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ABSTRACT 

This chapter introduces the fuzzy control approach for a dialysis ses-
sion. Due to the complexity of the human system, the classical control me-
thods, like PID, can fail to reach the target, mainly for what it concerns the 
stabilization of the system, which can induce sudden and undesired hypo-
tensive collapses. To this purpose, a heuristic strategy based on expert 
rules, as fuzzy logic control, can help to reach the desired performances, 
reducing undesired collateral effects and increasing the potentiality of the 
dialysis session. 
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23.1   INTRODUCTION 

Automate control of many manual activities is nowadays possible and 
advisable, thanks both to great progress in hardware evolution and the rela-
tive cost fall-down, and to the availability of powerful algorithms for op-
timization and control of complex multi-dimensional systems, included the 
human body and many clinical operations that can be applied. To this pur-
pose, in the following paragraphs, an innovative controller which has been 
applied by some Medical Center to optimize the dialysis parameters will 
be described. This system is based on fuzzy logic, a “new way” of thinking 
and managing with non probabilistic uncertainty (Bellazzi et al. 1994; De-
gani and Pacini 1980; Kageyama et al. 1990; Linkens et al. 1996; Mitra 
1994; Moller 1993; Roy and Biswas 1992). After a brief introduction on 
fuzzy logic based control, the fuzzy logic hierarchical controller for hemo-
dialysis will be described. This system will automatically optimize time by 
time the values of the therapeutic variables used during a dialysis session. 

 

23.2   MODELING PARADIGMS 
 
Models are developed to facilitate the solving of real world problems. 

Modeling is also a part of the learning process. It is an iterative, continual 
process of formulating hypotheses, testing and revision, of both formal and 
mental models (Sterman 2000). Modeling is not an individual effort. It re-
quires active involvement of the decision makers and the individuals who 
are familiar with the system. Inputs from these subject matter experts en-
sure the integrity of the model structure with the actual system structure. 
The modeled interrelationships among variables depict mental models of 
the decision makers on which the decisions are based in the real world. 
Modeling activity has to follow a systematic step by step approach else our 
efforts can very easily digress from the main problem under consideration. 
Predictive modeling, also called predictive learning, consists in estimating 
an unknown dependency from known observations. Once the dependency 
has been estimated, it can be used to predict the response for future input 
data. Therefore, the basic objective of a predictive modeling procedure is 
to seek a model, using only a finite set of resources, with low prediction 
error. The prediction error is usually called generalization error, since it 
measures the capacity of the model to generalize, i.e. to return a good pre-
diction of the output for input values not used during the modeling process. 
Inferring a predictive model from data is inherently an "ill-posed" problem 
due to the lack of knowledge about the underlying dependency and the fi-
niteness of available data. This means that many models can often fit a  
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given finite data set, and yet these models might generalize very different-
ly on new data drawn from the same distribution. To make the modeling 
problem well-posed, one needs to somehow calibrate the complexity of the 
model to the amount and quality of available sample data. This is de-
scribed by the bias/variance tradeoff which states that the number of free 
parameters should be kept to a minimum in the model, thus reducing the fit 
to the noise on the data. To find the best balance between accuracy and 
complexity of the model, a search is necessary in the space of all possible 
models belonging to a fixed family. This search for the best model in-
volves three main tasks: choosing the best structure, choosing the best set 
of parameters given the structure, and validating the resulting model. Ac-
tually, the generalization capability is heavily reliant on the model's struc-
ture, and hence structure identification is arguably the most important task 
in a modeling process. Instances of structure identification include the 
problem of choosing the degree of a polynomial model or the problem of 
determining the best number of hidden nodes in a neural network. 

 
Finding the best structure requires a search over all possible structures. 

However, exhaustive search over the space of model structures is computa-
tionally infeasible and motivates the use of heuristic strategies that dramat-
ically reduce the search complexity by employing directed search algo-
rithms. Examples are pruning/growing algorithms that start with a 
large/small structure and then prune/grow it to obtain a smaller/larger one. 
The second modeling task, i.e. finding a good set of parameters, is typical-
ly accomplished by minimizing an objective function. Examples of para-
metric identification procedures are linear least-squares for linear models 
and gradient-descent techniques. After the apparently best model has been 
found, its quality must be evaluated through a model validation procedure 
which returns the estimate of the generalization error on the basis of the fi-
nite training set. Examples of validation techniques are resampling me-
thods, such as the holdout, the cross-validation and the bootstrap. Alterna-
tively, the ability to generalize can be measured through complexity-based 
criteria that penalize the accuracy of the model by its size, hence adhering 
to the principle of parsimony. Therefore, if the model assessed on the basis 
of the estimate produced by the validation step is found inadequate, then 
the selected structure should be revised and the modeling process is re-
peated until a valid model is found. Hence the model should also be inter-
pretable, so that the user can gain insight and improved understanding 
about the process that produced the data. To this end, the modeling process 
should attempt to induce a parsimonious representation of the available in-
put-output data. However, accurate (and hopefully interpretable) predictive 
models are not necessarily simple to identify. Model construction is  
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typically a non-trivial task especially for complex high-dimensional prob-
lems. Models of phenomena found in everyday life are usually derived 
from two fundamental sources: numerical data acquired from observation 
and a priori knowledge about the phenomenon. These two knowledge 
sources are invaluable in any modeling process, where all available a priori 
knowledge should be utilized, while inadequacies found in this knowledge 
can be compensated by the ability to learn from data. Depending on the ex-
tent to which these two kinds of knowledge are exploited, three basic le-
vels of model synthesis can be defined (Ljung 1999):  

 
 White Box. The model is completely constructed from a priori 

knowledge and physical insight. Here, empirical data are not used 
during model identification and are only used for validation. Com-
plete a-priori knowledge of this kind is very rare, because usually 
some aspects of the distribution of the data are unknown. 

  
 Gray Box. An incomplete model is constructed from a priori 

knowledge and physical insight, then available empirical data are 
used to adapt the model by finding several specific unknown  
parameters.  

 
 Black Box. No a priori knowledge is used to construct the model. 

The model is chosen as a flexible parameterized function, which is 
used to fit the data.  

 
The different modeling paradigms are summarized in Table 23.1  

(Babuska 1998). In such a case, the most suitable approach is expected to 
be the gray-box one, even though none of the three modeling approaches 
can be easily applied, due to the lack of knowledge. 

Table 23.1 Different modeling paradigms (Babuska 1998). 

Modeling 
Approach  

Source of 
Information 

Method of 
Acquisition Example Deficiency 

Mechanistic 
(white-box) 

Formal 
knowledge 
and data 

Mathematical 
Differential 
equations 

cannot use 
"soft" 
knowledge 

Black-box Data 
Optimization 
(learning) 

Regression, 
neural  
network 

cannot at 
all use 
knowledge 

Fuzzy 
(grey box) 

Various 
knowledge 
and data 

Knowledge- 
based + 
learning 

Rule-based 
model 

“curse” of 
dimensio-
nality 
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Actually, these three modeling paradigms are not as distinct as this clas-

sification suggests, and a general rule of thumb is to employ both qualita-
tive a priori knowledge and empirical data to derive a model. Thus, the 
important requirement for any modeling technique is the ability to exploit 
available a priori knowledge. When such knowledge relies on some physi-
cal information describing some input-output behavior, an expert can often 
describe such behavior using natural language. A linguistic model is a 
knowledge-based representation of information; its rules and input-output 
variables are described in a linguistic form which can be easily understood 
and handled by humans. The fuzzy set theory formulated by Zadeh in 1965 
provides an appropriate method for handling linguistic terms and human 
concepts (Zadeh 1965). Zadeh's proposal to build models based on such 
linguistic descriptions through fuzzy values (fuzzy sets) rather than crisp 
numbers led to fuzzy systems. In recent years, fuzzy logic based modeling, 
and more generally linguistic modeling of complex processes, as a com-
plement to conventional modeling techniques, has become an active re-
search topic and found successful applications in many areas (Harris 2006; 
Ross 2004; Terano et al. 1994). The main advantage of fuzzy systems is 
that they can provide simple intuitive for interpretation and prediction in 
the form of fuzzy rules. However, due to vagueness and subjectivity of 
natural language statements, fuzzy rules based on qualitative knowledge 
alone can adequately model only very simple processes. Fuzzy models 
consist of a series of linguistic rules, which can easily be understood and 
constructed by humans.  

