned liquid-crystal spatial light modulator (PAL-SLM). In
the experiment below, we use two SLMs, i.e., one (SLM#1) is to generate
an input vector, and the other (SLM#2) works as connection weights. The
details will be given later in Fig.8.2. In the present system, we modulate only
the phase (or actually, delay time), and keep the amplitude unchanged.

8.2.2 Memorizing Process

The learning dynamics to realize an associative-memory network is ex-
plained as follows. We apply sequential correlation learning to the weights
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Fig. 8.2 Construction of the lightwave associative memory whose behavior is con-
trollable by carrier-frequency modulation. (Reprinted from Fig.2 in [204] in figure
caption of Fig.8.1 with permission.)

wji = |wji| exp(i2πfντji). That is to say, we present the vector to be memo-
rized (sμ,ν) to the output of the network instead of y in the ordinary Hebbian
learning, while the conjugate (sμ,ν)

∗ to the input as x, to make the network
learn their correlation one by one. The process is, so to speak, a supervised
complex-valued Hebbian learning. The updates of the amplitude and delay,
|wji| and τji, of the weight wji is conducted in the manner described in
Section 4.2 as

τ
d|wji|
dt

= −|wji|+ |yj ||xi| cos(βj − αi − 2πfτji) (8.4)

τ
dτji
dt

=
1

2πf

|yj||xi|
|wji| sin(βj − αi − 2πfτji) (8.5)

where xi = |xi| exp(iαi) and yj = |yj | exp(iβj) are input and output signals,
respectively, and τ is learning time constant [208].

In the case that all the memorized vectors are given at once, we can con-
struct the weight matrix directly as the autocorrelation matrix.

8.3 Optical Setup

Figure 8.2 shows the system construction. We can control the carrier fre-
quency f by choosing appropriate injection current of the light source
(semiconductor laser: LD#1). Emitted lightwave is divided into signal and
reference beams. The former is modulated by SLM#1, and becomes an in-
put signal vector x. Then the signal beams x are incident on SLM#2 and
multiplied by the weights W whose values are determined by the backlight
(LD#2) with an optical mask placed behind SLM#2. Figure 8.3 illustrates
the SLM-surface assignment when the neuron number is 3 and the synapse
number is 9, as well as the CCD surface to yield the summation.
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Fig. 8.3 Modulation-surface assignment of (a)input-signal generating SLM and
(b)connection-weight multiplexing SLM, and (c)CCD detection-surface assignment
in a 3-neuron and 9-synapse case for example. (Reprinted from Fig.3 in [204] in
figure caption of Fig.8.1 with permission.)

The yielded neural output signals are mixed with the reference light beam
at the half mirror to be homodyne-detected. To obtain two components or-
thogonal to each other, we modulate the input signal phase additionally by
0, 90, 180, and 270 degrees so that they yield four different interferences, re-
sulting in extraction of the amplitude and phase information. The captured
image is fed to the personal computer (PC) to generate the sum. (If we use
a striped-surfaced detector, we can optically obtain the sum.) The PC gen-
erates the next signal vector to be sent to SLM#1 recurrently. The setup
photograph is shown in Fig.8.4.

Figure 8.5 shows schematically the frequency-dependent behavior ex-
pressed as the modulation signals on the SLM surfaces. Even though the
delay-time values τji on SLM#2 are fixed, the resulting phase values of the
weights 2πfτji are variable depending on the carrier frequency f . Hence,
for an identical input vector, the system yields different output vectors de-
pendent on f . In other words, the association behavior is dependent on the
carrier frequency. This characteristic is effectively used, for both the learning
and recall are consistently dependent on the frequency.

8.4 Frequency-Dependent Learning

The dependence of the homodyne output signals on the carrier frequency f
is determined by the optical-path difference between the signal and reference
light beams shown in Fig.8.2. When f varies, the interference fringe changes
periodically with an interval of c/ΔL.

The initial delay time τHebb
ji0 is related to an arbitrary basis frequency f0

as

τHebb
ji0 =

θSLM0

2πf0
+
ΔL

c
(8.6)
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Fig. 8.4 Experimental setup.

where θSLM0 is an equivalent initial phase value of the SLM modulation, and
is chosen at random in [0, 2π]. Generally, a large delay yields a large phase
change even against a small frequency deviation. In the present system, the
network learns an appropriate delay time (θSLM0 /2πf0) + (ΔL/c) to have a
suitable sensitivity to the frequency change.

In the experiment shown below, first we conduct learning numerically in
the PC on the basis of the above-mentioned complex-valued Hebbian rule.
Then, after learning is finished, we move to optical recall experiment. We
named the μ th vector to be memorized at ν th frequency as sμ,ν . We show the
vectors sμ,ν by adjusting the carrier frequency at fν , one by one, to the neural
network, and embed the vectors sμ,ν in the memory in a frequency-dependent

way. The relationship among the modulation phase θSLM#2
ji (f0) at SLM#2,

the corresponding delay time τSLM#2
ji , and the optical-path difference ΔL are

expressed as

θSLM#2
ji (f0) ≡ 2πf0τ

SLM#2
ji = 2πf0(τ

Hebb
ji − ΔL

c
) (8.7)

where τSLM#2
ji and τHebb

ji are the SLM delay time corresponding to θSLM#2
ji (f0)

and the total connection delay in (8.5), respectively. When the carrier
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Fig. 8.5 Schematic illustration showing the frequency-dependent behavior ex-
pressed as the modulation signals on the SLM surfaces and results on the CCD.
(Reprinted from Fig.4 in [204] in figure caption of Fig.8.1 with permission.)

frequency is f , the equivalent phase of the weight θji(f) is determined fre-
quency dependently as

θji(f) = 2πf(τSLM#2
ji +

ΔL

c
)

=
f

f0
θSLM#2
ji (f0) + 2πf

ΔL

c
. (8.8)

The behavior shown in Fig.8.5 is just an example of the intended operation
of the system. The system has a certain function at a chosen frequency. From
another viewpoint, we can regard the system as a fully parallel processor in
the frequency domain when we use multiple optical sources simultaneously,
just like the frequency-domain multiplexing (FDM) in the communications.
On the other hand, if the system finds out an optimal frequency on its own
with a feedback mechanism, we can recognize a type of volition in the sys-
tem, resulting in a self-organizing context-dependent information processor
[208]. The volition is described in Chapter 10 together with the concept of
developmental learning.
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permission.)

8.5 Frequency-Dependent Recall Experiment

In Fig.8.2, the frequency of the light source LD#1 ( wavelength ∼= 635[nm] ;
f0 ∼= 472[THz]) is changed by injection current control. The frequency sensi-
tivity is 10.5[GHz/mA]. The temperature is stabilized electrically. The result-
ing frequency controllability (resolution) is better than 0.016[GHz]. SLM#1
(Hamamatsu Photonics X6345) is modulated by a video input, while SLM#2
(X7665) is done by a spatially parallel optical input. However, basically we
can use any modulation types of PAL-SLMs.

The optical path-length difference is about ΔL=6.8[mm], resulting in the
frequency period of c/ΔL = 44.1[GHz]. Numbers of neurons and synaptic
connections are 9 and 81, respectively. We choose two signal vectors sμ,ν(≡
sμ(fν)) and two carrier frequencies fν (μ = 1 only, while ν = 1, 2) where we
intend that s1,1 be recalled at f1, and s1,2 at f2, respectively. The frequencies
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are chosen as f1 = f0 and f2 = f0 + c/(4 ΔL) so that the network behavior
becomes independent even in a simple connection case.

We select two almost-orthogonal vectors to be memorized, s1,1 and s1,2.
The amplitudes of all the vector elements are fixed to unity. We generate
input vectors x1,1 and x1,2 by adding phase noise whose distribution is ho-
mogeneous within 30 % range of ±π. The elements’ amplitudes of the both
input vectors are unity again. The learning process generates the weights
wji on a PC. First, we initialize the delays τji by choosing the initial phase
θ0 in (8.6) at random. Then the learning process based on (8.5) is iterated
1000 times, with which the weights settle at a sufficiently steady state. The
learning gain K is 0.5.

