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1 Definition of the Topic

Metallic nanostructures are a key component of current and future nanotechnology

devices since their individual properties convey the appropriate characteristics for

applications in several fields of science and technology. At the nanoscale size,

L.B. Scaffardi (*) • D.C. Schinca • F.A. Videla • J.M.J. Santillán
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optical properties of metal structures depend not only on the type of material but

also on the dimensions and geometry of the structure, suggesting the possibility of

tuning optical resonances through appropriate engineering. In this chapter, we will

describe methods for calculation of size-dependent optical properties of metal

nanostructures and show the successful use of extinction spectroscopy technique

to determine the size of nanoparticles (Np/Nps).

2 Overview

From a classical point of view, the optical properties of materials are condensed in

the so-called constitutive parameters, namely, the electric permittivity and the

magnetic permeability. Particularly, the dielectric function condenses the averaged

response of the constitutive electrons of matter to an externally applied electric

field. If this electric field varies in time, the dielectric function not only integrates

the electron characteristics of the specific material but it will also depend on the

frequency of the incoming field.

For metals at the nanoscale, the dielectric function behaves differently from its

macroscopic (bulk) counterpart, since the electrons start to show confinement

effects. This behavior includes an explicit dependence on particle size. In turn,

the optical absorption, scattering, and extinction cross sections are functions of the

metal dielectric function, thus translating the size dependence to the optical prop-

erties of the metallic nanostructure.

In this chapter, we overview the contribution of free and bound electrons to the

metal dielectric function and apply different theoretical approaches to the calculation

of optical extinction spectra of nanowires, nanotubes, and bare and core-shell nano-

particles. We then apply these results to fit experimental extinction spectra and deter-

mine the size of nanostructures which compare very well with high-resolution TEM.

3 Introduction

The developments in the nanotechnology area have been undoubtedly one of the

greatest achievements of science in the late twentieth century. The particular

interest in understanding the physical and chemical phenomena associated with

nanoscale systems (clusters of several tends of atoms up to systems with charac-

teristic distances of small fractions of a micron) is mainly due to its high techno-

logical potential. Nanotechnology has found wide applications in broad

interdisciplinary science fields. We found significant developments in the biomed-

icine area, lasers, communications, and medical physics, to name a few.

This increasing trend toward nanoscience and nanotechnology makes it inevita-

ble to study the optical properties and electromagnetic response (near and far field,

resonances) on the nanometer scale. In particular, over the last two decades, the

interest in metallic clusters, metallic nanoparticles (core-shell systems, nanowires),

and systems with nanometric details has grown significantly ([1–15], and therein).
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The term “nanoparticle” includes from small clusters, size range around 1 nm

(tens of atoms), up to particles consisting of hundreds of thousands of atoms

(or even greater) and having a diameter in the range of tens to hundreds of

nanometers. In the literature, this kind of material has long been known as colloids,

generally applied to suspensions of metal particles in an aqueous medium. In

fact, colloidal gold has been used as a coloring pigment dating back to the Middle

Ages [7].

The excitation at optical frequencies of “eigenmodes” (surface plasmon reso-

nances in metallic nanoparticles, whispering gallery modes in the dielectric spheres,

and other resonant phenomena) is probably one of the most spectacular electro-

magnetic effects in nanosystems. In particular, plasmon resonances lead to

extremely strong fields in the vicinity of a nanoparticle. Such fields play, for

example, a key role in surface-enhanced Raman scattering, wherein the Raman

signal of a molecule deposited on the nanoparticle is enhanced by several orders of

magnitude [16]. This enhancement can be large enough that the Raman spectrum of

a single molecule can be detected [17, 18].

The large extinction cross section associated with plasmon resonances also

produces a strong signal in the far field. This observation is the key to detect and

investigate optical properties of nanoscopic particles. Plasmon resonance occurs for

specific wavelengths and gives the particles ensemble its color. These resonance

frequencies are sensitive not only to particle size but also its shape. The properties

of the metal particles were used during the Middle Ages for the design of colored

glass. This was mostly an empirical art, close to alchemy, where the relation

between the metallic particle shape and its color (its spectrum of plasmon reso-

nances as it is called today) was only known by the master glass-makers. In the

nineteenth century, Faraday noted that there must be a relationship between the

ruby red color of a colloidal gold suspension and the presence of aggregates of

metal atoms, although he had no means of analyzing the size of these metallic

nanoparticles by modern analytical techniques such as transmission electron

microscopy (TEM).

The theoretical investigation of this problem remained however extremely

limited. The exact treatment of the problem of scattering of electromagnetic

waves by particles is limited only to a few very simple geometries such as spheres

or ellipsoids in 3D, or a nanowire with a cylindrical or elliptical section in 2D

[19–24]. In general, for simple situations, it can be solved using Mie theory or

related semi-analytical techniques. Recently, through discrete dipole approxima-

tion or finite element approaches, it is possible to calculate the electromagnetic

interaction between particles of different shapes and sizes. However, these calcu-

lations become very difficult when the particle size is smaller than 20 nm,

extremely rapid variations of the field occur on very short distances. Using these

techniques to study the resonance spectra of silver nanowires with a non-regular

cross section, it was shown that nanowires had a complex spectrum, with many

different resonances [25]. In particular, triangular wires seem to produce the most

complex spectrum, as it was demonstrated in [26, 27], where nanowires with

different convex polygonal sections were systematically investigated.
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An interesting question that arises when studying the interaction of electromag-

netic waves with nanoscale systems is about the validity of Maxwell’s equations for

these scales. The constitutive parameters characterize completely the system, but

they are calculated for “macroscopic bodies.” They represent an averaging of

quantum phenomena that occur during the interaction over a large number of

atoms to achieve an adequate bulk representation.

In general, for metals with characteristic dimensions on the order of the wave-

length or larger, the bulk atoms contribute mainly to the dielectric function. For

example, for systems with few cubic millimeters, the relationship between surface

atoms and bulk atoms is less than 10�3. When the volume is a few tens of

nanometers, the relationship is about 0.1. However, for systems with few nanome-

ters of characteristic dimensions, all atoms can be considered like surface atoms.

For these nanoscale systems, where optical properties are governed by surfaces

effects (especially metals and semiconductors), an adjustment of the constitutive

parameters with size is essential to maintain the validity of the classical equations.

This chapter presents a review of a theoretical model to correct the constitutive

parameters with system size, focusing on outlining the physical principles involved

in the interaction of electromagnetic waves with nanometric systems. In the different

sections, we will show results of several research groups, including ours, about the

behavior of the dielectric function in the UV-visible to near-IR (infrared) range

appropriately corrected for few nanoscopic dimensions, as well as its applications to

sizing for different 2D and 3D nanostructures. We will focus on studying dilute clusters

of particles (average distance between particles of some wavelengths) with revolution

symmetry such as nanospheres, nanowires, metallic core-shell spheres, and metallic

nanotubes, where the thicknesses of the metal layers are of a few nanometers. In this

way, the dielectric function will not only depend on the frequency of the electromag-

netic wave but also on the characteristic dimensions of the nanoscale systems [16]. One

of the main challenges at theoretical level is the correct description of the optical

parameters of systems with nanometric scale. This parameterization of the dielectric

function with the size allows describing the optical response of the system under study

with a macroscopic quasi-classic model, based on Maxwell’s equations.

In this study, there are two kinds of approaches: One is the top-down approach, in

which the study of the nanostructures is reached from the bulk, and the other is the

bottom-up approach, where the analysis starts from the atoms toward large clusters.

We analyze at this point, the behavior of the dielectric function for different

sizes, starting from experimental bulk values toward smaller sizes up to

subnanometric nanoparticles.

4 Experimental and Instrumental Methodology

4.1 Experimental Extinction Spectroscopy

Traditional methods for nanoparticle sizing are based on optical or electron micros-

copy. These methods have, in many cases, drawbacks concerning the preparation of
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the sample or poor statistics. Optical spectroscopic techniques are often more

suitable since measurements can be made without sample treatment, data acquisi-

tion can be very fast, they may be implemented for in situ analysis, and they are an

excellent complement to electron microscopy.

Spectral extinction is one of these techniques which can be readily implemented

using a commercial spectrophotometer. It is a very simple and suitable technique

for sizing particles in the micron and submicron range, where it can be put in

parallel with transmission electronic microscopy (TEM) and scanning electronic

microscopy (SEM). Spectral extinction can be easily performed for dielectric

[28, 29] and metallic nanoparticles [16, 25, 30–42] in diluted liquid suspensions.

Figure 5.1 pictures a possible setup of the situation. When the detector is placed in

the direction of the incident light, after the ensemble, it will measure an energy flux

per unit area which is smaller than the power of the incoming wave.

Experimental results are fitted by Mie calculations (see Sect. 5.3.4) for spherical

particles, where knowledge of the refractive index as a function of the wavelength

for both the particle material and the solvent is necessary. For the metal dielectric

function used in this Mie calculation, it is necessary to include the modifications for

size for the free and bound electron contribution described in Sect. 5.1.

Spectrophotometers measure the extinction of light that is the fraction of light

removed from the incident beam. Operatively, extinction can be derived from the

relation given by the Lambert–Beer law:

It ¼ Ii exp ð�bext lÞ (5.1)

where Ii is the intensity incident over the sample, It is the transmitted irradiance, bext
is the attenuation coefficient, and l is the length of the sample. When the dilution of

the sample is such that the average interparticle distance in the medium is large

enough so that incoherent scattering can be considered, it is possible to relate the

attenuation coefficient of a sample of N particles per unit volume, with the single-

particle cross section Cext:

bext ¼ N Cext (5.2)

Incident
wave

Scattered
wave

Detector
θ

Extinction

Fig. 5.1 Schematic for

definition of extinction and

scattering processes by an

ensemble of particles
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When a set of measurements of It/Ii are performed over a range of wavelengths,

the so-called extinction spectra is obtained. Results can be compared with the

calculated spectral extinction efficiency, Qext (l), for a given medium refractive

index and for a given nanoparticle radius, which is used as fitting parameter. This

spectral signature has information of the chemical composition of the sample as

well as the size and distribution of sizes of the particles.

In general, samples consist of an ensemble of particles with a certain size

distribution suspended in some liquid. To determine this distribution of radii,

extinction measurements at a discrete set of wavelengths may be conducted,

a method that is called multispectral extinction. Inversion of the experimental

results should retrieve, in principle, the different radii values, although this is not

a trivial task, since, in general, the scattering matrix is ill conditioned and

a nonlinear inversion algorithm must be used to solve the problem.

For the case of large particles (comparedwithwavelength), when scattering is almost

forward and the light can reach the detector, the measurement is not a pure extinction

(scattering plus absorption) but an intermediate between absorption and extinction.