 

23.3   FUNDAMENTAL OF FUZZY CONTROL 
 
The basis for proposing fuzzy logic was that humans often rely on im-

precise expressions like big, expensive or far. But the "comprehension" of 
a computer is limited to black-white, everything-or-nothing, or true-false 
modes of thinking. In this context, Lofti Zadeh emphasises that humans 
easily let themselves be dragged along by a desire to attain the highest 
possible precision without paying attention to the imprecise character of 
reality (Zadeh 1973). The basic idea of fuzzy sets introduced by Lofti Za-
deh in 1965 is quite easy to comprehend. In a classical set, this is a collec-
tion of distinct objects in which dichotomize the elements of the universe 
of discourse into two groups, then:  

 
μA(x) = 1, if x is an element of the set A, and  
μA(x) = 0, if x is not an element of the set A  
 

On the other hand, fuzzy sets eliminate the sharp boundaries that divide 
members from nonmembers in a group. In this case, the transition between 
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full membership and nonmembership is gradual (a fuzzy membership 
function) and an object can belong to a set partially. The degree of mem-
bership is defined through a generalized characterized function called the 
membership function. The membership degree allows obtaining a desired 
level of smoothness about the threshold (set-points). Mathematically, a 
fuzzy set A is represented by a membership function defined on a domain 
X, called universe of discourse, given by: 

μA(x): X → [0, 1] 

Where A is the fuzzy label or linguistic (value) term describing the vari-
able x. The values of the membership function are real numbers in the in-
terval [0,1], where 0 means that the object is not a member of the set and 1 
means that it belongs entirely to the set. Each value of the function is 
called a membership degree. Consider the fuzzy variable temperature, 
which can be described by many different adjectives each with its own 
fuzzy set. A typical partition of the universe of discourse, 0-40°C, is shown 
in Fig. 23.1, where the fuzzy sets cold, warm and hot are defined. In this 
example, the crisp temperature 20°C has a grade of membership of 0.5 for 
both the cold and the warm fuzzy sets i.e. μcold(20°C) = μwarm(20°C) = 0.5. 
It is clear that the definition of fuzzy sets is non-unique for the nature of 
language, but it is very context-dependent and user specific (e.g. this defi-
nition may seem inappropriate to an Eskimo!). On specifying a member-
ship function μA(x) in its present context the vague fuzzy label A is  
precisely defined.  

 
Fig. 23.1 Typical fuzzy sets defined for a variable. 

 
Hence fuzzy sets can be thought as measuring the inherent vagueness of 

language precisely. The properties of these fuzzy sets play an important 
role in the modeling capabilities of the fuzzy system, and for a model to be 
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truly transparent these sets should sensibly represent terms that describe 
the input and output variables. It is up to the system designer to determine 
the shape of the fuzzy sets. In most cases, however, the semantics captured 
by fuzzy sets is not too sensitive to variations in the shape; hence it is con-
venient to use simple membership functions. The membership function 
choice is the subjective aspect of fuzzy logic, it allows the desired values 
to be interpereted appropriatly. The most common membership functions 
are the triangular, the trapezoidal, and the Gaussian function. Fig. 23.2 
shows some typical shapes of membership functions and described in de-
tail in Appendix A. Fuzzy sets form a key methodology for representing 
and processing uncertainty.  

 

Fig. 23.2 Examples of membership functions (Fuller 2000). Read from top 
to bottom, left to right: (a) S-function, (b) gaussian-function, (c) Z-
function, (d-f) triangular versions, (g-i) trapezoidal versions, (j) gbell-
function, (k) rectangle, (l) singleton. 

 
As such, fuzzy sets constitute a powerful approach not only to deal with 

incomplete, noisy or imprecise data but also to develop models of the data 
that provide smarter and smoother performance than traditional modeling 
techniques. The popularity and practicality of fuzzy systems derives from 
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their ability to express complex relations in terms of linguistic rules. Thus, 
fuzzy systems have advantages of excellent capabilities to describe a given 
input-output mapping. The second important property to be considered 
concerns function approximation: fuzzy systems have been proved to be 
universal approximators (Kreinovich et al. 1998; Castro and Delgado 
1996; Castro 1995), i.e. they are able to uniformly approximate continuous 
functions to any degree of accuracy on closed and bounded (compact) sets, 
a property they share with feed-forward neural networks. Moreover, in 
contrast with other universal approximators (e.g. neural networks) fuzzy 
systems are uniquely suited to incorporate linguistic information in a natu-
ral and systematic way. These two important properties qualify fuzzy sys-
tems as excellent candidates for predictive modeling tasks.  

 
With these properties, the main disadvantage of fuzzy systems, howev-

er, is that they do not have much learning capability to tune their fuzzy 
rules and membership functions. Normally, fuzzy rules are decided by ex-
perts or operators according to their knowledge or experiences. However, 
when the fuzzy system model is designed, it is often too difficult (some-
times impossible) for human beings to define all the desired fuzzy rules or 
membership functions in an optimized way, due to the ambiguity, uncer-
tainty or complexity of the identifying system. Also, fuzzy systems do not 
have any learning capability in which their fuzzy rules, along with their 
corresponding membership function, could be automatically tuned in order 
to reach the desired optimal fuzzy rules and membership functions. 

 

23.3.1   Design of Fuzzy Logic Controller 

Fuzzy Control System (FCS) is based on heuristic rules, acting on a set 
of input variables by means of linguistic variables to produce one or more 
control variables (as for Multiple Input – Multiple Output systems, MIMO 
for brevity). For this reason, it is not so easy to obtain some general rules 
for stability, overshoot, response time, etc., as for linear control systems. 
Some attempts were done in the past, and some results were obtained only 
for particular situation. Moreover, not only the fuzzy control is strongly 
not linear, but, it depends on many design choice, like the form of the 
fuzzy sets, which represent the linguistic variables, the choice of the 
aggregation operators for the rules, the number of the rules, and so on. 
Again, the mathematical analysis of a fuzzy control system is not easy in 
general, and in most cases it can be carried on with numerical simulations. 

 
The basic structure of a fuzzy system, as described by Mamdani and 

Assillian (1975), is shown in Fig. 23.3 (Tanaka and Wang 2001). There  
are four main building blocks of the fuzzy logic system: the fuzzification 
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interface, fuzzy logic rule base, inference engine and the defuzzification 
interface. A fuzzy system processes crisp data at the input and produces 
crisp data at the output through inference from a fuzzy rule base. Therefore 
a fuzzifier is used at the front of the system to convert crisp data to fuzzy 
sets, and a defuzzifier is used at the output of the system to convert fuzzy 
sets into crisp values. A rule-base is a set of If-Then rules, which contains 
a fuzzy logic quantification of the expert's linguistic description of how to 
achieve good control. The fuzzy inference engine combines the rules in the 
rule base according to approximate reasoning theory to produce a mapping 
from fuzzy sets in the input space to fuzzy sets in the output space. Hence 
a fuzzy system provides a computational scheme describing how rules 
must be evaluated and combined to compute a crisp output value (vector) 
for any input crisp value. One can therefore think of a fuzzy system simply 
as a parameterized function that maps real vectors to real vectors. 

 

Fig. 23.3 The basic structure of a fuzzy system. 

Unlike conventional control which uses a model of the controlled 
process and applies specific techniques to satisfy as best as possible the 
desired closed-loop behavior, fuzzy control tries to replicate an expert 
strategy, as usually done by human operator. As a matter of fact, if the 
model is unavoidable, or too much expensive to be obtained, or if the 
model itself is strongly not nonlinear, a mathematical analysis can fail, and 
it is preferable to use expert knowledge. At the same time, a linear control, 
like a classical PID controller, is not appropriate for a non linear plant. 
Moreover, for MIMO control the aggregation of different types of 
information and sources can be easily performed by a human operator, but 
the same cannot easily be done using a mathematical tool. Thus the idea of 
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fuzzy control relies on this main reason: to capture in an efficient way the 
human expertise, from one or more process operators, and to use this 
knowledge to implement a performing control law. Technically, this task 
can be achieved by defining a set of rules over the logical combination of 
input variables, using some linguistic terms (term-sets like LOW, 
MEDIUM, HIGH, BAD, GOOD, etc.) in such a way that, for each 
combination of input variables, some rules fire with different degree. The 
firing degree will depend on the true degree of the antecedent, and on the 
logical combination of the linguistic degrees of true. Subsequently the 
outputs of each rule are combined, weighting more the ones for which the 
membership degree is higher, thus obtaining the values of the output 
variables. In this sense, we can speak of rule-based fuzzy control. Thus 
every FRCS (Fuzzy Rule Control System) is characterized by a suitable set 
of (fuzzy) if-then rules. For what above pointed out, the antecedent of each 
rule is formed by the logical disjunction of some elementary proposition, 
each of them referring to a single input variable. Such elementary 
propositions are in the following form: “Xi is Ai,j”, where Xi is the 
numerical value of the i-th input variable, and Ai,j is the term-set for the i-
th variable in the j-th rule. Every term-set, which is linguistically expressed 
in the form of an attribute of the natural language, is represented by a 
suitable fuzzy set (Klir and Yuan 1995; Coletti and Scozzafava 2004) 
which defines its meaning. In the case of a control system, the input 
variables can be the error, its derivative or its integral. The same is done 
for the control variables. Each rule can be written as an inference 
condition, where in the antecedent part the logical conjunction of the input 
variables appears, while in the consequent part the control actions are 
described. For instance, a rule of a MIMO FCS with 3 input variables and 
2 control variables can be written in the following way: 

1 1, j 2 2, j 3 3, j 1 1, j 2 2, jIF X  is A  AND X  is A  AND X  is A  THEN C  is B  AND C  is B   

where Xi, i=1,2,3 is the i-th input variables, Ai,j, i=1,2,3, is the linguistic 
term-set referring to the i-th input variable in the j-th rule, Ci , i=1,2 is the 
i-th control variables, and Bi,j, i=1,2, is the linguistic term-set referring to 
the i-th output variable. The complete FCS can be represented by a set of 
such rules: the Rule Data Set (RDS for brevity in the sequel). More in 
general, a RDS can be formally represented as follows: 

NR1,..,j,)(yB)(xA kjk,
m1,..,k

iji,
n1,..,i

=
⎭
⎬
⎫

⎩
⎨
⎧ ∪→∩

==  
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where NR is the number of inference rules. )(yB),(xA kjk,iji,  are the 

values of true of the propositions jk,kji,i B is y  ,A is x , and are com-

puted by means of suitable pre-defined functions (membership degree)  as-
signed by the user. 
 