Figure 8.6 shows the recall result for noisy input vectors x1,1 (near to s1,1
at f1) and x1,2 (near to s1,2 at f2) when one of the carrier frequencies f1 or
f2 is chosen. In the case of f1 shown in Fig.8.6(a), the real part of the inner
product Re[(s1,1)

∗ · x1,1] converges almost at unity, which means that the
system recalls the corresponding vector s1,1. On the other hand, the inner
product Re[(s1,2)

∗ · x1,2] presents oscillatory behavior, which means failure
in the recall of s1,2. In Fig.8.6(b), contrarily, the system recalls s1,2, while it
does not recall s1,1. In this way, the frequency-dependent associative recall
is realized.

8.6 Summary

We have presented a coherent optical associative memory whose behavior
can be changed by the modulation of the carrier frequency. The system
has a homodyne-detector structure where the signal and reference optical-
path lengths are slightly different from each other. The path-length difference
resulted in the frequency-dependent behavior. The carrier-frequency
dependent complex-valued Hebbian rule functioned well to realize the
frequency-dependent recall consistently.

This basic idea leads to future frequency-domain parallelism utilizing the
vast optical-frequency bandwidth in optical neural networks. It is also ap-
plicable to future FDM systems and wavelength / wave number division
multiplexed systems related to various wave phenomena. In addition, there
have been several exploring ideas and analyses reporting, for example, optical
frequency-multiplexed learning logic circuit [51] [52].
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Adaptive Optical-Phase Equalizer

In the framework of the complex-valued neural networks dealing with phase
values adaptively, we can realize various adaptive subsystems required in
optical communications such as a learning phase equalizer. Modern optical
communications attains a high degree of development mainly in trunk lines.
Moreover, near-future networks provide subscribers with high-speed and
multichannel information transmission over all-optical routers and switches.
Thereby, we have to compensate the fiber dispersion varying with succes-
sively switched optical routes. The dispersion variation is very large since the
high-speed multichannel optical communications occupies a wide frequency
bandwidth. The optical-phase equalizer to be presented in this chapter can be
one of the principles useful in such applications. As an example, we consider
a system with supervised learning here.

9.1 System Construction

Figure 9.1 shows the neuron, the basic element, constructing the system. Its
main characteristic is the multiple connections between m-th single input
and n-th single neurons. Each connection possesses its own time delay and
transparency. The connections altogether generate interference dependent on
the optical carrier frequency.

We can directly relate the amplitude and phase of lightwave to those of
signals in complex-valued neural networks. Then, to modulate phase in par-
allel two-dimensionally, we use a parallel-aligned liquid-crystal spatial light
modulator (PAL-SLM), as we did in Chapter 8. To modulate amplitude, on
the other hand, we use a PAL-SLM or ordinary (polarization-type) spatial
light modulator (SLM) in combination with a polarizer. We express the in-
put signal as xm ≡ |xm| exp(iαm), output signal as yn ≡ |yn| exp(iβn), and
connection weight as wnm,h ≡ |wnm,h| exp(i2πfτnm,h), respectively, where m
and n are indices for input and output vectors, while h is that for multiple
connections mentioned above.

A. Hirose: Complex-Valued Neural Networks, SCI 400, pp. 143–149.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 9.1 Element constructing the adaptive phase equalizer. (Reprinted from Fig.1
in [209]: Sotaro Kawata and Akira Hirose: A coherent optical neural network that
learns desirable phase values in frequency domain by using multiple optical-path
differences, Opt. Lett., 28(24):2524–2526, 2003, with permission.)

The purpose of the network is to generate a desirable phase value against
input phase by adaptive processing. The task is classified into the function
approximation described in Section 4.4. We realize function approximation
in a frequency-dependent manner by the method explained in Section 4.4.5.
The processing conducted by the neuron is expressed as

yn = g

(∑
m

∑
h

(|wnm,h| exp(i2πfτnm,h) xm)

)
(9.1)

g(u) ≡ A tanh(B |u|) exp(i arg(u)) (9.2)

All the weighted inputs are summed in the complex domain to yield the
internal state u. The activation function g(u) is an amplitude-phase-type
function defined in (9.2), A is saturation amplitude in output signals, and B
is amplitude gain.

9.2 Optical Setup

We consider one of the simplest examples, i.e., an optical circuit consisting
of a single neuron [209],[192]. Though the construction is simple, the func-
tion is fulfilling. We implement the neuron shown in Fig.9.1 as an optical
circuit illustrated in Fig.9.2(a). Figure 9.2(b) is a photograph of the opti-
cal setup, where a three-armed optical interferometer is constructed as a set
of self-homodyne circuits. We examine the phase of the circuit output by
self-homodyning. We realize a frequency modulation by employing a semi-
conductor laser diode. The basis of the optical circuit is the same as that in
the associative memory presented in Chapter 8.
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Fig. 9.3 Assignments of signals on the PAL-SLM and the CCD. (Reprinted from
Fig.3 in [209] in figure caption of Fig.9.1 with permission.)

The delay length for input signals of the neuron is physically represented by
the difference between the signal optical-path length LSigh and the reference
length LRef , i.e., ΔLh ≡ LSigh−LRef , where we assume ΔL1 < ΔL2 < ΔL3.
The delay time τnm,h of the connection weight wnm,h in total is the sum of
the delay time of the SLM modulation, shown in Fig.9.3, and the delay in
the optical-path difference, i.e., τSLMnm,h +ΔLh/c. Here we assume |wnm,h|=1
for simplicity. The optical sum and the nonlinearity in g(·) is realized by
the optical detector (CCD: Charge Coupled Device) that detects interference
result as shown in Fig.9.3.

9.3 Dynamics of Output Phase-Value Learning

We synthesize a desired output signal (phase) by adjusting the connection
weights wnm,h in learning. As we discussed in Chapter 4, we have two frame-
works in supervised learning in single-layered complex-valued neural net-
works, i.e., the complex-valued steepest-descent method and the complex-
valued correlation learning superficially identical to the complex-valued Heb-
bian rule. Here we employ the delay-time learning, (4.97), which is the
frequency-dependent version of the complex-valued correlation learning men-
tioned in Section 4.3.8. That is, we have

τ
dτnm,h

dt
=

1

2πf

|yn||xm|
|wnm,h| sin(βn − αm − 2πfτnm,h) (9.3)

where τ without index is the time constant determining the learning speed.
The learning procedure is described as follows. First, we determine an

arbitrary frequency f̂ . Then we present signal sets (f̂ , x̂, ŷ) to the system,
where ŷ is the output to be learned for an input x̂. We update the connection
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weights wnm,h according to (9.3) for all the connections. We repeat the above

process for all the frequency–signal sets f̂ , x̂, and ŷ to be learned.
We choose initial weight values wnm,h such that the transparency is

|wnm,h|=1 and that the delay time is τnm,h=θ0/(2πf0) + ΔLh/c where θ0
is random value in the range of 0 ∼ 2π, where f0 is the optical center fre-
quency (the frequency without modulation). As the learning proceeds, the
system learns to generate the desired output ŷ for input x̂ when the carrier
frequency is f = f̂ . In the case that f �= f̂ , the output can be different.

9.4 Performance of Phase Equalization

The setup for the optical experiment is shown in Fig.9.2. First, we confirm the
learning dynamics in simulation using parameters in the optical experiments
to be conducted. Then we proceed to an actual experiment. We prepare vari-
ous desirable output phase values at four carrier-frequency points from 472.002
THz to 472.008 THz with an interval of 2GHz, and make the system learn the
values. The upper limit of the learning iteration has been chosen at 200. We
investigate the generalization characteristics in the frequency domain. We also
define an error function as (9.4), and examine its evolution, i.e.,

E ≡ 1

2

∑
μ

|y(x̂μ)− ŷμ|2 (9.4)

where μ is the index for memorized vectors. In the following simulation and
experiment, the learning is effective not only for phase but also for amplitude.
However, with the present purpose of phase equalization, we investigate the
output phase values in particular.

Figure 9.4 shows typical results of simulation (broken curves) and optical
experiment (crosses). Closed circles in Fig.9.4 show the teacher signals that
the system should learn. Figure 9.4(a) shows random output phase values
before learning. However, for the output values at 80 iterations in Fig.9.4(b)
and those at 200 iterations in Fig.9.4(c), we find that the system learns grad-
ually the desirable outputs. Figure 9.4(d) presents the reduction of the error
function. The almost monotonic decrease reveals the practical effectiveness
of the learning dynamics.