Experimental results may be strongly altered unless special care is taken to avoid the

unwanted forward-scattered light from reaching the detector. A small diameter pinhole

placed at a suitable position between the sample and the detector will help enhance the

reliability of the measurements. As the size of dielectric particles becomes smaller than

the wavelength, the scattering spectrum smoothens its features and the spectral extinc-

tion technique loses gradually its power, thus making it an unsuitable method for

measuring particles with mean radius below about 200 nm. However, it is interesting

to notice that metal particles constitute one important exception to the rule mentioned

above because their extinction spectra present clear size effects for radiuswell below the

wavelength. For this reason, colloidal solutions of noble metals, like copper, gold, and

silver, present intense color that is absent in bulk material. This behavior is due to

surface modes, a class of electromagnetic modes that can couple light to particles in

a very efficient way, as will be discussed in the next sections.

4.2 Experimental Fabrication and Fragmentation by
Laser Ablation

The metal nanostructures which this chapter deals with were generated either by

wet chemistry or by ultrashort pulse laser-based ablation methods. The former is

extensively treated in the literature and will not be discussed here. The latter is

centered in ablation of solid targets immersed in a cell with an appropriate liquid.

Fabrication was performed focusing the laser beam over a sample of 1-cm diameter,

which is placed over a PC controlled X-Y-Z translation stages with micrometer

accuracy. The laser system was a Spectra Physics 100 fs pulse 800 nm wavelength

Ti:Sa chirped amplified laser of 1 mJ pulse energy and 1 kHz repetition rate. After

a few seconds of ablation, the liquid showed a typical coloring according to the

ablated metal. Figure 5.2 shows the setup used to fabricate different metal Nps in

solution with IR fs laser.
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The second step consists in the fragmentation of the sample obtained before.

This fragmentation process was carried out using two different sources of

supercontinuum (SC) radiation: (1) SC produced by an external sapphire crystal

and (2) SC produced by IR fs pulses in the same liquid solution. In both cases,

radiation was applied to the solution during 30 min. This process enables to reach

sizes of radius less than 2 nm. In the first case, the SC generated in the external

sapphire crystal was focused on Nps solution to analyze the effect on size distri-

bution after light interaction. A suitable IR cutoff filter could be inserted before the

sample to filter out the 800-nm fundamental radiation [37, 38].

In the second case, fragmentation is carried out using the same setup, removing

the sapphire crystal and the solid gold disk from the sample and leaving only the

Nps solution. In this case, the IR radiation cannot be separated from the SC light

generated in water. To characterize the size of gold Nps in water, optical extinction

measurements in the 300–700 nm range by means of a commercial spectrophotom-

eter were conducted.

5 Key Research Findings

5.1 About the Dielectric Functions of Metals

The optical parameters of metals determine many macroscopic characteristics such

as shiny aspect and opacity to transmitted visible light. The reflection and trans-

mission coefficients of light for different wavelength ranges may be described

based on these optical parameters which, in turn, can be understood by assuming

a simple model to characterize the microscopic structure of matter.

Crystal for
continuum
generation

Neutral
filter

Shutter

Power
meter

Beam
splitter

Alignment
He-Ne laser

CCD

Diaphragm

Cube 

Lens

λ/2 plate

Nps in solutionx

yz

Ti:Sa CPA
System 

Fig. 5.2 Setup used to fabricate gold Nps in solution with IR fs laser and to perform fragmen-

tation with SC generated using an external sapphire crystal
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The electromagnetic response of matter is described by a frequency-dependent

complex dielectric function, e ðoÞ ¼ e0ðoÞ þ ie00ðoÞ , which relates the value of the

electric field ~E ðoÞ with the displacement field ~D ðoÞ. The dielectric function for

nanometric systems is not only a function of the wavelength (or frequency) of the

incident radiation but also is sensitive to the size and shape of the particle [43–45].

As it was shown in the works of E. Coronado [43] and J. Kottmann [44], variations

in the imaginary part of the dielectric function lead to dramatic changes in the

optical response for nanoparticles and nanowires with asymmetric profiles.

The expression of the dielectric function for a nanoscopic particle is not trivial.

Different approaches such as the jellium or quantum-chemistry models [16, 46, 47]

may be used based on considerations related to electron collective behavior or in

first principles calculations, respectively. However, if suitable and physically

meaningful corrections are made, the classical concept of dielectric function can

be extended down to nanometer sizes. This approach yields results that fit satisfac-

torily experimental data while giving physical insight about the electronic processes

that give rise to macroscopic measurable parameters.

In general, this complex dielectric function for bulk metals can be decomposed

into two terms, a complex free electron term and a complex interband (or bound

electron) term. Since the dielectric function is additive [48], it can be written as:

e ðoÞ ¼ efree�electronsðoÞ þ ebound�electronsðoÞ ¼ e0ðoÞ þ ie00ðoÞ

So, real and imaginary parts of dielectric function have contributions from both

complex free and bound electrons. In the following paragraphs, we will discuss briefly

the separate contributions, introducing for each one an appropriate size dependence and

will compare the results with available experimental data on real and imaginary parts of

noble metal dielectric function. We will also analyze the influence of these size depen-

dences on the optical extinction spectra of nanometric and subnanometric particles.

5.1.1 Free Electron Contribution
In order to model this response, a microscopic picture of matter is needed. One of

the most basic models is the so-called Lorentz model, which assumes matter

composed of electrons and ions as a collection of independent, identical, isotropic,

and damped charged harmonic oscillators. So, optical properties are a consequence

of the way in which these oscillators respond to electromagnetic fields.

For this model [49], the relative dielectric function e defined as e ¼2=e0,
corresponding to a collection of N damped harmonic oscillators per unit of volume,

each with resonant frequency o0, can be written as:

e ¼ 1þ o2
p

o2
0 � o2 � igo

; (5.3)

where o2
p ¼ N�e2=me0, e and m are the charge and mass of the electron, e0 is the

permittivity of vacuum, and g is the damping constant of the oscillators. For metals,

186 L.B. Scaffardi et al.



N* is the density of free or conduction electrons that, in general, corresponds to one,

two, or three electrons per atom.

Optical properties of materials are alternatively described by two sets of quan-

tities: the real and imaginary parts of the complex refractive index, N ¼ nþ ik or

the real and imaginary parts of the dielectric function e ¼ e0 þ ie00. For nonmagnetic

media, the relation N ¼ ffiffi
e

p
holds. So, the real and imaginary parts of both param-

eters are related by:

e0 ¼ n2 � k2; (5.4)

e00 ¼ 2 n k: (5.5)

The energy states of electrons in solid materials may be represented by a nearly

continuum energy levels grouped into different bands. For metals, the upper

occupied band is partially filled with electrons or completely filled and overlapped

with an upper empty band, as shown in a simplified form in Fig. 5.3.

Electrons in bulk metals are considered essentially “free” since they can be

promoted to higher empty energy levels (from the top of the energy distribution,

near the Fermi level) with very small photon energies. In this sense, it can be

considered that they are not bound to the ion core, so their resonant frequency may

be set equal to zero in the Lorentz model [50 (a, b)]. Therefore, the expression for

the dielectric function of a “free electron metal” can be obtained according to the

Drude Sommerfeld model, by putting o0 ¼ 0 in Eq. 5.3:

efreeðoÞ ¼ 1� o2
p

o2 þ iogfree
; (5.6)

with real and imaginary parts given by:

e0freeðoÞ ¼ 1� o2
p

o2 þ g2free
; (5.7)

e00freeðoÞ ¼
o2

p gfree

o o2 þ g2free
� � : (5.8)

METALS

Free
electrons

Band
gap

Half-filled Overlapped 

Bound
electrons

Fermi level 

Fig. 5.3 Simplified electrons

energy bands of solid metals
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The plasma frequency op lies in the ultraviolet region of the spectrum and �hop

ranges from 4 to 20 eV. In the bulk metal, the damping constant gfree, has a simple

physical interpretation in terms of the average total time t between collisions of free
electrons with other electrons (electron–electron scattering), lattice vibrations

(electron–phonon scattering), and imperfections. It can be expressed as:

gbulkfree ¼ 1

t
¼ 1

tel�el
þ 1

tel�ph
þ 1

tim
(5.9)

For nanoparticles smaller than the electron mean free path (a few tens of

nanometers for bulk metals), scattering of electrons with the particle’s boundaries

(surfaces) becomes important. This process reduces the electron mean free path,

which in turn leads to an increase in the imaginary part of the dielectric function.

This has been evidenced experimentally for spherical particles [16, 51–54]. In these

works, it is shown that for particle sizes below 10 nm, the resonance width becomes

broader.

To account for this fact, it is necessary to include an additive term in Eq. 5.9

which must be inversely proportional to the average time between collisions of the

electrons with the boundary of the particle, 1
tr
¼ C vF

r , where vF is the velocity of

the electrons at the Fermi level and r is the radius of the nanoparticle. The

proportionality constant C accounts for the details of the electron scattering pro-

cesses at the boundary and may be calculated from electrodynamic theory or

quantum box model [55 (a–d)]. For spheres, its value ranges from 0.75 to 1.15 [51].

With these considerations, a size-dependent damping constant may be intro-

duced and expressed as:

gsizefree ¼ gbulkfree þ C
vF
r

(5.10)

The second term of Eq. 5.10 becomes negligible for large radii r, and the size

damping constant tends to the bulk value. When gfree is replaced by the size-

dependent expression of Eq. 5.10, Eqs. 5.7 and 5.8 take the form:

e0freeðo; rÞ ¼ 1� o2
p

o2 þ gsizefree

� �2
(5.11)

e00freeðo; rÞ ¼
o2

p g
size
free

o o2 þ gsizefree

� �2
� � (5.12)

Using Eqs. 5.11 and 5.12, a set of curves for different radii values can be

obtained for the real and imaginary parts of the dielectric function. Figure 5.4

shows an example for the case of gold (Au), when it is plotted against wavelength.

188 L.B. Scaffardi et al.



It can be seen that, as expected, each set of curves tends to a common wave-

length-dependent curve (bulk) as the radius increases but presents clear differences

for sizes between 1 and 10 nm, approximately, depending on the metal. It is clear

then that it is possible to reproduce bulk values of the dielectric function by simply

calculating Eqs. 5.11 and 5.12 for a radius close to 100 nm, since for these sizes, the

second term in Eq. 5.10 is negligible. In this free electron approximation, all noble

metals (Au, Ag, and Cu) behave alike and their dielectric functions are very similar,

except for small differences arising from the different plasma frequency values.