23.4   FUZZY LOGIC MODELS 

 
Depending on the types of fuzzy reasoning and fuzzy if-then rules em-

ployed, most fuzzy inference systems can be classified into three types 
(Babuska 1998). From a technical point of view, the two most used FCS 
implementations are based on the Mamdani FCS, usually used as a direct 
closed-loop controller, and the Takagi-Sugeno-Kang (TSK) fuzzy 
controllers, more often used as a supervisory controller (Yager and Filev 
1994)1. 

 
23.4.1   Mamdani Fuzzy Models  

 
This method was introduced by Mamdani and Assilian in 1975 as an at-

tempt to control a steam engine and boiler combination by synthesizing a 
set of linguistic control rules obtained from experienced human operators 
(Mamdani and Assillian 1975). This is first vision of fuzzy models, and by 
far the most innovating one, assumes to represent an input/output mapping 
by means of a collections of IF-THEN rules whose antecedents and conse-
quences utilize fuzzy values, i.e.: 

 
k k k

k 1 1 m mR : IF (x is A ) THEN (y  is B ) AND....AND (y  is B )  
 

The use of linguistic terms in consequent parts makes these models very 
intuitive and understandable. This class of fuzzy models uses fuzzy reason-
ing and forms the basis for qualitative modeling, which describes an input-
output mapping by using a natural language. The Mamdani model form 
falls into this category. When adopting this perspective, which pursuits the 
ultimate goal of fuzzy logic, i.e. "computing with words", the emphasis is 
put essentially on the readability of the model, rather than on computation-
al cost and accuracy of the model (i.e. fine quality of approximation, clas-
sification or control). The advantages of the Mamdani fuzzy inference sys-
tem: it’s intuitive, it has widespread acceptance and it’s well suited to 
human cognition. However, fuzzy models of this class tend to become 
complex, requiring too many parameters, hence they can become heavy to 

                                                           
1 Mamdani and TSK, are not only used for implementing a FCS, but more in general to represent 

a fuzzy-rules data base. 
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run, to maintain and to manually tune. This leads to the prepositions of 
other types of fuzzy inference systems. The fuzzy reasoning procedure for 
Mamdani model is shown in Fig. 23.4. 

 

Fig. 23.4 Mamdani fuzzy inference system using the min and max operators 
(Adapted from Jang JSR, Sun CT (1995) Neuro-Fuzzy Modeling and Con-
trol. Proceedings of IEEE; 83(3): 378-406, with permission from IEEE) 

For a MIMO controller, the i-th rule of the rule data base appears as 
follows: 

1 i,1 2 i,2 n i,n 1 i,1 m i,mIF x is A AND x is A .... AND x is A THEN y is B ... AND y is B  

where i 1, 2,..., R= ; ij  A is the term-set of the j-th input variable for the i-th 

rule; k,i B is the term-set of the k-th output variable and R is number of in-

ference rules.  
 

Both ij  A and k,iB are represented by suitable fuzzy numbers. To obtain the 

value of the crisp output m1 y... y , the steps are the following: 

1) Compute the degree of truth of the elementary proposi-
tions: ijj A is x ; if (z)μ ij is the membership function concerning 

the linguistic term set ijA , it is sufficient to compute ij jμ (x ) , 
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2) Compute iτ , the degree of truth of the compounded proposition 

1 i1 n in x  is A ..... AND  x  is A , that is the logical conjunction of n 
elementary propositions; this task is performed by a suitable ag-
gregation operator ⊗  (see the comments below):  

i i,1 1 i,2 2 i,n nτ μ (x ) μ (x ) ... μ (x )= ⊗ ⊗ ⊗ , 

3) Compute the fuzzy quantity k,i i k,iη τ B= ∧ , the minimum between 

the crisp number iτ  and the fuzzy number ik,B , 

4) For each k, compute the fuzzy quantity k 1,k 2,k R ,k...ξ η η η= ⊕ ⊕ ⊕ , 

that is the logical disjunction, or other aggregation operator, as the 
generalized mean. This is the fuzzy output for the k-th output  
variable, 

5) Finally, to obtain a crisp number for all the m output variables, the 
defuzzification task is activated, obtaining a crisp value (a real 
number) from the fuzzy output, which encompasses all the avail-
able information obtained by the data and by the inference mecha-
nism. To this purpose, many methods were proposed in the litera-
ture, the most commonly used in the “center of gravity” approach 
(Yager and Filev 1994). 

Some comments are in order: 

a) The conjunction ⊗ is a logical operator which can be extended 
from the boolean case to the continuous one through the so called 
triangular norm operators, T-norm for brevity (Klement et al. 

2000), a monotonic function defined in [0,1][0,1]n → , which is 
also commutative and associative, with one as the neutral element. 
The upper bound of the class of all the T-norm is the minimum 
operator, but other choices are possible, like the product or the 
Łukasiewicz T-norm, see the above quoted reference; 

b) Similarly, the logical disjunction ⊕ can be represented by a trian-
gular co-norm (S-norm for brevity), with the same property as for 
the T-norm, except the last one, since the neutral element is zero. 
The lower bound of the class of all the T-conorm is the maximum 
operator, but other possibilities exist, like the probabilistic sum, or 
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the bounded sum2. Every S-norm is the dual operator of a T-norm, 
and namely the biunivocal relationship is: 

S(x, y) 1 T(1 x,1 y)= − − − ; 
c) An important family of T-norm (S-norm) is formed by the 

Hamacher T-norm, which depends continuously on a tuning pa-
rameters which permit to obtain a wide range of T-norm (S-norm). 

Note that for a Mamdani FCS, the following data need to be assigned: 

i. Membership functions ,  

ii. Rules (rule data base),  

iii. T-norm and the S-norm used for the conjunction and disjunction 
respectively (sometimes other aggregation operators can be used). 

Even if many, possibly, infinite, choices exist for the T-norm (S-norm) the 
most common are the min and the max operators respectively. The type of 
the inference rules, on the other side, is usually performed with an Expert 
(or more) of the application domain. Together with the memberships func-
tions, the assignment of a T-norm (S-norm) and of the rule data base can 
be a long and stressing phase; sometimes a neuro-fuzzy algorithm could 
help if many input-output data are available, i.e. a collection of instances 
(we have in this case a non linear regression problem to be solved). 

The Mamdani controller can be used to implement a fuzzy version of a 
classical PID controller, in this case, the input variables are the error, its 
derivative, and its integral. 