By combining the processing elements shown here, we will obtain more
complex phase curves in the frequency domain. In combination with the
scaling in the frequency sensitivity, we can realize various types of dispersion
compensation, besides wavelength-selecting routers. The scaling is actual-
ized by preparing appropriate rough delays ΔL. The frequency-dependent
learning will ultimately lead to novel parallelism based on frequency-domain
multiplexing in neural networks utilizing the vast frequency bandwidth in
lightwave.
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Fig. 9.4 Results of the optical experiment. Output phase values (a)before learning,
(b)at 80 learning iterations, and (c)at 200 learning iterations. (d)Change in the error
function. (Reprinted from Fig.5 in [209] in figure caption of Fig.9.1 with permission.)

Note that, in the present experiment mentioned here, we used a two-
dimensional spatial light modulator (SLM) and other bulky optics. There-
fore, the system is not so small. However, the principle of the learning and
self-organization is widely applicable so that this type of system can be con-
structed based on, for instance, optical waveguides and photonic crystals.
With such devices, we can design micro-optical circuits with high tolerance
to mechanical turbulence.
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9.5 Summary

In this chapter, we described a lightwave phase equalizer as a communications-
network application of a coherent neural network. The learning dynamics and
characteristics were presented. There are many other application areas in op-
tical communications. One example is an adaptive recognition and classifi-
cation of optical binary phase shift keying (BPSK) labels in photonic label
routing for high-speed optical networks [210]. Such learning networks that
treat the phase of waves adaptively are directly applicable also to sonic, ul-
trasonic, and other wave-related systems. They are also expected to pioneer
novel future quantum devices that are highly adaptive.
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Developmental Learning with
Behavioral-Mode Tuning by Carrier-Frequency
Modulation

We realize a so-called developmental learning with which a motion-control
system learns multiple tasks similar to each other, or advanced ones, incre-
mentally and efficiently by tuning its behavioral mode. The system is based on
a coherent neural network whose carrier frequency works as a mode-tuning
parameter. The coherent neural network is a class of the complex-valued
neural networks. As presented in the previous chapters, we can modulate the
behavior of the coherent neural network, such as learning and processing,
by changing the carrier frequency. We make the carrier frequency represent
the internal mode of the system, and utilize the carrier frequency as the key
to realize the developmental learning. In this chapter, we consider two tasks
related to bicycle riding. The first is to ride as temporally long as the system
can before it falls down (Task 1). The second is an advanced one, i.e., to
ride as far as possible in a certain direction (Task 2). We compare develop-
mental learning to learn Task 2 after Task 1 with the direct learning of Task
2. Experiments demonstrate that the developmental learning enhances the
efficiency in learning in total. We confirm the effectiveness of the develop-
mental learning utilizing the carrier frequency as the mode-tuning key in the
coherent neural network.

10.1 Development, Context Dependence, Volition, and
Developmental Learning

Development is an important concept in the science to understand human
beings. It has been widely studied in various fields such as cognitive science,
psychology and neuroscience. In robotics, development is also expected to
play an important role in various applications. For example, Asada et al. [211]
proposed cognitive developmental robotics. If we regard a learning process as
a search for an appropriate system state, we can interpret the developmental
learning as follows. First we begin with a simple and dimensionally small

A. Hirose: Complex-Valued Neural Networks, SCI 400, pp. 151–162.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012
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state, and then we increase the search dimension, if needed, to realize efficient
learning.

The search dimension is often so large in solving real-world problems
that developmental learning will be crucial to successful learning or self-
organization workable in a realistically short time. The dimension-increasing
procedure is also compared to a situation that, for example, a mother will
first present a most basic goal to a child and, afterward, give him or her
gradually advanced tasks one after another.

What condition is required for the system to realize such developmental
learning? Among others, the most important is an appropriate structure that
increases the effective number of internal states1 or the dimension of them
efficiently. To be simple, the system should generally prepare a small set
of sufficient and effective parameters or variables incrementally. Thereby, in
the parameter enlargement, it is significantly important that the parameter
increment leads firmly to an expansion of behavior. At this point, the use of
a coherent neural network (CNN) is promising, which we describe later.

Regarding the preparation and control of internal states in artificial neural
networks, we have several proposals to utilize internal-mode modulations to
extend learning and self-organization for the emergence of context-dependent
behavior [212]. The context dependence is a behavioral feature explained as
follows. For example, assume that people ask you, ”What do you like?” If they
were talking about sports, then you may answer, ”I like tennis.” However, if
they were discussing swimming, you may answer, ”I like backstroke.” In such
a way, we catch the course of the talk, and respond accordingly. This is one
of the context-dependent behavior. Such behavior is regarded as emergence
of volition. In other words, we possess a situation-dependent direction or
intention, i.e., internal state, inside us, and decide what to do based on it.

In PATON proposed by Omori et al. [213],[214], the behavior of recog-
nition and association in an associative memory system is controlled by a
context-dependent switch. In motion control, Wolpert and Kawato [215],[216]
prepared multiple neural-network modules. In their system, each output is
weighted by a ”responsibility coefficient” determined by the closeness of the
tentative output value of each module to a desirable one. The coefficient is
also used effectively as a weight in the learning process. Then the outputs are
weighted and summed to yield a total output signal of the neural system. In
such a manner, the system consistently learns an appropriate motion control,
and then processes input sensory signals properly. Hartono and Hashimoto
[217] also reported the successful introduction of annealing in the module-
output integration.

Such switching and weighting-and-integrating methods increase the vari-
ety of neural states in learning and processing. In the extension, a crucial

1The internal state mentioned here is NOT the neuron’s internal state described
in Section 2.3 or 4.1.1, but a parameter existing in the network and determining
the neural-network’s behavior. By changing it, we realize the modulation of mood
or intent of the network.
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characteristic is again how flexible and effective the system can change its
behavior. Simultaneously, a smooth behavioral variation, i.e., the generaliza-
tion, is also an indispensable characteristic for natural neural processing.

We can expect that developmental learning will also be realized on the basis
of CNNs using carrier frequency modulation for the behavioral mode tuning.
In general, the CNN has a large freedom of tuning and a flexible generalization
characteristic in its behavior by utilizing the complete-orthogonal property
of the trigonometric basis functions used (cos θ and sin θ, or exp[iθ]), for
example, ei2πfτji = cos 2πfτji + i sin 2πfτji in the complex-valued Hebbian
rule in (4.47) and (4.48) [208], [218]. In other words, the summation of a set
of weighted sinusoidal curves is potentially capable of yielding a large variety
of functions [204],[56].

In this chapter, we present a developmental learning architecture based
on the CNN with carrier-frequency modulation for behavioral mode tuning
[219]. The developmental learning is also regarded as a short-time growth.
First, the network learns a certain task. Then, it learns a similar or advanced
task quickly by utilizing the skill obtained previously. We consider bicycle
riding. The first task is to ride a bicycle as temporally long as possible (Task
1), while the second and advanced one is to ride as far as possible in a certain
direction (Task 2). This procedure is a class of developmental learning, though
the situation is very simple. We compare the performance of developmental
learning with that of the direct learning of Task two.

Note that the basic idea is already presented in Chapters 8 and 9 where we
describe lightwave neural networks whose behavior is dependent on the opti-
cal carrier frequency. The same framework realizes a developmental learning.
Additionally, in the process, the system finds the best frequency by itself. In
this sense, the developmental learning is realized by self-organization.

10.2 Neural Construction and Human-Bicycle Model

Figure 10.1 shows a neuron in the coherent neural network. The input signal
xm, output signal yn and weight wnm are all complex numbers and composed
of amplitude and phase. We adopt an amplitude-phase-type neuron activa-
tion function, which is introduced in Section 3.3.5, expressed in terms of the
complex-valued input summation sn exp[iβn] with amplitude sn, phase βn
and i ≡ √−1 as

sn exp[iβn] ≡
∑
m

wnmxm (10.1)

yn = A tanh(gsn) exp[iβn] (10.2)

where A and g (real numbers) denote saturation amplitude and small-signal
gain that determines unsaturated gain, respectively. The function transforms
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wnm=| wnm| exp ( i 2π f τnm)

xm=| xm| exp (iθm)

yn=| yn| exp ( iθn )Input

Output

Weight

Fig. 10.1 Amplitude-phase-type complex-valued neuron in coherent network.

the signal amplitude in a saturation manner, just like the real-valued sigmoid
function does, while it leaves the signal phase unchanged. The operation is a
natural extension of the real-valued sigmoidal activation function.