5.1.2 Bound Electron Contribution (Bulk)
As it was mentioned at the beginning of Sect. 5.1, the complete expression for the

complex dielectric function is made up by a free electron component and a bound

electron component:

e ðoÞ ¼ efreeðoÞ þ eboundðoÞ ¼ e0ðoÞ þ ie00ðoÞ (5.13)

where efreeðoÞ can be made size-dependent through the Eqs. 5.11 and 5.12.

In a first approximation, the bound contribution may be considered non-size

dependent. Its value may be determined from subtracting efreeðoÞ from the bulk

experimental data e ðoÞ taken from Palik or Johnson and Christy [57, 58] such as

indicated in Eq. 5.13. For Nps with size smaller than 10 nm, the full complex

dielectric function depends on size (e ðo; rÞ), and can be written as:

e ðo; rÞ ¼ efreeðo; rÞ þ eboundðoÞ (5.14)

where efreeðo; rÞ can be calculated by Eqs. 5.11 and 5.12.

Figures 5.5, 5.6, and 5.7 shows both the real and imaginary parts of dielectric

function for Ag, Au, and Cu, respectively for bulk [58], and corrections for different

radius of Nps calculated from Eq. 5.14.
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Fig. 5.4 Real (a) and imaginary (b) part of free electron contribution to the dielectric function for
gold. Values used are: C ¼ 0.8, vF ¼ 14.1 � 1014 nm/s Granqvist and Hunderi [56]
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Fig. 5.7 Real (a) and imaginary part (b) for Cu dielectric function. In black, experimental bulk

values [58]. In color, correction for particles from 5 to 1 nm of radii. See the panel for details
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Fig. 5.5 Real (a) and imaginary part (b) for Ag dielectric function. In black, experimental bulk

dielectric function [58]. In color, correction for a particle from 5 to 1 nm of radii [25]. See the

panel for details
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The real part shows an abrupt change of slope that is located at different

wavelengths depending on the noble metal. The influence of bound electron is

clearly associated for wavelengths smaller than the point of slope change. This is

more dramatically evidenced in the behavior of the imaginary part, which shows a

widened resonance at short wavelengths.

5.1.3 Bound Electron Contributions (Single Transition)
When the energy of the incoming photon is large enough to overcome the bandgap

and promote valence (bound) electrons to the conduction band of the material, these

electrons will add its contributions to the dielectric function. These kinds of

transitions are called electronic interband transitions.

Figure 5.8 shows a simplified diagram for electrons energy bands of

a noble metal at zero Kelvin. As s-p band is filled up to the Fermi energy,

interband transitions can occur over a threshold energy value (Eg + EF). Intraband

transitions which correspond to free electrons can be excited with low energy

photons.

The Drude model described above takes into account only electrons in the outer

atomic orbitals (for example, 5s, 6s, and 4s states for silver, gold, and copper,

respectively). However, interband transitions, such as the one from the 5d-band to

the 6sp-band in gold, cannot be ignored when the incident light frequency falls in

the visible region. This effect can be taken into account in ELbound ðoÞ by means of

a standard Lorentz-like equation [4, 43, 61]:

ELbound ðoÞ ¼ 1þ o0
p
2

o2
0 � o2

� �� igbound o
(5.15)

where o0
p is introduced in analogy to the plasma frequency in the Drude model,

gbound is the damping constant for the bound electron, and o0 is the resonance

Band
gap

(n) s-p band

Intraband  
transition

(n-1) d  band

Interband 
transitions

EF

Eg

Fig. 5.8 Simplified electrons

energy bands of noble metals
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frequency of the bound electron under the applied electric field. The real and

imaginary parts are given by:

e0LboundðoÞ ¼ 1þ o0
p
2 o2

0 � o2
� �

o2
0 � o2

� �2 þ g2bound o2
(5.16)

e00LboundðoÞ ¼ o0
p
2gbound o

o2
0 � o2

� �2 þ g2bound o2
(5.17)

Since the dielectric function is additive, the complex expression can be written as:

e ðo; rÞ ¼ efreeðo; rÞ þ eLboundðoÞ

¼ 1� o2
p

o2 þ iogsizefreeðrÞ
þ 1þ o0

p
2

o2
0 � o2

� �� i gbound o
(5.18)

The total contribution of free and bound electrons to the dielectric function can

be evaluated from Eq. 5.18.

In Fig. 5.9, we plot the real (a) and imaginary (b) parts of the dielectric function

of gold in the visible and near-infrared range of the spectrum, using Eq. 5.18 with

r ¼ 100 nm to consider a bulk size. The bulk dielectric function, plotted as open

circles, is calculated by interpolation using experimental data measured by Johnson

and Christy [58]. Solid line corresponds to free electron contribution while dashed

line represents the sum of intraband and a single interband transition [61].

Concerning the real part, some authors add an arbitrary constant term called e1,

whose value ranges between 1 and 10 and represents other interband transitions

[61, 62], to fit the experimental data. For wavelengths l > 650 nm, e ðo; rÞ is
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Fig. 5.9 Real (a) and imaginary (b) parts of the dielectric function for Au. Open circles
correspond to the experimental bulk dielectric function from Johnson and Christy [58]. Solid
line, free electron contribution for a bulk size; dashed line, free plus single bound electron

contribution, also for a bulk size. Values used are: o0 ¼ 4.19 � 1015 Hz, o0
p ¼ 4.48 � 1015 Hz

and gbound ¼ 8.95 � 1014 Hz [61]
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governed by its large negative real part. This is a consequence of the fast

response of conduction electrons to the external electromagnetic excitation. This

quasi-free behavior is like a shield causing a very fast damping of the EM fields

within the metal.

Concerning the imaginary part, at wavelengths l< 600 nm, the free plus single-

transition bound electron model does not reproduce the experimental data. For this

model, e00 departs from the experimental data between 300 and 450 nm. Thus, with

the inclusion of a single interband correction (Eq. 5.15), an agreement with the

experimental curve is only obtained for 450 nm <l<1,000 nm.

Similar general behavior (including the disagreements) was observed for the

case of silver and copper, both for real and imaginary parts. So it is clear that a more

complete model that considers explicitly other interband transitions is necessary to

describe the complex expression of e ðo; rÞ.

5.1.4 Bound Electron Contributions (Multiple Transitions)
Since the single-transition bound electron contribution model fails for particles

sizes comparable to the mean free path of conduction electrons, there is a need for

an adequate description of the optical properties for large clusters formed by

hundreds of atoms (molecule-like properties), which may help to have a better

agreement between theory and experiment for short wavelengths. This is a topic

under discussion since more than 50 years ago [63, 64]. In this section, we show

a theoretical formalism to evaluate the interband contribution to the dielectric

function. This contribution was estimated in last section based on a semiempirical

analysis.

Pinchuk et al. [59] have analyzed the influence of interband electronic

transitions on the frequency, amplitude, and bandwidth of the surface plasmon

resonance in small metal nanoclusters. Their theoretical results for silver

and gold, including the interband transitions in the model, lead to a more

reasonable value for the plasmon bandwidth. A first approximation was based

on the concept that the contribution due to interband transitions remains

unchanged when material goes from bulk to small particles. Afterward, in the

previous section, this fact was modified, specially for noble metals, considering

transitions of bound electrons to conduction levels with a characteristic

frequency o0.

Now we take a step forward, considering that for the contribution of bound

electron transitions to the dielectric function in actual solids, o0 should be extended

to cover all the allowed transitions to conduction band levels, as indicated in

Fig. 5.10.

If the density of states on this band is represented by D ðo0Þ, the relative

dielectric function corresponding to the bound electrons contribution can be

written as:

eboundðoÞ ¼
Z

D ðo0Þ ð1� FÞ eLboundðo; o0Þ do0; (5.19)
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where F is the Fermi distribution, (1-F) is the probability that the upper state is not

occupied, and eLboundðo; ooÞ is the Lorentz dielectric function given by Eq. 5.15.

Rosei et al. [60] and Rosei [65] have given an explicit form for D ðo0Þ
corresponding to noble metals like gold and silver, and they show also the way to

calculate the limits of the integral in Eq. 5.19. Inouye et al. [66] have shown

a simplified expression of this calculation for gold assuming that the curvature of

the d-band can be ignored. In this case, the dielectric function can be written as:

ebound ðoÞ ¼ Kbulk

Z 1

og

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� og

p
x

1� Fðx; TÞ½ �

� x2 � o2 þ gb
2 þ i 2 o gbð Þ

x2 � o2 þ gb2ð Þ2 þ 4 o2 gb2
dx; (5.20)

where �hog is the gap energy (Eg); F (x, EF, T) is the Fermi energy distribution

function of conduction electron of energy �h x at the temperature T with Fermi

energy EF; gb represents the damping constant in the band to band transition; and

Kbulk is a proportionality factor. The reference for the energy is assumed at the top

of the d-band.
Figures 5.11 and 5.12 show calculated free electron (Eqs. 5.11, 5.12) and

multiple transitions bound electron contribution (Eq. 5.20) to the dielectric function

of gold and copper, respectively. The sum contribution (solid line) is compared with

experimental data given in Ref. [58] for bulk. Some parameters were taken from the

literature, while others were calculated previously by the authors [30]. These

parameters such as Kbulk, Eg, EF, and gb produce different and independent effects

over the dielectric function.

hωib = 2.4 eV

eF

Energy

DOS

5d

6sp

Fig. 5.10 Schematic

diagram of energy levels for

gold, showing interband

transitions from d-state to

sp-states (vertical arrows).
DOS density of states
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Fitting parameters and other relevant values for gold and copper are summarized

in Table 5.1. It can be seen that with these parameters, the curves show excellent

agreement with the experimental data without the need of adding an arbitrary

constant.

For the contribution of bound electrons, no functional form is known to change

the parameters in Eq. 5.20 as a function of the size of the particle. Some authors

[16, 69, 70] introduced the idea that the electronic density of states is different for

nanoparticles of different sizes. This fact affects Eq. 5.20 where part of the

integrand is just the density of states in the upper band. Since small particles have

larger spacing between electronic states, it is valid to conclude that the density of

states will be smaller for very small Nps. It was proposed [16] to take account of

this fact by changing the proportionality factor Kbulk in the contribution of bound

electrons from its accepted bulk value to Ksize ¼ Kbulk 1� exp �R R0=ð Þð Þ, where R
is the radius of the particle and R0 is a scale factor that represents the size for which

the density of states can be considered to reach the value of the bulk.
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Fig. 5.12 Calculated free electron and multiple transitions bound electron contribution to the

dielectric function of copper. The sum contribution (solid line) is compared with experimental data

given in Ref. [58] for bulk
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Fig. 5.11 Calculated free electron and multiple transitions bound electron contribution to the

dielectric function of gold. The sum contribution (solid line) is compared with experimental data

given in Ref. [58] for bulk
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Figures 5.13a, b show the spectral behavior of the real and imaginary parts of the

bound electron contributions of gold for different nanometric and subnanometric

sizes, using the Eq. 5.20 with the correction Ksize ¼ Kbulk 1� exp �R R0=ð Þð Þ.
For the case of copper, Fig. 5.14a, b shows the spectral behavior of the real and

imaginary parts of bound electron contribution for different subnanometric and

nanometric sizes.