 

23.4.2   Takagi-Sugeno-Kang (TSK) Fuzzy Models  
 
The "Sugeno fuzzy model" (also known as the "TSK fuzzy model") was 

proposed by Takagi, Sugeno and Kang in an effort to develop a systematic 
approach to generate fuzzy rules from a given input-output data set (Taka-
gi and Sugeno 1985). These models use fuzzy rules with fuzzy antecedents 
and functional consequent parts, thereby qualifying them as mixed fuzzy 
or non-fuzzy models. Such models can represent a general class of static or 
dynamic nonlinear mappings via a combination of several linear models. 
The whole input space is decomposed into several partial fuzzy spaces and 

                                                           
2 The averaging operators, as the weighted mean, the generalized mean, the OWA operators, 

the Choquet integral with non additive measures are in between the min and the max opera-
tors; the family of the T-norm is a contiguous class of operators with furnishes lower values, 
while the family of the S-norm is a contiguous class of operators with furnishes higher val-
ues (w.r.t. an averaging operators). 
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each output space is represented with a linear equation. The resulting mod-
els are referred to as TSK models and are represented by a series of fuzzy 
rules of the form: 

 
k k k

k 1 1 m mR : IF (x is A ) THEN (y   h (x)) AND....AND (y   h (x))= =  
 
Where k

jh (x);  j =1,…,m are polynomial functions of the inputs and 

represent local models used to approximate the response of the system in 
the region of the input space represented by the antecedent Ak. When 

k
jh (x); is a first order polynomial, the resulting fuzzy inference system is 

called a "first order Sugeno fuzzy model". When y is constant, the resulting 
model is called "zero-order Sugeno fuzzy model", which can be viewed ei-
ther as a special case of the Mamdani inference system, in which each 
rule's consequent is specified by a fuzzy singleton, or a special case of the 
Tsukamoto fuzzy model (to be introduced next) in which each rule's con-
sequent is specified by a MF of a step function center at the constant. The 
Sugeno fuzzy type of knowledge representation does not allow the output 
variables to be described in linguistic terms, which is one of the drawbacks 
of this approach. Hence, this class of fuzzy models should be used when 
only performance is the ultimate goal of predictive modeling. Each of 
these fuzzy models has inherent drawbacks. For Mamdani fuzzy models 
the defuzzification process may be time-consuming, and systematic fine 
tuning of the parameters is not easy.  

 
For TS fuzzy models it is hard to assign appropriate linguistic terms to 

the rule consequence part, which does not use fuzzy values. Readability 
and performance thus appear as antagonist objectives in fuzzy rule-based 
systems. Some form of compromise can be found by using simplified 
fuzzy rules of the form: 

 
k k k

k 1 1 m mR : IF (x is A ) THEN (y  is b ) AND....AND (y  is b )  
 

Where k
jb   are fuzzy singletons (see def. A.6). Fuzzy models relying on 

such rules are referred to as singleton fuzzy models. This class of fuzzy 
models can employ all the other types of fuzzy reasoning mechanisms be-
cause they represent a special case of each of the above-described fuzzy 
models. More specifically, the consequent part of this simplified fuzzy rule 
can be seen either as a singleton fuzzy set in the Mamdani model or as a 
constant output function in TS models. Thus the two fuzzy models are uni-
fied under this simplified fuzzy model. Another interesting aspect of the 
simplified fuzzy model is its functional equivalence to the Radial Basis 
Function (RBF) network. This equivalence is established when Gaussian 
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membership functions are used to describe the antecedents of rules. Suge-
no system is suited for modeling nonlinear systems by interpolating be-
tween multiple linear models. Because it is a more compact and computa-
tionally efficient representation than a Mamdani system, the Sugeno 
system lends itself to the use of adaptive techniques for constructing fuzzy 
models. These adaptive techniques can be used to customize the member-
ship functions so that the fuzzy system best models the data. Figure 3.9 
shows the fuzzy reasoning procedure for a first-order Sugeno model. Since 
each rule has a numeric output, the overall output is obtained via 
"weighted average", thus avoiding the time-consuming process of defuzzi-
fication required in a Mamdani model. In practice, the weighted average 
operator is sometimes replaced with the "weighted sum" operator (that is, 
w1z1 +w2z2 in Fig. 23.5) to reduce computation further specially, in the 
training of a fuzzy inference system (Castillo and Melin 2001). However, 
this simplification could lead to the loss of MF linguistic meaning unless 
the sum of firing strengths (that is, ∑wi) is close to unity. 

 

Fig. 23.5 First-order Sugeno fuzzy model (Adapted from Jang JSR, Sun 
CT (1995) Neuro-Fuzzy Modeling and Control. Proceedings of IEEE; 
83(3): 378-406, with permission from IEEE) 

 
Thus, the main difference between Mamdani and Sugeno is that the  

Sugeno output membership functions are either linear or constant. Also  
the difference lies in the consequents of their fuzzy rules, and thus their 
aggregation and defuzzification procedures differ suitably. The number of 
the input fuzzy sets and fuzzy rules needed by the Sugeno fuzzy systems 
depend on the number and locations of the extrema of the function to be 



23   Fuzzy Logic Control for Dialysis Application 1197

 
approximated. In Sugeno method a large number of fuzzy rules must be  
employed to approximate periodic or highly oscillatory functions. The mi-
nimal configuration of the TS fuzzy systems can be reduced and becomes 
smaller than that of the Mamdani fuzzy systems if nontrapezoidal or non-
triangular input fuzzy sets are used. Sugeno controllers usually have far 
more adjustable parameters in the rule consequent and the number of the 
parameters grows exponentially with the increase of the number of input 
variables. Far fewer mathematical results exist for TS fuzzy controllers 
than do for Mamdani fuzzy controllers, notably those on TS fuzzy control 
system stability. 
 
23.4.3   Tsukamoto Fuzzy Models  

 
In the "Tsukamoto fuzzy models", the consequent of each fuzzy if-then 

rule is represented by a fuzzy set with a monotonical MF, as shown in  
Fig. 23.6 (Tsukamoto 1979; Castillo and Melin 2001). As a result, the in-
ferred output of each rule is defined as a numeric value induced by the rule 
firing strength. The overall output is taken as the weighted average of each 
rule's output. Figure 23.6 illustrates the reasoning procedure for a two-input 
two-rule system. Since each rule infers a numeric output, the Tsukamoto 
fuzzy model aggregates each rule's output by the method of weighted average 
and thus avoids the time-consuming process of defuzzification. However, the 
Tsukamoto fuzzy model is not used often since it is not as transparent as  
either the Mamdani or Sugeno fuzzy models (Castillo and Melin 2001). 

 

 

Fig. 23.6 Tsukamoto fuzzy model (Adapted from Jang JSR, Sun CT 
(1995) Neuro-Fuzzy Modeling and Control. Proceedings of IEEE; 83(3): 
378-406, with permission from IEEE) 



1198 S. Giove, A.T. Azar, and M. Nordio

 
23.5   FUZZY CONTROL OF DIALYSIS 
 

23.5.1   Automatic Control of Dialysis Session 

A dialysis session lasts more or less four hours, in this period the re-
moval of toxic substances must be sufficient to obtain a grade of renal in-
sufficiency compatible with life; hyperkaliemia, metabolic acidosis and 
water overload must be corrected. This means that in few hours urea con-
centration drops of about 65%, serum potassium halves, bicarbonate rises 
of about 25% and at least 2 or 3 liters of water are removed. The impact of 
these alterations on body physiology is not negligible; as a matter of fact a 
hemodynamic instability often occurs during the dialysis session. 

Water is primarily removed from blood, determining a reduction in cir-
culating blood volume. This process is counteracted by the refilling from 
interstitial fluid that transfers water from the extracellular compartment to 
the intravascular one, thus restoring blood volume. This flow is primary 
determined by the increased osmotic pressure due to hemoconcentration. A 
pivotal role is due to serum proteins and sodium concentration that are the 
two most important osmotic agents. The physiologic response to hypovo-
lemia involves also an increase in heart rate and a constriction of the  
arterial bed that causes an increase in vascular resistance. When these  
mechanisms fail, hypotension occurs.  

In general mean arterial pressure is determined by cardiac output and 
systemic vascular resistance according to the law:                                            

                                                  MAP CO × SVR=                              (23.1) 

where MAP is mean arterial pressure, CO is cardiac output and SVR 
means systemic vascular resistance. Cardiac output reduction induced by 
hypovolemia may be corrected by fluid infusion or tempered by increasing 
Na concentration that enhances plasma refilling and/or slowdown of ultra-
filtration rate. Systemic vascular resistance may be increased by the reduc-
tion of body temperature or by eliminating any vasodilators in the dialysis 
bath (acetate free dialysis bath) or by administering vasoconstrictor agents 
(rarely used). 

Owing to the possibility of the described side effects, dialysis procedure 
usually requires a strict medical supervision, since it often produces severe 
undesired side effects. Hypotensive episodes are mainly caused by the un-
balanced flow between ultrafiltration (UFR) and plasma refilling rate (PRR). 
An excessive sodium extraction or excessive UFR cannot be compensated 
by a proportional PRR, thus the blood volume (BV) is reduced, determin-
ing hypotension. Conversely, a too high sodium load or a too low UFR can 
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originate a fluid overload followed by heart failure. Hence, it is necessary 
to obtain the best compromise. Usually, a doctor adjusts the two control 
variables, UFR and the sodium conductivity (Na) in the dialysate, aiming 
to satisfy some therapy targets, the most important of which are: 

 The decrease of body weight to a pre-defined value, i.e. the re-
moval of a predetermined excess of water, 

 The desired sodium balance during and at the end of the session 

 To avoid at the same time severe hypotension episodes, cramps 
and other undesired effects, while guaranteeing the removal of 
some toxic substances.  