A set of the neurons form a CNN with a carrier frequency, f , that works as
the mode parameter. The neural connection weight wnm is expressed by the
connection amplitude (transparency) |wnm|, delay time τnm and the carrier
frequency f common to all the weights as

wnm(f) = |wnm| exp[i2πfτnm] (10.3)

Therefore, the behavior of the coherent neural network depends on f accord-
ing to (10.1)-(10.3). As mentioned above, we use this carrier frequency as
the modulation parameter of the behavioral mode. If we fix the parameter
value f , the behavioral mode is also fixed, whereas if we release it free to
move to an optimal point self-organizingly, then the network learns and pro-
cesses properly with the optimal parameter different from the previous one.
A context-dependent behavior is also expected to emerge with this dynamics.

Figure 10.2 shows the construction of the coherent neural network inter-
acting with a bicycle. It is a single-layered feedforward network. Variables
are explained below in relation to human-bicycle model. The human-bicycle
physical model is shown in Fig.10.3. We have variables such as handlebar
azimuth φ, bicycle velocity v, wheel torque T , human rolling angle relative
to bicycle σ, rolling angle of the total center of gravity of human and bicycle
α. We have developed a mechanics simulator which is similar to that used
in the study of walking. Figure 10.4 presents a window capture. The x − y
section shows a bicycle (larger box) and a human (smaller one) projected on
the ground, while the y − z and x− z sections present their elevations. The
angle-of-roll section illustrates their rear view of the rolling angle. The curves
on the right-hand side show time evolutions of the rolling angle of the total
human-bicycle gravity center α, handlebar azimuth φ, bicycle velocity v and
wheel torque T .

The above variables are shown also in Fig.10.2, together with another
variable γ which stands for the azimuth of the bicycle running direction. The
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xv = cos(v  / Vc)e

xα = αe yφ

wnm = | wnm| exp[i2 π f  τnm]

wnm = | wnm| exp[i2 π f τnm]Fixed Mode Learning (FML) :

yT

yσ

i0

i0

xγ = γe i0

Variable Mode Learning (VML) :

Fig. 10.2 Construction of the neural network. (Reprinted from Fig.2 in [219]: Akira
Hirose, Yasufumi Asano, and Toshihiko Hamano: Mode-utilizing developmental
learning based on coherent neural networks. In International Conference on Neural
Information Processing (ICONIP) 2004 Calcutta (Lecture Notes in Computer Sci-
ences 3316), pages 116–121, Berlin, November 2004, Springer, (C) Springer-Verlag
Berlin Heidelberg 2004, with permission.)

information γ works as a sight in the advanced task mentioned below. The
sensory signals are real numbers and are fed to the CNN as

xα = α (= αei0) (10.4)

xv = cos(v/Vc) (= cos(v/Vc) e
i0) (10.5)

xγ = γ (= γei0) (10.6)

where angles are represented in radians. Velocity v is normalized by a constant
Vc and converted simply into an even function.

On the other hand, the motor signals are obtained at the neural outputs
with the constants φc, Tc and σc as

φ = φc Im[yφ], (10.7)

σ = σc Im[yσ] (10.8)

T = Tc Re[yT ], (10.9)

Then, provided that the neural input values and the initial neural connection
phase values are chosen at around zero, which means a neutral condition,
the bicycle will be controlled almost in neutral by the neural output, i.e., the
handlebar is directed straight, the relative human angle of roll is zero, and
the wheel torque is moderate. Such a situation may be helpful for the control
if the initial weight delays are very small, though they are more at random
actually in the experiment. However, note that, this condition is natural and
does not violate generality. The values of the constants and the parameters
are presented together with other parameters in the next section.
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Fig. 10.3 Physical model of the human-bicycle system with variables and pa-
rameters: (a)Plan view and rear elevation. (Reprinted from Fig.3 in [219] in figure
caption of Fig.10.2 with permission.)

10.3 Developmental Learning in Bicycle Riding

In the present developmental learning experiment, we employ the reinforce-
ment learning having two learning stages. The first one is the random trial
where the network changes neural connection weights |wnm| and τnm at ran-
dom. The initial values are chosen also at random within certain ranges of
the variables, e.g., |wnm| = 0.01 ∼ 0.99 and τnm = 0.1 ∼ 99 [ms]. We repeat
the random trial for certain times, and we find the best trial. This stage is
analogous to our rough trials in various ways to ride a bicycle in the real life.

The second stage employs the hill-climbing method by starting at the
best condition obtained in the first random trial stage. The hill-climbing
process changes the weight components with small fractions Δ|w| and Δτ
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Fig. 10.4 Captured simulator display where the larger rectangle shows a bicycle,
while the smaller one shows a human body. (Reprinted from Fig.4 in [219] in figure
caption of Fig.10.2 with permission.)

as |wnm| ←−
∣∣∣ |wnm| + Δw

∣∣∣ (i.e., |wnm| ≥ 0) and τnm ←− τnm + Δτ ,

respectively. If the resulting effect is desirable, the network accepts the small
changes. Otherwise, it rejects them. By repeating the process, the network
searches a better set of connections. This stage may correspond to learning
by iteration of fine adjustment for the human beings.

10.3.1 Task 1: Ride as Long as Possible

First, we try to learn Task 1, i.e., to ride as temporally long as possible. The
carrier frequency in (10.3) is fixed at f0 = 100[Hz] so that the behavioral
mode is also fixed. The frequency f is kept unchanged at f0. We call this
learning style the fixed-mode learning (FML). In Task 1, the system does not
use the direction information γ, which means a blind condition.

Figures 10.5 and 10.6 present typical results in Task 1. Figure 10.5(a)
shows the riding time before falling down, tR, for every random trial,
Fig.10.5(b) shows the riding time tR for the following hill-climbing learning
by starting at the best trial condition in the random trial, and Fig.10.5(c)
presents the riding locus for the longest-time trial after the hill-climbing
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Fig. 10.5 Typical result in Task 1: (a)Riding time tR versus random trial, (b)that
versus hill-climbing learning with starting under the best weight-set condition in
(a), and (c)riding locus for the longest-time trial after the hill-climbing learn-
ing converged. (Reprinted from Fig.5 in [219] in figure caption of Fig.10.2 with
permission.)

process converged. The hill-climbing learning is found to extend the tR in-
creasingly, and to accomplish the goal of the long-time riding. However, the
locus in Fig.10.5(c) reveals a round course.

However, the obtained behavior is found human-like and very attractive
as follows. Figure 10.6 shows the (a)angle-of-roll of the center of gravity α,
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Fig. 10.6 Evolutions of the variables in typical Task 1 result corresponding to
the ride in Fig.10.5(c): (a)Angle-of-roll of the center of gravity α, (b) handlebar
azimuth φ, (c)human-bicycle rolling angle σ, (d)velocity v, and (e)torque T .

(b)handlebar azimuth φ, (c)human-bicycle rolling angle σ, (d)velocity v and
(e)torque T , all against time, corresponding to the ride in Fig.10.5(c). At the
beginning of the ride, the fluctuation of the roll α is large. But gradually the
instability disappears. Other variables also present similar evolutions. That is
to say, the neural learning has been performed so that a good riding becomes
a stable point in the dynamics. This fact is evidence of the appropriateness
of the learning.
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Fig. 10.7 Typical result in developmental VML in Task 2 in hill-climbing pro-
cess starting with the best result in Task 1: (a)Score S for each riding, (b)self-
organization of carrier frequency f , and (c)riding locus for the highest-score riding
(Reprinted from Fig.6 in [219] in figure caption of Fig.10.2 with permission.)

10.3.2 Task 2: Ride as Far as Possible

Next, we assign an advanced task (Task 2), i.e., to ride as far as possible. We
also prepare an eye to see in which direction the bicycle runs. The direction
information xγ = γ is fed to the network as mentioned in Section 10.2. This
is a sighted condition.

We set free the carrier frequency f in (10.3) to enable the network to
change the behavioral mode. We call this learning style the variable-mode
learning (VML). We expect that the system utilizes the variable frequency.
The carrier frequency f is also changed by the hill-climbing method with
a frequency fraction Δf as f ←− f + Δf in addition to the hill-climbing
learning of |wnm| and τnm. The frequency shift is equivalent to the variation
in behavioral mode. The network searches a mode suitable for a far riding in
a self-organizing manner.