It can be observed from Figs. 5.13 and 5.14 that the curves corresponding to

sizes larger than 2 nm are overlapped with each other. This is due to the fact that, for

that size range, the correction included in the expression of Ksize becomes

negligible.

Table 5.1 Optical parameters of bulk gold and copper

Symbol Value Reference

Gold parameters

Plasma frequency op 13 � 1015 Hz Granqvist and Hunderi [56]

Damping constant for free electrons gbulk 1.1 � 1014 Hz Johnson and Christy [58]

Coefficient for bound electron

contribution

Kbulk 2.3 � 1024 Scaffardi and Tocho [30]

Gap energy Eg 2.1 eV Scaffardi and Tocho [30]

Fermi energy EF 2.5 eV Scaffardi and Tocho [30]

Damping constant for bound electrons gb 2.4 � 1014 Hz Inouye et al. [66]

Copper parameters

Plasma frequency op 13.4 � 1015 Hz Cain and Shalaev [67]

Damping constant for free electrons gbulk 1.45 � 1014 Hz Johnson and Christy [58]

Coefficient for bound electron

contribution

Kbulk 2 � 1024 Santillán et al. [68]

Gap energy Eg 1.95 eV Santillán et al. [68]

Fermi energy EF 2.15 eV Santillán et al. [68]

Damping constant for bound electrons gb 1.15 � 1014 Hz Santillán et al. [68]
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Fig. 5.13 Bound electron contribution to the dielectric function of gold, including correction for

size. The correction is negligible for sizes close to 1.7 nm
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In the following section, we present results about the electromagnetic response

of different nanometric systems. We show how changes in the dielectric function

modify the optical properties of nanometric systems: metallic nanowires (2D

scattering problem), nanotubes, spherical nanoparticles, and core-shell systems.

The different modification in the real and imaginary part of the dielectric

function described above (arising from free and bound electron contribution) will

be used in Sect. 5.3.4 to characterize experimentally the size of 3D spherical

nanostructure from the features of their extinction spectrum.

5.2 Optical Extinction Spectroscopy

5.2.1 Nanoparticle Cross Section and Optical Theorem for
Arbitrary Geometry

In this section, we outline the problem of the interaction of an electromagnetic wave

with a nanometric sized particle [48, 71].Weuse a rigorous 2D integralmethod based on

Green’s second identity and the extinction theorem for calculations of optical responses

of arbitrary shaped particles. We then give a brief overview about the calculation of

scattering and extinction cross section by small spherical particles following themethod

of Mie expansion, exploring the asymptotic behavior when the radius a! 0.

Figure 5.15 shows the general problem of dispersion by a particle, considering

that a polarized electromagnetic wave interacts with a particle of volume V with

arbitrary geometry. The particle is characterized by a dielectric function

eð~rÞ ¼ e0ð~rÞ þ i e00ð~rÞ.
Given the direction of incident electromagnetic field and the shape, size, and

relative dielectric function eð~rÞ of the scatterer, the goal is to determine the fields
~Eð~rÞ and ~Hð~rÞ at all points in space. The scatterer is assumed to be embedded in

a homogeneous and isotropic lossless medium of dielectric constant e0. Electro-
magnetic fields must satisfy the macroscopic Maxwell’s equations with the

corresponding boundary condition on the particle [72]. In general, this is

a complex problem that must be solved numerically, although analytical
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Fig. 5.14 Bound electron contribution to the dielectric function of copper, including correction

for size. For sizes close to 2 nm, the correction is negligible
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expressions can be obtained for simple geometries or for certain approximations

[58, 61, 73, 74].

In order to gain physical insight into the problem, we can write the total fields as

a superposition of incident and scattered fields:

~E ¼ ~Einc þ~Escat

~H ¼ ~Hinc þ ~Hscat

If we take a closed mathematical surface S containing the scatterer, the total

energy flow per unit time and area that crosses this surface is given by the time-

averaged Poynting vector <~S> ¼ ð1=2ÞRe½*E� ~H��; or

<~S> ¼ <~Si>þ<~Ss>þ<~S0> (5.21)

It is interesting to note that the time-averaged Poynting vector for the total

field can be written as a linear combination of energy flow per unit time for the

incident field and scattered field plus a term that accounts for overlap of

the fields:

<~Si> ¼ ð1=2ÞRe½*Einc � ~H�
inc�; <~Ss> ¼ ð1=2ÞRe½*Escat � ~H�

scat�; and
<~S0> ¼ ð1=2ÞRe½*Einc � ~H�

scat þ *

Escat � ~H�
inc�:

n̂

ε(r’)

ε0

Σ

Ror =

R 

ô

V 

k0î

Escat

Einc = E0êi

ˆ

Fig. 5.15 Schematic for scattering calculation
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By integrating Eq. 5.21 through the closed surface S, we find a simple relation

for energy present in the system. The energy term corresponding to the incident

field results in zero, since we assumed a lossless host medium. Thus, the energy

balance for a metallic scatterer is given by:

�Wa ¼ Ws þW0;

where

Ws ¼
I
S

<~Ss> � n̂ da; W0 ¼
I
S

ð*

Einc � ~H
�
scat þ

*

Escat � ~H
�
incÞ � n̂ da (5.22)

Wa is the energy absorbed by the particle and n̂ is the normal to the S surface.

The integral W0, the total energy removed from the incident field by both

scattering and absorption, can be written in an analytic form when the electromag-

netic fields are considered in the far field.

We consider an incident electromagnetic wave with a wave vector ~k0 ¼ k0 î and
electric field of the form:

~Ei ¼ E0êi exp½ik0ðî �~rÞ�

The scattered waves, far from the scatterer, are considered spherical waves:

~Escat ¼ f ðî; ôÞ exp½ik0 �~r �
R

; ~Hscat ¼ ffiffiffiffi
e0

p
ô� f ðî; ôÞ	 
 exp ½i~k0 �~r�

R

where f ðî; ôÞ is the so-called scattering amplitude, which depends on the observa-

tion angle.

By substituting the incident and scattered field into Eq. 5.22 and integrating

when R ! 1, we obtain:

�W0 ¼ Wa þWs ¼ 2p
k0

ffiffiffiffi
e0

p
Im êi � f ðî; îÞ

	 

:

Absorption and scattering remove energy from the incoming electromagnetic

field when light interacts with particles. At this point, we can introduce the

extinction cross section Cext:

Cext ¼ Wa þWs

<~Si>
�� �� ¼ 4p

k0
Im½êi � f ðî; îÞ� (5.23)

and

Cscat ¼ Ws

<~Si>
�� �� ¼

Z
4p

f ðô; îÞ�� ��2dO;Cabs ¼ Wa

<~Si>
�� �� ¼

Z
V

k0e00ð~r 0Þ ~Eð~r 0Þ�� ��dV (5.24)
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Equation 5.21 is the so-called Optical Theorem or Forward Scattering Theorem

[71, 75, 76], which is valid not only in electromagnetism but also in acoustics and

quantum mechanics.

The electromagnetic problem reduces to find the scattering amplitude f ðô; îÞ.
A simple analysis shows the dependence of f ðô; îÞ with both the constitutive

parameters and the shape of the nanoparticle. We first write Maxwell’s equation

in the following manner:

~H� ~E ¼ iom0~H;

~H� ~H ¼ �ioe0~Eþ~xe;

where ~xe is consider like a source which generates the scattered waves and it is

defined by [61]:

~xe ¼ �ioe0 eð~rÞ � 1½ � ~E in V
0 outside

�

If we write the scattered electromagnetic field as a function of the Hertz vector

[62], we obtain:

�Esð~rÞ ¼ ~H�~H� ~Psð~rÞ; ~Hsð~rÞ ¼ �ioe0~H� ~Psð~r Þ; (5.25)

where ~Psð~rÞ ¼ � 1
ioe0

R
V

G0ð~r;~r 0Þxeð~r 0Þ dV0:

G0ð~r;~r 0Þ is the free space Green’s function. In the far field, we can write

G0ð~r;~r 0Þ as (see Fig. 5.14):

G0ð~r;~r 0Þ ¼ exp½ik0R� ik0
*
r 0 � ô�

4pR
:

Then, substituting G0ð~r;~r 0Þ for large R in to Eq. 5.25 we obtain:

~Esð~rÞ ¼ f ðô; îÞ exp½ik0R�
R

;

and

f ðô; îÞ ¼ k20
4p

Z
V

�ô� ô� ~Eð~r 0Þ	 
 �
eð~r 0Þ � 1f g exp½�ik0~r 0 � ô�dV0 (5.26)

The scattering amplitude f ðô; îÞ depends on ~Eð~r 0Þ, the field inside the particle,

and this magnitude is unknown in general. However, in many practical situations, it

is possible to obtain a useful approximation to compute f ðô; îÞ.
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From a theoretical point of view, for particles with radii much smaller than the

wavelength, a quasi-static limit can be used. Under this quasi-static approximation,

if we consider the scatterer with a spherical symmetry, the electromagnetic field

inside the sphere is constant and proportional to the incident field [77]:

Eð~r 0Þ ¼ 3

eþ 2
Eoêi;

Substituting this expression in Eq. 5.26 and considering a uniform dielectric

function for the scatterer, we obtain:

f ðô; îÞ ¼ k20
4p

3a0 V sinðyobsÞ;

where a0 ¼ e�1
eþ2

and sinðyobsÞ ¼ �ô� ðô� êiÞ.
Under this approximation, both the scattering and absorption cross sections are

given by:

Qscat ¼ Cscat

p a2
¼ 8

3
k0að Þ4 a0j j2; Qabs ¼ Cabs

pa2
¼ 4 k0a e00

1

eþ 2

����
����
2

:

where a is the radius of the sphere.

A similar expression is obtained from an asymptotic Mie expansion (far field) for

ka � 1, being a radii of the particle, as will be shown in Sect. 5.2.3.