To avoid the fluid unbalance, the doctor tries to achieve a sufficient PRR 
(Churchill 1996). In so doing, medical experience is quite important to ob-
tain the fulfillment of the objectives, on the other side, the manual control 
is resource consuming, and subject to personal consideration brought to 
human errors, due for instance to inattention or tiredness. To this aim, 
some model-based tools were developed to control the process, but the re-
sults were not completely satisfactory, because the models cannot account 
for the physiological processes involved in hemodynamic stability not di-
rectly measurable (Daugirdas 1991). Conversely an approach based on a 
fuzzy rule based control system is different and more suitable for real clin-
ical applications (Giove 1998; Giove et al. 1993; Nordio et al. 1995, 1999). 
The most important feature of this method is that even the trend can be 
taken into account, because a frequent sampling is possible, thus predictive 
action can be implemented to avoid sudden changes.  

The advantages of a fuzzy based approach are the following: 

• instead of using a model-based approach, this method captures, 
implements, and replays the medical experience, 

• it is almost completely model free, because only a predetermined 
weight reduction and sodium removal are fixed, 

• the clinical knowledge is implemented using a MIMO fuzzy rule 
data base, 

• it is based on a hierarchical strategy, and on a heuristic know-
ledge. 

The diagram of the fuzzy logic support system for the dialysis session is 
depicted in Fig. 23.7. 
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Fig. 23.7 Diagram of the UF and Na fuzzy regulation. MultiMat is a  
dialysis machine by Bellco (Mirandola, Italy) used in the Nineties to  
perform paired filtration dialysis. 
 

23.5.2   Data Acquisition  

The fuzzy control described in this section was performed using a par-
ticular technique of hemodiafiltration named “paired filtration dialysis” 
(PFD) in which the convective component occurs in a little hemofilter se-
parated from the dialysis filter. The plasmatic water collected during the 
convective process was used to measure continuously the conductivity 
(and hence plasma sodium concentration). In a classical hemodialysis pro-
cedure the measurement of plasmatic sodium conductivity may be substi-
tuted by ionic dialysance with little changes in the rules. 

A dialysis PFD machine has been used to collect the sampled data, 
namely blood pressure, blood volume, sodium conductivity, body weight, 
recorded in a PC every minute (except for blood pressure, acquired every 
10 minutes), and processed every 10 min. The on-line sodium balance is 
computed by the measurements of plasma conductivity and dialysate  
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conductivity, using a well-known mathematical model (Di Filippo et al 
1996). A pre-elaboration procedure computes the trend using different me-
thods (least squares, or the average on the last observed values, and other 
ones), and fuzzify the variables. The trend measures the tendency to in-
creasing or decreasing. For instance, Fig. 23.8 reports the interpolating line 
of the sampled blood volume values; the trend is nothing else but the linear  
coefficient of the interpolating line.  

 
Fig. 23.8 Blood Volume Trend (BVE = blood volume error). 

The variables and the relative trends are fuzzyfied. To this purpose, tra-
pezoidal fuzzy sets were used, since they are easy to be obtained by ex-
pert’s judgments using only 4 points; in fact a trapezoidal fuzzy sets 
[a,b,c,d] splits the real line into subsets where the linguistic term is com-
pletely true, completely false or uncertain. In particular, in all the points 
below a, and in all the points above d, the membership is null (the linguis-
tic term in false), in all the points in between b and c the linguistic term in 
completely true, while in the two intervals [a,b] and [c,d]  there is uncer-
tainty, that is, the considered value belongs to the fuzzy set with member-
ship linearly increasing from a to b, and linearly decreasing from c to d3. 
                                                           
3 The trapezoidal fuzzy number are particular case of L-R type fuzzy numbers (Klement et al. 

2000), that are characterized by an increasing behaviour, followed by a constant interval, the 
core (possibly degenerating into a single point) and finally by a decreasing part. Triangular 
fuzzy numbers are trapezoidal numbers whose core is formed by a single point. Many other L-
R type fuzzy numbers exist in the literature, like the Gaussian type, etc. Anywise, from many 
simulations it can be verified that the performances of a FIS do not significantly change  
if Gaussian type are used instead that trapezoidal, mainly if many variables and rules are  
involved. 
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This formalism is easy to explain to the Clinician and he/she can fulfill a 
sheet where the four points representing all the fuzzy sets, i.e. for each lin-
guistic terms, can be easily be inserted.  

Moreover, in this heuristic approach, there is not the necessity to intro-
duce a tuning strategy, as in neuro-fuzzy controller (even if it could be 
done of course), since the required knowledge is directly extracted from 
the Clinician’s expertise, and tested by off-line simulations. 

Fig. 23.9 reports the fuzzy sets for the variables SBP (systolic blood 
pressure) and SBPt, its trend; the labels “VL, L, G, H, VH”, and “N, Z, P”, 
stand for “Very Low”, “Low”, “Good”, “High”, Very High” and “Nega-
tive”, “Zero”, “Positive” respectively.  

 

Fig. 23.9 (a) Fuzzy sets for systolic blood pressure 

 

Fig. 23.9 (b) Fuzzy sets for systolic blood pressure trend 

The input variables are (with the number of corresponding fuzzy sets 
within parenthesis): systolic blood pressure SBP (5) and its trend SBPt (3), 
blood volume changes BVC (3) and its trend BVCt (3), sodium balance  
error NaEr (3) and body weight error BWEr (3) 



23   Fuzzy Logic Control for Dialysis Application 1203

 
The output variables are the change of UFR, ΔUFR, and the change of 

dialysate conductivity, ΔDC, computed by the fuzzy engine, in order to 
achieve the desired performances.  

23.5.3   The Fuzzy Logic Controller    

The fuzzy rule system is a TSK-type inference MIMO controller, be-
cause it acts on the error and the error trend of several state variables to de-
termine the optimal strategy4. It uses a hierarchical approach, defined by a 
fuzzy meta-rule data base. To this purpose, 4 sub-systems are defined; one 
for each controlled variable, and then the supervisory control determines 
the optimal mix of each sub-module proposed control values, taking the 
most important control objective into account. The control action is ap-
plied every 10 min., when all the state variables are collected, and the con-
trol values remains constant within each sampling interval [ ]1, +ii TT . The 
outputs of each rule are crisp singletons, like the ones in Fig. 23.10 for the  
variable ΔUFR.  

 
Fig. 23.10 ΔUFR crisp consequents 

All the rules, in the form of an inference “if.., then” rule are collected in 
a tabular form, and can be modified by the user (he can also select all other 
optional parameters and items, like the T-norm). Table 23.2 reports the 
rules for pressure control. For instance, the four column-third row rule 
means “IF SBP is High AND SBPt is Positive THEN ΔUFR is Positive 
Low AND ΔCD is Negative Low”. The outputs of each subsystem are 
subsequently aggregated by a super-visor rule block, using a defined prior-
ity strategy. 

                                                           
4 In this sense, it is not properly a PID controller, but it is very similar in the conceptual 

philosophy. 
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Table 23.2 SBP and SBPt Rule Table 

SBP→ 

SBPt ↓ Very Low Low Good High Very High 

Negative ΔUFR=NH 

ΔCD=PH 

ΔUFR=NH 

ΔCD=PL 

ΔUFR=NL

ΔCD=Z 

ΔUFR=PL 

ΔCD=Z 

ΔUFR=PL 

ΔCD=NL 

Zero 

 

ΔUFR=NH 

ΔCD=PH 

ΔUFR=NL 

ΔCD=PL 

ΔUFR=Z 

ΔCD=Z 

ΔUFR=PL 

ΔCD=Z 

ΔUFR=PH 

ΔCD=NL 

Positive 

 

ΔUFR=NH 

ΔCD=PL 

ΔUFR=NL 

ΔCD=Z 

ΔUFR=PL 

ΔCD=Z 

ΔUFR=PL 

ΔCD=NL 

ΔUFR=PH 

ΔCD=NH 
 

23.5.4   The Priorities and the Integrated System 

The priority of the actions to be performed was given by a set of 
weights computed using, again, a decision table of fuzzy rules. When both 
SBP and BVE were satisfactory, the tables for NaEr and BWEr were used 
to gain the objectives of the correct Na balance (predetermined by the doc-
tor) and the dry weight of the patient. If SBP or BVE were not good, their 
proper actions were preferred. Anywise SBP had the maximal priority, fol-
lowed, in order, by BVE, NaEr, and BWEr. For instance, referring to 
BWEr (characterized by the lowest priority), its weight is negligible if at 
least one of the other variables (SBP, BVE, NaEr) has a high weight. The 
aggregation of the outputs was obtained using a weighted sum: 

                 
i

4 4

i
i 1 i 1

UFR w UFR(i),      DC w CD(i)
= =

Δ = Δ Δ = Δ∑ ∑            (23.2)
 

where ΔUFR(i) and ΔCD(i) are the output of each rule table and wi are the 
weights calculated by the priority table (see Table 23.3). The values SBPB, 
SBPG, BVEB, BVEG (SBPB stand for “SBP is Bad”, SBPG stands for 
“SBP is Good”, and so on) are computed from the relative sub-module de-
cision tables. For instance, the value SBPB is the maximum activation de-
gree of the rules implemented in the Table 23.2, except the element in 
second row and third column (corresponding to “SBP is Good, SBPt is Ze-
ro”). The system was tested in 10 sessions, and all the patients gained the 
prescribed dry weight with a correct sodium balance. No hypotension epi-
sode was observed. In four cases the dry weight and a correct sodium bal-
ance were obtained reducing the dialysis time without significant changes 
in blood pressure. 
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Table 23.3 Priority Management Table 

Pressure Volemia Output weighs Output  

SBPB  W1 = SBPB TabP 

SBPG BVEB W2 = min{SBPG,VVEB} TabV 

SBPG BVEG W3 = min{SBPG,VVEG} TabNa 

SBPG BVEG W4 = min{SBPG,VVEG} TabDBW 
TabP, TabV, TabNa and TabDBW are the outputs from the rule tables respectively of blood 
pressure, blood volume, conductivity and blood volume change. 