In Task 2, we begin with the hill-climbing process by starting at the best
result condition in Task 1. In addition, we define an evaluation function
(score) S of the far riding so that, the further the bicycle runs, the higher
the score becomes. (See, e.g., Ref.[219], [220] for details.)
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Fig. 10.8 Typical examples of scores in direct FML in Task 2 versus learning steps
with (a)1,000- or (b)10,000-times random trials and following hill-climbing learning.
(Reprinted from Fig.7 in [219] in figure caption of Fig.10.2 with permission.)

Figure 10.7 shows a typical result of the developmental VML in Task 2.
The starting condition is the best result one in Task 1. In Fig.10.7(a), we
find a quick increase in the score S. Figure 10.7(b) presents the variation of
the carrier frequency f , which works as the behavioral mode parameter. It
moves self-organizingly from f0 = 100[Hz] to an optimal value f ′

0. That is,
the network finds out the mode most suitable for the environment by itself.

Figure 10.7(c) shows the riding locus of the highest-score result after the
hill-climbing learning converged. In comparison with 10.5(c), the course has
been clearly straightened. The result is obtained quickly by the mode mod-
ulation of the longest-time-ride condition to adapt to the new environment,
i.e., the advanced task of long-distance riding.

10.3.3 Comparative Experiment: Direct FML in Task 2

We also conduct experiments on developmental FML, direct VML, and direct
FML. (See details in Ref.[220].) Figure 10.8 shows typical results of the direct
FML experiments without the learning in Task 1. We repeat random trials
for 1,000 or 10,000 times and, then, move to hill-climbing learning afterward.
The direction information γ is fed to the neural network. The initial state is
statistically the same as that of Task 1.

In Fig.10.8(a) and (b), we find that, in the random trial, a high-score
probability is very low. Moreover, even in the hill-climbing learning, the score
increases only slightly, which suggests that the random trial does not bring
the network to the vicinity of a truly ideal state.

10.3.4 Comparison between the Results

When we compare the developmental VML (Section 10.3.2), developmen-
tal FML, direct VML, and direct FML (Section 10.3.3), we find that the
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developmental VML is the most effective method in total [220]. In Fig.10.7(b),
we also find that the carrier frequency self organizes to realize such effective
learning. We can see that the network learns similar or advanced tasks quickly
by changing the internal mode parameter.

10.4 Summary

We have presented the idea of the mode-utilizing developmental learning ar-
chitecture based on the coherent neural network. The network learns similar
or advanced tasks incrementally by using its cumulative skill by changing the
behavioral mode-tuning parameter, i.e., the carrier frequency of the coher-
ent network. The mode parameter has been found adjusted self organizingly
and smoothly in the developmental learning. The developmental learning
and required architecture will be of growing importance in building so-called
brain-like systems.



11

Pitch-Asynchronous Overlap-Add
Waveform-Concatenation Speech Synthesis by
Optimizing Phase Spectrum in Frequency

Domain

To obtain high-quality results in speech synthesis, we should record utter-
ance elements, which is to be concatenated, as temporally long as possible
to avoid a sense of discomfort in listeners. In the case of announcements in
trains, for example, we prepare word- or segment-long utterances, and con-
catenate them to generate simple sentences. However, when we try to syn-
thesize free sentences required in daily life with this method, we need such
a huge database that we cannot construct it by recording real utterances.
Instead, we may be able to synthesize speech by sampling short elements
of utterance, and memorize their short-time spectra to be concatenated. In
practice, however, it is very difficult to tune the way of concatenation since,
to yield reasonable speech, it is crucial to reproduce the features in waveforms
such as pulse sharpness. In this chapter, we present a complex-valued neural
network that adjusts phase values in frequency spectra adaptively to realize
an ideal concatenation. The network functions in the frequency domain to
obtain desired waveforms in the time domain. Phase shift in the frequency
domain corresponds to temporal shift in the time domain. Such frequency-
domain processing using complex-valued neural networks is useful in various
fields such as image processing where we deal with spatial frequency.

11.1 Pitch-Synchronous and -Asynchronous Methods
in Waveform Concatenation

11.1.1 Pitch Mark and Pitch-Synchronous Method

In short-waveform-based phoneme synthesis, the so-called Pitch-Synchronous
OverLap-Add (PSOLA) method is often employed. The PSOLA method uti-
lizes the periodicity included in vowels [221]. That is to say, first, we extract
the pitch mark, indicated by closed circles in the left-top corner in Fig.11.1,
which is the position in time where the amplitude takes a maximum positive
or negative peak value within a period. Then, synchronously to the pitch

A. Hirose: Complex-Valued Neural Networks, SCI 400, pp. 163–175.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012
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mark, we put a sampling window, e.g., a Hanning window, and sample the
waveform. The length of the window is chosen double the pitch-mark period.
Then we concatenate the sampled short waveform to reconstruct a vocal
waveform having a required duration. When the fundamental period of the
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recorded waveform is τ , we sample the waveform with a 2τ -length Hanning
window, and put the copies of the sampled short waveform sequentially with
the period of τ , or another desired period of T , in an overlapping manner.
We iterate the copy to obtain a desired duration of the vocal as shown in the
top in Fig.11.1. This method is classified into so-called synchronous methods,
for the process synchronizes with the pitch.

The PSOLA method makes good use of the periodicity in voiced sound
such as vowels and sonant, and achieves a high performance in synthesis
widely. However, when it fails in extracting pitch marks, the performance is
greatly deteriorated. Additionally, it cannot be employed to deal with un-
voiced sound such as consonant because it has no pitch. In this sense, this
method has fundamental inconsistency. In this context, we expect a novel
asynchronous method to synthesize phonemes, voice, and speech. The basic
idea is presented below.

11.1.2 Human Senses Sound Spectrum

We hear others speaking, and understand what they say or who is speaking.
What mechanism do we have in ourselves? In the inner ears, we have cochlear
canals filled with lymph fluid. The inside walls of the cochlear canals are
ciliated. The cilia sense sonic wave having propagated through outer ears
and drum membranes, and transmit neural signals to auditory fields. In the
cochlear, when the sound frequency is high, the cilia placed near the entrance
are shaken with the sonic wave. If the frequency is low, the cilia at the
bottom are shaken well. In other words, the cochlear translates the frequency
spectrum of the sound into the spatial distribution of the cilia’s movement.
The information about the location and intensity of the cilia’s movement is
transmitted to the brain. Consequently, we can say that human beings listen
to the frequency spectrum of sounds. Actually, the vowel /a/ has a spectrum
profile completely different from that of /i/.

Therefore, we introduce the following synthesis procedure. We obtain the
short-time frequency spectrum of a sampled short waveformby using the short-
time Fourier transform or wavelet transform. The spectrum is expected to con-
tain the voice and speaker’s information. Then, by concatenating the short-
time spectrum and inversely transforming them into a time-domain waveform,
we will obtain the expected voice with desirable duration. This process can be
asynchronously conducted if human beings listen to the frequency spectrum.

11.1.3 Problem in Simple Asynchronous Speech
Synthesis

We can actually try the asynchronous synthesis to hear the result. Then we
find that, although an almost desirable voice is obtained, the voice seems
to be made by many people, just like a chorus. In a precise investigation of
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the synthesized waveform, we find that the pitch-mark pulse, to which we
pay attention in the PSOLA method, has disappeared. (We observe it later
in Fig.11.4.) This is the problem. We hear the chorus as if many identical
people were uttering the sound at an identical tone. Accordingly, though
human beings listen fundamentally the spectrum, we catch also a little more
precise waveform at the same time.

Why does the pulse disappear? In the above method, we obtain the time-
domain waveform by inversely transforming the spectrum. In the process,
we weight and sum sinusoidal waveforms having various frequencies. If the
phases of the sinusoidal waves are in-phase at a certain moment, they yield
a sharp pulse like a delta function. Contrarily, if they have random phase
values, they result in an averaged noisy waveform.

Therefore, we would expect a better voice if we can align the phases at a
certain interval in some fashion, and generate a waveform with appropriate
pulse sharpness. Adaptive processing of phase is well realized by use of the
complex-valued neural networks. In this chapter, we describe an asynchronous
method to synthesize time-domain waveform with appropriate pulse sharp-
ness by using a complex-valued neural network [222].