For metallic particles, e0<0 at optical frequencies, so, the extinction cross section

has a maximum when e0 ¼ �2 for spheres and e0 ¼ �1 for cylinders. This resonance

is associated with collective oscillations of the free electrons at the metal induced by

the incident electromagnetic fields. The physical region where the excitation into the

metal occurs is given by the skin depth d ¼ l 4p Im½ ffiffi
e

p �½ �= . These collective

electronic oscillations at the surface of the metal are known as surface plasmon

[78]. In contrast to flat interfaces (films, diffraction gratings, rough interfaces), in the

case of a nanoparticle, the surface plasmon is confined to the three dimensions of the

nanostructure and it is then called localized surface plasmon [78, 79]. In this situation,

the localized surface plasmon resonance depends on the metal dielectric function and

on the geometry of the nanostructure.

For cross sections with different geometry to the spherical or circular one, the

analytical calculation is not easy even under the small-particle approximation. One

approach to estimate the condition of resonance is a generalization given by

Re eð Þ ¼ 1� 1 G= , where G is a geometrical factor or effective depolarization factor

which depends on the shape of the particle [14, 79]. However, G can also include

some first order corrections to the quasi-static model such as the dynamic depolar-

ization or the radiation damping. G takes the value 1/2 for circular cylinders and

thus the resonance condition will be Re(e)¼�1. In first approximation, the G factor

can be estimated from experimental curves for Qext. For ellipsoidal cross section,

the value of G is related with the polarization of the incident wave: If the electric
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field is along the major axis of the ellipsoid, G is smaller than 1/2, and if it is along

the minor axis, G is greater than 1/2. Similar functional dependences are found for

3D nanowires [4, 14, 80].

The description of the scattering of electromagnetic waves by arbitrary

nanosized obstacles has led to the development of several techniques to solve

Maxwell’s equations in inhomogeneous media. For example, the dipole discrete

dipole approximation (DDA) [15, 81], finite difference methods in time domain

(FDTD) [82, 83], multiple multipole expansion (MMP) techniques [84], transfer

matrix methods [85, 86], or finite element methods in frequency domain [87] are

among some of the most commonly used techniques to solve Maxwell’s equations.

All of them present advantages in certain aspects and disadvantages in others, but

we will not go further into their description.

5.2.2 Scattering by Infinitely Long Wires
The method used to compute the scattered far field can deal with scattering problems

of electromagnetic waves from systems formed by arbitrarily shaped bodies. Details

of the general procedure can be found elsewhere [88–91]. In what follows we

summarize the method applied to 2D systems with translations symmetry.

Let us consider a s or p incident polarized electromagnetic field with electric or

magnetic vector ~EðincÞð~r; tÞ or ~HðincÞð~r; tÞ, given by:

~EðincÞð~r; tÞ ¼ ð0;fs
ðincÞð~r; yÞ; 0Þ exp½�iot�;

~HðincÞð~r; tÞ ¼ ð0;fp
ðincÞð~r; yÞ; 0Þ exp½�iot�;

respectively. When these fields are incident upon a cylinder of cross section S
limited by a curve C, and complex permittivity e (Fig. 5.16), the expressions of the
scattering field (per unit length) in each medium can be obtained using the extinc-

tion theorem for multiply connected scattering volumes [26]. The field is then

represented in the form:

fð0Þ
a ð~r; yÞ ¼ fa

ðincÞð~r; yÞ þ i

4

Z
cþ
dl0

"
@G0

ffiffiffiffiffi
em

p
k0 ~r �~r 0j j� �
@n̂0

fð0Þ
a ð~r 0; yÞ

�G0

ffiffiffiffiffi
em

p
k0 ~r �~r 0j jð Þ @f

ð0Þ
a ð~r 0; yÞ
@n̂0

#
; if ~r 2 host medium

fð0Þ
a ð~r; yÞ ¼ 0; if ~r =2 host medium (5.27)

fð1Þ
a ð~r; yÞ ¼ � i

4

R
c� dl

0 @G1

ffiffi
e

p
k0 ~r�~r 0j jð Þ
@n̂0 fð1Þ

a ð~r 0; yÞ � G1

ffiffi
e

p
k0 ~r �~r 0j jð Þ @fð1Þ

a ð~r 0;yÞ
@n̂0

h i
; if ~r 2 S

fð1Þ
a ð~r; yÞ ¼ 0; if ~r =2 S:

(5.28)
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a denotes s- or p-polarization, and fðjÞ
a ð~r; yÞ, with j ¼ 0; 1, represents

the complex amplitudes in the host medium (em) and inside the cylinder,

respectively. In a 2D configuration, the Green’s functions are

Gj
ffiffiffiffi
ej

p
k0 ~r �~r 0j j� � ¼ ipHð1Þ

0 ð ffiffiffiffi
ej

p
k0 r � r0j jÞ, where H

ð1Þ
o are the zero-order, first

class, Hankel functions and dl0 is the differential element of line along the C
contour. The symbol cþ denotes that the integration variable~r 0 tends to the contour

C from outside of surface S(the normal n̂0 points outward of surface S) and c� denotes

that the integration variable ~r 0 tends to the contour C from inside of surface S (the

normal
_
n0 points inward of surface S). The electromagnetic field expressions for the

far zone can be obtained from the previous equations making use of the asymptotic

expressions for the Hankel functions for ~r �~r 0j j ! 1, and the boundary

conditions:

fð0Þ
a ð~rÞ

���
~r2cþ

¼ fð1Þ
a ð~rÞ

���
~r2c�

;
@fð0Þ

a ð~r Þ
@n̂0

�����
~r2cþ

¼ �a
@fð1Þ

a ð~rÞ
@n̂0

�����
~r2c�

;

where �p ¼
em
e

and �s ¼ 1.

In particular, the transmitted far field takes the form:

fðtÞ
a ðr; yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
ffiffiffiffiffi
em

p
k0r

s
exp i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
em

p
k0r � p3=4

q� �
TðyÞ; (5.29)

where

TðyÞ ¼ i

4

I
cþ

n̂0 � ~kt
� �

fð0Þ
a ð~r 0Þ � i

@fð0Þ
a ð~r 0Þ
@n̂0

" #
expð�i~kt �~r 0Þ ds0; (5.30)
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Fig. 5.16 Schematic for

scattering calculation for

infinitely long wires
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is called the amplitude function of the scattering of the cylinder [56], and ~kt is the
propagation vector of the scattered wave, defined by,

~kt ¼ k0
ffiffiffiffiffi
em

p ðsin yt; 0; cos ytÞ: (5.31)

A Gaussian incident beam of half-width W was considered. With this kind of

beams, we can simulate a plane wave by setting W sufficiently large [25].

The optical properties of the cylinder material are introduced only

through the frequency-dependent dielectric functions e and em that was used

in Eqs. 5.27 and 5.28. Once the far field is calculated, the extinction cross

section per unit length Qext, can be determined by using the optical theorem

[48, 71, 76]:

Qext ¼ Cext=2a ¼ 2

x
Re Tð0Þ½ �; (5.32)

where x ¼ k0 a is the size parameter of the cylinder. Calculated Qext would be

compared with experimental extinction spectra.

The method described here was extended to consider more complex systems

such as nanotubes and coated wires [92].

5.2.3 Scattering by Spheres
This section is devoted to calculate 3D scattering for different structures such as

bare-core or core-shell spherical nanoparticles. For calculations of cross sections, in

this section, we resume the basic concepts involved in Mie Theory [48].

If a single spherical particle of radius a is considered, we can write the extinction

cross sections (Eq. 5.23) in terms of the Mie [48] expansion coefficients an and bn as:

Cext ¼ Wa þWs

<~Si>
�� �� ¼ 2 p

k2

X1
n¼1

2nþ 1ð Þ Re an þ bnð Þ (5.33)

where

an ¼ m m2jn mxð Þ x jnðxÞ½ �0 � m1 jnðxÞ mx jn mxð Þ½ �0

m m2jn mxð Þ x h
ð1Þ
n ðxÞ

h i
0 � m1 h

ð1Þ
n ðxÞ m x jn mxð Þ½ �0

(5.34)

bn ¼ m1 jn mxð Þ x jnðxÞ½ �0 � m1 jnðxÞ m x jn mxð Þ½ �0

m1 jn mxð Þ x0hð1Þn ðxÞ
h i0

� m1 h
ð1Þ
n ðxÞ m x jn mxð Þ½ �0

(5.35)

and the primes indicating derivatives with respect to the argument of the function;

m and m1 are the magnetic permeabilities of the surrounding medium and of
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the spherical particle, respectively; x ¼ 2 pN a l= is the called size parameter with
N ¼ ffiffiffiffiffi

em
p

being the refractive index of the medium; m ¼ N1 N= is the relative

refractive index. Finally, jn and hn are the spherical Bessel and Hankel functions,

respectively.

If the size of the sphere is small compared with the incident wavelength, only the

first two terms on the expansion are relevant (dipolar term). With the asymptotic

form for a1 and b1 and considering the lowest order in x [48], the expressions for

absorption and scattering efficiency factors Q are:

Qabs ¼ 4 x Im
e1 � em
e1 þ 2em

� �
(5.36)

Qsca ¼ 8

3
x4

e1 � em
e1 þ 2em

����
����
2

(5.37)

These expressions are identical to that obtained from the electrostatic approxi-

mation using the Optical Theorem.

If scattering is small compared with absorption, the absorption cross section may

be expressed as:

Cabs ¼ k Im að Þ (5.38)

where k ¼ 2 p N
l is the wavenumber in the medium surrounding the particle, l is the

wavelength of the incident light in vacuum, and a is the polarizability given by:

a ¼ 4 p a3a0 (5.39)

For more complex structures, like core-shell spherical Nps, the expression of the

polarizability is [48]:

a ¼ 4 pR3
2

e2 � emð Þ e1 þ 2 e2ð Þ þ f e1 � e2ð Þ em þ 2 e2ð Þ
e2 þ 2 emð Þ e1 þ 2 e2ð Þ þ f 2 e2 � 2 emð Þ e1 � e2ð Þ (5.40)

where f ¼ R1

R2

� �3

is the ratio between inner and outer radius volumes; R1 ¼ Rcore is

the metal central core; R2 ¼ Rcoreþcoating is the outer radius (metal core + shell); and

e1 ¼ e1 l; R1ð Þ, e2 ¼ e2 l; R2 � R1ð Þ, and em are the dielectric functions of the core,

coating (shell), and surrounding medium, respectively. When the metal dielectric

function in the above expressions is modified by size according to Eqs. 5.11, 5.12,

and 5.20, it is possible to calculate the extinction cross section for sizing small

nanoparticles according to Eq. 5.38. This procedure will be used in Sect. 5.3.4 to fit

experimental extinction spectra results in the visible-NIR range for bare-core and

core-shell nanoparticles.
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5.3 Theoretical and Experimental Results

In this section, we review some relevant results from the literature for the optical

response of nanoscale systems. We show theoretical and experimental results of

physical observables in the far field (optical cross sections) and how these observ-

ables depend on both the size and shape of the nanoparticle.