23.5.5   Other Fuzzy Controllers 

An alternative fuzzy controller was developed by Schmidt and others 
(Schmidt et al. 2001). In this case the input parameter is blood pressure, 
measured as relative difference of systolic pressure and pre-adjusted set 
point pressure, short term pressure trend (15 min) and long term pressure 
trend (25 min). The numeric values are fuzzified into linguistic variables 
described by trapezoidal or triangular fuzzy sets. Specific rules are used to 
obtained the corresponding fuzzy sets of UFR and the infusion rate of 
hypertonic saline (the output variables), finally converted into crisp out-
puts for adaptation of the variables to patient’s actual blood pressure beha-
vior. The control is provided by the transmission of these outputs both to 
the dialysis machine for UFR change and to a programmable infusion 
pump for hypertonic saline infusion. The underlying strategy is to establish 
a set point systolic blood pressure (90 – 100 mmHg) and a starting UFR 
(150% of the average UFR) in order to avoid excessive loss of water in the 
last part of the session. If the actual systolic blood pressure comes close to 
the set point, the system reacts first with injection of 20% saline, if blood 
pressure does not stabilize, then UFR is lowered. In the final phase the 
main reaction is to decrease UFR and sodium injection is avoided, to avoid 
a positive Na balance. This system was subsequently improved by substi-
tuting the hypertonic saline infusion pump with dialysate conductivity 
changes (Hickstein et al. 2009). 

This system is conceptually simple: it looks for the signs of an incipient 
collapse and it reacts by increasing plasma refilling with an osmotic solu-
tion, if this maneuver fails, then UFR is considered excessive and conse-
quently decreased. The system proposed by Nordio et al (1995) is more 
complex because both systolic blood pressure and blood volume changes are 
considered and weighted with rules that give the maximal priority to heavy 
blood pressure changes. The underlying strategy is to look for the best UFR 
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profile for each patient. As a matter of fact some hypotensive-prone patients 
show a drop in blood pressure at the beginning of the dialysis session, in this 
case the problem is given by a inappropriate sympathetic response to UFR 
that corresponds to inadequate vasoconstriction. In this situation sodium is 
given and UFR is reduced in the meanwhile hemodynamic stabilization is 
obtained, at this point, with a stable blood pressure (SBPt near zero), UFR 
restarts. If blood pressure holds in the first and medium parts of the dialysis 
session the two fuzzy control systems are equivalent. 

23.6   COMPARISON WITH OTHER APPROACHES 

In order to better understand the flexibility and the advantages of a 
fuzzy controller, a comparison with a classical adaptive controller is  
proposed. 

The controller targets prescribed are total body weight loss, equivalent 
dialysate conductivity and relative BV change (Santoro et al. 1996). The 
input parameters for the controller are the monitored discrepancies be-
tween the instantaneous actual value and the instantaneous desired target 
for BV change, dialysate conductivity and weight loss. The control va-
riables (output parameters) are the instantaneous dialysate conductivity 
and weight loss rate, which can vary from instant to instant to reach the de-
sired targets. This system aims at driving the BV reduction curve over time 
along a pre-set trajectory balancing the classical goals of removal of so-
dium and water excess (total body weight and equivalent conductivity tar-
gets) with the new goal of (relative BV change target).  

The core of this closed-loop bio-feedback software is an error-based 
mathematical model. The net result produced by this system is that the 
three target parameters (relating to water balance, sodium balance and de-
sired BV reduction curve), decided by the operator at the beginning of the 
sessions, are smoothly driven, during the HD session, through a precise 
three-dimensional curve that represents the best compromise among the 
targets themselves. This operation is performed with a given range of to-
lerances for each parameter, decided by the operator as a safety feature. 

The control system acts as a BV controller that continuously modifies 
the instantaneous UF rate and dialysate conductivity, while guaranteeing 
sodium and water balance. The rationale of this system is to smooth out 
the acute and sudden reductions in BV that can appear during HD sessions, 
consequent to a transient imbalance in the patient’s vascular refilling ca-
pacity, in order to try to reduce the incidence of intra-HD hypotension  
episodes. 
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Both the fuzzy and the classical system just described are MIMO con-

troller. The input variables of the fuzzy system are systolic blood pressure 
SBP and its trend, blood volume, blood volume changes, sodium balance 
error and weight error. The classical adaptive system input variables are 
the discrepancies between the instantaneous actual value and the instanta-
neous desired target for BV change, dialysate conductivity and weight 
loss. The true target of the adaptive control, that is blood pressure, cannot 
be treated, because BP is not easily modeled. Thus, only hypotensive epi-
sodes due to BV changes may be predicted and corrected, and nothing can 
be made for hypotension due to vasodilatation. The fuzzy controller works 
better with hypotension due to BV reduction, but it is able to account  
also for hypotensive episodes due to other causes, since SBP is an input 
variable.  

 

23.7   CLINICAL RESULTS 

In the clinical practice both systems works, allowing for a reduction in 
hypotensive episodes in a similar percentage (Santoro et al. 2002; Mancini 
et al. 2007; Hickstein et al. 2009). This means that the policy to control di-
alysis related hypotension by modulation of dialysate sodium conductivity 
and ultrafiltration rate is only partially effective. These results may be 
someway expected. In all the control systems described (and available), 
the response to blood pressure or blood volume reduction is given by so-
dium infusion (given directly or indirectly by an increase in sodium dialy-
sate) or by UFR reduction. These responses are proper if the cause of the 
hemodynamic instability is only inadequate refilling, but when the prob-
lem is inadequate vascular reaction to blood volume reduction, no correct 
response is available. In this case a particular attention should be devoted 
to temperature control system (Schneditz et al. 2003) that aims to maintain 
blood pressure by minimizing vasodilatation due to thermal unbalance.  

An integration of BV/ultrafiltration/conductivity and temperature con-
trol system should be desirable. This integration is problematic using mod-
el based controller, while may be feasible with a fuzzy logic controller 
since tables of rules may be easily performed. 

 

23.8   DIFFUSION OF DIALYSIS CONTROL SYSTEMS 

Three dialysis companies implemented in their dialysis machines the di-
alysis control systems. In particular, a company implemented thermal bal-
ance, another one the classical adaptive controller and the last one the 
fuzzy controller. This policy is due to two main reasons: first of all each 
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dialysis company promoted research, engineering and trade, thus linking a 
single system to a particular machine with the aim to increase the sale of 
the final product owing to the additional benefit implemented; second, 
since the control systems strictly interacts with the machine hardware 
(UFR and conductivity control), the software is integral part of the ma-
chine. The market of dialysis machines is only partially linked to innova-
tive technologies, since it is governed in part by private companies that are 
often the same producers of the machines and thus they use their products 
and in part by public health systems that pay attention to a balance be-
tween costs and innovation. 

By an epidemiologic point of view, symptomatic intradialytic hypoten-
sion is an important but not overwhelming problem, as a matter of fact it 
occurs in about 20% of diabetic patients and 15% of non-diabetic patients 
(Davenport et al. 2008). Other researches suggest that a correct definition 
of the dry body weight (Agarwal et al. 2010), and sodium and/or ultrafil-
tration profiling are able to avoid a large part of hypotensive episodes 
without having recourse to sophisticated tools. 

These considerations explain why these systems are not so widespread 
in clinical practice.  

 

23.9   FUTURE DIRECTIONS 

All available control systems are probably not effective in optimizing 
sodium removal, especially in patients highly hypotension prone. No study 
gives evidence that biofeedback works better than conductivity and UFR 
profiling and randomized studies are lacking. Biofeedback systems are 
tightly linked to machines, profiling is independent on machines. An inter-
esting alternative should be offline profiling optimization. This objective 
requires various steps: pattern recognition of blood pressure and/or blood 
volume during the dialysis session, adjustment of conductivity an UFR 
profiling according to specific patterns, implementation of an expert sys-
tem able to perform this task. 