11.1.4 Pitch-Asynchronous Methods: Single
Phase-Adjustment Method and Stepwise
Phase-Adjustment Method

We synthesize a waveform based on the above idea. We process frequency-
domain signal adaptively to generate a waveform having appropriate pulse
sharpness in the time domain. That is, we first employ the Fourier transform
or wavelet transform to convert a time-domain signal into a frequency-domain
one. Then we manipulate the phase and amplitude with a complex-valued
neural network. Afterwards, we go back to the time domain to obtain a
desirable waveform. In this process, a phase shift of each frequency component
is directly related to a temporal shift in the waveform. Therefore, the time-
domain adjustment is realized by the frequency-domain phase shift.

In Fig.11.1, we illustrate two types of the methods.

1. Single phase-adjustment method We synthesize a short-time wave-
form having the same duration as that of the window from the short-time
spectrum. (See bottom in Fig.11.1.) In this process, we adjust the phases
in the frequency components to obtain appropriate pulse sharpness in
the time domain. Then we concatenate the short waveform sequentially.
In this method, we have no need to extract the pitch. Once we obtain a
short-time waveform, we can generate voice with arbitrary duration with
a small calculation cost. However, we cannot vary the pulse sharpness
time-dependently. In this sense, this method lies between the PSOLA
method and the stepwise phase-adjustment method mentioned below.
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2. Stepwise phase-adjustment method We generate short-time spec-
trum time-sequentially and synthesize them. (See middle in Fig.11.1.) We
adjust the phase values in short-time spectrum components to generate
a pulse where we want each time. Then we concatenate the short wave-
forms time-sequentially. This method requires phase adjustment every
time, and the calculation cost becomes slightly larger. However, it can
realize arbitrary pulse sharpness at any time.

The single phase-adjustment method may be more desirable because of the
smaller cost in many cases. However, in this chapter, we focus on the stepwise
phase-adjustment method, which has larger freedom in synthesis, to examine
the phase-adjustment ability in the complex-valued neural network. Then we
can examine the effectiveness of the network more keenly. Incidentally, the
processing elements in the single phase-adjustment method are identical with
those in the stepwise method, and can be implemented in the same way.

11.1.5 Convolutions and Neural Networks

Complex-valued neural networks functioning in the frequency domain are
applicable in various wave-information processing. For example, blurring in
images, which is caused by spatial misalignment, can be compensated by
phase shifts in the spatial-frequency domain [223]. In this way, we can utilize
the frequency-domain complex-valued neural networks in wide areas.

Moreover, the Fourier transform itself has a neural aspect. That is to say,
in the Fourier transform, we multiply a time-domain waveform by e−j2πft,
and integrate the result in terms of t. This process is weighting and summing,
which is the most fundamental process in neural networks. In general, we can
say that the so-called convolution operation is a type of neural operations.

Therefore, the above-mentioned phase-adjustment operation can also be
constructed as a double-stage neural network where we have a neural layer
for (adaptive) Fourier-transform-like processing and another one for adaptive
phase shift. However, in this chapter, we have the Fourier transform as it is
and, after the transform, we adjust the phase values independently. We can
understand what happens more easily that way.

11.2 Construction of Stepwise Phase-Adjustment
System

Figure 11.2 shows the block diagram of the whole system. We explain the dy-
namics of the asynchronous synthesis system using a complex-valued neural
network as follows. We record voice, and obtain the complex spectrum Xorg

f,t .
In a digital system, we deal with discrete time t and frequency f . There-
fore, we express them as suffixes here. They are sequentially numbered with
intervals of time-shift length and frequency resolution, respectively.
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neural network. (Reprinted from Fig.2 in [222]: Keiichi Tsuda and Akira Hirose:
Pitch-asynchronous overlap-add waveform-concatenation speech synthesis by us-
ing a phase-optimizing neural network, In International Conference on Knowledge-
Based Intelligent Information Engineering Systems and Allied Technologies (KES)
2003 Oxford (Lecture Notes in Computer Sciences / Artificial Intelligence 2774),
volume Proc. 2, pages 332–339, Berlin, September 3–5, 2003, Springer, (C) Springer-
Verlag Berlin Heidelberg 2003, with permission.)

In the recorded voice, we determine a moment t0 when the voice is in a
sufficiently steady state. We call the complex spectrum at this moment the
typical complex spectrum Xtyp

f .

Xtyp
f = Xorg

f,t0
(11.1)

Next, we define the typical difference of phase spectrum φtypf by considering
how much the phase spectrum (a set of phase values in Fourier coefficients) of



11.2 Construction of Stepwise Phase-Adjustment System 169

t

0

Phase
stream of X

new
f,t

arg{X        }typ
f

1 2 3

X rough
f,1

X rough
f,2

Xnew
f,1

Xnew
f,2

1

typ
fΔφ
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the recorded voice proceeds in a unit time shift. This value is a typical phase
difference determined in every Fourier component. To determine the value with
accuracy, we may take an averaged phase shift in a certain period as

φtypf =
1

mφ
arg

(
Xorg

f,t0+mφ

Xorg
t0

)
(11.2)

That is, we calculate the average shift value of the phase in mφ-times tempo-
ral shifts, and name this value, φtypf , the typical difference phase spectrum.
We expect that, the larger the time shift mφ is, the less the possible tran-
sient noise and fluctuation will become. A longer observation time is desired.
However, it may be variable according to long-time changes in the vocal.

Then we synthesize complex spectrum Xnew
f,t time-sequentially as shown

in Fig.11.3. We call the time-sequential spectrum the running complex spec-
trum. First, we use the typical complex spectrum Xtyp

f as the running spec-
trum at t = 0.

Xnew
f,0 = Xtyp

f (11.3)

We calculate roughly the complex-spectrum candidate at the next time step,
Xrough

f,1 , by shifting the phase of the preceding-time spectrum (in the present

case, the typical complex spectrum itself Xtyp
f ) by the value of the typical

difference phase spectrum φtypf .

Xrough
f,1 = Xnew

f,0 exp
(
jφtypf

)
(11.4)

where j ≡ √−1. However, we need to optimize the phase value with an appro-
priate adjustment. We express this phase-optimization operation as phopt [·].
The detail will be given later.
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Xnew
f,1 = phopt

[
Xrough

f,1

]
(11.5)

We synthesize the running spectrum Xnew
f,t by repeating the above operation

time-sequentially.

⎧⎨
⎩
Xrough

f,t+1 = Xnew
f,t · exp

(
jφtypf

)
Xnew

f,t+1 = phopt
[
Xrough

f,t+1

] (11.6)

We apply the short-time inverse Fourier transform to the obtained running
spectrum to generate a time-domain waveform. Then we concatenate a series
of the waveforms into voice with a desirable duration.

In Fig.11.2, we found the block diagram showing the whole process. At the
left-top, the recorded signal is input, and Fourier transformed, to yield the
typical complex spectrum. Then the left-lower part calculates the typical dif-
ference phase spectrum which is used in the recurrent calculation of the run-
ning complex spectrum (upper center). The upper-right part inversely Fourier
transforms the running spectrum to generate the synthesized waveform. The
lower-right part does the same in parallel for pulse-sharpness evaluation.

11.3 Optimization of Pulse Sharpness

We conduct the operation of the phase optimization phopt [·] in the frequency
domain (upper center in Fig.11.2) as follows.

1. We keep the amplitude unchanged.

∣∣∣Xnew
f,t

∣∣∣ =
∣∣∣Xrough

f,t

∣∣∣ (11.7)

2. We adjust the output phase value so that the value satisfies the following
condition:
(a) It is near to the input rough estimate.
(b) Pulse sharpness (PS) λ, which is explained below, is near to an ideal

PS value λideal

The above ideal PS, λideal, can be calculated with an actual voice waveform,
which we do not need to know a priori, or we can assign a certain value.
The unnecessity of the knowledge of λideal is one of the advantages of the
present method. For example, if we want to synthesize unvoiced fricative,
of which PS is low, it can become automatically low. This feature solves
the problem that a conventional vocoder often suffers from errors caused by
mal-discrimination of voiced sound from unvoiced one to switch its signal
sources (pulse source and white noise). Moreover, the proposed method is
capable of generating intermediate waves between pulse and white noise. In
addition, particular sounds such as plosive sound (unvoiced but having a high
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PS) may be synthesized naturally if the PS value represents the particular
characteristics.