In recent years, great interest has developed in the study of nanoscale systems,

from the synthesis and manufacture of nanoparticles, characterization and optical

response up to their manipulation and physical properties control. Different areas of

knowledge (chemistry, biology, physics, etc.) are making a significant amount of

contributions to the subject. This is evidenced by the large number of interdisciplin-

ary citations in recent reviews on the topics (see for instance Refs. [1, 2, 4, 7, 93–95]).

The optical properties of noble metals – in particular the structures of silver,

gold, copper, aluminum, titanium – can be manipulated by appropriate engineering

of nanoparticles (or nanostructures) and this subject is its main attraction. Under-

standing the optical response of nanoscale systems promote a variety of potential

applications ranging from simple interaction molecules, optical crystals and pho-

tonic metamaterials. For instance, in surface-enhanced Raman spectroscopy

[96–101], chemical and biological sensors have been proposed based on plasmon

resonant particles [1, 102–104]. For scanning near-field optical microscopy, metal-

lic particles provide large, yet well-localized near-field sources [105–113], and can

therefore increase the resolution.

Small silver or gold particles and wires are also highly interesting for optical

devices, as they provide efficient, frequency-selective scatters with sub-wavelength

dimensions, allowing further device miniaturization. Moreover, silver and gold

nanowires can guide electromagnetic modes over several microns [8, 114–118],

coupled plasmon resonant nanoparticles can be used for evanescent optical trans-

port [119–124], and nanoholes in metal films allow the filtering of optical signals

[125–127]. Most recently, an active optical component, similar to a transistor, was

proposed using the local field amplification associated with the excitation of

plasmon resonances [12, 128] or the ablation of cancer cells in vivo [2, 7, 93, 94].

In general, numerical computations are necessary to understand the optical

properties of arbitrarily shaped plasmon resonant particles in detail. In particular,

the knowledge of the complex relationship between shape and size of the particles

and its plasmon resonance spectrum allows designing nanoparticles for specific

applications. This knowledge is required both for individual and interacting metal

nanoparticles.

5.3.1 Electromagnetic Responses of Infinitely Long Nanowires:
A 2D Scattering Problem

In this subsection, we deal with nanometric systems with translational symmetry. In

particular, we show the electromagnetic response of metallic infinitely long

nanowires and metallic nanotubes (2D metal dielectric core-shell systems). The

solution of 2D problems allows qualitative and quantitative studies of the physical

phenomena involved in electromagnetic interaction, without loss of generality.
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As we mentioned in Sect. 5.2.1, the electron collective oscillation occurs within

a narrow strip from the particle surface. The rapid response of free electrons in

metals to external fields is the cause of the rapid damping of electromagnetic fields

inside the metal giving rise to the skin effect. It is interesting to note that, for Ag

particles, the skin effect depth is about 6–10 nm around the resonance frequency.

Therefore, when the electromagnetic field falls on nanoparticles (a < 10 nm), the

electromagnetic resonances related to the plasmon excitation practically occur in

the volume of the particle. Due to these characteristics, we will call these reso-

nances “eigenmodes of the system” which are a solution of the homogeneous

problem.

The small metallic particle shows a complete polarization and the free electrons

are confined to oscillate within its volume. Thus, the optical properties for these

systems are substantially modified respect to larger ones. This behavior with size

affects the constitutive parameters of the nanoparticle, as was shown in the

Sect. 5.1.1

5.3.2 Nanowires
In Figs. 5.5, 5.6, and 5.7 (Sect. 5.1), we have shown results of applying the

correction by size to Ag, Au, and Cu dielectric functions for particles with radii

less than 7 nm. For infinitely long nanowires, a new condition is established: The

permittivity depends on the polarization state of the illuminating wave. Two

different dielectric functions may be defined: e(o) corresponding to silver bulk

for s-waves (or TM), and e(o,r) for p-waves (or TE), where the size correction is

included [25]. For this configuration, only p-waves show eigenmode resonances.

By inspection of the dielectric functions, we can see a clear increase of slope in

the imaginary part as the particle radius decreases, while the real part displays much

less variation, with a tendency to decrease its slope. This behavior of the dielectric

constant (which is only corrected by size) is reflected in the cross section of

extinction.

In Fig. 5.17, we show the evolution of the extinction cross section (p-waves)

with the incident wavelength for different Ag and Au nanowires. The position of the

resonant peak exhibits a clear dependence on the size. As the particle radius

decreases, the resonant peak maximum is blueshifted.

This effect is particularly notorious for Ag nanowires (Fig. 5.17a). In Fig. 5.17b,

we plot the peak position (resonant wavelength) depending on the radius, which

clearly shows this blueshift. In the Fig. 5.17b too, we compare the same system but

when it is immersed in index matching oil (refractive index approximately 1.52 at

500 nm). By comparing the peaks curve, we can see the redshifts of all resonance

spectra due to change in the refractive index of the surrounding medium.

For the Au nanowires, the blueshift is less noticeable and for wires with radii less

than 7 nm, the peak displacement is within the numerical error (see Fig. 5.17c).

With respect to the displacement of the peaks with the particle size, there is not total

agreement today. In the review of Link et al. [129], the authors devote a paragraph

to comment about the disagreement in resonant peak shift. In the literature both

redshifts and blueshifts of the peaks are reported. Recently, we can observe that this
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different behavior is produced by a nanoscopic shell due to the fabrication presses:

oxide metal shell (i.e., in Ag nanoparticles) [130], surface modified in chemical

process (i.e., in Au nanoparticles), etc.

In all cases studied, we observe a similar optical response: The position of the

resonance peak does not change substantially with decreasing radius (less than

5 nm) and neither does the real part of the dielectric constant. As the radius

decreases, the resonance peak broadens and decreases in height, while the imagi-

nary part of the dielectric constant increases.

Another way, for s-waves, no eigenmode excitations are possible for 2D

nanowires, but a clear difference in the spectra corresponding to different radii

can be observed. In Fig. 5.18, we show the evolution for the extinction cross section

with the wavelength for the incident s-wave. For radius larger than 10 nm, the

contrast (relative difference between the maxima and the minima of the extinction

cross section) between the ridge at 260–275 nm and the dip at 320–330 nm can be

used to characterize the radii of the cylinders.
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In Refs. [16, 25, 53], it has been proposed a useful tool based on contrast

measurements. In Fig. 5.19, we show the contrast curves for characterizing the

size of nanowires.

These qualitative optical properties are observed in 2D and 3D systems. The

electromagnetic responses of metallic nanoparticles are not only sensitive to size of

the particles, but also are sensitive to both the surrounding environment as well as

its shape [74, 129].

In particular, the resonant frequencies of eigenmodes are sensitive to the geom-

etry of the particles. The main attraction of the nanoparticles design is the possi-

bility of tuning the resonant excitation of eigenmodes in a wide bandwidth,

allowing a large number of applications, from the design of optical nanoantennas

[123, 131], construction of plasmons waveguide of some nanometers wide

[62, 121], development of more efficient solar cells, or the possibility of applying

these resonant systems in detecting and/or destruction of cancer cells (photothermal

therapy) [93].
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A slight deviation from circular (spherical) geometry produces a splitting of

the lower energy peak. This effect is noticeably for Ag particles, where

eigenmode resonance shows a single well-defined peak for circular geometry

(see Fig. 5.17a).

In Fig. 5.19, we show normalized extinction curves (respect to the geometrical

shadow) as a function of wavelength for Ag nanoparticles with different aspect

ratios (relationships between major and minor axes) R ¼ b/a: from R ¼ 1 (a ¼ b ¼
10 nm) up to R ¼ 6 (a ¼ 10 nm, b ¼ 60 nm). As we can see in Fig. 5.19, two

branches (channels) are opened which depend on the polarization of the incident

wave. One of them, when the peak position shifts to shorter wavelengths, corre-

sponds to the electric field parallel to the minor axis – open symbols – (incidence to

0�, see the inset in Fig. 5.20a) and the other one is redshifted when the electric field
is along the major axis – solid symbol – (incidence to 90�).

In Fig. 5.20b, we show the evolution of the resonance peak versus the aspect

ratio R ¼ a/b. The behavior of the resonant wavelengths is quasi-linear with R.
With blue hollow circles, we show the evolution of resonance blueshifted peaks and

with solid red circles, the redshifted peak ones. Because the minor axis is constant,

the blueshift is not very pronounced, Dl ¼ 9:4 nm with respect to the perfect

circle R ¼ 1.

A similar behavior is observed for Au nanowires with elliptical cross section. In

Fig. 5.21, we show the evolution of the extinction cross section for identical

geometrical parameters to Fig. 5.20.

A qualitative explanation of the optical response for particles with volume

(surface) ellipsoidal can be given under the non-retarded field hypothesis. This

theory is based on an electrostatic solution for the principal values of the polariz-

ability tensor, aj, with a relative complex dielectric function eðlÞ [48].
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aj ¼ 3V
e� 1

3þ 3Gjðe� 1Þ ; (5.41)

V is the ellipsoidal volume and Gj are the geometrical depolarization factors.

When the three axis of the ellipsoid are equal, the geometrical factor is degenerated

and equals to 1/3 (or 1/2 for 2D problem). For small Rayleigh particles, the light-

scattering contribution to the total extinction is usually neglected, so optical

absorbance Qabs is calculated through the absorption cross section averaged over

random orientations of spheroids. Most papers on the optical properties of metal

nanoparticles suspensions used the classic Gans theory. The qualitative behavior

shown in Figs. 5.19 and 5.20 was observed experimentally in Au nanorods [13, 19].

Another way to control the frequency of excitation of eigenmodes in

nanoparticles is through core-shell systems: dielectric particles coated with metal

shell. In this case, controlling the thickness of the metal layer and the dielectric

particle size is possible to tune the proper mode at determined frequency.

In the next section, we describe the optical response of metallic nanotubes. That

is, hollow tubes with nanometric metallic walls and dielectric cylinders coated with

a metallic layer.

5.3.3 Nanotubes
Geometrically, the nanotubes are formed by two coaxial cylinders forming an

annular surface (wall of the nanotube) which is considered metallic. When the

core of the nanotube is filled with a dielectric material, it is the 2D equivalent

problem to the core-shell 3D system [42].