Expert driven fuzzy systems or, better, neuro-fuzzy system should  
be suitable methods to give the better conductivity and UFR profile for 
each patient’s blood pressure pattern. Both patterns and profiles could be 
stored in servers linked to the machine, now widespread in many dialysis 
facilities, thus this decision support system should be independent on  
machines. 
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23.10   CONCLUSION  

Hemodialysis is often complicated by hypotensive episodes that lead to 
chronic hyperhydration and determine suffering for the patients. Excessive 
decrease of blood volume is probably the most important cause of dialysis 
induced hypotension. It is due to the unbalance between water removal and 
plasma refilling. Mathematical models that links blood volume changes to 
ultrafiltration rate and plasma conductivity are available; as a consequence 
control systems that adapt these variables to obtain a desired slope of 
blood volume decrease may be performed. Unfortunately, the physiology 
of blood pressure is much more complex, since it includes not only factors 
related to blood volume, but also to cardiac performance and to vascular 
reactivity. A quantitative model that links all these variables is not availa-
ble owing to the rough knowledge of the whole systems, but a qualitative 
knowledge, expressed in linguistic terms, is possible. Fuzzy logic is suita-
ble to solve this kind of problems. 

The two fuzzy control systems use directly blood pressure and its trend 
as input variable, this is not possible with a classical PID controller since 
the quantitative relationships between blood pressure and the control va-
riables are not known. In the fuzzy control system the relationships are de-
scribed in tables that link the linguistic description of the input variables 
with the appropriate adaptive response. One may expects that fuzzy con-
trollers work better than classical PID controllers, but this has not been 
demonstrated, also if a direct comparison between the two methods has not 
been performed. This result is probably explained by the fact that the adap-
tive control is assigned to the same variables: changes in ultrafiltration  
rate and in dialysate conductivity. These variables can only act on plasma 
refilling. 

Fuzzy controllers allows future improvements because they allow to 
implement other control variables such as temperature, infusion of drugs 
that acts on heart performance or vascular reactivity, concentration of K or 
Ca in the dialysate and so on. It is sufficient to create tables with the cor-
responding rules and the hierarchy of intervention. 
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APPENDIX A: FUZZY SETS 

 
A.1   MEMBERSHIP FUNCTIONS 

 
Although the underlying purpose of the membership functions is to 

represent vague linguistic terms, they should also possess other important 
properties making the fuzzy system more suitable for predictive modeling. 
For example, the output of membership functions should be computation-
ally cheap to be evaluated as this is one of the most frequently performed 
operations in fuzzy systems. Common choices fall into the following fami-
lies of parameterized functions (Pedrycz and Gomide 1999): 

 

• Triangular function: 

A

0        if x a

x a
if x [a,c]

c aμ (x)
b x

if x [c,b]
b c
0        if   x b      

≤⎧
⎪ −⎪ ∈
⎪ −= ⎨ −⎪ ∈
⎪ −
⎪ ≥⎩

 

 
Where c is a modal value, and a and b denote the lower and upper 

bounds, respectively, for nonzero values of µA(x). Sometimes it is more 
convenient to use the notation explicitly highlighting the function's  
parameters: 

A

(x a) (b x)μ (x;a,b,c) max 0, min ,
(c a) (b c)

⎧ ⎫⎡ ⎤− −⎪ ⎪= ⎨ ⎬⎢ ⎥− − ⎪⎣ ⎦⎪ ⎭⎩
 

 
• Trapezoidal function: 

A

0        if  x a

x a
if  x  [a,c]

c a
μ (x) 1          if  x [c,d]

b x
if  x  [d,b]

b c
0        if    x b      

<⎧
⎪ −⎪ ∈

−⎪
⎪= ∈⎨
⎪ −⎪ ∈

−⎪
⎪ >⎩

 

 

A

(x a) (b x)μ (x;a,b,c,d) max 0, min ,
(c a) (b d)

⎧ ⎫⎡ ⎤− −⎪ ⎪= ⎨ ⎬⎢ ⎥− − ⎪⎣ ⎦⎪ ⎭⎩
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• Gaussian function: 

2k (x c)
Aμ (x) e− −=

 
 where k > 0. Typically k = 1/a2 where a2 reflects the width (spread) of 

µA(x). 
 

• Bell-shaped function: 
 

     A 2

1μ (x)
1 k (x c)

=
+ −

   with k > 1 

 
A.2   CHARACTERISTICS OF FUZZY SETS 

 
Fuzzy sets are characterized in more detail by referring to the concepts 

of support, core, normality, convexity, etc. Let Ƒ(X) denote the set of all 
possible fuzzy sets defined on the universe of discourse X. For a fuzzy set 
A ϵ Ƒ(X) we can give the following definition (Pedrycz and Gomide 1999). 

 
Definition A.1 (support) The support of A, denoted by supp(A), is a fuzzy 
set of X whose elements all belong to A with nonzero degree: 

 

}{ Asupp(A) x X|μ (x) 0= ∈ >  

 
Definition A.2 (core) The core of A, denoted by core(A), is a fuzzy set of X 
whose elements exhibit a full membership degree in A: 

 

}{ Acore(A) x X|μ (x) 1.0= ∈ =  

 
Definition A.3 (α-cut) The α-cut of A, denoted by [A]α with α > 0:0, is a 
non-fuzzy set of X consisting of those elements whose membership values 
exceed the threshold level α: 
 

[ ] }{ AA x X|μ (x)
α α= ∈ ≥  

 
Definition A.4 (empty fuzzy set) A is an empty fuzzy set if µA(x)= 0.0, 

Xx ∈∀  that is if Supp(A) = Φ. 
 

Definition A.5 (universal fuzzy set) A is a universal fuzzy set if µA(x)= 1.0, 
Xx ∈∀ , that is if Core(A) = X. 
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Definition A.6 (fuzzy singleton) A is a fuzzy singleton if supp(A) = {x0} 

and we use the notation A = 0x . 
 

Definition A.7 (normal fuzzy set) A is said normal if its membership func-
tion attains 1, that is supx µA(x) = 1.0. The supremum is the height of A. 
Hence A is normal if its height is equal to 1. If the height is less than 1, 
then A is called subnormal. 

 
Definition A.8 (convex fuzzy set) A is said convex if its membership func-
tions is such that: 

 

[ ]A 1 2 A 1 A 2μ ( x (1 λ) x min μ (x ),μ (x )λ + − ≥
  

For any x1, x2 ϵ X, and λ ϵ [0,1]. Equivalently, it can be said that A is 
normal if [A]α is a convex subset of X [ ]0,1α∀ ∈ . 

 
Definition A.9 (Compact fuzzy set) A is said compact if supp(A) ⊂  X. 

 
A.2.1   Basic Relationships between Fuzzy Sets 

 
As in set theory, we can define generic relations between two fuzzy sets, 

such as inclusion and equality. Let A ϵ Ƒ(X) and B ϵ Ƒ(X) be fuzzy sets 
(Pedrycz and Gomide 1999). 

 
Definition A.10 (inclusion) We say that A is included in B, denoted by A 
⊆  B ,iff  

µA(x)≤  µB(x), Xx ∈∀ . 
 
Definition A.11 (equality) A and B are said to be equal, denoted by A = B, 
iff 

A ⊂ B and B ⊂ A. Of course A = B iff µA(x) = µB(x), Xx ∈∀ . 
 
Another relationships between two fuzzy sets is similarity expressed in 

terms of a distance function between their membership functions which is 
treated as an indicator of their closeness. The more similar the two fuzzy 
sets, the lower distance between them. For this reason, it can be convenient 
to normalize the distance function so as to obtain a similarity measure by 
straight complementation of the normalized distance. In general, the dis-
tance between A and B can be defined as: 
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1/P

p

A B

x

d(A,B) μ (x) μ (x) dx
⎡ ⎤

= −⎢ ⎥
⎣ ⎦
∫  

 
Where P ≥1. Specific cases typically encountered in applications are: 
 

A B

x

Hamming distance (p = 1): d(A,B) μ (x) μ (x) dx
⎡ ⎤

= −⎢ ⎥
⎣ ⎦
∫  

 
1/2

2

A B

x

Euclidean distance (p = 2): d(A,B) μ (x) μ (x) dx
⎡ ⎤

= −⎢ ⎥
⎣ ⎦
∫  

A.2.2   Operations on Fuzzy Sets  
 
In this section the operations on fuzzy sets are defined, which come 

from an extension of the classical set theoretic operations from ordinary 
sets. Logical fuzzy operations are defined through triangular norms and 
triangular conorms, referred to as the T-norm and T-conorm (or S-norm) in 
the literature and here denoted by T (.) and ( )σ ⋅ , respectively. 
 