We have a variety of values that may represent pulse sharpness. In this
chapter, we introduce a discrete version of the index defined by Hamagami
[224]. (In Ref.[224], the value is called PEW, though we call it PS here.) The
PS, λ, is defined for a short-time waveform xt in discrete time t as

λ ≡
N/2−1∑
t=−N/2

x2t
N

/⎛
⎝N/2−1∑

t=N/2

|xt|
N

⎞
⎠

2

(11.8)

where N is the number of sampling points in the window. When the power
in the window is constant, we have λ = 1. In contrast, when there exists a
single impulse in the window, then λ = N . In this way, λ represents the pulse
sharpness of the waveform in the window.

To construct an effective neural dynamics, we define an energy function to
be minimized in relation to the PS. We consider a linear sum of two energies.
That is, (a)Ebind that is minimized when the output-waveform PS is the same
as that of the input rough estimate, and (b)Epulse that is minimized when
the PS is the same as the ideal PS. We possess only the phase spectrum
φf ≡ arg(Xf ) as the adjustment parameters without amplitude spectrum
Af ≡ |Xf | which is unchanged.

E(φf ) = αEbind(φf ) + Epulse(φf ) (11.9)

where α is a constant. The terms on the right-hand side are defined as follows.

(a) Ebind: This energy is low when the phase spectrum is near to the rough

estimate φroughf ≡ arg(Xrough
f ). Note that, since the phase has a modulo-

2π arbitrary property, the energy is defined with a 2π periodicity, and
also with a minimum point at φf = φroughf , as

Ebind(φf ) =
1

P

∑
f

Atyp
f

{
1− cos

(
φf − φroughf

)}
(11.10)

where Atyp
f ≡ |Xf | is weights to give high-power components more effec-

tiveness, and P ≡∑
f A

typ
f is a value similar to total power.

(b) Epulse: This energy is low when the obtained PS is near to the ideal PS,
and expressed as

Epulse(φf ) = (λ− λideal)2 (11.11)

We determine the neurodynamics in such a manner that the energy is to
be minimized. A typical way is the steepest descent method. In the present
case, we calculate partial derivatives of the energy E(φf ) in terms of φf . This
treatment is simple if we assume that the total power P is unchanged, though
it actually changes.



172 11 Pitch-Asynchronous Overlap-Add Speech Synthesis

Table 11.1 Conditions of recording, analysis, and synthesis of voice. (Reprinted
from Table 1 in [222] in figure caption of Fig.11.2 with permission.)

Uttered phoneme /a/

Environment Sound-insulated room

Sampling frequency 10kHz

A/D conversion 16bit linear quantization

Time-frequency analysis Short-time Fourier transform

Window Hanning window

Window length 512 sampling points

Window shift length 128 sampling points

Here we introduce a process easier to conduct, i.e., the hill-climbing (or
hill-descending) method. We make the phase values φf fluctuate and, if the
energy decreases, we accept the change. If the energy does not decrease, we
reject it. We reduce the energy as if we walk around on a mountain to descend.
(Note that this method has a weakness in nonlocality since neurons have to
be informed of the output state.) In this process, we impose a condition of

φf = −φ−f (11.12)

so that the waveform to be generated in the time domain becomes real-valued.

11.4 Experimental Results

Table 11.1 shows the conditions of recording, analysis, and synthesis. Param-
eters and variables are obtained from the recorded voice as follows. Figure
11.4(a) shows the recorded waveform. In this case, we find the pitch in the
negative direction, though we do not use it. We intend to keep this PS in the
synthesis.

We put a window at the vertical broken line in Fig.11.4(a) to extract the
typical complex spectrum Xtyp

f . We also obtain the typical difference phase

spectrum φtypf by observing the phase changes in a single time shift, or an

average in 10 time shifts. We calculate the ideal PS, λideal, from the inversely
Fourier transformed Xtyp

f .
Figures 11.4(b)–(e) present synthesis results. Waveforms obtained without

any phase optimization are shown in Figs.11.4(b) and (c). In (b), the typical
difference phase spectrum was calculated for a single time shift (mφ = 1),
while in (c), it was done for 10 shifts (mφ = 10). In these results, we find that,
as time advances, the negative pulse height reduces. However, note that the
synthesis procedure suggests no changes in the amplitude spectrum. That is
to say, we observe the reduction of the PS. When we use fixed phase differ-
ences φtypf , slight errors possibly included accumulate gradually but steadily,
and deteriorate the PS very quickly. The degradation in (c) is found slower



11.4 Experimental Results 173

-4

-2

0

2

-4

-2

0

2

-4

-2

0

2

-4

-2

0

2

Time  [s]

S
ou

nd
 p

re
ss

ur
e 

 [a
rb

itr
ar

y 
un

it]

(a)

(b)

(c)

(d)

-4

-2

0

2

(e)

0                              1                                  2

Fig. 11.4 Voice waveforms: (a)recorded voice, (b)synthesized voice without phase
optimization (mφ = 1), (c)synthesized voice without phase optimization (mφ =
10), (d)synthesized voice with random-search phase optimization, (e)synthesized
voice with group-search phase optimization, (Reprinted from Fig.4 in [222] in figure
caption of Fig.11.2 with permission.)

than that in (b), since the long observation resulted in a more precise esti-
mation of φtypf .

When we listen to the low PS voice, it sounds like a chorus uttered by
many identical people. We can analyze the effect qualitatively in such a way
that, when many people utter at an identical tone, their asynchronous pitch
pulses cancel out each other.

On the other hand, Figs.11.4(d) and (e) show the results obtained with
the help of phase optimization process based on the complex-valued neural
network. The waveform in (d) is the result optimized by the so-called Matyas’
random search (simple random search). The initial difference phase spectrum
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Fig. 11.5 Energy versus optimization steps in (a)Matyas’ random search and
(b)group search. (Reprinted from Fig.5 in [222] in figure caption of Fig.11.2 with
permission.)

in the random search was chosen as the rough estimate φroughf . The waveform
in (e) is the result obtained with a group search similar to genetic algorithm.
(See Ref.[222] for details.)

In Figs.11.4(d) and (e), there is no degradation of the PS observed in
Figs.11.4(b) and (c). We confirm the effectiveness of the phase optimization.
In a listening test, we also find a good result, instead of chorus-like voice.

Figure 11.5(a) and (b) shows the energy changes versus optimization steps
in the case of Figs.11.4(d) and (e), respectively. In both cases, the energies
decrease almost monotonically. The results suggests an ideal adjustment in
the complex-valued neural-network processing.

11.5 Summary

In this chapter, we presented the pitch-asynchronous voice synthesis method
in which the complex-valued neural network adjusts the phase values in the
Fourier components. In this method, first we transform time-domain sig-
nals into frequency-domain spectra. Then we process the information in
the frequency domain, and inversely transform it into time-domain data. In
general, frequency-domain information is often incompatible with complex-
valued processing. For example, as we had a glance in Section 4.8, when
we apply the independent component analysis (ICA) to blind separation re-
lated to cocktail-party effect in the frequency domain, we inevitably process
complex spectrum by a complex-valued neural network. In such wave-related
applications, the amplitude-phase-type activation function works better than
the real-imaginary-type one [122]. Treatment suitable for information in re-
spective applications enhances the adaptability in neural networks.

Besides sound applications, we can apply similar processing in image ap-
plications where we deal with pixel values and their spatial-frequency data.
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In this case, the phase in the spatial-frequency domain corresponds to the loca-
tion shift. Another analogical application is frequency-modulation continuous-
wave (FMCW) radars. We convert obtained frequency-domain reflection data
into time-domain one, which is almost identical to what we obtain with a
pulse-type radar system. In electron-wave devices, we will be able to apply
the Fourier-domain neural-network approach in dynamics consideration in the
wave-number space. In this way, complex-valued neural networks have wide
application fields in the Fourier domain.