As it was shown for a single particle, the study of these 2D systems provides all

the information necessary to understand the physical mechanisms involved in three-

dimensional problems.
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Nanoshells and nanotubes are other example of tunable plasmonic

nanostructures with important applications as nanoantennas [2, 42], light manipu-

lators [132] and biomedical applications (http://halas.rice.edu/) [3]. Many recent

studies have been focused on metallic nanoshells where the plasmon resonance can

be tuned very simply by varying the shell thickness. In general, the models used to

describe the response of systems with metallic shells are based on a quasi-static

approximation and dipole interaction [133–137].

We focus on metallic shells with thickness from 1 to 10 nm, where the dielectric

function of the metallic layer should be corrected by size [92], and the quasi-static

approximation could be applicable. Results for larger systems (core radius larger

than 50 nm) with thin shell layers, where the electromagnetic response is dominated

by retarded effects, are also shown.

Numerical results for eigenmode excitation of metallic nanotubes corresponding

to p-mode [138] are shown in Fig. 5.22 where the extinction cross section as

a function of incident wavelength is depicted. For these examples and in this

subsection, the external radius r1 is constant and equal to 10 nm and the thickness

(d ¼ r1 � r2) of the nanotube is considered variable.

Figure 5.22a shows the extinction cross section for Ag nanotubes considering the

dielectric function with (solid line) and without (hollow symbols) size correction.
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Figure 5.22b shows the extinction cross section Au nanotubes with dielectric

function thickness correction, (c) the extinction cross section for Cu nanotubes

with corrected dielectric function, and (d) the extinction cross section for Ag

nanotubes (hollow symbols) versus Ag/silica system (solid line) with dielectric

function corrected. The inset in Fig. 5.22d shows the shell thickness code, valid also

for panels (c) and (d). Hollow and solid symbols with the same color correspond to

the same shell.

For these particle sizes, in general, Qext 	 Qabs and the extinction peaks

observed in Fig. 5.7 are related with the excitation of eigenmodes. It is interesting

to note that for the Ag shell, our model gives as a main result a significant widening

of the resonance peak (due to the strong increase in the imaginary part of the

dielectric function). The complex propagation constant solution to the homoge-

neous problem – eigenmode – moves away from the real axis into the complex

plane as the thickness of the shell decreases. However, if the bulk dielectric

function is used for all thicknesses, an opposite effect is observed: As the thickness

of the shell decreases, the amplitude of the peaks increases and a more complicated

evolution is observed for some cases (Au and Cu, for example). This behavior in the

extinction cross-section spectra has been observed for all the examples shown in

this section.

Extinction curves for Au nanotubes show a more complicated behavior. This

effect can be associated to the multipole terms that play an important role for Au in

the short wavelength range [137]. It can be observed in Fig. 5.22b that extinction

curves for Au nanotubes present large and broad peaks for thin shells. The maxi-

mum of the extinction curves occurs for d ¼ 2 nm in this configuration (see

captions), while for d¼ 1 nm, the extinction peak is attenuated and strongly shifted

to the IR zone. In all cases, the dipolar term dominates the extinction spectrum and

the higher multipole orders have a perturbative character overlapped with the

dipolar term. We can observe a similar behavior for Cu nanotubes (Fig. 5.22c)

but with a more complex optical response in the short wavelength range.

In Fig. 5.22d, we compare electromagnetic response of Ag nanotubes with

respect to a silica-core one (ecore ¼ 2.25), both with the same shell thickness.

When a silica core is considered, all the spectra are shifted to the IR region, and

the peaks are attenuated with respect to the same condition in the Ag nanotubes.

The main cause of this shift is the relative value that the metal dielectric function

takes with respect to the core dielectric constant. Therefore, the resonant coupling

between surface plasmons (in both faces of the metallic shell), mainly dipolar,

experiences a strong shifting to the IR zone and an intensity attenuation. This

mechanism is consistent with that described by the method of hybridization [2].

Due to the size of this system (few nanometers), it is possible to compare our

results with a non-retarded model. Moradi [133] proposes a non-retarded hybridi-

zation model to find the optical response of a core-shell 2D. Based on this model, it

is possible to find an analytical expression to predict evolution of the peaks as

a function of r2/r1 ratio.
In Fig. 5.23, we show the evolution of the isolated peaks of Fig. 5.22a (lpeak¼ l*)

is a function of the r2/r1 ratio, for both dielectric function, bulk and corrected,
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together with the silica-core metallic-shell systems (corresponding to Fig. 5.22d). In

dashed lines, we show the dispersion relationship of plasmons from hybridization

model corresponding to Ag nanotubes for three angular momenta m [133]. Squares

and circles represent bulk dielectric function and triangles correspond to corrected

dielectric function. Using the bulk dielectric function, it is possible to observe two

branches, while only one branch can be detected when corrected dielectric function is

used. Our calculations show that the fundamental excitation for an Ag nanotube

(associated to the dipole order) dominates the extinction coefficient. In general,

the principal extinction peaks follow a functional form like the predicted one by

the plasmon hybridization model. The main discrepancy between the curves obtained

by the non-retarded approximation and the maxima of extinction calculated by the

integral method is due to the different dielectric functions used to model the systems.

We observe that in the limit when r2 ! 0 (solid wire), both the analytic curves and

singles points (plasmonic excitations) converge to the same point.

In the quasi-static approach limit, it is possible to carry out an analysis of the

interaction between eigenmodes: Eq. 6 in [133] can be rewritten in the incremental

ratio form [92]:

lres � lsp
lsp

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1� d

r1

� �m
r � 1; (5.42)

where lsp corresponds to the wavelength for which the plasmon is excited in a solid

wire with radius r1. In this way, we can obtain a scaling law for the peaks shift that

depends only on relative geometrical parameters. With this in mind, Fig. 5.24 plots

(lpeak � lsp)/lsp for the peak of low energy as a function of d/r1 for different

materials: Ag (circles), Au (squares), and Cu (triangles) nanotubes. Hollow sym-

bols correspond to data extracted from Figs. 5.22a–c. In particular, for Ag

nanotubes, we show in red solid circles results for a nanotube with r1 ¼ 50 nm
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and in green circles for r1¼ 120 nm. The rest of the circles shown were obtained for

r1¼ 60 nm. For Au and Cu nanotubes, we can see that the curves are very close and

differ slightly from that corresponding to Ag nanotubes. In these curves, solid black

symbols (squares and triangles) correspond to r1 ¼ 10 nm, the green symbols to

r1 ¼ 60 nm, and orange square symbols to r1 ¼ 80 nm.

It is remarkable to note that all the points, regardless of the size of the nanotubes,

can be arranged on a single curve which can be adjusted by a single-exponential

decay function. A similar law was found by Jain and El-Sayed for coated spheres

and dimers [134].

As a first approximation, this extinction peak is due to a dipolar interaction

between plasmons. We propose a functional form for the fitting equation like

Eq. 5.42 with two degrees of freedom:

lres � lsp
lsp

¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1� d

r1

� �c
r � 1 (5.43)

The best adjustment to the black hollow circles occurs for a ¼ 0.988 
 0.005

and c ¼ 2.87 
 0.05 (for the complete data a ¼ 0.98 
 0.02 and c ¼ 2.7 
 0.1).

Due to the universality of the curve, therefore, all the points can be fitted by

Eq. 5.43. In Fig. 5.23, we show the two fittings: in dashed line (blue and red), the

exponential law, and in solid line, the fit corresponding to Eq. 5.43.

The black square and triangle data points (corresponding to the Au and Cu

r1 ¼ 10 nm) can be adjusted by the same equation (the curves of Au and Cu show

little difference between them). We found that the best adjustment for the Au

nanotubes occurs for a ¼ 1.01 
 0.01 and c ¼ 5.6 
 0.2 (solid line in Fig. 5.23).

This numerical exploration in order to fit the data with the hybridization model

gives as a result high values for the parameter c (equivalent to the angular momen-

tum for the Moradi’s model). This high values found for c may indicate that the
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non-retarded dipole approximation is not able to describe accurately the plasmon

interaction through the nanotubes walls, at least for thin shells. Recently, Encina

and Coronado [139] reached a similar conclusion for dimers with Ag nanospheres,

where they also observe a separation between the “universal curves” between Ag

and Au dimers.

We found that the shift of the excitation peaks toward the IR is directly

associated with changes in the thickness of the wall of the nanotube. In addition,

the thickness of the walls modifies the constitutive parameters and, as

a consequence, the plasmon–plasmon interactions. This effect is clearly seen in

the Ag nanotubes. It can be observed, in particular for these structures, that the

effects of retardation should be included to describe correctly the interaction

between plasmons when the thickness of the layer decreases, as occurs in Ag

dimers. As a result, the fractional relative plasmon curve for Ag nanotubes is

separated slightly from that corresponding to Au and Cu as the shell thickness

decreases and the interband transitions start to be significant. For relationships

d/r1 > 0.6, these effects are attenuated and the “universal curve” appears to be

recovered (at least for nanotubes). The presence of a dielectric core produces

perturbations in the plasmon–plasmon interaction, and the extinction peaks are

shifted toward the IR zone with respect to nanotubes in the same condition. Then,

the fractional plasmon shift versus d/r1 shows a difference when nanotubes and

core-shell 2D nanoparticles – for the same external radii – are compared.

In Fig. 5.25, we compare the near-field intensities, for the three structures shown

in this section in the resonance condition. Figure 5.25a corresponds to the near field

at l ¼ 338 nm for Ag circular solid nanowire with 10 nm of radius (red line

extinction curve with solid circles in Fig. 5.16a). Figure 5.25b shows an intensity

map for a nanotube with 10 nm of external radius and Ag wall thickness of 3 nm at

l ¼ 448 nm (solid green curve in Fig. 5.17a). Figure 5.25c, d show the near field for

the same Ag ellipsoidal nanowire (a ¼ 10 nm, b ¼ 60 nm), for two fundamental

electric field orientations: panel (c) electric field parallel to the minor axis, resonant

wavelength 329 nm; panel (d) electric field parallel to the major axis at l ¼ 500 nm

(see red curves in Fig. 5.20a). The arrows, in all cases, indicate the direction of the

incidence.