Table A.1 The most popular choices for the T-norm and T-conorm (Pe-
drycz and Gomide 1999). 
 

norm T-norm T-conorm 
truncation T (a,b) = min{a, b} σ (a,b) = max{a, b} 
algebraic T (a,b) = ab σ (a,b) = a + b - ab 
bounded T (a,b) = max {a + b - 1, 0} σ (a,b) = min {a + b , 1}  

 
Definition A.12 (Triangular norm) A t-norm is a binary mapping 

 
T : [0,1] × [0,1] → [0,1] 

 
Satisfying the following properties: commutativity, associativity, mono-

tonicity and one-identity (i.e. T (x,1)=x, x [0,1]∀ ∈ ) 
 
Definition A.13 (Triangular conorm) A s-norm is a binary mapping 
 

σ : [0,1] × [0,1] → [0,1] 
 



1214 S. Giove, A.T. Azar, and M. Nordio

 
satisfying the following properties: commutativity, associativity, mono-

tonicity and zero-identity (i.e. σ (x,0)=x, x [0,1]∀ ∈ ) 
 
These norms provide a wide range of suitable operators but the most 

popular are the algebraic and truncation operators as summarized in table 
(A.1). that the truncation operators may produce model outputs with dis-
continuous derivatives, while the algebraic operators produce smooth out-
puts ideal for modeling and control. For this reason algebraic operators are 
preferred. 

 
Let A ϵ Ƒ(X) and B ϵ ƑX) be fuzzy sets. 

 
Definition A.14 (Complement) The complement of A, denoted by ¬ A, is a 
fuzzy set of X with membership function: 
 

A Aμ (x) 1 μ (x), x X¬ = − ∀ ∈  
 

Definition A.15 (Intersection) The intersection of A and B is a fuzzy set of 
X with membership function: 
 

µA•BB(x)= T (µA(x), µB(x)),
 

x X∀ ∈  
 

Definition A.16 (Union) The union of A and B is a fuzzy set of X with 
membership function: 

(x)μ BA∪ = σ (µA(x), µB(x)),
 

x X∀ ∈
  

Definition A.17 (Possibility measure) The possibility measure of A with 
respect to B, denoted by Poss (A,B) is defined as 

Xx
supB)Poss(A,
∈

= [T (µA(x), µB(x))] 

It quantifies the extent to which A and B overlap 
 

Definition A.18 (Necessity measure) The necessity measure of A with  
respect to B, denoted by Nec(A,B) is defined as 

x X
Nec(A,B) inf

∈
= [σ (µA(x), 1-µB(x))] 

It quantifies the degree to which B is included in A 
 

Definition A.19 (Fuzzy Relation) Let X and Y be nonempty sets. A fuzzy 
relation is a fuzzy subset of X × Y i.e. R ϵ Ƒ(X × Y) 
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Definition A.20 (Composition of Fuzzy Relations) If R ϵ Ƒ(X × Y) and S ϵ 
Ƒ(Y × Z) are fuzzy relations, the composition of R and S is a fuzzy relation 
in X × Z denoted by R  S and is defined by: 

R S
y Y

(x,z) supμ
∈

= [T (µR(x,y), µS(y,z))] 

Definition A.21 (Cartesian Product) If A and B are fuzzy sets defined on 
X and Y, respectively, the Cartesian product A × B is a fuzzy relation in 
the product space X × Y with membership function 

µA× B(x,y)= T (µA(x), µB(y)) 

Definition A.22 (Fuzzy Implication) Let A ϵ Ƒ(X) and B ϵ Ƒ(Y)) be fuzzy 
sets. The fuzzy implication A →B is a fuzzy relation A × B. 
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ESSAY QUESTIONS 

 
1. Compare between the basic levels of model synthesis. 
2. What is fuzzy logic? 
3. What does fuzzy set mean? 
4. List some applications of fuzzy logic systems 
5. List the main building blocks of the fuzzy logic system 
6. What is a fuzzy inference rule? 
7. Define the defuzzification process 



23   Fuzzy Logic Control for Dialysis Application 1219

 
8. Is FCS a linear controller? 
9. Describe the main differences between Mamdani and Sugeno 

fuzzy models 
10. What is Fuzzy Control System (FCS)? 
11. What is the difference between fuzzy logic and probabilities? 
12. Can we affirm that the proposed approach for the fuzzy logic con-

troller is a Decision Support System, rather than a fuzzy control 
system for a dynamic system? 

13. Describe the mechanisms involved in maintaining hemodynamic 
stability during hemodialysis. 

14. Describe the main differences between a fuzzy blood pressure con-
troller and a classical blood volume adaptive controller in dialysis. 

 
MULTIPLE CHOICE QUESTIONS 

 
Choose the best answer 

 
1. Who is the founder of fuzzy logic?  

A. Mamdani  
B. Sugeno 
C. Lotfi Zadeh 
D. Tsukamoto 

 
2. What are the following sequence of steps taken in designing a fuzzy 
logic machine?  

A. Fuzzification→Rule evaluation→Defuzzification  
B. Rule evaluation→Fuzzification→Defuzzification  
C. Fuzzy Sets→Defuzzification→Rule evaluation  
D. Defuzzification→Rule evaluation→Fuzzification 

 
3. Fuzzy logic has rapidly become one of the most successful of today's 
technologies for developing sophisticated control systems. The reason for 
this is…  

i. Fuzzy logic resembles the human way of thinking.  
ii. Fuzzy logic enables the ability to generate precise solutions from 

certain or approximate information.  
iii. Fuzzy logic is easy to implement.  
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A. i & ii & iii  
B. i & ii  
C. ii & iii only  
D. none of the above 

 
4. “Fuzzy logic”  is… 

A. A “new type” of logic 
B. A different name of probability calculus 
C. A logic with incomplete information 
D. A way to reason with non-probabilistic uncertainty 

 
5. A fuzzy control system is… 

A. A linear control law 
B. A control law which uses empirical knowledge  
C. An optimal control law 
D. A control law based on zero-pole allocation 

 
6. A FIS  is useful… 

A. To implement expert knowledge for many application fields 
B. To solve nonlinear differential equations  
C. To build a neural net 
D. To solve logistic problems 

 
7. Defuzzification consists of… 

A. Process reasoning to infer a conclusion from a rule data set 
B. Computing the membership degree of the antecedent part in a FIS 
C. Obtain a crisp number from a fuzzy number 
D. Computing a T-norm between two membership degree 

 
8. The proposed FCS for dialysis control… 

A. if formed by a Mamdani control 
B. it is an adaptive PID controller 
C. it is a DSS for determining the optimal values of  UFR and Na 
D. it is a SISO control (Single Input-Single Output) 
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9. Trapezoidal fuzzy numers are… 

A. A different representation of complex numbers 
B. Particular probability distributions 
C. Linearly increasing and decreasing fuzzy numbers (with possibly a 

constant part) 
D. A way to represent S-norms 

 
10. The priorities in the integrated FCS systems serve to… 

A. Introduce a feedback action 
B. Analyse the stability 
C. Select the “best” rules to be applied 
D. Modify the Sodium Balance 

 
11. A T-norm is… 

A. A particular type of membership function 
B. A conjunction logical operator  
C. A disjunction logical operator  
D. A method to defuzzify a fuzzy number 

 
12. In the fuzzy controller described in the chapter, the input variable with 
the higher priority was… 

A. Blood pressure                                                   
B. Blood volume changes 
C. Blood pressure trend 
D. Blood volume trend 
 

13. The fuzzy controller and the classical adaptive controller share as input 
variables… 

A. Blood pressure 
B. Blood volume changes 
C. A and B 
D. other 

 
14. Fuzzy rules are… 

A. rules for synapsis computation in  neural nets 
B. an algorithm to optimize an adaptive control 
C. a way to represent not probabilistic uncertain inference 
D. other 
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15. The proposed fuzzy support system for dialysis regulation is… 

A. a PID controller 
B. a dynamic adaptive control 
C. an optimal control system 
D. an inference rule based system  

 
16. Triangular fuzzy numbers are… 

A. Probability density 
B. Fuzzy numbers with infinite support 
C. Gaussian type fuzzy numbers 
D. L-R type fuzzy numbers 

 
17. A TSK controller is… 

A. a non linear controller 
B. a  discrete time stable controller 
C. a  predictive controller 
D. a Mamdani type controller  

 
18. A FCS for the dialysis session… 

A. Is based on the medical experience 
B. uses a model-based approach 
C. is necessarily stable 
D. can be applied only for SISO systems 

 
19. A FIS is… 

A. A dynamic system identifier 
B. An inference system based on fuzzy rules 
C. A way to check if a dynamic system is stable 
D. A stable control rule 

20. Fuzzy identification from a…modeling point of view 

A. White-box 

B. Grey-Box 

C. Black Box 
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