Closing Remarks

In Part I, we described the specific features and the fundamentals of complex-
valued neural networks. Then, in Part II, we presented various applications,
and explained their dynamics in learning and processing. Neural networks
are more and more expected to deal with complex data. This fact may lead
to unnecessity of calling the networks “complex-valued” neural networks in
the future. On the other hand, their basics become increasingly essential and
indispensable in neural networks. In particular, it will be of greater impor-
tance to be conscious of what feature we expect to use them, and then what
type of complex neurons and network structure we should choose. Originally,
the artificial neural networks have been inspired by the human brain, and
the brain has a variety of structures dependent on expected functions. It will
become further significant to make clear the purpose of using complex-valued
networks. The author hopes that this book sparks up discussions on complex-
valued neural networks so that they become more and more useful in various
applications.
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network 23
autocorrelation matrix 64

backpropagation 62
backpropagation algorithm 52
backpropagation learning 51, 79
baseband 39
baseband signal 41
beamforming 33, 45, 46, 54

behavior 59
behavioral mode 46
binary phase shift keying 149
binary values 51
bivariate real-valued neural network

24
blind separation 100
boundary curve 49
BP 79
BPSK 149
brainlike information processing system

46
branch-cut method 124

capacity 67
Cardano 17
carrier 40
carrier frequency 39, 40, 46, 134
Cartesian coordinate system 30
CCD 146
chaos 49
chaotic behavior 54
Charge Coupled Device 146
circular polarized lightwave 24
circularity 23
Clifford neural network 54
clustering 90
CMRF 106
CMRF parameters 126
CNN 152, 154
coherence 36, 73
coherent imaging system 37
coherent lightwave associative memory

134
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coherent neural network 73, 74, 81,
134, 152

coherent optical neural network 134,
144

coherent signal 23
combinational circuit 59
commutative law 18
complex amplitude 5, 39
complex inner-product metric 36
complex Markov-random-field estimat-

ing neural network 125
complex spectrum 167
complex-valued cellular neural network

125
complex-valued Hebbian rule 61, 62,

71, 98, 107
complex-valued Markov random field

106
complex-valued self-organizing map

94, 104, 108, 113
complex-valued SOM 34
complex-valued steepest descent

method 81
conformal mapping 25
conjugate transpose 62
conjugate transpose matrix 71
conjugate transpose vector 71
connection 58
connection weight 14, 60
connection-weight matrix 64
convolution 167
correlation learning 69
CSOM 34, 94, 104, 108, 113, 115

deflation method 99
delay 59
delay time 73, 136
DEM 123
developmental learning 153
differentiability 25
digital elevation map 123
digital elevation model 123
digital filter 43
digital neural network 55
direct frequency modulation 134
direct unity 18
direction of arrival 54
distributedness 13, 58, 134
distributive law 18

DoA 54
Doppler effect 41
dual univariate real-valued filtering 24

electron wave 43
energy function 53, 67, 171
entire function 25
error backpropagation learning 79
error function 78, 147
Euclidean metric 34, 36
Euler 18

FDM 133, 140
firing 57
fixed-mode learning 157
FM 134
FML 157
Fourier transform 33, 42, 167
fovea centralis 48
fractal 49
fractal parameter 49
frequency domain 116
frequency modulation 39, 134
frequency-domain multiplexing 53,

133, 140
frequency-domain parallelism 46, 53
fully-connected neural network 63
function approximation 76, 144

Gauss 18
gene expression 54
generalization 14, 59, 76, 153
generalization ability 24
generalization characteristics 17, 21,

22, 29, 76
generalized inverse matrix 69, 126
geometrical representation 18
GPR 54
ground penetrating radar 54

Hamilton 18
hard rule 10
harmonic waves 41
Hebbian rule 60, 62, 70
hermitian conjugate 51, 62, 71
hermitian matrix 71
heterodyne 24, 39
hidden layer 76
higher-order complex number 55
Hilbert transform 24, 33, 42, 44
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hill-climbing method 156
hippocampus 63
holomorphic function 25, 28
homodyne 24, 39
homodyne detection 40
Hopfield network 63
horizontal vector 62

ICA 99
imaginary unity 18
impossible unity 18
independence 99
independent component analysis 99
initial value 60
injection current 74
input layer 76
InSAR 104
intelligent transport system 122
interferometric radar 54, 103
interferometric synthetic-aperture

radar 104
internal state 14, 58
inverse Fourier transform 43
inverse matrix 55
inverse unity 18
ITS 122

Kramers-Kronig relationship 33

land-surface classification map 104
laser 73
latency 59
lateral inhibition 91
lateral unity 18
layered neural network 76
learning 4, 14, 59, 60
least mean square 25, 51
lightwave associative memory 52
lightwave neural network 52
Liouville’s theorem 25, 28
LMS 25, 51
LO 25
local minimum 69
local oscillator 25
locality 14, 58
logic 10
Lyapunov function 67

magnetic resonance image 54
Mandelbrot set 49

Markov random field 94
McCulloch-Pitts neuron 58
measure 59
metric 14, 34, 47, 59
metric matrix 67
MIMO 122
mix 40
mixer 24
mixing 39
modulate 39
Moor-Penrose pseudo inverse 69
motor organ 12, 57
MRF 94
MRF parameter 96
MRI 54
multi-stable phase locking 50
multiple values 51
multiple-access communications 54
multiple-input multiple-output 122

Nagumo-Sato model 54
natural computing 10
negative unity 18
neuron 13, 58
noncircular 24
noncommutative 49
nonlinearity 14, 58
nonmonotonic activation-function

neuron 46

offset quadrature phase shift keying
24

omnidirectional camera 48
optical carrier frequency 73
optical path length 73
OQPSK 24
ordered pair of real numbers represen-

tation 18, 22
orthogonal line coordinate system 30
output layer 76

P-SOM 94
PAL-SLM 136, 143
parallel-aligned liquid-crystal spatial

light modulator 143
parallelism 13, 58, 133
parametron 6, 50
patch antenna 54
pattern processing 3, 10
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perceptron 77
periodic topology 34, 46
phase difference 25
phase modulation 39
phase modulator 39, 72
phase unwrapping 49
phase-conjugate-mirror resonator 52
phase-conjugation mirror 62
phase-locked loop 25
phasor 5, 39, 49
phasor neural network 51
photonic label routing 149
physicality 12
pitch mark 163
Pitch-Synchronous OverLap-Add 163
plasticity 14, 59, 60
PLL 25
Poincaré sphere 50
point attractor 53
point symmetry 34
polar coordinate 34, 48
polar coordinate system 30
polar-coordinate-type 100
positive unity 18
PPM 51
predictive SOM 94
principal component analysis 97
processing 59
progression 6
PS 170
pseudo inverse 69
PSOLA 163
pulse density 58
pulse position modulation 51
pulse sharpness 170
pulsed neural network 55

QAM 41
quadrature-amplitude modulation 41
quantum computation 45
quantum computing 33
quantum device 33
quantum nature 43
quantum neural device 44
quantum neural network 55
quantum wave 43
quaternion 49, 53
quaternion neural network 55

radial basis function 46
random trial 156
RBF 46
real 2×2 matrix representation 19, 22
real–imaginary nonlinearity 25
real-imaginary-type activation function

31, 51
real-imaginary-type nonlinear function

100
recall 65
rectangular-coordinate 100
recurrent 63
recurrent neural network 54
reflection 6
regular 28
regular point 28
reinforcement learning 60, 156
retardation 6
retina 48
running complex spectrum 169

search 10
self-homodyne 144
self-homodyne circuit 74
self-organization 4, 14, 59, 60, 93, 153
self-organizing map 90
self-organizing neural network 93
semiconductor laser 134
sense organ 12
sensory organ 57
sequential circuit 59
short-time Fourier transform 165
short-time frequency spectrum 165
sigmoid function 46
single-layered neural network 76
singular point 28, 123
SLM 136, 143, 148
snake 54
soft computing 10
SOM 90
sonic wave 45
SP 123
spatial domain 116
spatial light modulator 136, 143, 148
square-law detector 39
steepest descent method 51, 52, 78
step function 28
superconductive device 45
supervised learning 60, 70
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symbolic information 10
symbolic processing 3, 10
symmetric matrix 65
synaptic connection 14
synchronous method 165
system-on-chip 43

task 59
teacher-signal backpropagation learning

89
telescope-effect problem 134
texture 104
threshold 58
time-sequential associative memory 54
time-sequential prediction 55
topology 47
traffic-signal control 55
transducer 45
transmission 6
transposed matrix 65
transposed vector 65
typical complex spectrum 168
typical difference phase spectrum 169

ultrasonic wave 45
univariate 24
univariate real-valued neural network

24
unsupervised learning 60, 94

variable-mode learning 160
vector quantization 90
vertical vector 62
visual cortex 47
VML 160
volition 46, 53, 140, 152

wavelet transform 33, 165
weight 58
weighted sum 14, 58
Wessel 18
wide sense linear 23
widely linear 23
winner-take-all 91
WL 23
WTA 91
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