The intensity maps shown in Fig. 5.25 for the eigenmode resonances are

consistent with a dipolar response (the single peak shown in the spectra of extinc-

tion curve). Due to the size of the particles considered, the scattering cross section is

negligible and the entire spectrum of extinction is due to absorption. Intensifications

of fields due to local resonances are very short range and can reach up to two orders

of magnitude of the incident field. The resonance occupies a small volume

around the nanoparticle interface, similar to a point source. This high density of

field is the tool for the thermal treatment of cancer cells. In the intensity maps, we

can see the field penetration inside the metal structure. Almost, the entire volume

(surface) of the nanoparticle is involved in the resonant phenomenon. Thus, part of

the resonant energy of free electrons can be transmitted to the structure of the

metal, causing an increase in kinetic energy resulting in an increase in metal

temperature [93].
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5.3.4 Experimental Results
The relation between the plasmon resonance maximum and the diameter of the

spherical particle has been used by some authors as a tool to establish a range of

sizes of studied metal Nps, TEM being the central technique for accurately mea-

suring certain particles. Link et al. [140] studied laser-induced shape changes of

colloidal gold nanorods after irradiating the sample with femtosecond and nano-

second laser pulses. The gold nanorods were prepared using an electrochemical

method. The shape transformations of the gold nanorods are followed by two

techniques: visible absorption spectroscopy by monitoring the changes in the

plasmon absorption bands characteristic for gold nanoparticles and transmission

electron microscopy (TEM) in order to analyze the final shape and size distribution.

The extinction spectra are used to monitor the evolution of the plasmon resonances

as the samples are irradiated with different pulselength lasers.

Mafuné et al. [141–147] studied the formation of noble metal (Au, Ag, and Pt)

Nps under ns-regime laser ablation of solid targets in water and its relation with

surfactant concentration. In all the series of papers, the authors use TEM to both
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Fig. 5.25 Total near-field intensity maps Hj j2 (normalized to the incident intensity) for different

Ag nanostructures in resonance. (a) Solid circular nanowire, l ¼ 338 nm, 10 nm of radius; (b)
nanotube with 10 nm of external radius and 7 nm of the internal radius, l ¼ 448 nm. (c, d)
Elliptical cross-section nanowire (aspect ratio ℛ ¼ 6) for the two fundamental electric field

orientations: parallel to the minor axis, l ¼ 329 nm and parallel to the major axis, l ¼ 500 nm,

respectively. Arrows indicate the incident direction and the host medium is air
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show the sphericity of the ablated Nps as well as determine their average diameter

from sampling about 1,000 Nps. The extinction spectra are used to show the

existence of the plasmon resonance and its dependence on different experimental

parameters such as number of laser pulses, surface modifier concentration, etc.

Chen et.al [148] studied the induced alloying of Au–Pd and Ag–Pd colloidal

mixtures by ns pulse laser irradiation. UV–vis absorption spectra of 1:1 and 2:1

molar ratios of Au/Pd colloidal suspensions are used to show the development of

the mixture composition as a function of the laser exposure time, while the

approximate sizing is performed by TEM analysis.

In a very interesting paper by Besner et al. [149], fragmentation of colloidal gold

Nps by fs laser radiation is demonstrated by showing the expected blueshift of the

plasmon resonance as the particle radius decreases.

In a similar way, Barcikowski and collaborators [150] study the influence of

several parameters (such as pulse energy, dodecanthiol added to n-hexane) on gold
Nps production using ultrashort pulse lasers. They show these influences by com-

paring extinction spectra from several treated samples, indicating the plasmon peak

shift for different dodecanthiol concentrations in the liquid prior to fs laser ablation

at two different laser fluences.

As a final example, Pyatenko et al. [151] produced silver nanoparticles by

irradiating an Ag target with a 532 nm ns-regime laser in pure water. By working

with high laser power and small spot sizes, the authors claimed to have synthesized

very small spherical particles with a typical size of 2–5 nm. UV–vis extinction

spectra for different beam spot sizes are used for estimating the amount of ablated

Ag per pulse, according to a suggestion made by Mafuné et al. [141].

Our group has studied the relations between the different features of the extinc-

tion spectra and the size (or structure) of the Nps to use them for sizing purposes.

Scaffardi and Tocho [30] have explored the simultaneous modification of the

free electron contribution to the dielectric function as well as the bound electron

contribution, on the basis of Eqs. 5.11, 5.12, 5.13, 5.20, 5.38, and 5.40 to fit

extinction spectra of very small nanoparticles (less than 2 nm radius). The contri-

bution of electron transitions from the d-band to the conduction band was modeled

using an integral expression for adding all the interband transitions across the

bandgap. The dependence of the electronic density of states with size (the states

begin to separate as the radius decreases) modulates the above integral expression

and enables a much better fitting of the extinction spectra of very small gold

nanoparticles, obtained by the inverse-micelle method. The fitting also permits

the determination of microscopic parameters like the bound electron damping

constant, the energy gap, and the Fermi energy of the particle.

Another application of extinction spectroscopy was developed by Roldán et al.

[34], who described a method for preparation of Ag nanoparticles from chemical

reduction of AgNO3 in ethanol with ATS [N-[3-(trimethoxysilyl)propyl] diethyle-

netriamine] as surface modifier. While morphologic and structural characteriza-

tions of samples are conducted by Atomic Force Microscopy (AFM) and X-ray

diffraction (XRD), UV–vis extinction spectroscopy interpreted through Mie theory

is used to analyze the size evolution in the fabrication process of spherical silver
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nanoparticles. This evolution is studied as a function of the time elapsed between

the beginning of the reaction and the extraction of the sample and as a function of

the temperature during the chemical reaction. The study was based on the inverse

relation between the plasmon width (FWHM) and the mean radius, specially for

values below 6 nm.

The optical extinction spectroscopy approach was also shown to be useful in

sizing core-shell type Nps by Schinca and Scaffardi [35]. In Fig. 5.26, the authors

made a detailed analysis of the dependence of plasmon resonance wavelength and

FWHM with core radius and shell thickness of ATS-coated Ag Nps and were able

to establish that, for sizes less than 10 nm, the plasmon peak wavelength depends

almost exclusively on the shell thickness while the FWHM depends mainly on core

radius. Based on these regularities, a simultaneous experimental measurement of

plasmon width and plasmon peak position in extinction spectroscopy is proposed as

a simple protocol for determining the mean size of noble metal core-shell

nanospheres (in the size range smaller than 10 nm radius). The protocol was

successfully applied to chemically and laser-ablation fabricated Ag Nps, the results

of which agree with established TEM analysis.

A similar method was applied by Schinca et al. [36] to size small core-shell

silver–silver oxide generated by ultrashort pulse laser ablation of solid target in

water. Figure 5.27a, b show a TEM picture of the sample suspension and the

corresponding size distribution histogram, respectively. In this case, the Ag Nps

are capped with its own oxide during the ablation process, with a variety of

thicknessess. A fit of the full experimental spectrum using Mie theory allows the

determination of core size and shell thickness distributions as a function of fluence.

The redshift of the plasmon peak wavelength with respect to the bare-core peak

wavelength at 400 nm, produced by the oxide shell, may be easily measured even

for very small thicknesses. It was found that the dominant silver oxide effective

thickness is inversely proportional to the fluence, reaching a maximum of 0.2 nm
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for a fluence of 60 J cm�2 and a minimum of 0.04 nm for a fluence of 1,000 J cm�2,

as it is shown in Fig. 5.27c.

For the case of Ag core-Ag2O shell Nps, the relations depicted in Fig. 5.26 are a bit

more complex than in the metal core dielectric shell case. Figure 5.28 shows the results

of calculations of peak position (panel a), contrast (panel b) and FWHM (panel c) as

a function of core radius and shell thickness. These 3D plots picture the interrelation

between these three parameters. Although peak position is strongly dependent on shell

thickness and almost independent of core radius, FWHM and contrast depend on both

variables with similar strength. In spite of this complexity, Santillán et al. [41] have

shown that a simple stepwise protocol to size oxide thickness growth over bare-core

silver Np only from spectroscopic data could be devised and successfully applied to

experimentally obtained single-particle extinction spectra.

Finally, the possibility of using optical extinction spectroscopy for the case of

metal coated dielectric core Nps is also evident when the relation between the

FWHM and peak resonance position as a function of core radius and shell thickness

is analyzed. Figure 5.29 plots these relations for the case of a silica core and Ag shell.
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It can be seen that the peak position (panel b) is still strongly dependent on

metal shell thickness and almost independent of silica-core radius, but FWHM

depends on both Ag-shell thickness and silica-core radius. In this case,

a measurement protocol may also be devised to size separately the core radius

and metal shell thickness of single core-shell nanoparticles. These two last

cases are important since researchers in the biological area are directing their

interest in developing single-particle nanosensors for intracellular measurement

of oxidative processes [152, 153].

6 Conclusions and Future Perspective

Throughout this chapter, we have shown results referring to the optical response of

infinitely long metallic wires with cross section of the order of a few nanometers. The

theoretical and numerical results suggest the concrete possibility of controlling this

optical response with an appropriate engineering of nanoparticles. The relation of the

constitutive parameters with particle size, coupled with interband transitions in the

metal, gives a correct description of the experimentally measured optical observables.

Our theoretical results show a slight blueshift of the resonance peak (for p-polarization)

as the particle size decreases (most notorious for Ag nanowires).

The dependence of dielectric function on the particle size generates an anisot-

ropy with the polarization of the incident wave: The size correction begins to be

necessary for radii of the order of 7 nm and when the electric field vector is parallel

to the cross section. This sensitivity of the eigenmodes with the orientation of the

electric field can also be observed when the cross-sectional geometry deviates from

the perfect circular symmetry. For the example studied in this work, oblong

particles (two main axes), the orientation of the electric field determines two

plasmonic resonances. The design of the geometry of the particle can “tune in”

two-channel resonance. One channel is shifted to the blue and the other with

a greater range of variability to the red (compared to the position of the plasmon

for circular particle). Responsible for such behavior is an anisotropic tensor polar-

ization induced by external fields.

The geometry of the nanoparticle and the surrounding medium significantly

influence the optical response. A mixture of both conditions, along with size

corrected dielectric function, can yield systems with multiple plasmonic excitations

with redshifts of the resonant peak. While the physical principles involved in the

electromagnetic interaction with the metal layer are the same (the excitation of free

electrons), now couplings between resonant eigenmodes generated on both sides of

the shell exist. This plasmon coupling reminds the orbital electronic coupling in

diatomic molecules. The resonant couplings of the eigenmodes can be estimated in

the small-particle limit, using a hybrid mix of “wave functions”: eigenmodes

corresponding to a solid particle with corresponding eigenmodes in a cavity. The

interactions between surface plasmons generated on both sides of the metal shell

determine the resonant channel, with possible shifts of the resonance peak toward

blue or red.
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The understanding of the physical mechanisms involved in the optical response

of nanoscale systems (which results in the ability to “tune” these eigenmodes

through the design of structures) opens a large number of practical applications.

Today, these applications seem to be focusing strongly on biomedicine

(optical tracers, heat treatment of tumors [93]), optical communications (plasmon

waveguide-based nanocircuitry, optical antennas [4, 154]), and engineering of solar

cells [155].
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